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Abstract

This thesis is concerned with motion control of omnidirectl robots. From
developing a robot control system to designing differemttaalers, this thesis
focuses on achieving high control performance with consitlen of important
issues, such as actuator dynamics, actuator saturatiacoasttaints of robot sys-
tems. As a testbed, the motion control of an omnidirectiooladt of the Tubingen
Attempto robot soccer team, especially the ball dribbliogtool of the soccer
robot, has been considered in this thesis.

Before designing motion control methods, a control systemhining dy-
namics and kinematics is adopted for the Attempto soccetrdihis architecture
allows to design and test low-level controllers accordmtie dynamic model and
high-level controllers based on the kinematic model sépbtraTaking actuator
saturation and actuator dynamics into account, the proposatrol system builds
a foundation to design high-level controllers with considien of the low-level
system’s performance.

Based on the robot control system, path following and oaitéon tracking
problems of omnidirectional robots are addressed in thasigh Since these two
problems are all formulated in the form of error kinematihe,designed nonlinear
controllers in this thesis can be applied to other omnidioeal robots. In order
to improve the control performance and satisfy constraoftithe robot system,
Nonlinear Model Predictive Control (NMPC) was employed ¢tve the motion
control problem of the omnidirectional robot. The desighiMddPC scheme guar-
antees closed-loop stability. With the selected numesoAltions, the results of
real-world experiments show the feasibility of applying R® on a fast moving
omnidirectional robot and better control performance carag to the designed
nonlinear controllers.

With respect to the dribbling control problem, this thesisufses on two prob-
lems: ball tracking and ball dribbling. A robugt., filter is first developed to
estimate the ball’s relative position and velocity withpest to a soccer robot
when the ball is pushed by the robot. The relative positiomoties whether the
ball is moving away and results in changing the robot belravabball dribbling
and ball catching. To achieve good ball dribbling, an anedytdribbling control



strategy has been developed. With the analysis of the Inatii'ement relative to
the robot, a sufficient constraint for keeping the ball isudzsti, which gives clues
to choose the desired robot orientations. Then the driglilsk is achieved by
controlling a reference point denoting the desired baéister to follow a planned
path and steering the robot orientation to track the desiree This dribbling

control strategy is fulfilled with the proposed nonlineartimmo control method

and the NMPC scheme. Real-world experiments show the higbrpgance and

efficiency of the dribbling control method.



Zusammenfassung

Die Arbeit behandelt die Regelung der Bewegung eines omakitibnalen Robot-
ers. Unter Beriicksichtigung der Dynamik und Sattigung Aatriebs, werden
ein Regelungssystem und Regler mit hoher Gite entwickeédt. Testumgebung
wird die Bewegungsregelung eines Roboters aus dem Tib#igempto Roboter
FulRball Team, insbesondere die Regelung des Roboters deauBdribbeln,
vorgestellt.

Um Methoden zur Bewegungsregelung vozustellen, wird eipeRmgssys-
tem angenommen, das auf die Kinematik und Dynamik des AtierfRpl3ball-
roboters basiert. Diese Architektur ermoglicht die saaEntwicklung und das
Testen von low-level Reglern fur das Dynamik-Modell undhiievel Regler fur
das Kinematik-Modell. In Anbetracht der Dynamik und Auslaxgy des Antriebs,
bildet das Regelsystem eine Basis fur das Design von legél-Reglern, die die
Gute des low-level Systems miteinbeziehen.

Auf das Regelungssystem des Roboters basierend, wird serdfgbeit die
Pfadplanung und die Regelung der Orientierung behandeltieBProbleme sind
so behandelt, dass sie auch auf andere omnidirektionalet&slysteme anwend-
bar sind. Um die Reglergute zu erhohen und den Einschrégén des omnidi-
rektionalen Robotersystems gerecht zu werden, wurde hearliModel Predic-
tive Control (NMPC) eingesetzt. Das entwickelte NMPC-8ystgarantiert die
Stabilitat des geschlossen Regelkreises. Die Ergebdesexperimentellen Va-
lidierung ausgewahlter numerischer Algorithmen bewdistAnwendbarkeit von
NMPC auf sich schnell bewegenden omnidirektionalen Rahdiei verbesserter
Performanz im Vergleich zu den entwickelten nichtlinedReglern.

In Bezug auf die Regelung des Roboters den Ball zu dribbe&nzéntriert
sich diese Arbeit auf zwei Probleme, Ball Tracking und dabieln des Balls.
Zunachst wird ein robustdl ., Filter wird erstellt, um die relative Position und
Geschwindigkeit zwischen dem Roboter und dem Ball zu zelmat Diese rela-
tive Information zeigt, ob sich der Ball vom Roboter entfeund wechselt das
Verhalten des Roboters in Ball dribbeln oder Ball annnehm&m den Ball
verlasslich zu dribbeln, wurde eine analytische Regedstigtegie angewendet.
Durch die Analyse der relativen Bewegung des Balls zum Raldainnten Be-
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dingungen formuliert werden, den Ball zu fihren und eirgibemte Orientierung
einzunehmen. Das Dribbeln wird durch die Regelung einesri@ezpunktes erre-
icht, der den gewiuinschten Mittelpunkt des Balls angibt einén geplanten Pfad
folgt, den der Roboter mit gewinschter Orientierung Mgtfo Diese Dribbel-
regelung wird durch die vorgestellte nichtlineare Beweagragelung und das
NMPC-System erreicht. Experimentelle Ergebnisse zeigegmbi3e Performanz
und die Effizienz der Dribbelregelung.
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Chapter 1

Introduction

1.1 Motivation

Wheeled Mobile Robots have received considerable atteatid achiev-ed tremen-
dous progress in industries and service robotics becaugeiofflexible motion
capabilities on reasonably smooth grounds and surface.[1From the view
of controllable degrees of freedom on the plane, Wheeledilgldbobots can
be categorized into two types: holonomic (or omnidireciipmobots and non-
holonomic robots. Omnidirectional robots are able to mavany direction at
any time regardless of their orientation. In contrast, rmamomic robots have
less than three simultaneous degrees of freedom. The higduihuverable char-
acteristics make omnidirectional robots very attractivevheeled mobile robot
applications. For example, some kinds of omnidirectiona¢lchairs have been
developed for human assistance in public environmentsasiobsidences, offices
and hospitals [156, 159]. In the annual RoboCup competitidrich deals with
highly dynamic environments, omnidirectional soccer tsthmve been employed
successfully since 2000 in the Small Size League [29, 138]immearly all the
Middle Size League RoboCup teams in recent years [120, 19T@2refore, de-
signing high-performance motion controllers is alwaysmapartant and attractive
topic for omnidirectional robots.

Normally, mobile robot control systems are built on robotdeis. The com-
bination of kinematic and dynamic models has been widely irseobot control
systems [156, 116, 140]. The main advantage of this congstiem is that kine-
matic models have simple structure and dynamic models arplified by only
taking the inputs of kinematic models as their output vdeisb By assigning a
control task to different parts of the control system, colters for the kinematic
and dynamic models can be designed separately.

Assuming that no wheel slippage occurs, that all sensors hih accuracy

1



2 Chapter 1. Introduction

and that the ground is planar enough, kinematic models hese Wwell employed
in robot motion control. As the inputs of kinematic models arheel velocities
and outputs are linear and angular velocities, the actuigteamics of a robot are
assumed to be fast enough to be ignored, which means thag$ired wheel ve-
locities can be achieved immediately. However, the actudtoamics are impos-
sible to be omitted in real situations, and limit and degithéeobot performance.
Moreover, motor speeds of the robot wheels are constraiMten the desired
robot wheel velocities exceed their maximum values, aotusdturation appears,
which affects the robot performance and even destroys #imlisy of the con-
trolled robot system [73, 27]. Therefore, actuator satomnais another important
practical issue to be coped with when controlling mobileatsb

With respect to the nonlinear characteristics of kinematdadels of omnidi-
rectional robots, nonlinear controllers are widely usealtioieve satisfying perfor-
mance in the motion control problems, for example, in thé paliowing prob-
lem [7, 125, 53, 40, 105, 35, 98]. However, these controltarsly take robot
constraints into account, which are crucial factors cagabldegrading the robot
performance. Moreover, only the errors between the curaddt states and the
desired states are considered in most control laws, whipgawing the control
performance by considering more information of the cortaek is ignored.

Motivated by the practical issues of controlling mobile oty this thesis is
aiming to design such motion controllers of omnidirectiora@bots: the con-
trollers are designed based on robot kinematic models ansider actuator dy-
namics, they guarantee closed-loop stability even thowugiator saturation oc-
curs, they achieve high control performance and satisfgtramts of robot sys-
tems. As a testbed, the motion control problems of an omegtional robot of
the Tubingen Attempto robot soccer team, especially ttiedb@bling problem
of the soccer robot, have been treated in this thesis.

1.2 RoboCup

The Tubingen Attempto robot soccer team belongs to the Rapdviddle Size
League.

RoboCup (Originally called Robot World Cup Initiative) is enternational re-
search and education initiative. It is an attempt to fostearfd intelligent robotics
research by providing a standard problem where a wide raingelmnologies can
be integrated and examined, as well as being used for ieegpaoject-oriented
education.

For this purpose, RoboCup chose to use the soccer game asaaypdomain,
and organizes RoboCup. In order for a robot team to actua@ijopm a soc-
cer game, various technologies must be incorporated,dmgdudesign principles
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of autonomous agents, multi-agent collaboration, styagemgjuisition, real-time
reasoning, robotics, and sensor-fusion. RoboCup is a task team of multiple
fast-moving robots under a dynamic environment. RoboCspaifers a software
platform for research on the software aspects of RoboC2][1

After the first public announcement in September 1993, Roipol@as been
held every year from 1997 to 2008 in different places arodnedvtorld and has
become the most successful international robot tournarfeoin 38 participating
teams in the first RoboCup held in 1997 to about 400 teams D@ &rticipants
in RoboCup 2008, RoboCup has received more and more attantibe areas of
robotics and artificial intelligence, and provides an ingtional platform to show
and compare the scientific progress in different teams.

The ultimate goal of the RoboCup project [138] is:

“By mid-21st century, a team of fully autonomous humanoidtrebccer play-
ers shall win the soccer game, comply with the official ruléhef FIFA, against
the winner of the most recent World Cup.

Compared to the other four leagué&mall Size League&imulation League
Four-legged LeaguandHumanoid Leaguein the RoboCupSoccedomain, the
Middle Size leaguéMSL) was the most sophisticated league before the introduc
tion of theHumanoid League The body size of 50 cm x 50 cm x 85 cm gives
MSL robots enough space to carry powerful sensors, acgjatomputer systems
and energy supplies. With distributed intelligence, MShots are able to play
the soccer game autonomously, interacting with humaneegerVia a wireless
network, the commands of referees are submitted to the sohithh a graphical
user interface calleReferee Bojd1]. This communication network also enables
the information exchange among teammates.

From the establishment of MSL in 1999 to RoboCup 2008, the M$iot
soccer teams have achieved great progress in the hardwaslepl@ent. Partic-
ularly the robot platforms have evolved from commerciafediéntial drive sys-
tems, such as the Pioneer robot [70], to self-developed dinectional systems.
Equipped with more efficient sensors, powerful computer actdator systems,
omnidirectional soccer robots have higher maneuverglalitd mobility. How-
ever, there were still many disappointing scenes happen#étkei past RoboCup
games, for example, many robots drove out of the boundaeg land persisted
moving in the false direction, many robots did not react @ ball even when it
was in the robots’ neighborhood, few robots were able toldiilthe ball along
a curve. Most of these observations show that the improveofemotion con-
trol are highly requested by the basic soccer playing skflthe RoboCup soccer
robots. One such crucial basic skill is ball dribbling, whimeans that a robot is
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capable of handling a rolling soccer ball and maneuveritgat desired position.
Ball dribbling has been a special challenge topic in recaiidCup tournaments,
with the following setup and tasks [2]:

“Six to eight black obstacles (length/width 40 cm, height ®() are put at ar-
bitrary positions on the field. The ball is put on the middldhe penalty area
line, and a robot inside the same goal. The robot should deiltte ball into the
opposite goal within 90 seconds, while it avoids all obstat|

As the rules admit that a robot can only cover up to 30% of tHeshdiame-
ter and forbid the robot to hold the ball, it is difficult forgtrobot to handle the
ball when the ball must move along a curve. If the robot canpnovide the ball
with enough centripetal force, the ball may get lost from tbleot and towards
the outside of the curve. Therefore, dribbling control uttds the substantial re-
guirement for the robot movement to take a proper orientaditd exert suitable
force on the ball.

1.3 Contributions

This thesis is concerned with the motion control of an ommeittional soccer
robot and focused in particular on the dribbling controllpeon. Besides the
RoboCup domain, the control system and control methodepted in this theses
can also be applied to other omnidirectional robots. Thaeroaitributions of this

thesis include:

e The introduction of a robot control system, which allows designer to di-
vide the control tasks into different parts and assign thedifferent levels
in the control system’s architecture.

e The consideration of robot constraints and the identifiedadyics of the
low-level system and into the controller design of the higéel control
system. This guarantees stability of the whole system odisjoethe system
constraints.

e The formulation of the path following problem based on thiéofeing er-
ror kinematics, which makes the designed path followingirmdmethods
independent from the specific platforms of omnidirectiaohlots.

e The application of Nonlinear Model Predictive Control (N&Fo the robot
motion control problem, which shows good control perforgeand feasi-
bility with a fast moving omnidirectional soccer robot.
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e The development of a robugf, filter to track a rolling ball when it is
dribbled by a soccer robot. Compared to a Kalman filter in veald ex-
periments, the{, filter shows better performance.

e The development of an analytical dribbling control strgteghich divides
the dribbling problem into path following and ball keepingplems and is
achieved with the high mobility of omnidirectional robots.

1.4 Thesis Outline

The remainder of this thesis is organized as follows:

e Chapter 2 presents the hardware and software systems ofttampgto
Tubingen soccer robots, which are used as a basis for redd wrperi-
ments.

e Chapter 3 presents the motion control system of the Atterfiptmingen
soccer robots, which combines the kinematic and dynamicetsaaf the
robot. With the identification of actuator dynamics and thalgsis of ac-
tuator saturation, the overall control system builds a @ation to design
controllers with consideration of the system constraints.

e Chapter 4 focuses on designing the robot motion control lafnke path
following and orientation tracking problems. Accordingttee different
ways of choosing the desired robot position, the path fahgwproblem
is formulated in the orthogonal projection-based case aed/irtual Ve-
hicle-based case. The control laws with respect to these two fations
have been addressed. A PD controller was designed for atmbaick the
desired orientations which takes the maximum wheel vetaeib account.

e Chapter 5 addresses Nonlinear Model Predictive Control PiMapplied
to the Attempto Tubingen soccer robots. As two importagués in the
application of NMPC, stability and numerical solutions d¥IRC are con-
sidered after introducing the mathematical formulatioMN®PC.

e Chapter 6 presents A, filter to estimate the ball’'s relative position and
velocity with respect to a soccer robot, when the ball is by the robot.
The performance of thél, filter is evaluated by comparing the estimation
values with those from a Kalman filter.

e Chapter 7 addresses the dribbling control strategy of thexwyito Tubingen
soccer robots. The motion control laws presented in Chdpaed Chapter
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5 were used to fulfill the strategy. Their control performar evaluated
with real world experiments.

e Chapter 8 summarizes the achieved results and providesiaokon pos-
sible future research directions.

e Appendix A shows some image scenarios of dribbling expeartse the
robot laboratory and two scenarios in the games of RoboC0p R0Bre-
men.



Chapter 2

Robot System

This chapter presents hardware and software systems ofttmpto Tubingen
soccer robots. The newly developed components of the Atefrigbingen soccer
robots from 2003 to 2006 mainly consist of the omnidireciiiciobot platforms,
the omnidirectional vision system and the electro-magnetk system. The 20
ms cycle time of the new software system is a great benefihtordbots playing
soccer in a highly dynamic environment.

2.1 Hardware System

The Attempto Tubingen robot soccer team has evolved frdiferditial-drive
robots to omnidirectional robots from 1997 to 2006. Aftevesal years partici-
pation in the international robot soccer competitions difierential-drive soccer
robots showed big difficulties to play against fast and agpeonents. At the
same time, the updated rules of RoboCup Middle Size Leaguaqted the im-
provement of sensors and computational systems of the rsomoets. In 2003,
the old goalkeeper based on the Pioneer 1-AT platform fkéobileRobots Inc.
[71] was renewed with a new omnidirectional platform. Afteal tests of the
omnidirectional robot at the RoboCup 2004 in Lisbon, thedyowbility perfor-
mance prompted to renew the old field players, which werd buithe Pioneer
2-DX platform from MobileRobots Inc.[72]. Figure 2.1 shows the Attempto
Tubingen soccer robots at the RoboCup 2006 in Bremen. Tieepat only re-
formed with the omnidirectional platforms, but also eq@@dwith new sensors
and a new computational system.
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Figure 2.1: The Attempto Tubingen soccer robots in RoboZRQ6 in Bremen.

2.1.1 Platform

Considering a stable structure and the higher mobilityjantyular omnidirec-
tional robot platform was adopted for the new generatiohe#ttempto Tubingen
robot soccer team. The main feature of the platform is ti&wedish 90-degree
wheels [151] fromTRAPOROL GmbH56], which have a diameter of 80 mm as
shown in Figure 2.2. The six small rollers mounted along theel's periphery
enable a movement of the wheel perpendicular to the norrtetimg direction of
the wheel’'s axis. When the three wheels are driven sepgprayethree DC mo-
tors, and the wheel-motor combinations are assembled symoaiy with 120
degrees between each other in a solid frame as illustratEgyure 2.3, an om-
nidirectional drive results. The frame can move into angction while tracking
any orientation.

Figure 2.2: The ARG 8&wedistwheel [56].

The size of the frame is determined by choosing the distainoe the wheel’s
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center to the robot center as shown in Figure 2.3. For thekgepkr] is 21 cm,
which is fitting the maximum size df0 x 50 cm?, seen in Figure 2.4. For the
field players, it is decreased 10.5 cm, which permits a higher rotation velocity
for ball handling.

(a) Motor frame of the goalkeeper. (b) Motor frame of a field player.
Figure 2.3: Motor frames of the Attempto Tubingen soccéote [64].

Surrounding the frame, aluminum profiles were chosen to farstable and
lightweight body. As it is noticed in Figure 2.3, the form dietfield player is
slightly different from the goalkeeper. There is an indéotaat the front of the
field player with a depth of one third of the ball’s diametehnislindentation helps
keeping the ball near the center of the robot’s front whenld fi&ayer dribbles
the ball.

2.1.2 Equipment
On-Board Computer

Instead of the old computer system, which usetbalMONSTER/P®ISA slot
CPU from JUMPtec AG [3] equipped with dntel Pentium-111850 MHz CPU and
512 MB RAM, the new on-board computer system adoftsanderbird Mini-ITX
motherboard fronippert GmbH[55] equipped with a 2.0 GHz Intel Pentium M
processor and 1 GB RAMScientific Linux 4.Qvas taken as the operating system
and installed with a minimum size. In order to bring the haigkdnto a safe
state withstanding the shocks in real robot soccer gamesppkrating system
codes and user programs are loaded into a 32 MB RAM disk ataneip of the
computer. This RAM disk is a specially reserved part of thmpoter's RAM and
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Figure 2.4: The size of the goalkeeper [64].

can be addressed like a normal disk drive. The computermyisteast enough to
keep a stable 20 ms cycle time of the software system with @2y Watt power
consumption.

The other new equipment in the computer system is an extétgal 802.11b
and 802.11a compatible WLAN bridge, which supports usirglEEE 802 11a
standard with a possibly higher bandwidth of 54 Mbit/s touszlthe interference
from other leagues at RoboCup tournaments.

Sensors

Because the boundary walls on the play field had to be remoseatrding to
the new rules of the RoboCup Middle Size League, the lasemsraassembled
on the old robot platform became useless for the robot eeHlization. The new
omnidirectional soccer robot adopted an omnidirectiorsbn system as the sole
sensor. Supported by efficient image processing algorittimsomnidirectional
vision system has been successfully used and become artneizbt soccer teams
of the RoboCup Middle Size League.

The omnidirectional vision system of the Attempto soccéotaconsists of a
hyperbolic mirror from thd=raunhofer Institute for Autonomous Intelligent Sys-
tem [48] and aMarlin F-046C camera fromAllied Vision Technologies GmbH
[54]. The camera is assembled pointing up to the hyperbalimmwhich is on
the top of the robot as shown in Figure 2.5. The omnidireetionages of the sur-
rounding environment are transmitted to the on-board cdenghrough anEEE
1394a FireWirebus system. Thdlarlin F-046C camera provides a maximum
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resolution of780 x 580 pixels and is able to capture and transmit images with
780 x 580 pixels in the 16 bityUV 4:2:2format up to 50 times per second. This
characteristic is appropriate for the target softwareetiohe of 20 ms and makes
use of the full bandwidth of thEEEE 1394a FireWirdbus system.

Figure 2.5: The omnidirectional vision system with a hymdidomirror and a
Marlin F-046C camera.

Actuator

The actuator system is composed of thREe 30DC motors with a power of
60 Watt and a maximum 8200 revolutions per minute frittfaxon Motor AG
[4]. This motor is equipped with &P 32 Cceramic planetary gear box with a
gear ratio of 18:1, and alWIR wheel encoder with 500 impulses per revolution.
Each Swedish wheel is driven by a Maxon DC motor with the maxmwheel
velocity of 1.9 m/s, which gives the robot a maximum moving velocity2df m/s
according to the robot kinematics.

