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Chapter 1 

CHAPTER 1 

1. MAGNETIC RESONANCE IMAGING 

1.1 Basic principle  

Magnetic resonance imaging (MRI) is a powerful imaging modality based on the principle of 

nuclear magnetic resonance (NMR). It reveals the fine details of anatomy without the use of 

ionizing radiations such as x-rays. The noninvasive nature of MRI coupled with the relative 

safety of magnetic field employed has made it the most indispensable imaging tool in 

understanding the structure as well as the function of human body. 

The basic concept of MRI is the NMR phenomenon exhibited by atomic nuclei containing odd 

number of protons or neutrons. The protons and neutrons possess an intrinsic angular momentum 

called spin. As they pair together in a nucleus with oppositely oriented spin, the nuclei 

containing an odd number of them e.g. 1H, 13C etc possess a net spin and an associated magnetic 

dipole moment. For example, the hydrogen atom contains a single proton in the nucleus and thus 

has a net magnetic moment.  

 

Figure 1: A precessing magnetic dipole in an external magnetic field. The external magnetic field exerts a 

torque on magnetic dipole causing it to precess about B0. The precessional frequency ν0 is the resonant 

frequency of NMR. 
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As MRI is a bulk phenomenon, the signal is recorded from an ensemble of nuclei. The hydrogen 

nuclei present in the form of water in the human body is the main focus of MRI. In the absence 

of a magnetic field, these nuclei are randomly oriented and thus have no net magnetization. 

When placed in an external magnetic field, they experience a torque and tend to align with it. 

However because of the magnetic dipole moment, they do not only align but starts to precess as 

well around the field axis (Figure 1).  

The frequency of precession is resonant frequency of nuclear magnetic resonance and is called 

Larmor frequency (νo) (eq 1.1.) 

଴ߥ ൌ  Β଴          eq (1.1)ߛ

where B0 is the magnetic field strength and γ is a constant called gyromagnetic ratio. γ has a 

fixed value for each nucleus and is expressed in MHz/T units. 

At equilibrium the net magnetization (M0) is in the direction of the field (M0 = MZ, MX, MY = 0) 

and is due to the small difference in the number of spins precessing with the field and opposite to 

it. This local equilibrium magnetization is very small as compared to the applied field B0 and 

therefore cannot be observed directly. However, if the MZ flipped off the z-axis, a measurable 

transient signal is observed. Such a flipping is done by a short application (pulse) of magnetic 

field B1 perpendicular to B0 and is created by an oscillating radiofrequency (RF) current coil. 

This causes the net magnetization to split into two components, a longitudinal component MZ 

and a transverse component MXY. The precession of MXY generates a measurable MR signal 

(called as free induction decay, FID) in the receiver coil. The angle with which the magnetization 

is flipped (flip angle, α) can be increased by increasing the magnitude of B1 or by increasing the 

duration of application of the RF pulse [1].  
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1.2 Relaxation times [2]  

Immediately after the RF field is turned off, the MZ component starts to grow back to its initial 

value and MXY component gradually shrink back. The MXY shrink faster than the MZ re-growth. 

The time required for the z-component of M0 to return to the equilibrium value is the T1 

relaxation time. It is also called longitudinal relaxation time or spin-lattice relaxation. This 

relaxation is due to the energy transfer from an excited spin to its surrounding (lattice) and 

follows the following exponential equation: 

ሻݐ௭ሺܯ ൌ ଴൫1ܯ െ ݁ି௧ భ்⁄ ൯        eq(1.2) 

The relaxation time T2 is the time required for the transverse component of the M0 to decay to 

the equilibrium value. It is also called transverse relaxation time or spin-spin relaxation. The loss 

of phase coherence between different spin corresponds to spin-spin decay and arises due to the 

variation in the local precessional frequency. The decay of transverse magnetization follows the 

following equation: 

ሻݐ௑௒ሺܯ ൌ ଴൫1ܯ െ ݁ି்ோ భ்⁄ ൯݁ି௧ మ்⁄        eq (1.3) 

where TR is the repetition time of the pulse and ݁ି௧ మ்⁄  is the spin-spin decay factor characterized 

by the time constant T2.  

The dephasing between different spins could also occur due to inhomogeneities in the external 

field and is termed as T2*. The inhomogeneities causes the spin coherence to fall out faster than 

what the T2 process alone would cause (T2*<T2).  

Thus, the MR signal produced by a particular tissue is dependent on M0 which is directly 

proportional to the spin density (SD), and the relaxation times T1 and T2.  
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1.3 Measuring relaxation times and constructing an image in MRI 

An MRI image is a collection of pixels. The intensity of each pixel in the image is directly 

related to the intensity of the local MR signal which in turn is dependent on the intrinsic 

parameters of the tissue i.e. SD and relaxation times, T1 and T2 (and T2*). The MR signal is 

always propotional to the SD while the contribution of the relaxation times to the final pixel 

value depends on the pulse sequence used which in turn is a function of the parameters such as 

the repetition time (TR), the echo time (TE) (for spin echo pulse sequence), and the flip angle 

(α). To have sufficient data to construct an image, the pulse sequences are repeated many times. 

The most basic pulse sequences used in MRI are: gradient echo (GRE) pulse sequence, spin echo 

(SE) pulse sequence and inversion recovery (IR) pulse sequence.  

1.3.1 Pulse sequences [3] 

GRE pulse sequence 

This is the most simple pulse sequence used in imaging. The FID signal is measured by adjusting 

the TR and α parameters. The measured signal is directly proportional to SD because it 

determines the magnitude of magnetization M0. When TR much longer than T1 is used, the 

longitudinal magnetization is fully recovered and the sequence is described as SD weighted. 

However, the magnitude of longitudinal magnetization flipped to the transverse plane is 

dependent on α; therefore the obtained image is density weighted and proportional to sin α. With 

TR shorter than T1, the signal is dependent on TR, T1 and α. With α = 90° and TR<T1, the degree 

of recovered longitudinal magnetization depends on T1 value of tissue and thus the image is T1 

weighted and proportional to SD. With smaller flip angles the magnitude of transverse 

magnetization decreases and thus the image becomes mainly SD weighted at TR<<T1. 
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SE pulse sequence 

The prime use of SE pulse sequence is to eliminate the signal loss in the image caused due to T2* 

effects. A combination of 90°-180° pulse sequences is used. At first 90° pulse flips the 

longitudinal magnetization to transverse plane. Initially different parts of the sample start to 

precess in phase and then eventually start to dephase due to inhomogeneity. After the time TE 

(echo time), a refocusing pulse of 180° is applied. This rotates the magnetization vector at each 

point of the sample by 180° but with the phase difference acquired between 90° and 180° pulse 

(TE/2) locked in. All vectors then start to precess in phase again and thus generate an echo. In SE 

pulse sequence the adjustable parameters are TE and TR. At TE<<T2 the signal is not sensitive to 

T2, as the refocusing pulse would be applied when a sufficient phase difference between different 

magnetization vectors is not achieved. At TE>>T2, the vectors undergo substantial loss in phase 

coherence, leaving very little measurable signal. At TE ~ TR, the signal is sensitive to T2 and the 

image obtained is T2 weighted.  

IR pulse sequence 

This pulse sequence is used to enhance the T1 weighting of the signal. Initially 180° RF pulse is 

applied which inverts the longitudinal magnetization along the –z direction. Immediately after 

the RF pulse the magnetization starts to grow back to equilibrium. At the delay time TI 

(inversion time), a 90° pulse is applied. This flips the recovered longitudinal magnetization 

(during the time TI) to the transverse plane, which is then measured. At TI ~ T1, the measured 

signal is sensitive to T1 and the obtained image is T1 weighted.  

1.3.2 Magnetic field gradients 

The main task in constructing an image in MRI is to localize the MR signals to their spatial 

locations. While the magnitude of the signal is dependent on the SD, T1, T2 and the pulse 
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sequence used, the spatial information is obtained by the application of three functional 

gradients: slice selection, frequency encoding and phase encoding in three spatial directions 

(Figure 2).  

 

Figure 2: A basic pulse sequence timing diagram for image acquisition is shown. The RF pulses excite a 

signal and the spatial information is extracted by slice selection gradient along z, frequency encoding 

gradient along x and phase encoding gradients along y (The figure is taken from ref [3]) 

Slice selection 

The selection of the slice is done by applying the gradient varying linearly along the z-axis. The 

RF pulse applied contains only a narrow band centered at the larmor frequency (ν0). Thus only a 

narrow spatial band in the body is under the condition of resonance and is affected the most in 

flipping the M0 to the transverse plane. The position of the slice can be selected by changing the 

centre frequency ν0 of the RF pulse. The thickness of the slice can be varied by varying the ratio 

of frequency width of the RF pulse to the strength of magnetic field gradient. The slice selection 

thus allows the transverse magnetization to be predominately generated in the slice of interest.  
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Frequency encoding and Phase encoding 

The slice selection localizes the signal along the z-axis; the rest of the localization within the 

slice is done in x-y plane by frequency encoding and phase encoding gradients. The frequency 

encoding gradient (also called read out gradient) is applied at the same time when the data 

acquisition (``read´´) is done while orthogonally applied phase encoding gradients encodes the 

second dimension in the image plane. The application of these two gradients and the final 

construction of the image are explained by the concept of k-space. The k-space is the spatial 

Fourier transform (FT) of the image and is what actually measured in MRI. The image is 

obtained by performing the FT of k-space matrix. 

For frequency encoding, a gradient pulse along the x-axis is applied after the RF pulse. The 

gradient results in a large dispersion in the phase angles of the precessing nuclei. This dispersion 

keeps on increasing while the gradient is on and stops to grow once it is switched off. At this, the 

application of another gradient in the opposite direction diminishes the acquired phase dispersion 

and produces a strong signal at the centre of data acquisition window, called as gradient echo. 

The net signal measured over time is the spatial FT of the different frequencies distributed along 

the x-axis in the object. This signal however contains the sum of signals arising from different y 

positions at a single x-position. The phase encoding is therefore required to localize the signal to 

different y positions. A single gradient pulse is applied along the y-axis. The amplitude of the 

gradient is incremented each time the pulse sequence is repeated and the data sample is measured 

for each MR signal generated. The net measured signal S(t) over time (t) is 2D FT of the image 

in 2D k-space (kx, ky). With each pulse sequence, one line in kx with fixed ky is measured and 

each phase encoding step moves the k-space sampling to a new line at a new ky value. With these 
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data points the filling of the k-space is done, from which the image is reconstructed by applying 

2D FT.  

1.4 Contrast in MR images 

The contrast in an MRI image depends on the inherent properties of tissues responsible for MR 

signal generation i.e. SD, T1 and T2 (and T2*). The watery tissues such as cerebrospinal fluid 

have high proton density as compared to more structured tissues such as white matter. The CSF 

in the SD weighted images therefore appears brighter. A remarkable soft tissue contrast can be 

obtained by exploiting the sensitivity of relaxation times to the pulse sequences. This flexibility 

in controlling the final contrast in the image is one of the great advantages of MRI from its 

clinical application point of view where the visualization of subtle anatomical differences 

between the healthy and diseased tissue is required. This diagnostic ability of MRI can be further 

enhanced by the addition of exogeneous agents called contrast agents (CAs). The recent 

advancement in CAs has allowed scientists to not only diagnose the small anatomical alteration 

in the tissue in the pathological state but also to monitor the physiological and molecular 

changes. The various types of contrast agents, their mechanism of action and their applications 

would be discussed in the following chapters.  
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CHAPTER 2 

2. MRI and Contrast agents 

2.1 Introduction 

The main source of signal in MRI is water protons which are abundant in the human body. The 

contrast between different tissues is achieved by their difference in MRI parameters and the 

pulse sequences used. However, in some areas of the body the contrast is not sufficient 

especially if the small differences between normal and pathological tissues are needed to be 

diagnosed. In such cases, the addition of an exogenous agent enhancing the contrast between 

tissues greatly improves the diagnostic capabilities of MRI in disease specificity and pathological 

processes. Such agents are called contrast agents. Principally, the contrast agents alter the T1 

and/or T2 relaxation times of the water protons and are thereby known as T1 and T2 agents 

respectively.  

On the basis of magnetic properties, contrast agents can be broadly classified as: 

1) The paramagnetic agents. These agents affect mainly T1 properties of the water protons 

2) The superparamagnetic agents. These agents are known to affect mainly T2  

Recently a new class of contrast agents has been developed known as Chemical Exchange 

Saturation Transfer (CEST) agents. The mechanisms of action of all of these agents and the 

underlying theories of their mechanism of action will be discussed in detail in this chapter.  
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2.2. Contrast agents in action: Mechanism and Theory 

2.2.1 Paramagnetic agents 

The paramagnetism is the property exhibited by the system containing of one or more unpaired 

electron pairs. As the magnetic moment of an unpaired electron pair is 700 times of a proton, a 

strong interaction takes place between the unpaired electron spin with the nuclear spin of the 

water protons in an aqueous solution [4]. The interaction between paramagnetic system and 

water protons is of ‘dipolar coupling’ type. The term dipolar means a close interaction between 

each individual magnetic particle and the water molecules, which falls off rapidly with distance. 

This interaction arises via three mechanisms: the diamagnetic, the contact, and the 

pseudocontact mechanisms [5]. The diamagnetic shifts are usually small and originate from 

effects such as conformational effects, inductive effects, and direct field effects. The contact 

contribution results from through bond transmission of unpaired spin density of paramagnetic 

metal ion to the other nuclei of interest (e.g. water proton) and the pseudocontact shift is the 

result of through space dipolar interaction between the same [5].  

A paramagnetic system could be an organic free radical (e.g. nitroxide radical) or a 

lanthanide/transition metal ion with unpaired electrons in the valence shell (e.g. Mn2+, Gd3+, 

etc.). To explain the theory of paramagnetic relaxation enhancement (PRE), we will consider the 

relevance only to Gd(III) based complexes which are most widely used and studied in MRI 

contrast agent chemistry.  

Gd3+ is a lanthanide metal ion with seven unpaired electrons in its f orbital. It has fully quenched 

orbital angular momentum and S = 7/2 spin state. For any aqua paramagnetic metal ion, the 

observed relaxation rate is the sum of diamagnetic and paramagnetic relaxation rates: 

ଵ
்೔,೚್ೞ

ൌ ଵ
்೔,೏

൅ ଵ
்೔,೛

          eq(2.1) 
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where i = 1, 2 corresponds to longitudinal and transverse relaxation mechanism respectively. The 

paramagnetic term (1/Ti,p) varies linearly with concentration of the paramagnetic species, [Gd3+]: 

ଵ
்೔,೚್ೞ

ൌ ଵ
்೔,೏

൅  ଷାሿ         eq(2.2)݀ܩ௜ሾݎ

The term commonly used to describe the proton relaxation rate enhancement by a paramagnetic 

substance is relaxivity, ri (units, mM-1s-1). The straight line plot obtained by observed relaxation 

rate versus the concentration of [Gd3+] gives the slope as the relaxivity of the agent and the 

intercept as the diamagnetic contribution (1/Ti,d) to the observed relaxation rate [6].  

The relaxation rate enhancement is the result of hyperfine interaction between a nuclear spin and 

an electron spin. This hyperfine interaction can be divided into two components: 1) the dipole-

dipole interaction between the nuclear magnetic moment and the electron outside the nucleus 2) 

the scalar interaction between the nuclear moment and the electron spin density at the nucleus 

itself, also called as Fermi contact interaction [7]. The time fluctuation of the hyperfine 

interaction of the electron spin and the nuclear spin is described by two types of motion: 

intramolecular rotational motion and intermolecular translational motion. The contribution of the 

intramolecular rotational motion is generally considered as inner sphere contribution to the 

overall observed relaxation. The inner sphere contribution is determined by (1) the rotational 

correlation time of the complex τR, (2) the water residence time τM in the first coordination shell, 

and (3) the electron spin relaxation. The equation describing this effect was developed by 

Solomen and Bloembergen [8, 9]. The intermolecular translational motion is generally 

considered as outer sphere contribution and is modulated by translational diffusion which is 

influenced by the electronic relaxation. Equation for outer sphere relaxation was developed by 

Freed and Ayant [10-13] 

௜ݎ ൌ ௜ூௌݎ ൅  ௜ைௌ           eq(2.3)ݎ
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The longitudinal and transverse inner sphere relaxation rates are given by: 
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The influence of the electronic spin relaxation on the relaxivity comes from electron spin 

Hamiltonian. In a system with electron spin S≥1 (e.g. for Gd3+), the Hamiltonian ħH(t) is the sum 

of Zeeman term ħHo = gsµBBoSz = ħωoSz and a time fluctuating perturbing Hamiltonian ħH1
L(t) 

which is also known as zero field splitting (ZFS) Hamiltonian. This time perturbing part can be 

divided in to static (S) and transient (T) part. The static part is modulated by Brownian rotation 

of the complex with the rotational correlation time τ2 while the transient part is fluctuated 

because of the vibrations and distortions of the complex with the vibrational correlation time τv 

[14]. The Zeeman Hamiltonian varies linearly with magnetic field Bo while zero field splitting 

Hamiltonian is field independent.  

The equation explaining PRE was first formulated by Solomen and Bloembergen which was then 

combined with electron spin relaxation equation [15] to the final equation referred to as SBM 

equation. The SBM theory was based on certain assumptions [6], the validation of which under 

various conditions has been studied extensively in the recent reviews by Lothar Helm [7] and 

Pascal Fries [14]. 

2.2.2 Superparamagnetic agents 

As the name indicates, these agents exhibit strong paramagnetism when placed in an external 

magnetic field. Superparamagnetic agents (SPA) have much larger magnetic moment relative to 

the paramagnetic agents. The superparamagnetism is observed at the particle size of nm or 

smaller. At this size scale the formation of Bloch wall between the two magnetic domains 
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(aligned and antialigned) in the particle becomes theromodynamically unstable leading to the 

formation of a single domain particle. Because of the single domain nature, the entire particle 

aligns with the magnetic field and therefore exhibit high magnetic susceptibility. The 

inhomogeneous distribution of such superparamagnetic agents in vivo gives rise to local field 

gradients which increases the rate of loss of phase coherence of the different proton spins. 

(Figure 3) [16]. The susceptibility-induced relaxation rate enhancement of SPA agents is much 

stronger than the paramagnetic agents where the relaxation is of close range and dipolar coupling 

type.  

 

Figure 3: The protons in the outer sphere of T2 agents loses their phase coherence rapidly  

The most commonly used SPM contrast agents are iron oxide based nanoparticles composed of 

magnetite (Fe3O4) or maghemite (γ-Fe2O3) with a typical core diameter of 4 to 50 nm [17]. 

Depending on the size, crystalline structure, coating and higher order magnetization, these 

nanoparticles are also known as superparamagnetic iron oxide nanoparticles (SPIO), ultrasmall 

superparamagnetic iron oxide particles (USPIO), very small superparamagnetic iron oxide 

particles (VSOP), monocrystalline iron oxide particles (MION) and cross linked iron oxide 

(CLIO) [18]. 
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The T2 relaxation effect of these agents is explained by bulk-susceptibility effect which is the 

reformulation of the ‘outer sphere relaxation’ theory. To account for the effects of ‘magnetic 

saturation’ at higher magnetic fields (>0.05 T) on the particles possessing high magnetic 

moment, additional terms were introduced leading to the following equation [19].  
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   eq(2.7) 

Where, γI is the gyromagnetic ratio of protons in water, M is the molarity of magnetic 

nanoparticle, r is its radius, NA is the Avagadro’s number, µ is the magnetic moment of the 

nanoparticle, ωs and ωI are the larmor angular frequencies of the nanoparticle electric moment 

and water proton magnetic moment, respectively, the functions jn(ω, τ) are spectral density 

functions in which Re is the real part of the expression that follow in parenthesis, τ (τ = r2/D) is 

the time scale of fluctuations in the particle-water proton magnetic dipole interaction arising 

from the relative diffusion motion (D) of a particle with respect to water molecules, and τS1 and 

τS2 are the lifetimes of the longitudinal and transverse components of µ. The equation was further 

improved by Bulte and Brooks [20] to account for the elevated ‘plateau’ showed by MION 

particles at low field. The theory explaining the relaxation rate enhancement by iron-oxide 

nanoparticles compartmentalized in to the cells was later explained by Brian K. Rutt and is 

refrred as ‘static dephasing regime theory’ [21].  

These iron-oxide nanoparticles have recently become very popular for their wide range of 

application to the biosystem. Many research groups have reported a vast number of applications 

of these particles once they are surface coated with biocompatible materials (e.g. dextran, 

carbodextran etc.). These coatings can be further functionalized to recognize desired targets 
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through antigen-antibody [22, 23], nucleic acid hybridization [24, 25] and gene expression [26, 

27].  

2.2.3 CEST agents 

CEST is based on the principle of Saturation Transfer (ST) or Magnetization Transfer (MT).  

In the presence of a magnetic field the distribution of spins according to the Boltzmann equation 

(i.e. the number of spins aligned exceeds the number against it) gives some bulk magnetization 

to the system. If a RF pulse of suitable frequency is applied, the number of spins from low 

energy level gets promoted to higher energy and when this RF pulse is applied for enough long, 

saturation can be achieved. Under saturation conditions the population of the two states becomes 

equal and the net magnetization reduces to zero. As the MRI signal depends on the flipping of 

this magnetization to transverse plane, under the condition of saturation a loss of MRI signal will 

be observed (similar to a T2 agent). If the saturation is done selectively to one set of protons, it is 

transferred to neighboring spins by chemical exchange (magnetization transfer). For such 

magnetization transfer to be observed, this rate of exchange (kex) must not be greater than the 

difference in frequency between two sets of neighboring protons (Δω) [28]. 

∆߱ ൒  ௘௫           eq(2.8)ܭ

Small molecules in biological system such as sugars, proteins etc. have large pools of 

exchangeable protons and therefore can act as CEST agent. In the presence of an exogeneous 

paramagnetic CEST (PARACEST) agent, a large MT is observed. This enhancement of CEST 

effect is due to: 1) increased chemical shift difference, 2) enhanced chemical exchange.  



Chapter 2 
 

29 
 

 

Figure 4: Two pools of protons undergoing chemical exchange after saturation. (Reprinted with 

permission from Annual Reviews of Biomed Eng. 10:391–411©2008 by Annual Reviews 

www.annualreviews.org) [29]) 

2.3. Contrast agents and their applications 

On the basis of applications, contrast agents can be broadly classified as: 

(a) Compartmental probes 

(b) Targeted probes 

(c) Smart probes  

(d) CEST and PARACEST agents 

2.3.1 Compartmental probes: These probes are the first generation of CAs and are currently in 

clinical use. The degree and localization of these CAs depends on the vascular permeability of 

the tissues and hence a better contrast in the image is obtained when the vascular (e.g. tumour) or 

cellular (e.g. scar) integrity in the imaged organ is challenged. The clinically used CAs have the 

molecular weight around 600 Da and relaxivities between 4-5 mM-1s-1 at 20 MHz and 310 K 

[30]. On the basis of structure these CAs can be divided into two types: acyclic and cyclic. 

DTPA is the common skeleton for acyclic CAs and DOTA is for cyclic (Figure 5). These CAs 

have proven to be a great success (Figure 6). Most of them are distributed in intravascular and 
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interstitial spaces and are excreted via kidneys except hepatobiliary agents. Hepatobiliary agents 

such as MultiHanceTM have affinity towards human serum albumin (HSA). They are taken up by 

hepatobiliary cells and are excreted via both biliary and kidney sytems [30].  
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Figure 5: The ligand structure of various clinically approved acyclic and cyclic CAs is shown. They are 

used in vivo in Gd(III) chelated form.  
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Figure 6: (a) A precontrast spin echo image (b) post contrast spin echo image after the administration of 

Gd-DTPA [31]. The discrimination of lesion from normal tissue is greatly enhanced after the 

administration of CA. (The figure is taken from the ref [31] ) 

 

2.3.2 Targeted Probes:  

Despite of giving high contrast images, the conventional contrast agents clinically in practice are 

not efficient to provide the contrast enhancement derived from specific molecular targets. Two 

approaches have been used to achieve the specific targeting of CAs, namely passive and active 

targeting. In passive targeting the internalization of CAs is achieved by targeting macrophages 

which originate in the bone marrow, circulate and localize into various organs. Uptake of the 

agents into phagocytic cells occurs via Fc or C3b receptors and is more efficient than the 

pinocytosis mechanism taking place in the non-phagocytic cells. Such techniques are mainly 

used for labeling macrophage rich tissues such as spleen, lymph node and bone marrow. Dextran 

coated USPIO [32] and nanoparticles of Gd-loaded chitosan [33] have been used for such 

passive targeting. In active targeting, ligand directed site specific CAs are used. Some examples 

of targeting ligands are: 

(a) Monoclonal Antibody (mAb):- Pegylated paramagnetic liposomes with monoclonal antibody 

(anti E-selectin) was used to target human umbilical vein endothelial cells [34]. 

(b) Antibody fragment (Fab):- High-affinity anti-human E-selectin (CD62E) F(ab’)2 fragments 

conjugated to CLIO have been used for MR imaging in human endothelial cell culture [35]. 

(c) (recombinant) Protein:- Annexin A5 and synaptotagmin conjugated to SPIO or multiple Gd-

DTPA (Figure 7) can be used to target phosphatidylserine on apoptotic cells [36].  

(d) Peptidomimetics:- paramagnetic nanoparticles conjugated to anti-αvβ3-antibody was used to 

detect and characterize early angiogenesis induced by minute solid tumors [37]. 
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Figure 7: The design and synthesis of the constructs used to target apoptotic cells. (The figure is taken 

from ref [37]) 

2.3.3 Smart Probes 

Smart probes are characterized by their controlled activation leading to the relaxivity (r1 and/or 

r2) increase. The activation here refers to the switch from ‘off’ state (low relaxivity) to ‘on’ state 

(high relaxivity) triggered by some biological event, for example change in pH, Ca2+, pO2 or 

change in any metabolite concentration. Such factors are able to modulate the parameter(s) 
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determing the relaxivity (IS and/or OS) of the CA, thus causing the described switch. The 

modulation of the parameters affecting IS contribution to the relaxivity is relatively easy to 

control as compared to the OS contribution. The various parameters determining the IS relaxivity 

are depicted in Figure 8.  

 

Figure 8: The various parameters influencing the relaxivity of a low molecular weight Gd-chelate. 

The greatest control has been achieved by modulating the number of inner sphere water 

molecules (q) in presence and in absence of a biological factor. As these water molecules are 

directly linked to the paramagnetic centre, a decrease or an increase in their number is directly 

translated to the respective changes in the relaxivity. Another parameter that can be control is 

rotational correlation time (τR). The correlation time has the contribution from rotation (τR), 

electronic relaxation (Ti,e where i = 1,2) and chemical exchange (τm). At the magnetic field of 1.5 

T (64MHz proton frequency) the rotational diffusion dominates the correlation time. For low 

molecular weight complexes, a decrease in tumbling rate increases the relaxation rate. However 

at higher fields (above ~ 200MHz) the relaxivity decreases with increase of rotational correlation 

time. At low fields the increase in relaxivity with increase in τR can be offset if τm is not 

optimized. The examples of the smart probes utilizing the dependence of these parameters to the 

observed relaxivity are discussed below. 
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(a) Enzyme activated 

Monitoring enzyme activity by modulating q parameter was demonstrated by Meade and 

coworkers [38, 39]. The structural design of the agent was such that the ninth coordination site of 

the Gd3+ in Ca was blocked by a β-galactose moiety. On exposure to the enzyme β-galactosidase, 

the cleavage of this moiety took place, allowing access of a water molecule for filling the 

coordination sites of Gd3+ (Figure 9). This increase in hydration number, lead to a relaxivity (r1) 

increase of 25% [38] which was improved to 200% [39] with the slight modification in the 

structure.  

Another example of enzyme sensitive CAs exploiting the modulation of τR was shown by 

McMurray and coworkers [40]. Activation of the CA was done by the human carboxypeptidase 

B, thrombin-activatable fibrinolysis inhibitor (TAFI). The enzyme action removed the shielding 

moiety and exposed the high human serum albumin (HSA) affinity part of the molecule (Figure 

10). The binding of CA to a big macromolecule like HSA decreased the tumbling rate (τR) 

resulting in 100% r1 enhancement.  

 

 

Figure 9: An enzyme selective CA (EgadMe [39]) switched on by change in hydration number of the 

complex. 
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Figure 10: An enzyme sensitive CA exploiting the change in τR on HSA binding is shown [41] 

An enzyme selective PARACEST agent was reported by Tóth and coworkers [42]. The approach 

demonstrated could be used to target a wide variety of enzymes (Figure 11) 
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Figure 11: A self-immolative approach to target wide variety of enzymes [42] 
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(b) pH activated 

An example of pH sensitive CA utilizing the effect of change in water (proton) exchange rate 

(τM) on relaxivity was shown by Sherry and coworkers [43]. The agent Gd-DOTA-4AmP had 

four phosphonate moieties at the tetraamide derivative of DOTA. The phosphonate groups act in 

concert as acids and bases, catalyzing the prototropic exchange (increase in τM) resulting in an 

enhanced relaxivity over a pH range that is useful for biological pH imaging (Figure 12). 
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Figure 12: (a) Structure of the ligand (b) Schematic representation viewed down the Gd-OH2 axes, 

phosphonates transfer protons between the coordinated water and the bulk [43].  

The agent with some modification was later coupled to PAMAM dendrimers, to slow down τR, 

increase relaxivity and improve the pH responsive characteristics of the complex [44]. The 

modulation of hydration state with pH was investigeted by Parker and coworkers [45-49] where 

pH dependent displacement of water was observed with reversible binding of endogeneous 

anions (e.g. HCO3
-) (Figure 13)  
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Figure 13: pH dependent reversible binding of HCO3
- leading to equilibrium between q = 2 species and q 

= 0 species [45]. 

Another approach of change in relaxivity induced by pH and dictated by rotational correlation 

time was used by Aime and coworkers [50] and by Hovland and coworkers [51]. On the similar 

mechanism Merbach and coworkers reported the pH sensitivity of PAMAM dendrimeric CAs 

[52]. Beside the macrocycle based CAs, Tóth and coworkers reported high relaxivity pH 

responsive agents based on gadofullerenes [53] and gadonanotubes [54]. The high relaxivity and 

sensitivity of these agents to pH prove their potential for in vivo MRI. 

(c) Metal ion activated 

Metal ions play an important role in biological system. Many trace metal ions such as Zn2+, Fe3+, 

Cu2+, Mn2+, Co2+ are required as cofactors for many essential cellular enzyme.  

The very first report of an agent sensitive to a metal ion was by Meade and coworkers [55]. The 

T1 agent was designed to be sensitive to Ca2+. Two DO3A units were linked to a Ca2+ selective 

chelator, BAPTA. A 75% r1 enhancement was observed upon Ca2+ addition. The enhancement 

was proved to be due to the change in hydration number parameter [56, 57].  
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Figure 14: Gd-DOPTA sensitive to Ca2+. 

Another approach to target Ca2+ was shown by Jasanoff and coworkers [58]. A T2 agent was 

developed using a SPIO particle conjugated to calmodulin, a Ca2+ sensor. A fivefold change in 

T2 relaxivity was observed with aggregation driven by Ca2+. SPIO agents could be used in low 

concentration because of their high relaxivity but they respond slowly to Ca2+ changes [59] 

Recently, Zn2+ ion has also gained an attention since its possible role in synaptic transmission 

was revealed. A DTPA-bisamide containing pyridyl groups was reported to be sensitive to 

Zn2+by Nagano and coworkers [60]. On the addition of Zn2+, the agent binds in 1:1 fashion and 

the accessibility to water is reduced leading to the decrease in relaxivity by ~ 33%. However 

with further addition of Zn2+, the agent binds two Zn2+ ion (1:2 ratio) restoring the relaxivity 

back to the initial value. A porphyrin based dual sensor was reported for Zn2+ sensing for MRI 

and optical imaging by Lippard and coworkers [61]. The Mn(III) loaded prophyrin ligand system 

described can be used for Zn2+ sensing by MRI while the metal free form serves as the 

fluorescent Zn2+ sensor. Meade and coworkers have also reported a potential Zn2+sensor [62]. 
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The Zn2+ binding of the agent is accompanied by 114% increase in the relaxivity with 

coordination of one water molecule in the inner sphere.  

2.3.4 CEST and PARACEST agents 

The endogeneous agents carrying some exchangeable components with the solvent protons can 

act as CEST agent. For example, glycogen contains exchangeable –OH protons which 

resonances at ~ 1 ppm downfield to the water protons. This difference in the chemical shift has 

been used to presaturate it and used as a CEST antenna. Due to metabolic process of breakdown 

of glycogen into glucose, a decrease of CEST affect in the liver was observed [63]. Amide 

protons of the intracellular proteins and peptides have also been used for their pH dependent 

chemical exchange [64]. To increase the signal to noise ratio the difference in the chemical shift 

of the targeted pool of the proton and the protons in the visicinity to it are to be increased. For 

this purpose, PARACEST (paramagnetic –CEST) agents have been used. The EuDOTA-(glycine 

ethyl ester)4 was used as the first PARACEST agent. With this PARACEST agent, the chemical 

shift difference of +50 ppm was observed as compared to +5 ppm in case of any endogeneous 

CEST agent [65]. A large chemical shift difference between the targeted pool of protons to the 

background is important because it increases the signal to noise ratio. Aime and coworkers have 

reported a concentration independent pH sensitive PARACEST agent [66]. Two sets of 

complexes were used (Yb-DOTAM-gly and Eu-DOTAM-gly). Both complexes differ in their 

shift differences between two sets of exchangeable protons (coordinated water molecule and 

amide protons). The CEST effect of Eu(III) loaded complex was independent of pH while pH 

dependence of exchange of amide protons in Yb(III) complex was exploited  
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Sherry and coworkers have reported a glucose sensitive PARACEST agent. The water proton 

exchange was decreased on glucose binding of the agent, thereby switching on the CEST effect 

from the metal bound water [67, 68]. 
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3. MRI in brain research 

3.1 Introduction 

MRI had played an important role in understanding the structure and function of the brain. After 

the first report of MRI as a clinical imaging tool in 1971 by Raymond Damadian [69], the pace 

of understanding brain at morphological, cellular, neurophysiological and molecular level has 

been quite rapid. 

A conventional MRI scan of the brain provides images with excellent tissue differentiation, 

giving the structural and vascular information. Recently, MRI has become an important tool to 

study the functional activation of the brain and is commonly referred as functional MRI (fMRI). 

Before the emergence of fMRI in 1990s [70-73], the activation-based neuroimaging studies of 

the brain involved the use of nuclear imaging techniques e.g. positron emission tomography 

(PET) [74, 75]. However as compared to PET, fMRI provides a better spatial resolution with no 

potential hazards associated with radioactive tracers required in nuclear imaging. This safety and 

the noninvasive nature of fMRI are significantly important for its application in clinics as well as 

in basic research. Furthermore, the high spatial and temporal resolution obtained in fMRI permits 

the delineation of the spatial extent of an activated area with the precise matching of the 

anatomical structures.  

The physiological basis of probing regional brain activation by these techniques lies in the fact 

that the brain activation is associated with changes in vascular and metabolic responses. The 

changes in the physiological parameters linked to these responses are thus used as the indicator 
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for the underlying function of the brain. The blood oxygenation level dependent (BOLD) 

contrast method used in fMRI for example, measures the magnetic field inhomogeneity 

(susceptibility effects) caused by the change in the ratio of deoxygenated to oxygenated blood 

following neuronal activation [76]. The neurometabolic and neurovascular coupling underlying 

the BOLD fMRI signal is based on the cascade of events that follows neuronal activation.  

3.2 BOLD fMRI: an indirect method of mapping functional activity in the brain 

 

Figure 15: The BOLD signal due to increased blood flow is generated in response to enhanced neural 

activity (neurovascular coupling) mediated by the signaling events in astrocytes. Reproduced from ref 

[77] with the permission from authors.  

The BOLD contrast is the most widely used method in fMRI for studying functional activity of 

the brain [77-83]. The physiological basis of the BOLD signal is believed to be increased 

vascular response coupled to neuronal activity through astrocyte signaling events [77, 83], as 

outlined in the Figure 15. The increase in neural activity results in an increased requirement of 

nutrients and oxygen supply [84, 85]. This energy requirement of the neurons is believed to be 
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closely associated with the energy metabolism of the astrocytes [86]. The specific neuron-

astrocyte interactions leads to the astrocytes induced vasodilation of the arteriols encasing the 

population of activated neurons. A wide variety of molecular mediators are involved in coupling 

this increased vascular activity to neuronal activation, such as K+, H+, cyclooxegenase products, 

adenosine etc. These mediators act on the smooth muscles of arteriols resulting in dilation or 

constriction [87-90]. Because of this neurovascular and neurometabolic coupling, there is a 

localized substantial increase in cerebral blood flow (CBF) and cerebral blood volume (CBV) 

and a moderate increase in cerebral metabolic rate of oxygen (CMRO2) in the bloodvessels [91]. 

This eventually results in the changing ratio of oxy- and deoxy- haemoglobin (Hb) in a volume 

unit (voxel). Due to the difference in the magnetic properties of deoxyHb and oxyHb, a magnetic 

field inhomogeneity is found within and around blood vessels, the magnitude of which increases 

with the amount of deoxyHb present. In deoxyHb, Fe(II) is present in high spin state which gives 

the paramagnetic property to it while in oxyHb it switches to the low spin state and is thus 

diamagnetic. The presence of deoxyHb alters the magnetic field susceptibility and results in a 

rapid loss of intravoxel spin coherence (T2* weighted signal loss) which is measured as BOLD 

signal [77]. Beside this microscopically inhomogeneous field (hemodynamic factors), the final 

BOLD signal also depends on vessel architecture (capillaries, arterioles, orientation etc.) [91]. 

The BOLD fMRI is therefore considered as an indirect method of mapping functional activation 

in the brain.  

3.3 A more direct method to map functional activity in the brain: Aim of the project-1 

In order to understand the brain function completely, not only the precise spatial extent of brain 

activation is required but the precise temporal information of the neural events is also important. 

The BOLD fMRI however do not measure the neural activity directly but rely on hemodynamic 
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parameters such as CBF, CBV and CMRO2 [81, 82, 91]. This causes a time lag between the 

actual neural event and the measurement of the signal [92] and therefore the accurate co-

localization of the measured signal to the underlying neurophysiological activity becomes 

difficult. A more direct and accurate method of mapping the functional activation of the brain 

would be to measure the changes in parameters directly linked to the neural events such as 

membrane potential, pH, ions flux (Ca2+, Na+, K+, Cl- etc.), and neurotransmitters flux [93].  

Amongst the various ions flux believed to be tightly linked with neuronal activity, the changes in 

the Ca2+ have been studied extensively by optical imaging in vitro, in neuronal cultures, as well 

as in vivo, in the brain of animal models. A wide variety of fluorescent indicators, originally 

developed by Roger Y. Tsien are available to investigate the role played by Ca2+ in normal and 

pathological conditions [94, 95]. Much of the advancement has been made in this field with the 

fluorescent dyes [96-98] and recently with the development of two-photon microscopy high 

resolution functional imaging in the living animals has also been achieved [99-103]. However 

even with high temporal resolution obtainable with optical imaging and the better depth 

penetration achieved with two photon microscopy, these techniques still suffers from the 

photobleaching side products of fluoresecent dyes, light scattering problems, inability to record 

from deeper brain structures and the limitation with whole brain coverage.  

In order to have a nonhemodynamic method of mapping brain activation with no depth 

penetration limit and possibility to record with whole brain coverage, we aimed at the 

development of MR detectable functional probes having an ability to sense the Ca2+ 

modulation and translate it in the form of dynamic MR contrast. Such functional markers 

are also known as smart contrast agents (SCAs). The development of SCAs would be discussed 

in section B.  
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3.4 Studying structural organization in the brain: Aim of the project-2 

In order to understand the functional activity in the brain, a detailed knowledge of anatomical 

connections between different brain regions would be extremely important. Various brain 

regions especially motor areas work in a networked manner to perform any movement related 

task. Along these lines, the fibre tracts which allow the signal transmission directly from one 

region to the other can be traced. Overlaying the information obtained from functional activity 

study to structural connectivity study would help us to understand the relationship between 

structure and function of the brain. With this we formulated the project-2 aimed at developing 

markers which can reveal the anatomical connectivity in the brain noninvasively by MRI. 

