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Abstract

This thesis is concerned with motion control of omnidirectional robots. From
developing a robot control system to designing different controllers, this thesis
focuses on achieving high control performance with consideration of important
issues, such as actuator dynamics, actuator saturation andconstraints of robot sys-
tems. As a testbed, the motion control of an omnidirectionalrobot of the Tübingen
Attempto robot soccer team, especially the ball dribbling control of the soccer
robot, has been considered in this thesis.

Before designing motion control methods, a control system combining dy-
namics and kinematics is adopted for the Attempto soccer robot. This architecture
allows to design and test low-level controllers according to the dynamic model and
high-level controllers based on the kinematic model separately. Taking actuator
saturation and actuator dynamics into account, the proposed control system builds
a foundation to design high-level controllers with consideration of the low-level
system’s performance.

Based on the robot control system, path following and orientation tracking
problems of omnidirectional robots are addressed in this thesis. Since these two
problems are all formulated in the form of error kinematics,the designed nonlinear
controllers in this thesis can be applied to other omnidirectional robots. In order
to improve the control performance and satisfy constraintsof the robot system,
Nonlinear Model Predictive Control (NMPC) was employed to solve the motion
control problem of the omnidirectional robot. The designedNMPC scheme guar-
antees closed-loop stability. With the selected numericalsolutions, the results of
real-world experiments show the feasibility of applying NMPC on a fast moving
omnidirectional robot and better control performance compared to the designed
nonlinear controllers.

With respect to the dribbling control problem, this thesis focuses on two prob-
lems: ball tracking and ball dribbling. A robustH∞ filter is first developed to
estimate the ball’s relative position and velocity with respect to a soccer robot
when the ball is pushed by the robot. The relative position denotes whether the
ball is moving away and results in changing the robot behaviors of ball dribbling
and ball catching. To achieve good ball dribbling, an analytical dribbling control
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strategy has been developed. With the analysis of the ball’smovement relative to
the robot, a sufficient constraint for keeping the ball is deduced, which gives clues
to choose the desired robot orientations. Then the dribbling task is achieved by
controlling a reference point denoting the desired ball’s center to follow a planned
path and steering the robot orientation to track the desiredone. This dribbling
control strategy is fulfilled with the proposed nonlinear motion control method
and the NMPC scheme. Real-world experiments show the high performance and
efficiency of the dribbling control method.



Zusammenfassung

Die Arbeit behandelt die Regelung der Bewegung eines omnidirektionalen Robot-
ers. Unter Berücksichtigung der Dynamik und Sättigung des Antriebs, werden
ein Regelungssystem und Regler mit hoher Güte entwickelt.Als Testumgebung
wird die Bewegungsregelung eines Roboters aus dem Tübingen Attempto Roboter
Fußball Team, insbesondere die Regelung des Roboters den Ball zu dribbeln,
vorgestellt.

Um Methoden zur Bewegungsregelung vozustellen, wird ein Regelungssys-
tem angenommen, das auf die Kinematik und Dynamik des Attempto Fußball-
roboters basiert. Diese Architektur ermöglicht die separate Entwicklung und das
Testen von low-level Reglern für das Dynamik-Modell und high-level Regler für
das Kinematik-Modell. In Anbetracht der Dynamik und Auslastung des Antriebs,
bildet das Regelsystem eine Basis für das Design von high-level Reglern, die die
Güte des low-level Systems miteinbeziehen.

Auf das Regelungssystem des Roboters basierend, wird in dieser Arbeit die
Pfadplanung und die Regelung der Orientierung behandelt. Beide Probleme sind
so behandelt, dass sie auch auf andere omnidirektionale Robotersysteme anwend-
bar sind. Um die Reglergüte zu erhöhen und den Einschränkungen des omnidi-
rektionalen Robotersystems gerecht zu werden, wurde Nonlinear Model Predic-
tive Control (NMPC) eingesetzt. Das entwickelte NMPC-System garantiert die
Stabilität des geschlossen Regelkreises. Die Ergebnisseder experimentellen Va-
lidierung ausgewählter numerischer Algorithmen beweistdie Anwendbarkeit von
NMPC auf sich schnell bewegenden omnidirektionalen Robotern bei verbesserter
Performanz im Vergleich zu den entwickelten nichtlinearenReglern.

In Bezug auf die Regelung des Roboters den Ball zu dribbeln, konzentriert
sich diese Arbeit auf zwei Probleme, Ball Tracking und das Dribbeln des Balls.
Zunächst wird ein robusterH∞ Filter wird erstellt, um die relative Position und
Geschwindigkeit zwischen dem Roboter und dem Ball zu schätzen. Diese rela-
tive Information zeigt, ob sich der Ball vom Roboter entfernt und wechselt das
Verhalten des Roboters in Ball dribbeln oder Ball annnehmen. Um den Ball
verlässlich zu dribbeln, wurde eine analytische Regelungsstrategie angewendet.
Durch die Analyse der relativen Bewegung des Balls zum Roboter konnten Be-
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dingungen formuliert werden, den Ball zu führen und eine bestimmte Orientierung
einzunehmen. Das Dribbeln wird durch die Regelung eines Referenzpunktes erre-
icht, der den gewünschten Mittelpunkt des Balls angibt undeinen geplanten Pfad
folgt, den der Roboter mit gewünschter Orientierung verfolgt. Diese Dribbel-
regelung wird durch die vorgestellte nichtlineare Bewegungsregelung und das
NMPC-System erreicht. Experimentelle Ergebnisse zeigen die große Performanz
und die Effizienz der Dribbelregelung.
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Chapter 1

Introduction

1.1 Motivation

Wheeled Mobile Robots have received considerable attention and achiev-ed tremen-
dous progress in industries and service robotics because oftheir flexible motion
capabilities on reasonably smooth grounds and surfaces [153]. From the view
of controllable degrees of freedom on the plane, Wheeled Mobile Robots can
be categorized into two types: holonomic (or omnidirectional) robots and non-
holonomic robots. Omnidirectional robots are able to move in any direction at
any time regardless of their orientation. In contrast, nonholonomic robots have
less than three simultaneous degrees of freedom. The highlymaneuverable char-
acteristics make omnidirectional robots very attractive in wheeled mobile robot
applications. For example, some kinds of omnidirectional wheelchairs have been
developed for human assistance in public environments suchas residences, offices
and hospitals [156, 159]. In the annual RoboCup competition, which deals with
highly dynamic environments, omnidirectional soccer robots have been employed
successfully since 2000 in the Small Size League [29, 133] and in nearly all the
Middle Size League RoboCup teams in recent years [120, 19, 92]. Therefore, de-
signing high-performance motion controllers is always an important and attractive
topic for omnidirectional robots.

Normally, mobile robot control systems are built on robot models. The com-
bination of kinematic and dynamic models has been widely used in robot control
systems [156, 116, 140]. The main advantage of this control system is that kine-
matic models have simple structure and dynamic models are simplified by only
taking the inputs of kinematic models as their output variables. By assigning a
control task to different parts of the control system, controllers for the kinematic
and dynamic models can be designed separately.

Assuming that no wheel slippage occurs, that all sensors have high accuracy
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2 Chapter 1. Introduction

and that the ground is planar enough, kinematic models have been well employed
in robot motion control. As the inputs of kinematic models are wheel velocities
and outputs are linear and angular velocities, the actuatordynamics of a robot are
assumed to be fast enough to be ignored, which means that the desired wheel ve-
locities can be achieved immediately. However, the actuator dynamics are impos-
sible to be omitted in real situations, and limit and degradethe robot performance.
Moreover, motor speeds of the robot wheels are constrained.When the desired
robot wheel velocities exceed their maximum values, actuator saturation appears,
which affects the robot performance and even destroys the stability of the con-
trolled robot system [73, 27]. Therefore, actuator saturation is another important
practical issue to be coped with when controlling mobile robots.

With respect to the nonlinear characteristics of kinematicmodels of omnidi-
rectional robots, nonlinear controllers are widely used toachieve satisfying perfor-
mance in the motion control problems, for example, in the path following prob-
lem [7, 125, 53, 40, 105, 35, 98]. However, these controllersrarely take robot
constraints into account, which are crucial factors capable of degrading the robot
performance. Moreover, only the errors between the currentrobot states and the
desired states are considered in most control laws, while improving the control
performance by considering more information of the controltask is ignored.

Motivated by the practical issues of controlling mobile robots, this thesis is
aiming to design such motion controllers of omnidirectional robots: the con-
trollers are designed based on robot kinematic models and consider actuator dy-
namics, they guarantee closed-loop stability even though actuator saturation oc-
curs, they achieve high control performance and satisfy constraints of robot sys-
tems. As a testbed, the motion control problems of an omnidirectional robot of
the Tübingen Attempto robot soccer team, especially the ball dribbling problem
of the soccer robot, have been treated in this thesis.

1.2 RoboCup

The Tübingen Attempto robot soccer team belongs to the RoboCup Middle Size
League.

RoboCup (Originally called Robot World Cup Initiative) is an international re-
search and education initiative. It is an attempt to foster AI and intelligent robotics
research by providing a standard problem where a wide range of technologies can
be integrated and examined, as well as being used for integrated project-oriented
education.

For this purpose, RoboCup chose to use the soccer game as a primary domain,
and organizes RoboCup. In order for a robot team to actually perform a soc-
cer game, various technologies must be incorporated, including design principles
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of autonomous agents, multi-agent collaboration, strategy acquisition, real-time
reasoning, robotics, and sensor-fusion. RoboCup is a task for a team of multiple
fast-moving robots under a dynamic environment. RoboCup also offers a software
platform for research on the software aspects of RoboCup. [139]

After the first public announcement in September 1993, RoboCup has been
held every year from 1997 to 2008 in different places around the world and has
become the most successful international robot tournament. From 38 participating
teams in the first RoboCup held in 1997 to about 400 teams and 2000 participants
in RoboCup 2008, RoboCup has received more and more attention in the areas of
robotics and artificial intelligence, and provides an international platform to show
and compare the scientific progress in different teams.

The ultimate goal of the RoboCup project [138] is:

“By mid-21st century, a team of fully autonomous humanoid robot soccer play-
ers shall win the soccer game, comply with the official rule ofthe FIFA, against
the winner of the most recent World Cup.”

Compared to the other four leagues,Small Size League, Simulation League,
Four-legged LeagueandHumanoid League, in theRoboCupSoccerdomain, the
Middle Size league(MSL) was the most sophisticated league before the introduc-
tion of theHumanoid League. The body size of 50 cm x 50 cm x 85 cm gives
MSL robots enough space to carry powerful sensors, actuators, computer systems
and energy supplies. With distributed intelligence, MSL robots are able to play
the soccer game autonomously, interacting with human referees. Via a wireless
network, the commands of referees are submitted to the robots with a graphical
user interface calledReferee Box[41]. This communication network also enables
the information exchange among teammates.

From the establishment of MSL in 1999 to RoboCup 2008, the MSLrobot
soccer teams have achieved great progress in the hardware development. Partic-
ularly the robot platforms have evolved from commercial differential drive sys-
tems, such as the Pioneer robot [70], to self-developed omnidirectional systems.
Equipped with more efficient sensors, powerful computer andactuator systems,
omnidirectional soccer robots have higher maneuverability and mobility. How-
ever, there were still many disappointing scenes happened in the past RoboCup
games, for example, many robots drove out of the boundary lines and persisted
moving in the false direction, many robots did not react to the ball even when it
was in the robots’ neighborhood, few robots were able to dribble the ball along
a curve. Most of these observations show that the improvement of motion con-
trol are highly requested by the basic soccer playing skillsof the RoboCup soccer
robots. One such crucial basic skill is ball dribbling, which means that a robot is
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capable of handling a rolling soccer ball and maneuvering itto a desired position.
Ball dribbling has been a special challenge topic in recent RoboCup tournaments,
with the following setup and tasks [2]:

“Six to eight black obstacles (length/width 40 cm, height 60 cm) are put at ar-
bitrary positions on the field. The ball is put on the middle ofthe penalty area
line, and a robot inside the same goal. The robot should dribble the ball into the
opposite goal within 90 seconds, while it avoids all obstacles.”

As the rules admit that a robot can only cover up to 30% of the ball’s diame-
ter and forbid the robot to hold the ball, it is difficult for the robot to handle the
ball when the ball must move along a curve. If the robot can notprovide the ball
with enough centripetal force, the ball may get lost from therobot and towards
the outside of the curve. Therefore, dribbling control includes the substantial re-
quirement for the robot movement to take a proper orientation and exert suitable
force on the ball.

1.3 Contributions

This thesis is concerned with the motion control of an omnidirectional soccer
robot and focused in particular on the dribbling control problem. Besides the
RoboCup domain, the control system and control methods presented in this theses
can also be applied to other omnidirectional robots. The main contributions of this
thesis include:

• The introduction of a robot control system, which allows thedesigner to di-
vide the control tasks into different parts and assign them to different levels
in the control system’s architecture.

• The consideration of robot constraints and the identified dynamics of the
low-level system and into the controller design of the high-level control
system. This guarantees stability of the whole system respecting the system
constraints.

• The formulation of the path following problem based on the following er-
ror kinematics, which makes the designed path following control methods
independent from the specific platforms of omnidirectionalrobots.

• The application of Nonlinear Model Predictive Control (NMPC) to the robot
motion control problem, which shows good control performance and feasi-
bility with a fast moving omnidirectional soccer robot.
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• The development of a robustH∞ filter to track a rolling ball when it is
dribbled by a soccer robot. Compared to a Kalman filter in realworld ex-
periments, theH∞ filter shows better performance.

• The development of an analytical dribbling control strategy, which divides
the dribbling problem into path following and ball keeping problems and is
achieved with the high mobility of omnidirectional robots.

1.4 Thesis Outline

The remainder of this thesis is organized as follows:

• Chapter 2 presents the hardware and software systems of the Attempto
Tübingen soccer robots, which are used as a basis for real world experi-
ments.

• Chapter 3 presents the motion control system of the AttemptoTübingen
soccer robots, which combines the kinematic and dynamic models of the
robot. With the identification of actuator dynamics and the analysis of ac-
tuator saturation, the overall control system builds a foundation to design
controllers with consideration of the system constraints.

• Chapter 4 focuses on designing the robot motion control lawsof the path
following and orientation tracking problems. According tothe different
ways of choosing the desired robot position, the path following problem
is formulated in the orthogonal projection-based case and the Virtual Ve-
hicle-based case. The control laws with respect to these two formulations
have been addressed. A PD controller was designed for a robotto track the
desired orientations which takes the maximum wheel velocity into account.

• Chapter 5 addresses Nonlinear Model Predictive Control (NMPC) applied
to the Attempto Tübingen soccer robots. As two important issues in the
application of NMPC, stability and numerical solutions of NMPC are con-
sidered after introducing the mathematical formulation ofNMPC.

• Chapter 6 presents aH∞ filter to estimate the ball’s relative position and
velocity with respect to a soccer robot, when the ball is dibbled by the robot.
The performance of theH∞ filter is evaluated by comparing the estimation
values with those from a Kalman filter.

• Chapter 7 addresses the dribbling control strategy of the Attempto Tübingen
soccer robots. The motion control laws presented in Chapter4 and Chapter
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5 were used to fulfill the strategy. Their control performance is evaluated
with real world experiments.

• Chapter 8 summarizes the achieved results and provides an outlook on pos-
sible future research directions.

• Appendix A shows some image scenarios of dribbling experiments in the
robot laboratory and two scenarios in the games of RoboCup 2006 in Bre-
men.



Chapter 2

Robot System

This chapter presents hardware and software systems of the Attempto Tübingen
soccer robots. The newly developed components of the Attempto Tübingen soccer
robots from 2003 to 2006 mainly consist of the omnidirectional robot platforms,
the omnidirectional vision system and the electro-magnetic kick system. The 20
ms cycle time of the new software system is a great benefit for the robots playing
soccer in a highly dynamic environment.

2.1 Hardware System

The Attempto Tübingen robot soccer team has evolved from differential-drive
robots to omnidirectional robots from 1997 to 2006. After several years partici-
pation in the international robot soccer competitions, thedifferential-drive soccer
robots showed big difficulties to play against fast and agileopponents. At the
same time, the updated rules of RoboCup Middle Size League promoted the im-
provement of sensors and computational systems of the soccer robots. In 2003,
the old goalkeeper based on the Pioneer 1-AT platform fromMobileRobots Inc.
[71] was renewed with a new omnidirectional platform. Afterreal tests of the
omnidirectional robot at the RoboCup 2004 in Lisbon, the good mobility perfor-
mance prompted to renew the old field players, which were built on the Pioneer
2-DX platform from MobileRobots Inc. [72]. Figure 2.1 shows the Attempto
Tübingen soccer robots at the RoboCup 2006 in Bremen. They are not only re-
formed with the omnidirectional platforms, but also equipped with new sensors
and a new computational system.

7



8 Chapter 2. Robot System

Figure 2.1: The Attempto Tübingen soccer robots in RoboCup2006 in Bremen.

2.1.1 Platform

Considering a stable structure and the higher mobility, a triangular omnidirec-
tional robot platform was adopted for the new generation of the Attempto Tübingen
robot soccer team. The main feature of the platform is threeSwedish 90-degree
wheels [151] fromTRAPOROL GmbH[56], which have a diameter of 80 mm as
shown in Figure 2.2. The six small rollers mounted along the wheel’s periphery
enable a movement of the wheel perpendicular to the normal rotating direction of
the wheel’s axis. When the three wheels are driven separately by three DC mo-
tors, and the wheel-motor combinations are assembled symmetrically with 120
degrees between each other in a solid frame as illustrated inFigure 2.3, an om-
nidirectional drive results. The frame can move into any direction while tracking
any orientation.

Figure 2.2: The ARG 80Swedishwheel [56].

The size of the frame is determined by choosing the distancel from the wheel’s
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center to the robot center as shown in Figure 2.3. For the goalkeeper,l is 21 cm,
which is fitting the maximum size of50 × 50 cm2, seen in Figure 2.4. For the
field players, it is decreased to19.5 cm, which permits a higher rotation velocity
for ball handling.

(a) Motor frame of the goalkeeper. (b) Motor frame of a field player.

Figure 2.3: Motor frames of the Attempto Tübingen soccer robots [64].

Surrounding the frame, aluminum profiles were chosen to forma stable and
lightweight body. As it is noticed in Figure 2.3, the form of the field player is
slightly different from the goalkeeper. There is an indentation at the front of the
field player with a depth of one third of the ball’s diameter. This indentation helps
keeping the ball near the center of the robot’s front when a field player dribbles
the ball.

2.1.2 Equipment

On-Board Computer

Instead of the old computer system, which used acoolMONSTER/P3PISA slot
CPU from JUMPtec AG [3] equipped with anIntel Pentium-III850 MHz CPU and
512 MB RAM, the new on-board computer system adopts aThunderbird Mini-ITX
motherboard fromLippert GmbH[55] equipped with a 2.0 GHz Intel Pentium M
processor and 1 GB RAM.Scientific Linux 4.0was taken as the operating system
and installed with a minimum size. In order to bring the hard disk into a safe
state withstanding the shocks in real robot soccer games, the operating system
codes and user programs are loaded into a 32 MB RAM disk at the startup of the
computer. This RAM disk is a specially reserved part of the computer’s RAM and
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Figure 2.4: The size of the goalkeeper [64].

can be addressed like a normal disk drive. The computer system is fast enough to
keep a stable 20 ms cycle time of the software system with onlya 25 Watt power
consumption.

The other new equipment in the computer system is an externalIEEE 802.11b
and 802.11a compatible WLAN bridge, which supports using the IEEE 802 11a
standard with a possibly higher bandwidth of 54 Mbit/s to reduce the interference
from other leagues at RoboCup tournaments.

Sensors

Because the boundary walls on the play field had to be removed according to
the new rules of the RoboCup Middle Size League, the laser scanner assembled
on the old robot platform became useless for the robot self-localization. The new
omnidirectional soccer robot adopted an omnidirectional vision system as the sole
sensor. Supported by efficient image processing algorithms, the omnidirectional
vision system has been successfully used and become a trend in robot soccer teams
of the RoboCup Middle Size League.

The omnidirectional vision system of the Attempto soccer robot consists of a
hyperbolic mirror from theFraunhofer Institute for Autonomous Intelligent Sys-
tem [48] and aMarlin F-046C camera fromAllied Vision Technologies GmbH
[54]. The camera is assembled pointing up to the hyperbolic mirror, which is on
the top of the robot as shown in Figure 2.5. The omnidirectional images of the sur-
rounding environment are transmitted to the on-board computer through anIEEE
1394a FireWirebus system. TheMarlin F-046C camera provides a maximum
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resolution of780 × 580 pixels and is able to capture and transmit images with
780 × 580 pixels in the 16 bitYUV 4:2:2format up to 50 times per second. This
characteristic is appropriate for the target software cycle time of 20 ms and makes
use of the full bandwidth of theIEEE 1394a FireWirebus system.

Figure 2.5: The omnidirectional vision system with a hyperbolic mirror and a
Marlin F-046Ccamera.

Actuator

The actuator system is composed of threeRE 30DC motors with a power of
60 Watt and a maximum 8200 revolutions per minute fromMaxon Motor AG
[4]. This motor is equipped with aGP 32 Cceramic planetary gear box with a
gear ratio of 18:1, and anMR wheel encoder with 500 impulses per revolution.
Each Swedish wheel is driven by a Maxon DC motor with the maximum wheel
velocity of1.9 m/s, which gives the robot a maximum moving velocity of2.2 m/s
according to the robot kinematics.

The control of DC motors is implemented by the triple motor controller board
TMC200 developed by theFraunhofer Institute for Autonomous Intelligent Sys-
tems[87]. This controller board has three independent channelssupporting up
to three DC motors with a maximum continuous load of 200 Watt.It not only
allows speed control, torque control, thermal motor protection and operating volt-
age monitoring, but also offers plenty of feedback messages, for example, the
actual velocity, the actual current and the odometry value.The two alternative
communication interfaces: CAN bus and RS232 serial interface, make TMC200
easily connect to the on-board computer. All the parametersof the control board
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TMC200, such as controller constants, motor parameters andmodes of operation,
can be set via the respective communication interface. The RS232 serial inter-
face was chosen by the Attempto soccer robot with the setup of57,600 baud rate,
which is able to handle fifty commands per second and supportsthe 20 ms cycle
time of the whole system.

Dribblers

The robot dribbling system consists of dribblers aiming to increase the robot’s
ability of controlling the ball. The main contribution of dribblers is exerting some
force onto the ball. This force can prevent the ball from sliding away from the
robot when the robot has a fast rotation. The dribbling system of the Attempto
soccer robot shown in Figure 2.6 and 2.7 is based on the indentation of the robot
front. Three spongy blocks are pasted on the indentation to damp the collisions
between the ball and the robot, and prevent the ball from sliding away. A rubber
foam pad is assembled at the top of the indentation, which exerts pressure onto
the ball and keeps it from leaving the robot along the forwarddirection.

(a) Front view of dribblers. (b) Side view of dribblers.

Figure 2.6: The dribbling system composed of three spongy blocks pasted on the
indentation and a rubber foam pad at the top of the indentation.

(a) Left side view. (b) Front view. (c) Right side view.

Figure 2.7: Photos of dribblers keeping the ball.
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Kicker

The new electro-magnetic kick system shown in Figure 2.8 hasthe advantage
of controlling the strength of the kick, which is of benefit for passing the ball.
The main component of the kicker system is a coil with an inductance of9.6
mH, which is made by winding 690 circles of a magnet wire of 0.8mm diameter
around a plastic tube of 100 mm length and 40 mm diameter. A robis inside the
coil, which is composed of a steel cylinder of 100 mm length, anylon cylinder in
the front and a thin appendix in the back. When a high current passes through the
windings, the steel part of the rob will be accelerated into the coil by the produced
magnetic field and the nylon part will move outside to kick theball.

