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At terrestrial temperatures matter
has complex properties which are
likely to prove most difficult to un-
ravel; but is is reasonable to hope
that in a not too distant future we
shall be competent to understand
such a simple thing as a star.

Arthur Stanley Eddington
(1882-1944)

1
Introduction

1.1 Overview

1.1.1 Classical Stellar Oscillations

The study of how and why certain types of stars pulsate has a very long history. Effectively
it already started with Newton who studied the gravitational equilibrium of homogeneous
uniformly rotating bodies. Based on simple arguments he calculated that the Earth should
have the shape of an oblate spheroid with an ellipticity of ε ∼ 1/230. Interestingly enough
during these days there was a strong debate whether the Earth was actually oblate ac-
cording to Newton or rather prolate; a concept favoured by the Cassinis. Finally, geodetic
measurements in Lapland showed that Newton was right. Roughly 50 years later MacLaurin
generalized Newtons results for homogeneous bodies that rotate with a uniform angular ve-
locity around its symmetry axis; the corresponding equilibrium figures are called MacLaurin
spheroids. It is worth mentioning that the shape of a rotating body is not uniquely deter-
mined by its angular velocity. In fact for each rotation rate less than a certain maximum
there are two MacLaurin spheroids with different oblateness. A stability analysis showed
furthermore that if one slightly changes the shape of such an equilibrium configuration,
the spheroid will start to oscillate in various normal modes that, depending again on the
ellipticity, are either stable, become degenerate at a bifurcation point or are dynamically
unstable. In fact over nearly a century it was believed that MacLaurins solution were the
only possible figures of equilibrium and it was Jacobi who showed that there exists also a
class of stable triaxial configurations which solve the problem of uniformly rotating masses.
At a point along the MacLaurin sequence where the frequency of a normal mode becomes
zero this sequence bifurcates into the Jacobian sequence. For certain rotation rates there
are now three equilibrium configurations possible; two axisymmetric ones belonging to the
original class of MacLaurin and a third ellipsoid with three unequal axes belonging to the
Jacobi sequence. Other very important contributions in this area of research were made
by people like Poincaré, Dedekind, Riemann and Roche; see [1] as reference. Even though
rather limited for real physical applications it is already evident from the homogeneous
density case that the oscillation frequencies of perturbations depend on certain physical pa-
rameters like the rotation rate and the density; measuring these frequencies therefore reveals
important information about stellar parameters. Now moving on from this rather mathe-
matical approach to a more astrophysical one, it is well known that stars with a periodic
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CHAPTER 1. INTRODUCTION

change in brightness were an established phenomenon for centuries but only within the last
hundred years it became clear that these variations are due to intrinsic pulsations of the
stars themselves. These oscillations are generally accompanied by a corresponding change in
luminosity; the most famous examples are maybe the Cepheids and the RR Lyrae stars. It
was realized quite early (see [2]) that the oscillation periods of these classical variable stars
are approximately given by their dynamical timescale which again is proportional to the
mean density. There were theories that tried to explain the periodic variation in brightness
by an eclipsing binary system but it was Eddington [3] who successfully applied the idea of
a stellar pulsation to the problem.
Usually in order to solve the Newtonian equations of hydrodynamics one writes all back-
ground perturbations (usually velocity and pressure/density) as product of a radial function
and an angular part which is further decomposed into spherical harmonics. Their harmonic
indices l and m are used to parametrize the angular part while the radial part is labelled
according to the number of nodes n its oscillation pattern has in the stellar interior. In to-
days language one would say that indeed most of the Cepheid variables are pulsating in the
fundamental or the first overtone radial mode; i.e. (n = 0, 1; l = 0). Since radial pulsations
are more prominent observationally, quite naturally this was also the focus of the theoretical
research. Within the 1940s more and more calculations were also done for l "= 0-type of per-
turbations; Cowling [4] obtained analytical solutions for adiabatic nonradial oscillations of
polytropes and Ledoux [5] obtained the rotational splitting of mode frequencies for uniformly
rotating stars. The discovery of the famous solar five-minute oscillations in 1962 shows the
large variety of nonradial modes; in the case of the sun they consist of sound waves with
very high spherical harmonic degree (l = 200− 1000). Part of this richness is of course due
to the additional degree of freedom in the polar index l, another reason is that instead of
pressure being the only restoring force in the radial case now gravity enters the game as well.
It is quite easy to see why the gravitational attraction cannot be the restoring force for the
Cepheid stars. The change in the gravitational force is directed inwards if a star contracts
and outwards if it expands but in order to push the perturbations back to equilibrium one
would need it the other way round. So in general for a nonrotating Newtonian star there
exist exactly two types of oscillations connected to the two types of restoring force. Based
on the nomenclature originally invented by Cowling, we have

1. (p)ressure modes: These are acoustic waves, pretty much like sound waves in the air;
the propagation mechanism is the same. The amplitude of these modes is large in the
outer parts of the star but relatively small in the central regions. For increasing node
number n, its frequency tends to infinity while for a given n the frequency is higher
for modes with larger spherical polar index l and there are infinitely many of them.

2. (g)ravity modes: These modes are restored by gravity and acts in the following way.
If a fluid element is moved upwards and is still heavier than the displaced fluid then
buoyancy will push it back to its original position. Here we can again see the nonradial
character of g-modes. In order to move vertically, a fluid element has to displace matter
horizontally which introduces a nonradial perturbation component. The amplitude of
these modes is larger in the central part and relatively small towards the surface.
The mode frequencies are always smaller than in the pressure-driven case and with
increasing node number n it gets even smaller; there are also infinitely many of them.
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1.1. OVERVIEW

The fundamental or f-mode has an intermediate character; it has no radial nodes and its
frequency is higher than the first g-mode but lower than the first p-mode.
When rotation is included, two kinds of fictitious forces have to be added to the hydrody-
namical equations; the centrifugal and the Coriolis force. The first one may be written as a
potential force an can be treated together with the gravitational potential. This new force
will distort the spherical shape of the star and therefore lead to the question if the decom-
position into spherical harmonics is still valid. However, for most stars the deviation from
spherical symmetry is practically negligible so using the Ylm is still a good approximation.
This question will be more difficult to answer when we are talking about rapidly rotating
neutron stars; more on that issue later. Apart from the minimal oblateness, the centrifugal
force will also alter the frequencies of the f-, p- and g-mode but now new class of oscillation
will follow from this force. This treatment is not possible with the Coriolis force though. It
will also alter the frequencies of the already established modes but will also introduce a new
class of oscillations.

3. (i)nertial modes: These modes are pushed back to equilibrium by the Coriolis force
and therefore exist only in rotating stars; their frequency degenerates in the nonro-
tating case and is otherwise proportional to the angular velocity of the star, see [6]
for example. They are mainly velocity perturbations and bear similarities to Rossby-
waves which appear in the atmosphere and the oceans of the Earth. Non-axisymmetric
inertial modes are therefore also called r-modes.

This last class also differs in another aspect from oscillations in nonrotating stars. Based
on the spherical decomposition of the perturbation quantities one may ask how they behave
under a space reflection around the origin, i.e. r → r, θ → π − θ and ϕ → π + ϕ. Polar or
even parity harmonics change sign like (−1)l while axial or odd parity harmonics transform
according to (−1)l+1. While now p- and g-modes are of polar parity, the inertial modes
are of odd parity. Therefore in the nonrotating Newtonian case there are no axial modes
at all; it is rotation that adds the inertial modes as odd parity solution. In fact, this is
not strictly true; if one considers a solid crust even in the nonrotating case there exist axial
torsional modes (see [7]) but we will not consider them here. As some kind of closing remark
about the rough sketch on stellar pulsation theory presented so far one may say that the
study of star oscillations has turned out to be an outstandingly useful tool for investigating
the internal structure of stars. The most famous example is of course our Sun. Nowadays
thousands of individual modes can be observed and besides the detection of neutrinos it is
the only possibility to probe the Solar interior. Pretty much like seismology on Earth can
tell us about the various layers of the Earth this relatively new field of “helioseismology”
helps to understand the composition of the Sun.

1.1.2 Relativistic Stellar Oscillations

When we move from ordinary stars to the final stages of stellar evolution the natural ques-
tion is how one describes oscillations of the most compact objects known in the Universe,
black holes and neutron stars. At such extreme conditions, Newtonian theory fails and has
to be replaced by General Relativity. We will not discuss black hole perturbation theory
here which was initiated by Regge and Wheeler in the late 1950s and continued by Zerilli ten

9



CHAPTER 1. INTRODUCTION

years later; for a review see [8], [9]. Instead we focus on the study oscillations of nonrotat-
ing relativistic stars which started in the radial case with investigations by Chandrasekhar
in 1964 [10] and were extended to the nonradial case in 1967 by a series of papers from
Thorne and collaborators, see [11], [12], [13], [14], where they wanted to extend the well
established Newtonian results to General Relativity. Since Einstein’s theory predicts the ex-
istence of gravitational waves which are generated by periodic deformations of the compact
star, a new dissipation mechanism occurred which removes energy from the perturbation
and thereby damps the mode. Within the next 20 years or so the spacetime was thought to
be a rather passive actor in this new field of research, only used as a medium on which the
gravitational waves propagate. The relativistic counterparts of Newtonian polar perturba-
tions were found, their frequencies were computed and the only additional feature was the
calculation of damping times due to emission of gravitational waves. In 1986, Kokkotas and
Schutz [15] constructed a simple toy model which showed the existence of a new family of
modes, the w-modes and subsequent work [16], [17] confirmed their existence. In contrast
to previously known fluid modes this new family hardly excite any fluid motion but it is the
spacetime that now takes on a more active role and starts oscillating. Moreover they exist
for both polar and axial parity so in contrast to Newtonian results for perfect fluids, also
axial perturbations are possible for nonrotating stars. Soon, various sub-families of space-
time modes were found; some of them have very high damping rates, others only exist for
very compact objects, see [18] for a survey. For a typical neutron star, p-mode frequencies
are about 4 − 7 kHz, the g-modes are in a regime below several 100 Hz and the classical
w-modes can be found at around 5− 10 kHz.
Rotation affects the oscillation frequencies of relativistic stars in nearly the same manner
as in classical Newtonian stars. Analogous to the Zeeman splitting in quantum mechanics
the existence of a preferred direction in space (in our case the rotation axis of the compact
object) leads to breaking of the degeneracy between counter- and corotating oscillations.
Each nonrotating mode of index l is split into 2l + 1 different modes which in turn will
affect their frequencies as well. Generally as seen from an inertial observer, frequencies of
corotating modes will increase while those of counterrotating modes decrease with higher
rotation rate. Additionally there is no clear distinction any longer between polar and axial
perturbation; each ’polar’ mode (i.e. polar in the limit of no rotation) is a sum of purely
polar and axial terms and vice versa.
Another important effect of including rotation are rotational instabilities. While purely aca-
demic for ordinary stars they are extremely likely for compact objects like neutron stars. In
the very simple case of a homogeneous Newtonian MacLaurin spheroid one can show ana-
lytically that a dynamical instability will set in once the ellipticity reaches a value of ∼ 0.953
or equivalently at a ratio of rotational energy to gravitational energy T/W ∼ 0.27 (see [1]
for example). This instability will deform the star into a bar-like shape, therefore trans-
forming it into a very good source of gravitational radiation. Fully relativistic simulations
confirm this scenario with only a minor correction to T/W , see [19]. Another generic nonax-
isymmetric instability in homogeneous relativistic bodies was found by Chandrasekhar [20]
and later generalized to include all rotating, self-gravitating perfect fluids by Friedman and
Schutz [21]; therefore called CFS-instability. It works with all dissipative mechanisms, so
with gravitational waves as well as viscosity. Qualitatively, a mode which is seen retrograde
in a coordinate system comoving with the rotating star carries negative angular momentum
which is easy to see because the perturbed star apparently has less angular momentum than
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the unperturbed one. If the angular velocity of the star is high enough, this mode will be
seen prograde for a distant observer in an inertial frame. It hence carries away positive an-
gular momentum, decreasing the negative angular momentum of the mode even more. The
critical value of T/W for the l = m = 2 fundamental polar mode on a polytropic background
is roughly 0.14 and nearly independent of the polytropic index; see for example [22, 23]. This
value for T/W already corresponds to angular velocities near the mass-shedding limit of a
typical neutron star which limits the detection probability to a certain value. Most of todays
known neutron stars do not come even close to this limit; the one with the fastest rotation
rate (as of 2007) spins at about 1.1 kHz [24] which is only something like 30% of the Kepler
limit for a typical neutron star and nearly all of the more than 700 discovered pulsars so far
have rotation frequencies in the range ∼ 1−700 Hz. From this point of view it would be nice
to have an instability operating at very low rotation rate and indeed this is exactly what
happens to r-modes in rotating neutron stars. These axial oscillations are unstable via the
CFS-mechanism at all rotation rates which was first shown by Andersson [25] and Friedman,
Morsink [26] for slowly rotating stars. Due to its generic nature, the r-mode instability was
originally thought to be a very promising, persistent source of gravitational waves. But in
the meantime more sophisticated and thorough studies which also included the influence of
magnetic fields and bulk viscosity have turned the tide since both effects are able to prevent
the growth of the instability. Still, r-modes may play an important role in limiting the spin
of young neutron stars but further investigations are needed; more details specifically on
r-modes can be found in [27] for example.

1.1.3 Gravitational Wave Asteroseismology

This richness in oscillation modes of relativistic stars may one day finally lead to what is
generally called gravitational wave asteroseismology, i.e. similar to helioseismology in the
case of the Sun to study internal properties of compact objects through the interpretation of
their pulsations. Now all information that is collected from solar oscillations is based on the
electromagnetic spectrum; the motion of hot gas is monitored by the Doppler shift in spec-
tral lines of hydrogen. Seismology of compact object will rely on a type of radiation that is
generated in a very different way. While electromagnetic radiation is produced incoherently
by accelerated charged particles, the bulk motion of nonaxisymmetric matter distributions
will lead to perturbations in the fabrics of spacetime that propagate with the speed of light;
these are the gravitational waves.
This direct consequence of Einstein’s Theory of General Relativity is one of the very few
predictions that has not been directly verified yet. An indirect proof of their existence is the
energy loss in compact binary systems, resulting in a decrease of separation between the two
stars. This effects is being observed now for over 30 years in the pulsar system PSR1913+16
and the relative difference between theory and experiment are ∼ 10−3 [28, 29]; eventually
Hulse and Taylor were awarded with the Nobel Prize in 1993 for its discovery. Still the first
direct proof is missing and this is mostly due to the fact that gravitational radiation is ex-
tremely weak. Since matter couples very poorly to spacetime one needs enormous amounts
of high density matter moving with very large velocities in order to produce a considerably
amount of gravitational waves; these conditions are usually only met by neutron stars. And
while electromagnetic waves are easily scattered and absorbed during their trip from source
to detector, the perturbations of spacetime travel through the whole universe virtually un-
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CHAPTER 1. INTRODUCTION

affected. This leaves them in pristine condition, conserving the imprint of its generation.
However, this rises the question how one would be able to detect those faint gravitational
wave signals. General Relativity predicts that perturbations in spacetime will exert tidal
forces on freely falling test particles which results in a periodic stretching and squeezing of its
spatial separation in a plane perpendicular to the waves propagation direction. The strength
of the wave is then usually quantified as relative change in the separation, i.e. h = ∆l/l.
Historically the first attempts to use this feature for detector design were made by We-
ber in the 1960s. He constructed resonant bar detectors where piezoelectric sensors would
monitor the deformation due to gravitational waves. Currently five such devices are in op-
eration around the world (ALLEGRO, AURIGA, EXPLORER, NAUTILUS, NIOBE) with
sensitivities of around 10−19 in a frequency band of 700 − 900 Hz; this means that within
that range a relative change in length of h > 10−19 can be detected (see [30] for a general
overview). There is yet another class of detectors which use laser interferometry to monitor
the distance of test masses. Pretty much like the original Michelson-Morley experiment a
change in the arm length of the interferometer induces a phase shift on the light that travels
between these arms. When they interfere, this phase shift leads to an offset in the corre-
sponding fringe pattern. Several of such detectors are operating worldwide (LIGO, VIRGO,
GEO600, TAMA300) within a frequency range of about 10 − 1000 Hz, limited by seismic
noise in the low frequency regime and by photon shot noise for high frequencies. Their sensi-
tivity is around 10−21 and further improvements for the second generation of interferometric
detectors are on their way. Even a laser interferometer in outer space with armlengths of
several million kilometers is planned (LISA) and first test missions are scheduled for the end
of 2009.
With these advanced detectors it should finally be possible to verify a central prediction of
general relativity directly and in the case of neutron stars this may lead to a whole bunch
of possibilities for probing their internal structure. A first theoretical step in this direction
has been done by Andersson and Kokkotas in 1996 [31]; see also [32]. There they computed
frequencies and damping times for various oscillation modes and twelve different equations
of state (EoS) and showed how the detection of corresponding gravitational wave signals
can be used to accurately calculate the mass and the radius of the neutron star. From these
measurements one will be able to actually deduce the correct form of the EoS at supernu-
clear densities; a problem that has not yet been solved due to the whole plethora of different
theories in this extreme regime of nuclear physics. Of course there are several levels of so-
phistication; a lot of calculations are performed for nonrotating, perfect fluid stars. But we
now that neutron stars can rotate rapidly (both uniform and differential), they have strong
magnetic fields, most likely a solid crust followed by an intermediate superfluid region and
maybe parts of exotic matter in the central regions. As we progress and include more and
more of this realistic physics in our theoretical models of neutron star pulsations we will
be able to extract even more information from this probably most extreme objects in the
universe.

1.2 Methodology

This PhD-thesis will complement a series of projects at our Institute; all of them dealing
with neutron star oscillations studied within certain approximations. As the full non-linear
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equations of general relativity are very difficult to solve there are several possibilities to
simplify the initial setup of the problem. Linear perturbation theory by itself is already
an approximation where one neglects all possible nonlinear influences; something which is
justified and quite accurate as long as the perturbation of the time-independent equilibrium
configuration is kept small. In the case of neutron star oscillations the equilibrium is given
by a stationary (nonrotating or rotating) compact objects and the perturbations are given
by small deviations of the velocity and pressure/density from their values in the stationary
case. Even then one can simplify the problem considerably more. The most common
approximations are

1. The Cowling-approximation: Already introduced by Cowling in 1941 for Newtonian
stars, this approximation neglects the perturbation of the gravitational potential. Each
change in pressure is connected to a corresponding change in density which then will
alter the gravitational potential that enters the hydrodynamic equation of motion.
Translated into general relativistic terms it means that one completely neglects the
coupling of the matter perturbations to the spacetime. Since the metric of the sta-
tionary background is also time-independent, this means for example that one will not
be able to generate gravitational waves within this approximation. The frequencies of
p- and g-modes may slightly be different from their exact value, depending on their
radial and angular behaviour, but one will never see w-modes.

2. The slow-rotation approximation: As already described earlier, rotation will lead to a
deviation from the spherical symmetry of the star due to the centrifugal force. Since
this is an O(Ω2)-effect, it will become more dominant at higher rotation rates; for low
angular velocities the shape of the compact object can still be considered as nearly
spherical. In terms of general relativity again, rotation leads to an off-diagonal element
in the line element that can be associated with the dragging of inertial frames in the
direction of rotation. If this frame-dragging is small, so are deviations from spherical
symmetry and nearly all mathematical and numerical tools originally developed for
nonrotating stars can also be applied in this case. However, one won’t get accurate
results for rapidly rotating objects.

3. The Inverse-Cowling–approximation: Here, the perturbations of the fluid are com-
pletely neglected and only the metric perturbations are evolved; see [33] for example.
Since most spacetime modes couple rather weakly to matter this is actually a quite
good approximation if one only is interested in the various w-modes. Of course one
won’t see any fluid modes then.

There were already a couple of projects within the SFB/TR7 ’Gravitational Wave Astron-
omy’ founded in 2003 from active and former members of the theoretical astrophysics group
in Tübingen which are shortly mentioned here. Kastaun wrote a general relativistic hydrody-
namics code [34, 35, 36] and tested it successfully on neutron star oscillations in the Cowling
approximation. Boutloukos used linear perturbation theory and the Cowling approxima-
tion to recast the oscillation equations into an eigenvalue problem with mode frequencies as
eigenvalues and eigenfunctions as corresponding eigenvectors; see [37, 38]. Méndez worked
in the slow-rotation approximation and linear theory to perform time-evolution of initial
data and computed successfully mode frequencies and gravitational wave forms [39].
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The work in this thesis can be described to be the time-evolution version of [37]. We will
also use linear perturbation theory and the Cowling approximation but instead of assuming
a harmonic time dependence in order to get rid of any temporal dependencies, the original
linearized evolution equations have to be solved with various initial data. For obtaining
mode frequencies and eigenfunctions, a spectral analysis has to be performed afterwards.
It is also possible to excite only specific modes of oscillation with a method called mode
recycling [40] which is also feasible with the code presented here. Since we are not working
in the slow-rotation approximation where one neglects deviations from spherical symmetry,
this is a two-dimensional problem to solve. It not only increases the computational costs
but also requires a careful and proper treatment of the boundaries in order to be successful.
In the second chapter, the theoretical background of this work will be presented. We will
shortly review the linear perturbation theory of the Einstein equations and introduce the
Cowling approximation, which is one of several ways to simplify the problem. We then turn
to the specific system of equations that are used here to study small oscillations on neutron
stars, discuss some of their properties and derive the appropriate boundary conditions.
The third chapter deals with the numerical treatment of the time-evolution equations and
will also describe some of the difficulties that arose during its implementation.
In the fourth chapter, we will present the obtained new results and compare it whenever
possible with already published studies by other groups.
Appendix A will prove some of the statements that will be made in the second chapter about
the properties of our system of partial differential equations.
In Appendix B follows a short description about the several computer programs used in this
thesis; although the source code is supplied with many comments this will serve as some
kind of official documentation.

1.3 Conventions

• We use the sum convention of Einstein. Latin indices denote spatial components and
run from 1 to 3, greek indices denote spacetime components and run from 0 to 3 where
the 0-component is the time component

• The signature of the metric is (−,+,+,+); that is timelike vectors have negative norm.

• Unless otherwise stated, units are used in which G = c = 1.

• Covariant derivatives of an arbitrary quantity f with respect to xµ are written as Dµf
or f;µ and partial derivatives are abbreviated by ∂µf or f,µ.

• Scalar products like gµνuµuν sometimes are written as 〈u,u〉.

• We will assume a basic knowledge of General Relativity, see for example [41], [42].
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2
The Perturbation Equations

In this chapter we will derive the time evolution equations for small perturbations on compact
objects. The full nonlinear problem with the inclusion of all general-relativistic effects
is very difficult to be treated so as a first step towards this ultimate goal we will study
these perturbations under certain simplifying approximations. Nevertheless, we also want
to present at least a slight glimpse of the whole picture and how well our assumptions fit in
there.

2.1 The 3+1 Split in General Relativity

The field equations of General Relativity

Gµν = 8π Tµν (2.1)

where Gµν is the Einstein tensor and Tµν represents the mass- and energy-content of the
spacetime, in this particular form are not very well suited for a numerical implementation.
They consist of 10 equations where 6 of them are dynamical equations of second order in
time and 4 are constraint equations with no time derivatives at all. Following the work
of Arnowitt, Deser and Misner (see [43]), we want to recast equations (2.1) into a Cauchy
initial value problem of first order in time. For this we will need some prerequisites:

1. On a given a Riemannian manifold M, we define a C∞-function f : M→ R that has
the following properties

• The differential df of this function is defined everywhere onM and never vanishes
there.

• The surfaces Nt := {x ∈M|f(x) = t} are spacelike hypersurfaces.

2. There exists a timelike vector field ξ that also never vanishes and for which

df(ξ) = 1

The rate of change of f along ξ therefore is constant which allows us to interpret f as a
time coordinate when moving along the flow of ξ. We therefore choose a coordinate system
with ∂0 = ξ and {∂1, ∂2, ∂3} an arbitrary orthonormal coordinate system on Nt.
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CHAPTER 2. THE PERTURBATION EQUATIONS

Since the hypersurfaces Nt are defined by relations of the form f = const, the vector field
orthonormal to that hypersurface is given by

n =
∇f

||∇f ||

We now decompose the timelike vector field ξ into a component parallel to n and another
one perpendicular to the orthonormal on Nt,

ξ = αn + β with 〈β,n〉 = 0

Here, the lapse-function α and the shift vector β have been introduced. The metric gµν of
this spacetime foliation is given by the scalar product of its basis vectors gµν = 〈∂µ, ∂ν〉.
More specifically, we have

g00 = 〈αn + β, αn + β〉 = −α2 + βkβk

g0i = βi = gi0

gij = γij

where γij is the 3-metric on the hypersurface Nt. We arrive at the standard form of the
metric in the ADM formalism

ds2 = γij

(
dxi + βidt

) (
dxj + βjdt

)
− α2dt2 ,

see also Figure 2.1 for the geometrical meaning of the 3 + 1-variables.

