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Zusammenfassung

Das Thema dieser Doktorarbeit ist, zunédchst grundlegende modelunabhéngige
Eigenschaften der Nukleon-Nukleon (NN) Wechselwirkung im Vakuum hinsicht-
lich ihrer relativistischen Struktur und die Konsequenzen daraus fiir Eigenschaf-
ten von Kernmaterie zu untersuchen.

Hierfiir werden relativistische und nicht-relativistische Meson-Austausch Po-
tentiale, phdnomenologische Potentiale und auf effektiver Feldtheorie (EFT) be-
ruhende Potentiale auf eine relativistische Operator Basis der Clifford-Algebra
abgebildet. Der Vergleich der unterschiedlichen Potentiale auf der Ebene von
kovarianten Amplituden zeigt eine bemerkenswerte Ubereinstimmung.

Weiterhin wird die relativistische Selbstenergie in der Hartree-Fock (HF)
Néherung bestimmt. Das Auftreten eines skalaren und vektoriellen Feldes in der
GroBenordnung von mehreren hundert MeV ist eine universelle Eigenschaft von
relativistischen Beschreibungen von Kernmaterie. Im Rahmen von QCD Sum-
men Regeln sind diese Felder eng mit der Dichteabhéngigkeit chiraler Kondensa-
te verkniipft. Es zeigt sich, dass unabhéngig von der Wahl der NN Wechselwir-
kung grofle skalare und vektorielle Felder auftreten, sobald die Symmetrien der
Lorentz Gruppe wiederhergestellt sind. Im Rahmen der chiralen EFT (chEFT)
wird gezeigt, dass kurzreichweitige Kontakt-Terme in néchst zu fithrender Ord-
nung, die mit der Spin-Bahn Wechselwirkung verkniipft sind, diese Felder er-
zeugen.

Um Auswirkungen von NN Korrelationen abzuschétzen, wird die Zustands-
gleichung mit dem chiralen EFT Potential fiir Kern- bzw. Neutronenmaterie
in der Bruckner-HF (BHF) Ndherung bestimmt. Wéhrend erwartungsgemés ei-
ne deutliche Uberbindung eintritt (in néchst zu fithrender Ordnung wird Sétti-
gungsverhalten beobachtet), zeigt die Symmetrieenergie im Vergleich mit phéno-
menologischen Potentialen (in der gleichen Ndherung) bzw. anderen Zugéngen
ein realistisches Verhalten. Bei der Untersuchung der Pionmassenabhéngigkeit
im Rahmen der chEFT in néchst zu fithrender Ordnung zeigt sich, dass die
GroBenordnung der skalaren und vektoriellen Felder im chiralen Limes bestehen
bleibt und nukleare Materie gebunden ist. Im Gegensatz zum Fall einer grofle-
ren Pionmasse als die physikalische verringern sich im chiralen Limes sowohl die
Bindungsenergie als auch die Sattigungsdichte.

Der vorliegende Formalismus erlaubt nun im Rahmen der chEFT einen kon-
sistenten Vergleich der In-Medium Nukleonmasse und der Dichteabhéngigkeit
des skalaren Kondensates, welches unter Anwendung des Hellmann-Feynman
Theorems (in HF und BHF Néaherung) bestimmt wird. Es zeigt sich, dass
die In-Medium Nukleonmasse und das skalare Kondensat entkoppeln. Im Ge-
gensatz zu QCD Summen Regeln bestimmen kurzreichweitige Kontakt-Terme
die In-Medium Nukleonmasse, wohingegen virtuelle Pionen niedriger Impulse
hauptséchlich zur Reduzierung des chiralen In-Medium Kondensates beitragen.



Abstract

The subject of the present thesis is at first the investigation of model indepen-
dent properties of the nucleon-nucleon (NN) interaction in the vacuum concern-
ing the relativistic structure and the implications for nuclear matter properties.

Relativistic and non-relativistic meson-exchange potentials, phenomenological
potentials s well as potentials based on effective field theory (EFT) are therefore
mapped on a relativistic operator basis given by the Clifford Algebra. This
allows to compare the various approaches at the level of covariant amplitudes
where a remarkable agreement is found.

Furthermore, the relativistic self-energy is determined in the Hartree-Fock
(HF) approximation. The appearance of a scalar and vector field of several hun-
dred MeV magnitude is a general feature of relativistic descriptions of nuclear
matter. Within QCD sum rules these fields arise due to the density dependence
of chiral condensates. We find that independent of the applied NN interaction
large scalar and vector fields are generated when the symmetries of the Lorentz
group are restored. In the framework of chiral EFT (chEFT) it is shown, that
these fields are generated by short-range next-to-leading order (NLO) contact
terms, which are connected to the spin-orbit interaction.

To estimate the effect arising from NN correlations the equation of state of
nuclear and neutron matter is calculated in the Brueckner-HF (BHF) approx-
imation applying chEFT. Although, as expected, a clear over-binding is found
(at NLO a saturating behavior is observed), the symmetry energy shows realis-
tic properties when compared to phenomenological potentials (within the same
approximation) and other approaches. The investigation of the pion mass de-
pendence within chEFT at NLO shows that the magnitude of the scalar and
vector fields persists in the chiral limit — nuclear matter is still bound. In con-
trast to the case of a pion mass larger than the physical one the binding energy
and saturation density are decreased in the chiral limit.

The present formalism allows within chEFT to perform a consistent compar-
ison of the in-medium nucleon mass and the density dependence of the scalar
condensate derived from the Hellmann-Feynman theorem (in HF and BHF ap-
proximation). A decoupling of the in-medium nucleon mass and the scalar con-
densate is observed. It turns out that in contrast to QCD sum rules the effective
nucleon mass in matter is mainly determined by short-range contact terms while
virtual low-momentum pions provide the essential contributions responsible for
the reduction of the in-medium scalar condensate.
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1. Introduction

The field of nuclear physics was born with the discovery of the neutron by
Chadwick in 1932 [1]. Since then the nuclear force, i.e., the interaction between
two nucleons, had been the heart of nuclear physics and has been investigated all
over the world for the past 75 years. The reason for that outstanding importance
of the nuclear force is that traditionally the main intention in nuclear physics
is to determine the properties of nuclei and nuclear matter in terms of a bare
nucleon-nucleon interaction.

Going back in history, the idea of meson exchange is based on Yukawa’s
fundamental hypothesis from 1935, namely, that the nuclear force is mediated
by the exchange of massive particles [2]. Yukawa’s original concept of a scalar
field which interacts with the nucleons was modified consequently soon after
to vector [3] and then to pseudo-scalar and pseudo-vector fields [4] and also
concepts of mixed meson exchange theories came up [5]. The empirically found
sign of the quadrupole moment of the deuteron could be explained correctly
by the inclusion of a pseudo-scalar field. Therefore an isovector, pseudo-scalar
boson has been predicted by Pauli [6] long before a massive particle with this
properties was found experimentally in 1947/48.

After the experimental finding of the pion Taketani, Nakamura and Sasaki [7]
proposed a subdivision of the nuclear force, an attractive long-range part for a
relative distance of the two nucleons larger than 2 fm dominated by one-pion
exchange (OPE), an intermediate range (1 fm > » < 2 fm) and a short-range
(r <1 fm) or core region. The short-range part is is the mathematically most
complicated part. From a nowadays perspective it is clear that besides multi-
pion exchange (or the exchange of heavy mesons) quark-gluon exchange plays
also a crucial role. It therefore becomes evident that the main difference among
all theories of the nuclear force arise due to the different description of the
interaction at high momenta in the short-range region.

In order to derive the nucleon-nucleon (NN) interaction the first field-theoretic
attempts were based on pion exchange. OPE was well established describing
the long-range part of the nuclear interaction since it proved to be suitable to
describe NN scattering data and the properties of the deuteron. However, it
turned out that it was not possible to get a sufficiently strong spin-orbit force
by incorporating two-pion exchange (TPE). Moreover serious ambiguities arose
from multi-pion exchange which led to the conclusion that the ”"pion theories”
developed at that time were not feasible in order to describe the NN interaction.



1. Introduction

The situation changed when heavy mesons were discovered experimentally in
the early 1960s (due to the experimental investigation of a strong short-ranged
spin-orbit force and from the electromagnetic structure of the nucleon the exis-
tence of vector mesons had been already suggested before [8, 9, 10, 11]). Now
with the inclusion of vector bosons one-boson-exchange (OBE) models were
developed which described NN scattering data fairly well. These models are
based on the assumption that multi-pion exchange can be represented by the
exchange of adequate multi-pion resonances. However, a main problem is the
inclusion of the scalar-isoscalar sigma meson since its experimental evidence
is still controversial. The sigma boson describing the intermediate range at-
traction is connected to correlated TPE. Therefore a lot of effort was spent
in order to derive the contribution from TPE to the NN interaction. One ap-
proach of deriving the OBE potentials was based on dispersion relations which
led, e.g., to a model of the nuclear force constructed from using one-pion ex-
change, dispersion-theoretical TPE and w meson exchange and additionally a
phenomenological short-range part.

Another promising way was to construct relativistic meson-theoretical nucleon-
nucleon potentials in the framework of field theory. The advantage of a field-
theoretical approach is that it can account for a well-defined off-shell behavior
and medium effects when applied to the many-body problem. These properties
are natural consequences of meson exchange. In summary, the field-theoretical
approach led to more and more complex meson exchange potentials, which go
far beyond the traditional OBE models. They are constructed from OPE, TPE
including also virtual isobar excitation and finally all relevant diagrams of 37-
and 4m-exchange. Modern one-boson-exchange potentials (OBEP) as e.g. the
Bonn potentials [12] are based on the exchange of these mesons and provide
high precision fits to nucleon-nucleon scattering data. Meson-nucleon coupling
constants and form factors are empirically fixed from the data. Thus OBEPs
are the result of relativistic phenomenology at the level of the elementary NN
interaction.

With the onset of quantum chromo-dynamics (QCD) which is the fundamen-
tal theory of strong interactions it became obvious that the nucleon-nucleon in-
teraction is not fundamental. Although it is a well known fact that the nucleon-
nucleon interaction is entirely determined by the underlying quark-gluon dy-
namics a quantitative understanding of the NN interaction in the language of
QCD is far from being realized due to the non-perturbative character of QCD
in the low-energy regime leading to formidable mathematical problems. Even
lattice-gauge theory which is a promising tool for the treatment of low-energy
QCD nowadays, fails to be appropriate concerning the NN force due to compu-
tational restrictions which appear to persist even in the near future.

Since a direct solution of QCD in the low-energy regime is not possible quark
cluster models were developed inspired by QCD. Some of these models were able
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to describe most of the properties of the nuclear force qualitatively but failed
to reproduce them quantitatively [13, 14].

A big step was made when the methods of effective field theory (EFT) were
applied to low-energy QCD by Weinberg [15].

In order to introduce this concept first a short survey of chiral symmetry in
nuclear physics is presented. The QCD Lagrangian exhibits exact chiral sym-
metry in the limit of massless up and down quarks. In other words the massless
QCD Lagrangian is invariant under global flavor SU(2) x SU(2)g or alterna-
tively SU(2)y x SU(2) 4 transformations (where the subscripts stands for vector
and axial). Since the up and down current quark masses are small, i.e. of the
order of 5-10 MeV, this symmetry is still approximately fulfilled. However, in
nature no parity doublets are observed in the low-mass hadron spectrum. This
implies that the ground state of QCD can not have the same symmetry as the
Hamiltonian due to Goldstone’s theorem. The axial symmetry is spontaneously
broken by the non-vanishing — and large — ground state expectation value of
the scalar quark density, the quark condensate (Gq)o of the QCD vacuum. The
quark condensate also plays an important role as an order parameter of sponta-
neously broken chiral symmetry. The spontaneous symmetry breaking, similar
to the spontaneous magnetization of a ferromagnet which breaks the symmetry
of the underlying Hamiltonian, implies the existence of three massless Goldstone
bosons which are than the three pions (7%, 7°). Explicit symmetry breaking due
to the non-vanishing current quark masses generates the mass scale for the pion
mass, where spontaneous symmetry breaking generates the scale A, ~ 4rwf;
which is then identified with the observed gap A ~ My in the spectrum of
low-mass hadrons. Due to Goldstone’s theorem these pions interact weakly at
low energy and momenta. Moreover in the chiral limit, i.e. for vanishing pion
masses and zero energy and momentum the interaction vanishes which gives the
theoretical foundation for chiral perturbation theory. The small pion mass of
140 MeV ensures that the concept of chiral symmetry persists as a fundamental
feature of low energy hadron physics. Thus, in the low-energy regime of QCD
one ends up with pions and nucleons where spontaneously broken approximate
chiral symmetry rules the interaction. One important reason for the failure of
the ”pion theories” based on Yukawa’s meson theory is understood nowadays:
(broken) chiral symmetry generates and constrains pion dynamics which was
not known in the 1950s.

The main idea of an effective field theory is now that at low-energies the dy-
namics should be governed by the lightest particles, i.e. the pions which are the
effective degrees of freedom and the symmetries of QCD. The heavy particles,
i.e. the nucleons are treated as almost static sources. The scale A, governs
naturally the separation between light and heavy degrees of freedom. In order
to describe this one has to write down the most general Lagrangian which is
consistent with the assumed symmetry principles (Lorentz covariance, parity
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conservation, time-reversal and charge-conjugation invariance, (approximate)
isospin symmetry and particularly spontaneously broken chiral symmetry of
QCD as stated by Weinberg [15]. Since this chiral effective Lagrangian is given
by an infinite series of terms an infinite number of Feynman diagrams is gen-
erated when applied to NN scattering. Weinberg showed, that a systematic
expansion of the NN interaction in terms of chiral power counting exists [16].
The expansion is performed in powers of (Q/A,)” where @ is the generic low
momentum scale given by the nucleon three-momentum, or the four-momenta
of virtual pions or a pion mass. A, ~ 4rf; ~ 1 GeV is the chiral symmetry
breaking scale. In such an expansion the low-energy constants (LECs) related
to pion-nucleon vertices can be fixed from pion-nucleon scattering data [17]. To
the extent of terms (which are dictated by the symmetries) included in the effec-
tive Lagrangian, such an effective theory is considered as the exact mapping of
QCD on effective hadronic degrees of freedom in the non-perturbative regime.

Up to now the two-nucleon system has been considered at next-to-next-to-
next-to-leading order (N3LO) in chiral perturbation theory [18, 19, 17]. In
chiral EFT the NN potential consists of one-, two- and three-pion exchanges
and contact interactions which account for the short-range contributions.

Moreover, chiral EFT has a well defined quark mass dependence. For the
NN interaction the chiral limit of vanishing current quark and pion masses has
been evaluated up to next-to-leading order (NLO) [20, 21] and applied to the
deuteron problem [22].

The most general two-nucleon interaction in the non-relativistic approxima-
tion was written down by Okubo and Marshak in 1958 [23] based on certain
symmetries required by a two-body potential. The mathematical form is given
by a certain set of operators (central, spin-orbit, tensor, quadratic spin-orbit,..)
and corresponding potential forms. In the case of chiral EFT these potential
forms are derived systematically.

There exist, however, a large number of phenomenological models, e.g. the
Argonne vy4 potential [24] or v potential [25] where the general potential form
from [23] has been taken and the NN interaction has been parameterized by
means of general functions (local Woods-Saxon functions).

Reducing the relativistic field-theoretic OBE exchange Feynman amplitudes
to a non-relativistic representation one obtains also a potential which is thereby
based on an equivalent set of spin and isospin operators as the very general
two-nucleon interaction from Ref. [23].

In summary, the common spin-isospin operator structure of the potentials
is enforced by NN scattering data as well as imposed by symmetry require-
ments [23]. However, except for covariantly formulated OBE models most mod-
ern potentials are not restricted by the requirement of covariance. Therefore the
question arises whether besides chiral symmetry that establishes the connection
to QCD the NN interaction is also governed by the symmetries of the Lorentz
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group.

A better understanding of the common features and the differences of the
various approaches is essential in order to arrive at a more model independent
understanding of the NN interaction, in particular since all the well established
interactions fit NN scattering data with approximately the same precision. A
direct comparison of relativistic phenomenology based on meson exchange with
EFT and non-relativistic phenomenology is, however, difficult since the latter
two approaches lack of a clear Lorentz structure. At low momentum scales
the different potentials can be mapped on each other using renormalization
group (RG) methods [26]. This led recently to the construction of a “model
independent” low momentum potential Vi, by integrating out the dynamics
for momenta above a cut-off scale of about A ~ 2 fm™* [26]. It has been argued
that beyond this scale the short-range part of the interaction, mediated by vector
meson exchange or point-like counter terms, becomes dominant and leads to the
deviations of the various approaches.

Although a breakthrough in some sense, the renormalization group approach
does not help to clarify the relativistic structure of the potentials which is es-
sential e.g. in order to generate (or not to generate) large scalar/vector mean
fields in nuclear matter as will be discussed later on.

The present work tries to answer the question whether all NN potentials con-
tain a "hidden” relativistic structure imposed by the symmetries of the Lorentz
group in a model-independent way.

This is done by reconstructing the symmetries of the Lorentz group by ap-
plying projection techniques to map the various NN potential models which
are usually represented in an angular-momentum basis on Dirac phenomenol-
ogy given by the Clifford algebra in Dirac space. This finally allows to identify
the different Lorentz components of the interaction. Such a transformation is
well defined in the positive energy sector for on-shell amplitudes and allows to
compare the NN potentials on the basis of Lorentz invariant amplitudes.

One could argue that the information which pieces of the interaction are of
scalar, vector, etc type is not of relevance at low energies.

It is, however, a fundamental question which role relativity plays in nuclear
systems. Inside nuclei nucleons move with maximally about 1/4 of the velocity
of light considering the ratio of the Fermi momentum over the nucleon mass
kg/M =~ 0.25. This fact implies only moderate corrections from relativistic
kinematics in finite nuclei. Non-relativistic density functionals such as Skyrme
or Gogny forces are widely used in structure calculations. In such approaches
there exists only one relevant scale for the mean field which is the depth of
the single particle potential of about -50 MeV. The same is true for ab initio
calculations like Brueckner-Hartree-Fock (BHF') or variational calculations.

However, there exists a fundamental difference between relativistic and non-
relativistic dynamics for nuclear systems such as finite nuclei or infinite nuclear
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1. Introduction

matter. A genuine feature of relativistic nuclear dynamics is the appearance
of large scalar and vector mean fields, each of a magnitude of several hundred
MeV. The scalar field X is attractive and the vector field X, is repulsive. In
relativistic mean field (RMF) theory, both, the sign and the size of the large
scalar and vector fields are enforced by the nuclear saturation mechanism [27].
At nuclear saturation density py ~ 0.16 fm > the empirical fields deduced from
RMF fits to finite nuclei are of the order of ¥ ~ —350 MeV and ¥, ~ +300
MeV [28].

The single particle potential in which the nucleons move originates from the
cancellation of these scalar and vector fields Ugne >~ Yo + 2 and is of the order
of -50 MeV. Therefore one has no direct experimental access to the interpolat-
ing scalar and vector fields. There exist, however, several features in nuclear
structure which can be explained naturally within Dirac phenomenology while
models based on non-relativistic dynamics have difficulties or, at least, one has
to introduce additional model parameters. The most well known feature is the
large spin-orbit splitting in finite nuclei. In a relativistic framework the strong
spin-orbit force appears naturally from the coupling to the lower components of
the Dirac equation where the scalar-vector mean fields add up in the spin-orbit
potential Uso. o< (3¢ — Xg) ~ 750 MeV. Due to this fact RMF theory is able
to reproduce the strong spin-orbit splitting in spherical nuclei quantitatively
without the introduction of additional parameters [28]. A second symmetry,
observed more than thirty years ago in single-particle levels of spherical nuclei
is the so called pseudo-spin symmetry [29]. While all attempts to understand
this symmetry within non-relativistic approaches failed, it can naturally be un-
derstood within RMF theory as has been shown by Ginocchio [30] a few years
ago. This symmetry, again a consequence of the coupling to the lower compo-
nents, is exact in the limit ¥y = —>5 and is broken in nature by the amount
(X0 + Xs) /(X0 — ) which is less than 10%. A third example are the moments
of inertia in rotating nuclei. Relativistic dynamics implies that in the rotating
system a Coriolis term occurs due to the spatial vector currents, however, with
all couplings already fixed through the time-like components [31].

The relativistic phenomenology has been extremely successful for the descrip-
tion of nuclear systems, i.e. finite nuclei and nuclear matter and is in the
meantime widely used. Relativistic mean field theory enforces the existence of
large scalar and vector mean fields in nuclear matter and a variety of strong
arguments support this scenario. However, RMF cannot prove the existence of
these fields since they are introduced by hand into the theory, i.e. a direct link
to the bare nuclear force and NN scattering is missing. The coupling strength of
the effective 0 and w exchange in RMF models adjusted to nuclear matter bulk
properties differs essentially from their counterparts in OBE type potentials
adjusted to NN scattering data.

An alternative approach for nuclear matter are ab initio many-body calcu-
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lations. Based on high precision NN interactions one treats short-range and
many-body correlations explicitly. A typical example for a successful many-
body approach is Brueckner theory [32]. In the relativistic Dirac-Brueckner-
Hartree-Fock (DBHF') approach the nucleon inside the medium is dressed by
the self-energy 3. The in-medium T-matrix is obtained from the relativistic
Bethe-Salpeter (BS) equation and plays the role of an effective two-body inter-
action which contains all short-range and many-body correlations of the ladder
approximation. Solving the BS equation the Pauli principle is respected and in-
termediate scattering states are projected out of the Fermi sea. The summation
of the T-matrix over the occupied states inside the Fermi sea yields finally the
self-energy ¥ in Hartree-Fock approximation [33, 34, 35, 36, 37, 38, 39]. The
scalar and vector self-energy components >3 and ¥, are found to be of similar
magnitude as in RMF theory.

In summary, the scalar field 35 and the time-like component of the vector field
Yo are key quantities of each relativistic hadronic theory since they determine
the spin-orbit potential Us o, the nuclear equation of state (EOS), the single-
particle potential as well as the effective nucleon mass' M* = M + 3.

However, in relativistic approaches the nuclear interaction is always described
in some sort of a relativistic field-theoretical meson exchange picture. The
mesons represent effective bosonic degrees of freedom which are either directly
adjusted to the properties of nuclear matter and finite nuclei, as in the case of
RMF theory, or to vacuum NN scattering. Hence it is a fundamental question to
decide whether the large scalar and vector fields enforced by Dirac phenomenol-
ogy of nuclear systems are an artefact of the meson exchange picture or whether
they reflect a deeper characteristics of nature.

An alternative approach to address this question from the phenomenology of
non-perturbative QCD is provided by QCD sum rules [43, 44, 45]. As already
mentioned the QCD ground state is populated by strong condensates of quark-
antiquark pairs and gluons. Hadrons represent excitations on this condensed
ground state. When baryonic matter is added to the vacuum a change of the
scalar condensate (gq) is induced what is believed to give a substantial contri-
bution to the strengths of the scalar mean field ¥ what nucleons and other
hadrons feel in matter. In this interpretation the density dependence of the
scalar condensate? (q),, determines directly the shift of the effective nucleon
mass M* = M + ¥,. The breaking of Lorentz invariance due to the presence
of the medium introduces the vector quark condensate {q'q),, giving rise to
a repulsive vector mean field Xy which is of the same magnitude as the scalar
field [43]. These fields are astonishingly close to the empirical values derived

Tt is well established that the effective nucleon mass in the nuclear medium deviates sub-
stantially from its vacuum value [40, 41, 42].

2The subscript denotes that the expectation value of the quark condensate is taken with
respect to the nuclear ground state at finite baryon density pg.
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1. Introduction

from RMF fits to the nuclear chart.

It is remarkable that relativistic many-body calculations yield again scalar
and vector fields which are of the same sign and magnitude as obtained from
RMEF theory or, alternatively, from QCD sum rules. Such a coincidence could
not have been expected a priori. Moreover, DBHF calculations [36] agree even
on a quantitative level surprisingly well with the QCD based approach of Ref.
[46, 47] where chiral fluctuations from the long and intermediate range pion-
nucleon dynamics were considered on top of the chiral condensates.

These facts suggest that preconditions for the existence of large fields in mat-
ter or, alternatively, the density dependence of the QCD condensates, must al-
ready be inherent in the vacuum NN interaction. The connection of the nucleon-
nucleon force to QCD is given by the fact that the interaction is described by
the exchange of the low lying mesonic degrees of freedom

The present work will demonstrate for the first time, explicitly and quan-
titatively, that the appearance of large scalar and vector fields in matter is a
direct - and model independent - consequence of the vacuum NN interaction
when the symmetries of the Lorentz group are respected. For this purpose we
calculate the self-energy components using a variety of modern relativistic and
non-relativistic high precision NN potentials based on different theoretical ap-
proaches in infinite nuclear matter in Hartree-Fock approximation at tree-level.

The main result of this investigation is, that whenever modern NN interactions
are mapped on a Lorentz covariant operator basis large scalar and vector self-
energy components of comparable size and sign are found where the magnitude
is set already at tree-level. This is found to be true for OBE type potentials,
purely phenomenological potentials as well as for EFT potentials.

It has been known for decades from Dirac phenomenology that the generation
of the large scalar and vector fields is induced by the short-range vector (w) and
scalar () meson exchange which are connected intimately to the large spin-orbit
interaction.

Since chiral EFT nucleon-nucleon potentials stem from a systematic expan-
sion of an effective Lagrangian which respects the basic symmetries of QCD,
chiral EFT is considered to be equivalent to QCD. The procedure of subjecting
the chiral N°LO Idaho potential [19] to the projection scheme onto a covariant
operator basis allows to identify the contributions to the self-energy components
from pion dynamics and short-range contact terms at the given chiral order up
to N3®LO. Hence a systematic investigation of the connection between the ap-
pearance of large scalar and vector fields in nuclear matter and chiral dynamics
can be performed.

This has been done elaborately in the present work in order to explore the
structure of the self-energy from chiral EFT, its generation mechanism, and the
connection to meson-exchange phenomenology.
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It is well known that a realistic description of nuclear matter requires NN
short-range correlations beyond Hartree-Fock. The latter are known to be es-
sential for nuclear binding when realistic NN potentials are used. In lowest
order of the Brueckner hole-line expansion this leads to the ladder approxima-
tion of the Bethe-Goldstone equation for the in-medium G-matrix [32], or the
BS equation in the relativistic case [33]. Despite the long history of improving
BHF theory the latter fails to describe nuclear saturation quantitatively. Strong
over-binding at too large densities is observed particularly when modern OBE
potentials are used. Relativistic DBHF theory on the other hand turned out
to be very successful in describing nuclear saturation properties [35, 36] due
to higher order density dependences introduced by a dressing of the two-body
interaction by in-medium spinors. When the low momentum interactions Vigyi
is applied isospin symmetric nuclear matter turns out to collapse already at
Hartree-Fock level due to the strong suppression of the hard core by high mo-
mentum cut-offs. A full summation of the Brueckner ladder does not improve
on the situation [48].

In the present work the chiral EF'T low-momentum interaction [19] is explored
in the context of the nuclear matter problem. To estimate the effect of short
range NN correlations this has been done both in Hartree-Fock approximation
(tree level) and in the non-relativistic BHF approach?® calculating the EOS for
symmetric nuclear matter as well as for neutron matter for all orders, i.e. from
leading-order (LO) up to N®LO. Though the results for the EOSs obtained from
chiral EFT are not expected to be realistic even in BHF approximation they
are required in order to determine the symmetry energy at the different chiral
orders. Moreover these results are instructive particularly with regard to the
investigation of the pion mass dependence of nuclear matter within chiral EFT.

The expansion of the nuclear force in the context of chiral perturbation theory
is well defined for small quark masses and should still be valid in the limit
mg — 0 which is equivalent to m, — 0. Therefore hadronic properties at low
energies are not expected to change dramatically in the chiral limit. This is
also the case in the context of the analysis of QCD sum rules where qualitative
changes of the properties of nuclei are not expected in the chiral limit. This can
be seen from the assumption that the nuclear properties can be described by
vacuum condensates which can be determined in the chiral limit. Then, however,
the qualitative properties of the nuclear EOS as well as the magnitude of the
scalar and vector self-energy components should naturally persist even in the
chiral limit since hadronic properties are not expected to change dramatically
in the case of massless quarks or pions.

3Tt is not possible to apply chiral EFT in the relativistic DBHF approach since is not a
covariantly formulated NN interaction.
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1. Introduction

Therefore the question arises how do the properties of nuclei and nuclear
matter change in the chiral limit or if the physics of nuclei in a world with
m, = 0 is qualitatively similar to what in fact is observed, e.g. if bound nuclei
can exist in the scenario of massless light quarks.

Within chiral EFT the explicit and implicit pion mass dependence of the
nuclear force is known derived up to the chiral order NLO [20, 22]. Thus the
behaviour of nuclear matter in the chiral limit can be explored.

This has been done in the present work. The pion mass dependence of the
scalar and vector self-energies is investigated by restoring the symmetries of the
Lorentz group with the help of projection techniques onto a covariant operator
basis. Moreover possible changes of the properties of the EOS in Hartree-Fock
and Brueckner-Hartree-Fock approximation are explored in particular in the
chiral limit, i.e. for vanishing pion masses but also for pion masses much larger
than the physical one.

As already mentioned, such an investigation is not only of academic interest,
in particular with regard to the interpolation of lattice gauge calculations which
are usually performed at pion masses much larger than the physical one.

QCD sum rules connect the nucleon mass in the chiral limit to the chiral
condensate (Gq)o. Hence, according to loffes’s formula [49] the (leading order)
vacuum nucleon mass is directly proportional to the chiral condensate (gq)o.
This gives an important hint since it implies that a change of the scalar conden-
sate with increasing baryon density leads to a sizeable decrease of the nucleon
mass in matter [50]. As already mentioned, this is found to be true within
the approach of in-medium QCD sum rules where the change of the scalar
condensate at finite baryon density determines the deviation of the effective
nucleon mass from its vacuum value. This, however, requires the knowledge
of the density dependence of the scalar condensate (gq),,. The latter can be
estimated with the help of the Hellmann-Feynman theorem which relates the
in-medium scalar condensate with the quark mass derivative of the total energy
density [43, 51]. To leading order in density one finds that the in-medium scalar
condensate drops linearly with the nuclear density (with the proportionality
given by the pion-nucleon sigma term o). In order to estimate the corrections
to this leading density dependence a lot of different models have been used: the
Nambu-Jona-Lasinio (NJL) model [43, 52, 53, 54], various versions of the linear
sigma model [55, 56|, the Quark Meson Coupling model (QMC) [57] or recently
the Polyakov-NJL model [58], hadron effective field theory [43, 59, 60] such as
ow type models [27] and the relativistic DBHF theory [34, 35, 36]. While DBHF
allows a quite reliable determination of the nuclear EOS up to at least two times
nuclear density as a conservative estimate - recent DBHF calculations [38, 39|
have been shown to be consistent with astrophysical and accelerator based con-
straints concerning their high density behavior [61] - the unknown quark mass
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dependence of the mesonic couplings and masses introduces large uncertainties
in the determination of the in-medium quark condensate [59, 60].

Our investigations [62] show that at moderate nuclear densities the chiral
N3LO scalar and vector fields at Hartree-Fock almost agree with the prediction
from leading order QCD sum rules. This coincidence of the nucleon mass shifts
obtained from QCD sum rules and relativistic nuclear phenomenology has been
stressed in many works.

However, there are still open questions left. Regarding the modification of
the quark condensate in matter one has to distinguish between contributions
coming from the pion cloud and those of non-pionic origin [63, 64]. As pointed
out in [63] a dependence of the nucleon mass in any simple way on the quark
condensate alone is ruled out by chiral symmetry. A considerable contribution to
the change of the scalar condensate in the medium comes from low momentum
virtual pions, i.e. from the pion cloud. Such contributions are, however, found
to play only a minor role for the reduction of the nucleon mass and therefore
cannot as easily be related to a partial restoration of chiral symmetry as the
QCD in-medium sum rule for the scalar mean field implies.

We are in the situation to calculate both quantities, the scalar quark conden-
sate (Gq),, in matter and the effective nucleon mass M* from the same chiral
effective interaction in the present work. The condensate is determined making
use of the Hellmann-Feynman theorem and the fact that, at least up to NLO, the
quark mass dependence of the potential is known from its analytic formulation
in the chiral limit. The effective mass, on the other hand, can be determined in
Hartree-Fock approximation making use of projection techniques on a relativis-
tic operator basis. Doing so, we observe a decoupling of the effective nucleon
mass and the scalar condensate. Furthermore our investigation of the structure
of the self-energy from chiral EFT shows that contributions coming from pion
dynamics only play a minor role for the reduction of the nucleon mass [62]. This
supports the conclusions of Refs. [63, 64]. The quark condensate is reduced to
large extent by the pion cloud surrounding the nucleons while the nucleon mass
is not.

The present thesis is organized as follows:

In Chapter 2 the appearance of large attractive scalar and repulsive vector
mean fields as a consequence of a relativistic formulation of the nuclear matter
problem is discussed. Therefore the cw model, a phenomenological relativistic
mean field (RMF) theory as the simplest realization of Quantum Hadron Dy-
namics is presented followed by a short description of the adjustment of its model
parameters to the saturation properties of nuclear matter and consequently the
natural appearance of large mean fields in matter.