The currently available method to study the same and the development of the markers under the 

project-2 will be discussed in section C. 
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Development of Magnetic Resonance Guided 
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CHAPTER 4 

4. Development of Ca2+ sensitive SCAs 

4.1. Introduction 

4.1.1 Neuronal regulation of Ca2+ 

Ca2+ plays an important role in regulation of several neuronal processes. Earlier studies done 

with ion selective micropipettes showed that the synaptic activity induces a depletion in 

extracellular Ca2+ ([Ca2+]o) [104-107] which was also proved later with a fluorescent probe [108, 

109]. The computational studies done using a compartmental model on the dynamics of [Ca2+]o 

in the extracellular space have shown that the flux of Ca2+ through channels can cause a large 

fluctuation in its concentration [110-114]. The activity dependent large fluctuation in [Ca2+]o can 

affect the neuron excitability and synaptic transmission, it thus have a potential in regulating a 

wide variety of cellular processes. However, the impact of the [Ca2+]o depletion depends on the 

spatial and temporal aspects of synaptic activity [115]. 

To generate the Ca2+ signal both external and internal sources of Ca2+ are used. The flux of Ca2+ 

from extracellular space to intracellular can take place by multiple channels: voltage operated 

Ca2+ channels (VOCs), receptor operated Ca2+ channels (e.g. NMDA) and channels which are 

sensitive to diverse number of external stimuli such as store operated Ca2+ channels (SOCs), 

transient receptor protein (TRP) ion channels, etc. [116]. The internal source of Ca2+ is mainly 

located on endoplasmic reticulum (ER) (sarcoplasmic reticulum in muscle). The Ca2+ release 

from ER is triggered by mainly two kind of receptors, inositol-1,4,5-triphosphate gated receptor 

(InsP3R) and rynodine receptor (RyR). InsP3R is regulated by a number of messengers, such as 
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inositol-1,4,5-triphosphate (InsP3), cyclic ADP ripose, nicotinic acid adenine dinucleotide 

phosphate (NAADP) and sphingosine-1-phosphate. InsP3 is generated by phospholipase (PLC) 

which is activated by: G protein coupled receptors, tyrosine kinase coupled receptors and also by 

an increase in [Ca2+]. Beside these, various pumps and exchangers e.g. Na+/Ca2+ exchanger, 

mitochondrial uniporter etc. help removing the cytoplasmic Ca2+ and maintaining the 

homeostasis [117] . 

Thus the internalized Ca2+ has many targets and is therefore able to do cross talk with other 

signaling pathways [116]. The downstream effects of the Ca2+ signaling depend on its spatial as 

well as temporal organization which depends on the geometric relationship between Ca2+ 

channels and sensors. A discrete cluster of channels produces Ca2+microdomains or 

nanodomains. The little difference in the distance of these localized domains from the sensors 

(20 nm for microdomains and 200 nm for nanodomains) and the diffusion restriction results in a 

10 fold difference in the magnitude and 1000 fold difference in the speed of Ca2+ signal 

generated by these two domains. [118]. These Ca2+ signals are referred as blip/quark, puff/spark 

depending on their magnitude and speed [116]. For example, VOCs generate the rapid Ca2+ 

fluxes (responsible for fast muscle contraction) while TRPs operate over large time scale at low 

conductance of Ca2+ (important for smooth muscle contraction and cell proliferation). Versatality 

in Ca2+ signaling is also due to different cell types uses different isoforms of the same receptor 

e.g. parallel/pukerniji cell synapses uses mGluc1and PLCβ4 to generate Ca2+ transients while 

hippocampal neurons takes the pathway of mGluR5 and PLCβ1 to generate Ca2+ oscillations 

[116, 117].  
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4.2 Targeting the extracellular Ca2+-Specific aim of the project-1 

The role of Ca2+ in controlling various cellular processes has been investigated in detail by 

optical imaging using Ca2+ sensitive fluorescent dyes. However, the depth penetration limit of 

optical imaging techniques coupled with the effects of photobleaching side products of the 

fluorescent probes have created a need of alternate methods of reporting the Ca2+ dynamics. MRI 

on the other hand, does not suffer from such limitation. This noninvasive imaging modality 

provides the high quality images of soft tissues without the use of any ionizing radiations. 

Furthermore, the parameters determining the MRI image (T1/T2/SD) can be weighted differently 

with a variety of pulse sequences available. This unique flexibility in MRI provides a wide 

variety of information which cannot be obtained with other imaging modalities.  

The first report of a potential MRI agent sensitive to Ca2+ came in 1999 by Meade and coworkers 

[55]. The MRI agent, Gd-DOPTA described in that report used BAPTA as calcium chelator 

coupled to two Gd-DO3A units. The agent showed a maximum of ~ 75% r1 enhancement on 

Ca2+ addition and later reports proved that the r1 enhancement was due to the change in hydration 

number of the complex [56]. The agent was designed to be microinjected inside the cell; 

however there were no reports about in vivo testing of the agent.  

Considering our interest of reporting the functional activity in the brain by targeting Ca2+, a 

direct reporter of neuronal activity, MRI agents sensitive to Ca2+ were planned to be synthesized. 

Unlike designing the agent for microinjections in the cells [55], we proceeded with designing 

agents for targeting extracellular Ca2+. The concentration of Ca2+ outside the cell is 1-2 mM 

while it is 50-100 nM inside the cells [110]. The agent consisting of a strong chelator, BAPTA 

(Kd = 0.1-0.4 µM), most likely would saturate when the Ca2+ concentration reaches even 1 µM. 

Low affinity chelators are proved to be better reporters of the Ca2+ modulations and do not 
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contribute much to Ca2+ buffering as does their high affinity counterparts [119]. With this we 

specified our aim of targeting Ca2+ to ‘developing MRI probes for sensing extracellular Ca2+ 

dynamics using a low affinity Ca2+ binding construct’.  
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5. Design, synthesis and characterization of bismacrocyclic SCAs sensitive to 

Ca2+ 

5.1 Design of Ln2L1 and Ln2L2: To design a low affinity Ca2+ binding construct of the CA, we 

planned to do structural modifications on BAPTA, a high affinity Ca2+ selective chelator. One 

BAPTA molecule, with its four units of aminoacetate in conjugation with two ether oxygens 

coordinates to Ca2+ in a selective manner. As amides are weakly coordinating in comparison to 

carboxylates, we planned to modify two of the carboxylate units of BAPTA to two amide units. 

The final structures would have two carboxylates (strongly coordinating) and two amide units 

(weakly coordinating) to coordinate with Ca2+. Two bismacrocyclic CAs were designed based on 

this modification (Ln2L1 and Ln2L2). L1 and L2 derivatives would differ from each other in the 

linker connecting the Ca2+ chelator to the Gd-DO3A units with L2 having a longer and flexible 

linker.  

5.2 Results and Discussion 
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5.2.1 Synthesis of Ln2L1 and Ln2L2 

Synthesis of the ligand Ln2L1, was first attempted according to the Scheme 2. o-nitro phenol was 

alkylated with dibromoethane to give bis-nitro compound 1, which was subjected to 

hydrogenation with Pd-C catalyst under 1 atm H2 pressure to give amine 2. The reductive 

amination was carried out on this aromatic diamine 2 with benzaldehyde to obtain 3. The further 

alkylation on 3 was done with tert-butylbromoacetate with proton sponge as base to obtain 

diester 4. Subsequently, tert-butylesters in 4 were hydrolyzed using neat TFA to give the 

aromatic precursor 5 in quantitative yields. This was used for coupling reactions with 

macrocyclic precursors. 

The macrocyclic precursors 10 (and 11) was synthesized in three steps. Bromoethylamine (and 

bromopropylamine) was protected as carbamate in presence of carbobenzyloxy chloride to give 6 

(and 7). This was used to do alkylation of tris-tert-Bu-DO3A to give 8 (and 9). The 

hydrogenation of 8 (and 9) was carried out in a Parr apparatus with Pd-C catalyst under 1 atm H2 

pressure to give the primary amine 10 (and 11).  
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The macrocyclic building block 10 was coupled to the aromatic precursor 5 via amide bond 

formation to give bismacrocycle 12 using EDC/NMM/HOBt as the coupling reagents. However, 

removal of the benzyl groups on 12 under various hydrogenation conditions was not successful. 

The hydrolysis of 12 in TFA yielded a new ligand 13 (Scheme 3) which could be loaded with 

Gd3+, to have a hydrophobic bismacrocyclic contrast agent owing to the presence of in total 4 

hydrophobic aromatic rings. This contrast agent could then be used to target albumin kind of 

protein in blood plasma to have a blood pool contrast agent. The potential of this ligand however, 

was not studied further.  

The problem of removal of benzyl groups from 12 might be because of the steric hinderance 

imposed by the two macrocyclic moieties. To circumvent this problem we planned to remove 

them before the introduction of macrocyclic part (Scheme 4). Compound 3 was used as the initial 

substrate to do the further alkylation with methyl bromoacetate to give 14. At this stage the 

removal of benzyl groups in 14 was successfully carried out under 1 atm H2 pressure and Pd-C 

catalyst in a Parr apparatus to give secondary amine 15 in quantitative yields. To have an 

orthogonal protecting group situation, 15 was then alkylated with tert-butylbromoacetate with 

proton sponge as base to give 16. When 16 was subjected to methyl ester group hydrolysis under 

basic conditions, both esters (tert-butyl and methyl-) were found to be hydrolyzed in the obtained 

product. This can be explained on the basis of neighbouring group participation by the 

carboxylate formed under basic conditions, leading to the removal of tert-butyloxy anion. The 

anhydride formed in situ was then cleaved in presence of water in the reaction mixture to give 

BAPTA (Scheme 5)  

As the selective cleavage of methyl esters was not successful, we hydrolyzed the tert-butylesters 

in 16 with TFA to obtain diacid 17 in quantitative yields. This was then coupled to macrocyclic 
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precursor 10 by amide bond formation to give 18 (40%). The global deprotection in 18 was 

performed followed by RP-HPLC purification (Method A) to obtain the final ligand L1 in 25% 

yield.  
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Reagents and conditions: (i) BrCH2CH2Br/K2CO3/DMF; 87% (ii) Pd-C/H2/MeOH; 95% (iii) 

PhCHO/Na(OAc)3BH/DCE; 73% (iv) tert-butyl bromoacetate/K2CO3/KI/MeCN; 87% (v) TFA/CH2Cl2; 

98% (vi) CBzCl/KOH/dioxane/H2O; 75% (vii) 6 or 7/K2CO3/KI/MeCN; 73% (viii) Pd-C/H2/MeOH; 65-

70% (ix) NMM/HOBt/EDC/DMF; 55% 

Scheme 3 
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Scheme 4 
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Another approach used for synthesizing the desired ligands was by synthesizing BAPTA 

bisanhydride and then forming amide bonds with the macrocyclic precursors by the opening of 

anhydride bonds (Scheme 6). BAPTA bisanhydride was synthesized according to the reported 

procedure [120]. The bisanhydride was reacted with the macrocyclic primary amine 10 (and 11) 

under basic conditions with triethylamine in anhydrous solvent (NMP). The reaction was carried 

out in an inert atmosphere and at room temperature. An excess of amine (3 equiv) was used to 

avoid the formation of monomacroyclic byproducts. The crude product obtained was purified by 

RP-HPLC to obtain 20 (and 21) in 55% (and 40%) yield, followed by global deprotection with 

TFA to obtain the final ligands L1 (and L2) in 60% (and 40%) yield. This scheme simplified the 

overall synthesis to only 6 steps with satisfactory yields. The final loading of the ligands were 

done with addition of LnCl3
.6H2O (Ln3+ = Eu3+ or Gd3+) solution. A general procedure was used 

for the loading of all bismacrocyclic ligands with Ln3+. The complexes were prepared by mixing 

a slight excess (5%) of the ligand solution with the LnCl3 solution of known concentration. The 

reaction was carried out in milliQ water and at 50 °C. pH was maintained at 7 with the addition 

of KOH solution (1 M) and monitored for 4 h. The absence of free Gd3+ was checked by Xylenol 
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orange test. The water was evaporated and the obtained solid was used as such for further 

experiments.  

Scheme 6 

 

Reagents and conditions: (i) Ac2O/Py; 75% (ii) Et3N/NMP; 55% (20), 40% (21) (iii) TFA/CH2Cl2; 60% 

(L1), 40% (L2) (iv) LnCl3
.6H2O 
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addition. The relaxometric Mg2+ titration was also performed similarly to investigate the Ca2+ 

selective properties of the agents. In order to ascertain the parameter affecting the relaxivity of 

the agents in the presence and absence of Ca2+, Ln2L1 was chosen as the representative example 

and a number of experiments were performed on it. A high resolution UV-Vis spectrum of 

5D0←7F0 transitions in the region 577-581 nm was obtained for Eu2L1 to investigate the 

hydration equilibrium between two coordination states (8 and 9) of Eu (III) in the agent. 

Luminescence Lifetime measurement was performed on Eu2L1 in order to determine the 

hydration number of the complex in the presence and absence of Ca2+. The hydration number (q) 

was calculated according to equation 4.1 [121] 

corrODOH kkAq )('
22

Δ−Δ=          eq(5.1) 

where A’ is 1.2 ms and the correction factor for the contribution of the second sphere is - 0.25 

ms-1. The other parameters affecting relaxivity (e.g. water exchange rate, rotational correlation 

time etc.) were determined by simultaneous fitting of the data obtained by 1H NMRD and 17O 

NMR measurements.  

 (a) Relaxometric Ca2+ titrations of Gd2L1 and Gd2L2 

The titration curves are represented as the variation of the relaxivity of the Gd3+ complex 

solution vs. the Ca2+ concentration (Figure 16). The maximum relaxivity increase upon Ca2+ 

addition was 15% for Gd2L1 and 10% for Gd2L2. The saturation of both curves occurs at 

relatively high Ca2+ concentrations (~ 20 equiv of Ca2+ for Gd2L1 and ~ 5 equiv of Ca2+ for 

Gd2L2). The titration curves were fitted to obtain the apparent association constants, which are 

logK = 1.9±0.2 and logK = 2.7±0.2 for Gd2L1 and Gd2L2, respectively. Similarly to previously 

investigated, BAPTA-type complexes [55, 122], 1:1 binding stoichiometry has been assumed. 

These association constants are to be compared with the conditional stability constant, logKcond = 
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6.9 of CaBAPTA2- at pH 7.0, calculated by taking into account the protonation constants of 

BAPTA4- [122].  
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Figure 16: Relaxometric Ca2+ titration curves of Gd2L1 performed at 25°C and 11.75 T. 
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Figure 17: Relaxometric Ca2+ titration curves of Gd2L2 performed at 25°C and 11.75 T 

The constants obtained for our systems are 3-4 orders of magnitude lower. This difference can be 

rationalized by the fact that even on Ca2+ binding; the amide groups of the ligand remain 

coordinated to the lanthanide as indicated by proton relaxivity and luminescence data on the 
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Gd3+ and Eu3+ complexes, respectively. Therefore in comparison to CaBAPTA2-, there are 2 

carboxylate donors fewer coordinating to the Ca2+ ion, which is responsible for the considerably 

reduced stability. It is interesting to note that the stability of the Gd2L2-Ca complex is somewhat 

higher than that of Gd2L1-Ca. This is likely related to the higher flexibility of the Ca2+ binding 

site in Gd2L2-Ca where the propylene linker between the macrocycle and the Ca2+ binding site 

induces fewer steric constraints, hence ensuring a better “over-wrapping” of the cation by the 

chelator. We have to note that for GdDOPTA-Ca, possessing an integral BAPTA4- unit for Ca2+ 

binding, Li et al reported a much higher apparent association constant, K = 1.0 × 106 M [55].  

(b) Relaxometric Mg2+ titration of Gd2L1 
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Figure 18: Relaxometric titration curve of Gd2L1 with Mg2+ followed by addition of Ca2+ (25°C, 11.75 

T). 

The relaxivity remains approximately constant upon addition of Mg2+, then it increases upon 

Ca2+ addition even in the presence of a large amount of Mg2+ (Figure 18). The relaxivity increase 

after Ca2+ addition (16%) was similar to that observed in the Ca2+ titration without the presence 
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of Mg2+. The insensitivity of Gd2L1 towards Mg2+ is due to the lower stability of BAPTA-

derived complexes with Mg2+ compared to Ca2+. The titration curve shows that, though the 

affinity of our chelator for Ca2+ is diminished in comparison to BAPTA4-, the selectivity versus 

Mg2+ is conserved. The discrimination of BAPTA-type ligands towards Ca2+ versus Mg2+ is 

supposed to stem from the right size of the binding cavity for the larger size Ca2+ which is 

already too big for Mg2+ and cannot constrict further to envelop snugly this smaller cation (the 

association constant of MgBAPTA2- is logK = 1.8) [122]. Spectrophotometric measurements on 

the Mg2+-BAPTA system proved that Mg2+ coordination affects only one half of the ligand, in 

contrast to Ca2+ coordination where the entire ligand is involved [122]. 

(c) Luminescence and UV-Vis absorption studies  

In order to determine the number of water molecules coordinated to the lanthanide ion before 

and after Ca2+ binding to the complex, we have performed luminescence lifetime measurements 

on Eu2L1 in H2O and D2O solutions [35-37]. In the absence of Ca2+, the values of luminescence 

lifetimes were τΗ2Ο = 0.328 ms and τD2Ο = 0.408 ms. The hydration number, q = 0.4, was 

calculated according to the equation 5.1.  

The longitudinal 17O and 1H relaxation rates (vida supra) indicate that we cannot neglect the 

effect of second sphere water molecules. The non-integer hydration number suggests the 

presence of both q = 1 and q = 0 species. Upon the addition of Ca2+ to the Eu3+ complex, the 

hydration number determined by luminescence increases to q ≈ 0.7 (τΗ2Ο = 0.422 ms and τD2Ο = 

0.661 ms) (Figure 19). Such an increase of q can be interpreted in terms of a shift towards the 

monohydrated species.  
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Figure 19: Dependence of the relaxivity r1 and of the hydration number q on the Ca2+/complex ratio for 

Ln2L1. Full squares correspond to the relaxivity values obtained from the relaxometric titration of Gd2L1 

(25°C, 11.75 T). Full triangles represent the hydration number obtained from luminescence lifetime 

studies on Eu2L1 and open triangles correspond to the molar fraction of the monohydrated species 

determined for Eu2L1 by UV-Vis spectroscopy (ratio of the integrals of the absorption bands 

corresponding to monohydrated and nonhydrated complex; see text). 

To investigate further the hydration state, variable temperature UV-Vis measurements have been 

performed on Eu2L1. In general, the presence of a hydration equilibrium of europium(III) species 

leads to the appearance of two absorption bands for the 5D0←7F0 transition with peak separations 

of more than 0.5 nm [123, 124]. High resolution UV-Vis absorption spectra of a Eu2L1 aqueous 

solution (pH 7) were recorded in the 577–581 nm region at various temperatures and Ca2+ 

concentrations. The measurements revealed two temperature-invariant absorption bands, which 

could be deconvoluted into two symmetrical peaks (Figure 20).  
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Figure 20: Experimental and fitted UV-Vis spectra (50°C, pH 7) of Eu2L1 in the absence and presence of 

Ca2+. On addition of Ca2+, the relative intensity of the band at lower wavelength increases, while that of 

the band at higher wavelength decreases.  

The separation of those peaks is about 0.5 nm and lies in the range typical of different 

coordination environments of Eu3+ [125, 126]. We assume that in the absence of Ca2+, there are 

two nine-coordinated species present; in both species the amines and carboxylates of the 

macrocycle as well as the amide oxygen are coordinated to the lanthanide, and either one 

carboxylate from the central part or one water molecule completes the coordination sphere to CN 

= 9, which is the usual coordination number for this type of Ln3+ complexes (Figure 21).  
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Figure 21: Proposed structures present in aqueous solution of Ln2L1. R stands for the remaining part of 

the bismacrocyclic complex 



Chapter 5 
 

66 
 

Figure 22: IR spectrum of the ligand L1 
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Figure 23: IR spectrum of the complex Gd2L1 
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The coordination of amide oxygens is supported by IR measurements performed on the ligand L1 

and its Gd3+ complex (Figure 22-23). The stretching frequencies observed in the region of 1595-

1712 cm-1 for the ligand L1 had three distinguishable peaks which could be assigned to the C=O 

stretching frequencies corresponding to carbonyl group in carboxylates on macrocyclic units, 

carboxylates on aromatic units and the amides in the linker. These bands observed to merge in 

Ln2L1 which could be explained on the basis of the coordination of these units to Ln3+. 

Among analogous structures, lanthanide complexes of monomeric DO3A-derivatives bearing –

(CH2)n-NHCO-R (n = 2, 3) amide units have been reported in the literature [127]. With Eu3+ and 

Gd3+, the n = 2 ligand forms monohydrated, while the n = 3 ligand forms non-hydrated 

complexes. In contrast to this, Eu2L1 contains a carboxylate in the central part as a potential 

donor which can partially replace the water molecule in the inner coordination sphere. This leads 

to the presence of the two structures as proposed in Figure 38, and consequently to a reduced 

hydration number.  

Upon Ca2+ addition to a Eu2L1 solution, the relative intensity of the two UV-Vis absorption 

bands changes: the band at higher wavelengths decreases while the other band increases (Figure. 

20) [128]. In parallel, the luminescence measurements indicate an increase of the hydration 

number. Therefore, we conclude that the band which decreases in intensity (at 579.9 nm) on Ca2+ 

addition can be attributed to the q=0 complex, while the band which increases in intensity (579.3 

nm) can be attributed to the monohydrated complex. We assume that both in the presence and in 

the absence of Ca2+, the amide oxygen remains coordinated to the lanthanide ion to preserve the 

overall coordination number of nine. If the amide oxygen participated also in the Ca2+ 

coordination, the concomitant increase in the hydration number and in relaxivity would be more 

prominent than what is experimentally observed. The Ca2+ binding in the central part of the 



Chapter 5 
 

69 
 

complex demands the coordination of the central carboxylates, which, by leaving the 

coordination environment of Ln3+, allow a water molecule to bind to the lanthanide ion. 

Therefore, the Ca2+ binding in the central part will favour the formation of the monohydrated 

complex (Figure. 21).  

Upon step-wise addition of Ca2+, we observe a good correlation between the relaxivity increase 

of the Gd2L1 complex and the increase in q determined from the luminescence lifetime 

measurements on the Eu3+ analogue (Figure 19). In addition, we have also calculated the ratio of 

the integrals of the two UV-Vis absorption bands (attributed to q=0 and q=1) of Eu2L1 at various 

Ca2+ concentrations. The q values obtained in this way overlap with those measured by 

luminescence. This supports our hypothesis that the complex Ln2L1 exists in the form of two 

differently hydrated species, each of an overall coordination number of nine. As it was proved by 

the UV-Vis studies, their ratio is temperature independent but it shifts towards the monohydrated 

species with increasing Ca2+ concentration, resulting in a relaxivity increase. 

The relaxivity of the Gd2L2 complex is lower than that of the L1 analogue which suggests that q 

is also lower. In the case of the monomeric DO3A-derivatives bearing –(CH2)n-NHCO-R amide 

units, with the propyl-linked (n=3) amide q=0 was determined for the Eu3+ and Gd3+ complexes 

[127]. The extra steric demand associated with the enlargement of the chelate ring incorporating 

the amide carbonyl group was found to be sufficient to suppress water coordination. For Gd2L2, 

the relaxivities suggest q > 0. Moreover, the relaxivity increases on Ca2+ addition, though to a 

smaller extent than for Gd2L1. Therefore, we assume that two differently hydrated species exist 

also for Ln2L2 complexes, with an increased proportion of the non-hydrated species as compared 

to Ln2L1. The relaxivity change observed on Ca2+ addition indicates that the central carboxylate 

participates in the lanthanide coordination; on Ca2+ binding this carboxylate is removed off the 
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lanthanide ion and replaced by a water molecule. The small relaxivity change shows that the 

participation of this carboxylate in the lanthanide coordination is limited with respect to Gd2L1.  

For GdDOPTA, Li et al reported a more important variation of q and a correspondingly greater 

relaxivity change on Ca2+ binding [55, 56]. This is likely related to the more flexible nature of 

the central BAPTA4- part of the DOPTA ligand in contrast to the BAPTA-bisamide moiety in 

our case, where the monoamide functionalities are integrated in the central skeleton of the ligand 

and have much less flexibility to change coordination from Gd3+ to Ca2+.  

(d) 1H and 17O relaxation studies of Gd2L1. Evaluation of the parameters influencing proton 

relaxivity 

1H NMRD profiles were recorded for Gd2L1 with and without Ca2+. In the presence of Ca2+, an 

increase in the relaxivity was observed at all frequencies, related to an increase in the hydration 

number. The relaxivity at 20 MHz and 25°C in the absence and presence of Ca2+ is 5.74 and 6.13 

mM-1s-1, respectively, slightly higher than those of currently used MRI contrast agents [6, 129]. 
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Figure 24: (a) Variable temperature 17O NMR (A; ln(1/T1r) diamonds, ln(1/T2r) squares) and (b) 1H 

NMRD (B; 25°C squares, 37°C circles) data of Gd2L1 in the absence of Ca2+ 

The transverse 17O relaxation rates indicate a relatively slow water exchange (Figure 24), which 

is visible from the ln(1/T2r) curve vs. inverse temperature: at low temperatures, 1/T2r decreases 
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with decreasing temperature.The reduced chemical shifts (Δωr) in the absence of Ca2+ are 

smaller than it would be expected for a q = 0.4 complex. Such small chemical shifts have been 

previously observed in systems with a significant second-sphere contribution [130]. Therefore, 

the chemical shifts were not included in the final fitting. For the Ca2+-free system, the transverse 

and longitudinal 17O relaxation rates and the 1H NMRD data were analysed simultaneously 

(Figure 24) on the basis of the Solomon–Bloembergen–Morgan approach, extended by a second-

sphere contribution [130, 131]. The presence of free carboxylates in the complex induces a 

second-sphere contribution that affects both 1H and 17O longitudinal relaxation. In fact, by fitting 

the 17O 1/T1 values without 2nd sphere contribution, inconceivably high rotational correlation 

times were obtained. The inner sphere hydration number q was fixed to 0.4, the value found by 

luminescence measurements on Eu2L1. Since Eu3+ and Gd3+ have similar ionic radii, we expect a 

similar hydration mode for Gd2L1. To describe the second-sphere contribution, one water 

molecule per Gd3+ (q2nd = 1) was considered during the fitting. The distance between Gd3+ ion 

and the second-sphere water proton and oxygen was fixed to rGd-H
2nd = 3.5 Å and rGd-O

2nd = 4.1 

Å, respectively, the enthalpy of activation to ΔH#2nd = 35 kJ·mol-1, and the second-sphere water 

residence time to τm2nd = 50 ps [45, 46]. Other parameters have been also fixed during the fitting 

in order to put some constraints. They are as follows: the hyperfine coupling constant, A/ħ = -3.8 

MHz; the distance between Gd3+ and the oxygen and proton of the first-sphere water molecule, 

rGdO = 2.5 Å and rGdH = 3.1 Å, respectively. The distance of the closest approach of outer-sphere 

water molecules to Gd3+, a, was fixed to 3.6 Å. The quadrupolar coupling constant (χ(1+η2/3)1/2) 

was set to 7.58 MHz, the value of pure water. The activation energy EV had to be fixed to 1 

kJ·mol-1, otherwise the fit converged to negative values. In the fitting procedure, we used a 

model which considers different rotational correlation times for Gd–O and Gd–H rotating vectors 
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(τRO298 and τRH298, respectively) [48]. For geometrical reasons, their ratio (τRH298/τRO298) has to lie 

between 0.65 and 1. The most important parameters obtained from the best simultaneous least-

square fit to the experimental data are listed in Table 1. The complete fitting results are described 

in Table A1 in appendix 3. 

Table 1: Kinetic and structural parameters obtained from the fit of 17O NMR and NMRD data 

for the Gd2L1 complex in the absence and in the presence of Ca2+, compared with those of 

GdDOTA.
 Parameters in italics were fixed during the fitting. 

 
Parameter Gd2L1

17O NMR + NMRD

Gd2L1 + Ca2+

17O NMR 

GdDOTA 

17O NMR + NMRDa

kex
298 / 106 s-1 2.4±0.2 7.5±1.6 4.1 

ΔH‡ / kJ·mol-1 43.6±3.3 43.6 49.8 

ΔS‡ / J mol-1K-1 +23.5 +33.0 - 

τrO
298/ ps 350±50 1150±250 77 

Er / kJ·mol-1 24±1 21±6 16.1 

τV
298/ ps 20.6±2.7 0.13±0.02 11 

Δ2 / 1020 s-2 0.46±0.10 0.50±0.05 0.16 

q 0.4 0.7 1 

q2ns 1 1 - 

r1
298 / mM-1s-1 

20 MHz 

5.74 6.13 4.74 

 a ref. [132] 
 

The water exchange of Gd2L1 is slightly slower than that found for GdDOTA [132]. It is 

interesting to note that for the monohydrated Gd3+ complex of the DO3A ligand bearing an N-

linked CH2CH2NHCO-pyridyl pendant arm, much faster water exchange has been reported 

(kex
298 = 1.1×108 s-1) [127]. This fast water exchange has been explained by the steric 
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destabilization of the Ln-water binding interaction by the presence of the bulky substituent. Such 

a destabilization effect is expected to be less important in Gd2L1 since the amide carbonyl is 

linked to a flexible -CH2-N- moiety in contrast to the direct attachment to a pyridyl group in the 

previous case. This limited steric constraint around the water binding site will then be translated 

by a more sluggish water exchange as observed for Gd2L1. The more than one order of 

magnitude difference in the water exchange rate between Gd2L1 and the Gd3+ complex of the 

DO3A-CH2CH2NHCO-pyridyl ligand is a good example of the importance of the steric 

compression around the water binding site. Steric compression is indeed the main factor to 

determine the rate of exchange in a dissociative water exchange mechanism, characteristic of 

nine-coordinate complexes [133]. The dissociative activation mode for Gd2L1 is indicated by the 

positive value of the activation entropy.  

The higher τr value of Gd2L1 as compared to GdDOTA is rationalized by the higher molecular 

weight and rigidity of the molecule. In spite of the slow rotational motion and the presence of a 

second hydration sphere in the bismacrocyclic system, the relaxivities are only slightly higher 

than those of GdDOTA, due to the low hydration number of Gd2L1 (q = 0.4).  

The simultaneous fit of the 1H and 17O relaxation rates also supplies parameters that describe the 

electron spin relaxation of the Gd3+ complexes, such as τv, the correlation time for the 

modulation of the zero field splitting (ZFS), its activation energy, Ev, and the mean zero field 

splitting energy, Δ2. The values obtained for Gd2L1 are in the usual range for similar complexes 

[132].  

The 1H NMRD and 17O NMR data of the Gd2L1 system containing Ca2+ could not be fitted 

simultaneously because the conditions for 17O NMR and 1H NMRD samples differed 

significantly in the ionic strength and viscosity, but also in the Ca2+/Gd3+ ratio of the samples. 
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Only the 17O ln(1/T1r) and ln(1/T2r) data were analyzed, while the relaxivities are given in the 

Table A2 and Table A3 in appendix 3.  
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Figure 25: Variable temperature, reduced longitudinal (squares) and transverse (diamonds) 17O relaxation 

rates for Gd2L1, in the presence of 1M Ca2+. 

The 17O relaxation rates were interpreted by using the same set of equations as for the system 

without Ca2+ (Figure 25). Analogously, the same parameters were fixed in the fit (except for the 

hydration number, q=0.7, obtained from luminescence studies). The best fitting was obtained 

with parameters listed in Table 1 and Table A4 (in appendix 3). On Ca2+ addition, the most 

flagrant change is observed for the rotational correlation time as obtained from the 17O 

longitudinal relaxation rates (τR = 350 vs. 1150 ps without and with Ca2+, respectively). We 

attribute this significant increase mainly to the high ionic strength and viscosity of the 17O NMR 

sample containing 1M CaCl2, though some rigidification of the molecule on Ca2+ is also 

expected. As for the water exchange rate, it triples on Ca2+ binding (kex
298 = 2.4×106 vs. 7.5×106 

s-1). The decreasing negative charge of the Ca2+ bound Gd2L1-Ca complex would be rather 

expected to diminish the exchange rate in a dissociatively activated process. Among other factors 
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that can compensate this effect, the increased steric demand of the central part after Ca2+ binding 

can lead to a steric destabilization of the Ln-water binding interaction. Overall, the relaxivity 

increase upon Ca2+ addition is mainly related to an increase in the hydration number. 

5.3 Design of Ln2L3 and Ln2L4: An attempt of improvement over Ln2L1 and Ln2L2 

To improve the Ca2+ dependent relaxivity response obtained with Ln2L1-2, we planned to 

perform the structural modifications so as to decrease the distance between the Ca2+ chelating 

moiety and the paramagnetic centre. This might ensure better interaction between the two and 

thereby expected to give improved response. This could be achieved by decreasing the length 

and steric constraints in the linker or by increasing the length of the flipping arm which is 

supposed to flip between paramagnetic centre and the Ca2+ coordination centre. Ln2L3 was 

designed to contained aromatic aminopropionate units instead of the regular aminoacetate units 

and Ln2L4 contained a simple alkyl linker instead of a long amide containing linker. 
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Scheme 8:  
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5.4 Results and Discussion 

5.4.1 Synthesis of Gd2L3 

Synthesis of this ligand was carried out as outlined in Scheme 9. The primary aromatic amines in 

2 were alkylated with methyl bromopropionate to secondary aromatic amines as in 22 (65%). 

The further alkylation at 22 with tert-butyl bromoacetate gave 23 (68%). Hydrolysis of tert butyl 

esters in 23 was carried out in neat TFA to obtain diacid 24 in quantitative yields. This was 

coupled to macrocyclic precursor 10 via amide bonds to the bismacrocyclic product, 25 (30% 

yield). The global deprotection of all the esters in 25 was done to obtain the final ligand L3 in 

48% yield. 
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Scheme 9 
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Reagents and conditions: (i) 2/methylbromopropionate/proton sponge/KI/MeCN; 65% (ii) tert-butyl 

bromoacetate/K2CO3/KI/MeCN; 68% (iii) TFA/CH2Cl2; 98% (iv) 10/NMM/HOBt/EDC/DMF; 30% (v) 

LiOH/THF:MeOH:H2O (3:2:2) (vi) TFA/CH2Cl2; 48% (vii) GdCl3 6H2O 

5.4.2 Physicochemical characterization of Gd2L3 

(a) Relaxometric Ca2+ titrations of Gd2L3 

The Ca2+ dependent relaxivity response of the agent was checked at 9.4 T and physiological pH 

7.3. The titrations and the measurement of T1 were performed similar to as described in Section 

5.2.2.  
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Figure 26: Relaxometric Ca2+ titration curves of Gd2L3 performed at 25°C and 9.4 T 

The relaxivity for this derivative was observed to be a bit higher than the previous two 

molecules. However the Ca2+ relaxometric titration performed on Gd2L3 showed that the agent 

possesses no sensitivity to Ca2+ (Figure 26). This behavior showed that the aminopropionate 

units, as in the Gd2L3, do not get activated with the addition of Ca2+.  

5.4.3 Synthesis of Gd2L4 

The synthetic scheme for this ligand was performed as shown in Scheme 10. The aromatic 

diamine 2 was reacted with bromoacetyl bromide to give 26. The macrocyclic precursor, tris-

Boc-DO3A (27), was synthesized by addition of Boc-anhydride to cyclen in presence of 

triethylamine. The bromoacetamide derivative 26 was used as an alkylating agent to do further 

alkylation of 27 to obtain the bismcrocyclic product, 28 with some amount of unreacted 27. As 

the rf value of 27 and 28 were very close, it was difficult to get pure 28. To purify it, the mixture 

of 27 and 28 was subjected to further alkylation by Boc-anhydride to convert tris-Boc-DO3A to 
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tetra-Boc-DO3A. The desired product (28) was purified in 35% yield by normal phase column 

chromatography.  

Because an extra step was required to get the pure intermediate 28, the second route was 

followed as shown in Scheme 11. Instead of acylating the diamine 2 with bromoacetylbromide, 

the 2° amine in the macrocyclic precursor 27 was amidated with bromoacetic acid to give 29 in 

90% yield. This was used to do the alkylation of the diamine 2 to obtain the product 30 in 58% 

yield. The Boc groups were removed in CH2Cl2/TFA to get the crude product 31, which was 

purified by RP-HPLC to obtain the pure product in 45% yield. The amide bond reduction was 

performed on 31 in BH3/THF. The product 32 was formed with some unknown side products as 

was confirmed by ESI-MS. The crude product obtained was subjected to further alkylation with 

methylbromoacetate. The purification on silica column gave only traces of the product. The 

obtained crude product 32 was subjected to global deprotection and final purification with RP-

HPLC using method B to obtain the L4 in 10% yield.  

The synthesis of this ligand by this scheme turned out to be very cumbersome. Given the 

complexity of the synthesis of bismacrocyclic derivatives, no further reaction scheme was tried 

for this derivative.  
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Reagents and conditions: (i) 2/ BrCH2COBr/Na2CO3/MeCN/; 56% (ii) Boc-anhydride/Et3N/CHCl3; 50% 

(iii) Na2CO3/KI/DMF (iv) Et3N/Boc-anhydride; 35% 

Scheme 11 
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Reagents and conditions: (i) BrCH2COOH/DCC/CH2Cl2; 91% (ii) 2/Na2CO3/MeCN; 58% (iii) 

TFA/CH2Cl2; quant (iv) BH3/THF; 24% (v) methylbromoacetate/NaH/DMF (vi) NaOH/H2O; 10% 

5.5 Conclusions  

With the objective of Ca2+ sensing by MRI in the extracellular space, four novel modified-

BAPTA based bismacrocyclic ligands were synthesized. Two of them had BAPTA-bisamide as 
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the Ca2+ chelating moiety. Their Gd3+ complexes exhibited relaxivities comparable to that of 

currently used monomeric MRI contrast agents, in accordance with their larger size and low 

hydration number (q<1). Upon Ca2+ addition, the relaxivities of Gd2L1 and Gd2L2 increased by 

15% and 10%. The changes obtained with Gd2L1 and Gd2L2 are likely insufficient for in vivo 

MRI detection. Gd2L1 was found to be practically insensitive towards Mg2+. The apparent 

association constants for the Ca2+ interaction of Gd2L1 and Gd2L2, was obtained from the 

relaxometric titration curves. They were several orders of magnitude lower for these complexes 

than those determined for BAPTA4- itself or other tetracarboxylate BAPTA4- analogues. The 

hydration number of Eu2L1 was determined from luminescence lifetime measurements in the 

absence (q=0.4) and presence of Ca2+ (q=0.7). UV-Vis measurements confirmed the presence of 

two coordination environments that we attributed to a monohydrated and a non-hydrated state 

(Figure 36). Upon the coordination of Ca2+ in the central part of the ligand, the molecule 

undergoes a conformational change and an acetate arm, originally coordinated to the Ln3+ ion, 

comes to bind to Ca2+ and leaves space for the coordination of a water molecule to the 

lanthanide, which shifts the hydration state towards the more hydrated species. Doing changes at 

the Ca2+ chelating acetate arm to propionate arms resulted in no sensitivity toward Ca2+. 

Also, it has been observed that the synthesis of the bismacrocycles is time consuming and 

because of their complex structure, performing the modifications to it according to the need is 

not so easy. 