Figure 2.8: The CAD model of the electro-magnetic kicker [64].

Controlling the strength of the kick is achieved through theI/O port of the mo-
tor controller board TMC200. 6 bits of the port are used to determine the duration
of the current flow. The other 2 bits control the voltage of theelectronic circuit to
exert 85% or 95% of the maximum value. As a consequence, the electonic circuit
enables the kicker to have 128 different strengths and to accelerate the ball to a
maximum speed of nearly 10 m/s.

After kicking the ball, the kicker has to go back to the home position. A
rubber spring with a nearly constant spring force for a certain range of deflection
is attached to the thin appendix of the rob. This spring is able to return the rob from
any position. To keep the rob at the home position when a kick is not requested, a
small permanent magnet is fixed at the rear side of the kicker frame.
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2.2 Software System

The software system of the Attempto Tübingen robot soccer team was designed
as a commonProgramming Interface, which is not only used in RoboCup tour-
naments but also suitable for other mobile robot applications. To simplify the
design and test, this software system consists of several independent functional
processes. Utilizing a client/server architecture, the data transmission among pro-
cesses allows access to data sources of each process. The current computer system
uses a single processor, which matches the single data flow inthe current soft-
ware system with a global cycle time of 20 ms. When more sensors or a shorter
global cycle time is required, the multi-processes software system could support
the parallel computation on a multi-processor system. As shown in Figure 2.9, the

Figure 2.9: An overview of the software system [64].

software system can be divided into three functional levels. The low-level system
aims to access all sensors’ data and to perform pre-processing. The middle-level
system processes the pre-processed data from the low-levelsystem, such as ex-
tracting landmarks and obstacles from the processed images. The high-level sys-
tem builds an environment model and fulfills the high-level control of the robot,
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for example, catching the ball, dribbling the ball and shooting a goal.

2.2.1 Low-Level System

The low-level system consists of three processes that provide access to the raw
sensor’s data and the data from teammates [64].

ImageServeruses the open source librarylibdc1394[38] controlling theMar-
lin F-046Ccamera to capture raw images and serves the image data to other pro-
cesses.

RobotServercommunicates with the TMC200 motor controller board and has
two functions. One is to act as a client of the robot control processTactics, receive
control commands and send them to the controller board. The other is to work as
a server providing robot data to other processes. The robot data includes the rota-
tional speed and the encoder count of the motors, which are used to compute the
odometry information of the robot. Moreover,RobotServercollects the battery
voltage and the kicker capacity in each second, which are needed by the process
Tactics.

CommServer is responsible for the communication with teammates. It acts
as a client of the processEnvironmentModel and sends the own robot’s data to
teammates. On the other hand, it receives messages from teammates and serves
them to the higher level system.

2.2.2 Middle-Level System

The middle-level system includes only one processImageProcessor[68]. It acts
as a client ofImageServer to get the raw image data, and processes images to
extract all necessary features, such as landmarks and objects on the play field,
then serves these features to other processes.

2.2.3 High-Level System

The high-level system is composed of two processesEnvironmentModel and
Tactics.

EnvironmentModel integrates the processed image data fromImagePro-
cessorand teammates’ information fromCommServer to build an environment
model of the own robot. Using the landmarks in the images fromthe omnidi-
rectional vision system, a self-localization algorithm [65] works to find the robot
position in the environment model. With the objects information extracted from
the images, an objects tracking algorithm [66] provides theinformation of the
ball, opponents and teammates, such as their positions and velocities.
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The processTactics focuses on the high level control problems [64]. It pro-
cesses the information fromEnvironmentModel and sends driving commands to
the motor controller, such that the robot can successfully play a soccer game in co-
operation with its teammates. For the goal keeper, a reactive behavior-based sys-
tem based on simple condition-action rules was designed, which mainly depends
on the ball’s position in the environment model. The software of field players uti-
lizes a hybrid control system in controlling the robot to fulfill designed behaviors,
for example, dribble, pass and shoot the ball. A path planning algorithm is also
designed to plan an efficient collision-free path to navigate the robot movement.



Chapter 3

Robot Control System

This chapter presents the first step of controlling a mobile robot, which is to build
up a robot control system. A control system is the foundationof designing robot
control laws, and a suitable control system can benefit more the controller design
with respect to control tasks. After a short introduction ofwheeled mobile robots,
the control system of the Attempto soccer robots is addressed in Section 3.2. Tak-
ing a reasonable architecture, the adopted control system of the Attempto soccer
robot consists of a high-level control system and a low-level control system, which
are based on the robot kinematic model and dynamic model, respectively. The
robot models and corresponding control laws are detailed insections 3.3 and 3.4.
While the actuator characteristics may have severe impact on the control strategy
based on kinematic models, the actuator dynamics and actuator saturation have to
be considered as well, which are described in Section 3.5.

3.1 Wheeled Mobile Robots

Wheeled Mobile Robots have received considerable attention and achiev-ed tremen-
dous progress in industries and service robotics because oftheir flexible motion
capabilities on reasonably smooth grounds and surfaces [153]. A wheeled mobile
robot can be modeled as a planar rigid body that rides on an arbitrary number
of wheels, some or all of which can be steered [8]. Ignoring the DOF (Degrees
of Freedom) of the wheel axles and wheel joints relative to the robot body, a
wheeled mobile robot has maximum of three DOF: two of them arewith respect
to the translation on the plane, the other one is the rotationalong the vertical axis,
which is orthogonal to the plane.

The maneuverability of a wheeled mobile robot depends on wheel types and
configurations [151]. From the view of controllable DOF, wheeled mobile robots
can be categorized into two types: omnidirectional (or holonomic) robots and

17
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nonholonomic robots.
Nonholonomic robots have less than three controllable DOF,because the com-

monly used wheels are unable to move parallel to their axes. For example, an uni-
cycle has only an upright wheel rolling on the plane, which isthe simplest example
of the nonholonomic wheeled mobile robot. Such constraintsare nonholonomic,
i.e. they cannot be integrated to give a constraint only on the robot poses [121].
With the generalized coordinates(x, y, θ), the nonholonomic constraint can be
expressed as

ẋ sin θ − ẏ cos θ = 0, (3.1)

where(x, y) denotes the robot position andθ is the robot orientation. Nonholo-
nomic constraints allow the robot to only move forward and backward after chang-
ing the direction of its movement. Due to the wide application environments cov-
ering from research laboratories and factories to the dailylife, the development of
the nonlinear control theory and practice with respect to nonholonomic systems is
still an attractive and challenging research topic.

Omnidirectional robots have higher maneuverability than nonholonomic robots,
because the DOF of an omnidirectional robot can be totally controlled. The
omnidirectional movement means that a robot can move in any direction at any
time regardless of its orientation. Although the omnidirectional mobility can be
achieved by using conventional wheels, for example caster wheels and steering
wheels, these designs are not truly omnidirectional because of the nonholonomic
nature of these wheels [43]. Therefore, true omnidirectional wheels which can
move in parallel to the direction of their axes are widely used in omnidirectional
robot platforms, for example Swedish wheels, meccanum wheels and Ball wheels
[160, 36, 37]. The highly maneuverable characteristics makes omnidirectional
robots very attractive in wheeled mobile robots applications. For example, some
kinds of omnidirectional wheelchairs have been developed for human assistance
in public environments such as residences, offices and hospitals [156, 159]. In
the annual RoboCup competition which deals with highly dynamic environments,
omnidirectional soccer robots have been employed extremely successfully since
2000 in the Small Size League [29, 133] and in nearly all the Middle Size League
RoboCup teams in recent years [120, 19, 92].

3.2 Control System

Mobile robot control systems are built on robot models. As a direct descrip-
tion of the relationship between the forces exerted on the wheels and the robot
movement, robot dynamic models have been used in many robot control systems
[160, 158, 51, 102, 132, 157]. Taking the torque and force or the applied volt-
age of wheels motors as inputs and the robot linear and angular accelerations as
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outputs, dynamic models are complex in structure and rely onmany mechani-
cal or physical parameters. Due to dynamic variations caused by changes in the
robot’s inertia moment and perturbations from the mechaniccomponents, obtain-
ing a perfect dynamic model of a mobile robot is a very hard task, which increases
the complexity of controllers based only on dynamic models [51, 148]. Another
widely adopted control system combines robot kinematic with dynamic models
[156, 116, 140]. With assignments of control tasks, controllers with respect to
the kinematic and dynamic models are designed separately. The main advantage
of this control system is that kinematic models have a simplestructure and also
simplify the dynamic model by only using the kinematic model’s inputs as output
variables.

A common architecture of control systems combing kinematicand dynamic
models, Navigation-Guidance-Control (NGC), is adopted tocontrol the omnidi-
rectional Attempto soccer robot, which is organized in a three-level hierarchy
[103, 118]. The three levels cover the three basic problems of a mobile robot:
to know where it is, to determine suitable maneuvers for desired tasks and to exe-
cute such maneuvers as well as possible. Navigation is in charge of the knowledge
of robot position and attitude based on the sensors measurement. Guidance is built
from high level tasks and robot kinematic models to generatedesired angular and
linear velocities with respect to the output of the navigation system. Control is re-
sponsible for keeping the robot at the desired velocities specified by the guidance
system as close as possible. According to the hierarchical structure, the control
system is also considered a low-level control system which commands the robot
actuators, such as motor torques, based on the planned velocities from the guid-
ance system. The guidance system is also taken as a high-level control system,
whose objective is to plan the desired velocity trajectory and send the reference
velocity to the low-level control system.

Figure 3.1: Diagram of NGC control architecture

With the assumption that no slippage of wheels occurs, all sensors have high
accuracy and the ground is planar enough, kinematic models have been well used
in designing robot behaviors. As the inputs of kinematic models are robot wheel
velocities and outputs are robot linear and angular velocities, the actuator dynam-
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ics of the robot are assumed to be fast enough to be ignored, which means that the
desired wheel velocities can be achieved immediately. However, the actuator dy-
namics is impossible to be omitted in real situations, and even limits and degrade
the robot performance. Moreover, motor speeds of the robot wheels are bounded
by saturation limits. When the desired robot wheel velocities exceed their maxi-
mum values, the actuator saturation appears which affects the robot performance
and can even destroy the stability of the robot control system [73, 27]. There-
fore, actuator saturation is another important practical issue to be considered in
controlling mobile robots.

The next sections in this chapter describe the control system of the Attempto
soccer robot in detail. High-level control, low-level control, the robot kinematic
and dynamic models and the corresponding control methods will be presented. To
guarantee control stability, the dynamic actuator saturation and identified actuator
dynamics have been considered in the control system, which are addressed in
Section 3.5.

3.3 High-Level Control

The high-level control is based on the robot kinematic modeland works as the
guidance system in an NGC architecture. It determines the desired robot velocities
based on the measured robot information so as to fulfill the high-level control
tasks, then forwards these values to the robot actuators as the objective of the
low-level control system.

3.3.1 Kinematic Model

Figure 3.2 shows the base of an Attempto soccer robot. Besides the fixed world
coordinate system{W} composed of axesXw andYw, a moving robot coordinate
system{M} consisting of axesXm andYm is defined. The angleθ between
the axesXm andXw denotes the robot orientation. Anglesα andϕ denote the
direction of robot motion in the world and robot coordinate systems, respectively.
Each wheel has the same distanceLw to the robot’s center of massR. δ refers to
the wheel orientation in the robot coordinate system and hasa constant value of
30 degrees.

The kinematic model of the robot is as follows:

ẋ =





cos θ − sin θ 0
sin θ cos θ 0

0 0 1



v, (3.2)

whereẋ is the robot velocity vector(ẋ, ẏ, θ̇)T with respect to the world coordinate
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Figure 3.2: Kinematics diagram of the base of an Attempo soccer robot.

system, which is composed of the robot translation velocity(ẋ, ẏ) and the robot
rotation velocityθ̇. The input is a velocity vectorv = (ẋm

R , ẏ
m
R , ω)T with respect to

the robot coordinate system, where the velocitiesẋm
R andẏm

R are along the axesXm

andYm, respectively,ω is the robot rotation velocity along the axis perpendicular
to the plane.

When we consider the wheel velocities, the lower level kinematic model of
the robot can be deduced as:

ẋ =





2
3
cos(θ + δ) −2

3
cos(θ − δ) 2

3
sinθ

2
3
sin(θ + δ) −2

3
sin(θ − δ) −2

3
cosθ

1
3Lw

1
3Lw

1
3Lw



 q̇, (3.3)

whereq̇ is the vector of wheel velocities[q̇1 q̇2 q̇3]
T . Hereq̇i (i = 1, 2, 3) denotes

the i-th wheel velocity, which is equal to the wheel radius multiplied by the wheel
angular velocity. As the motor’s voltage and current are limited, the maximum
wheel velocity is limited bẏqm, namely|q̇i| ≤ q̇m.

It is important to notice that the transformation matrices in the kinematic mod-
els (3.2) and (3.3) are all full rank, which implies that the translation and rotation
of the omnidirectional robot are completely decoupled, andallows the separate
control of these two movements.

3.3.2 Control Law

It is clear that the robot kinematic model is nonlinear. Whenthe model Eq. (3.2)
changes to

ẋ = Gv, (3.4)
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by defining the transformation matrix asG, the trigonometric functions of angle
θ in G show the system’s nonlinearities. AsG is full rank, its inverse can be
introduced as a compensatorC to exactly linearize this nonlinear model as shown
in Figure 3.3 and generates the following linearized system

ẋ = u (3.5)

with a new input vectoru = (u1 u2 u3)
T .

Figure 3.3: Linearized system with the compensatorC.

This linearized system inherits the decoupled controllability of robot transla-
tion and rotation. When a controllerK is designed based on this simple linear sys-
tem, the controller of the original system is generated asCK. The overall control
loop, which consists of the nonlinear system, the compensator and the controller,
is shown in Figure 3.4, wherex denotes the robot state vector(xR yR θ)

T andxd

Figure 3.4: Closed-loop control system.

is the desired state vector.
With the simple system (3.5), linear control technologies can be easily used to

design suitable controllers with respect to high-level control tasks. In Chapter 4,
path following and orientation tracking are chosen as high-level control tasks, and
the corresponding control laws are addressed in detail.

3.4 Low-Level Control

The low-level control is based on the robot dynamic model. Ittakes the desired
robot velocities coming from the high-level control systemas control objectives
and controls the real robot velocities to approach the desired ones as closely as
possible.
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3.4.1 Dynamic Model

The dynamic model is derived from Newton’s Second Law,

mẍw = Fx, (3.6)

mÿw = Fy, (3.7)

Ivθ̈ = mI , (3.8)

where ẍw and ÿw denote the robot translation accelerations with respect tothe
world coordinate system,̈θ is the robot rotation acceleration,Fx andFy are the
forces with respect to the world coordinate system exerted on the center of gravity
of the robot,m denotes the robot mass,Iv is the moment of inertia of the robot,
mI is the moment around the center of gravity of the robot.

When we transfer (3.6)-(3.8) into the robot coordinate system with the follow-
ing transformation matrix,

mRw =

[

cos θ sin θ
− sin θ cos θ

]

,

we get the following dynamic equations,

m(ẍm − ẏmθ̇) = fx, (3.9)

m(ÿm + ẋmθ̇) = fy, (3.10)

whereẍm and ÿm denote the robot translation accelerations with respect tothe
robot coordinate system,ẋm andẏm are the corresponding robot translation veloc-
ities,fx andfy are the forces with respect to the robot coordinate system exerted
on the center of gravity of the robot.

fx, fy andmI can be calculated from

fx = −D1 sin δ −D2 sin δ +D3, (3.11)

fy = D1 cos δ −D2 cos δ, (3.12)

mI = (D1 +D2 +D3)Lw, (3.13)

whereDi for i = 1, 2, 3 is given by the following driving system’s dynamics for
each wheel [142],

Iwθ̈i + cθ̇i = kfui − rDi. (3.14)

Di is the driving force for each wheel,Iw is the moment of inertia of the wheel,
θi denotes the angular position of each wheel,θ̇i and θ̈i are the corresponding
angular velocity and acceleration,ui is the driving input torque on each wheel,c
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is the viscous friction factor of the wheel assembly,kf is the driving gain factor
andr is the wheel radius.

Substituting the following inverse kinematic equations referring to the rela-
tionship between wheel velocities and robot velocities,

q̇ =





− sin δ cos δ Lw

− sin δ − cos δ Lw

1 0 Lw



v, (3.15)

and their time derivatives into equations (3.9)-(3.14), the dynamic model of the
robot is deduced as,

ẍm = a1ẋm + a2ẏmω − b1(u1 + u2 − 2u3), (3.16)

ÿm = a1ẏm − a2ẋmω +
√

3b1(u1 − u2), (3.17)

θ̈ = a3ω + b2(u1 + u2 + u3), (3.18)

with

a1 = − 3c/(3Iw + 2mr2)

a2 = 2mr2/(3Iw + 2mr2)

a3 = − 3cL2
w/(3IwL

2
w + Ivr

2)

b1 = kfr/(3Iw + 2mr2)

b2 = kfrLw/(3IwL
2
w + Ivr

2).

3.4.2 Control Law

Based on the dynamic model (3.16) - (3.18), three Proportional-Integral-Derivative
(PID) controllers have been adapted to steer the three wheels to track the desired
velocities independently. Figure 3.5 shows the control block diagram, where the
set velocities are the desired wheel velocities coming fromthe inverse kinematic
model (3.15) with the desired robot velocities. The PID controller is implemented
by the TMC200 Triple Motorcontroller, which measures the motors’ and wheels’
data and controls the wheels velocities to approach the set values as closely as
possible. The PID controller employs the following drivinginput torque to steer
each wheel,

ui = kpi
eq̇i

+ kii

∫ t

0

eq̇i
dτ + kdi

, ėq̇i

where the parameterskpi
, kii andkdi

are proportional, integral and derivative gains
with respect to the i-th wheel. They are parameters and can bemodified according
to the requirement of the control performance.
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Figure 3.5: Diagram of the low-level control system

3.5 Actuator Influence

An actuator is typically a mechanical device used to convertenergy into motions.
In wheeled mobile robot systems, actuators normally are motors, which consume
electric energy and control the wheel velocities. Actuatordynamics is an impor-
tant component of robot dynamics. Especially in the cases ofhigh-velocity move-
ment and highly varying load, actuator dynamics has a high impact on the robot
performance. Based on the kinematic model, designing robotmotion control laws
must assume that the robot actuator dynamics is fast enough to be ignored, which
means the desired input values of the kinematic model can be achieved immedi-
ately. However, the actuator dynamics can not be completelyomitted due to the
materials, mechanisms and the limited power of motors. Therefore, it is necessary
to think about the actuator influences on the kinematic model-based controller de-
sign. As two important aspects of the actuator, actuator dynamics and actuator
saturation are considered in the motion control system of the Attempto soccer
robot, which will be presented in the following subsections.

3.5.1 Actuator Dynamics

Actuator dynamics denotes the performance of the low-levelcontrol system. Al-
though the actuators are normally controlled by the low-level controller with good
performance, the actuator dynamics might degrade the wholesystem performance,
especially in the case of high-velocity movement and highlyvarying load. It is
necessary to analyze the actuator dynamics and take them into account in con-
troller design.

In order to learn about the actuator dynamics, actuator dynamics are modeled
based on the observed input-output data. The model is identified based on the
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observed input-output data so that a performance criterionis minimized. Because
the full rank transformation matrix in the inverse low-level dynamics model (3.15)
denotes the outputṡxm

R , ẏm
R andω are decoupled, the models with respect to these

three values are identified separately. The inputs of each model are required ve-
locity values (̇xm

Rc
, ẏm

Rc
andωc), respectively. The outputs are the corresponding

measured values. As one commonly used parametric model, theautoregressive
moving average with exogenous variable (ARMAX) model is chosen as the iden-
tified model. It has the following structure:

A(z)y(t) = B(z)u(t− nk) + C(z)e(t),

A(z) = 1 + a1z
−1 + ... + ana

z−na ,

B(z) = b1z
−1 + ... + bnb

z−nb+1,

C(z) = 1 + c1z
−1 + ...+ cnc

z−nc .

nk denotes the delay from inputu(t) to outputy(t). e(t) is white noise. z is
the shift operator resulting inz−1u(t) = u(t− 1). na, nb andnc are the orders of
polynomialsA(z),B(z) andC(z), respectively. To choose the optimal parameters
of this model, we use the prediction error method, which tries to find the optimal
nk and parameters ofA(z), B(z) andC(z) such that the prediction errorE is
minimized, namely

[A(z), B(z), C(z), nk]opt = argmin
N

∑

t=1

E2,

E = yo(t) − A−1(z)(B(z)u(t− nk) + C(z)e(t)),

whereyo(t) denotes the measured output data.
The system identification toolbox of Matlab has been used to identify the actu-

ator dynamic models. After comparing prediction errors of ARMAX models with
different values ofna, nb, nc andnk chosen from the positive integer set[1, 5], the
smallest prediction errors have been found using the following parameters,

• Model: ẋm
Rc → ẋm

R

A(z) = 1 − 0.642z−1 − 0.1997z−2,

B(z) = 0.1603z−1,

C(z) = 1 − 0.6444z−1;

• Model: ẏm
Rc → ẏm

R

A(z) = 1 − 1.296z−1 − 0.1821z−2 + 0.4937z−3,

B(z) = − 0.01212z−1 + 0.1521z−2 − 0.1247z−3,

C(z) = 1 − 1.53z−1 + 0.6439z−2;
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• Model: ωc → ω

A(z) = 1 − 1.845z−1 + 0.8736z−2,

B(z) = 0.04546z−1 − 0.01723z−2,

C(z) = 1 − 1.794z−1 + 0.854z−2.

Figures 3.6, 3.7 and 3.8 show the comparisons between model outputs and mea-
sured outputs with respect to the actual inputs.
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Figure 3.6: Identified model foṙxm
R .

To coincide with the robot’s continuous model, the identified models are trans-
formed from discrete ones into continuous ones using the ’zoh’ (zero-order hold)
method with the sampling time of 20 ms,

ẋm
R =

8.7948(s+ 58.47)

(s+ 73.66)(s+ 6.897)
ẋm

Rc
, (3.19)

ẏm
R =

2.4525(s+ 48.83)(s+ 6.185)

(s+ 28.45)(s2 + 6.837s+ 25.97)
ẏm

Rc
, (3.20)

ω =
1.667(s+ 45.37)

(s2 + 6.759s+ 76.11)
ωc. (3.21)

With the identified actuators dynamics, the guidance systemis designed in the
following motion control system.
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Figure 3.9: Closed-loop control system with actuator dynamics.

3.5.2 Actuator Saturation

Actuator saturation occurs if the commanded wheel velocities are larger than the
maximum values, which are limited by the power of the wheels motors. At this
moment, the actuator can only generate the highest admissible velocities, but not
the desired ones, which can severely influence the overall control performance.
Although more powerful actuators can be chosen to equip the robot platforms, the
desired velocities coming from the high-level controller are also possible larger
than the velocities which the actuators are able to generate. The decoupled maneu-
verability of translation and rotation can be broken for an omnidirectional robot
losing its flexible mobility. Taking the actuator saturation into account, the robot
control system is illustrated by the following block diagram,

Figure 3.10: Closed-loop control system with actuator saturation and actuator
dynamics.