The formalism of the microscopic DBHF approach is presented in the second
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1. Introduction

part with the introduction of the T-matrix approximation acting as an effective
two-body potential as well as the self-energy operator in T-matrix approxima-
tion. Moreover the determination of the self-energy is discussed briefly where
the scalar and time-like components of the self-energy operator are found to be
of the same magnitude as those obtained from RMF theory.

Finally QCD in-medium sum rules are introduced and discussed. This ap-
proach builds the bridge between QCD and the appearance of large scalar and
vector self-energy fields felt by a nucleon in nuclear matter.

In Chapter 3 an overview over modern high-precision NN potentials is given.
These are the Bonn A and CD Bonn potentials as examples of covariantly for-
mulated OBE type interactions. The Nijm93 [65] interaction as an example of
a non-relativistic meson-theoretical potential is introduced followed by the phe-
nomenological Nijm I, Nijm II, Reid93 potentials [65] and the Argonne v;g po-
tential [25]. Finally low-momentum EFT interactions are introduced. These are
the chiral Idaho N3LO potential [19] and the 'universal’ effective low-momentum
potential Vioy « [26] based on RG methods. Additionally the chiral EFT NN in-
teraction is presented where the implicit and explicit pion mass dependence of
the nuclear force has been derived up to the chiral order NLO [20].

The general connection between the operator structure of covariantly formu-
lated potentials as well as non-relativistic potentials is discussed.

In Chapter 4 the projection formalism for the restoration of the symmetries of
the Lorentz group is outlined. This procedure allows to map any NN potential
amplitudes usually represented in an angular-momentum basis onto a covariant
operator basis given by the Clifford algebra in Dirac space. This allows to study
the Lorentz structure of the various NN potentials and to compare the latter
by identifying the Lorentz components of the interactions. The results of this
model independent study are presented and discussed.

Nuclear bulk properties are investigated in Chapter 5. In the first part the
formalism for the determination of the self-energy components is outlined in
detail followed by a discussion of the results for the relativistic self-energy fields
obtained from the various interactions from Chapter 3. Furthermore the density
dependence of the fields as well as the implications for the nuclear EOS are
discussed. In order to test the reliability of the obtained tree level Hartree-
Fock results a comparison with a fully self-consistent DBHF calculation [36] is
performed. In order to check the applicability and accuracy of the projection
scheme outlined in Chapter 4 the single particle potential is calculated from
the self-energy components for the various potentials and compared to a non-
relativistic calculation.

The structure of the relativistic self-energy fields as well as its generation
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mechanism from chiral EFT is explored. The conclusion drawn on the gener-
ation mechanism are then compared to other potentials as well as to studies
which connect the structure of chiral EFT to the structure extracted from other
realistic nuclear forces.

The effects of higher order corrections in the density are investigated in a self-
consistent Hartree-Fock calculation. The results for the density dependence of
the self-energy fields as well as the EOS calculated with three different potentials
(Bonn A, Nijm93 and Nijm I) are discussed and compared to tree level results.

The results for the EOS of symmetric nuclear matter and pure neutron matter
from chiral EFT in Hartree-Fock and in Brueckner-Hartree-Fock approximation
for all orders in the chiral expansion up to N3*LO as well as the symmetry energy
are shown and compared to calculations based on different interactions as well
as on in-medium chiral perturbation theory. The investigation of the pion-mass
dependence of the self-energy fields in matter as well as the nuclear EOS in
Hartree-Fock and Brueckner-Hartree-Fock approximation is shown in the last
part of this chapter.

In Chapter 6 the connection between chiral EFT and QCD sum rules is in-
vestigated. The density dependence of the chiral condensate is determined with
the help of the Hellmann-Feynman theorem applying chiral EFT at NLO in
Hartree-Fock and Brueckner-Hartree-Fock approximation. The Hartree-Fock
result is compared to a determination of the effective in-medium nucleon mass
based on the same chiral EFT interaction where the scalar self-energy is calcu-
lated using the projection scheme outlined in Chapter 4.
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2. Mean fields in nuclear matter

Considering the ratio of the Fermi momentum over the nucleon mass which is
kr/M ~ 0.25 at saturation density py ~ 0.16 fm~2 kinematic corrections due
to special relativity do not seem to play a significant role in the description
of finite nuclei as well as infinite nuclear matter. Moreover, non-relativistic
approaches as, e.g., Skyrme-Hartree-Fock, describe finite nuclei quantitatively
well and therefore a relativistic description seems not to be appropriate.

Nevertheless, the understanding of nuclear dynamics has been improved fairly
by relativistic field theories where nuclear interactions are described by the
coupling of the nucleon to meson fields.

This becomes evident in the case of the description of the saturation prop-
erties of nuclear matter. Although non-relativistic many-body calculations are
able to describe the saturation properties of nuclear matter qualitatively, they
fail quantitatively. In the framework of relativistic approaches the quantitative
description of the saturation properties is improved and moreover a different un-
derstanding of the underlying saturation mechanism is obtained. Furthermore
there exist several features, e.g., the large spin-orbit force in nuclear structure
which can be described quantitatively well and naturally within a relativistic
field theory.

This indicates that there are large relativistic effects in nuclei and nuclear
matter under normal conditions and therefore relativistic approaches are the
appropriate approach in describing nuclear matter and finite nuclei.

The reason for that are not corrections due to relativistic kinematics but due
to an implicit feature of relativistic field theories namely the appearance of large
scalar and vector fields, each of a magnitude of several hundred MeV. This is an
unique property of the Clifford algebra where the Dirac equation is based on.

But besides relativistic fields theories on the mean field level or effective field
theories of the nuclear many-body problem, e.g., the DBHF theory based on
vacuum nucleon-nucleon interactions which are both referred to as Quantum
Hadron Dynamics (QHD) there is evidence from QCD sum rule analysis that
these scalar and vector fields are a direct consequence of the dynamics of the
underlying quantum chromodynamics (QCD).

In this chapter first the basic concepts of density functional theory (DFT)
will be reviewed since it builds the basis of any mean field theory. Then the
simplest relativistic mean field model for nuclear matter, the ocw-model, will
be presented. The DBHF theory a more elaborate and also more fundamental
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2. Mean fields in nuclear matter

many-body approach will be discussed later. Finally the appearance of the
scalar and vector fields in the framework of QCD sum rule analysis is discussed.

2.1. Density functional approach to QHD

The basic idea of density functional theory is that the exact energy E given by
the expectation value of the exact Hamiltonian H in the exact ground state | W)
is approximated by the expectation value of an effective Hamiltonian H, ¢f for a
simple product wave function |®) the Slater determinant (where the formalism
is taken from [66])

B = (W|AW) ~ (@] F.]9) = E[j]. (2.1
The product wave function
|®) := A(¢1(r1) ... da(ra)) (2.2)

is directly connected to the single particle density matrix

pi= ; |3) (3] - (2.3)

Therefore the exact energy can be expressed as a functional of the single particle
density matrix p. Now with the energy density functional E[p] one is able to
determine the average field h

. FE
h = 0 — (2.4)
op
and the effective interaction
V= " (2.5)
— 57 .

where the single particle wave functions are eigenfunctions of the mean field h
hlgs) = €ilén) - (2.6)

This non-linear problem requires a self-consistent solution due to the fact that
the single particle field h depends on the density. That means that self-consistent
changes of the mean field h and the wave functions corresponding to the field
are allowed.

The task is now to find the correct density functional E[p] which minimizes the
many-body Hamiltonian. That such a density functional exists can be proven
within density functional theory (Kohn-Sham Theory [67, 68]), how it looks like
depends on the problem. To find a functional which comes as close as possible to
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2.1. Density functional approach to QHD

the - in principle existing - exact solution is the task to be solved. An additional
caveat for nuclear systems is thereby that the existence theorem, the Hohenberg-
Kohn theorem [69] has been proven for particles in an external field, e.g. atoms
in the electromagnetic field. That this theorem holds as well for self-bound
systems, such as nuclei, is assumed but has not been proven explicitly.

As already explained in the introduction the nuclear system is a relativistic
one and therefore a Lorentz invariant formulation of DFT is required. The
relevance of a Lorentz invariant formulation can be understood if one start from
the Dirac equation for the relativistic single particle

hp=ap+% (2.7)
where the structure of ¥ the relativistic mass operator is given by
X=M-5+~,V". (2.8)

M denotes the nucleon mass. The field S is a Lorentz scalar and the fields
Vk = (V,V) give a Lorentz vector. Therefore one can write down the static

Dirac equation
(o= vis_mre) () =< (20) 29

where —S < 0 is an attractive field and V' > 0 a repulsive field, respectively.
The vector potential V' vanishes in time reversal invariant systems. The two-
dimensional spinor f; is the large component of the Dirac spinor and g; is the
corresponding small component, respectively. The single particle energy is de-
noted by ¢;. As mentioned before there exist strong indications that in nuclear
dynamics the scale of the fields S and V' has to be very large and why it is
important to account for Lorentz invariance.

Due to the coupling to the negative energy states or in other words to the
lower components of the positive energy Dirac spinors an additional density
dependence is introduced by the scalar field S in relativistic mean-field (RMF)
theories. This genuine relativistic density dependence is one reason explain-
ing, e.g., the great success in describing the nuclear saturation properties. The
fields are not accessible directly since the large scalar (~ —350 MeV) and vector
(~ 4300 MeV) fields cancel each other to a large extent giving the single-particle
potential which is of the order of ~ —50 MeV.

There exist also several features in nuclear structure which can be explained
naturally within Dirac phenomenology while models based on non-relativistic
dynamics have difficulties or, at least, one has to introduce additional model
parameters.

The most well known feature is the large spin-orbit splitting in finite nuclei. In
a relativistic framework the strong spin-orbit force appears naturally from the
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2. Mean fields in nuclear matter

coupling to the lower components of the Dirac equation where the scalar-vector
mean fields add up in the spin-orbit potential Uso. o< (V —S) ~ 750 MeV.
Due to this fact RMF theory is able to reproduce the strong spin-orbit splitting
in spherical nuclei quantitatively throughout the Periodic Table without the
introduction of additional parameters [28].

The next important feature in nuclear matter is the so-called pseudo-spin
symmetry which has been found more than 30 years ago [29]. While all attempts
to understand this symmetry within non-relativistic approaches failed, it can
naturally be understood within RMF theory as has been shown by Ginocchio [30]
a few years ago. This symmetry, again a consequence of the coupling to the lower
components, is exact in the limit V' = —S and is broken in nature by the amount
(V4 5)/(V —S) which is less than 10%.

The next example are the moments of inertia in rotating nuclei. Relativistic
dynamics implies that in the rotating system a Coriolis term occurs due to the
spatial vector currents, however, with all couplings already fixed through the
time-like components [31].

2.1.1. The cw-model

Although one can derive the relativistic equations of motion from an energy den-
sity functional they are usually derived by variation of a covariant Lagrangian
density as will be shown in the following for the cw-model.

The ow-model is an effective, also renormalizable quantum field theory, which
is often referred to as the Walecka model, who developed the first version of
QHD in 1974 [70]. However, the original idea of an effective scalar and vector
exchange goes even back to the year of 1956 (Diirr 1956 [71]).

The ocw-model is the simplest possible version of QHD, since the nucleon-
nucleon interaction is described by the exchange of only two mesons. The re-
pulsive short-range part of the nuclear force is described by isoscalar w meson
and the attractive intermediate part by the isoscalar ¢ meson. Although it is
about a hadron-meson theory these two meson are regarded as effective, since
they describe the complete nuclear force including all mesonic degrees of free-
dom. Pionic degrees of freedom are not included explicitly in this model because
pion exchange does not contribute to the potential at the mean field level but
only by exchange terms (Fock-diagrams). Moreover nuclear matter is a spin and
isospin saturated system and therefore spin- and isospin-dependent forces are
averaged out. Also the spin- and isospin-dependent contributions from two-pion
exchange are omitted. The scalar part of the two-pion exchange is effectively
included in the ¢ meson. This is the philosophy of an effective model, i.e., to
treat contributions which are beyond the approximation scheme of the model
not explicitly but to absorb them into the free model parameters. which then
have to be adjusted to the properties of nuclear matter, in particular to the

26



2.1. Density functional approach to QHD
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Figure 2.1: The different mesonic potentials in the nucleus “°Ca from QHD-I
as a function of the radius r. Vs is the total potential arising from the near
compensation of the o and w contributions.

nuclear saturation point.

Nevertheless the Walecka model exhibits already at that level the relevant
aspects of relativistic nuclear dynamics. This becomes evident in Fig. 2.1 where
the meson fields for *°Ca are plotted. The attractive scalar field generated by
the o meson is approximately —420 MeV large whereas the repulsive vector field
from the w meson exchange is approximately 340 MeV large. These potentials
almost cancel resulting in the standard nuclear potential Vj;r which is of the
order of ~ 80 MeV.

The p-meson is neglected in the following since it its inclusion is of importance
for a very accurate description of finite nuclei properties (single particle spectra,
neutron skins etc.) but does not contribute in infinite nuclear matter.

2.1.2. Lagrange density and field equations

The starting point of relativistic models with nucleonic and mesonic degrees of
freedom is given by the Lagrangian density where Dirac spinors describe the
nucleons which interact via meson exchange (o and w) [70, 27, 28|. It consists
of three parts: a baryonic part Lg, a mesonic part £j;, and a part describing
the interactions L;,;
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2. Mean fields in nuclear matter

L = Lp+Ly+ Lt

Ly = Y(in,0" — M)y

1 1 o1
CM = 5{((9#0)2—7%(2,02}—1 H,,F/'L —l—imiw“w“

Lit = goU0 — guthyw . (2.10)

The spinorfield operator of the baryonic field is denoted by 1 where the nucleon
mass is M = 939 MeV. o is the fieldoperator of the scalar ¢ meson and w* is
the fieldoperator of the vector w meson, where m, and m, and the masses of
the mesons. The interaction part L;,; is given by the minimal coupling of the
bosonic fields to the fermionic field. g, and g, are the corresponding coupling
constants. The antisymmetric field-strength-tensor is defined by

FH = 9fy” — 0wt . (2.11)

The field equations are obtained applying the Euler-Lagrange equations

u(i0" = guow") = (M — goo)] b = 0 (2.12)
0,0" +m2] o = gy (2.13)
0, F" +m2]w = guy"Y . (2.14)

Eq. (2.12) is a Dirac equation of the nucleon field with minimally coupled scalar-
and vectorfields of the mesons. Eq. (2.13) is a Klein-Gordon equation of a
massive scalar field where the source term is given by the scalar density 19 = pg.
The vector field is described by an inhomogeneous Proca equation where the
source term is given by the four-vector baryon current j* = ¢ytyp = (pB, 5 ).
Here, pp is the baryon density, whereas 5 represents the vector current.

The energy-momentum-tensor is given by

oL
w _
TH = L6, 8((9“@)0”@ . (2.15)

For isotropic and homogeneous systems, T"" takes the form
T" = (e + P)u'u” — Pg"” (2.16)

with the four-velocity u,, = (7, yv), which becomes (1, 0) in the local rest frame
of the matter. € stands for the energy density and P for the pressure.

This coupled, non-linear system for the field operators is not solvable in the
form as represented by the Eqs.(2.12-2.14). Nevertheless when applying mean
field approximation the problem becomes well treatable.
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2.1. Density functional approach to QHD

2.1.3. Mean field theory

In mean-field theory the meson fields and the corresponding source terms are
substituted by their classical expectation values, i.e., only the nucleon fields v
and ¢ are quantized while the meson fields are treated as classical fields. More
precisely,

With increasing baryon density the classical approximation of the fields becomes
evidently better since quantum fluctuations are small when compared to the
source terms in Eq. 2.13 and 2.14. Therefore also the source terms are replaced
by their expectation values

Wb = = () = p,
v = gt (Py) =

Due to spacial homogeneity and isotropy of infinite nuclear matter the meson
field equations (2.13) and (2.14), respectively, are reduced to the determination
of their source densities

me® = gops (2.17)

and
miVHE = g " . (2.18)

Besides the classical mesonic fields the baryon fields are quantized. Expanding
the field operator in one-particle states one has also to sum over negative energy
states, i.e., the Dirac sea. If one calculates expectation values of observables
which can be represented as multi linear combinations of the field operators
1&, 1 this produces divergences. This again requires a renormalization of the
theory. To avoid this contributions from negative energy nucleons from the
Dirac sea are neglected. This can be done by a normal ordering of the field
operators before a determination of the expectation values.

The solutions of the Dirac equation in nuclear matter (2.12) are given by
plane waves

Ura(x) = ur(k)e *u (2.19)

The four-component spinors wuy(k) with the helicity index A fulfil the Dirac
equation in momentum space. Introducing the momentum £** and an effective
mass m”*

=k — g,V (2.20)
M* =M — g,® (2.21)
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2. Mean fields in nuclear matter

the effective Dirac equation (2.12) can be written as the free Dirac equation
(Y k™ — M™) ur(k*) = 0. (2.22)

The next step is to introduce the nuclear self-energy ¥ now. Then the Dirac
equation can be written as

(Vb — M —X) up (k™) =0. (2.23)
The self-energy has a scalar and a vector contribution
=% -2t (2.24)

The scalar and vector parts of the nuclear self-energy are then proportional to
the meson fields

9o
Yo = —7m?jps (2.25)
92

The kinetic momentum £* is on-shell in nuclear matter, i.e.

E*(k) = py = VK? + M*2 (2.27)

Due to the normal ordering the expectation values are determined over the
Fermi-sea where one then obtains the scalar- and vector density

Ps = /F(;l:;g Eﬁf;&wkm(k» = (;)3 /F &’k EM(k) (2.28)

P = G prg S R ®) = s [t @20

The sum over the helicity index A is the spin-isospin degeneracy factor since the
normalization of the basis spinors is chosen such that wyuy = 1. Therefore k is
4 for symmetric nuclear matter and 2 in the case of pure neutron matter.
Considering nuclear matter in the rest frame the spacial components of the
baryon current and the vector field, respectively, vanish due to spacial isotropy

j* = dhps (2.30)
Vi = 65V, (2.31)
what then leads to the final expressions for the densities
K * * *2 kF + E;’
k3
PB = 62 F (2.33)
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2.1. Density functional approach to QHD

where the Fermi momentum is denoted by krp and the corresponding Fermi

energy
Ej = \/k% + M2 . (2.34)

Finally one is left with a non-linear system of equations consisting of Eq. (2.32)
for the scalar density, Eq. (2.21) for the effective mass and Eq. (2.17) describing
the classically approximated o meson field. Therefore this problem requires a
self-consistent solution.

Determination of the model parameters

In its minimal version of QHD-I the cw-model has two free parameters, namely
the coupling constants g, and g, of the two mesons. The meson masses are
constants with m, = 550 MeV and m,, = 783 MeV. The meson-nucleon coupling
constants g, and g, are now fixed to the saturation properties of nuclear matter.
Therefore the model has to fulfil the following requirements:

1. The energy density has to be negative for a certain density range:
< — M < 0 in order to permit a bound state.
This condition can be realized, because the model contains two fields, the
attractive scalar field ® = i—% ps and the repulsive vector field V, = i—% PB-

2. To ensure a stable ground state, the binding energy Ep must have a min-
imum, i.e., -4 Fp = 0 at saturation density and the condition

' dkp
2 2

9o o Yo

mZ "~ omZ

must be fulfilled.

This requirement can be satisfied since the scalar density pg, Eq. (2.32),
to which the scalar field is directly proportional, saturates with increas-
ing density pp (or increasing kr). The saturation behavior of the scalar
density pg is based on a pure relativistic effect and leads to an additional
repulsion at large densities. This can be seen directly from an expansion
of the scalar density in the Fermi momentum kg

3k k}
= 1— O|— . 2.35
Ps pBl TOVER <M4 (2.35)
The leading term is proportional to pg but with increasing £ the higher

order negative correction terms come into play. This correction appear in
the same way in the resulting expression for the binding energy

ki 1( 9 _ 9 95 pp 3k}
B mz M 10M -

2 2
mw g

Ep (2.36)

T 10M 2
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2. Mean fields in nuclear matter
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Figure 2.2: The scalar- and vector fields Y5 and ¥ from QHD-I as a function
of the Fermi momentum kp.

The first term comes from the kinetic energy of the Fermi-motion. The
second term proportional to the baryon density pg describes the first order
potential. The last term is a purely relativistic effect which introduces an
additional repulsion which finally is responsible for the fact that with
increasing density the repulsive vector field V; wins over the attractive
scalar field .

3. An adaption of the minimum ﬁE B = 0 to empirical data

1
(o = 0.17 £ 1) % and Ep = —16 MeV

yields the final values for the coupling constants (in dimensionless units)

M? M2
Ch = gi(ﬁ) = 267.1, C? = gi(m) =195.9

with a nucleon mass of M = 939 MeV.

The optimal fit leads to kpy = 1.42 fm ™' for QHD-I. This value is still slightly
too large and can be improved by extensions of the QHD-I model.
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2.2. The Dirac-Brueckner theory

At the saturation point the kinetic energy is approximately 20 MeV which
leads to the following condition

2 2
2\mz  m:

1 2 2
20 MeV + = (g“’—%) po = —16 MeV

This forces the scalar coupling constant g, to be large. Due to subtle cancella-
tion effects between attractive scalar and repulsive vector fields also the vector
coupling g, must be large.

The resulting self-energy fields Y3 and ¥, as a function of the Fermi mo-
mentum are shown in Fig. 2.2. As one can see the fields are of opposite sign
and of the same magnitude. At the saturation density predicted by the model
kpo = 1.42 fm™! the scalar field ¥s &~ —410 MeV and the vector field 3 ~ 330
MeV. The appearance of these large fields exhibits a feature which is typical
for all relativistic nuclear models namely large vector- and scalar fields with
opposite sign which nearly compensate each other.

Nevertheless the ow model is an effective one since the model parameters are
adjusted directly to the properties of nuclear matter. An alternative approach
for nuclear matter are many-body calculations based on high precision nucleon-
nucleon interactions where one treats short-range and many-body correlations
explicitly. The Dirac-Brueckner theory which will be introduced in the next
section is a very successful example for such an approach. It is in principle
also based on the Lagrange density of QHD but goes far beyond the Hartree
approximation. The free parameters are adjusted to free NN scattering data
and one tries to reproduce the properties of nuclear matter on parameter free
microscopic many-body physics.

2.2. The Dirac-Brueckner theory

Besides the very successful relativistic mean-field theories there have been been
also attempts to describe nuclear matter on a microscopic level. The basic in-
put for a microscopic approach is thereby the vacuum NN interaction where
the potential model parameters are adjusted to empirical NN scattering data.
The quantum mechanical many-body problem is then parameter free. Since
the NN interaction is based on the strong interaction, i.e., on QCD, a solution
within perturbation theory is not possible. Therefore another approach is more
reliable namely to sum up certain classes of perturbative diagrams completely.
In the Brueckner approximation or so-called hole-line expansion the problem is
treated by summing up the so-called ladder diagrams [32]. The central equation
of the BHF approximation is the Bethe-Goldstone equation which describes the
scattering of two nucleons in matter. The resulting G-Matrix serves then as
an effective two-particle potential containing the higher order correlations in
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Figure 2.3: Nuclear saturation points obtained with different nucleon-nucleon
potentials. Full symbols correspond to relativistic and open symbols to non-
relativistic Brueckner-Hartree-Fock calculations. The diamonds denote vari-
ational calculations and shaded symbols show calculations including 3-body
forces. The star denotes a non-relativistic calculation up to second-order in
many-body perturbation theory + 3-body forces for the low-momentum poten-
tial Viowr. The empirical region of saturation is represented by the shaded area.
(The figure was taken from [73]).

ladder approximation. Nevertheless even very extensive non-relativistic many-
body calculations do not reproduce quantitatively well the saturation proper-
ties of nuclear matter (py = 0.17 & 1 fm™3, Ep = 16 MeV) for all different
choices of nucleon-nucleon interactions. This becomes apparent in Fig. 2.3 where
the saturation points of isospin saturated matter are shown based on different
nucleon-nucleon potentials calculated within different approaches. In fact the
saturation points obtained in non-relativistic Brueckner calculations (open sym-
bols) do not meet the empirical region of saturation. In contrast the saturation
points obtained for various types of nucleon-nucleon potentials are located on
the so-called Coester line [72].

In the early 1980s it became possible to treat the nuclear matter problem
within a relativistic Brueckner approximation, the Dirac-Brueckner-Hartree-
Fock (DBHF) approximation [74, 75]. In this approach a coupled set of equa-
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2.2. The Dirac-Brueckner theory

tions has to be solved self-consistently: a Dyson equation for the in-medium
baryon propagator, a Bethe-Salpeter equation for the in-medium T-matrix (the
relativistic counterpart to the non-relativistic Bethe-Goldstone equation) and
an equation for the self-energy of the nucleons in the nuclear medium.

The relativistic DBHF approach leads to rather reasonable saturation prop-
erties [34, 35, 36, 73]. The Coester line is shifted much closer to the empirical
area of saturation as one can see from Fig. 2.3 for the relativistic calculations
performed by Brockmann and Machleidt (BM) [35] or later by Fuchs et al. [73]
(Tuebingen).

The nucleon-nucleon interaction is described in a meson-theoretical framework
where the covariantly formulated one-boson-exchange potentials which will be
described in detail in the next chapter are fitted to empirical NN vacuum scat-
tering data. From this it follows that the full relativistic quantum mechanical
many-body approach is parameter free. Nuclear matter calculations with the
DBHF approach show that within a relativistic theory the saturation properties
as well as the momentum dependence of the optical potential are reproduced
better than in a non-relativistic approach.

2.2.1. T-matrix approximation

The Martin-Schwinger hierarchy of equations of motion for N-particle Green’s
functions allows to describe the quantum-mechanical many-body problem [76,
77]. The one particle Green’s function is defined as

G(1,1) = (=i) (T( (1) (1)) (2.37)
and the corresponding two-particle Green’s function
G(12,1,2) = (=i)* (T( (1) (2)9(2)(1))) (2.38)

where () denotes the expectation value of the bilinear forms of the baryon field
operators in the Heisenberg picture. T' represents the usual chronological time
ordering operator. The notation is 1 = (t1, @1, «) with the spin- and isospin
index . The expectation value is taken with respect to the ground state of
cold, homogeneous and isotropic nuclear matter in rest.

The equation of motion for the one-particle Green’s function is given as

(i, 0 — M)G(1,1') = 6(1 — 1) — z’/d2d3d4 (12|V[34) G(34,1'2) . (2.39)

It contains the two-particle potential V' and the two-particle Green’s function.
Corresponding the N-particle Green’s function then contains the (N +1)-particle
Green’s function. From this it follows that Eq. (2.39) describing the one-particle
density already contains the full information of all N-particle correlations of the
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2. Mean fields in nuclear matter

system. That comes from the fact that in Eq. (2.39) the two-particle Green’s
function appears which is coupled to all higher Green’s functions through the
Martin-Schwinger hierarchy. The usual way to deal with the one-particle Green’s
function is to cut the hierarchy on the level of the two-particle Green’s func-
tion. Therefore one needs a suitable approximation for the two-particle Green’s
function in Eq. (2.39). A convenient way is to use the Hartree or Hartree-Fock
approximation for the two-particle Green’s function which is then replaced by
a uncorrelated product of two one-particle Green’s functions.

To include two-particle correlations a better approximation is given by the in-
troduction of the T-matrix which then acts as an effective two-particle potential.
The T-matrix is defined

(12|V34) G(34,1'2") = /d3d4 (12|T|34) G(3,1)G(4,2") . (2.40)
Eq. (2.40) has to satisfies a Bethe-Salpeter equation [78]
12|72y = (12|V[12)) (2.41)
+ i [ d3aaazan (121V134) G(3,3)G (4, 4) (3A|T'2)

Iterating Eq. (2.41) yields the so-called ladder approximation of the T-matrix.

The next step is to introduce the self-energy operator ¥ (also called mass
operator). Now the equation of motion for the baryon propagator (2.39) can
formally be rewritten as a Dyson equation [77]

G(1,1) = GO(L, 1) + /d2d3 G0(1,2)2(2,3)G(3,1) . (2.42)
GY is the free Green’s function, i.e. satisfying the free Dirac equation
(7,08 — M)G°(1,1) =6(1—-1") . (2.43)

Consequently one obtains the expression for the self-energy in T-matrix approx-
imation

»(1,1) = —i/d2d2’ [(12|T 12" — (12|T)2'1") G(2',2)] . (2.44)
The system of coupled integral equations what has to be solved is given by the

Egs. (2.41), (2.42) and (2.44). Usually these equations on which the DBHF
approach is based on are written in a more compact form as

T = Vi / VGGT (2.45)
Y = —z’/(tr[GT]—GT) (2.46)
G = G'+G'2G (2.47)
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2.2. The Dirac-Brueckner theory

Nevertheless this system of coupled equations even for infinite nuclear matter
is only solvable by applying further approximations [34]. The results obtained
with the DBHF approach depend naturally not only on the approximations used
but also on the choice of the theory describing the NN interaction. Since the
DBHEF theory is a relativistic one relativistic meson exchange potential are used
where the two-particle potential V' is given by one-boson-exchange potentials

(12|V|1'2) — 6(1 = 1)6(2 — 2)WVope(1l — 2) . (2.48)

These potentials are non-local in time and depend only on one four-momentum
after a Fourier transformation. These covariantly formulated one-boson-exchange
potentials will be described in greater detail in the subsequent chapter.

2.2.2. Self-energy in nuclear matter

In this section a brief discussion about the determination of the self-energy is
shown where detailed information can be found in [35, 34].

The properties of dressed nucleons in nuclear matter are expressed by the
self-energy entering the in-medium nucleon propagator which can be defined
formally as the solution of the Dyson equation (2.42)

1
k) = ) 2.4
G (k) Ykt — M — X (k) (2.49)
The general form of the self-energy ¥ is given by
S (k) = So(k) — 32 (k) | (2.50)

This form is determined by Lorentz invariance where the pseudo-scalar, pseudo-
vector, and tensor contributions vanish due to the requirement of hermiticity,
parity conservation, and time reversal invariance. In the nuclear matter rest
frame the full self-energy reads [34, 79]

S(k) = By(k) — Y0 Zo(k) + -k (k) . (2.51)

The self-energy components are Lorentz scalar functions depending on the Lorentz
invariants k%, k - j and j?, where k, is the nucleon four-momentum and j,
denotes the four-vector baryon current. The streaming velocity is defined as
u" = j,/v/7%. In nuclear matter at rest the time-like component is just the
baryon density and spatial components of the current vanish, i.e., j, = (pg,0).
Hence, the Lorentz invariants can be expressed in terms of kg, |k| and kg, where
kr denotes the Fermi momentum.
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2. Mean fields in nuclear matter

The components of the self-energy are computed by taking the respective
traces in the Dirac space [79, 80]

1

Y, = Ztr[E], (2.52)
-1

Yo = Ttr[yoil], (2.53)

Y, = ——tr[v-kY]. 2.54
4|k‘27“[7 ] (2.54)

The Dirac equation for the in-medium spinor basis can be deduced from the
Green’s function (2.49). The presence of the medium leads to effective masses
and effective momenta of the nucleons

M* = M+ ReY, (2.55)
k. = ky+Re3, (2.56)

and the Dirac equation is then given by
vk — M — ReX|uy(k) =0 . (2.57)
The solution of this Dirac equation provides the in-medium nucleon spinors

. Ex+ M+ 1
ux(k) = S | ok | (2.58)

E*+M*

where Y, denotes a two-component spinor.

Another important approximation in the DBHF approach is the no sea ap-
proximation where the subspace of negative energy states is omitted. This
procedure avoids the problem of infinities which generally appear due to contri-
butions from negative energy nucleons in the Dirac sea [27, 79]. Therefore the
full propagator Eq. (2.49) is replaced by its Dirac part Gp [79]

GP (k) = 2mi(y, k™ 4+ M*)5(k** — M*2)O(k)O(kr — |K]|) (2.59)

for the determination of the self-energy (2.44). Here k denotes the momentum
of a nucleon inside the Fermi sea. Due to the © functions in the propagator
only positive energy nucleons are allowed in the intermediate scattering states.

In general the self-energy is complex but the philosophy of the DBHF ap-
proach is to treat the nucleons as quasiparticles in the medium which obtain
their physical masses and momenta by the interaction with the nuclear medium.
Therefore only the real part of the self-energy is taken into account. Thus the
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Figure 2.4: The scalar- and vector fields Y5 and g derived within the DBHF
approach as a function of the Fermi momentum kr. The Bonn A nucleon-
nucleon interaction is used.

effective nucleon momentum is on mass shell even above the Fermi surface, i.e.
k*k*# = M*?. The four momentum follows from Eq. (2.56)

k' =k(1+%,), K =E=K(1+5,)°+ M (2.60)
which allows one to rewrite the Dirac equation
[k — M*ui (k) = 0 (2.61)

by introducing the reduced effective mass and kinetic momentum

. M*

M = —— 2.62
143, ( )
. L
k¥ = B ) 2.
H 1+, (2.63)

It is known from consistent Hartree-Fock calculations that the self-energy
components in Eq. (2.51) depend weakly on the momentum inside the Fermi
sphere. Therefore the momentum dependence of Y, ¥y, and X, is neglected
and the fields are approximated by their values at the Fermi momentum

ReX(k) = ReS(kp),  |k| <kp. (2.64)
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2. Mean fields in nuclear matter

This so-called reference spectrum approrimation is used to simplify the calcu-
lation. Finally one has to verify the consistency of the assumption Re (k) ~
ReX(kp) at the end of the calculation.