The control of DC motors is implemented by the triple motantroller board
TMC200 developed by thEBraunhofer Institute for Autonomous Intelligent Sys-
tems[87]. This controller board has three independent chansigbgorting up
to three DC motors with a maximum continuous load of 200 WHthot only
allows speed control, torque control, thermal motor priad@cand operating volt-
age monitoring, but also offers plenty of feedback messafgesexample, the
actual velocity, the actual current and the odometry valliee two alternative
communication interfaces: CAN bus and RS232 serial intetfanake TMC200
easily connect to the on-board computer. All the parametitise control board
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TMC200, such as controller constants, motor parametersnauigs of operation,
can be set via the respective communication interface. T323R serial inter-
face was chosen by the Attempto soccer robot with the set6,600 baud rate,
which is able to handle fifty commands per second and supg@t20 ms cycle
time of the whole system.

Dribblers

The robot dribbling system consists of dribblers aimingrtoréase the robot’s
ability of controlling the ball. The main contribution ofiiblers is exerting some
force onto the ball. This force can prevent the ball fromislidaway from the

robot when the robot has a fast rotation. The dribbling systé the Attempto

soccer robot shown in Figure 2.6 and 2.7 is based on the iatiemiof the robot

front. Three spongy blocks are pasted on the indentatiommnopdthe collisions
between the ball and the robot, and prevent the ball froningjidway. A rubber

foam pad is assembled at the top of the indentation, whichtsepeessure onto
the ball and keeps it from leaving the robot along the forwgirdction.

(a) Frontview of dribblers. (b) Side view of dribblers.

Figure 2.6: The dribbling system composed of three sponggkisl pasted on the
indentation and a rubber foam pad at the top of the indemtatio

(a) Left side view. (b) Front view. (c) Right side view.

Figure 2.7: Photos of dribblers keeping the ball.
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Kicker

The new electro-magnetic kick system shown in Figure 2.8thasadvantage
of controlling the strength of the kick, which is of benefit foassing the ball.
The main component of the kicker system is a coil with an italice of9.6
mH, which is made by winding 690 circles of a magnet wire of fa1® diameter
around a plastic tube of 100 mm length and 40 mm diameter. Asraiside the
coil, which is composed of a steel cylinder of 100 mm lengthylan cylinder in
the front and a thin appendix in the back. When a high currassgs through the
windings, the steel part of the rob will be accelerated ihtodoil by the produced
magnetic field and the nylon part will move outside to kick ttad.

Figure 2.8: The CAD model of the electro-magnetic kicker][64

Controlling the strength of the kick is achieved throughlfReport of the mo-
tor controller board TMC200. 6 bits of the port are used t@datne the duration
of the current flow. The other 2 bits control the voltage ofeébectronic circuit to
exert 85% or 95% of the maximum value. As a consequence, élstoeic circuit
enables the kicker to have 128 different strengths and tela@te the ball to a
maximum speed of nearly 10 m/s.

After kicking the ball, the kicker has to go back to the homaipon. A
rubber spring with a nearly constant spring force for a @éemange of deflection
is attached to the thin appendix of the rob. This spring ie &dbteturn the rob from
any position. To keep the rob at the home position when a kidlot requested, a
small permanent magnet is fixed at the rear side of the kickend.
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2.2 Software System

The software system of the Attempto Tubingen robot soce@mtwas designed
as a commonProgramming Interfacewhich is not only used in RoboCup tour-
naments but also suitable for other mobile robot applicatioTo simplify the
design and test, this software system consists of sevatapandent functional
processes. Utilizing a client/server architecture, thta tansmission among pro-
cesses allows access to data sources of each process. fidrg camputer system
uses a single processor, which matches the single data floeiourrent soft-
ware system with a global cycle time of 20 ms. When more sensioa shorter
global cycle time is required, the multi-processes sofénarstem could support
the parallel computation on a multi-processor system. Asvshn Figure 2.9, the

—_— Lew-level drivers

=H=iee Inter-process communication
via shared memories

GCommServer @ Cooperating
,/ Object data \ Z Robots

! WLAN
Communication

’ e
EnvironmentModel |/ &
> ImageProcessor e

Saaceledion Color segmentation ImageServer
Object tracking i — | g PRSI Gp—

Self-Localization Object detection 360° images
K Landmark detection

T

=

e =i
7’

Tactics A RobotServer

Player behaviors | _ i _ _ _ __ _ _ ____ 5| Odometry data
Team behaviors Drive commands
Path planning

—»I

High-Level Layer Intermediate Layer Low-Level Layer

Figure 2.9: An overview of the software system [64].

software system can be divided into three functional levEte low-level system
aims to access all sensors’ data and to perform pre-pracesshe middle-level
system processes the pre-processed data from the lowslesteim, such as ex-
tracting landmarks and obstacles from the processed imageshigh-level sys-
tem builds an environment model and fulfills the high-levahizol of the robot,
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for example, catching the ball, dribbling the ball and siagpa goal.

2.2.1 Low-Level System

The low-level system consists of three processes that geoatcess to the raw
sensor’s data and the data from teammates [64].

ImageServeruses the open source librditydc1394{38] controlling theMar-
lin F-046C camera to capture raw images and serves the image data tpothe
cesses.

RobotServercommunicates with the TMC200 motor controller board and has
two functions. One is to act as a client of the robot controtpsslactics, receive
control commands and send them to the controller board. Trrer & to work as
a server providing robot data to other processes. The r@iatidcludes the rota-
tional speed and the encoder count of the motors, which ae tascompute the
odometry information of the robot. MoreovdRpbotServer collects the battery
voltage and the kicker capacity in each second, which ardateby the process
Tactics.

CommServeris responsible for the communication with teammates. & act
as a client of the procegsvironmentModel and sends the own robot’s data to
teammates. On the other hand, it receives messages frormtgasand serves
them to the higher level system.

2.2.2 Middle-Level System

The middle-level system includes only one prodesageProcessof68]. It acts

as a client ofimageServerto get the raw image data, and processes images to
extract all necessary features, such as landmarks andt®lgedhe play field,
then serves these features to other processes.

2.2.3 High-Level System

The high-level system is composed of two procedsegronmentModel and
Tactics.

EnvironmentModel integrates the processed image data friomagePro-
cessorand teammates’ information fro@ommServerto build an environment
model of the own robot. Using the landmarks in the images ftbenomnidi-
rectional vision system, a self-localization algorithnd]&vorks to find the robot
position in the environment model. With the objects infotima extracted from
the images, an objects tracking algorithm [66] providesittiermation of the
ball, opponents and teammates, such as their positionsedocities.
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The procesdactics focuses on the high level control problems [64]. It pro-
cesses the information froEnvironmentModel and sends driving commands to
the motor controller, such that the robot can successfidly @ soccer game in co-
operation with its teammates. For the goal keeper, a reabghavior-based sys-
tem based on simple condition-action rules was designeithwhainly depends
on the ball’s position in the environment model. The sofenairfield players uti-
lizes a hybrid control system in controlling the robot tdifutlesigned behaviors,
for example, dribble, pass and shoot the ball. A path plapalgorithm is also
designed to plan an efficient collision-free path to nawghe robot movement.



Chapter 3

Robot Control System

This chapter presents the first step of controlling a mobib®t, which is to build
up a robot control system. A control system is the foundatiodesigning robot
control laws, and a suitable control system can benefit ni@reantroller design
with respect to control tasks. After a short introductiomubieeled mobile robots,
the control system of the Attempto soccer robots is adddassgection 3.2. Tak-
ing a reasonable architecture, the adopted control systéne dttempto soccer
robot consists of a high-level control system and a lowdlegatrol system, which
are based on the robot kinematic model and dynamic modgdecésely. The
robot models and corresponding control laws are detailsg@tions 3.3 and 3.4.
While the actuator characteristics may have severe impatti@control strategy
based on kinematic models, the actuator dynamics and act&tiration have to
be considered as well, which are described in Section 3.5.

3.1 Wheeled Mobile Robots

Wheeled Mobile Robots have received considerable atteatid achiev-ed tremen-
dous progress in industries and service robotics becaugeiofflexible motion
capabilities on reasonably smooth grounds and surfac&$.[ASvheeled mobile
robot can be modeled as a planar rigid body that rides on dtragbnumber
of wheels, some or all of which can be steered [8]. IgnorirgDOF (Degrees
of Freedom) of the wheel axles and wheel joints relative o ribbot body, a
wheeled mobile robot has maximum of three DOF: two of themvatie respect
to the translation on the plane, the other one is the rotaitiomg the vertical axis,
which is orthogonal to the plane.

The maneuverability of a wheeled mobile robot depends oreltypes and
configurations [151]. From the view of controllable DOF, whezl mobile robots
can be categorized into two types: omnidirectional (or hohaic) robots and

17
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nonholonomic robots.

Nonholonomic robots have less than three controllable ®&ause the com-
monly used wheels are unable to move parallel to their ax@seXample, an uni-
cycle has only an upright wheel rolling on the plane, whidhessimplest example
of the nonholonomic wheeled mobile robot. Such constrairgsnonholonomic,
i.e. they cannot be integrated to give a constraint only enrt¢tbot poses [121].
With the generalized coordinatés, y, ), the nonholonomic constraint can be
expressed as

Zsinf —ycosh =0, (3.2)

where(z, y) denotes the robot position adds the robot orientation. Nonholo-
nomic constraints allow the robot to only move forward ancidveard after chang-
ing the direction of its movement. Due to the wide applicagovironments cov-
ering from research laboratories and factories to the difgélythe development of
the nonlinear control theory and practice with respect tthmbonomic systems is
still an attractive and challenging research topic.

Omnidirectional robots have higher maneuverability thamholonomic robots,
because the DOF of an omnidirectional robot can be totaliytroled. The
omnidirectional movement means that a robot can move in &egttn at any
time regardless of its orientation. Although the omnidii@tal mobility can be
achieved by using conventional wheels, for example casherels and steering
wheels, these designs are not truly omnidirectional bexatithe nonholonomic
nature of these wheels [43]. Therefore, true omnidireetiovheels which can
move in parallel to the direction of their axes are widelyduseomnidirectional
robot platforms, for example Swedish wheels, meccanum lsfaeel Ball wheels
[160, 36, 37]. The highly maneuverable characteristics @aakmnidirectional
robots very attractive in wheeled mobile robots appligaioFor example, some
kinds of omnidirectional wheelchairs have been developedhfiman assistance
in public environments such as residences, offices and tadspl56, 159]. In
the annual RoboCup competition which deals with highly dgiteenvironments,
omnidirectional soccer robots have been employed extyemalcessfully since
2000 in the Small Size League [29, 133] and in nearly all theddW Size League
RoboCup teams in recent years [120, 19, 92].

3.2 Control System

Mobile robot control systems are built on robot models. Asiraal descrip-
tion of the relationship between the forces exerted on theelghand the robot
movement, robot dynamic models have been used in many robtriot systems
[160, 158, 51, 102, 132, 157]. Taking the torque and forceherapplied volt-
age of wheels motors as inputs and the robot linear and angcdalerations as
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outputs, dynamic models are complex in structure and relynany mechani-

cal or physical parameters. Due to dynamic variations @hbgechanges in the
robot’s inertia moment and perturbations from the mecheaoimponents, obtain-
ing a perfect dynamic model of a mobile robot is a very harll,takich increases
the complexity of controllers based only on dynamic modglls [148]. Another

widely adopted control system combines robot kinematit wlignamic models
[156, 116, 140]. With assignments of control tasks, cotdrslwith respect to
the kinematic and dynamic models are designed separateé/miin advantage
of this control system is that kinematic models have a simspiecture and also
simplify the dynamic model by only using the kinematic mdslglputs as output
variables.

A common architecture of control systems combing kinematid dynamic
models, Navigation-Guidance-Control (NGC), is adopteddntrol the omnidi-
rectional Attempto soccer robot, which is organized in a¢hlevel hierarchy
[103, 118]. The three levels cover the three basic probleirasmobile robot:
to know where it is, to determine suitable maneuvers forrddgasks and to exe-
cute such maneuvers as well as possible. Navigation is ngelwd the knowledge
of robot position and attitude based on the sensors measuatefuidance is built
from high level tasks and robot kinematic models to geneatagéred angular and
linear velocities with respect to the output of the navigasystem. Control is re-
sponsible for keeping the robot at the desired velocitiesi§ipd by the guidance
system as close as possible. According to the hierarchicadtare, the control
system is also considered a low-level control system wharthroands the robot
actuators, such as motor torques, based on the plannedtiesidom the guid-
ance system. The guidance system is also taken as a hidlctetteol system,
whose objective is to plan the desired velocity trajectargt aend the reference
velocity to the low-level control system.

Guidance | set R Control |voltage| Robot |velocities | Robot
System | velocities { . | System " | Dynamics "| Kinematics
high-level Navigation robot
task - System states
ask_ e -

Figure 3.1: Diagram of NGC control architecture

With the assumption that no slippage of wheels occurs, ab@es have high
accuracy and the ground is planar enough, kinematic modetstheen well used
in designing robot behaviors. As the inputs of kinematic eisdre robot wheel
velocities and outputs are robot linear and angular ve&s;ithe actuator dynam-
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ics of the robot are assumed to be fast enough to be ignorech wieans that the
desired wheel velocities can be achieved immediately. Wewéhe actuator dy-
namics is impossible to be omitted in real situations, arhéwnits and degrade
the robot performance. Moreover, motor speeds of the robeels are bounded
by saturation limits. When the desired robot wheel velesitxceed their maxi-
mum values, the actuator saturation appears which affieetsobot performance
and can even destroy the stability of the robot control sydfE3, 27]. There-
fore, actuator saturation is another important practissiié to be considered in
controlling mobile robots.

The next sections in this chapter describe the control Bystfehe Attempto
soccer robot in detail. High-level control, low-level carif the robot kinematic
and dynamic models and the corresponding control methdtiseypresented. To
guarantee control stability, the dynamic actuator satumatnd identified actuator
dynamics have been considered in the control system, whiela@dressed in
Section 3.5.

3.3 High-Level Control

The high-level control is based on the robot kinematic maael works as the
guidance system in an NGC architecture. It determines thiesterobot velocities
based on the measured robot information so as to fulfill tigh-evel control
tasks, then forwards these values to the robot actuatorseashjective of the
low-level control system.

3.3.1 Kinematic Model

Figure 3.2 shows the base of an Attempto soccer robot. Besidefixed world
coordinate systerfiil’ } composed of axe¥,, andY,,, a moving robot coordinate
system{M} consisting of axesX,, andY,, is defined. The anglé between
the axesX,, and X,, denotes the robot orientation. Anglesand denote the
direction of robot motion in the world and robot coordinagstems, respectively.
Each wheel has the same distadceto the robot’s center of magds. § refers to
the wheel orientation in the robot coordinate system andahamstant value of
30 degrees.
The kinematic model of the robot is as follows:

cosf —sinf 0
x= | sinf cosf O |, (3.2)
0 0 1

wherex is the robot velocity vectofi, g, é)T with respect to the world coordinate
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Figure 3.2: Kinematics diagram of the base of an Attempoesoabot.

system, which is composed of the robot translation velogity;) and the robot
rotation velocityd. The input is a velocity vector = (@, g7 w)T with respect to
the robot coordinate system, where the velocitigsindy}; are along the axek,,
andY,,, respectivelyw is the robot rotation velocity along the axis perpendicular
to the plane.

When we consider the wheel velocities, the lower level kiagonmodel of
the robot can be deduced as:

2cos(0+6) —3 03(9 6)  Zsind
x = | 3sin(0+6) —3sin(0 —06) —Zcosh | q, (3.3)
on oLn on

whereq is the vector of wheel velocitigg; - q'3]T. Hereg; (i = 1,2, 3) denotes
the i-th wheel velocity, which is equal to the wheel radiudtiplied by the wheel
angular velocity. As the motor’s voltage and current ardtéoh the maximum
wheel velocity is limited byj,,,, namely|¢| < G-

It is important to notice that the transformation matrigethie kinematic mod-
els (3.2) and (3.3) are all full rank, which implies that thenislation and rotation

of the omnidirectional robot are completely decoupled, alaws the separate
control of these two movements.

3.3.2 Control Law

It is clear that the robot kinematic model is nonlinear. Whemmodel Eq. (3.2)
changes to

x = Gv, (3.4)
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by defining the transformation matrix &%, the trigonometric functions of angle
0 in G show the system’s nonlinearities. As is full rank, its inverse can be
introduced as a compensaftorto exactly linearize this nonlinear model as shown
in Figure 3.3 and generates the following linearized system

X =u (3.5)

with a new input vecton = (u; uy us)?

u v X

—» Compensator C » System G ——»

Figure 3.3: Linearized system with the compensétor

This linearized system inherits the decoupled contrdilstof robot transla-
tion and rotation. When a controlléf is designed based on this simple linear sys-
tem, the controller of the original system is generated'aS The overall control
loop, which consists of the nonlinear system, the compensaid the controller,
is shown in Figure 3.4, where denotes the robot state vector yr 0)7 andxq

Linearized system

Xq U v X x

—»(T—> Controller K Compensator C —» System G Integral T

Figure 3.4: Closed-loop control system.

Y

is the desired state vector.

With the simple system (3.5), linear control technologias be easily used to
design suitable controllers with respect to high-leveltoartasks. In Chapter 4,
path following and orientation tracking are chosen as héylel control tasks, and
the corresponding control laws are addressed in detail.

3.4 Low-Level Control

The low-level control is based on the robot dynamic modetaltes the desired
robot velocities coming from the high-level control systamcontrol objectives
and controls the real robot velocities to approach the désines as closely as
possible.
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3.4.1 Dynamic Model

The dynamic model is derived from Newton’s Second Law,

My = Fy, (3.6)
miy, = Fy, (3.7)
1,6 = my, (3.8)

where i, andg, denote the robot translation accelerations with respettdo
world coordinate systemf); is the robot rotation acceleratiof, and F, are the
forces with respect to the world coordinate system exemeti® center of gravity
of the robot,m denotes the robot mass, is the moment of inertia of the robot,
my is the moment around the center of gravity of the robot.
When we transfer (3.6)-(3.8) into the robot coordinateesysivith the follow-
ing transformation matrix,
m cosf sinf
o = [ —sinf cosf } ’

we get the following dynamic equations,

M (i — b)) = fo, (3.9)

M (m + Emb) = fy, (3.10)

wherez,, andyj,, denote the robot translation accelerations with respethdo
robot coordinate systena,, andy,,, are the corresponding robot translation veloc-
ities, f, and f, are the forces with respect to the robot coordinate systertezk
on the center of gravity of the robot.

fz» f, andm; can be calculated from

fe = — Disind — Dysind + Ds, (3.11)
fy = Dy cosd — Djcosd, (3.12)
my = (D1 + Dy + D3) Ly, (3.13)

whereD; for i = 1,2, 3 is given by the following driving system’s dynamics for
each wheel [142], ) '

D; is the driving force for each wheel,, is the moment of inertia of the wheel,
0; denotes the angular position of each whéeland 6, are the corresponding
angular velocity and acceleratiom, is the driving input torque on each wheel,
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is the viscous friction factor of the wheel assemldly,is the driving gain factor
andr is the wheel radius.

Substituting the following inverse kinematic equationfereng to the rela-
tionship between wheel velocities and robot velocities,

—sind  cosd L,
q=| —sind —cosd L, |v, (3.15)
1 0 L.,

and their time derivatives into equations (3.9)-(3.14%& tlynamic model of the
robot is deduced as,

Ty = 1Ty, + Q2Ymw — b1 (ug + ug — 2ug), (3.16)
G = Q1 0m — Qodmw + V/3b1 (U — ug), (3.17)
0 = azw + ba(ur + ug + us), (3.18)

with

ay = — 3¢/ (31, + 2mr?)

ag = 2mr?/ (31, + 2mr?)

a3 = — 3cL? /(31,L% + I,r?)
by = ksr/(31, + 2mr?)

by = ksrLy/(31,L% + I,r?).

3.4.2 Control Law

Based on the dynamic model (3.16) - (3.18), three Propatibriegral-Derivative
(PID) controllers have been adapted to steer the three wkeélack the desired
velocities independently. Figure 3.5 shows the controtbidiagram, where the
set velocities are the desired wheel velocities coming ftieeninverse kinematic
model (3.15) with the desired robot velocities. The PID colfér is implemented
by the TMC200 Triple Motorcontroller, which measures thetong' and wheels’
data and controls the wheels velocities to approach theadeéw as closely as
possible. The PID controller employs the following drivimgput torque to steer
each wheel,

t
Uj = kpiedz‘ + kh / 6did7- + kdi’ édz‘
0
where the parameteks,, k;, andk,, are proportional, integral and derivative gains

with respect to the i-th wheel. They are parameters and camloiied according
to the requirement of the control performance.



3.5. Actuator Influence 25

- k,e(r)
set error ! Robot actual
wheels +® e(t) =kiJ‘Oe(T)dT g Dynamics | wheels g
velocities - velocities
de(t
g de
dt
TMC200

Figure 3.5: Diagram of the low-level control system

3.5 Actuator Influence

An actuator is typically a mechanical device used to cormeergy into motions.
In wheeled mobile robot systems, actuators normally are@raptvhich consume
electric energy and control the wheel velocities. Actualgmamics is an impor-
tant component of robot dynamics. Especially in the caségybivelocity move-

ment and highly varying load, actuator dynamics has a higharhon the robot
performance. Based on the kinematic model, designing molotibn control laws

must assume that the robot actuator dynamics is fast enoughignored, which

means the desired input values of the kinematic model carlieeed immedi-

ately. However, the actuator dynamics can not be completelgted due to the
materials, mechanisms and the limited power of motors. &ftbeg, it is necessary
to think about the actuator influences on the kinematic mbdsked controller de-
sign. As two important aspects of the actuator, actuatoaayos and actuator
saturation are considered in the motion control system efAtiempto soccer
robot, which will be presented in the following subsections

3.5.1 Actuator Dynamics

Actuator dynamics denotes the performance of the low-lewetrol system. Al-
though the actuators are normally controlled by the lovelewntroller with good
performance, the actuator dynamics might degrade the vglgetem performance,
especially in the case of high-velocity movement and higiagying load. It is
necessary to analyze the actuator dynamics and take thenagobunt in con-
troller design.