When the robot translation velocities are projected into the world coordinate
system, we get the control values of the linearized system Eq. (3.5) as

u1 = vd cosα, (3.22)

u2 = vd sinα, (3.23)

whereα denotes the robot moving direction with respect to the worldcoordinate
system. Substituting equations (3.22) and (3.23) into the following inverse robot
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kinematics,

q̇ =





cos(θ + δ) sin(θ + δ) Lw

− cos(θ − δ) − sin(θ − δ) Lw

sin θ − cos θ Lw



 ẋ, (3.24)

the wheel velocities are computed as:





q̇1
q̇2
q̇3



 =





vdcos(ϕ− δ) + Lwu3

−vdcos(ϕ+ δ) + Lwu3

−vdsinϕ+ Lwu3



 , (3.25)

whereϕ is the robot moving direction with respect to the robot coordinate system
with ϕ = α− θ.

As the omnidirectional robot has the maximum velocity of each wheel q̇m,
namely|q̇i| ≤ q̇m, the actuator constraints are deduced as:

|vdcos(ϕ− δ) + Lwu3| ≤ q̇m, (3.26)

|−vdcos(ϕ+ δ) + Lwu3| ≤ q̇m, (3.27)

|−vdsinϕ+ Lwu3| ≤ q̇m, (3.28)

These three inequalities dynamically constrain the valuesof control variablesvd,
ϕ andu3. Explicit analysis of the nonlinear constraints is not apparent, but the
actuator saturation can also be handled by allocating them to the robot translation
and rotation separately. In real applications, robot translation and rotation control
are normally assigned with priorities based on pre-designed behaviors. For exam-
ple, in the RoboCup scenarios, when the robot is required to block a rolling ball,
the translation has to be as fast as possible. Therefore, thetranslation control has
priority over rotation control. But for catching the ball and preparing a good shot,
the rotation control is more important. With the different priorities of translation
and rotation, the motion with higher priority should be ensured to be realized, and
the other motion must be controlled under the correspondingsaturation.

When translation control has higher priority, the desired translation velocity’s
magnitudevd is assumed to be not bigger thanq̇m in order to achieve feasible
control of the robot orientation. Based on the controlled values ofu1 and u2

from equations (3.22) and (3.23), the lower and upper boundaries (lbi
andubi

,
i = 1, 2, 3) of u3 with respect to each wheel can be calculated as follows,

lb1 = −q̇m − vdcos(ϕ− δ) ≤ Lwu3 ≤ q̇m − vdcos(ϕ− δ) = ub1,

lb2 = −q̇m + vdcos(ϕ+ δ) ≤ Lwu3 ≤ q̇m + vdcos(ϕ+ δ) = ub2,

lb3 = −q̇m + vdsin(ϕ) ≤ Lwu3 ≤ q̇m + vdsin(ϕ) = ub3 .
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Then the dynamic boundary values ofu3 are computed as

lb =
max(lb1 , lb2, lb3)

Lw

,

ub =
min(ub1 , ub2, ub3)

Lw

,

where lb andub are the lower and upper boundaries, and the resulting control
system has the structure shown in Figure 3.11.

Figure 3.11: Closed-loop of robot orientation control.

On the other hand, when the rotation control is more important, the input
values ofϕ andvd should be bounded by the following constraints:

lb ≤ cos(ϕ− δ) ≤ ub, (3.29)

lb ≤ cos(ϕ+ δ) ≤ ub, (3.30)

lb ≤ sinϕ ≤ ub, (3.31)

with the saturation limits

lb = − q̇m − Lw | ω|
vd

,

ub =
q̇m − Lw | ω|

vd

.

Figure 3.12 shows the curves of functionscos(ϕ + δ), cos(ϕ − δ) andsinϕ
from left to right, withϕ valued from−π to π. Two lines denote the boundaries
with the absolute value equal tocos δ. It can be concluded that feasible values of
ϕ exist only when the absolute value oflb (or ub) is not less thancos δ, namely,

|lb| =

∣

∣

∣

∣

q̇m − Lw | ω|
vd

∣

∣

∣

∣

≤ cos δ =

√
3

2
. (3.32)

Therefore, whenω is determined to control the robot rotation,vd should satisfy
constant (3.32) such as to get the feasible boundary values of ϕ according to the
constraints (3.29) - (3.31).
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Figure 3.12: Solid, dotted and dashdotted curves illustrate the constraints from
the left wheel, the right wheel and the back wheel, respectively. Two lines show
the upper and lower boundaries with the absolute value

√
3

2
.

3.6 Summary

This chapter presented the motion control system of the Attempto soccer robot.
Considering the complex structure and dynamically variable mechanic and phys-
ical parameters in the robot dynamic model, a control systemcombining a kine-
matic and a dynamic model has been designed for our robot. Thecontrol system
adopts the well-known Navigation-Guidance-Control structure, where the kine-
matic model-based high-level control focuses on accomplishing robot behaviors
to fulfill high-level tasks, and the low-level control is concerned with the robot
dynamic model, which takes the outputs of the high-level control as objectives
and keeps the robot with the desired movement as well as possible.

Compared with nonholonomic robots, omnidirectional robots have higher ma-
neuverability because of their full motion DOF on the plane.This advantage
makes omnidirectional robot attractive in wheeled mobile robots applications, for
example, in the Middle Size League of RoboCup. Especially the completely de-
coupled translation and rotation of omnidirectional robots enable the separate con-
trol of these two motions according to the requirement of different control tasks.
However, this decoupled control strategy must assume that the robot actuators
are powerful enough for the desired control values and the robot actuator dynam-
ics are fast enough to be ignored. For a real mobile robot, themotors can only
have limited power and the robot actuator dynamics are impossible to be omitted.
Therefore, considering the influences of the robot actuatordynamics in the robot
kinematics-based control is necessary and very important.

In sections 3.3 and 3.4, the kinematic and dynamic models of the Attempto
soccer robot and the corresponding control laws have been described in detail. In
order to guarantee closed-loop stability and good control performance, the actua-
tor influence has been analyzed in Section 3.5. The identifiedactuator dynamics
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and the dynamically calculated actuator saturation are added into the control sys-
tem, which provides the basis of designing the robot motion control laws.
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Chapter 4

Robot Motion Control

Robot motion control refers to controlling the position and/or velocity of mobile
robots by servo mechanisms. The tasks of robot motion control addressed in the
literature can be roughly classified in the following three groups:

• Point stabilization: a robot is required to move from an initial point to a goal
point with desired posture, no matter how the robot moves between these
two points;

• Trajectory tracking: a robot is required to track a time parameterized refer-
ence trajectory;

• Path following: a robot is required to converge to a geometric reference
path.

Point stabilization

The main challenge of point stabilization lies in stabilizing a nonholonomic robot
at the goal point with the desired orientation because Brockett has shown in [20]
that there is no smooth or even continuous state feedback control law able to solve
the point stabilization problem for such kind of robot. The underlying reason is
nonholonomic robots can not satisfy the necessary condition of the point stabi-
lization problem: smooth stabilizability of a driftless regular system requires that
the number of inputs is equal to the number of states. As a consequence, either
discontinuous or time-varying control laws have been proposed to stabilize the
robot at the desired posture, for example, smooth time-varying control laws tak-
ing the time variable into account, piecewise continuous time-varying control laws
keeping continuous except at the equilibrium [31, 57], hybrid continuous or dis-
continuous feedback control laws composed of time-varyingfeedback controllers

35



36 Chapter 4. Robot Motion Control

and either continuous or discontinuous controllers [5, 6, 10, 33]. With respect to
omnidirectional robots, their full DOF on the plane determines the number of in-
puts equal to or larger than the number of states and makes thepoint stabilization
problem easier to be solved.

Trajectory tracking

Trajectory tracking is aimed to control a robot to track a pre-designed feasible
trajectory, which specifies the time evolutions of the position, orientation and
translation and rotation velocities of the robot. As a necessary condition for
the trajectory tracking problem, a feasible trajectory is the time based solution
of the robot kinematic model with respect to a set of feasibleinput values. In
trajectory tracking, the pose and velocity at each specifiedtime instant in the fu-
ture which the robot should track are exactly determined. Tofacilitate the con-
troller design, the tracking error kinematics is normally developed as the first
task based on the robot kinematics. Then, the trajectory tracking problem be-
comes to find suitable control laws which asymptotically stabilize the tracking
error(xr(t) − x(t), yr(t) − y(t), θr(t) − θ(t)) at zero, where(x(t), y(t), θ(t)) de-
notes the robot state and(xr(t), yr(t), θr(t)) presents the state of the reference
trajectory. By linearizing the tracking error kinematic model at the equilibrium
point, the linearized system is controllable as long as the reference trajectory is
non-stationary. This implies that linear control techniques can be used to achieve
the local stability of the trajectory tracking problem, forexample, Lyapunov stable
time-varying feedback control laws [145, 144] and chained form based feedback
control laws [111, 115]. Besides researching the preliminary local stability guar-
anteed controllers, many control laws have achieved globaltrajectory stabiliza-
tion, such as the nonlinear feedback controllers based on the original nonlinear er-
ror kinematics [111] or the dynamic feedback linearized system [30, 124]. Based
on the basic ideas of above trajectory tracking controllers, many variations and
improvements have been proposed in the dedicated robotics literature. Some of
them focus on increasing robustness due to the robot model uncertainties and en-
vironmental perturbations [127, 136], some try to keep control stability and good
control performance with consideration of saturation constraints of the robot input
values [73, 77].

Path following

The path following problem is the other important robot motion control problem,
where a robot is required to move to a geometric reference path as close as pos-
sible. Unlike trajectory tracking, the robot moving speed is decoupled from the
robot convergence movement in the path following problem. This means the robot
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can follow the reference path with a freely defined velocity magnitude according
to the application requirements. Therefore, trajectory tracking can be regarded as
a special case of the path following problem because the desired velocity history is
directly specified with time in the trajectory tracking problem. A fundamental dif-
ference between the path following problem and the trajectory tracking problem
can be demonstrated in non-minimum phase systems [7], wheretheL2-norm1 of
the tracking error can not be decreased arbitrarily small, but the flexibility of speed
assignment allows the path following problem to have arbitrarily smallL2-norm
of the following error. Moreover, transforming or combining trajectory tracking
and path following have been studied to yield better trajectory tracking perfor-
mance [42, 125]. By steering the robot speed to track a desired speed profile, path
following has been involved in many complex tasks, for example, multi robots
formation control [53, 78], obstacle avoidance control [93], etc..

In Chapter 7, path following has been formulated in the soccer robot dribbling
task. The most challenging task of my research is to control an omnidirectional
robot to dribble a rolling ball. During the dribbling process, the ball can only be
pushed but not be pulled. To decrease the ball’s speed, the robot has to move
ahead and hinder the ball’s movement. When the ball’s speed has to be increased,
the robot needs to stay behind the ball and push it. This meansthat varying the
ball’s speed will unsmooth the robot movement and increase the possibility of
losing the ball. Therefore, a desired constant high speed ischosen for the ball in
the path following task, which not only facilitates the robot motion control, but
also ensures the ball’s fast moving in the RoboCup matches.

According to the omnidirectional mobility, the motion control of our soccer
robot can be achieved by separately controlling robot translation and rotation.
Sections 4.2 and 4.3 introduce the control methods of robot translation and ro-
tation, respectively. The path following problem is taken as the task of robot
translation control. The robot rotation control concerns the actuator dynamics and
actuator saturation, such as to keep a stability guaranteedrobot motion control
[99].

4.1 Nonlinear Systems Theory

Before the introduction of motion control methods, this section recalls some nec-
essary theories about stability of the equilibrium points of nonlinear systems. The
reported theorems and definitions are borrowed from [84].

1L2-space is the set of square integrable functions.



38 Chapter 4. Robot Motion Control

4.1.1 Lyapunov Stability

Suppose the autonomous2 system

ẋ = f(x) (4.1)

has an equilibrium point, which is assumed to be at the originof R
n, i.e. f(0) = 0.

There is no loss of generality in doing so because any equilibrium point can be
shifted to the origin via a change of variables.

Definition 1 The equilibrium pointx = 0 of (4.1) is

• stable, if for eachε > 0, there isδ = δ(ε) > 0 such that

‖x(0)‖ < δ ⇒ ‖x(t)‖ < ε, ∀ t ≥ 0

• unstable, if it is not stable

• asymptotically stable, if it is stable andδ can be chosen such that

‖x(0)‖ < δ ⇒ lim
t→∞

x(t) = 0

In order to demonstrate that the origin is a stable equilibrium point, for each
selected value ofε one must produce a value ofδ, possibly dependent onε, such
that a trajectory starting in aδ neighborhood of the origin will never leave theε
neighborhood. It is possible to determine stability by examining the derivatives of
some particular functions without having to know explicitly the solution of (4.1).

4.1.2 Lyapunov’s Stability Theorem

Theorem 1 Letx = 0 be an equilibrium point for (4.1) andD ⊂ R
n be a domain

containingx = 0. LetV : D → R be a continuously differentiable function such
that

V (0) = 0 and V (x) > 0 in D − {0} (4.2)

V̇ (x) ≤ 0 in D (4.3)

Then,x = 0 is stable. Moreover, if

V̇ (x) < 0 in D − {0}

thenx = 0 is asymptotically stable.

2A system in which the functionf does not depend explicitly on time.
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A functionV (x) satisfying condition (4.2) is said to bepositive definite. If it satis-
fies the weaker conditionV (x) ≥ 0 for x 6= 0, it is said to bepositive semidefinite.
A functionV (x) is said to benegative definiteor negative semidefiniteif −V (x)
is positive definiteor positive semidefinite, respectively. A continuously differen-
tiable functionV (x) satisfying (4.2) and (4.3) is called a Lyapunov function, after
the Russian mathematician who laid the base of this theory.

4.1.3 Barbalat’s Lemma

Lemma 1 For a time-varying system, if a Lyapunov functionV (x, t) satisfies the
following conditions:

1. V (x, t) is lower bounded

2. V̇ (x, t) is negative semidefinite

3. V̇ (x, t) is uniformly continuous in time (satisfied ifV̈ is finite)

thenV̇ (x, t) → 0 ast→ 0.

Barbalat’s Lemma will be used to proof stability of the quasi-infinite horizon
nonlinear model predictive control in Section 5.3.

4.2 Translation Control

4.2.1 Path Following Problem

As one important control problem of mobile robots, path following aims to find a
feedback control law such that the robot’s center of mass converges asymptotically
to a geometric reference path. Unlike trajectory tracking,which can be formulated
to decrease the error between the real robot states and the desired robot states
parameterized by time, the aim of the path following problemis to decrease the
distancebetween the robot and the reference path. The different definitions of the
distanceresults in different formulations of the path following problem.

A kinematic level formulation of the path following problemwas first pre-
sented in [111, 143], where thedistancevalue is described in a path frame which
is moving along the given path. When the distance is equal to the radius of cur-
vature of the given path, the singularity problem will occurin this formulation.
By linearizing the formulation, the proposed controller can only keep the robot
locally converging to the given path. In order to get a globalconvergence to the
given path and to avoid the singularity problem, a more general formulation of the
path following problem was utilized in many control laws ([34, 152, 39, 40, 105]),
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where the concept ofVirtual Vehicleis introduced to refer to the robot’s desired
position on the given path and a new variable is introduced tocontrol the move-
ment of theVirtual Vehicle. The main difference between these controllers focuses
on the ways of controlling theVirtual Vehicle’s movement, which results in differ-
ent control performance of the robot following the reference path. Normally the
velocity of theVirtual Vehicleis controlled by a nonlinear controller based on the
distance errors and the characteristics of the reference path. With respect to the
controlledVirtual Vehicle’s velocity, the corresponding robot motion controllers
can provide the global convergence to the reference path.

Besides the variable controlling theVirtual Vehicle’s movement, the direction
of robot translation is another important control variablein the formulations of
the path following problem. For nonholonomic robots, the robot orientation an-
gle denotes the direction of robot translation, which can only be controlled by
the robot rotation velocity around the axis perpendicular to the plane. In the case
of omnidirectional robots, robots are able to translate androtate simultaneously,
which means the robot’s translation direction can be regulated regardless of the
robot rotation velocity. In the next subsections, orthogonal projection-based and
Virtual Vehicle-based formulations of the path following problem have beende-
scribed. The path following control methods with respect tononholonomic and
omnidirectional robots are presented in details.

4.2.2 Orthogonal Projection-based Control

Figure 4.1 illustrates the orthogonal projection-based formulation of the path fol-
lowing problem.P denotes the reference path. PointR is the robot’s center of
mass, and pointQ is the orthogonal projection ofR on the pathP . A path co-
ordinate system{P} is composed of axesXt andXn, which are the tangent and
normal unit vectors atQ, respectively.xn is the signed distance between the robot
and the pathP . s is the signed curvilinear abscissa denoting the position ofQ.
θp is the angle between axisXt and axisxw. vR is the robot translation velocity,
whose direction with respect to the world coordinate systemis α.

Based on the previous definitions, the path following problem can be parame-
terized as

ṡ = vR cosαe

1

1 − cxn

, (4.4)

ẋn = vR sinαe, (4.5)

α̇e = ωv − vR cosαe

c

1 − cxn

(4.6)

wherec is the path curvature at pointQ, αe is the angular error withαe = α− θp,
ωv is equal toα̇. Therefore, the aim of path following is to find suitable control
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Figure 4.1: Illustration of the orthogonal projection-based formulation of the path
following problem

values ofvR andωv such that the deviationxn and angular errorαe tend to zero.
According to the kinematic equations (4.4) - (4.6), two widely used linear and

nonlinear feedback control laws for nonholonomic robots were introduced in [32].
vR is set to be the desired translation velocityvd, which is assumed to be different
from zero. Then the task of path following is to find a suitableωv such that the
deviation distance and angular error tend to zero.

In the neighborhood of the origin(xn = 0, αe = 0), linearizing (4.5) and
introducing an auxiliary control variableu result in

ẋn = vdαe, (4.7)

α̇e = u, (4.8)

with

u = ωv − vR cosαe

c

1 − cxn

. (4.9)

Whenvd is constant and different from zero, the system described byequations
(4.7) and (4.8) is controllable and can be stabilized with the following linear state
feedback controller

u = −k1vdxn − k2 |vd|αe, (4.10)

wherek1 > 0 andk2 > 0. As a consequence, the closed-loop equation ofxn

becomes

ẍn + k2 |vd| ẋn + k1v
2
dxn = 0.

This is a typical second-order system, whose performance requirement can be
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directly used to choose the controller parametersk1 andk2,

k1 =
2ξa

v2
d

,

k2 =
a2

|vd|
,

wherea andξ are the undamping natural frequency and the damping ratio ofthe
second order system, respectively.

Without the linearisation, a nonlinear feedback control law with little differ-
ence from (4.10) can also asymptotically stabilize the distance deviation and the
angular error to zero [32]. It is designed as

u = −k1vdxn

sinαe

αe

− k2(vd)αe,

wherek1 is a positive constant andk(vd) is a positive continuous function when
vd 6= 0.

The disadvantage of the formulation with equations (4.4) - (4.6) is the singu-
larity problem atcxn = 1 [143]. That limits the controller to situations, wherexn

is smaller than 1
cmax

. cmax denotes the maximum curvature of the path.
Unlike nonholonomic robots, omnidirectional robots have the capability of

translating to any direction regardless of their orientation. This means the transla-
tion directionα of an omnidirectional robot can be controlled directly to achieve
any desired value. Therefore,α can replaceωv to be controlled for solving the
path following problem of omnidirectional robots.

Mojaevet al. [114] presented a simple control law based on the deviationxn,
where robot’s center of massR is controlled to converge to the axisxt along an
exponential curve expressed as

xn = xn0
exp(−kxt).

xn0
is the initial deviation and the positive constantk determines the convergence

speed of the deviation. Figure 4.2 shows the basic control idea.
Differentiating (4.2.2) with respect toxt, we get the tangent direction of the

exponential curve as

αe = arctan(
dxn

dxt

) = arctan(−kxn). (4.11)

Therefore, for a non-zero constant desired velocityvd, the translation velocity of
the robot in the path coordinate system{P} results in

ẋn = vd sinαe, (4.12)

ẋt = vd cosαe. (4.13)
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Figure 4.2: Illustration of path following control with an exponential convergence
trajectory.

To prove the stability of the closed-loop system, a Lyapunovcandidate func-
tion

V =
1

2
kdx

2
n +

1

2
kθα

2
e

can be considered, wherekd andkθ are positive constants. The time derivation of
V results in

V̇ = kdxnẋn + kθαeα̇e. (4.14)

Substituting the time derivative ofαe from controller (4.11) into (4.14), we get

V̇ = kdxnẋn + kkθ arctan(−kxn)
−ẋn

1 + (kxn)2
< 0. (4.15)

Becausexnẋn = xnvd sin(arctan(−kxn)) < 0 and ẋn arctan(kxn) < 0, this
solution ofV̇ guarantees the global stability of the equilibrium at(xn = 0, αe =
0), which means this control law solves the path following problem.

Transforming the robot velocity into the world coordinate system{W}, we
get the control values of the Attempto soccer robot as

u1 = vd cosα,

u2 = vd sinα,

with α = αe + θP .
The input of controller (4.11) is the distance between pointR and the given

path, which normally can be directly obtained by the sensorson the robot. More-
over, the convergence speed is controlled only by parameterk, which can be cho-
sen according to the performance requirement.
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4.2.3 Virtual Vehicle-based Control

TheVirtual Vehicle-based formulation of the path following problem presents the
kinematics of thedistancevalue between the robot and theVirtual Vehicle. The
corresponding controller aims to decrease thedistanceto zero.

Figure 4.3: Illustration ofVirtual Vehicle-based formulation of the path following
problem.

As shown in Figure 4.3, the path coordinate system{P} is located at pointQ,
the center of mass of theVirtual Vehicle, which moves along the reference pathP
and is determined by the curvilinear abscissas. Let vectorsR andQ describe the
positions ofR andQ in the world coordinate system,wRm andwRp present the
transformation matrices from{M} to {W} and from{P} to {W}, respectively,
the following relationship holds:

R = Q + wRp(
xe

ye
), (4.16)

wherexe andye denote the robot positions with respect to the path coordinate
system{P}. Computing the time derivatives of (4.16)

wRm

(

u
v

)

= wRp

(

ṡ
0

)

+wṘp

(

xe

ye

)

+ wRp

(

ẋe

ẏe

)

,

and after some simplifications, the error kinematic model ofthe path following
problem is given by,

ẋe =





ẋe

ẏe

α̇e



 =





(yec(s) − 1)ṡ+ vR cosαe

−xec(s)ṡ+ vR sinαe

ωv − c(s)ṡ



 , (4.17)
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where the error vectorxe is with respect to the path coordinate system{P}, αe

presents the angular error between the robot moving direction α and the path
tangent directionθp, thec(s) denotes the path curvature at pointQ andωv is the
corresponding angular velocity ofα.

It is noticed in model (4.17) that controllingvR is decoupled from controllinġs
andωv, because the errors can stay on the equilibrium(xe = 0) whenṡ approaches
vR. Therefore, the path following problem is to find suitable values ofṡ andωv to
minimize errorsxe, ye andαe, while vR is assigned with any desired velocity.

Model (4.17) is really independent of the robot platforms. The control values
of error kinematics (4.17) are high-level control inputs ofthe robot platforms.
For the omnidirectional robots, the valueαe can be steered directly. But for the
nonholonomic robots, the angular movement can only be controlled byα̇e.