In the quest of having agents with better sensitivity to Ca2+ and easily modifiable structural 

design, monomacrocyclic SCAs were planned to be synthesized as the next step.  
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6. Design, synthesis and characterization of monomacrocyclic SCAs sensitive 

to Ca2+ 

6.1 General design: As it was outlined in the Section 4.1.2 that low affinity chelators are most 

likely to prove efficient to be active in extracellular Ca2+ concentration range. Considering that, 

we chose APTRA (o-aminophenol-N,N,O-triacetate) as the Ca2+ chelating unit. Besides being a 

low affinity chelator, incorporating the simple structure of APTRA would simplify the synthesis 

of the whole CA and also, the modification in the structure according to the requirement would 

be comparatively easier. The initial approach consisted of following sequences of steps: 

1) At first, APTRA at its free ortho position would be coupled to a Gd-DO3A unit. A simple 

alkyl ether linker was chosen, similar to one used in Gd-DOPTA [55].  

2) If the enough sensitivity would not be achieved with the above construct, the linker 

would be modified. The modification would consist of increasing/decreasing the linkers’ length, 

replacement of ether linkage to simple alkyl linker or introduction of some more rigid/flexible 

linker. 

3) With an optimized linker selected from above, the Ca2+ selective and Mg2+ rejection 

property of the APTRA could be improved. The appropriate structural changes on the Ca2+ 

binding part of the molecule would be done. 

6.2 General physicochemical characterization for monomacrocyclic complexes  

The Ca2+ dependent relaxivity response of the agents was checked at 9.4 T and physiological pH 

7.4. The relaxometric titrations were performed in buffer, Mg2+ containing buffer, Zn2+ 
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containing buffer, artificial cerebrospinal fluid (ACSF) and artificial extracellular matrix 

(AECM). A solution of CaCl2 of known concentration was added stepwise to the complex 

solution and the longitudinal proton relaxation time T1 was measured after each Ca2+ addition. 

The exact concentration of CAs was determined by ICP-OES. Luminescence Lifetime 

measurement was performed to determine the hydration state of the complex in the presence and 

absence of Ca2+ and was carried out similar to as described in the Section 4.1.2. The dissociation 

constant of the agent to Ca2+ was determined by paramagnetic relaxation enhancement method. 

The relaxometric titration curve was fitted according to the equation 6.1 
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            eq(6.1) 

Where, Kd is equilibrium dissociation constant, rf is the relaxivity of unbound or free CA, rb is 

the relaxivity of the Ca-CA complex or bound CA and n is the number of Ca2+ binding sites on 

CA. The fitting was done using Kd, rf, rb, and n as variable parameters. 

6.3 Design of Ln-L5 

According to the construct described under the point 1 above, the structure of the first agent of 

this monomacrocyclic series was following: 

Scheme 12: 
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6.4 Results and Discussion 

6.4.1 Synthesis of Ln-L5 

The synthesis of the ligand L5 was successfully done according to the Scheme 13. The synthesis 

started with inexpensive 2-nitroresorcinol which was monobenzylated using benzyl bromide 

giving 33. Alkylation of phenol 33 was done with dibromopropane to yield the alkyl bromide 34. 

This was then used for alkylation of tris-tert-Bu-DO3A to give the macrocycle 35. Thereafter, 

the NO2 group was reduced with simultaneous removal of the benzyl group by hydrogenation 

using Pd-C catalyst in a Parr apparatus to obtain 36. The tris-tert-butylester in 36 was then 

hydrolysed with neat TFA to give triacid 37. As the alkylation of aniline 37 with tert-

butylbromoacetate or with methylbromoacetate was not successful yielding a mixture of two 

products which were difficult to separate, L5 was finally obtained in moderate yield by alkylation 

of 37 with bromoacetic acid and NaOH. The ligand L5 was purified by RP-HPLC using method 

C and loaded with Ln3+ (Gd3+ or Eu3+) using LnCl3·6H2O in water at neutral pH. The final 

concentration of Gd3+ was determined by ICP-OES. Obtained complexes once formed were 

stable, however very slow hydrolysis of one acetate arm was observed similar to a previously 

reported molecule [134].  
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Scheme 13 
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Reagents and conditions: (i) BnBr/K2CO3/MeCN; 85% (ii) BrCH2CH2Br/K2CO3/DMF; 88% (iii) tris-

tert-Bu-DO3A/ K2CO3/DMF; 66% (iv) H2/Pd-C; 85% (v) TFA (neat); 68% (vi) 

BrCH2COOH/NaOH/H2O; 55% (vii) LnCl3·6H2O. 

6.4.2 Physicochemical characterization 

(a) Relaxometric Ca2+ titration in buffer 

In the absence of Ca2+ the relaxivity observed was 3.5 mM-1s-1 which increased by 97% with 

stepwise addition of Ca2+ to 6.9 mM-1s-1. The r1 enhancement was maximal at 1 equiv of Ca2+ 

and leveled off with the further Ca2+ addition. The observed ~100% r1 increase, demonstrates the 

high sensitivity of the agent to Ca2+. To check the reversibility of the agent, EDTA was added to 
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the fully saturated solution (with 3.5 equiv. Ca2+) of CA. The addition of EDTA restored the 

increased relaxivity to the initial value, proving the reversible binding of the agent to the Ca2+ 

(Figure 27). A strong chelator such as EDTA chelates away the Ca2+ bound to the low affinity 

chelator system e.g. Gd-L5. The reversibility is an important requirement for such agents from in 

vivo perspectives, as the strong chelation of the agent to the Ca2+ in the brain might interfere with 

normal cellular processes and thus could be toxic.  

 

 

Figure 27: The Ca2+ dependent relaxivity response of Gd-L5 in KMOPS buffer. The black diamonds 

correspond to the stepwise increase in the r1 upon Ca2+ addition while the red square correspond to the 

relaxivity obtained with the addition of EDTA after addition of 3.5 equiv of Ca2+ 

(b) Relaxometric Ca2+ titration in Mg2+ containing buffer 

The selectivity of the agent to Ca2+ in presence of other metal ions, which can compete for the 

Ca2+ binding site in the agent in vivo was also investigated. The concentration of major anions 

and cations in the extracellular space of the brain is given in Table 2 [135]:  
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Table 2: Ion concentrations in Millimoles 

Ions CSF 
Human Rat 

Na+ 147 152 
K+ 2.9 3.4 
Ca, Total 1.14 1.1 
Ca2+, free 1.0 1.0 
Mg, total 1.15 1.3 
Mg2+, free 0.7 0.88 
H+ 0.000047 0.00005
pH 7.3 7.3 
Cl- 119  
HCO3

- 23.3 28 
 

The other metal cation that can act as the competitor for Ca2+ binding site in the agent is Mg2+. 

As shown in the Table 2, the concentration of the Mg2+ ([Mg2+]o) in total is almost the same as 

the Ca2+ (~ 1.1 mM). However almost 40% of the [Mg2+]o is in the bound form [136]. At resting 

state the cerebro spinal fluid (CSF) within the brain has 0.7 mM of Mg2+ as compared to 1 mM 

of Ca2+ [135]. (CSF is the fluid that occupies the subarachnoid space and ventricular system 

around and inside the brain. The extracellular space of the brain freely communicates with the 

CSF compartment and therefore the compositions of the two fluids are similar) [135, 137]. Thus 

we checked the selectivity of Gd-L5 by measuring its relaxivity response toward Ca2+ in a Mg2+ 

containing buffer 

When the CA was dissolved in a buffer containing more than half an equiv of Mg2+ (0.62 equiv), 

the relaxivity observed was 4.4 mM-1s-1 which is only 25% higher than the relaxivity of CA in 

Mg2+ free buffer, whereas the increase in relaxivity was ~ 60% with the same amount of Ca2+ 

added. When Ca2+ was added to the above Mg2+ containing buffer, still 70% relaxivity 

enhancement was observed (Figure 28).  
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Figure 28: The Ca2+ dependent relaxivity response of Gd-L5 in 0.62 equiv. of Mg2+ containing buffer. 

The agent was found to be sensitive and selective to Ca2+ even in presence of a very high concentration of 

Mg2+. The r1 enhancement with the addition of Ca2+ to the CA solution in the buffer containing 1.3 equiv. 

of Mg2+, was found to be 45% (Figure 29).  

 

Figure 29: The Ca2+ dependent relaxivity response of Gd-L5 in 1.3 equiv. of Mg2+ containing buffer 
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Figure 30: The Ca2+ dependent relaxivity response of Gd-L5 in 0.5 equiv. of Zn2+ containing buffer 

(c) Relaxometric Ca2+ titration in Zn2+ containing buffer 

The Ca2+ selectivity of the agent was also checked in the Zn2+ containing buffer, as a similar 

ligand has been investigated to show Zn2+ binding effect [138]. The Ca2+ titration was performed 

with Zn2+ containing (0.5 equiv) buffer. The initial relaxivity observed was 4.2 mM-1s-1, which is 

17% higher than the relaxivity observed in Zn2+ free buffer, whereas the relaxivity enhancement 

was ~49% with same amount of Ca2+ added. Further addition of Ca2+ to Zn2+ containing buffer 

solution of CA resulted in 70% relaxivity enhancement (Figure 30). This shows the selectivity of 

CA for Ca2+ over Zn2+ as well. As the concentration of Zn2+ in the extracellular space of the brain 

is much lower as compared to Ca2+ and Mg2+ [139], the observed weak Zn2+ binding to the CA 

should not interfere with its response to a large Ca2+ modulation observed during synaptic 

transmission. 

(d) Relaxometric Ca2+ titration in artificial cerebro spinal fluid (ACSF) 

We further checked the relaxivity response in Ca2+ free artificial cerebro spinal fluid (ACSF) at 

37 °C. The ACSF used contained all the major ions present in the CSF of the brain e.g. NaCl, 
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KCl, MgCl2, NaHCO3. The preparation of ACSF solution is described in the experimental part 

(Section D). The relaxivity enhancement in the ACSF solution prepared was observed to be 37% 

(Figure 31). This signifies both the selectivity and sensitivity of the agent in a physiological 

environment toward Ca2+.  

 

Figure 31: The Ca2+ dependent relaxivity response of Gd-L5 in ACSF. 

(e) Relaxometric Ca2+ titration in artificial extracellular matrix (AECM) 

To further explore the efficacy of CA, we performed the relaxivity measurement in the artificial 

extracellular matrix (AECM). ECM is a lattice of proteins, polysaccharides and various 

compounds attached to the plasma membrane. ECM materials are mostly present in intercellular 

spaces between neurons and glia [140]. The AECM was freshly prepared by mixing D-MEM : F-

12 : N-2 in 50:50:1 proportion. D-MEM is well suited for supporting the growth of a broad 

spectrum of mammalian cell lines. F-12 Nutrient Mixture was originally formulated for single 

cell plating of near-diploid Chinese Hamster Ovary (CHO) cells [141]. N-2 supplement is a 

chemically defined, 100X concentrate of Bottenstein's N-2 formulation. This supplement is 

recommended for the growth and expression of neuroblastomas and for the survival and 
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expression of post-mitotic neurons in primary cultures [142]. The exact compositions are listed 

in Table A5 in Appendix 2.  

The maximum changes observed were 27% at 27 °C and 25% at 37 °C. The drop in relaxivity in 

biological media is likely due to anion binding to Gd in presence of Ca2+. Anion binding will 

also block water access and this problem is well studied and described for the DO3A class of 

complexes [62, 143]. However these changes could be sufficient to report dynamics of Ca2+ in 

the brain (Figure 32) 

 

 

Figure 32: The Ca2+ dependent relaxivity response of Gd-L5 in AECM. 

(f) Ca2+ dissociation constant 

The dissociation constant (Kd) was determined using the paramagnetic relaxation enhancement 

(PRE) method. The relaxivity enhancement plot of CA vs [Ca2+] was fitted to the equation 

described in eq(6.1). The Kd was found to be ~ 11 µM. The fitted curve is shown in the Figure 

33. 
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Figure 33: The fitting of the Ca2+ titration curve. 

(g) Luminescence lifetime measurements 

In order to elucidate the main parameter responsible for relaxivity enhancement, we have 

performed luminescence lifetime measurements on Eu3+ loaded ligand (Eu-L5) in H2O and D2O 

solutions (Table 3). The hydration number, q was calculated according to the eq(5.1) In the 

absence of Ca2+, q was observed to be 0.17 while in the presence of Ca2+, it increases to 0.88 

(Scheme 14). This proves that the relaxivity enhancement of Gd-L5 in the presence of Ca2+ is 

largely determined by the changes in hydration number of the complex [62, 134]. 

Table 3: 

 τΗ2Ο (ms) τD2Ο (ms) q 

Without Ca2+ 0.328 0.377 0.17 

With Ca2+ 0.410 0.684 0.88 
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Scheme 14 
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(h) Stability of Ln-L5 

The side product obtained while loading the Ln3+ to the solution of L5 was investigated by ESI-

MS. The mixture of the products were separated by sephadex LH-20 column and analyzed. The 

m/z of the side product formed while loading Gd3+ and Eu3+ was 781.2 and 796.1 respectively, in 

the negative mode. The m/z of the side products corresponds to the respective molecules with 

loss of one acetate arm (803.2 for [C37H27GdN5O12 + Na – H]- and 798.1 for [C37H27EuN5O12 + 

Na – H]-) as shown in the mass spectrum in the Figure 34-37.  
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Figure 34: ESI-MS spectra of Gd-L5. 

 

Figure 35: ESI-MS spectra of Gd-L5a 
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Figure 36: ESI-MS spectra of Eu-L5. 

Figure 37: ESI-MS spectra of Eu-L5a. 
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One of the possible mechanisms for the instability of the acetate arm is shown in Scheme 15. 

When the Ln3+ is added to the aqueous solution of the ligand solution, the oxygen in the linker 

between DO3A unit and APTRA unit, in conjugation with the APTRA’s aminoacetate groups 

coordinates with Ln3+ and keep it maintained till the Ln3+ slips in to the macrocyclic cage. This 

facilitated caging of Ln3+ induces the electronic rearrangement as shown in the scheme 15 

leading to the loss of an acetate arm. As the coordination of oxygen in the linker and the 

aminoacetate units weakens when the Ln3+ slips in to the cage, the rate of the hydrolysis of the 

acetate arm also slows down. However, on the basis of m/z values it cannot be ascertained that 

during the rearrangement, amino acetate arm is lost or the phenolic acetate.  

Recently Chang and coworkers [134] had reported similar hydrolysis in their system. The 

structure of CA studied was very similar to Ln-L5 but without phenolic acetate groups. Similar 

hydrolysis observed for these two systems showed that in Ln-L5 also, the aminoacetate unit is 

lost during electronic rearrangement and the not the phenolic one. 

Scheme 15: 
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6.5 Conclusions: 

The results obtained with the studies done with Ln-L5, showed that the agent has an optimum 

distance and flexibility between the Ca2+ chelating moiety and the paramagnetic centre, leading 

to an excellent sensitivity to Ca2+. It was also proven that the parameters influencing the r1 
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enhancement are largely determined by the hydration number. The maximum number of water 

molecules interacting with Gd3+ in the presence of Ca2+ was found to be 1, leading to a 100% r1 

enhancement.  

Further improvement on this agent was aimed at: 

• Stability toward slow hydrolysis of acetate arm 

• Increased Ca2+ dependent r1 response in the physiological media or increased selectivity 

to Ca2+. 
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7. Design, synthesis, and characterization of Ln-L6: In an attempt of 

improvement over Ln-L5 

7.1 Design of Ln-L6: To avoid the instability of the acetate arm, we planned to eliminate the 

oxygen from the linker. The use of a one carbon linker without oxygen was proposed, leading to 

the following construct (Ln-L6). 

Scheme 16 
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7.2 Results and Discussion 

7.2.1 Synthesis of Ln-L6 

The synthesis started with the hydrolysis of the methyl ether in 3-methoxy-2-nitrobenzaldehyde 

and subsequent alkylation with benzyl bromide in one step to give 38. The reduction of the 

aldehyde group in 38 was carried out with sodium borohydride to give alcohol 39. The alcohol 

group in 39 was brominated to obtain 40. This was used to alkylate tris-tert-Bu-DO3A to give 

41. The reduction of the nitro group and removal of the benzyl group was simultaneously carried 

out on 41 to obtain 42. This was subjected to ester hydrolysis with neat TFA to give 43. The 

alkylation of 43 was done with bromoacetic acid to give the final ligand L6 as solid followed by 

loading with LnCl3
.6H2O to give Ln-L6 (Scheme 17). 
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Scheme 17 

O
NO2

O O
NO2

O
Ph

O
NO2

HO
Ph

O
NO2

Br
Ph

N N

N N

(H3C)3COOC

COOC(CH3)3

COOC(CH3)3

OO2N
Ph

N N

N N

(H3C)3COOC

COOC(CH3)3

COOC(CH3)3

OHH2N

N N

N N

HOOC

COOH
COOH

OHH2N

L6

38 39
40

4142
43

(i, ii) (iii) (iv)

(v)

(vi)(vii)

(viii)

Ln-L6(ix)

 

Reagents and conditions: (i) BBr3/CH2Cl2 (ii) BnBr/K2CO3/MeCN; 85% (iii) NaBH4/MeOH; 90% (iv) 

CBr4/PPh3/CH2Cl2; 77% (v) tris-tert-Bu-DO3A/K2CO3/DMF; 40% (vi) H2/Pd-C/MeOH; 89% (vii) 

TFA/CH2Cl2; 36% (viii) BrCH2COOH/NaOH/H2O; 44% (ix) LnCl3 6H2O 

7.2.2 Physicochemical characterization 

(a) Stability 

The agent was found to be stable with respect to the hydrolysis of the acetate arm. This supports 

the hypothesis that the electronic rearrangement is mediated through the oxygen in the linker. 

(b) Relaxometric Ca2+ titration in buffer 

The relaxivity measured in the absence of Ca2+ was 5.9 mM-1s-1, which decreased minimally by 

13% with the addition of 3 equiv of Ca2 (Figure 38). Such a behavior could be explained on the 

basis of close interaction between the acetate arms of the Ca2+ chelator to the paramagnetic 

centre due to the short one-carbon linker. Because of the strong interaction, the acetate arm does 



Chapter 6 
 

102 
 

not flip back to chelate Ca2+ and thus the access to the water molecules remained blocked even in 

the presence of Ca2+.  

 

Figure 38: The Ca2+ dependent relaxivity response of Gd-L6 in KMOPS buffer.  

7.3 Conclusions  

• The length and the flexibility of the linker play an important role in deciding the 

sensitivity of the agent towards Ca2+.This was found to be optimal with Gd-L5. 

• The presence of oxygen in the linker does influence the stability of the agent toward 

hydrolysis of the acetate arm. This was proved with the observed stability of Gd-L6. 

• The designing of the next derivative should incorporate the characteristics of both the 

synthesized agents, Gd-L5 and Gd-L6. 
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8. Design, synthesis, and characterization of Ln-L7: In an attempt of 

improvement over Ln-L6 

8.1 Design of Ln-L7: As it was concluded in the Section 7.3, we planned to choose the linker 

similar to the one in Gd-L5 but with some minor modification to maintain the optimum 

flexibility observed in Ln-L5 and the stable system as in Ln-L6. The simplest modification 

would be to introduce one more carbon atom in between the oxygen and the aromatic ring; this 

should lead to a ‘break in the communication’ between the oxygen and the acetate arm. The 

structure of the agent in such a design would be the following:  

Scheme 18:  

N N

N N
O

O-

O O-

O

O-

O
N

O COO-

COO-Ln3+

Ln-L7

no further rearrangement possible

COO-

 

8.2 Results and Discussions 

8.2.1 Synthesis of Ln-L7 

Synthesis of the agent was started with the intermediate synthesized for the synthesis of L6. 

Compound 39 was alkylated with bromopropanol using sodium hydride as base to give 44. The 

alcohol group in 44 was brominated to obtain 45. This was used as an alkylating agent to 

alkylate, tris-tert-Bu-DO3A to give 46. This was subjected to nitro group reduction and benzyl 

group removal in an one step hydrogenation to yield 47. The ester hydrolysis was then carried 
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out on 47 to obtain 48. The alkylation on 45, with bromoacetic acid and sodium hydroxide as 

base gave the final ligand L7 which was finally loaded with LnCl3 to obtain Ln-L7 (Scheme 19). 

Scheme 19 
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Reagents and conditions: (i) Br(CH2)3OH/NaH/THF; 83% (ii) CBr4/PPh3/CH2Cl2; 82% (v) tris-tert-Bu-

DO3A/K2CO3/DMF; 50% (vi) H2/Pd-C/MeOH; 90% (vii) TFA/CH2Cl2; 53% (viii) 

BrCH2COOH/NaOH/H2O; 44% (ix) LnCl3 6H2O 

8.2.2 Physicochemical characterization 

(a) Stability 

Ln-L7 was also found to be stable toward hydrolysis of the acetate arm. This finding further 

supported the drawn hypothesis (Scheme 15) of oxygen induced electronic rearrangement.  
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(b) Relaxometric Ca2+ titration in buffer 

The relaxivity in the absence of Ca2+ was found to be 2.7 mM-1s-1 as compared to 3.6 mM-1s-1 for 

Gd-L5. As the hydration number of Gd-L5 in the absence of Ca2+ is nearly zero, a lower 

relaxivity observed for Gd-L7 might be due to the difference in the other parameters affecting 

relaxivity. It is interesting to note that a small difference in the linker connecting the 

paramagnetic moiety and the Ca2+ chelating moiety, can affect the arrangement of these two 

moieties in aqueous media. The different conformation of the two complexes in the Ca2+ free 

aqueous media would affect the relaxivity parameters differently.  

With the addition of Ca2+ the relaxivity increased by 157% to 7.0 mM-1s-1 which is ~ 60% higher 

than for Gd-L5. As the final relaxivity observed in both cases are the same, it can be concluded 

that in the Ca2+ saturation conditions, both complexes shared a similar conformation. The 

saturation however was observed at 2 equiv for Gd-L7 and 1 equiv for Gd-L5.  

The Ca2+ dependent change in the relaxivity for Gd-L7 were found to be almost linear as 

compared to the steep rise as in the case of Gd-L5. Considering the changes in Ca2+ 

concentration during normal brain activity i.e. 0.8-1.2 mM, the changes in r1 for this range was 

found to be 30%. The increase for each 0.4 equiv (corresponding to the net change from 0.8-1.2 

mM) Ca2+ addition was found to be constant (30%) over the broader range of 1 equiv. Such a 

trend could be an advantage from the in vivo perspectives, as the CA would respond to Ca2+ 

dynamics for a broader range of concentration ratio (CA:Ca2+) (Figure 39).  
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Figure 39: The Ca2+ dependent relaxivity response of Gd-L7 in KMOPS buffer. The black diamonds 

correspond to the stepwise increase in the r1 upon Ca2+ addition while the red square correspond to the 

relaxivity obtained with the addition of EDTA. The concentration of CA was varied from 1.03 mM to 

0.963 mM by the addition of Ca2+ solutions. 

The evaluation of the exact parameter affecting the relaxivity change with Ca2+ can only be 

determined with detailed physicochemical characterization as previously done with Ln2L1 and 

Ln2L2.  
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(c) Relaxometric Ca2+ titration in Mg2+ containing buffer 

 

Figure 40: The Ca2+ dependent relaxivity response of Gd-L7 in Mg2+ containing buffer. The 

concentration of CA was varied from 1.15 mM to 1.08 mM by the addition of Ca2+ solutions. 

The r1 response of the agent was checked in the buffer containing 0.52 equiv of Mg2+. The initial 

relaxivity of the agent was 3.8 mM-1s-1 which increased by 84% to 7.0 mM-1s-1. The saturation 

was observed at approx. 2 equiv of Ca2+ as in the buffer (Figure 40). 

(d) Relaxometric Ca2+ titration in ACSF 
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Figure 41: The Ca2+ dependent relaxivity response of Gd-L7 in ACSF. The concentration of CA was 

varied from 3.48 mM to 3.30 mM by the addition of Ca2+ solutions. 

The agent showed a better response in ACSF as well. In the absence of Ca2+, relaxivity was 3.3 

mM-1s-1. With the addition of Ca2+, r1 enhancement of 88% was observed. The observed 

maximum r1 was 6.2 mM-1s-1 at 2 equiv of Ca2+. 

(e) Relaxometric Ca2+ titration in AECM 

 

Figure 42: The Ca2+ dependent relaxivity response of Gd-L7 in AECM. The concentration of CA was 

varied from 2.90 mM to 2.73 mM with the addition of Ca2+ solutions. 

In AECM, ~100% r1 enhancement was observed with the addition of Ca2+. The saturation in the 

r1 increase with stepwise increase of Ca2+ was observed at ~ 2 equiv (Figure 42)  

8.3 Conclusions  

• As predicted by the hypothesis proposed for the instability of Ln-L5, Ln-L7 was found to 

be stable toward hydrolysis. 
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• The agent showed an enhanced r1 response of 157% to Ca2+ in buffer. The excellent 

sensitivity of the agent in the buffer was much better transferred to the physiological 

relevant media (~90-100%) (Figure 43). Considering the high sensitivity and the stability 

observed with the Ln-L7, the ideal structural design for such a small molecular weight 

Ca2+ sensitive contrast agent is established. 

 

 

Figure 43: Ca2+ dependent relaxivity response of Gd-L7 in all media is collectively shown. 

• The place of improvement on Gd-L7 could be aimed at further improving the 

transformation of the changes from buffer to physiological media.  

• The simple synthetic procedure required to synthesize these derivatives makes the 

designing of its structural analogues and the synthesis of the same comparatively easy. 

Different analogues differing in their binding affinity to Ca2+ can therefore be 

synthesized.  
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9. Design, synthesis, and characterization of Ln-L8 and Ln-L9: In an attempt 

of improvement over Ln-L7 

9.1 Design of Ln-L8: Considering the r1 changes observed for the Ln-L7 in the Mg2+ free buffer, 

in the Mg2+ containing buffer, ACSF and AECM, the further improvement can be aimed at 

modifying the Ca2+ chelating part of the agent to have a chelating system with a range of Ca2+ 

binding affinities and with a better rejection to Mg2+. A report published by Roger W. Tsien and 

coworkers discussed the modification of APTRA chelator to make it much more Ca2+ selective 

[144]. As reported, the best results were obtained by converting the acetate group on the phenolic 

oxygen to a morpholino amide group. A similar modification was planned next on Ln-L7 

resulting in Ln-L8 as in Scheme 20.  

Alternatively the phenolic acetate arm could be extended with the introduction of ether linker 

similar to in BAPTA (Scheme 21). 

Scheme 20: 
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Scheme 21:  
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9.2 Results and Discussion 

9.2.1 Synthesis of Ln-L8 

Synthesis of L8 was first attempted according to the Scheme 22. However an undesirable 

hydrolysis of the MEM group was observed while alkylating the benzyl alcohol in 50 with 

bromopropanol/NaH/THF. Scheme 23 was then formulated starting with the compound 46. The 

idea was to use the established scheme 15 and introduce the morpholino amide group at the 

phenolic oxygen followed by two more additional steps to the final ligand (Scheme 23). 

However, it was not possible to control the hydrogenation reaction to deprotect the benzyl 

protecting group in 46 keeping –NO2 group intact, as –NO2 group reduces much faster than the 

benzyl group. The deprotection of the benzyl group was then carried out under acidic conditions 

with simultaneous hydrolysis of tert-butyl esters to give 51. The morpholino precursor (52) was 

synthesized from bromoacetyl bromide and morpholine under dry ice conditions. Unfortunately, 

the alkylation of 51 at the phenolic oxygen with 52 could not be achieved, probably due to the 

insolubility of the substrate 51 in the polar aprotic solvents (e.g. THF, DMF). The reaction was 

also tried with tetra-butyl ammonium iodide as phase transfer catalyst (between CH2Cl2:H2O 

layers) but the desired product was not obtained. As an alternative Scheme 24 was then designed 

in order to achieve the deprotection of benzyl group without the hydrolysis of ester groups and 
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thus have better soluble substrates. This was done by using the macrocyclic precursor 53 with the 

acid stable ethyl ester groups. The alkylation of 53 with 45 was done in DMF and K2CO3 as base 

to obtain 54. The deprotection of benzyl group in 54 was performed under acidic conditions to 

get nitro phenol 55. The alkylation of the phenolic oxygen was then successfully carried out with 

52 using NaH as the base to obtain the desired product, 56. The –NO2 group in 56 was then 

reduced to –NH2 under H2 (1 atm) in a Parr apparatus using Pd-C catalyst to obtain aniline 57. 

The alkylation at the aromatic amine in 57 under basic conditions with simultaneous hydrolysis 

of ethyl ester groups was then planned as the last step to the final ligand (Scheme 24). However, 

under basic conditions the hydrolysis of the ethyl ester groups at the macrocyclic unit occurred 

with concomitant transamidation at the aromatic unit resulting in lactam 58 and the final desired 

ligand could not be obtained. The formation of 58 was confirmed by ESI-MS and the 1H, 13C 

NMR. To avoid the transmidation, Scheme 25 was then used in which the amino acetate units 

were introduced before the coupling of the aromatic unit to the macrocyclic moiety. 
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NO2
O

O NO2
OMEM

O NO2
OMEM

OHO

NO2
OMEM

OH

NO2
OMEM

OBr
N N

N N

t-BuOOC

COOt-Bu
COOt-Bu

O
NO2

OH

N N

N N

HOOC

COOH
COOH

O
NH2

O
O

N N

N N
O

O

O O

O

O

O
NH2

O
N

O

O
 

N N

N N

t-BuOOC

COOt-Bu
COOt-Bu

O
NO2

O
O

N
O

N

O

L8

49 50

(i, ii) (iii)

Ln-L8

tris-tert-Bu-DO3A

(iv)

N N

N N

HOOC

COOH
COOH

O
N

O
O

N

O

O OH
O

OH

Reagents and conditions: (i) BBr3/CH2Cl2 (ii) MEM-Cl/DIEA/CH2Cl2; 98% (iii) NaBH4/MeOH; 79% 

(iv) Br(CH2)3OH/NaH/THF 

 

 

 

 

 



Chapter 6 
 

114 
 

Scheme 23 
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Scheme 24 
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Scheme 25:  
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54% (iii) CBr4/PPh3/CH2Cl2; 88% (iv) tris-tert-Bu-DO3A/K2CO3/DMF; 55% (v) H2/Pd(OH)2/EtOH; 95% 
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Compound 44 synthesized according to Scheme 19 was used as the starting substrate to obtain 

59. The aromatic 1° amine was refluxed with tert-butyl bromoacetate in presence of proton 

sponge in MeCN conditions for five days to obtain alkylated amine 60. The 1° alcohol group in 

60 was brominated with CBr4/PPh3 to 61. Tris-tert-Bu-DO3A was then alkylated with bromide 
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61 to obtain the macrocyclic 62. The benzyl group deprotection was then carried out on 62 using 

Pd(OH)2/EtOH under H2 (3 atm) for five hours. The phenol 63 obtained was then finally 

alkylated with 52 using NaH/THF to yield 64. The hydrolysis of the tert-butylester groups in 64 

with TFA yielded the ligand L8, which was purified by RP-HPLC using method C.  

9.2.2 Physicochemical characterization 

(a) Stability 

No side products were formed during loading of Gd3+ to the solution of L8 and the desired 

complex Gd-L8 was obtained in quantitative yields. The Gd-L8 was thus found to be very stable 

toward hydrolysis of the acetate arm.  

(b) Relaxometric Ca2+ titration in buffer 

 

Figure 44: The Ca2+ dependent relaxivity response of Gd-L8 in KMOPS buffer. The concentration of CA 

was varied from 1.23 mM to 1.15 mM by the addition of Ca2+ solutions. The black diamonds corresponds 

to the stepwise increase in the r1 by the Ca2+ addition while the red square corresponds to the relaxivity 

obtained by the addition of EDTA  
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The initial relaxivity observed was 2.9 mM-1s-1 which is a bit higher than what was observed for 

Gd-L7 (2.5 mM-1s-1). The increase in r1 with stepwise addition of Ca2+ was also observed. The 

response however was found to be different than the previous monomacrocyclic complexes. A 

comparatively slow increase of relaxivity was observed upon addition of Ca2+. The maximum 

relaxivity of 6.0 mM-1s-1 was attained at  ~ 3 equiv of Ca2+, which is a ~100% enhancement The 

trend of Ca2+  titration curve (Figure 44) shows that the complex has different stoichiometry and 

probably the different Ca2+ binding affinity as compared to Gd-L5 and Gd-L7. The slow and 

decreased response could be because of the morpholino arm being comparatively rigid to flip 

away from paramagnetic centre to Ca2+. 

(c) Relaxometric Ca2+ titration in Mg2+ containing buffer 

 

Figure 45: The Ca2+ dependent relaxivity response of Gd-L8 in Mg2+ containing buffer. The 

concentration of CA was varied from 1.17 mM to 1.12 mM with the addition of Ca2+ solutions. 

The initial relaxivity for Gd-L8 in Mg2+ containing (0.44 equiv) buffer was 2.9 mM-1s-1 which is 

the same as the initial relaxivity observed in buffer. This shows that the added equiv of Mg2+ in 

the buffer has no effect on the relaxivity of Gd-L8. In other words, the agent is insensitive till 0.4 
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equiv of Mg2+. The agent however showed 31% relaxivity enhancement with ~ 0.4 equiv of Ca2 

(Figure 45). With the further addition of Ca2+ to the Mg2+ containing CA solution, the relaxivity 

increased to 5.3 mM-1s-1 (78% ) at 3 equiv and to 5.5 mM-1s-1 (85%) at 4 equiv. This shows that 

the Gd-L8 has much better Mg2+ rejection/Ca2+ selectivity as compared to the agents studied 

before.  

(d) Relaxometric Ca2+ titration in ACSF 

 

Figure 46: The Ca2+ dependent relaxivity response of Gd-L8 in ACSF. The concentration of CA was 

varied from 3.7 mM to 3.6 mM by the addition of Ca2+ solutions. 

The initial relaxivity in ACSF was observed to be almost the same as was found in Mg2+ free 

buffer and 0.4 equiv Mg2+ containing buffer. It is important to note that the ACSF solution used 

for the titration also contains HCO3
-; no change in the initial relaxivity of the agent in ACSF 

compared to the buffer shows the inertness of the agent toward bicarbonate anions also. The 

maximum of 72% r1 enhancement was observed with saturation at 3 equiv of Ca2+ (Figure 46). 
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(e) Relaxometric Ca2+ titration in AECM 

 

Figure 47: The Ca2+ dependent relaxivity response of Gd-L8 in ACSF. The concentration of CA was 

varied from 3.8 mM to 3.7 mM with the addition of Ca2+ solutions. 

A very similar response was also observed in AECM. The overall enhancement of 50% was 

observed (Figure 47) 

 

 

Figure 48: The Ca2+ titration curve for Gd-L8 tested in all media is collectively shown. 
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The comparison of the Ca2+ dependent relaxivity response of Gd-L8 is shown in Figure 65. The 

initial relaxivity of the agent in buffer, Mg2+ containing buffer, ACSF and AECM is observed to 

be the same. Furthermore the response of the agent till 1 equiv of the Ca2+ is also almost the 

same from simple buffer solution to the complex physiological relevant medium. The Ca2+ 

selective property is thereby improved with Gd-L8. 

9.3 Synthesis of Ln-L9 

The synthesis of Ln-L9 was done according to Scheme 26. Compound 65 was prepared by Rh(II) 

catalyzed O-alkylation of bromoethanol with ethyldiazoacetate [145]. This was used to do 

alkylation of 58 to obtain 66. However the addition of water to quench the reaction basified the 

medium, due to which the ethylester group in the product formed 66 got partially hydrolyzed. 

The purification of the product 63 and its acid counterpart was difficult resulting in the loss of 

yield. The mixture of products obtained after the reaction was then treated with HBr/AcOH 

under cooling conditions for 4 h resulting in the formation of the final ligand L9 which was 

purified by RP-HPLC using method C. The loading of the ligand was finally done with LnCl3 

6H2O solution.  
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9.4 Initial results:  

 

Figure 49: The Ca2+ dependent relaxivity response of Gd-L9 in KMOPS buffer. The concentration of CA 

was varied from 1.12 mM to 0.99 mM with the addition of Ca2+ solutions. The black diamonds points 
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corresponds to the stepwise increase in the r1 by the Ca2+ addition while the red square correspond to the 

relaxivity obtained by the addition of EDTA  

The preliminary Ca2+ dependent relaxivity analysis of Gd-L9 in buffer showed 168% r1 

enhancement with the Ca2+ addition. The saturation observed at ~ 2 equiv was 5.9 mM-1s-1. The 

Ca2+ relaxivity curve (Figure 49) was found to be similar to Gd-L7, showing that unlike Gd-L8 

the flipping of chelating arms in Gd-L9 at the aromatic units are enough flexible. This agent 

similar to other analogues synthesized, found to be coordinating reversibly with Ca2+, as 

observed by restoration of relaxivity on addition of EDTA. The Ca2+ selectivity study of the 

agent in the Mg2+ containing buffer and other physiological media is under progress.  

9.5 Comparative analysis and Conclusions (Chapter 6) 
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Figure 50: A histogram showing the Ca2+ dependent relaxivity response of Gd-L5-9 in buffer 

In total 9 potential Ca2+ sensitive SCAs have been synthesized. Compared to the synthesis of 

bismacrocycles, the monocyclic CAs were relatively easy to synthesize. The structural 

modification was also found to be easy to plan and execute. A series of five monomacrocyclic 
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Ca2+ sensitive SCAs (Ln-L5-9) were synthesized. The first agent of the series Ln-L5 showed 

good sensitivity (100%) and selectivity to Ca2+. It was also shown that the change in relaxivity 

was because of the change in the hydration number of the complex from 0 in absence of Ca2+ to 

1 in the presence of Ca2+ [146]. The instability observed in case of Ln-L5 urged us to investigate 

in detail and propose some antidotes. This lead to the synthesis of the stable complex, Ln-L6. 

The stability observed in the case of Ln-L6 proved the hypothesis proposed for instability of Ln-

L5. The structural changes incorporated in Ln-L5 to synthesize Ln-L6, however made the system 

nonresponsive to Ca2+. We then incorporated minor modifications in the structure of Ln-L5, to 

not disturb the Ca2+ responsive property of the system but at the same time eliminate the cause of 

instability. Ln-L7 was designed by introduction of small structural modification to Ln-L5. The 

complex, Ln-L7 was found to be not only stable but also showed an enhanced relaxivity response 

to Ca2+ in buffer (157%) as well as in physiological media (90-95%). Taking the stable system of 

Ln-L7 as the lead compound we carried out some modifications in the Ca2+ chelating part of the 

structure. Two types of modifications were done: 1) introduction of the morpholino amide 

moiety at the phenolic oxygen and 2) extension of the phenolic acetate arm with the introduction 

of the ether linker. The first modification leads to the synthesis of Ln-L8. This system was found 

to be much more selective to Ca2+ as compared to others. The increase in relaxivity with the Ca2+ 

(100%) was however at a slower rate, saturating at 3 equiv as compared to 1 equiv in Ln-L5 and 

2 equiv in Ln-L7. This could be because of the morpholino arm being not so flexible to flip from 

paramagnetic centre to Ca2+. The second described modification lead to the synthesis of Ln-L9. 