Furthermore for the determination of the self-energy (2.44) the in-medium
two-body T-matrix derived from the free NN interaction has to be represented
Lorentz invariantly. This is done by projecting the two-body amplitudes on a
set of linearly independent covariant operators. Since the Dirac sea, i.e., the
coupling to anti-nucleons, is neglected the choice of the covariant operators is
in principle ambiguous. In a full DBHF calculation the final results like e.g. the
shape the equation of state as well as the value for the saturation point depend
to some extent on this choice. The formalism for the projection scheme as well
as the choice of the set of covariant operators is presented in Chapter 4.

In Fig. 2.4 the self-energy fields >g and >, are shown as a function of the
Fermi momentum derived within the DBHF approach. The fields have opposite
signs and are of the same magnitude. When compared to the results from the
phenomenological QHD-1 model shown in Fig. 2.2 one sees that the fields from
the DBHF approach are reduced. The reason for that lies in the fact that in the
full microscopic DBHF calculation short range ladder correlations are included.

As already mentioned in the introduction again an implicit feature of rela-
tivistic models is shown namely the appearance of large vector- and scalar fields
with opposite sign. Nevertheless since in the DBHF approach relativistic meson
exchange NN potentials are used it not clear if theses large fields are an artefact
of the meson exchange picture or in other words if these large fields also appear
when non-relativistic NN interactions are applied.

2.3. In-medium QCD sum rules

As described in the previous sections in the Dirac phenomenology nucleon propa-
gation is described by a Dirac equation with an optical potential exhibiting large
Lorentz scalar and vector components. The relativistic phenomenology provides
an accurate model to describe spin observables as well as saturation properties
of nuclei.

A connection to QCD the fundamental theory of strong interactions is estab-
lished by QCD sum rules [43, 44, 45]. Within this approach the self-energy of
an intermediate energy nucleon in nuclear matter is determined. One finds that
QCD in-medium sum rules predict an attractive scalar and repulsive vector self-
energy which are astonishingly close to the empirical values derived from RMF
fits to the nuclear chart. These QCD in-medium sum rules depend to leading
order directly on the scalar and vector condensates (gq), (¢'q) at finite density.

QCD sum rules were introduced first by Shifman et al. [81, 82] in the late
1970’s. They applied QCD sum rules to describe mesonic properties in vacuum.
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2.3. In-medium QCD sum rules

Later the method was expanded for the description of the characteristics of
nucleons in vacuum by loffe [49] and others [83].

The sum rule approach is based on a Fourier transformed correlation function
of an interpolating field n(z) which is constructed from quark fields in such a
way that it carries the quantum numbers of the nucleon (see Eq. 2.68):

() = | d'ee™™ (Tin(a)n(0)}o (2.65)

The short notation (2)g = (0|2|0) is introduced, where 2 is an arbitrary op-
erator. T is the time-ordering operator and the state |0) denotes the physical
non-perturbative vacuum. This function is equivalent to a nucleon propagator
in a hadronic theory.

The correlator function II(g) can also be written in terms of the operator
product expansion. It is then given by a sum of coefficient functions, the so-
called Wilson coefficients which can be calculated in QCD perturbation theory,
multiplied with matrix elements of composite operators constructed from quark
and gluon fields and organized according to their mass dimensions. The op-
erators of lowest non-trivial dimension are given by gg and G}, G where ¢
denotes an up or down quark and Gf,, (a = 1 — 8) is the gluonic field-strength
tensor. In vacuum these matrix elements are just the non-perturbative quark
and gluon condensates. The next step is a spectral decomposition of the correla-
tor showing that the correlator describes the propagation of a (virtual) nucleon
as well as higher mass states with nucleon quantum numbers. A sum rule is ob-
tained by equating the operator product expansion correlator and the spectral
expansion. Then a phenomenological ansatz for the spectral density has to be
assumed, which is chosen to be the in-medium nucleon propagator of a dressed
quasi-particle in the finite density case .

A differential operation, the so-called Borel transformation is applied to both
sides, the theoretical and the phenomenological one, which improves convergence
properties of the operator product expansion because it suppresses contributions
coming from higher-dimensional operators. Moreover it stresses the contribu-
tion from the nucleon pole on the phenomenological side [81, 82]. Finally the
identification of the correlation function with the phenomenological ansatz leads
then to scalar and vector self-energies ¥ and g [43].

In the zero-density limit of the nucleon sum rule [49] the phenomenological
ansatz for the spectral density is chosen to be a nucleon pole plus a smooth
continuum which accounts for all higher-mass excitations. Due to loffe the
contributions from higher-dimensional condensates and the continuum are small
and one obtains the well known expression for the nucleon mass in vacuum [83]

M=~ (qgho - (2.66)
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2. Mean fields in nuclear matter

The vacuum value of the lowest-dimensional quark condensate is about [84]
(qq)o ~ —(2254+25MeV)3. The formula has to be evaluated for A% ~ M? where
Ap is the mass parameter of the Borel transform. It is the generic low energy
scale of QCD which separates the non-perturbative from the perturbative regime
and coincides with the chiral symmetry breaking scale A, of chiral perturbation
theory.

It appears natural to apply QCD sum rule methods to determine the scalar
and vector self-energies of a nucleon quasi particle in nuclear matter, i.e., to
generalize the loffe formula to finite density [45, 43, 44]. Changes of the quark
condensate due to finite baryon density should lead to changes in the nucleon
spectrum. This can be concluded from the fact that a basic assumption of
the QCD sum rule approach is that the low-lying structure of the spectrum
is strongly influenced by the quark interactions with the vacuum condensates.
Therefore the quark condensates should set the scale for the nucleon self-energy
in nuclear matter.

In a finite density approach one has to consider the correlation function I1(q)
of the same interpolating field n(z) but now evaluated in the ground state of
finite nuclear matter [43]

Mq) =i [ d'ee™(Thn@)i(0)]),, - (2.67)

The interpolating field n(x) for the proton is given in terms of up- and down-
quark fields as proposed by Ioffe [49]

() = eae[u (@) Cryuu’ (2)]757"d () (2.68)

where a,b, and ¢ are color indices, T" means transpose, and C' is the charge-
conjugation matrix [78]. The interpolating field for the neutron is obtained by
interchanging the up and down quarks.

Since the correlation function is a 4 x 4 matrix in Dirac space it can be
expanded in a set of Dirac matrices. Due to Lorentz covariance, parity and
time reversal invariance I1(q) then reads

(q) = (q*, g u) +To(q*, g u) f + TTulq®, g u) 4 - (2.69)

The four-velocity of the nuclear medium is denoted by u* and therefore u# =
(1,0) in the rest frame. Thus there are three invariant functions. An expansion
of the coordinate space quark propagator in the presence of the non-perturbative
medium gives [43]
a ~b _ l ab zt
(Tlgi (2)q;(0)])pp = 520 1
1
6ab
4N,
1

4N,

['Yu]ij
i @Y @) o

5ab5ij (ch),)B + ... (270)
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2.3. In-medium QCD sum rules

where ¢ and j are Dirac indices and N, denotes the number of colors. For each
invariant function now only the leading term in the operator product expansion
is kept. In contrast to the vacuum case a new vector condensate (gy*q) pp Shows
up at finite density. It is the rest-frame quark density times u*. Current quark
masses as well as gluon condensates are neglected since their contribution is
small. By applying Wick’s theorem to Eq. (2.67) where Eq. (2.70) is used for
each contraction the correlator is evaluated. After a projection of the leading
contributions to each invariant function one obtains the following expressions
for the invariant functions in Eq. (2.69) in the nuclear matter rest frame, where

qg-u—4qo

M a0) = ot (=) () + 1)

(% @) = —6417T4(q2)21n(—q2)
+617r2q01n(—q2)[<ufu>p3+(d*d>p3]+... , (272

M) = et W)y + ()] (273)

Interchanging the fields u and d one obtains the corresponding expressions for
the neutron.

Now on the phenomenological side of the sum rule a quasiparticle pole for the
nucleon with real self-energies is taken to formulate the QCD sum rule ansatz.
The propagator is given by Eq. (2.49)

1

Gla) = —A3vi— ST R (2.74)

where the self-energies are assumed to be independent of energy and momentum.
In general one can write X* = You* 4+ X,q* where ¥, is neglected and it is
assumed that ¥y and X are constants. These are the on-shell self-energies of
a quasinucleon with three momentum q in the language of hadronic theories as
discussed in the previous sections. Ay is the coupling strength of the current
n(x) to the nucleon quasiparticle. The phenomenological representations of the
invariant functions in the nuclear matter rest frame are then [43]

M*
(" @) = —A%m+..., (2.75)
1
I,(¢*, q0) = —A%m+..., (2.76)
¥
IL(¢* q0) = A?VFOW+”" (2.77)
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2. Mean fields in nuclear matter

with M* = M + 3 and p? = M*? — 332 + 2qo%. The Eqs. (2.75)-(2.77) follow
from dispersion relations in ¢ with ¢ - u fixed effectively at the quasinucleon
energy what suppresses antinucleon contributions [43, 44]. To improve the over-
lap of the theoretical and phenomenological descriptions of the correlator a
Borel transform is applied to both sides. Equating the Borel transforms one

obtains [43]

* _— 1 —
A Mre N = —RA%<QQ>pB ) (2.78)
1 1
2 —u?/AN% 6 2/ 1
Aye™ A = 7327T4AB — ?quB(q Dpp > (2.79)
2
A Spe /A = ﬁA4B<qTQ>,DB : (2.80)

The sum rules depend on two parameters, namely the Borel mass Ag and gp.
qo is taken to be the energy of the quasiparticle which is studied. The on-shell
four-momentum squared of the quasiparticle is equal to p2. As one can see from
Egs. (2.78)-(2.80) one also needs to know the scalar and vector condensates
(7q),,, already present in vacuum, and the vector condensate {q'q),, which is
introduced by the breaking of Lorentz invariance due to the presence of the
medium. Due to the fact that isoscalar quantities are considered one sets

(wu),p, = (dd),, = (79) pp (2.81)

(= ('), = (a0} = Spo (28
where (g'q) o denotes the quark density for one flavor in the nuclear matter rest-
frame and since the baryon current is conserved it is trivially proportional to the
nucleon density. A model independent estimation of the density dependence of
the scalar condensate to lowest order can be found with the help of the Hellman-
Feynman theorem as explained in Section 6.2 in greater detail. The change of
the scalar condensate to lowest order in a density expansion is related to the
pion-nucleon oy term [51, 45]

_ 1 PBON

(10)ps = (70)0 i (2.83)

where m, and my denote the current quark masses and oy the pion-nucleon
sigma term (Section 6.2). It is determined by the u and d-quark content of the
nucleon and represents the contribution from explicit chiral symmetry breaking
to the nucleon mass through the small, but non-vanishing current quark masses.
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Taking ratios of Egs. (2.78)-(2.80) yields the following expressions for the
scalar and vector self-energies

872 82 ONPB
X = ——5 U@ —{qq)o] = ——5—— 2.84
A2B [<QQ>PB <QQ>O] AQB mu+md ( )
6472 3272
B0 = gxg @ Dn = zrn (2.85)

which are assumed to be valid up to nuclear saturation density. The second
term in Eq. (2.79) which is of higher order in the operator product expansion
is neglected and the vacuum result Eq. (2.66) for the nucleon mass has to be
subtracted in order to obtain Eq. (2.84).
The ratio of Eqs. (2.84) and (2.85) gives

Zs ON

S A(my + ma) (2.86)
where the Borel mass Ap drops out. With typical values for m, 4 of about
my + mg = 14 +£4 MeV and oy = 45 £ 7 MeV [85] for the pion-nucleon
sigma term the ratio is close to —1 (—0.8 £ 0.3) which indicates a considerable
cancellation. This is in qualitative agreement with Dirac phenomenology where
the scalar and vector self-energies cancel approximately. The scalar and vector
self-energies derived within the QCD sum rule approach at the most simple
level depend on the Borel mass as one can see from Egs. (2.84) and (2.85).
Assuming that the scales on both the phenomenological and theoretical sides
of the sum rules are comparable to the vacuum case, then the Borel mass will
be close to the best working value in the vacuum sum rule case, i.e., A? ~ 1
GeV? [43]. This gives values for the scalar and vector self-energies of ~ 400
MeV at nuclear saturation density. This is again in qualitative agreement with
Dirac phenomenology where the magnitude of the cancelling scalar and vector
self-energies is similar as depicted in Section 2.1.3 for the simple mean-field case
and in Section 2.2.2 where self-energies derived within the microscopic DBHF
approach are shown.

Nevertheless one has to keep in mind that the derivation of Eqgs. (2.84)
and (2.85) is based on certain assumptions and approximations. In the op-
erator product expansion of the correlator higher-dimensional condensate con-
tributions are neglected e.g. four-quark condensates [44]. These corrections can
contribute significantly. For example including the second term in Eq. (2.79)
leads to a reduction of Y4 by ~ 50%.

Moreover the sum rule for the scalar field Eq. (2.84) corresponds to a Fermi gas
of non-interacting nucleons. Therefore important corrections from higher orders
in the density expansion can occur. An estimate of the density dependence of
the scalar condensate is shown in Section 6.2. It is derived with the help of the
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2. Mean fields in nuclear matter

Hellmann-Feynman theorem in Hartree-Fock approximation and in Brueckner-
Hartree-Fock approximation based on a chiral nucleon-nucleon interaction.

In the framework of in-medium QCD sum-rules the effective nucleon mass
M* = M + ¥ at finite density depends directly on the scalar condensate (2.84)
which is assumed to be valid at least below nuclear saturation density. The
validity of this assumption is discussed in Chapter 6.
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As already mentioned in the introduction, a quantitative description of the
nuclear force in the framework of QCD is not be possible due to the non-
perturbative nature of QCD at the relevant low energy scales. Nevertheless
besides the formidable mathematical problems in describing the nuclear force
another argument justifies the choice of the relevant degrees of freedom to be
nucleons (and their excited states) and massive bosons, e.g., pions mediating the
nuclear force. In order to resolve the substructure of the nucleon in deep inelastic
scattering experiments at least a momentum transfer of ¢> > 1 GeV? is needed.
However, the nucleon-nucleon interaction in nuclei or neutron stars takes place
on an energy scale of about ¢ ~ 0.1 GeV2. Since the nuclear substructure is
not resolved anymore quantitative descriptions of nuclear many-body systems
can be based on models which describe the NN interaction via effective degrees
of freedom.

The nucleon-nucleon potential has a Van-der-Waals like structure schemati-
cally displayed in Fig. 3.1. As already mentioned in the introduction the nuclear
force can be subdivided into three regions: an attractive long-range part for
r > 2 fm (r is the relative distance of the two nucleons) dominated by one-pion
exchange (OPE), an intermediate range attractive part (1 fm > r < 2 fm) and a
short-range repulsive part (r < 1 fm), the so-called hard core. This short-range
part is is the mathematically most complicated part, since multi-pion exchange
and various heavy mesons play a role.

In this chapter first an example of a covariantly formulated meson exchange
potential constructed in the framework of field theory is presented. Then non-
relativistic meson-exchange potentials as well as phenomenological potentials
will be discussed and finally two types of low-momentum interactions will be
introduced.

The goal to investigate the Dirac structure of the nucleon-nucleon interaction
in a model independent way does not require a complete description of the
studied potentials. Therefore the conceptual and theoretical differences of the
models are rather of importance.
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r [fm]

Figure 3.1: Schematic picture of the nucleon-nucleon potential generated by the
exchange of various mesons. The relative distance of the two nucleons is denoted
by r.

3.1. Boson exchange potentials

As typical examples for modern high precision one-boson-exchange (OBE) po-
tentials we consider the Bonn A [12, 86] and the high-precision, charge-dependent
Bonn (CD-Bonn) potential [87]. The Bonn potentials are based on the exchange
of the six non-strange bosons (7,7, p,w,d, o) with masses below the nucleon
mass. These are the two scalar mesons o (isoscalar) and 0 (isovector), the
two pseudo-scalar mesons 7 (isovector) and n (isoscalar), and the two vector
mesons w (isoscalar) and p (isovector). The potentials are derived in the no sea
approximation which neglects the coupling to anti-particles.

The following Lagrangians describe the coupling of the included mesons to
the nucleons

£NNps = —0ps 1; i75 ¢ Pps (31)

»CNNs = —Js @Z@Z)(ps (32)

Lne = =g 1u 0 P — 4@ o - (0" gy — 8 o) (3.3)
p

where 1) represents the nucleon and ¢, meson field operators. M), is the nucleon
mass. For isospin / = 1 mesons the corresponding ¢, has to be replaced by
T - Yo. The lowest order contribution to the nuclear force in the centre-of-
mass frame is then given by the amplitude A describing the Feynman diagram
depicted in Fig.3.2

(1) 2

~iAa(q,q) = 11(q)cMur(a) Dald' = q) ta(—q)cS uz(—q). (3.4)
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3.1. Boson exchange potentials

u(q) u(-q)

u(@) u(-a)

Figure 3.2: Schematic representation of one-boson-exchange diagram.

The Dirac structure of the potential is contained in the meson-nucleon vertices
k% (i = 1,2) derived from the above Lagrangians
q/_ q - 5 fv .

s R = gy + mw"” : (3.5)

For the pseudo-scalar mesons 7 and n a pseudo-vector coupling is used in order
to fulfil soft pion theorems. The w meson has no tensor coupling, i.e., f*) = 0.
The meson propagators D, (¢ — q) read

Rg = gs]-a Rps = Jps

1
Dy s(q' — = 1 3.6
R V) T 20

—g" + (¢ —q)"(qd — @)"/m3
i

(¢ —q)* —mg
for scalar and pseudo-scalar mesons s,ps and vector mesons v. In case of on-shell
scattering the (¢’ — ¢)*(¢' — q)¥ vanishes for vector bosons. The meson-exchange

potential is then obtained by (i times) the sum over the several OBE exchange
Feynman amplitudes describing the exchange of a single meson «

Vid,q)= > Ad,q) Fild.q) . (3.8)

Q=s,ps,v

Dy (q" —q) (3.7)

In the two-nucleon centre-of-mass frame (c.m.) the four-momenta of the incom-
ing nucleons are ql(}/ 2 = (E(q), £q) and correspondingly, the four-momenta of
the outgoing nucleons are q:fl/ 2 = (E(q'),£q’). The initial and final relative
c.m. momenta are ¢, = %(qf}) — qff)) and ¢, = %(qgl) — q:f?)), respectively.
For on-shell scattering |q| = |q/| with E(q) = E(q') = vM? + g2 the energy-
transfer is zero, i.e., ¢, — g, = (0,q' —q). In the standard Bonn potentials [86]
phenomenological form factors are applied to the meson-nucleon vertices to reg-

ularize the amplitudes. They have the following form

A2 —m? e
Fuld,q) = oo 3.9
(d.q) (Ag+(q'—q)2> (3.9)
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3. The NN interaction

Table 3.1: Basic parameters and constants included in the Bonn A potential

Particle Mass(MeV) g*/Am flg A(GeV)
T 138.03 14.9 1.05
o 550 8.3141 2.0
4] 983 0.7709 2.0
. 548.8 7 15
w 782.6 20 1.5
p 769 0.99 6.1 1.3

where m,, is the corresponding meson mass and A, is a cut-off in order to avoid
divergences at short distances.
In helicity representation the Dirac spinor basis used in Eqs. (3.4) and (3.8)

is given by
E+ M 1
ux(a) =\ —55; Xa (3.10)

27q|
E+M

where Y, denotes a two-component Pauli spinor with A\ = i%. The normaliza-
tion of the Dirac spinor is chosen such that uyu, = 1.

To summarize: The general structure of the Born scattering matrix is given
by the sum over the corresponding scalar, pseudo-scalar and vector mesons

V(d,o)= Y F2d.q) s Dald —q) £, (3.11)
Q=s,ps,V
where the matrices (3.11) factorize for each meson « into the form factors F,, at
each meson-nucleon vertex, the meson propagator D, and the meson-nucleon
vertices K, themselves. The relativistic operator structure is thus completely
determined by the matrix elements of the vertices k.

The standard Bonn (A,B,C) potentials [86] also includes the lowest lying A-
resonance with a mass of 1232 MeV and therefore besides the nucleon-nucleon-
meson vertices also nucleon-isobar-meson vertices are included. The Bonn po-
tentials contain 13 free parameters for coupling constants and cut-off masses
and two additional parameters if one considers the masses of the scalar mesons
as effective parameters (see Table 3.1).

In contrast to the standard Bonn potentials [86] the OPE part of the CD-
Bonn potential [87] accounts for charge symmetry breaking in nn, pp and np
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3.2. Non-relativistic potentials

scattering due to the different pion masses m,o and m,+. In the CD-Bonn
potential the mesons 7, p(770), and w(782) are included (7 is dropped since
a vanishing coupling is assumed) and moreover two scalar-isoscalar ¢ mesons
are introduced to describe more complicated multi-meson exchanges. Since the
parameters of the o mesons are readjusted in each partial wave the CD-Bonn
potential is often referred to as a phenomenological NN potential. This fine-
tuning of the partial wave fits minimizes x? per datum to 1.02 and results in a
total of 43 free parameters.

A consequence of the Feynman amplitudes (3.4) is the general non-local struc-
ture of the boson exchange which distinguishes the field theoretical relativistic
OBE approach from local non-relativistic potentials. This is even true for the
relativistic OPE compared to the local, non-relativistic OPE (see e.g. the dis-
cussion in [88]). However, for on-shell scattering the relativistic amplitudes
acquire a local structure in the sense that they are functions of q? and q' — q.
In particular for forward and backward scattering, i.e., § = 0, 7, the amplitudes
are “local” functions of q?> and q. The non-local structure of the relativistic
amplitudes becomes evident when going off-shell, e.g. in the intermediate states
in the Bethe-Salpeter equation [89, 88].

The matrix elements are calculated with the OBNNS code of R. Machleidt [90]
when Bonn A is used and the corresponding CDBONN package of R. Machleidt
when CD-Bonn is used.

3.2. Non-relativistic potentials

3.2.1. Non-relativistic reduction

The OBE potentials as e.g. the Bonn potentials can be reduced to a non-
relativistic representation by expanding the full field-theoretical OBE Feynman
amplitudes into a set of spin and isospin operators

V:Z[‘/Z—FV;/’T1TQ] Ol (312)

The operators O; obtained in this low energy expansion, assuming identical
particle scattering and charge independence, are defined as

Ol - 17

Oy = o109,

04 = %(0’1"‘0’2)'11,
Os = (o1'n)(oyn),
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3. The NN interaction

wherek = q'—q,n = qxq' =Pxkand P = %(q—i—q’) is the average momentum.
The potential forms V; are then functions of k, P, n and the energy. In order
to perform a non-relativistic reduction, the energy F is expanded in k? and P?

1
S :
E(q) = <4+P2+M2> ~MA — + . (3.14)

and terms to leading order in k?/M? and P?/M? are taken into account. The
meson propagators D, (k?) given in Egs. (3.6, 3.7) are approximated by their
static form (—1)/(k* + m?). The explicit expressions in momentum space are
given in appendix B.

The equivalent to Eq. (3.12) in configuration space is given by

O, = 1,

Oy = 0109,

O3 = S =3(o11)(oy 1) — 07109, (3.15)
Oy = L-S,

Os = Q12:%[(Ul'L)(‘U'L)+(0'2‘L)(0'1'L>]-

These operators are the well known central, spin-spin, tensor, spin-orbit and
quadratic spin-orbit operators, respectively. The total angular momentum is
denoted by L =r x P and the total spin S = (o + 072).

3.2.2. Meson-theoretical potentials

We consider the modern Nijmegen soft-core potential Nijm93 [65] as the first
example of a non-relativistic meson-theoretical potential. It is an updated ver-
sion of the Nijm78 [91] potential, where the low energy NN interaction is based
on Regge-pole theory leading to the well known OBE forces. The contribu-
tions considered in this model are the pseudo-scalar mesons 7, 7, 1/, the vector
mesons p, ¢, w and the scalar mesons 9, S*, € and the Pomeron P and the J =0
tensor contributions, leading all in all to a number of 13 free parameters. Since
it is constructed from approximate OBE amplitudes it is based on the operator
structure given in Eq. (3.13) plus an additional operator Og = (o1 —03) - L ac-
counting for charge independence breaking which is new compared to the older
version Nijm78. Exponential form factors reguralize the interaction at very short
distances. This potential gives a x? per datum of 1.87, which is comparable to
similar OBE potentials like the standard Bonn potentials.
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3.2. Non-relativistic potentials

3.2.3. Phenomenological potentials

Another class of non-relativistic NN potentials are the so called high quality
potentials where x?/Ngua ~ 1.0. Here we study the Nijmegen potentials Nijm
I, Nijm IT and Reid93 [65]. The Nijm I and Nijm II potentials are both based on
the Nijm78 potential. In the Nijm I potential some nonlocal terms in the central
force are kept whereas in the Nijm II potential all nonlocal terms are removed.
Although based on the meson-theoretical Nijm78 potential these potentials are
often referred to as purely phenomenological models, since the parameters are
adjusted separately in each partial wave leading to a total of 41 parameters.
At very short distances, both potentials are regularized by an exponential form
factor.

The Nijmegen soft-core Reid93 [65] potential is a phenomenological poten-
tial and is therefore based on a completely different approach. In the meson-
theoretical Nijmegen potential Nijm93 the potential forms V; are the same for
all partial waves, whereas in the Reid93 potentials every partial wave is pa-
rameterized separately by a convenient choice of combinations of central, tensor
and spin-orbit functions (local Yukawas of multiples of the pion mass) and the
related operators, i.e., the operators O; to Oy from Eq. (3.15). It is regularized
by a dipole form factor and has 50 phenomenological parameters giving all in
all a x?/Ngata = 1.03. All the Nijmegen potentials contain the proper charge
dependent OPE accounting for charge symmetry breaking in nn, pp and np
scattering due to different pion masses m o, M =+.

The same holds for the Argonne potential vy [25], also an example for a widely
used modern high precision phenomenological NN potential. It is given by the
sum of an electromagnetic (EM) part, the proper OPE, and a phenomenological
intermediate- and short-range part unrestricted by a meson-theoretical picture:

V=VEM L yT R, (3.16)

The EM interaction is the same as that used in the Nijmegen partial-wave
analysis. Short-range terms and finite-size effects are taken into account as
well [25].

The strong interaction part V™ + V¥ can be written in a form like given
in Eq. (3.12) in configuration space, where the Argonne vig potential is not
constructed by approximating the field-theoretical OBE amplitudes (except for
the OPE), but by assuming a very general two-body potential constrained by
certain symmetries. The potential forms V; parameterizing the intermediate and
short-range part are mostly local Woods-Saxon functions.

The local two-body operators are the same charge independent ones used in
the Argonne vy4 potential

Oi = 1,0'1'0'2,512,L'S,L2,L2(0'1'0'2), (LS)2 (317)
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3. The NN interaction

Due to isovector exchange these operators have to be multiplied by the isospin
matrices 7179 which than adds up to 14 operators. Additionally, four operators
accounting for charge independence breaking are introduced

Oiz1518 = Tha, (01-02)Th2, S12Th2, (T1 + T22) (3.18)

where Ty = 37,17,2 — 7172, is the isotensor operator, defined analogously to the
spin tensor Si operator.

Thus the operator structure is more general than that imposed by a non-
relativistic, local OBE picture, in particular for the intermediate and short dis-
tance part. In total, Argonne v;g contains 40 adjustable parameters and gives a
x? per datum of 1.09 for 4301 pp and np data in the range 0-350 MeV [25]. The
code used to calculate the potential matrix elements of the Argonne v13 model
in momentum space was provided by H. Muether and T. Frick.

3.3. EFT interactions

3.3.1. Chiral EFT potentials

There has been substantial progress in recent time in order to derive quantita-
tive NN potentials from chiral effective field theory (EFT) applied to low-energy
QCD. In chiral EFT the effective Lagrangian is made up of an infinite number
of terms (which have to be consistent with the assumed symmetry principles
of QCD, like chiral symmetry) where the number of derivatives and/or nucleon
fields increases. Calculating matrix elements, like NN scattering amplitudes,
generates a delicate problem, namely one is left with an infinite number of
Feynman diagrams. However, Weinberg proposed [16] that a systematic expan-
sion of the nuclear amplitude can be performed in powers of (Q/A,)” were @
is the generic low momentum scale given by the nucleon three-momentum, or
the four-momenta of virtual pions or a pion mass. A, ~ 47 f; ~ 1 GeV is the
chiral symmetry breaking scale which coincides roughly with the Borel mass
Ap (see Section 2.3). This scheme is called chiral perturbation theory. v = 0
corresponds to leading order (LO), v = 2 to next-to-leading order (NLO), v = 3
to next-to-next-to-leading (N2LO) and finally v = 4 to next-to-next-to-next-to-
leading order (N3LO). In this power counting scheme the number of contributing
terms which are uniquely defined is finite at a given order v. Depending on the
accuracy required in the calculation of the amplitude one has to include higher
orders in the expansion. Unfortunately the number of constants which appear
in such an expansion increases when going to higher orders. Some can be fixed
from pion-nucleon scattering data [17] whereas the remaining free parameters
are adjusted to NN scattering.
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3.3. EFT interactions

The effective chiral Lagrangian describing the nuclear force is given as

L=L+Lin+LNN (3.19)
where
Lo = LD 4@ (3.20)
Lo = L +L8 +2% 4., (3.21)
Lay = L+ +28 +... . (3.22)

The superscript refers to the number of derivatives or pion mass insertions
(chiral dimension) and the ellipsis stands for terms of higher chiral order. In the
framework of chiral perturbation theory the NN scattering amplitude is then
given by pion-exchange diagrams and contact terms.

Contact terms

Contacts terms describe the short range part of the NN interaction that remains
unresolved in chiral EFT. The diagrammatic expansion of the NN interaction
is shown in Fig. 3.3. At LO there are two contact terms which are represented
by the four-nucleon diagram with a vertex (small-dot) with zero derivatives
shown in the first row of Fig. 3.3. At NLO there are seven contact terms
where the corresponding diagram is shown in the second row. The solid square
represents a vertex with two derivatives. At N3LO there are already 15 contact
contributions which are represented by the four-nucleon diagram. The vertex
of chiral dimension four is represented by the solid diamond. The strength
of each contact term is given by a free parameter. Hence, at N3LO there are
247415 = 24 free parameters which are used to adjust the chiral EFT potential
to NN scattering data. The corresponding expressions for the contact terms up
to N®*LO are [17]

Vi = Cs+Cr(oy-03),
VP = K+ CyP? + (C5K° + C4P?) (o4 - 0y) +iC5
+Cs(o1 - k) (o2 - k) + Cr(01 - P)(02- P),
VA = D'+ DyP* 4 Dyk’P? 4 Dy(k x P)?
+ (Dsk' + DgP* + D:k*P? + Dy(k x P)?) (o - 0)

o+ 09

(P x k)

0'1—|—0'2

+i (Dok® + DyoP?) (P xk)

+ (Duk® + D1P?) (01 - k)(02 - k)

+ (D1sk® + D1uP?) (o1 - P) (02 P)

+Dy5 (01 - (k x P)oy - (k x P)) (3.23)
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3. The NN interaction

where q and ¢’ denote again the initial and final nucleon momenta in the center-
of-mass frame and k = ¢ —q and P = %(q + d') are the transferred and the
average momentum. Isospin breaking correction to the short-range part of the
potential are not included.

In the case of OBE potentials short-range physics is described by the exchange
of heavy mesons. The connection between chiral EFT and boson-exchange po-
tentials can be understood by expanding the heavy boson propagators

2 2 2 2 2 4
k292m92—*‘72<k2>+92<k2>—... . (3.24)
+my o My M\, my \ My

where my denotes the mass and g the meson-nucleon coupling constant of a
heavy boson (w, p or 0 meson). The first term in the expansion on the right
hand side corresponds to the LO contact diagram in Fig. 3.3 with zero deriva-
tives in the first row, the second term to the NLO contact diagram with two
derivatives represented by the solid square vertex and so forth. Thus short-range
physics described by heavy meson exchange in the OBE picture is encoded in
the coefficients of the contact terms. This was investigated by Epelbaum et.
al [92] who compared the LECs from chiral EFT and those extracted from var-
ious NN potentials by performing such an expansion (3.24). The results of this
investigation are shown in Fig. 5.7. The left-most brown bar corresponds to the
LECs at NLO whereas the middle black bar to NNLO. The length of the bars
indicates the range for the value of each LEC which stems from the fact that the
cut-off A (3.26) has been varied in the range of 500 MeV to 600 MeV [92]. As one
can see in Fig. 5.7 there is a good agreement between the LECs obtained from
the phenomenological OBE potentials Bonn B and Nijm93, the high-precision
potentials CD Bonn, Nijmegen I/ I and Argonne v, and the LECs from chiral
EFT. However, it is not yet clear whether this reflects the fact that reasonable
models for the short-range part of the NN interaction are encoded in the various
potentials. It could also be the case that the agreement just originates from the

fact that all potentials fit the same data.