In order to learn about the actuator dynamics, actuatormyssare modeled
based on the observed input-output data. The model is fahbased on the
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observed input-output data so that a performance critésioninimized. Because
the full rank transformation matrix in the inverse low-lestlgnamics model (3.15)
denotes the outputs;, y;; andw are decoupled, the models with respect to these
three values are identified separately. The inputs of eadehare required ve-
locity values % , vz andw,), respectively. The outputs are the corresponding
measured values. As one commonly used parametric modehutioeegressive
moving average with exogenous variable (ARMAX) model issdmoas the iden-
tified model. It has the following structure:

A(2)y(t) = B(z)u(t — i) + C(2)e(t),

A) =14+ az7 '+ .. +a,, 2",

B(z) = bz + . by, 2

Clz)=1+cz7 +... +ecp 2.
ny denotes the delay from input(t) to outputy(t). e(t) is white noise. z is
the shift operator resulting in—'u(t) = u(t — 1). n,, n, andn,. are the orders of
polynomialsA(z), B(z) andC/(z), respectively. To choose the optimal parameters
of this model, we use the prediction error method, whiclstteefind the optimal

ny and parameters ofl(z), B(z) andC(z) such that the prediction errdr is
minimized, namely

N
[A(2), B(2), C(2), nkl,,, = argmin Z E?,
t=1
E = y,(t) — A7 (2)(B(2)ult — ng) + C(2)e(t)),
wherey,(t) denotes the measured output data.

The system identification toolbox of Matlab has been useddntify the actu-
ator dynamic models. After comparing prediction errors 8IMAX models with
different values of.,, n;, n. andn, chosen from the positive integer sét5], the
smallest prediction errors have been found using the fatigywarameters,

e Model: %, — &'}
A(z) =1—0.6422"" = 0.19972 2,
B(z) =0.16032"",
C(z) =1—0.64442"";
e Model: g% — y
A(z) =1—-1.296z"" — 0.182127% + 0.49372%,

B(z) = —0.01212z7" + 0.1521272 — 0.124727%,
C(z) =1—1.532"" 4 0.643927%;
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e Model: w, — w

A(z) =1—1.8452"" +0.873622,
B(z) = 0.045462' — 0.017232 2,
C(z) =1—1.7942"" 4+ 0.854272.

Figures 3.6, 3.7 and 3.8 show the comparisons between matrits and mea-
sured outputs with respect to the actual inputs.

Identified ARMAX model (na=2,nb=1,nc =1, nk=1)
25 ‘ ‘ ‘ : :
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Figure 3.6: Identified model foi;.

To coincide with the robot’s continuous model, the identifieodels are trans-
formed from discrete ones into continuous ones using the {@@ro-order hold)
method with the sampling time of 20 ms,

8.7948(s + 58.47)

i jm 3.19
TR T (51 73.66)(s + 6.897) B (3.19)
, 2.4525(s + 48.83)(s + 6.185)

. (5-+4883)(s 4 6185) 3,20

(5 4+ 28.45)(s2 4 6.837s + 25.97) 71’
_ L667(s+45.37)
~ (s246.759s + 76.11)

(3.21)

With the identified actuators dynamics, the guidance sysatasigned in the
following motion control system.
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Identified ARMAX model (na =3, nb =3, nc =2, nk = 1)
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Figure 3.7: Identified model faj};.

Identified ARMAX model (na =2, nb =2, nc =2, nk = 1)
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Figure 3.8: Identified model fav.
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high-level Guidance | set | Actuator |velocities| Robot |robot
task - | System |velocities | Dynamics Kinematics | states
Navigation
System

Figure 3.9: Closed-loop control system with actuator dyigam

3.5.2 Actuator Saturation

Actuator saturation occurs if the commanded wheel velesitire larger than the
maximum values, which are limited by the power of the wheetéars. At this
moment, the actuator can only generate the highest adieis&locities, but not
the desired ones, which can severely influence the overatt@operformance.
Although more powerful actuators can be chosen to equipothet iplatforms, the
desired velocities coming from the high-level controllee also possible larger
than the velocities which the actuators are able to genefatedecoupled maneu-
verability of translation and rotation can be broken for amnairectional robot
losing its flexible mobility. Taking the actuator saturatimto account, the robot
control system is illustrated by the following block diagra

high-level Guidance | set | .| Actuator |velocities|  Robot | robot
task - | System |velocities Dynamics Kinematics | states
Actuator
Saturation
Navigation
System

Figure 3.10: Closed-loop control system with actuator rediton and actuator
dynamics.

When the robot translation velocities are projected inewlorld coordinate
system, we get the control values of the linearized systen{E§) as

U] = Vg COS @, (3.22)

Uy = Vg Sin @, (3.23)

wherea denotes the robot moving direction with respect to the woddrdinate
system. Substituting equations (3.22) and (3.23) into dlewing inverse robot
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kinematics,
cos( +0)  sin(@+0) Ly
q=| —cos( —0) —sin(d —0) L, | X, (3.24)
sin 6 —cos L

w

the wheel velocities are computed as:

01 vgcos(p — 0) + Lyus
Go | = | —vgcos(p +0)+ Lyus |, (3.25)
g3 —vgsing + Ly us

wherey is the robot moving direction with respect to the robot cauaite system
with o = a — 6.

As the omnidirectional robot has the maximum velocity ofreadteel,,,
namely|q;| < ¢, the actuator constraints are deduced as:

lvgcos(p — 0) + Lyus| < Gum, (3.26)
|—vacos(@ + 9) + Lyus| < Gum, (3.27)
|—vagsing + Lyus| < Gm, (3.28)

These three inequalities dynamically constrain the vabfie®ntrol variables,,

¢ andug. Explicit analysis of the nonlinear constraints is not appg but the
actuator saturation can also be handled by allocating tbetretrobot translation
and rotation separately. In real applications, robot tedizs and rotation control
are normally assigned with priorities based on pre-desidgpahaviors. For exam-
ple, in the RoboCup scenarios, when the robot is requiredbitkia rolling ball,
the translation has to be as fast as possible. Therefor&ah&ation control has
priority over rotation control. But for catching the ballcapreparing a good shot,
the rotation control is more important. With the differemiopities of translation
and rotation, the motion with higher priority should be enesLto be realized, and
the other motion must be controlled under the corresponsktigration.

When translation control has higher priority, the desiradislation velocity’s
magnitudev, is assumed to be not bigger thapn in order to achieve feasible
control of the robot orientation. Based on the controllethea of u; and us
from equations (3.22) and (3.23), the lower and upper bouesld,, andu,,,

i = 1,2, 3) of ug with respect to each wheel can be calculated as follows,

oy, = —Gm — vacos(p — ) < Lyus < G, — vacos(p — 6) = uy,,
lbg = _Qm + UdCOS<90 + 5) < qu3 < Qm + UdCOS<g0 + 5) =u
Ly, = —Gm + vasin(p) < Lyuz < ¢ + vgsin(p) = u
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Then the dynamic boundary valueswgfare computed as

l . max(lbl, lb2, le)
b — I )

. min(ub1 ; Uby s ub:,)
Up = )
L,

wherel, andu, are the lower and upper boundaries, and the resulting dontro
system has the structure shown in Figure 3.11.

’>®—> Controller K

Saturation

Figure 3.11: Closed-loop of robot orientation control.

On the other hand, when the rotation control is more impoytdre input
values ofp andwv,; should be bounded by the following constraints:

Iy < cos(p —0) < uy, (3.29)
Iy < cos(p+0) < uy, (3.30)
Iy < sinp < uy, (3.31)

with the saturation limits '
l qm — Lw | W‘
= —am  Twl®l
Vd

9

Qm B Lw | w|
Va .

Figure 3.12 shows the curves of functions (¢ + 9), cos(¢ — d) andsin
from left to right, withy valued from—= to =. Two lines denote the boundaries
with the absolute value equal tos d. It can be concluded that feasible values of
© exist only when the absolute valuelgfor u;) is not less thamos 5, namely,

' < cosd = ? (3.32)

Uy =

'm_Lw w
0y = |4 | w]

Vd

Therefore, whemv is determined to control the robot rotatiar, should satisfy
constant (3.32) such as to get the feasible boundary vafugsaocording to the
constraints (3.29) - (3.31).
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0
@ (rad)

Figure 3.12: Solid, dotted and dashdotted curves illustiia¢ constraints from
the left wheel, the right wheel and the back wheel, respelgtiviwo lines show
the upper and lower boundaries with the absolute ve@e

3.6 Summary

This chapter presented the motion control system of then#yite soccer robot.
Considering the complex structure and dynamically vaeabéchanic and phys-
ical parameters in the robot dynamic model, a control systembining a kine-
matic and a dynamic model has been designed for our robotcdifieol system
adopts the well-known Navigation-Guidance-Control dinoe, where the kine-
matic model-based high-level control focuses on accormipigsrobot behaviors
to fulfill high-level tasks, and the low-level control is amrned with the robot
dynamic model, which takes the outputs of the high-leveltr@bras objectives
and keeps the robot with the desired movement as well asipessi

Compared with nonholonomic robots, omnidirectional redwve higher ma-
neuverability because of their full motion DOF on the plangiis advantage
makes omnidirectional robot attractive in wheeled mololeats applications, for
example, in the Middle Size League of RoboCup. Especialtyctbmpletely de-
coupled translation and rotation of omnidirectional raberable the separate con-
trol of these two motions according to the requirement dedént control tasks.
However, this decoupled control strategy must assume tleatdbot actuators
are powerful enough for the desired control values and thetractuator dynam-
ics are fast enough to be ignored. For a real mobile robotmbrs can only
have limited power and the robot actuator dynamics are isiplesto be omitted.
Therefore, considering the influences of the robot actudtoamics in the robot
kinematics-based control is necessary and very important.

In sections 3.3 and 3.4, the kinematic and dynamic modelbefAttempto
soccer robot and the corresponding control laws have besarided in detail. In
order to guarantee closed-loop stability and good con&diopmance, the actua-
tor influence has been analyzed in Section 3.5. The identafitghtor dynamics
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and the dynamically calculated actuator saturation arecddo the control sys-
tem, which provides the basis of designing the robot motmntrol laws.
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Chapter 4

Robot Motion Control

Robot motion control refers to controlling the position Ardrelocity of mobile
robots by servo mechanisms. The tasks of robot motion cloadidressed in the
literature can be roughly classified in the following threeugps:

e Point stabilization: a robot is required to move from aniahpoint to a goal
point with desired posture, no matter how the robot movewden these

two points;

e Trajectory tracking: a robot is required to track a time pagterized refer-
ence trajectory;

e Path following: a robot is required to converge to a georoetference
path.

Point stabilization

The main challenge of point stabilization lies in stabilgia nonholonomic robot
at the goal point with the desired orientation because Batbdias shown in [20]
that there is no smooth or even continuous state feedbactiottaw able to solve
the point stabilization problem for such kind of robot. Thedaerlying reason is
nonholonomic robots can not satisfy the necessary comddtfidhe point stabi-
lization problem: smooth stabilizability of a driftlesgdar system requires that
the number of inputs is equal to the number of states. As aecuesice, either
discontinuous or time-varying control laws have been psegoto stabilize the
robot at the desired posture, for example, smooth timehvgrgontrol laws tak-
ing the time variable into account, piecewise continuaugtvarying control laws
keeping continuous except at the equilibrium [31, 57], Yloontinuous or dis-
continuous feedback control laws composed of time-varjgedback controllers

35
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and either continuous or discontinuous controllers [5,0,3B]. With respect to
omnidirectional robots, their full DOF on the plane deteras the number of in-
puts equal to or larger than the number of states and makg@®thiestabilization
problem easier to be solved.

Trajectory tracking

Trajectory tracking is aimed to control a robot to track a-gesigned feasible
trajectory, which specifies the time evolutions of the posit orientation and
translation and rotation velocities of the robot. As a neagg condition for
the trajectory tracking problem, a feasible trajectoryhe time based solution
of the robot kinematic model with respect to a set of feasibjprit values. In
trajectory tracking, the pose and velocity at each speciiied instant in the fu-
ture which the robot should track are exactly determined fatditate the con-
troller design, the tracking error kinematics is normallveloped as the first
task based on the robot kinematics. Then, the trajectockitrg problem be-
comes to find suitable control laws which asymptoticallybgize the tracking
error (z,.(t) — z(t), y-(t) — y(t),6,(t) — 6(t)) at zero, wherégz(t), y(t),0(t)) de-
notes the robot state arid, (¢),y,(t),0.(t)) presents the state of the reference
trajectory. By linearizing the tracking error kinematic dab at the equilibrium
point, the linearized system is controllable as long as &ference trajectory is
non-stationary. This implies that linear control techmgan be used to achieve
the local stability of the trajectory tracking problem, tatample, Lyapunov stable
time-varying feedback control laws [145, 144] and chainadfbased feedback
control laws [111, 115]. Besides researching the prelinyit@cal stability guar-
anteed controllers, many control laws have achieved globpdctory stabiliza-
tion, such as the nonlinear feedback controllers basedeoorthinal nonlinear er-
ror kinematics [111] or the dynamic feedback linearizedesys[30, 124]. Based
on the basic ideas of above trajectory tracking contrgllerany variations and
improvements have been proposed in the dedicated robdécstliire. Some of
them focus on increasing robustness due to the robot modefamties and en-
vironmental perturbations [127, 136], some try to keep dstability and good
control performance with consideration of saturation t@msts of the robot input
values [73, 77].

Path following

The path following problem is the other important robot rantcontrol problem,

where a robot is required to move to a geometric referende gmtlose as pos-
sible. Unlike trajectory tracking, the robot moving spesalecoupled from the
robot convergence movement in the path following problehis means the robot
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can follow the reference path with a freely defined velociggmitude according
to the application requirements. Therefore, trajectaagking can be regarded as
a special case of the path following problem because theatbglocity history is
directly specified with time in the trajectory tracking plemm. A fundamental dif-
ference between the path following problem and the trajgdtacking problem
can be demonstrated in non-minimum phase systems [7], vthe®-norm* of
the tracking error can not be decreased arbitrarily smaitHe flexibility of speed
assignment allows the path following problem to have aabiyr small £,-norm
of the following error. Moreover, transforming or combigitrajectory tracking
and path following have been studied to yield better trajgctracking perfor-
mance [42, 125]. By steering the robot speed to track a akspeed profile, path
following has been involved in many complex tasks, for exEnmulti robots
formation control [53, 78], obstacle avoidance control][@3c..

In Chapter 7, path following has been formulated in the soadgot dribbling
task. The most challenging task of my research is to contraranidirectional
robot to dribble a rolling ball. During the dribbling prosgshe ball can only be
pushed but not be pulled. To decrease the ball's speed, Hu has to move
ahead and hinder the ball's movement. When the ball’s spagtbhbe increased,
the robot needs to stay behind the ball and push it. This misatvarying the
ball's speed will unsmooth the robot movement and increbsepbssibility of
losing the ball. Therefore, a desired constant high speeldsen for the ball in
the path following task, which not only facilitates the rolmeotion control, but
also ensures the ball’s fast moving in the RoboCup matches.

According to the omnidirectional mobility, the motion caowitof our soccer
robot can be achieved by separately controlling robot tagios and rotation.
Sections 4.2 and 4.3 introduce the control methods of rabwoistation and ro-
tation, respectively. The path following problem is takenthe task of robot
translation control. The robot rotation control concehresactuator dynamics and
actuator saturation, such as to keep a stability guaranmtgsat motion control
[99].

4.1 Nonlinear Systems Theory

Before the introduction of motion control methods, thistgetrecalls some nec-
essary theories about stability of the equilibrium poiritsanlinear systems. The
reported theorems and definitions are borrowed from [84].

1£,-space is the set of square integrable functions.
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4.1.1 Lyapunov Stability

Suppose the autonomadis/stem
x = f(x) (4.1)

has an equilibrium point, which is assumed to be at the oggiY*, i.e. f(0) = 0.
There is no loss of generality in doing so because any equilibpoint can be
shifted to the origin via a change of variables.

Definition 1 The equilibrium poink = 0 of (4.1) is
e stable, if for eacte > 0, there is§ = §(¢) > 0 such that

[xO)} <= lx@®lf <€ V=0

e unstable, if it is not stable

e asymptotically stable, if it is stable arddcan be chosen such that

Ix(0)]| <& = lim x(t) =0

In order to demonstrate that the origin is a stable equiliiarpoint, for each
selected value of one must produce a value &f possibly dependent an such
that a trajectory starting in & neighborhood of the origin will never leave the
neighborhood. Itis possible to determine stability by ekxang the derivatives of
some particular functions without having to know expligithe solution of (4.1).

4.1.2 Lyapunov’s Stability Theorem

Theorem 1 Letx = 0 be an equilibrium point for (4.1) an®® C R" be a domain
containingx = 0. LetV : D — R be a continuously differentiable function such
that

V(0) =0and V(x) > 0in D — {0} (4.2)

V(x) <0in D (4.3)

Then,x = 0 is stable. Moreover, if

V(x) <0in D — {0}

thenx = 0 is asymptotically stable.

2A system in which the functiorf does not depend explicitly on time.
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A functionV (x) satisfying condition (4.2) is said to Ipgsitive definitelf it satis-
fies the weaker conditiovi(x) > 0 for x # 0, itis said to bgositive semidefinite
A function V (x) is said to benegative definit®r negative semidefinitié —1(x)

is positive definiter positive semidefinifgespectively. A continuously differen-
tiable functionV/(x) satisfying (4.2) and (4.3) is called a Lyapunov functioteaf
the Russian mathematician who laid the base of this theory.

4.1.3 Barbalat's Lemma

Lemma 1 For a time-varying system, if a Lyapunov functidiix, t) satisfies the
following conditions:

1. V(x,t) is lower bounded

2. V(x,t) is negative semidefinite

3. V(x,t) is uniformly continuous in time (satisfiedlifis finite)
thenV (x,t) — 0 ast — 0.

Barbalat's Lemma will be used to proof stability of the quidinite horizon
nonlinear model predictive control in Section 5.3.

4.2 Translation Control

4.2.1 Path Following Problem

As one important control problem of mobile robots, pathdaling aims to find a
feedback control law such that the robot’s center of masgarges asymptotically
to a geometric reference path. Unlike trajectory trackwgich can be formulated
to decrease the error between the real robot states and siredieobot states
parameterized by time, the aim of the path following probisrto decrease the
distancebetween the robot and the reference path. The differentitiefis of the
distanceresults in different formulations of the path following pfem.

A kinematic level formulation of the path following problewas first pre-
sented in [111, 143], where tltistancevalue is described in a path frame which
is moving along the given path. When the distance is equdlgoddius of cur-
vature of the given path, the singularity problem will ocaoithis formulation.
By linearizing the formulation, the proposed controllena@mnly keep the robot
locally converging to the given path. In order to get a glatzaivergence to the
given path and to avoid the singularity problem, a more gadriermulation of the
path following problem was utilized in many control laws4[352, 39, 40, 105]),
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where the concept dfirtual Vehicleis introduced to refer to the robot’s desired
position on the given path and a new variable is introducezbtdrol the move-
ment of theVirtual Vehicle The main difference between these controllers focuses
on the ways of controlling theirtual Vehiclés movement, which results in differ-
ent control performance of the robot following the referepath. Normally the
velocity of theVirtual Vehicleis controlled by a nonlinear controller based on the
distance errors and the characteristics of the referentte p¥ith respect to the
controlledVirtual Vehiclés velocity, the corresponding robot motion controllers
can provide the global convergence to the reference path.

Besides the variable controlling tMértual Vehiclés movement, the direction
of robot translation is another important control variainiehe formulations of
the path following problem. For nonholonomic robots, theatorientation an-
gle denotes the direction of robot translation, which caly & controlled by
the robot rotation velocity around the axis perpendicuahe plane. In the case
of omnidirectional robots, robots are able to translate ratate simultaneously,
which means the robot’s translation direction can be reégdlaegardless of the
robot rotation velocity. In the next subsections, orthaggrojection-based and
Virtual Vehiclebased formulations of the path following problem have been
scribed. The path following control methods with respectémholonomic and
omnidirectional robots are presented in details.

4.2.2 Orthogonal Projection-based Control

Figure 4.1 illustrates the orthogonal projection-basethfdation of the path fol-
lowing problem. P denotes the reference path. Palhis the robot’'s center of
mass, and poinf) is the orthogonal projection ak on the pathP. A path co-
ordinate systerd P} is composed of axeX; andX,,, which are the tangent and
normal unit vectors af), respectivelyz,, is the signed distance between the robot
and the pathP. s is the signed curvilinear abscissa denoting the positiof.of
g, is the angle between axl; and axisx,,. vy is the robot translation velocity,
whose direction with respect to the world coordinate system

Based on the previous definitions, the path following probtan be parame-
terized as

1

§ = VR COSQ, , (4.4)
— cxy,

T, = URSIN A, (4.5)

&, = W, — VR COS ael ¢ (4.6)

—cxy,

wherec is the path curvature at poifit, c. is the angular error with, = o — 6,,,
w, Is equal toa. Therefore, the aim of path following is to find suitable aoht
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Figure 4.1: lllustration of the orthogonal projection-bd$ormulation of the path
following problem

values ofvy andw, such that the deviation, and angular errot,. tend to zero.

According to the kinematic equations (4.4) - (4.6), two vydesed linear and
nonlinear feedback control laws for nonholonomic robotsametroduced in [32].
v IS set to be the desired translation velocitywhich is assumed to be different
from zero. Then the task of path following is to find a suitabjesuch that the
deviation distance and angular error tend to zero.