The initial Ca2+ dependent relaxometric titration curve showed that the Ca2+ responsive property 

of the agent is even better than Ln-L7 (168%), also signifying the flexibility of the chelating 

arms. The observed stoichiometry of 2 was also similar to Ln-L7. The Ca2+ selectivity study of 
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this agent however is under progress. The Ca2+ dependent relaxivity response of all the agents 

synthesized in this series is shown in the Figure 50. A detailed physicochemical characterization 

of these agents is required to assess the parameters mainly affecting the relaxivity change with 

the Ca2+.  
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CHAPTER 7 

10. Development of Biocytin based Anatomical Markers 

10.1 Introduction 

It is believed that the cognitive ability of the human brain involves the synchronous activity of 

the different regions of the cerebral cortex [93]. For a detailed understanding of the brain 

function it is important to understand the organization of the neuronal circuit connecting 

different regions. To chart the anatomical connections between various components of neural 

network, the neuronal tract tracing technique has been proved to be very useful. The history of 

neural tracing date back to 19th century when Golgi and Cajal through their pioneer work 

demonstrated the network of neurons by silver impregnation of individual neurons. Another 

milestone in the neuroanatomy research came up with the discovery of the plant enzyme horse 

radish peroxidase (HRP) [147, 148]. The HRP is readily taken up by axons and transported to 

cell somata (retrograde axonal transport) which allowed tracing neural networks till long 

distances. A large number of markers have been developed since then, based on their mode of 

transport i.e. anterograde or retrograde. The anterograde transport involves uptake via cell 

somata and/or its dendrites and transport to cell synaptic terminal along the axonal microtubular 

system. In the retrograde transport, the tracer is taken up by axons by endocytosis and is 

transported back to the cell body [149]. Biotinylated dextran amine, neurobiotin, biocytin, plant 

lectins and bacterial toxins etc are some of the examples of neural tracer widely used in 

neuroanatomy research employing neurohistochemical techniques [149].  
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Another approach of studying the neuronal connectivity is manganese enhanced MRI (MEMRI) 

[150-153]. Two properties of Mn2+ makes it an important neuronal tracer. First is that Mn2+ is a 

paramagnetic metal ion which makes it a potential contrast agent and second is, the transport of 

Mn2+ along neuronal pathway is in anterograde mode. The tracing of neuronal projections is 

thereby achieved with a plus of contrast enhancement in MRI [154]. The potential of Mn2+ to 

give detailed cytoarchitecture of the brain has also been studied. [155, 156]. The major drawback 

of Mn2+ is its cytotoxicity. Mn2+ acts as the biological analogue of Ca2+ due to which it can 

internalize in to the excitable cells via the transport mechanism of Ca2+. It can thus accumulate in 

the activated brain regions following the neuronal activation. As it is known that the chronic 

exposure to Mn2+ leads to the neurological disorders, use of Mn2+ as a tracer for in vivo studies 

could be challenged. 

In light of these considerations we aimed at the development of the nontoxic, efficient and 

multimodal neuronal tracer that can allow the investigation of neuronal networks by tract tracing 

using MRI and the postmortem microscopic investigations in the same experimental animal. 

10.2 Design of the agents 

For the designing of desired agents we chose biocytin as the model compound. Biocytin is a 

naturally occurring conjugate of biotin (Vitamin H) and lysine and acts as the intermediary in 

biotin metabolism. Biocytin is a well known neuronal tract tracer and has been used extensively 

to visualize neuronal morphologies and axonal projections by both light and electron 

microscopic methods. Due to the high affinity of biotin for avidin, the tract tracing of biocytin 

can be easily visualized by using avidin conjugated with fluorochrome (e.g. Lucifer yellow) or 

chromogenic enzymes (e.g. Horse radish peroxidase, HRP) [157, 158]. HRP produces permanent 
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and opaque images after reaction with a chromogenic substrate (e.g. diaminobenzidine) and thus 

can be visualized by light and electron microscopic method [158].  

Structurally, biocytin consist of D-biotin and L-lysine connected via an amide bond. This amide 

bond is susceptible to cleavage by biotinidase enzyme. Biotinidase is the enzyme mainly 

responsible for recycling of the vitamin biotin by cleaving biocytin and biotinyl peptides [159-

161]. Biotinidase plays an important role in the brain function [162, 163]. A deficiency in the 

biotinidase enzyme has been linked to several neurological disorders [164-166]. The action of 

biotinidase may thus be responsible for short half life of the neural tracer biocytin in vivo. The 

designing of the agents were therefore done keeping the susceptibility of cleavage by biotinidase 

in to the account. To have neural tracers with enhanced stability, the amide linkage connecting 

biotin and lysine was modified. Wilbur and coworkers [167-170] have reported several such 

modifications which make a biotin containing construct stable to the biotinidase. This involves 

modification of the amide linkage by either introduction of a substituent α to the amide bond or 

the substitution directly at the amidic –NH. Similar strategy has been used by Paganelli and 

coworkers where they reduced the biotinamide bond to simple amine and thus achieved the 

biotinidase stability [171]. The stability of the system was also tested in vivo in humans by 

nuclear imaging [172]. 

For in vivo stability we introduced a carboxylic unit in α position to the amide bond and for MR 

detection, Gd-loaded macrocyclic building block was also introduced. A novel DO3A 

macrocyclic precursor was synthesized bearing an amine group for conjugation to biotin and α 

carboxyl unit for the enzyme stabilization (Scheme 27). The α carboxyl unit would be utilized to 

link to lysine, leaving an amide substituent α to the biotin amide bond. 

 



Chapter 7 
 

130 
 

 

 

Scheme 27 
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The final structure of the CA according to the above explained construct would be the following: 
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The potential of this agent as the neural tracer would be tested by MRI and postmortem 

microscopic techniques. However to understand the effect of such a linkage between biotin and 

lysine, the molecule without the macrocyclic unit but bearing the same linkage type was 

synthesized (Scheme 29). The purpose of synthesizing this derivative was to check the stability 

of this agent under in vivo conditions as compared to the conventional biocytin.  
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Scheme 29 
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10.3 Results and discussion 

10.3.1 Synthesis of the CAs 

Synthesis of L10 was carried out according to the Scheme 30. The primary alcoholic group in L-

serine methyl ester was protected with TBDMS group to give 67. The hydrolysis of methylester 

in 67 was carried out with LiOH as base to obtain acid 68. The lysine precursor was synthesized 

from Boc-Lys-(Z)-OH by first esterifying the acid group with DCC/MeOH to get 69 and then 

removing the Cbz protecting group to get amine 70 [145]. The amine 70 was coupled to the acid 

68 via amide bond using EDC/HOBt/NMM as the coupling reagents to obtain the product 71. 

The TBDMS group in 71 was then removed with TBAF to get the alcohol 72. The primary 

alcohol group was then reprotected with iso-butyl chloroformate to give 73. The CBz group in 73 

was removed using Pd-C as the catalyst and 3 atm H2 pressure in a Parr apparatus to obtain the 

amine 74. The acid group in the biotin was then coupled to the amine 74 via amide bond to give 

75. The methylester in 75 was then hydrolysed under basic conditions followed by TFA 

treatment to remove Boc group and the iso-butyl carbonate group to give the final product L10.  



Chapter 7 
 

132 
 

The deprotection of TBDMS group in 71 and then reprotection by iso-Butyl chloroformate to get 

73 was carried out because removal of TBDMS at the last stage with TBAF gives the product 

with some impurities from TBAF reagent. The impurities and the final product both being 

soluble in water, the purification of the product was difficult. To avoid the extra protection and 

deprotection step, we started with protection of the alcohol group on L-serine methyl ester with 

iso-butyl chloroformate. However, in the next step the hydrolysis of methyl ester with LiOH 

removed the iso-butyl carbonate group because of its instability to the acid formed after 

hydrolysis of ester in the molecule. The synthesis was finally performed successfully according 

to the Scheme 30. 
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Scheme 30 
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Reagents and conditions: (i) TBDMS-Cl/imidazole/DMF; 92% (ii) LiOH/THF:MeOH:H2O (3:2:2) (iii) 

MeOH/DCC/CH2Cl2; 95% (iv) H2/Pd-C/MeOH; quant. (v) EDC/NMM/HOBt/DMF; 40% (vi) 

TBAF/THF; 80% (vii) i-Bu-chloroformate/Pyridine/CH2Cl2; 60% (viii) H2/Pd-C/MeOH; quant (ix) 

HATU/DIPEA/DMF (x) LiOH/MeOH:THF:H2O (3:2:2) (xi) TFA/CH2Cl2; 25%  

 

For the synthesis of Gd-L11, Scheme 31 was formulated. N-carbobenzyloxy-L-serine methyl 

ester was brominated with CBr4 and PPh3 to 76. The bromination reaction was run for not more 

than 30 min else the brominated product undergoes elimination yielding the allyl analogue of the 

product. The crude product obtained after extraction with water was immediately flash 

chromatographed to obtain the product. The alkylation reaction of 76 with macrocyclic was first 

carried out with trsi-tert-Bu-DO3A under basic conditions with no product formation. The 

alkylation was thus performed on cyclen without added base yielding the monosubstituted 

product 77. The formation of product was confirmed by ESI-MS, however due to high polarity 

of the product and reactant no purification was performed to separate the product 77 from excess 

of cyclen. The crude product obtained was subjected to further alkylation by tert-butyl 

bromoacetate. The purification was then performed to get the product 78 with small amount of 

tetra-tert-Bu-DOTA. The methylester group in 78 was hydrolyzed with LiOH to obtain the 

product 79. The execution of the rest part of the scheme to get the final ligand Gd-L11 is under 

progress.  
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10.3.2 Investigations of L10 as the neural tracer 

In order to investigate the uptake and transport ability of the tracer and thereby its comparison 

with normal biocytin, a series of experiments were carried out. In vivo injections of the 

commercially available biocytin and the synthesized L10 derivative in the rat brain were 

performed. Iontophoretic injections were done bilaterally to the primary mortor cortex (right and 

left hemisphere) of rats. Perfusions were then carried out after the survival time of 24 h and 96 h. 

The uptake and transport of the tracer in the neurons was examined by histochemical treatment 

of the brain slices (The details of injections, perfusion and histochemical procedures are given in 

the Section D).  

The tracer L10 showed an efficient neuronal uptake and transport as well. The histochemically 

processed brain slices are shown in Figures 51-54. Figure 51 shows the neuronal uptake of the 

tracers after 24 h of injection. The region shown is the injection site. On the left is the 

synthesized tracer L10 while on right is the conventional biocytin.  

 

    (a)    (b) 

Figure 51: Injection site after 24 h survival time (a) L10 (b) Biocytin 
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The figure showed that the amount of L10 retained in the injection site is higher than the biocytin. 

The instability of biocytin to the endogeneous biotinidase enzyme activity degrades it rapidly, 

while the high retention of L10 indicates that it is resistant to the cleavage action of the enzyme. 

The stability of the synthesized derivative L10 is also clearly visible in the Figure 52 where the 

injection site after 96 h of survival time is shown. The biocytin was almost completely washed 

out (Figure 52b) while staining from L10 was clearly visible (Figure 52a).  

 

    (a)    (b) 

Figure 52: Injection site after 96 h survival time (a) L10 (b) Biocytin  

Beside the high stability, the tracer L10 also showed an efficient transport, most probably via 

both modes: retrograde and anterograde. Figure 53a showed the patch of stained cells and fibres 

located 4 mm latero-posteriorly to the injection site while the Figure 53b showed the stained 

axonal bundles running through the striatum.  
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    (a)    (b) 

Figure 53: (a) Stained cells and fibres at 4 mm from injection site (b) Axonal bundles running through 

striatum 

Axonal ramification and some cell bodies in the thalamus were also got traced by the tracer L10 

(Figure 54a). Figure 54b showed that the fibres in gray matter of the contralateral hemisphere got 

traced as well.  

 

Figure 54: (a) Axonal ramification (b) Fibres in gray matter of contralateral hemishere 
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10.4 Conclusions 

With our interest of tracing the neuronal networks in the brain with MRI and postmortem 

microscopic techniques in the same experimental animal, we proposed Gd-L11 as the potential 

agent. The agent was designed to be MR detectable and at the same time be able to transported 

anterogradely and/or retrogradely in the neurons. The structure of Gd-L11 would allow us to 

assess its uptake and transport ability by commonly used histochemical procedures. The linking 

of biotin and lysine moieties in Gd-L11 was done in a way to be resistant to cleavage by the 

action of biotinidase enzyme present in the brain. The complete synthesis of the Gd-L11 is under 

progress, we meanwhile investigated the effect of the linkage connecting biotin and lysine in 

Gd-L11 inducing the stability of the whole construct against biotinidase. For this purpose L10.was 

proposed consisting of the similar linkage but without the macrocyclic unit. The in vivo 

experiments performed on the synthesized derivative (L10) of biocytin proved that it is indeed a 

more stable derivative. The cells at the injection site were found to be retained with L10 even 

after 4 days of injection while biocytin appeared to be nearly washed out. The staining of the 

cells was also obtained in the thalamus, striatum, and the gray matter of the contralateral 

hemisphere, which demonstrated that it is efficiently transported along the neurons.  

The structural modification done on biocytin to obtain L10 is the similar in Gd-L11 therefore Gd-

L11 is also expected to show similar behavior. The neuronal tract tracing by such a MR 

detectable tracer would help us to understand in detail the neuronal networks in the brain.  

The synthesis of Gd-L11 and the assessment of its tracing abilities by MRI followed by 

histochemical examinations is under progress.  
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11. Development of Biotin based Targeted Markers 

11.1 Introduction 

The macrocyclic precursor 78 synthesized to obtain the neural tracer Gd-L11 was explored for its 

other possible applications [173]. This precursor consists of a carboxylic acid as the methyl ester 

and a primary amine protected as carbamate. These groups can be deprotected selectively and 

coupled to two different agents yielding bifunctional CA. The agents could be any functional 

organic molecule having an ability to seek and target some biological factor. The target can be 

any receptor such as folate receptor or vascular endothelial growth factor receptors (which are 

overexpressing in the tumors) or any enzyme such as β-galactocidase (which is used as marker 

gene for gene expression). The presence of a Gd loaded moiety would also allow the 

visualization of these molecular targets by MR. 

The visualization of molecular targets by MR however can be limited by the low sensitivity of 

this imaging modality and the other biological constraints such as less accessibility and lower 

number of receptors. This limitation can be overcome either by using the CA having high 

relaxivity or by allowing high payload of the CA per target molecule or by using mAb to 

selectively accumulate CA to the target. To increase relaxivity, a larger complex such as 

dendrimer particles and liposomes with multiple sites for CA coupling are used. The huge size 

(300-350 nm) of such constructs however restricts their delivery and diffusion in tissue. The 

direct coupling of a low molecular weight CA to mAb is also not advantageous because only a 
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limited number of functional groups are usually available for coupling to monolclonal antibody 

(mAb).  

The multistep targeting using biotin/avidin amplification strategy has been proved to be very 

efficient. This technique was introduced more than a decade ago and has been used widely in 

nuclear medicine. The approach is primarily based on the very high affinity of biotin to the 

tetrameric avidin (Ka ~ 1x1015 M-1) [174] while the selectivity to the target is achieved by using 

mAb. In a typical multi step targeting approach, a biotinylated mAb is used as the first injectale 

followed by introduction of avidin. The radioloabeled biotin is injected at the last stage. The 

multistep approach allows washing out of unspecifically bound mAb before the radioactive 

probe is injected, thereby minimizing the exposure of radioactivity to normal organs. The use of 

similar system for MRI was reported by Bhujwalla and coworkers (2003), where Her-2/neu 

receptors overexpressing in breast tumor were targeted. Gd-DTPA conjugated with avidin was 

used as the MR detectable moiety in the multistep targeting approach [175]. The contrast 

enhancement was observed to be rapidly decreased to baseline at the early time points. Further 

reports in the same year came up with demonstrating the use of nanoparticle as the MR active 

moiety in targeting αvβ3 integrin [176] and Her-2/neu receptors [177]. The large size of 

nanoparticles however limits the extravasations of CA in to the solid tumor interstitium. Recently 

Bhujwalla and coworkers reported PAMAM dendrimer based CA for targeting Her-2/neu 

receptors, however the agent did not show any binding and thus no contrast enhancement was 

observed [178].  

11.2 Design of the contrast agents  

In the light of above discussed examples from the literature, the intermediate 78 was explored for 

its possible applications in targeting specific receptor type, cell type or protein. Considering the 
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low sensitivity problems of MR, we chose to exploit the amplification strategy of biotin/avidin 

system and conjugate 78 with biotin. The coupling of 78 with biotin would yield a low molecular 

weight chelator system which should not suffer with problems associated with large size of 

nanoparticles or PAMAM dendrimers. Furthermore, as discussed in the Section 10.2, the 

presence of α carboxylate substituent to the biotinamide bond would make the molecule resistant 

to cleavage action of biotinidase enzyme. This characteristic might ensure the longer half life of 

the agent and thus would not suffer with fast wash out problems. The thermodynamically more 

stable macrocyclic chelate (i.e. Gd-DO3A as compared to Gd-DTPA) would also be beneficial 

regarding their stability toward release of Gd3+ from the chelate in vivo. The final structure of the 

agent with biotin conjugated to the intermediate 78 would be following  

Scheme 32 
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We also designed another derivative bearing all the discussed characteristic of Gd-L12 but 

differing in the flexibility of the linker connecting biotin to the macrocyclic moiety. The 

biotinidase stability was introduced by substituting the amidic –NH with methyl group. This 

modification has also been reported to be stable to biotinidase cleaving action [168]. The 

structure of the molecule is shown in Scheme 33. 
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11.3 Results and discussion 

11.3.1 Synthesis 

The complex Gd-L12 was synthesized from the intermediate 79 which was subjected to Pd-C 

cataluzed hydrogenation to obtain 80. The precursor 80 was then coupled to D-Biotin by 

EDC/HOBt supported amidation. The global deprotection of 81 and purification by RP-HPLC 

yielded the ligand L12 in moderate yield. This ligand was then complexed with Gd3+ in water, to 

give the final contrast agent, Gd-L12. 

The complex, Gd-L13 was synthesized in six steps (Scheme 35). The secondary amine group in 

N-methyl bromopropanol was protected as carbamate using carbobenzyloxy chloride to give 82. 

The alcohol group in 82 was brominated to 83. This was then used to alkylate tris-tert-butyl-

DO3A to yield 84. Removal of N-carbobenzyloxy group by Pd-C catalysed hydrogenation gave 
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85, the global deprotection of which gave L13. The final ligand, L13 was purified by RP-HPLC 

and then complexed with Gd3+ to give the final contrast agent, Gd-L13. 

Scheme 34 

N N

N N

NH

OO

O

O

(H3C)3COOC

(H3C)3COOC

(H3C)3COOC

N N

N N

NH

OO

(H3C)3COOC

(H3C)3COOC

(H3C)3COOC O

S

NHHN

O

N N

N N

NH

OHO

HOOC

HOOC

HOOC O

S

NHHN

O
79

N N

N N

NH2

OO

(H3C)3COOC

(H3C)3COOC

(H3C)3COOC

80

(i)

(ii)

(iii), (iv)

L12

Gd-L12

81

 

Reagents and conditions: (i) H2/Pd-C/MeOH; 85% (ii) Biotin/EDC/HOBt/NMM/DMF (iii) 

LiOH/MeOH:THF:H2O (3:2:2) (iv) TFA/CH2Cl2; 40% (v) GdCl3
.6H2O 

 

 

 

 

 

 



Chapter 8 
 

146 
 

Scheme 35 
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Reagents and conditions: (i) CBz-Cl/KOH/dioxane:H2O; 82% (ii) CBr4/PPh3/CH2Cl2; 80% (iii) 

K2CO3/MeCN; 55% (iv) H2/ Pd-C/MeOH; quant. (v) Biotin/PyBrop/DIEA/CH2Cl2 (vi) TFA (neat); 50% 

(vii) GdCl3
.6H2O 

11.3.2 In vitro relaxivity measurement with Avidin 

The in vitro relaxivity measurement on Gd-L12 and Gd-L13 was performed on 16.4 T, 9 T, 7 T, 3 

T, and 1.5 T animal MR scanners. The T1/T2 values of the CAs solutions were measured in 
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absence and in presence of avidin and the % of increase/decrease were measured from the initial 

value to the value corresponding to the saturation. For comparison of different systems % was 

calculated considering the measured initial value and the value at the ratio of 0.3 equiv 

(avidin/CA).  

 

 

Figure 55: The changes in r1/r2 of Gd-L12 by the addition of avidin. 
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the saturation state was ~ 2.8 mM-1s-1, which is a 45% decrease. The saturation was observed at 

the ratio 0.3 (avidin:CA), which corresponds to approximately four molecule of CA to one 

molecule of avidin. This is in agreement with the tetrameric nature of avidin binding to four 

molecules of biotin. This shows that the CA has a good fit to the binding sites without much of 

steric hindrance imposed. However, a decrease is in contrary to a usual increase observed for 

such a low molecular weight complex when they bind to a big macromolecule e.g. protein 

avidin. The transverse relaxivity (r2) of Gd-L12 at 7 T in absence of avidin was 7.7 mM-1s-1. The 

r2, unlike r1 showed a usual increasing trend till ~ 82 mM-1s-1. This corresponds to a marked 

increase of 970%.  

An increasing behaviour of r1 with binding to a big macromolecule has been described in the 

literature as the receptor induced magnetisation enhancement (RIME) [179]. The binding to the 

macromolecules decreases the molecular rotation of the complex, resulting in an increase in r1 

through the rotational correlation time. The same is applicable to r2 as well, however the 

parameters affect r2 and r1 differently. The effect on r2 due to slow down of rotational correlation 

has been explained by Caravan and co-workers [180]. In that report different Ln3+analogues of 

the agent were prepared and number of experiments was performed based on the properties of 

Ln3+ used. The rotational correlation and water-exchange rate was determined and the relation of 

these to the relaxivity enhancement was proposed. It was concluded that the increase in r2 is 

mainly due to decreased rotational correlation time which alters the water exchange rate at the 

metal ion.  

A large increase in r2 observed for Gd-L12 at 7 T did verify this finding. However, the decrease 

in r1 at the same time was not explainable. The literature reported increasing trend of r1 was 

reported at low magnetic fields (0.5 T), we therefore measured the same tubes at different 
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magnetic fields. An interesting decreasing to increasing trend was observed from high magnetic 

field (16.4 T) to low magnetic field (1.5 T). At 16.4 T, a decrease of 93% was observed in r1 

which reduced to 47% decrease at 9.4 T. This trend was continued at 7 T with 45% decrease. 
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Figure 56: % change in r1/r2 at different magnetic field.  

However lowering the magnetic field further inverted the trend, with an increase of 82% at 3T 

and 267% at 1.5 T (Figure 56b). The r2 however showed an increasing trend at all magnetic 

fields with the % change ~ 1000% at all magnetic field. The pattern of the increase/decrease at 
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different magnetic fields is shown in the Figure 55. Where the final value at 0.3 equiv was taken 

and % was calculated according to the initial value obtained. The Figure 56 shows the relaxivity 

response at all ratios of avidin/CA with varying magnetic fields.  

At lower magnetic field of 1.5 T, r1 and r2 both showed an increasing trend with r1 increasing to 

266% while r2 increasing to 980%. This behaviour could be an advantage because a single agent 

has the potential to act as the T1 agent (with positive contrast) and T2 agent (with negative 

contrast) at a magnetic field which is most widely used at the clinics.  

The behaviour of Gd-L13 was also investigated at different magnetic fields. A similar decreasing 

to increasing trend was observed from higher magnetic field to lower magnetic field. The % 

decrease at 16.4 T was however much more than with Gd-L12. A decrease of 343% was 

observed at 16.4 T which reduced to 155% at 9.4 T and 7T and a minimal decrease of 23% at 3T. 

Further reduction of magnetic field inverted the decreasing trend to increasing one, with 41% 

increase. The pattern of the increase/decrease at different magnetic fields is shown in the Figure 

57.  
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Figure 57: % change in r1 for Gd-L13 at different magnetic fields 
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The response of r2 was however could not be checked at all magnetic fields and is under 

progress. The measurement done at 7 T is shown in the Figure 58. 

 

 

Figure 58: The change in r1/r2 of Gd-L13 by the addition of avidin 
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be possible with a longer and flexible linker as in the case of Gd-L13. The Gd-L12 on the other 

hand has a short linker and thus the internal motion around the metal ion would be restricted due 

to the closeness to avidin. Thus, it could be concluded that the stereochemical requirement of the 

binding of Gd-L12 and avidin is well matched resulting in the conformation of the final complex 

with slow rotational correlation time and optimum water exchange rate.  

11.4 Conclusions 

Two CAs were synthesized and characterized. The designing of CAs was done keeping their in 

vivo applicability in mind. A thermodynamically stable Gd-DO3A unit was used as the MR 

detectable moiety as compared to less stable Gd-DTPA. The biotinidase stable construct was 

designed and synthesized to avoid the problems of rapid wash out of the agents in vivo. Also, the 

low molecular weight of the complexes should not limit their extravasations into solid tumors as 

has been seen with nanoparticle constructs. 

The two molecules synthesized showed a different relaxivity response with the addition of 

avidin. Gd-L12 showed a marked increase in r2 on binding to avidin. In contrast to high magnetic 

field, both r2 and r1 at lower magnetic field of 1.5 T showed an increasing trend, with 266% 

increase in r1 and 986% in r2. An increase in both r1 and r2 on conjugation with avidin could be 

very useful as the single agent could work as T1 and T2 agent, showing positive contrast when 

the image is T1 weighted while a negative contrast in T2 weighted images. Gd-L12 is thus a 

potential agent to be used to target any biological factor (protein, receptor etc) using mAb against 

it and well established multistep targeting approach.  

Gd-L13 showed an increase of 212% at 7 T as compared to 970% in the case of Gd-L12. The less 

marked increase in this case could be explained on the basis of two complxes differing in the 

conformation of the final construct after conjugating with avidin. Gd-L13 has a long and flexible 
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linker which allows fast internal motion around metal ion. This offset the expected increase in 

relaxivity with slowing down of correlation time in macromolecular conjugate. Thus, the linkers’ 

length and the flexibility has a crucial role in determing the relaxivity of the macromolecule:CA 

conjugate.  
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12. Summary, Conclusions, and Future Directions 

The main goal of the projects for this thesis work was to develop probes which can trace the 

functional activity and the anatomical connectivity in the brain by MRI.  

Currently, fMRI techniques are widely used to study the functional activity in the brain. 

However these techniques are based on hemodynamic responces to report the neural activity and 

therefore regarded as the indirect method of reporting brain activation. Also, because of the 

hemodynamic delay these methods are not able to report the temporal aspect of neural activity 

precisely. To have a nonhemodynamic and a direct method of reporting brain activation, Ca2+ 

was chosen as the target which is believed to be involved in early synaptic events such as vesicle 

fusion and chemical release in the synapse. Thus, we aimed at the development of Ca2+ sensitive 

MR detectable markers (also known as smart contrast agents) which would potentially reveal the 

functional activity in the brain in detail. The markers were designed to be capable of sensing the 

Ca2+ in extracellular space where its concentration is ~ 1-2 mM.  

The first part of this project dealt with the synthesis and characterization of BAPTA based 

bismacrocyclic agents. Two units of Gd-DO3A were coupled symmetrically to BAPTA via 

amide bonds leaving two carboxylate and two amide units for Ca2+ chelation. Such modification 

was planned to decrease the strong affinity of BAPTA to Ca2+ to make it suitable for its 

extracellular concentration range. Two molecules, Ln2L1 and Ln2L2 were synthesized with this 

design which showed 15% and 11% relaxivity enhancement respectively. A complete 

physiochemical characterization was performed on these two molecules (in collaboration with 
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Dr. Eva Toth, CNRS, France) to assess the parameters responsible for Ca2+ dependent relaxivity 

change. Relaxometric titrations with Ca2+, 1H NMRD, 17O NMR, UV-Vis absorption, and 

luminiscence lifetime measurement were performed on the complexes. It was concluded from 

this detailed investigation that the activity of the agents to Ca2+ was due to the change in the 

hydration number of the complex (0.4 to 0.7 in presence of Ca2+) [181]. However, the sensitivity 

to Ca2+ was not enough for their in vivo applicability. In order to improve the sensitivity two 

more bismacrocyclic agents were synthesized, Gd2L3 and Gd2L4. Gd2L3 showed no relaxivity 

change with the addition of Ca2+ while the synthesis of Gd2L4 turned out to be very 

cumbersome.  
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To avoid the complex synthetic procedures, monomacrocyclic agents were designed, synthesized 

and characterized. APTRA was chosen as the low affinity Ca2+ chelator. The comparative 

analysis of all the agents synthesized from APTRA series was done in Section 9.5. In a nutshell, 

all of the agents synthesized in this series (Ln-L5-9), except Ln-L6 were found to be highly 

sensitive to Ca2+ with the range of sensitivity varying from 100-168% of relaxivity enhancement. 

The saturation in the relaxivity, varying from 1:1 to 1:3 (CA:Ca2+) was observed which might be 

due to their different binding affinities of the agents to Ca2+. A good sensitivity and the 

selectivity of the agents toward Ca2+ proved their potential for in vivo tests. The detailed 

physicochemical characterization would be done to calculate their binding affinities and the 

parameters resulting in relaxivity enhancement in presence of Ca2+.  
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Under the second project anatomical markers were designed. These markers were designed on 

the basis of neuronal tract tracing ability of biocytin. To trace the uptake and transport of the 

neural tracer, we designed an agent with Gd-DO3A coupled to biocytin (Gd-L11). The 

conjugation of these two units was done in a way to make the whole construct stable to the 

cleavage by endogenous biotinidase enzyme. Complete synthesis of this agent is under progress. 

We also designed and synthesized an agent with similar construct to Gd-L11 but without the 

macrocyclic moiety. This was done to investigate the stability of the system to biotinidase when 

certain structural modifications are used on the biocytin structure. L10 was synthesized and tested 

in vivo in rat brains. The neural tracing abilities of this agent were followed by histochemical 

procedure similar to what is applicable to biocytin. Our initial results showed that the agent is 

very stable in vivo as compared to biocytin. The cells were found to be stained with L10 at the 

injection site even after 4 days of survival time whereas biocytin nearly washed away. With the 

good cellular uptake, L10 also showed efficient transport with cells being stained at thalamus, 

striatum and the gray matter of the contralateral hemisphere.  

Similar experiments would be performed with Gd-L11. The presence of MR detectable moiety in 

Gd-L11 with the possible tract tracing ability would open up new possibilities to study the 

neuronal networks noninvasively with MRI. 
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At last, we investigated the possible applications of one of the intermediate (78) synthesized for 

the preparation of neural tracer Gd-L11. The coupling of biotin to the acid derivative of 78 with 

further deprotection steps yielded Gd-L12. This construct had one α carboxylate unit to 

biotinamide bond that would make the whole construct stable to biotinidase enzyme. This agent 

can be used as the targeted agent using biotin/avidin amplification strategy well established in 

nuclear imaging. The presence of Gd3+ would allow the visualization of molecular targets by 

MR. The relaxometric titrations of Gd-L12 were performed with avidin at 1.5 T, 3 T, 7 T, 9.4 T 

and 16.4 T. The transverse relaxivity showed an excellent enhancement of ~ 1000% at all 

magnetic fields. While % change in r1 showed the field dependence with increasing trend at low 

magnetic field (1.5 T) and decreasing trend at 9.4 T with inversion around 3 T. Another agent 

Gd-L13 was also synthesized for a comparison of results obtained with Gd-L12. Gd-L13 was also 

designed takeing the stability to biotinidase into account. A 220% r2 enhancement was observed, 

which is a quarter of what was obtained for Gd-L12. The difference in the relaxivity response of 

these two agents was explained on the basis of length and flexibility of linkers connecting biotin 

to macrocyclic moiety. The longer and flexible linker in Gd-L13 allows a fast internal motion 

around metal ion which limits the relaxivity increase which is normally observed with 
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conjugation to macromolecules. With these initial results, it can be concluded that Gd-L12 can be 

used as a potential targeting marker. A marked enhancement in r2 observed on conjugation with 

avidin would be favourable for multistep targeting approach in vivo by MR. 
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13. Materials and Methods 

13.1 Chemicals and Working techniques 

The chemicals were purchased from the companies, Acros organics, Sigma-Aldrich, Merck, 

Strem and VWR. All reagents were obtained of reagents grade from commercial sources and 

were used without further purifications. The anhydrous solvents, CH2Cl2, MeCN, MeOH, DMF, 

NMP were purchased from Sigma-Aldrich. Dulbecco's Modified Eagle Medium (D-MEM) 

liquid (high glucose), F-12 Nutrient Mixture (Ham), and N-2 Supplement liquid was purchased 

from Invitrogen. The anhydrous THF was obtained by freshly distilling it from sodium and 

benzophenone. Unless otherwise mentioned all reactions were carried out under nitrogen 

atmosphere and the flasks were dried with heat gun under vacuum. Air and water sensitive 

reagents were kept in inter atmosphere. The distilled water was used for the reaction work up and 

milliQ water was used throughout after the last deprotection steps. All glass wares were washed 

with mixed acid solution and rinsed with milliQ water and acetone. Compound that are not 

described in the experimental sections were synthesized according to the reported procedures. 

13.2 Reverse Phase High Performance Liquid Chromatography (RP-HPLC) 

HPLC was performed at room temperature on a Varian PrepStar Instrument, Australia, equipped 

with PrepStar SD-1 pump heads. UV absorbance was measured using ProStar 335 photodiode 

array detector at 214 nm and 254 nm. This detector is equipped with a dual-path length flow cell 

which enables measurement of absorbance of analytical and preparative samples without 

changing the flow cell. All solvents used were of HPLC grade and were bought from Merck-
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VWR and used without further purifications. Reversed phase analytical HPLC was performed in 

a stainless steel Chromsep (length 250 mm, internal diameter 4.6 mm, outside diameter 3/8 inch 

and particle size 8µm) C18 column. For preparative HPLC two kind of column of different 

dimensions were used: 

Column 1: Stainless steel Chromsep (length 250 mm, internal diameter 41.4 mm, outside 

diameter 2 inch and particle size 8), Agilent. 

Column 2: Stainless steel Polaris (21.2*250 mm, 5µm, 100 Å), Varian.  

Method A 

Column 1 (flow rate 65 ml/min): 60% solvent A (water) and 40% solvent B (methanol) to 100% 

solvent B in 5 minutes running isocratic at 100% solvent B for 10 minutes and then to 60% 

solvent B in next 2 minutes. 

Method B 

Column 1 (flow rate 65 ml/min): 5% solvent A (water, 0.1% HCOOH) and 95% solvent B 

(acetonitrile, 0.1% HCOOH) to 70% solvent B in 10 minutes and then 100% in next 8 minutes 

running isocratic for 12 minutes after that and then to 5% in next 2 minutes.  

Method C 

Column 2 (flow rate 15 ml/min): 95% solvent A (H2O, 0.1% HCOOH) and 5% solvent B 

(acetonitrile, 0.1% HCOOH) to 70% solvent B in 10 minutes and then to 100% in next 8 minutes 

running isocratic for 12 minutes after that and then back to 5% solvent B in next 2 minutes. 

13.3 NMR-spectroscopy 

1H and 13C NMR analysis of all the ligands and the intermediates were done on bruker 400MHz, 

300MHz, or 250MHz spectrometer. 1H NMR of Eu3+ loaded ligands were performed on 

500MHz and 300MHz spectromter. 1H and 13C NMR spectra were performed in deuterated 
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solvents and chemical shifts were assigned by comparison with the residual proton and carbon 

resonance of the solvents and tetramethylsilane as the internal reference (δ = 0). Data are 

reported as follows: chemical shift (multiplicity: s = singlet, d = doublet, t = triplet, dd = double 

of doublet, br., s = broad singlet, J = coupling constant (Hz), integration, peak assignment in 

italic form) 

13.4 Mass spectrometry 

ESI low resolution mass spectras (ESI-MS) were recorded on SL 1100 system (Agilent, 

Germany) with ion trap detection in positive and negative mode. ESI high resolution mass 

spectras (ESI-HRMS) were performed on a Bruker Daltonics Apex II FT-ICR-MS (Bruker, 

Germany). MS values were reported as ESI-MS: calculated for the related compound by found 

mass.  

13.5 Infrared Spectroscopy 

Infrared spectras were recorded with a Nicolet Impact 400 D spectrometer using neat compounds 

as disks with KBr and only the major bands are noted. 

13.6 Chromatographic methods 

Column chromatography was performed using silica gel 60 (70-230 mesh) from Merck. 

Analytical thin layer chromatography (TLC) was performed on aluminum sheet silica gel plates 

with 0.2 mm thick silica gel 60 F254 (E. Merck, Germany) using different solvent system as 

mobile phase. The compounds were visualized by UV254 light and the chromatographic plates 

were developed in Iodine chamber or aqueous solution of molybdophophorous acid. The 

molebdate solution as prepared by 20 g ammonium molybdate [(NH4)6Mo7O24. 4H2O] and 0.4 g 

Ce(SO4)2 4H2O were dissolved in 400 ml of 10% H2SO4.  
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13.7 Relaxometric Measurement Parameters 

For in vitro relaxometric Ca2+ titration at 9.4 T spectrometer 

The measurement of relaxation times T1 and T2 (longitudinal and transverse relaxation) was 

performed on a Bruker Avance 400 spectrometer. The T1 measurements were done by using the 

system software Topspin® for data acquisition and T1 evaluation. An inversion-recovery 

measurement was used with 32 logarithmic inversion time steps between 50 μs and 3 s. The 

inversion delay was 6 s and the power for the 90° reference pulse was adjusted for every sample 

individually. T1 was calculated by fitting the intensities (I) of the spectrum proton peaks into 

equation 12.1.  

ሺ௧೔ሻܫ ൌ   ଴ ሺ1ܫ െ ܣ2 exp ቀെ ௧భ
భ்
ቁሻ       eq (12.1) 

Where ( )itI  is the measured proton peak intensity at inversion time ti, 0I  is the proton peak 

intensity without inversion, 1T  is longitudinal relaxation time and factor A takes the finite 

inversion delay in to account. The samples were measured in 40 μl capillary tubes inserted in 5 

mm NMR tubes. 

For in vitro relaxometric measurement at 11.7 T spectrometer 

The measurement of relaxation times T1 and T2 (longitudinal and transverse relaxation) was 

performed on a Bruker Avance 500 spectrometer. The samples were measured in 5 mm NMR 

tubes and were enriched with tert-butanol to allow for the BMS correction. The T1 was 

calculated by according to the equation 12.1. 

For in vitro relaxometric measurement with avidin 

The measurement was done at 1.5 T, 3 T 7 T, 9.4 T and 16 T. The samples were prepared in 

Phosphate-Buffered-Saline (PBS-Dulbleco’s) at pH 7.4 and measured in Eppendorf tubes. Each 

tube was filled with 400µl of the sample solution. Four samples were prepared with different 
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concentration of CA (0.4 mM, 0.6 mM, 0.8 mM, 1.0 mM) in buffer. The intercept of the plot of 

relaxation rate obtained for these tubes with the corresponding concentration of CA gave the 

diamagnetic relaxation rate (1/Td). For samples containing avidin, a fixed concentration of CA 

was used (~ 0.3 mM) with differing in the ratio of Avidin:CA. Avidin stock solution was 

prepared in PBS buffer at pH 7.4. 

At 7 T 

At 7 T MR imaging was performed in a vertical BioSpec 7T/60-cm diameter bore magnet 

equipped with a BGA38-cm inner diameter gradient (Bruker Biospin, Ettlingen, Germany) using 

a multislice spin-echo sequence (MSME). One slice of interest was positioned axial to the tubes.  

 

 

Figure 59: Positioning of axial slice 

To determine T1, saturation recovery images with varying repetition times TR were acquired. T2 

was measured with a spin-echo method that acquire several echo-images after each excitation 

using a long repetition time TR. The experimental parameters have been: 

T1:  field of view 7.2x5.6cm2; matrix 288x244; slice thickness 1mm; SW 70kHz; TE 12ms; 

TR 45-800ms (logarithmic interleaved time steps, 80 images); two averages 

T2: field of view 7.2x5.6cm2; matrix 288x244; slice thickness 1mm; SW 70kHz; TE 12-720ms 

(linear time steps, 60 echoes); TR 10000ms; ten averages 
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The data analysis was performed by fitting the single Voxel intensities of the acquired images to 

relaxivity curves resulting in parameter maps of T1, T2 and S0 (initial signal at t = 0) and the 

corresponding error maps σT1, σT2 and σS0. 

 

Figure 60 T1/T2 maps of the tubes at 7 T 

Within these maps the single tubes have been selected manually and an iterative Gaussian fit was 

used to determine mean and standard deviations of the single T1 and T2 distributions. 

For calculation of R0 weighted linear regression was used and the relaxivity r [s-1mM-1] for the 

single Avidin concentrations finally have been calculated using equations 12.2. 
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At 1.5 T, 3 T, 9.4 T, and 16.4 T 

Relaxation time measurements at 1.5T, 3T and 9.4T were performed in human MR scanners 

(Siemens). Experiments at the field of 16.4T were performed in a horizontal scanner for small 
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animals with a bore diameter of 12 cm, equipped with a Bruker console and software. On the 

human scanners, vendor supplied head coils were used for signal reception and, at 9.4 T, for 

transmit. The 16.4 T measurements were done with a volume coil with sufficient space for up to 

six samples; for the total set of 16 samples three separate measurements were required at 16.4 T. 