Pion exchange and many-body forces

The one-, two- and three-pion exchange diagrams which occur in the chiral
expansion up to the considered order are also shown in Fig. 3.3. At LO (v = 0)
only the well known static OPE contributes represented by the second diagram
in the first row. TPE starts at NLO in the chiral expansion and all leading order
TPE diagrams are shown. The sub-leading TPE occurs at N?LO and N3LO
where only two and three diagrams, respectively, are depicted. In Ref. [18] all
TPE contributions up to N3LO are summarized. At this order 37 exchange
occurs for the first time where one representative diagram is shown in Fig. 3.3.
Nevertheless in Ref. [94, 95] it was shown by Kaiser that 37 exchange at this
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Figure 3.3: Expansion of the nuclear force in chiral perturbation theory. Dashed
lines represent pions and solid lines nucleons. The figure is taken from [93].

order is negligible. It turned out that for a quantitative description of NN
scattering data one has to go up to N3LO [18, 19, 17] in the chiral expansion for
the two-nucleon problem. N2LO contributions were still found to be very large
compared to NLO. This implies that TPE contributions have to be included
up to order four. The TPE contributions to the NN interaction at order four
have been derived by Kaiser [96, 97, 98]. Recently, quantitative NN potentials
including contact terms at N3LO were derived by Entem and Machleidt, the
so-called Idaho potential [18, 19], and by Epelbaum, Glockle and Meissner [17].

Since chiral perturbation theory provides an systematic expansion of the NN
interaction besides the 2N force also 3N forces (and higher many-nucleon forces)
appear on an equal footing as can be seen from Fig. 3.3. 3N forces are generated
for the first time at N?LO and therefore are weak. This naturally also holds for
4N forces occurring at N3LO which are even weaker.
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The Idaho N3LO potential

The corresponding chiral NN potential is defined by

, sum of irreducible
V(gq',q)

+ contacts (3.25)
7 + 27 contributions

and then applied in a scattering equation (Lippmann-Schwinger equation) to
obtain the NN amplitude.

Since chiral perturbation theory is a low-momentum expansion it is valid only
for momenta ) < A, ~ 1 GeV. Therefore the chiral EFT potential has to be
regularized, i.e. all expressions, i.e. irreducible pion exchanges and contacts,
are multiplied with a regulator function

V(d,q) — V(d,q) e 1TVD™ e=a/D™ (3.26)

The exponent is chosen such that it does not affect the chiral order of the
potential, but introduces contributions beyond that order.

For the present investigations we apply the Idaho potential [19]. The operator
structure of the momentum-space NN amplitude has the general form given
in Eq. (3.12) and the operators O; from Eq. (3.13). The potential forms V;
(i =0C,S,T,LS,oL) can be expressed as functions of |(q' —q)| and |k|. A =0.5
GeV in all partial waves throughout the present work. The total number of free
model parameters in the Idaho N*LO potential is 29 [19].

For the evaluation of the matrix elements we applied the N3LO program
package provided by D. R. Entem and R. Machleidt.

3.3.2. Quark mass dependence of the chiral EFT interaction

Deriving the NN interaction in the framework of chiral effective field theory
allows to account for the current quark mass or, equivalently, the pion mass
dependence of the nuclear force [20]. This is of outstanding importance for the
investigations of the structure of the nuclear self-energy components and the
nuclear equation of state when going away from the physical value of m, to the
chiral limit in Section 5.5 and moreover when the chiral condensate is calcu-
lated in Section 6.2. Therefore the explicit form of the chiral NN interaction is
presented here. In Ref. [20] the light quark mass of the nuclear force has been
derived up to NLO in the framework of a modified Weinberg power counting, i.e.,
additionally to the one-pion exchange potential and contact terms the leading
two-pion exchange has been considered. In this work [20] corrections have been
considered from contact terms with two derivatives or one m2-insertions, renor-
malization of OPE and contact terms and two-pion exchange to account for the
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3.3. EFT interactions

explicit and implicit quark mass dependence. The explicit form of the chiral
effective NN potential Vo is given by

VNLO — VOPE + VTPE + Vcont ’ (327>
where

192 47’712 = (0’1k)(0’2k)
yOoPE _— _ZJA] L 9N - g : 3.28
12 + in 18] T1°T2 k2+ﬁ172T , ( )

TPE __ T1°T2 ~ 2/ 4 2
VI = s (LKD) #5403 1)
4844
+k3(23¢g% — 10¢% — 1) + —24—7 ”}
TR In T (23¢% — 10¢7 — 1)} (3.29)
M
394

My
T Gdn2 (L(““)Hnm) {a'l'k0'2~k—k20'1'0'2},

Vcont = CS+OT(JI'02)

N _ 34> m
2 _ A 2 £ 2 m
+ m; <DS 327r2f7‘}(8f”CT 59% +2)In mﬁ>

642 f4 My
+ 01k2 + CQP2 + (C3k2 + C4P2)<0'1 . 0'2)
192 (P k) + Cyloy - K) (o2 - k)

_ 3q2 T
+m? (DT — 294 (164207 — 544 +2)In m) (o1 - o)

+1C5

with g4 and f; the physical values of the nucleon axial coupling and pion decay
constant, respectively. Because at NLO any shift in g4 and f; for a different
value of m, in the TPE is a N*LO effect the physical values are used where
ga = 1.26 and f, = 92.4 MeV. The value of the pion mass is indicated by m,
compared to the physical one denoted by m,. L(|k|) is given by

B Vam2 + K2 | ¢4mg+k2+\k1.

L(|k

(3.31)

A represents the relative shift in the ratio g4/ fr compared to its physical value
since they show an implicit dependence on the pion mass

(gA/fﬂ>m,r - (gA/fﬂ'>m,r

A = 3.32
(9al T (3.52)
2 2,52 ~
ga 4 - 1 7 2 -9 gamz my
A dgt+ ———l — — In—= .
(167%2 g 10" T6r2p2 4>( e ) = g
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3. The NN interaction

The low-energy constants (LECs) Csr and Dgr are related to the Cgr from
[17] via ) )
OS,T = C&T + mfrD&T . (333)
The LECs Dg 1 have not been fixed by experiment till now. In Ref. [20] natural
values have been assumed for these constants
Qs

T
2A2 7
JEIIS

s

Dgsr =

where agr~1 and A, ~1. (3.34)

The LECs dyg,d1s and I, are related to pion-nucleon interactions. We take
I, = 4.3 which is fixed with relatively small error bars. The LECs dig,d1s are
not yet uniquely fixed, i.e. there exists a certain range of possible values fixed
from different observables. The implications on the results induced by these
uncertainties of the LECs will be discussed later in greater detail.

3.3.3. Renormalization Group approach to the NN
interaction

All potentials discussed up to now in this chapter have been adjusted to elastic
NN scattering data for lab. energies Ej,;, < 350 MeV which corresponds to the
pion threshold. Hence for relative c.m. momenta k > 400 MeV or distances
r < 0.5 fm the details of the nuclear force are not constrained by experimental
data and the potentials differ essentially in the treatment of the intermediate and
short-range parts of the NN interaction. Due to these strong high-momentum
components which are included in the NN potentials model dependences arise
in many-body calculations like in DBHF. This can be seen from Fig. 2.3 where
different nuclear saturation points are obtained using various interactions within
the same many-body approach. The differences become also obvious in Fig. 3.4
where the "bare’ diagonal matrix elements in the 1Sy partial wave are shown for
various potentials. Again the strong deviations are due to the different treatment
of the hard core. Nevertheless one has to keep in mind that matrix elements
for the bare potentials are shown, i.e., when iterated in a Lippmann-Schwinger
equation all potentials lead to about the same T-matrices and therefore agree
much better.

Another example is shown in Chapter 5.1.3 where in Fig. 5.5 the tree level
calculations of the single particle potential Us , in symmetric nuclear matter are
presented for all the different potentials. Again, since at tree level the model
dependent hard core contributes completely one observes strong deviations.

To circumvent this model dependent parameterization of the short range
part another approach has been proposed where an ’universal’ effective low-
momentum potential Vi, x is derived from any given realistic NN potential [99,
26, 100].
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Figure 3.4: Diagonal matrix elements V (q, q) in the 'Sy partial wave for different
high precision NN potential models.

Here the method is shortly sketched. Starting from a given potential model
V' the low-momentum part is separated by integrating out the high-momentum
modes above a cut-off A. The resulting low-momentum interaction Vj, has
momentum components only below A, i.e. one evolves the NN potential models
from the full Hilbert space to the low momentum subspace [99, 26].

Moreover, Vi, has to evolve with A in such a way that the low-momentum
scattering amplitude T'(K', k; k?) is reproduced, i.e. the same results for the
phase shifts and the deuteron pole as the models which serve as input have to
be obtained. This leads (in every scattering channel) to

k; k2
T kK = V(K k) += P/ T, )p2dp, (3.35)

2

p) T (p, k; k?)

k;2 — pdp (3.36)

(K,
Tk = Vi ky 2 [ Vi

where £’k and p are the relative momenta of the outgoing, incoming and in-
termediate nucleons. The changes of the effective interaction with the cut-off A
are then described by the renormalization group (RG) equation [99]

d 2VA k' A)TMA, k; A2
Vi (k,/ k‘) lowk( ) ) ( ) Yy )

dx vk ™ 1—(k/A)?

(3.37)

For every cut-off Vi, defines a new NN potential. Since the low-momentum
T matrix for a given cut-off has to be reproduced, Vi is renormalized for
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3. The NN interaction

scattering to intermediate states with p > A. This is done by a resummation
of the high-momentum ladders in an energy-dependent effective interaction,
which is the solution to the two-body Bloch-Horowitz equation in momentum
space. By using the equations of motion the energy dependence can then be
converted to a momentum dependence. Both steps are technically equivalent
to the Lee-Suzuki basis transformation in momentum space. At a cut-off of
A = 2.1 fm~! all the various NN potential models are then found to collapse
to a model-independent effective interaction Vi, which is shown in Fig. 3.4
denoted by red triangles. In summary, the philosophy behind the RG approach
is to replace the unresolved short distance structure by something simpler, e.g.
contact terms, without distorting low-energy observables.

The difference to the chiral EF'T approach presented in the previous section
is that the NN interaction is not expanded in powers of local operators. In
chiral EF'T power counting is used to calculate observables to a given order. In
contrast in the Vi, approach one starts from a Hamiltonian in a large space
which reproduces the low-energy observables. The large space is then truncated
to a smaller low-momentum space where still the observables are reproduced.
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4. Dirac structure of the NN
interaction

As shown in the first chapter of this work relativistic many-body calculations
(based on meson theoretical covariantly formulated NN interactions) yield scalar
and vector fields which are of the same sign and magnitude as obtained from rel-
ativistic mean field theory (RMF) theory. Properties arising in nuclear structure
like, e.g., the large spin-orbit splitting in finite nuclei can naturally be explained
within Dirac phenomenology with these fields as shown in Chapter 2.1 More-
over in Chapter 2.3 a completely different approach has been discussed, QCD
in-medium sum rules. There it was shown that the density dependence of the
chiral condensates gives rise to large scalar and vector fields comparable to those
obtained in relativistic phenomenology.

Considering the differences in these theoretical approaches such a coincidence
could not have been expected a priori. Moreover it implies that the occurrence
of large fields in nuclear matter or, alternatively, the density dependence of the
QCD condensates, must already be inherent in the vacuum NN interaction.

The connection of the nucleon-nucleon force to QCD is given by the fact that
the interaction is described by the exchange of the low lying mesonic degrees of
freedom. In the previous chapter different approaches to the nucleon-nucleon
interaction have been discussed. Though all these well established interactions
fit NN scattering data with approximately the same precision the various NN
interactions are based on quite different theoretical approaches.

Whereas one knows that in relativistic many-body approaches (e.g. DBHF)
the appearance of large fields is due to the meson exchange picture of the rel-
ativistic OBE interactions (¢ and w meson exchange) it is not clear whether
these fields would be generated if non-relativistic interactions (chiral EFT, phe-
nomenological interactions) were applied in relativistic many-body theory.

A direct comparison of relativistic phenomenology based on the meson ex-
change with chiral EFT and non-relativistic phenomenology is, however, dif-
ficult since the latter two approaches lack of a clear Lorentz structure which
is essential in order to generate large scalar and vector mean fields in nuclear
matter like it is known for the relativistic OBE potentials.

Therefore in this chapter a model independent investigation of the NN inter-
action in terms of the Lorentz structure is presented. This is done by applying
projection techniques to map the various potentials on an operator basis of Dirac
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4. Dirac structure of the NN interaction

phenomenology which is given by the Clifford algebra in Dirac space [101, 79].
This transformation leads to a restoration of the symmetries of the Lorentz
group. Such a transformation is well defined in the positive energy sector for
on-shell amplitudes and allows to compare the various NN potentials by identi-
fying the different Lorentz components of the interaction.

The philosophy behind this approach is based on the fact, that any NN inter-
action, independent whether relativistic or non-relativistic, is essentially based
on an equivalent operator basis — in the non-relativistic limit covariant opera-
tors are linear combinations of the operators in which non-relativistic potentials
are usually expanded (see Section 3.2.1)- and therefore data fitting enforces
coefficients of comparable strength or in other words one ends up with a reorga-
nization of the original contributions (central part, spin-orbit, tensor interaction
etc.). It is clear that in the case of already manifestly covariantly formulated
OBE interactions the procedure is trivial.

In this model independent study of the NN interaction a remarkable agree-
ment at the level of Lorentz invariant amplitudes between relativistic and non-
relativistic OBE potentials, non-relativistic phenomenological potentials and
EFT potentials, respectively, is observed.

4.1. Covariant operators in Dirac space

Any two-body amplitude can be represented covariantly by Dirac operators and
Lorentz invariant amplitudes. A detailed discussion of the general structure of
relativistic two-body amplitudes can be found in Refs. [101, 102].

The inclusion of negative energy excitations with 4 states for each spinor
yields altogether 4* = 256 types of two-body matrix elements with respect to
their spinor structure. Symmetry arguments reduce these to 44 for on-shell
particles [102].

Naturally a fully relativistic treatment invokes the excitation of anti-nucleons.
However, standard NN potentials (even OBE type potentials such Bonn, CD-
Bonn or Nijmegen) are restricted to the positive energy sector and neglect the ex-
plicit coupling to anti-nucleons. As a consequence one has to work in a subspace
of the full Dirac space. This shortcoming can be avoided using fully covariant
potentials which explicitly include anti-nucleon states [103, 104]. The present
investigations have, however, been restricted to ”standard” potentials based on
the no sea approximation. Similarly, the EFT potentials [18, 19] applied here do
not explicitly include anti-nucleons, in contrast to covariant approaches which
require renormalization procedures to restore chiral power counting [105].

Therefore taking only the subspace of positive energy solutions into account
this leads to 2* = 16 two-body matrix elements. Considering in addition only on-
shell matrix elements the number of independent matrix elements can be further
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4.1. Covariant operators in Dirac space

reduced by symmetry arguments (parity and spin conservation, time-reversal
invariance) down to 5. Thus, all on-shell two-body matrix elements can be
expanded in terms of five Lorentz invariant amplitudes and a set of five covariant
operators. These five invariants are not unique since the Dirac matrices involve
always also negative energy states. Therefore a decomposition of the one-body
NN potential into a Lorentz scalar and a Lorentz vector contribution depends
to some part on the choice of the set of Dirac covariants.

A natural choice of a set of five linearly independent covariant operators to
represent a 4 x 4 Dirac matrix are the scalar, vector, tensor, pseudo-scalar and
axial-vector Fermi covariants

S=1®1, V=r'®q,, T=c"®o., (4.1)

P=%®v%, A=7%7"®%%. (4.2)

Since one works with physical, i.e., antisymmetrized matrix elements, one has
to realize that the Fierz transformation F [101] couples direct and exchange
covariants which mixes the different Lorentz structures

S 1 1 1 -1 1\ /S
VI 4 2 0 -2 4|V
T|l=-]12 0 -2 0 12||T] . (4.3)
Al -4 =2 0 —2 4]|a
p 1 -1 L 1 1/\p

The covariants on the left hand side of Eq. (4.3) are the interchanged Fermi
covariants defined in Ref. [101] as

S=SS, V=SV, T=ST, A=SA, P=SP, (4.4)
where the operator S exchanges the Dirac indices of particles 1 and 2, i.e.,
Su(1)ou(2); = u(1),u(2),.
Therefore the direct covariants I',, with m = {S, V, T, P, A} can be expressed
in terms of the exchange covariants I, with m = {S,V, T,P,A}.
In contrast to the NN potentials where the pion-nucleon coupling is given by
a pseudo-vector vertex, the set (4.2,4.4) contains the pseudo-scalar covariant P.
This suggests to replace P in Eqgs. (4.2,4.4) by the corresponding pseudo-vector

covariant
d—d d—d

PV = ) 4.
Vv 5 Y5 & Wi s (4.5)

This leads to an on-shell equivalence since the matrix elements of the pseudo-
vector and the pseudo-scalar matrix operators are identical in the case of on-shell
scattering between positive energy states:

(@) £ Lou(a) = a(qyouta) (4.6
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4. Dirac structure of the NN interaction

On the other hand the PV vertex suppresses the coupling to antiparticles since
the overlap matrix elements vanish for on-shell scattering

v(q') q;;/%u(q) =0 (4.7)

where v(q) is a negative energy spinor. In order to identify the PV contributions
clearly in the antisymmetrized amplitudes - note that due to the Fierz trans-
formation (4.3) all operators are coupled - one can switch to a set of covariants
originally proposed by Tjon and Wallace [102]. Based on the following operator
identities .

5(T+T)=S+S+P+15 (4.8)

V+V=S+S-P-P (4.9)

one finds that the following set of covariants
T, ={S,S,(A—A),PV,PV} (4.10)

provides a set of Dirac operators for the positive energy sector [102] which com-
pletely separates the direct and exchange PV contributions from the remaining
operator structure. This has the advantage that the OPE exchange which is
dominant at low energies is decoupled from the remaining amplitudes and gives
only a contribution to the PV operator. In the following we will refer to the
set of covariants in Eq. (4.10) as the pseudo — vector representation and that
of Eq. (4.2) as the pseudo — scalar representation. Note that on-shell matrix
elements of PV, PV in (4.10) are equivalent to those where the pseudo-vector
covariants are replaced by P, P.

The on-shell equivalence does not affect physical observables which are built
on complete matrix elements as e.g. the single particle potential U

U(k)sp. o< Y (a(k)a(q)|V(k, a)|u(k)u(a) — u(a)uk)) (4.11)

but it leads to uncertainties in operators which are, like the self-energy 3, based
on traces over only one particle. As discussed in [106, 36], a pseudo-vector TN
coupling leads to the pseudo — vector representation (4.10) as the most natural
choice of the relativistic operator basis. Therefore for the calculation of the
self-energy components in nuclear matter shown in Chapter 5 the pseudo-vector
representation has been used.

4.2. Projection onto covariant operators

The technique is described which is necessary to project the amplitudes from an
angular-momentum basis onto a covariant basis, given by Egs. (4.2) or (4.10).
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4.2. Projection onto covariant operators

The procedure is standard and runs over the following steps

|LSJ) — partial wave helicity states — plane wave helicity states

— covariant basis .

The first two transformation can be found in Refs. [107, 86]. The last step
depends on the choice of the covariant operator basis, see e.g. [79, 36]. Here
the essential steps are briefly sketched.

Independent of the various models, the two-body amplitudes are determined
normally in the angular-momentum |LSJ M )-representation and can be denoted
as V7%, (d',q). As already explained in the case of on-shell scattering (|q| = |q'|)
due to symmetry arguments five of sixteen possible matrix elements —taking
only the subspace of positive energy states— are linearly independent for a fixed
total angular momentum J (spin singlet and triplet states). By inversion of
Eq. (3.32) in [107] these five partial wave amplitudes are transformed from the
| LS J M )-representation into the partial wave helicity representation |JM A \y)
and are then decoupled via inversion of Eq. (3.28) from Ref. [107]. Since we deal
with two-nucleon states, i.e. two-fermion states, we have to evaluate the fully
antisymmetrized matrix elements by restoring the total isospin I = 0,1 via the
standard selection rule

(—D)F = 1, (4.12)

The five plane wave helicity matrix elements are then obtained by a summation
over the total angular momentum .J

2J + 1
VY Adoq) = Z( - >d{x(e)(A;Xﬂv”(q’,q)|A1A2> L (413)
J

(M

Here 6 denotes the scattering angle between q' and q while A = A; — Ay and
N = \] — X} denote the in- and outgoing helicity states. The reduced rotation
matrices dy ,,(6) are those defined by Rose [108].

These plane wave helicity matrix elements can now be projected onto a set
of five covariant amplitudes in Dirac space. A set of five linearly independent
covariants is sufficient for such a representation since on-shell we deal with five
matrix elements independent of the chosen representation. Using the covariants
of Eq. (4.2) (the 'pseudo-scalar choice’) the on-shell potential matrix elements
for definite isospin I can be represented covariantly as [79]

Vi(lal,0) = Fi(lal.0)S+ Fi(lal.0) V + Fi(lal,0) T
+F(|al,0) P+ Fi(lal,0) A . (4.14)

The Lorentz invariant amplitudes FJ (|q|,0) with m = {S,V,T,P,A} from
Eq. (4.14) depend only on the relative c.m. momentum |q| and the scattering
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4. Dirac structure of the NN interaction

angle 6 and are related to the plane wave helicity states defined in Eq. (4.13) by

X VN @) = D NN o [Tl A A @) Fy (al, 0) - (4.15)

m

The indices (1) and (2) refer to particle one and two. Eq. (4.15) is a matrix
relation between the five independent plane wave helicity amplitudes V! (where
i ={N, A5, A, A} = 1, ..., 5 denotes five of sixteen possible amplitudes) and the
five unknown covariant amplitudes F! (|q|,8). For fixed values of the variables
(la| = |d'|,#) this equation can be written in a more compact form

1
V;I =2 Z CimFg1 . (4.16)

The covariant amplitudes F! are obtained by matrix inversion of Eq. (4.16)
which corresponds to Eq. (3.23) of Ref. [79].

Eq. (4.16) has to be inverted for two scattering angles, i.e., for § = 0 for the
direct and 6 = 7 for the exchange part of the interaction. These two scattering
angles are required for the Hartree-Fock potential. Details of the inversion of
Eq. (4.16) as well as the treatment of kinematical singularities of the matrix
Cim occurring at § = 0 and # = 7 are shown in appendix C of Ref. [79] where
Eq. (4.16) is explicitly given for § = 0 and § = 7 (Egs. (C10,11)). Following
Ref. [79] we calculate the real part of the five Lorentz invariant amplitudes
F=%1(|q|,0 = 0, ) for the direct and exchange case in both, the isospin singlet
and triplet channels. When derived from physical partial wave amplitudes which
are already antisymmetrized according to the selection rule (4.12), the exchange
amplitudes F,,(|q|,7) contain redundant information.

Due to the restriction to the subspace of positive energy states, the choice of
a set of five linearly independent covariants suffers from on-shell ambiguities,
as discussed above. Thus the set of covariants (4.10) is a more appropriate
choice [36, 106]. In this representation the scattering matrix reads [102, 36|

Vilal,0) = gi(|al,0)S - gi(lal,0)S + gh(|al,0) (A — A)
+opv(lal,0) PV — g (lal, ) PV . (4.17)

The new amplitudes g, are related to the Lorentz invariant amplitudes £, from
Eq. (4.14) by the linear transformation

95 4 -2 -8 0 -2\ [F}
gé |0 -6 ~16 0 2 Fl
g =710 -2 0 0 -2 FL | . (4.18)
by 0 2 -8 4 2 L
1 It
9o 0 6 —16 0 -2/ \F}
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Figure 4.1: Covariant amplitudes for the OPE in different choices of the rela-
tivistic operator basis, i.e., the pseudo-scalar representation F,,(|q|,0 = 0) (left)
and the pseudo-vector representation g (|q|,0 = 0) (right).

As mentioned before, the representation of the potential given in Eq. (4.17)
has the advantage that the OPE contribution to the amplitudes is completely
decoupled from the rest of the interaction. The OPE contributes only in the

pseudo-vector exchange amplitude g%};E and vanishes in all other amplitudes
gSTF = gd"F = g®"F = gpy® = 0. Thus one avoids that the low momentum

behavior of these four amplitudes is to large extent dominated by OPE exchange
contributions which are present in all five amplitudes F}, from Eq. (4.14) due
to the Fierz transformation. In order to compare the various potentials at the
level of covariant amplitudes the pseudo-vector representation is therefore the
most efficient and transparent one.

4.3. Results

In order to demonstrate the dependence of the relativistic amplitudes on the
choice of the operator basis we consider in Fig. 4.1 first the single OPE. The fig-
ure shows the corresponding amplitudes F;,, of the pseudo-scalar representation
(4.2) and the g,,, amplitudes of pseudo-vector representation (4.10), both for the
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4. Dirac structure of the NN interaction

OPE part of the Bonn A potential. Since one is dealing with antisymmetrized
amplitudes it is sufficient to consider the direct Lorentz invariants F,,(|q|,0 = 0)
and g,,(|q|,0 = 0) at scattering angle § = 0. As the starting point the OPE
is given in the |LSJ) basis and antisymmetrization is ensured by the selection
rule (4.12). The figure shows the isospin averaged amplitudes defined as

Follal,0) = 5 [F(lal,0) + 3F%5 (. 0)] (419

and correspondingly for g,,. In the case of pure neutron matter the isospin
dependence is given by

Fu(lq],0) = [2E37"(al,0)] . (4.20)

It is evident that in the pseudo-scalar representation all amplitudes F), have
large non-vanishing contributions from OPE due to the mixing of direct and
exchange contributions described by the Fierz transformation (4.3). Moreover,
as discussed above the on-shell equivalence for the pseudo-scalar covariant P
and the pseudo-vector covariant PV in (4.14) leads to identical Lorentz invariant
amplitudes Fps = Fpy = Fp [36]. The pseudo-vector representation (4.10), on
the other hand, has the advantage that it decouples the OPE contribution from
the remaining amplitudes, i.e., the OPE gives a non-zero contribution only in
the g, amplitude while the others are zero. For the single pion exchange g5 is
now easy to interpret: it is just the pion propagator (3.6) times the pion-nucleon
form factor (3.9).

When the various NN potentials are compared, this is done most efficiently
in the pseudo-vector representation. All potentials contain an OPE of similar
strength which dominates at small momenta. The pseudo-vector representation
decouples the OPE contribution from the remaining amplitudes g,, # gg and
allows thus a more transparent investigation of the short and intermediate range
parts of the potentials which are actually the interesting ones. Fig. 4.2 shows
the isospin-averaged amplitudes g2 (|p|,# = 0) for Bonn A, CD-Bonn, Argonne
v1g, Nijm93, Nijmegen I and II, Reid93, the effective low momentum interaction
Viow k and the chiral Idaho potential. The amplitudes are obtained going through
the transformation scheme discussed above. Partial waves are taken into account
up to J = 90 (Bonn A, CD-Bonn, Idaho), J = 9 (Argonne v;g, Nijmegen /11,
Nijm93, Reid93) and J = 6 (Viow x)-

The amplitudes determined from the complete NN potentials are no more as
easy to interpret as for a single meson exchange where they represent essentially
the propagators times the form factors. This is also true for the full OBE since
the contributions from the various mesons are coupled through their exchange
parts. Since these amplitudes are not very transparent quantities, Fig. 4.2 in-
cludes as a reference in addition the contributions from only OPE and from only
o and w exchange, both taken from Bonn A.
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Figure 4.2: Isospin-averaged Lorentz invariant amplitudes g2(|q|,0 = 0) for
the different NN potentials in the pseudo-vector representation. As a reference
the amplitudes from solely OPE and from o + w exchange, both with Bonn A
parameters, are shown.
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4. Dirac structure of the NN interaction

Several features can now be seen from Fig. 4.2: First of all the four amplitudes
gs: 95, ga and ggy are very close for the OBE potentials Bonn A, CD-Bonn and
Nijm93 and the phenomenological non-relativistic Argonne vz and Nijmegen
/11 potentials. Only at very small |q| Argonne vig shows a deviating structure.
The direct pseudo-vector amplitude gpy falls somewhat out of systematics. This
amplitude is, however, of minor importance since it does not contribute to the
Hartree-Fock self-energy (5.5-5.7) and to the single particle potential.

The dominance of the OPE at low |q| is reflected in the pseudo-vector ex-
change amplitude gi; which is at small |q| almost two orders of magnitude larger
than the other amplitudes. In the OBE potentials the high momentum part of
the interaction, on the other hand, is dominated by heavy meson exchange and
the corresponding amplitudes gs, gs, ga approach the o 4 w exchange result.
Deviations from the o +w amplitudes, e.g. due to exchange of isovector mesons
p and 0 in the OBE potentials are moderate at large |q|. These deviations are
more pronounced at small |q].

The remarkable agreement between the OBE amplitudes and those derived
from the non-relativistic Argonne vg potential demonstrates two things: first
of all, it means that for on-shell scattering the Argonne vg can be mapped on
the relativistic operator structure where the local phenomenological functions
Vi, Eq. (3.12), play the same role as the meson propagators plus corresponding
form factors in the meson exchange picture. Secondly, the effective treatment
of the short-distance physics in Argonne vy is very similar to that in the OBE
potentials Bonn A, CD-Bonn and Nijm93. This fact can be estimated from
Fig. 3.4 where the 1Sy partial wave amplitudes are close as well. On the other
hand the softer character of the Reid93 and also the Nijmegen I and II potentials
is reflected clearly in the stronger deviation from the o + w amplitudes at large

al.

4.3.1. Effective low momentum potentials

In order to have a better representation in Fig. 4.3 the isospin-averaged Lorentz
invariant amplitudes from the effective low momentum potentials Vi  and
the chiral Idaho N3LO potential are shown separately. The amplitudes derived
from the OBE potentials Bonn A and CD-Bonn, respectively, are serving as
a reference. The amplitudes from the Vi,  potential are only plotted up to
the intrinsic cut-off of 400 MeV. In this momentum range the amplitudes fall
practically on top of those from the Idaho N3LO potential. This is not the case
for the direct pseudo-vector amplitude gpy as already mentioned before. At low
|q| the amplitudes derived from Idaho N®LO and W, 1 behave qualitatively
and quantitatively like those from the OBE potentials Bonn A or CD-Bonn.
The conclusion is therefore that also the effective low momentum potentials can
be mapped on a relativistic operator structure. For the Idaho N3LO potential
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Figure 4.3: Isospin-averaged Lorentz invariant amplitudes g2 (|q|,0 = 0) for the
effective low momentum NN potentials after projection on the Dirac operator
structure (pseudo-vector representation). Additionally the Bonn A and the CD-
Bonn potentials are shown as a reference.

which is also based on the operator structure given in Eq. (3.13), the functions
V; and V' in combination with the corresponding operators, derived from fourth
order two-pion exchange plus contact terms, lead to a structure which is similar
to that imposed by the OBE picture up to a certain cut-off scale. However,
clear deviations appear in the cut-off region between 400 and 500 MeV. Since
chiral perturbation theory is a low-momentum expansion, it applies for momenta
Q) < A, = 1 GeV and therefore the short-range interactions are strongly sup-
pressed by the exponential regulator function Eq. (3.26). As a consequence the
amplitudes derived from the Idaho potential drop rapidly to zero for momenta
above 400 MeV. The question which arises in this context is now:

e How reliable is the extrapolation of standard OBE type potentials to
higher momenta above the pion threshold?

e Can low momentum potentials be used around and above the momentum
cut-off region?
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Figure 4.4: np phase shifts. Solid dots indicate the Nijmegen multienergy np
phase shift analysis [109] and open circles the GWU/VPI single-energy np anal-
ysis SM99 [110]. The solid line represents the prediction by the CD-Bonn poten-
tial [87] which is almost completely hidden by the symbols indicating the data.
Also the N®LO chiral potential developed by the Idaho group [19] is shown
(dashed line) as well as by the Bochum/Juelich group [17] (dotted line). The
figure was taken from [111].

These two questions are addressed by the next figure. In Fig. 4.4 phase shift
predictions by various potentials are shown up to 1000 MeV lab. energy for the
incident nucleon. As discussed in [111] the high-precision CD-Bonn potential
predicts the data correctly up to about 1 GeV, although it is adjusted to the
data only up to an energy of 350 MeV. This is not the case for the chiral NN
potentials indicated by the dashed line [19] and dotted line [17] which are able
to describe the data up to about 300 MeV lab. energy correctly. For higher
momenta chiral NN potentials do not yield any reasonable predictions which can
be seen from the deviating behavior [111]. This deviating behavior is naturally
also reflected in the Lorentz invariant amplitudes in Fig. 4.3, e.g., in the g5,
channel, for relative c.m. momenta beyond 400 MeV which corresponds roughly
to 300 MeV lab. energy.