In the neighborhood of the origifi,, = 0,a. = 0), linearizing (4.5) and
introducing an auxiliary control variabteresult in

Ty = VgQe, (4.7)
Qe = U, (4.8)

with
C

(4.9)

u:wv—chosael )
— cxy,

Whenu, is constant and different from zero, the system describeédoations
(4.7) and (4.8) is controllable and can be stabilized withftllowing linear state
feedback controller

u = —k1vgty, — ks |vg ac, (4.10)

wherek; > 0 andk, > 0. As a consequence, the closed-loop equation,of
becomes

i’n + /{32 "Ud| .Tn -+ ]{711)31’” =0.

This is a typical second-order system, whose performangeirement can be
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directly used to choose the controller parametgrandks,,

2
kl - gav
v;
2
k2 = a—v
|vdl

wherea and¢ are the undamping natural frequency and the damping ratioeof
second order system, respectively.

Without the linearisation, a nonlinear feedback contral laith little differ-
ence from (4.10) can also asymptotically stabilize theatisé deviation and the
angular error to zero [32]. It is designed as

sin i,

U= —kivgT, — ko(vg)a,

wherek; is a positive constant anidv,) is a positive continuous function when
Vd # 0.

The disadvantage of the formulation with equations (4.4).6)is the singu-
larity problem atcz,, = 1 [143]. That limits the controller to situations, wherg
is smaller than— Cmaz denotes the maximum curvature of the path.

Unlike nonholonomlc robots, omnidirectional robots halkie tapability of
translating to any direction regardless of their orieotatiThis means the transla-
tion directiona: of an omnidirectional robot can be controlled directly thiave
any desired value. Therefora,can replacev, to be controlled for solving the
path following problem of omnidirectional robots.

Mojaevet al. [114] presented a simple control law based on the deviation
where robot’s center of mags is controlled to converge to the axis along an
exponential curve expressed as

Ty = Tppexp(—kaxy).

Zn, IS the initial deviation and the positive constardetermines the convergence
speed of the deviation. Figure 4.2 shows the basic conteal.id

Differentiating (4.2.2) with respect te,, we get the tangent direction of the
exponential curve as

dwy,
e = arctan(i) = arctan(—kx,,). (4.11)
d.l’t
Therefore, for a non-zero constant desired velogitythe translation velocity of
the robot in the path coordinate syst¢m} results in
Tp = Vg Sin v, (4.12)

Ty = Vg COS (. (4.13)
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Figure 4.2: lllustration of path following control with agonential convergence
trajectory.

To prove the stability of the closed-loop system, a Lyapucevdidate func-
tion

1 1
V = §/€dl’i + 5/{39045

can be considered, whekg andky are positive constants. The time derivation of
V results in

V = kgxpin + koorGe. (4.14)
Substituting the time derivative af, from controller (4.11) into (4.14), we get

. — T,

V = kgx, T, + kkqg arctan(—kxn)m < 0. (4.15)
Ty,

Becauser, i, = x,v,sin(arctan(—kzx,)) < 0 and i, arctan(kz,) < 0, this
solution of VV guarantees the global stability of the equilibriun(at = 0, a, =
0), which means this control law solves the path following pean

Transforming the robot velocity into the world coordinatestem {1V}, we
get the control values of the Attempto soccer robot as

U] = Vg COS @,

Uy = Vg Sin q,

with a = a, + 0p.

The input of controller (4.11) is the distance between paéirand the given
path, which normally can be directly obtained by the sensorthe robot. More-
over, the convergence speed is controlled only by parametenich can be cho-
sen according to the performance requirement.
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4.2.3 Virtual Vehicle-based Control

The Virtual Vehiclebased formulation of the path following problem presehés t
kinematics of thalistancevalue between the robot and thetual Vehicle The
corresponding controller aims to decreasedistanceto zero.

Y,

W A

0

Figure 4.3: lllustration oVirtual Vehiclebased formulation of the path following
problem.

As shown in Figure 4.3, the path coordinate sys{ém is located at poing,
the center of mass of thértual Vehicle which moves along the reference path
and is determined by the curvilinear abscisshet vectorsR andQ describe the
positions of R and () in the world coordinate systertifz,, and“R, present the
transformation matrices frofiM } to {W'} and from{ P} to {IW}, respectively,
the following relationship holds:

R=Q+"R,("), (4.16)

e

wherez, andy,. denote the robot positions with respect to the path cootelina
system{ P}. Computing the time derivatives of (4.16)

w U _w 5 w T Le w 'jje
m ()= (5) () v (e ).

and after some simplifications, the error kinematic modehef path following
problem is given by,

Te (yec(s) — 1) + vg cos ae
Xe=1| 9. | = —Z.c(8)$ + vgsin o, , (4.17)
Qe wy, — ¢(8)s
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where the error vecta, is with respect to the path coordinate systemy}, a.
presents the angular error between the robot moving dmectiand the path
tangent directio,,, thec(s) denotes the path curvature at poipandw, is the
corresponding angular velocity of

Itis noticed in model (4.17) that controlling; is decoupled from controlling
andw,, because the errors can stay on the equilibrixm= 0) whens approaches
vr. Therefore, the path following problem is to find suitabl&res ofs andw, to
minimize errorse,, y. anda., while vy is assigned with any desired velocity.

Model (4.17) is really independent of the robot platformeeTontrol values
of error kinematics (4.17) are high-level control inputstioé robot platforms.
For the omnidirectional robots, the valug can be steered directly. But for the
nonholonomic robots, the angular movement can only be clbedrby ..

The direct Lyapunov function method has been used to desigonénear
controller. Defining the following Lyapunov candidate ftna

1 1
2 2

where parameters,,k, andk, are positive constants, and substituting (4.17) into
the time derivation of/,

1
V= §kmx§ + /{:yyg + kgozg,

V - ka:xej:e + kyyeye + kéaedea

we obtain
V = kyxe((yec(s) — 1?$ + UR'COS Q) | (4.18)
+ kyye(—zec(s)$ + vpsina,) + kgoredee.
Whenk, = k, = k, is selected, equation (4.18) results in
V= —kpxes + kpwevg cos ae + kpyevg sin o + kpaele. (4.19)

To keepV being negative, the control variables of (4.17) can be defasdollows:

e for non-omnidirectional robots

kpyevr sin o

Qe = — Qp — (4.20)
keae
$ = wrcosa, + kox,, (4.21)
e for omnidirectional robots
a. = arctan(—k19.), (4.22)
. URcosag + kox,
5= c(s)ackiky (423)

L+ L e
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where, k; and k, are positive constants. For nonholonomic robots, comroll
(4.20) - (4.21) only gives the control value @Jphae to steer the robot rotation
velocity withw = w, = dé. + ¢(s)s. In order to get better following performance,
a desired approach angle shaping transient maneuvergdbgmath approach
phase has been added to direct the robot moving directioh, [132]. In the
case of omnidirectional robots, the moving directiors directly controlled with

a = a. + 6, whereqa, is from controller addressed in Eq. (4.22) ahds related

to the controlled valug. To control the robot translation with the desired velocity
vg , the input values of the robot control system (3.5) are giwen

U3 = Vg CoS

Uy = Vgsina.

4.3 Rotation Control

Unlike the nonholonomic robot, the orientation of an omredtional robot can be
different from the direction of the robot translation vatgdy any anglep. This
relationship is denoted as= 0 + . That means the robot orientation can track
any angle no matter how the robot translates. Based on tlo¢ kotematic model
(3.2), the rotation control is to find a suitable robot raiatvelocityw, which is
ug in the linearized system (3.5), such that the robot oriémtatonverges to the
desired value, i.e.

lim (6a(t) - 6(t)) = 0, (4.24)

whered,(t) is the desired orientation.

As a simple first-order differential system, many contre¥dacan be utilized
to control the robot orientation. In order to get fast trensiresponse and de-
crease overshoot, we chose the Proportional-Derivatig @@ntroller to fulfill
the rotation control task, which is given by

w = ]{51(69 + l{igég), (425)

whereey is the orientation error defined ags= 0,(t) — 0(t), éq is the correspond-
ing derivative termf; andk, are the proportional and derivative gains, respec-
tively.

As described in Chapter 3, when the robot translation corstiassigned with
higher priority, the controlled value af has to satisfy the system constraints.
Considering the saturation function

Uy T1 > Up
ro=qr b <x <y, (4.26)
lb T < lb
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and its gain characteristics illustrated in Figure 4.4, ¢lesed-loop system of
controlling the robot orientation is shown in Figure 4.5.
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Figure 4.4: Saturation function and its gain charactessti
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Figure 4.5: Closed-loop of the robot orientation control.

The saturation function works as a dynamic gain blbglkwhich has the max-
imum value of one and converges to zero when the input sagirBy computing
the transformation function of the closed-loop systenmaiit be obtained that there
exist one pole a{ﬂ and one zero at1/k,. Therefore, wheik, andk; are
positive, the stablllty of the closed- -loop system can bergnieed whenevek,
decreases.

The other important issue to be considered is the actuatoardics, which
has been identified and shown in subsection 3.5.1. As showigure 4.6, the
dynamic system (3.21) adds another two poles to the clasguldystem and the
controller parameters are chosen again such as to guathets&bility.

0, e, il 1.667(s+4537) |6 | 1| @
—T 2 :/ : s2+6.759s+76.11 s

k

a

O

Figure 4.6: Closed-loop of the robot orientation contradlinling actuator dy-
namics.

The locus technique is used here to set the positions of @widszeros of
the closed-loop system. Analyzing the root locus of the wiletd system, the
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necessary conditions to guarantee the closed-loop $yatain be found at; > 0
andk, > 0.0515. Figure 4.7 shows the root locus of an open-loop system in the
critical situation withk, = 0.0515, where all the poles of the closed-loop system
locate in the left-half plane whatever positive valyé, is. Otherwise, whelk,

is less thart).0515, the root locus may cross the imaginary axis, and the poles of
the closed-loop system may move to the right-half plane whegoes to zero.

Root Locus
50 : . : : . :
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Figure 4.7: Root locus of robot orientation control.

4.4 Experimental Results

The control algorithms discussed above have been testadt ibot laboratory

having a half-field of the RoboCup Middle Size league. An egjiaped path is
adopted as the reference path, whose geometrical symmmetigharp changes in
curvature make the test challenging. With a scale variaptbe chosen eight-
shaped path is calculated as

z, = 1.8sin(2p), (4.27)
y, = 1.2sin(p). (4.28)

The robot was controlled to follow the eight-shaped patiaitonstant trans-
lation velocityv; = 1 m/s. In the view of orientation control, two kinds of desired
robot orientation are designed in the experiments. One aatant angle of zero
degree with respect to the world coordinate system, whialtypical test to show
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the decoupled translation and rotation of the omnidireetioobot. Another is to
compute the desired robot orientation with

04 = 0p + 0.9cpv?, (4.29)

wherecp is the path curvature at poid}. These high values of the desired ori-
entation are employed to check the control stability whenattuator saturation
appears.

With respect to the two different formulations of the pathdaing problem,
two sets of experiments have been done with the real robgurés 4.8 and 4.9
show the results of the orthogonal projection-based chntteere the parameters
in the control algorithm were chosen As= 2.5, k; = 4.15 andk, = 3. Fig-
ures 4.10 and 4.11show the results of Wirtual Vehiclebased control taking the
following parameterg, = 2.5, ky, = 2.5, k, = 2.0andkg = 1.0.

Figures 4.8 and 4.9 illustrate the results with respect ¢odifferent desired
robot orientations. Figures 4.8(a), 4.8(b) and 4.8(c) shethat the proposed con-
trol method steers the robot cent@rconverging to the given path and the robot
orientation tracking the constant value with good perfaroga The maximum
distance error is less than 0.26 m, and most angular errertess than 0.2 rad.
Figure 4.8(d) shows the measured wheel velocities are hessthe maximum
value 1.9 m/s, which means that the actuator saturation did not app&daen
the desired orientation has more requirement for contigliihe robot orientation,
the actuator saturation appeared in the second experirfrefigure 4.9(d), the
measured wheel velocities reach the maximum value, wheroth® is around
the sharp turning segments of the reference path. At theseemis, the orienta-
tion errors become much bigger, but still converging to zasshown in Figure
4.9(c). The distance errors illustrated in Figure 4.9(e)aso decreasing to zero,
although the robot moves away from the reference path &ieshiarp turning seg-
ments because of slide caused by the large translation gattbroaccelerations,
which can be seen in Figure 4.9(a).

The similar following errors can be seen in figures 4.10(l) 411(b)), where
the Virtual Vehiclebased control method was employed. Figures 4.10(c) and
4.11(c) imply the function of the control value which dynamically changes
the positions of th&/irtual Vehicleaccording to the following errors. In Figure
4.10(c),s slows down at the sharp turning segments of the referenbebgatiuse
of the large distance errors outside the reference pathrshmoiigure 4.10(a). But
in Figure 4.11(c)s increases around the sharp turning segments because of the
large orientation errors. This changedlso made the robot have a more smooth
following performance comparing to that in the case of tieagonal projection-
based control, which can be seen in figures 4.9(a) and 4.11(a)

All the experimental results show that the path followingicol methods can
guarantee closed-loop stability of the path following peni and the robot orien-
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tation can track the desired ones, even though the wheadditiekreach saturation
when the robot makes a sharp turn.
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4.5 Summary

Based on the robot control system introduced in Chapteri8 ctiapter focuses
on designing the robot motion control laws. In the three deasbot motion con-
trol problems, path following has been chosen as the maitraotask of this
research. The reasons are: (1) The path following proble®sg more general
formulation. Trajectory tracking and point stabilizatioan be taken as special
cases of the path following problem. The specialties arétti@time parame-
terized desired velocities are designed in the trajectaigking problem, and the
point stabilization problem only stabilizes the robot aeatesired position with
desired posture. (2) The main research challenge in thgsthe the dribbling
control of the Attempto soccer robot, which requires that tbbot can always
keep the ball moving in a dynamic environment without anyisioins with other
objects. The adopted dribbling strategy, which will be dethin Chapter 7, in-
volves the path following formulation, where a path plandesigns a collision
free path, then the robot dribbles the ball along the refargrath with fast speed.

The key issue of formulating the path following problem istmose the de-
sired positions on the reference path, which results iregfit formulations of
the path following problem. Orthogonal projection-based &irtual Vehicle
based formulations present the two basic categories, vénaio select the static
and dynamic desired positions, respectively. For the Aptensoccer robot, the
path following control laws with respect to these two foratidns have been ad-
dressed in this chapter. The designed nonlinear contsadliex able to guarantee
the closed-loop stability, which is proven by Lyapunovalslity theorem. Be-
sides the path following control, the omnidirectional robas another DOF to
regulate its orientation. Considering the actuator dyrcamand actuator satura-
tion detailed in Chapter 3, the designed PD controller capkke robot tracking
the desired orientations, even though the actuator goesaturation. To check
the performance of the designed control laws, real-worfgeexnents with the At-
tempto soccer robot were done in our robot laboratory. HExpental results show
the good performance of the controlled system, and the gteed closed-loop
stability regardless of the appearance of the actuatoregain.



Chapter 5

Nonlinear Model Predictive Control

With respect to the nonlinear characteristics of errorikiagc models (4.4) - (4.6)
and (4.17) of the path following problem shown in Chapter dngnnonlinear con-
trollers have been presented [7, 125, 53, 40, 105, 35, 98jveMer, they rarely
take the robot constraints into account, which are crueieldrs capable of de-
grading robot performance, even destroying control stgd3, 27]. Moreover,
only the errors between the current robot states and theedestiates are consid-
ered in most control laws, which ignores the potential oppuoty of improving
the control performance by considering more informatiothefgiven path.

Motivated by the above considerations, the Nonlinear M&utetlictive Con-
trol (NMPC) method has been adopted to solve the path fofigwiroblem of the
Attempto soccer robots. As NMPC can easily take robot cairgy into account
and utilize the future information to get current contrgbuss, NMPC has been
used in many robotics applications. Considering the highpatational require-
ment of NMPC, some works eliminate the computations whiehreacessary to
keep control stability [13, 83, 86]. Some methods lineatimerror kinematics,
but they can only guarantee local stability [11, 149]. Maayeaarchers presented
detailed analysis of NMPC with mobile robots, but their aggtions were only
in simulation [59, 88, 89]. The main contributions of thisapter are the analy-
sis and design of stability guaranteed NMPC schemes withertdo nonlinear
kinematic models, and the proof of the feasibility of apptyiNMPC to a real
omnidirectional robot [95, 79].

5.1 Introduction

The theory of the Nonlinear Model Predictive Control (NMR@) been reported
in many documentations. To give an introduction, the follaytwo sections refer
[46], where the details of NMPC could be found.

55
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Model Predictive Control (MPC), also known as Receding Emmi Control
(RHC), has been an attractive optimal control law since 8#0%. For linear sys-
tems, MPC has shown its great benefit and been widely usedustiry, specially
in the process industries [134, 135]. As the inherent nealities of general
systems and constraints, applying MPC to nonlinear systeithanonlinear con-
straints is strongly motivated, and Nonlinear Model PriedécControl (NMPC)
has become popular since the 1990s.

The task of NMPC is to on-line solve a finite horizon optimahtrol problem
subject to the system models and constraints at each tipe&tes optimal con-
trol problem is called the open-loop optimal control prab)déecause it is solved
based on each measurement and only the first part of the dmtom#ol inputs
is implemented until the new measurement becomes avail&ilele the open-
loop optimal control problem has to be solved again with tew measurements,
NMPC is a feedback control law. The basic principle of NMP&Hswn in Figure
5.1. Based on the measurements at tiptbe future behavior of the system over

desired states

future predicted states X

Input sequence u

v

ZI+TC t+IT

control horizon T,

prediction horizon T, |

»
>

Figure 5.1: Principle of Nonlinear Model Predictive Conh{e5]

a prediction horizorY), is predicted, and optimal inputs during a control horizon
T. (I. < T,) are calculated such that a predefined open-loop objeativetibn
is optimized under the system and input constraints, theritst optimal input
value is taken as the current input.

Inheriting the advantages of normal optimal control lavg, formulation of
the open-loop optimal control problem in NMPC can easilydarthe system
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constraints and specify the desired control performangeriBy using finite hori-
zons, NMPC avoids the complex computation in the normahagitcontrol with
an infinite horizon. But utilizing a finite horizon can makeetpredicted input
and state trajectories differ from the actual trajectoed=n though no model mis-
match and disturbances are present [9]. This trajectadifference results in no
stability guarantee of the closed-loop system. Theretbeestability problem has
to be emphasized in NMPC. On the other hand, to solve the mmgneptimal
control problem of a nonlinear system is not an easy task;hwmakes the pow-
erful optimization solver very important in NMPC. The foNog sections first
formulate the NMPC problem, and then discuss the closep-gtability problem
and numerical solutions of NMPC. At the end, the implemeoitetof NMPC in
the motion control of the Attempto soccer robot show theifelity and efficiency
of NMPC in real-time applications.

5.2 Mathematical Formulation

A normal nonlinear system is described by the followingetiéntial equation:
X(t) = £(x(t), u(t)), (5.1)
subject to the constraints:
u(t) e U, x(t) e X, Vt >0, (5.2)

wherex(t) € R™ andu(t) € R™ are then-dimensional state vector and-
dimensional input vector, respectively. and U denote the sets of feasible states
and inputs, respectively. Without loss of generality, & g#ystem equilibrium is at
x(t) = 0 andu(t) = 0, it should be included in set§ and U. The basic idea of
NMPC is to iteratively execute the following steps :

1. predict the system’s future behavior over a predictiorizom 7}, at each
time stept;

2. find optimal inputsa(-): [t,t+1,] — U to minimize the value of the
following objective function,

J(t,x(t), a()) = /t " F(x(r), i(r)) dr, (5.3)

subject to:

o X(7) = £(x(r), u(r)), x(0) = x(0),



58 Chapter 5. Nonlinear Model Predictive Control

e U(r)=u(t+T.),Vre[t+T,t+T)],
o u(r) € U, (1) €X, Vte[t,t+T,)],

whereT. is the control horizon witly, < T,,, F' is the cost function spec-
ifying the desired control performance, the bar denotesttiepredicted
values in the future are not the same as the real values;

3. take the first optimal input valug(t) as the current input.

The design of cost functiof directly reflects the desired control performance.
Normally, the controlled system is expected to track therdddrajectories of
system states and inputs. Thidsakes the form of a function of the errors between
the real and desired system states and inputs. Because siftipie form, the
standard quadratic function is often used as a cost function

F(x,1) = (x4 —X)"Q(x¢ — X) + (ug — 1) "R(uy — ). (5.4)

x4 anduy denote the desired states and inputs, which are containgdaind U,
respectively. Q and R are positive definite and symmetric weighting matrices
with corresponding dimensions. Moreover, a special foremst function, such
as a Lyapunov function, can also help to get additional reaggsconstraints for
keeping closed-loop stability.

5.3 Stability

With respect to the set-up of NMPC, the optimal control irgpate computed
based on the predicted system behavior. But in general, rddigbed system
behavior will differ from the actual closed-loop behavitthaugh no model un-
certainties and unknown disturbances occur, when a finitedmis used in the
open-loop optimal control problem [9]. It is not true thaegpeated minimization
of an objective function with a finite horizon leads to an oyl solution for the
minimization of the objective function over the infinite n [17]. Therefore,
using a finite horizon in the open-loop optimal control peyhlcan not guarantee
the closed-loop stability.