The samples were placed in a container filled with water to reduce susceptibility-induced field 

homogeneities and to enable automatic scanner adjustments. For measuring T1, an inversion-

recovery sequence was used, with an adiabatic inversion pulse followed by a turbo-spin-echo 

acquisition. Between 10 and 15 images were taken, with the inversion time TI between inversion 

and spin-echo excitation varying from 20 ms to 3000 ms in the human scanners and from 100 ms 

to 5000 ms at 16.4 T. With a repetition time of 10 s to 12 s, between 8 and 15 echoes were 

acquired per scan. For T2, a spin-echo sequence was used with echo times varying from 19 ms to 

1000 ms in about 10 steps. For the 3 T measurements, a home written sequence was used to 

reduce diffusion effects by minimizing the crusher gradients surrounding the refocusing pulse. A 

repetition time of 8 s was used in those images. The experiments in human scanners covered 

2562 voxels in a field-of-view of 110 mm in both directions; the 16.4 T sampled 192×96 voxels 

over a 60×30 mm2 field of view.  

Data analysis was performed by the fitting to relaxation curves with self written routines under 

MATLAB 7.1 R14 (The Mathworks Inc.). The series of T1 relaxation data were fitted to the 

equations S = S0 (1 - exp(-TI / T1) + S(TI = 0) exp(-t / T1), where S0, S(TI = 0) and T1 were 

determined by the fitting routine. For T2, the parameters S0 and T2 were fitted in the equation S 

= S0 exp(-t / T2). Signals from manually selected regions-of-interest, each positioned inside one 

of the sample tubes, were added and nonlinear least-squares fitting was performed with the 

Trust-Region Reflective Newton algorithm implemented in Matlab. The quality of the fit was 
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controlled by visual inspection and by calculating the mean errors and residual. In this case, for 

calculation of R0 normal linear regression was used and Equation 12.2 was used again for 

calculation of the single relaxivities but without doing error estimation. 

13.8 In vivo rat experiments 

In order to test the stability of the synthesized neural tracer as compared to the conventional 

biocytin, a series of experiments were carried out. In vivo injections of the commercially 

available biocytin and the synthesized L10 derivative in the rat brain were performed. 

Iontophoretic injections were done to the primary cortex (right and left hemisphere) of rats. 

Perfusions were then carried out after the survival time of 24 h and 96 h. The uptake and 

transport of the tracer in the neurons was examined by histochemical treatment of the brain slices 

Surgery and tracer injections 

Rats were anesthetized with 1.5-2% isoflorane and positioned within a stereotaxic frame. After 

additional administration of local anesthetic in the surgery area a trepanation was performed over 

the primary motor cortex. The positioning of the injection was done according stereotaxic 

coordinates relative to Bregma, the sagittal suture and the surface of the brain (+1.2mm anterior, 

2.5mm lateral, 1-1.2mm deep). Two kinds of injections were used, pressure injections using 

0.5µl Hamilton syringes fitted with 32G (diameter~200µm) needles and iontophoretic injection 

using glass electrodes with 20-30 µm tip diameter. For the pressure injections a total volume of 

100-300 nl was injected within a time period of 30-60 min. For the pressure injections a total 

volume of 100-300 nl was injected within a time period of 30-60 min. At the end of the surgery 

the hole in the skull was closed by replacing the bone, the skin was sutured and the animal 

received regular subcutaneous injections of analgesic and antibiotics for the following days. 
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Perfusions 

24h, 48h and 96h after injections, a deep anesthesia was induced with the intraperitoneal 

injection of pentobarbital (Narcoren®). After cessation/disappearance of all reflexes, the chest of 

the animal was opened and Heparin (Liquemin®) was injected in to the heart in order to prevent 

coagulation of blood. A catheter was inserted in the aorta via the left ventricle, a small incision 

made in the right auricle and the animal perfused with PBS (phosphate buffer saline) for about 5 

min and then fixated with the fixative (4% formaldehyde in PBS). After the fixation in situ for 1-

3 h, the brain were removed from the skull and kept in the fixative overnight. During the next 

days, the brains were transferred stepwise in to 10%, 20% and 30% sucrose solution, kept in 

each of these solutions steps until the brain sunk to the bottom. This took altogether 96 h. The 

brains were then cut with a freezing microtome in to serial sections at a thickness of 70 µm. 

13.9 Histochemical experiments 

The following protocol was followed for the preparation of slices: 

- Collect slices in PBS (0.1 M, pH 7.3) 

- 1% H2O2 in PBS (NaCl in 0.1 M PBS) for 1 h to suppress the endogen peroxidase 

activity. 

- Rinse with PBS 

- Treatment for 1 h with Triton X-100 (0.5 % in 0.1 M PBS) (Triton cracks the membrane 

protein and makes avidin-peroxidase solution to enter the cells easier in the next step) 

- Incubation in avidin-conjugated peroxidase (vector laboratories, 1% in PBS) 

- Rinse with PBS (3 x 10 min) 

- Rinse 3 x 10 min with Tris/HCl (0.15 M, pH 7.9) (Tris is made more basic than PBS, that 

makes the staining with DAB solution faster in the next step) 
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- Incubation of the slices in DAB-fast Tablet Set-solution in water (diaminobenzidine 0.5% 

in Tris/HCl) and H2O2. 

- Washing with Tris/HCl (3 x 10 min) 

- The slices were then mounted on slices and air dried overnight 

Dehydration was performed on the mounted slices on the next day with graded ethanol (70%, 

80%, 2 x 99%, 2 x 100% ethanol), 2 x terpineole and 2 x xylene. They were then covered with 

Eukitt or DePex. 

13.10 1H NMRD and 17O NMR measurement  

The 1H NMRD profiles were recorded at the Laboratory of Inorganic and Bioinorganic 

Chemistry, Ecole Polytechnique Fédérale de Lausanne, Switzerland, on Stelar Spinmaster FFC 

fast-field-cycling relaxometer covering magnetic fields from 2.35 × 10−4 T to 0.47 T (proton 

Larmor frequency range 0.01–20 MHz). The temperature was controlled by a VTC90 

temperature control unit and fixed by a gas flow. At higher fields, the relaxivity was recorded 

using Bruker Minispecs mq30 (30 MHz), mq40 (40 MHz) and mq60 (60 MHz), on a Bruker 4.7 

T (200 MHz) cryomagnet connected to a Bruker Avance-200 console and on a Bruker Avance 

500 spectrometer (500 MHz). The temperature was measured by a substitution technique [27] or 

via a preliminary calibration using methanol and ethyleneglycol standards [28]. The longitudinal 

(1/T1) and transverse (1/T2) 17O NMR relaxation rates were measured in the temperature range of 

277–344 K. The data were recorded on a Bruker Avance 500 (11.75 T, 67.8 MHz) spectrometer. 

The temperature was calculated according to previous calibration with ethylene glycol and 

methanol [28]. The samples were measured in 5 mm NMR tubes and were enriched with tert-

butanol to allow for the BMS correction [29]. The 1/T1-data were obtained by the inversion 

recovery method, while the 1/T2-data were measured by the Carr–Purcell–Meiboom–Gill spin-
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echo technique. Acidified water (HClO4, pH 3.8) was used as external reference. Analyses of the 

17O NMR and 1H NMRD experimental data were performed with the Visualiseur/Optimiseur 

programs running on a Matlab platform version 6.5 [30].  

13.11 UV-Vis absorbance measurement 

UV-Vis spectra of 5D0←7F0 transitions of were obtained on a PERKIN ELMER Lambda 19 

spectrometer in the region 577–581 nm with data steps of 0.05 nm [26]. The sample 

concentrations were ~ 0.02 M and the temperature dependence was measured in the interval 15–

50 °C in the absence and presence of Ca2+. To maintain a constant temperature, thermostatisable 

cells with a 10 cm optical length were used. 

13.12 Luminescence Lifetime measurement 

The luminescence measurements were performed on a Varian eclipse spectrofluorimeter, 

equipped with a 450 W xenon arc lamp, a microsecond flash lamp and a red-sensitive 

photomultiplier (300–850 nm). The luminescence spectra were obtained after excitation at 

5L6←7F0 band (394 nm). 

13.13 Preparation of ACSF 

A Ca2+ free ACSF solution was prepared by making a 100 ml standard solution of Hepes buffer 

(1.668 g), NaCl (0.723 g), KCl (0.0216 g), MgCl2.6H2O (0.01423g) and NaHCO3 (0.1957 g). 

The pH of teh finally obtained solution was adjusted at pH 7.4 by addition of solid KOH.  

13.14 Preparation of AECM 

Stock solution of AECM was prepared afresh by mixing 5 ml of Dulbecco's Modified Eagle 

Medium (D-MEM) liquid (high glucose) (Invitrogen, Catalog Number: 21068028), 5 ml of F-12 

Nutrient Mixture (Ham) (Invitrogen, Catalog Number: 21765029) and 100 µl of N-2 Supplement 
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liquid (Invitrogen, Catalog Number: 17502048). D-MEM is well suited for supporting the 

growth of a broad spectrum of mammalian cell lines. F-12 Nutrient Mixture was originally 

formulated for single cell plating of near-diploid Chinese Hamster Ovary (CHO) cells. N-2 

supplement is a chemically defined, 100X concentrate of Bottenstein's N-2 formulation. This 

supplement is recommended for the growth and expression of neuroblastomas and for the 

survival and expression of post-mitotic neurons in primary cultures. The exact compositions are 

listed in the Table A5.in the Appendix 2. 

13.15 Experimental synthetic procedure 

General procedure for preparation of Ln(III) complexes for bismacrocyclic ligand 

The Ln(III) complexes of bismacrocyclic ligands were prepared by mixing a slight excess of the 

ligand (5%) with the LnCl3 solution of known concentration. The reaction mixture was kept for 

stirring at 50 °C and the pH was maintained at 7 with the addition of 1 M KOH solution. The 

absence of free Ln3+ was checked by xylenol orange indicator in HCl/urotropine buffer (pH 5.5). 

After approx 4 h, water was evaporated the solid obtained was used as such. For each Gd2L 

sample, the Gd3+ concentration has been determined by measuring the bulk magnetic 

susceptibility shifts  

General procedure for preparation of Ln(III) complexes of monomacrocyclic ligands 

The Ln(III) complexes of monomacrocyclic ligands were prepared by adding 1.1 equiv of LnCl3 

solution of known concentration. The reaction was kept for stirring at 50 °C and the pH was 

maintained at 7 with the addition of 1 M NaOH solution. The reaction mixture was then kept for 

stirring at the same temperature overnight. Chelex 100 was added to the reaction mixture and the 

reaction was allowed to stir at RT for 1 h. The absence of free Ln3+ was checked by xylenol 

orange indicator in HCl/urotropine buffer (pH 5.5). It was then filtered and the water evaporated 
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to obtain the complex as solid. This was purified by sephadex LH-20 column (13 * 2.5 cm for ~ 

50-150 mg) with elution by pure water without application of pressure from top. The fractions 

collected were analyzed by ESI-MS. The desired fractions were mixed and the water was 

evaporated to obtain the Ln(III) complex. For each Ln-L sample the final concentrations were 

determined by ICP-OES. 

1,2-bis(2-nitrophenoxy)ethane  

(1) 

NO2
O O

NO2

 

o-nitro-phenol (5.0 g, 36 mmol) and K2CO3 (11.0 g, 79 mmol) were taken in oven dried round 

bottom flask. 25 ml of DMF (dry) was added and the contents were heated at 90 °C for 1 h. The 

reaction mixture (RM) was cooled down under ice and dibromoethane (1.4 ml, 16.2 mmol) was 

added. The RM was heated at 90 °C for 3 h. It was brought to room temperature and added to 

crush ice. The precipitated product (1)was filtered, washed with water and air dried (4.7 g, 87%). 

1H NMR (250 MHz, DMSO-d5), δ ppm: 4.53 (s, 4 H), 7.10 - 7.18 (m, 2 H), 7.40 - 7.46 (m, 2 H), 

7.61 - 7.70 (m, 2 H), 7.82 - 7.88 (m, 2 H).  

13C NMR (62 MHz, DMSO-d5), δ ppm: 68.4, 115.9, 121.3, 125.1, 134.6, 140.1, 151.2. 

ESI-MS: calculated for [C14H12N2O6 + K]+ m/z 343.0 found 343.1 

2,2'-(ethane-1,2-diylbis(oxy))dibenzenamine  

(2) 

NH2
O O

NH2
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Compound 1 (3.0 g, 9.9 mmol) was dissolved in 15 ml methanol with Pd-C catalyst (10% w/w) 

and kept for stirring under H2 (1 atm) in Parr apparatus till the consumption of H2 ceases. RM 

was then filtered and the solvent evaporated to obtain the product (2) as light yellow solid (2.3 g, 

95%). 

1H NMR (300 MHz, DMSO-d6), δ ppm: 4.27 (s, 4 H), 6.49 - 6.57 (m, 2 H), 6.64 - 6.75 (m, 4 H), 

6.83 - 6.89 (m, 2 H). 

13CNMR (62 MHz, DMSO-d6), δ ppm: 144.5, 137.3, 120.6, 115.4, 113.3, 111.8, 66.3. 

ESI-MS: calculated for [C14H16N2O2 + H]+ m/z: 245.1, found 245.0 

2,2'-(ethane-1,2-diylbis(oxy))bis(N-benzylbenzenamine)  

(3) 

NH
O O

HN PhPh

 

Compound 2 (2.0 g, 8.2 mmol) was dissolved in 1,2 dichloroethane (dry) under N2. 

Benzaldehyde (1.6 ml, 16.4 mmol,) was added dropwise and the reaction mixture was kept for 

stirring for 3 h. Sodium triacetoxy borohydride (5.2 g, 24.6 mmol) was added slowly in small 

lots under cooling conditions. The reaction was quenched after 5 h by addition of saturated 

NaHCO3. Ethylacetate was added and the mixture was washed with water. Organic layer was 

collected, dried under anhydrous Na2SO4 and evaporated to get yellow oil. To the oil obtained, 

cooled diethyl ether was added and the content was kept under ice. The precipitated product (3) 

was filtered and washed with cooled diethylether (2.5 g, 73%).  

1H NMR (250 MHz, CDCl3), δ ppm: 4.66 (s, 4 H), 4.77 (s, 4 H), 6.89 - 7.05 (m, 4 H), 7.17 - 

7.26 (m, 4 H), 7.59 - 7.70 (m, 10 H). 
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13C NMR (62 MHz, CDCl3), δ ppm: 47.7, 67.5, 110.6, 111.6, 122.1, 126.9, 127.1, 128.5, 138.7, 

145.7. 

ESI-MS: calculated for [C28H28N2O2 + H]+ m/z: 425.2, found 425.3 

di-tert-butyl 2,2'-(2,2'-(ethane-1,2-diylbis(oxy))bis(2,1-

phenylene))bis(benzylazanediyl)diacetate  

(4) 

N
O O

Ph

COOC(CH3)3

N COOC(CH3)3

Ph

 

Compound 3 (1.0 g, 2.3 mmol), K2CO3 (1.3 g, 9.4 mmol) and KI (0.039 g, 0.23 mmol) were 

taken up in 25 ml MeCN (dry) and refluxed for 2 h. The RM was brought to room temperature 

and tert-butylbromoacetate (1.4 ml, 9.4 mmol) was added. The reaction mixture was refluxed 

overnight. It was then filtered and the solvent evaporated to obtain yellow oil. Cold diethylether 

was added to it and the contents were kept under ice .It was then filtered to obtain the product (4) 

as white solid (1.3 g, 87%).  

1H NMR (400 MHz, CDCl3), δ ppm: 1.39 (s, 18 H), 3.85 (s, 4 H), 4.32 (s, 4 H), 4.51 (s, 4 H), 

6.83 - 6.93 (m, 6 H), 6.97 - 7.03 (m, 2 H), 7.19 - 7.25 (m, 6 H), 7.31 - 7.37 (m, 4 H).  

13C NMR (100 MHz, CDCl3), δ ppm: 27.7, 52.7, 55.6, 80.4, 113.7, 120.3, 121.2, 126.5, 127.9, 

138.4, 138.9, 150.7, 170.3. 

ESI-MS: calculated for [C40H80N2O6 + H]+ m/z: 653.3, found 653.3 
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2,2'-(2,2'-(ethane-1,2-diylbis(oxy))bis(2,1-phenylene))bis(benzylazanediyl)diacetic acid  

(5) 

N
O O

N PhPh

COOH COOH

 

Compound 4 (1.0 g, 1.5 mmol) was dissolved in minimum CH2Cl2 and 30 ml of cooled TFA was 

added to it under cooling conditions. The reaction mixture was stirred overnight and then 

evaporated under vacuum. The obtained crude oil was dissolved in cold methanol and 

diethylether was added. The precipitated solid was filtered out to obtain the product (5) as white 

solid (0.77g, 98%).  

1H NMR (400 MHz, MeOD), δ ppm: 4.27 (s, 4 H), 4.33 (s, 4 H), 4.64 (s, 4 H), 6.99 - 7.09 (m, 4 

H), 7.15 - 7.28 (m, 14 H). 

13C NMR (100 MHz, MeOD), δ ppm: 56.2, 61.4, 68.9, 115.1, 122.9, 123.1, 128.6, 129.8, 130.0, 

131.4, 134.9, 135.1, 152.8, 172.1.  

Compound 6, 7, 8, 10 were synthesized according to previously reported procedure [182] 

Analytical data was found as reported. Using analogous method, compound 11 was synthesized 

via 9 from the substrate 7 [183] 
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tert-butyl 4-(3-(benzyloxycarbonylamino)propyl)-7,10-bis(2-tert-butoxy-2-oxoethyl)-

1,4,7,10-tetraazacyclododecane-1-carboxylate  

(9) 

N N

N N

COOC(CH3)3

(H3C)3COOC
COOC(CH3)3

NH

O
O

 

Yield: 73%; 1H NMR (CDCl3, 400MHz), δ (ppm): 6.97-6.84 (m, 5H),  4.65 (s, 2H), 2.98-2.89 

(m, 2H), 2.86-2.70 (m, 5H), 2.70-2.60 (m, 3H), 2.58-2.17 (m, 7H), 2.16-1.75 (m, 9H), 1.32 (br. s, 

2H), 1.06-1.03 (m, 27H). 

13CNMR (CDCl3, 100MHz), δ (ppm): 25.2, 26.5, 28.2, 37.8, 38.5, 48.9, 50.3, 55.4, 64.7, 65.7, 

81.0, 81.3, 126.4, 127.1, 135.6, 152.9, 155.2, 171.2, 172.2.  

ESI-MS: calculated for [C37H63N5O8 + H]+ m/z: 706.5 found: 706.5  

tert-butyl 4-(3-aminopropyl)-7,10-bis(2-tert-butoxy-2-oxoethyl)-1,4,7,10-

tetraazacyclododecane-1-carboxylate  

(11) 

N N

N N

COOC(CH3)3

(H3C)3COOC
COOC(CH3)3

NH2

 

Yield: 65%; 1H NMR (CDCl3, 400MHz), δ (ppm): 8.19 (br. s, 2H), 3.42-2.99 (m, 8H), 2.85-2.20 

(m, 16H), 1.61 (br.s, 2H), 1.41 (s, 27H).  

13C NMR (CDCl3, 100MHz), δ (ppm): 22.9, 27.1, 27.2, 38.5, 48.9, 49.4, 50.1, 55.9, 57.2, 81.1, 

169.8, 172.0.  
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ESI-MS: calculated for [C29H57N5O6 + H]+ m/z: 572.4 found 572.4. 

Compound 12 

N
O O

N

Ph Ph

OO

NHHN
N

N N

N

COOC(CH3)3

COOC(CH3)3

N

NN

N

COOC(CH3)3

(H3C)3COOC

(H3C)3COOC

COOC(CH3)3

 

Compound 5 (0.2 g, 0.5 mmol), compound 10 (0.84 g, 1.5 mmol), NMM (0.4 ml, 1.0 mmol) and 

HOBt (0.27 g, 0.55 mmol) were dissolved in 7 ml of dry DMF under N2 in an over dried round 

bottom flask. After an hour of stirring, EDC (0.39 g, 0.55 mmol) was added and the RM was 

heated at 60 °C overnight. The DMF was evaporated and the contents were redissolved in 

CH2Cl2 and extracted with water. The collected organic layer was dried under anhydrous. 

Na2SO4 and evaporated under vacuum. The crude oil obtained was purified by column 

chromatography using MeOH/CH2Cl2 (0.1:1) to obtain the desired product (12) (0.45 g, 55%). 

1H NMR (300 MHz, CDCl3): δ ppm: 1.17 - 1.30 (m, 54 H), 2.38 - 2.61 (m, 13 H), 2.62 - 2.77 

(m, 7 H), 2.83 - 3.01 (m, 16 H), 3.08 (br. s., 8 H), 3.15 - 3.32 (m, 6 H), 3.39 - 3.64 (m, 4 H), 3.99 

- 4.32 (m, 6 H), 6.57 - 6.85 (m, 8 H), 6.88 - 7.09 (m, 10 H). 

13C NMR (62 MHz, CDCl3), δ ppm: 27.9, 29.5, 47.7, 49.6, 51.5, 53.1, 55.1, 56.5, 57.6, 66.9, 

81.5, 81.7, 110.7, 118.2, 123.8, 124.9, 128.0, 128.3, 128.5, 137.2, 139.8, 142.9, 169.8, 170.1, 

172.3.  

ESI-MS: calculated for [C88H138N12O16 + H]+ m/z 1620.0 found 1620.0 
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Compound 13  

N
O O

N
OO

NHHN
N

N N

N

COOH

COOH

COOH

N

NN

N

COOH

HOOC

HOOC

Ph Ph

 

The ester groups in compound 12 (0.3 g, 0.2 mmol) were hydrolyzed using the cleavage cocktail 

(TFA:H2O:TIPS, 99:0.5:0.5). After stirring overnight at rt, the reaction mixture was evaporated 

under vacuum and purified by RP-HPLC using the method A to obtain the product (13) in 32% 

yield.1H NMR (400 MHz, D2O), δ ppm: 2.25-2.6 (m, 11 H), 2.75-3.15 (m, 29 H), 3.25-3.50 (m, 

16 H), 3.90 (s, 3 H), 4.30 (s, 3H), 6.65-7.10 (m, 18 H).  

13C NMR (100 MHz, D2O), δ ppm: 27.9, 32.3, 40.5, 45.5, 45.6, 45.7, 46.5, 47.8, 48.5, 48.9, 

51.9, 53.4, 53.8, 53.9, 56.2, 64.8, 64.9, 95.4, 110.7, 118.6, 119.2, 125.3, 126.0, 126.8, 134.2, 

134.9, 149.1, 169.8.  

ESI-MS calculated for [C64H90N12O16 - H]- m/z 1281.7 found 1281.9 

dimethyl 2,2'-(2,2'-(ethane-1,2-diylbis(oxy))bis(2,1-

phenylene))bis(benzylazanediyl)diacetate  

(14) 

N
O O

N PhPh

COOCH3 COOCH3

 

Compound 3 (2.0 g, 4.7 mmol), K2CO3 (2.6 g, 18.9 mmol), and KI (0.15 g, 0.94 mmol) were 

taken in MeCN (dry) and refluxed for 2 h. The reaction mixture was brought to room 

temperature and methylbromoacetate (1.8 ml, 18.9 mmol) was added. The obtained mixture was 
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refluxed for another 24 h. The RM was cooled down and filtered. The solvent was evaporated 

and the obtained residue was redissolved in CH2Cl2 and washed with water. The organic layer 

collected was dried under anhydrous Na2SO4 and evaporated to obtain the yellow oil. The crude 

product was purified by column chromatography using ethylacetate/hexane (0.2:1) solvent 

mixture (1.8 g, 70%).1H NMR (400 MHz, CDCl3), δ ppm: 3.53 (s, 6 H) 3.99 (s, 4 H) 4.32 (s, 4 

H) 4.52 (s, 4 H) 6.84 - 6.95 (m, 6 H) 6.99 - 7.06 (m, 2 H) 7.16 - 7.26 (m, 6 H) 7.30 - 7.38 (m, 4 

H).  

13C NMR (100 MHz, CDCl3), δ ppm: 51.7, 52.5, 56.5, 67.7, 113.9, 121, 121.9, 122.5, 127.4, 

128.6, 128.7, 138.9, 140.3, 151.3, 172.5 

dimethyl 2,2'-(2,2'-(ethane-1,2-diylbis(oxy))bis(2,1-phenylene))bis(azanediyl)diacetate  

(15) 

 

HN
O O

NH

COOCH3 COOCH3

 
Compound 14 (1.5 g, 2.6 mmol) was dissolved in methanol with Pd-C catalyst (10%, w/w) and 

stirred for 5 h under H2 atmosphere (1 atm) in a Parr apparatus. The heterogeneous reaction 

mixture was filtered through celite pad and the solvent evaporated to obtain the product (15) 

(0.96 g, 95%). The product obtained was used as such without further purification. 1H NMR (400 

MHz, CDCl3), δ ppm: 3.74 (s, 6 H) 3.95 (s, 4 H) 4.41 (s, 4 H) 6.47 - 6.53 (m, 2 H) 6.68 - 6.76 

(m, 2 H) 6.85 - 6.95 (m, 4 H). 13C NMR (100 MHz, CDCl3), δ ppm: 45.7, 52.4, 67.7, 110.5, 

112.2, 117.7, 122.3, 138.1, 146.2, 172.1 
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2-((2-tert-butoxy-2-oxoethyl)(2-(2-(2-((2-tert-butoxy-2-oxoethyl)(2-methoxy-2-

oxoethyl)amino)phenoxy)ethoxy)phenyl)amino) methyl acetate 

(16) 

N
O O

N

COOCH3 COOCH3

COOC(CH3)3
(H3C)3COOC

 
Compound 15 (1.8 g, 4.6 mmol), proton sponge (3 g, 13.8 mmol) and KI (0.15 g, 0.92 mmol) 

were taken in 100 ml MeCN and refluxed for 1 h. The RM was cooled down and tert-

butylbromoacetate (2.7 ml, 18.4 mmol) was added. It was then kept for refluxing for five days. 

The reaction mixture was filtered and the solvent was evaporated. The residue obtained was 

redissolved in CH2Cl2 and washed with water. The organic layer collected was dried under 

anhydrous Na2SO4 and evaporated to yellow oil. This was purified by column chromatography 

using ethylacetate/hexane (0.15:1) solvent mixture to obtain the product (16) (1.4 g, 52%). 1H 

NMR (400 MHz, CDCl3), δ ppm: 1.45 (s, 18 H) 3.48 (s, 6 H) 4.04 (s, 4 H) 4.19 (s, 4 H) 4.30 (s, 

4 H) 6.81 - 6.85 (m, 2 H) 6.92 - 6.97 (m, 2 H) 7.28 - 7.34 (m, 2 H) 7.35 - 7.40 (m, 2 H). 

13C NMR (100 MHz, CDCl3), δ ppm: 28.5, 44.8, 51.9, 53.9, 54.6, 67.5, 81.8, 113.7, 119.3, 

121.9, 122.4, 125.8, 139.8, 150.7, 170.9, 172.7 

2,2'-(2,2'-(ethane-1,2-diylbis(oxy))bis(2,1-phenylene))bis((2-methoxy-2-

oxoethyl)azanediyl)diacetic acid 

(17) 

N
O O

N

COOCH3 COOCH3

COOHHOOC
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Compound 16 (1.3 g, 2.2 mmol) was dissolved in minimum amount of CH2Cl2 and 15 ml of TFA 

added to it. The RM was stirred overnight at RT. It was then evaporated under vacuum and 

redissolved in CH2Cl2 (2*10 ml) and MeOH (2*10 ml), and evaporated under vacuum till dry. 

The obtained product (17) was used as such without further purification (1.0 g, 95%). 1H NMR 

(400 MHz, acetone-d6), δ ppm: 3.51 (s, 6 H) 4.12 (s, 4 H) 4.19 (s, 4 H) 4.33 (s, 4 H) 6.82 - 6.95 

(m, 6 H) 6.98 - 7.03 (m, 2 H).  

13C NMR (100 MHz, CDCl3), δ ppm: 42.0, 49.98, 45.01, 58.3, 104.6, 110.3, 112.2, 113.3, 130.2, 

141.8, 162.7, 163.4. 

Compound 18 

N
O O

N
OO

NHHN
N

N N

N

COOC(CH3)3

COOC(CH3)3

COOC(CH3)3

N

NN

N

COOC(CH3)3
(H3C)3COOC

(H3C)3COOC

COOCH3

COOCH3

 

Compound 17 (1.1 g, 2.0 mmol), compound 10 (2.8 g, 5.0 mmol), NMM (1.1 ml, 10.0 mmol), 

and HOBt (0.75 g, 5.5 mmol) were dissolved in 8 ml DMF (dry) under N2. The RM was stirred 

for 1 h and EDC (1.0 g, 5.5 mmol) was added. The contents were heated at 60 °C overnight. The 

DMF was evaporated under vacuum and the mixture obtained was redissolved in CH2Cl2 (25 ml) 

and extracted with water (4*25 ml). The collected organic layer was dried under anhydrous 

Na2SO4 and evaporated to yellow oil. This was purified by column chromatography using 

MeOH/CH2Cl2 (0.1:1) as the solvent mixture to obtain the product as solid (0.78 g, 25%). The 

compound was obtained with small amount of HOBt as the impurity which was removed in the 

next step by RP-HPLC. 1H NMR (400 MHz, CDCl3), δ ppm: 1.33 (s, 20 H), 1.34 (s, 34 H), 2.61 

(d, J=11.44 Hz, 16 H), 2.84 (br. s., 8 H), 3.06 - 3.16 (m, 9 H), 3.21 (s, 12 H), 3.28 (s, 4 H), 3.32 - 
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3.36 (m, 2 H), 3.42 - 3.44 (m, 2 H), 3.47 (s, 5 H), 3.85 (s, 4 H), 3.99 (s, 4 H), 4.15 (s, 4 H), 7.02 - 

7.08 (m, 4 H), 7.36 - 7.43 (m, 2 H), 7.59 - 7.66 (m, 2 H). 

13C NMR (100 MHz, CDCl3), δ ppm: 27.8, 32.8, 47.8, 49.6, 50.3, 51.5, 52.9, 53.3, 54.0, 54.8, 

56.5, 56.6, 66.6, 81.4, 81.5, 109.2, 110.8, 118.1, 119.9, 143.2, 150.0, 169.8, 170.0, 171.6, 172.1. 

ESI-MS: calculated for [C80H134N12O20-H]- m/z 1581.9, found 1581.7 

1,2-bis{[2-{[({1-[1,4,7-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane-10-yl]eth-2-

yl}amino)carbonyl]methyl}-(carboxymethyl)amino]phenoxy}ethane 

(L1) 

O O
N N

OOHO OH
H
N

O O

H
N

N

N

N

N
O

O

O
NN

NN

O

O

O OH

OHOH
OH

HO

HO

 

Compound 18 (0.7 g, 0.4 mmol) was dissolved in 25 ml TFA:H2O:TIPS (99:0.5:0.5) and stirred 

at room temperature overnight. The solvents were evaporated under vacuum and redissolved in 

CH2Cl2 (2*10 ml) and MeOH (2*10 ml) and evaporated under vacuum till dry. The crude oil 

obtained was then purified by RP-HPLC using method B to obtain the final ligand (L1) as white 

solid (0.12 g, 25%). 1H NMR (CDCl3, 400MHz), δ (ppm): 7.06-6.99 (m, 4H), 6.94 (t, J=7.0 Hz, 

2H), 6.87-6.85 (m, 2H), 4.27 (s, 4H), 3.83 (s, 4H), 3.77 (s, 4H), 3.58 (br. s, 8H), 3.45 (s, 4H), 

3.28-3.12 (m, 24H), 3.02-2.97 (m, 4H), 2.82-2.75 (m, 12H). 

13C NMR (D2O, 100MHz), δ (ppm): 33.5, 47.6, 49.2, 50.5, 50.6, 51.0, 55.3, 56.1, 56.7, 57.9, 

67.0, 113.0, 117.4, 121.4, 122.5, 138.9, 150.1, 169.9, 170.5, 174.7, 177.6.  

ESI-MS: calculated for [C54H82N12O20 - H]- m/z 1217.6, found 1217.6 
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General method for preparation of 20 and 21 

O O
N N

OOHO OH
H
N

O O

H
N

N

N

N

N
O

t-BuO

t-BuO
O

Ot-Bu

O
NN

NN

O Ot-Bu Ot-Bu

O

Ot-BuO
n n

 

Compound 10/11 (2 mmol) was dissolved in 5 ml of dry N-methylpyrollidinone (NMP) with 50 

μl of dry Et3N and heated at 60°C for 15 min. Anhydride 19 was then added to this reaction 

mixture (295 mg, 0.67 mmol) in small lots under N2. After complete addition of 19, the solution 

was kept under continuous stirring at 60°C overnight. The solvent was then evaporated and the 

crude mixture was re-dissolved in CH2Cl2 and extracted with water. The collected organic layer 

evaporated to get yellow oil. The crude product (20/21) was then purified by RP-HPLC using 

method A to get light yellow fluffy solid.  

1,2-bis{[2-{[({1-[1,4,7-tris(tert-butoxycarbonylmethyl)-1,4,7,10-tetraazacyclododecane-10-

yl]eth-2-yl}amino)carbonyl]methyl}-(carboxymethyl)amino]phenoxy}ethane  

(20) 

Yield : 0.57 mg (55%). 

1H NMR (CDCl3, 400MHz), δ (ppm): 7.01-6.98 (m, 2H), 6.92-6.89 (m, 2H), 6.77-6.74 (m, 4H), 

4.56 (d, J=6.4 Hz, 2H, CHHO), 4.34 (d, J=15.5Hz, 2H, CHHCONH), 4.01 (d, J=17.8 Hz, 2H, 

CHHCOOH), 3.91 (d, J=6.4 Hz, 2H, CHHO), 3.48 (d, J=17,8 Hz, 2H, CHHCOOH), 3.36-3.21 

(m, 22H), 3.08-2.80 (m, 12H), 2.78-2.69 (m, 6H), 2.76-2.56 (m, 18H), 1.47 (s, 36H), 1.43 (s, 

18H). 



Chapter 10 
 

185 
 

13C NMR (CDCl3, 100MHz), δ (ppm): 28.1, 29.6, 32.1 (CH2CH2CONH), 47.8, 49.7, 50.3, 51.3, 

53.5, 54.8, 56.5, 58.5 (CH2COOH), 60.7 (NCH2CONH), 66.4 (CH2O), 81.5, 81.8, 112.1, 115.4, 

119.5, 120.6, 139.2, 149.4, 170.1, 170.2, 175.0 (CONH), 175.2 (CONH).  

ESI-MS: calculated for [C78H130N12O20 - H]- m/z 1553.9, found 1554.0  

1,2-bis{[3-{[({1-[1,4,7-tris(tert-butoxycarbonylmethyl)-1,4,7,10-tetraazacyclododecane-10-

yl]prop-3-yl}amino)carbonyl]methyl}-(carboxymethyl)amino]phenoxy}ethane  

(21) 

Yield: 0.42 mg (40%).  

1H NMR (CDCl3, 400MHz), δ (ppm): 7.08-7.06 (m, 2H), 6.91-6.89 (m, 2H), 6.85-6.82 (m, 4H), 

4.49 (br. s, 2H), 4.31 (br. s, 4H), 4.08-3.73 (m, 8H), 3.57-3.09 (m, 20H), 3.04-2.47 (m, 32H), 

2.40 (br. s, 4H), 2.01 (br. s, 2H), 1.53 (s, 18H), 1.48 (s, 36H).  

13C NMR (CDCl3, 100MHz), δ (ppm): 175.7, 173.4, 170.9, 170.2, 150.2, 139.8, 120.3, 120.2, 

115.7, 112.2, 82.2, 82.0, 66.6, 61.0, 58.7, 56.5, 55.3, 49.6, 49.1, 47.6, 35.5, 28.6, 28.4, 22.2.  

ESI-MS: calculated for [C80H134N12O20+ H]+ m/z 1584.0, found 1584.0  

General method for the synthesis of L1 and L2. Neat triflouoroacetic acid (70 ml) was added to 

the previously obtained compound 20 or 21 (0.32 mmol) and the reaction was stirred at rt for 24 

hrs. TFA was then evaporated, the residue dried on vacuum and purified by RP-HPLC using 

method B. 
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1,2-bis{[2-{[({1-[1,4,7-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane-10-yl]eth-2-

yl}amino)carbonyl]methyl}-(carboxymethyl)amino]phenoxy}ethane 

(L1) 

O O
N N

OOHO OH
H
N

O O

H
N

N

N

N

N
O

O

O
NN

NN

O

O

O OH

OHOH
HO

OH

HO

 

Yield: 0.22 mg (60%).  

1H NMR (CDCl3, 400MHz), δ (ppm): 7.06-6.99 (m, 4H), 6.94 (t, J=7.0 Hz, 2H), 6.87-6.85 (m, 

2H), 4.27 (s, 4H), 3.83 (s, 4H), 3.77 (s, 4H), 3.58 (br. s, 8H), 3.45 (s, 4H), 3.28-3.12 (m, 24H), 

3.02-2.97 (m, 4H), 2.82-2.75 (m, 12H). 

13C NMR (D2O, 100MHz), δ (ppm): 33.5, 47.6, 49.2, 50.5, 50.6, 51.0, 55.3, 56.1, 56.7, 57.9, 

67.0, 113.0, 117.4, 121.4, 122.5, 138.9, 150.1, 169.9, 170.5, 174.7, 177.6. IR [cm-1]: 3426 (vs), 

2964 (m), 2929 (m), 2860 (m), 1718 (s), 1637 (vs), 1384 (s), 1355 (s), 1328 (m), 1240 (s), 1203 

(s), 762 (m), 694 (m).  

ESI-MS: calculated for [C54H82N12O20 - H]- m/z 1217.6, found 1217.6 

ESI-MS of Gd2L1: calculated for [C54H76Gd2N12O20 – H + Na]- m/z 1547.1, found 1547.6 

ESI-MS of Eu2L1: calculated for [C54H76Eu2N12O20 – H]- m/z 1155.4, found 1155.5  
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1,2-bis{[3-{[({1-[1,4,7-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane-10-yl]prop-3-

yl}amino)carbonyl]methyl}-(carboxymethyl)amino]phenoxy}ethane  

(L2) 

O O
N N

OOHO OH
H
N

O O

H
N

N

N

N

N

O

O

O

NN

NN

O

O

O OH

OH
OHHO

OH

HO

 

Yield: 0.13 mg from 400 mg of 11 (40%).  

1H NMR (D2O, 400MHz), δ (ppm): 6.98-6.91 (m, 4H), 6.88 (t, J= 7.4, 2H), 6.82-6.80 (m, 2H), 

4.20 (s, 4H), 3.78 (s, 4H), 3.74 (s, 4H), 3.57 (s, 4H), 3.39-3.31 (m, 8H), 3.27-3.20 (m, 8H), 

3.13-2.92 (m, 20H), 2.89-2.83 (m, 8H), 2.65 (br. s, 4H), 1.61-1.53 (m, 4H).  

13C NMR (D2O, 100MHz), δ (ppm): 177.7, 174.4, 149.9, 138.5, 122.3, 121.5, 117.4, 113.2, 67.1, 

57.6, 56.2, 56.1, 55.4, 50.9, 50.5, 49.6, 49.2, 36.4, 22.6.  

ESI-MS: calculated for [C56H86N12O20 - H]- m/z 1245.6 found 1245.5  

ESI-MS of Gd2L2: calculated for [C56H80Gd2N12O20 + H]+: m/z 1553.1, found 1553.6  

dimethyl 3,3'-(2,2'-(ethane-1,2-diylbis(oxy))bis(2,1-phenylene))bis(azanediyl)dipropanoate 

(22) 

O O
NH HN

COOCH3
H3COOC

 

Compound 2 (3.9 g, 15.9 mmol), proton sponge (13.7 g, 63.6 mmol) and KI (0.53 g, 3.2 mmol) 

were taken in 30 ml MeCN and refluxed for 1 h. The RM was cooled down and 
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methylbromopropionate (7 ml, 63.6 mmol) was added. The contents were refluxed for two days. 