From this figure one can conclude that OBE type potentials provide a realistic
momentum dependence also above the pion threshold and can be extrapolated
safely to higher energies. The covariant amplitudes shown in Fig. 4.3 could in
future serve as a guideline to construct an effective potential based on effective
field theory at low energies and then follows the OBE momentum dependence

at higher energies above the cut-off region.
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5. Nuclear matter properties

In Chapter 2 it has been shown that the appearance of large scalar and vector
mean fields of several hundred MeV in nuclear matter is a crucial feature of
relativistic approaches to the nuclear structure problem. This is also true for
the microscopic DBHF theory (see Section 2.2). In the case of DBHF relativistic
meson exchange interactions have to be used like the Bonn potentials described
in Section 3.1. As already mentioned in the introduction it has often been argued
that the large scalar and vector fields enforced by Dirac phenomenology might
be an artefact of the relativistic meson exchange picture. Since only covariantly
formulated nucleon-nucleon interactions can be applied in such relativistic self-
consistent calculations it has not been understood yet whether the generation
of the large scalar and vector mean fields displays an implicit property of the
nucleon-nucleon interaction.

Nevertheless in Chapter 4 relativistic and non-relativistic modern nucleon-
nucleon potentials described in Chapter. 3 are mapped on a relativistic operator
basis using projection techniques. This is possible since any two-body ampli-
tude can be decomposed into a set of Dirac operators and Lorentz invariants.
The comparison of the various potentials shows a remarkable agreement of the
relativistic structure of the potentials at the level of covariant amplitudes.

Consequently the next step in this work is to determine the relativistic self-
energy Y in Hartree-Fock approximation in nuclear matter with its scalar and
vector components with the various potentials. To project out the self-energy
components the interaction nucleon-nucleon interaction matrix has to be decom-
posed into Lorentz invariants where the projection formalism is explained in the
previous Chapter 4. The calculation of the self-energy components is done at
tree level since a self-consistent treatment requires to evaluate in-medium scat-
tering amplitudes which is not possible with most of the potentials. The results
are presented in the first part of this chapter. The main finding is that the gen-
eration of the large scalar and vector components in nuclear matter is a model
independent property of the nucleon-nucleon interaction.

A comparison of the self-energy components obtained at tree level to those
obtained within a full self-consistent DBHF calculation (both with the Bonn A
potential) shows that the corrections due to higher order density dependences
are small and that the magnitude of the self-energy components is already set
at tree level.

To check the applicability and accuracy of the method, i.e. of the projection
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5. Nuclear matter properties

scheme the single particle potential is calculated with the help of the self-energy
components. The results for the various potentials are then compared to a
non-relativistic calculation where an almost perfect agreement is found.

Moreover, with the projection formalism at hand one is able to investigate the
connection between the appearance of the matter fields and chiral dynamics in
more detail. It allows in particular a straightforward and transparent discussion
of the contributions which arise at different orders in the chiral expansion of the
NN interaction, see Eqgs. (3.19) and (3.25). Throughout this work the chiral
Idaho potential [18, 19] is applied®.

The main outcome of this investigation is that the generation of the large
scalar and vector fields is intimately connected to the short-range spin-orbit
force from NLO contact terms in the chiral expansion.

All investigations up to here have been performed at tree level. It is clear that
a realistic description of nuclear matter requires to go beyond the Hartree-Fock
approximation as it is done in the DBHF approach. In this approach one has
to solve the set of equations self-consistently as explained in Section 2.2. Such
a procedure is restricted to covariantly formulated nucleon-nucleon potentials
like Bonn A [12, 86]. There it is possible to evaluate in-medium amplitudes
since higher order corrections in the density are taken into account through a
dressing of the nucleon-nucleon interaction with an effective nucleon mass M*.
Therefore in the present work the aim was not to perform a fully self-consistent
DBHF calculation. In fact the influence of the dressing of the interaction on the
Hartree-Fock level on the self-energy and the implications for the equation of
state (EOS) can be studied with OBE-like potentials: Bonn A [12, 86], Nijm93,
and Nijm I [65].

To account for higher order corrections in density at Hartree-Fock the bare
nucleon mass has to be dressed by the self-energy, Eq. (2.55), i.e. the bare
nucleon spinor is replaced by the in-medium one (2.58). This leads to a self-
consistency problem when the self-energy is calculated. Since the higher order
density dependences introduced by the dressing of the bare interaction lead
mainly to a reduction of the attractive scalar field significantly more repulsion
at the level of the EOS is observed.

In the last part of this chapter isospin symmetric nuclear and pure neutron
matter are investigated within chiral effective field theory (EFT). Therefore the
Idaho N3LO potential derived in chiral EFT is applied.

The EOS is investigated at tree level in Hartree-Fock approximation. It
is a well known fact that at Hartree-Fock level saturation of nuclear matter
is not observed. Therefore we apply chiral EFT in a second step within the

LAll investigations are based on a version of the chiral N°LO Idaho potential which allows to
separate the contributions from different orders. The code was provided by R. Machleidt
(private communication).
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non-relativistic Brueckner-Hartree-Fock approach. In the present work a non-
relativistic approach is applied since it is not possible to use the chiral NN
potential in a relativistic BHF calculation (DHBF) where one accounts in addi-
tion for the dressing of the potential matrix elements V' — V* as explained in
Section 2.2. The latter requires, however, a definite relativistic structure of the
NN interaction, like for covariantly formulated OBE type potentials (see Sec-
tion 5.3). Nevertheless Brueckner-Hartree-Fock theory is known to be able to
produce saturation due to Pauli blocking and short-range correlations with real-
istic NN potentials like the phenomenological Argonne vig [25] potential or the
OBE Bonn A [12, 86] although it fails to reproduce quantitatively the empirical
saturation properties.

Since chiral EFT allows to investigate nuclear matter and neutron matter at
the different orders of the chiral expansion the EOS is determined for all orders
up to N3LO in order to obtain a qualitative understanding of the properties of
chiral EFT applied in many-body calculations. Moreover the symmetry energy
obtained from chiral EFT is explored and compared to the result from other
realistic interactions.

Though it is also a well known fact that Hartree-Fock calculations for nuclear
matter are not realistic the study of the latter serves as a basis for the subsequent
investigation of the pion mass dependence of the self-energy fields and the EOS
of nuclear matter (especially in the chiral limit) where the same chiral EFT
interaction is applied at NLO.

Naturally one assumes that the magnitude of the self-energy fields and the
qualitative behavior of the nuclear EOS should persist even in the chiral limit
since hadronic properties are not expected to change dramatically in the case
of massless quarks or pions. The reason for this is that the expansion of the
nuclear force in the context of chiral perturbation theory is well defined for
small quark masses and should still be valid in the limit m, — 0 which is
equivalent to m, — 0. In order to estimate the implications for the self-energy
components and the EOS when going to the chiral limit one needs a nucleon-
nucleon interaction where the quark mass dependence is known. Therefore the
chiral EFT interaction derived by Epelbaum et al. [20] (see also Section 3.3.2)
up to NLO is applied in a tree-level Hartree-Fock calculation and moreover in a
non-relativistic Brueckner-Hartree-Fock calculation. Furthermore the properties
of nuclear matter are tested with a considerably higher pion mass. This might
be of interest when corresponding QCD Lattice results are compared since due
to technical difficulties these calculations have to be performed with a pion mass
much larger than the physical one.
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5. Nuclear matter properties

5.1. Self-energy in Hartree-Fock approximation
The self-energy in Hartree-Fock approximation at tree level is given by

Saalh) = =i | 557 (alV ka0 = (alV Bl Gla) (1)

where in contrast to a full self-consistent calculation the T-matrix in Eq. (2.44)
is replaced by the bare interaction matrix V. Eq. (5.1) describes the summation
of the interaction of a nucleon with four-momentum k& with all nucleons inside
the Fermi sea in Hartree-Fock approximation. Since

Since fully antisymmetrized matrix elements are applied which contain al-
ready the direct (Hartree) and exchange (Fock) contributions, it is sufficient to
evaluate the Hartree integral for the self-energy

4

Sas(k) =i [ i

i LIV k)] G2 (0) 52)

GP(q) is the Dirac propagator as given by Eq. (2.59)
GP(q) = 2mi(v, k" + M)S(K* — M*)O(q0)O (kr — |a]) , (5.3)

without effective nucleon masses and momenta. Here, k, taken along the z-
axis, is the single particle momentum of the incoming nucleon in the nuclear
matter rest frame. The relative momentum in the two-nucleon c.m. frame
where the matrix elements V' are evaluated, is given by |p| = /s/4 — M2,
where s = (E(k) + E(q))? — (k + q)? is the total energy of the two nucleons.

Using the pseudo-vector representation for the on-shell matrix elements V/,
Eq. (4.17), the self-energy operator reads

Yok, kp) = /(Zﬂ?gg(ig@q’) {(kaﬁ— q@ﬁ)wgﬁ

| 2
+mlag [498 — g5 +4g9a — Wﬂﬁ;]
k* — gt 2
+ fop [—gg +2gA — (4]\42)915?/] } . (5.4)

Note that the sign convention for the vector field ¥ = ¥, — ,X# with ¥, =
(3o, k3y) in Eq. (2.51) is that used standardly in DBHF [34, 36, 112]. It differs
from that used standardly in QHD (X = X3+ +,3#) and also that of Eqs. (2.84)
and (2.85).
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5.1. Self-energy in Hartree-Fock approximation

To project out the Lorentz components of the self-energy operator (5.4) one
has to take the respective traces in Dirac space Eqgs. (2.52)-(2.54)

d3q M
py) = — —T.(k .
d3q
Yo(k,kp) = O(kr — |d))To(k,q) , (5.6)
(2r)?
d’q k-q
p)) = — — —— T (k . .
where the abbreviations are used
1 kP — gt)?
T‘s(ka q) = Z 4gS - gS + 4gA - (4]\43)91;\\7] 3 (58)
1] E(K) (K — gi)?
k) = |- 2+ e o (5.9)
1[ k, (K" — g")?
Tv(k,q) = 1 gs — 2gA + %(zlj\ﬂ)gﬁ’l . (5.10)

5.1.1. Results for various NN interactions

In Fig. 5.1 the tree level scalar and vector self-energy components in nuclear
matter are shown obtained with the various NN potentials at nuclear saturation
density with Fermi momentum kr = 1.35 fm ™' which corresponds to a density
of p=0.166 fm™>. As a remarkable result, all potentials yield scalar and vector
mean fields Y5 and >y of comparable strength: a large and attractive scalar field
Y ~ —(450+400) MeV and a repulsive vector field of =%y ~ +(350-+-400) MeV.
These values are comparable to those derived from RMF phenomenologically
and also from QCD sum rules. Also the explicit momentum dependence of
the self-energy is similar for the various potentials. The Idaho mean fields
follow the other approaches at low k£ but show a stronger decrease above k ~
2 fm™' which reflects again the influence of the cut-off parameter. Fig. 5.2
shows the spatial component of the vector self-energy k¥, Eq. (5.7). Also here
the various potentials agree quite well. As known from self-consistent DBHF
calculations [34, 36|, the spatial vector self-energy is a moderate correction to
the large scalar and time-like vector components Y5 and Y. This is found to be
also the case at tree level where k¥, is about one order of magnitude smaller
than the other two components. The spatial self-energy originates exclusively
from exchange contributions, i.e., the Fock term, and vanishes e.g. in the mean
field approximation of RMF theory. Fig. 5.3 displays the density dependence of
the fields, evaluated at momentum k = kgr. At moderate densities the different
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Figure 5.1: Tree level scalar and vector self-energy components in nuclear matter
at kp = 1.35 fm ™! obtained with different NN interaction models.

potentials yield scalar and vector fields which are rather close in magnitude. At
higher densities the results start to split up which reflects again the different
treatment of short distance physics in the various interactions. Only the two
low momentum interactions Idaho N3LO and Vi « lie practically on top of each
other.

5.1.2. Reliability of tree level calculations

All results presented in the previous section have been obtained at tree level, i.e.,
in lowest order in density. Hence, the results are only 'realistic’ in the low density
limit but not at higher densities since short-range correlations are missing. In or-
der to estimate the influence of short-range NN correlations and self-consistency,
which are getting substantially important at higher densities in Fig. 5.4 the
scalar and vector self-energy components obtained at tree level from Fig. 5.1 for
Bonn A to those obtained in a corresponding full self-consistent DBHF calcula-
tion are compared at kg = 1.35 fm™'. For DBHF the approach of [36] is used
(subtracted T-matrix in pv representation). The DBHF calculation yields rea-
sonable saturation properties with a binding energy of Ey;,q = —15.72 MeV and
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Figure 5.2: Tree level spatial vector selt-energy component k3., in nuclear matter
at kp = 1.35 fm™" for the various potentials.

a saturation density of p = 0.181 fm™ [36]. The correlations lead to a general
reduction of the vector self-energy by a shift of about 70 MeV. Self-consistency
and correlations also weakens the momentum dependence, in particular for .
However, except of the 70 MeV shift of ¥y, the absolute magnitude of the self-
energies is not strongly modified in the realistic calculation. This means that
one can expect that the large attractive scalar and repulsive vector self-energy
components will also persist for the other interactions when short-range corre-
lations are accounted for in a full relativistic many-body calculation.

5.1.3. Comparison with non-relativistic single particle
potential

In Fig. 5.5 finally the single particle potential in nuclear matter at ky = 1.35 fm ™!
is shown, determined from the relativistic self-energy components. The single
particle potential is defined as the expectation value of the self-energy

< u(k)|y'%|u(k) > M

s (k) = =S = g < “R)ISlu(k) > (5.11)
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Figure 5.3: Density dependence of the tree level scalar and vector self-energy
components in nuclear matter obtained with the various potentials.

and reads

2

Us.p.<k7 kF) = %ZS - kﬂzu = M2 — Yo + 2k .

E E VK2 + M2 VK2 + M2

Eq. (5.12) represents the single particle potential at tree level, i.e., the expecta-
tion value of ¥ with the bare spinor basis without taking the effective nucleon
mass Eq. (2.55) into account. The next step towards a self-consistent treatment
would be to use an in-medium spinor basis which includes the scalar and vec-
tor self-energy components via effective masses and effective four-momenta as
defined by Eq. (2.55) and (2.56) in Section2.2.2. This would, however, involve
higher order corrections in the baryon density and is not intended in the present
investigations which are restricted to leading oder.

The single particle potential reflects the well known fact that phase-shift
equivalent two-body potentials which describe NN scattering data with about
the same accuracy [89], can be rather different [89]. This can already be seen
from Fig. 3.4 where the 1.S) matrix elements of the various potentials are shown.
The differences are mainly due to a different treatment of the short-range part of
the nuclear interaction, i.e., the hard core which is not well constraint by scatter-

(5.12)
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Figure 5.4: Tree level scalar and vector self-energy components in nuclear mat-

ter at kp = 1.35 fm™! are compared to corresponding values from a full self-

consistent relativistic Brueckner (DBHF) calculation. In both cases the Bonn
A potential is used.

ing data. Thus the various potentials lead to about the same T-matrices when
iterated in the Lippmann-Schwinger or Bethe-Salpeter equation. However, at
tree-level the hard core contributes fully to U, which explains the shift of the
various results in Fig. 5.5. Integrating out the high momentum components, e.g.
by renormalization group methods, one arrives at equivalent low-momentum po-
tentials Viow k [26]. Since Vi  contains no significant contributions from the
hard core it gives already at tree level a realistic single-particle potential. The
situation is similar for the chiral EFT N3LO Idaho potential. As can be seen
from Fig. 3.4 Idaho is rather close to Viey i, not only in the 1S, partial wave, and
correspondingly both lead to comparable potentials. However, the slight shift
of about 10 MeV between V.,  and Idaho reflects again the subtle cancellation
effects between the large scalar and vector fields, since at the scale of the fields,
Fig. 5.3, both lie practically on top of each other.

In the present context the single particle potential serves as an important
check of the whole applied projection procedure which is described in Chap-
ter 4. In Fig. 5.5 the single particle potential Uy, is shown, calculated from
Eq. (5.12), i.e., after projecting the NN potentials from the partial wave basis
onto the covariant operator basis, determining then the relativistic self-energy
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Figure 5.5: Single particle potential in nuclear matter at kp = 1.35 fm™ ", deter-
mined from the tree level Born amplitudes of the various potentials. The single
particle potential determined from the relativistic self-energy components after
projection onto the covariant operator basis is compared to a non-relativistic
calculation (stars) where partial wave amplitudes are summed up directly.

components and finally Us,, . Fig. 5.5 includes also the results from a 'non-
relativistic’ calculation of U, where the partial wave amplitudes are directly
summed up. To do so a non-relativistic Brueckner-Hartree-Fock program?was
used and the single particle potential in Born approximation was determined.
The non-relativistic results are represented by stars in Fig. 5.5 and shown up to a
momentum of 400 MeV. This avoids distortions from non-relativistic kinematics
which occur at higher momenta. At moderate momenta the non-relativistic and
the relativistic calculations show an excellent agreement which demonstrates
the accuracy of the applied projection techniques. One has thereby to keep in
mind that Us,, originates in the relativistic approach from the cancellation of
the two scalar and vector fields which are both of the order of about 400 MeV.

2This code was provided by H. Miither and used in the Born option. For each potential
partial waves up to J = 9 are taken into account.
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5.2. Self-energy from chiral EF'T

5.2. Self-energy from chiral EFT

Chiral EFT nucleon-nucleon potentials provide a systematic expansion of the
nuclear force as explained in Section 3.3.1. Therefore a connection of chiral
dynamics to the appearance of the large scalar and vector fields in matter can
be established. Calculating the scalar and vector self-energies components from
a chiral EFT nucleon-nucleon potential order by order allows to investigate the
structure of the self-energy. Moreover one is able to separate the contributions
from different orders in the chiral expansion of the NN interaction and study the
connection of the self-energy components to the low energy constants (LECs)
appearing at different orders.

In Fig. 5.6 the tree level results for the scalar and vector self-energy com-
ponents in nuclear matter at kp = 1.35 fm~' obtained with the chiral Idaho
potential [19] in leading order (LO) up to next-to-next-to-next-to-leading or-
der (N®LO) are shown. To leading order the chiral NN interaction does not
generate significant mean fields. The scalar self-energy > is of the order of
about -70 MeV and the vector self-energy is practically zero. At LO only the
static one-pion exchange (OPE) and contact terms without derivatives appear
which involve the operators O; and Oy from the operator basis (3.13). Hence
at LO no pieces from vector exchange occur which would involve all operators
O;,1 = 1..5. The small scalar field means, on the other hand, that the nucleon
mass M* = M + ¥ does not change significantly in matter to leading order in
chiral EFT. The dominant contributions arise at next-to-leading order (NLO).
NLO involves leading two-pion exchange (TPE) and contact terms with two
derivatives (see Fig. 3.3). The NLO contact terms contain the full operator
structure O;. At this level both, scalar and vector self-energy components of
about 7400 MeV magnitude are generated. Also the signs, i.e., the attractive
scalar and the repulsive vector mean field, are fixed at NLO. The higher orders,
N2LO and N3LO provide corrections which tend to reduce the NLO result, are,
however, moderate. As can be seen from Fig. 3.3 chiral EFT at N?2LO contains
subleading TPE and no contact terms at all, while at N3LO sub-subleading
TPE, leading 37 exchange, corrections to OPE and TPE and contact terms
with four derivatives occur [17].

In order to investigate the role of pion dynamics and that of contact terms in
more detail, Table 5.1 shows the contributions which arise from pion dynamics
¥(™ ie., OPE, TPE, 37 and corrections, and those from the contact terms
(cont) separately. The contributions to the self-energy at a particular order
is given by the sum L™ 4 () the full self-energy at a certain order v is
obtained by adding the contributions from the lower orders ¥*) = S°%_; %W,
From Table 5.1 it becomes evident that the dominant contributions to the scalar
and vector self-energy are generated by the contact terms which arise at next-
to-leading order. At N2LO no contact terms occur in the chiral expansion.
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Figure 5.6: Tree level scalar and vector self-energy components in nuclear matter
at kg = 1.35 fm™~! obtained with the chiral EFT NN interaction [19]. The
fields obtained in leading order (LO) up to next-to-next-to-next-to-leading order

(N*LO) are shown.

The N3LO contacts provide sizeable corrections to both, scalar and vector self-
energy components and are of opposite sign than the NLO contributions. The
contribution from pion dynamics to the self-energy components are found to be
generally moderate. The largest contributions appear at N3LO and are of op-
posite sign than those from corresponding contact terms. Hence the reduction
of the nucleon mass M* = M + ¥ is driven by short-distance physics, domi-
nantly by contact terms which occur at NLO. These are four-nucleon contacts
with two derivatives. The explicit expressions are given in Section 3.3.1. From
Eq. (3.23) one can see that at this order the short-range spin-orbit interaction
(proportional to Oy in (3.13))

iC5(0'1 + 0'2) . (q X q’) (513)

is generated. The appearance of large scalar and vector fields at NLO is there-
fore in perfect agreement with Dirac phenomenology where the large spin-orbit
force is intimately connected to the appearance of the scalar and vector fields
which are generated by short-range isoscalar scalar (o) and vector meson (w)
exchange [36, 37]. In EFT the strength of the short-range spin-orbit interaction
is determined by the C5 parameter which is given by a linear combination of
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5.2. Self-energy from chiral EF'T

Table 5.1: Contributions from pion dynamics and contact terms to the scalar
and vector self-energy components (in MeV) which appear at different orders in

the chiral expansion. The evaluation is performed at nuclear saturation density
kp =1.35 fm™".

% ) ) > S ¥ s
LO 6476 1714 -81.90  4.49 19.02  -14.53
NLO -344.22 440  -348.62 37647 516 37131
N’LO 2.06 2.06 0.00  -41.92  -41.92 0.0
N3LO 56.82  -89.34 14616  -43.27  79.06  -122.33
sum -350.10  -65.74  -284.36  205.77  61.32 23445

the 3 P-wave low energy constants (LECs) [19, 17]

Cs = 1(;1_ [203130 + 36’3131 — 503132] . (5.14)
Hence the short-range spin-orbit interaction is dictated by P-wave NN scatter-
ing. As shown by Kaiser [113] the large values of the C5 parameter is in good
agreement with corresponding values extracted from high precision OBE type
potentials (Bonn, CD-Bonn, Nijm93, Nijmegen [,IT) and from Argonne v;g which
are all in the range of 3C5/8 ~ 8090 MeV fm®. In [113] these values were also
compared to purely phenomenological Skyrme type density functionals designed
for nuclear structure calculations [114, 115]. The values of the corresponding
spin-orbit strength parameter W, in Skyrme models are also very close in mag-
nitude, i.e. 3Wy/4 ~ 75+ 97 MeV fm®. The contribution from chiral OPE to
the spin-orbit terms in the density functional were found to be almost negligi-
ble (less than 1%). The lowest order irreducible TPE which occurs at NLO in
the chiral expansion provides moderate corrections to the isoscalar spin-orbit
strength function whereas the isovector strength is more strongly affected (TPE
contributions lead to a ~ 30% reduction) [113]. Thus the analysis of Kaiser
is fully consistent with the small fields (™ and E(()W) of ~ F5 MeV generated
by pion dynamics at NLO, as observed within the framework of the present
analysis.
Epelbaum et al. [92] compared the spectroscopic LECs connected to the con-
tact terms up to NLO from chiral EFT to those extracted from various NN
potentials by performing a low-momentum expansion. As explained in Ref. [92]
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Figure 5.7: Low energy constants from chiral EF'T' compared to extracted co-
efficients from various NN potentials. The left brown bars correspond to NLO
and the middle bar is N*LO. The length of the bars indicates the variation
of the LECs with the cutoff A between 500 MeV and 600 MeV. The C‘l are
in 10* GeV~2 and the C; in 10* GeV~*. The values for the LECs were taken
from [92)].

in the limit of large meson masses and a fixed ratio of coupling constants and
masses meson exchange diagrams can be interpreted as a sum of local four-
nucleon operators where the number of derivatives or momentum insertions, re-
spectively, increases in the expansion as indicated in Eq. (3.24). In Fig. 5.7 the
values of the 9 spectroscopic LECs of this study [92] are shown. The left-most
bar (brown) shows the fitted LECs of the NLO chiral EFT potential whereas
the middle (black) bar indicates the LECs fitted at NNLO. The length of the
bars reflects the range of the value of each LEC resulting from a variation of
the momentum-cutoff A in the range of 500 MeV to 600 MeV. These spectro-
scopic LECs are related to the LECs appearing in the LO (Cs and C7) and NLO
(Cy - - - C) contact terms of the chiral EFT potential (see Eq. (3.23)). Note that
to be able to compare directly the LECs from chiral EFT to OBE potentials also
the contributions coming from chiral TPE to the spectroscopic LECs have been
considered [92]. The extracted LECs from the various potentials are indicated
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Figure 5.8: Influence of the C5 low energy constant. The figure compares the
self-energies at NLO to those where all contacts except of Cs are switched off
and those results where the strength of the C5 parameter is varied.

by symbols. As one can see in Fig. 5.7 there is a qualitative agreement between
the LECs obtained from the phenomenological OBE potentials Bonn B and
Nijm93, the high-precision potentials CD Bonn, Nijmegen I/II and Argonne v1g
and those from chiral EFT. Note that the last three spectroscopic LECs Csp,,
CUsp, and Csp, in Fig. 5.7 which are connected to P-wave NN scattering deter-
mine the LEC Cjs in Eq. (5.13) which sets the strength of the spin-orbit force.
The quantitative similarity of these extracted LECs to those from chiral EFT
is in full agreement with the investigations of Kaiser [113] related to th LEC
(5. The striking similarity of the spectroscopic LECs shown in Fig. 5.7 allows
to draw the conclusion that the contact part of the NN interaction does not
depend on the type of parameterization of the short-distance physics [92]. Thus
short-range physics described by heavy meson exchange in the OBE picture is
encoded in the coefficients of the contact terms.

Fig. 5.8 analyzes the dependence of the fields on the value of the LEC Cj in

more detail. As already mentioned, at LO (chﬂft) two contact terms appear and

at NLO (VC(OQIZ,:) 7 contacts, respectively (Eq. (3.23)). The figure contains the
full NLO result, including contributions from LO and NLO pion dynamics and
contacts and compares this to the case where all contacts which appear up to
NLO were switched off except of the C5 contribution. It contains in addition
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results with again all contributions, however, scaling the value of C; down to
50%, 10% and 0.1%. It becomes evident that the large scalar and vector mean
fields are a direct consequence of the large value of C'5 connected to the spin-
orbit force in the interaction. Chiral EFT is therefore not only in qualitative
but quantitative agreement with the picture known from meson-exchange. In
both cases the fields are related to short-distance physics and their strength is
dictated by P-wave NN scattering data where the spin-orbit forces occur.

Now one is able to build the bridge between chiral EF'T, OBE and phenomeno-
logical potentials. The agreement between the generation mechanism of the
large fields in chiral EFT and OBE potentials (fields are related to short-range
spin-orbit force connected to o and w meson exchange) is not accidental but re-
flected in the results found by Epelbaum et al. [92] and Kaiser [113]. Moreover
the agreement of the LECs between chiral EFT and the various phenomenolog-
ical potentials [92] shows that the appearance of large scalar and vector fields
which has been proven to be a model independent fact, see Section 5.1.1, is in-
deed intimately connected to the structure of the short-distance physics of the
NN interaction (especially to the spin-orbit force). The corresponding contri-
butions have been found to be comparable for all potentials when represented
as a sum of local four-nucleon contact operators [92].

A comparison of the Lorentz invariant amplitudes of all potentials revealed
a remarkable agreement. This also holds for the Lorentz invariant amplitudes
connected to the short-range physics encoded in the NN potentials and confirms
moreover that the short-distance part of the NN interaction does not depend on
the type of parameterization. Different approaches of describing the short-range
part, e.g. contact interactions (chiral EFT), heavy boson exchange (OBE), or
simple phenomenological fitting with a general operator set (Argonne v;g) reveal
the same intrinsic relativistic structure. In terms of the expansion performed
in [92] one obtains coefficients of similar strength which supports the universality
of the present findings.

5.3. Self-consistency at Hartree-Fock

All calculations shown up to now have been performed in Hartree-Fock ap-
proximation at tree level. Nevertheless it is a well known fact that a realistic
description of nuclear dynamics requires correlations beyond Hartree-Fock as
well as higher order density dependences in relativistic approaches. Short-range
correlations are known to be essential for nuclear binding whenever realistic
interactions are used. This leads in lowest order of the Brueckner hole-line ex-
pansion to the ladder approximation of the Bethe-Goldstone equation for the
in-medium G-matrix [32], or the Bethe-Salpeter equation (2.41) in the relativis-
tic case [33].
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In Hartree-Fock matter turns out to be unbound, in particular when high
precision potentials with a relatively strong repulsive hard core are applied, e.g.
OBE type potentials or Argonne v1g. The situation is qualitatively different
for low momentum interactions (Vo x, Idaho N3LO) where the hard core is
strongly suppressed by the high momentum cut-offs. For these interactions
isospin saturated nuclear matter collapses and Brueckner ladder correlations do
not improve on this situation [48]. Here the matter has to be stabilized by the
inclusion of repulsive three-body-forces [100]. Doing so, there appears a strong
cut-off dependence at tree-level which can be removed when the second order
term of the Brueckner perturbation series is added. Vo i in combination with
three-body-forces does not require a full resummation of the ladder diagrams
but can already be treated within second-order perturbation theory [100]. The
nuclear saturation point calculated in this approach is denoted by a star in
Fig. 2.3. As one can see it does not meet the empirical region of saturation.
The authors assume that the reason for that is that the calculations are not
complete at second-order in many-body perturbation theory and the result may
be improved quantitatively by the inclusion of missing contributions [100].

In the present work we do not aim for a fully realistic description of the
nuclear many-body problem but restrict the investigations to the Hartree-Fock
level. The tree-level results discussed up to now are of leading order in density
p. Higher order corrections in density are taken into account when the bare
potential matrix elements are replaced by in-medium matrix elements V' +— V'*.
As in Chapter 2.2 described such a treatment is well defined in a relativistic
BHF approach. It means to evaluate the corresponding Feynman amplitudes
describing nucleon-nucleon interaction (3.8) through an in-medium spinor basis
ui (k) (see Eq. (2.58)) where the nucleons are dressed by the self-energy. Such a
treatment requires, however, a definite structure of the interaction which allows
to evaluate corresponding in-medium amplitudes. It is therefore at present
restricted to OBE-type potentials.

The dressing of the interaction through the self-energy leads automatically
to a self-consistency problem. The higher order density dependences which are
introduced by such a procedure are considered to be one of the essential reasons
for the improved saturation behavior of relativistic DBHF compared to non-
relativistic BHF. In the following the role of self-consistency at the Hartree-Fock
level is studied.

The in-medium spinors of helicity A are given by

. E* + M* 1

E*4+M*

91



5. Nuclear matter properties

where the kinetic energy follows from Egs. (2.62) and (2.63)

~ . E*
kp = B = VK2 + M2 (5.16)

1+,

Thus the effective mass M* introduces a density dependence into the interaction.
The effective mass is, however, in general not only density but also momentum
dependent. Based on the observation that this explicit momentum dependence is
moderate, it is usually neglected and M* is fixed at the reference point |k| = kp.
In the so-called reference spectrum approximation (see Section 2.2.2) the reduced
effective mass Mj = M*(|k| = kg, kp) serves as an iteration parameter. M* is
then the solution of the non-linear equation

M* = M + S(kp, M*) — M*S, (kp, M*) (5.17)

which follows from the definition of the reduced effective mass (2.62). Self-
consistency is now achieved by determining for a given start value of M* the
in-medium matrix elements V% (q',q). Therefore the Lorentz invariant am-
plitudes F! (|ql,0) and gm(|q|,0)7 Egs. (4.14) and (4.17), as well as the trans-
formation matrix Cj,, of Eq. (4.16) depend on M* and the Fermi momentum
kr since the plane-wave helicity states |A\; A2 q) of Eq. (4.15) are now medium-
dependent (5.15). The next step is to compute the self-energy components X,
Yo and k¥, (Section 5.1). Since the Dirac propagator (5.3) describes dressed
quasi-particles now, also in (5.5), (5.6) and (5.7) the mass M and energy E
have to be replaced by the effective quantities M* , E*. Finally the new M* is
determined. This iteration procedure is repeated untll convergence is reached.

In Fig. 5.9 the results for the self-consistently calculated self-energy compo-
nents g and Y, for Bonn A, Nijm 93 and Nijmegen I are shown as a function of
the Fermi momentum kr compared to the tree level results from Fig. 5.3. For
the Bonn A case the result of a full self-consistent DBHF calculation is shown as
well taken from [36]. From this figure two features can be observed: the higher
order density dependences which are introduced by the dressing of the potential
affect mainly the scalar part of the self-energy for all three potentials. The mod-
ification of ¥, is moderate while ¥ is significantly reduced. The short range
ladder correlations included in the full DBHF calculation (Bonn A) influence
the self-energy in an opposite way. The deviations of ¥ from the self-consistent
HF result are rather small, however, the vector component gets now strongly
suppressed. This fact is understandable since the ladder correlations prevent
the two-nucleon wave functions from too strong overlap with the hard core. In
OBE potentials the hard core is mainly mediated by vector w-exchange and
determines thus the vector self-energy component.

The next step in this work is now to study the influence of self-consistency on
the EOS which is determined with the self-consistent Hartree-Fock self-energies.
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Figure 5.9: Comparison of the tree level scalar and vector self-energy compo-
nents (dashed line) with self-consistent results (solid line). Additionally a full
self-consistent DBHF' calculation is shown in the first graph denoted by the
dot-dashed line.

Like in DBHF the EOS, i.e., the energy per particle is defined as the kinetic
plus half of the potential energy

*

mA—»;§<@¢m.bmmémmmmpﬁi_M(ma
= L[ o[ mamE - 2 w)
1 T Ly |
KA - S,k (519)

with the self-consistent spinors u} from Eq. (5.15).