The direct Lyapunov function method has been used to design anonlinear
controller. Defining the following Lyapunov candidate function

V =
1

2
kxx

2
e +

1

2
kyy

2
e +

1

2
kθα

2
e ,

where parameterskx,ky andkθ are positive constants, and substituting (4.17) into
the time derivation ofV ,

V̇ = kxxeẋe + kyyeẏe + kθαeα̇e,

we obtain

V̇ = kxxe((yec(s) − 1)ṡ+ vR cosαe)

+ kyye(−xec(s)ṡ+ vR sinαe) + kθαeα̇e.
(4.18)

Whenkx = ky = kp is selected, equation (4.18) results in

V̇ = −kpxeṡ+ kpxevR cosαe + kpyevR sinαe + kθαeα̇e. (4.19)

To keepV̇ being negative, the control variables of (4.17) can be defined as follows:

• for non-omnidirectional robots

α̇e = − αe −
kpyevR sinαe

kθαe

, (4.20)

ṡ = vR cosαe + k2xe, (4.21)

• for omnidirectional robots

αe = arctan(−k1ye), (4.22)

ṡ =
vR cosαe + k2xe

1 + c(s)αek1kθ

kp(1+(k1ye)2)

, (4.23)
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where,k1 and k2 are positive constants. For nonholonomic robots, controller
(4.20) - (4.21) only gives the control value of ˙alphae to steer the robot rotation
velocity withω = ωv = α̇e + c(s)ṡ. In order to get better following performance,
a desired approach angle shaping transient maneuvers during the path approach
phase has been added to direct the robot moving direction [111, 152]. In the
case of omnidirectional robots, the moving directionα is directly controlled with
α = αe + θp, whereαe is from controller addressed in Eq. (4.22) andθp is related
to the controlled valuės. To control the robot translation with the desired velocity
vd , the input values of the robot control system (3.5) are givenby,

u1 = vd cosα,

u2 = vd sinα.

4.3 Rotation Control

Unlike the nonholonomic robot, the orientation of an omnidirectional robot can be
different from the direction of the robot translation velocity by any angleϕ. This
relationship is denoted asα = θ + ϕ. That means the robot orientation can track
any angle no matter how the robot translates. Based on the robot kinematic model
(3.2), the rotation control is to find a suitable robot rotation velocityω, which is
u3 in the linearized system (3.5), such that the robot orientation converges to the
desired value, i.e.

lim
t→∞

(θd(t) − θ(t)) = 0, (4.24)

whereθd(t) is the desired orientation.
As a simple first-order differential system, many control laws can be utilized

to control the robot orientation. In order to get fast transient response and de-
crease overshoot, we chose the Proportional-Derivative (PD) controller to fulfill
the rotation control task, which is given by

ω = k1(eθ + k2ėθ), (4.25)

whereeθ is the orientation error defined aseθ = θd(t)−θ(t), ėθ is the correspond-
ing derivative term,k1 andk2 are the proportional and derivative gains, respec-
tively.

As described in Chapter 3, when the robot translation control is assigned with
higher priority, the controlled value ofω has to satisfy the system constraints.
Considering the saturation function

x2 =











ub x1 > ub

x1 lb ≤ x1 ≤ ub

lb x1 < lb

, (4.26)
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and its gain characteristics illustrated in Figure 4.4, theclosed-loop system of
controlling the robot orientation is shown in Figure 4.5.

Figure 4.4: Saturation function and its gain characteristics.

Figure 4.5: Closed-loop of the robot orientation control.

The saturation function works as a dynamic gain blockka, which has the max-
imum value of one and converges to zero when the input saturates. By computing
the transformation function of the closed-loop system, it can be obtained that there
exist one pole at −kak1

1+kak1k2
and one zero at−1/k2. Therefore, whenk2 andk1 are

positive, the stability of the closed-loop system can be guaranteed wheneverka

decreases.
The other important issue to be considered is the actuator dynamics, which

has been identified and shown in subsection 3.5.1. As shown inFigure 4.6, the
dynamic system (3.21) adds another two poles to the closed-loop system and the
controller parameters are chosen again such as to guaranteethe stability.

Figure 4.6: Closed-loop of the robot orientation control including actuator dy-
namics.

The locus technique is used here to set the positions of polesand zeros of
the closed-loop system. Analyzing the root locus of the controlled system, the



48 Chapter 4. Robot Motion Control

necessary conditions to guarantee the closed-loop stability can be found atk1 > 0
andk2 > 0.0515. Figure 4.7 shows the root locus of an open-loop system in the
critical situation withk2 = 0.0515, where all the poles of the closed-loop system
locate in the left-half plane whatever positive valuekak1 is. Otherwise, whenk2

is less than0.0515, the root locus may cross the imaginary axis, and the poles of
the closed-loop system may move to the right-half plane whenka goes to zero.

Figure 4.7: Root locus of robot orientation control.

4.4 Experimental Results

The control algorithms discussed above have been tested in our robot laboratory
having a half-field of the RoboCup Middle Size league. An eight-shaped path is
adopted as the reference path, whose geometrical symmetry and sharp changes in
curvature make the test challenging. With a scale variablep, the chosen eight-
shaped path is calculated as

xr = 1.8 sin(2p), (4.27)

yr = 1.2 sin(p). (4.28)

The robot was controlled to follow the eight-shaped path with a constant trans-
lation velocityvd = 1 m/s. In the view of orientation control, two kinds of desired
robot orientation are designed in the experiments. One is a constant angle of zero
degree with respect to the world coordinate system, which isa typical test to show
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the decoupled translation and rotation of the omnidirectional robot. Another is to
compute the desired robot orientation with

θd = θP + 0.9cP v
2
d, (4.29)

wherecP is the path curvature at pointQ. These high values of the desired ori-
entation are employed to check the control stability when the actuator saturation
appears.

With respect to the two different formulations of the path following problem,
two sets of experiments have been done with the real robot. Figures 4.8 and 4.9
show the results of the orthogonal projection-based control, where the parameters
in the control algorithm were chosen ask = 2.5, k1 = 4.15 andk2 = 3. Fig-
ures 4.10 and 4.11show the results of theVirtual Vehicle-based control taking the
following parametersk1 = 2.5, k2 = 2.5, kp = 2.0 andkθ = 1.0 .

Figures 4.8 and 4.9 illustrate the results with respect to the different desired
robot orientations. Figures 4.8(a), 4.8(b) and 4.8(c) showus that the proposed con-
trol method steers the robot centerR converging to the given path and the robot
orientation tracking the constant value with good performance. The maximum
distance error is less than 0.26 m, and most angular errors are less than 0.2 rad.
Figure 4.8(d) shows the measured wheel velocities are less than the maximum
value1.9 m/s, which means that the actuator saturation did not appear. When
the desired orientation has more requirement for controlling the robot orientation,
the actuator saturation appeared in the second experiment.In Figure 4.9(d), the
measured wheel velocities reach the maximum value, when therobot is around
the sharp turning segments of the reference path. At these moments, the orienta-
tion errors become much bigger, but still converging to zero, as shown in Figure
4.9(c). The distance errors illustrated in Figure 4.9(b) are also decreasing to zero,
although the robot moves away from the reference path after the sharp turning seg-
ments because of slide caused by the large translation and rotation accelerations,
which can be seen in Figure 4.9(a).

The similar following errors can be seen in figures 4.10(b) and 4.11(b)), where
the Virtual Vehicle-based control method was employed. Figures 4.10(c) and
4.11(c) imply the function of the control valuės, which dynamically changes
the positions of theVirtual Vehicleaccording to the following errors. In Figure
4.10(c),ṡ slows down at the sharp turning segments of the reference path because
of the large distance errors outside the reference path shown in Figure 4.10(a). But
in Figure 4.11(c),ṡ increases around the sharp turning segments because of the
large orientation errors. This changedṡ also made the robot have a more smooth
following performance comparing to that in the case of the orthogonal projection-
based control, which can be seen in figures 4.9(a) and 4.11(a).

All the experimental results show that the path following control methods can
guarantee closed-loop stability of the path following problem and the robot orien-
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tation can track the desired ones, even though the wheel velocities reach saturation
when the robot makes a sharp turn.
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Figure 4.8: Orthogonal projection-based path following control with constant de-
sired robot orientation
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Figure 4.9: Orthogonal projection-based path following control with dynamic de-
sired robot orientation
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Figure 4.10:Virtual Vehicle-based path following control with constant desired
robot orientation
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Figure 4.11:Virtual Vehicle-based path following control with constant desired
robot orientation
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4.5 Summary

Based on the robot control system introduced in Chapter 3, this chapter focuses
on designing the robot motion control laws. In the three basic robot motion con-
trol problems, path following has been chosen as the main control task of this
research. The reasons are: (1) The path following problem gives a more general
formulation. Trajectory tracking and point stabilizationcan be taken as special
cases of the path following problem. The specialties are that the time parame-
terized desired velocities are designed in the trajectory tracking problem, and the
point stabilization problem only stabilizes the robot at one desired position with
desired posture. (2) The main research challenge in this thesis is the dribbling
control of the Attempto soccer robot, which requires that the robot can always
keep the ball moving in a dynamic environment without any collisions with other
objects. The adopted dribbling strategy, which will be detailed in Chapter 7, in-
volves the path following formulation, where a path plannerdesigns a collision
free path, then the robot dribbles the ball along the reference path with fast speed.

The key issue of formulating the path following problem is tochoose the de-
sired positions on the reference path, which results in different formulations of
the path following problem. Orthogonal projection-based and Virtual Vehicle-
based formulations present the two basic categories, whichaim to select the static
and dynamic desired positions, respectively. For the Attempto soccer robot, the
path following control laws with respect to these two formulations have been ad-
dressed in this chapter. The designed nonlinear controllers are able to guarantee
the closed-loop stability, which is proven by Lyapunov’s stability theorem. Be-
sides the path following control, the omnidirectional robot has another DOF to
regulate its orientation. Considering the actuator dynamics and actuator satura-
tion detailed in Chapter 3, the designed PD controller can keep the robot tracking
the desired orientations, even though the actuator goes into saturation. To check
the performance of the designed control laws, real-world experiments with the At-
tempto soccer robot were done in our robot laboratory. Experimental results show
the good performance of the controlled system, and the guaranteed closed-loop
stability regardless of the appearance of the actuator saturation.



Chapter 5

Nonlinear Model Predictive Control

With respect to the nonlinear characteristics of error kinematic models (4.4) - (4.6)
and (4.17) of the path following problem shown in Chapter 4, many nonlinear con-
trollers have been presented [7, 125, 53, 40, 105, 35, 98]. However, they rarely
take the robot constraints into account, which are crucial factors capable of de-
grading robot performance, even destroying control stability [73, 27]. Moreover,
only the errors between the current robot states and the desired states are consid-
ered in most control laws, which ignores the potential opportunity of improving
the control performance by considering more information ofthe given path.

Motivated by the above considerations, the Nonlinear ModelPredictive Con-
trol (NMPC) method has been adopted to solve the path following problem of the
Attempto soccer robots. As NMPC can easily take robot constraints into account
and utilize the future information to get current control inputs, NMPC has been
used in many robotics applications. Considering the high computational require-
ment of NMPC, some works eliminate the computations which are necessary to
keep control stability [13, 83, 86]. Some methods linearizethe error kinematics,
but they can only guarantee local stability [11, 149]. Many researchers presented
detailed analysis of NMPC with mobile robots, but their applications were only
in simulation [59, 88, 89]. The main contributions of this chapter are the analy-
sis and design of stability guaranteed NMPC schemes with respect to nonlinear
kinematic models, and the proof of the feasibility of applying NMPC to a real
omnidirectional robot [95, 79].

5.1 Introduction

The theory of the Nonlinear Model Predictive Control (NMPC)has been reported
in many documentations. To give an introduction, the following two sections refer
[46], where the details of NMPC could be found.

55
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Model Predictive Control (MPC), also known as Receding Horizon Control
(RHC), has been an attractive optimal control law since the 1970s. For linear sys-
tems, MPC has shown its great benefit and been widely used in industry, specially
in the process industries [134, 135]. As the inherent nonlinearities of general
systems and constraints, applying MPC to nonlinear systemswith nonlinear con-
straints is strongly motivated, and Nonlinear Model Predictive Control (NMPC)
has become popular since the 1990s.

The task of NMPC is to on-line solve a finite horizon optimal control problem
subject to the system models and constraints at each time step. This optimal con-
trol problem is called the open-loop optimal control problem, because it is solved
based on each measurement and only the first part of the optimal control inputs
is implemented until the new measurement becomes available. While the open-
loop optimal control problem has to be solved again with the new measurements,
NMPC is a feedback control law. The basic principle of NMPC isshown in Figure
5.1. Based on the measurements at timet, the future behavior of the system over

Figure 5.1: Principle of Nonlinear Model Predictive Control [46]

a prediction horizonTp is predicted, and optimal inputs during a control horizon
Tc (Tc ≤ Tp) are calculated such that a predefined open-loop objective function
is optimized under the system and input constraints, then the first optimal input
value is taken as the current input.

Inheriting the advantages of normal optimal control laws, the formulation of
the open-loop optimal control problem in NMPC can easily handle the system
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constraints and specify the desired control performance. By only using finite hori-
zons, NMPC avoids the complex computation in the normal optimal control with
an infinite horizon. But utilizing a finite horizon can make the predicted input
and state trajectories differ from the actual trajectorieseven though no model mis-
match and disturbances are present [9]. This trajectories’difference results in no
stability guarantee of the closed-loop system. Therefore,the stability problem has
to be emphasized in NMPC. On the other hand, to solve the open-loop optimal
control problem of a nonlinear system is not an easy task, which makes the pow-
erful optimization solver very important in NMPC. The following sections first
formulate the NMPC problem, and then discuss the closed-loop stability problem
and numerical solutions of NMPC. At the end, the implementations of NMPC in
the motion control of the Attempto soccer robot show the feasibility and efficiency
of NMPC in real-time applications.

5.2 Mathematical Formulation

A normal nonlinear system is described by the following differential equation:

ẋ(t) = f(x(t),u(t)), (5.1)

subject to the constraints:

u(t) ∈ U , x(t) ∈ X , ∀t ≥ 0, (5.2)

wherex(t) ⊆ R
n andu(t) ⊆ R

m are then-dimensional state vector andm-
dimensional input vector, respectively.X andU denote the sets of feasible states
and inputs, respectively. Without loss of generality, if the system equilibrium is at
x(t) = 0 andu(t) = 0, it should be included in setsX andU . The basic idea of
NMPC is to iteratively execute the following steps :

1. predict the system’s future behavior over a prediction horizon Tp at each
time stept;

2. find optimal inputs̄u(·) : [t, t+ Tp] → U to minimize the value of the
following objective function,

J(t,x(t), ū(·)) =

∫ t+Tp

t

F (x̄(τ), ū(τ)) dτ, (5.3)

subject to:

• ˙̄x(τ) = f(x̄(τ), ū(τ)), x̄(0) = x(0),
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• ū(τ) = ū(t+ Tc), ∀τ ∈ [t+ Tc, t+ Tp] ,

• ū(τ) ∈ U , x̄(τ) ∈ X , ∀t ∈ [t, t+ Tp] ,

whereTc is the control horizon withTc ≤ Tp, F is the cost function spec-
ifying the desired control performance, the bar denotes that the predicted
values in the future are not the same as the real values;

3. take the first optimal input valuēu(t) as the current input.

The design of cost functionF directly reflects the desired control performance.
Normally, the controlled system is expected to track the desired trajectories of
system states and inputs. ThusF takes the form of a function of the errors between
the real and desired system states and inputs. Because of thesimple form, the
standard quadratic function is often used as a cost function,

F (x̄, ū) = (xd − x̄)TQ(xd − x̄) + (ud − ū)TR(ud − ū). (5.4)

xd andud denote the desired states and inputs, which are contained inX andU ,
respectively. Q andR are positive definite and symmetric weighting matrices
with corresponding dimensions. Moreover, a special formedcost function, such
as a Lyapunov function, can also help to get additional necessary constraints for
keeping closed-loop stability.

5.3 Stability

With respect to the set-up of NMPC, the optimal control inputs are computed
based on the predicted system behavior. But in general, the predicted system
behavior will differ from the actual closed-loop behavior although no model un-
certainties and unknown disturbances occur, when a finite horizon is used in the
open-loop optimal control problem [9]. It is not true that a repeated minimization
of an objective function with a finite horizon leads to an optimal solution for the
minimization of the objective function over the infinite horizon [17]. Therefore,
using a finite horizon in the open-loop optimal control problem can not guarantee
the closed-loop stability.

Many schemes have been proposed to achieve guaranteed stability. The most
intuitive way to keep closed-loop stability is using an infinite horizon in the open-
loop optimal control problem [17, 110]. It follows from Bellman’s Principle of
Optimality [14]: at one instance in time, the predicted state and input trajectories
based on the solution of the open-loop optimal control problem with the infinite
horizon are the same as the trajectories of the closed-loop system, and the remain-
ing trajectories of the closed-loop system after a samplinginterval are the pre-
dicted trajectories based on the optimal solution of the open-loop optimal control
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problem at the next sampling instance. Although the nonlinear optimal problem
with infinite horizon can be reduced to solve a Hamilton-Jacobi-Bellman partial
differential equation, the difficulties in finding such solutions make the infinite
horizon NMPC not practical in real applications [21]. The relationship between
the finite horizon length and closed-loop stability has alsobeen studied. The re-
sults in [25, 147] show that for a constrained linear system,if the prediction hori-
zon is sufficiently long, the terminal stability can be implicitly satisfied. Reference
[130] presents, for a constrained discrete-time linear system, there always exists a
finite horizon length guaranteeing the stability without any terminal penalties and
constraints. The similar research of nonlinear system was done by Grimmet al.
and Jadbabaieet al. [58, 74], which show that there exists also a finite horizon
guaranteeing the stability for nonlinear model predictivecontrol without terminal
penalties and constraints. But there is no general way to findthis finite horizon.

In practice, many schemes with respect to the finite horizon NMPC have been
proposed [59, 24, 122, 75, 112, 113, 129, 131]. They guarantee closed-loop sta-
bility with modifications of the normal setup of NMPC by adding a terminal con-
straint,

x̄(t+ Tp) ∈ Ω ⊆ X , (5.5)

and/or a terminal penaltyE(x̄(t+ Tp)) in the objective function,

J(t,x(t), ū(·)) =

∫ t+Tp

t

F (x̄(τ), ū(τ)) dτ + E(x̄(t+ Tp)). (5.6)

Because these modifications are specially designed to keep closed-loop stability,
and have no relationship with system restrictions and performance requirements,
they are named asstability constraints[107, 109].

The most simple scheme uses azero terminal equalityas the constraint of the
predicted terminal state, i.e.̄x(t + Tp) = 0. Although the implementation of
this constraint is straightforward, finding an optimal solution satisfying the zero
equality leads to a high computational burden on solving thecorresponding non-
linear optimal problem [81, 24]. Michalska and Mayne reduced thezero terminal
equalityconstraint to an inequality state constraintΩ, which is a neighbourhood
around the origin. And adual-modecontrol law is designed to guarantee control
stability. When the system state enters the region, a local linear state feedback
controller based on a linearized system is utilized. When the system state is out-
side of the region, a receding horizon control law is executed [112, 113, 108].
Without switching between different controllers, a Control Lyapunov Function
(CLF) based scheme is proposed in [129, 131]. Once a global CLF is obtained, the
derivative of the CLF along the predicted states and inputs trajectories is negative.
If the corresponding decrease in the value of the CLF is greater than the decrease
in the output of a pointwise min-norm controller [131], the stability of NMPC
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can be guaranteed. However, finding such a pointwise min-norm controller and a
global CLF is not straightforward.

In order to lower the computational burden, some schemes remove the state
inequality constraints and add a terminal penalty into the objective function. De
Nicolaoet al. [122] proposed an NMPC scheme guaranteeing the exponentialsta-
bility of the equilibrium by adding a non quadratic terminalstate penalty, which is
the cost of the objective function incurred by applying a locally stabilizing linear
controller from timet+Tp to infinity. But the requirement of a large attraction re-
gion of the linear controller may not be easily satisfied. Jadbabaieet al. proposed
to use a CLF based terminal penalty to achieve closed-loop stability [75], which
is attractive because of plenty methods of obtaining a CLF.

From the viewpoint of computational cost of on-line solvingthe open-loop
nonlinear optimal control problem, combining a terminal penalty and terminal
constraints has been proven to be a feasible method to lower the computational
burden [59, 46, 44]. The quasi-infinite horizon NMPC is one ofsuch widely
used control schemes. With terminal constraints, the system’s terminal states are
limited into a terminal region, where the terminal penalty gives an upper bound
on the infinite horizon cost, i.e.

∫ ∞

t+Tp

F (x̄(τ), ū(τ)) dτ ≤ E(x̄(t+ Tp)). (5.7)

This implies the cost value of the infinite horizon problem isbounded by that of
the corresponding finite horizon problem, i.e.

min
u(·)

∫ ∞

t

F (x̄(τ), ū(τ)) dτ ≤ min
u(·)

∫ t+TP

t

F (x̄(τ), ū(τ)) dτ + E(x̄(t+ Tp)),

(5.8)
and the finite horizon extends to a quasi-infinite horizon, which denotes the name
of this NMPC scheme. Therefore, the open-loop optimal control problem of the
quasi-infinite horizon NMPC is to find optimal inputs̄u(·) : [t, t+ Tp] → U to
minimize the value of the following objective function,

J(t,x(t), ū(·)) =

∫ t+Tp

t

F (x̄(τ), ū(τ)) dτ + E(x̄(t+ Tp)), (5.9)

subject to:

˙̄x(τ) = f(x̄(τ), ū(τ)), x̄(0) = x(0), (5.10a)

ū(τ) = ū(t+ Tc), ∀τ ∈ [t+ Tc, t+ Tp] , (5.10b)

ū(τ) ∈ U , x̄(τ) ∈ X , ∀t ∈ [t, t+ Tp] , (5.10c)

x̄(t+ Tp) ∈ Ω ⊆ X . (5.10d)
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To guarantee the stability, the following theorem presentsthe necessary condi-
tions [44]:

Theorem 5.3.1 Suppose

• f : R
n×R

m is continuous and satisfiesf(0, 0) = 0. (0, 0) is an equilibrium
of the system,

• U ⊂ R
m is compact,X ⊆ R

n is connected and(0, 0) ∈ X × U ,

• system (5.1) has a unique solution for any initial conditionx0 ∈ R
n and

any piecewise continuousu(·) : [0,∞) → U ,

• the cost function is continuous withF (0, 0) = 0 andF (x,u) > 0 for every
statex and inputu,

• the open-loop optimal control problem has a solution at timet = 0,

for a continuously differentiable terminal penaltyE(x) with E(0) = 0, and a
closed regionΩ ⊆ X including the origin, if there is a control lawk(x) ∈ U with
k(0) = 0 such that

Ė(x) + F (x,k(x)) ≤ 0, ∀x ∈ Ω, (5.11)

the closed-loop system is asymptotically stable with the attraction region being
the set of states for which the open-loop optimal control problem has a feasible
solution.

Proof: The proof consists of two steps [44]. The first step shows that initial fea-
sibility implies feasibility afterwards. The second one proves the decreasing of a
Lyapunov function of the closed-loop system.

Feasibility

Consider any instantti (e.g.t0), there exists an optimal solution̄u∗(τ ;x(ti)) with
τ ∈

[

ti, ti+Tp

]

of the open-loop control problem depicted in (5.9) and (5.10).
When ū∗(τ ;x(ti)) is implemented betweenti and ti+1 and no model mismatch
nor disturbances are present, the equation ofx(ti+1) = x̄(ti+1;x(ti), ū

∗(τ ;x(ti))
holds. x̄(ti+1;x(ti), ū

∗(τ ;x(ti)) denotes the state at timeti+1 resulted from the
statex(ti) and the control̄u∗(τ ;x(ti)) with τ ∈ [ti, ti+1). Furthermore, the pre-
dicted terminal state satisfies̄x(ti+Tp

;x(ti), ū
∗(τ ;x(ti)) ∈ Ω. It follows from

Theorem 5.3.1 that there exists at least one inputk(x) for the predicted statēx
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over[ti + Tp, ti+1 + Tp]. Taking any such input we obtain an admissible input for
ti + σ with σ ∈ (0, ti+1 − ti]:

ũ(τ ;x(ti + σ)) =

{

ū∗(τ ;x(ti)) τ ∈ [ti + σ, ti + Tp]

k(x(τ)) τ ∈ (ti + Tp, ti + Tp + σ].
(5.12)

Whenσ = ti+1 − ti holds,ũ(τ ;x(ti+1)) is an admissible input at timeti+1. This
means that admissibility at timeti implies admissibility at timeti+1. Therefore, if
the open-loop control problem depicted in (5.9) and (5.10) has a solution att = 0,
it will have a solution for allt > 0.