The reaction mixture was filtered, redissolved in toluene and filtered again. The crude product 

obtained after evaporation was purified by column chromatography using ethylacetate/hexane 

(0.05:1) solvent mixture to obtain the pure product as solid (4.3 g, 65 %). 1H NMR (400 MHz, 

CDCl3), δ ppm: 2.60 (t, 4 H), 3.45 (t, 4 H), 3.64 (s, 6H), 4.34 (s, 4H), 6.65-6.69 (m, 4 H), 6.83-

6.9 (m, 4 H).  

13C NMR (100 MHz, CDCl3), δ ppm: 34.2, 39.6, 52.1, 37.8, 110.7, 112.1, 122.5, 138.3, 146.4, 

173.0. 

Compound 23 

O O
N N

H3COOC
COOC(CH3)3

COOC(CH3)3
COOCH3

 

Compound 22 (3.0 g, 7.2 mmol), K2CO3 (4.0 g, 28.8 mmol) and KI (0.24 g, 1.4 mmol) was taken 

in MeCN and kept for refluxing for 1 h. The RM was cooled down and tert-butylbromoacetate 

(4.2 ml, 28.8mmol) was added. This was further refluxed for 2 days. The RM was filtered and 

the solvent was evaporated to obtain yellow oil. This crude oil was purified by column 

chromatography to obtain the pure product (23) as solid (3.1 g, 68%).  

1H NMR (CDCl3, 400 MHz,), δ ppm: 1.39 (s, 18 H), 2.58 (t, 4 H), 3.58 (s, 6 H), 3.63 (t, 4 H), 

3.95 (s, 4H), 4.33 (s, 4 H), 6.93-7.01 (m, 8 H).  

13C NMR (CDCl3, 100 MHz,), δ ppm: 26.4, 31.4, 46.2, 53.5, 65.7, 79.2, 112.9, 119.5, 119.9, 

120.9, 137.1, 149.8, 168.9, 171.1. 
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Compound 24 

O O
N N

H3COOC
COOH COOH

COOCH3

 

Compound 23 (1 g, 1.5 mmol) was dissolved in minimum CH2Cl2 and 15 ml of TFA was added. 

The RM was stirred overnight. TFA was evaporated and the contents were dried under vacuum. 

The obtained oil was redissolved in CH2Cl2 (2*25 ml) and MeOH (2*25ml), and evaporated 

under vacuum. The product obtained was obtained in quantitative yields and was used as such 

without further purification.  

1H NMR (400 MHz, acetone-d6), δ ppm: 2.40 (t, 4 H), 3.35 (s, 6 H), 3.4 (t, 4 H), 3.75 (s, 4H), 

4.25 (s, 4 H), 6.65-6.95 (8 H).  

13C NMR (100 MHz, CDCl3), δ ppm: 33.6, 49.5, 52.1, 56.5, 115.3, 122.5, 123.0, 124.7, 139.8, 

172.9, 173.7.  

ESI-MS: calculated for [C26H32N2O10 + H]+ m/z 531.2, found 531.2 

Compound 25 

N
O O

N
OO

NHHN
N

N N

N

COOC(CH3)3

COOC(CH3)3

COOC(CH3)3

N

NN

N

COOC(CH3)3
(H3C)3COOC

(H3C)3COOC

COOCH3H3COOC

 

Compound 24 (0.28 g, 0.52 mmol), compound 10 (0.88 g, 1.56 mmol), NMM (0.22 ml, 2 mmol) 

and HOBt (0.15 g, 1.1 mmol) were dissolved in 4 ml of DMF (dry) under N2. The reaction 

mixture was stirred at 60 °C. After 1 h, it was brought to room temperature and EDC (0.22 g, 1.1 

mmol) was added. The contents were stirred overnight at 60 °C. DMF was evaporated and dried 



Chapter 10 
 

190 
 

under vacuum. The obtained mixture was dissolved in CHCl3 and extracted with water. The 

collected organic layer was dried under anhydrous Na2SO4 and evaporated under vacuum. The 

crude product obtained (25) was purified by column chromatography using MeOH/CH2Cl2 

(0.1:1) as the solvent mixture to obtain the pure product as yellow solid (0.28 g, 30 %). 

ESI-MS calculated for [C82H138N12O20 + 2H ]2+ m/z: 806.0, found 806.5 

Compound L3 

N
O O

N
OO

NHHN
N

N N

N

COOH

COOH

COOH

N

NN

N

COOH

HOOC

HOOC

COOHHOOC

 

Compound 25 (0.2 g, 0.1 mmol) was dissolved in THF:MeOH:H2O (3:2:2) and LiOH (0.06 g, 

0.25 mmol) was added. The reaction mixture was stirred for 2 h. The completion of reaction was 

monitored by ESI-MS. The solvent was evaporated and 20 ml of TFA was added to it. The RM 

was stirred overnight at RT. TFA was evaporated under vacuum and the crude product obtained 

was purified by RP-HPLC to obtain the pure lyophilized product (L3) as white solid (0.56 g, 

48%). 

1H NMR (250 MHz, D2O), δ ppm 2.79 - 2.92 (m, 4 H) 3.03 - 3.14 (m, 4 H) 3.14 - 3.27 (m, 8 H) 

3.38 - 3.53 (m, 14 H) 3.55 - 3.70 (m, 16 H) 3.81 - 3.91 (m, 8 H) 4.06 (br. s., 8 H) 4.32 (s, 4 H) 

4.81 (s, 4 H) 7.41 (t, 2 H) 7.52 (d, 2 H) 7.66 (t, 2 H). 

13C NMR (62 MHz, D2O), δ ppm: 29.1, 32.7, 45.9, 46.7, 47.9, 48.6, 48.8, 51.6, 51.7, 53.7, 56.1, 

65.2, 111.3, 119.5, 119.9, 125.4, 131.3, 149.8, 173.8.  

ESI-MS calculated for [C56H86N12O20 + H]+ m/z: 1245.6, found 1245.7.  

Gd2L3 
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ESI-MS: calculated for [C56H78Gd2N12O20 – H]- m/z: 1554.4, found 1554.8 

N,N'-(2,2'-(ethane-1,2-diylbis(oxy))bis(2,1-phenylene))bis(2-bromoacetamide)  
(26) 

NH
O O

NHO

Br

O

Br

 
Compound 2 (1.3 g, 5.3 mmol) was taken in MeCN (30 ml) with Na2CO3 (1.7 g, 16 mmol) and 

kept under ice. Bromoacetyl bromide (1.0 ml, 11.7 mmol) was added slowly to it. After complete 

addition, the RM was stirred for 4 h under ice. Few drops of water were added to quench the 

reaction and the solvent was evaporated under vacuum. The oil obtained was dissolved in 

minimum amount of MeOH and then the cold diethylether was added. The precipitates were 

filtered out to obtain the pure product (26) as white solid (1.4 g, 56%).  

1H NMR (400 MHz, acetone-d6), δ ppm: 2.85 (s, 4 H), 4.63 (s, 4 H), 7.16 (t, J=7.88 Hz, 2 H), 

7.45 (d, J=8.39 Hz, 2 H), 7.66 (t, J=7.88 Hz, 2 H), 7.82 (d, J=7.88 Hz, 2 H).  

13C NMR (100 MHz, acetone-d6), δ ppm: 30.7, 69.4, 116.5, 121.9, 125.9, 135.0, 152.5.  

ESI-MS: calculated for [C12H18Br2N2O4 + Na]+ m/z: 508.9 found, 509.0 with isotopic 

distribution of - Br. 

tri-tert-butyl 1,4,7,10-tetraazacyclododecane-1,4,7-tricarboxylate  

(27) 

NH

N
N

N

Boc

Boc

Boc

 

Cyclen (3 g, 17.5 mmol) was dissolved in 100 ml of CHCl3 containing triethylamine (7.5 ml). 

Boc-anhydride (11.4 g, 52.5 mmol) dissolved in CHCl3 was added slowly at 0 °C. After the 
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complete addition the RM was stirred overnight at RT. The solvent was evaporated and the crude 

product was flash chromatographed with diethylether as eluent to obtain the pure product as 

transparent fluffy solid (4.0 g, 50%).  

1H NMR (300 MHz, CDCl3), δ ppm: 1.36 (s, 18 H), 1.38 (s, 9 H), 2.69 - 2.82 (m, 4 H), 3.15 - 

3.33 (m, 8 H), 3.55 (br. s., 4 H).  

13C NMR (75 MHz, CDCl3), δ ppm: 28.3, 28.5, 45.2, 45.5, 49.1, 49.2, 49.4, 50.8, 53.3, 79.0, 

79.2, 155.2. 155.5.  

ESI-MS: calculated for [C23H44N4O6 + H]+ m/z: 473.3333, found 473.3338 

hexa-tert-butyl 10,10'-(2,2'-(2,2'-(ethane-1,2-diylbis(oxy))bis(2,1-

phenylene))bis(azanediyl)bis(2-oxoethane-2,1-diyl))bis(1,4,7,10-tetraazacyclododecane-

1,4,7-tricarboxylate)  

(28) 

NH
O O

HNO O

N N

NN
BocBoc

Boc
N

NN

N

Boc

Boc

Boc

 

Compound 27 (3.9 g, 8.3 mmol), Na2CO3 (2.8 g, 20.7 mmol) and KI (0.27 g, 1.6 mmol) were 

dissolved in DMF (dry) and heated at 60 °C for 1 h. The RM was cooled down and compound 26 

(1.6 g, 3.3 mmol) dissolved in DMF was added. The contents were heated at the same 

temperature overnight. It was then filtered and the solvent was evaporated under vacuum. To the 

oil obtained, 25 ml of CH2Cl2 and triethylamine (0.28ml, 2 mmol) was added. After half an hour, 

Boc-anhydride (0.22g, 1 mmol) was added and the reaction mixture was stirred for another 3 hrs. 
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The solvent was then evaporated and the obtained oil was purified by column chromatography 

using MeOH/CH2Cl2 (0.05:1) as the solvent mixture to get the product (28) in 40% yield.  

1H NMR (400 MHz, CDCl3), δ ppm: 1.38 (br. s., 34 H), 1.43 (s, 24 H), 2.74 (br. s., 6 H), 3.14 - 

3.53 (m, 30 H), 4.40 (s, 4 H), 6.93 (t, J=7.38 Hz, 4 H), 7.05 (t, J=7.63 Hz, 2 H), 7.78 - 8.16 (m, 2 

H).  

13C NMR (100 MHz, CDCl3), δ ppm: 28.8, 29.0, 31.3, 47.9, 48.1, 48.3, 49.7, 49.8, 50.6, 51.0, 

55.8, 67.4, 79.8, 79.9, 111.9, 121.6, 121.8, 121.9, 122.8, 122.9, 125.4, 127.3, 149.5, 155.7, 156.4, 

156.6, 169.6.  

ESI-MS calculated for [C64H104N10O16 + H]+ m/z: 1269.7, found 1269.8. 

tri-tert-butyl 10-(2-bromoacetyl)-1,4,7,10-tetraazacyclododecane-1,4,7-tricarboxylate 

(29) 

NN

N N

Boc

BocBoc

O
Br

 

Compound 27 (1.0 g, 2.1 mmol) and bromoacetic acid (0.4 g, 2.7 mmol) were dissolved in 25 ml 

of CH2Cl2. After 15 min, DCC (0.6 g, 2.7 mmol) was added and the RM was stirred for another 6 

h. It was then filtered and the solvent was evaporated to obtain the crude oil. The oil was flash 

chromatographed using diethylether as the eluent to obtain the pure product as the white fluffy 

solid (1.1 g, 91%).  

1H NMR (400 MHz, CDCl3), δ ppm: 3.42 (s, 18 H), 3.46 (s, 9 H), 5.27 - 5.49 (m, 12 H), 5.81 (s, 

4 H).  

13C NMR (100 MHz, CDCl3), δ ppm: 25.2, 25.9, 28.7, 28.8, 34.0, 49.7, 49.9, 50.1, 50.5, 51.3, 

51.9, 60.7, 80.7, 80.8, 81.0, 155.7, 157.6, 167.9.  
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ESI-MS: calculated for [C25H45BrN4O7 + Na]+ m/z: 615.23638, found 615.23701. 

Compound 30 

NH
O O

HN

N N

NN
BocBoc

Boc
N

NN

N

Boc

Boc

Boc

OO

 

Compound 2 (0.62 g, 2.5 mmol) and Na2CO3 (0.66 g, 6.2 mmol) were taken up in MeCN (50 ml) 

and stirred for two hours. Compound 29 (3 g, 5.1 mmol) dissolved in 20 ml of MeCN was added 

to the reaction mixture slowly. After complete addition, the RM was stirred for 18 h at RT It was 

filtered, the solvent evaporated and the residue obtained was re-dissolved in CH2Cl2. The CH2Cl2 

was extracted with water and washed with brine. The organic layer collected was dried under 

anhydrous Na2SO4 and evaporated to obtain the crude product. This was purified by column 

chromatography using MeOH/CH2Cl2 (0.05:1) as the solvent mixture to obtain the pure product 

(30) (1.8 g, 58%).  

1H NMR (400 MHz, CDCl3), δ ppm: 1.45 (s, 36 H), 1.50 (s, 18 H), 3.24 - 3.72 (m, 32 H), 3.88 

(s, 4 H), 4.42 (s, 4 H), 6.52 (d, J=7.38 Hz, 2 H), 6.69 (t, J=7.38 Hz, 2 H), 6.84 (t, J=7.38 Hz, 2 

H), 6.90 (d, J=7.88 Hz, 2 H).  

13C NMR (100 MHz, CDCl3), v ppm: 28.8, 28.9, 41.2, 45.8, 50.1, 50.4, 50.9, 51.9, 53.8, 67.3, 

80.8, 80.9, 110.9, 111.9, 117.6, 122.0, 137.8, 146.5, 155.9, 157.6, 157.7.  

ESI-MS calculated for [C64H104N10O16 + H]+ m/z: 1269.7,found 1269.8 
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2,2'-(2,2'-(ethane-1,2-diylbis(oxy))bis(2,1-phenylene))bis(azanediyl)bis(1-(1,4,7,10-

tetraazacyclododecan-1-yl)ethanone) 

(31) 

NH
O O

HN

N HN

HNNH

N

HNNH

NH O O

 

Compound 30 (1.5 g, 0.92 mmol) was dissolved in minimum amount of CH2Cl2 and 15 ml of 

TFA was added. The RM was stirred for 2 h and the solvent was evaporated under vacuum till 

dry. The product was obtained as TFA salt in quantitative yields and was used as such for the 

next reaction without further purification.  

1H NMR (400 MHz, D2O), δ ppm: 2.81 - 2.91 (m, 8 H), 2.97 (s, 8 H), 3.09 - 3.18 (m, 8 H), 3.20 

- 3.32 (m, 8 H), 4.26 (s, 4 H), 4.37 (s, 4 H), 6.93 (t, J=7.76 Hz, 2 H), 7.08 (d, J=8.65 Hz, 2 H). 

13C NMR (100 MHz, D2O), δ ppm: 41.6, 43.0, 43.5, 44.4, 45.2, 45.5, 45.8, 46.3, 46.6, 49.5, 

50.6, 50.9, 67.6, 112.2, 113.8, 115.1, 117.9, 120.9, 122.1, 123.6, 123.8, 131.5, 151.1.  

ESI-MS calculated for [C34H56N10O4 + H]+, m/z 669.4, found 669.5. 
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2,2'-(ethane-1,2-diylbis(oxy))bis(N-(2-(1,4,7,10-tetraazacyclododecan-1-

yl)ethyl)benzenamine) 

(32) 

NH
O O

HN

N HN

HNNH

N

HNNH

NH

 

Compound 31 (0.6 g, 0.9 mmol) was taken up in oven dried round bottom flask and cooled to 0 

°C under ice bath. BH3-THF solution (1 M, 8.0 ml) was added to it under N2 atmosphere while 

maintaining the temperature at 0 °C. The RM was refluxed for 1-2 h and the completion of the 

reaction was monitored by ESI-MS. It was then brought to room and acidified with 2 N HCl. The 

solvent was evaporated under vacuum. The obtained oil was basified with 2 N NaOH and 

extracted with ethylacetate. The organic layer collected was dried under anhydrous Na2SO4 and 

evaporated under vacuum to obtain the crude product which was purified by RP-HPLC (method 

A) to obtain the pure product (32) (0.14 g, 24%)  

1H NMR (400 MHz, D2O), δ ppm: 2.67 - 2.74 (m, 12 H), 2.78 - 2.84 (m, 6 H), 2.85 - 2.89 (m, 10 

H), 2.91 - 3.02 (m, 8 H), 3.17 (t, J=5.60 Hz, 4 H), 3.23 (s, 4 H), 4.43 (s, 4 H), 6.72 - 6.79 (m, 4 

H), 6.92 (t, J=7.63 Hz, 1 H), 7.00 (d, J=7.88 Hz, 2 H).  

13C NMR (100 MHz, CDCl3), δ ppm: 32.4, 37.8, 40.5, 40.6, 42.5, 47.2, 47.5, 49.3, 57.2, 67.2, 

109.9, 112.0, 117.1, 121.3, 136.2, 145.1.  

ESI-MS calculated for [C34H60N10O2 + H]+, m/z 641.5, found 641.5 
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Compound L4 

N
O O

N

N N

NN

N

NN

N

HOOC COOH

HOOC
HOOCCOOH

HOOC

HOOC

COOH

 
Sodium hydride (0.72 g, 1.8 mmol, 60% emulsion in oil) was taken in 4 ml of freshly distilled 

THF in an oven dried round bottom flask. The mixture was stirred under ice and after 5 min, 

compound 32 (0.12 g, 0.18 mmol) was added under N2. After 20 minutes, methylbromoacetate 

(0.17 ml, 1.8 mmol) was added and the mixture was kept for stirring at the RT. The completion 

of reaction was monitored by ESI-MS. After two days, 2 ml of water was added to it and stirred 

for another 4 h to hydrolyze the methyl esters. This was then evaporated and purified by RP-

HPLC to obtain the pure product (0.02 g, 10%). 

1H NMR (250 MHz, D2O), δ ppm: 2.74 - 2.94 (m, 11 H), 2.95 - 3.11 (m, 13 H), 3.12 - 3.33 (m, 

12 H), 3.45 (s, 4 H), 3.54 - 3.67 (m, 12 H), 4.12 (s, 4 H), 4.58 (s, 4 H), 7.15 (t, J=7.94, 7.32 Hz, 2 

H), 7.25 (d, J=7.93 Hz, 2 H), 7.35 - 7.55 (m, 4 H).  

ESI-MS calculated for [C50H76N10O18 + H]+, m/z: 1105.5 found 1105.5 

3-(benzyloxy)-2-nitrophenol  
(33) 

 

HO O
NO2

Ph

 
A suspension of 2-Nitroresorcinol (5.0 g, 32.2 mmol) and K2CO3 (0.45 g, 3.22 mmol) in dry 

MeCN (25 ml) was heated at 60°C under nitrogen atmosphere for 1 h. To the resulting solution, 

benzyl bromide (0.39 ml, 3.22 mmol) dissolved in 10 ml of MeCN (dry) was added slowly 
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within 1 h. The mixture was heated at the same temperature overnight under N2. It was then 

cooled down to RT, filtered and the solvent was evaporated. The resulting residue was purified 

by column chromatography using ethylacetate/hexane. Unreacted 2-nitroresorcinol was 

recovered in 75% yield as bright orange solid using 2% ethylacetate/hexane as eluent while the 

benzyl ether 33 was obtained in 0.66 g yield (85%) as bright yellow solid using 5-10% 

ethylacetate/hexane.  

1H NMR (400 MHz, CDCl3, 25°C), δ ppm: 5.21 (s, 2 H), 6.61 (d, J=8.4 Hz, 1 H), 6.72 (d, J=8.4 

Hz, 1 H), 7.32–7.38 (m, 2 H), 7.38–7.45 (m, 2 H), 7.47–7.52 (m, 2 H).  

13C NMR (100 MHz, CDCl3, 25°C) δ ppm: 71.3, 105.0, 110.9, 126.8, 128.1, 128.6, 135.4, 

135.5, 154.6, 155.6.  

ESI-HRMS calculated for [C13H11NO4 - H]- m/z 244.06153, found 244.06156. 

1-(benzyloxy)-3-(3-bromopropoxy)-2-nitrobenzene  

(34) 

O O
NO2

PhBr

 

A mixture of phenol 33 (0.98 g, 4 mmol) and K2CO3 (1.4 g, 8.0 mmol) in dry DMF was heated 

to 70°C under nitrogen atmosphere for 1 h. After cooling to RT, dibromopropane (0.9 ml, 12 

mmol) was added. The resulting mixture was heated to 85°C for 2 h. The RM was cooled down 

to room temperature and water was added to it. After extraction with chloroform, the organic 

layer was dried with anhydrous Na2SO4, filtered, and evaporated. The residue was purified by 

column chromatography using ethylacetate/hexane (0.07-0.1:1) to obtain the ether 34 as light 

yellow oil (1.20 g 88%). 
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1H NMR (400 MHz, CDCl3, 25°C), δ ppm: 2.13–2.24 (m, 2 H), 3.45 (t, J=6.4 Hz, 2 H), 4.10 (t, 

J=5.8 Hz, 2 H), 5.06 (s, 2 H), 6.55 (t, J=6.9 Hz, 2 H), 7.15–7.19 (m, 1 H), 7.19–7.25 (m, 1 H), 

7.25–7.30 (m, 4 H).  

13C NMR (100 MHz, CDCl3, 25°C), δ ppm: 29.6, 31.9, 66.7, 70.9, 105.6, 106.2, 126.9, 128.2, 

128.7, 131.0, 135.5, 150.8, 150.9.  

ESI-HRMS calculated for [C16H16BrNO4 + Na]+ m/z 365.01549, found 388.01569 

tri-tert-butyl 2,2',2''-(10-(3-(3-(benzyloxy)-2-nitrophenoxy)propyl)-1,4,7,10-

tetraazacyclododecane-1,4,7-triyl)triacetate  

(35) 

N N

N N

(H3C)3COOC

COOC(CH3)3

O
NO2

O Ph

COOC(CH3)3

 

A mixture of Tris-tert-Bu-DO3A (1.84 g, 3.7 mmol) and K2CO3 (1.3 g, 9.25 mmol) in dry DMF 

(15 ml) was heated for 1 h under nitrogen atmosphere at 60°C. To this KI (0.083 g, 0.05 mmol) 

was added followed by slow addition of bromide 34 (1.75 g, 4.8 mmol) dissolved in dry DMF (5 

ml). After complete addition the RM was heated overnight at the same temperature. It was then 

cooled down and excess of DMF was evaporated. Water was added to it and the resulting 

mixture was extracted with dichloromethane. The organic layer was dried with anhydrous 

Na2SO4, filtered, and evaporated to obtain yellow oil. The crude product was purified by column 

chromatography using MeOH/CH2Cl2 (0.02:1) to obtain product 35 as light yellow fluffy 

powder.(1.80 g 66%).  
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1H NMR (250 MHz, CDCl3), δ ppm: 1.72–1.88 (m, 2 H), 2.26 (s, 7 H), 2.49 (s, 4 H), 2.68 (br s, 

4 H), 2.74 (s, 3 H), 2.83 (s, 2 H), 2.96 (d, J=6.9 Hz, 2 H), 3.05 (br s, 4 H), 3.94 (t, J=5.9 Hz, 2 

H), 5.04 (s, 3 H), 6.57 (t, J=8.3 Hz, 2 H), 7.14–7.21 (m, 2 H), 7.25 (s, 4 H).  

13CNMR (62 MHz, CDCl3, 25°C), δ ppm: 25.2, 27.8, 27.9, 50.1, 50.2, 50.7, 52.8, 55.8, 56.6, 

68.1, 71.0, 82.6, 82.9, 106.0, 106.4, 127.1, 128.2, 128.6, 131.5, 135.7, 150.7, 151.0, 172.6, 173.6.  

ESI-HRMS calculated for [C42H65N5O10 + H]+ m/z 800.48042, found 800.48049. 

di-tert-butyl 2,2'-(7-(3-(2-amino-3-hydroxyphenoxy)propyl)-10-(pivaloyloxymethyl)-

1,4,7,10-tetraazacyclododecane-1,4-diyl)diacetate  

(36) 

N N

N N

(H3C)3COOC

COOC(CH3)3

O
NH2

OH

COOC(CH3)3

 

A solution of nitro compound 35 (1.5 g, 1.87 mmol) in methanol (10 ml) was hydrogenated 

under 2 atm of hydrogen over Pd-C (10%, 0.15 mg ) for 4 h in a Parr apparatus Thereafter, the 

mixture was filtered and the filtrate was concentrated in vacuo. The crude product (36) was used 

as such for the next reaction without further purification (1.0 g 85%).  

1H NMR (400 MHz, CDCl3, 25°C), δ ppm: 1.45 (s, 9 H), 1.46 (s, 18 H), 1.82 (s, 2 H), 2.50 (br. 

s., 7 H), 2.76 (s, 4 H), 2.83 (s, 4 H), 3.00 (br. s., 3 H), 3.05 (s, 3 H), 3.17 (s, 8 H), 4.21 (br. s., 2 

H), 6.91 (d, J=8.1 Hz, 1 H), 6.97 (d, J=8.1 Hz, 1 H), 7.37 (t, J=8.4 Hz, 1 H).  

13C NMR (100 MHz, CDCl3), δ ppm: 26.4, 27.8, 27.9, 0.4, 51.4, 52.7, 55.7, 56.5, 66.9, 82.5, 

82.8, 103.8, 109.5, 117.3, 124.3, 145.3, 147.0, 172.6, 173.6.  

ESI-HRMS calculated for [C35H65N5O8 + H]+ m/z: 680.45201, found 680.45891. 
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2,2',2''-(10-(3-(2-amino-3-hydroxyphenoxy)propyl)-1,4,7,10-tetraazacyclododecane-1,4,7-

triyl)triacetic acid  

(37) 

N N

N N

O

HO

O OH

O

OH

O
NH2

OH

 

The triester 36 (0.5 g, 0.7 mmol) was hydrolyzed in neat TFA (50 ml) for 24 h at room 

temperature. The TFA was then evaporated and the residue was dried on vacuum. The residue 

was then dissolved in water, pH was adjusted to 7 with 1 N NaOH and the solution was purified 

by RP-HPLC using methanol as solvent B in method C. (0.25 g, 68%).  

1H NMR (400 MHz, D2O), δ ppm: 1.96 (br s, 2 H), 2.91–3.25 (m, 20 H), 3.42–3.65 (m, 6 H), 

4.00 (t, J=5.3 Hz, 2 H), 6.48–6.57 (m, 2 H), 7.06–7.16 (m, 1 H).  

13CNMR (100 MHz, D2O), δ ppm: 49.2, 50.0, 50.7, 54.6, 55.9, 66.6, 104.4, 107.4, 108.9, 130.2, 

150.9, 152.9, 167.5.  

ESI-HRMS calculated for [C23H37N5O8 + H]+ m/z: 512.27149, found 512.27093. 
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2,2',2''-(10-(3-(2-(bis(carboxymethyl)amino)-3-(carboxymethoxy)benzyloxy)propyl)-

1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetic acid 

(L5) 

N N

N N

O

HO

O OH

O

OH

O
N

O

COOH
COOH

COOH

 

A solution of aniline 37 (0.1 g, 0.2 mmol) in water (8.0 ml) was taken in a three neck round 

bottom flask equipped with a pH meter and a water condenser. The pH was adjusted to 10 using 

solid NaOH followed by addition of bromoacetic acid (0.22 g, 1.6 mmol). The reaction mixture 

was heated to 90°C. The pH was maintained at 10 by occasional addition of solid NaOH. After 

the pH remained constant, the reaction mixture was heated for additional 2 h at pH 11. The 

reaction mixture was then cooled down to room temperature and pH was adjusted to 7 with 1 n 

HCl. The water was evaporated under vacuum. The ligand was finally purified by RP-HPLC 

using method C (0.07 g 55%). 

1H NMR (400 MHz, D2O): δ ppm: 1.90 (br s, 2 H), 2.60–2.85 (m, 8 H), 3.01 (br s, 8 H), 3.13 (s, 

4 H), 3.21 (br. s., 1 H), 3.25 (br. s., 1 H), 3.45 (s, 2 H), 3.77 (br. s., 2 H), 3.81 (s, 4 H), 4.33 (s, 2 

H), 6.22 (d, J=8.7 Hz, 1 H), 6.32 (d, J=8.39 Hz, 1 H), 6.81–6.91 (m, 1 H).  

13C NMR (100 MHz, D2O): δ ppm: 21.3, 46.9, 47.0, 48.2, 49.7, 50.1, 50.9, 54.5, 57.5, 64.5, 

64.8, 104.6, 104.8, 118.2, 128.9, 150.7, 150.8, 168.5, 170.4, 171.7, 172.6.  

ESI-HRMS calculated for [C29H43N5O14 + H]+ m/z 686.28793, found 686.28920. 

ESI-MS of Gd-L5: calculated for [C39H38GdN5O14 - H]- m/z 837.2, found 837.2 [M - H]-, 861.1 

[M – H + Na]- with isotopic distribution for Gd3+ 
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ESI-MS of Eu-L5: calculated for [C39H40EuN5O14 - H]- m/z 834.2, found 834.3 with appropriate 

isotopic distribution for Eu3+. 

 

3-(benzyloxy)-2-nitrobenzaldehyde  

(38) 

O
NO2

O
Ph  

To a solution of 3-methoxy 2-nitro benzaldehyde (2.5 g, 13.8 mmol) in 70 ml CH2Cl2 under dry 

ice, borontribromide (3 ml, 30.3 mmol) was added dropwise. After the complete addition, the 

RM was stirred at the same temperature for 30 min. MeOH was added slowly to quinch the 

reaction. The RM was removed from cooling bath and evaporated under vacuum. The crude 

product obtained was mixed with K2CO3 (4.7g, 34.5 mmol) and 60 ml MeCN, and heated at 60 

°C for 1 h. The contents were then removed from heating and benzyl bromide (2.5 ml, 20.7 

mmol) was added. This was heated again at 60 °C for another 2 h. The RM was filtered, washed 

with CH2Cl2 and evaporated under vacuum. The yellow oil obtained was chromatographed and 

purified in ethylacetate/hexane (0.2:1) solvent mixture to obtain the product as light yellow solid 

(3g, 85%). 

1H NMR (400 MHz, CDCl3), δ ppm: 4.99 (s, 2 H), 7.09 - 7.18 (m, 6 H), 7.24 (d, J=7.63 Hz, 1 

H), 7.34 (t, J=8.01 Hz, 1 H), 9.69 (s, 1 H).  

13C NMR (100 MHz, CDCl3), δ ppm: 70.9, 119.7, 122.5, 126.6, 127.5, 128.0, 128.3, 131.2, 

134.4, 139.6, 149.5.  

ESI-MS calculated for [C14H11NO4 + CH3OH + Na]+ m/z: 312.08424, found 312.08420 
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(3-(benzyloxy)-2-nitrophenyl)methanol  

(39) 

O
NO2

HO
Ph  

Compound 38 (2 g, 7.8 mmol) was dissolved in minimum amount of CH2Cl2 (dry) and 30 ml of 

MeOH (dry). This was kept under ice and sodium borohydride (98 mg, 2.6 mmol) was added 

slowly. After complete addition, the RM was stirred at RT for 2 h. The reaction was quenched 

with the addition of saturated. NaHCO3 solution dropwise. This was evaporated and re-dissolved 

in CH2Cl2
 and washed with water. The organic layer was collected and dried under anhydrous. 

Na2SO4 and evaporated under vacuum. The crude mixture obtained was flash chromatographed 

in CH2Cl2
 to obtain the desired product as light yellow solid (1.9 g, 90%).  

1H NMR (400 MHz, CDCl3), δ ppm: 4.45 (s, 2 H), 4.99 (s, 2 H), 6.84 (d, J=8.39 Hz, 1 H), 6.93 

(d, J=7.88 Hz, 1 H), 7.12 - 7.27 (m, 6 H). 

13C NMR (100 MHz, CDCl3), δ ppm: 60.4, 70.6, 113.2, 120.2, 126.6, 127.8, 128.2, 131.7, 133.9, 

135.1, 139.9, 149.5.  

ESI-MS calculated for [C14H13NO4 + K]+ m/z: 298.04762, found 298.04770 

1-(benzyloxy)-3-(bromomethyl)-2-nitrobenzene  

(40) 

O
NO2

Br
Ph  

To a solution of 39 (1.8 g, 6.9 mmol) in CH2Cl2 (dry) under ice, PPh3 (3.6 g, 13.8 mmol) was 

added. Carbon tetrabromide (4.8g, 14.5 mmol) was then added in small lots to it. The reaction 

mixture was stirred for an hour at room temperature. After an hour, it was evaporated and the 
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crude oil obtained was purified by column chromatography using ethylacetate/hexane (0.1:1) 

solvent mixture to obtain the product as yellow oil (1.7 g, 77%).  

1H NMR (400 MHz, CDCl3), δ ppm: 4.20 (s, 2 H), 4.89 (s, 2 H), 6.80 (t, 2 H), 7.05 - 7.19 (m, 6 

H).  

13C NMR (100 MHz, CDCl3), δ ppm: 26.4, 71.2, 114.6, 122.8, 127.1, 128.4, 128.8, 130.8, 131.6, 

135.4, 141.1, 150.2.  

ESI-MS calculated for [C14H12BrNO3 + Na]+ m/z 343.98928, found 343.98911 

tri-tert-butyl 2,2',2''-(10-(3-(benzyloxy)-2-nitrobenzyl)-1,4,7,10-tetraazacyclododecane-

1,4,7-triyl)triacetate  

(41) 

N N

N N

(H3C)3COOC

COOC(CH3)3

COOC(CH3)3

OO2N
Ph

 

To a solution of tris-tert-Bu-DO3A (4 g, 7.8 mmol) in DMF (dry), K2CO3 (2.7 g, 19.4 mmol) 

was added and the resulting mixture was heated for 1 h at 60 °C. Compound 40 (3.2 g, 10.1 

mmol) was dissolved in 5 ml of DMF (dry) and added slowly to the RM. The resulting mixture 

was heated at the same temperature overnight. It was then filtered, the solvent evaporated and the 

contents re-dissolved in CH2Cl2. The organic layer after washing with water was collected, dried 

under anhydrous Na2SO4 and evaporated to yellow oil. This was purified by column 

chromatography in MeOH/CH2Cl2 (0.02-0.05:1) to obtain light yellow oil (2.3 g, 40 %).  
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1H NMR (300 MHz, CDCl3), δ ppm: 1.31 - 1.46 (m, 27 H), 2.02 - 2.44 (m, 2 H), 2.56 (br. s., 4 

H), 2.64 - 2.95 (m, 10 H), 3.00 (br. s., 2 H), 3.25 (s, 4 H), 3.49 (br. s., 2 H), 5.05 - 5.17 (m, 2 H), 

6.82 - 7.07 (m, 1 H), 7.11 - 7.38 (m, 7 H).  

13C NMR (75 MHz, CDCl3), δ ppm: 27.7, 27.9, 28.07, 28.12, 50.2, 51.9, 52.3, 53.8, 55.7, 55.8, 

56.04, 56.14, 70.9, 82.3, 82.8, 112.8, 113.3, 122.2, 122.6, 126.90, 126.98, 128.0, 128.2, 128.5, 

128.6, 135.2, 135.6, 141.7, 143.3, 149.5, 149.6, 172.6, 173.4.  

ESI-MS calculated for [C40H61N5O9 +2H]2+ m/z: 378.73074, found 378.73094. 

tri-tert-butyl 2,2',2''-(10-(2-amino-3-hydroxybenzyl)-1,4,7,10-tetraazacyclododecane-1,4,7-

triyl)triacetate  

(42) 

N N

N N

(H3C)3COOC

COOC(CH3)3

COOC(CH3)3

OHH2N

 

Compound 41 (2 g, 2.6 mmol) was dissolved in MeOH and Pd-C (10%, w/w) catalyst was 

added. The heterogenous mixture was stirred for 6 h under H2 atmosphere (3 atm) in a Parr 

apparatus. The RM was filtered and the solvent was evaporated to get yellow oil. This was used 

for the next reaction without further purification. (1.7 g, 89%).  

1H NMR (300 MHz, CDCl3), δ ppm: 1.37 (s, 5 H), 1.40 - 1.46 (m, 22 H), 2.48 - 2.63 (m, 2 H), 

2.63 - 2.93 (m, 11 H), 2.93 - 3.05 (m, 2 H), 3.10 (s, 2 H), 3.21 - 3.29 (m, 2 H), 3.33 (s, 2 H), 6.40 

- 6.63 (m, 2 H), 6.73 - 6.86 (m, 1 H).  

13C NMR (75 MHz, D2O), δ ppm : 28.3, 28.4, 48.9, 49.2, 52.1, 52.4, 55.9, 58.9, 82.5, 83.1, 

115.9, 119.5, 123.9, 124.2, 133.7, 146.3, 172.8, 173.0.  
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ESI-MS: calculated for [C33H57N5O7 + H]+ m/z 363.43308, found 636.43364. 

2,2',2''-(10-(2-amino-3-hydroxybenzyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetic 

acid  

(43) 

N N

N N

HOOC

COOH
COOH

OHH2N

 

Compound 39 (1.5 g, 2.3 mmol) was dissolved in minimum amount of CH2Cl2 and added 20 ml 

TFA to it. The RM was stirred overnight and then evaporated under vacuum. The crude oil was 

re-dissolved in CH2Cl2 (2*25 ml) and MeOH (2*25 ml) and evaporated until dry. The crude oil 

was purified by RP-HPLC using the method C using MeOH as solvent B to obtain the desired 

product as solid (0.4 g, 36 %).  

1H NMR (300 MHz, D2O), δ ppm: 2.53 - 2.84 (m, 5 H), 2.84 - 3.03 (m, 3 H), 3.03 - 3.19 (m, 4 

H), 3.18 - 3.45 (m, 8 H), 3.45 - 4.07 (m, 4 H), 6.75 (d, 1 H), 6.82 (d, 1 H), 7.11 (dd, 1 H).  

13C NMR (75 MHz, D2O), δ ppm: 47.89, 47.97, 49.8, 49.9, 51.37, 51.44, 53.1, 54.5, 55.5, 111.9, 

114.8, 116.5, 117.7, 120.6, 124.7, 130.1, 150.7, 169.4, 175.4.  

ESI-MS calculated for [C21H33N5O7 + H]- m/z 468.24527 found 468.24541. 
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2,2',2''-(10-(2-(bis(carboxymethyl)amino)-3-(carboxymethoxy)benzyl)-1,4,7,10-

tetraazacyclododecane-1,4,7-triyl)triacetic acid  

(L6) 

N N

N N

HOOC

COOH
COOH

ON
HOOC

HOOC

COOH

 

The final ligand L6 was synthesized from compound 43 (0.1 g, 4.3 mmol) similarly to the 

synthesis of L5 from 37. Desired ligand (L6) was obtained as solid (0.06 g, 44%)  

1H NMR (250 MHz, D2O), δ ppm: 2.97 - 3.55 (m, 22 H), 3.73 (br. s., 2 H), 3.81 - 4.03 (m, 4 H), 

4.68 (s, 2 H), 6.89 (d, J=3.66 Hz, 1 H), 7.05 - 7.22 (m, 2 H).  

13C NMR (62 MHz, D2O), δ ppm: 46.6, 47.2, 47.3, 47.9, 50.9, 51.9, 53.2, 52.3, 63.3, 111.8, 

119.6, 126.8, 136.8, 153.7, 171.4, 174.5.  