Nt

Nt+dt

Figure 2.1: lapse function α and shift-vector β connecting two hypersurfaces; figure used
with permission from [39]

The intrinsic geometry of the three-dimensional spacelike hypersurfaces is entirely deter-
mined by the 3-metric γij . But there is still the freedom on how these hypersurfaces are
embedded in the full four-dimensional spacetime, so we will need another quantity, the ex-
trinsic curvature, that determines exactly this embedding. If we have two vector fields X
and Y on Nt, the extrinsic curvature is defined as

K(X,Y) := 〈DXn,Y〉
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2.1. THE 3+1 SPLIT IN GENERAL RELATIVITY

The Einstein equations (2.1) can then be split according to

G(n,n) = 8π T(n,n)
G(n,X) = 8π T(n,X)
G(X,Y) = 8π T(X,Y)

The first two equations are time independent and represent constraint equations that have to
be fulfilled at any hypersurface. Once satisfied on the initial hypersurface, the Bianchi iden-
tities ensure that they will be satisfied throughout the evolution (of course only analytically
and in general not numerically). They can be written as

SN −KijK
ij + K2 = 16π Tµνnµnν (Hamiltonian Constraint) (2.2)

DiK −DjK
j
i = 8π Tµin

µ (Momentum Constraint) (2.3)

where SN is the scalar curvature on the hypersurface and K = γijKij .
The constraint equations are complemented by the actual dynamical evolution equations
which describe how 3-metric and extrinsic curvature change when going from one hypersur-
face Nt to another one Nt+dt.

∂tγij = −2αKij + ∂kγijβ
k + γki∂jβ

k + γkj∂iβ
k (2.4)

∂tKij = α

[
RN

ij + KKij − 2KikKk
j − 8π

(
Tij −

1
2
Tγij

)]
(2.5)

−DiDjα + ∂kKijβ
k + Kik∂jβ

k + Kjk∂iβ
k

where RN
ij is the Ricci-tensor on Nt and T = γijT ij . This is the final first-order evolution

system for the geometric variables γij and Kij in the ADM formalism. They are updated
according to equations (2.4) and (2.5). But the matter variables which appear there have
to be updated as well and this is done by the conservation law of energy-momentum

DµTµ
ν = 0 (2.6)

which consists of four first-order equations for the independent variables in Tµν .
The system of equations (2.2) - (2.6) is still very difficult to numerically evolve in time. In
some cases it is possible to study the evolution of this system as small perturbations on a
stationary background. In this thesis we want to look at oscillations of neutron stars and as
long as these oscillations remain finite and small we can neglect the nonlinear characteristics
of the original Einstein equations and work within linear perturbation theory. Of course
this decomposition is not always possible; if one wants to study for example the merger
of binary neutron stars, one cannot separate the problem into a stationary part and small
perturbations on this stationary background. In this case one has to deal with the original
system (2.2) - (2.6).
In the next sections we will introduce the notions of linear perturbation theory and we will
see how the Cowling approximation simplifies our problem even more.
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CHAPTER 2. THE PERTURBATION EQUATIONS

2.2 Linear Perturbation Theory

We want to perturb the Einstein equations in their ADM form; this means that we will add
“small” auxiliary contributions to our variables and write them as

γ̄ij = γij + hij with |hij |) |γij | (2.7)
K̄ij = Kij + kij with |kij |)| Kij |
β̄i = βi + δβi with |δβi|)| βi|
ᾱ = α + δα with |δα|)| α| ,

(2.8)

and all other quantities accordingly. With this approach we substitute into the system of
equations (2.2) - (2.6) and include only the terms that are of linear order on the perturbation
variables; higher order terms are discarded. We will end up with a linear system of equations
which is valid for small deviations from equilibrium.
First, we agree to raise and lower the indices of our perturbations with the unperturbed
3-metric, so we have for example

δβi = γijβj and δβi = γijδβ
j

It follows directly, that we have
γ̄ij = γij − hij

because only with this choice it is γ̄ij γ̄jk = δi
k in linear approximation. This also means that

the components hij cannot be components of a tensor. Also lowering and raising indices
becomes more complicated. The covariant components of the shift vector β̄ are for example
given by

β̄i = γ̄ij β̄j =
(
γij − hij

)
(βj + δβj)

= βi + δβi − hijβj

We will also need the perturbed Christoffel symbols in linear order. It is

Γ̄k
ij = Γk

ij + δΓk
ij =

1
2
γ̄km(γ̄mj,i + γ̄mi,j − γ̄ij,m)

and this leads to
δΓk

ij =
1
2
γkm(hmj,i + hmi,j − hij,m − 2Γl

ijhlm) (2.9)

Similarly the perturbed Ricci-Tensor on the hypersurface is given by

δRij = δΓk
ij,k − δΓk

ik,j + Γl
ijδΓ

k
lk + Γk

lkδΓl
ij − Γl

ikδΓk
lj − Γk

ljδΓ
l
ik (2.10)

We now can perturb the ADM equations. As one can see already from the preparatory work
we have done until now, although we will arrive at linear equations for the perturbation
variables, these equations tend to become quite long.
The evolution equation for the 3-metric in its perturbed form is

∂tγ̄ij = −2ᾱK̄ij + ∂kγ̄ij β̄
k + γ̄ki∂j β̄

k + γ̄kj∂iβ̄
k
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2.2. LINEAR PERTURBATION THEORY

We insert (2.7) and find

∂thij = −2αkij + ∂kγijδβ
k + γki∂jδβ

k + γkj∂iδβ
k − 2δαKij − ∂kγijh

krβr

−γki∂j

(
hkrβr

)
− γkj∂i

(
hkrβr

)
+ ∂khijβ

k + hki∂jβ
k + hkj∂iβ

k

Luckily, at least this expression can be simplified and after some lengthy calculation one
arrives at

∂thij = ∂iδβj + ∂jδβi − 2
(
αkij + δαKij + Γk

ijδβk + δΓk
ijβk

)
(2.11)

Unfortunately, the evolution equation for the perturbed extrinsic curvature cannot be brought
into a similar short form. A straightforward calculation leads to

∂tkij = ∂kKijδβ
k − hkl∂kKijβl + ∂kkijβ

k + Kik∂jδβ
k − hklKik∂jβl (2.12)

+kik∂jβ
k + Kjk∂iδβ

k − hklKjk∂iβl + kjk∂iβ
k − ∂i∂jδα + Γl

ij∂lδα

+δΓl
ij∂lα + α

(
δRij + Kkij + kKij − hrsKrsKij − 2kk

j Kik

+2hklKljKik − 2Kk
j kik + 8π (δTij − 1/2 (T hij + tγij − hrsTrsγij))

)

+δα
(
Rij + KKij − 2Kk

j Kik + 8π (Tij − 1/2 Tγij)
)

where δTij is the perturbation of the energy-momentum–tensor and furthermore t = γijδT ij

and k = γijkij . The constraint equations also need to be linearized but we will skip it here
since we will not need it in this work. As already mentioned earlier, one now has linear
evolution equations which, in their general form (2.11) and (2.12), have a quite complicated
form. They can be simplified once a specific background metric and energy-momentum–
tensor has been chosen. For example in the case of a nonrotating neutron star described
by a perfect fluid both γij and Tij are diagonal, so many terms in (2.11) and (2.12) are
vanishing identically. Additionally, the gauge freedom in General Relativity allows also to
set several components of hij and kij to zero, depending on the specific gauge one chooses.
Still, the resulting equations are very difficult to solve.
We derived the linearized evolution equations for the geometric quantities, now we have to
do the same for the matter variables. For this we will rewrite the unperturbed version of
(2.6) to

DµTµ
ν = Dµ(gµκTκν) = gµκDµTκν = 0

The perturbed version of this relationship is therefore

D̄µT̄µ
ν = (gµκ − hµκ)((Tκν + δTκν),µ − (Γλ

κµ + δΓλ
κµ)(Tλν + δTλν)

−(Γλ
νµ + δΓλ

νµ)(Tκλ + δTκλ)) = 0

The now well-known procedure of neglecting all terms higher than first order finally leads
to

gµκ(δTκν,µ − Γλ
κµδTλν − Γλ

µνδTκλ − δΓλ
κµTλν − δΓλ

µνTκλ) (2.13)

−hµκ(Tκν,µ − Γλ
κµTλν − Γλ

µνTκλ) = 0

In linear perturbation theory one thus has to solve equations (2.11), (2.12) and (2.13) in
an appropriate gauge and preserve the two additional constraints for energy-density and
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momentum on every hypersurface Nt.
In the ADM-formalism, the gauge freedom is provided by the lapse-function α and the
shift-vector β, i.e. since the Einstein equations are covariant it is up to us to find the
most convenient way of foliating spacetime (see Figure 2.1) so that the problem we want
to study takes the simplest form. On the other hand, making a bad choice for α and β
will easily lead to instabilities which are related to the poor choice of the coordinates on
the various hypersurfaces. Depending on the specific problem setup, i.e. radial or nonradial
perturbations in the case of neutron star oscillations, one can use this gauge freedom either
to set lapse and shift directly to zero or to impose certain conditions on them which remove
particular problematic terms in the equations, see [44] for an application to nonrotating
stars.

2.3 The Cowling Approximation

This approximation was introduced by Cowling (see [4]), following Emden [45] and Rosse-
land [46] during the study of oscillating polytropic stars and there the variations of the
gravitational potential were neglected. The justification for this approach was, that if the
mass of the stellar model is concentrated towards the center then density variations will
not produce large variations of the gravitational potential in the outer regions of the star
which have a large influence on the mode frequencies. It is also a good approximation for
high order modes since positive and negative density variations cancel out the perturbation
of the gravitational potential. In addition it reduces the number of equations one has to
deal with in Newtonian theory (this was the original reason for its introduction) and even
more in General Relativity. In fact if we look at the perturbed Poisson equation for the
gravitational potential

∇2δΦ =4 πGδρ

and decompose the perturbations according to

δρ(r, θ,ϕ, t) =
√

4πρ̃(r)Y l
m(θ,ϕ)e−iωt and δΦ(r, θ,ϕ, t) =

√
4πΦ̃(r)Y l

m(θ,ϕ)e−iωt

this will lead to
1
r2

d

dr

(
r2 dΦ̃

dr

)
− l(l + 1)

r2
Φ̃ =4 πGρ̃

The solution to this equation is given by

Φ̃(r) =
−4πG

2l + 1

[
1

rl+1

∫ r

0
ρ̃(r′)r′l+2dr′ + rl

∫ R

r

ρ̃(r′)
r′l−1

dr′
]

(2.14)

From equation (2.14) one can deduce that |Φ̃| is small compared to |ρ̃| if either l is large or
the radial order n is large since then Φ̃ is a sum of integrals over rapidly varying functions
which reduce the absolute value of the perturbed potential.
The validity of the relativistic Cowling approximation first introduced by McDermott (see
[47]) depends very strong on the specific family of modes under study. As it has been shown
in [48], many of the conclusions from the Newtonian Cowling approximation are also valid
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in its relativistic counterpart. We therefore expect good agreement with a fully relativistic
treatment in the case of large radial node numbers and high l-values of the spherical decom-
position as it has been shown in [49], [50]. The errors are around 10% for low mode numbers
and decrease monotonically for higher modes. Also g-modes can be computed very accu-
rately within this approximation. Since r-modes are mainly perturbations of the azimuthal
fluid-velocity, we also expect the Cowling approximation to provide valid results there. On
the other hand as it has been shown in [51] and [52], the frequencies for the fundamental
mode and their first overtones obtained by a full-relativistic treatment differ very strong
from their counterparts when neglecting the metric perturbations.
Let us now examine what the Cowling approximation means to the ADM form of the lin-
earized Einstein equations. Since the spacetime geometry described by the background
metric in this case doesn’t change in time, we neither have to deal with the evolution equa-
tions for 3-metric and extrinsic curvature nor the constraint equations on every hypersurface.
Only the four equations governing the motion of the fluid (i.e. (2.13)) remain and in fact
become even shorter because we can set δΓλ

κµ = hµκ = 0 there. This leads to the final
system to solve in this thesis.

gµκ(∂µδTκν − Γλ
κµδTλν − Γλ

µνδTκλ) = 0 (2.15)

As one can see, the relativistic Cowling approximation has greatly reduced the number
of equations to solve. Instead of dealing with a complicated set of hyperbolic differential
equations and elliptic constraints, four fluid evolution equations need to be considered. Of
course, we will not have any emission of gravitational waves in a self-consistent way, so
energy and momentum conservation is no longer fulfilled here but as pointed out earlier the
various mode characteristics will still be apparent. Of course one can still make a rough
ad-hoc estimate about the amount of gravitational radiation emitted via the quadrupole
formula but keep in mind that this is not a direct consequence of the dynamical evolution
equations in the Cowling approximation.
For a numerical integration of equations (2.15), we need to specify a coordinate system in
which we have to write down the metric and we have to choose the energy-momentum–tensor
for our problem. Both will be discussed in the following section.

2.4 The Metric and the Energy-Momentum–Tensor

In the simplest case of a nonrotating spherical object in a spherical coordinate system
(r, θ,φ), the line-element takes the form

ds2 = e2λ(r)dr2 + r2
(
dθ2 + r2 sin2 θdφ2

)
− e2ν(r)dt2

with the two unknown metric potentials λ(r) and ν(r). For the energy-momentum–tensor
we will neglect the effects of non-isotropic stresses, viscosity and heat conduction and use
the perfect fluid representation

Tµν = (ε + p)uµuν + pgµν (2.16)

Here ε and p are the energy density and the pressure and uµ is the already familiar 4-velocity
of the object, which in the nonrotating case only has a nonvanishing 0-component u0 = e−ν .
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When put into the Einstein equations this leads to the well-known TOV-equations

∂rλ =
1− e2λ

r
+ 4πre2λε

∂rν =
e2λ − 1

2r
+ 4πre2λp

∂rp = −∂rν(ε + p)

These are three equations for the four unknowns ν, µ, ε and p. The last relationship needed
to make this problem well-posed is the Equation of State (EoS), which we will assume to
be of barotropic form, i.e. the pressure depends only on the energy density p = p(ε) and
not on additional thermodynamical variables like entropy or temperature etc. The simplest
barotropic equation of state is a polytropic one and has the form

p = Kρ1+1/N (2.17)
ε = ρ + Np

where ρ is the rest-mass density, K is the polytropic constant used for normalization and
N is the polytropic index that determines whether a specific EoS is considered as soft (this
means that in equilibrium gravity can compress the matter to small radii) or stiff (the
pressure balances gravity already at large radii). The TOV-equations then are solved from
the center of the star to the point where the pressure vanishes and this point defines the
stellar radius.
A more difficult problem is the accurate numerical determination of rotating equilibrium
configurations. With the same premises as above the metric now reads

ds2 = −e2νdt2 + e2ψ(dφ− ωdt)2 + e2µ(dr2 + r2dθ2) (2.18)

where we have an off-diagonal φt-component which is responsible for the dragging of inertial
frames in the direction of rotation and all four unknown metric functions ν, ψ, ω and µ now
depend on r and θ. Following Bardeen and Wagoner (see [53]) one writes

eψ = r sin θBe−ν

and solves for B, ν, ω and µ. When writing down the field equations for this problem one
has to take into account that the 4-velocity now has a nonvanishing φ-component. With the
angular velocity Ω of the stellar object defined as

Ω =
uφ

ut

and the additional normalization condition 〈u,u〉 = −1, one gets

ut =
e−ν

√
1− v2

with v = (Ω− ω)eψ−ν

As one can see, going from a nonrotating to a rotating equilibrium configuration means to
solve a more difficult system of equations in two dimensions. A successful numerical inte-
gration was obtained in [54] and an independent code was presented in [55] which was made

22



2.5. DERIVATION OF THE LINEARIZED PERTURBATION EQUATIONS

publicly available (see [56]).
In this thesis we will obtain the background metric from yet another implementation de-
veloped within the Transregio SFB/TR 7 ”Gravitational Wave Astronomy” (see [57] for
a detailed description) and this metric differs in one crucial point from the line elements
discussed earlier. It is written in a cylindrical coordinate system (ρ, ζ, φ) and is split up into
two parts; the interior of the object and the spacetime exterior to it. Since in the Cowling
approximation we are neglecting the evolution of spacetime, we only have to consider the
interior of the star. There the coordinate system is rotating with the fluid and the metric
takes the form

ds2 = e−2U
[
e2k

(
dρ2 + dζ2

)
+ W 2dϕ2

]
− e2U (dt + adϕ)2 (2.19)

where the unknown functions U , k, W and a depend on ρ and ζ. The potentials W and a
have to fulfill certain asymptotic conditions; in particular we have

lim
ρ→0

|aρ−2| < ∞ (2.20)

lim
ρ→0

|Wρ−1| < ∞

which will become important later in Chapter 3 when discussing the stability properties of
our evolution scheme.
One important point here is, that in this coordinate system at any rotation rate, the 4-
velocity still has only one single nonvanishing component, i.e. ut = e−U and this simplifies
the linearized perturbation equations considerably as we will see in the next section. The
angular velocity Ω in this description of a compact objects’ spacetime is determined by
matching the interior solution to the exterior one which is formulated in a coordinate system
at rest. Proper boundary conditions have to be applied at the surface of the star and they
determine the angular velocity; see [57] for details.

2.5 Derivation of the Linearized Perturbation Equations

For equations (2.15) we will need the perturbation of the energy-momentum–tensor. Lin-
earizing (2.16) then leads to

δTµν = (ε + p)(uµδuν + uνδuµ) + (δp + δε)uµuν + δpgµν (2.21)

Here we also introduced the perturbations of the 4-velocity δuµ. These are not four inde-
pendent quantities because 〈u+ δu,u+ δu〉 = −1 and this leads to δut = 0 in our comoving
coordinate system.
Also, as mentioned earlier, pressure and density are connected by an equation of state, which
we will use to express the pressure perturbation as function of δε. Since the speed of sound
is given by

c2
s =

∂p

∂ε
we have δp = c2

sδε (2.22)

For polytropic equations of state (2.17) it is (with Γ = 1 + 1/N the polytropic exponent)

ε =
( p

K

)1/Γ
+ Np (2.23)
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so this means that

∂ε

∂p
=

1
Γ

( p

K

)1/Γ−1
· 1
K

+ N (2.24)

Extending both sides of this equation with p/p followed by inversion of (2.24) finally leads
to

c2
s =

Γp

ε + p
(2.25)

2.5.1 The Equations

Equations (2.15) will then lead to four linear equations for our four independent perturba-
tion variables δuρ, δuζ , δuφ and δε as function of ρ, ζ, φ and time t. It is common in the
nonrotating case and even in the slow-rotation approximation, where one neglects the cen-
trifugal deformation of the star, to decompose the angular part in spherical harmonics (for
example [58], [59]). At least for rapid rotation this is not longer convenient since a highly
flattened star obviously has lost its spherical symmetry. Instead we will only separate the
azimuthal part in periodic functions. We write

δuρ = f1(ρ, ζ, t)eimϕ (2.26)
δuζ = f2(ρ, ζ, t)eimϕ (2.27)
δuϕ = f3(ρ, ζ, t)eimϕ (2.28)

δε = H(ρ, ζ, t)eimϕ (2.29)

We will then get a system of complex partial differential equations and since our system is
linear the real part will be the final solution of a given initial value problem.
When we put equations (2.26)-(2.29) straight into system (2.15), we end up with the follow-
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ing set of equations

∂f1

∂t
= − c2

s

(ε + p)
eU ∂H

∂ρ
− eU

(ε + p)

[
(1 + c2

s)
∂U

∂ρ
+

∂c2
s

∂ρ

]
H − e4U

W 2

∂a

∂ρ
f3 (2.30)

∂f2

∂t
= − c2

s

(ε + p)
eU ∂H

∂ζ
− eU

(ε + p)

[
(1 + c2

s)
∂U

∂ζ
+

∂c2
s

∂ζ

]
H − e4U

W 2

∂a

∂ζ
f3 (2.31)

∂f3

∂t
=

im

F

(
ac2

se
4Uf3 +

W 2c2
se

U

(ε + p)
H

)
+

W 2ac2
se

4U−2k

F

(
∂f1

∂ρ
+

∂f2

∂ζ

)
(2.32)

+
We4U−2k

F (ε + p)

[
ac2

s(ε + p)
∂W

∂ρ
+ Wac2

s(ε + p)
∂U

∂ρ

+Wac2
s

∂

∂ρ
(ε + p)−W (ε + p)

∂a

∂ρ

]
f1

+
We4U−2k

F (ε + p)

[
ac2

s(ε + p)
∂W

∂ζ
+ Wac2

s(ε + p)
∂U

∂ζ

+Wac2
s

∂

∂ζ
(ε + p)−W (ε + p)

∂a

∂ζ

]
f2

∂H

∂t
=

im

F
(ac2

se
4UH + (ε + p)e3Uf3) +

W 2(ε + p)
F

e3U−2k

(
∂f1

∂ρ
+

∂f2

∂ζ

)
(2.33)

+
e5U−2k

F

[
W 2e−2U ∂

∂ρ
(ε + p) + W 2(ε + p)e−2U ∂U

∂ρ

−a(ε + p)e2U ∂a

∂ρ
+ W (ε + p)e−2U ∂W

∂ρ

]
f1

+
e5U−2k

F

[
W 2e−2U ∂

∂ζ
(ε + p) + W 2(ε + p)e−2U ∂U

∂ζ

−a(ε + p)e2U ∂a

∂ζ
+ W (ε + p)e−2U ∂W

∂ζ

]
f2

where

F := a2c2
se

4U −W 2 (2.34)

At a first glance, this system looks rather complicated but in fact can be simplified quite a
lot as we will see soon. As one can see, there a no terms proportional to the angular velocity
Ω since we are working in a comoving reference frame; the very same equations for a metric
of the form (2.18) would be even longer.
We now make the substitution

f̃1 = (ε + p)WeUf1 (2.35)
f̃2 = (ε + p)WeUf2 (2.36)
f̃3 = (ε + p)f3 (2.37)
H̃ = c2

se
UH (2.38)
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and arrive at our final system of equations for the time-evolution (we are omitting the tilde
here)

∂f1

∂t
= −WeU ∂H

∂ρ
− e5U

W

∂a

∂ρ
f3 −

W

c2
s

∂U

∂ρ
eUH (2.39)

∂f2

∂t
= −WeU ∂H

∂ζ
− e5U

W

∂a

∂ζ
f3 −

W

c2
s

∂U

∂ζ
eUH (2.40)

∂f3

∂t
=

im

F

(
ac2

se
4Uf3 + W 2H

)
+

Wac2
se

3U−2k

F

(
∂f1

∂ρ
+

∂f2

∂ζ

)
(2.41)

−e3U−2k

F
W

∂a

∂ρ
f1 −

e3U−2k

F
W

∂a

∂ζ
f2

∂H

∂t
=

im

F

(
ac2

se
4UH + c2

se
4Uf3

)
+

Wc2
se

3U−2k

F

(
∂f1

∂ρ
+

∂f2

∂ζ

)
(2.42)

−c2
se

7U−2k

F

a

W

∂a

∂ρ
f1 −

c2
se

7U−2k

F

a

W

∂a

∂ζ
f2

In fact, it is possible to simplify this already quite short system even more by combining f3

and H into a new function. Then the last two equations (2.41), (2.42) can be written as

W
∂f3

∂t
−Wa

∂H

∂t
= −imWH + e3U−2k

(
∂a

∂ρ
f1 +

∂a

∂ζ
f2

)

a
∂f3

∂t
− W 2

c2
se

4U

∂H

∂t
= imf3 + We−U−2k

(
∂f1

∂ρ
+

∂f2

∂ζ

)

There are no singular terms on the righthand side now but of course two additional functions
have been defined on the lefthand sides. From a numerical point of view at each timestep
one would have to invert

A := Wf3 −WaH (2.43)

B := af3 −
W 2

c2
se

4U
H

to obtain values f3 and H for the next consecutive timestep. The inversion would introduce
new singularities at least along the rotational axis ρ = 0, so although equations (2.41) and
(2.42) can be recast into a very short form, we will use the original system (2.39)-(2.42) for
time evolution. One still can think about trying out whether a new scheme based on the
application of (2.43) can be implemented successfully. However, this was not a part of this
thesis.

2.5.2 Some Properties of the Equations

The system (2.39)-(2.42) possesses a couple of interesting properties we will discuss here.
Some of these features can be used to check the numerical implementation of our time
evolution scheme as well as help us to understand and interpret our results. The proofs
of the more mathematical statements in this subsection are postponed and discussed in
appendix A.
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• The complete set of four equations can roughly be separated into two groups with
similar characteristics. The first group (2.39), (2.40) consists of the first two equations
governing the temporal evolution of δuρ and δuζ . The second group (2.41)-(2.42) is
made out of the remaining equations describing the behaviour of δuϕ and δε.

• Instead of being dependent on all four perturbation variables (and their derivatives),
the first group only depends on the same set of two perturbation quantities and their
derivatives, that is δuϕ and δε. Additionally, no derivatives with respect to ϕ show up
there.

• The structure of the equations in the first group is nearly identical; one only has to
replace all ρ-derivatives with ζ-derivatives. Due to the lack of any ϕ-derivative the
first group forms a purely real system of partial differential equations.

• The equations in the second group are the only ones that depend explicitly on the
m-value of the azimuthal decomposition; that means that we have ϕ-derivatives there.
This also transforms the full set of four equations into a complex-valued system; start-
ing with purely real initial data the equations in the second group will mix real and
imaginary parts, leading to nonzero imaginary parts as well.

• Still, in the axisymmetric case (i.e. m = 0) the system is purely real since the deriva-
tives with respect to ϕ have no effect then. In this case purely real initial data will
not get mixed and the imaginary parts of all four perturbation variables will stay zero
(granted that they were zero initially). If additionally the star is non-rotating then
the metric potential a will also vanish since the line element is diagonal in this case.
Then the evolution equation for δuϕ is identically zero as well, i.e. we have ∂tf3 ≡ 0
for Ω = 0 and m = 0.