Many schemes have been proposed to achieve guarantedidystabe most
intuitive way to keep closed-loop stability is using an iftérhorizon in the open-
loop optimal control problem [17, 110]. It follows from Beian’s Principle of
Optimality [14]: at one instance in time, the predictedei@td input trajectories
based on the solution of the open-loop optimal control pwblvith the infinite
horizon are the same as the trajectories of the closed-ksipra, and the remain-
ing trajectories of the closed-loop system after a samphigrval are the pre-
dicted trajectories based on the optimal solution of thendpep optimal control
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problem at the next sampling instance. Although the noalirgtimal problem
with infinite horizon can be reduced to solve a Hamilton-b&&ellman partial
differential equation, the difficulties in finding such swtuns make the infinite
horizon NMPC not practical in real applications [21]. Théat®nship between
the finite horizon length and closed-loop stability has &sen studied. The re-
sults in [25, 147] show that for a constrained linear sysiéthe prediction hori-
zon is sufficiently long, the terminal stability can be ingidly satisfied. Reference
[130] presents, for a constrained discrete-time lineatesysthere always exists a
finite horizon length guaranteeing the stability withouy é&rminal penalties and
constraints. The similar research of nonlinear system wae ¢y Grimmet al.
and Jadbabaiet al. [58, 74], which show that there exists also a finite horizon
guaranteeing the stability for nonlinear model predictivatrol without terminal
penalties and constraints. But there is no general way taHisdinite horizon.

In practice, many schemes with respect to the finite horizbPl8 have been
proposed [59, 24, 122, 75, 112, 113, 129, 131]. They guagaritsed-loop sta-
bility with modifications of the normal setup of NMPC by addia terminal con-
straint,

X(t+1,) e QCX, (5.5)

and/or a terminal penalti (X(t + 7},)) in the objective function,

J(t,x(t),u(-)) = /t ’ F(x(r),a(r))dr + E(X(t+T1,)). (5.6)

Because these modifications are specially designed to kespdeloop stability,
and have no relationship with system restrictions and p@dnce requirements,
they are named astability constraint§107, 109].

The most simple scheme usezao terminal equalityas the constraint of the
predicted terminal state, i.ex(t + 7,) = 0. Although the implementation of
this constraint is straightforward, finding an optimal smo satisfying the zero
equality leads to a high computational burden on solvingctireesponding non-
linear optimal problem [81, 24]. Michalska and Mayne redltteezero terminal
equalityconstraint to an inequality state constrdihtwhich is a neighbourhood
around the origin. And dual-modecontrol law is designed to guarantee control
stability. When the system state enters the region, a lacaat state feedback
controller based on a linearized system is utilized. Whersifstem state is out-
side of the region, a receding horizon control law is exetid2, 113, 108].
Without switching between different controllers, a Cohirgapunov Function
(CLF) based scheme is proposed in [129, 131]. Once a globali€abtained, the
derivative of the CLF along the predicted states and inpajsdtories is negative.
If the corresponding decrease in the value of the CLF is greéhain the decrease
in the output of a pointwise min-norm controller [131], thalslity of NMPC
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can be guaranteed. However, finding such a pointwise mimmontroller and a
global CLF is not straightforward.

In order to lower the computational burden, some schemesveithe state
inequality constraints and add a terminal penalty into thieaive function. De
Nicolaoet al. [122] proposed an NMPC scheme guaranteeing the exponstatial
bility of the equilibrium by adding a non quadratic termistdte penalty, which is
the cost of the objective function incurred by applying aalbcstabilizing linear
controller from timet 4 7}, to infinity. But the requirement of a large attraction re-
gion of the linear controller may not be easily satisfied baddieet al. proposed
to use a CLF based terminal penalty to achieve closed-laiplisy [75], which
is attractive because of plenty methods of obtaining a CLF.

From the viewpoint of computational cost of on-line solvitlge open-loop
nonlinear optimal control problem, combining a terminahaky and terminal
constraints has been proven to be a feasible method to Itveezdmputational
burden [59, 46, 44]. The quasi-infinite horizon NMPC is onesoth widely
used control schemes. With terminal constraints, the systeerminal states are
limited into a terminal region, where the terminal penaliyeg an upper bound
on the infinite horizon cost, i.e.

l[”F@w%mﬂythuu+n» (5.7)

+Tp

This implies the cost value of the infinite horizon problenb@inded by that of
the corresponding finite horizon problem, i.e.

min /too F(x(r),u(r))dr < min/t i F(x(r),a(r))dr + E(X(t+ 1)),

u() u()
(5.8)
and the finite horizon extends to a quasi-infinite horizoniciwlienotes the name
of this NMPC scheme. Therefore, the open-loop optimal abmroblem of the
quasi-infinite horizon NMPC is to find optimal inpuig-): [t,t +1,] — U to
minimize the value of the following objective function,

J(t,x(t),u()) = /t ’ F(x(r),u(r))dr + E(X(t+1T1,)), (5.9)

subject to:

x(7) = f(x(7), (7)), %(0) = x(0), (5.10a)
y=u(t+T,), Vre[t+1T.,t+T,], (5.10b)
eU, x(1)e X, Vtett+T), (5.10c)

X(t+1,) € QCX. (5.10d)
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To guarantee the stability, the following theorem presémesnecessary condi-
tions [44]:

Theorem 5.3.1 Suppose

e f: R"XxR™is continuous and satisfi€€0,0) = 0. (0, 0) is an equilibrium
of the system,

e U C R™iscompactX C R™is connected an(0,0) € X x U,

e system (5.1) has a unique solution for any initial conditigne R™ and
any piecewise continuous-) : [0,00) — U,

e the cost function is continuous with(0, 0) = 0 and F'(x, u) > 0 for every
statex and inputu,

¢ the open-loop optimal control problem has a solution at tie0,

for a continuously differentiable terminal penalfy(x) with £(0) = 0, and a
closed regiorf2 C X including the origin, if there is a control lak(x) € U with
k(0) = 0 such that

E(x) 4+ F(x,k(x)) < 0,Vx € Q, (5.11)

the closed-loop system is asymptotically stable with tim@etion region being
the set of states for which the open-loop optimal controbpgm has a feasible
solution.

Proof: The proof consists of two steps [44]. The first step showsithizal fea-
sibility implies feasibility afterwards. The second oneyes the decreasing of a
Lyapunov function of the closed-loop system.

Feasibility

Consider any instarn (e.g.t), there exists an optimal solutiatf(7; x(t;)) with

T € [ti,tHTp} of the open-loop control problem depicted in (5.9) and (k.10
Whenu*(7;x(t;)) is implemented between andt;,; and no model mismatch
nor disturbances are present, the equatior(of. 1) = x(t;11;x(t;), u*(7;x(t;))
holds. x(¢;,1; x(t;), u*(7;x(¢;)) denotes the state at timig ; resulted from the
statex(¢;) and the controti*(7; x(¢;)) with 7 € [t;, t;+1). Furthermore, the pre-
dicted terminal state satisfiegt,, 1, ;x(t;), u*(7;x(t;)) € Q. It follows from
Theorem 5.3.1 that there exists at least one ikgutt) for the predicted state
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over[t; + T, t;+1 + T},]. Taking any such input we obtain an admissible input for
t,+o with o € (0, ti+1 — tz]

u*(r;x(t;)) 7€ [ti+ ot + T
k(x(7)) Te(ti+T1,t+T1,+ 0.
Wheno = t;,1 — t; holds,a(7; x(t;+1)) is an admissible input at time, ;. This
means that admissibility at timteimplies admissibility at time; ;. Therefore, if

the open-loop control problem depicted in (5.9) and (5. H¥) & solution at = 0,
it will have a solution for alk > 0.

u(r;x(t; +0)) = { (5.12)

Convergence

Considering the following value function as a Lyapunov fiioc

V(x(t)) =

/t " P(R(rx(8), 0 (- x()), T (73 x(8)) )
+ E(x(t+ T, ;x(t),u*(-;x(t)))), (5.13)

wherex(7;x(t), u*(-;x(t))) denotes the state at timeresulting from the state
x(t) and the controfi*(#;x(¢)) with £ € [t,7). The value of the functio for
the statex(¢;) is given by:

V(x(t:)) =

l | PR (), W x(1)), (7 () dr

+ E(X(t + T s x(t:), u*(x(t:)))).  (5.14)
The cost resulting from (5.12) starting from any state + o; x(¢;), u*(-; x(¢;)))
with o € (0,¢;41 — t;] is given by:
J(x(t; +o),u(x(t; +0))) =
tito+Tp
/t P o) Bl + ). B+ o)
+ Ex(t;+0+T,;x(t; +0),a(-;x(t; + 0))))

— /t+ P& x(t + o), 0(5x(t + 0))), 6(rx (L + 0))dr

+ /t;To ’ F(x(r;x(t; + o), a(;x(t; + 0))),a(r;x(t; + 0)))dr
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Substituting (5.14) into (5.15), we obtain

J(x(ti + o), u(;x(t +0))) =

Vox(t)) = [ Pt a0 xtt)) 0 el i

t

— Bx(t; + T, ;x(t;), 0" (- x(8))))

+ /t.ero p Fx(r;x(t; + o), u(:;x(t; + 0))),a(r; x(t; + 0)))dr

+ EX(t;+0+T,;x(t; +0),a(;x(t; +0)))). (5.16)

Integrating inequality (5.11) from + 7, to ¢, + o + T, starting fromx(¢; + 7,),
we obtain that the last three terms at the right side of (sat®upper bounded by
zero. Thus, the following inequality holds

J(x(t; + o), u(-;x(t; + 0))) — V(x(t;))

= —/t UF(X(T;X(ti),ﬁ*(-;x(ti))),ﬁ*(r;x(ti)))dT (5.17)

i

Becausa is only a feasible input fox(¢; + o) but not necessary to be the optimal
input, the following inequality holds

V(x(t; +0)) = V(x(t;))

= —/ti " F(R(rix(t), @ (3 x(1)), 0 (i x(t))dr < 0. (5.18)

i

Repeatedly using the inequality (5.18) yields

V(x(t)) = V(x(0))

< / F((r;x(0), & (- x(0))), 8" (1: x(0)))dr < 0. (5.19)

This inequality establishes that the value functiofx(¢)) is decreasing. Con-
sidering the cost functiol’ is continuous and the integral term at the right side
of (5.19) is lower bounded, we can obtain that the statenverges to the origin
when time converges to infinity by using Barbalat's lemma (Ifis means the
closed-loop system is asymptotically stable.

It is noticed in Theorem 5.3.1, the feedback controkéx) is not used to
control the system, but used to select the suitable ternpeablty and termi-
nal constraints. Although the terminal penalty and termamastraints can be
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selected off-line, it is not a easy task. In [24, 22, 23], adyatc form terminal
penalty is selected. The terminal constraint is designeddban a linearized feed-
back controller with respect to the Jacobian linearizatibtihe original nonlinear
system. The necessary condition is that the Jacobian iratian is stabilizable.
Without linearization, recent works in [131, 47, 59] give tldea to directly chose
the terminal penalty and terminal constraints with the ioagnonlinear system
according to Theorem 5.3.1, where the chosen terminal peatdo takes the
guadratic form and the feedback controller is also linear.

5.4 Numerical Solutions

On-line solving the open-loop nonlinear optimal contraldem plays a key role
in NMPC. Although the high computational demands of solvihg nonlinear

finite optimization problem make NMPC hard to be implementedpplications

with fast sampling time and limited computational resoarg], many research
results show the feasibility of applying NMPC in real-timegesses [83, 82].
Referring [46], this section introduces solution methoaisthe optimal control

problem (5.9) of the quasi-infinite NMPC subject to the cdiodss in (5.10).

5.4.1 Solution Methods

In principle, there are three basic approaches.

e Hamilton-Jacobi-Bellmann Partial Differential Equation s, Dynamic Pro-
gramming
This approach directly obtains a feedback control law= k(x) based
on the solution of the so called Hamilton-Jacobi-Bellmawantipl differ-
ential equations. Although the closed-loop controller kgdfor the whole
horizon and is valid for every initial condition, the highroputational re-
guirement of solving such partial differential equatioinsiis this approach
only to very small dimensional systems. This is also the mativation of
researching receding horizon control laws.

e Euler-Lagrange Differential Equations, Calculus of Variations, Maxi-
mum Principles
This approach utilizes the necessary conditions for camstd optimiza-
tion problems and gets a time-based control value, whichli walid for
the specified initial conditiox(¢). As a boundary value problem has to be
solved, the high computational burden makes this approatbuitable for
on-line implementation.
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e Direct Solution Algorithm
The direct solution algorithm transfers the original cohsroblem over
a finite horizon into a finite dimensional Nonlinear Prograimgrproblem
(NLP). As the NLP can be solved with standard static optitoratech-
niques, direct solution algorithms have been proven to bst successful
for the large scale optimal control problems, and are ndynusled for cal-
culating the on-line solution of NMPC.

5.4.2 Direct Solution Algorithm

The direct solution algorithm uses a finite parameterirabb the control tra-

jectory to solve the finite dimensional NLP. The basic paraneation method

utilizes a piecewise constant control input on each partibver the prediction

horizon|[t,t 4+ T,], i.e. u(d) = u(t;) with 6 € [t;,t;+1). When the prediction

horizon is divided by a constant intervalshown in Figure 5.2, the optimization
problem becomes

desired states

past future

X(f +27) predicted states

- L F¢+1)

W\—\ Input sequence
u(t+7)
u(t)
t t+T t+27 t+T, t+T,

Figure 5.2: Parameterization of the direct solution fordpen-loop optimal con-
trol problem

min  J(x(t), {uy, vy, ...un }), (5.20)

{ur,uz,.ug, }
!

subject to the constraints in (5.10), wheredenotesu(t + (j — 1)7) with j =

1,2, ..., % There are two basic solution strategies for this optinnzraproblem
[16, 104].
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1. Sequential approach (single shooting)
At each sampling time, the sequential approach updates the system'’s fu-
ture behavior with input serias, u,, ...ur,, and a numerical integration of

system model (5.1) based on the current system gtaje Single shooting
represents a pure sequential approach. The numericat efftie single
shooting method is highly based on the complexity of therdiszation of
the control trajectory. The solution of single shooting eleghs on the sensi-
tivity of the states with respect to the control variables. aAsmall number
of the control variables is required in solving the NLP, $enghooting is
easier to implement.

2. Simultaneous approach (multiple shooting)
The simultaneous approach solves the optimization prolblémstabiliz-
ing endpoint constraints. Multiple shooting is one of mostiely used
simultaneous approaches, where the system states at tipéirgapoints
are taken as additional optimization variables to keep = x(;,1; S;, w;).
Si11 IS the system state at tinte x(¢;,1;S;, u;) denotes the predicted sys-
tem states resulted from the system stteith the controlu;). Another
popular simultaneous approach is direct collocation, whaetails can be
found in [16, 15]. Although simultaneous approaches ardicgige to the
highly unstable systems, which direct shooting can not learttle large
number of optimization variables increases the computaticost.

5.4.3 Sequential Quadratic Programming

Sequential Quadratic Programming (SQP) is an efficierdtiter method for the
solution of the NLP arising from NMPC, such as the probler@@y. Considering
an NLP as

min ()
subject to
a(§) =0, b(§) =0,

wherea € R™ andb € R™ denote equality and inequality constraints, respec-
tively. SQP solves this problem based on the line searchadeirhe vector of op-
timization variableg, € R" and the vector of multipliers, = (u, o), € Rt

are updated from iteration numbketo £ + 1 by

d
(gk“) = (5’“) +ak< g ) k=0,1,2,...
Vi+1 Vi U, — Vg
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where thesearch direction(dy, u;) comes from the solution of a linearly con-
strained Quadratic Probler@P),

min 2d Cird + Vo(€)'d

deRn

subject to
vaz(fk)Td + a’i(gk’) = 07 1= ]-7 cey N,y

Vb (&) d+b;(€,) >0, j=1,...m
based on the following quadratic approximation of the LagranZ,

(5 122 Z,uzaz - Z Uzbz(£>7 [PAS Rnau o c R™.
=1

C, is a positive definite approximation of the HessiHp of the Lagrangian
L(&,, 1, o). The quadratic problem is solved by an iterative method to ge
d, and the corresponding multipliey, .

Thestep sizey. € R is obtained by minimizing a merit functiotirfe searcl)

() rel2)

As a suitable choice, the merit function can be an augmendgddangian as,

(€)= (€)= 3 (mas9) - (@)
= ' L (621
_]ze; (U] Tna+yb2(§)) —52;{7,”“1].7

)

where the setd andK are chosen a3 = {j|1 < j < m,b;(y) >
k={1,..,n} Jwithr; > 0,i=1,...,n4 + np.

The details of basic SQP are introduced in [61, 128, 18]. &Amécesearch of
application of SQP to NMPC gives comparisons among impléatiems of SQP
with different methods, such as feasible and infeasibla pathods, sequential
and simultaneous methods and reduced and full space mdtttt]s

— Tna+j

5.5 Implementation

Based on the error kinematic models of the path followindopm and the ori-
entation tracking problem introduced in Chapter 4, the gudisite NMPC has
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been successfully used in the motion control of the Attenspitcer robot. With
respect to the different formulations of the path followijmgpblem, Subsection
5.5.1 describes the details of choosing the terminal pgraadt terminal con-
straints of NMPC. Subsection 5.5.2 presents the numentegration method
of the robot model equations. Subsection 5.5.3 emphasizexctical issue about
computational delays in applying NMPC.

5.5.1 Terminal penalty and constraints

Orthogonal Projection-based Case

With respect to the error kinematic model (4.5) of the patifofang problem

Yo = Vg Sin g, (5.22)

the aim of the path following control is to drive anda, to zero. By introducing
anew inputu.; = vg sin a,, and combining the kinematics of the orientation error
0., the error kinematics of the robot motion is given by thedwaling equations,

ye . Uel
{ e } _ { } (5.23)
It is clear that this model has the equilibriumat= 0, 4. = 0, u.; = 0 and
uez = 0, which is a necessary condition in Theorem 5.3.1. In ordstabilize the

errors around the equilibrium as close as possible, a gtiafivam cost function
is selected in NMPC,

F(x,u) = x'Qx, +u’Ru,, (5.24)

wherex, is the error vectoty., 6,)”, u. is the input vectofu,; u.)”, Q andR
are positive diagonal matrices with corresponding dimansi

In the quasi-infinite horizon NMPC, a terminal penalty andmi@al con-
straints are required to guarantee closed-loop stabBiged on Theorem 5.3.1,
the following terminal penalty has been chosen and addedtetobjective func-
tion,

1
Et+T, = §Xe(t +T) % (t+T,), (5.25)

wherex. (¢ + T,,) denotes the terminal error state vectgr,, 0.r,)". When the
terminal feedback controller is chosen as

uly = — ayer,, (5.26)
uly = — Bler,, (5.27)
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with a > 0 andg > 0, the left side of stability condition (5.11) results in

E(t+T,)+Ft+T,)= (—a+q + 7’11042)?JST,,+

(5.28)
(=0 + qo2 + 7’2252)93@3-
Therefore, the following inequalities
o —qu —rna’ >0, (5.29)
B — qaz — 128> >0, (5.30)

make (5.28) satisfy stability condition (5.11). The teraiinontroller (5.26) and
(5.27) are only used to get the terminal constraints conisigelosed-loop stabil-
ity. They are very simple based on only two parameteesd 3, which control
the convergence speed of errgrsandd,. The advantage of (5.29) and (5.30) is
that the values of1, ¢22, 711, 722, @ @and 3 can be easily selected off-line.

On the other hand, to guarantee the existence of the teri@edback con-
trollers, the following constraint should be satisfied,

—1 < sinagr, = -2 <1, (5.31)
UR

and the system constraints should not be broken, i.e.

Gm cosd sind L, vgrcos(aer, + 0, — 0) Gm
— | Gm | < | —cosd sind L, vrsin(aer, +0, —0) | < | Gm |,
G 0 ~1 L, wk —ul, G

32)
wherea,r, is from the control value:; with o7, = arcsin Qj;l wk denotes the
desired rotation velocity at the terminal time- 7,.

With simple transformations, the control values of the Afp@o soccer robot
are given by

U1 = Vg COS
Uy = Vg sina,

*
Uz = Wq — Ugo,

with o« = arcsin ?}—; + 0p. (uiy,u’y)T is the first vector of the solution of the
open-loop optimal control problem at each time.

Virtual Vehicle-based Case

Combining the error kinematic model (4.17) and the kineosadf the orientation
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error 6., the following error kinematic model having the equilibritatx, = 0
andu, = 0 comes into being,

T [0 c(s)s 0 Te ey
Ye | = | —c(s)§ 0 0 Ay | + | Ue2 |, (5.33)
0, 0 0 0 6, Ues
with ) '
Uel —S + VR COS O,
Uey | = VR Sin g , (5.34)
| Ue3 Wg — w

To drive the errors approaching zero, the selected costimalso has the quadratic
form,
F(x,u) = x' Qx, +u’Ru,, (5.35)

Xe = (Ze, Ye, 0e)7 is the error vectoru, = (ue1 ues uez)? is the input vectorQ
andR are positive diagonal weight matrices with correspondimgethsions. To
guarantee the control stability, the following Lyapunowndtion is selected as the
terminal penalty:

1
Et+T, = §Xe(t +T) % (t+T,), (5.36)

wherex,(t +1p) = (Ter, Yer, GeTp)T denotes the terminal state. When the termi-
nal feedback controllers are designed as:

uly = - kaer,, (5.37)
uly = = Byer,, (5.38)
uly = = e, (5.39)

with parameters: > 0, 5 > 0, andy > 0, the left side of stability condition
(5.11) becomes
E(t+T,) + F(t+T,) =22, (=K + qu + £°r11) + Y2r, (=58 + g2 + 5°r22)
+ esz(_V + 33 + 7°r33).
(5.40)
Therefore, the following constraints can satisfy the sitglsondition (5.11),

K—qu— KT >0, (5.41)
B — g2 — B°ras > 0, (5.42)
v = q33 — 7’3z > 0. (5.43)
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Furthermore, constraint
ue?

<1, (5.44)
UR

should be satisfied to obtain a reasonable input valyeMoreover, the controlled

values (5.37)-(5.39) have to satisfy the system constaivtiich are the bounded

wheel velocities. Combining (3.2), (5.34) and (5.37)-85,3he second part of

terminal constraints is deduced as

Gm cosd  sind L, —KTer + 5 dm
— 1 Gm | < | —cosd sind L, —BYer < | Gm |- (545
Qm 0 -1 Lw _7‘96T + wcll/ Qm

Similar to the orthogonal projection-based case, the obualues of the om-
nidirectional robot are given by

U] = Vg COS Q,
Uy = Vg Sin

*
Uz = Wq — Uz,

with o« = arcsin Z—; + 0,. (uly,uly, uis)? is the first vector of the solution of the
open-loop optimal control problem at each timg, gives the optimal value of
which determines the desired robot position on the refergath.