Convergence

Considering the following value function as a Lyapunov function

V (x(t)) =
∫ t+Tp

t

F (x̄(τ ;x(t), ū∗(·;x(t))), ū∗(τ ;x(t)))dτ

+ E(x̄(t+ Tp ;x(t), ū∗(·;x(t)))), (5.13)

wherex̄(τ ;x(t), ū∗(·;x(t))) denotes the state at timeτ resulting from the state
x(t) and the control̄u∗(t̃;x(t)) with t̃ ∈ [t, τ). The value of the functionV for
the statex(ti) is given by:

V (x(ti)) =
∫ ti+Tp

ti

F (x̄(τ ;x(ti), ū
∗(·;x(ti))), ū

∗(τ ;x(ti)))dτ

+ E(x̄(ti + Tp ;x(ti), ū
∗(·;x(ti)))). (5.14)

The cost resulting from (5.12) starting from any statex̄(ti + σ;x(ti), ū
∗(·;x(ti)))

with σ ∈ (0, ti+1 − ti] is given by:

J(x(ti + σ), ũ(·;x(ti + σ))) =
∫ ti+σ+Tp

ti+σ

F (x̄(τ ;x(ti + σ), ũ(·;x(ti + σ))), ũ(τ ;x(ti + σ)))dτ

+ E(x̄(ti + σ + Tp ;x(ti + σ), ũ(·;x(ti + σ))))

=

∫ ti+Tp

ti+σ

F (x̄(τ ;x(ti + σ), ũ(·;x(ti + σ))), ũ(τ ;x(ti + σ)))dτ

+

∫ ti+σ+Tp

ti+Tp

F (x̄(τ ;x(ti + σ), ũ(·;x(ti + σ))), ũ(τ ;x(ti + σ)))dτ

+ E(x̄(ti + σ + Tp ;x(ti + σ), ũ(·;x(ti + σ)))). (5.15)
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Substituting (5.14) into (5.15), we obtain

J(x(ti + σ), ũ(·;x(ti + σ))) =

V (x(ti)) −
∫ ti+σ

ti

F (x̄(τ ;x(ti), ũ
∗(·;x(ti))), ũ

∗(τ ;x(ti)))dτ

− E(x̄(ti + Tp ;x(ti), ũ
∗(·;x(ti))))

+

∫ ti+σ+Tp

ti+Tp

F (x̄(τ ;x(ti + σ), ũ(·;x(ti + σ))), ũ(τ ;x(ti + σ)))dτ

+ E(x̄(ti + σ + Tp ;x(ti + σ), ũ(·;x(ti + σ)))). (5.16)

Integrating inequality (5.11) fromti + Tp to ti + σ + Tp starting fromx(ti + Tp),
we obtain that the last three terms at the right side of (5.16)are upper bounded by
zero. Thus, the following inequality holds

J(x(ti + σ), ũ(·;x(ti + σ))) − V (x(ti))

≤ −
∫ ti+σ

ti

F (x̄(τ ;x(ti), ũ
∗(·;x(ti))), ũ

∗(τ ;x(ti)))dτ (5.17)

Becausẽu is only a feasible input forx(ti +σ) but not necessary to be the optimal
input, the following inequality holds

V (x(ti + σ)) − V (x(ti))

≤ −
∫ ti+σ

ti

F (x̄(τ ;x(ti), ũ
∗(·;x(ti))), ũ

∗(τ ;x(ti)))dτ ≤ 0. (5.18)

Repeatedly using the inequality (5.18) yields

V (x(t)) − V (x(0))

≤ −
∫ t

0

F (x̄(τ ;x(0), ũ∗(·;x(0))), ũ∗(τ ;x(0)))dτ ≤ 0. (5.19)

This inequality establishes that the value functionV (x(t)) is decreasing. Con-
sidering the cost functionF is continuous and the integral term at the right side
of (5.19) is lower bounded, we can obtain that the statex converges to the origin
when time converges to infinity by using Barbalat’s lemma (1). This means the
closed-loop system is asymptotically stable.

It is noticed in Theorem 5.3.1, the feedback controllerk(x) is not used to
control the system, but used to select the suitable terminalpenalty and termi-
nal constraints. Although the terminal penalty and terminal constraints can be
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selected off-line, it is not a easy task. In [24, 22, 23], a quadratic form terminal
penalty is selected. The terminal constraint is designed based on a linearized feed-
back controller with respect to the Jacobian linearizationof the original nonlinear
system. The necessary condition is that the Jacobian linearization is stabilizable.
Without linearization, recent works in [131, 47, 59] give the idea to directly chose
the terminal penalty and terminal constraints with the original nonlinear system
according to Theorem 5.3.1, where the chosen terminal penalty also takes the
quadratic form and the feedback controller is also linear.

5.4 Numerical Solutions

On-line solving the open-loop nonlinear optimal control problem plays a key role
in NMPC. Although the high computational demands of solvingthe nonlinear
finite optimization problem make NMPC hard to be implementedin applications
with fast sampling time and limited computational resources [46], many research
results show the feasibility of applying NMPC in real-time processes [83, 82].
Referring [46], this section introduces solution methods for the optimal control
problem (5.9) of the quasi-infinite NMPC subject to the conditions in (5.10).

5.4.1 Solution Methods

In principle, there are three basic approaches.

• Hamilton-Jacobi-Bellmann Partial Differential Equation s, Dynamic Pro-
gramming
This approach directly obtains a feedback control lawu∗ = k(x) based
on the solution of the so called Hamilton-Jacobi-Bellmann partial differ-
ential equations. Although the closed-loop controller works for the whole
horizon and is valid for every initial condition, the high computational re-
quirement of solving such partial differential equations limits this approach
only to very small dimensional systems. This is also the mainmotivation of
researching receding horizon control laws.

• Euler-Lagrange Differential Equations, Calculus of Variations, Maxi-
mum Principles
This approach utilizes the necessary conditions for constrained optimiza-
tion problems and gets a time-based control value, which is only valid for
the specified initial conditionx(t). As a boundary value problem has to be
solved, the high computational burden makes this approach not suitable for
on-line implementation.
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• Direct Solution Algorithm
The direct solution algorithm transfers the original control problem over
a finite horizon into a finite dimensional Nonlinear Programming problem
(NLP). As the NLP can be solved with standard static optimization tech-
niques, direct solution algorithms have been proven to be most successful
for the large scale optimal control problems, and are normally used for cal-
culating the on-line solution of NMPC.

5.4.2 Direct Solution Algorithm

The direct solution algorithm uses a finite parameterization of the control tra-
jectory to solve the finite dimensional NLP. The basic parameterization method
utilizes a piecewise constant control input on each partition over the prediction
horizon [t, t + Tp], i.e. u(δ) = u(ti) with δ ∈ [ti, ti+1). When the prediction
horizon is divided by a constant intervalτ shown in Figure 5.2, the optimization
problem becomes

Figure 5.2: Parameterization of the direct solution for theopen-loop optimal con-
trol problem

min
{u1,u2,...uTp

τ

}
J(x(t), {u1,u2, ...uTp

τ

}), (5.20)

subject to the constraints in (5.10), whereuj denotesu(t + (j − 1)τ) with j =

1, 2, ..., Tp

τ
. There are two basic solution strategies for this optimization problem

[16, 104].
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1. Sequential approach (single shooting)
At each sampling timet, the sequential approach updates the system’s fu-
ture behavior with input seriesu1,u2, ...uTp

τ

, and a numerical integration of

system model (5.1) based on the current system statex(t). Single shooting
represents a pure sequential approach. The numerical effort of the single
shooting method is highly based on the complexity of the discretization of
the control trajectory. The solution of single shooting depends on the sensi-
tivity of the states with respect to the control variables. As a small number
of the control variables is required in solving the NLP, single shooting is
easier to implement.

2. Simultaneous approach (multiple shooting)
The simultaneous approach solves the optimization problemwith stabiliz-
ing endpoint constraints. Multiple shooting is one of most widely used
simultaneous approaches, where the system states at the sampling points
are taken as additional optimization variables to keeps̄i+1 = x̄(ti+1; s̄i, ūi).
s̄i+1 is the system state at timeti. x̄(ti+1; s̄i, ūi) denotes the predicted sys-
tem states resulted from the system states̄i with the controlui). Another
popular simultaneous approach is direct collocation, whose details can be
found in [16, 15]. Although simultaneous approaches are applicable to the
highly unstable systems, which direct shooting can not handle, the large
number of optimization variables increases the computational cost.

5.4.3 Sequential Quadratic Programming

Sequential Quadratic Programming (SQP) is an efficient iterative method for the
solution of the NLP arising from NMPC, such as the problem (5.20). Considering
an NLP as

min
ξ
ϕ(ξ)

subject to

a(ξ) = 0, b(ξ) ≥ 0,

wherea ∈ R
na andb ∈ R

nb denote equality and inequality constraints, respec-
tively. SQP solves this problem based on the line search method. The vector of op-
timization variablesξk ∈ R

n and the vector of multipliersvk = (µ,σ)k ∈ R
na+nb

are updated from iteration numberk to k + 1 by

(

ξk+1

vk+1

)

=

(

ξk

vk

)

+ αk

(

dk

uk − vk

)

, k = 0, 1, 2, ... ,
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where thesearch direction(dk,uk) comes from the solution of a linearly con-
strained Quadratic Problem (QP),

min
d∈Rn

1

2
dT Ckd + ∇ϕ(ξ)Td

subject to
∇ai(ξk)

Td + ai(ξk) = 0, i = 1, ..., na,

∇bj(ξk)
Td + bj(ξk) ≥ 0, j = 1, ..., nb,

based on the following quadratic approximation of the LagrangianL,

L(ξ,µ,σ) = ϕ(ξ) −
na
∑

i=1

µiai(ξ) −
na
∑

i=1

σibi(ξ), µ ∈ R
na , σ ∈ R

nb.

Ck is a positive definite approximation of the HessianHk of the Lagrangian
L(ξk,µk,σk). The quadratic problem is solved by an iterative method to get
dk and the corresponding multiplieruk .

Thestep sizeαk ∈ R is obtained by minimizing a merit function (line search)

ψm

((

ξ

v

)

+ α

(

d

u− v

))

As a suitable choice, the merit function can be an augmented Lagrangian as,

ψm(ξ,µ,σ) = ϕ(ξ) −
na
∑

i=1

(

µiai(ξ) − 1

2
ria

2
i (ξ)

)

−
∑

j∈J

(

σjbj(ξ) − 1

2
rna+jb

2
j (ξ)

)

− 1

2

∑

j∈K

σ2
j

rna
+ j

,

(5.21)

where the setsJ andK are chosen asJ = {j|1 ≤ j ≤ nb, bj(y) ≥ σj

rna+j
},

k = {1, .., nb} J with ri > 0, i = 1, ..., na + nb.
The details of basic SQP are introduced in [61, 128, 18]. A recent research of

application of SQP to NMPC gives comparisons among implementations of SQP
with different methods, such as feasible and infeasible path methods, sequential
and simultaneous methods and reduced and full space methods[104].

5.5 Implementation

Based on the error kinematic models of the path following problem and the ori-
entation tracking problem introduced in Chapter 4, the quasi-infinite NMPC has
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been successfully used in the motion control of the Attemptosoccer robot. With
respect to the different formulations of the path followingproblem, Subsection
5.5.1 describes the details of choosing the terminal penalty and terminal con-
straints of NMPC. Subsection 5.5.2 presents the numerical integration method
of the robot model equations. Subsection 5.5.3 emphasizes apractical issue about
computational delays in applying NMPC.

5.5.1 Terminal penalty and constraints

Orthogonal Projection-based Case

With respect to the error kinematic model (4.5) of the path following problem
,

ẏe = vR sinαe, (5.22)

the aim of the path following control is to driveye andαe to zero. By introducing
a new inputue1 = vR sinαe, and combining the kinematics of the orientation error
θe, the error kinematics of the robot motion is given by the following equations,

[

ẏe

θ̇e

]

=

[

ue1

ue2

]

(5.23)

It is clear that this model has the equilibrium atye = 0, θe = 0, ue1 = 0 and
ue2 = 0, which is a necessary condition in Theorem 5.3.1. In order tostabilize the
errors around the equilibrium as close as possible, a quadratic form cost function
is selected in NMPC,

F (x,u) = xT
e Qxe + uT

e Rue, (5.24)

wherexe is the error vector(ye, θe)
T , ue is the input vector(ue1 ue2)

T , Q andR

are positive diagonal matrices with corresponding dimensions.
In the quasi-infinite horizon NMPC, a terminal penalty and terminal con-

straints are required to guarantee closed-loop stability.Based on Theorem 5.3.1,
the following terminal penalty has been chosen and added into the objective func-
tion,

E(t+ Tp) =
1

2
xe(t+ Tp)

Txe(t+ Tp), (5.25)

wherexe(t + Tp) denotes the terminal error state vector(yeTp
θeTp

)T . When the
terminal feedback controller is chosen as

uL
e1 = − αyeTp

, (5.26)

uL
e2 = − βθeTp

, (5.27)
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with α ≥ 0 andβ ≥ 0, the left side of stability condition (5.11) results in

Ė(t+ Tp) + F (t+ Tp) = (−α + q11 + r11α
2)y2

eTp
+

(−β + q22 + r22β
2)θ2

eTp
.

(5.28)

Therefore, the following inequalities

α− q11 − r11α
2 ≥0, (5.29)

β − q22 − r22β
2 ≥0, (5.30)

make (5.28) satisfy stability condition (5.11). The terminal controller (5.26) and
(5.27) are only used to get the terminal constraints considering closed-loop stabil-
ity. They are very simple based on only two parametersα andβ, which control
the convergence speed of errorsye andθe. The advantage of (5.29) and (5.30) is
that the values ofq11, q22, r11, r22, α andβ can be easily selected off-line.

On the other hand, to guarantee the existence of the terminalfeedback con-
trollers, the following constraint should be satisfied,

−1 ≤ sinαeTp
=
uL

e1

vR

≤ 1, (5.31)

and the system constraints should not be broken, i.e.

−





q̇m
q̇m
q̇m



 ≤





cos δ sin δ Lw

− cos δ sin δ Lw

0 −1 Lw









vRcos(αeTp
+ θp − θ)

vRsin(αeTp
+ θp − θ)

ωL
d − uL

e2



 ≤





q̇m
q̇m
q̇m



 ,

(5.32)
whereαeTp

is from the control valueu1 with αeTp
= arcsin

uL
e1

vR
, ωL

d denotes the
desired rotation velocity at the terminal timet+ Tp.

With simple transformations, the control values of the Attempto soccer robot
are given by

u1 = vd cosα,

u2 = vd sinα,

u3 = ωd − u∗e2,

with α = arcsin
u∗

e1

vR
+ θP . (u∗e1, u

∗
e2)

T is the first vector of the solution of the
open-loop optimal control problem at each time.

Virtual Vehicle-based Case

Combining the error kinematic model (4.17) and the kinematics of the orientation
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error θe, the following error kinematic model having the equilibrium at xe = 0
andue = 0 comes into being,





ẋe

ẏe

θ̇e



 =





0 c(s)ṡ 0
−c(s)ṡ 0 0

0 0 0









xe

4ye

θe



 +





ue1

ue2

ue3



 , (5.33)

with




ue1

ue2

ue3



 =





−ṡ+ vR cosαe

vR sinαe

ωd − ω



 , (5.34)

To drive the errors approaching zero, the selected cost function also has the quadratic
form,

F (x,u) = xT
e Qxe + uT

e Rue, (5.35)

xe = (xe, ye, θe)
T is the error vector.ue = (ue1 ue2 ue3)

T is the input vector.Q
andR are positive diagonal weight matrices with corresponding dimensions. To
guarantee the control stability, the following Lyapunov function is selected as the
terminal penalty:

E(t+ Tp) =
1

2
xe(t+ Tp)

Txe(t+ Tp), (5.36)

wherexe(t+TP ) = (xeTp
yeTp

θeTp
)T denotes the terminal state. When the termi-

nal feedback controllers are designed as:

uL
e1 = − κxeTp

, (5.37)

uL
e2 = − βyeTp

, (5.38)

uL
e3 = − γθeTp

, (5.39)

with parametersκ ≥ 0, β ≥ 0, andγ ≥ 0, the left side of stability condition
(5.11) becomes

Ė(t+ Tp) + F (t+ Tp) =x2
eTp

(−κ + q11 + κ2r11) + y2
eTp

(−β + q22 + β2r22)

+ θ2
eTp

(−γ + q33 + γ2r33).

(5.40)

Therefore, the following constraints can satisfy the stability condition (5.11),

κ− q11 − κ2r11 ≥ 0, (5.41)

β − q22 − β2r22 ≥ 0, (5.42)

γ − q33 − γ2r33 ≥ 0. (5.43)



5.5. Implementation 71

Furthermore, constraint

−1 ≤ uL
e2

vR

≤ 1, (5.44)

should be satisfied to obtain a reasonable input valueuL
e2. Moreover, the controlled

values (5.37)-(5.39) have to satisfy the system constraints, which are the bounded
wheel velocities. Combining (3.2), (5.34) and (5.37)-(5.39), the second part of
terminal constraints is deduced as

−





q̇m
q̇m
q̇m



 ≤





cos δ sin δ Lw

− cos δ sin δ Lw

0 −1 Lw









−κxeT + ṡ
−βyeT

−γθeT + ωL
d



 ≤





q̇m
q̇m
q̇m



 . (5.45)

Similar to the orthogonal projection-based case, the control values of the om-
nidirectional robot are given by

u1 = vd cosα,

u2 = vd sinα,

u3 = ωd − u∗e3,

with α = arcsin
u∗

e2

vR
+ θp. (u∗e1, u

∗
e2, u

∗
e3)

T is the first vector of the solution of the
open-loop optimal control problem at each time.u∗e1 gives the optimal value oḟs
which determines the desired robot position on the reference path.

5.5.2 Formulation

The single shooting approach is chosen to solve the NLP from the NMPC formu-
lations of controlling the Attempto soccer robot because ofits low computational
burden. The robot model has to be updated with numerical integration to obtain
the predicted states in the future. The robot kinematic model (3.2) is discretized
as:

θ(k + 1) = θ(k) + ω(k)τ, (5.46)

xw
R(k + 1) = xw

R(k) +
ẋm

R (k)

ω(k)
[sin(θ(k + 1)) − sin(θ(k))]

+
ẏm

R (k)

ω(k)
[cos(θ(k + 1)) − cos(θ(k))],

(5.47)

yw
R(k + 1) = yw

R(k) − ẋm
R (k)

ω(k)
[cos(θ(k + 1)) − cos(θ(k))]

+
ẏm

R (k)

ω(k)
[sin(θ(k + 1)) − sin(θ(k))],

(5.48)
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if ω(k) = 0:

xw
R(k + 1) = xw

R(k) + [ẋm
R (k) cos(θ(k)) − ẏm

R (k) sin(θ(k))]τ, (5.49)

yw
R(k + 1) = yw

R(k) + [ẋm
R (k) sin(θ(k)) + ẏm

R (k) cos(θ(k))]τ. (5.50)

Taking the updated robot states as well as the reference pathand desired robot
orientations into account, the error values in model (5.23)or (5.33) can be conse-
quently obtained. If this update process is modeled by a function g(xe,ue), the
NMPC scheme used to solve the path following problem of the Attempto soccer
robot is formulated as follows,

min
{ue(k),ue(k+τ),...ue(k+Tp)}

J(xe(k), {ue(k),ue(k + τ), ...ue(k + Tp)}), (5.51)

with

J(k) =

Tp

τ
∑

j=1

xe(k+jτ)
T Qxe(k+jτ)+ue(k+(j−1)τ)T Rue(k+(j−1)τ)+E(k+Tp),

(5.52)
subject to

x̄e(k + jτ) = g(xe(k + (j − 1)τ),ue(k + (j − 1)τ)), (5.53a)

ūe(k + jτ) = ūe(k + Tc), ∀ j ∈
[

Tc

τ
,
Tp

τ

]

, (5.53b)

c(x̄e(k + jτ), ūe(k + (j − 1)τ)) ≤ 0, (5.53c)

x̄e(k + Tp) ∈ Ω. (5.53d)

k denotes thekth time step.τ is the constant prediction sampling time. Condition
(5.53d) denotes the terminal constraints. Inequality constraint (5.53c) represents
the constraints ofxe andue, which are related to the robot constraints of wheel ve-
locities, and can be calculated from (5.32) or (5.45) withue instead of the terminal
feedback control valuesuL

e .
To solve the above open-loop optimal control problem, the softwaredonlp2-

intv-dyn written by P. Spellucci is used. It is a general purpose nonlinear op-
timizer and can be found athttp://plato.la.asu.edu/donlp2.html. This optimizer
implements a quadratic programming method constrained by asequential equal-
ity with an active set technique. When the linearly dependent gradients of active
constraints occur, a fully mixed constrained subproblem isused alternatively. This
optimizer also uses following methods: a slightly modified version of the Pantoja-
Mayne update for the Hessian of the Lagrangian, variable dual scaling, an im-
proved Armjijo-type stepsize algorithm. Their details canbe found in [155, 154].
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5.5.3 Delays Compensation

Although NMPC is well studied from the theory side, to apply NMPC in practice
meets some challenges. Delays are the main problem in practical applications,
which roughly include measurement delays, communication delays and computa-
tional delays [45]. With respect to the controller, computational delays are more
crucial for applying NMPC. It is well known that on-line solving the nonlinear
optimization problem requires some timeτd

t at each timet, although the faster
computer and efficient mathematical methods are used in NMPC. Not taking com-
putational delays into account may significantly decrease the control performance
and even lead to instability in the practical applications of NMPC. A simple delay
compensation approach proposed in [45] is able to guaranteethe control stability
which is the same as in the case without delays, which is shownin Figure 5.3 and
has following steps:

Figure 5.3: Delay compensation in the open-loop optimal control problem

• estimate the maximum computational delayτ c, i.e. τd
t ≤ τ c,

• predict the system statēx(t+ τ c) with x(t) andu(t) at time stept,

• solve the open-loop optimal control problem based onx̄(t+ τ c),

• take the first optimal control valuēu∗(t+ τ c) as the current control input.

This method is easy to implement and guarantees control stability. The same
idea can also be utilized to deal with the measurement delaysand communication
delays.
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5.6 Experimental Results

Real-world experiments with the Attempto soccer robot havebeen done to test the
performance of the designed NMPC schemes. The set-up of experiments is the
same as that in Section 4.4. The parameters used in the orthogonal projection-
based NMPC were chosen as

Q =

[

0.4 0
0 1.0

]

, R =

[

0.2 0
0 0.1

]

, α = β = 2.0.

The parameters in theVirtual Vehicle-based NMPC chosen the following values

Q =





1.2 0 0
0 1.4 0
0 0 1.4



 , R =





0.08 0 0
0 0.1 0
0 0 0.1



 , κ = β = γ = 2.0.

The control horizon was chosen same as the prediction horizon with TP = Tc =
3τ , where the prediction sampling timeτ was assigned with special values in
different experiments.