• Let us denote a complex valued solution of (2.39)-(2.42) to a given m-value m0 with

s1 = (freal
1 , f im

1 , freal
2 , f im

2 , freal
3 , f im

3 , Hreal, Him)m=m0

then we will show in appendix A that

s2 = (freal
1 ,−f im

1 , freal
2 ,−f im

2 , freal
3 ,−f im

3 , Hreal,−Him)m=−m0

is a solution of (2.39)-(2.42) with m = −m0. So by simply applying a phase shift of
ϕ0 = π to the imaginary parts of a solution yields another valid solution for the same
absolute value of m, but sign-reversed.

• From there it follows that the actual solution is independent of the sign of m. This
means that for example the power spectrum of s1 will already contain information
about the m = −m0 solution as well. It is known that for a nonrotating star the
frequencies of counter- and co-rotating modes are degenerate. Rotation breaks this
symmetry and leads to a splitting of these frequencies. The above remark implies that
we will see this splitting already when analyzing the solution s1; there will be no need
to run another simulation for m = −m0.
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2.5.3 Boundary Conditions

Our system gets well-posed with the correct boundary conditions that we want to derive
now. As it will be described in 3, our numerical domain is confined by the rotation axis (i.e.
(ρ, ζ) with ρ = 0) and the surface (i.e. (ρ, ζ) with ε = p = 0) of the compact star. Generally,
instead of performing an integration of the perturbation equations also for the points at the
boundary one often is able to prescribe the behaviour of the perturbation variables at these
special points. In our case, due to the construction, the conditions for f1, f2, f3 and H
is very simple at the surface. For polytropic equations of state (see (2.17)) pressure p and
energy density ε vanish at the surface. But what happens to the speed of sound there? It is
with Γ = 1 + 1/N and N ≥ 0 always Γ ≥ 1. From (2.25) it follows that

c2
s =

Γ
ε/p + 1

When we insert (2.23) there and work in units where K = 1 for simplicity, we have

c2
s =

Γ2

p1/Γ−1 + Γ(N + 1)

But since 1/Γ− 1 < 0 we arrive at
lim
p→0

c2
s = 0

as well. If we take a look at (2.35)-(2.38), we finally see that our evolution variables are
factorized in terms of energy density, pressure and sound speed so it immediately follows
that they have to vanish at the surface as well, i.e.

f1|surface = f2|surface = f3|surface = H|surface = 0 . (2.44)

For non-polytropic EoS the boundary condition at the surface would be a little bit more
complicated. Usually one then does not have such a sharp drop of ε and p to zero instead
one ends up with some kind of “atmosphere” where energy density and pressure slowly fade
away to the vacuum that surrounds the compact object. The difficulty then is to define
where the neutron star actually ends and the vacuum starts; usually this is done by setting
a threshold value for the pressure.
For the boundary condition along the rotation axis we have to discuss scalar and vectorial
perturbation variables separately; it will become clear in a second what we mean by this.
Clearly, the energy density perturbation variable H has scalar character as well as f2 which
represents the ζ-component of the perturbed four-velocity. They have to be unique along
the rotation axis, in particular they have to be independent of the azimuthal angle ϕ. So
sitting on a point along the rotation axis and changing ϕ should not affect the values of the
scalar quantities. Since we decomposed them like eimϕ this means that for all m "= 0 they
have to be zero along the axis. In the axisymmetric case (i.e. m = 0) we cannot make a
similar statement; here the solution along the rotation axis has to be finite and continuous.
Numerically this can either be done by actual integration of the time evolution equations
or by some kind of extrapolation algorithm. The second equation of (2.20) states that the
metric potential W drops to zero at least like ρ when approaching the rotation axis and
since f2 is factorized with W (see (2.36)) even for m = 0 this quantity is zero along the axis.
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ϕ

ξ

∂ϕ
∂ρ

Figure 2.2: A nonzero vector ξ in the (ρ, ϕ)-plane as seen from a point at the rotation axis

The boundary condition for vectorial perturbations is a little bit different; see Figure 2.2 for
more details.
It shows a vector ξ at some arbitrary point along the rotation axis together with the basis
vectors ∂ρ and ∂ϕ for this point, i.e. (ρ = 0, ζ, ϕ). Due to the degeneracy of cylindrical
coordinates at ρ = 0 the very same vector ξ will have different components (x1, x2) along
the basis vectors depending on the value of ϕ, i.e.

ξ = x1(ϕ)∂ρ + x2(ϕ)∂ϕ

As it is clear from Figure 2.2 the components (x1, x2) will vary like cos(ϕ) or sin(ϕ); in our
complex notation this is equivalent to e±iϕ. This means that in contrast to the scalar per-
turbations discussed earlier the vectorial perturbations are allowed to have nonzero values
only for m = ±1. The time evolution variable f1 is also factorized with the metric potential
W which vanishes along the rotation axis (see (2.35)), so only f3 can have a finite value there
which can be obtained similar to the scalar case, i.e. direct integration or extrapolation.
As a summary the following Table 2.1 summarizes the boundary conditions for the pertur-
bation variables along the rotation axis. For the astrophysical most relevant case, the l = 2,
m = 2 quadrupolar deformation, all perturbation variables therefore have to vanish along
the axis as well as at the surface.

m-value f1|axis f2|axis f3|axis H|axis

0 0 0 0 finite and continuous
±1 0 0 finite and continuous 0
else 0 0 0 0

Table 2.1: Boundary condition for the perturbation variables along the rotational axis

This concludes the section about the derivation of the linearized perturbation equations.
One can already guess that it is impossible to solve the full set of equations analytically. In
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the next chapter we will describe in more detail the setup and algorithms we were using to
solve this problem numerically.
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3
Numerical Implementations

Our goal is to solve the linear perturbation equations which govern the time evolution of
small perturbations on compact objects in the form of system (2.39)-(2.42) derived in the
last chapter. This cannot be done analytically; the equations are too complicated, they
have nonconstant coefficients which are only given numerically so we also have to find a
numerical algorithm that solves the equations in a stable way. During this PhD-thesis two
conceptually very different attempts were made to implement a such a numerical scheme
and only one of them finally led to a successful result. In this chapter we will describe and
discuss both these methods.

3.1 A Brief Introduction to Spectral Methods

Since spectral methods are not so widely known as for example finite difference methods
we will summarize the important points of this method here; for a more complete overview
see for example [60], [61] or [62]. Speaking generally, spectral methods are a means to solve
differential equations via a global approach by one high-order polynomial for the whole
numerical domain. In contrast to this, finite difference schemes approximate the solution of
differential equations by multiple overlapping low-order polynomials, mainly linear and/or
quadratic ones. Each of these approaches has pros and cons we will cover here but as a first
simple motivation for spectral methods let us look at an example. Consider the following
linear time-independent ordinary differential equation on A = [−1, 1]

uxx − (x6 + 3x)u = 0 (3.1)

u(−1) = u(1) = 1

and let us approximate the solution of this equation by the fourth-order polynomial

u4(x) = 1 + (1− x2)(a0 + a1x + a2x
2)

With this approach we are already satisfying the boundary conditions. The three unknown
coefficients a0, a1 and a2 can be determined by demanding that the residual

R(x, a0, a1, a2, a3) = u4,xx − (x6 + 3x)u4
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has to vanish at three different points; this will eventually lead to a linear system of equations
for the coefficients. If we for example set x1,2,3 = (−1/2, 0, 1/2) then we end up with

a0 = − 784
3807

= a2, a1 = 0

while the correct solution of (3.1) is given by

u(x) = e(x4−1)/4

Figure 3.1 shows a comparison between the exact solution and our simple approximation.

 0.75

 0.85

 0.95

 1.05

-1  0  1

correct solution
4th order approximation

Figure 3.1: The solution of (3.1) and its 4th-order approximation on A

As one can see, already this 4th-order polynomial catches the characteristic behaviour of
the exact solution very well and of course as one increases the order of the approximating
polynomial their relative difference will become smaller and smaller. Already with N = 18
so-called collocation points one can virtually see no difference.
This little example motivates the following more formal procedure (for the sake of simplicity
we will restrict ourselves to time-independent, linear ordinary differential equations in one
variable). If we have a differential equation of the form

Lu(x) = f(x) x ∈ U (3.2)
Bu(y) = 0 y ∈ ∂U

we will approximate the solution u by a set of N + 1 global basis functions φn

u(x) ≈ uN (x) =
N∑

n=0

anφn(x) (3.3)
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and define the residual R by

R(x, a0, a1, . . . , an) = LuN − f (3.4)

For the exact solution u the residual vanishes identically; this of course is no longer true for
its approximation. The various flavours of spectral methods now differ in their method to
minimize the residual R for the unknown function uN .
Keep in mind, that up to now we were not talking any further about how to treat the
boundary conditions. In principle one can also make a global approach for the solution at
the boundaries of the computational domain and minimize the corresponding residual. This
will lead to additional constraints on the coefficients a0, a1, . . . , an but the correct handling
of these constraints will lead us too far astray for this little introduction so we refer to the
references for further details.
An elegant classification of the different spectral methods can be done with the help of the
mean weighted residual method (MWR). In general, the approximate solution uN will not
make the residual vanish (unless of course uN is already the exact solution). The MWR
determines the unknown coefficients a0, a1, . . . , an by the requirement that

(wi, R) = 0 ∀ i ∈ {1, . . . , N}

for a set of N + 1 test functions wi. with the inner product

(u, v) =
b∫

a

ω(x)u(x)v(x)dx

and a non-negative weighting function ω on [a, b]. The various spectral methods now differ
in their choice of the test functions. We distinguish for example

• pseudospectral or collocation methods wi = δ(x− xi)

• method of moments wi = xi

• Galerkin method wi = φi(x)

As an example we want to solve a differential equation with the Galerkin method. We then
have

(φi, R) = 0 ⇐⇒ (φi,LuN − f) = 0

⇐⇒ (φi,L
N∑

n=0

anφn)− (φi, f) = 0

⇐⇒
N∑

n=0

Linan = (φi, f)

with
Lin := (φi,Lφn)

The factors Lin in front of the unknown coefficients a0, a1, . . . , an are obtained by an inte-
gration with the Galerkin method which makes it a so-called non-interpolating method. In
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contrast to this, the AKM-Code used for computing the stationary background configura-
tion of a rotating compact object we use in this thesis utilizes a pseudospectral algorithm.
There it is

(δ(x− xi), R) = 0 ⇐⇒ R(xi) = 0 (3.5)
⇐⇒ LuN (xi) = f(xi)

⇐⇒
N∑

n=0

Linan = f(xi)

with

Lin := Lφn(xi)

Here, no integration is needed; the coefficients a0, a1, . . . , an are determined by the re-
quirement that the approximate solution uN solves the differential equation exactly at the
collocation points xi. Of course at points other than the collocation points one has to in-
terpolate appropriately to obtain a valid approximation to the exact solution. This is why
pseudospectral methods are also called interpolating methods. One therefore has to take
special care about the correct way of interpolation. The most simple way would be a poly-
nomial interpolation on equidistant nodes. The following Figure 3.2 shows what will happen
in this case.
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f(x) = 1/(1+x*x)
6-pt approximation

 0
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-5 -2.5  0  2.5  5

f(x) = 1/(1+x*x)
15-pt approximation

 0

 1
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-5 -2.5  0  2.5  5

f(x) = 1/(1+x*x)
31-pt approximation

Figure 3.2: The function f(x) = 1/(1 + x2) and some interpolating polynomials of different
order
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While the central part of the function is approximated quite well as the order of the poly-
nomial increases, large deviations can be seen at the boundaries of the domain. It can be
shown generally that this sequence of interpolating polynomials does not converge uniformly
towards f , even if one increases the number of equidistant nodes. More specifically, if pN

interpolates a function f in [a, b] where pN (xj) = f(xj) for j = 1, . . . N , the error e(x) is
given by

e(x) = f(x)− pN (x) =
N∏

j=0

(x− xj)
f (N+1)(ζ)
(N + 1)!

, ζ ∈ [a, b]

≤ max
t∈[a,b]

ω(x)
|f (N+1)(t)|
(N + 1)!

with

ω(x) =
N∏

j=0

(x− xj)

It then can be shown that the roots and the extreme points of the so-called Chebyshev
polynomials minimize the remainder function ω(x); they are defined by

Tn(x) = cos(n arccos x) , x ∈ [−1, 1] (3.6)
Tn+1(x) = 2xTn − Tn−1

Tn(x) = 0 → xroot = cos
(

π
2k − 1

2n

)
, k = 1, . . . , n

||Tn|| = 1 → xmax = cos
(

π
k

n

)
, k = 0, . . . , n

The Chebyshev polynomials are only defined on I = [−1, 1], however this is not a general
problem since every interpolation interval can be rescaled to I. The pseudospectral method
then consists of solving (3.5) with either {xroot} or {xmax} as collocation points.

3.2 Pros and Cons of Spectral Methods

Here we shortly want to compare the spectral methods with the finite differences algorithm
commonly used to solve differential equations. As already discussed above, spectral methods
approximate the exact solution of such an equation by a global approach uN (x). In contrast
to this finite differences schemes use local overlapping, low-order polynomials to compute
derivatives. If we take again nodes with equidistant spacing h and perform a local quadratic
3-point interpolation of a function f , it turns out that the derivative of this interpolating
polynomial is the standard second order stencil used for finite differences

df

dx
=

f(x + h)− f(x− h)
2h

+ O(h2) (3.7)

Due to this locality of finite difference methods, the solution of a given differential equation
can be written as a matrix equation where the matrix that describes the differentiation
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process is sparse, i.e. most of the entries in this matrix are zero.
In contrast to this, spectral method approaches can be also converted to a corresponding
matrix equation but in this case the differentiation matrix is full (this is of course due to
the global character of the approximating function). From a numerical point of view there
are very efficient methods to solve a set of linear equations with sparse matrices; they can
be inverted in a fraction of the time that is needed to solve the equivalent problem with full
matrices.
Another point is that the global approximating functions of spectral methods are not very
well suited for the study of discontinuities which for example may appear in hydrodynamics
in the form of shocks. Spectral methods work best when the problem to solve is smooth
and regular. They are also more difficult to program than finite difference algorithms and
irregular computational domains in more than one dimension affect the accuracy of spectral
approaches more than their finite difference counterparts.
On the other hand, spectral methods are far more accurate than finite differences or stated
differently, to achieve a certain level of accuracy far less nodes are needed in a spectral
approach than in finite difference scheme. Consider for example a pseudospectral method
with N nodes. As discussed in 3.1 the best choice of collocation points are either {xroot} or
{xmax}. If we increase the number of nodes N we have two effects working here. First, the
(non-constant) grid spacing h decreases; this will increase the accuracy of our method even
if its order would be fixed. But in contrast to local finite differences the order of the global
interpolating polynomial is not fixed; it also increases with N . We already saw in (3.7) that
a quadratic interpolation leads to an O(h2)-error in the derivative. Correspondingly an N -
point interpolation will have an error in the O(hN ) range. But remembering our first remark
the characteristic grid spacing is O(1/N) so we have in the end for the pseudospectral error
e

e ≈ O[(1/N)N ]

The error is therefore decreasing faster than any finite power of N which is called exponential
convergence. So it is no coincidence that in areas where very high accuracy is needed
(meteorology and quantum chemistry for example) pseudospectral methods are used widely.
There have been of course applications of spectral methods to neutron star oscillations as
well; see [63] and references therein.
Also the numerical code we are using to compute the background model for our perturbation
simulations utilizes pseudospectral methods. We already described in 2.4 the metric and
coordinate system used for this computation; in the next section we will look at it from a
numerical point of view and extend it to suit our particular needs.

3.3 Layout of the Computational Domain

The solution of the Einstein equations for a uniformly rotating perfect fluid object possesses
several symmetry attributes that one can take advantage of for the numerical computation.
It is not only symmetric with respect to the rotation axis but also with respect to the
equatorial plane. It is therefore sufficient to consider the physical domain (keep in mind that
we are working in comoving cylindrical coordinates, see [57] for a more detailed description).

D+ = [(ρ, ζ) , ρ ≥ 0, ζ ≥ 0] . (3.8)
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By means of a coordinate transformation

T+ = [(σ, τ) ∈ [0, 1]× [0, 1] , (ρ = ρ(σ, τ), ζ = ζ(σ, τ)) ∈ D+] (3.9)

this part of the neutron star interior is mapped onto the unit square U = [0, 1] × [0, 1]
and the Einstein equations are solved there with a highly accurate pseudospectral method.
The coordinate transformation is not entirely arbitrary; the coordinates used within the
numerical domain feature some interesting properties.
Figure 3.3 shows the pseudospectral distribution of grid points with a total number of
18 × 18. There one can see the way the roots of the Chebyshev polynomials {xroot} are
arranged over the numerical domain; they actually never reach the boundaries, it is only the
set {xmax} (also known as Gauss-Lobatto points) that hold points directly on the boundary
(see (3.6)). One also notices immediately the typical clustering of the collocation points
there; an observation we can make plausible with a look at Figure 3.2. The largest error of
the interpolating Lagrange polynomial can be seen near the boundaries of the interpolation
interval. By distributing more grid points there as it is done by the Chebyshev roots one
exactly counteracts this behaviour.
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Figure 3.3: Layout of the numerical grid used to solve the TOV-equations for the stationary
neutron star background model

Some properties of the coordinate transformation T+ are labelled in Figure 3.3. One can
see, that the surface of the neutron star gets mapped onto σ = 1; this is independent of the
rotation rate, even for rapidly rotating neutron stars this coordinate line always corresponds
to the stellar surface. This is a big advantage over codes that use spherical-like coordinates
and where the surface of the star lies somewhere in between different grid points for fast
rotation. Direct time evolution as well as imposing boundary conditions is much more
difficult then.
Additionally, τ = 0 corresponds to the rotation axis above the equatorial plane and τ = 1 to
the equatorial plane itself. As mentioned earlier, since the background star is axisymmetric
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as well as symmetric with respect to the equatorial plane, this computational domain suffices
in order to construct the background model. Note also, since we have four boundaries in
our computational domain, but only three physical boundaries (i.e. rotation axis, equatorial
plane and stellar surface), one single point gets smeared into a coordinate line; in our case,
σ = 0 corresponds to the origin of the star (i.e. ρ = ζ = 0).
The coordinates (σ, τ) are similar to their spherical coordinates counterparts (r, θ) in the
sense that moving from τ = 0 to τ = 1 on an arbitrary σ = const.-line means to start from
a point at the rotation axis and move somewhat ‘parallel’ to the surface to a point at the
equatorial plane. Vice versa if one moves along an arbitrary τ = const.-line then one starts
from the center of the star to the surface. The following Figure 3.4 depicts this situation
for a rapidly rotating stellar model where the ratio of polar coordinate radius to equatorial
coordinate radius is about rp/re = 0.6. Clearly this neutron star model is non-spherical
and in fact is rotating near its Kepler-limit, i.e. the critical angular velocity where it is torn
apart by centrifugal forces; one can also see the formation of a bulge near the equatorial
plane.
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0.8

ρ

ζ

Figure 3.4: Some τ = const. (solid) and σ = const. (dotted) coordinate lines in the (ρ, ζ)
coordinate system

Nevertheless the surface of the stellar model is described by S = [(ρ(1, t), ζ(1, t)) , τ ∈ [0, 1]].
While this computational domain is sufficient for computing stationary equilibrium configu-
rations of rotating compact objects it is no longer adequate for studying linear perturbations
which are not necessarily symmetric which respect to the equatorial plane. There are prac-
tically two ways to handle this additional freedom. The first one is the observation that any
perturbation can be decomposed into a symmetric and an anti-symmetric part. To make
this point clear let us look at a simple example in one dimension. If A+ = [x , x ≥ 0] is the
computational domain, f(x, t) is an arbitrary perturbation with values in A− = [x , x < 0]
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too and x = 0 corresponds to the axis of symmetry, we have

f(x, t) = fs(x, t) + fa(x, t)

with
fs(x, t) =

f(x, t) + f(−x, t)
2

and fa(x, t) =
f(x, t)− f(−x, t)

2
.

If we now want to perform a time-evolution of an arbitrary initial perturbation f(x, t0)
on A := A+ + A− we would decompose f(x, t0) into its symmetric and anti-symmetric
part, apply our time-evolution scheme on A+ to them, complement the individual solutions
according to their symmetry behaviour for x < 0 and finally add them up to get the overall
solution. In this case two different boundary conditions have to be imposed at x = 0.
For the symmetric part we have ∂xfs(x, t)|x=0 = 0 while for the anti-symmetric solution
fs(x, t)|x=0 = 0 has to hold. Of course, in order to study eigenfrequencies and eigenfunctions
of specific modes it is sufficient to restrict these computations on either symmetric or anti-
symmetric perturbation; in this case there is no need for a general purpose code that can
handle arbitrary initial data.
However, the goal of this thesis is to write a code that can deal with arbitrary initial data
and so we choose the second option for solving the problem of non-symmetric initial data;
we extend our physical and computational domain to include also the region

D− = [(ρ, ζ) , ρ ≥ 0, ζ < 0] . (3.10)

Practically this is done by taking two copies of D+ and ‘glue’ them together along the
equatorial plane. The computational domain therefore increases in the τ -dimension, i.e. the
θ-direction if we refer again to the analogy with spherical coordinates we discussed earlier.

T = [(σ, τ) ∈ [0, 1]× [0, 2] , (ρ = ρ(σ, τ), ζ = ζ(σ, τ)) ∈ D := (D+ +D−)] (3.11)

Since the computational domain now is the rectangle [0, 1] × [0, 2] and no longer the unit
square [0, 1]×[0, 1] we will have to reorder the gridpoints. Clearly by just joining two samples
of the computational domain D+ along the equator the overall gridpoints do not longer
distribute according to the requirements of spectral methods, see Figure 3.3 for example.
We have to rearrange them in order to fit our new domain. Since we also explicitly want to
have boundary points where we apply the conditions derived in 2.5.3, this is a good point to
switch to the Gauss-Lobatto points, i.e. the extreme points of the Chebyshev polynomials
(see (3.6)). The Chebyshev polynomials are already minimizing the global interpolation error
and since the AKM code uses a pseudospectral representation of all necessary equilibrium
quantities we take this representation to interpolate the background values to our new
computational domain. In this domain there are no other boundary conditions to impose
than described in Section 2.5.3; the equatorial plane now lies in the interior of our numerical
grid and its boundaries are given by the origin (σ = 0), the surface (σ = 1), the part of
the rotation axis above the equatorial plane (τ = 0) and the corresponding part underneath
the equatorial plane (τ = 2). Of course we have to pay a price for studying arbitrary
perturbations: Our grid is now twice as large as before; this means for a 2D-code an increase
in computation time by a factor of 4. The final computational domain for a resolution of
10× 16 gridpoints can be seen in Figure 3.5.
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Figure 3.5: Complete numerical domain T for the time-evolution code

Special care has to be taken of the correct transformation behaviour of our various back-
ground quantities which we, up to now, only know in D+. In addition to simply mirror all
necessary quantities along the equatorial plane (i.e. along τ = 1), some derivatives need
to be multiplied by a factor of −1. Derivatives with respect to ρ are no problem; if (σ, τ)
denotes a grid point in D+ (i.e. τ ≤ 1) and g is an arbitrary background quantity, we can
write

∂g

∂ρ
|(σ,τ) =

∂g

∂ρ
|(σ,2−τ) . (3.12)

It is easy to see, that this no longer holds true when we look at ζ-derivatives. Suppose that
we take values of a background quantity g at two different ζ-locations ζ1, ζ2 in D+ with
ζ1 < ζ2. We can then write the derivative as

∂g

∂ζ
|D+ =

g(ζ2)− g(ζ1)
h

+ O(h) with h = ζ2 − ζ1

When we now extend g to D− it is −ζ1 > −ζ2 and g(−ζi) = g(ζ1), i = 1, 2 and we arrive at

∂g

∂ζ
|D− =

g(−ζ1)− g(−ζ2)
h

+ O(h) =
g(ζ1)− g(ζ2)

h
+ O(h) = −∂g

∂ζ
|D+

So considering ζ-derivatives we generally have

∂g

∂ζ
|(σ,τ) = −∂g

∂ζ
|(σ,2−τ) . (3.13)

Yet another transformation behaviour has to do with the fact, that the equations we want
to solve (i.e. system (2.39)-(2.42)) are written in (ρ, ζ)-coordinates but we use as numerical
domain our extended (σ, τ)-system. For our perturbation variables we have to switch be-
tween these systems. So in addition to all background quantities and their derivatives with

40



3.4. THE TIME-EVOLUTION SCHEME

respect to ρ and ζ, also the transformations coefficients ∂σ/∂ρ, ∂σ/∂ζ, ∂τ/∂ρ and ∂τ/∂ζ
are available in D+. With these coefficients it is possible to compute for any perturbation
quantity f given on the numerical domain T the values of

∂f

∂ρ
=

∂f

∂σ

∂σ

∂ρ
+

∂f

∂τ

∂τ

∂ρ
(3.14)

∂f

∂ζ
=

∂f

∂σ

∂σ

∂ζ
+

∂f

∂τ

∂τ

∂ζ

we need to know for the righthand-sides of (2.39)-(2.42).
Equations (3.14) are of course also valid for the background quantities and this helps us
to find the correct transformation behaviour for the transformation coefficients when going
from D+ to D−. We know how the ρ- and ζ-derivatives transform in D− as well what
happens to their σ- and τ -derivatives there. Similar to the argumentation above we don’t
have a sign flip in ∂f/∂σ but we will have one in ∂f/∂τ . Comparing then the lefthand-sides
of (3.14) with their corresponding righthand-sides finally leads to

∂σ

∂ρ
|(σ,τ) =

∂σ

∂ρ
|(σ,2−τ) (3.15)

∂σ

∂ζ
|(σ,τ) = −∂σ

∂ζ
|(σ,2−τ)

and

∂τ

∂ρ
|(σ,τ) = −∂τ

∂ρ
|(σ,2−τ) (3.16)

∂τ

∂ζ
|(σ,τ) =

∂τ

∂ζ
|(σ,2−τ)

Now the extended computational domain D = D+ + D− is adequately prepared for the
actual time-evolution. In the following section we will describe our approach for integrating
the perturbation equations.