ESI-MS calculated for [C27H39N5O13 + H]- m/z 642.2, found 642.3 

ESI-MS of Gd-L6: calculated for [C27H36GdN5O13 - H]- 794.4, found 794.2 [M - H]-, 817.2 [M – 

H + Na]- with appropriate isotopic distribution for Gd3+,  

ESI-MS of Eu-L6 calculated for [C27H35EuN5O13 – H]- 788.1, found 788.1 with appropriate 

isotopic distribution for Eu3+. 

3-(3-(benzyloxy)-2-nitrobenzyloxy)propan-1-ol  

(44) 

O
NO2

O
Ph

HO
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In an oven dried flask, sodium hydride (60% emulsion in oil) (0.8 g, 15.4 mmol) was dispersed 

in 2 ml of THF (dry) under N2. After 10 minutes of stirring under ice, compound 39 (2.0 g, 7.7 

mmol) dissolved in THF was added slowly. The RM was stirred at the same temperature for 20 

minutes. Bromopropanol (1.7 ml, 19.3 mmol) was added dropwise and the mixture was kept for 

stirring at room temperature overnight. Excess of NaH was destroyed with the addition of water 

and the mixture was extracted with CHCl3. The organic layer was collected and dried under 

anhydrous Na2SO4 and evaporated to get yellow oil. The crude oil obtained was purified by 

column chromatography using ethylacetate/hexane as the solvent mixture. The unused reactant 

(compound 39) was recovered (0.5 g, 1.9 mmol) at (0.2:1) while the product was obtained at 

(0.3:1) as yellow solid (1.5 g, 83%).  

1H NMR (300 MHz, CDCl3), δ ppm: 1.53 - 1.64 (m, 2 H), 3.35 (t, J=5.85 Hz, 2 H), 3.48 (t, 

J=5.85 Hz, 2 H), 4.29 (s, 2 H), 4.90 (s, 2 H), 6.78 (t, J=7.38 Hz, 2 H), 7.02 - 7.18 (m, 6 H).  

13C NMR (62 MHz, CDCl3), δ ppm: 31.9, 60.3, 68.7, 68.9, 70.9, 113.7, 120.6, 126.8, 128.0, 

128.5, 130.9, 131.7, 135.4, 140.5, 149.8.  

ESI-HRMS calculated for [C17H19NO5 + Na]+ m/z 340.11554, found 340.11542 

1-(benzyloxy)-3-((3-bromopropoxy)methyl)-2-nitrobenzene  

(45) 

O
NO2

O
Ph

Br

 

Compound 45 was synthesized from compound 44 (3.5 g, 10.9 mmol) similarly to the synthesis 

of compound 40 from compound 39. The product was eluted with ethylacetate/hexane (0.2:1) 

solvent mixture as light yellow oil (3.6 g, 82 %).  
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1H NMR (300 MHz, CDCl3), δ ppm: 2.07 - 2.18 (m, 2 H), 3.51 (t, J=6.49 Hz, 1 H), 3.58 (t, 

J=5.72 Hz, 1 H), 4.56 (s, 2 H), 5.18 (s, 2 H), 7.04 (dd, J=10.55, 8.27 Hz, 2 H), 7.29 - 7.50 (m, 6 

H).  

13C NMR (75 MHz, CDCl3), δ ppm: 30.7, 32.9, 68.7, 69.0, 71.4, 114.1, 121.0, 127.3, 128.5, 

128.9, 131.3, 132.2, 135.8, 150.3.  

ESI-MS: calculated for [C17H18BrNO4 + Na]+ m/z 402.03114, found 402.03124 

tri-tert-butyl 2,2',2''-(10-(3-(3-(benzyloxy)-2-nitrobenzyloxy)propyl)-1,4,7,10-

tetraazacyclododecane-1,4,7-triyl)triacetate  

(46) 

N N

N N

(H3C)3COOC

COOC(CH3)3

COOC(CH3)3

O

O
O2N

Ph

 

Compound 46 was synthesized from compound 45 (3.0 g, 7.9 mmol) similarly to the synthesis of 

compound 41 from compound 40. The product was obtained as yellow solid (3.0 g, 50%) by 

eluting with MeOH/CH2Cl2 (0.05:1) solvent mixture 1H NMR (300 MHz, CDCl3), δ ppm: 1.41 

(s, 27 H), 1.61 - 1.76 (m, 1 H), 1.91 - 2.10 (m, 1 H), 2.19 - 2.55 (m, 4 H), 2.77 (br. s., 6 H), 2.86 

(s, 1 H), 2.94 (s, 1 H), 2.97 - 3.22 (m, 5 H), 3.31 (s, 3 H), 3.41 (s, 4 H), 3.54 (t, J=5.21 Hz, 2 H), 

4.51 (d, J=20.85 Hz, 2 H), 5.16 (s, 2 H), 6.97 (t, J=7.12 Hz, 1 H), 7.05 (dd, J=8.39, 2.80 Hz, 1 

H), 7.29 - 7.42 (m, 6 H).  

13C NMR (100 MHz, CDCl3), δ ppm: 28.2, 28.3, 28.5, 48.2, 50.5, 50.8, 52.3, 53.3, 53.5, 55.7, 

56.1, 57.2, 67.9, 69.2, 69.8, 70.0, 71.48, 71.5, 82.14, 82.8, 83.2, 114.3, 114.7, 121.0, 121.7, 

127.4, 128.6, 129.0, 135.9, 141.1, 150.4, 150.5, 170.4, 170.7, 172.9.  
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ESI-MS: calculated for [C43H67N5O10/2 + H]+ m/z 407.75167 found 407.75186 

tri-tert-butyl2,2',2''-(10-(3-(2-amino-3-hydroxybenzyloxy)propyl)-1,4,7,10-

tetraazacyclododecane-1,4,7-triyl)triacetate  

(47) 

N N

N N

(H3C)3COOC

COOC(CH3)3

COOC(CH3)3

O

OH
H2N

 

Compound 47 (2 g, 95%) was obtained from compound 46 (2.5 g, 3 mmol) similarly to the 

synthesis of compound 42 from compound 41.  

1H NMR (300 MHz, CDCl3), δ ppm: 1.38 (s, 9 H), 1.42 (s, 18 H), 1.53 - 1.67 (m, 2 H), 2.13 - 

2.52 (m, 12 H), 2.53 - 2.86 (m, 6 H), 3.05 (s, 6 H), 3.37 (t, 2 H), 4.43 (s, 2 H), 6.44 - 6.55 (m, 2 

H), 7.10 (s, 1 H). 

13C NMR (75 MHz, CDCl3), δ ppm: 27.7, 27.8, 49.9, 50.1, 51.4, 55.6, 56.3, 67.9, 71.9, 82.3, 

82.7, 115.6, 117.4, 120.8, 122.8, 134.5, 144.5, 172.4, 173.3.  

ESI-HRMS calculated for [C36H63N5O8 + H]+ m/z 694.47494, found 694.47654 

2,2',2''-(10-(3-(2-amino-3-hydroxybenzyloxy)propyl)-1,4,7,10-tetraazacyclododecane-1,4,7-

triyl)triacetic acid  

(48) 

N N

N N

HOOC

COOH
COOH

O

OH
H2N
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Compound 48 (0.8, 53%) was obtained from compound 47 (2 g, 2.9 mmol) similarly to the 

synthesis of compound 43 from compound 42.  

1H NMR (250 MHz, D2O), δ ppm: 1.82 (br. s., 2 H), 3.08 (s, 18 H), 3.28 - 3.51 (m, 6 H), 3.58 

(br. s., 2 H), 4.47 (s, 2 H), 6.74 (br. s., 1 H), 6.85 (br. s., 1 H), 6.98 (br. s., 1 H).  

13C NMR (62 MHz, D2O), δ ppm: 24.1, 49.4, 49.7, 50.9, 51.5, 55.1, 55.8, 67.9, 70.0, 115.2, 

116.5, 118.2, 121.6, 121.9, 127.2, 130.2, 149.0, 162.7, 163.1.  

ESI-MS calculated for [C24H39N4O8 + H]+ m/z 526.28714 found 526.28604 

2,2',2''-(10-(3-(2-(bis(carboxymethyl)amino)-3-(carboxymethoxy)benzyloxy)propyl)-

1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetic acid  

(L7) 

N N

N N

HOOC

COOH
COOH

O

O
N

HOOC
COOH

COOH

 

The ligand L7 (0.058 g, 44%) was obtained from compound 48 (0.1 g, 0.19 mmol) similarly to 

the synthesis of ligand L6 from compound 43. 

1H NMR (250 MHz, D2O), δ ppm: 1.89 (br. s., 2 H), 2.80 - 2.91 (m, 4 H), 2.91 - 3.02 (m, 4 H), 

3.10 - 3.22 (m, 6 H), 3.26 (br. s., 4 H), 3.31 (br. s., 2 H), 3.36 - 3.47 (m, 2 H), 3.48 - 3.57 (m, 2 

H), 3.70 (s, 2 H), 4.01 (br. s., 4 H), 4.63 (s, 2 H), 4.65 (s, 2 H), 6.81 (t, J=8.01 Hz, 2 H), 7.13 (t, 

J=8.01 Hz, 1 H).  

13C NMR (62 MHz, D2O), δ ppm: 25.3, 50.86, 50.97, 52.2, 54.3, 55.9, 58.7, 62.0, 68.1, 70.4, 

73.1, 116.3, 125.1, 132.1, 135.6, 137.3, 155.9, 172.45, 175.8, 176.7, 176.8.  
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ESI-MS: calculated for [C30H45N5O14 + H]+ m/z: 700.3, found 700.2 

ESI-MS of Gd-L7: calculated for [C30H42GdN5O14 - H]- m/z: 852.6, found 853.2 [M – H]-, 875.1 

[M – H + Na]- 

ESI-MS of Eu-L7: calculated for [C30H42EuN5O14 - H]- m/z: 847.2, found 846.2 [M – H]-, 870.2 

[M – H +Na]- 847.2. 

3-((2-methoxyethoxy)methoxy)-2-nitrobenzaldehyde 

(49) 

NO2
OMEM

O

 

3-methoxy-2-nitro benzaldehyde (1.0 g, 5.5 mmol) was dissolved in CH2Cl2; and 

borontribromide (1.2 ml, 12.3 mmol) was added dropwise under dry ice. After the complete 

addition, the RM was stirred at the same temperature for 30 min. MeOH was added slowly to 

quench the reaction. The reaction mixture was removed from cooling bath and evaporated under 

vacuum. The crude product was re-dissolved in CH2Cl2 and DIEA (2.4 ml, 13.7 mmol) was 

added. Beta-methoxyethoxymethyl ether (1.2 ml, 11 mmol) was then added slowly to it. The 

reaction mixture was stirred for two hours. It was then evaporated and purified by column 

chromatography using ethylacetate/hexane (0.1:1) as the solvent mixture to obtain the pure 

product as oil (1.4 g, 98%). 

1H NMR (300 MHz, CDCl3), δ ppm: 3.29 (s, 3 H), 3.48 - 3.52 (m, 2 H), 3.75 - 3.82 (m, 2 H), 

5.32 (s, 2 H), 7.49 - 7.53 (m, 1 H), 7.56 - 7.60 (m, 2 H). 

13C NMR (75 MHz, CDCl3), δ ppm: 58.7, 68.3, 71.1, 94.1, 122.1, 123.7, 127.8, 131.4, 148.5, 

186.8.  

ESI-MS: calculated for [C11H13NO6 + Na]+ m/z 278.1, found 278.0 
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(3-((2-methoxyethoxy)methoxy)-2-nitrophenyl)methanol  

(50) 

NO2
OMEM

OH

 

Compound 49 (1.4 g, 5.4 mmol) was dissolved in minimum amount of CH2Cl2 and added 25 ml 

of MeOH (dry) to it. This was kept under ice and sodium borohydride (0.1 g, 2.7 mmol) was 

added slowly in small lots. After complete addition, the RM was stirred for 1 h. 2 ml of saturated 

NaHCO3 was added to quench the reaction. The solvent was evaporated, redissolved in CH2Cl2 

and washed with water and brine. The organic layer collected was dried under anhydrous 

Na2SO4 and evaporated under vacuum. The oil obtained was purified by column chromatography 

using ethylacetate/hexane (0.1-0.2:1) as the solvent mixture (1.21 g, 79%). 

1H NMR (300 MHz, CDCl3), δ ppm: 3.31 (s, 3 H), 3.45 - 3.55 (m, 2 H), 3.71 - 3.83 (m, 2 H), 

4.59 (s, 2 H), 5.28 (s, 2 H), 7.13 (d, J=7.36 Hz, 1 H), 7.22 (d, J=7.93 Hz, 1 H), 7.30 - 7.43 (m, 1 

H).  

ESI-MS calculated for [C11H15NO6 + Na]+ m/z: 280.07916, found 280.07924 

2,2',2''-(10-(3-(3-hydroxy-2-nitrobenzyloxy)propyl)-1,4,7,10-tetraazacyclododecane-1,4,7-

triyl)triacetic acid  

(51) 

N N

N N

O

HO

O OH

O

OH

NO2

OHO
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Compound 43 (1 g, 1.2 mmol) was dissolved in minimum amount of CH2Cl2 and 15 ml of TFA 

added to it. The RM was stirred overnight. TFA was evaporated under vacuum and the obtained 

residue was re-dissolved in CH2Cl2 (2*15 ml) and MeOH (2*15 ml) and evaporated to obtain the 

product in quantitative yields. This was used as such for the next reaction without further 

purification.  

1H NMR (300 MHz, D2O), δ ppm: 1.63 (br. s., 2 H), 2.71 - 3.03 (m, 14 H), 3.03 - 3.16 (m, 4 H), 

3.16 - 3.34 (m, 6 H), 3.53 (s, 2 H), 4.21 (s, 2 H), 6.60 (d, J=7.36 Hz, 1 H), 6.79 (d, J=7.93 Hz, 1 

H), 7.07 (t, J=7.74 Hz, 1 H).  

13C NMR (100 MHz, D2O), δ ppm: 22.8, 48.7, 49.3, 50.8, 51.2, 54.3, 55.7, 67.6, 69.0, 117.8, 

120.5, 131.4, 132.5, 138.0, 149.1, 170.26, 174.1.  

ESI-MS calculated for [C24H37N5O10 + H]+ m/z: 556.2, found 556.2 

2-bromo-1-morpholinoethanone  

(52) 

O
N

O

Br

 

Morpholine (dry) (3.5 ml, 40 mmol) was dissolved in 70 ml diethyether (dry) with triethyamine 

(11.0 ml, 80 mmol). After 1 h, the RM was cooled down to 0 °C and bromoacetylbromide (5.2 

ml, 60 mmol) was added dropwise. After complete addition, the RM was stirred for another 2 h 

at 0 °C. The salts formed were filtered out and the residue was washed with diethylether and 

concentrated under vacuum. The diethylether layer was collected, dried under saturated Na2SO4 

and evaporated to brown oil. This was purified by column chromatography using 

ethylacetate/CH2Cl2 (0.2:1) as the solvent mixture to obtain the pure product (4.0 g, 48%) as oil. 

1H NMR (300 MHz, CDCl3), δ ppm: 3.50 (t, J=5.10, 4.53 Hz, 2 H), 3.58 - 3.64 (m, 2 H), 3.64 - 

3.75 (m, 4 H), 3.84 (s, 2 H). 
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13C NMR (75 MHz, CDCl3), δ ppm: 25.6, 42.6, 47.3, 66.5, 66.8, 165.7. 

ESI-MS: calculated for [C6H10BrNO2 + H]+ m/z: 207.99677, found 207.99663 

triethyl 2,2',2''-(1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetate  

(53) 

N HN

N N

EtOOC

COOEt
COOEt

 

Cyclen (5.0 g, 29 mmol) was dissolved in 200 ml of CHCl3 and NaHCO3 (5.3 g, 63.8 mmol) was 

added in small lots to it with stirring. Ethyl bromoacetate (7.0 ml, 63.8 mmol) dissolved in 100 

ml CHCl3 was added to it dropwise at 0 °C. The reaction mixture was stirred for three days. It 

was then filtered, concentrated under vacuum and washed with water (5*50 ml). The organic 

layer collected was dried under anhydrous Na2SO4 and evaporated under vacuum to obtain the 

oily residue. This was purified by column chromatography using MeOH/CH2Cl2 (0.02-0.05:1) as 

the solvent mixture. The product (53) (4.0 g, 35 %) was eluted with approximately 25% tetra 

substituted derivative (1.3 g) as the side product. 

1H NMR (300 MHz, CDCl3), δ ppm: 1.10 (t, J=7.18 Hz, 12 H), 2.77 (s, 15 H), 2.95 (s, 5 H), 

3.25 (s, 2 H), 3.34 (s, 5 H), 3.99 (q, J=7.05 Hz, 8 H) (integration of protons being reported with 

25% of side product). 

13C NMR (75 MHz, CDCl3), δ ppm: 13.9, 14.09, 14.03, 47.1, 48.2, 48.9, 51.0, 51.0, 53.6, 54.9, 

56.8, 60.4, 61.2, 170.2, 171.0, 176.4. 

ESI-MS calculated for [C20H38N4O6 + H]+ m/z: 431.28641, found 431.58652. 
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Triethyl 2,2',2''-(10-(3-(3-(benzyloxy)-2-nitrobenzyloxy)propyl)-1,4,7,10-

tetraazacyclododecane-1,4,7-triyl)triacetate  

(54) 

N N

N N

EtOOC

COOEt
COOEt

NO2

O PhO

 

Compound 53 (3.0 g, 6.9 mmol) was taken up in 20 ml DMF (dry) with K2CO3 (2.4 g, 17.4 

mmol). This was heated at 60 °C for 1 h. The RM was brought to RT and compound 45 (3.0 g, 

7.8 mmol) dissolved in DMF was added dropwise to it. The contents were heated at 60 °C 

overnight. The RM was then filtered and the solvent was evaporated under vacuum. The residue 

obtained was dissolved in CHCl3 and washed with water. The organic layer collected was dried 

under anhyd. Na2SO4 and evaporated under vacuum. This was purified by column 

chromatography using MeOH/CH2Cl2 (0.01-0.05:1) as the solvent mixture. The product (3.0 g, 

52 %) was obtained with approximately 13% (0.4 g) of the tetra substituted side product. 

1H NMR (300 MHz, CDCl3), δ ppm: 1.10 - 1.20 (m, 10 H), 1.49 - 1.72 (m, 2 H), 1.86 - 2.01 (m, 

1 H), 2.14 - 2.50 (m, 8 H), 2.57 - 2.95 (m, 9 H), 3.09 (s, 2 H), 3.19 (s, 3 H), 3.29 - 3.43 (m, 3 H), 

3.95 - 4.20 (m, 7 H), 4.42 (s, 2 H), 5.10 (s, 2 H), 6.89 (d, J=7.74 Hz, 1 H), 7.00 (d, J=8.50 Hz, 1 

H), 7.18 - 7.35 (m, 6 H). (The integration of protons being reported with 13% of side product) 

13C NMR (75 MHz, D2O), δ ppm: 13.96, 14.02, 25.9, 50.1, 50.3, 50.4, 50.7, 51.0, 51.3, 51.9, 

55.1, 55.2, 55.6, 55.8, 61.5, 61.7, 68.7, 69.9, 71.0, 113.9, 120.5, 126.9, 128.1, 128.6, 131.2, 

131.8, 135.5, 149.9, 173.4, 174.0.  

ESI-MS calculated for [C37H55N5O10 + H]+ m/z: 730.4, found 730.4 
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triethyl 2,2',2''-(10-(3-(3-hydroxy-2-nitrobenzyloxy)propyl)-1,4,7,10-

tetraazacyclododecane-1,4,7-triyl)triacetate  

(55) 

N N

N N

EtOOC

COOEt
COOEt

NO2

OH
O

 

Compound 54 (2 g, 2.7 mmol) was dissolved in minimum amount of CH2Cl2 and added 20 ml of 

TFA to it. This was stirred overnight at room temperature. The TFA was evaporated and the 

residue obtained was suspended in water. The pH of water layer was increased to 7 and CHCl3 

added to it. The contents were washed with water and brine. The organic layer collected was 

dried under anhyd. Na2SO4 and evaporated under vacuum. This was purified by column 

chromatography using MeOH/CH2Cl2 (0.02-0.05:1) as the solvent mixture to obtain the product 

(0.92 g, 54%) with approximately 25% of the tetrasubstituted side product (0.29 g).  

1H NMR (300 MHz, CDCl3), δ ppm: 0.76 - 0.91 (m, 2 H), 1.17 - 1.25 (m, 12 H), 1.56 - 1.72 (m, 

2 H), 2.02 (s, 1 H), 2.17 - 2.54 (m, 10 H), 2.55 - 2.84 (m, 6 H), 3.10 (s, 2 H), 3.22 (s, 4 H), 3.35 - 

3.49 (m, 3 H,) 3.97 - 4.29 (m, 8 H), 4.02 - 4.22 (m, 6 H), 4.49 (s, 2 H), 6.74 (d, J=7.37 Hz, 1 H), 

7.21 (t, J=8.12, 7.74 Hz, 1 H), 7.33 (d, J=8.12 Hz, 1 H). (Integration of protons being reported 

with 25 % of the side product). 

13C NMR (75 MHz, CDCl3), δ ppm: 14.0, 25.5, 29.5, 50.0, 51.0, 53, 55.5, 56, 61.5, 61.8, 69.5, 

118.0, 119.0, 131.5, 132.0, 138.0, 152.0, 173.5, 174.0.  

ESI-MS calculated for [C30H49N5O10 +H]+ m/z: 640.35505, found 640.35522. 
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triethyl 2,2',2''-(10-(3-(3-(2-morpholino-2-oxoethoxy)-2-nitrobenzyloxy)propyl)-1,4,7,10-

tetraazacyclododecane-1,4,7-triyl)triacetate  

(56) 

N N

N N

EtOOC

COOEt
COOEt

NO2

O
O O

N

O

 

Compound 55 (0.9 g, 1.4 mmol) and K2CO3 (3.5 mmol, 0.48 g) was taken up in 10 ml DMF 

(dry) and heated for 30 min at 75 °C. The RM was cooled to RT and compound 52 (0.57 g, 2.8 

mmol) dissolved in DMF was added to it. The contents were again heated at 75 °C for 1 h. It was 

then filtered and evaporated under vacuum. The residue obtained was re-dissolved in CHCl3 and 

washed with water and brine. The organic layer collected was dried under anhyd. Na2SO4 and 

evaporated under vacuum. It was then purified by column chromatography using MeOH/CH2Cl2 

(0.08-0.1:1) as the solvent mixture to obtain the pure product (0.5 g, 50 %). 

1H NMR (300 MHz, CDCl3), δ ppm: 1.04 (t, J=7.18 Hz, 9 H), 1.40 - 1.59 (m, 2 H), 1.99 - 2.42 

(m, 11 H),, 2.43 - 2.77 (m, 6 H), 2.89 - 3.18 (m, 6 H), 3.18 - 3.30 (m, 3 H), 3.31 - 3.41 (m, 4 H), 

3.41 - 3.51 (m, 4 H), 3.83 - 4.10 (m, 6 H), 4.30 (s, 2 H), 4.66 (s, 2 H), 6.81 (d, J=7.55 Hz, 1 H), 

6.95 (d, J=8.31 Hz, 2 H), 7.15 - 7.28 (m, 1 H).  

13C NMR (75 MHz, CDCl3), δ ppm: 13.9, 25.7, 42.1, 45.5, 49.8, 50.6, 50.8, 51.8, 55.0, 55.6, 

61.4, 61.6, 66.4, 66.6, 67.9, 68.5, 69.5, 113.5, 120.9, 131.3, 131.8, 140.0, 149.2, 165.1, 173.3, 

173.8  

ESI-MS: calculated for [C36H58N6O12+H]+ m/z: 767.41855, found 767.41857 
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triethyl 2,2',2''-(10-(3-(2-amino-3-(2-morpholino-2-oxoethoxy)benzyloxy)propyl)-1,4,7,10-

tetraazacyclododecane-1,4,7-triyl)triacetate  

(57) 

N N

N N

EtOOC

COOEt
COOEt

NH2

O
O O

N

O

 

Compound 56 (0.47 g, 0.6 mmol) was dissolved in MeOH with Pd-C (10%, w/w) as the catalyst. 

Ammonium formate (0.035 g, 0.6 mmol) was added to it and the mixture was stirred in a Parr 

apparatus at 1 atm H2 for 2 h. It was then filtered and the solvent was evaporated under vacuum 

to obtain the product (0.4 g, 89%). This was used as such for the next reaction without further 

purifications.  

1H NMR (300 MHz, CDCl3), δ ppm: 0.61 - 0.82 (m, 2 H), 1.13 - 1.13 (m, 9 H), 1.82 (br. s., 2 

H), 2.15 - 2.44 (m, 4 H), 2.52 - 2.67 (m, 8 H), 2.76 - 2.92 (m, 4 H), 3.18 - 3.28 (m, 9 H), 3.49 - 

3.58 (m, 8 H), 3.95 - 4.07 (m, 6 H), 4.35 (s, 2 H), 4.60 (s, 2 H), 6.46 (t, J=7.93 Hz, 1 H), 6.58 - 

6.68 (m, 2 H).  

13C NMR (75 MHz, D2O), δ ppm: 13.7, 29.2, 41.8, 43.6, 45.0, 47.0, 49.5, 50.3, 51.3, 51.9, 52.7, 

54.3, 54.6, 55.5, 60.4, 65.8, 66.2, 67.5, 71.0, 112.4, 116.4, 136.2, 145.3, 165.0, 166.4.  

ESI-MS calculated for [C36H60N6O10 +H]+ m/z: 737.4, found 737.5 
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2,2',2''-(10-(3-((3-oxo-3,4-dihydro-2H-benzo[b][1,4]oxazin-5-yl)methoxy)propyl)-1,4,7,10-

tetraazacyclododecane-1,4,7-triyl)triacetic acid  

(58) 

N N

N N

HOOC

COOH
COOH

O
HN

O

O

 

Compound 57 (0.4 g, 0.5 mmol) was dissolved in 5 ml EtOH. KOH (0.1 g, 1.8 mmol) dissolved 

in 3 ml of H2O was added at 0 °C. The RM was stirred for 1 h at RT. It was then evaporated and 

purified by RP-HPLC (method C) to obtain the pure product as solid (0.14 g, 50%). 

1H NMR (300 MHz, D2O), δ ppm: 1.91 (br. s., 2 H), 2.95 - 3.23 (m, 14 H), 3.23 - 3.32 (m, 4 H), 

3.42 (br. s., 2 H), 3.47 (br. s., 2 H), 3.51 - 3.58 (m, 2 H), 3.68 (s, 2 H), 4.47 (s, 4 H), 6.91 (s, 3 

H).  

13C NMR (75 MHz, D2O), δ ppm: 23.6, 49.1, 49.3, 49.4, 50.5, 51.2, 55.0, 55.4, 66.4, 67.3, 68.9, 

116.7, 123.9, 124.1, 124.4, 124.6, 143.6, 167.5, 170.9, 174.1.  

ESI-MS calculated for [C26H39N5O9 + H]+ m/z: 566.3, found 566.2 

3-(2-amino-3-(benzyloxy)benzyloxy)propan-1-ol  

(59) 

NH2

OHO
O

Ph  

Compound 44 (1.4 g, 4.4 mmol) was taken in 21.0 ml acetic acid. To this iron powder (70 mesh) 

was added and the contents were vigorously stirred at 50 °C for 15 min. The yellow color of the 

heterogeneous mixture turned to dark brown. This was then filtered through celite pad and 
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washed with ethylacetate. The solvent was evaporated and dissolved in ethylacetate and 

extracted with water. The organic layer collected was dried under anhydrous Na2SO4 and 

evaporated under vacuum. The residue obtained was purified by column chromatography using 

ethylacetate/hexane (0.2:1) as the solvent mixture to obtain the product as solid (1.0 g, 79%). 

1H NMR (300 MHz, CDCl3), δ ppm: 1.78 - 1.87 (m, 2 H), 3.58 (t, J=6.04 Hz, 2 H), 3.70 (t, 

J=6.04 Hz, 2 H), 4.55 (s, 2 H), 5.07 (s, 2 H), 6.64 - 6.72 (m, 1 H), 6.73 - 6.80 (m, 1 H), 6.86 (d, 

J=7.93 Hz, 1 H), 7.34 - 7.48 (m, 5 H).  

13C NMR (75 MHz, CDCl3), δ ppm: 31.9, 60.1, 67.3, 70.3, 71.5, 111.7, 117.0, 122.1, 127.2, 

127.7, 128.3, 135.6, 136.8, 146.3.  

di-tert-butyl 2,2'-(2-(benzyloxy)-6-((3-hydroxypropoxy)methyl)phenylazanediyl)diacetate  

(60) 

N

OHO
O

COOt-Bu

t-BuOOC

Ph

 

Compound 59 (3.7 g, 12.9 mmol), proton sponge (11.0 g, 51.6 mmol) and KI (0.2 g, 1.3 mmol) 

were taken up in 70 ml MeCN (dry) and refluxed for 3 h. The RM was then cooled down and 

tert-butyl bromoacetate (7.5 ml, 51.6 mmol) was added to it. The contents were refluxed for 5 

days. The RM was then filtered and evaporated. The residue obtained was re-dissolved in toluene 

and filtered again. The evaporated residue was then purified by column chromatography using 

ethylacetate/hexane (0.3:1) as the solvent mixture to obtain the product (3.6 g, 54%) co-eluted 

with proton sponge (1.0 g). Some of the unused reactant was also recovered (0.7 g, 19%) at 

ethyacetate/hexane (0.4-0.5:1) solvent mixture with traces of co-eluted proton sponge. 
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1H NMR (300 MHz, CDCl3), δ ppm: 1.41 (s, 18 H), 1.82 - 1.95 (m, 2 H), 3.77 (s, 8 H), 4.93 (s, 2 

H), 5.10 (s, 2 H), 6.87 (dd, J=7.93, 1.51 Hz, 1 H), 7.04 - 7.17 (m, 2 H), 7.35 - 7.52 (m, 5 H). 

13C NMR (75 MHz, CDCl3), δ ppm: 28.4, 32.6, 44.7, 57.9, 62.2, 69.9, 70.3, 70.6, 80.9, 112.2, 

121.2, 125.8, 126.9, 127.7, 128.3, 128.9, 137.4, 137.5, 139.8, 156.9, 170.8. 

ESI-MS: calculated for [C29H41NO7 + Na]+ m/z: 538.29558, found 538.29557 

di-tert-butyl 2,2'-(2-(benzyloxy)-6-((3-bromopropoxy)methyl)phenylazanediyl)diacetate 

(61) 

N

OBr
O

Ph

COOt-Bu

t-BuOOC

 

Compound 60 (3.0 g, 5.8 mmol) and PPh3 (3.0 g, 11.6 mmol) was dissolved in CH2Cl2 and 

cooled to 0 °C. CBr4 (4.0 g, 12.2 mmol) was added in small lots. After complete addition, the 

RM was stirred at RT for 2 h. The solvent was evaporated and the residue obtained was purified 

by column chromatography using ethylacetate/hexane (0.05:1) as the solvent mixture to obtain 

the pure product (3.0 g, 88%).  

1H NMR (300 MHz, CDCl3), δ ppm: 1.30 (s, 18 H), 1.99 - 2.11 (m, 2 H), 3.43 (t, J=6.80 Hz, 2 

H), 3.56 (t, J=5.85 Hz, 2 H), 3.70 (s, 4 H), 4.79 (s, 2 H), 4.97 (s, 2 H), 6.71 - 6.77 (m, 1 H), 6.93 

- 7.05 (m, 2 H), 7.18 - 7.33 (m, 3 H), 7.33 - 7.40 (m, 2 H).  

13C NMR (75 MHz, CDCl3), δ ppm: 27.5, 30.2, 32.6, 56.9, 67.4, 69.2, 69.7, 79.8, 111.3, 120.3, 

125.9, 126.8, 127.3, 128.0, 136.4, 138.9, 155.9, 169.8. 

ESI-MS: calculated for [C29H40BrNO6 + Na]+ m/z: 600.19312 found, 600.19276 

 

 



Chapter 10 
 

224 
 

tri-tert-butyl 2,2',2''-(10-(3-(3-(benzyloxy)-2-(bis(2-tert-butoxy-2-

oxoethyl)amino)benzyloxy)propyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetate  

(62) 

N N

N N

t-BuOOC

COOt-Bu
COOt-Bu

N
O

O
Ph

COOt-Bu

COOt-Bu

 

Tris-tert-Bu-DO3A (2.0 g, 4.0 mmol) and K2CO3 (1.8 g, 13 mmol) was taken in 12 ml DMF 

(dry) and heated at 60 °C for 1 h. The reaction mixture was brought to room temperature and 

compound 61 (3.0 g, 5.2 mmol) dissolved in DMF was added to it. The contents were kept for 

heating at 60 °C overnight. The reaction mixture was then filtered and evaporated under vacuum. 

The residue was re-dissolved in CHCl3 and washed with water. The organic layer was dried 

under anhydrous. Na2SO4 and evaporated to the yellow oil. This was purified by column 

chromatography using MeOH/CH2Cl2 (0.05:1) as the solvent mixture to obtain the pure product 

as light yellow fluffy solid (2.2 g, 55%).  

1H NMR (300 MHz, CDCl3), δ ppm: 1.30 (s, 18 H), 1.33 - 1.42 (m, 27 H), 1.62 - 1.75 (m, 2 H), 

2.14 - 2.51 (m, 11 H), 2.61 - 2.94 (m, 7 H), 2.94 - 3.20 (m, 6 H), 3.45 (t, J=5.85 Hz, 2 H), 3.68 

(s, 4 H), 4.77 (s, 2 H), 5.01 (s, 2 H), 6.77 (dd, J=7.93 Hz, 1 H), 6.90 - 6.96 (m, 1 H), 6.99 - 7.06 

(m, 1 H), 7.23 - 7.42 (m, 5 H).  

13C NMR (75 MHz, CDCl3), δ ppm: 28.0, 28.17, 28.20, 50.5, 52.0, 53.7, 56.0, 56.7, 57.7, 69.1, 

69.7, 70.4, 80.6, 82.6, 82.9, 111.7, 120.3, 126.7, 127.5, 128.1, 128.8, 136.9, 137.2, 139.9, 156.6, 

170.5, 172.9, 173.7.  

ESI-MS: calculated for [C55H89N5O12 + 2H]2+ m/z: 506.83266, found 506.83263 
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tri-tert-butyl 2,2',2''-(10-(3-(2-(bis(2-tert-butoxy-2-oxoethyl)amino)-3-

hydroxybenzyloxy)propyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetate  

(63) 

N N

N N

t-BuOOC

COOt-Bu
COOt-Bu

N
OH

O

COOt-Bu

COOt-Bu

 

Compound 62 (2.2 g, 2.1 mmol) was dissolved in 10 ml ethanol (dry) with suspended Pd(OH)2 

(50% wet, 10% w/w) and stirred in a Parr apparatus under H2 atmosphere (3 atm) for 5 h. The 

RM was then filtered and the solvent was evaporated to obtain the product as yellow solid (95%, 

1.8 g).  

1H NMR (300 MHz, CDCl3), δ ppm: 1.20 (br. s., 45 H), 1.53 (br. s., 1 H), 1.84 (br. s., 1 H), 2.00 

- 2.37 (m, 5 H), 2.43 - 2.72 (m, 8 H), 2.75 - 3.02 (m, 6 H), 3.07 (s, 2 H), 3.20 - 3.35 (m, 4 H), 

3.37 - 3.66 (m, 7 H), 4.31 - 4.46 (m, 2 H), 6.55 - 6.70 (m, 2 H), 6.77 - 6.92 (m, 1 H).  

13C NMR (75 MHz, CDCl3), δ ppm: 27.6, 27.7, 27.8, 27.9, 31.0, 47.5, 49.8, 50.1, 50.4, 51.9, 

52.3, 52.7, 54.9, 55.5, 56.1, 56.2, 56.3, 56.7, 67.0, 67.6, 68.9, 69.4, 69.5, 81.4, 81.9, 82.2, 82.5, 

116.4, 119.9, 120.1, 127.3, 127.4, 135.3, 137.8, 138.0, 155.0, 169.7, 170.1, 172.3, 172.5, 173.2.  

ESI-MS: calculated for [C48H83N5O12 + 2H]2+ m/z: 461.80919, found 461.80924  
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tri-tert-butyl 2,2',2''-(10-(3-(2-(bis(2-tert-butoxy-2-oxoethyl)amino)-3-(2-morpholino-2-

oxoethoxy)benzyloxy)propyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetate  

(64) 

N N

N N

t-BuOOC

COOt-Bu
COOt-Bu

N
O

O

COOt-Bu

COOt-Bu
O

N

O

 

NaH (0.02 g, 0.54 mmol, 60% emulsion in oil) was suspended in freshly distilled THF (5 ml) 

and cooled down to -5° C. After 15 min, compound 63 (0.5 g, 0.54 mmol) dissolved in minimum 

amount of THF (dry) was added. The reaction mixture was stirred for 20 minutes and compound 

52 (0.45 g, 2.2 mmol) was added to it while the temperature was maintained at -5 °C. After 5 

min NaH (0.02 g, 0.54 mmol) was again added and the RM was finally stirred at the same 

temperature for another 30 min. The completion of reaction was monitored by ESI-MS. The 

reaction was quenched by addition of water. The product was extracted in CHCl3 from the 

reaction mixture, dried under anhydrous Na2SO4 and evaporated to yellow oil. This was purified 

by column chromatography using MeOH/CH2Cl2 (0.08-0.1:1) as the solvent mixture to obtain 

the product (0.35g, 62%). 

1H NMR (300 MHz, CDCl3), δ ppm: 1.32 (s, 18 H), 1.34 - 1.42 (m, 27 H), 1.61 - 1.75 (m, 2 H), 

2.18 - 2.50 (m, 9 H), 2.65 - 2.91 (m, 5 H), 2.97 - 3.18 (m, 5 H), 3.40 - 3.47 (m, 2 H), 3.48 - 3.53 

(m, 2 H), 3.54 - 3.68 (m, 11 H), 3.72 (s, 4 H), 4.71 (s, 2 H), 4.76 (s, 2 H), 6.80 (d, J=7.93 Hz, 1 

H), 6.95 (d, J=7.55 Hz, 1 H), 7.03 (t, J=7.74 Hz, 1 H).  
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13C NMR (75 MHz, CDCl3), δ ppm: 26.7, 27.7, 27.87, 27.98, 42.1, 45.5, 50.2, 50.7, 51.8, 53.4, 

55.7, 56.4, 57.1, 66.6, 66.7, 67.4, 68.8, 69.3, 80.3, 82.3, 82.7, 112.0, 120.9, 126.3, 136.9, 139.2, 

155.6, 166.5, 170.2, 172.5.  

ESI-MS calculated for [C54H92N6O14+Na]+ m/z: 1071.7 found 1071.8 

2,2',2''-(10-(3-(2-(bis(carboxymethyl)amino)-3-(2-morpholino-2-

oxoethoxy)benzyloxy)propyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetic acid  

(L8) 

N N

N N

HOOC

COOH
COOH

N
O

O

COOH

COOH
O

N

O

 

Compound 61 (0.3 g, 0.28 mmol) was dissolved in minimum amount of CH2Cl2 and 15 ml of 

TFA added to it. The RM was stirred at room temperature overnight. TFA was evaporated under 

vacuum and the residue obtained was purified by RP-HPLC (method C) to obtain the pure 

product (0.14 g, 65 %). 

1H NMR (300 MHz, D2O), δ ppm: 1.88 (br. s., 2 H), 2.77 - 3.03 (m, 8 H), 3.12 - 3.19 (m, 4 H), 

3.20 - 3.33 (m, 6 H), 3.34 - 3.44 (m, 6 H), 3.46 - 3.63 (m, 8 H), 3.67 (s, 2 H), 3.94 (s, 4 H), 4.62 

(s, 2 H), 4.88 (s, 2 H), 6.81 (dd, J=7.46, 4.44 Hz, 2 H), 7.12 (t, J=7.84 Hz, 1 H). 

13C NMR (75 MHz, D2O), δ ppm: 21.9, 41.3, 44.0, 47.6, 48.8, 50.4, 50.9, 52.6, 55.3, 58.8, 64.8, 

65.2, 65.4, 66.9, 69.6, 112.9, 121.9, 128.4, 133.1, 134.3, 152.9, 165.4, 169.1, 173.4, 173.9.  