5.5.2 Formulation

The single shooting approach is chosen to solve the NLP fheniNMPC formu-
lations of controlling the Attempto soccer robot becausisdbw computational
burden. The robot model has to be updated with numericajiat®n to obtain
the predicted states in the future. The robot kinematic m(i2) is discretized
as:

Ok + 1) = 0(k) + w(k)r. (5.46)
200+ 1) = 290k + B 0+ 1)) — sin(8(k))]
2 (k) w(k) (5.47)
+ yj(k) lcos(8(k + 1)) — cos(8(k))],
yE(k+ 1) = 550 — T ook 4 1)) — cos(B(K)
w(k) (5.48)
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if w(k) = 0:
rp(k+1) =23 (k) + [#5 (k) cos(6(k)) — v (k) sin(0(k))]T, (5.49)
yr(k +1) = yg(k) + [# (k) sin(6(k)) + gF (k) cos(0(k))] . (5.50)

Taking the updated robot states as well as the referenceapdttiesired robot
orientations into account, the error values in model (5&3p.33) can be conse-
quently obtained. If this update process is modeled by atiomg(x., ue), the
NMPC scheme used to solve the path following problem of thterApto soccer
robot is formulated as follows,

min J(xc(k), {uc(k),u.(k+7),..u.(k+T,)}), 551
IR, () 7). (4 T, (65D)

with
= 3 s ()T Qe (b7 (b (1)) TR+ (= 1)7) + B (k4T3

= (5.52)

subject to
Xe(k+j7) =8x(k+ (= 1)7),uc(k+ (j — 1)71)), (5.53a)
u.(k+j7)=u.(k+1T.),Vje {70 2} (5.53b)
c(Xe(k+g7),0.(k+ (j—1)1)) <0, (5.53c)
x.(k +1T)) € Q. (5.53d)

k denotes théth time step is the constant prediction sampling time. Condition
(5.53d) denotes the terminal constraints. Inequality tamd (5.53c) represents
the constraints at, andu,., which are related to the robot constraints of wheel ve-
locities, and can be calculated from (5.32) or (5.45) witlinstead of the terminal
feedback control values’.

To solve the above open-loop optimal control problem, tHenswe donlp2-
intv-dynwritten by P. Spellucci is used. It is a general purpose meali op-
timizer and can be found d&ittp://plato.la.asu.edu/donlp2.htmIhis optimizer
implements a quadratic programming method constraineddsgaential equal-
ity with an active set technique. When the linearly depehdeadients of active
constraints occur, a fully mixed constrained subprobleuses] alternatively. This
optimizer also uses following methods: a slightly modifiedsion of the Pantoja-
Mayne update for the Hessian of the Lagrangian, variablé skeding, an im-
proved Armijijo-type stepsize algorithm. Their details cenfound in [155, 154].
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5.5.3 Delays Compensation

Although NMPC is well studied from the theory side, to appIMRC in practice
meets some challenges. Delays are the main problem in gabapplications,
which roughly include measurement delays, communicataays and computa-

tional delays [45].

With respect to the controller, compiotaal delays are more

crucial for applying NMPC. It is well known that on-line sahg the nonlinear

optimization problem requires some timg at each time, although the faster
computer and efficient mathematical methods are used in NMIBG:aking com-

putational delays into account may significantly decrelhsebntrol performance
and even lead to instability in the practical applicatiohSIMPC. A simple delay

compensation approach proposed in [45] is able to guardmeesontrol stability

which is the same as in the case without delays, which is slwwigure 5.3 and

has following steps:

desired states

—— e e — e — ———— — ————

past future

| predicted states

X(t+7°)
] X+t +7)
u(t+7° +27)
Input sequence
uit+7°+17)
u(t+7°)
tot+7° 47427 t+7° 4T, t+7°+T,

Figure 5.3: Delay compensation in the open-loop optimatrobproblem

e estimate the maximum computational detdyi.e. 7¢ < 7¢,

predict the system stasgt + 7¢) with x(¢) andu(t) at time step,

solve the open-loop optimal control problem baseck@m- 7¢),

e take the first optimal control valug (¢ + 7¢) as the current control input.

This method is easy to implement and guarantees controlistabrhe same
idea can also be utilized to deal with the measurement dalaygommunication

delays.



74 Chapter 5. Nonlinear Model Predictive Control

5.6 Experimental Results
Real-world experiments with the Attempto soccer robot Haeen done to test the
performance of the designed NMPC schemes. The set-up ofimgs is the

same as that in Section 4.4. The parameters used in the orthbpgrojection-
based NMPC were chosen as

04 0 02 0
Q_[o MJ’R_[O 01}“‘5_2Q

The parameters in thértual Vehiclebased NMPC chosen the following values

12 0 0 008 0 0
Q=0 14 0 |,R=| 0 01 0 |,k=8=n~=20.
0 0 14 0 0 0.1

The control horizon was chosen same as the prediction hoviath 7> = T, =
37, where the prediction sampling timewas assigned with special values in
different experiments.

Figures 5.4 and 5.5 show the results with respect to the gothal projection-
based NMPC. Figures 5.6 and 5.7 illustrate the results wegpect to th&irtual
Vehiclebased NMPC. Comparing the following errors shown in figusegb),
5.5(b) and 5.6(b) with those shown in Section 4.4, it can mndbat NMPC
has similar performance in the robot translation contrat, letter performance
in the robot orientation control. Moreover, the robot tladepaths shown in fig-
ures 5.4(a), 5.5(a) and 5.6(a) are smoother than thoseotledtby the nonlinear
control methods described in Chapter 4. Especially arobhedharp turning seg-
ments of the reference path, NMPC has handled the diffictilgharp tuning in
advance. This smooth control performance can make a graeafib®r the robot
dribbling control task. In the view of NMPC'’s formulatiorhe weighting matri-
ces can be used to specify the control performance, for ebeailapge elements in
Q emphasize the path following errors in the objective funttiarge elements in
R make the controlled values more important. But designiegitighting matri-
ces has to compromise among different requirements of thieaigerformance.
Figures 5.4(d), 5.5(d), 5.6(d) and 5.7(d) imply the whedbeities are always
bounded by the maximum valued m/s. As the most important issue, computa-
tional times of NMPC are shown in figures 5.4(c), 5.5(c) ar&{&. The average
and maximal values imply the computational time are actdgtay the robot mo-
tion control problem. In the fourth experiment, thigtual Vehiclebased NMPC
did not achieve good performance. The high value of desoledtrorientation, i.e.
04 = 0p +0.5cpv?, makes the orientation tracking more difficult, especiatiyhe
sharp turning segments of the reference path. The NMPC shequires long
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computational time with the average value of 0.1081 s andidwsamum value of
0.65 s, which results a long time interval between successmtrol commands
and an unsmooth robot trajectory.

Distance error
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(c) Computational time of NMPC. (d) Real wheel velocities.

Figure 5.4: Orthogonal projection-based path followingtcol with the constant
desired robot orientation df degree. The prediction sampling timeand the
estimated computational delaywere selected as= 7¢ = 0.2 s. The maximum
and average computational time of NMPC are 0.168 s and 0,08Sectively.
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Figure 5.5: Orthogonal projection-based path followingtecol with the desired
robot orientation determined b = 0 + 0.9cpv3. The selected prediction
sampling time was = 0.2 s and the estimated computational detayas chosen
as7¢ = 0.25 s. The maximum and average computational time of NMPC are
0.399 s and 0.0879 s, respectively.
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Figure 5.6:Virtual Vehiclebased path following control with the constant desired
robot orientation of) degree. The selected prediction sampling time was0.2

s and the estimated computational defdywas chosen as® = 0.25 s. The
maximum and average computational time of NMPC are 0.22 sCab@P1 s,
respectively.



78 Chapter 5. Nonlinear Model Predictive Control

xerror
0.4 ! .
~ 02F 1
1k = oF 4
<
®" oot W g
~04 . . X .
0.5 0 5 10 15 20 25
y error
0.4 ! . . .
oF ~ 02 7
3 =0 ]
> -05 ¥ 02 g

5 10 15 20 25
Orientation error

|
' s
/ p ' B
' // .
\ . i - 1
AN T N 15 . T ! !
S Hi ]
_15¢ 1 0.5 L ]
—Ideal position of robot -0.5[ 1
- - —Real position of robot -1r A

2 . . .
25 -2 -15 -1 -05 0 05 1 15 2 25 0 5 10 15 20 25
X (m) Time (s)

(rad)

(a) Reference and real paths of the robot (b) Following errors.

Left wheel velocity

07 2 T T T T
o
2 |
06 E
o . . . .
—~ 05} 0 5 10 15 20 25
Ohd Right wheel velocity
9] 2 T T T T
£
= 0.4 s
< 2 st 4
5 E°
T 03
5 2 . . . .
g 0 5 10 15 20 25
S 0.2f 4 Back wheel velocity
o 2 ! ! : !
01 1 @2 oL J
£ OM\/I\/W
0 . . . . . . . .

0 5 10 15 20 25 0 5 10 15 20 25
Time (s) Time (s)

(c) Computational time of NMPC. (d) Real wheel velocities.

Figure 5.7: Virtual Vehiclebased path following control with the desired robot
orientation determined bg§; = 0 + 0.5c¢pv3. The selected prediction sampling
time wasT = 0.2 s and the estimated computational detd&ywas chosen as
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5.7 Summary

This chapter addresses the successfully used NonlineaeNFoddictive Control
of the Attempto soccer robot. The main reasons for utiliZiMgPC come from
two aspects. The first one is that the robot constraints anddhtrol performance
specification can be easily considered in NMPC. The otheri®frem the con-
cerned control task in this work, which is the robot follogia reference path and
tracking desired orientations. While the reference path @esired orientations
are pre-designed, it is possible to use more of this knowsrinétion to improve
the control performance.

After introducing the mathematical formulation of NMPCetstability prob-
lem and numerical solutions of NMPC have been emphasizeddtidh 5.3 and
5.4. These two issues are very important in the applicaticdiiPC. The control
stability has to be guaranteed with additional effort, lseathe normal setup of
NMPC only considers a finite prediction horizon and can nargotee closed-
loop stability. Moreover, on-line solving the open-looptiagal control problem
for a nonlinear system requires long computational timackvis the main block
for applying NMPC in fast systems and requires efficient nucaé solutions.
The main contribution of the work presented in this chapsethat NMPC has
been successfully used to solve the path following and taiem tracking prob-
lems for a fast moving omnidirectional wheeled robot, wieeecontrol tasks are
formulated in the NMPC'’s framework, the closed-loop st&pik guaranteed by
designing suitable terminal constraints and penaltiecantputational delays are
considered by using a delay compensation method.

All solutions are shown by real-world experiments with thieefnpto soccer
robot. The more interesting point is that the robot travétepctories controlled
by NMPC are smoother than those controlled by the nonlineatrcllers ad-
dressed in Chapter 4. This advantage plays a great role drithiding control of
the soccer robot, which will be addressed in Chapter 7. Astimeed above, the
computational burden is a block of using NMPC with a long jpr&on horizon.
Finding and applying more powerful optimization methodsti a hard task in
NMPC. Although the stability problem currently is quite Wsblved , finding bet-
ter terminal constraints and penalties to increase thebiétsof the open-loop
optimal control problem is still an active topic in the resgaof NMPC.
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Chapter 6

Ball Tracking

In the robot control system described in Chapter 3, the g system is in
charge of the knowledge of robot position and heading basdtdesensor mea-
surements. The software system of the Attempto soccer noded anilmage-
Processorprocess to extract landmarks and objects from images &phy the
omnidirectional vision system. AEBnvironmentModel process in the software
system estimates the robot pose on the field with a selfilatan algorithm
[64], and locates objects in a world coordinate system [Bécause misreadings
and failures in the image processing may occur and objeetstities can not be
obtained by image processing directly, an object trackiggréhm is designed
in the EnvironmentModel process. The task of object tracking aims to model
an object’s movement based on a series of past and presestir@eeents of the
object’s position, in order to decrease the measuremeonisasf the object’s posi-
tion, obtain the object’s current velocity, even predi@ tbject's movement over
a short time horizon.

Locating the ball’'s position and predicting the ball’s mmant are central for
a soccer robot and the cooperation of a robot soccer teanh. gfdd knowledge
of the ball’s status relative to the robot, the robot canaitgta suitable behavior
to achieve a good control of the rolling ball, for exampletcbathe ball, push
it around obstacles, and shoot it into the goal. The balkiracproblem in the
RoboCup domain is challenging due to the interactions batvike robots and
the ball. Especially when the ball is dribbled by a robot, ttegjuent interac-
tions usually result in a highly non-linear movement of tladl,kand it is difficult
to precisely estimate the interactions. Moreover, the mremsent accuracy of
the ball’s position is also limited by sensors and corresipamnsignal processing
algorithms.

This chapter focuses on tracking a rolling ball when it issamutively pushed
by an Attempto soccer robot [101]. After a short overview!lwd telated work,
two filter techniques, the Kalman filter and thg, filter, are addressed in sections

81



82 Chapter 6. Ball Tracking

6.2 and 6.3, respectively. Considering that the assumptidbthe process noise
and measurement noise are hardly satisfied in the dribbfimgegs, theéd . filter
was successfully implemented in ball tracking with the Atpto soccer robot,
which is presented in Section 6.4. Taking the Kalman filtea #®nchmark, the
comparison of the experimental results with the Kalmanrféied theH  filter
are discussed in Section 6.5.

6.1 Related Work

The Kalman filter is the most widely used technology to esténhbe ball’s po-
sition and velocity in the RoboCup domain [12, 49, 52, 1416]1®%here the
ball is assumed to have a linear movement and the variatibalt$ velocity is
modeled as random noise. The Kalman filter provides effict convenient
minimum-mean-square-error solutions for the state esiiomaroblem, consider-
ing that both the process noise and the measurement noise w@frget system are
assumed as Gaussian with known statistical properties n\iieeball’s movement
is tracked in polar coordinates [90] or modeled with nordingynamics incorpo-
rating the retardation of a ball on the carpet [80], the ed¢ehKalman filters
can be used for the ball tracking problem. Besides a singés, fihultiple model
filters based on Kalman filters revealed better performams®ine applications.
For example, the Interacting Multiple Model (IMM) algonithutilizes a Kalman
filter for each mode of the target’s movement model [66], thdthMle Hypothe-
sis Tracking (MHT) algorithm keeps a set of object hypotBesach hypothesis
corresponding to a Kalman filter describes a unique realcolf]€6]. However,
in practical situations, the noise of the target system aedneasurement usu-
ally do not satisfy the Gaussian assumption, and the naasistats is usually not
available.

To avoid the Gaussian assumption and estimate the statesoofliaear pro-
cess, patrticle filters [91, 123] and a predictive model basethod [94] have been
applied in object tracking in the RoboCup domain. Althouggd sample-based
representation makes patrticle filters more robust and tdated parameters en-
able the predictive model to react to jerky changes of thésbalovement, the
increased memory consumption and computational complmake these meth-
ods inefficient for higher-dimensional estimation probéem

Motivated by the possibilities to avoid assumed statispoaperties of noises
and simultaneously reduce the computational cost, a ratbysfilter was imple-
mented for the Attempto soccer robots to track a rolling daling the dribbling
process. Thei,, filter does not require a priori knowledge of the noise stiags
It only assumes that the noise signals have finite energyhésame time, the
proposedH., filter has similar recursive equations to those of the Kalrfilger,
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and thus it inherits the efficiency and accuracy of Kalmagrfit

6.2 Kalman Filter

The Kalman filter is used to estimate the state R"™ of the following general
linear discrete-time process,

Xpt1 = Axp + Buy, + wy,
with a measurement € R™ given by
i = Cxp + vy,

wherek is the index of the time step. The known matricks B and C have
corresponding dimensions, and may remain constant or ehargpch time step.
Variablesw andv represent the process noise and the measurement noise, re-
spectively. They are assumed to be independent of eacharbdrave Gaussian
probability distributions with zero means, i.e.

p(w) ~ N(0,Q). (6.1)

p(v) ~ N(0,R). (6.2)

The process noise covariand® and measurement noise covariange can be
different at each time step, but they are mostly assumed ¢tom&tant in practice.

With definitions of thea priori state estimat&, < R at time step: based
on the knowledge of the process prior to time ste@and thea posterioristate
estimatex, € R" at time stepk incorporating all the knowledge of the process
including the measurement,, the goal of the Kalman filter is to minimize the
covariance of tha posterioriestimation error,

Pk = E[ekef], (63)

wheree, = x;, — x;, is thea posterioriestimation error.
The solution of the Kalman filter involves two steps. The jdn step aims
to obtain thea priori estimations of the state and the error covariance,

)A(]; = AXx;_1 + Bu,_q,

P, = AP, A" + Q,

whereP is thea priori estimation error covariance definedRs = E[e;e;T].

e, = T — X, Is thea priori estimation error.
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The correction step is responsible for getting improaegosterioriestima-
tions with a weighted difference between the measuremeanhd a measurement
predictionCx,_,

K, =P, C'(CP,C" +R)!, (6.4)
Xp = )AC,; + Kk(yk - C)AC];), (65)
P, = (I-K,C)P;. (6.6)

Matrix K is called again or blending factorand results from minimizing (6.3).
Normally, thegainis computed by substituting equation (6.5) into (6.3) artd se
ting the derivation with respect f§ equal to zero. A more detailed derivation of
K can be found in [106].

As long as the noises satisfy the assumptions (6.1) and (&3 posteriori
state estimate&;, and thea posterioriestimation error covariand@,, reflect the
mean and variance of the state distribution, respectively:

E[Xk] = }A(k,

E[(Xk — )A(k)(Xk — )A(k)T] = Pk

6.3 H, Filter

The optimality of the Kalman filter relies on the knowledgdlué statistical prop-
erties of the noisesr andv. Although the Gaussian assumption can be approx-
imated and suitable covariance matri€@fndR can be chosen by trial and er-
ror, the resulting Kalman filter can not guarantee to ache\aertain level of
performance. Unlike the Kalman filter obtaining the minimwariance of the
estimation error, théi, filter obtains the minimal effect of the worst noise on
the estimation error. Th&  filter is robust against the noise and gives an upper
boundary on the estimation errors based on the assumptefirafe disturbance
energy no matter what the noise distributions are.

Consider the following linear system:

Xpt1 = Apxy + Brwy,
Vi = Cpxi + vy,

wherex;, € R", w, € R™, ¢y, € R? andv, € RP. A,, B, andC, are matrices
with appropriate dimensiongA,, B;) is controllable andC;,, A, ) is detectable.
Compared to the Kalman filter aiming to estimate the systetesf., the H,
filter concerns a linear combination ®f:

Zj — Lka.
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The output matrix., is selected by the user according to different applications
The H_, filter computes the estimated sta@tg based on the measurement,
wherey, = {yx,0 < k < N}, and evaluates the estimation error by a perfor-
mance measuremeritwhich can be regarded as an energy gain:

N . 12
>z — 2 llg,
k=0

J =

- |
A 12 2 2
o = ol + 3 (Iwilip + vl

Herein N is the size of the measurement hista®y,, po, Wi, V. are the weight-
ing matrices for the estimation error, the initial conditicghe process noise and
the measurement noise, respectively. Moreo@r,> 0, p;* > 0, Wy > 0,

Vi, > 0 and((xg —Xq), Wy, vk) # 0. The notation||xk||gk is defined as

||xk||(2Qk = x} Qix. The denominator off can be considered as the energy of
the unknown noises, and the numerator is the energy of tiraag&in error. The
H_ filter aims to provide a uniformly small estimation eregr= z; — z; for any
wy, Vi, € Lo andx, € R”, such that the energy gaihis bounded by a prescribed
value:

sup J < 1/

wheresup denotes the supremum ahgy is the noise attenuation level with>

0. This formulation leads to the robustness of fhe filter, because the estimation

energy gain is limited by /v no matter what the bounded energy noises are.
To solve this optimal estimationdue to the bounded energy gainthe H,

filter can be interpreted asminimaxproblem [150]

1 2
‘ J=—— — %P+
ngin( glv%jio) > || %0 x0||p01

1

N
1 2 2 2
33 [l 2l = 2 (Il + It

k=0

where the estimation valug plays against the bounded energy nossgeandv,.
“min” stands for minimization and “max” denotes maximizati

Many strategies have been proposed for solvingrfirimaxproblem [119,
62]. Reference [150] proposed a linear quadratic game appravhich gave a
complete solution to thisinimaxproblem without checking the positive definite-
ness and inertia of the Riccati difference equations foryestep. This approach
is implemented through recursive updating the filter ddin the solutionP,, of
the Riccati difference equations, and the state estima&jowith the following
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updating equations:

Qi = L/ QL.
~ _ -1 _
H, = AP, (I —7QPr+ CLV, 'CiPy)  CLV, T,
X = Apxp—1 + Hy, (yi — CrArXy—1) ,
Z, = LypXy,

Py = ApPy (1 — 7QiPy + Cng_ICkPk)_l Al +B,W,B[,

whereP, = py andP; > 0. | is the identity matrix with corresponding dimen-
sions.