3.4 The Time-Evolution Scheme

The utilization of spectral methods for time dependent problems is mostly done for the spa-
tial part of the differential equations while standard finite difference techniques are applied
for the actual time integration; see for example [61] for references. Generally this kind of
algorithm is easier to implement and there is already a lot of experience about stability and
convergence of the various finite difference time integrators. Computation-wise it is also
much cheaper to advance from one time-level to the next; in a full-fledged spectral code one
would make a global approximation to the exact solution not only in space like we described
here so far but in the time-coordinate as well. This means to solve the differential equation
instantly for all times within the desired interval. Recently a first step towards this kind of
approach with applications to General Relativity was performed in [64], however we followed
the more traditionally path and used pseudospectral methods solely for computing spatial
derivatives. Let us look how this works again in one dimension where we will take the roots
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of the N -th Chebyshev polynomial {xk, k = 1, . . . , N} as collocation points. Our goal is to
write an arbitrary function f with known values on the xk as

u(x) =
N−1∑

j=0

aj Tj(x)

so that u(xk) = f(xk). We will then have for all i = 0, . . . , N − 1

Ti(xk)u(xk) = Ti(xk)f(xk) =
N−1∑

j=0

aj Ti(xk)Tj(xk)

Summation over k yields

N∑

k=1

Ti(xk)f(xk) =
N∑

k=1

a0 Ti(xk)T0(xk) +
N∑

k=1

N−1∑

j=1

aj Ti(xk)Tj(xk) (3.17)

The Chebyshev polynomials form a orthogonal set of basis function, so if we have M roots
of the M -th Chebyshev function the orthogonality relation

M∑

l=1

Ta(xl)Tb(xl) =






0 a "= b

M/2 a = b "= 0
M a = b = 0

(3.18)

holds. We now set i = 0 in (3.17) and the last term of its righthand-side will vanish due to
the first case in (3.18) and we end up with

a0 =
1
N

N∑

k=1

f(xk)T0(xk)

Similarly, for i "= 0 the first term on the righthand-side of (3.17) and we rewrite the remaining
part as

N∑

k=1

N−1∑

j=1

aj Ti(xk)Tj(xk) =
N−1∑

j &=i

N∑

k=1

aj Ti(xk)Tj(xk) +
N∑

k=1

ai Ti(xk)Ti(xk)

Since i "= 0 the first term on the righthand-side again is zero and we arrive at

ai =
2
N

N∑

k=1

f(xk)Ti(xk)

We now define for all j = 0, . . . , N − 1

cj :=
2
N

N∑

k=1

f(xk)Tj(xk)
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and then it follows that

u(x) =
1
2
c0T0(x) +

N−1∑

j=1

cj Tj(x) (3.19)

=
N−1∑

j=0

cj Tj(x)− c0 +
1
2
c0

=
N−1∑

j=0

cj Tj(x)− 1
2
c0

Due to the fact that these coefficients cj need to be evaluated for all necessary quantities
after each timestep it is crucial to find a fast and efficient numerical algorithm for their
computation. Luckily this is not a major problem; if one does the substitution x = cos α
in (3.6) one recognizes that the decomposition (3.19) is just a Fourier cosine series and the
coefficients cj can be calculated very fast using standard Fast Fourier Transform (FFT)
techniques.
Given the coefficients cj it is also straightforward to calculate the derivative of the approxi-
mating function u(x). If we write

u′(x) =
N−1∑

j=0

c′jTj(x)− 1
2
c′0 (3.20)

we have the recurrence equation

c′j−1 = c′j+1 + 2jcj (j = N − 1, . . . , 1) with c′N = c′N−1 = 0

We then have to evaluate (3.19) and (3.20) on the collocation points {xk, k = 1, . . . , N}
which also can be done very efficiently.
As actual time-integration scheme we chose the popular 4th-order Runge-Kutta method
(RK4). Although this algorithm requires the fourfold evaluation of the righthand-sides of
our perturbation equations per timestep we didn’t want to spoil the high accuracy of our
spatial differentiation with a low order time integration. If we have a differential equation
of the form

ẏ = f(y)

where the dot denotes the time derivative and we denote yn = y(tn) we then can write

yn+1 = yn +
h

6
(k1 + 2k2 + 2k3 + k4) (3.21)

with

k1 = f(yn)
k2 = f(yn + h/2 k1)
k3 = f(yn + h/2 k2)
k4 = f(yn + h k3)
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and tn+1 = tn +h. Since RK4 is an explicit scheme, that is the righthand-side of (3.21) does
not depend on yn+1, the maximum allowed timestep h cannot be arbitrarily high (Courant-
Friedrichs-Lewy criterion). An order of magnitude estimation for h in our specific case is
given by

h ≈ ∆x

cs

where ∆x is the average grid spacing and cs is the speed of sound.
Now everything has been set up for numerically integrating the perturbation equations.
We presented the formulation of our linearized problem in 2.5 and described the numerical
approach we took initially in 3.3 and in this section. Now we can turn to the results we
achieved with this method.

3.5 Results with the Pseudospectral Approach

Unfortunately with this kind of algorithm we were not able to get a stable evolution code.
Very soon, i.e. after a couple of timesteps high frequency oscillations of exponentially growing
modes showed up at the origin of our computational domain, destroying our simulation
almost immediately. The series of pictures in Figure 3.6 on the following page shows a
typical result of a simulation in this case. As initial condition a Gaussian distribution in
both σ- and τ -direction was chosen for the ρ-component of the perturbed 4-velocity and then
evolved according to the linearized perturbation equations for m = 0. This initial velocity
profile can be seen in the very first picture of the sequence in Figure 3.6 where also the
coordinates (σ, τ) of the computational domain are indicated. In this simulation we only
show the D+-part of the computational domain so τ ∈ [0, 1]. As one can see when following
the snapshots, a small wave is travelling from the center of the Gauss distribution towards
the surface, i.e. towards larger σ. It then gets reflected there and starts to move inward
while one can see additional oscillatory motion especially at the equatorial plane. As soon
as these waves reach the vicinity of the origin (i.e. σ = 0) high frequency oscillations both
in space and in time emerge there, ultimately leading to a failure of the time integration.
Now of course the obvious question is what the reason for this behaviour might be. In fact
it is not very difficult to spot several weak points in our formulation of the problem. First
of all if we go back and take a closer look at the perturbation equations (2.39)-(2.42) then
especially in the last to equations governing the evolution of δuϕ and δε singular terms of
high order appear in the denominator of some coefficients; most striking the factor 1/F and
1/(FW ). Since F is defined by (2.34) and the two metric potentials a and W behave near
the rotation axis of the star according to (2.20) it is not difficult to see that we have

lim
ρ→0

|Fρ−4| < ∞ (3.22)

lim
ρ→0

|FWρ−5| < ∞

Of course this singular behaviour partially gets absorbed by similar factors in the numerator
of the perturbation equations but in any case we have to deal with coefficients that grow very
strong towards the rotation axis. This does not mean that numerical algorithms will fail a
priori as soon as they encounter singular terms. For example when rewritten in spherical
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Figure 3.6: Snapshots of the uρ-time evolution with our pseudospectral/RK4 algorithm; the
numbers label the temporal order
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coordinates, the one-dimensional wave equation f̈ = v2fxx also possesses a singular factor
which behaves like 1/r but nevertheless numerical algorithms usually have no difficulties
to solve the wave equation in a spherical system. Therefore also the order of the singular
terms matter and in our case they simply grow too strong towards ρ = 0. As soon as
small irregularities show up near the origin in Figure 3.22 there is no hope to save the
simulation. As already discussed in Section 3.2 spectral methods are a very effective tool as
long as the solution stays smooth and regular. While finite difference schemes due to their
locality can handle the development of divergences to some degree, spectral methods are a
global approach. Irregularities in one part of the computational domain will immediately
affect the derivatives all-over the numerical grid; they are therefore generally more fragile
to instabilities due to singular behaviour of some coefficients.
Hence we chose to abandon this type of implementation and turned to the more traditional
way of using a finite difference approach. In practice this means basically just a change
in the distribution of gridpoints and in the computation of derivatives since most of the
procedures we presented in this chapter (especially in Section 3.3) are equally applicable for
the finite difference case. In the next section we will briefly describe the modifications we
incorporated.

3.6 The Finite Difference Algorithm

The layout of the computational domain is identical to the pseudospectral case. The only
difference is that instead of covering T with unequally distributed Chebyshev collocation
points we will interpolate to a uniformly arranged finite difference grid where we can write

σ[i] =
i

M1− 1
, i = 0, . . . ,M1− 1

τ [i] = 2.0
j

2 ·M2− 1
, j = 0, . . . , 2 ·M2− 1

Here the resolution of the original numerical domain T+ is M1×M2. As described in Section
3.3 we patch to copies of T+ together at the equatorial plane. The number of gridpoints in
σ-direction therefore does not increase but in the τ -dimension we get twice the number of
nodes. The entire grid T hence has a resolution of M1× 2 ·M2.
We use standard second order central difference stencils for computing derivatives in both
spatial dimensions. For a given function u(x) we make a Taylor expansion around x = x0

and truncate it after the linear term; we then get

u(x0 + h) = u(x0) + u′(x0)h +O(h2)
u(x0 − h) = u(x0)− u′(x0)h +O(h2)

If we subtract these two equations we arrive at the well-known relationship

u′(x0) =
u(x0 + h)− u(x0 − h)

2h
+O(h2)

If h is sufficiently small we can take the first part of the righthand-side as an approximation
for the derivative of u at x0. As a side note and for a little interconnection to the pseu-
dospectral methods discussed above if we define x1 = x0 + h and x2 = x0 − h the uniquely
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defined interpolating Lagrange polynomial of second order is given by

I3(x) = −u(x0)
(x− x1)(x− x2)

h2
+ u(x0 + h)

(x− x0)(x− x2)
2h2

+ u(x0 − h)
(x− x0)(x− x1)

2h2

It then follows immediately that

I ′3(x0) ≈ u′(x0) =
u(x0 + h)− u(x0 − h)

2h

If we apply this relationship to both of our spatial dimensions σ and τ we will make an
error which is of second order in the grid spacing h; i.e. doubling the resolution will lower
the truncation error by a factor of four. To achieve higher accuracy one could use higher
order stencils which also include grid points at x0 − 2h, x0 + 2h etc. but this leads to
several weak points. First of all it will increase the computational costs significantly if one
has to perform these kind of computations very frequent which will be the case in our time
evolution. Second, with central differences we don’t have to worry about points near the
boundary. As an example let us consider the surface of the star, i.e. σ = 1. For gridpoints
directly at the boundary we apply the appropriate boundary condition but the value of a
particular perturbation quantity at the gridpoint closest to the surface has to be determined
by direct time evolution. With central differences we need to read out the corresponding
value to the ”right” (at the surface) and to the ”left” (in the interior) of this particular point
which can be done without problems. However if we choose a higher order scheme for spatial
differentiation we would have to know the value of a particular quantity at points beyond
our actual computational domain. Usually this is done by introducing so-called ghost-points
and combined with some symmetry considerations one is able to assign reasonable values
to them. There are also high order one-sided difference approximations one can use there;
however this will also complicate the treatment of border-zone areas. None of the points
discussed here is really crucial; one could implement high order stencils and the additional
computational expenses can be solved by parallelization but we decided to keep things simple
so we won’t follow this way here and stay with our second order accurate scheme.
Our argument for using a fourth order Runge-Kutta method in Section 3.4 was that we
didn’t want to combine a highly accurate method for spatial differentiation with a low order
finite difference time integrator. While this certainly holds true in the pseudospectral case it
is not strictly necessary here. Since our central difference approach is accurate up to second
order we don’t need a fourth order time integration scheme which is computationally very
expensive. In the end the accuracy of our complete algorithm is determined by the accuracy
of the lowest order subroutine which in our case is second order up to now.
Based on this considerations we implemented another time integrator which has become
quite popular in numerical relativity; the iterated Crank-Nicholson method.

3.6.1 Crank-Nicholson Methods

For simplicity consider an ordinary differential equation of the form

∂y

∂t
= f(y, t)
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When discretizing this equation for numerical integration the original Crank-Nicholson
method is applied by taking the average of the righthand side between the beginning and
end of a given timestep. If we write yn for y(tn) and tn+1 = tn + ∆t this means

yn+1 − yn

∆t
=

f(yn+1, tn+1) + f(yn, tn)
2

(3.23)

This is an implicit scheme; the righthand side also contains values of the unknown function
at the time tn+1 and it is not possible to write down an explicit formula for yn+1 just in
terms of yn and tn. However, let us suppose that the resolution of our one-dimensional
domain in this example is N . Then for a given discretization of f(y, t) we can write down
the N equations corresponding to (3.23) for the N unknown values of yn+1; eventually this
leads to a coupled system of equations one has to solve at each time step.
While implicit schemes are more difficult to implement than explicit schemes where one can
write yn+1 entirely in terms of yn and tn they also have several advantages. Generally they
are much more stable then explicit algorithms. At least in the case of constant coefficients
one can perform a von Neumann stability analysis which then will show that the amplitude of
spurious Fourier modes does not increase over time and is independent of a CFL constraint;
i.e. there are practically no restrictions on the timestep one has to choose to get a stable
evolution (in contrast to explicit schemes, see 3.4). But as already mentioned the need
of solving a coupled system of algebraic equations each timestep is computationally very
expensive and becomes even more complicated in two dimensions.
There is an explicit version of the Crank-Nicholson algorithm based on the idea of averaging
solutions of different timesteps to an intermediate solution (see [65] for example) which has
been implemented in our code and which we will present now. Consider the 1D advection
equation

u̇(x, t) = u′(x, t)

and let us denote un
j = u(j∆x, n∆t). The first iteration consists of computing an inter-

mediate variable (1)ū by using central differences on the righthand-side for time integration
followed by an averaging process, i.e.

ũn+1
j − un

j

∆t
=

un
j+1 − un

j−1

2∆x
and (1)ūn+1/2

j =
1
2
(ũn+1

j + un
j ) (3.24)

The iteration is finished by applying the very same time integration scheme but this time
with (1)ū on the righthand-side and we get

un+1
j − un

j

∆t
=

(1)ūn+1/2
j+1 −(1) ūn+1/2

j−1

2∆x
(3.25)

Any number of iterations can then be carried out in the same way but not all of them
are stable. A stability analysis shows an alternating behaviour; while the zeroth and first
iteration are unstable (where zeroth iteration means no averaging at all) the second and
third iteration are stable, given that a certain Courant constraint is fulfilled, then the fourth
and fifth iteration again are unstable and so on. The amplitude a of a single Fourier mode
oscillates around a = 1 and converges to this value in the limit of infinite iterations. From
this point of view it makes no sense to perform more than two iterations since the accuracy
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of the method will stay second order.
The iterated Crank-Nicholson scheme belongs to a larger class of so-called θ-methods. The
averaging which is applied to the intermediate solution in (3.24) with a factor of 1/2 can be
generalized to

(1)ūn+1/2
j = θũn+1

j + (1− θ)un
j

with 0 < θ < 1; for θ = 1/2 we again obtain the auxiliary solution of (3.24). This numerical
scheme has been implemented successfully for relativistic hydrodynamical simulations on
ideal an viscous fluids with θ = 0.6; see [66],[67] and it has been observed that the unequal
weighting leads to an improved stability of the code. In [68] a new generalization to these θ-
methods was introduced; the weight terms are being swapped between subsequent averaging
processes. If we have in iteration N

(N)ūn+1/2
j = θũn+1

j + (1− θ)un
j

then the average needed for the next iteration is given by

(N+1)ūn+1/2
j = (1− θ)ũn+1

j + θun
j

It can be shown that as long as the number of iterations is even, the sequence in which
the averages are computed is irrelevant so that θ can be replaced by 1 − θ without any
implications. Yet another advantageous effect of using unequal weights is that they add
an explicit numerical dissipation term into the discretized evolution equations. Usually an
extra amount of dissipation is often desired since it helps to suppress the growth of spurious
and unstable modes. Additionally the swapping of the weights decreases the dispersion of
the numerical solution. The downside is that using values θ "= 1/2 will reduce the accuracy
of this time integrator to first order; however we chose to adopt this scheme with a value of
θ = 0.6 as well. The way in which the actual evolution code is written makes it very easy
to change this weight though so we are not constrained to use only this particular value.

3.7 Results with the Finite Difference Approach

In analogy to the test case we investigated in Section 3.5 for the pseudospectral approach we
will use an initial Gaussian velocity distribution for δuρ here as well. The snapshots in Figure
3.7 show a typical result of a simulation for m = 0 with our implementation of the iterated
Crank-Nicholson scheme and swapped weights. Several points are worth mentioning here.
First of all the chronology of the various pictures in the figure is not identical to the temporal
progression in the corresponding Figure 3.6; in both cases we chose the pictures to depict
some of the characteristic behaviour of the numerical solution rather than create figures
at certain predefined timesteps. Also with the finite difference approach the simulation
becomes unstable although the perturbation equations can be evolved for a longer period
of time than in the pseudospectral case. In Figure 3.7 one again finds the outgoing wave
travelling towards the surface of the neutron star. And again an instability occurs but this
time not directly along the degenerated origin (i.e. σ = 0) but in its close vicinity which
then takes over most parts of the numerical grid. The late time evolution is dominated by
exponentially growing modes with an ever increasing amplitude. However in contrast to the
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Figure 3.7: Snapshots of the uρ-time evolution with the iterated Crank-Nicholson algorithm
and swapped weights; the numbers label the temporal order
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corresponding pseudospectral simulation, the time integration though exponentially growing
still remains smooth particularly along the rotation axis whereas in the spectral case the
behaviour of the solution shows many discontinuities especially at or near the origin; i.e.
compare the last sub-picture of Figure 3.7 with the equivalent picture in 3.6.
So there is reasonable hope that if we can control the spurious, exponentially growing modes
in this formulation we eventually may be able to perform a stable time evolution. As already
described in 3.6.1 the use of unequal weights in the iterated Crank-Nicholson algorithm
introduces a small amount of dissipation; however as we have seen here it is not enough
to suppress the unstable modes. The next logical step is the introduction of an explicit
dissipation term in the evolution equations in order to gain control over the instabilities.
Of course we are then solving a slightly different set of equations but if the additional
contribution of this artificial viscosity can be kept as small as needed for a stable evolution
then the overall effect of this auxiliary term may be negligible.

3.8 Artificial Viscosity

Consider a partial differential equation of the form

∂u

∂t
= P

(
∂

∂x

)
u =

∑

ν

Aν
∂u

∂x(ν)

Numerically this equation is solved typically by the method of lines; the same method we
use with the iterated Crank-Nicholson scheme. We approximate the spatial part by a finite
difference representation Q1 and obtain an ordinary differential equation

dw

dt
= Q1w (3.26)

to solve with time integrators like Runge-Kutta. In general, equation (3.26) is not stable;
it allows solution that grow like exp(at/h), where a > 0 and h is the average grid spacing.
This exponentially growing solutions can be suppressed by altering the system slightly and
consider the equation

dw

dt
= Qw with Q = Q1 + αQ2 , α = const. (3.27)

and
Q2 =

∑

ν

Dr
+x(ν)D

r
−x(ν)

Here, the value of r depends on the accuracy of the original finite difference operator Q1

but is usually set to r = 1 and D+, D− are the standard one-sided differences for each of
the ν dimensions of the problem; in one dimension and as usual with wj = w(xj) we would
have

D+xwj =
wj+1 − wj

h
and D−wj =

wj − wj−1

h

So effectively we are adding an explicit diffusion term of the form αwxx to system (3.26)
and it can be shown that for sufficiently large α the modified equation (3.27) is stable and
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has certain dissipative properties (see [69] for details). Of course we are now looking for
solutions of a modified differential equations and the larger the dissipation coefficient α
the larger we expect the deviations from the original solution. Generally there are no a
priori estimations on the discrepancy between the solution of (3.26) and the solution of the
modified system (3.27) when varying α; it depends on the particular problem. Our strategy
is to use the smallest amount of artificial viscosity that is needed for a stable evolution. We
will introduce four different dissipation coefficients α1, . . . ,α4; one coefficient for each of our
four perturbation equations (2.39)-(2.42). The finite difference operator representing the
additional artificial viscosity has the form

V = (D+σD−σ + D+τD−τ ) (3.28)

where σ and τ are the coordinates of the computational domain. With this scheme we were
finally able to evolve the time evolution equations in a stable way. The most expensive
step in this computation is to find the necessary amount of dissipation; since we have four
viscosity coefficients we have a four-dimensional parameter space that has to be checked
for the smallest combination of α1, . . . ,α4 needed for a stable evolution. Experience shows
that one can start with a rather high prediction for these coefficients and then successively
lower them as far as possible. With a low resolution of 50 × 40 gridpoints we check the
first 3 milliseconds of an evolution for the occurrence of instabilities and adjust the viscosity
parameters if necessary. This procedure is repeatedly applied until a further decrease in
the amplitudes of the dissipation coefficients would destroy the stability. However it turned
out that there is not a very strong dependence of the eigenmode frequencies on the amount
of artificial viscosity used. Once the optimum coefficients were found using the procedure
described above we could generically use up to 5 times higher dissipation without observing
a significant change in the oscillation frequencies. Of course the higher the dissipation the
stronger the solutions are being damped which will result in a broadening of the frequency
peaks in the Fourier transform. The crucial point here is that the peaks itself practically
only change within their error bounds which shows us that we don’t have to exactly pinpoint
a certain set of viscosity coefficients in order to get reliable results within this approach.
According to Figures 3.6 and 3.7 the following Figure 3.8 shows again snapshots of the
time evolution of an initial Gaussian velocity perturbation on the ρ-component of the 4-
velocity. The last two pictures are taken from a very late stage of the time evolution and
still the code runs very stable; typical evolution times are around 50 milliseconds. Since the
perturbation we applied is not an eigenmode, we expect that several modes were excited by
this particular choice of initial condition. The corresponding oscillation pattern therefore
will not look like a simple sinusoidal waveform but will feature a more complex shape. This
is somewhat different from the way these studies usually are performed; generally we will use
approximations of particular eigenfunctions to excite only this specific mode. The method
shown here is for demonstration purposes only. Figure 3.9 shows in the left panel the real
part of the complex solution of the time evolution equations(2.39)-(2.42) for m = 0.
In fact, in this case the system stays real when starting with purely real initial data as
already mentioned in 2.5.2. The complete evolution interval mounted up to 50 milliseconds
and was covered by roughly 105 timesteps. As expected the waveform looks rather intricate,
indicating that a huge number of modes is excited by the Gaussian initial perturbation.
The right panel shows the corresponding power spectral density or more specifically its log-
arithm and confirms this observation. Over a dozen different frequencies can be identified
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Figure 3.8: Snapshots of the uρ-time evolution with additional artificial viscosity; the num-
bers label the temporal order
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Figure 3.9: Time evolution of δuζ and corresponding frequency analysis for a Gaussian
perturbation on δuρ

immediately; the most strongest at 2.7 kHz belongs to the fundamental quasi-radial oscilla-
tion mode, the so-called F-mode and we will discuss our results in more detail in the next
chapter.
Finally we were able to provide a stable numerical algorithm for solving the linearized per-
turbation equations derived in Chapter 2. After appropriately extending the computational
domain supplied by the background code we solve the system (2.39)-(2.42) by an iterated
Crank-Nicholson scheme with unequal weights and an explicit dissipation operator of Kreiss-
Oliger type.
Before we present the code comparison results we will briefly review the way we are obtain-
ing the frequency spectrum, compute its peaks and use this information for a method called
mode recycling.