Figures 5.4 and 5.5 show the results with respect to the orthogonal projection-
based NMPC. Figures 5.6 and 5.7 illustrate the results with respect to theVirtual
Vehicle-based NMPC. Comparing the following errors shown in figures5.4(b),
5.5(b) and 5.6(b) with those shown in Section 4.4, it can be seen that NMPC
has similar performance in the robot translation control, but better performance
in the robot orientation control. Moreover, the robot traveled paths shown in fig-
ures 5.4(a), 5.5(a) and 5.6(a) are smoother than those controlled by the nonlinear
control methods described in Chapter 4. Especially around the sharp turning seg-
ments of the reference path, NMPC has handled the difficulty at sharp tuning in
advance. This smooth control performance can make a great benefit for the robot
dribbling control task. In the view of NMPC’s formulation, the weighting matri-
ces can be used to specify the control performance, for example, large elements in
Q emphasize the path following errors in the objective function, large elements in
R make the controlled values more important. But designing the weighting matri-
ces has to compromise among different requirements of the control performance.
Figures 5.4(d), 5.5(d), 5.6(d) and 5.7(d) imply the wheel velocities are always
bounded by the maximum value1.9 m/s. As the most important issue, computa-
tional times of NMPC are shown in figures 5.4(c), 5.5(c) and 5.6(c). The average
and maximal values imply the computational time are acceptable by the robot mo-
tion control problem. In the fourth experiment, theVirtual Vehicle-based NMPC
did not achieve good performance. The high value of desired robot orientation, i.e.
θd = θP +0.5cPv

2
d, makes the orientation tracking more difficult, especiallyat the

sharp turning segments of the reference path. The NMPC scheme requires long
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computational time with the average value of 0.1081 s and themaximum value of
0.65 s, which results a long time interval between successive control commands
and an unsmooth robot trajectory.
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Figure 5.4: Orthogonal projection-based path following control with the constant
desired robot orientation of0 degree. The prediction sampling timeτ and the
estimated computational delayτ c were selected asτ = τ c = 0.2 s. The maximum
and average computational time of NMPC are 0.168 s and 0.035 s, respectively.
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Figure 5.5: Orthogonal projection-based path following control with the desired
robot orientation determined byθd = θP + 0.9cPv

2
d. The selected prediction

sampling time wasτ = 0.2 s and the estimated computational delayτ c was chosen
as τ c = 0.25 s. The maximum and average computational time of NMPC are
0.399 s and 0.0879 s, respectively.
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Figure 5.6:Virtual Vehicle-based path following control with the constant desired
robot orientation of0 degree. The selected prediction sampling time wasτ = 0.2
s and the estimated computational delayτ c was chosen asτ c = 0.25 s. The
maximum and average computational time of NMPC are 0.22 s and0.0691 s,
respectively.
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Figure 5.7: Virtual Vehicle-based path following control with the desired robot
orientation determined byθd = θP + 0.5cPv

2
d. The selected prediction sampling

time wasτ = 0.2 s and the estimated computational delayτ c was chosen as
τ c = 0.25 s. The maximum and average computational time of NMPC are 0.65 s
and 0.1081 s, respectively.
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5.7 Summary

This chapter addresses the successfully used Nonlinear Model Predictive Control
of the Attempto soccer robot. The main reasons for utilizingNMPC come from
two aspects. The first one is that the robot constraints and the control performance
specification can be easily considered in NMPC. The other oneis from the con-
cerned control task in this work, which is the robot following a reference path and
tracking desired orientations. While the reference path and desired orientations
are pre-designed, it is possible to use more of this known information to improve
the control performance.

After introducing the mathematical formulation of NMPC, the stability prob-
lem and numerical solutions of NMPC have been emphasized in Section 5.3 and
5.4. These two issues are very important in the application of NMPC. The control
stability has to be guaranteed with additional effort, because the normal setup of
NMPC only considers a finite prediction horizon and can not guarantee closed-
loop stability. Moreover, on-line solving the open-loop optimal control problem
for a nonlinear system requires long computational time, which is the main block
for applying NMPC in fast systems and requires efficient numerical solutions.
The main contribution of the work presented in this chapter is that NMPC has
been successfully used to solve the path following and orientation tracking prob-
lems for a fast moving omnidirectional wheeled robot, wherethe control tasks are
formulated in the NMPC’s framework, the closed-loop stability is guaranteed by
designing suitable terminal constraints and penalties andcomputational delays are
considered by using a delay compensation method.

All solutions are shown by real-world experiments with the Attempto soccer
robot. The more interesting point is that the robot traveledtrajectories controlled
by NMPC are smoother than those controlled by the nonlinear controllers ad-
dressed in Chapter 4. This advantage plays a great role in thedribbling control of
the soccer robot, which will be addressed in Chapter 7. As mentioned above, the
computational burden is a block of using NMPC with a long prediction horizon.
Finding and applying more powerful optimization methods isstill a hard task in
NMPC. Although the stability problem currently is quite well solved , finding bet-
ter terminal constraints and penalties to increase the feasibility of the open-loop
optimal control problem is still an active topic in the research of NMPC.
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Chapter 6

Ball Tracking

In the robot control system described in Chapter 3, the navigation system is in
charge of the knowledge of robot position and heading based on the sensor mea-
surements. The software system of the Attempto soccer robotuses anImage-
Processorprocess to extract landmarks and objects from images captured by the
omnidirectional vision system. AnEnvironmentModel process in the software
system estimates the robot pose on the field with a self-localization algorithm
[64], and locates objects in a world coordinate system [67].Because misreadings
and failures in the image processing may occur and objects’ velocities can not be
obtained by image processing directly, an object tracking algorithm is designed
in the EnvironmentModel process. The task of object tracking aims to model
an object’s movement based on a series of past and present measurements of the
object’s position, in order to decrease the measurement errors of the object’s posi-
tion, obtain the object’s current velocity, even predict the object’s movement over
a short time horizon.

Locating the ball’s position and predicting the ball’s movement are central for
a soccer robot and the cooperation of a robot soccer team. With good knowledge
of the ball’s status relative to the robot, the robot can initiate a suitable behavior
to achieve a good control of the rolling ball, for example, catch the ball, push
it around obstacles, and shoot it into the goal. The ball tracking problem in the
RoboCup domain is challenging due to the interactions between the robots and
the ball. Especially when the ball is dribbled by a robot, thefrequent interac-
tions usually result in a highly non-linear movement of the ball, and it is difficult
to precisely estimate the interactions. Moreover, the measurement accuracy of
the ball’s position is also limited by sensors and corresponding signal processing
algorithms.

This chapter focuses on tracking a rolling ball when it is consecutively pushed
by an Attempto soccer robot [101]. After a short overview of the related work,
two filter techniques, the Kalman filter and theH∞ filter, are addressed in sections

81
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6.2 and 6.3, respectively. Considering that the assumptions of the process noise
and measurement noise are hardly satisfied in the dribbling process, theH∞ filter
was successfully implemented in ball tracking with the Attempto soccer robot,
which is presented in Section 6.4. Taking the Kalman filter asa benchmark, the
comparison of the experimental results with the Kalman filter and theH∞ filter
are discussed in Section 6.5.

6.1 Related Work

The Kalman filter is the most widely used technology to estimate the ball’s po-
sition and velocity in the RoboCup domain [12, 49, 52, 141, 126], where the
ball is assumed to have a linear movement and the variation ofball’s velocity is
modeled as random noise. The Kalman filter provides efficientand convenient
minimum-mean-square-error solutions for the state estimation problem, consider-
ing that both the process noise and the measurement noise of the target system are
assumed as Gaussian with known statistical properties. When the ball’s movement
is tracked in polar coordinates [90] or modeled with nonlinear dynamics incorpo-
rating the retardation of a ball on the carpet [80], the extended Kalman filters
can be used for the ball tracking problem. Besides a single filter, multiple model
filters based on Kalman filters revealed better performance in some applications.
For example, the Interacting Multiple Model (IMM) algorithm utilizes a Kalman
filter for each mode of the target’s movement model [66], the Multiple Hypothe-
sis Tracking (MHT) algorithm keeps a set of object hypotheses, each hypothesis
corresponding to a Kalman filter describes a unique real object [146]. However,
in practical situations, the noise of the target system and the measurement usu-
ally do not satisfy the Gaussian assumption, and the noise statistics is usually not
available.

To avoid the Gaussian assumption and estimate the states of anonlinear pro-
cess, particle filters [91, 123] and a predictive model basedmethod [94] have been
applied in object tracking in the RoboCup domain. Although the sample-based
representation makes particle filters more robust and the updated parameters en-
able the predictive model to react to jerky changes of the ball’s movement, the
increased memory consumption and computational complexity make these meth-
ods inefficient for higher-dimensional estimation problems.

Motivated by the possibilities to avoid assumed statistical properties of noises
and simultaneously reduce the computational cost, a robustH∞ filter was imple-
mented for the Attempto soccer robots to track a rolling ballduring the dribbling
process. TheH∞ filter does not require a priori knowledge of the noise statistics.
It only assumes that the noise signals have finite energy. At the same time, the
proposedH∞ filter has similar recursive equations to those of the Kalmanfilter,
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and thus it inherits the efficiency and accuracy of Kalman filters.

6.2 Kalman Filter

The Kalman filter is used to estimate the statex ∈ R
n of the following general

linear discrete-time process,

xk+1 = Axk + Buk + wk,

with a measurementy ∈ R
m given by

yk = Cxk + vk,

wherek is the index of the time step. The known matricesA, B andC have
corresponding dimensions, and may remain constant or change at each time step.
Variablesw andv represent the process noise and the measurement noise, re-
spectively. They are assumed to be independent of each otherand have Gaussian
probability distributions with zero means, i.e.

p(w) ∼ N(0,Q). (6.1)

p(v) ∼ N(0,R). (6.2)

The process noise covarianceQ and measurement noise covarianceR can be
different at each time step, but they are mostly assumed to beconstant in practice.

With definitions of thea priori state estimatêx−
k ∈ R

n at time stepk based
on the knowledge of the process prior to time stepk, and thea posterioristate
estimatêxk ∈ R

n at time stepk incorporating all the knowledge of the process
including the measurementyk, the goal of the Kalman filter is to minimize the
covariance of thea posterioriestimation error,

Pk = E[eke
T
k ], (6.3)

whereek = xk − x̂k is thea posterioriestimation error.
The solution of the Kalman filter involves two steps. The prediction step aims

to obtain thea priori estimations of the state and the error covariance,

x̂−
k = Ax̂k−1 + Buk−1,

P−
k = APk−1A

T + Q,

whereP−
k is thea priori estimation error covariance defined asP−

k = E[e−
k e−

k

T
].

e−
k = xk − x̂−

k is thea priori estimation error.
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The correction step is responsible for getting improveda posterioriestima-
tions with a weighted difference between the measurementyk and a measurement
predictionCx̂−

k ,

Kk = P−
k CT (CP−

k CT + R)−1, (6.4)

x̂k = x̂−
k + Kk(yk − Cx̂−

k ), (6.5)

Pk = (I − KkC)P−
k . (6.6)

Matrix K is called again or blending factorand results from minimizing (6.3).
Normally, thegain is computed by substituting equation (6.5) into (6.3) and set-
ting the derivation with respect toK equal to zero. A more detailed derivation of
K can be found in [106].

As long as the noises satisfy the assumptions (6.1) and (6.2), thea posteriori
state estimatêxk and thea posterioriestimation error covariancePk reflect the
mean and variance of the state distribution, respectively:

E[xk] = x̂k,

E[(xk − x̂k)(xk − x̂k)
T ] = Pk.

6.3 H∞ Filter

The optimality of the Kalman filter relies on the knowledge ofthe statistical prop-
erties of the noisesw andv. Although the Gaussian assumption can be approx-
imated and suitable covariance matricesQ andR can be chosen by trial and er-
ror, the resulting Kalman filter can not guarantee to achievea certain level of
performance. Unlike the Kalman filter obtaining the minimumvariance of the
estimation error, theH∞ filter obtains the minimal effect of the worst noise on
the estimation error. TheH∞ filter is robust against the noise and gives an upper
boundary on the estimation errors based on the assumption ofa finite disturbance
energy no matter what the noise distributions are.

Consider the following linear system:

xk+1 = Akxk + Bkwk,

yk = Ckxk + vk,

wherexk ∈ R
n, wk ∈ R

m, yk ∈ R
p andvk ∈ R

p. Ak,Bk andCk are matrices
with appropriate dimensions.(Ak,Bk) is controllable and(Ck,Ak) is detectable.
Compared to the Kalman filter aiming to estimate the system statexk, theH∞
filter concerns a linear combination ofxk:

zk = Lkxk.
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The output matrixLk is selected by the user according to different applications.
TheH∞ filter computes the estimated stateẑk based on the measurementyk,
whereyk = {yk, 0 ≤ k ≤ N}, and evaluates the estimation error by a perfor-
mance measurementJ which can be regarded as an energy gain:

J =

N
∑

k=0

‖zk − ẑk‖2
Qk

‖x0 − x̂0‖2
p
−1

0

+
N
∑

k=0

(

‖wk‖2
W

−1

k
+ ‖vk‖2

V
−1

k

)

.

HereinN is the size of the measurement history.Qk,p0,Wk,Vk are the weight-
ing matrices for the estimation error, the initial condition, the process noise and
the measurement noise, respectively. Moreover,Qk ≥ 0, p−1

0 > 0, Wk > 0,
Vk > 0 and ((x0 − x̂0) ,wk,vk) 6= 0 . The notation‖xk‖2

Qk
is defined as

‖xk‖2
Qk

= xT
k Qkxk. The denominator ofJ can be considered as the energy of

the unknown noises, and the numerator is the energy of the estimation error. The
H∞ filter aims to provide a uniformly small estimation errorek = zk − ẑk for any
wk,vk ∈ L2 andx0 ∈ R

n, such that the energy gainJ is bounded by a prescribed
value:

sup J < 1/γ

wheresup denotes the supremum and1/γ is the noise attenuation level withγ >
0. This formulation leads to the robustness of theH∞ filter, because the estimation
energy gain is limited by1/γ no matter what the bounded energy noises are.

To solve this optimal estimation̂z due to the bounded energy gainJ , theH∞
filter can be interpreted as aminimaxproblem [150]

min
ẑk

max
(wk,vk,x0)

J = − 1

2γ
‖x0 − x̂0‖2

p
−1

0
+

1

2

N
∑

k=0

[

‖zk − ẑk‖2
Qk

− 1

γ

(

‖wk‖2
W

−1

k
+ ‖vk‖2

V
−1

k

)

]

where the estimation valuêzk plays against the bounded energy noiseswk andvk.
“min” stands for minimization and “max” denotes maximization.

Many strategies have been proposed for solving thisminimaxproblem [119,
62]. Reference [150] proposed a linear quadratic game approach, which gave a
complete solution to thisminimaxproblem without checking the positive definite-
ness and inertia of the Riccati difference equations for every step. This approach
is implemented through recursive updating the filter gainHk, the solutionPk of
the Riccati difference equations, and the state estimationx̂k with the following
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updating equations:

Q̄k = LT
k QkLk,

Hk = AkPk

(

I − γQ̄kPk + CT
k V−1

k CkPk

)−1
CT

k V−1
k ,

x̂k = Akx̂k−1 + Hk (yk −CkAkx̂k−1) ,

ẑk = Lkx̂k,

Pk+1 = AkPk

(

I − γQ̄kPk + CT
k V−1

k CkPk

)−1
AT

k + BkWkB
T
k ,

whereP0 = p0 andPk > 0 . I is the identity matrix with corresponding dimen-
sions.

Apparently, these recursive equations have similar forms to those of the classic
Kalman filter. Although the statistics of noiseswk andvk are not required in the
H∞ filter, tuning the weight matricesQk,p0,Wk,Vk should be done carefully,
because these values determine the estimation error in the performance criterion.
The weight matricesWk,Vk can be chosen according to the experience with the
noise. For example, if the noisew is known to be smaller than the noisev, Wk

should have smaller elements than those ofVk and vice versa.p0 is based on
the initial estimation error. If the initial estimation̂Z0 has higher creditability,
p0 should be small. Similarly, if estimations of some elementsin the state have
received more attention, or some elements have bigger magnitude in their physical
definition, the corresponding elements in the matrixQk can be set larger than
others. The performance criterionγ is hoped to be as large as possible. Yet too
largeγ may make some eigenvalues of the matrixP larger than one, which makes
theH∞ filter’s mathematical deviation become invalid. Therefore, the estimation
error of theH∞ filter can not be arbitrarily small.

6.4 Implementation

To implement theH∞ filter, the ball’s movement is modeled by the following
linear discrete system,

ṗk+1 = ṗk + p̈kT,

pk+1 = pk + ṗkT +
1

2
p̈kT

2,

wherep is the position of the ball, whilėp andp̈ are the velocity and acceleration
of the ball, respectively.T is the sampling interval andk is the index of the
sampling time. Defining a state vectorxk consisting of the position and velocity
asxk = [pk ; ṗk], and taking the ball’s position as the measurement value, the
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ball’s movement is described by:

xk+1 =

[

1 T
0 1

]

xk +

[

T 2/2
T

]

uk, (6.7)

yk =
[

1 0
]

xk, (6.8)

where the system inputu equals the acceleration̈p, which is completely deter-
mined by the friction of the ground and the pushing operationfrom the robot. In
practice situation, equation (6.7) can not give the precisestate values because of
the noise due to the rugged carpet ground. The precise outputvalues can not be
obtained from equation (6.8), since measurement noise decreases the reliability of
the measured data. Therefore, the ball’s model should take process noisew and
measurement noisev into account,

xk+1 =

[

1 T
0 1

]

xk +

[

T 2/2
T

]

uk + wk,

yk =
[

1 0
]

xk + vk.

Several effects, such as the friction of the ground, the moment when the robot
collides with the ball and the corresponding effect of the collision on the ball’s
movement can not be obtained exactly, so the system inputu is not available
when the robot is dribbling the ball. However,u can be taken as additional process
noise and unified with the process noisew. Then a more realistic system model is
deduced as

xk+1 =

[

1 T
0 1

]

xk +

[

T 2/2
T

]

wk, (6.9)

yk =
[

1 0
]

xk + vk. (6.10)

In the context of theH∞ filter, Lk is specified as an identity matrix in this case,
because the ball’s location and velocity are all required tobe estimated, i.e.

zk = xk.

6.5 Experimental Results

The ball’s observation data come from the omnidirectional vision system of the
Attempto soccer robots. Pointing up towards a hyperbolic mirror mounted on the
top of a robot, an AVT Marlin F-046C color camera can capture surrounding im-
ages of a robot up to 50 times per second. After obtaining these color images,
a color calibration process maps the colors to different classes in the RoboCup
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.

Figure 6.1: An Attempto soccer robot with an orange match ball.

domain and extracts the landmarks and objects from the images. Then, a dis-
tance calibration process transfers pixel positions in theimage into the real world
coordinate system [67].

While the object detection algorithm always outputs the ball’s relative posi-
tion to the robot, the ball’s relative position and velocitywith respect to the robot
coordinate system can be estimated directly by using the ball’s observation val-
ues. When the ball’s absolute position and velocity are required, the estimated
ball’s relative values can be transformed into the world coordinate system using
the robot orientation values. Figure 6.2 illustrates the ball’s position in the robot
coordinate system.

.

Figure 6.2: Ball’s relative position(xm
B , y

m
B ) in the robot coordinate system.

To prove the feasibility and the robustness of theH∞ filter in the ball tracking
problem, two real experiments with an Attempto soccer robotwere performed in
the robot laboratory. Figure 6.1 shows an Attempto soccer robot with an orange
ball. Considering the limited size of the robot laboratory,the soccer robot was
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controlled to dribble the ball along a linear path and a circular path. The following
commands were sent to the robot in these two experiments, respectively:

a) ẋm
R = 1.5m/s, ẏm

R = 0, ω = 0;

b) ẋm
R = 0.8m/s, ẏm

R = 0, ω = 0.5rad/s.

In case a), the robot drives linearly with a speed of 1.5 m/. Incase b), it forwards
along a circle with a speed of 0.8 m/s. The ball did not slide away from the robot
during the whole dribbling process because of the consecutive collisions with the
robot. At every sampling time, twoH∞ filters estimated the x and y components
of the ball’s relative position and velocity with respect tothe robot coordinate
frame. The noise attenuation level and weight matrices for estimating the x and y
components of the ball’s movement in both cases were chosen as follows:

γx = 2.0, px
0 =

[

30 0.004
30 2

]

, Qx
k =

[

0.01 0
0 0.01

]

, Wx
k = 1, Vx

k = 10 ;

γy = 1.5, p
y
0 =

[

10 0.05
30 0.8

]

, Q
y
k =

[

0.1 0
0 0.1

]

, W
y
k = 10, V

y
k = 1 .

To evaluate the performance of theH∞ filter, a Kalman filter with assumed
noise variance was selected as a benchmark to estimate the ball’s position and
velocity with the same observation values. The initial estimation error covariance
matricesPo and the probability distributions of the process noise and the mea-
surement noise were chosen by trial and error. The followingparameters gave the
optimal estimations:

px
0 =

[

0.01 0.0001
0.003 0.005

]

, p(wx) ∼ N(0, 0.01), p(vx) ∼ N(0, 0.0001);

p
y
0 =

[

0.01 0.0001
0.01 0.005

]

, p(wy) ∼ N(0, 1), p(vy) ∼ N(0, 0.0001).

Figure 6.3(a) show the traveled paths of the robot and the ball in these two
experiments. The results illustrated in figures 6.4 and 6.5 show that theH∞ filter
eliminated the high frequency components of the measurement and estimated the
ball’s relative positions and velocities successfully. The estimated ball’s relative
positions shown in figures 6.4(b) and 6.5(b) imply that the ball did not slide away
from the robot, while the maximum position along theYm direction is far from
the boundary value 0.15 m. Figures 6.4(a), 6.4(b), 6.5(a) and 6.5(b) show that the
estimated ball’s relative positions from theH∞ filter are slightly better than those
from the Kalman filter. Moreover, figures 6.4(c), 6.4(d), 6.5(c) and 6.5(d) show
that theH∞ filter gave smoother estimations of the ball’s relative velocities than
the Kalman filter.
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(a) Linear paths of robot and ball.
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(b) Circular paths of robot and ball.

Figure 6.3: Traveled paths of the robot and the ball in the dribbling experiments.
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(a) Relative x-positions of ball.
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(b) Relative y-positions of ball.

0 0.5 1 1.5 2 2.5 3 3.5
−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

Time (s)

R
el

at
iv

e 
x−

ve
lo

ci
ty

 o
f b

al
l (

m
/s

)

 

 

estimated velocity from H infinity filter
estimated velocity from Kalman filter

(c) Relative x-velocities of ball.
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(d) Relative y-velocities of ball.

Figure 6.4: Relative ball’s positions and velocities with respect to the robot coor-
dinate system when robot moves along a linear path.
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(a) Relative x-positions of ball.
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(c) Relative x-velocities of ball.
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(d) Relative y-velocities of ball.

Figure 6.5: Relative ball’s positions and velocities with respect to the robot coor-
dinate system when the robot moves along a circle.

6.6 Summary

In this chapter, a robustH∞ filter is adopted to estimate the ball’s relative position
and velocity when the ball is dibbled by a soccer robot. Unlike the Kalman filter,
which relies on suitable assumptions of noise variances, theH∞ filter does not
require a priori knowledge about the statistical properties of the process noise and
the measurement noise, but only depends on the assumption offinite noise power.
The Kalman filter aims to minimize the expected estimation error covariance and
yields maximum-likelihood estimations, while theH∞ filter minimizes the worst
possible effects of noise on the estimation errors. This guarantees that, if noise is
small in energy, the estimation error will be as small as possible. The recursive
equations of theH∞ filter have similar forms to those of the Kalman filter, thus the
H∞ has similarly low computational cost and is feasible for real time estimation
problems.