In Fig. 5.10, the self-consistent Hartree-Fock results for the energy per particle
in symmetric nuclear matter are shown for the Bonn A, Nijm93, Nijmegen I
potentials as a function of the Fermi momentum k.

Also a non-self-consistent calculation is shown (dashed line) where the energy
per particle is given by

K Pk [ k2 1
EA:—/ U (kK 5.20
I [ s o 3 Ve ) (5.20)

with Us . (k, kr) as defined in Eq. (5.12). The Fermi momentum kr is connected
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Figure 5.10: Hartree-Fock calculation of the nuclear equation of state, i.e., en-
ergy per particle E/A as a function of the Fermi momentum kp for three different
potentials. The dashed line indicates a tree level calculation and the solid line
represents a self-consistent Hartree-Fock calculation, i.e., higher order correc-
tions in density are included. A full self-consistent DBHF calculation denoted
by the dot-dashed line with the Bonn A potential and the empirical region of
saturation are shown in the first graph. The red stars show a non-relativistic
Hartree-Fock calculation.

to the density p = k/(672)k? where x is the isospin degeneracy, i.e. £ = 4(2)
for symmetric nuclear matter (pure neutron matter).

In this case one obtains the same result as in a non-relativistic Hartree-Fock
calculation (denoted by stars in Fig. 5.10). The latter demonstrates again the
numerical accuracy of the procedures.

For the Bonn A case again the EOS from the full DBHF calculations is shown
as a reference [36]. It is clear that ladder correlations and other in-medium
effects such as Pauli-blocking of intermediate states in the Bethe-Salpeter equa-
tion are responsible for nuclear saturation. The relatively moderate deviations
from self-consistent Hartree-Fock at the scale of the self-energies in Fig. 5.9
are essential at the scale of the binding energy. Like in relativistic mean field
theory of QHD subtle cancellation effects in the large scalar and vector fields
are responsible for nuclear binding. The higher order density dependences in-
troduced via the dressing of the bare interaction V lead to significantly more
repulsion at the level of the EOS. This is a direct consequence of the reduced
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attractive scalar field (see Fig. 5.9). Thus Fig. 5.10 serves also as a demonstra-
tion for the success of DBHF compared to BHF what concerns the quantitative
description of nuclear saturation: In particular for modern high precision poten-
tials such as Bonn, Nijmegen or Argonne v;g the BHF approach leads to strong
over-binding and too high saturation densities. The additional repulsion intro-
duced by higher order terms in density through the dressed potentials shifts the
corresponding saturation points towards the empirical region [35, 112, 73]. Tt
is important to note that the density dependence of the dressed potential V*
should not be mixed up with the density dependence of the G-matrix. The lat-
ter originates from the dressed two-nucleon propagator and the Pauli-operator
in the Bethe-Goldstone (or Bethe-Salpeter) equations while V* enters into the
Bethe-Salpeter for iteration. In non-relativistic BHF [116] or variational cal-
culations [117] a non-linear density dependence which improves the saturation
behavior is usually introduced through net repulsive three-body-forces. In such
a treatment the dependence on the third particle is integrated out such that
one is left with an additional effective density dependent two-body force which
acts in a similar way as a dressing of the two-body interaction. In this con-
text one should mention that a dressing of the interaction has also more subtle
consequences when iterated in the Bethe-Salpeter equation. It leads e.g. to a
quenching of the second order OPE exchange [118, 119] which plays an essential
role for saturation in non-relativistic approaches.

In summary, one could expect that a dressing of the interaction would allow
to comply with weaker three-body forces which may in particular be of inter-
est concerning the application of low momentum EFT potentials to the nuclear
many-body problem. As the studies of Bogner et al. [100] have demonstrated,
View k requires rather strong three-body forces in order to stabilize nuclear mat-
ter. There the strength of the three-body contributions has already been pushed
to its limits. Although a dressing of the interaction will probably not be possible
for Viow x due to the partially non-analytic structure of the potential, it may be
a promising perspective for the application of other EFT potentials, e.g. the
chiral N3LO.

5.4. EQOS in chiral EFT

In this section the properties of isospin symmetric nuclear and pure neutron
matter in chiral EFT are investigated. For this purpose the Idaho N3LO poten-
tial is applied where it is possible to determine the EOS order by order up to
N3LO. This has been done at tree level in Hartree-Fock approximation and in a
second step within the non-relativistic Brueckner-Hartree-Fock approach. It is
evident that Hartree-Fock calculations for nuclear matter are not very realistic.
Nevertheless it is instructive to discuss the EOSs derived from chiral EFT at
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the different orders in order to obtain a qualitative understanding of the prop-
erties of chiral EFT applied in many-body calculations. Moreover, the results
presented in this section serve as a basis for the investigation of the pion mass
dependence of the self-energy fields and the EOS of isospin symmetric nuclear
matter where the same chiral EFT interaction is applied at NLO. The results
are presented in the subsequent section.

For the determination of the tree-level EOS in Hartree-Fock approximation
again Eq. (5.20) is applied which corresponds to a non-relativistic calculation
since relativistic effects like the dressing of the NN interaction by an effective
nucleon mass is still not feasible for chiral EFT. It is a well known fact and
has been also shown in the previous section that at Hartree-Fock level nuclear
matter is normally unbound, in particular when high precision OBE type po-
tentials are applied. The situation turns out to be qualitatively different for low
momentum interactions like the Idaho N3LO potential where the hard core is
strongly suppressed by high momentum cut-offs. This is shown on the 1.h.s. of
Fig. 5.11 where the EOSs for isospin symmetric nuclear matter are displayed
for the different orders from LO up to N®LO. There appear large jumps in the
EOS when going from LO up to N*LO. As discussed in Section 5.2 and [62] the
contact terms which generate the large attractive scalar and repulsive vector
potentials arise at NLO. Contributions from higher order provide corrections to
these potentials. These are moderate on the scale of the fields of several hun-
dred MeV magnitude. However, due to the subtle cancellation between scalar
attraction and vector repulsion such corrections may be large on the scale of the
binding energy, i.e. several tenth of MeV. This behavior is exactly reflected in
the EOSs shown in Fig. 5.11 which jump from unbound at NLO to over-bound
at LO and N2LO to loosely bound at N®LO which is due to the high momentum
cut-off suppressing the repulsive hard core.

On the right hand side of Fig. 5.11 the EOS for pure neutron matter are
shown. (Note, that in the case of neutron matter for a given Fermi momentum
kr the neutron density is given by p, = k%/372.) It is not surprising that large
deviations at the different orders are also observed in the case of pure neutron
matter. Nevertheless, at Hartree-Fock level neutron matter turns out to be
unbound in chiral EFT for all orders up to N*LO. This is in agreement with all
existing realistic calculations of neutron matter [120, 121, 38, 39].

The present tree level calculations are again of course not realistic microscopic
nuclear matter calculations which requires to perform a self-consistent summa-
tion of the Brueckner ladder diagrams [36, 38, 39]. The difference between a
tree-level and a full relativistic Brueckner calculation on the level of the nuclear
self-energies has been discussed in Section 5.1.2. Moreover, a comparison of a
tree-level calculation and a fully self-consistent DBHF calculation of the nuclear
EOS has been shown in Section 5.3 in Fig. 5.10 using the Bonn A potential.
Nuclear saturation is only obtained when short-range correlations and Pauli-
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Figure 5.11: Hartree-Fock calculation of the energy per particle E/A as a func-
tion of the baryon density pg order by order up to N*LO for symmetric nuclear
matter (left) and for pure neutron matter (right).

blocking are introduced. As already mentioned it is not possible to solve the
full Brueckner ladder within the relativistic DBHF framework for chiral EFT
since the latter is not a covariantly formulated potential. Therefore in contrast
to the previous results shown in Fig. 5.10 we apply the non-relativistic BHF
approach?.

Relativistic Brueckner theory has been outlined in detail in Section 2.2. Here
shortly the basic, and analogous, features of the non-relativistic approach are
sketched. Corresponding to the relativistic Bethe-Salpeter equation (2.41) or
(2.46) the central equation in the BHF approach is the so called Bethe-Goldstone
equation

<k‘1k’2 ]G(w) ’k3k4> = <k1k2‘V‘ k3k4>

Q(k3, k})
+ kiko| V| KSK,
k%%( 1 2| ’ 3 4> W_E(ké)—ﬁ(kil)

3For the numerical calculation again the BHF-code provided by H. Miither has been used.
Partial waves up to J = 9 have been taken into account and for angular momenta larger
than 6 the Born approximation has been used.

(kyky|G(w)|ksks) (5.21)
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where w is the starting energy and V' is the bare NN interaction. The function
appearing in the kernel of Eq. (5.21) is the so-called Pauli operator Q(k, k") =
(1 -0r(k)) (1 —0pr(K)) where Op(k) = 1 for k < kr and zero otherwise which
forces the intermediate momenta to lie outside of the Fermi sphere. The single
particle energies €(k) are given by

e(k) = 2qz\24 +U(K). (5.22)

The single particle potential is determined by the self-consistent equation

Uk) = 3 (kK| G(e(k) + (k)| kK) (5.23)

k'<kp

which is coupled with the equation for the G-matrix Eq. (5.21). In the present
work the standard choice is applied, i.e. the energy spectrum of the intermediate
two-particle state is chosen in such a way that the self-consistency requirement
Eq. (5.22) is restricted to hole states k < kr and the free spectrum is kept for
particle states above the Fermi surface k > kp.

The energy per particle £//A is then obtained from the G-Matrix G(w) cor-
responding to the equation

2
E/A = il Z L + 1 Z (kiko| Gle(kr) + €(k2)] |kska) a (5.24)
PB ki<kp 2M 2 ki,ko<kp
where the subscript A means that the G-matrix has to be antisymmetrized. The
density is denoted by pp = k/(67%)k%. K is the isospin degeneracy, i.e. k = 4(2)
for symmetric nuclear matter (pure neutron matter).

This self-consistent set of equations (5.21)-(5.23) is then solved by an iteration
procedure. The G-matrix is expanded in partial waves according to the two-
particle states. In order to avoid coupling between different two-particle chan-
nels the calculation is simplified by averaging the two-particle energies e, — € in
the denominator in Eq. (5.21) and the Pauli operator over the angle between the
relative momentum ¢ = (k% — k) /2 and the total momentum P = k% + k. Due
to this so-called angle average approximation which has been tested in Ref. [122]
the Bethe-Goldstone Eq. (5.21) can be solved separately for each partial wave.

Usually it is assumed that the single particle potential U(k) or equivalently
the single particle energy €(k) has an approximately quadratic dependence

]{32

*
2mnr

e(k) ~

+U (5.25)

which represents a parameterization in terms of an effective mass m;,  and a
constant potential U. That means that one has to calculate the potential at
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each iteration step in a few points only and can then interpolate these obtained
values. This has been also done in the present calculation.

The non-relativistic mass m;,. parameterizes the momentum dependence of
the single particle potential and it is the result from a quadratic parameteriza-
tion of the single particle spectrum. Hence, it is a measure of the nonlocality of
the single particle potential U which can be due to nonlocalities in space, result-
ing in a momentum dependence, or in time, resulting in an energy dependence.

As discussed, e.g., by Frick et al. [123] the spatial nonlocalities of U are
mainly generated by exchange Fock terms. Nonlocalities in time are generated
by Brueckner ladder correlations (mainly short-range correlations) due to the
scattering to intermediate states which are off-shell [42, 123].

As already mentioned the introduction of an effective mass is a common con-
cept to characterize the quasi-particle properties of a particle inside a strongly
interacting medium. It is also well established that the effective nucleon mass in
nuclear matter deviates substantially from its vacuum value [40, 41, 42]. How-
ever, the effective nucleon mass is defined in different ways depending on the
physical approach and therefore should not be mixed up.

In contrast to the non-relativistic effective mass m . the relativistic counter-
part is the Dirac mass M}, which has been already defined in the framework of
relativistic mean field theory, Section 2.1.3, or in the DBHF approach described
in Section 2.2, respectively. As one can see from Eq. (2.21) in combination with
Eq. (2.25) or from Eq. (2.55) the relativistic effective nucleon mass is given by
the real part of the scalar self-energy ¥ in the Dirac field equation which is
absorbed into the effective mass M}, = M + Re ¥4(k, kp). Taking only the real
part of the self-energy, which in general is complex, means to treat the nucleons
as quasiparticles. The resulting effective nucleon mass is a smooth function of
momentum and follows naturally from the presence of the medium in relativistic
approaches.

Although related, one has to be careful when relativistic and non-relativistic
approaches are compared on the basis of effective masses because of the different
definitions. While the Dirac mass Mj, is a genuine relativistic quantity the
non-relativistic mass mjy can be determined from both, relativistic as well
as non-relativistic approaches. A detailed discussion of these two definitions
of the effective mass can be found in [124]. There the momentum and isospin
dependence of the effective nucleon masses in symmetric and asymmetric nuclear
matter have been studied comparing the Dirac mass M}, and the non-relativistic
mass mpyp. Both were calculated within the DBHF approach.

Fig. 5.12 shows the results for the Brueckner-Hartree-Fock binding energy as a
function of the baryon density pp for the orders NLO and N3LO for nuclear and
neutron matter?. The empirical saturation point of symmetric nuclear matter is

4A BHF calculation at the chiral order N?LO turned out to be unworkably due to numerical
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Figure 5.12: The energy per particle E/A determined within the Brueckner-
Hartree-Fock approach at the chiral orders NLO and N*LO for symmetric nu-
clear matter (left) and for pure neutron matter (right). The empirical region of
saturation is indicated by the grey area.

indicated by the shaded area. Symmetric nuclear matter appears to be bound at
NLO and N®LO . At NLO one observes a clear saturating behavior of the EOS.
The binding energy as well as the saturation density are overestimated when
compared to the empirical values. The binding energy at the saturation point is
E/A = —21 MeV and the corresponding equilibrium density is py = 0.25 fm=3.

At N3LO the situation is different. In Hartree-Fock approximation symmet-
ric nuclear matter is almost unbound at N3LO indicated by the solid line in
Fig. 5.11. In the Brueckner-Hartree-Fock approach short range correlations
lead to a considerable over-binding and the EOS stabilizes at unrealistic high
densities. Although the N3LO potential reproduces the empirical phase shifts
with high accuracy the suppression of the hard core by high-momentum cut-
offs leads too much attraction. However, chiral EFT at NLO reproduces the
empirical NN phase shifts with very poor quality [19]. This also true for the
most important 1Sy, 3Sy and 2P;, 3P, phase shifts contributing to the energy

problems. Nevertheless the EOS at this order seems to be unbound.

100



5.4. EOS in chiral EFT

per particle in our calculation. Therefore, in order to obtain a reliable EOS one
has to apply chiral EFT at order N3LO. Since the chiral NN potential is based
on a low-momentum expansion high-momentum cut-offs have to be introduced.
The latter suppress the repulsive short-range part of the NN interaction. It
was shown that using low-momentum interactions (chiral EFT, Vi, k) repulsive
three-body forces have to be included since the latter are essential in order to
obtain saturation in a perturbative scheme [100].

The inclusion of three-body forces is beyond the scope of the present thesis.
Moreover, we work with the lowest-order Brueckner-Hartree-Fock method which
does not allow to perform highly competitive calculations of the EOS:

e It is a well known fact that BHF theory is able to produce saturation due
to short-range correlations but fails to reproduce the empirical region of
saturation quantitatively. This is true for all realistic and high-precision
NN potentials.

e Approximations like the angle-averaged Pauli operator, ambiguities in
the choice of the particle state spectrum in the Bethe-Goldstone equa-
tion (5.21) introduce additional uncertainties [122]. As already mentioned
the self-consistent single particle potential e(k) Eq. (5.23) depends strongly
on the momentum. In order to simplify the calculations the single particle
energies €(k) are parameterized with a parabola (see Eq. (5.25)). This
parabolic approximation, which has been also used in our calculations, in-
troduces an uncertainty of about 1-2 MeV around saturation density [125].

Nevertheless the main features known to be essential for nuclear saturation in
BHF theory are included: the tensor force coming from second-order (iterated)
OPE and its interplay with Pauli blocking.

Recently, the EOS has been also calculated by the Bonn group [126] by ap-
plying the NLO version of their chiral NN potential [17] to symmetric nuclear
matter. This has been done by modifying the vacuum two-nucleon interaction
by Pauli blocking effects. The binding energy is then obtained by summing all
two-nucleon irreducible diagrams as it is done in Brueckner-Hartree-Fock theory.
Also in [126] nuclear saturation is found in chiral EFT at NLO. The binding
energy is larger (F/A = —17.8 MeV) than in the present calculation and also
the corresponding saturation density py = 0.28 fm =3 is somewhat larger than in
the present case (py = 0.25 fm~3). In both cases py is significantly overestimated
with respect to the empirical saturation region.

As discussed in [126] the saturation curve depends crucially on the choice
of the cut-off parameter A which is introduced in the spectral function repre-
sentation of the two-pion exchange diagrams [17]. The authors conclude, that
saturation is entirely due to the regulators A and A (see Eq. (3.26)) since no
three-body forces are included in the calculation at NLO. These were found
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to be essential in order to obtain saturation in a perturbative scheme [100].
The same has also been observed in the chiral approach of Kaiser et al. [127]
where the inclusion of three-body effects from TPE with excitations of virtual
A(1232)-isobars has been found essential in order to obtain saturation. How-
ever, the contributions of the three-body effects are attractive in [127] whereas in
Ref. [100] the contributions from three-body forces in a Hartree-Fock calculation
with the low-momentum interaction Vi, x lead to additional repulsion.

In this thesis the Idaho NN potential [19] is applied where Entem and Mach-
leidt calculated the contributions from chiral two-pion exchange for A = co ex-
pressing the corresponding contributions in terms of the loop functions L>(q)
and A*(q) [18]. Therefore in the chiral Idaho potential used in the present
calculation only the Lippman-Schwinger regulator A occurs which is also likely
to influence the shape of the EOS in a similar way as the spectral regulator A
in the calculations of [126].

Nuclear matter has been also investigated by the Munich group [128, 129, 130]
based on a systematic chiral approach known as in-medium chiral perturbation
theory. In this approach the methods of effective field theory (chiral pertur-
bation theory) already applied successfully to describe the NN interaction in
vacuum [131, 132, 133, 134] are used to describe nuclear systems at finite den-
sity.

In effective field theories a power counting scheme has to be found relying on
a separation of short and long distance physics. In nuclear matter the relevant
momentum scale is given by the Fermi momentum kr. At the empirical satu-
ration density kpg ~ 2m,, i.e., the Fermi momentum kr and the pion mass m,
are of comparable magnitude implying that pions should be included as explicit
degrees of freedom. Since both kr and m, are small compared to the chiral
scale 47 f, ~ 1.2 GeV, consequently the EOS is represented as an expansion
in powers of kr where the expansion coefficients are non-trivial functions of
the dimensionless ratio of the two relevant scales kr/m, in this problem. An-
other important element to perform finite density calculations is the in-medium
nucleon propagator replacing the vacuum one [130].

In this chiral approach OPE, iterated OPE and irreducible TPE up to three-
loop order in the energy density have been included in the calculation of the
EOS [128]. The short-range physics, which cannot be resolved in an effective
low-energy theory is parameterized by a momentum-space cut-off A. The cut-off
A stems from the regularization of divergent parts connected with chiral two-
pion exchange and the contribution to the energy per particle corresponds to
that of a zero-range contact NN interaction. Therefore A sets the strength of it.
Adjusting A the empirical saturation point can be reproduced in contrast to our
NLO calculation where no free parameters occur. It is clear that the saturation
properties strongly depend on the cut-off A which is the only free parameter in
the approach of [128]. Again the main reason for saturation is Pauli blocking in
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second-order (iterated) OPE [128, 127].

In contrast to our calculation and that of the Bonn group [126] which are
based on the same chiral expansion of the NN interaction the chiral field theory
in [128] is developed to be applied exclusively in nuclear matter, i.e. without
a direct link to the NN interaction in vacuum. Nevertheless, since the same
pion exchange diagrams are considered in [128] the approaches are comparable
to some extent.

Our calculation agrees with the result of the Bonn group [126] (and that of
[128]) concerning the fact that chiral EFT exhibits saturation at NLO. However,
it is not clear whether at order N?LO where three-body forces appear in the
chiral expansion a quantitative improvement can be expected. Though it was
only possible to obtain the Brueckner-Hartree-Fock EOS at order N2LO at low
densities due to numerical difficulties, the tendency is, however, that the EOS is
unbound at N2LO. This jumping behavior was already observed at the Hartree-
Fock level, see Fig. 5.11.

Fig. 5.12 shows also the energy per particle for pure neutron matter for the
orders NLO and N3LO calculated within the BHF approach. At NLO the EOS
shows unrealistic properties since it stays quite constant over the considered
density range at a value of &~ 3 — 4 MeV. Nevertheless neutron matter at NLO
appears to be unbound. This can already be seen from the Hartree-Fock calcu-
lation where the NLO EOS is considerably softer than that at the order N3LO.
As in the case of symmetric nuclear matter iterating the full Brueckner ladder
leads to more attraction bending the Hartree-Fock EOS downwards.

An improved behavior is observed at N3LO where the neutron matter EOS
is also unbound with the energy per particle rising approximately monotonical
which is in agreement with most of the state-of-the-art many-body calcula-
tions [38, 39, 117].

Fig. 5.13 shows an overview of the EOSs obtained in our BHF calculations
with the chiral interaction [19] at the orders NLO and N?LO (already shown
in Fig. 5.12) and the phenomenological high precision Argonne vig potential in
nuclear matter and neutron matter. These are compared to the results from
other approaches: DBHF [36] with the Bonn A potential and a variational
calculation [117] based also on the Argonne v;g potential. Additionally a BHF
calculation with the low-momentum interaction Vi, i is shown.

As already mentioned in Section 4.3.1 empirical NN scattering data constrain
the interaction up to about 400 MeV, corresponding to the pion threshold.
Therefore NN interaction models differ in the description of the short-range
part. In the framework of EFT the unresolved short-range part is replaced by
contact terms. In the case of chiral EFT which is only valid at low momenta
high-momentum cut-offs lead to a strong over-binding as can be seen from the
EOS at N3LO. This effect becomes even more drastic in the case of the Vigw k
potential. This potential is obtained from any given realistic NN potential
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Figure 5.13: The energy per particle F' /A in nuclear matter and neutron matter.
The BHF results (open symbols) obtained at NLO/N*LO of the chiral interac-
tion and from the Argonne vig potential are compared to DBHF and variational
calculations. The empirical region of saturation is indicated by the shaded area.

by integrating out the high-momentum modes with the help of RG methods.
At a cut-off of A & 2 fm~! all potentials are found to collapse to the model-
independent low-momentum interaction Vi, k. As one can see in Fig. 5.13 the
EOS obtained with Vi, « in a BHF calculation collapses considerably faster than
the N®LO calculation. This is already the case at Hartree-Fock level [48, 100].
As already mentioned the repulsion generated by three-body forces which appear
at N2LO turned out to be essential to stabilize nuclear matter and to obtain
reasonable saturation properties with the Vi, x potential [100]. However, as
can be seen from Fig. 2.3, even with the inclusion of three-body forces the
corresponding Vi, 1 saturation point is still relatively far from the empirical
value. The inclusion of three-body forces is beyond the scope of the present work,
in particular what concerns the pion mass dependence, but for a quantitative
determination of the EFT EOS they should be included. In the case of chiral
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EFT one has to keep in mind, that the latter provides a systematic expansion
of the nuclear force, i.e. besides two-body forces also three-body forces are
generated on an equal footing. However, due to the restricted region of validity
of the chiral expansion (ensured by high-momentum cut-offs) chiral EFT is
essentially applicable at moderate densities.

At moderate densities the variational calculation [117] agrees well with the
N3LO EOS in the case of nuclear matter. At densities above pg > 0.3 fm~! the
repulsive short-range part of the Argonne vg potential leads to a stiffer EOS. For
neutron matter one observes a surprisingly good agreement over the displayed
density range. This seems to be somewhat accidental since the EOS from our
BHF' calculation with Argonne vig deviates in the case of symmetric nuclear
matter and neutron matter, respectively. In both cases the EOS obtained from
Argonne v,3 appears to be stiffer than that from chiral EFT at N3LO.

It is a well known fact that non-relativistic many-body calculations fail to
reproduce nuclear matter saturation quantitatively [135]. This can be also seen
from the present BHF calculations with chiral EFT at N*LO and the Argonne v;g
potential as well as from the variational calculation [117] displayed in Fig. 5.12.

Therefore the effect of three-body forces has been studied in both approaches,
i.e. within non-relativistic BHF [135] and variational calculations [117]. The
BHF calculation [135] as well as the variational calculation [117] are based on
the Argonne vig potential. It was found that the contributions from three-body
forces are in total repulsive in the variational calculation [117] and in the BHF
approach [135]. This leads to a stiffer EOS where the non-relativistic calcula-
tions come closer to their relativistic counterparts like the DBHF results shown
in Fig. 5.13. The three-body forces applied in both cases are phenomenological,
where the Tucson-Melbourne three-body force is used in [135] and the Urbana
IX three-body force in [117].

It is often argued that in non-relativistic treatments three-body forces yield
an equivalent effect as the dressing of the two-body interaction by in-medium
spinors in Dirac phenomenology which has been described in Section 2.2. Both
mechanisms lead essentially to an effective density dependent two-body interac-
tion V which is naturally of different origin. One class of three-body forces con-
tains virtual excitations of nucleon-antinucleon pairs which are already present
in the relativistic BHF approach. These Z-graphs are in total repulsive and can
be considered as a renormalization of the meson vertices and propagators. In
DBHF the representation of nucleons by Dirac spinors with an effective mass
M7, on the other hand can be interpreted as considering also virtual nucleon-
antinucleon excitations effectively.

This again implies that a dressing of the chiral EFT interaction might be a
promising perspective in order to create a harder EOS and finally 'realistic’ EOS
since three-body forces are already included in the systematic chiral expansion.
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5.4.1. Symmetry energy from chiral EFT

Having the EOSs for symmetric and pure neutron matter the symmetry energy
Egym can be investigated which shows the isospin dependence of the chiral EF'T
interaction. In isospin asymmetric matter the binding energy E'g is a functional
of the proton and neutron densities described by the asymmetry parameter
B =Y, —Y, ie the difference between the neutron fraction Y, = p,/pp
and the proton fraction Y, = p,/pp. Performing an expansion in terms of the
asymmetry parameter 3 the isospin dependent part of the energy functional can
be separated from that of symmetric matter

Ep(pp,B) = Eg(ps) + Eqm 8>+ O(B*) + -+ (5.26)

where the symmetry energy is

(5.27)

E :1 82EB(/)B76)
sym 9 o

532

Since the binding energy shows an approximately quadratic dependence on the
asymmetry parameter, the symmetry energy can be evaluated equivalently as
the difference of the two extreme cases of neutron matter (4 = 1) and symmetric
nuclear matter (8 = 0)

Egym = Ep(pp, 8 =1) — Eg(pp,3=0) . (5.28)

Fig. 5.14 compares the symmetry energy Ey, obtained in our BHF calculation
with the chiral interaction at the orders NLO and N3LO and with the Argonne
v1s potential to non-relativistic variational calculations [117] also with the Ar-
gonne vig potential. The first variational calculation of the symmetry energy
corresponds to the EOSs already displayed in Fig. 5.13 and the second one
contains contributions due to boost corrections (dv) accounting for relativistic
kinematics and the inclusion of three-body forces (3-BF) [117]. Additionally
the symmetry energy obtained within the DBHF approach using the Bonn A
potential is displayed [36, 73].

The symmetry energy at NLO reaches its maximum at pp ~ 0.25 which
corresponds to the density of saturation p, as one can see from Fig. 5.12.

However, a declining behavior at densities above the saturation density is
observed. Nevertheless this is in agreement with the chiral approach of Ref. [128]
which shows the same characteristics. As already mentioned the latter has the
same pion dynamics included as in the calculation presented in this thesis. In
Chapter 4.3.1 the limits of chiral NN potentials have been discussed and in
Ref. [111] it was estimated that chiral NN potentials can be used up to densities
of about = 4p, where py is the empirical saturation density. Therefore the
characteristics of a decreasing symmetry energy Fg,, for densities higher than
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Figure 5.14: Symmetry energy as a function of the baryon density as predicted
by chiral EFT at the orders NLO and N®*LO in comparison with the result
for the Argonne vig potential obtained in the non-relativistic BHF approach
(indicated by open symbols). Additionally the results from DBHF' (Bonn A)
and from variational calculations [117] are displayed.

po could be a natural behavior at order NLO even if one considers the estimation
of Ref. [111] as a very optimistic one.

The N3LO calculation on the other hand shows a raising symmetry energy
which is in agreement with the result for the Argonne v;g potential, the predic-
tions from DBHF (Bonn A) and the variational calculations [117]. The DBHF
lies somewhat higher than our non-relativistic N3LO calculation. The non-
relativistic BHF result with the Argonne v;g and moreover the variational cal-
culation [117] agree well with our N3LO calculation. This shows on the one
hand that the effect of the high-momentum cut-off A drops out in the N3*LO
calculation. On the other hand it shows that a high precision phenomenological
potential as Argonne vig and the QCD based chiral EF'T potential lead to almost
identical results for the nuclear many-body system when applied in comparable
approximation schemes.

As already mentioned in the case of low-momentum NN interactions like chiral
EFT or Vi, « the inclusion of three-body forces is essential in order to stabilize
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nuclear matter and to obtain reasonable saturation properties [100].

The inclusion of repulsive three-body forces in the variational calculations
lead to EOSs for neutron and symmetric matter which are shifted in the same
direction [117]. Since these three-body forces are only weakly isospin depen-
dent, at least at moderate densities, the symmetry energy, i.e. the difference
between these two extreme cases, is not strongly affected as can be seen from
the comparison of the two variational results. This should be also true for chiral

EFT.

5.5. Self-energy and EOS in the chiral limit

The purpose of the present part is to investigate the pion mass dependence of
symmetric nuclear matter. Therefore the large attractive scalar and repulsive
vector self-energy components as well as the nuclear EOS are analyzed in the
chiral limit. This is done in Hartree-Fock approximation at tree level and in
the non-relativistic BHF approach (introduced in the previous section) using
the chiral EFT interaction derived by Epelbaum et al. [20]. In this NN in-
teraction the explicit and implicit light quark mass dependence of the nuclear
force is known up to NLO where additionally to the one-pion exchange potential
and contact terms the leading two-pion exchange has been considered (see also
Section 3.3.2). This allows consequently to investigate possible changes of the
properties of symmetric nuclear matter up to this order.

The calculation of the self-energy components requires the knowledge of the
pion mass dependence of the nucleon mass M since it enters the expressions for
the self-energy and the EOS. Within the framework of chiral EFT the physical
(vacuum) nucleon mass M can be expressed as

M = MO + ON (529)

where M, is the value of the nucleon mass M in the chiral limit. The nu-
cleon sigma term oy represents the contribution from explicit chiral symmetry
breaking to the nucleon mass and determines the quark mass dependence of the
nucleon mass

on = Y my =m (5.30)

which, through m2 ~ m, translates into a dependence on the pion mass (see
also Section 6.2). The chiral limit of the nucleon mass and of the sigma term,
respectively, has been evaluated up to NNLO [136], where the corrections to the
NLO dependence were, however, found to be small.
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Figure 5.15: The tree level scalar (dashed lines) and vector (full lines) self-energy
components in matter at kp = 1.35 fm~" are shown for different values of the
pion mass m,. The NLO one-pion exchange (left panel) and two-pion exchange
(right panel) are shown. The one-pion exchange is obtained with dg = —1.23

and d18 = —0.97.

In order to be consistent with the NN interaction we account for the pion
mass dependence of the nucleon mass M at NLO (expressions given in [136])
when the self-energy components and the EOS are studied in the chiral limit.

The analysis of the chiral EFT potential in Section 5.2 revealed that the
large scalar and vector self-energy components are generated by contact terms
which occur at NLO in the chiral expansion. These are four-nucleon contact
terms with two derivatives which generate the short-range spin-orbit interaction.
The strength of the corresponding low energy constants, in particular those
connected to the spin-orbit force, is dictated by P-wave NN scattering data.
Pion dynamics as well as LO and N3LO contacts provide only corrections to
the fields generated by the NLO contact terms. Thus one could expect that
the quark mass dependence of the fields is mainly determined by the quark
mass dependence of the contact terms which is moderate. However, before
coming to the full self-energy, the contributions from one-pion exchange and
two-pion exchange are discussed separately. Fig. 5.15 shows the scalar >3 and
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vector X self-energy components from the next-to-leading order OPE and TPE
contributions at a Fermi momentum of ky = 1.35 fm ™" which corresponds to a
nuclear density of pp = 0.166 fm 2. As a well known result, at the physical pion
mass the scalar and vector self-energy components from the pseudo-vector OPE
are of the same sign and of moderate strength. This is also true in the chiral
limit. The self-energy components Y, >y approach a constant value of about 30
MeV. For the not yet uniquely fixed LECs entering into the expression for the
renormalized OPE the values djg = —1.23 and dig = —0.97 have been taken [20].
The uncertainty due to these LECs d16718 does not significantly affect the scalar
and vector fields. The same is true for the corresponding EOS (see below). This
is, however, not the case what concerns the scalar quark condensate as discussed
in detail in the following chapter.