3.9 Post-Processing Routines

3.9.1 Discrete Fourier Transforms and Data Windowing

After a successful time evolution we take the real part of the complex data and want to
extract the mode frequencies. For a continuous time-series h(t) its corresponding Fourier
representation H(f) is given by

H(f) =
∞∫

−∞

h(t)e2πiftdt (3.29)

54



3.9. POST-PROCESSING ROUTINES

The total power of the signal can be computed in both of this views because we have

Pt =
∞∫

−∞

|h(t)|2dt =
∞∫

−∞

|H(f)|2df

We will be more interested in how strong a specific mode at a given frequency is, that is we
want to know the power contained in a narrow frequency range. For this reason one defines
the one-sided power spectral density (we will often write PSD for it) as

Ph(f) = |H(−f)|2 + |H(f)|2 0 < f <∞ (3.30)

For a purely real time-series we also have H(−f) = H(f)∗ so in this case it is Ph(f) =
2|H(f)|2.
Now our signal is discrete; it is sampled at multiples of the chosen timestep ∆t. Of course we
don’t have to sample the signal after every timestep; especially for simulations with a very
high spatial resolution we need a rather small ∆t in order to satisfy the Courant condition for
numerical stability. It would be impractical to store the data after every timestep because
the amount of memory needed is too much; usually it suffices to sample every 100 timesteps
or so. We will denote our actual sampling interval with δt in this section so normally we
have δt ≈ 100∆t. The real part of our numerical solution then is given at the temporal
points

hn = h(nδt) n = 0, 1, . . . , N − 1

Suppose now a situation depicted in the following Figure 3.10 where we have three sampling
points δti, i ∈ {0, 1, 2} and two oscillation modes. The signal function drawn solid in the
figure takes its extreme points at the sampling points during one wavelength λ; when we
denote the signal speed with cs we have

2csδt = λ

The corresponding frequency is then given by

fc =
1

2δt
(3.31)

and is called the Nyquist-frequency. Due to the finite temporal resolution of the time-series,
this is the highest frequency we are able to identify in hn. All of the power spectral density
that lies outside of the range f < fc is falsely aliased into that range. The time-series with
a higher frequency drawn dotted in Figure 3.10 is an example of this aliasing effect. At
the three discrete sampling points it takes the same values as the solid curve so just from
looking at the time-series hn we are not able to distinguish between these two oscillation
modes. This also means that in these cases the power spectral density near the Nyquist
frequency will contain contributions of all the aliased modes as well. A simple check would
then to determine whether the PSD approaches zero as the frequency approaches fc; if not
there is a certain probability that modes outside the critical range have been aliased back
into this range. On the other hand, if the continuous time-signal h(t) is bandwidth-limited,
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Figure 3.10: Example of aliasing effects for oscillations with a frequency higher than the
critical Nyquist-frequency

i.e. H(f) = 0 for f > fc then the sampling theorem states that h(t) is already completely
determined by its samples and we have (see [70] for example)

h(t) = δt
∞∑

n=0

sin(2πfc(t− nδt))
π(t− nδt)

We now have to find a discrete version of equation (3.29). In the continuous case the
frequency goes from −∞ to +∞ and we have just seen that in the discrete case the Nyquist
frequency fc is the critical limit. If the time-series hn takes N values we discretize the
interval It = [−fc,+fc] evenly into

fk =
k

Nδt
k = −N

2
, . . . ,

N

2
(3.32)

This are actually N + 1 numbers but we will see that two of them are not independent. We
then discretize equation (3.29) by

H(fk) =
∞∫

−∞

h(t)e2πifktdt ≈ δt
N−1∑

n=0

hne2πifktn = δt
N−1∑

n=0

hne2πink/N

and write

H(fk) = δtHk with Hk =
N−1∑

n=0

hne2πink/N (3.33)

Since HN−k = H−k we also have HN/2 = H−N/2 and therefore only N independent values.
It is convenient to vary k also from 0 to N − 1; with this choice we then have positive
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frequencies for 1 ≤ k ≤ N/2 − 1 and negative frequencies for N/2 + 1 ≤ k ≤ N − 1. The
zero frequency is for k = 0 and k = N/2 corresponds to both +fc and −fc. The one-sided
PSD is defined accordingly to its continuous counterpart as

P (0) =
1

N2
|H0|2 (3.34)

P (fk) =
1

N2
(|Hk|2 + |HN−k|2) k = 1, . . . ,

N

2
− 1

P (fc) =
1

N2
|HN/2|2

The discrete Fourier transforms that have to be performed on various datasets are imple-
mented using the free FFTW library [71] which uses some of the worlds fastest routines
for computing the frequency representation of a given time-series hn. The Fourier decom-
position is of course not the bottleneck of our code but especially for applying the mode
recycling technique which we will describe later we have to perform a frequency analysis
for every gridpoint of the computational domain. In special cases this amounts to 1.3 · 105

single Fourier transforms, each with roughly 106 datapoints to process.
The next point to address is how accurate equation (3.34) approximates the continuous ver-
sion (3.30) for the power spectral density. We can not expect for P (fk) to be exactly equal
to the continuous Ph(f) for f = fk; rather it will be some average of Ph(f) over an interval
centered at fk and extending to both sides of this frequency. This also means that we will
have some leakage of the signal into neighbouring frequency bins and in fact a simple argu-
ment gives us the weighting or window function in this case. Consider an infinitely sampled
signal hn which we multiply by the unity window function during the total sampling time
Nδt. By the convolution theorem, the Fourier transform of a product of function in just the
convolution of both separate Fourier transforms and for the unity window function we have

N−1∑

n=0

e2πisk/N =
sin(πs)

sin(πs/N)

The PSD is determined by taking the square of the Fourier transform and normalize it by
the total number of data points; we therefore arrive at the window function for the discrete
power spectral density

W (s) =
1

N2

∣∣∣∣
sin(πs)

sin(πs/N)

∣∣∣∣
2

where s is the frequency offset in bins. As one can see, w(s) shows on oscillatory behaviour
and leaks a significant part of the signal even for high offsets s. The reason for this is of
course the highly discontinuous behaviour of the unity step-function which Fourier transform
hence has also high frequency components. The whole purpose of data windowing is to find
another functional form of the window functions which changes more smoothly from zero
to a maximum value and then back to zero during the total sampling time and therefore
substantially cutting down the high frequency leakage in its Fourier transform. In the
literature (see [70] for example) one can find several examples of such window functions;
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popular choices are

wj = 1−
∣∣∣∣
j − 1/2N

1/2N

∣∣∣∣ Bartlett window function

wj =
1
2

(
1− cos

(
2πj

N

))
Hann window function

wj = 1−
(

j − 1/2N

1/2N

)2

Welch window function

Instead of calculating H(fk) with Hk defined in (3.33) we now use

Hk =
N−1∑

n=0

hnwne2πink/N

with some weight function wn. From a practical point of view there is only little difference
in choosing one window function over the other; the corresponding power spectral density
plots are virtually identical. The following Figure 3.11 compares the common choices for wn

with the unity step function one effectively uses without any data windowing.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  20  40  60  80  100

Bartlett
Henn

Welch
square

w
in

do
w

fu
nc

ti
on

am
pl

it
ud

e

data point number

Figure 3.11: The most popular choices of window functions compared to the unity step
function for N = 100 data points

For the post-processing routines in this thesis we use the Welch function to modify the
sampled data. However, this is not a tight restriction and can be changed at any time.

3.9.2 Peak Localization and Mode Recycling

By determining the location of frequency peaks in the power spectral density graphs we are
limited by the sampling time δt. According to equation (3.32) the frequency resolution is
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given by

∆f =
1

Nδt
One can therefore refine the frequency resolution by either using more samples, i.e. in-
creasing N , or by using a higher sampling interval δt. Of course, the latter choice will also
affect the critical Nyquist frequency fc in a way that a better resolution is achieved but
only in a very narrow low frequency range; see equation (3.31). So generally we will use
longer evolution time to increase the resolution; in particular for the low-frequency inertial
modes these longer evolution times are needed in order to obtain an appropriate number
of oscillation cycles for a proper frequency peak analysis. Probably the most obvious way
of implementing such a peak finding algorithm is to monitor the difference in Fourier am-
plitude of two adjacent grid-points in the frequency space. If we denote the amplitude of
the PSD at a given frequency fk with P (fk) then the task is to look for a change in sign
of P (fi+1)− P (fi), i = 0, . . . , N − 1. This value will be positive when approaching a peak
and gets negative when moving away from it; we therefore can pinpoint a local maximum
of the PSD to a specific discrete frequency gridpoint fk, k ∈ {0, . . . , N − 1}. We can im-
prove this scheme by using first-order finite-difference approximations for derivatives of the
power spectral density. If fk denotes the frequency of a peak determined by searching for a
sign change as described above, we can use (P (fk−1)− P (fk)/∆f as an approximation for
dP/df at f = fk−1 and correspondingly (P (fk+1)− P (fk)/∆f as an estimate for dP/df at
f = fk+1. For a peak of the PSD, the derivative with respect to the frequency has to vanish
and we can simply perform a linear interpolation on the numerically obtained derivatives
to find this point. In the case of P (fk−1) = P (fk+1) this scheme will provide the expected
result, i.e. a peak at f = fc; for all other cases it will give a more accurate estimation of the
peak location than the previously presented routine.
With this algorithm implemented in our code we can finally tackle the unintentional excita-
tion of additional modes during time evolution. The standard approach for the simulations
will be to put in a trial eigenfunction as initial data and let it evolve in time. Since we were
not starting with an exact eigenmode of the system the corresponding power spectral den-
sity recorded at an arbitrary point in the interior of the star will typically consist of a main
peak, representing the dominant oscillation mode of this run, and several smaller subpeaks.
Especially when going to very high rotation rates it gets difficult to track a specific frequency
peak as the various amplitudes and locations change. It is therefore desirable to find a mech-
anism which will suppress unwanted modes and enhance other modes of particular interest;
this mechanism is called mode recycling. Since for a given oscillation mode, the amplitude
of its Fourier transform correlates with its eigenfunction one has to take the power spectral
density not only at a single point of the computational domain but at many points and track
the behaviour of the PSD amplitude at a given mode frequency, see [40]. A simple example
may illustrate this. Consider a one-dimensional string that is fixed at its ends and oscillates
with a specific eigenfrequency. One then puts observers at different locations in space to
record the time evolution of amplitude and perform a Fourier transformation. At the nodes
of the oscillations, the observer would see no oscillation at all so the amplitude of the Fourier
transform is zero there as well. In contrast to this at the lobes of the oscillation pattern the
observer would record a very high Fourier amplitude at the specific eigenfrequency and this
amplitude will of course decrease towards the nodes. With this technique one can extract
the eigenfunctions of oscillation modes and put it back as initial data in a new simulation.
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Since one no longer uses a trial eigenfunction, other modes will usually be suppressed by
several orders of magnitude and typically this procedure is repeated two or three times. We
also will use it frequently first of all to demonstrate that mode recycling works in our case
as well and then to damp ambiguous modes especially at high rotation rates.
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4
Results

After we implemented a stable evolution code we have to validate its results against published
work in order to see if we can reproduce it. Our work will be pointless if the algorithm we
implemented is stable but does not confirm the findings of other publications. We mainly
will compare our results with the work published in [72] and [52]. In [72] a non-linear
relativistic hydrodynamics code is used to study axisymmetric modes of relativistic stars
in the Cowling approximation while in [52] also the spacetime is taken into account by a
conformal flatness approach. Both papers use the same series of background models to put
the perturbations on so we will briefly review them here.

4.1 The Background Models

For polytropic equations of state of the form (2.17) it is convenient to work in gravitational
units; i.e. where G = c = 1. There, the dimension of KN/2 is length so it can be used to set
the fundamental length scale of the system and to define dimensionless quantities; see for
example [73], [74]. We then have for instance

M̄ = K−N/2M for mass
R̄ = K−N/2R for radius
ρ̄ = KNρ for rest-mass density

Setting also the solar mass M( to zero will already turn K into a dimensionless scaling
factor and the BU background model series used in [72] and [52] is defined as a sequence
with Γ = 2, K = 100 and a fixed central rest-mass density of ρc = 1.28 · 10−3 in these units.
In the conventional cgs-system this means a rest-mass density of ρc = 0.79 · 1015 g/cm3 and
a corresponding energy density of εc = 0.891 ·1015 g/cm3. In the nonrotating limit this leads
to a stellar model with a gravitational mass of M = 1.4 M( and a radius of R = 14.16 km
and is labelled as BU0. Starting from there the angular velocity is subsequently increased
in a way that the ratio of polar to equatorial radius rp/re decreases by a constant factor
of 0.05 for every new equilibrium configuration until the Kepler limit is reached. This will
happen for rp/re = 0.58 and model BU9; increasing the angular velocity even more will not
lead to a stable equilibrium and the star will eventually be torn apart by centrifugal forces.
In the following Table 4.1 we give an overview about several stellar parameters; here M is
the gravitational mass and R the equatorial circumferential radius. One can see that the
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higher the rotation rate for fixed central rest-mass density the higher the gravitational mass
of the equilibrium configuration.

model Ω (kHz) rp/re M (M() Re (km)
BU0 0.0 1.0 1.4 14.16
BU1 2.182 0.95 1.43 14.52
BU2 3.062 0.9 1.47 14.92
BU3 3.712 0.85 1.5 15.39
BU4 4.229 0.8 1.54 15.91
BU5 4.647 0.75 1.59 16.53
BU6 4.976 0.7 1.63 17.27
BU7 5.214 0.65 1.67 18.16
BU8 5.344 0.6 1.69 19.29
BU9 5.361 0.58 1.7 19.96

Table 4.1: BU model parameters

This is of course due to the fact that the centrifugal force supports the pressure against the
gravitational pull so that higher masses can be achieved for rotation than in the nonrotating
case. Figure 4.1 shows the mass-radius relationship for all rotation rates listed in the second
column of Table 4.1. The sequence starts with zero angular velocity for the most left curve
and terminates with the Kepler velocity on the far right; the dots represent the actual BU
models from the first column of this table.
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Figure 4.1: Mass-Radius diagrams for different rotation rates; the dots represent the actual
BU models

Initially one can start with a very low mass and then follow the mass-radius curve up to
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the maximum mass Mmax for this rotation rate. Going further would reduce the mass
again as one can see from the figure but while models on these sections of the curve are
still solutions of the equilibrium equations they are unstable to radial perturbations. The
slightest displacement would either lead to a collapse or to a expansion of the star unless a
stable equilibrium is reached. This is the reason why all the background configurations have
larger radii than their corresponding M = Mmax-model.
From a numerical point of view experience shows that a rather small number of Chebyshev
polynomials is needed to generate very accurate equilibrium configurations. The accuracy
can be either checked by monitoring general relativistic generalizations of virial theorems
(see [75]) or by a comparison of different methods for obtaining mass and angular momentum
that have to yield identical results. The mass for example can be calculated by observing a
specific metric potential at infinity (we call this mass Ma) and alternatively by an integration
of metric and fluid variables in the interior of the compact object (labelled as Mi). With a
resolution of 18× 18 gridpoints in D+ (see Section 3.3 for reference) we already achieve an
accuracy of ∣∣∣∣1−

Mi

Ma

∣∣∣∣ = 3.8 · 10−13 and
∣∣∣∣1−

Ji

Ja

∣∣∣∣ = 3.5 · 10−9

for the angular momentum. We therefore chose this resolution as default value for our
background model generation.

4.2 First Axisymmetric Validation Runs

Since we do not know the correct eigenfunction of a pressure mode in advance, we have to
start with a trial perturbation that typically will also excite various other modes. Depending
on how accurate the first guess was the eigenfunction of the dominant mode will come very
close to the shape of the initial approximation. If the corresponding peak in the power
spectral density is too broad one can use successive mode-recycling runs to suppress the
additional modes and to sharpen the frequency peak of the strongest mode. For exciting
axisymmetric (m = 0) modes we will perturb the equilibrium rest-mass density according
to

δρ = Aρc sin
(

πr

rs(θ)

)
(4.1)

where A is the perturbation amplitude (typically around 10−3), (r, θ) denote spherical co-
ordinates and rs(θ) is the coordinate radius of the star (which is not independent of θ when
the star is rotating). Since we use pressure or energy density as perturbation variable we
also have

δp =
Γp

ρ
δρ

for polytropic EoS. A graphical representation of this type of initial data can be seen in
Figure 4.2
As already extensively discussed in Section 3.3, σ can be interpreted as radial coordinate
while τ corresponds to the θ-coordinate in a spherical system. The initial perturbation
described by equation (4.1) shows a l = 0-characteristics since for a given σ the perturbation
amplitude is independent of τ . All of the simulations in this thesis are performed with a
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Figure 4.2: Axisymmetric initial pressure perturbation for the BU0 model

grid-resolution of 200 × 160; additionally several other resolutions like 50 × 40, 75 × 60,
100 × 80 and 400 × 320 were also used, mostly for convergence tests. However, it turned
out that the most dramatic improvement in the frequencies was obtained when going from
the lowest resolution to the medium one with 100× 80 gridpoints. Increasing the number of
nodes in the computational domain beyond these numbers will generally also improve the
accuracy of the mode frequencies but not as rigorously as before. We can take this as an
indication, that a grid resolution of 200 × 160 is sufficient to determine the characteristic
oscillation frequencies to an admissible accuracy. A section of such a test run is depicted
in Figure 4.3. The complete simulation is stable for at least 50 ms but we only show
here the first 20 milliseconds. We also write δp and δuζ for the perturbation variables
that are presented in the figures of this thesis (e.g see figures 4.2 and 4.3 for example)
but what is really shown there are the modified time evolution quantities we introduced in
Section 2.5.1; see equations (2.26)-(2.29) and (2.35)-(2.38). For simplicity we will stay with
this notation; the eigenfrequencies of oscillation modes are not altered when multiplying a
perturbation variable with a function that is constant in time. One though has to bear in
mind that the eigenfunctions we will present here are the eigenfunctions of the modified
evolution quantities, although we will still label them with δuζ instead of the correct f2 in
this example.
The time-series recorded in Figure 4.3 is taken at the point P = (σ0, τ0) = (0.5, 0.5) inside
the computational domain and for all simulations in this thesis P is the default location for
the extraction of data. For a real eigenmode the oscillation frequency has of course to be
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independent of the data extraction point and this has also been tested. The easiest way to
check this is to compute the actual eigenfunction of this mode as a first preparatory step
for a mode recycling run.
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Figure 4.3: Time-evolution of δuζ for a nonrotating BU star and an initial m = 0 pressure
perturbation

If the frequency of a given mode changes significantly throughout the star, the correspond-
ing eigenfunction will show strong discontinuities; for all the results presented here, this
behaviour can be excluded. As already mentioned earlier, a typical simulation will cover
a time interval of roughly 50 ms. For the high resolution of 200 × 160 gridpoints approxi-
mately 2× 105 timesteps are needed for this evolution and every 200 timesteps the updated
perturbation quantities were saved to a file for post-processing. Hence the actual timestep
is given by ∆t ≈ 5 × 10−5 sec and we usually have a frequency resolution of ∆f ≈ 20 Hz
and a Nyquist frequency of fc ≈ 104 Hz. We explained in Section 3.8 that we had to include
Kreiss-Oliger like dissipation terms in order to get the numerical implementation stable over
a certain period of time. We chose four independent viscosity coefficients for each of the
perturbation equations and tried to make them as small as possible while still maintaining a
stable evolution scheme. Based on experience, the actual value of the dissipation coefficients
depends on at least two parameters. First of all when increasing the rotation frequency
of the background star one usually has to increase the artificial viscosity as well. Typical
values are one order of magnitude when going from no rotation to the Kepler limit. Second,
increasing the resolution of the simulation in many cases leads to a decrease in the amount
of additional viscosity needed for a stable evolution. This time however the dependence is
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not so strong as in the previous case, one can usually lower the coefficients by 60−70%. For
the nonrotating BU0 model we discuss so far, the dissipation coefficients fall in the range of
αi ≈ 10−4, i = 1, . . . 4.
The following Figure 4.4 shows the power spectral density of the time series presented in
Figure 4.3. For better visibility of the various oscillation modes actually the logarithm of
the PSD was taken and one can clearly see different frequency peaks in this spectrum.
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Figure 4.4: Logarithm of the power spectral density for the δuζ oscillation

The most dominant one at f = 2.706 kHz belongs to the fundamental quasi-radial oscillation
mode (F -mode) with no nodes of the corresponding eigenfunction in the radial direction.
Alongside, several other modes were excited as well; this is due to the fact that we started
with a trial eigenfunction of the form (4.1). However, the second most strongest mode is
already three orders of magnitude weaker than the F-mode. The vertical lines in Figure 4.4
denote the reference values from [72] of the fundamental mode and its first three overtones.
The eigenfunctions of overtones show the same angular behaviour as the fundamental mode
but in contrast to the F-mode they exhibit nodes in the radial direction. The corresponding
eigenfrequencies can be roughly approximated by an integer multiple of the fundamental
frequency. As one can see from the figure the frequencies we found in the nonrotating case
agree very well with the literature values; more specifically

fF
ref = 2.706 kHz fH1

ref = 4.547 kHz fH2
ref = 6.320 kHz fH3

ref = 8.153 kHz

fF = 2.679 kHz fH1 = 4.561 kHz fH2 = 6.380 kHz fH3 = 8.178 kHz

where the first line denotes the reference values and the second line shows our results;
the errors are less than 1%. To test the mode recycling module we developed, the Fourier
amplitude of the F -mode and its first three overtones was extracted from all gridpoints of the
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computational domain. As explained in subsection 3.9.2 the amplitude traces the shape of
the eigenfunction so one should actually see whether H1, H2 and H3 are really the overtones
of the fundamental mode. The result of such an extraction is depicted in the following Figure
4.5 where the amplitude is colour-coded and projected onto the computational domain.

F H1

H2 H3

σ
τ

Figure 4.5: Spatial variation of the Fourier amplitude for the fundamental mode and its first
three overtones extracted from δuζ in the nonrotating case

Indeed one can see very clear that the number of nodes in the radial direction increases
with higher overtones (keep in mind that the grid variable σ can be interpreted as a radial
coordinate which varies from σ = 0 at the center of the star to σ = 1 at the surface). One
point worth mentioning here is that the angular dependence of the eigenfunctions in Figure
4.5 is quite different from the angular behaviour in Figure 4.2 although they both describe
a spherically symmetric (l = 0, m = 0)-perturbation. The explanation is quite simple:
First of all, Figure 4.2 depicts a scalar perturbation and moving along a σ = const.-line
there shows immediately that this is a l = 0-perturbation. In contrast to this, Figure 4.5
shows a vector perturbation; even if the spherical harmonic Y 0

0 (r, θ) is a constant we have
to transform it into our cylindrical coordinate system. For a purely radial perturbation of
the 4-velocity we expect a modulation of sin θ for δuρ and cos θ for δuζ . Second, according
to the boundary conditions we derived for the rotation axis (see Table 2.1) the perturbation
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variable δuζ is always equal to zero along ρ = 0. Taking these two points into account, one
concludes that the shape of the eigenfunctions in Figure 4.5 is in fact in agreement with
an (l = 0, m = 0)-perturbation. The maximum amplitude of the eigenfunctions depicted
there also shows their relative strength in the time-series of Figure 4.4. The F -mode is the
strongest one with a normalized amplitude of roughly 1. Already three orders of magnitude
less powerful, the first overtone H1 can be identified in the data. The H2-mode is again
weaker by a factor of 100 and the part of the time-series which is due to the H3-mode is
once more a hundred times weaker.
There are still some unidentified frequency peaks left over in Figure 4.4, most notably the
second most strongest one at roughly 1.9 kHz and a minor one near 4.1 kHz. Since we
already demonstrated the reliability of the Fourier amplitude extraction technique that was
used to correctly identify the F -mode overtones, we now apply the very same algorithm
to the yet unknown peak at 1.9 kHz. Figure 4.6 shows the energy-density eigenfunction
obtained from this procedure. Again the amplitude is colour-coded and one can clearly see
that this perturbation is no longer independent of the polar angle θ, i.e. of τ in terms of the
numerical domain.

τ

σ

Figure 4.6: Eigenfunction of δε for the frequency peak at 1.9 kHz

Figure 4.6 shows a scalar perturbation so there is no confusion about transforming a vector
quantity from spherical to cylindrical coordinates (see the above discussion). The energy-
density perturbation has a maximum value along the rotation axis (ρ = 0, ζ > 0), then
goes through a minimum along the equatorial plane and again reaches a maximum along
the parts of the rotation axis which are below the equatorial plane, i.e. (ρ = 0, ζ < 0).
The only spherical harmonic function that matches this behaviour is Y 0

2 ∼ (3 cos2 θ − 1)
so the depicted eigenfunction features a (l = 2, m = 0) characteristic and indeed can be
identified with the fundamental axisymmetric quadrupolar oscillation, the 2f -mode. Since
we already extracted the eigenfunction we can put it back as initial data for a second run;
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this is what mode-recycling is all about. As discussed in Section 3.9.2 one expects to enhance
this specific modes and to suppress the others. The following Figure 4.7 shows the power
spectral density of a simulation with an initial energy-density perturbation that resembles
the 2f -mode eigenfunction.
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Figure 4.7: Logarithm of the power spectral density for the 2f -mode recycling run

As one can see there, the oscillation at 1.9 kHz is now considerably enhanced. We still
have contributions from other modes as well but the second most dominant one which is the
fundamental F -mode this time is weaker by a factor of 100. Again, the vertical lines denote
literature values for several oscillation patterns like the 2f -mode and its first two overtones;
the direct comparison yields

f
2f
ref = 1.846 kHz f

2p1
ref = 4.100 kHz f

2p2
ref = 6.019 kHz

f
2f = 1.890 kHz f

2p1 = 4.130 kHz f
2p2 = 6.007 kHz

This time the errors are less than 2.4% with the largest deviation for the fundamental
quadrupolar mode. Again we can ask for the shape of the eigenfunctions belonging to the
overtones of the 2f oscillation; similar to what we have done in the quasi-radial case (see
discussion above) we expect to see an increasing number of nodes in the radial direction.
Figure 4.8 shows the result of a Fourier amplitude tracking over the complete computational
domain, locked onto the 2p1- and 2p2-frequency. We can see that the angular dependence is
the same as for the 2f -mode which shows that indeed the overtones also belong to an (l = 2,
m = 0) perturbation. However in contrast to the fundamental mode radial nodes appear for
the high order harmonics; one for the 2p1-mode and two for the second overtone. In reality
these additional features were present but very small so that they were not visible on the
scale of Figure 4.8; we enhanced them artificially in this plot.
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The output of our simulations presented up to now are for a nonrotating BU star so far and
already very promising. We demonstrated that we are able to reproduce published results
in the literature to a very good accuracy.

τ
σ

4.8.1: Shape of the 2p1 eigenfunction

τ
σ

4.8.2: Shape of the 2p2 eigenfunction

Figure 4.8: Spatial variation of the energy-density Fourier amplitude for the quadrupolar
overtones

The mode recycling algorithm and, as a preparatory step, the tracing of the eigenfunction
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for a given frequency works excellent and is a helpful tool to identify ambiguous modes. In
the next section we will briefly discuss the convergence behaviour of the numerical scheme
before we continue to describe our results for rotating configurations.