ESI-MS calculated for [C34H52H6O14 - H]2- m/z: 383.16980, found 383.16981 
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ESI-MS of GdL8: calculated for [C34H49GdN6O14 + H]+ 922.2 found 922.3 with isostopic 

distribution. 

ethyl 2-(2-bromoethoxy)acetate  

(65) 

Br
O

O

O

 

Bromoethanol (2.1 ml, 30.2 mmol) was taken up in CH2Cl2 (50 ml). Rhodium (II) acetate dimer 

powder (0.15 g, 0.33 mmol) was under ice. After 5 min, the ice bath was removed and 

ethyldiazoacetate (3.5 ml, 33.2 mmol) dissolved in 25 ml of CH2Cl2 was added dropwise to it. 

After complete addition, the RM was stirred for 2 h. It was then filtered through celite pad and 

evaporated under vacuum. The residue obtained was purified by column chromatography using 

ethylacetate/hexane (0.05-0.1:1) to get the product as transparent oil (4.7 g, 75%). 

1H NMR (300 MHz, CDCl3), δ ppm: 1.24 (t, J=7.18 Hz, 3 H), 3.47 (t, J=6.23 Hz, 2 H), 3.85 (t, 

J=6.23 Hz, 2 H), 4.10 (s, 2 H), 4.18 (q, J=14.16, 7.18 Hz, 2 H).  

13C NMR (75 MHz, CDCl3), δ ppm: 14.1, 29.9, 60.9, 68.4, 71.4, 170.0.  

ESI-MS: calculated for [C6H11BrO3 + Na]+ m/z: 232.97838, found 232.97834 

 

 

 

 

 

 



Chapter 10 
 

229 
 

2,2',2''-(10-(3-(2-(bis(carboxymethyl)amino)-3-(2-

(carboxymethoxy)ethoxy)benzyloxy)propyl)-1,4,7,10-tetraazacyclododecane-1,4,7-

triyl)triacetic acid  

(L9) 

N N

N N

HOOC

COOH
COOH

N
O

O O

COOHCOOHHOOC

 

NaH (0.012 g, 0.3 mmol, 60% emulsion in oil) was taken in freshly distilled THF (5 ml) and 

cooled down to - 5° C. After 15 min, compound 63 (0.28 g, 0.3 mmol) dissolved in minimum 

amount of THF (dry) was added to it. The reaction mixture was stirred for 20 minutes and 

compound 65 (0.45 g, 1.2 mmol) was added to it while the temperature was maintained at -5 °C. 

After 5 min, NaH (0.02 g, 0.54 mmol) was again added to it and the reaction mixture was finally 

stirred at the same temperature for another hour. The completion of reaction was monitored by 

ESI-MS. The reaction was quenched by addition of water. This was then evaporated and the 

contents were re-dissolved in small amount of CH2Cl2 and cooled down under ice-salt bath. HBr-

AcOH (5 ml) was added to it and the reaction mixture was stirred at RT for 5 h. The acid was 

evaporated under vacuum. The residue obtained was re-dissolved in water and pH was increased 

to 7 by 1 N NaOH. This was then purified by RP-HPLC (method C) to obtain the product as 

solid (0.057 g, 25%). 

1H NMR (300 MHz, D2O), δ ppm: 1.94 (br. s., 2 H), 2.96 (s, 8 H), 3.13 - 3.26 (m, 6 H), 3.26 - 

3.33 (m, 4 H), 3.34 - 3.40 (m, 2 H), 3.40 - 3.48 (m, 2 H), 3.54 - 3.63 (m, 3 H), 3.73 (br. s., 2 H), 



Chapter 10 
 

230 
 

3.86 - 3.93 (m, 2 H), 4.01 - 4.10 (m, 3 H), 4.14 (s, 2 H), 4.16 - 4.22 (m, 2 H), 4.72 (s, 2 H), 6.84 

(d, J=7.36 Hz, 1 H), 7.01 (d, J=8.31 Hz, 1 H), 7.23 (t, J=7.84 Hz, 1 H).  

13C NMR (75 MHz, CDCl3), δ ppm: 22.8, 48.4, 48.5, 49.7, 51.3, 51.8, 53.4, 56.2, 59.7, 67.6, 

67.9, 69.4, 70.8, 114.3, 122.1, 130.1, 131.8, 133.8, 153.4, 173.4, 174.3, 174.6.  

ESI-MS: calculated for [C32H49N5O15 - H]2- 370.65398 found 370.65416  

ESI-MS: calculated for compound 66: [C54N93N5O15 + H]+ m/z: 1052.7, found 1052.9 

ESI-MS of Gd-L9: calculated for [C32H46GdN5O15 + H]+ m/z: 897.2 found 897.3 

methyl 8,8,9,9-tetramethyl-3-oxo-1-phenyl-2,7-dioxa-4-aza-8-siladecane-5-carboxylate 

(67) 

O
H
N

OO

O

O

Si

 

N-Carbobenzyloxy-L-serine methyl ester (4.0 g, 16 mmol) with imidazole (1.4 g, 20.8 mmol) 

was taken in DMF (dry) and stirred for 10 min. tert-butyldimethylsilyl chloride (3.1 g, 20.8 

mmol) was added and the RM was stirred at RT for 3 h. The solvent was evaporated and the 

residue obtained was purified by column chromatography using ethylacetate/hexane (1:9) to 

obtain the pure product as oil (5.3 g, 92%). 

1H NMR (400 MHz, CDCl3), δ ppm: 0.02 (s, 6 H), 0.86 (s, 9 H), 3.76 (s, 3 H), 3.85 (d, J=9.92 

Hz, 1 H), 4.07 (d, J=9.92 Hz, 1 H), 4.44 (d, J=8.65 Hz, 1 H), 5.14 (s, 2 H), 7.29 - 7.44 (m, 5 H). 

13C NMR (100 MHz, CDCl3), δ ppm: -5.7, -5.6, 18.1, 25.6, 52.3, 55.9, 63.6, 66.9, 128.10, 

128.13, 136.2, 155.9, 170.9 

ESI-MS: calculated for [C18H29NO5Si + H]+ m/z: 368.18878, found 368.18856 

Compound 70 was synthesized according to reported procedure [184] 
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methyl 6-(benzyloxycarbonylamino)-2,2,3,3,17,17-hexamethyl-7,15-dioxo-4,16-dioxa-8,14-

diaza-3-silaoctadecane-13-carboxylate  

(71) 

O
H
N

O

O

O

Si

N
H

NH

O O

O O

 

Compound 67 (3.0 g, 8.2 mmol) was dissolved in 15 ml of THF:MeOH:H2O (3:2:2) and LiOH 

(0.3 g, 12.3 mmol) was added. The RM was stirred for 3 h and the completion of reaction was 

monitored by ESI-MS. The pH of the solution was decreased to 7 by the addition of 3 N HCl. 

The solvent was evaporated and the crude product (68) obtained was dried under vacuum. This 

was re-dissolved in 5 ml of DMF (dry) and compound 70 (4.2 g, 10.7 mmol), NMM (2.5 ml, 

23.5 mmol), HOBt (1.7 g, 12.8 mmol) was also added under N2. The RM was heated at 60 °C for 

1 h and EDC (12.84 mmol, 2.5 g) was added. The reaction mixture was then stirred at same 

temperature overnight. DMF was evaporated and the residue was re-dissolved in CHCl3 and 

extracted with water. The collected organic layer was dried with anhydrous Na2SO4 and 

evaporated under vacuum. The residue obtained was purified by column chromatography using 

15-20% ethylacetate in hexane as the solvent mixture to obtain the product (0.35g, 62%). 

1H NMR (400 MHz, CDCl3), δ ppm: 0.00 (s, 6 H), 0.82 (s, 9 H), 1.25 - 1.32 (m, 2 H), 1.38 (s, 9 

H), 1.41 - 1.48 (m, 2 H), 1.51 - 1.63 (m, 1 H), 1.66 - 1.78 (m, 1 H), 3.07 - 3.27 (m, 2 H), 3.59 

(dd, J = 7.12, 9.66 Hz, 1 H), 3.65 (s, 3 H), 3.94 (dd, J = 3.56 Hz, 1 H), 4.06 - 4.26 (m, 2 H), 5.05 

(s, 2 H), 5.71 (br. s., 1 H), 6.59 (br. s., 1 H), 7.18 - 7.38 (m, 5 H). 
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13C NMR (100 MHz, CDCl3), δ ppm: -5.76, 17.9, 22.4, 25.6, 28.1, 28.9, 31.9, 28.9, 52.0, 53.1, 

55.7, 63.1, 66.8, 79.6, 135.9, 155.3, 155.9, 169.9, 173.0.  

ESI-MS: calculated for [C29H49N3O8Si + Na]+ m/z: 618.31811, found 618.31814 

methyl 6-(2-(benzyloxycarbonylamino)-3-hydroxypropanamido)-2-(tert-

butoxycarbonylamino)hexanoate 

(72) 

HO
H
N

O

O

O
N
H

NH

O O

O O

 

Compound 71 (2.5 g, 4.2 mmol) was dissolved in 10 ml of THF:TBAF (1:1) and the reaction 

mixture was stirred for 4 h. The solvents were evaporated and the obtained residue was washed 

with water, saturated NaHCO3 and brine. The organic layer collected was dried under anhydrous 

NaSO4 and evaporated under vacuum. The crude product obtained was purified by column 

chromatography using 20-30% ethylaceate in hexane as the solvent mixture to obtain the pure 

product (72) (1.6 g, 80%) 

1H NMR (400 MHz, CDCl3), δ ppm: 1.29 - 1.36 (m, 2 H), 1.41 (s, 9 H), 1.53 - 1.69 (m, 2 H), 

1.68 - 1.79 (m, 1 H), 3.10 - 3.33 (m, 2 H), 3.61 - 3.75 (m, 4 H), 3.94 - 4.07 (m, 1 H), 4.22 (br. s., 

2 H), 5.10 (s, 2 H), 7.29 - 7.36 (m, 5 H).  

13C NMR (100 MHz, CDCl3), δ ppm: 22.3, 28.2, 28.6, 31.8, 38.8, 52.2, 53.2, 54.8, 55.8, 62.6, 

67.1, 79.9, 127.9, 128.2, 128.4, 135.9, 155.5, 156.6, 170.8, 173.3. 
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methyl 13-(benzyloxycarbonylamino)-2,2,19-trimethyl-4,12,16-trioxo-3,15,17-trioxa-5,11-

diazaicosane-6-carboxylate  

(73) 

O
H
N

O

O

O
N
H

NH

O O

O O

O

O

 

Compound 72 (1.0 g, 2.1 mmol) was dissolved in 25 ml CH2Cl2 containing pyridine (0.4 ml, 4.6 

mmol) and kept in acetone bath. Iso-Bu chloroformate (0.55 ml, 4.2 mmol) dissolved in 5 ml of 

CH2Cl2 and added slowly. The reaction mixture was stirred at RT for 3-4 h. the product formed 

was extracted in organic layer by washing RM with water, saturated NaHCO3 and brine. The 

organic layer extracted was dried under Na2SO4 and evaporated under vacuum. The residue was 

purified by column chromatography using 15-20% ethylacetate in hexane to obtain the pure 

product (0.72 g, 60%). 

1H NMR (400 MHz, CDCl3), δ ppm: 0.92 (d, J=6.61 Hz, 6 H), 1.29 - 1.38 (m, 2 H), 1.41 (s, 9 

H), 1.45 - 1.54 (m, 2 H), 1.54 - 1.68 (m, 1 H), 1.68 - 1.84 (m, 1 H), 1.87 - 2.00 (m, 1 H), 3.11 - 

3.33 (m, 2 H), 3.71 (s, 3 H), 3.89 (d, J=6.61 Hz, 2 H), 4.18 - 4.27 (m, 1 H), 4.27 - 4.37 (m, 1 H), 

4.42 - 4.56 (m, 2 H), 5.11 (s, 2 H), 7.28 - 7.40 (m, 5 H).  

13C NMR (100 MHz, CDCl3), δ ppm: 18.4, 21.9, 27.3, 27.9, 28.4, 29.3, 31.6, 38.7, 51.8, 52.8, 

53.6, 66.6, 66.9, 74.1, 79.5, 127.7, 127.9, 128.1, 135.5, 154.5, 155.1, 155.8, 168.1, 172.9. 

ESI-MS: calculated for [C24H43N3O10 + K]+ m/z: 620.25800, found 620.25790. 
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methyl 13-amino-2,2,19-trimethyl-4,12,16-trioxo-3,15,17-trioxa-5,11-diazaicosane-6-

carboxylate 

(74) 

O
NH2

O N
H

NH

O O

O O

O

O

 

Compound 73 (0.5 g, 0.86 mmol) was dissolved in MeOH with Pd-C catalyst (10%, w/w) and 

stirred for 5 h in a Parr apparatus under 3 atm H2 pressure. The reaction mixture was filtered and 

the solvent evaporated under vacuum to obtain the product in quantitative yields which was used 

as such without further purifications.  

1H NMR (400 MHz, CDCl3), δ ppm: 0.85 (d, J=6.10 Hz, 6 H), 1.32 - 1.39 (m, 12 H), 1.44 - 1.54 

(m, 2 H), 1.56 - 1.67 (m, 2 H), 1.83 - 1.93 (m, 1 H), 3.06 - 3.32 (m, 2 H), 3.64 (s, 3 H), 3.84 (d, 

J=5.85 Hz, 2 H), 4.09 - 4.32 (m, 1 H), 4.32 - 4.70 (m, 2 H). 

13C NMR (100 MHz, CDCl3), δ ppm: 20.0, 23.8, 28.8, 29.48, 28.5, 30.8, 33.1, 33.3, 40.5, 43.1, 

53.4, 54.0, 54.3, 54.6, 67.7, 75.8, 80.5, 80.9, 155.9, 156.3, 156.8, 168.1, 174.7, 177.2. 

ESI-MS: calculated for [C20H37N3O8 + Na]+ m/z: 470.24729, found 470.24704. 
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2-amino-6-(3-hydroxy-2-(5-(2-oxo-hexahydro-1H-thieno[3,4-d]imidazol-4-

yl)pentanamido)propanamido)hexanoic acid 

(L10) 

HO
NH

O N
H

NH2

O OH

O

S

NHHN

O

 

Compound 74 (0.14 g, 0.3 mmol) was dissolved in 4 ml DMF (dry). Biotin (0.95 g, 0.4 mmol) 

and DIEA (0.14 ml, 0.7 mmol) was added under N2. The RM was stirred at RT for 1 h under N2. 

HATU (0.18 g, 0.4 mmol) was then added and the contents were stirred overnight. The 

formation of product (75) was confirmed by ESI-MS. DMF was evaporated and the residue 

obtained was re-dissolved in 10 ml of THF:MeOH:H2O (3:2:2) and LiOH (0.4 mmol, 0.011 g) 

was added. The RM was stirred at RT for 3 h and TFA (10 ml) was added. This was then stirred 

for another 3 h. The solvents were evaporated and the obtained residue was purified by RP-

HPLC to obtain the pure product (0.03 g, 24%).  

1H NMR (400 MHz, D2O), δ ppm: 1.28 - 1.44 (m, 4 H), 1.46 - 1.57 (m, 3 H), 1.57 - 1.74 (m, 3 

H), 1.75 - 1.92 (m, 2 H), 2.32 (t, J=7.38 Hz, 2 H), 2.74 (d, J=12.97 Hz, 1 H), 2.96 (dd, J=5.09 

Hz, 1 H), 3.12 - 3.26 (m, 2 H), 3.27 - 3.35 (m, 1 H), 3.70 (p.t, J=6.61, 5.60 Hz, 1 H), 3.79 (d, 

J=5.60 Hz, 2 H), 4.31 (t, J=5.59 Hz, 1 H), 4.39 (dd, J=4.58, 7.88 Hz, 1 H), 4.57 (dd, J=4.83, 7.88 

Hz, 1 H).  
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13C NMR (100 MHz, D2O), δ ppm: 24.6, 27.8, 30.5, 30.7, 30.9, 32.9, 38.0, 41.85, 42.6, 57.4, 

58.2, 63.2, 64.0, 64.9, 168.2, 174.6, 177.4, 180.0. 

ESI-MS: calculated for [C19H33N5O6Si + H]+ m/z: 460.22243, found 460.22251 

methyl 2-(benzyloxycarbonylamino)-3-bromopropanoate 

(76) 

Br
NH

OO

O O

 

N-Carbobenzyloxy-L-serine methyl ester (2 g, 8 mmol) was taken up in 50 ml DMF (dry) and 

PPh3 (4 g, 16 mmol) was added to it. N-bromosuccinimide (2.8 g, 16 mmol) was added in small 

lots to the homogenous solution obtained. The RM was stirred for 30 min at 50 °C. Heating bath 

was then removed and 2 ml of MeOH was added to quench the reaction. 100 ml of ether was 

added to it and the mixture was extracted with water. The organic layer collected was dried over 

anhydrous Na2SO4 and concentrated under vacuum. The residue obtained was purified by 

column chromatography using 25 % ethylacetate in hexane as the solvent mixture to obtain the 

product (2.1 g, 84%). 

1H NMR (CDCl3, 400 MHz), δ (ppm): 3.4-3.7 (m, 5H); 4.57-4.62 (m, 1H); 4.91 (s, 2H); 5.49-

5.58 (m, 1H); 7.07-7.28 (m, 5H).  

13C NMR (CDCl3, 100 MHz), δ (ppm) 33.6; 53.0; 54.2; 67.2; 128.0; 128.2; 128.4; 139.5; 159.5; 

169.2.  

ESI-MS: calculated for [C12H14BrNO4 + H]+ m/z: 317.0, found 317.3  
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methyl 2-(benzyloxycarbonylamino)-3-(1,4,7,10-tetraazacyclododecan-1-yl)propanoate 

(77) 

NH N

NH HN

NH

OO

O

O

 

Cyclen (5.0 g, 29 mmol) was taken up in 100 ml of toluene and compound 76 (2.0 g, 6.5 mmol) 

dissolved in 25 ml of toluene was added to it dropwise. The reaction mixture was stirred for 18 h. 

The toluene was evaporated and the contents were dissolved in CHCl3 (100 ml) and washed with 

water (4*75 ml). The collected organic layer was dried under anhydrous. Na2SO4 and evaporated 

to obtain the product with some unreacted cyclen. The product could be purified on silica or 

alumina column; however this leads to loss of yield because of the high polarity of the product 

and reactant. To avoid yield loss, the mixture obtained was used as such for the next reaction and 

purified in the next step. 

ESI-HRMS calculated for [C20H33N5O4 +H]+; m/z 408.2605 found 408.2607. 

tri-tert-butyl 2,2',2''-(10-(2-(benzyloxycarbonylamino)-3-methoxy-3-oxopropyl)-1,4,7,10-

tetraazacyclododecane-1,4,7-triyl)triacetate 

(78) 

N N

N N

NH

OO

O

O

t-BuOOC

t-BuOOC

t-BuOOC

 

A solution of 77 (4.1 g, 24.0 mmol), sodium carbonate (6.4 g, 60.0 mmol) was taken up in 70 ml 

MeCN (dry) and heated at 60 °C for 30 min. The RM was cooled down and tert–
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butylbromoacetate (14.2 ml, 96 mmol) in MeCN (25 ml) was dropwise added. The RM was then 

stirred at 60°C for 6 h. It was then filtered, washed with MeCN and evaporated under vacuum. 

The obtained residue was re-dissolved in CH2Cl2 and extracted with water. The organic layer 

was dried under anhydrous Na2SO4 and evaporated to yellow oil. This was purified by column 

chromatography (5% MeOH/CH2Cl2) to give 78 as light yellow solid (3.5 g, 72%).  

1H NMR (300 MHz, CDCl3), δ ppm: 1.21 - 1.34 (m, 27 H), 1.76 - 2.49 (m, 9 H), 2.50 - 3.38 (m, 

15 H), 3.55 (s, 3 H), 4.23 - 4.48 (m, 1 H), 4.66 (br. s., 1 H), 4.87 - 5.16 (m, 1 H), 7.07 - 7.24 (m, 

5 H).  

13C NMR (75 MHz, CDCl3), δ ppm: 27.9, 47.8, 49.6, 51.6, 53.1, 55.1, 56.5, 57.6, 66.9, 81.5, 

81.7, 128.0, 128.3, 128.5, 137.2, 142.9, 169.7, 170.1, 172.3.  

ESI-HRMS calculated for [C38H63N5O10+H]+; m/z 750.4647 found 750.4641. 

2-(benzyloxycarbonylamino)-3-(4,7,10-tris(2-tert-butoxy-2-oxoethyl)-1,4,7,10-

tetraazacyclododecan-1-yl)propanoic acid 

(79) 

N N

N N

NH

OHO

O

O

t-BuOOC

t-BuOOC
t-BuOOC  

Compound 78 (0.5 g, 0.7 mmol) was dissolved in 6 ml of THF:MeOH:H2O (3:2:2) and LiOH (1 

mmol, 0.024 g) was added. The RM was stirred at RT for 3-4 h. The pH of the solution was 

decreased to 7 by addition of 3 N HCl. The solvents were evaporated and the crude product was 

used as such for the next reaction.  
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1H NMR (300 MHz, CDCl3), δ ppm: 1.31 - 1.47 (m, 27 H), 2.00 - 3.17 (m, 18 H), 3.23 - 3.51 

(m, 4 H), 3.51 - 3.75 (m, 2 H), 3.94 (br. s., 1 H), 4.90 - 5.15 (m, 2 H), 7.14 -7.41 (m, 5 H).  

13C NMR (75 MHz, CDCl3), δ ppm: 27.99, 28.05, 28.17, 31.2, 46.6, 47.2, 47.9, 50.9, 51.3, 51.4, 

51.6, 51.8, 52.3, 52.7, 54.0, 54.4 54.7, 55.8, 56.2, 56.7, 60.4, 66.0, 66.1, 81.4, 81.8, 82.1, 127.5, 

127.8, 128.4, 136.8, 155.9, 171.6, 174.1, 174.5.  

ESI-MS calculated for [C37H61N5O10+H]+ m/z 736.4, found 736.3 

tri-tert-butyl 2,2',2''-(10-(2-amino-3-methoxy-3-oxopropyl)-1,4,7,10-tetraazacyclododecane-

1,4,7-triyl)triacetate 

(80) 

N N

N N

NH2

OO

t-BuOOC

t-BuOOC

t-BuOOC

 

Compound 79 (1.5 g, 2.0 mmol) was dissolved in MeOH with Pd-C (10%, w/w) and stirred for 5 

h in a Parr apparatus under 3 atm H2 pressure. The reaction mixture was filtered and the solvent 

was evaporated under vacuum to obtain the crude product as yellow solid. This was purified by 

column chromatography using 5-10% MeOH in CH2Cl2 to get pure product as light yellow solid 

(0.74 g, 60%).  

1H NMR (400 MHz, CDCl3), δ ppm: 1.38 - 1.41 (m, 18 H), 1.43 - 1.47 (m, 9 H), 1.99 - 2.25 (m, 

7 H), 2.31 - 2.47 (m, 4 H), 2.57 - 2.76 (m, 3 H), 2.78 - 2.92 (m, 4 H), 3.11 - 3.27 (m, 4 H), 3.27 - 

3.38 (m, 2 H), 3.58 - 3.67 (m, 1 H), 3.70 (s, 3 H). 

13C NMR (100 MHz, CDCl3), δ ppm: 28.21, 28.25, 30.0, 49.1, 50.8, 52.6, 52.7, 53.2, 53.9, 55.9, 

56.2, 56.5, 82.4, 82.6, 82.7, 173.10, 173.4, 176.0. 
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2,2',2''-(10-(2-carboxy-2-(5-(2-oxo-hexahydro-1H-thieno[3,4-d]imidazol-4-

yl)pentanamido)ethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetic acid 

(L12) 

N N

N N

NH

OHO

HOOC

HOOC

HOOC O

S

NHHN

O

 

80 (0.25g, 0.4 mmol), D-Biotin (1.0 g, 0.4 mmol), HOBt (0.06 g, 0.44 mmol), N-methyl 

morpholine (0.085ml, 0.8 mmol) were taken up in 8 ml of DMF (dry) and stirred under N2 for 1 

h. After 1 h, EDC (0.85 mg, 0.44 mmol) was added. The RM was stirred at RT for 12 h. 

Formation of the intermediate product (81) was confirmed by ESI-MS. The crude 81 was 

subjected to global deprotection, first with 2 eq of LiOH (THF/MeOH /H2O, 3:2:2) and then with 

10 ml of TFA (neat). After TFA evaporation, the crude residue was re-dissolved in CH2Cl2 and 

evaporated 3 times and then repeated with methanol to completely evaporate TFA. The residue 

obtained was purified by preparative RP-HPLC using method C to give the final ligand, L12 as 

off white solid (0.11 g, 41%).  

1H NMR (400 MHz, D2O), δ (ppm): 1.25 - 1.37 (m, 2 H), 1.41 - 1.57 (m, 3 H), 1.57 - 1.70 (m, 1 

H), 2.10 - 2.28 (m, 2 H), 2.62 - 2.69 (m, 1 H), 2.76 - 3.02 (m, 7 H), 3.07 - 3.29 (m, 10 H), 3.31 

(s, 1 H), 3.40 (br. s., 3 H), 3.47 - 3.56 (m, 1 H), 3.56 - 3.70 (m, 3 H), 3.70 - 3.86 (m, 2 H), 4.26 - 

4.35 (m, 2 H), 4.45 - 4.52 (m, 1 H).  
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13CNMR (100 MHz, D2O), δ (ppm): 22.7, 25.5, 25.7, 25.9, 26.0, 33.1, 33.3, 37.6, 44.9, 45.5, 

47.1, 48.0, 48.9, 49.1, 49.4, 49.8, 52.0, 53.1, 53.3, 54.3, 54.6, 58.1, 59.9, 163.3, 174.0, 174.1, 

174.50, 174.53, 175.0. 

ESI-MS: calculated for [C27H45N7O10S - H]- m/z 658.3, found 658.3. 

ESI-MS of Gd-L12: calculated for [C27H42GdN7O10S – H]- m/z 813.2, found 813.1 

ESI-MS of Eu-L12: calculated for [C27H42EuN7O10S – H]- m/z 808.2, found 808.1 

benzyl 3-hydroxypropyl(methyl)carbamate 

(82) 

HO N

O

O

 

N-methyl 3-propanol (10 mmol, 0.948 ml) was dissolved in 50 ml Dioxane/water (1:1) and taken 

in three neck round bottom flask fitted with pH meter. N-carbobenzyloxy chloride (13 mmol, 1.8 

ml) added to it in small lots by addition funnel while maintaining the pH at 10 with the addition 

of 3.5 M KOH solution. After the complete addition the RM was stirred for 1 h. To this, 200 ml 

of diethyl ether was added and the mixture was extracted with water (2 x 75 ml), satuarted. 

NaHCO3 (2 x 75 ml) and then washed with brine. The organic layer collected was dried over 

anhydrous Na2SO4 and evaporated to get colourless oil. This oil was purified by column 

chromatography using 40 % ethylacetate in hexane to obtain the final product as oil (1.8 g, 82%). 

1H NMR (400 MHz, CDCl3), δ ppm: 1.66 - 1.80 (m, 2 H), 2.92 (s, 3 H), 3.44 (t, 2 H), 3.57 (t, 2 

H), 5.14 (s, 2 H), 7.28 - 7.39 (m, 5 H).  

13CNMR (100 MHz, CDCl3), δ ppm: 29.6, 33.9, 45.1, 58.2, 67.2, 127.7, 127.9, 128.4, 136.5, 

157.3. 

ESI-HRMS: calculated for [C12H17NO3 + H]+ m/z: 246.11006, found 246.11004 
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benzyl 3-bromopropyl(methyl)carbamate 

(83) 

Br N

O

O

 

Compound 81 (7.7 mmol, 1.74 g) and PPh3 (15.4 mmol, 4.1 g) were dissolved in CH2Cl2 (dry). 

CBr4 (15.4 mmol, 5.4 g) was added in small lots and reaction and reaction mixture was stirred 

for an hour at room temperature. The solvent was evaporated and obtained residue was purified 

by column chromatography using 15% ethyacetate in hexane to obtain the colourless oil (1.7g, 

80%).  

1H NMR (400 MHz, CDCl3), δ ppm: 2.04 - 2.18 (m, 2 H), 2.96 (s, 3 H),3.33 - 3.48 (m, 4 H), 

5.14 (s, 2 H), 7.31 - 7.42 (m, 5 H). 

13CNMR (100 MHz, CDCl3), δ ppm: 30.2, 30.3, 30.6, 30.9, 34.3, 34.7, 46.9, 47.6, 66.7, 127.5, 

127.6, 128.1, 136.5, 155.9. 

ESI-HRMS: calculated for [C12H16BrNO2 + Na]+ m/z: 308.02566, found 308.02560 

tri-tert-butyl 2,2',2''-(10-(3-((benzyloxycarbonyl)(methyl)amino)propyl)-1,4,7,10-

tetraazacyclododecane-1,4,7-triyl)triacetate 

(84) 

NN

NN

t-Bu OOC

N

O

O

t-Bu OOC

COO t-Bu

 

Tris-tert-Bu-DO3A (1.8 g, 3.5 mmol) and K2CO3 (1.6 g, 11.5 mmol) were taken in 25 ml MeCN 

(dry) and stirred at 70°C for 1 h. After 1 h, RM was removed from heating and 83 (1.4 g, 4.6 
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mmol) was added slowly. After complete addition the RM was stirred at 70°C overnight. It was 

then filtred and solvent was evaporated under vaccum. The obatined residue was dissolved in 

CH2Cl2 and extracted with water. The organic layer was dried under anhydrous Na2SO4 and 

evapoarted to get yellow oil. The obtained oil was purified by column chromatography using 5-

10% MeOH in CH2Cl2 to the final product as solid (1.4 g, 55%). 

1H NMR (400 MHz, CDCl3), δ ppm: 1.21 (s, 9 H), 1.25 (s, 18 H), 1.34 - 1.57 (m, 2 H), 2.00 – 

2.31 (m, 9 H), 2.38 - 2.75 (m, 9 H), 2.75 - 3.19 (m, 9 H), 5.09 - 5.15 (m, 2 H), 7.04 - 7.20 (m, 5 

H).  

13CNMR (100 MHz, CDCl3), δ ppm: 24.3, 28.4, 27.5, 27.6, 33.8, 34.4, 46.7, 47.1, 50.0, 51.2, 

53.4, 55.4, 56.1, 66.6, 82.2, 127.4, 127.7, 128.2, 136.4, 155.7, 173.4. 

ESI-MS: calculated for [C38H65N5O8 + H]+ m/z: 720.49059, found 720.49125 

tri-tert-butyl 2,2',2''-(10-(3-(methylamino)propyl)-1,4,7,10-tetraazacyclododecane-1,4,7-

triyl)triacetate 

(85) 

NN

NN

t-Bu OOC

NH

t-Bu OOC

COO t-Bu

 

Compound 83 (1.0g, 1.4 mmol) and Pd-C (10%, w/w) were taken up in MeOH and kept for 

stirring under H2 (3 atm) in a Parr apparatus for 6 h. The RM was then filtred through a pad of 

celite and the solvent evaporated to light yellow solid. The product was obtained in quantitaive 

yields and was used as such for the next recation without further purification. 

1H NMR (250 MHz, MeOD), δ ppm: 1.51 (s, 9 H), 1.57 (s, 16 H), 1.95 - 2.12 (m, 2 H), 2.21 (s, 

3 H), 2.28 - 2.51 (m, 5 H), 2.57 - 2.91 (m, 11 H), 2.99 - 3.09 (m, 2 H), 3.11 - 3.32 (m, 4 H). 
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13CNMR (62 MHz, MeOD), δ ppm: 22.9, 28.4, 28.6, 31.1, 33.9, 50.1, 56.9, 57.7, 83.3, 83.6, 

174.4, 175.2. 

ESI-HRMS: calculated for [C30H59N5O6 + H]+ m/z: 586.45381, found 586.45350 

2,2',2''-(10-(3-(N-methyl-5-(2-oxo-hexahydro-1H-thieno[3,4-d]imidazol-4-

yl)pentanamido)propyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetic acid 

(L13) 

NN

NN

HOOC

N

HOOC

COOH O

S

NHHN

O

 

Compound 85 (0.3 g, 0.5 mmol,), D-Biotin (0.15 g, 0.6 mmol,), PyBrop (0.3 g, 0.6 mmol,) were 

taken up in 10 ml CH2Cl2 (dry) and kept for stirring at 0°C for 30 min. DIEA (0.3ml, 1.54 mmol) 

was added dropwise while maintaing the reaction mixture at 0°C. After complete addition the 

reaction mixture was kept for stirring at RT for 24 h. The formation of product (86) was 

confirmed by ESI-MS. The RM was then evaporated and the residue obtained was subjected to 

global deprotection by addition of 15 ml TFA (neat). This was stirred at room temperature for 12 

h and then evaporated under vacuum. To remove the TFA completely, the residue obtained was 

redissolved in CH2Cl2 (2 x 25 ml) and methanol (2 x 25 ml) and evaporated to dry. This was 

purified by RP-HPLC using method C to obtain the final ligand L13, as solid (0.16 g, 50 %).  

1H NMR (400 MHz, D2O), δ ppm: 1.29 - 1.41 (m, 2 H), 1.43 - 1.61 (m, 3 H), 1.61 - 1.72 (m, 1 

H), 1.90 (br. s., 2 H), 2.31 - 2.40 (m, 2 H), 2.66 - 2.73 (m, 1 H), 2.83 (s, 1 H), 2.87 - 2.95 (m, 1 

H), 2.95 - 3.17 (m, 12 H), 3.17 - 3.38 (m, 12 H), 3.39 - 3.49 (m, 2 H), 3.49 - 3.61 (m, 2 H), 3.66 - 

3.76 (m, 2 H), 4.30 - 4.38 (m, 1 H), 4.48 - 4.57 (m, 1 H).  
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13CNMR (100 MHz, D2O), δ ppm: 23.1, 26.1, 26.6, 29.4, 29.5, 29.8, 33.7, 34.5, 35.1, 37.4, 41.4, 

46.6, 49.0, 50.5, 51.0, 51.2, 52.4, 53.1, 55.7, 57.0, 57.4, 61.8, 63.6, 166.8, 175.47, 175.52, 177.6, 

177.9. 

ESI-MS of Gd-L13: calculated for [C28H46GdN7O8S + H]+ m/z: 797.2, found 797.1 with 

appropriate isotopic distribution. 

ESI-MS of Eu-L13: calculated for [C28H46EuN7O8S + H]+ m/z: 792.2, found 792.1 with 

appropriate isotopic distribution. 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

Appendix 1 

NMR-spectra of the final ligands and the important 

intermediates 
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Table A1. Fitted parameters of Gd2L1 in the absence of Ca2+. The underlined parameters were 

fixed during the fitting. 

Parameter  Gd2L
1 

kex
298 [106 s‐1]  2.4±0.2 

ΔH‡ [kJ mol‐1]  43.6±3.3 

ΔS‡ [J mol‐1K‐1] +23.5 

A/ħ [106 rad s‐1]  ‐3.8 

τRO298 [ps]  349±47 

ΕR [kJ mol‐1]  24±1 

τV298 [ps]  20.6±2.7 

ΕV [kJ mol‐1]  1 

Δ2[1020 s‐2] 0.46±0.10 

D298
GdH [10

‐10m2s‐1]  25±3 

ΕDGdH [kJ mol‐1]  30±2 

δgL2 [10‐1]  2.7±0.7 

τRH298/ τRO298  0.76±0.12 

rGdO [Å]  2.5 

rGdH [Å]  3.1 

rGdHouter [Å]  3.6 

χ(1+η2/3)1/2 [MHz]  7.58 

q  0.4 

q2nd  1 

τM298
2nd [ps]  50 
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ΔH298
2nd [kJ mol‐1]  35 

r2ndGdH [Å]  3.5 

r2ndGdO [Å]  4.1 

 

Table A2. Variable temperature reduced transverse and longitudinal 17O relaxation rates of 

Gd2L1 in the absence of Ca2+, c(Gd3+)=51.8 mM, pH=7, Pm=4.00·10-4 at 11.75 T. Reference was 

acidified H2O, pH=3.4. 

 

t / °C 

 

T / K 

 

1000/T / K-1 

 

Pm  

(*10-4) 

T1 (Gd)/s 

(*10-3) 

T1 (ref)/s

(*10-3) 

T2(Gd)/s

(*10-3) 

T2(ref)/s 

(*10-3) 

ln(1/T1r) 

 

ln(1/T2r)

 

3.75 276.9 3.61 4.0 2.93 3.65 2.09 3.29 12.03 12.98 

10.45 283.6 3.53 4.0 3.74 4.51 2.02 4.66 11.64 13.46 

16.65 289.8 3.45 4.0 4.26 5.66 2.04 5.70 11.88 13.57 

25.45 298.6 3.35 4.0 5.65 7.06 2.3 6.74 11.39 13.44 

35.45 308.6 3.24 4.0 7.03 8.92 2.75 8.88 11.23 13.35 

46.75 319.9 3.13 4.0 9.07 1.16 3.42 1.18 10.99 13.16 

59.25 332.4 3.01 4.0 12.0 1.45 4.83 1.43 10.47 12.75 

70.55 343.7 2.91 4.0 14.5 1.75 6.37 1.72 10.27 12.42 

 

Table A3. Variable temperature reduced transverse and longitudinal 17O relaxation rates of 

Gd2L1 in the presence of 1M Ca2+, c(Gd3+)=45.6 mM, pH=7, Pm=5.41·10-4  at 11.75 T. Reference 

was acidified 1M CaCl2. 

t / °C  T / K  1000/T / K‐1  Pm  T1 (Gd)/s T1 (ref)/s T2(Gd)/s T2(ref)/s  ln(1/T1r)  ln(1/T2r)
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      (*10‐4)  (*10‐3) (*10‐3) (*10‐3) (*10‐3)    

4.25 277.4 3.60 5.41 2.56 4.14 1.36 4.08 12.38 13.71 

10.55 283.7 3.52 5.41 2.86 5.06 1.39 4.93 12.25 13.77 

17.95 291.1 3.44 5.41 3.78 6.16 1.46 5.97 12.09 13.77 

24.85 298.0 3.36 5.41 4.05 7.24 1.45 6.76 11.94 13.81 

34.15 307.3 3.25 5.41 5.23 9.16 1.67 8.94 11.76 13.71 

50.35 323.5 3.09 5.41 6.98 12.9 1.95 11.7 11.44 13.58 

65.25 338.4 2.96 5.41 8.85 16.6 2.48 15.9 11.16 13.35 

 

Table A4. Fitted parameters of Gd2L1 in the presence of 1M Ca2+. The underlined parameters 

were fixed during the fitting. 

Parameter  Gd2L
1 + Ca2+ 

kex
298 [106 s‐1]  7.5±1.6 

ΔH‡ [kJ mol‐1]  43.6 

ΔS‡ [J mol‐1K‐1] +33.0 

A/ħ [106 rad s‐1]  ‐3.8 

τRO298 [ps]  1152±243 

ΕR [kJ mol‐1]  21±6 

τV298 [ps]  0.13±0.02 

ΕV [kJ mol‐1]  1 

Δ2[1020 s‐2] 0.50±0.05 

δgL2 [10‐2]  2.1 

rGdO [Å]  2.5 
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rGdH [Å]  3.1 

rGdHouter [Å]  3.5 

χ(1+η2/3)1/2 [MHz]  7.58 

q  0.7 

q2nd  1 

τM298
2nd [ps]  50 

ΔH298
2nd [kJ mol‐1]  35 

r2ndGdH [Å]  3.5 

r2ndGdO [Å]  4.1 
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X-ray crystallography 
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Crystal 1: crystallized with five water molecules (not shown in the figure) 
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Crystal 2:  

O O
NN

O OOO
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Crystal 3:  

O O
NHHN

O OOO
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Crystal 4: Cystal with four four water molecules (shown in red) 
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