Apparently, these recursive equations have similar foomtisdse of the classic
Kalman filter. Although the statistics of noises. andv, are not required in the
H, filter, tuning the weight matriceQy, po, W, Vi should be done carefully,
because these values determine the estimation error ireth@mance criterion.
The weight matriced3V,, V. can be chosen according to the experience with the
noise. For example, if the noise is known to be smaller than the noise W,
should have smaller elements than thosé&/gfand vice versa.p, is based on
the initial estimation error. If the initial estimatidfi, has higher creditability,
po should be small. Similarly, if estimations of some elementthe state have
received more attention, or some elements have bigger moagrin their physical
definition, the corresponding elements in the ma€)x can be set larger than
others. The performance criterionis hoped to be as large as possible. Yet too
largey may make some eigenvalues of the matfrilarger than one, which makes
the H, filter's mathematical deviation become invalid. Therefdhe estimation
error of theH , filter can not be arbitrarily small.

6.4 Implementation

To implement theH , filter, the ball’'s movement is modeled by the following
linear discrete system,

Pr1 = Pr + DT,

: 1.
Prv1 =pe +0kT + §ka2,
wherep is the position of the ball, whilg andj are the velocity and acceleration
of the ball, respectively.T" is the sampling interval andl is the index of the
sampling time. Defining a state vectof consisting of the position and velocity
asx; = [pr; pr), and taking the ball’'s position as the measurement valee, th
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ball's movement is described by:

X1 = {(1) {}Xk+{T;v/2}uka (6.7)

where the system input equals the acceleratigi which is completely deter-
mined by the friction of the ground and the pushing operaftiom the robot. In
practice situation, equation (6.7) can not give the presiate values because of
the noise due to the rugged carpet ground. The precise owdjuds can not be
obtained from equation (6.8), since measurement noisedses the reliability of
the measured data. Therefore, the ball’s model should tad@eps noisev and
measurement noiseinto account,

v Ty L[ T2,
Xk+1 = 0 1 Xk T Uk T Wi,
ye=11 0]xp+ v
Several effects, such as the friction of the ground, the nminveen the robot
collides with the ball and the corresponding effect of th#ision on the ball’s
movement can not be obtained exactly, so the system impstnot available

when the robot is dribbling the ball. Howevercan be taken as additional process
noise and unified with the process nowgeThen a more realistic system model is

deduced as
1 T T?%/2
Xp+1 = [0 1 ]Xk+[ T/ }Wk, (6.9)
ye= 11 0]xp+ v (6.10)

In the context of theé1, filter, L, is specified as an identity matrix in this case,
because the ball’s location and velocity are all requiredg@stimated, i.e.

Zj — Xf.

6.5 Experimental Results

The ball’'s observation data come from the omnidirectionsion system of the
Attempto soccer robots. Pointing up towards a hyperbolitanimounted on the
top of a robot, an AVT Marlin F-046C color camera can captureainding im-

ages of a robot up to 50 times per second. After obtainingetitetor images,
a color calibration process maps the colors to differerdsda in the RoboCup



88 Chapter 6. Ball Tracking

Figure 6.1: An Attempto soccer robot with an orange match bal

domain and extracts the landmarks and objects from the isnagben, a dis-
tance calibration process transfers pixel positions inrttege into the real world
coordinate system [67].

While the object detection algorithm always outputs thd'beatlative posi-
tion to the robot, the ball’s relative position and veloaitith respect to the robot
coordinate system can be estimated directly by using th&s lodlservation val-
ues. When the ball's absolute position and velocity areiredquthe estimated
ball's relative values can be transformed into the worldrdowte system using
the robot orientation values. Figure 6.2 illustrates thiésyaosition in the robot
coordinate system.

Figure 6.2: Ball’s relative positior;, %) in the robot coordinate system.

To prove the feasibility and the robustness of the filter in the ball tracking
problem, two real experiments with an Attempto soccer roee performed in
the robot laboratory. Figure 6.1 shows an Attempto socdeotrwith an orange
ball. Considering the limited size of the robot laboratdhg soccer robot was
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controlled to dribble the ball along a linear path and a dacpath. The following
commands were sent to the robot in these two experimenpectgely:

a) &' =1.5m/s, 4 =0, w = 0;
b) &' =0.8m/s, y =0, w = 0.5rad/s.

In case a), the robot drives linearly with a speed of 1.5 mtase b), it forwards
along a circle with a speed of 0.8 m/s. The ball did not slidayafwom the robot
during the whole dribbling process because of the consexatillisions with the
robot. At every sampling time, twél, filters estimated the x and y components
of the ball's relative position and velocity with respectttee robot coordinate
frame. The noise attenuation level and weight matricessomating the x and y
components of the ball’s movement in both cases were chasttlaws:

30 0.004 . 0.01 O
|

7“”:2.0,p8’:[30 9 0 OOl},W,ﬁ:l,Vi:lO;

#=15m= g s | %= gy Wm0Vt

To evaluate the performance of titg, filter, a Kalman filter with assumed
noise variance was selected as a benchmark to estimate Itisepbaition and
velocity with the same observation values. The initialrestion error covariance
matricesP, and the probability distributions of the process noise dredmea-
surement noise were chosen by trial and error. The followargmeters gave the
optimal estimations:

. [ 001 0.0001 i ) |
Po = [0_003 0.005 ] , p(W") ~ N(0,0.01), p(v*) ~ N(0,0.0001);
,[0.01 0.0001
P0= | 001 0.005

Figure 6.3(a) show the traveled paths of the robot and theirb#these two
experiments. The results illustrated in figures 6.4 and Bdwghat theH ., filter
eliminated the high frequency components of the measureamehestimated the
ball's relative positions and velocities successfully.eTstimated ball’s relative
positions shown in figures 6.4(b) and 6.5(b) imply that thiédid not slide away
from the robot, while the maximum position along thg, direction is far from
the boundary value 0.15 m. Figures 6.4(a), 6.4(b), 6.5(@)6ab(b) show that the
estimated ball’s relative positions from tli&,, filter are slightly better than those
from the Kalman filter. Moreover, figures 6.4(c), 6.4(d),(6)5and 6.5(d) show
that the H, filter gave smoother estimations of the ball’s relative eéles than
the Kalman filter.

} , p(w¥) ~ N(0,1), p(v¥) ~ N(0,0.0001).
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Figure 6.4: Relative ball's positions and velocities wigispect to the robot coor-
dinate system when robot moves along a linear path.



6.5. Experimental Results

0.44

0.42-

0.41

0.38

Relative x—position of ball (m)

I
IR
¥ iy oo |5“i w i f'lll' |
0.36 | \leﬂ\uﬁ \ ] \“‘( | 1’|‘\hy\q "\' 0! ‘”‘m‘\‘ lﬂl ‘?|” i i U;VL I
Cly 5\":!‘“" [T I T i i
I ol Lo
| it | i b i
0.34r- ‘!r |
- — measured position
0.32} — estimated position from H infinity filter |
- = = estimated position from Kalman filter
1 T T
0 5 10 15 20
Time (s)
a) Relative x-positions of ball.
p
-0.03
Lol
] '”h
-0.04}, ; 1
o, [
/E\ | It
— -0.05 I R
= ! I
[ I
o i
S —0.06f : .
c !
o \w H\“flw i
= I
: ae
8 —0.07r 0 S R
5
2
E -0.08 | b
&J e | I o i
-0.09r - — measured position M
—— estimated position from H infinity filter
- = = estimated position from Kalman filter
_0'1 1 T T
0 5 10 15 20
Time (s)

(b) Relative y-positions of ball.

91



92 Chapter 6. Ball Tracking

0.025 T T T 0.06

o

Q

]
T

o
o
2
o
T
s

o
o
2

o
o
S
a
i

0

)
w

-0.0051

Relative x-velocity of ball (m/s)
Relative y-velocity of ball (m/s)

h
b
b

-0.011

A "
——estimated velocity from H infinity filter —0.03f “ ——estimated velocity from H infinity filter ]
= velocity from Kalman filter --=- velocity from Kalman filter

T T : :

-0.04 i
15 20 0 5 10 15 20

Timlg(s) Time (s)

-0.015 .
0 5

(c) Relative x-velocities of ball. (d) Relative y-velocities of ball.
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6.6 Summary

In this chapter, a robugf ., filter is adopted to estimate the ball’s relative position
and velocity when the ball is dibbled by a soccer robot. Untike Kalman filter,
which relies on suitable assumptions of noise variances/th filter does not
require a priori knowledge about the statistical propsrtitthe process noise and
the measurement noise, but only depends on the assumpfioit@hoise power.
The Kalman filter aims to minimize the expected estimatigorezovariance and
yields maximume-likelihood estimations, while tli&,, filter minimizes the worst
possible effects of noise on the estimation errors. Thisayuaes that, if noise is
small in energy, the estimation error will be as small as ipss The recursive
equations of thé/ . filter have similar forms to those of the Kalman filter, thus th
H, has similarly low computational cost and is feasible foll teme estimation
problems.

In two real-world experiments, where the ball was pushedeoutively by an
omnidirectional soccer robot, the performance of the filter was evaluated by
comparing the estimation values to those of the Kalman filfée results of the
estimated ball’s relative positions and velocities shaat theH ., filter eliminates
the high frequency noise components of the measuremengséinthtes the ball's
position and velocity robustly during the pushing proceédthough theH , filter
involves regulating some weighting matrices, the real diesperimental results
show that it has better performance than a Kalman filter aadntthependence of
noise statistics makes thé,, filter more robust.



Chapter 7
Dribbling Control

For a soccer robot, ball control is one of the most importawt @ssential skills.
Concerning offensive and defensive tactics, controllimgball consists of three
tasks. The first task denotes ball capturing, where a rolatdilesto catch the ball
whenever the ball is moving or resting. The second taskseteball dribbling,
which involves the maneuvering of the ball through conseewnd short con-
tacts of a robot in a n environment with dynamic obstacles fhiird one is ball
keeping, which enables a soccer robot to prevent the batl breing stolen by the
opponents.

Compared to other tasks, ball dribbling is more importanirfithe offensive
standpoint, because a soccer robot has to control the koot a goal after
catching the ball. Moreover, dribbling control is more dbaging than the normal
motion control of an autonomous robot, while dribbling cohhas to consider
the ball's movement in steering the robot movement. Althoeifficient dribbling
mechanisms help a soccer robot to achieve a good dribblihgddsign and exe-
cution of appropriate dribbling strategies have attraetteintion in the RoboCup
robot soccer teams.

The dribbling process is actually a consecutive impact ggemf high fre-
quency and low magnitude. Because of the difficulty of debeimy the impact
time, the contact position, and corresponding impact inttee many RoboCup
teams either use a simple model to approximate the intergatr let the soccer
robot learn the dribbling skills where the interaction igasled as a black-box
system.

In dribbling learning, artificial neural networks (ANN) habeen adopted by
many RoboCup teams [26, 63, 117], because they are able toxapate an ar-
bitrary function by learning from observed data. Normathe inputs of an ANN
refer to the environment information, such as the positmhihe robot and the
ball, the positions of opponents, the direction of the gaat so on. The outputs
of the ANN are the desired robot actions, for example, th@el@sobot velocities
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and accelerations. The selection of a suitable structuiéd given the training
data is not straightforward. Especially using a real roliog, training process
has to start with positioning the ball and the robot at aabytrpositions of the
play field. Then, all measurements are recorded, which lievield by training an
ANN based on suitable learning algorithms. The whole precenerally needs
a very long time to obtain a trained ANN with optimal performea. Therefore,
most soccer robot teams use adequate simulators to achtewves@erable faster
training time. Simulators have the advantage of not beimgtained to time lim-
itations, such as to tune the parameters of the ANN and thmeifgpalgorithms
for an optimal performance. Although the learning procecagnefits from sim-
ulators, many problems occur in real experiments when #iegd ANN is used
on real robots. It is because the trained ANN is constraioed small subset
of robot behaviors. For example, the interactions betwesrbat and the ball
are difficult to describe in mathematical terms when the tabibbles the ball.
As a result, the learning method directly operating on relbts with efficient
learning algorithms became attractive recently. Conogriearning algorithms,
reinforcement learning became popular for learning of ebogbot behaviors, as
it dose not need the correct input/output pairs, but onlyif@mation about the
behaviors’ success or failure [137, 76, 50, 60]. As a sudakagplication, an off-
line neural fitted@ iteration scheme based reinforcement learning approagh ha
been proposed in [137] to learn the dribbling on a real soad®st. This learning
method allows the application of advanced supervised ilegmethods, and has
a faster convergence than the on-line gradient descenoeheth

Learning the dribbling of a soccer robot avoids building pdem physical
models, but the learning process requires a long time andtses high compu-
tational cost, especially when there is a large number airpaters to optimize.
Moreover, the collection of training data is difficult to benspleted. In a new en-
vironment, new training data may result in a new learningess. Therefore, an
analytical dribbling control method is necessary to desgdhe time spent on de-
signing a dribbling controller. Damat al. addressed some analytical constraints
for a nonholonomic soccer robot dribbling a rolling ball #8]. Based on a sim-
ple description of the interaction between the robot andtik these constraints
are used to avoid loosing the ball by limiting the robot ttatisn and rotation
velocities. Another analytical method is presented in \gRh respect to an om-
nidirectional soccer robot. It approximates the intectyy a spring kinematic
model, and assumes that the ball does not leave the robolaitsacompresses
the spring. According to this assumption, the robot is adlgd to track the de-
sired poses, which are computed from the ball’s desireédrajy based on the
suitable values of a weight factor and a damping ratio.

To avoid the long learning process, this work focuses ongtsy an ana-
lytical dribbling control method for the Attempto soccebod. Inspired by [28],
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a constraint of robot movement in the dribbling process feging the ball is

deduced by analyzing the force exerted on the ball. Withcadeting the inter-

action between a robot and the ball during the dribbling ess¢the analysis of
the relative movement of the ball with respect to the robstilts in the dribbling

control method. It accomplishes the dribbling task by idtrcing a reference
point to follow a given path and keeping the ball near thimpsimultaneously
[97, 96, 100].

7.1 Dribbling Mechanisms

The dribbling system of a soccer robot is composed of drisblhich are built
of special materials to increase the robot’s ability of colting the ball. The main
contribution of dribblers is to exert a certain amount otc®onto the ball. The
force can not only give a backwards spin to the ball such tabgll can move
back when it loses contact with the robot, but also preveatoidl from sliding
away from the robot when the robot rotates quickly.

Designing dribbling mechanisms of soccer robots in the alpoMiddle Size
League has to obey the following rules [1]:

e During a game the ball must not enter the convex hull of a rddyoimore
than a third of its diameter except when the robot is stopiregball;

e Forces exerted onto the ball that hinder the ball from ratgtin its natu-
ral direction of rotation are allowed for no more than fourcsmds and a
maximal distance of movement of one meter.

Considering many hardware challenges in the RoboCup Mi&ite League,

most teams pay more attention to improving and executingpting strategies.

They mostly adopt simple and flexible dribbling systems. sRasdribblers are

widely adopted by the Middle Size League teams due to thelsimpchanisms.
As illustrated in figures 7.1(c), 7.1(d), 7.0(e) and 7.0ffssive dribblers have
no actuators such as motors and gears to be controlled lgcbue influence the

ball's movement by special structures and materials. lemtiaimprove the drib-

bling capability, some teams designed active dribblerdias/s in Figures 7.1(a)
and 7.1(b), usually represented by wheels which are cdatirbly DC motors to

influence the ball’s rotation.

Consisting of dribblers built from materials with high fiien properties and
good damping qualities, the popular dribbling system isgied with a concave
front and a top component. The concave shape either stemstfr® concave
front of the robot base as shown in figures 7.1(a), 7.1(b)eY&nd 7.0(f), or is
formed with some separated dribblers, which are illustrateigures 7.1(c) and
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7.1(d). The main benefit of the concave shape is that the &albe easily forced
toward the center of the robot front. The contribution of tbe component is to
exert pressure onto the ball from the above, such as to kedpathfrom rolling
away. The top component can consist of active wheels, plbstis or a rubber
string, as shown in figures 7.1(c) - 7.0(f), respectively.

The dribbler system of the Attempto soccer robot is showniguie 7.0(f).
There are three spongy blocks attached to the concave &raiantp the collisions
of the ball and to prevent the ball from sliding away from tlodat. A rubber
foam pad is assembled at a higher position, which exertspresonto the ball
and keep it from leaving the robot along the lateral and lamatnal directions.
The advantage of this dribbling system is that the biggeinfasize enables the
robot to easily capture the ball.

7.2 Dribbling Analysis

In a dribbling task, the main challenge is that the ball stidug kept and be
pushed by a robot when the robot moves and passes obstadieisliriy control
needs to consider not only the robot's movement, but alsd#tis movement.
Therefore, it is necessary to analyze the relative movetretmieen the robot and
the ball. When the ball is considered as a mass poiotated at the sphere center,
the relationship between the ball’s accelerations obsrvehe world coordinate
system and the robot coordinate system is described asvillo

ap=ap+af+2wxX Vv +wxrj+wx(wxrpy). (7.1)

ap denotes the robot’s translation acceleration observedambrld coordinate
system.ap anda}; are the ball's accelerations observed in the world and robot
coordinate systems, respectivelyandw are the robot rotation velocity and the
corresponding rotation acceleratiorf; andr?; are the ball’'s velocity and position
observed in the robot coordinate system, respectively.7Ih)( the termRw x
v is called Coriolis’ acceleration; the terén x r%; is due to the robot rotation
acceleration; the term x (w x 3 ) is called centripetal acceleration, which always
points towards the axis of robot rotation.

Multiplying (7.1) by the mass of the balh z, the extended Newton’s second
law with respect to the robot coordinate system is given by

Fy=Fp+F,, (7.2)

whereFp = mpap andF’; = mga}. Fp is the vector sum of all the exter-
nal force acting on the ball with respect to the world cooatiénsystem.Fy is
composed of the force exerted by the robot and the frictiawéen the ball and
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(a) CAMBADA robot 2007. One
active wheel presses on the ball
from above. Two inactive wheels
are mounted on the front of the
robot base.
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(b) Tech United Eindhoven robot

2008 . Two active wheels act as top
dribblers, which can change the con-
tact points on the ball and drive the
ball in the longitudinal and lateral di-

rections.

(c) Tribots robot 2006. The dribbling
system consists of four rubber cylin-
drical bars representing the corners
of an isosceles trapezoid.

(d) Hibikino-Musashi robot 2006.
The Dribblers are similar to those of
the Tribots robot, but the upper two
dribblers have a flat form.
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(e) Cops robot 2006. Four short (f) Attempto robot 2006. A rub-
mental bars are used. A rubber spring ber foam pad is assembled above the
is connected between the upper two concave robot front. Three spongy
dribblers to damp collisions of the blocks are attached to the robot front
ball. to improve the damping property.

Figure 7.0: Soccer robots of the RoboCup Middle Size League

the floor. F; = mgal} is the vector sum of the force with respect to the robot
coordinate systen¥;, is the inertial force calculated as

F,, = —mpagp — mp(2w X vV} + w X r} + w X (w X r})). (7.3)

Equation (7.2) implies that not only the external force dabahe inertial force
is exerted on the ball, when the ball is observed in the robotdinate system.
The inertial force stems from the acceleration of the refeeecoordinate system,
which is the robot coordinate system. Although the inefoate manifests itself
as a real force, it is not the real one while it results fromrtbe-inertial reference
coordinate system but not from interactions with other bedi

If the ball is moving along a curve with a clockwise turningsh®wn in Figure
7.1, itis only possible for the robot to keep the ball if thece®F; has nonpositive
projection on the IineB_L>, which is parallel to the left border of the robot’s front.
That yields

(F3)gz = (Fp + Fu)gp < 0. (7.4)

When the ball follows a curve, the external fod€g can be projected on the
tangent and normal directions of the curve. The tangentihactn be calculated
asF,; = mpa,; with a acceleratioma,;. The normal par¥',, is pointing to the center
of curvature and has the magnitudezcv|. ¢ is the curvature of the curve and
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Figure 7.1: The ball's relative position in the robot comate system. Three
spongy blocks are pasted on the robot’s front to increasdritteon. Point £
denotes the desired position of the ball’'s ceriger

v Is the ball’s moving velocityF;, is related to the ball’s relative state and the
robot movement. Inequality (7.4) represents the congtidimobot movement
in the dribbling process, under which the robot can keep #ienboving along
curved paths avoiding losing the ball. The analysis prestabove assumes that
the robot rotates in the clockwise direction, but similaulés can be obtained in
the non-clockwise case. However, the constraint (7.4) caie easily satisfied.
While the interaction between the robot and the ball is diffito be modeled
in mathematical equations, it is hard to analytically detiee the desired robot
movement, which guarantees suitable force exerted on théentthe dribbling
process.

Based on the analysis of the relative movement between tharukthe robot,
an analytical dribbling control strategy is designed fa Attempto soccer robot.
Considering the fully free mobility of the omnidirectionaibot, the dribbling
control strategy assigns different tasks to the translatentrol and rotation con-
trol of the robot. Without exact modeling the interactiomvioeen the ball and the
robot, the analytical results yield an efficient conditidritee robot movement for
a successful dribbling control.

7.3 Dribbling Control Strategy

In an environment with obstacles, the dribbling controllgpeon considered here
refers to a robot moving along some obstacle free paths amngthe ball in the
whole dribbling process. Figure 7.2 illustrates an idetiation in the dribbling
process, where the ball moves along a cuRvand the ball’'s centeB matches
point £ located at the front of the robot. Poihtis depicted in Figure 7.1, which
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has a fixed distancé to the robot’s center of mags and the coordinatéL, 0)

in the robot coordinate system. Since polnis the ideal position of the ball’'s
center B, the dribbling control can be formulated to control pofitto follow
the desired path and keep the ball near pairgimultaneously. With respect to
the advantage of the omnidirectional robot, i.e. the delszlipontrollability of
translation and rotation, the dribbling control strategy te achieved by assign-
ing the path following task and the ball keeping task to tH®sotdranslation and
rotation control, respectively. The following contentghins subsection will detail
the dribbling control strategy from the aspects of the caletd kinematic system,
the translation control of poinf” and the rotation control of the robot.

Figure 7.2: Force analysis in an ideal dribbling situatiwhere the ball’s center
B moves along a curve and matches pdinbcated at the front of the robaf\¢
denotes the angular deviation betwdeandfp, i.e. A0 = 0 — Op.