4.3 Convergence Tests

The finite difference operators we are using to approximate the righthand side of the pertur-
bation equations are only accurate up to a certain order. As already mentioned in Section
3.6, the central difference scheme we apply for computing derivatives is equivalent to the use
of a local, second order interpolating Lagrange polynomial and evaluating its spatial varia-
tion at every gridpoint. The higher the resolution of the computational domain the better
the local approximation and therefore the smaller the truncation error. For a quadratic in-
terpolation it is of second order, i.e. doubling the number of gridpoints will result in a four
times smaller error. The θ-ICN algorithm with swapped weights is generally only first-order
accurate in time which is due to the temporal discretization of all implicit Crank-Nicholson
methods (e.g see equation (3.24)). One can however show that for θ = 1/2 the scheme
becomes second order in time as well since the leading term proportional in the truncation
error is given by (see [68])

eT ∼ (1/2− θ)∆t +O(∆x2,∆t2) (4.2)

Since we decided to use an intrinsically dissipative scheme with unequal weights (keep in
mind that for all simulations we use θ = 0.6) as well as explicit Kreiss-Oliger viscosity
this order of accuracy certainly does not apply to our situation; we expect to observe first-
order convergence in time. This is however nothing we want to study here; of course one can
investigate the effects of decreasing the temporal resolution but there are certain limitations.
First of all one cannot start with an arbitrary large time step. At least with an explicit time-
integrator the CFL-criterion sets a threshold on ∆t for a stable evolution. Second, as one
decreases the timestep the Nyquist frequency increases and the frequency resolution will
decrease. In order to maintain a definitive resolution in the frequency domain one has to
increase the number of samples which normally means to evolve the system for a longer
period of time. But this can be difficult if the code does not possess longterm stability
properties. So speaking of convergence behaviour usually means to investigate the effects of
increasing the number of spatial gridpoints. From equation (4.2) this decrease in grid spacing
should lead to a second-order effect. There is still a minor complication in the formulation
presented here: As described in the previous Section 4.2, when changing in the resolution
of the numerical domain one usually also has to adjust the various viscosity coefficients
for the Kreiss-Oliger dissipation. Using the same values generally leads to an unstable
scheme again; a rule of thumb is that higher resolution requires less artificial viscosity.
This behaviour puts some restrictions to the convergence checks. The usual procedure is
to take a differential equation (for example the wave equation), run some simulations with
increasing resolution, compute the eigenfrequencies and monitor its variation with respect
to the number of gridpoints. In our case though, the time evolution equations are not
independent of the resolution; the artificial viscosity coefficients depend on them so for each
new resolution we are actually studying a slightly different set of equations than in the
previous run. It is therefore not as straightforward as described previously with the simple
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wave equation example to make statements about convergence in this case. But as it turns
out we can see a second order accurate behaviour. The following Figure 4.9 depicts this
observation for the fundamental quasiradial and quadrupolar oscillation mode.
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4.9.1: F -mode convergence
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4.9.2: 2f -mode convergence

Figure 4.9: Convergence behaviour and numerical fits of the fundamental quasiradial and
quadrupolar modes

As already mentioned in Section 4.2, we mainly performed simulations for four different
resolutions 50 × 40, 75 × 60, 100 × 80 and 200 × 160. The grid spacing variable in the
plots of Figure 4.9 is normalized to the lowest of this resolution; i.e. the frequencies for the
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50 × 40 resolution indicated by a plus-sign are located at a normalized grid spacing of 1.0.
Doubling the resolution will lead to a decrease in the distance of the grid points by a factor
of two; accordingly the results for the two fundamental mode frequencies in simulations
with a 100×80 resolution are highlighted as plus-signs at a normalized grid spacing value of
0.5 and similar considerations apply for the other cases. One can clearly see, especially for
the quadrupolar oscillation, that the convergence behaviour is non-linear. For the F -mode,
we did both a quadratic fit and a linear one for comparison to the calculated frequencies;
the result is depicted in subfigure 4.9.1 where the linear fit is drawn in dashed lines. It is
evident from there that the frequencies obtained from the simulations are much better in
accordance with a quadratic convergence than with a linear one; this is even more obvious
for the 2f -mode in subfigure 4.9.2 where there is no possibility to fit the data properly with
a single straight line. So it seems that neither the actual form of the dissipation operator
(see equation (3.28)) nor the resolution dependent viscosity coefficients do show a critical
impact on the expected convergence properties of the implemented θ-ICN with unequal and
swapped weights; the scheme stays second order in space.

4.4 The Axisymmetric Case

In Section 4.2 we already studied axisymmetric pressure modes for a nonrotating, spherically
symmetric BU0 star. Since the perturbation equations are formulated in a comoving frame
of reference, their structure remains the same in the rotating case. This is a great advantage
over a stationary coordinate system where supplementary terms proportional to the angular
velocity Ω enter the righthand sides of the equations; making them both more complicated
and prone to any numerical instabilities. In addition we can save some computer time in the
axisymmetric case since the complex perturbation equations reduce to a purely real system
for m = 0; see Section 2.5.1. From the nonrotating and slow-rotation limit it is well known
that one can decompose fluid and metric perturbations in terms of spherical, vector and
tensor harmonics which split into two distinct classes, depending on their behaviour under
space reflection (i.e. r → −r). The polar parity perturbations change sign like (−1)l while
the axial parity variables transform like (−1)l+1. The pressure modes studied so far belong
to the polar class; we will continue to discuss their properties when the compact objects
starts rotating faster and faster before we turn to inertial modes which are of axial parity.

4.4.1 Polar Perturbations

For investigating the effects of rotation on polar modes we will use the same trial initial data
as in the nonrotating case; see equation (4.1). In the nonrotating case, its denominator is
actual independent of the polar angle θ since the star is spherically symmetric. This changes
when the angular velocity becomes nonzero. Due to centrifugal forces the compact object
gets flattened along the rotation axis; correspondingly the factor rs(θ) in equation (4.1) is
larger for gridpoints near the equatorial plane; see for example Figure 3.4. This will slightly
alter the shape of the trial pressure perturbation from a purely l = 0-like dependence.
The following Figure 4.10 shows the results obtained by the numerical scheme presented in
this thesis and compares it to values found in the literature [72] for various axisymmetric
pressure modes. The dashed lines represent our simulations performed on a 200× 160 grid
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while the solid lines are the reference frequencies. The agreement between them is very
good, most notably the first overtone of the quadrupolar fundamental mode, i.e. the 2p1

oscillation is matched perfectly. We are also nicely consistent with both the l = 0 and the
l = 2 fundamental modes. The difference in the frequencies for the quasiradial overtones is
a little bit larger, especially when going to higher rotation rates near the Kepler limit, but
they never exceed the 5%-level. And while the reference curves often show some kind of
step-like behaviour where the frequencies go up then down and up again our dashed graphs
are generally quite smooth throughout the whole range of angular velocities.
There are two cases where we don’t agree with the published results at rotation rates near
the Kepler frequency; it is the second and third quasiradial overtones. While in [72] they
observe a decrease of the mode frequency when approaching the critical angular velocity we
cannot confirm this behaviour. The frequencies we compute increase monotonically after
approaching a local minimum at around 2.5 kHz. Since we know the radial and polar de-
pendence of the nonrotating eigenfunctions, see Figure 4.5, we can also extract them in the
rapidly rotating case and carry out a comparison. Especially for rotation frequencies near
the Kepler limit it is sometimes difficult to pick the correct peak of a specific oscillation
mode; the power spectral density plots are not always as unambiguous as in the previously
presented examples. To identify a certain mode without any doubt one has to take a look at
its eigenfunction and this is what we did in Figure 4.11. We took the frequencies of Figure
4.10 for the most rapidly rotating model BU9 in Table 4.1 and computed the shape of the
corresponding eigenfunctions.
As one can clearly see, again the eigenfunctions can be related to the quasiradial funda-
mental mode and its first three overtones. If we compare Figure 4.11 with its counterpart
in the nonrotating case, i.e. Figure 4.5, we observe that the non-vanishing regions of the
eigenfunctions are pushed towards the rotational axis. Also the radial nodes for the BU0
model are truly radial, i.e. they can be described by an equation of the form σ = const.
in the coordinate system of the computational domain which practically translates to a
r = const.-relationship in spherical coordinates. In the rapidly rotating case, the location
of the nodal regions is no longer independent of θ. As one moves along a node towards the
equatorial plane (i.e. τ = 1) one also approaches the surface of the star.
Table 4.2 summarizes our results for the first four quasiradial and the first two quadrupolar
axisymmetric pressure modes; angular velocity and the mode frequencies are given in units
of kHz.
In summary we can say that our code is able to reproduce oscillation mode frequencies of
axisymmetric polar perturbation both for nonrotating and rapidly rotating compact stars
to a very good accuracy. Since the background model used in this thesis uses a polytropic
equation of state and the fluid perturbations obey the very same relationship, these pressure
modes are the only polar modes we are able to simulate; for gravity- or g-modes one needs
buoyancy which is absent in our setup. Let us hence now turn to the description of axial
perturbations and the results obtained there.
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Figure 4.10: Comparison of the simulation results against published values for several oscil-
lation modes
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σ
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Figure 4.11: Spatial variation of the Fourier amplitude of δuζ for the quasiradial mode and
its overtones with the BU9 model as background

Ω F H1 H2 H3
2f 2p1

0.0 2.679 4.561 6.380 8.178 1.890 4.130
2.182 2.638 4.466 6.255 8.035 1.890 4.065
3.062 2.605 4.435 6.253 8.058 1.906 3.970
3.712 2.570 4.409 6.275 8.111 1.895 3.838
4.229 2.539 4.410 6.310 8.156 1.875 3.674
4.647 2.500 4.400 6.330 8.237 1.844 3.487
4.976 2.484 4.392 6.356 8.334 1.794 3.275
5.214 2.456 4.390 6.370 8.405 1.703 3.056
5.344 2.426 4.394 6.380 8.411 1.613 2.932
5.361 2.418 4.391 6.382 8.435 1.604 2.873

Table 4.2: Frequencies of several polar pressure perturbations for the BU model series; units
are kHz
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4.4. THE AXISYMMETRIC CASE

4.4.2 Axial Perturbations

While pressure is the restoring force for p-modes and buoyancy tries to pull back fluid per-
turbations in g-modes, the Coriolis force takes this part for the so-called inertial modes, i.e.
axisymmetric axial perturbations. Therefore they only exist in rotating stars with frequen-
cies that are proportional to the angular velocity. This makes them somewhat difficult to
compute accurately since the numerical code needs to be stable for a sufficient long time
in order to record as many oscillation cycles as possible. As already mentioned in several
sections, the algorithm implemented during this thesis is both implicitly and explicitly dis-
sipative. Due to truncation errors when using a finite difference scheme we introduced an
implicit viscous term which in our case is of order O(∆t). In addition, the artificial viscosity
needed to get rid of exponentially growing modes is the explicit dissipation term that is
present here. Both these effects will remove energy out of the modes and damp them; how
strong this will happen depends on the evolution time (longer time-evolution runs mean a
larger decrease in the amplitude of the mode) and the value of the Kreiss-Oliger dissipa-
tion coefficients (the higher they are the stronger obviously the damping). Eventually the
decrease in amplitude will become so large that roundoff-errors destroy the numerical sta-
bility at a certain point. Luckily this has not been the case in our simulations; typical time
evolutions for axial perturbations were stable at least for 60 ms which usually is enough for
an adequate frequency determination. In most cases there was no need to supply special
initial data or to perform many mode recycling iterations; the axisymmetric inertial modes
were excited as a byproduct of the initial data (4.1). Only for very rapid rotation several
recycling runs were necessary to get a cleaner signal. The following Figure 4.12 depicts the
typical outcome of such a simulation for a BU3 compact object.
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Figure 4.12: Axisymmetric inertial modes for a BU3 model; solid vertical lines denote
literature values

Since the very same initial conditions are used as in the axial case, it is no surprise that the
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two most dominant peaks can be identified with the fundamental quasiradial and quadrupo-
lar mode. Keep in mind that the F -mode frequencies agree very well with published results
while we slightly overestimate the 2f -mode frequency; see Figure 4.10 and Table 4.2 where
one can infer an error of 2% for the quadrupolar oscillation in this specific case. More inter-
esting is the low-frequency part of the power spectral density; there three distinct modes are
visible. The vertical lines denote published results from [52] where the so-called conformal
flatness approximation was used to study non-linear axisymmetric perturbations. This ap-
proach also includes perturbations of the metric under the assumption that spacetime can
be conformally rescaled to be Euclidian at spatial infinity. Despite the use of the Cowling
approximation it is remarkable how well we are able to reproduce the results of [52]; it is
obvious that the coupling to the spacetime does not play such a significant role as it is the
case for the fundamental pressure mode which were discussed in the last section. However,
for the oscillation mode with the lowest frequency in Figure 4.12 and which is labelled i−2

in the literature we find stronger deviations than for the intermediate (i1) and largest (i2)
frequency mode. This is already evident from looking at Figure 4.12; the lowest peak clearly
doesn’t match the corresponding vertical line which denotes the published value. Especially
very low frequencies require long evolution times to determine them accurately; this can
explain the observed discrepancy. Similar to Figure 4.10 we show in the following Figure
4.13 a graphical representation of the differences between the results obtained with the linear
code and the published values in the conformal flatness approximation for angular velocities
up to the Kepler limit.
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Figure 4.13: A comparison between the literature values and our results for the i1, i2 and
i−2 inertial mode
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As already noticed, the relative differences are most strongly pronounced for the lowest
frequency oscillation, the i−2 inertial mode. However the overall agreement especially for
the higher frequency modes is quite remarkable, considering the different approximations
and numerical schemes of the codes that are compared here. In the Newtonian limit one
can show, e.g. [76], that the inertial mode frequencies for a given angular velocity Ω are
confined within the range 0 < ω < 2Ω. Surely this estimation will be altered by general
relativistic effects but it tells us roughly that for a BU9 star rotating at its breakup limit of
5.361 kHz we should expect to see no inertial modes beyond a frequency of about 1.7 kHz
and indeed the i1, i2 and i−2 mode are all lying well within this range. The following Table
4.3 shows a tabulated overview of the mode frequencies obtained with the linear code.

Ω i−2 i1 i2

0.0 0.0 0.0 0.0
2.182 0.202 0.266 0.373
3.062 0.285 0.399 0.528
3.712 0.372 0.521 0.651
4.229 0.432 0.602 0.750
4.647 0.497 0.657 0.836
4.976 0.539 0.721 0.924
5.213 0.584 0.776 0.971
5.344 0.619 0.790 1.001
5.361 0.685 0.806 1.009

Table 4.3: Frequencies of the three inertial modes i1, i2, i−2 for the BU series at different
rotation rates

The results presented here show that we are able to successfully excite axisymmetric axial
modes which agree very well with eigenfrequencies obtained by more sophisticated codes
which do not necessarily rely on the Cowling approximation. This concludes the section
about the m = 0-type oscillations; in the second part of this chapter we will turn to non-
axisymmetric perturbations which in principle, due to the so-called CFS-mechanism, are
able to drive a neutron star unstable.

4.5 The CFS-Instability

Since the CFS-instability is a generic feature of rotating perfect fluid stars, we will spend
some time in sketching the fundamentals on how this instability works. This also includes the
notion of counter- and corotating modes and how their frequencies change when transforming
from the comoving frame of reference(in which the perturbation equations (2.39)-(2.42) are
formulated) to an inertial observer.
Due to the azimuthal decomposition of the time-evolution quantities proportional to eimϕ

and the subsequent Fourier-decomposition which is performed on the numerically obtained
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time-series, any perturbation variable f is actually split up into

f ∼ eiσteimϕ = ei(σt+mϕ) (4.3)

To track a specific constant phase in time one therefore has to move on by an angle

ϕcomov
0 = − σ

m
t0

after a time t0. This means that if σ > 0 and we look at an oscillation mode with m > 0,
its wave crests will propagate in the opposite direction of rotation and are therefore called
retrograde. In contrast, modes with m < 0 will move in the direction of rotation and hence
are called prograde modes. This holds true in a coordinate system rotating with the star;
the question now is how the frequencies change when switching to an inertial frame which
is at rest with respect to infinity. The only coordinate that receives a different meaning is
the azimuthal angle ϕ and the relation connecting the two coordinate systems simply is

ϕcomov = ϕin − Ωt (4.4)

If one inserts (4.4) into (4.3) the final relationship between mode frequencies in the comoving
and inertial frame reads

σin = σcomov −mΩ (4.5)

For axisymmetric perturbations (i.e. m = 0) the two frequencies are identical; this is why
this discussion was not necessary in the previous Section 4.4. To track a surface of constant
phase in the stationary frame a similar calculation like the one above yields

ϕin
0 = − (σcomov −mΩ)

m
t0

This means that if the frequency σcomov is larger than mΩ, then the mode is also travelling
in retrograde direction in the stationary system. For σcomov = mΩ the frequency becomes
degenerate in this system while for σcomov < mΩ a mode travelling retrograde in the comov-
ing frame is seen prograde in the stationary coordinate system. Keep in mind though that
this behaviour has nothing to do with general relativistic frame dragging effects; it is a mere
consequence of observing the same physical quantities in different coordinate systems. The
region in which an oscillation switches from retrograde to prograde in the inertial frame is
exactly the instability range of the CFS mechanism.
Originally discovered by Chandrasekhar [20] it was thoroughly investigated by Friedman
and Schutz [21], [77] which developed a formal proof for the generic behaviour of this new
class of rotational dragging instabilities. They introduced the notion of a canonical energy
Ec associated to a perturbation which in the Newtonian case often is described in terms of
a displacement vector ξ that connects the position of each fluid element before and after
applying the perturbation. Then Ec can be computed in the inertial frame via (see [78])

Ec =
1
2

∫ [
ρ|ξ̇|2 − ρ|v ·∇· ξ|2 + Γp|∇ · ξ|2 + ξ∗ ·∇p∇ · ξ + ξ ·∇p∇ · ξ∗ (4.6)

+ ξi∗ξj(∇i∇jp + ρ∇i∇jΦ)− 1
4π
|∇δΦ|2

]
dV
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Here p, ρ and Γ are as usual pressure, rest-mass density and polytropic exponent and v, Φ and
δΦ represent the fluid velocity, the Newtonian gravitational potential and its perturbation
respectively. From equation (4.6) it is clear that Ec = 0 for an equilibrium configuration.
Now the canonical energy can be written as a surface integral of a conserved quantity so
any change in Ec from one hypersurface to another one at a later time has to be the energy
radiated away by gravitational waves; this also means that Ec is a decreasing function in
time. Now if a nonaxisymmetric perturbation is unstable, it will grow unlimited and thereby
emit an infinite amount of energy; on the other hand if it is stable it will only radiate away
finite energy till it settles back to an equilibrium configuration. This makes the canonical
energy a helpful tool in studying instabilities in the following sense:
If Ec(ξ) ≥ 0 for all initial data at some time t then no perturbation radiates infinite energy;
the maximum amount of energy available is given by the initial value of Ec at t.
If otherwise Ec < 0 for some initial data then the configuration is unstable; Ec is a decreasing
function of time and therefore can never return to zero, i.e. to equilibrium.
Correspondingly to the canonical energy, a canonical angular momentum Jc can also be
defined in the inertial frame. If we consider normal modes of oscillation where ξi ∼ ei(mϕ+σt),
one can show that

Ec

Jc
= ωp (4.7)

where ωp = −σ/m is the pattern speed of the mode. In contrast to the discussion above we
will now restrict m to be strictly positive but allow σ to become negative in return. With
this agreement one can obtain an inequality for Jc that reads

m2(ωp − Ω− Ω
m

) ≤ Jc

C(ξ)
≤ m2(ωp − Ω +

Ω
m

) (4.8)

where C(ξ) > 0. Now we want to look at a sequence of background models that begin
with no rotation and end with the Kepler-limit. As we have already seen, nonaxisymmetric
perturbations can be separated into prograde (ωp > 0) and retrograde (ωp < 0) modes. For
oscillations whose frequencies remain finite as Ω goes to zero, i.e. small rotation, it is clear
from equation (4.8) that prograde modes have Jc > 0 and for retrograde modes it is similarly
Jc < 0. By virtue of equation (4.7) the canonical energy is therefore nonzero and positive;
the perturbations are stable according to the stability criterion stated above. Consider now
a retrograde mode that, for a specific angular velocity of the compact star, enters the region
in which ωp ≈ 0. Again from equation (4.8) it follows that Jc < 0 then; but the pattern
speed ωp becomes positive in this region and so the canonical energy gets negative which is
the indication of a growing instability. As a side note this result also agrees with the weak
stability theorem by the same authors in [79] where they proved that instability can only
set in for modes whose frequency vanishes along a sequence of equilibrium models. The
generic behaviour of this new class of rotational dragging instabilities is evident since all
that is needed for them to work is a coupling mechanism to some radiation field (this makes
Ėc < 0) and a rotating background that leads to a splitting between pro- and retrograde
modes.
The very first polar mode that is likely to become unstable due to this CFS-mechanism
is the fundamental pressure mode since it is the lowest order pressure mode. Of course
this also depends on the chosen background model; if it doesn’t allow high enough angular
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velocities so that a counterrotating mode becomes corotating, the instability will not set in.
For this reason we will mainly restrict our study of polar perturbations to the (l = 2, m = 2)-
fundamental mode but we will broaden the range of EoS in our investigation.

4.6 Additional Background Models

Currently the background code adopted in this thesis only allows for polytropic equations of
state (see equation (2.17)). The BU series has already been covered properly in Section 4.1,
we now will include polytropic fits to tabulated EoS and follow [80] in choosing Γ = 2.46,
K = 0.00936 for EoS A and Γ = 2.34, K = 0.0195 to fit EoS II (see also [81, 82] for details).
The following Figure 4.14 compares the mass-radius curves for all EoS which are considered
in this section in the nonrotating limit; the dots mark the actual background models used
for time-evolution.
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Figure 4.14: Mass-Radius diagrams for different equations of state and nonrotating config-
urations

The graph for the BU model is actually identical to the corresponding curve in Figure 4.1.
As one can see, the trajectories cover a quite wide range in radii and masses; the equilibrium
configurations for EoS A and EoS II were chosen to be very close to their maximum allowed
masses. The next two Tables 4.4 and 4.5 summarize the basic stellar parameters along the
sequence of background models.
As before M is the gravitational mass and Re the equatorial circumferential radius. Actually
we also constructed various stellar models in a rotation frequency range of several hundred
Hz. When the nonaxisymmetric oscillations are splitting up and two branches develop for
the counter- and corotating modes it sometimes gets difficult to correctly identify them.
This ambiguity is avoided if we start observing the splitting right from the beginning at
very low rotation rates.
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model Ω (kHz) rp/re M (M() Re (km)
A0 0.0 1.0 1.62 9.53
A1 4.34 0.95 1.65 9.72
A2 6.11 0.9 1.68 9.93
A3 7.43 0.85 1.72 10.18
A4 8.49 0.8 1.77 10.45
A5 9.36 0.75 1.81 10.77
A6 10.07 0.7 1.86 11.15
A7 10.6 0.65 1.91 11.61
A8 10.94 0.6 1.95 12.17
A9 11.04 0.56 1.96 12.78

Table 4.4: EoS A model parameters

model Ω (kHz) rp/re M (M() Re (km)
II0 0.0 1.0 1.91 11.71
II1 3.47 0.95 1.95 11.95
II2 4.88 0.9 1.99 12.22
II3 5.93 0.85 2.03 12.53
II4 6.77 0.8 2.08 12.88
II5 7.46 0.75 2.14 13.28
II6 8.01 0.7 2.19 13.77
II7 8.42 0.65 2.24 14.35
II8 8.67 0.6 2.29 15.08
II9 8.73 0.56 2.3 15.75

Table 4.5: EoS II model parameters

4.7 First Non-Axisymmetric Test Runs

To study nonaxisymmetric oscillations we will not put in a initial energy-density/pressure
perturbation as we did for the m = 0-case. Instead, again in accordance to [72], a velocity
perturbation is used to excite mainly quadrupolar modes. In a spherical coordinate system
a small non-zero θ-component is added to the 4-velocity

vθ = A sin
(

πr

rs(θ)

)
sin θ cos θ (4.9)

where A and rs have the same meaning as in equation (4.1). Since the code presented
in this thesis works in cylindrical coordinates a proper coordinate transformation has to
be applied; this will introduce additional terms of the form sin θ and cos θ. Additionally,
the perturbation equations (2.39)-(2.42) are written with covariant vector components so
yet another transformation is needed to alter the contravariant components of equation
(4.9). Last but not least we have to take care about the fact that instead of the original
hydrodynamical quantities like perturbed energy-density or perturbed velocity, we are using
slightly modified evolution variables that turned out to be more useful in the derivation of
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system (2.39)-(2.42) (see equations (2.35)-(2.38)). After all this has been done very carefully
the actual numerical time integration can be performed. Analogue to Figures 4.3 and 4.4
the following Figure 4.15 shows the evolution of the perturbed pressure perturbation after
an initial condition of type (4.9) has been applied to a nonrotating BU object.
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4.15.1: nonaxisymmetric pressure perturbation variation for a BU0 star
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4.15.2: power spectral density of the δp time-series

Figure 4.15: Time series and corresponding PSD plot for an initial velocity perturbation on
a BU0 star according to (4.9)
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Again only the first 20 msec are depicted even though the actual numerical evolution was
stable for at least 60 milliseconds. One can immediately spot two differences if one compares
the axisymmetric with the nonaxisymmetric simulations. First of all the dominant mode
in Figure 4.15 clearly has a lower frequency than the corresponding m = 0 fundamental
mode and second, the oscillation is damped stronger. This is a generic behaviour at least in
our code since the amount of artificial viscosity needed to get a long term stable evolution
is larger for nonaxisymmetric perturbations than for axisymmetric ones. As before the
identification of the various frequency peaks in the PSD plot has to be based on the shape of
the eigenfunction; this will also be a test whether the mode recycling routine we implemented
also works in the nonaxisymmetric case where real and imaginary parts of the perturbation
equations explicitly mix. The result of such an extraction for the pressure perturbations
is depicted in Figure 4.16; we again chose to monitor a scalar quantity since it is easier to
relate its angular behaviour to certain spherical harmonics.
The most strongest peak at f = 1.879 kHz can be identified with the fundamental (l =
2, m = 2) oscillation mode; the θ-dependence of the corresponding spherical harmonic is
given by Y 2

2 ∼ sin2 θ and keep in mind that the τ -coordinate of the computational domain
varies from 0 to 2 and can be thought of being similar to the polar angle in spherical
coordinates. The frequency peak at f = 4.15 kHz shows a similar angular dependence but
additionally a radial node appears near the surface of the star. This leads to the conclusion
that this mode labelled as 2p1 is simply the first harmonic overtone of the fundamental
F -mode. The other eigenfunctions exhibit a different behaviour with respect to θ. Although
they all vanish at the boundaries of the computational domain (this is in accordance to the
boundary conditions for scalar variables and m "= 0 , see Table 2.1), their angular dependence
fits perfectly with a (l = 4, m = 2)-oscillation since Y 2

4 ∼ sin2 θ(7 cos2 θ − 1). The 4f -mode
at f = 2.61 kHz apparently has no nodes in radial direction so this is the fundamental mode
for (l = 4, m = 2). The subsequent peaks at f = 5.19 kHz and f = 7.31 kHz are its first
and second order harmonics which can easily be confirmed by the number of radial nodes
that show up in the corresponding eigenfunctions. Similar to the axisymmetric case these
additional features were originally not visible at the scale of Figure 4.16; they had to be
artificially enhanced to be noticeable. This shows that the eigenmode extraction technique
works equally well for nonaxisymmetric simulations and thus is a helpful tool for identifying
and examining eigenfunctions.