In two real-world experiments, where the ball was pushed consecutively by an
omnidirectional soccer robot, the performance of theH∞ filter was evaluated by
comparing the estimation values to those of the Kalman filter. The results of the
estimated ball’s relative positions and velocities show that theH∞ filter eliminates
the high frequency noise components of the measurements andestimates the ball’s
position and velocity robustly during the pushing process.Although theH∞ filter
involves regulating some weighting matrices, the real world experimental results
show that it has better performance than a Kalman filter and the independence of
noise statistics makes theH∞ filter more robust.



Chapter 7

Dribbling Control

For a soccer robot, ball control is one of the most important and essential skills.
Concerning offensive and defensive tactics, controlling the ball consists of three
tasks. The first task denotes ball capturing, where a robot isable to catch the ball
whenever the ball is moving or resting. The second task refers to ball dribbling,
which involves the maneuvering of the ball through consecutive and short con-
tacts of a robot in a n environment with dynamic obstacles. The third one is ball
keeping, which enables a soccer robot to prevent the ball from being stolen by the
opponents.

Compared to other tasks, ball dribbling is more important from the offensive
standpoint, because a soccer robot has to control the ball and shoot a goal after
catching the ball. Moreover, dribbling control is more challenging than the normal
motion control of an autonomous robot, while dribbling control has to consider
the ball’s movement in steering the robot movement. Although efficient dribbling
mechanisms help a soccer robot to achieve a good dribbling skill, design and exe-
cution of appropriate dribbling strategies have attractedattention in the RoboCup
robot soccer teams.

The dribbling process is actually a consecutive impact process of high fre-
quency and low magnitude. Because of the difficulty of determining the impact
time, the contact position, and corresponding impact influence, many RoboCup
teams either use a simple model to approximate the interaction, or let the soccer
robot learn the dribbling skills where the interaction is regarded as a black-box
system.

In dribbling learning, artificial neural networks (ANN) have been adopted by
many RoboCup teams [26, 63, 117], because they are able to approximate an ar-
bitrary function by learning from observed data. Normally,the inputs of an ANN
refer to the environment information, such as the positionsof the robot and the
ball, the positions of opponents, the direction of the goal,and so on. The outputs
of the ANN are the desired robot actions, for example, the desired robot velocities

93



94 Chapter 7. Dribbling Control

and accelerations. The selection of a suitable structured ANN given the training
data is not straightforward. Especially using a real robot,the training process
has to start with positioning the ball and the robot at arbitrary positions of the
play field. Then, all measurements are recorded, which is followed by training an
ANN based on suitable learning algorithms. The whole process generally needs
a very long time to obtain a trained ANN with optimal performance. Therefore,
most soccer robot teams use adequate simulators to achieve aconsiderable faster
training time. Simulators have the advantage of not being constrained to time lim-
itations, such as to tune the parameters of the ANN and the learning algorithms
for an optimal performance. Although the learning procedure benefits from sim-
ulators, many problems occur in real experiments when the trained ANN is used
on real robots. It is because the trained ANN is constrained to a small subset
of robot behaviors. For example, the interactions between arobot and the ball
are difficult to describe in mathematical terms when the robot dribbles the ball.
As a result, the learning method directly operating on real robots with efficient
learning algorithms became attractive recently. Concerning learning algorithms,
reinforcement learning became popular for learning of soccer robot behaviors, as
it dose not need the correct input/output pairs, but only theinformation about the
behaviors’ success or failure [137, 76, 50, 60]. As a successful application, an off-
line neural fittedQ iteration scheme based reinforcement learning approach has
been proposed in [137] to learn the dribbling on a real soccerrobot. This learning
method allows the application of advanced supervised learning methods, and has
a faster convergence than the on-line gradient descent methods.

Learning the dribbling of a soccer robot avoids building complex physical
models, but the learning process requires a long time and results in high compu-
tational cost, especially when there is a large number of parameters to optimize.
Moreover, the collection of training data is difficult to be completed. In a new en-
vironment, new training data may result in a new learning process. Therefore, an
analytical dribbling control method is necessary to decrease the time spent on de-
signing a dribbling controller. Damaset al. addressed some analytical constraints
for a nonholonomic soccer robot dribbling a rolling ball in [28]. Based on a sim-
ple description of the interaction between the robot and theball, these constraints
are used to avoid loosing the ball by limiting the robot translation and rotation
velocities. Another analytical method is presented in [69]with respect to an om-
nidirectional soccer robot. It approximates the interaction by a spring kinematic
model, and assumes that the ball does not leave the robot but always compresses
the spring. According to this assumption, the robot is controlled to track the de-
sired poses, which are computed from the ball’s desired trajectory based on the
suitable values of a weight factor and a damping ratio.

To avoid the long learning process, this work focuses on designing an ana-
lytical dribbling control method for the Attempto soccer robot. Inspired by [28],
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a constraint of robot movement in the dribbling process for keeping the ball is
deduced by analyzing the force exerted on the ball. Without modeling the inter-
action between a robot and the ball during the dribbling process, the analysis of
the relative movement of the ball with respect to the robot results in the dribbling
control method. It accomplishes the dribbling task by introducing a reference
point to follow a given path and keeping the ball near this point simultaneously
[97, 96, 100].

7.1 Dribbling Mechanisms

The dribbling system of a soccer robot is composed of dribblers, which are built
of special materials to increase the robot’s ability of controlling the ball. The main
contribution of dribblers is to exert a certain amount of force onto the ball. The
force can not only give a backwards spin to the ball such that the ball can move
back when it loses contact with the robot, but also prevent the ball from sliding
away from the robot when the robot rotates quickly.

Designing dribbling mechanisms of soccer robots in the RoboCup Middle Size
League has to obey the following rules [1]:

• During a game the ball must not enter the convex hull of a robotby more
than a third of its diameter except when the robot is stoppingthe ball;

• Forces exerted onto the ball that hinder the ball from rotating in its natu-
ral direction of rotation are allowed for no more than four seconds and a
maximal distance of movement of one meter.

Considering many hardware challenges in the RoboCup MiddleSize League,
most teams pay more attention to improving and executing dribbling strategies.
They mostly adopt simple and flexible dribbling systems. Passive dribblers are
widely adopted by the Middle Size League teams due to the simple mechanisms.
As illustrated in figures 7.1(c), 7.1(d), 7.0(e) and 7.0(f),passive dribblers have
no actuators such as motors and gears to be controlled actively, but influence the
ball’s movement by special structures and materials. In order to improve the drib-
bling capability, some teams designed active dribblers as shown in Figures 7.1(a)
and 7.1(b), usually represented by wheels which are controlled by DC motors to
influence the ball’s rotation.

Consisting of dribblers built from materials with high friction properties and
good damping qualities, the popular dribbling system is designed with a concave
front and a top component. The concave shape either stems from the concave
front of the robot base as shown in figures 7.1(a), 7.1(b), 7.0(e) and 7.0(f), or is
formed with some separated dribblers, which are illustrated in figures 7.1(c) and
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7.1(d). The main benefit of the concave shape is that the ball can be easily forced
toward the center of the robot front. The contribution of thetop component is to
exert pressure onto the ball from the above, such as to keep the ball from rolling
away. The top component can consist of active wheels, plastic bars or a rubber
string, as shown in figures 7.1(c) - 7.0(f), respectively.

The dribbler system of the Attempto soccer robot is shown in Figure 7.0(f).
There are three spongy blocks attached to the concave front to damp the collisions
of the ball and to prevent the ball from sliding away from the robot. A rubber
foam pad is assembled at a higher position, which exerts pressure onto the ball
and keep it from leaving the robot along the lateral and longitudinal directions.
The advantage of this dribbling system is that the bigger facing size enables the
robot to easily capture the ball.

7.2 Dribbling Analysis

In a dribbling task, the main challenge is that the ball should be kept and be
pushed by a robot when the robot moves and passes obstacles. Dribbling control
needs to consider not only the robot’s movement, but also theball’s movement.
Therefore, it is necessary to analyze the relative movementbetween the robot and
the ball. When the ball is considered as a mass pointB located at the sphere center,
the relationship between the ball’s accelerations observed in the world coordinate
system and the robot coordinate system is described as follows:

aB = aR + am
B + 2ω × vm

B + ω̇ × rm
B + ω × (ω × rm

B ). (7.1)

aR denotes the robot’s translation acceleration observed in the world coordinate
system.aB andam

B are the ball’s accelerations observed in the world and robot
coordinate systems, respectively.ω andω̇ are the robot rotation velocity and the
corresponding rotation acceleration.vm

B andrm
B are the ball’s velocity and position

observed in the robot coordinate system, respectively. In (7.1), the term2ω ×
vm

B is called Coriolis’ acceleration; the terṁω × rm
B is due to the robot rotation

acceleration; the termω×(ω×rm
B ) is called centripetal acceleration, which always

points towards the axis of robot rotation.
Multiplying (7.1) by the mass of the ballmB, the extended Newton’s second

law with respect to the robot coordinate system is given by

Fm
B = FB + Fin, (7.2)

whereFB = mBaB andFm
B = mBam

B . FB is the vector sum of all the exter-
nal force acting on the ball with respect to the world coordinate system.FB is
composed of the force exerted by the robot and the friction between the ball and
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(a) CAMBADA robot 2007. One
active wheel presses on the ball
from above. Two inactive wheels
are mounted on the front of the
robot base.

(b) Tech United Eindhoven robot
2008 . Two active wheels act as top
dribblers, which can change the con-
tact points on the ball and drive the
ball in the longitudinal and lateral di-
rections.

(c) Tribots robot 2006. The dribbling
system consists of four rubber cylin-
drical bars representing the corners
of an isosceles trapezoid.

(d) Hibikino-Musashi robot 2006.
The Dribblers are similar to those of
the Tribots robot, but the upper two
dribblers have a flat form.
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(e) Cops robot 2006. Four short
mental bars are used. A rubber spring
is connected between the upper two
dribblers to damp collisions of the
ball.

(f) Attempto robot 2006. A rub-
ber foam pad is assembled above the
concave robot front. Three spongy
blocks are attached to the robot front
to improve the damping property.

Figure 7.0: Soccer robots of the RoboCup Middle Size League

the floor. Fm
B = mBam

B is the vector sum of the force with respect to the robot
coordinate system.Fin is the inertial force calculated as

Fin = −mBaR −mB(2ω × vm
B + ω̇ × rm

B + ω × (ω × rm
B )). (7.3)

Equation (7.2) implies that not only the external force but also the inertial force
is exerted on the ball, when the ball is observed in the robot coordinate system.
The inertial force stems from the acceleration of the reference coordinate system,
which is the robot coordinate system. Although the inertialforce manifests itself
as a real force, it is not the real one while it results from thenon-inertial reference
coordinate system but not from interactions with other bodies.

If the ball is moving along a curve with a clockwise turning asshown in Figure
7.1, it is only possible for the robot to keep the ball if the forceFm

B has nonpositive
projection on the line

−→
BL, which is parallel to the left border of the robot’s front.

That yields
(Fm

B )−→
BL

= (FB + Fin)−→
BL

≤ 0. (7.4)

When the ball follows a curve, the external forceFB can be projected on the
tangent and normal directions of the curve. The tangent partFt can be calculated
asFt = mBat with a accelerationat. The normal partFn is pointing to the center
of curvature and has the magnitude|mBcv

2
B|. c is the curvature of the curve and
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Figure 7.1: The ball’s relative position in the robot coordinate system. Three
spongy blocks are pasted on the robot’s front to increase thefriction. PointE
denotes the desired position of the ball’s centerB.

vB is the ball’s moving velocity.Fin is related to the ball’s relative state and the
robot movement. Inequality (7.4) represents the constraint of robot movement
in the dribbling process, under which the robot can keep the ball moving along
curved paths avoiding losing the ball. The analysis presented above assumes that
the robot rotates in the clockwise direction, but similar results can be obtained in
the non-clockwise case. However, the constraint (7.4) can not be easily satisfied.
While the interaction between the robot and the ball is difficult to be modeled
in mathematical equations, it is hard to analytically determine the desired robot
movement, which guarantees suitable force exerted on the ball in the dribbling
process.

Based on the analysis of the relative movement between the ball and the robot,
an analytical dribbling control strategy is designed for the Attempto soccer robot.
Considering the fully free mobility of the omnidirectionalrobot, the dribbling
control strategy assigns different tasks to the translation control and rotation con-
trol of the robot. Without exact modeling the interaction between the ball and the
robot, the analytical results yield an efficient condition of the robot movement for
a successful dribbling control.

7.3 Dribbling Control Strategy

In an environment with obstacles, the dribbling control problem considered here
refers to a robot moving along some obstacle free paths and keeping the ball in the
whole dribbling process. Figure 7.2 illustrates an ideal situation in the dribbling
process, where the ball moves along a curveP and the ball’s centerB matches
pointE located at the front of the robot. PointE is depicted in Figure 7.1, which
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has a fixed distanceL to the robot’s center of massR and the coordinate(L, 0)
in the robot coordinate system. Since pointE is the ideal position of the ball’s
centerB, the dribbling control can be formulated to control pointE to follow
the desired path and keep the ball near pointE simultaneously. With respect to
the advantage of the omnidirectional robot, i.e. the decoupled controllability of
translation and rotation, the dribbling control strategy can be achieved by assign-
ing the path following task and the ball keeping task to the robot translation and
rotation control, respectively. The following contents inthis subsection will detail
the dribbling control strategy from the aspects of the controlled kinematic system,
the translation control of pointE’ and the rotation control of the robot.

Figure 7.2: Force analysis in an ideal dribbling situation,where the ball’s center
B moves along a curve and matches pointE located at the front of the robot.∆θ
denotes the angular deviation betweenθ andθP , i.e. ∆θ = θ − θP .

7.3.1 Kinematic model in dribbling control

The definition of pointE implies that it has a fixed coordinate(L, 0) with respect
to the robot coordinate system, which results in the relationship between pointE
and the robot center of massR defined as,

xE = xR + L cos θ, (7.5)

yE = yR + L sin θ, (7.6)

wherexE andyE denote the position of pointE with respect to the world coor-
dinate system. Substituting the robot kinematic model (3.2) into the following
derivatives of (7.5) and (7.6),

ẋE = ẋR − Lω sin θ, (7.7)

ẏE = ẏR + Lω cos θ, (7.8)
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the kinematic model of PointE is given by

ẋE = ẋm
R cos θ − ẏm

R sin θ − Lω sin θ, (7.9)

ẏE = ẋm
R sin θ + ẏm

R cos θ + Lω cos θ, (7.10)

whereẋE andẏE denote the pointE’s velocity with respect to the world coordi-
nate system.

Combining pointE’s kinematics with the robot rotation, the following system
is employed in the dribbling control strategy,





ẋE

ẏE

θ̇



 =





cos θ − sin θ −L sin θ
sin θ cos θ L cos θ

0 0 1









ẋm
R

ẏm
R

ω



 , (7.11)

This system has the same inputs as those of the robot kinematic model (3.2), but
the outputs consist of pointE’s velocity and robot rotation velocity. Note that
the transformation matrix in (7.11) is also full rank, whichmeans the decoupled
controllability of translation and rotation is inherited.Therefore, the control of
pointE to follow the reference path and the robot orientation to track the desired
orientations can be achieved separately.

7.3.2 Translation Control

The path following problem of pointE can be solved with the presented control
methods of Chapter 4. The two inputsẋm

R andẏm
R in (7.11) can completely control

the values oḟxE andẏE whatever the value ofω is. During the dribbling process,
the ball can only be pushed but not be pulled. To decrease the ball’s speed, the
robot has to move ahead and to hinder the ball’s movement. When the ball’s
speed is required to increase, the robot needs to stay behindthe ball and push
it. Therefore, varying the ball’s speed will unsmooth the robot movement and
increase the possibility of the robot to lose the ball. In thedribbling strategy, the
ball is required to move along a reference path with a highly constant speed, which
not only facilitates the robot motion control, but also ensures a fast movement of
the ball in the RoboCup matches.

7.3.3 Rotation Control

Besides the robot translation control, the degree of freedom of robot rotation can
be used to keep the ball near pointE. When pointE is controlled along a reference
path, pointE’s acceleration with respect to the world coordinate systemis given
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by

ẍE = cv2
E sin(θ − θP ), (7.12)

ÿE = cv2
E cos(θ − θP ). (7.13)

vE is point E’s velocity,c andθP are the curvature and tangent direction at the
position of pointE on the reference path. Differentiating (7.5) and (7.6) twice
yields,

ẍE = ẍR − Lω̇ sin θ − Lω2 cos θ, (7.14)

ÿE = ẍR + Lω̇ cos θ − Lω2 sin θ. (7.15)

The robot acceleration can be directly calculated from pointE’s acceleration with
the following equations,

ẍR = cv2
E sin(θ − θP ) + Lω̇ sin θ + Lω2 cos θ, (7.16)

ÿR = cv2
E sin(θ − θP ) − Lω̇ cos θ + Lω2 sin θ. (7.17)

ẍR andÿR denote the robot translation acceleration with respect to the world co-
ordinate system.

Substituting (7.16) and (7.17) into the projection of (7.1)into the robot coor-
dinate system, the ball’s kinematics is determined as,

ẍm
B = ẍBm − cv2

E sin(θ − θP ) − Lω2 + 2ωẏm
B + ω̇ym

B + ω2xm
B , (7.18)

ÿm
B = ÿBm − cv2

E cos(θ − θP ) + Lω̇ − 2ωẋm
B − ω̇xm

B + ω2ym
B , (7.19)

wherexm
B andym

B denote the ball’s position with respect to the robot coordinate
system. ẋm

B , ẏm
B , ẍm

B and ÿm
B are the corresponding velocities and accelerations.

ẍBm andÿBm denote the projection of vectoraB in the robot coordinate system,
ω̈ is the robot rotation acceleration. It is noticed in (7.18) and (7.19) that the ball’s
states with respect to the robot coordinate system are determined by the robot
orientation, the robot rotation velocity and rotation acceleration.vE is determined
by the translation control.c andθP are derived from the pre-designed reference
path.

According to the constraint (7.4) of the robot to keep the ball, ẍm
B is required

to be less and equal to zero along the axisXm, and ÿm
B is required to drive the

ball to the position of pointE. When the ball is near pointE, which means
(xm

B , y
m
B ) → (L, 0) and(ẋm

B , ẏ
m
B ) → (0, 0), (7.18) and (7.19) have the following

approximations:

ẍm
B ≈ ẍBm − cv2

E sin(θ − θP ), (7.20)

ÿm
B ≈ ÿBm − cv2

E cos(θ − θP ), (7.21)
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where the robot orientation plays an important role on controlling the ball’s rela-
tive acceleration̈xm

B andÿm
B . Because the robot can only push the ball, the value

of ∆θ = θ−θP is bounded to the interval−π
2
≤ ∆θ ≤ π

2
. If ∆θ has the same sign

as that ofc, the inertial acceleration−cv2
E sin(∆θ) always points in the negative

direction of the axisXm, which presses the ball to the robot. However, the inertial
acceleration−cv2

E cos(∆θ) causes the ball to slide away from the robot. There-
fore, selecting∆θ with the same sign ofc can be beneficial for the ball keeping
task. But the magnitude of∆θ is a trade-off between the inertial accelerations
−cv2

E sin(∆θ) and−cv2
E cos(∆θ). If ∆θ is larger, there is more pressure on the

ball but less force to prevent the ball from sliding away, andvice versa.
On the other hand,̈xBm andÿBm refer to the external force acting on the ball,

which is mainly influenced by the robot movement. Although the interaction be-
tween the robot and the ball is hard to know, the angular deviation∆θ as shown in
Figure 7.2 is necessary for the robot to provide the ball withenough pushing force
Ft and centripetal forceFn. Moreover,∆θ has a relationship with the centripetal
accelerationcv2

E.
As a consequence of above analysis,∆θ is selected proportional to the cen-

tripetal acceleration with a positive parameterkθ:

∆θ = kθcv
2
d. (7.22)

This results in the following desired robot orientation

θd = θP + kθcv
2
d. (7.23)

Then, the rotation control problem is to steer the robot orientation to track the
desired ones.

7.4 Following a Static Path

In the dribbling task, a pre-designed reference path connects the ball’s position
and the target position through the free space on the play field. When obstacles are
static or move slowly, a static path can be adopted in the whole dribbling process.
To test the performance of the dribbling strategy, a sinusoidal path and an eight-
shaped path were chosen for the dribbling task, because the varying curvature
and symmetry of these paths are complex enough to validate the robot’s agility of
dribbling a rolling ball. Considering the space limitationof the robot laboratory,
the sinusoidal path is parameterized as,

xr = p,

yr = sin(1.5p),
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and the eight-shaped path is given by,

xr = 1.8sin(2p),

yr = 1.0sin(p).

p is a scale variable. Also the value of0.2 was chosen forkθ, which determines
the following desired robot orientation

θd = θP + 0.2cv2
d.

The NMPC method was utilized here to fulfill the dribbling control task, while
the results presented in Chapter 5 show that the NMPC approach can not only
keep the robot working under the system constraints, but also get smooth travel-
ing trajectories of the robot by specifying the corresponding objective function.
Compared to the control problem presented in Chapter 5, the only difference is
that pointE is controlled in the path following problem instead of the robot cen-
ter of massR. To reduce the computational burden of NMPC, the orthogonal
projection-based formulation of the path following problem was adopted, where
only one control variableαe is required. Therefore, the NMPC method aims to
find suitable values ofαe andω, such that pointE follows a reference path and
the robot orientation tracks the desired orientation. The formulation of the NMPC
approach is described by equations (5.51) - (5.53). The costfunction is from 5.24,
the terminal penalty is from 5.25 and terminal constraints are designed as 5.29 -
5.32. αe denotes the moving direction of pointE with respect to the path coor-
dinate system, which generates the desired moving velocities of pointE in the
world coordinate system as follows,

ẋE = vE cos(αe + θp), (7.24)

ẏE = vE sin(αe + θp). (7.25)

Substituting (7.24) and (7.25) into (7.7) and (7.8), the inputs of the linearized
kinematic model (3.5), which are the desired translation velocities of the robot in
the robot coordinate system, are given by,

u1 = ẋm
R = vE cos(αe + θp) + Lω sin θ, (7.26)

u2 = ẏm
R = vE sin(αe + θp) − Lω cos θ. (7.27)

We chose the values of1 m/s and0.8 m/s forvE in the experiments with the
sinusoidal reference path and the eight-shaped reference path, respectively. The
same parameters of the NMPC approach were used in the two experiments, which
are

Q =

[

0.3 0
0 0.5

]

, R =

[

0.2 0
0 0.1

]

, α = β = 2.0.
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The control horizon was chosen the same as the prediction horizon with TP =
Tc = 3τ . The prediction sampling timeτ and the estimated computational delay
τ c were selected asτ = 0.2 s andτ c = 0.25 s.

The experimental results with respect to the two reference paths are shown
in figures 7.3 and 7.4. Figures 7.3(a) and 7.4(a) show the traveled paths of the
ball and the robot. The dribbling errors are illustrated in figures 7.3(b) and 7.4(b),
where the maximum deviation from pointE to its projection on the reference path
is less than0.1 m and the largest angular errors with respect to the robot orientation
are not more than0.4 rad. Figures 7.3(c), 7.3(d), 7.4(c) and 7.4(d) show the filtered
ball’s relative positions with respect to the robot coordinate system based onH∞
filters. They imply that the ball was kept during the dribbling processes, while
the relative x-positions are mostly less than 0.4 m, and the relative y-positions are
far from the boundary value 0.15 m. Figures 7.3(e), 7.4(e), 7.3(f) and 7.4(f) show
the performance of the NMPC approach. The wheel velocities were kept under
the boundary value1.9m/s. Although the computational time is more than0.2 s
in some cases, the average computational times are0.092 s and0.091 s in both
experiments, which is appropriate for dribbling the ball with the speed of1 and
0.8 m/s, respectively.
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Figure 7.3: The NMPC-based dribbling control along the sinusoidal reference
path.
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Figure 7.4: The NMPC-based dribbling control along the eight-shaped reference
path.
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7.5 Following a Dynamic Path

The RoboCup match is a highly dynamic environment involvingmoving soccer
robots and the ball. Although some situations enable a robotto dribble the ball
along a static path and shoot a goal, the planned path should be updated with
respect to the changed environment most of the time. Therefore, dribbling the ball
along a dynamically planned path is more essential and offers a great challenge
for the soccer robot.