The scalar s and vector ¥ self-energy components generated by the TPE
are already small for the physical case (m, = 138 MeV) and are further reduced
by ~ 2,5 MeV in the chiral limit. At zero momentum both components almost
vanish and show a slight increase with increasing momentum. As for the OPE
the fields are repulsive and approach a constant value in the chiral limit.

Next the role of the contact terms will be considered. The contact terms
connected to the LECs C 7, Eq. (3.30), do not depend on the pion mass at
NLO. Since the magnitude of the scalar and vector self-energy components is
mainly set by contact interactions connected to the spin-orbit force where the
strength is proportional to the LEC C5 in Eq. (3.30) the modification of the
fields in the chiral limit can in total be expected to be moderate. The pion mass
dependent part of the contact interactions, i.e., the first to lines in Eq. (3.30)
provides only small contributions.

The uncertainties due to the not yet uniquely fixed LECs d;6 15 entering the
renormalized OPE (3.28) do not strongly affect the self-energy components.
However, a second source of uncertainty appears in the the part of the con-
tact interactions connected to the not known LECs D&T which depend on the
pion mass. In Ref. [20] this range of uncertainty has been explored through
an independent variation of the parameters agr in Eq. (3.34) in the range of
—3.0 < agr < 3.0. In Ref. [20] this rather wide variation of the LECs Dgr was
motivated by a wide range of possible parameter sets of NLO LECs fitted with
different cut-off combinations. However, in the present case - using the Idaho
chiral potential - one is restricted to one parameter set with a general cut-off
of A =500 MeV. A variation of the LECs over a wide range is therefore likely
to overestimate the uncertainty originating from the LECs Dg . Therefore we
restrict the present discussion of the self-energies to values agr ~ 1. Results
turned out to be stable against a variation of ag and a7 in the same direction,
i.e. small deviations from combinations of aeg r where both parameters are close
to each other do practically not change the results. Nevertheless the range of
the uncertainty is shown for the nuclear EOS which is presented in the last part
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Figure 5.16: Left: momentum dependence of the tree level scalar and vector selt-
energy components in nuclear matter at kp = 1.35 fm ™" evaluated for different
values of the pion mass m,. Right: tree level scalar and vector self-energy
components in nuclear matter as a function of the Fermi momentum kg for

different values of the pion mass m..

of this section.

In Fig. 5.16 the full tree-level self-energy components are now shown as a
function of the momentum k. An approximately vanishing pion mass, i.e. m, =
2 MeV and m, = 5 MeV, leads to a small reduction of the repulsive vector
field (= 30 MeV) and of the attractive scalar field (= 50 MeV), respectively.
The same can be seen on the right hand side in Fig. 5.16 where the fields are
shown as a function of the Fermi momentum kgr. An increase of the pion mass
to m, = 200 MeV leads to an opposite behavior.

In summary, a careful analysis of the chiral EF'T NN interaction leads to large
scalar and vector fields which essentially maintain their strength in the chiral
limit, however, with the tendency of a slight decrease of absolute size.

In this context it is interesting to compare this behavior with the naive
assumption of a dropping ¢ meson mass within the framework of Quantum-
Hadron-Dynamics (QHD) [27]. In this case the scalar and vector fields are
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Figure 5.17: Pion mass dependence of the nuclear equation of state E/A as a
function of the Fermi momentum kr. On the L.h.s. the Hartree-Fock calculations
at NLO are shown for the physical case of m, = 138 MeV compared to the case
of m, =2 MeV, m, =5 MeV, m, = 180 MeV and m, = 200 MeV. On the r.h.s
the Brueckner-Hartree-Fock results are shown. The brown shaded area denotes
the uncertainty in the LEC di¢ varied from dig = —0.91 GeV~2 to djg = —1.76
GeV~2. The grey shaded area shows the overall uncertainty if one additionally
takes into account the unknown LECs D&T. The shaded square denotes the
empirical region of nuclear saturation.

inverse proportional to the masses of the ¢ and w mesons

gz 92
ES = —migps , 20 = +m—“;p3 (531)

where g, and g, are the corresponding meson-nucleon coupling constants and
ps ~ pp is the scalar nucleon density. The assumption of dropping ¢ and w
meson masses according to a naive Brown-Rho scaling [137] together with fairly
constant couplings would lead to a strong increase of scalar and vector fields
in size. Chiral EFT predicts the opposite behavior, namely slightly decreasing
fields. Interpreting this result in terms of the simple QHD picture means that
the ratio of coupling functions and meson masses in Eq. (5.31) has to stay fairly
constant. Assuming dropping meson masses the coupling functions should show
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the same density dependence. Such a scenario is not completely unrealistic
since in the framework of density dependent relativistic mean field theory [138]
where density dependent meson coupling functions gg,w(pB) are derived from
the Brueckner G-matrix [139, 140] or fitted to finite nuclei [141, 142, 143], such
a behavior is usually obtained.

It is clear that a rather small reduction of the scalar and vector fields has only
moderate consequences for the EOS in Hartree-Fock approximation in the chiral
limit. As it was shown in the previous chapter the tree-level EOSs for isospin
symmetric nuclear matter calculated with the chiral EFT interaction show a
wide variation depending on the chiral order. The EOSs jump from unbound
at NLO to over-bound at LO and N2LO to loosely bound at N3LO. Therefore a
NLO tree level Hartree-Fock calculation is of course not a realistic microscopic
nuclear matter calculation but it allows a consistent investigation of the chiral
limit at the order at which the pion mass dependence of the chiral NN potential
has been derived.

How the change in the fields affects the nuclear EOS is depicted on the left
hand-side in Fig. 5.17 which compares the EOS at NLO at the physical pion
mass m, = 138 MeV to that at m, = 180 MeV, m, = 200 MeV, m, = 2 MeV
and m, = 5 MeV, respectively. The shaded bands show the uncertainty due
to the unknown LECs for m, = 2 MeV and m, = 5 MeV, i.e., approximately
in the chiral limit. The brown shaded band results from varying the LEC dg
entering into the expression for the renormalized OPE from dyg = —0.91 GeV~2
to dig = —1.76 GeV~2 [20]. The mean result is obtained with dyg = —1.23 here
and in the following discussion.

The grey shaded band shows the uncertainty if in addition the unknown LECs
Dgr are varied. As already pointed out, the main source of uncertainty arises
from these LECs entering the renormalized contact forces.

As one can see one obtains almost the same EOS for the cases of m, = 2
MeV and m, =5 MeV, i.e., that any further reduction of the pion mass (which
requires additional numerical effort) does not change the results for the EOS
anymore and one can safely speak about having reached the chiral limit. In
the chiral limit the scalar attraction is slightly stronger reduced than the vector
repulsion (see Fig. 5.16) and therefore the EOS becomes more repulsive. This
is still true if one takes into account the band of uncertainty.

In the case of an extrapolation to higher pion masses, i.e. m, = 180 MeV
and m, = 200 MeV in Fig. 5.17 one observes a slight softening of the repulsive
NLO EOS. Increasing the pion mass to m, = 200 MeV does not change the
EOS significantly. Nevertheless one has to take care that one does not leave
the region where the chiral expansion is still valid, i.e. for m, < 2m, [20].
Calculations may not be trustable anymore when the pion mass is extrapolated
to much towards this value. The uncertainties for m, = 180 MeV due to the
unknown LECs are depicted separately in Fig. 5.18 on the left hand side. In
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Figure 5.18: Pion mass dependence of the nuclear equation of state E/A as a
function of the Fermi momentum kr. On the Lh.s. the Hartree-Fock calculations
at NLO are shown for the physical case of m, = 138 MeV compared to the case
of m, = 180 MeV. The Brueckner-Hartree-Fock results are shown on the right
hand side. The brown shaded area denotes the uncertainty in the LECs d,¢ and
d_lg, ie., CZ16 varied from Jlﬁ = —0.91 GeV~2 to Jw = —1.76 GeV~? and 6218 is
varied from dig = —0.84 GeV~2 to dig = —1.54 GeV~2, respectively. The grey
shaded area shows the overall uncertainty if one additionally takes into account
the unknown LECs Dgp. The shaded square denotes the empirical region of
nuclear saturation.

contrast to the chiral limit where the LEC d;5 vanishes it has to be also varied
here where the mean results are obtained with dg = —0.97 (Jm = —1.23 like in
the chiral limit). As already mentioned a variation of ag7 over the whole range
—3.0 < agr < 3.0 as it is done in [20] is likely to overestimate the uncertainty
when the chiral Idaho potential is used since the EOS for the physical case, i.e.
m, = 138 MeV also lies in this range of uncertainty.

NN correlations, in particular short-range and tensor correlations, have to be
considered in a realistic microscopic nuclear matter calculation in order to obtain
saturation properties. As already found in the previous section one observes
nuclear saturation using chiral EFT at least at NLO as shown in Fig. 5.12
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on the left. Nevertheless one can expect that the effects observed at Hartree-
Fock level survive when a full Brueckner ladder is summed, i.e. if short-range
correlations are taken into account. Therefore in Fig. 5.17 on the right hand-side
the EOS obtained with the physical pion mass is compared to those obtained
in the chiral limit, i.e. m, = 2 MeV and m, = 5 MeV as well as to those
at higher pion masses, i.e. m, = 180 MeV and m, = 200 MeV, respectively.
Again the shaded bands show the uncertainty for m, = 2 MeV. The range of
uncertainty for m, = 180 MeV is shown separately in Fig. 5.18 on the right hand
side. In the case of higher pion masses stronger attraction is observed as it was
already found at tree level in Hartree-Fock approximation. The saturation point
is shifted towards higher Fermi momenta and the binding energy is increased to
E/A = —-25+45 MeV.

In the chiral limit on the other hand the EOS becomes more repulsive in
agreement with the corresponding Hartree-Fock calculation. The binding energy
at the saturation point is shifted from the value in the physical case E/A = —21
MeV to E/A = —13.4 + 3.5. The equilibrium Fermi momentum kp is shifted
from kp = 1.55 fm~! to kp = 1.42 4+ 0.1 fm~"' in the chiral limit. Therefore one
can conclude that explicit chiral symmetry breaking is not an essential condition
for nuclear saturation at least at NLO in the chiral expansion.

This confirms the investigations performed by Bulgac et al. [144] who ana-
lyzed the properties of nuclear matter taking basically the explicit pion mass
dependence of the OPE potential into account and assuming that the short
range and intermediate range part of the NN interaction is not affected. They
concluded that in the chiral limit the physics of infinite nuclear matter is similar
to that of a non-vanishing pion mass.

As already introduced in the previous section Kaiser et al. [128] described
nuclear matter properties based on in-medium chiral perturbation theory. In
this work also the nuclear EOS in the chiral limit has been investigated. OPE,
iterated OPE and irreducible TPE up to three-loop order in the energy density
have been included in the calculation of the EOS. The only free parameter
is a momentum-space cut-off A due to the regularization of divergent parts
connected with chiral two-pion exchange. Since the contributions coming from
this regularization to the energy per particle correspond to that of a zero-range
contact interaction the cut-off A parameterizes effectively its strength. The
chiral pion exchange diagrams included in the present calculation are the same
as in [128] and therefore the results can be compared. However, in contrast to
the calculation presented in this thesis the pion mass dependence of g4, M, f,
is not taken into account in [128]. The empirical saturation point is met by
adjusting the free cut-off parameter A in contrast to our calculation where no
free adjustable parameters occur. Fig.6 of Ref. [128] shows the dependence of
the saturation point on the cut-off A for the physical pion mass as well as in the
chiral limit. It has been also found that nuclear matter is bound in the chiral
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5. Nuclear matter properties

limit. However, the dependence of the cut-off A on the pion mass is not known.
Using, e.g., the same value for A from the physical case in the chiral limit, the
binding energy and the saturation density are strongly increased. In our work
where free adjustable parameters are not included the saturation density and
the binding energy are decreased as shown in Fig. 5.17. In order to obtain the
same result within the approach of [128] A has to be considerably smaller than
in the case of the physical pion mass.

This section can be summarized as follows: the uncertainty due to the LECs
0716,18 does not significantly affect the EOS. Though the parameters ag r setting
the strength of the chiral contact force are varied in the range of —3.0 < agy <
3.0 (which is likely to overestimate the uncertainty) qualitative conclusions can
be drawn. Concerning the tree level EOS as well as that calculated within the
BHF' approach, however, no tendency of a qualitative change even for large,
probably unrealistic variations of the dimensionless coefficients agr is found.
This is also true in the case of an extrapolation to higher pion masses.

Therefore the conclusion is, that the magnitude of the large scalar and vector
fields in matter persists in the chiral limit. In contrast to the case of a pion
mass larger than the physical one binding energy and saturation density are
decreased in the chiral limit but nuclear matter is still bound. Therefore the
physics of infinite nuclear matter is similar to that of a non-vanishing pion mass.
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6. Nucleon mass in nuclear matter

QCD in-medium sum rules establish the connection between the relativistic phe-
nomenological description of nuclear matter, especially the appearance of large
scalar and vector components to the fundamental theory of strong interactions,
QCD. In Section 2.3 it has been shown that QCD in-medium sum rules relate
the scalar and vector in-medium condensates (7q),, and {q'q),, to the isoscalar
scalar and vector self-energies of a nucleon in matter.

In order to derive expressions for the self-energies in the sum rule approach one
needs to know the density dependence of the scalar condensate and the vector
condensate, respectively. In contrast to the scalar condensate, to leading order
the vector condensate is exactly known. It is given by the quark density in the
nuclear matter rest-frame {q'q),, = 3/2pp. The determination of the density
behavior of the scalar condensate in matter is more evolved. It can be estimated
with the help of the Hellmann-Feynman theorem in a model independent way
to first order in density [51, 45] as shown in Section 6.2. In this estimation
higher order corrections in the nucleon density coming from the nucleon kinetic
energy and nucleon-nucleon interactions are neglected and the in-medium scalar
condensate drops linearly with the nuclear density with the proportionality given
by the pion-nucleon sigma term oy.

To determine corrections to this leading density dependence a large variety
of models has been exploited. These were e.g. the Nambu-Jona-Lasinio (NJL)
model [51, 52, 53, 54], various versions of the linear sigma model [55, 56], the
Quark Meson Coupling model [57] or recently the Polyakov-NJL model [58]. The
Hellmann-Feynman theorem relates the in-medium scalar quark condensate with
the quark mass derivative of the total energy density. The latter quantity can
also be calculated within hadron effective field theory [51], such as the DBHF
approach (see Section 2.2). However, the unknown quark mass dependence of
the mesonic couplings and meson masses of the OBE potentials used in the
DBHF approach introduces large errors in the determination of the in-medium
condensate [59, 60].

Most hadronic models do, however, not respect chiral symmetry. A more
systematic and direct connection to QCD is provided by chiral EFT. Therefore
in this work the in-medium scalar condensate has been determined by using
the Hellmann-Feynman theorem upon application of the chiral EFT interaction
where the explicit and implicit current quark mass dependence of the nuclear
force is known up to NLO [20]. This chiral EFT interaction is also described in
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6. Nucleon mass in nuclear matter

Section 3.3.2. Later on this will be done is Hartree-Fock (HF) approximation
and in order to estimate the influence of short-range correlations and quench-
ing effects also a realistic Brueckner-Hartree-Fock (BHF') calculation has been
performed.

In agreement with other estimations of the in-medium condensate, e.g. per-
formed with more simple models [51] higher order corrections from the nucleon
kinetic and interaction energy become significantly more important above satu-
ration density and lead in general to a weaker reduction of the in-medium quark
condensate in both cases when compared to the model independent calculation.

Moreover this procedure allows to identify how the different parts of the chiral
interaction contribute to the change of the chiral condensate in matter.

The model independent leading order results, Eqs. (2.84) and (2.85) should
be valid at low density. Thus the scalar self-energy Eq. (2.84) determines the
density dependence of the effective nucleon mass M* = M + X, within the
in-medium QCD sum rule approach

M* —1 ON
M mpetr

(6.1)

Naturally, Eq. (6.1) represents the model independent leading order prediction
for the in-medium scalar condensate (qq),,/(qq)o, i.e., the leading order term
in Eq. (6.12) since it enters the expression for the scalar self-energy (2.84).

In the first part of this chapter a comparison of the leading order sum rule
predictions Eqs. (2.84) and (2.85) to a many-body calculation of the scalar
and vector self-energy components in Hartree-Fock approximation based on the
chiral EFT interaction is presented. Only small deviations are observed at
moderate densities.

However, concerning the in-medium condensate one has carefully to distin-
guish between contributions from the pion cloud and those of non-pionic ori-
gin [63, 64]. As demonstrated by Birse [63] a naive direct dependence of the
nucleon mass on the quark condensate through Eq. (2.84) or Eq. (6.1), respec-
tively, leads to contradictions with chiral power counting. The contributions
from low momentum virtual pions which enter the in-medium condensate should
not contribute by the same amount to the change of the nucleon properties in
matter. They can therefore not as easily be associated with a partial restoration
of chiral symmetry as the mean field field approximation, i.e. Eq. (6.4), would
suggest. This problem has also been investigated by Chanfray et al. [64] in the
framework of the linear sigma model. In their studies the authors were able to
reconcile the phenomenology of Quantum Hadron Dynamics with chiral theory,
in that case the linear sigma model. Their conclusion was that, in contrast to
the scalar condensate (gq),, which is driven by the sigma field, i.e., the chiral
partner of the pion, the lowering of the nucleon mass M* is driven by a chiral
invariant scalar field which corresponds to fluctuation along the chiral circle.
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With other words, the condensate is to large extent reduced by the pion cloud
surrounding the nucleons while the nucleon mass is not.

To set up the context for the following discussion, the argumentation of Birse
is shortly sketched [63]: From Eq. (6.1) follows that the effective nucleon mass
M* is directly proportional to the nucleon sigma term oy. The chiral expansion
of the sigma term leads to [84]

2
oN:Amfr—lé)?T(g;]];[/;v> md . (6.2)
In the chiral limit the pion-nucleon coupling is connected to the axial vector
coupling by the Goldberger-Treiman relation g.nyy = gaM/ fr. The coefficient
A involves counter terms related to short-distance physics whereas the non-
analytic O(m3) term arises purely from long-distance physics of the pion cloud.
Inserting (6.2) into (6.1) implies a dependence of the effective nucleon mass M*
on the pion mass which is of order O(m).

At the mean field level, i.e., in T'— p approximation, the scalar self-energy (5.5)
is on the other hand given by the scalar forward scattering amplitude Ts(q = 0)
( Ts(q = 0) in (6.3) corresponds to the direct amplitudes Fg and gg in (4.14)
and (4.17), respectively.)

S(ke) = To(qa = 0) ps - (6.3)

A comparison of Eq. (6.3) with Egs. (6.1) and (6.2) would imply that the scalar
part of the forward scattering amplitude contains a constant and a term of
order m,. Such a dependence contradicts, however, chiral power counting. In
chiral EFT the leading term in the pion mass in the NN interaction originates
from the low energy expansion of the OPE and is of order O(m?) [18, 19, 17].
Hence the NN interaction cannot contain a term directly proportional to oy /m?.
Moreover, as stated in [63] the in-medium quark condensate (gq),, contains
contributions from low-momentum virtual pions, which do not contribute to
the properties of the nucleon in matter.

This is in agreement with the result shown in Section 5.2, namely that the
dominant contributions to the scalar and vector self-energy are generated by
NLO contact terms. This means that the reduction of the nucleon mass M* =
M+3 is driven by short-distance physics. Pion dynamics is almost negligible for
the generation of the self-energy and therefore has no impact on the properties
of the in-medium nucleon mass (see Table 5.1)

With the present formalism at hand a consistent comparison of the in-medium
scalar condensate, derived from the Hellmann-Feynman theorem, and the effec-
tive nucleon mass M* = M + Y5 where the scalar self-energy X enters can be
performed. For the first time both quantities have been derived at the same
order and from the same chiral EFT interaction. This is presented in the last
part of this chapter.
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6. Nucleon mass in nuclear matter

6.1. HF self-energy vs. QCD in-medium sum rules

Applying Ioffe’s formula Eq. (2.66) for the nucleon mass and the Gell-Mann,
Oakes, Renner (GOR) relation to Egs. (2.84) and (2.85) the QCD in-medium
sum rules can be written as [46, 47]

O'NM
ZS _m%fng s (64)
4(my, +mag) M

where the difference between the scalar and vector density, ps and pg, can be
neglected at low densities k% < M?2.

For the comparison of the sum rule predictions we turn to the density depen-
dence of the self-energy. Fig. 6.1 contains the corresponding fields as predicted
by leading order QCD sum rules, i.e., Eqgs. (6.4) and (6.5). For the evaluation of
Egs. (6.4) the empirical value of o = 50 MeV has been chosen for the nucleon
sigma term, f, = 93 MeV and (m,, +my) = 12 MeV. In Fig. 6.1 also the density
dependence of the fields from the chiral EFT interaction are presented up to
N3LO. As in Fig. 5.3, the scalar X, time-like vector ¥ and spatial vector 3,
self-energies are determined at momentum k& = kp. The density dependence
is shown up to kp = 1.8 fm™! which corresponds to about 2.5 times nuclear
saturation density. As can be seen from Fig. 6.1 the relative contributions from
the various orders remain the same over the entire density range considered.

Both, the QCD sum rule and the chiral EFT fields are well comparable in
terms of a density expansion since both are obtained to leading order in density.
In the case of the sum rules this corresponds to a Fermi gas of non-interacting
nucleons. To go beyond the Fermi gas approximation would require to include
higher order terms in the operator product expansion and the density expansion
of the condensates [43, 44, 45, 145]. As explained in Section 2.3 contributions
coming from the next order in the operator product expansion involve four-
quark operators and combinations of quark and gluon fields. Attempts to fix
the density dependence of higher order contributions in the operator product
expansion have e.g. been performed in [146, 147].

In the EFT case higher orders in density can be introduced by a self-consistent
dressing of the interaction (see discussion in Section 5.3) and of course by higher
order terms in perturbation series which would finally end up in a full resum-
mation of the Brueckner ladder diagrams.

At moderate nuclear densities the agreement between the QCD sum rules and
N3LO is quite remarkable. At higher densities the results from the sum rules
tend to overshoot the N3LO values which is, however, not too astonishing since
the relations (6.4) are valid in the low density limit.
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6.1. HF self-energy vs. QCD in-medium sum rules

— :
800 *  LOsumrules Pie
3 A& 7
N'LO ¢t
----- - N’LO

400} ---- NLO
LO

> [MeV]

ks, [MeV]

L | L | L
0.8 1 1.2 14 1.6
-1
k. [fm ]

Figure 6.1: Density dependence of the tree level scalar and vector self-energy
components in nuclear matter obtained with the chiral EFT NN interaction [19].
The fields obtained in leading order (LO) up to next-to-next-to-next-to-leading
order (N*LO) are shown. The results from leading order QCD sum rules are
shown as well.

In view of the fact that in chiral NN dynamics the fields are dominantly
generated by NLO contact terms, one could be tempted to interpret the present
results in the way that the reduction of the quark condensates occurs at NLO
in the chiral expansion. However, as discussed above such an interpretation is
not straightforward. A closer inspection of the terms which drive the sum rule
result reveals the following: the coefficient A in (6.2) is related to the unknown
coupling C in the effective ChPT pion-nucleon Lagrangian [148]. Becher and
Leutwyler extracted a value of A = 3.7 GeV ! fitting the elastic 7N scattering
amplitude at threshold [149]. Inserting this value into the sum rule expression
(6.1) corresponds to a scalar self-energy (at kp = 1,35 fm™') of ¥y = —513 MeV
at order m2. At order my,, i.e., when the O(m?) term in the expansion (6.2)

T

is included, the sigma term of 46.7 MeV is already close to its empirical value
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6. Nucleon mass in nuclear matter

and a self-energy of ¥ = —340 MeV is obtained. Although this value for ¥ is
astonishingly close to the NLO result from chiral NN scattering, one has to keep
in mind that already the LO result is of order m? in the pion mass. In contrast
to the sum-rule approach there appears no significant repulsive contribution
from pion dynamics which would correspond to the O(m?) term in (6.2).

The present results are therefore in qualitative agreement with the findings of
Refs. [63, 64], namely that long-distance physics related to pion dynamics plays
only a minor role for the reduction of the nucleon mass in matter. Relating the
in-medium nucleon mass to the in-medium scalar condensate through expression
(6.1) one should be very careful. Although the sum rule mean fields, Eqs. (6.4)
and (6.5), provide a reasonable approximation to the mean fields from chiral
EFT, both approaches do not reflect the same physical concepts. The sum rule
approach assumes that the nucleon properties are determined by the interaction
with the in-medium condensates while conventional many-body approaches as-
sume that the in-medium properties are determined by the interaction between
the nucleons.

6.2. Chiral condensate in nuclear matter

The spontaneous breakdown of chiral symmetry involves a qualitative rearrange-
ment of the QCD ground state, due to the appearance of scalar quark-antiquark
pairs. The corresponding non-vanishing ground-state expectation value (gq), de-
noted as the scalar quark condensate, is an order parameter of spontaneous chiral
symmetry breaking. Any reduction of the scalar density of quarks in matter can
therefore be interpreted as a signature of partial restoration of chiral symmetry.
The vacuum value of the lowest-dimensional quark condensate is about [84]

(@q)o ~ —(225 + 25 MeV)? . (6.6)

The density dependence of the chiral condensate (Gq) can be extracted exploiting
the Hellmann-Feynman theorem with respect to the symmetry breaking current
quark mass term of the QCD Hamiltonian. We consider isospin symmetric
matter making thereby use of the isospin symmetry of the condensates ({Gq) =
(wu) ~ (dd)). Defining gq = 3(uu + dd) and my = 1(m, + mg) the quark mass
term is given by 2m,gq. Isospin-breaking terms are neglected. With the help of
the Hellmann-Feynman theorem one obtains the in-medium quark condensate
by determining the energy density £ of nuclear matter

2mq((q49) o — (79)0) = mani. (6.7)

The derivative is taken at fixed density. The derivation of Eq. (6.7) is presented
in detail in Appendix C. Note the short notation (Q2),, = (pg|Q|ps) and
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6.2. Chiral condensate in nuclear matter

Q) = (0|2]0) where Q is an arbitrary operator. |pp) represents the ground
state of nuclear matter at rest with baryon density pp and |0) the vacuum state.
The energy density of nuclear matter is given by

E
E=Mpp+ (:ZB)pB (6.8)

where the second term of £ is the energy per particle /A (times the baryon
density), i.e. the contributions from the nucleon kinetic energy and nucleon-
nucleon interactions.

The nucleon sigma term oy can be written as [150]

ox = 2m, [ @2((N|gaN) - (0]aql0)) (6.9)
_ mqiﬁ‘j (6.10)

where |N) is the state vector for a nucleon at rest and |0) is the vacuum state.
Eq. (6.10) is obtained by a further application of the Hellman-Feynman the-
orem, i.e., Eq. (C.7), to Eq. (6.9) with |¢(m,)) = |N) and |¢(m,)) = |0),
respectively.

Inserting Eq. (6.8) and Eq. (6.10) into Eq. (6.7) and using the Gell-Mann,
Oakes, Renner relation

2mq(qq)o = —m2 f? (6.11)
one obtains (a0 i E
q9)pr PB
=1- — . 6.12
e =1 o e (612

The derivative of the energy per particle with respect to the quark mass can be
re-expressed using the chain rule

(79) o PB O(E/A) dM O(E/A) dm,
—=1- . 6.13
(29)o0 m2 f2 ON TN dmy, M om, dm, (6.13)
The derivative of the pion mass using Eq. (6.11) is given by
dm m
T =" 14
dmg,  2m, (6.14)
valid to leading order in chiral perturbation theory. Introducing
2 £2
x - Mafx (6.15)
ON
one finally obtains
q E/A E/A
(@9)0 px oM om, 20x
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6. Nucleon mass in nuclear matter

The first term on the r.h.s. of Eq. (6.16) which reduces the condensate in
matter is model independent and of first order in the nuclear density [51, 45].
Inserting the empirical value of oy = (45 £ 7) MeV for the sigma term [85]
and taking m, = 138 MeV and f, = 92.4 MeV one finds in Table 6.1, that
the in-medium scalar condensate is to leading order in density approximately
% smaller than its vacuum value at nuclear saturation density. In the following
a value of py = 0.173 fm ™3, corresponding to a Fermi momentum of kr = 1.37
fm~!, is chosen as the standard value for the nuclear saturation density.

From Fig. 6.2 one sees that to leading order a complete restoration of chiral
symmetry would already occur at pg &~ 2.7pg. Such a scenario is unrealistic and
contradictory to the knowledge from heavy ion reactions [73] and astrophysics,
e.g. neutron stars [151]. Hence, one has to account for higher order corrections
in density coming from the d(E/A)/dm, term in Eq. (6.12).

One might estimate this correction to be small due to the binding energy
of E/A ~ —16 MeV, which is almost two orders of magnitude smaller than
the nucleon mass contributing dominantly to the energy density in Eq. (6.8).
Nevertheless, since the quark mass derivative of the interaction energy is the
relevant quantity, it is by far not obvious that higher order corrections are
negligible.

Thus, a reliable extraction of the density dependent scalar condensate (qq),,
requires both, a sophisticated nuclear matter calculation and the exact knowl-
edge of the current quark mass dependence of all model parameters entering
into the energy density.

Previous estimates of the scalar condensate based on sophisticated ab-initio
many-body approaches [59, 60] suffered from this problem. The relativistic
Brueckner approach chosen in [59, 60] provides a reliable description of nuclear
matter bulk properties. Such calculations are based on realistic NN potentials,
e.g. one-boson-exchange (OBE) potentials [12]. However, the current quark
mass dependences of the model parameters, i.e. meson masses and coupling
constants, are unknown to large extent and have therefore either been roughly
estimated or even been neglected [59, 60].

In [59] it was found that the largest uncertainty in the calculation of the in-
medium quark condensate (gq),, arises due to the unknown quark mass depen-
dence of the scalar isoscalar ¢ meson exchange which parameterizes effectively
correlated two-pion exchange.

In the present work the energy per particle F'/A is determined within Hartree-
Fock approximation, Eq. (5.20). However, for a reliable estimate of the in-
medium condensate the role of NN correlations, in particular short-range and
tensor correlations, has to be considered. One might assume that NN correla-
tions influence the result for the condensate, in particular at higher densities.
In order to estimate their importance the self-consistent iteration scheme of
non-relativistic BHF theory is applied in a second step. Chiral EFT in nuclear
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6.2. Chiral condensate in nuclear matter

matter has been studied at Hartree-Fock level and within the non-relativistic
BHF approach in Section 5.4 where also BHF theory has been outlined.

Since the NN interaction is thereby based on chiral EFT, Egs. (3.28)-(3.30)
where the complete pion mass dependence is known up to NLO [20] we are
free of uncertainties concerning unknown quark mass derivatives. Remaining
ambiguities when applying the Hellman-Feynman theorem are only due to the
not yet uniquely fixed LECs Dg 7 in the NLO contact terms, see Eq. (3.30), and
the LECs di6,15 showing up in the OPE exchange. The uncertainties coming
from these LECs will be discussed.

As already mentioned we apply the non-relativistic BHF approach since the
chiral EFT interaction is a non-relativistic potential and therefore can not be
used within the relativistic DBHF approach (see Chapter 5.4). Nevertheless, dif-
ferences between a relativistic and a non-relativistic treatment should be mod-
erate concerning the derivative of the EOS with respect to the current quark
mass.

6.2.1. Results: HF and BHF approximation

The prediction of the in-medium scalar condensate in both approaches, i.e., HF
and BHF are shown in Fig. 6.2. As expected, deviations from the leading order
result due to NN interactions and nucleon kinetic energy, Eq. (6.16), increase
with density. For both approaches, HF and BHF, the additional contributions
lead to a weaker reduction of the in-medium quark condensate. Especially in
the case of the BHF calculation the leading order prediction provides a very
good description of the quark condensate up to a density of 0.8pp.

At nuclear saturation density pg the reduction of the in-medium quark con-
densate is about 3% (BHF) and 12% (HF) smaller compared to leading order.
Deviations are, however, growing with density, where at pp ~ 2+ 3pg the quark
condensate is reduced to ~ 35% (HF) and ~ 30% (BHF). Naturally the BHF ap-
proach is more reliable in this density region. However, in summary effects from
short-range NN correlations and the quenching of OPE and TPE due to Pauli
blocking, both present in BHF, have only minor implications for the condensate
as can be seen from the comparison to the HF result.