4.8 Distinguishing Counter- And Corotating Modes

As it has already been pointed out in Section 2.5.2 and proved rigorously in appendix A.2,
the only difference in performing a simulation for an m0 > 0 and then running the same
simulation with −m0 < 0 is that the imaginary parts of the perturbation quantities will
flip in sign. Furthermore it has been shown that this sign flip has no effect on the real
part of the complex solution which is taken as the final solution for the purely real initial
value problem we want to solve numerically. First of all, this is not only a feature of this
specific code; see for example [83] where the Newtonian version of the very same problem
has been studied. They also found counter- and corotating modes for l = 2 and m = 2 with
counterrotating modes having higher frequencies in the comoving frame. Still the question
is how these different oscillations can be separated in the PSD plot. For this we will make
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Figure 4.16: Shape of the extracted pressure eigenfunctions for the five labelled peaks in
Figure 4.15
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use of equations (4.4) and (4.5) which correlate coordinates and measured frequencies in two
coordinate systems. It is straightforward to transform any numerically obtained time-series
from the comoving frame of reference which is used throughout this thesis to an inertial
observer by virtue of equation (4.4). As usual this new time-series can then be Fourier-
transformed into frequency space and according to equation (4.5) the mode frequencies in
these two frames are related by

fin = fcorot −
m

2π
Ω (4.10)

It means that an inertial observer will see a frequency decrease for retrograde propagating
modes (i.e. m > 0 in our notation; see Section 4.5) and an increase for prograde modes
by a certain amount that is determined by the azimuthal mode number m and the angular
velocity Ω of the star. This is the additional information we can use to distinguish between
them in the PSD diagrams.
But let us first verify the statement about the sign flip in the imaginary parts of the complex
perturbation variables when changing the sign of m. Figure 4.17 shows real and imaginary
parts of δuρ for a BU0 star and after evolving trial initial data for roughly 10 msec; solid
lines denote the m = 2-solution while dashed lines depict the result of a m = −2 simulation.
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Figure 4.17: Left panel: Real part of δuρ for both m = 2 (solid) and m = −2 (dashed) Right
panel: Imaginary part of δuρ for both m = 2 (solid) and m = −2 (dashed)

Both functions are viewed from a point within the σ-τ–plane. The two solutions for the real
part of δuρ overlap perfectly; in accordance with the prediction there is no difference. The
imaginary part on the other hand shows the predicted change in sign when comparing the
various solutions; apparently the numerics is also able to reproduce this analytical property
derived in Section 2.5.2.
Next we turn to the actual determination of counter- and corotating modes. For this purpose
the following Figure 4.18 shows the splitting of the fundamental mode for a BU star rotating
at Ω = 694 Hz. This object has a ratio of polar to equatorial circumferential radius of rp/re =
0.995 so it still can be considered as approximately spherical symmetric. Nevertheless one
can notice the formation of two different frequency branches whereas in the nonrotating limit
there was only one (compare Figure 4.18 with Figure 4.15). Rotation breaks the degeneracy
between prograde and retrograde propagating modes and the fundamental oscillation at
f = 1.879 kHz for the BU0 model gets split up into two parts at f1 = 1.784 kHz and
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f2 = 1.948 kHz in the comoving frame. Plotted with dashed lines in Figure 4.18 is the
corresponding PSD distribution for an inertial observer; let us focus on the f1-frequency
peak.

1500 1750 2000 2250

frequency (Hz)

-15

-12.5

lo
g

1
0
(P

S
D

(!
u
"
!!

comoving frame

inertial frame

60 220

Figure 4.18: Splitting of the fundamental mode in two different frames of reference

The question is now which one of the two maxima in the inertial frame can be related to
this specific peak. According to equation (4.10) the frequencies in the different coordinate
systems a biased by a factor of mΩ/2π which in this example with m = 2 and Ω = 694 Hz
turns out to be roughly 220 Hz. Also in Figure 4.18 we indicated the relative distance in
frequency space from the f1-mode to its potential counterparts in the inertial frame; it is
quite obvious from the plot which peak we have to choose. The one located at f1 belongs to
the corotating fundamental mode and its frequency increases when observed from an inertial
frame of reference while the peak we find at f2 can be identified with the counterrotating
F -mode whose frequency decreases when measured in a coordinate system at rest; in perfect
agreement with [83].
After we are able to distinguish between prograde and retrograde propagating modes, we
can now turn to the investigation on how the rotation of the compact object affects the
nonaxisymmetric perturbations.

4.9 The Non-Axisymmetric Case

The discussion about nonaxisymmetric oscillations will also be divided into two parts con-
cerning axial and polar perturbations. The axial part mainly deals with the fundamental
mode; because it has the lowest frequency of all pressure driven modes and therefore is
most likely prone to the CFS-instability. Since a compact object can only be spun up to
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the Kepler-limit, higher order harmonics may actually never reach the regime where their
frequencies drop to zero. On the other hand, the growth time of unstable modes with
l = 3, 4, . . . is just too long to become significant; in realistic neutron star models it is
very likely that viscosity effects damp the swelling instability away. However we want to
stress that the code presented here is in fact able also to follow the evolution of high order
nonaxisymmetric perturbations. When starting with (4.9) as trial initial data not many of
them are excited though; clearly several mode recycling runs are necessary in these cases.
Just for demonstration purposes the following Figure 4.19 depicts the change in frequency
of the 2f -, 4f - and 2p1-mode for several rotation rates of a BU star. As already mentioned
the fundamental mode is the strongest one with the most clear peak in the power spectral
density and it therefore can be traced continuously throughout the whole range of rotation
frequencies. Without any explicit mode recycling runs the other perturbations are some-
what more difficult to track, for the 4f -mode we had to stop at around 4 kHz since its
identification was no longer possible, still it shows that in principle there are no restrictions
from a numerical point of view to study higher order modes.
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Figure 4.19: Dependence of various nonaxisymmetric modes on the angular velocity of a BU
star

Nevertheless we will restrict ourselves from now on to focus on the fundamental mode
entirely. Keep in mind however that the Cowling approximation affects the 2f -mode most
rigorously as it already has been pointed out in Section 2.3. For higher harmonics the
neglect of metric perturbations is practically of no consequence for the mode frequencies
but the accuracy of the Cowling approximation decreases rapidly with decreasing radial
node number; the difference can be as high as 100% (see for example [52] and [50]). So we
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won’t get the absolute values right but rather receive an impression about the qualitative
behaviour of the nonaxisymmetric quadrupolar fundamental mode once rotation sets in and
is increased towards the Kepler limit.

4.9.1 Polar Perturbations

It is well known that the f -mode frequency for nonrotating Newtonian stars only depends
on the mean density and the polar order l of the perturbation; the exact formula in the case
of uniform density is given by

ω2 =
2l(l − 1)
2l + 1

M

R3
(4.11)

and is approximately valid also in the relativistic case; see [18]. Based on the stellar param-
eters of the various background models in Table 4.1, 4.4 and 4.5 we expect to observe the
highest f -mode value for EoS A, followed by EoS II and EoS BU. The following Figure 4.20
shows the results of simulations for the three equations of state.
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Figure 4.20: Splitting of the fundamental mode for three different EoS in the comoving
frame of reference

Every curve concludes at its value for the Kepler-limit; an important difference to the
corresponding diagrams in the axisymmetric case (e.g. Figure 4.10) is that instead of angular
velocity Ω we now plot the mode frequencies against rotation frequency, that is νrot =
Ω/2π. Keep in mind that Figure 4.20 depicts the frequency variation in a frame of reference
corotating with the star. According to the discussion we had in Section 4.8, for each EoS
the counterrotating modes are represented by the branches with higher mode frequencies.
As we have seen, they get shifted towards lower frequencies when observed in an inertial
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frame and therefore can become CFS-unstable. From Figure 4.20 it is evident that in the
nonrotating limit indeed it is f

2f
EoS A > f

2f
EoS II > f

2f
EoS BU; more specifically we find

f
2f
EoS A = 3.043 kHz f

2f
EoS II = 2.491 kHz f

2f
EoS BU = 1.879 kHz

One may even test how good the ratio of the f -mode frequencies is approximated by the
corresponding ratio of mean densities according to equation (4.11); masses and radii of the
nonrotating background models can be again inferred from the Tables 4.1, 4.4, 4.5.

EoS ratio frequency ratio mean density ratio
A/BU 1.62 1.95
A/II 1.22 1.25

II/BU 1.33 1.55

Table 4.6: Comparison between mode frequency- and corresponding mean density-ratios

Table 4.6 actually shows reasonably good agreements especially for the combination of EoS
A and EoS II. The obvious discrepancies can be explained by the fact that equation (4.11)
is strictly valid only in the case of Newtonian uniform density stars; for relativistic perfect
fluids this relation is more a rough rule of thumb anyway. The next Table 4.7 gives a detailed
summary about the change of the fundamental mode frequency with rotation.

EoS BU EoS II EoS A

rp/re m = 2 m = −2 m = 2 m = −2 m = 2 m = −2
1 1.879 1.879 2.491 2.491 3.043 3.043

0.95 2.078 1.564 2.699 2.073 3.309 2.547
0.9 2.095 1.386 2.719 1.839 3.33 2.267
0.85 2.093 1.24 2.7 1.648 3.301 2.007
0.8 2.082 1.122 2.656 1.47 3.237 1.785
0.75 2.015 0.991 2.58 1.3 3.152 1.574
0.7 1.965 0.884 2.481 1.138 3.015 1.369
0.65 1.87 0.794 2.375 0.989 2.89 1.186
0.6 1.758 0.747 2.244 0.886 2.74 1.045
rK 1.675 0.722 2.182 0.847 2.664 0.9

Table 4.7: 2f -mode frequencies (in kHz) for all three EoS; rK denotes the axis ratio at
Kepler-limit

In this table the angular velocity is given in terms of the axis ratio rp/re of the compact
star; the value of rK denotes this ratio for the Kepler-limit which is 0.58 for EoS BU and
0.56 for EoS A and EoS II. The following Figure 4.21 is just another way to look at these
results.
There we plot the 2f -mode frequency normalized by its nonrotating value against the rota-
tion frequency scaled by its corresponding Kepler-limit for the three equations of state. This
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Figure 4.21: Normalized version of Figure 4.20

means that all curves start at the point (0, 1) and will stop at a normalized rotation fre-
quency of 1. It is evident from Figure 4.21 that the three curves are nearly indistinguishable
up to a ration of roughly 0.4 and even beyond this value the agreement in the normalized
frequencies is striking. If we write for all rotation parameters

f

f0
= 1.0 + C(1)

lm

(
ν

νK

)
+ C(2)

lm

(
ν

νK

)2

(4.12)

and make a least-square fit through all the data points one arrives at C(1)
22 = −0.25± 0.02,

C(2)
22 = −0.25 ± 0.02 for m = 2 and C(1)

2−2 = 0.48 ± 0.03, C(2)
22 = −0.55 ± 0.04 in the

m = −2 case. To get an impression of how well this 2nd-order approximation fits the data
the following Figure 4.22 shows again the three graphs but now together with the fitting
polynomial.
Keep in mind though that everything presented up to now is in the comoving frame of
reference; the picture changes substantially if one transforms the frequencies from Table 4.7
to an inertial observer. According to equation (4.10) this means to add an extra term −mν
where ν is the rotation frequency and the following Figure 4.23 shows the result of such
a transformation. As already discussed in Section 4.8 the counterrotating m = 2 modes
now get shifted towards lower frequencies while the corotating m = −2 solutions attain
higher frequencies; the pro- and retrograde branches are therefore reversed compared to the
comoving frame. One can clearly see that all three model series actually reach the point
where the 2f -mode has zero frequency and hence becomes unstable to the CFS-instability;
see Section 4.5. For the less compact background models , i.e. the BU equation of state, this
happens quite close to its Kepler-limit; the other more compact series reach that particular
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Figure 4.22: The fitting through all data points of Figure 4.21

point considerably earlier. Also pointed out in Section 4.5 and now evident from the figures
is that the unstable m = 2 mode is seen retrograde in the comoving system but prograde
in the inertial frame. One immediately notices that the normalized picture in the inertial
frame does not show the nice independence of the mode frequency from the equation of
state. The three branches already deviate from each other at low rotation rate where the
largest discrepancy can be observed with the BU series.
There is no chance to fit the data points equally well as in the comoving frame. How can
we understand this? It is well known from Newtonian theory (see [76] for example) that the
frequency shift induced by rotation in the inertial frame can be related to the eigenfunction
of the mode via

f(Ω) = f(0)−mν(1− Cnl) +O(ν2) with Cnl =
∫ R
0 ρr2(2ξrξh + ξ2

h)dr
∫ R
0 ρr2(ξ2

r + l(l + 1)ξ2
h)dr

(4.13)

Here, ξr and ξh represent the radial and angular parts of the eigenfunction. On the other
hand, equation (4.10) tells us that in order to switch to the comoving frame a factor of mν
has to be added to relation (4.13). If one now rewrites (4.13) in terms of the scaled variables
in Figures 4.21 and 4.23 one arrives at

f

f0
|in = 1.0−m

(
νK

f0

) (
ν

νK

)
−mCnl

(
νK

f0

) (
ν

νK

)
+O((ν/νK)2) (4.14)

in the inertial frame and
f

f0
|corot = 1.0−mCnl

(
νK

f0

) (
ν

νK

)
+O((ν/νK)2) (4.15)
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4.23.1: Splitting of the 2f -mode in the inertial frame
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Figure 4.23: Same as Figures 4.21 and 4.22 but in the inertial frame
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in the corotating system. Now the ratio of νK/f0 is similar for all three equations of state but
it is not exactly identical; for EoS BU the value is 0.454 and for EoS A and EoS II it is 0.577
and 0.558 respectively (one can easily compute these values from the Tables 4.1, 4.4, 4.5,
4.7). As we have seen empirically in the comoving system, the slopes of all three branches
is nearly identical. This means that the factor Cnl in equation (4.15) counterbalances the
differences in νK/f0 so that the product of these two terms stays nearly constant. The same
product also appears in the inertial frame but this time there is also a term ∼ νK/f0 which
does not get neutralized in the same way as in the corotating system; see equation (4.14).
This explains the apparent differences in the Figures 4.21 and 4.23.
To summarize, we have shown that the code developed during this thesis is also able to
evolve nonaxisymmetric polar perturbations up to the Kepler-limit. The computed 2f -
mode frequencies show the expected behaviour on the compactness of the background models
and a useful relationship between mode frequency and rotation rate has been found in the
corotating frame of reference which is nearly independent of the equation of state investigated
so far. Additionally, the neutral points for all three EoS have been identified; beyond this
point the 2f -mode is unstable due to the CFS-criterion. As we have done in the axisymmetric
case we will now turn to axial perturbations.

4.9.2 Axial Perturbations

Non-axisymmetric axial perturbations, which are also called r-modes due to the similarity
with planetary- or Rossby-waves on Earth, are known to be generically unstable according
to the CFS-criterion. From Newtonian theory one can deduce that the frequency of an
r-mode in the comoving frame is given by (see [76])

fcorot =
2mν

l(l + 1)
(4.16)

where ν is the angular frequency of the star. Keep in mind that whenever the frequency
changes sign when transforming from the comoving frame to the inertial system or vice
versa the CFS-instability will work. Switching to the inertial frame of reference transforms
equation (4.16) into

fin =
2mν

l(l + 1)
−mν ≤ 0 for m > 0 (4.17)

independent of the rotation rate. So if the r-modes will be excited, even slowly rotating
stars will become unstable and, depending on the maximum amplitude and other damping
mechanisms, will emit a certain amount of rotational energy in gravitational waves. This
particular class of oscillations therefore may have many possible applications in astrophysics
and gravitational wave research, e.g. [27, 84].
We also did a couple of simulations to specifically excite the (l = 2, m = 2) inertial mode for
rapidly rotating models and were successful. Inertial modes of fast rotating stars exhibit a
strong coupling between axial and polar contributions of various order which makes a unique
identification of the corresponding eigenfunction rather tedious. Using spherical coordinates
it can be shown (see [85], [37]) that for example the perturbation of the θ-component of the
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4-velocity is given by

δuθ ≈
n∑

k=0

1
r

(
Vm+2k+1

∂Pm
m+2k+1

∂θ
+

m

sin(θ)
Um+2kPm

m+2k

)
(4.18)

where the summation limit n fixes the number of coupling terms, U and V are power series
of x = r/R for the axial and polar contributions and P denote the associated Legendre
polynomials of the standard spherical harmonics; similar expressions hold true for the other
perturbation quantities.
The case is a little bit different for the fundamental r-mode though. In a Newtonian descrip-
tion this mode has just a single axial contribution and therefore does not mix with higher
axial and polar parts. General relativity introduces coupling terms but at least for slow
rotation it has been shown in [86], that the amplitude of the dominant coupling term is still
an order of magnitude smaller than the original axial part. So according to equation (4.18)
we expect the δuθ dependence to behave like

δuθ ∼
1
r

P 2
2

sin θ
=

1
r

sin θ

and this is how the initial data has been set up for the axial perturbations. Typically,
several mode recycling runs are needed to get a sharp and clean signal in the power spectral
density. Also, due to the low frequencies of inertial modes especially at small rotation rates
one needs much longer evolution times than for pressure driven modes. We chose to cancel
the time-evolution after roughly 50 ms to extract the eigenfrequencies. The numerical code
is still stable there and can in principle evolve the initial data for a longer time interval,
leading to a more accurate frequency determination. However, we found that an evolution
time of about 50 ms and a spatial resolution of 200×160 gridpoints is already quite good for
a first estimation; there is only a marginally change when using longer integration intervals.
We compare our code with results for a BU6 star rotating at 93% of its maximum speed
as described in [87] where a nonlinear general-relativistic code has been used to study the
saturation amplitude of r-modes. The following Figure 4.24 gives a summary of the results.
By means of repeated mode recycling, the fundamental r-mode can be significantly enhanced
as depicted in the PSD plot of Figure 4.24. We also checked the angular dependence of the
extracted eigenfunction. Since δuθ should be ∼ sin(θ) the ρ- and ζ-components of the
perturbed 4-velocity are modified by an additional factor of cos(θ) and sin(θ) respectively.
Keep in mind that the grid variable τ which takes values from 1 to 2 can be thought of
similar to the polar angle θ in spherical coordinates; see the discussion of Figures 3.3, 3.4 in
this thesis.
Then it is clear that the eigenfunction for δuρ and δuζ depicted in the bottom row of Figure
4.24 show indeed the expected behaviour. The fundamental r-mode has a frequency of
fc = 518 Hz in the comoving frame which translates to a frequency of fi = 1.066 kHz in
the inertial frame. This is in excellent agreement with [87] where they found it at fi = 1.03
kHz and also with [88] where they saw the mode at fi = 1.05 kHz; nonlinear effects in the
simulations of [87] may explain the larger discrepancy there.
There has also been a debate about the existence of a continuous spectrum for inertial mode
frequencies. Most of the analytic results for r-modes have been derived in Newtonian theory,
e.g. equations (4.16), (4.17). The question now is, how these results change when including
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Figure 4.24: Top Left: Time evolution of δuρ Top Right: Corresponding power spectral
density plot Bottom Left: Shape of the δuρ eigenfunction Bottom Right: Shape of the δuζ

eigenfunction

general relativistic effects. With the line-element of a rotating compact object in the inertial
frame

ds2 = −e2νdt2 + e2λdr2 + r2(dθ2 + sin2 θdφ2)− 2ω sin2 θdtdφ (4.19)

a similar calculation both in the Cowling-approximation and the slow-rotation limit leads
to

f(r) = −mν

[
1− 2

l(l + 1)

(
1− ω(r)

2πν

)]
(4.20)

where ω(r) correlates to the dragging of inertial frames near a rotating relativistic object.
Note that equation (4.20) reduces to (4.17) in the case of zero angular momentum of the
star but as soon as rotation sets in, equation (4.20) tells us that each fluid layer oscillates
with a slightly different frequency. Instead of a single peak in the power spectral density, one
therefore has a band of continuous frequencies whose limits are determined by the values of
the frame-dragging potential ω at the center and the surface of the star. Initially Kojima
[89, 90] investigated the singular structure of the corresponding eigenvalue problem for slowly
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rotating stars; this conclusion was later put on a rigorous mathematical footing, see [91].
However it has also been pointed out there that the continuous spectrum might be just an
artifact of the slow-rotation approximation. Another complication results from the coupling
between polar and axial contributions in the corresponding perturbation equations since
the inclusion of rotational effects leads to a set of equations with infinitely many coupling
terms that have to be truncated after a specific polar index l < lm in order to be solved
numerically, see [92, 93, 94, 95]. Depending on the compactness and the value of lm, the
continuous spectrum would change its location and width.
A natural question now would be if we see any traces of a continuous spectrum in our
simulations. The following Figure 4.25 shows the result in the (l = 2, m = 2)-case.
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Figure 4.25: Top Panel: PSD plot of the (l = 2, m = 2)-pressure perturbation at (σ, τ) =
(0.5, 0.5) Bottom Panel: Frequency distribution along a fixed value of τ = 0.5 and varying
radial distance σ
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The top picture basically depicts the same circumstance as in the top right panel of Fig-
ure 4.24; this time the pressure perturbation is plotted. As usual in our simulations the
arbitrary point (σ, τ) = (0.5, 0.5) is chosen to extract the time-series needed for the power
spectral density calculation. The bottom picture shows the colour-coded PSD amplitude
at a constant τ = 0.5 and varying σ ∈ [0, 1]. If one recalls that σ can be interpreted as
radial coordinate, this means that we move from the center of the star radially outwards
to the surface at σ = 1. The straight vertical lines one can spot in this plot depict the
radial variations of certain mode frequencies. As already discussed in this section, the peak
at f1 = 518 Hz belongs to the quadrupolar inertial mode. The next two peaks located
at f2 = 1.68 kHz and f3 = 2.34 kHz can be identified with the co- and counterrotating
branches of the (l = 3, m = 2) fundamental mode while the last peak at f4 = 3.98 kHz that
is unambiguously discernable belongs to its first overtone; the node in radial direction is
clearly visible. Since we performed mode-recycling specifically for the low-frequency inertial
mode, the other more diffuse peaks at higher frequencies are pure numerical junk.
Keep in mind that Y 3

2 ∼ sin2 θ cos θ so we expect the shape of the pressure eigenfunction
to feature two maxima and a node along the equatorial plane. The first overtone should
additionally exhibit a node in the radial direction; something similar we have already seen in
Figure 4.11 for axisymmetric pressure modes. The following Figure 4.26 shows the extracted
shape of the eigenfunctions and confirms the assumptions.