7.5.1 Path Planning

The path planning method presented by Weigel et al [161] is used in the Attempto
soccer robot, which is one of the most efficient path planningapproaches in the
RoboCup domain. This method is based on the potential field technique, and
is able to navigate a robot out of a local minimum by introducing a grid-based
planning method. Moreover, it is able to design a smooth pathby reversing the
positions of the target and the start position. The following subsections present
more details of this path planning method.

7.5.2 Potential Field based Planner

Khatib [85] first reported a potential field for path planningof mobile robots.
The idea behind the approach is to navigate a mobile robot as acharged particle
moving in a magnetic field. This article is attracted to particles with the same sign
and repelled by particles with the opposite sign. In a potential field, a robot has an
attractive potential to the target and repulsive potentials away from obstacles and
field boundaries. The planned moving direction of the robot is along the negative
gradient of the potential field, which always points to the position with lower
potential.

Each positionx = (x, y) in the potential field is composed of an attractive
potential wellpT (x) and repulsive potential barrierspO,i(x) andpB,j(x). pT (x)
is computed around the targetg = (gx, gy). pO,i(oi) andpB,j(bj) are around the
obstaclesoi = (ox,i, oy,i) and the field boundariesbj = (bx,j, by,j), respectively.

A conic well is chosen to model the attractive potential well, that is,

pT (x) = ρT ‖dT‖ , (7.28)

where‖dT‖ = ‖d− g‖, ‖·‖ denotes the Euclidean norm. The corresponding
negative gradient is calculated as

−∇pT (x) = − ρT

‖dT‖
dT , (7.29)
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which causes the robot to move towards the target.
Repulsive potential barriers drive the robot away from obstacles and field

boundaries. For the obstacleoi, the repulsive potential is computed as

pO,i(x) =















ρO,i(x) ‖dO,i(x)‖2 ≤ µ2
O

ρO,iκO

(

1

‖dO,i(x)‖2 − 1
M2

O

)

µ2
O < ‖dO,i(x)‖2 < M2

O

0 M2
O ≤ ‖dO,i(x)‖2 ,

(7.30)

which is reversely proportional to the distance‖dO,i(x)‖ = ‖x − oi‖. To keep
pO,i(x) continuous at‖dO,i(x)‖2 = µ2

O, a normalization parameterκO is intro-
duced with

κO =
M2

Oµ
2
O

M2
O − µ2

O

. (7.31)

µO is the minimum distance used to hinderpO,i(x) from increasing infinitely.
For the positions having less distance thanµO to an obstacle, the corresponding
potential barrier has the maximum valueρO. When obstacles are assumed to have
a radiusrO, µO can be chosen as

µO = rO + rR + ε, (7.32)

whererR is the robot radius andε is a security distance. Moreover, a maximum
distanceMO is defined to reduce the amount of local minima resulting froma field
containing many obstacles. If the obstacles are far away from the robot, they do
not influence the robot movement. The negative gradient of the repulsive potential
pO,i is given by

−∇pO,i(x) =











2
ρOκOµ2

O

‖dO,i(x)‖4dO,i(x) if µ2
O < ‖dO,i(x)‖2 < M2

O

(0, 0) if ‖dO,i(x)‖2 ≤ µ2
O

∨‖dO,i(x)‖2 ≥ M2
O

(7.33)

Besides obstacles, the play field in RoboCup is limited by boundary lines.
All boundaries are considered as potential barriers, whoserepulsive potentials are
computed similar to those of the obstacles.

pB,j(x) =















ρB,j(x) ‖dB,j(x)‖2 ≤ µ2
B

ρB,jκB

(

1

‖dB,j(x)‖2 − 1
M2

B

)

µ2
B < ‖dB,j(x)‖2 < M2

B

0 M2
B ≤ ‖dB,j(x)‖2 ,

(7.34)

wheredB,j = (0, y−by,j) anddB,j = (x−bx,j , 0) are with respect to the boundary
in the x-direction and y-direction, respectively. The normalization parameterκB
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is defined as

κB =
M2

Bµ
2
B

M2
B − µ2

B

. (7.35)

The minimum distanceµB is only concerned with the robot radiusrR and a secu-
rity distanceε,

µB = rR + ε. (7.36)

The negative gradient ofpB,j(x), −∇pB,j(x), is calculated as

−∇pB,j(x) =











2
ρBκBµ2

B

‖dB,j(x)‖4dB,j(x) if µ2
B < ‖dB,j(x)‖2 < M2

B

(0, 0) if ‖dB,j(x)‖2 ≤ µ2
B

∨‖dB,j(x)‖2 ≥M2
B

(7.37)

Merging the attractive and repulsive potentials, the final potential field has the
following potential:

P (x) = pT (x) +
∑

i

pO,i(x) +
∑

j

pB,j(x). (7.38)

The negative gradient ofP (x) is also a superposition of the negative gradients in
each potential field, i.e.

−∇P (x) = −∇pT (x) −
∑

i

∇pO,i(x) −
∑

j

∇pB,j(x). (7.39)

7.5.3 Grid-based Planner

Although the negative gradient direction−∇P (x) navigates the robot towards the
target and away from obstacles and field boundaries, a local minimum problem
may occur when a robot is trapped in a dead end. Therefore, methods for a robot
to escape local minima are required. The grid-based planneris an example of such
methods, which divides the whole space into square-shaped grid cells and designs
a path composed of a set of grid cell’s centers. The gradient of a grid cell’s center
at position(u, v) is approximated by evaluating the local potential field as

grad(u, v) =
1

2α
[P (u+ 1, v) − P (u− 1, v), P (u, v + 1) − P (u, v − 1)]T

with a positive parameterα. If the next grid cell’s center directed by−∇P (x)
goes into a local minimum, a recursive best-first search is started and terminated
if either an adjacent grid cell with a lower potential or the target cell is found.
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7.5.4 Experimental Results

To test the dribbling control method, some real world experiments were done in
the robot laboratory. The size of the play field is5.1 × 4.2 m2, which is nearly
the size of the old half play field of the RoboCup Middle Size league. A soccer
robot was required to dribble the ball to the target field without colliding with one
or two moving obstacles. At the start, the robot and the ball were static, and the
robot was placed with an arbitrary orientation. The target field was defined by a
circle centered at(3, 1) having the radius of 0.3 m. The obstacles moved to and
fro along a linear path of nearly1 m length. The path was chosen such that it
crosses the direction connecting the ball’s initial position and the target field. The
moving speed of the obstacles was0.4 m/s.

As pointE is controlled to follow a reference path in the dribbling strategy,
the path planner was set to design a collision-free path of point E from its current
position to the target. Then the nonlinear motion control method introduced in
Chapter 4 and the NMPC law addressed in Chapter 5 were used in the experi-
ments. For the path following control of pointE, the orthogonal projection-based
formulation was adopted. The desired velocity of pointE was selected as1 m/s.

Table 7.5.4 shows the selected values of the path planner’s parameters. Because

ρT ρO ρB rR rO ε MO MB α
1 · 106 4 · 105 2 · 105 30 cm 30 cm 5 cm 80 cm 50 cm 10

Table 7.1: Parameter values used in the path planner.

of the discretization of the grid, the planed path is very square-edged. To smooth
the path, the average over the firstm path points from the path pointPi is used to
calculate the tangent directionθP,i of the path at pointPi, i.e.

θP,i =
1

m

i+m−1
∑

j=i

Pj − Pi.

The value ofm was chosen as 10 in the experiments. When the number of points
on the designed path is less thanm, m takes the value of the number of path
points. The curvature of the path at pointPi is approximated by

ci = kc(θP,i − θP,i−1),

wherekc is a positive parameter and selected as 0.5 in the experiments.
To verify the performance of the dribbling control strategy, several initial po-

sitions of the ball were tested in the experiments as shown inFigure 7.5. The
choice of initial positions considered the size of the laboratory and the trajectories
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of obstacles’ movement, such that the obstacles’ movement really have influence
on the dribbling tasks. Table 7.5.4 gives a summary of the experimental results.
In the case of one moving obstacle, the nonlinear motion control method and the
NMPC method were tested. In 15 experiments with different initial positions, the
NMPC-based dribbling control performed 9 successful dribblings, and the non-
linear motion control-based dribbling control succeeded 12 times. The successful
ratios are60% and80%, respectively. But the computational time of NMPC is
much longer than the one of the nonlinear motion control method, as the aver-
age computational time of eight experiments based on each control method are
0.138 s and0.0387 s, respectively. When there were two moving obstacles, only
the nonlinear motion control method yielded appropriate results. In 15 tests, the
robot succeeded 10 times to dribble the ball from the initialposition to the tar-
get field. The success ratio is66.7%. Moveover, the computational time also
remains very short ( average value =0.0392 s). These experimental results show
that the dribbling control strategy worked efficiently and successfully in the drib-
bling tasks, and the nonlinear motion control-based dribbling control shows better
performance than the NMPC-based one.

One Obstacle One Obstacle Two Obstacles
(NMPC) (Nonlinear Control) (Nonlinear Control)

Number of 15 15 15
experiments
Number of 9 12 10
successes
Success 60 80 66.7
ratio (%)

Computational 0.138 0.0387 0.0392
time (s)

Failure reason planned paths: 6 planned paths:3 control method: 2
planned paths: 3

Table 7.2: Summary of experimental results. In the last row afailure reason “
planned paths” means dribbling experiments failed becauseof the big change of
two successive planned paths, a failure reason “control method” denotes dribbling
experiments failed because the dribbling control method did not give efficient
control values.

Figures 7.6, 7.7 and 7.8 show the detailed results of three successful dribbling
experiments. The traveled paths of the robot and the ball in figures 7.6(a), 7.7(a)
and 7.8(a) show that the robot successfully dribbled the ball to the target field,
although the moving obstacles influenced the dribbling process. Figures 7.6(c),
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(a) Initial positions of the ball in the NMPC-based ex-
periments with one moving obstacle.
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(b) Initial positions of the ball in the nonlinear motion
control-based experiments with one moving obstacle.
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(c) Initial positions of the ball in the nonlinear motion
control-based experiments with two moving obstacles.

Figure 7.5: Initial positions of the ball and the desired moving trajectories of
obstacles in the experiments. The star symbols denote the ball’s initial positions,
which were randomly chosen in each experiment. The lines between two small
circles are the desired moving trajectories of the obstacles. The dotted circles
show the target area.
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7.6(d), 7.7(c), 7.7(d), 7.8(c) and 7.8(d) show filtered relative positions of the ball
using theH∞ filter. These results indicate that the robot always succeeded in
keeping the ball in the dribbling process. Figures 7.6(b), 7.7(b) and 7.8(b) show
the NMPC method is of higher computational complexity than the nonlinear con-
trol method. This is the main reason that the NMPC-based dribbling control has
a lower success ratio in the experiments. When the controller takes a longer com-
putational time, the robot reacts to a changing environmentmore slowly. This
delay may lead the robot and the ball near the moving obstacles. Then the new
planned path may have a sharp turning from the old planned direction in order to
avoid the collision with the obstacles. This sharp turning results in a big change of
two successive planned paths. Therefore, this big change ofplanned path requires
very sharp turns of the robot, which causes the ball to slide away from the robot.
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(a) Traveled paths of the robot and the ball.
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(c) Relative x-position of the ball.
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(d) Relative y-position of the ball.

Figure 7.6: Experimental results of the NMPC-based dribbling control with one
moving obstacle.
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(a) Traveled paths of the robot and the ball.
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(c) Relative x-position of the ball.

0 0.5 1 1.5 2 2.5 3 3.5 4

−0.12

−0.1

−0.08

−0.06

−0.04

Time (s)

R
el

at
iv

e 
y−

po
si

tio
n 

of
 b

al
l (

m
)

 

 

measured position
estimated position from H infinity filter

(d) Relative y-position of the ball.

Figure 7.7: Experimental results of the nonlinear motion controller-based drib-
bling control with one moving obstacle.
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(a) Traveled paths of the robot and the ball.
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(c) Relative x-position of the ball.
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(d) Relative y-position of the ball.

Figure 7.8: Experimental results of the nonlinear motion controller-based drib-
bling control with two moving obstacles.
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7.6 Summary

This chapter addressed the dribbling control problem of Attempto soccer robots.
From a hardware perspective, the dribbling mechanism used in the RoboCup Mid-
dle Size League teams is mostly designed with a concave frontand a top compo-
nent, which help forcing the ball towards the center of the robot’s front and pre-
venting the ball from rolling away. Although active dribblers may improve ball
handling, passive dribbling mechanisms are widely used to decrease the complex
hardware construction. The passive dribbling mechanism ofthe Attempto soccer
robot also consists in a concave form and a top component. Thespecially designed
bigger facing size enables the robot to easily catch the ball.

The main challenge of dribbling control is the difficulty of modeling the in-
teractions between the robot and the ball, because it is hardto predict the fric-
tion coefficients and collisions between these two objects.Although some teams
take the interactions as a black-box system and use an ANN to model it, the te-
dious process of collecting the training data and training the ANN motivates our
research of designing an analytical dribbling controller for the Attempto soccer
robots. Unlike the usual motion controller taking the robotcenter of mass as the
controlled object, a reference point represented by the desired ball’s center is used
as the controlled object in the addressed dribbling controlstrategy. Analyzing the
ball’s movement related to the robot, a sufficient constraint of keeping the ball
is deduced, which indicates an appropriate choice for the desired robot orienta-
tions. Making use of the advantage of omnidirectional robots, i.e. the decoupled
translation and rotation, the dribbling task is achieved bycontrolling the reference
point to follow a pre-designed path and steering the robot orientation to track the
desired orientations simultaneously.

The dribbling strategy was fulfilled with the nonlinear motion control method
introduced in Chapter 4 and the nonlinear model predictive control scheme ad-
dressed in Chapter 5. Real experiments showed the high performance and ef-
ficiency of the dribbling control strategy. Comparing the two motion control
methods, the nonlinear motion control proved to be more adequate in relation
to performance and run-time efficiency due to its low computational time. But
the nonlinear model predictive control method showed very good performance in
the case of ball dribbling along static paths. Besides real experiments in the robot
laboratory, the dribbling strategy was successfully used by the Attempto soccer
robots in the RoboCup 2006 in Bremen and revealed very good performance. Ap-
pendix A shows some image sequences of the dribbling experiments taken in the
laboratory and during the games of the RoboCup 2006 in Bremen.



Chapter 8

Conclusions and Future Work

This thesis is concerned with motion control of omnidirectional robots. Con-
sidering important issues of mobile robots, such as actuator dynamics, actuator
saturation and constraints of robot systems, this thesis focuses on achieving high
control performance. As a testbed, the motion control of an omnidirectional robot
of the Tübingen Attempto robot soccer team, especially theball dribbling control
of the soccer robot, has been considered in this thesis.

8.1 Conclusions

Before designing motion control methods, a control system combining dynamics
and kinematics is adopted for the Attempto soccer robot. This architecture al-
lows to design high-level controllers based on the kinematic model and low-level
controllers according to the dynamic model. Although this hierarchy enables to
design and test the control law of each level’s system separately, the influence
between each level has to be considered. For example, the high-level controller
design has to take into account the performance of the low-level controlled sys-
tem. Taking actuator saturation and actuator dynamics intoaccount, the control
system presented in Chapter 3 builds a foundation to design high-level controllers
with consideration of the low-level system’s performance.

Based on the robot control system, path following of omnidirectional robots
was addressed in Chapter 4. The other two basic problems of robot motion con-
trol, trajectory tracking and point stabilization, can be regarded as special cases
of the path following problem. The specialties are that the desired time param-
eterized velocities are designed in the trajectory tracking problem, and the point
stabilization problem only needs to stabilize the robot at one desired pose. Ac-
cording to different ways of choosing the desired robot positions on the reference
path, two formulations of the path following problem for omnidirectional robots
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have been introduced, i.e. the orthogonal projection-based formulation and the
Virtual Vehicle-based formulation. Nonlinear controllers for these two formula-
tions are designed based on Lyapunov’s stability theorem. As the formulations of
the path following problem are only based on the path following errors, but do
not depend on specific robot platforms, the proposed controllers can be applied
to other omnidirectional robots. Besides the path following control, an omnidi-
rectional robot has another degree of freedom to control itsorientation. A PD
controller was designed to keep the robot tracking the desired orientations even
though the actuators reach saturation.

Although the proposed nonlinear motion controllers guarantee closed-loop
stability even though actuator saturation appears, there is still an opportunity to
improve the control performance by considering more information about the given
path. In Chapter 5, Nonlinear Model Predictive Control (NMPC) was adopted to
the motion control problem of the Attempto soccer robot. Thedesigned NMPC
scheme guarantees closed-loop stability by choosing the suitable terminal penalty
and constraints. With the selected numerical solutions, the results of real-world
experiments show the feasibility of applying NMPC on a fast moving omnidirec-
tional robot and better control performance, compared to the nonlinear controllers
addressed in Chapter 4.

Before considering the dribbling control problem, this thesis first focused on
tracking the ball’s relative position with respect to a soccer robot when the ball
is pushed by the robot. The relative position denotes whether the ball is moving
away from the robot and results in changing the robot behaviors of ball dribbling
and ball catching. A robustH∞ filter was developed to estimate the ball’s relative
position and velocity, which does not require a priori knowledge about the statisti-
cal properties of the process noise and the measurement noise. It only depends on
the assumption of finite noise power. The performance of theH∞ filter was eval-
uated and compared to a Kalman filter. Although the performance of these two
filters is similar, the independence of noise statistics makes theH∞ filter more
robust.

For the dribbling problem, this thesis focuses on designinganalytical drib-
bling control methods. With the analysis of the ball’s movement relative to the
robot, a sufficient constraint of keeping the ball is deduced, which indicates an
appropriate choice for the desired robot orientations. Then the dribbling task is
achieved by controlling a reference point denoting the desired ball’s center to fol-
low a pre-designed path and steering the robot orientation to track the desired ori-
entations. Thanks to the decoupled mobility of the omnidirectional soccer robot,
these two subtasks can be assigned to the control of the robottranslation and ro-
tation, respectively. This dribbling control strategy is fulfilled with the nonlinear
motion control method introduced in Chapter 4 and the NMPC scheme addressed
in Chapter 5. Real experiments in the robot laboratory show the high performance
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and efficiency of the dribbling control strategy. Moreover,the dribbling control
strategy was successfully used by the Attempto soccer robots at RoboCup 2006
in Bremen and revealed very good performance, where the reference point was
controlled to follow the desired moving direction, and meanwhile the robot orien-
tation was controlled to track the desired orientation witha PD controller.

Overall, the results in this thesis provide solutions to themotion control prob-
lem of an omnidirectional soccer robot. The control system and control meth-
ods presented in this thesis can also be applied to other omnidirectional robots.
Moreover, several results addressed in this thesis offer the opportunity for further
research.

8.2 Future Work

In the control system, the motion controllers are designed based on the robot
kinematic model and take actuator dynamics and the maximum wheel velocity
into account. Real-world experimental results show the good performance of the
controlled system and the guaranteed closed-loop stability regardless of the ap-
pearance of the actuator saturation. However, there are other important issues that
can be coped with to improve the robot motion control, for example, modeling the
wheel slippage on the ground and taking the maximum wheel rotation acceleration
into account.

The NMPC scheme was successfully used in controlling the movement of the
Attempto soccer robot. Its good control performance is shown in the experiments
in Chapter 5. However, finding more efficient NMPC schemes in the applications
of controlling fast moving robots is still an attractive research direction. The main
difficulty of applying NMPC is the computational effort, which was shown in the
experimental results of dribbling control against moving obstacles. Therefore,
to find and to apply more powerful optimization methods is required by NMPC
schemes. Although the stability problem is quite well solved currently, finding
better terminal constraints and penalties to increase the feasibility of the open-
loop optimal control problem is still an active topic in NMPCresearch.

To achieve more proficient dribbling, the first attempt mightbe to design more
advanced dribbling mechanisms, for example, using active dribblers, mounting
special sensors to measure collisions between the robot andthe ball. Although
the dribbling strategy presented in this thesis serves for designing analytical drib-
bling controllers, there are also controller parameters inneed of adaption. This
denotes another future research of combining the dribblingcontrol strategy with
learning methods to obtain the optimal values of these parameters. Moreover,
the dribbling strategy depends on a planned path. The path planner used in this
work only designs a collision-free path without considering the constraints of suc-
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cessful dribbling. As a consequence, some designed paths have very sharp turns,
which always result in the ball sliding away from the robot. Therefore, merging
the constraints of dribbling into the path planner is also future work.



Appendix A

Dribbling Control Results

This appendix shows image scenarios of dribbling experiments in the robot labo-
ratory with a size of5.1 × 4.2 m2. Two scenarios in the games of the RoboCup
2006 in Bremen are illustrated at the end.
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Figure A.1: Scenarios of the NMPC-based dribbling control along the sinusoidal
reference path described in 7.4.
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Figure A.2: Scenarios of the NMPC-based dribbling control along the eight-
shaped reference path described in 7.4.
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Figure A.3: Scenarios of a successful dribbling experimentbased on the NMPC
method with one moving obstacle. The line of asterisks denotes the planned path.
The solid circle denotes the opponent. The dotted circle shows the target field.
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Figure A.4: Scenarios of a failing dribbling experiment based on the NMPC
method with one moving obstacle. The line of asterisks denotes the planned path.
The solid circle denotes the opponent. The dotted circle shows the target field. In
the third image, the robot was required to turn nearly 180 degrees to follow the
planned path. The resulting sharp turning of the robot lead to the loss of the ball.
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Figure A.5: Scenarios of a successful dribbling experimentbased on the nonlin-
ear control method with one moving obstacle. The line of asterisks denotes the
planned path. The solid circle denotes the opponent.
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Figure A.6: Scenarios of a failing dribbling experiment based on the nonlinear
control method with one moving obstacle. The line of asterisks denotes the
planned path. As shown in the second and third images, the ball slided away
from the robot when the robot tuned its orientation according to the changes of
the planned paths. The resulting sharp turning of the robot lead to the loss of the
ball.
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Figure A.7: Scenarios of a successful dribbling experimentbased on the nonlin-
ear control method with two moving obstacles. The line of asterisks denotes the
planned path. The solid circles denote the opponents. The dotted circle shows the
target field.
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Figure A.8: Scenarios of a failing dribbling experiment based on the nonlinear
control method with two moving obstacles. The line of asterisks denotes the
planned path. In the fourth image, the robot was required to turn more than 90
degrees for following the planned path. The resulting sharpturning of the robot
lead to the loss of the ball.
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Figure A.9: Scenarios of a successful dribbling in the game against the Brain-
stormers Tribots at the RoboCup World Cup 2006 in Bremen. TheAttempto
soccer robot No. 5 makes two full rotations around the ball toshield it from the
opponents at the beginning and the end of the scenarios. Between the two rota-
tions, the robot dribbles the ball to approach the goal. The images are sorted from
left to right and from top to bottom.
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Figure A.10: Scenarios of a successful dribbling in the gameagainst the AIS/BIT
robots at the RoboCup World Cup 2006 in Bremen. The Attempto soccer robot
No. 5 catches the ball in the neighborhood of two opponents, dribbles the ball out
of this tight situation, avoids the third approaching opponent and finally shoots
towards the goal. The images are sorted from left to right andfrom top to bottom.
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