The uncertainty due to the not yet uniquely fixed LECs d4,15 in the renormal-
ized OPE, Eq. (3.28) which was already mentioned in the context of the EOS
in the chiral limit, enters also into the determination of the scalar condensate.
However, now this uncertainty is much more severe. The light shaded bands
in Fig. 6.2 indicate the range of possible variations: The LEC d,g is extracted
from the Goldberger-Treiman discrepancy. In the present work the three em-
pirically found values given in [20] are taken which have been extracted from
three different 7N phase shift analysis, dig = —0.84 GeV~2 [152], dig = —0.97
GeV~2 [153] and dig = —1.54 GeV~2 [154], respectively. Furthermore the LEC
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Figure 6.2: In-medium scalar quark condensate as a function of density with
on = 45 MeV obtained in various approximations: A Hartree-Fock calculation
of (qq) p, /{qq)0 is shown compared to M* /M where M* = M + 3 is evaluated
at tree level in Hartree-Fock approximation (left). A full calculation based on
the Brueckner-Hartree-Fock approach is shown on the right. The light shaded
bands indicate the uncertainty of the corresponding result varying the LECs
dig from dig = —0.91 GeV~=2 to dig = —1.76 GeV~2 and dys from djs = —0.84
GeV~2 to dig = —1.54 GeV~2. Dashed line: model-independent leading order
result.

dig is varied in the range from dig = —0.91 to dig = —1.76 as done in [20]. The
upper bound of the shaded band corresponds to dig = —1.76 and dig = —0.84

whereas the lower bound corresponds to dig = —0.91 and dig = —1.54. These
uncertainties are also given in Table 6.1. The HF (dash-dotted line) and BHF
(solid line) mean values are obtained with di = —1.23 and d;5 = —0.97.

Comparing with previous approaches performed in a similar spirit [60] and
[59] we find generally a stronger reduction of the scalar condensate. In [60] the
calculations were done in the relativistic DBHF approach based on the OBE
potential Bonn A. In this approach an unexpected increase of the in-medium
scalar condensate at densities above p < 2.5pp has been found. The same ten-
dency, i.e. an increasing quark condensate at high density has been observed
in [59]. In [60] it was assumed that this increase is caused by a breakdown of
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6.2. Chiral condensate in nuclear matter

Table 6.1: Predictions of (4q),,/(Gq)o obtained with the Hellmann-Feynman
theorem in diverse approximations compared with M*/M for three different
values of the nucleon density pg.

(@q)s/(@q)o M*/M
pB/ po Leading HF BHF in HF
order
0.5 0.815 0.828 £0.002 0.812 4+ 0.001 0.759
1.0 0.630 0.677 £0.010 0.641 4+ 0.004 0.546
1.5 0.445 0.550 £0.020 0.510 £ 0.014 0.354

the underlying assumptions related to the current quark mass dependences of
the model parameters, i.e. meson masses and coupling constants. Moreover, the
authors concluded that the use of not chirally invariant NN potentials may lead
to wrong predictions in a density region where chiral restoration is expected to
occur. As already mentioned in the present work such problems do not occur
since the chirally invariant EFT interaction used here has a well defined quark
mass dependence. The only source of uncertainty arises due to the LECs Jmlg
from Eq. (3.28) which are not yet uniquely fixed and the unknown LECs Dgr,
Egs. (3.33) and (3.34), entering the short-range part, i.e., the contact force which
could provide substantial corrections to the scalar quark condensate. Neverthe-
less, the same argument given in Section 5.5 is used to avoid a wide undefined
variation. Therefore, the present calculation is restricted again to the case of
agr ~ 1. However, as for the EOS calculated in Section 5.5, the prediction of
the quark condensate is not considerably altered varying ag s for combinations
of g where both parameters are close to each other. The contributions which
change the condensate originate then mainly from TPE and renormalized con-
tact forces. The LECs C_7 in Eq. (3.30) do not depend on the pion mass after
renormalization and the related contact terms do therefore not contribute to
the change of the in-medium quark condensate.

Nevertheless, considering the possible band of variation due to the LECs 0716,187
both, the HF and BHF calculations shown in Fig. 6.2 do not indicate a saturating
behavior or even an increase of the condensate in the considered density range
up to 3pp. Extrapolating the BHF prediction to high densities a complete
restoration of chiral symmetry, i.e., a vanishing scalar quark condensate is not
likely to happen below 4pg, even if one takes the range of uncertainty from not
yet exactly known LECs into account.
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6. Nucleon mass in nuclear matter

The first determination of the in-medium quark condensate adopting the
Hellmann-Feynman theorem has been carried out by Cohen et al. [51], based on
the m-N Fock term. There the condensate was found to be reduced to a value
of 0.694 at nuclear saturation density py and 0.58 at about 1.5py which is in
fair agreement with 0.677 £+ 0.01 and 0.550 4+ 0.020 obtained in the present HF
calculation (third column of Table 6.1). This agreement, is, however, somewhat
accidental since we find that TPE and contact interactions (which both have not
been included in [51]) reduce the contribution from OPE by ~ 50%. Moreover,
in [51] the quark mass dependence of the pion-nucleon coupling dg,y/dm, has
been neglected and a different value for g,y has been used. Both calculations
are, however, comparable in the sense that NN correlations are neglected and
they are of the same order in the density. Moreover, short-range physics due to
contact terms, which have been neglected in the simpler model used in [51] are
found to provide only moderate corrections as can be seen from Fig. 6.3.

To study the different contributions in the calculation of the in-medium con-
densate in Fig. 6.2 (dash-dotted line) in Fig. 6.3 the derivatives 0(E/A)/0m,
from Eq. (6.16) are shown as a function of the density with respect to the dif-
ferent contributions coming from pion dynamics, Egs. (3.28) and (3.29), and
from the contact terms (V< Eq. (3.30)), respectively. The dashed-dotted
line indicates the derivative O(E/A)/OM. The contribution coming from OPE
is negative and considerably larger compared to those from TPE and contact
interactions. In general the contributions from pion dynamics, i.e., OPE and
TPE are smaller in BHF due to quenching effects. In the case of the contact
interactions, Eq. (3.30), one has to keep in mind that the short-range terms
m2 Inm, show up due to TPE and the renormalization of the leading order
contact terms by pion loops. The contribution from nucleon interactions is
getting substantially more important with increasing density compared to the
contribution from the nucleon kinetic energy (dot-dashed line) which is of or-
der O(p°/3). Thus the nuclear interaction provides important corrections to the
Fermi gas approximation usually made in QCD sum rule approaches.

It turns out that the calculation of the in-medium quark condensate is highly
sensitive to the implicit pion mass dependence of the pion nucleon coupling
constant g,y which has been often neglected in earlier works. This fact can
also be seen from the relatively large bands of uncertainty in Fig. 6.2 since the
corresponding LECs enter into the relative shift of ga/F;, Eq. (3.32), which is
connected to g,n via the Goldberger-Treiman relation ¢g,n/M = ga/Fx.

Lutz et al. [155] constructed a chiral power expansion scheme to calculate the
nuclear EOS and to determine the in-medium condensate, respectively. Their
approach is based on a chiral Lagrangian where the contributions to the EOS
have been calculated from OPE iterated to second order. Additionally an at-
tractive zero-range NN-contact interaction has been introduced where the cou-
pling constants have to be adjusted to nuclear matter. The result for the in-
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Figure 6.3: The derivatives O(FE/A)/Om, as a function of density with respect
to the full NLO calculation as well as the separate contributions, i.e. OPE, TPE
and contact interactions are shown. Additionally the dash-dotted line denotes
O(E/A)/OM for the full NLO calculation.

medium quark condensate calculated within this chiral approach of is shown in
Fig. 6.4(b).

Recently, the in-medium chiral condensate has been also calculated by Kaiser
et al. [129] in the framework of in-medium chiral perturbation theory. Their chi-
ral approach is an extended and improved version of their former approach [128],
which has been already sketched in Section 5.4. Besides OPE and irreducible
TPE effects from irreducible TPE together with intermediate A(1232)-isobar
excitations up to three-loop order in the energy density have been included in
the calculation of the EOS and the in-medium chiral condensate. Instead of
parameterizing the short-range physics (which cannot be resolved in an effec-
tive low-energy theory) by NN-contact terms as done by Lutz et al. [155], a
momentum-space cut-off A is introduced which then encodes the dynamics at
short distances [130].

As already mentioned the cut-off A is the result of a cut-off regularization
of the chiral two-pion exchange. Nevertheless besides the fact that in [129]
systematically effects from irreducible TPE processes have been included still
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6. Nucleon mass in nuclear matter

these two chiral approaches have been developed in the same spirit and are
therefore well comparable. The result for the in-medium condensate calculated
in the approach of Kaiser et al. [129] is presented in Fig. 6.4(c) on the right
hand side. As one can see the in-medium quark condensate [129] exhibits a
minimum at about 60% of its vacuum value at ~ 1.8py and shows then a slight
increase. The authors conclude in Ref. [129] that effects from TPE with virtual
A(1232)-isobar excitations are crucial to obtain such a behavior. This seems to
be reasonable when comparing to the result of Lutz et al. or our calculation
which is plotted once again in Fig. 6.4(a). Note that due to different choices
of the pion mass m, and the pion decay constant f, additional deviations of
the calculations presented in Fig. 6.4 are introduced, as can be seen in the case
of the slopes of the linear density approximations. Kaiser et al., e.g., include
already the kinetic energy contributions from a relativistic Fermi gas expanded
up to order M3 in the linear density approximation.

The agreement between our result and the result of Lutz et al. is actually
good. In contrast to our calculation the contributions from irreducible TPE are
not included in Ref. [155] which leads to a less deviating behavior from the linear
density approximation since the derivative 0(E/A)/Om, for the TPE is positive
as shown in Fig. 6.3. However there is no one-to-one correspondence between
the pion-exchange diagrams in the chiral NN potential used in our approach
(see Fig.3.3) and those from in-medium chiral perturbation theory [155]. Addi-
tionally, the determination of the chiral condensate is extremely sensitive to the
approach applied as well as to approximations, the parameters and their fixing,
respectively. This can be seen from the fact that in Ref. [129] the contribution
from irreducible TPE has the opposite sign compared to our calculation. More-
over the perturbative calculation by Kaiser et. al [129] including OPE, iterated
OPE and irreducible TPE leads to an in-medium condensate below the linear
density approximation (see Fig. 6 in Ref. [129]). This does not agree with our
calculation (including OPE and irreducible TPE plus NLO NN-contacts) where
in principle the same pion-dynamics is included. Keeping OPE and iterated
OPE in the calculation of Kaiser et al. the reduction of the in-medium con-
densate is even larger. This completely disagrees with the calculation of Lutz
et al. [155] which has been performed in the same spirit, in particular if one
assumes that in [155] the contributions from the introduced phenomenological
zero-range NN-contact interactions are small. The latter assumption is, how-
ever, confirmed by the present investigations and [129]. One has to keep in
mind that in Ref. [155] any implicit dependence of the effective couplings pa-
rameterizing the short-distance physics is neglected. This is also the case for
the momentum-space cut-off A in the approach of Kaiser et al. [129] which is
adjusted to the empirical saturation properties of nuclear matter. Nevertheless
Ref. [129] confirms an important result of this work namely that short-range
NN-dynamics plays only a minor role for the change of the chiral condensate in
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Figure 6.4: Solid lines indicate the in-medium quark condensate (4q),,/{(3q)o
as a function of density obtained within various approaches: (a) Hartree-Fock
calculation and Brueckner-Hartree-Fock (see Fig. 6.2). Calculations performed
within in-medium chiral perturbation theory: (b) OPE and NN-contact inter-
action iterated up to second order by Lutz et al. [155], (¢) OPE, iterated OPE,
irreducible TPE, ntNA dynamics and c;-contact vertex by Kaiser et al. [129].
Dashed line: model-independent leading order result. Note the slightly differ-
ent slopes coming from different values of parameters. (on = 45 MeV in all
approaches. )

matter. In order to improve our calculation one would have to include TPE with
A-isobar excitations. To do so, one needs to know the pion mass dependence
of the chiral NN interaction at NNLO. Since already at NLO significant uncer-
tainties occur due to not known LECs it is likely to happen that this problem
is amplified at NNLO due to even more unknown constants showing up in the
chiral expansion of the NN potential.

Although deviations in the determination of the in-medium quark condensate
occur when different approaches are compared we conclude that the contribu-
tions from nucleon interactions to the change of the scalar condensate in matter
are mainly due to low-momentum virtual pions (also confirmed by Kaiser et
al. [129]). In contrast to the generation of the scalar and vector fields g and ¥,
which are generated by NLO contact interactions as shown in Section 5.2, con-
tact terms and short-range correlations, i.e., short-distance physics, play only
a minor role for the properties of the in-medium quark condensate. Neverthe-
less, for a fully reliable prediction of the in-medium quark condensate the little
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6. Nucleon mass in nuclear matter

known LECs Dg7 entering the NLO contact interactions, Eq. (3.30), have to
be fixed with better precision.

6.3. The effective nucleon mass M*

As discussed in the introduction of this chapter equalizing the scalar condensate
and effective nucleon mass, is not as straightforward as relation (6.1) would sug-
gest. This was also the conclusion from Section 6.1 and has been also discussed
in the introduction to this chapter. It was shown that a direct dependence of
the nucleon mass in nuclear matter on the in-medium quark condensate contra-
dicts chiral power counting [63]. Now we are able to present finally a consistent
comparison of the in-medium scalar condensate, derived from the Hellmann-
Feynman theorem, and the effective nucleon mass in nuclear matter.

As one can see in Fig. 6.2 the ratio M*/M is shown as a function of the density
where the effective nucleon mass is given by M* = M + ¥,. The scalar field
Y is determined from the chiral EFT potential at NLO in HF approximation,
making use of projection techniques on a relativistic operator basis as described
in Chapter 4. As one can see also from Table 6.1, at saturation density the
effective mass M* or the ratio M*/M, respectively, is reduced to a value of
about 0.546 and is decreasing approximately linear up to 2py. The reduction
of the effective mass M* is about ~ 13% larger at py than that of the scalar
condensate in the HF calculation, see also Table 6.1. At 1.5 pg the difference is
about 20 £ 2%. Thus the approximation of Eq. (6.4) does not hold. By a naive
comparison of the two quantities the in-medium condensate may contribute at
the utmost by about ~ 80% to the change of the the nucleon mass in matter at
1.5 £o-

As already mentioned, the higher order contributions in Eq. (6.16) from the
nucleon interaction are mainly due to OPE and TPE, i.e., low-momentum vir-
tual pions give the main contribution to the change of the scalar quark con-
densate. The appearance of the large scalar field 5 which enters the effective
nucleon mass M* = M + ¥ originates on the other hand from NLO contact
interactions (to be more precise from the part which is connected to the spin-
orbit force), i.e., it is driven by short distance physics as shown in Section 5.2.
Low-momentum pion dynamics is negligible concerning the appearance of the
large scalar and vector fields g and ¥, at the considered order (NLO). The
present investigations confirm thus the considerations of Ref. [63] which were
based on a chiral expansion of the sigma term.

In summary, a direct dependence of the properties of the nucleon mass on the
in-medium quark condensate as suggested by Eq. (6.1) can be ruled out.
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7. Summary and conclusions

The investigation of nuclear matter as a strongly interacting Fermi system has
a long history which goes back to the late forties/early fifties. One primary
— and still not completely solved — goal is of course the exact determination
of the nuclear equation of state over a wide range of nuclear densities. This
question is of high relevance for the understanding of astrophysical phenomena
such as neutron stars or supernovae explosions. There exist, however, a lot of
other questions which are of fundamental interest and which are in some cases
also tightly connected to the nuclear EOS: What are the relevant degrees of
freedom to describe the interacting system at the particular scales? What is
the role of relativity for nuclear dynamics? What is the origin of the reduction
of the nucleon mass in matter and how is the relation to basic quantities in the
language of QCD, i.e. the scalar quark condensate? How behaves the interacting
system in the chiral limit?

The present thesis does not aim for a highly qualitative description of the
nuclear many-body system but provides a systematic study of the questions
addressed above where in the following the major results are summarized:

The appearance of large scalar and vector fields is a well established feature
of relativistic nuclear dynamics. The saturation mechanism of nuclear matter or
the single particle potential in finite nuclei are obtained by subtle cancellation
effects between large attractive scalar and repulsive vector fields. These fields
occur already at tree level and do not change too much when realistic many-body
calculations are performed. Full self-consistent Brueckner calculations which
account, for short-range ladder correlations lead to mean fields of similar size,
i.e., of several hundred MeV magnitude. The size of the scalar and vector fields
coincides with the values derived from relativistic mean field phenomenology by
fits to finite nuclei. Alternatively, QCD sum rules come to the same results.

The present thesis addresses the question about the origin of these fields.
When the nucleon-nucleon interaction is described within the framework of a
meson exchange picture, the situation is rather clear. The Lorentz character of
the mesons determines automatically the Lorentz character of the interaction
at the corresponding scale: the short-range repulsion is due to vector exchange
(w, p) while the intermediate range attraction originates from scalar exchange
(o). As a direct consequence large scalar and vector mean fields are generated
in nuclear matter. However, since these fields are not observable, it is therefore
a fundamental questions of nuclear physics whether the appearance of large
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7. Summary and conclusions

scalar /vector fields is intimately connected to the meson exchange picture or if
it is a more general consequence of the vacuum NN interaction.

In order to address this question in a model independent way, the investi-
gations presented in this work are based on a broad set of modern high preci-
sion NN potentials: Bonn, CD-Bonn, Nijmegen I/II, Nijmegen93, Argonne v;s,
Reid93, Idaho N3LO and Viyy k. Except the fact that all these potentials fit NN
scattering data with high accuracy they are based partially on quite different
theoretical concepts. The one-boson-exchange potentials Bonn A, CD-Bonn,
Nijmegen are developed in the framework of the traditional meson exchange
picture, whereas the Argonne vig and Reid93 potentials emanate from a purely
phenomenological philosophy. Another class are effective low momentum inter-
actions represented in this thesis by the Idaho N3LO or Vi i potentials which
arise from QCD inspired effective field theory approaches. Though most of the
various approaches are not restricted by the requirement of covariance symme-
try arguments and NN scattering data enforce a certain spin-isospin operator
structure on which the approaches rely.

Since the question whether the preconditions for the appearance of the large
fields in matter is closely linked to a certain general relativistic structure of the
NN interaction in a first step the symmetries of the Lorentz group are restored by
mapping the various NN potentials on a covariant operator basis in Dirac space.
The comparison of the various approaches to the NN interaction at the level of
covariant amplitudes shows a remarkable agreement of the Lorentz structure
between the meson exchange potentials, the non-relativistic phenomenological
potentials and the EFT potentials. This could not have been expected a priori
since in the case of not covariantly formulated NN interactions the relativistic
structure imposed by the symmetries of the Lorentz group is hidden.

The projection procedure onto a covariant operator basis allows furthermore
to calculate the relativistic self-energy operator at tree level in nuclear matter.
This is a major result of the present thesis since this investigation shows that
the vacuum structure of the NN interaction enforces the existence of large scalar
and vector fields found to be a model independent fact, true for all types of in-
teractions which have been considered!. The magnitude of the tree-level results
for the self-energy fields is very similar to that predicted by relativistic mean
field phenomenology and relativistic many body calculations and moreover we
could show that the scale of these fields is set at tree level where higher-order
correlations, although important for nuclear binding, change the size of the fields
by less than 25%.

A certainly more direct connection to QCD is established by chiral EFT

!The accuracy of the applied projection technique has been tested by a comparison of the
single particle potential determined from the relativistic self-energy at tree level to that
obtained from a non-relativistic Hartree-Fock calculation where an excellent agreement
was found.
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where the NN interaction is derived from a systematic expansion of an effective
Lagrangian which respects the basic symmetries of QCD. Therefore chiral EFT
is considered as the exact mapping of QCD on effective hadronic degrees of
freedom in the non-perturbative regime. Subjecting the chiral N3LO Idaho
potential to the present projection scheme allowed to investigate the structure
of the self-energy. We found that scalar and vector mean fields of the same
sign and magnitude are generated in nuclear matter as by the meson exchange
or phenomenological potentials. These fields are generated by contact terms
which occur at next-to-leading order in the chiral expansion. These are four-
nucleon contact terms with two derivatives which generate the short-range spin-
orbit interaction. The strength of the corresponding low energy constants, in
particular those connected to the spin-orbit force, is dictated by P-wave NN
scattering data. Pion dynamics as well as LO and N3LO contacts provide only
corrections to the fields generated by the NLO contact terms. EFT is therefore
in perfect agreement with Dirac phenomenology where it is known since a long
time that the large scalar/vector fields are generated by the short-range vector
(w) and scalar (o) mesons which are connected intimately to the large spin-orbit
interaction. The conclusion is that this is a direct consequence of P-wave NN
scattering.

For future perspectives chiral EFT in combination with projection techniques
may allow to determine the relativistic anti-proton potential in matter in a
model independent way. Here the meson-exchange picture predicts a change in
sign of the vector field due to g-parity and hence an extremely deep attractive
potential. Such investigations in particular will be interesting in view of the
forthcoming anti-proton facilities, e.g. Panda at FAIR [156].

In order to estimate the effect from short-range correlations the EOS has
been determined for symmetric nuclear matter and for pure neutron matter,
respectively, applying chiral EFT in a Brueckner-Hartree-Fock calculation in
comparison to the tree level Hartree-Fock approximation. Though at NLO we
observe a saturating behavior within the Brueckner-Hartree-Fock approach (in
agreement with other chiral EF'T approaches [126, 128]) the binding energy as
well as the corresponding equilibrium density are overestimated in symmetric
nuclear matter. At N3LO strong over-binding due to the suppression of the
hard core by high-momentum cut-offs is observed. Therefore the inclusion of
higher order terms in density might open a promising perspective also for EFT
potentials when applied to the nuclear many-body problem.

The EOS for neutron matter appears to be unbound at NLO and N3*LO where
at the order N3LO the EOS agrees qualitatively with most of the state-of-the-art
many-body calculations.

The symmetry energy at NLO exhibits a down-bending behavior above the
saturation density as observed within the chiral in-medium approach of Ref. [128]
whereas at N3LO a good agreement is found when compared to the Argonne vig
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interaction within the same approach as well as to variational calculations [117].

In this thesis also nuclear bulk properties have been studied in the chiral
limit m, — 0 based on chiral effective field theory. This concerns both, the
EOS (in Hartree-Fock and Brueckner-Hartree-Fock) as well as scalar and vector
self-energy fields in matter. The essential ingredient in the present investigations
is the chiral EFT nuclear force where the implicit and explicit pion mass depen-
dence is known analytically up to NLO and allows a well defined extrapolation
in the pion mass [20].

We found that nuclear bulk properties remain fairly stable in the chiral limit.
The magnitude of the scalar and vector mean fields persists in the chiral limit
as well as for larger pion masses than the physical one. In the chiral limit
nuclear matter still appears to be bound at NLO though the binding energy and
saturation density are decreased. This is also true in case of an extrapolation to
larger pion masses than the physical where the binding energy and saturation
density are increased. Uncertainties due to not completely constrained LECs
have also been considered but a qualitative change concerning the properties of
the EOS in the chiral limit has not been found.

Like in OBE models and RMF theory, in EFT the reduction of the nucleon
mass M* = M + Y is driven by short-distance physics. Long-distance physics
from virtual pions, i.e. the non-analytic term in the expansion of oy gives a siz-
able contribution to the modification of the in-medium quark condensate. Such
contributions are, however, found to play only a minor role for the reduction of
the nucleon mass. Nevertheless, at moderate nuclear densities the N3LO scalar
and vector fields agree almost perfectly with the prediction from leading order
QCD sum rules.

Since this agreement is not understood in the present work the density de-
pendence of the chiral order parameter or scalar quark condensate in nuclear
matter has been calculated making use of the Hellmann-Feynman theorem which
relates the scalar quark condensate with the current quark mass derivative of
the nuclear energy density. In a first step the energy density was calculated
in Hartree-Fock approximation. However, to be more realistic and to include
also short range correlations also the Brueckner-Hartree-Fock approximation
has been applied. Since the quark mass dependence of the chiral NN interac-
tion is known up to NLO this approach is free from any ambiguities which arise
concerning the analytic and chiral structure of the potential. The quark mass
dependence of the pion-nucleon coupling constant g,y has thereby been taken
into account and was found to be important. Uncertainties due to unknown
low-energy constants entering the pion-nucleon coupling constant g,y do not
change the results qualitatively.

Higher order corrections from the nucleon kinetic and interaction energy be-
come significantly more important above saturation density when compared to
the model independent leading order prediction for the scalar quark condensate.
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They lead in general to a weaker reduction of the in-medium quark condensate
and do not indicate a complete restoration of chiral symmetry in the density
range where hadronic models are reliable. Since Hartree-Fock and Brueckner-
Hartree-Fock provide quantitatively comparable results one can conclude that
short-range correlations and quenching effects, both present in Brueckner theory;,
have only minor implications for the density dependence of the quark conden-
sate. The substantial contributions from nucleon interactions are due to low-
momentum virtual pions, i.e., OPE and TPE. Short-distance physics in terms
of contact terms and short-range correlations have no important impact on the
in-medium properties of the quark condensate.

The present formalism allows also to perform a consistent comparison of the
in-medium scalar condensate, derived directly from the Hellmann-Feynman the-
orem, and the effective nucleon mass M* = M + ¥ where the scalar self-energy
Y, enters. For the first time both quantities were derived from the same chiral
EFT interaction and at the same order. In general the effective nucleon mass
calculated in the many-body approach is already smaller (=~ 10% at pg) then
the model independent leading order prediction which is used in the QCD sum
rule approach.

Moreover, a decoupling of the effective nucleon mass and the scalar condensate
is observed in the present investigations. It turns out, that the reduction of the
two quantities, namely the in-medium condensate and the in-medium nucleon
mass, are of different physical origin. While the latter is generated dominantly
by short distance physics in terms of NLO contact interactions [62] virtual low-
momentum pions provide the essential contributions responsible for the change
of the in-medium scalar quark condensate.
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A. Notation and conventions

The system of units used in this work are the natural units:
h=c=1. (A.1)
The metric ¢g"” of Minkowski space is given by
" = gu = diag(+1,—1,—1,-1) . (A.2)
The covariant and contravariant vectors are then given as
ot =(t,x) , z,=(t,—x) (A.3)

and the partial derivatives correspondingly

0 0
oM =—=(0;,— 0,=—=(0 . A4
amu ( ty V) ) © Ot ( t’+v) ( )
For the Dirac matrices the representation
1 0 0 (o
P = , V= (A.5)
0 —1 —o, 0

is used where the oy (k = 1,2,3) are the conventional Pauli matrices

0 1 0 —2 1 0
o1 = y 09 — y 03 — . (A6)
10 v 0 0 —1

The defining property for the y-matrices to form a Clifford algebra is the anti-
commutation relation

['ﬂu%] =20 - (A7)

The free spinors for positive and negative energy states, u, and vy, forming
a basis are defined as in Ref. [157] where A is the helicity index. Conjugated
spinors are defined as

utg
vl . (A.8)
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I
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The positive energy spinors are normalized to one and therefore one obtains

Z@)\UA/ = 5)\)\/ (Ag)
WY
>y s (A.10)
U Y ux = 0N - .
AN M

Correspondingly one obtains expressions for the in-medium spinors u}

Z ﬂf\uj, = (5)\7)\/ (All)
AN
kr#
Z ﬁ;v“u}‘\, = 7*5)\’>\/ . (A]_Q)
AN M
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B. Momentum space OBEP

In this section the explicit expressions for the OBE potentials in the non-
relativistic representation in momentum space are displayed.

Exemplary the derivation for the scalar meson (e.g. o) exchange potential is
shown. Starting from the Lagrangian Eq. (3.2)

‘CNNS = —0s 1/7”#% (Bl)

the Born term Feynman amplitude is given by
—iAy(q',q) = w(d)rVur (@) Do(d — @) ta(—a)kPus(—q). (B.2)
where Kk, = gs1. The momentum transfer
k=q —q

and the centre-of-mass momentum is introduced

1

P=5(a+d).

Furthermore the momentum vector
n=qxq=Pxk

is defined.
The potential is then obtained by introducing the following approximations

e The meson propagators D,, Egs. (3.6, 3.7) are approximated by their
static form (—1)/(k* + m?)

e The energy E is expanded in k* and P?

Kk? Kk? P?
E(q) =t\/—+P>+ M2~ M+ — + —. B.3
(a) ¢4+ + T o (B.3)

e Terms to leading order in k*/M? and P?/M? are taken into account.
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The scalar exchange potential V* for ¢ and § mesons is then obtained by
evaluating i times the Feynman amplitude Eq. (B.2) where the vertex function
for particle ¢+ = 1 is given by

w(a")eNui(a) = —igaui(a’)voui(a)
o \/(E’+M)(E+M) L =o' [ 1
- M2 "E'+M) | oa
M
E M /! . /
— + 9 -ation (@’ x q) (B.4)
2M (E+ M)?
The following relation is used in the above derivation
(c-a)(oc-b)=a-b+io-(axb).
Applying the approximation £ ~ M one obtains
2 / ; /
—g q'-q+ioi-(q' xq)
Vik,P) = —=—(1-
) k2+m§< (E+M)? )
q'-q+ioy-(q’'xq)
x (11—
(E+ M)?
@ (P Wiio(a'xa)
k* + m2 4M?
P?—ik*+ios-(q' xq)
x (11—
4M?
B —g? L P2 N Kk? _2'(0'1—1-0'2)-(q’><q)jL
K+ m? 2M2  8M?2 4M?2
Keeping only the lowest order terms one arrives at
2 2 2 i
—Js P k 5(0’14‘0’2)'11
Vik,P)= ——=— 11— B.5
(k. P) k2+mg< IERETVER 202 (B:5)

As already described in chapter 3.2.1 the OBE potential can be written as

V=>Vi+V/7T1:73] O; . (B.6)
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The operators which are kept normally in this expansion are given by

O, =1,
Oy = 0,0,
O3 = (o1k)(o2k), (B.7)
O, = %(0'1+0'2)-n,
Os = (o1-n)(oyn).
Thus for the scalar meson exchange, i.e., o, d mesons, the potential forms V; are
given by
2 P2 k2
‘/?I-S — _ 5 gS 1 _ _|_
k“+m? 2M?  8M?
2
: g 1
Vi = —————— B.8
4 2M?k ? + m2 (B8
2
g 1
Ve X .
b 16M4 Kk ? 4 m2
The corresponding potential form for pseudo-scalar mesons m, 7 is
2
g 1
VP =B B.9
3 4M2 kZ + mlzjs ) ( )
and finally for the vector mesons w, p
3P2 k2 . 2 2 4
AR — {93 1+ _ _ggTq+gTQ}
k* +m?2 2M?  8M? 2M? 16 M?
‘/QV — _q2 VE’,V
1 1 99’
VY = —— v 2 _ } B.10
5T MK+ m? {(g YT (B-10)
1 1 2 3g4q>
Vv - - - = 2 9 . - T ]
4 M2k2+m3[3gV+ MIT TG0
1 1
Vy o= — 2+ 8¢y 841
5 161\421{2+mg[‘%Jr 9oyt + 591

In case of isovector meson exchange the potentials have to be multiplied by

T1°T2.

In case of the pseudo-scalar potential, e.g., one also finds, that on-shell, i.e., for

lal’
that the nonlocality of the full

potential off-shell.

|q|, the field-theoretic potential amplitude A,s equals VP*. That means,

field-theoretic Feynman amplitude influences the
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B. Momentum space OBEP

The resulting expressions for the OBE potentials, Eqs. (B.9-B.11), can now
analytically be Fourier transformed to obtain the potential in coordinate space
where the general form of the operators equivalent to the momentum operators,
Eq. (B.8) is displayed in chapter 3.2.1.
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C. Scalar quark condensate in
matter

The in-medium quark condensate can be related to the energy density £ in
nuclear matter by applying the Hellmann-Feynman theorem. The Hellmann-
Feynman theorem [158, 159] states that

d

WS HO) ) = B () (1)

if H()\) is a Hermitian operator that depends on a real parameter A and ()
is a normalized eigenvector of H(\) with eigenvalue E(\)

HN[pA) = EN[PA),  (@VpA) = 1. (C.2)
Rewriting Eq. (C.1) one then obtains

d

(YA ddAH(A)W()\)) = R WOHNA)) . (C.3)

Explicit chiral symmetry breaking in the QCD Hamiltonian density
HQCD =Ho+ Hn (04)

is induced by the current quark mass terms. H, denotes the chirally invariant
part and H,, is given by

Hopn = My, Gt + mgdd + - - - (C.5)

where m,, and my denote the up-, and downquark current quark masses and «
and d the corresponding fields, and --- are contributions from heavier quarks
which are neglected. Introducing gg = 1(au + dd) and my = (m, + my) and
dmg = mq — m, the current quark mass term H,, can be rewritten

1 _
Hum = 2m, Gq — iémq(ﬂu —dd) +--- (C.6)
where the isospin-breaking term is separated. Since good isospin is assumed the

isospin-breaking terms are neglected. Identifying A with the current quark mass
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C. Scalar quark condensate in matter

m, and H()\) with [d*z Hqcp in the Hellmann-Feynman theorem, Eq. (C.3),
one obtains

2m, ()| [ dalim) = mgi{w(m,)] [ Hocolv(me) . (©.)

Both side have been multiplied by m, in order to make them renormalization-
group invariant.

Now one considers two cases for which Eq. (C.7) can be evaluated, namely
|Y(my)) = |ps) and |¢p(m,)) = |0) in Eq. (C.7). |0) represents the vacuum state
and |pp) represents the ground state of nuclear matter with baryon density pp.
Taking the difference of these two cases one obtains

2y (G4)p — (1)) = mdi (Epn) — £(0)) . (C8)

The derivate is taken at fixed density. The short notation (€2),, = (ps|Q|ps)
and ()¢ = (0]€2|0) has been introduced, where (2 is an arbitrary operator.
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