σ
τ

4.26.1: The shape of the (l = 3, m = 2) pressure
eigenfunction

σ

τ

4.26.2: The shape of the first (l = 3, m = 2) over-
tone

Figure 4.26: Shape of the eigenfunctions from the dominant peaks in Figure 4.25

Now that the basic features of the PSD plot in the upper panel of Figure 4.25 have been
determined, we can pick up the original problem about a possible continuous spectrum.
As already discussed earlier, the different layers of the compact star would oscillate with
different frequencies. Since the frame-dragging potential ω(r) is a monotonically increasing
function of the radial distance, larger distance from the center of the star means higher
oscillation frequency. It is pretty much evident from the bottom picture in Figure 4.25 that
we cannot observe such a behaviour for the inertial mode depicted there. Instead of a tilt
to the right we expect from a continuous spectrum, the peak stays at f1 = 518 Hz for all
radial points. Keep in mind that the background model is a BU6 star rotating at 93% of its
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Kepler-limit, so we are definitely beyond the slow-rotation approximation. Another point
worth mentioning is, that no decomposition of the angular part into spherical harmonics is
used in our formulation of the perturbation equations. So concerning the coupling between
polar and axial contributions, there is no need to constrain the coupling terms up to a
certain polar order lm since in principle all coupling terms are already included there. So in
summary we have not seen any traces of a continuous spectrum in the simulations.
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5
Summary and Outlook

In this thesis, we solved for the first time the linearized perturbation equations for fast
rotating relativistic stars up to the Kepler-limit in the Cowling approximation. Instead of
recasting the equations into an eigenvalue problem, the hydrodynamic evolution variables
were directly integrated in time.

After a short and general introduction into the research field of stellar oscillations in
Chapter 1, we began in Chapter 2 with the mathematical treatment of the problem. There,
we derived the full nonlinear formulation of oscillations of compact objects within the frame-
work of General Relativity. Since the nonlinear evolution of both the spacetime and the fluid
is quite difficult, certain approximations may help to simplify this problem. First of all, the
restriction to small perturbations leads to a set of coupled linear equations in which the
evolution of the spacetime is still included. Second, the freezing of the spacetime to its
stationary background values further reduces the complexity of the equations. In this so-
called Cowling approximation only the fluid variables are treated as dynamical evolution
quantities. Although these two approximations ease the numerical treatment of the original
problem considerably, it has not yet been solved. We approached this issue with a novel
formulation of the evolution equations in a comoving frame of reference. Due to a specific
combination of background quantities and evolution variables, we derived a very elegant and
simple set of equations and boundary conditions. We were also able to predict and proove
analytically several properties of the evolution system which served as an additional test for
the numerical implementation.

In Chapter 3 we developed an accurate and long-term stable algorithm for integrating
the time-evolution equations derived in the preceding chapter. The background model we
used was supplied as part of a collaboration within the SFB/TR7 and employed a rather
novel numerical approach, i.e. so-called pseudospectral methods. We tried to extend this
numerical technique also in the time-domain but it turned out that numerical instabilities
near the rotation axis of the compact object eventually destroy the stability of the system.
Actually, the rotation axis as well as the surface of the star are the critical regions, where all
other codes have similar stability problems. It is the major reason why up to now this linear
problem was an unsolved issue. For the first time we were successful in overcoming these
instabilities. This was achieved by a transition to more traditional finite-difference schemes
and the use of additional artificial viscosity terms in the equations. It turned out that these
dissipation terms were the key ingredient for a stable time-evolution for all rotation rates
up to the breakup-frequency.
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After establishing a stable evolution scheme in Chapter 3, the subsequent Chapter 4
thoroughly tests this new code and compares its output with already published results. By
explicitly adding artificial viscosity we are changing the original system that we wanted to
solve initially. Hence it is not clear a priori what effect, if any, the additional dissipation
terms have on the mode frequencies. For this reason its impact on the pristine set of
equations was kept as small as possible. In the end it turned out that there is no apparent
influence of the explicit viscosity on the oscillation frequencies. By varying the strength of
the dissipation, there is only a negligible effect on the mode frequencies.

Our results, first tested in the case of axisymmetric perturbations, are in excellent agree-
ment with nonlinear simulations; both for no rotation and rapid rotation. We were also
able to extract the spatial variation of many eigenfunctions; an information that can be
used as initial data in subsequent simulations for sharpening the frequency peaks. The long-
term stability of the numerical code also allowed the study of low-frequency inertial modes
that are only present in rotating stars. Our results for axisymmetric inertial modes in the
Cowling approximation show excellent agreement with previous nonlinear simulations in the
conformal flatness approach.
We then turned to the investigation on non-axisymmetric perturbations which are of special
astrophysical relevance since they may lead to rotational instabilities and the emission of
large amounts of gravitational radiation. Examining various polytropic equations of state,
we were able to identify the neutral points of quadrupolar pressure-driven oscillations, i.e.
the onset of the secular instability. One particular new result we found was, that when
measured in the corotating frame of reference, the splitting of the fundamental quadrupolar
mode into pro- and retrograde travelling waves proved to be independent of the specific EoS
for a wide range of rotation frequencies. This might be crucial for future gravitational wave
asteroseismology since it allows a robust determination of the masses and radii of rotating
neutron stars.

Finally, we tested the code on non-axisymmetric inertial modes which are generically
unstable to the emission of gravitational waves and which may explain the low rotation pe-
riods of young neutron stars. Again, the frequency of the fundamental quadrupolar inertial
mode computed with our method agrees very well with other nonlinear simulations. Addi-
tionally, we addressed the still open question about the existence of a continuous spectrum
for inertial modes. At least all the simulations carried out in this thesis show no trace of it.

Starting now from this established and well-tested code, one can take several directions.
We can imagine at least two different tracks that can be tackled now. First of all we re-
stricted ourselves in this thesis to study rapid, albeit uniform rotation. It is well known
that especially in the very early stages of the creation of a neutron star, they will spin dif-
ferentially. Differential rotation increases the maximum angular velocity a compact object
can attain before it gets torn apart by centrifugal forces. Considering non-axisymmetric
perturbation, this has two effects. First of all, even if the angular frequency of a uniformly
rotating star is not high enough in order to drive a certain perturbation unstable, this may
actually be the case for the corresponding differentially rotating star because of its larger
Kepler-limit. Second, one knows from simulations in the slow-rotation approximation that
the splitting between pro- and retrograde travelling modes is larger in the case of differential
rotation, see for example [96], [97] . This will lead to an onset of rotational instability at
even smaller rotation rates. But a systematic investigation of mode frequencies and eigen-
functions in the case of rapid differential rotation is still missing.
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Another problem that can be addressed now is the effect of the dynamic spacetime on the
oscillations. In this thesis we were still working in the Cowling approximation, i.e. the
spacetime is fixed to its stationary background values. Dropping this assumption will lead
to an improvement in the determination of the neutral points of the fundamental quadrupo-
lar mode and of course also to a whole new class of oscillations; the w-modes. One finally
would be able to compute in a self-consistent way the amount of gravitational radiation
emitted as well as the exact waveforms. With the advent of gravitational wave astronomy,
this task becomes even more important since it will allow the determination of fundamental
stellar parameters from its gravitational wave signals. From a numerical point of view, the
emission of gravitational radiation is just another dissipative mechanism. So instead of the
artificial viscosity that is needed right now to stabilize the system against exponentially
growing modes, maybe the dissipation of energy into the spacetime is the only viscous effect
one needs for a stable evolution. Even if this turns out to be wrong, we now know how to
apply artificial viscosity efficiently.
Finally, these two different approaches should be merged in order to provide a complete sur-
vey of oscillation modes of rotating compact objects within the framework of linear pertur-
bation theory. This will prove to be an efficient tool for investigating rotational instabilities
and thereby providing valuable information for future gravitational wave asteroseismology.
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A
Proofs about the Perturbation Equations

A.1 A Toy Model

In this appendix we will prove some of the statements about the perturbation equations we
made in Subsection 2.5.2. Before we do so it is worth to study analytically a simple linear
toy problem; this will also illustrate the complex approach we are doing with the original
equations. We will take a look at a coupled system of two equations and try to mimic the
behaviour of the original perturbation equations (2.39)-(2.42) derived in 2.5.1. In order to
make it manageable we will neglect all ρ- and ζ-derivatives and end up with our toy model
we want to solve

u̇1 = u2 (A.1)
u̇2 = ∂ϕu2 − u1

with unknown functions u1 = u1(ρ, ϕ, t) and u2 = u2(ρ, ϕ, t).
The azimuthal part we decompose into periodic functions and since it it easier to work in a
complex notation we will write

u1 = f · eimϕ (A.2)
u2 = g · eimϕ

The system of equations (A.1) is linear which means that the final real solution is obtained
by taking the real part of this decomposition. Inserting (A.2) into (A.1) leads to

ḟ = g (A.3)
ġ = im · g − f

where f , g are now functions of ρ and t only. With our eimϕ-approach we were able to
get rid of the angular dependence completely. The next step is to transform this first oder
system of coupled equations into an uncoupled second order system. Differentiating the first
equation of (A.3) again with respect to time and inserting the second equation as well as
the other way round will give us the desired result

f̈ − im · ḟ + f = 0 (A.4)
g̈ − im · ġ + g = 0

105



APPENDIX A. PROOFS ABOUT THE PERTURBATION EQUATIONS

The evolution equations for f and g are therefore identical so it is sufficient to study the
solution of one of these equations. The next step is to assume a harmonic time-dependence
and to write

f(ρ, t) = f̃(ρ) · eiωt

We insert this into the first equation of (A.4) and we end up with a quadratic equation for
the frequency ω.

ω2 −mω − 1 = 0 (A.5)

Equation (A.5) has the two solutions

ω1 =
1
2

(
m +

√
m2 + 4

)
and ω2 =

1
2

(
m−

√
m2 + 4

)
(A.6)

The general solution for f is therefore a linear superposition of the two fundamental solutions
with frequencies ω1 and ω2. Together with some integration constants a1, a2, α, β ∈ R we
can write

u1 = Re
(
a1e

i(ω1t+mϕ+α) + a2e
i(ω2t+mϕ+β)

)
(A.7)

and a similar solution for u2 accordingly.
For simplicity let us forget about the second fundamental solution for a moment and write
ω for ω1. In this case we have

u1 = a cos(ωt + mϕ + α)
u2 = b cos(ωt + mϕ + β)

Then it is

u̇1 = −aω sin(ωt + mϕ + α)
!= u2 = b cos(ωt + mϕ + β)

This equation can be satisfied by setting α = π/2, β = 0 and b = −aω. Now let us look
at the second equation of (A.1). With our just determined integration constants it follows
that

u̇2 = −bω sin(ωt + mϕ)
!= ∂ϕu2 − u1 = −bm sin(ωt + mϕ)− b

ω
sin(ωt + mϕ)

But this turns out to be exactly the condition (A.5) which is fulfilled for ω so indeed we
have shown that

u1 =
b

ω
sin(ωt + mϕ)

u2 = b cos(ωt + mϕ)

is a solution of (A.1), the function b = b(ρ) is thereby determined by the initial conditions.
The analytic procedure we have presented here in the case of a simple coupled system of two
differential equations we are applying numerically for the more complicated system (2.39)-
(2.42) of four coupled equations with nonconstant coefficients. Of course we have to make a
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trade-off here: The price for getting rid completely off the dependence in the ϕ-component
is that we are now solving four more equations (i.e. the imaginary parts as well) and then as
a final step take the real part of the numerically obtained solution. The good point is that
although it is not possible to solve the original system (2.39)-(2.42) analytically it is still
possible to derive certain properties of this system which then can be checked during the
simulations to test the integrity of our numerical implementation. This will be the subject
of the next section.

A.2 Analytical Proofs

Let us consider the original set of evolution equations (2.39)-(2.42) and forget about the
exact style of the coefficients. For the sake of simplicity we will set them to unity without
loss of generality and study the system

ḟ1 = H,ρ + f3 + H (A.8)

ḟ2 = H,ζ + f3 + H

ḟ3 = im(f3 + H) + f1,ρ + f2,ζ + f1 + f2

Ḣ = im(H + f3) + f1,ρ + f2,ζ + f1 + f2

As already discussed in 2.5.2 it becomes even more evident here that these four equations
can be very well separated into two groups where the first two only differ in their spatial
differentiation and the last two equations are identical here; this is of course because we set
all coefficients to ±1.
Let now A = (a1, a2, a3, A) be a solution of (A.8) for m = m0. Since (A.8) is a system of
complex differential equations it has a real part as well as an imaginary part. If we explicitly
write down the corresponding equations, we arrive at eight real-valued equations of the form

ȧR1 = AR,ρ + aR3 + AR

ȧI1 = AI,ρ + aI3 + AI

ȧR2 = AR,ζ + aR3 + AR

ȧI2 = AI,ζ + aI3 + AI

ȧR3 = −m0a
I
3 −m0A

I + aR1,ρ + aR2,ζ + aR1 + aR2

ȧI3 = m0a
R
3 + m0A

R + aI1,ρ + aI2,ζ + aI1 + aI2

ȦR = −m0A
I −m0a

I
3 + aR1,ρ + aR2,ζ + aR1 + aR2

ȦI = m0A
R + m0a

R
3 + aI1,ρ + aI2,ζ + aI1 + aI2

Here we denoted with a superscript whether we take the real part or the imaginary part of
a complex perturbation variable. Now the first statement we want to proof is the following:

1. If A = (aR1 , aI1 , aR2 , aI2 , aR3 , aI3 , AR, AI) is a solution of (A.8) for m = m0 then it is
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true that B = (b1, b2, b3, B) is a solution to the same problem with m = −m0 and

bR1 = aR1 bI1 = −aI1
bR2 = aR2 bI2 = −aI2
bR3 = aR3 bI3 = −aI3

BR = AR BI = −AI

In other words, if we multiply the imaginary parts of a m = m0 solution with a factor of −1
we get another solution for m = −m0.
The proof is quite straightforward; we will show it for the first equation of each group since
the other calculations are practically identical. We have

ḃR1 = ȧR1 = AR,ρ + aR3 + AR = BR,ρ + bR3 + BR

ḃI1 = −ȧI1 = −AI,ρ − aI3 −AI = BI,ρ + bI3 + BI

and for the second group

ḃR3 = ȧR3
= −m0a

I
3 −m0A

I + aR1,ρ + aR2,ζ + aR1 + aR2

= m0b
I
3 + m0B

I + bR1,ρ + bR2,ζ + bR1 + bR2

ḃI3 = −ȧI3
= −m0a

R
3 −m0A

R − aI1,ρ − aI2,ζ − aI1 − aI2

= −m0b
R
3 −m0B

R + bI1,ρ + bI2,ζ + bI1 + bI2

If we now compare the final lines of the equations for B with the corresponding ones for A
we see that they are of the same form except that m0 is replaced by −m0 which proofs our
claim.
From here it is very easy to show the second statement, i.e.

2. The final, physical solution of the real initial value problem is independent of the sign
of m.

If z(ρ, ζ, t) = u(ρ, ζ, t) + iv(ρ, ζ, t) is an arbitrary complex-valued perturbation variable that
solves one of the equations in (2.39)-(2.42), then due to linearity the real part of zeimϕ is
the actual solution of the real-valued initial problem. It then follows that

Re
(
zeimϕ

)
= Re [(u + iv)(cos(mϕ) + i sin(mϕ))]
= u cos(mϕ)− v sin(mϕ)

For m = m0 > 0 we therefore have

Re
(
zeim0ϕ

)
= u cos(m0ϕ)− v sin(m0ϕ)

For m = −m0 < 0 the imaginary part of z switches its sign and then

Re
(
ze−im0ϕ

)
= u cos(−m0ϕ) + v sin(−m0ϕ) = u cos(m0ϕ)− v sin(m0ϕ)

which proofs the claim.
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Documentation of the Software Package

B.1 General Layout

Here, we will review the crucial parts of our software which are necessary to understand
when performing simulations and data analysis. The various modules of the package are put
into different directories, according to the tasks they have to perform. Starting at the top-
level directory we have the module akm to compute equilibrium configurations of stationary
compact stars with polytropic equations of state (non-rotating as well as rotating). For a
couple of EoS we have already generated background solutions for a variety of rotation rates;
the corresponding data files can be found in the second module background files. The last
folder at this level complex contains all the source code that is related to the time evolution,
analysis of the frequency spectrum, mode recycling and other things; we will cover it in
a moment. In many of the modules one will need the same information about important
setup-data to specify before compiling the source code; most of them are gathered together
in the appropriate makefile. Of particular interest are

• M OLD The number of grid points in the numerical domain of the akm module for
computing the background model.

• M1 The number of grid points in the σ-direction of our code.

• M2 The number of grid points in the τ -direction of our code. The total number of
points in our numerical domain is M1·2M2.

• T MAX The maximum number of timesteps for the current simulation.

• TS The size of the timestep for the current simulation (depends on the resolution).

• T OUT Specifies, after how many timesteps data are written to an output file.

The module folder complex consists of several subpackages. In this folder one first has to
use initial data generator, responsible for calculating appropriate initial data and there
is time evolution, the central module of this thesis which will perform the numerical in-
tegration of the perturbation equations. The remaining modules are post-processing and
data-analysis tools. They consist of recycling to extract the full two-dimensional eigen-
function at a specific frequency, dft will compute the power spectral density (PSD) and

109



APPENDIX B. DOCUMENTATION OF THE SOFTWARE PACKAGE

its frequency peaks of a given time series and convenience can be used to either modify
certain aspects of a recycled eigenfunction before injecting it into a new mode recycling run
or, since it is a very common task, to extract peak frequencies of PSD data without running
again dft on all output files.
In the next few sections we will briefly review the different modules and explain their syntax.
In any case, if a program is started without any additional arguments, a little help menu
with basic information is being displayed.

B.2 The Modules

B.2.1 akm

As described in [57], an iterative Newton-Raphson method is used to compute highly accu-
rate equilibrium structures of compact polytropic objects. An iterative scheme always needs
a trial solution as starting point for the method and the data files in background files can
serve as this starting point. From there, one can explore the very large parameter space of
solutions. In particular one can prescribe the ratio of polar coordinate radius to equatorial
coordinate radius rp/re and the central pressure pc or for example rp/re and gravitational
mass M . One can also vary the value of the polytropic index N to study the effects of
different equations of state and last but not least one of course can increase the accuracy of
the model by adding more grid points.
The code uses dimensionless units, so since G = c = 1 in gravitational units one can use
the polytropic constant K to get rid of the remaining dimension. In these units KN/2 has
units of length so this sets the fundamental length scale of the system and one can introduce
dimensionless quantities, for example Ω̄ = KN/2Ω for the angular velocity or M̄ = K−N/2M
for the mass.

B.2.2 initial data generator

This module imports a background model from akm and implements trial initial data for
l = 0, . . . , 3 according to [72]. Of course one can also program arbitrary initial data. The
syntax is
〈program name〉 and the following flags:
-N polytropic index
-b background model filename
-l l-value

B.2.3 time evolution

This is the central module of the whole package. It imports an akm-generated background
model and an initial data file and then performs a numerical integration of the perturbation
equations. The output data files that are created periodically (as specified in the makefile)
are stored in a specific folder; the data-folder. The post-processing and analysis tools then
can access these files to perform their tasks. Since a successful time-evolution in our case
only is possible with the utilization of artificial viscosity, the user of this module has to fine
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tune the influence of this viscosity. This is done by varying the viscosity coefficients which
are #define-statements in the header file righthandside.h. The syntax of this module is
〈program name〉 and the following flags:
-b background model filename
-p initial data filename
-N polytropic index
-m m-value

B.2.4 dft

This tool takes the output files in the data-folder to compute a time series of all perturbation
variables, the corresponding fourier spectra and also prints out the frequency peaks at one
single point the user has to specify. The output files of this module are also stored in a
specific folder; the results-folder. The syntax here is
〈program name〉 and the following flags:
-b background model filename
-s σ-value for the evaluation
-t τ -value for the evaluation
-a ϕ-angle for the evaluation
-m m-value
-N polytropic index

B.2.5 recycling

This module will perform a mode recycling run on all data files in the data-folder. The
user has to specify a frequency at which the eigenfunction, or in this case the amplitude of
the corresponding peak in the fourier spectrum should be extracted. Since the peaks will
differ slightly for the different perturbation quantities the user also has to specify a certain
range in which the algorithm will search for peaks if it does not find one at the original peak
frequency. Typically this range lies within the frequency resolution of the simulation. The
proper syntax is
〈program name〉 and the following flags:
-a ϕ-angle for the evaluation
-m m-value
-N polytropic index
-f frequency of the eigenfunction
-d allowed +/- deviation from the frequency in Hertz

B.2.6 convenience

The last tool is a convenience wrapper for all the little tasks one has to perform more or less
repeatedly. For example it often happens that one wants to calculate the frequency peaks of
a given PSD-file. It is not necessary to examine all the data files with the dft-module again;
the work has already been done. In such a case this tool simply takes the fourier transform
and recalculates its frequency peaks. Another task is the modification of eigenfunctions for
a mode recycling run; this is also done here. The syntax is
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〈program name〉 and the following flags:
-f filename to modify or analyze
-o option (either 0 for peak analysis or 1 for eigenmode modification)
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Deutsche Zusammenfassung

Im Laufe ihres Evolutionszyklus können kompakte relativistische Objekte Instabilitäten un-
terworfen sein, die letztendlich zu Schwingungen des gesamten Sternes führen. So oszil-
lieren beispielsweise neu enstandene Neutronensterne kurz nach ihrer Entstehung in einer
Supernova-Explosion. Auch als Mitglied in einem kompakten Binärsystem kann es zu
Schwingungen kommen, falls der enge Abstand zum Begleitstern zu Gezeitenkräften und dem
damit verbundenen Austausch von Masse und Drehimpuls führt. Die Rotation dieser Ob-
jekte beeinflusst zusätzlich die zu erwartenden Oszillationsfrequenzen und überschreitet die
Winkelgeschwindigkeit des Sterns einen bestimmten kritischen Wert, wird der ganze Stern
dynamisch instabil. Abhängig von der Art der rückwirkenden Kraft werden Sternoszillatio-
nen in verschiedene Klassen unterteilt; jede von ihnen enthält wertvolle Informationen über
das Sterninnere; einen Bereich also, den man mit anderen Mitteln nur schwer untersuchen
kann. Es ist deshalb von besonderem Interesse, eben diese Schwingungen hochrelativistis-
cher Objekte zu untersuchen.
Im Laufe der letzten etwa 20 Jahre sind solche Untersuchungen immer wichtiger geworden.
Gegenwärtig werden große Anstrengungen unternommen, erstmals Gravitationswellen direkt
nachzuweisen. Instabil schwingende Neutronensterne sind ein möglicher Kandidat für diesen
Nachweis und die Analyse der von ihnen erhaltenen Gravitationsstrahlung liefert grundle-
gende Informationen über wichtige Parameter wie etwa Masse, Radius und die genaue Form
der Zustandsgleichung supranuklearer Materie. Die meisten dieser Studien gehen jedoch von
nichtrotierenden Sternen aus, da die Kombination von Rotationseffekten und Allgemeiner
Relativitätstheorie sowohl analytisch als auch numerisch sehr schwer zu behandeln ist. Es
wurden deshalb im Laufe der Zeit verschiedene Näherungen eingeführt; am naheliegendsten
ist vermutlich die Beschränkung auf kleine Winkelgeschwindigkeiten. Dies ist eine Approx-
imation, die sehr häufig in der Newtonschen Theorie von Sternschwingungen Anwendung
findet.
Obwohl der Großteil unseres Wissens über die Oszillationen kompakter Objekte auf linearen
Störungsrechnungen basiert, ist es in Einzelfällen auch gelungen, die vollen nichtlinearen,
relativistischen Gleichungen der Hydrodynamik numerisch zu lösen. Außerdem wird auch
daran gearbeitet, Effekte der differentiellen Rotation zu berücksichtigen; gerade für neu
entstandene Neutronensterne ist dies von besonderer Bedeutung. Differentielle Rotation
beeinflusst das instabile Verhalten sowohl langsam als auch schnell rotierender Neutronen-
sterne, wurde bisher jedoch nicht ausführlich genug behandelt und ist momentan ein zum
Großteil ungelöstes Problem.
Da dynamische Instabilitäten meist in Verbindung mit schnell rotierenden Neutronenster-
nen auftreten, ist es von großem Interesse, die verschiedenen Oszillationen gerade diesen
Types genauer zu untersuchen. Als ersten Schritt kann man dabei die schon weiter oben
erwähnte Einschränkung auf kleine Winkelgeschwindigkeiten fallen lassen und gleichzeitig
die dynamische Entwicklung der Raumzeit im Rahmen der Allgemeinen Relativitätstheorie
vernachlässigen. Dies war bisher auch der Ansatz für die meisten Untersuchungen der
Schwingungen schnell rotierender Neutronensterne, entweder auf störungstheoretischer Grund-
lage oder im nicht-linearen, axialsymmetrischen Fall.
In der vorliegenden Doktorarbeit wird eine neue Methode vorgestellt, welche die 2D Zeit-
entwicklungsgleichungen direkt numerisch integriert. Dies ist die erste Untersuchung ihrer
Art; frühere 2D Störungsrechnungen wurden entweder vollständig innerhalb der Newton-



schen Theorie ausgeführt oder durch einen harmonischen Ansatz auf ein Eigenwertproblem
reduziert. Der Vorteil des neuen Verfahrens liegt darin, daß er ohne große Probleme auf
differentielle Rotation und die dynamische Entwicklung der Raumzeit ausgeweitet werden
kann. Auf der anderen Seite steht nun erstmals ein Werkzug zur Verfügung, um Rotationsin-
stabilitäten in schnell rotierenden Neutronensternen zu untersuchen; eine Anwendung, die
gerade im Hinblick auf die Gravitationswellen-Asteroseismologie von besonderer Bedeutung
ist.
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1992 - 1995 Städtisches Gymnasium Beverungen
Abitur Juni 1995, Note: 1,5

Wehr- / Zivildienst

1995 - 1996 Grundwehrdienst bei der Technischen Spezialkompanie 300
in Höxter
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2002 - 2008 Anfertigung der vorliegenden Dissertation Linear Oscillations of
Compact Stars in the Cowling Approximation am Institut für As-
tronomie und Astrophysik der Universität Tübingen unter An-
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