7.3.1 Kinematic model in dribbling control

The definition of pointZ implies that it has a fixed coordinaté, 0) with respect
to the robot coordinate system, which results in the ratatigp between point
and the robot center of magsdefined as,

rgp =2xgr + Lcosb, (7.5)
yp =Yr + Lsin 6, (7.6)

wherexr andyg denote the position of poinf with respect to the world coor-
dinate system. Substituting the robot kinematic model)(B/® the following
derivatives of (7.5) and (7.6),

j}E:j}R—LWSiH@, (77)
Yr = Yr + Lwcos O, (7.8)
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the kinematic model of Poinf is given by

Tp =2 cosf —ypsinf — Lwsin 0, (7.9)
Yp = T sinf + gy cos @ + Lwcos b, (7.10)

wherei; andyz denote the poinE’s velocity with respect to the world coordi-
nate system.

Combining pointE’s kinematics with the robot rotation, the following system
is employed in the dribbling control strategy,

Tg cosf) —sinf) —Lsind Ty
gE = | sinfl cos®  Lcosf yr | s (7.11)
0 0 0 1

This system has the same inputs as those of the robot kinematel (3.2), but
the outputs consist of point’s velocity and robot rotation velocity. Note that
the transformation matrix in (7.11) is also full rank, whieteans the decoupled
controllability of translation and rotation is inheritedherefore, the control of
point £ to follow the reference path and the robot orientation tokihe desired
orientations can be achieved separately.

7.3.2 Translation Control

The path following problem of poink’ can be solved with the presented control
methods of Chapter 4. The two inptit§ andy}; in (7.11) can completely control
the values ofi ; andyr whatever the value ab is. During the dribbling process,
the ball can only be pushed but not be pulled. To decreasedilie $peed, the
robot has to move ahead and to hinder the ball's movement. nVitie ball’s
speed is required to increase, the robot needs to stay b#tendall and push
it. Therefore, varying the ball’s speed will unsmooth theabmovement and
increase the possibility of the robot to lose the ball. Indhiebling strategy, the
ball is required to move along a reference path with a higbhstant speed, which
not only facilitates the robot motion control, but also ersua fast movement of
the ball in the RoboCup matches.

7.3.3 Rotation Control

Besides the robot translation control, the degree of freedbrobot rotation can
be used to keep the ball near paintWhen pointZ is controlled along a reference
path, pointE’s acceleration with respect to the world coordinate sysgegiven
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by

.'T,LE = C’U% sin(@ — ep), (712)
iip = cvy cos(f — Op). (7.13)

vg IS point E’s velocity,c andfp are the curvature and tangent direction at the
position of pointE on the reference path. Differentiating (7.5) and (7.6) &wic
yields,

ip=ip— Ldsing — Lw? cos?, (7.14)
g = dp + L cos — Lw? sin 6. (7.15)

The robot acceleration can be directly calculated from fpbig acceleration with
the following equations,

ir=cvysin(0 —0p) + Lisin 0 + Lw® cos 0, (7.16)
iir = cvnsin(f — 0p) — L cos§ + Lw?sin 6. (7.17)

Zr andjjr denote the robot translation acceleration with respedteontorld co-
ordinate system.

Substituting (7.16) and (7.17) into the projection of (7ritp the robot coor-
dinate system, the ball’s kinematics is determined as,

B = Fpm — cvpsin(f — 0p) — Lw?® 4 2wy + oyl + W'y, (7.18)

i = ijpm — cvpcos(0 — Op) + Lw — 2wiy — wa'ly + w?yly, (7.19)

wherex’; andy}; denote the ball’'s position with respect to the robot coaatén
system.z%, v, &% andy}; are the corresponding velocities and accelerations.
Zm andijg,, denote the projection of vectar; in the robot coordinate system,
w is the robot rotation acceleration. Itis noticed in (7.18) §7.19) that the ball's
states with respect to the robot coordinate system arendieted by the robot
orientation, the robot rotation velocity and rotation decation.vy is determined
by the translation controlc andfp are derived from the pre-designed reference
path.

According to the constraint (7.4) of the robot to keep thé, lig} is required
to be less and equal to zero along the aXis, andy} is required to drive the
ball to the position of pointE. When the ball is near point, which means
(25, yy) — (L,0) and (2%, y%%) — (0,0), (7.18) and (7.19) have the following
approximations:

B R Epm — cvnsin(f — 0p), (7.20)

yg ~ gBm - C'U% COS(Q - QP)v (721)
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where the robot orientation plays an important role on adlirig the ball’s rela-
tive acceleratiort’; andyy;. Because the robot can only push the ball, the value
of A = 0 —0p is bounded to the interval§ < Ag < 7. If Ad has the same sign
as that ofc, the inertial accelerationcv sin(Af) always points in the negative
direction of the axisX,,,, which presses the ball to the robot. However, the inertial
acceleration-cv? cos(A#) causes the ball to slide away from the robot. There-
fore, selectingAd with the same sign of can be beneficial for the ball keeping
task. But the magnitude aké is a trade-off between the inertial accelerations
—cv% sin(Af) and —cv% cos(Af). If Af is larger, there is more pressure on the
ball but less force to prevent the ball from sliding away, site versa.

On the other hand;z,, andjjz,, refer to the external force acting on the ball,
which is mainly influenced by the robot movement. Althougé ithteraction be-
tween the robot and the ball is hard to know, the angular tiewia\¢ as shown in
Figure 7.2 is necessary for the robot to provide the ball eitbugh pushing force
F; and centripetal forcé},. Moreover,Af has a relationship with the centripetal
acceleratiorv?,.

As a consequence of above analygd, is selected proportional to the cen-
tripetal acceleration with a positive parametgr

A = kycv3. (7.22)
This results in the following desired robot orientation
0% = Op + kgcv?. (7.23)

Then, the rotation control problem is to steer the robotraagon to track the
desired ones.

7.4 Following a Static Path

In the dribbling task, a pre-designed reference path cdartbe ball’'s position
and the target position through the free space on the plaly fféhen obstacles are
static or move slowly, a static path can be adopted in the etiobbling process.
To test the performance of the dribbling strategy, a sirdedigath and an eight-
shaped path were chosen for the dribbling task, becauseatlyeng curvature
and symmetry of these paths are complex enough to validat®bot’s agility of
dribbling a rolling ball. Considering the space limitatiohthe robot laboratory,
the sinusoidal path is parameterized as,

Ly = P,

yr = sin(1.5p),
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and the eight-shaped path is given by,

x, = 1.8sin(2p),
Y. = 1.0sin(p).

p is a scale variable. Also the value @2 was chosen foky, which determines
the following desired robot orientation

0% = 0p + 0.2cv2.

The NMPC method was utilized here to fulfill the dribbling tamtask, while
the results presented in Chapter 5 show that the NMPC approat not only
keep the robot working under the system constraints, botgds smooth travel-
ing trajectories of the robot by specifying the correspagdbbjective function.
Compared to the control problem presented in Chapter 5, thedifference is
that pointE is controlled in the path following problem instead of théabcen-
ter of massR. To reduce the computational burden of NMPC, the orthogonal
projection-based formulation of the path following prablevas adopted, where
only one control variablex. is required. Therefore, the NMPC method aims to
find suitable values of, andw, such that pointr follows a reference path and
the robot orientation tracks the desired orientation. Tmmfilation of the NMPC
approach is described by equations (5.51) - (5.53). Thefapstion is from 5.24,
the terminal penalty is from 5.25 and terminal constraimésdesigned as 5.29 -
5.32. a, denotes the moving direction of poiat with respect to the path coor-
dinate system, which generates the desired moving vedsaitf pointE in the
world coordinate system as follows,

Tp =vgcos(ae +6,), (7.24)
g = vgsin(a. +6,). (7.25)
Substituting (7.24) and (7.25) into (7.7) and (7.8), theuispof the linearized

kinematic model (3.5), which are the desired translatidonciges of the robot in
the robot coordinate system, are given by,

uy = & = vgcos(ae +6,) + Lwsin b, (7.26)
uy =Yg = vpsin(ae + 0,) — Lw cos 6. (7.27)

We chose the values dafm/s and0.8 m/s forvy in the experiments with the
sinusoidal reference path and the eight-shaped referaatbe nespectively. The
same parameters of the NMPC approach were used in the twaregmes, which
are

0.3 0 0.2 0
Q_{ 0 0.5}’R_{ 0 0.1}’0‘—5—2'0'
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The control horizon was chosen the same as the predictiandmowith 7» =
T. = 37. The prediction sampling time and the estimated computational delay
7¢ were selected as= 0.2 sandr® = 0.25 s.

The experimental results with respect to the two refereratbspare shown
in figures 7.3 and 7.4. Figures 7.3(a) and 7.4(a) show theledwaths of the
ball and the robot. The dribbling errors are illustrated gufes 7.3(b) and 7.4(b),
where the maximum deviation from poiftto its projection on the reference path
is less thar.1 m and the largest angular errors with respect to the robemntation
are not more that.4 rad. Figures 7.3(c), 7.3(d), 7.4(c) and 7.4(d) show the&tte
ball’s relative positions with respect to the robot cooedensystem based dif,,
filters. They imply that the ball was kept during the driblliprocesses, while
the relative x-positions are mostly less than 0.4 m, anddlagive y-positions are
far from the boundary value 0.15 m. Figures 7.3(e), 7.4(&)f)fand 7.4(f) show
the performance of the NMPC approach. The wheel velocitieekept under
the boundary valué.9m/s. Although the computational time is more than s
in some cases, the average computational time$.a62 s and0.091 s in both
experiments, which is appropriate for dribbling the balthwihe speed of and
0.8 m/s, respectively.
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Figure 7.3: The NMPC-based dribbling control along the sdal reference
path.



7.4. Following a Static Path 107

15 i i i i i Distance error
0.1 .
il ] ]
0.5F 1 ]
. of 1 . . .
€ 5 10 15 20
> 05 Orientation error
- 0.4 . ! :
af ] 0.2 J
-15F — ldeal position of E =
- - Real position of E -0.21 1
- - Real position of robot
-2 : : . ; ; -0.4 . : .
-2 -1 0 1 2 0 5 10 15 20
X (m) Time (s)
(a) Travelled paths of the robot and the ball. (b) Following errors.
0.44 . . : 0.04
0.42F 002k
~ 04 —
E E o
T 038 3
g § -0.02
S o036l - 2
o o
= = -0.04
g o34 g
X L 006
o 032 o
2 =
S o3 S 008
i3 x
o28r T measured posiiion ] { oL i - measured position ‘7
— estimated position from H infinity filter —— estimated position from H infinity filter
0.26 : : ~0.12 , ) :
0 5 10 15 20 0 5 10 15 20
Time (s)
(c) Relative x-positions of the ball. (d) Relative y-positions of the ball.
15 . . . Le‘ft wheel‘ velucit)( . . .
0.45 . . :
0.4F 1
0.35F 4
@ oaf 4
(]
£
= 0.25¢ 1
<]
5
= 021 4
(8] 15 T T T T T T T T T
0.1f ]
0.05 1 £o i
0 . .
0 5 10 15 20  -15 . : . . : : : : :
) 0 2 4 6 8 10 12 14 16 18 20
Time (s) Time (s)
(e) Computational time of NMPC. () Real wheel velocities.

Figure 7.4: The NMPC-based dribbling control along the egjtaped reference
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7.5 Following a Dynamic Path

The RoboCup match is a highly dynamic environment involvimgving soccer

robots and the ball. Although some situations enable a rabdtibble the ball

along a static path and shoot a goal, the planned path sheuilgpdated with

respect to the changed environment most of the time. Theradoibbling the ball

along a dynamically planned path is more essential andso#fegreat challenge
for the soccer robot.

7.5.1 Path Planning

The path planning method presented by Weigel et al [161]ad usthe Attempto
soccer robot, which is one of the most efficient path plan@ipgroaches in the
RoboCup domain. This method is based on the potential fielkinique, and
is able to navigate a robot out of a local minimum by introdgca grid-based
planning method. Moreover, it is able to design a smooth pgtheversing the
positions of the target and the start position. The follaysubsections present
more details of this path planning method.

7.5.2 Potential Field based Planner

Khatib [85] first reported a potential field for path planniafymobile robots.
The idea behind the approach is to navigate a mobile robotcasrged particle
moving in a magnetic field. This article is attracted to gdes with the same sign
and repelled by particles with the opposite sign. In a padéfield, a robot has an
attractive potential to the target and repulsive potesitialay from obstacles and
field boundaries. The planned moving direction of the robationg the negative
gradient of the potential field, which always points to thesipon with lower
potential.

Each positionk = (z,y) in the potential field is composed of an attractive
potential wellpr(x) and repulsive potential barriets) ;(x) andpg j(x). pr(x)
is computed around the target= (g., g,). po.i(0;) andpg ;(b,) are around the
obstacles; = (o, , 0,;) and the field boundariés; = (b, ;, b, ;), respectively.

A conic well is chosen to model the attractive potential wilat is,

pr(x) = pr||dr|, (7.28)

where||dr|| = ||d — g]|, ||-|| denotes the Euclidean norm. The corresponding
negative gradient is calculated as

—Vpr(x) = —ﬁd@ (7.29)



7.5. Following a Dynamic Path 109

which causes the robot to move towards the target.
Repulsive potential barriers drive the robot away from abtlets and field
boundaries. For the obstaclg the repulsive potential is computed as

p0.i(x) ldos(x)|* < 4
i) = poswo (-t = vty ) B < IdostI <33 (730
0 Mg < [ldoi ()],
which is reversely proportional to the distanpé, ;(x)|| = ||x — o;||]. To keep

po.i(x) continuous af|do ,;(x)||* = 12, a normalization parameter, is intro-
duced with )

Moo (7.31)
M§ — o

po is the minimum distance used to hindes ;(x) from increasing infinitely.
For the positions having less distance thanto an obstacle, the corresponding
potential barrier has the maximum valpg. When obstacles are assumed to have
a radiusrp, 1o can be chosen as

RO =

o =70 +TRr+E€ (7.32)

wherery is the robot radius andis a security distance. Moreover, a maximum
distancel/, is defined to reduce the amount of local minima resulting fedield
containing many obstacles. If the obstacles are far away thee robot, they do
not influence the robot movement. The negative gradienteofepulsive potential
po.i IS given by

2£25988 2o, () 1y < oy <13

~VPoilx) = (0,0) it dos(0)]? < (7.:33)
Vi do(x)|* 2M2
Besides obstacles, the play field in RoboCup is limited byndawy lines.

All boundaries are considered as potential barriers, wheysg sive potentials are
computed similar to those of the obstacles.

pB,;(x) ldg;()|1* < 13
pB,j(X) = PB,jkB (m — ML%) IMQB < ||dB’j(X)||2 < M% (734)
0 M3 < |ldp; (x|,

wheredp ; = (0,y—b, ;) anddp ; = (x—b, ;,0) are with respect to the boundary
in the x-direction and y-direction, respectively. The natixation parametext s
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is defined as ,
MBMB
M2 nh
The minimum distancgg is only concerned with the robot radiug and a secu-

rity distance,

(7.35)

KRB =

g = TR+ €. (7.36)

The negative gradient ofs ;(x), —Vpp ;(x), is calculated as

|dB,;()||
—Vpp,;(x) = (0,0) it [dp, (%)) < 3 (7.37)
Vldg,;(x)|* > M3

2 pB“B“B4ng(X) if < |ldg;(x)|° < M3
)

Merging the attractive and repulsive potentials, the firmaéptial field has the
following potential:

P(x) = pr(x) + Z po.i(X) + Z pi(X). (7.38)

The negative gradient d?(x) is also a superposition of the negative gradients in
each potential field, i.e.

—VP(x) = —Vpr(x Z Vol Z Vs, (7.39)

7.5.3 Grid-based Planner

Although the negative gradient directierV P(x) navigates the robot towards the
target and away from obstacles and field boundaries, a lorahmm problem
may occur when a robot is trapped in a dead end. Thereforéouetor a robot
to escape local minima are required. The grid-based plasaerexample of such
methods, which divides the whole space into square-shajkdajls and designs
a path composed of a set of grid cell’'s centers. The gradfemgad cell’s center
at position(u, v) is approximated by evaluating the local potential field as

1

grad(u,v) = % [P(u+1,0) — Plu—1,0), P(u,v+1) — P(u,v —1)]"
[0

with a positive parameter. If the next grid cell’s center directed byV P(x)

goes into a local minimum, a recursive best-first searchaidest and terminated

if either an adjacent grid cell with a lower potential or theget cell is found.
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7.5.4 Experimental Results

To test the dribbling control method, some real world expents were done in
the robot laboratory. The size of the play field5ig x 4.2 m?, which is nearly
the size of the old half play field of the RoboCup Middle Sizagee. A soccer
robot was required to dribble the ball to the target field withcolliding with one

or two moving obstacles. At the start, the robot and the baHewstatic, and the
robot was placed with an arbitrary orientation. The targdtfivas defined by a
circle centered a3, 1) having the radius of 0.3 m. The obstacles moved to and
fro along a linear path of nearly m length. The path was chosen such that it
crosses the direction connecting the ball’s initial positand the target field. The
moving speed of the obstacles was m/s.

As point E is controlled to follow a reference path in the dribblingastégy,
the path planner was set to design a collision-free path iot gofrom its current
position to the target. Then the nonlinear motion controthud introduced in
Chapter 4 and the NMPC law addressed in Chapter 5 were usée iexperi-
ments. For the path following control of poift, the orthogonal projection-based
formulation was adopted. The desired velocity of pdintvas selected asm/s.

Table 7.5.4 shows the selected values of the path planreegseters. Because

pT PO PB TR ro € Mo Mp | «
1-10°14-10°]2-10° | 30cm|30cm|5cm| 80cm| 50cm| 10

Table 7.1: Parameter values used in the path planner.

of the discretization of the grid, the planed path is veryasgtedged. To smooth
the path, the average over the finstpath points from the path poif; is used to
calculate the tangent directiéip; of the path at poinP;, i.e.

i+m—1

epﬂ:% > P,-P.
j=i

The value ofim was chosen as 10 in the experiments. When the number of points
on the designed path is less than m takes the value of the number of path
points. The curvature of the path at palditis approximated by

Gy = kC(QRi - 9P7i—1)7

wherek. is a positive parameter and selected as 0.5 in the expesment

To verify the performance of the dribbling control strateggveral initial po-
sitions of the ball were tested in the experiments as showfigare 7.5. The
choice of initial positions considered the size of the |labory and the trajectories
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of obstacles’ movement, such that the obstacles’ moveneaiiyrhave influence
on the dribbling tasks. Table 7.5.4 gives a summary of theexgental results.
In the case of one moving obstacle, the nonlinear motionrobntethod and the
NMPC method were tested. In 15 experiments with differenialpositions, the
NMPC-based dribbling control performed 9 successful dmigis, and the non-
linear motion control-based dribbling control succeed2drhes. The successful
ratios are60% and80%, respectively. But the computational time of NMPC is
much longer than the one of the nonlinear motion control wetlas the aver-
age computational time of eight experiments based on eaunotanethod are
0.138 s and0.0387 s, respectively. When there were two moving obstacles, only
the nonlinear motion control method yielded appropriaseiits. In 15 tests, the
robot succeeded 10 times to dribble the ball from the inji@dition to the tar-
get field. The success ratio @.7%. Moveover, the computational time also
remains very short ( average valu®8392 s). These experimental results show
that the dribbling control strategy worked efficiently antsessfully in the drib-
bling tasks, and the nonlinear motion control-based dirigldontrol shows better
performance than the NMPC-based one.

One Obstacle One Obstacle Two Obstacles
(NMPC) (Nonlinear Control)| (Nonlinear Control)
Number of 15 15 15
experiments
Number of 9 12 10
successes
Success 60 80 66.7
ratio (%)
Computational 0.138 0.0387 0.0392
time (s)
Failure reason planned paths: 6 planned paths:3 | control method: 2
planned paths: 3

Table 7.2: Summary of experimental results. In the last rdailare reason *“
planned paths” means dribbling experiments failed becafiee big change of
two successive planned paths, a failure reason “contrdioaédenotes dribbling
experiments failed because the dribbling control methatindit give efficient
control values.

Figures 7.6, 7.7 and 7.8 show the detailed results of thresessful dribbling
experiments. The traveled paths of the robot and the balyjinds 7.6(a), 7.7(a)
and 7.8(a) show that the robot successfully dribbled thetbahe target field,
although the moving obstacles influenced the dribbling @sec Figures 7.6(c),
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(a) Initial positions of the ball in the NMPC-based ex-
periments with one moving obstacle.
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(b) Initial positions of the ball in the nonlinear motion
control-based experiments with one moving obstacle.
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(c) Initial positions of the ball in the nonlinear motion
control-based experiments with two moving obstacles.

Figure 7.5: Initial positions of the ball and the desired igvtrajectories of
obstacles in the experiments. The star symbols denote theib#ial positions,
which were randomly chosen in each experiment. The linesd®t two small
circles are the desired moving trajectories of the obssaclehe dotted circles
show the target area.
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7.6(d), 7.7(c), 7.7(d), 7.8(c) and 7.8(d) show filtered treéapositions of the ball
using theH, filter. These results indicate that the robot always sucaged
keeping the ball in the dribbling process. Figures 7.6(bj(l) and 7.8(b) show
the NMPC method is of higher computational complexity tHanonlinear con-
trol method. This is the main reason that the NMPC-basedlinidp control has
a lower success ratio in the experiments. When the contitakes a longer com-
putational time, the robot reacts to a changing environmaorie slowly. This
delay may lead the robot and the ball near the moving obstadleen the new
planned path may have a sharp turning from the old plannedtthn in order to
avoid the collision with the obstacles. This sharp turniesuits in a big change of
two successive planned paths. Therefore, this big changlewfied path requires
very sharp turns of the robot, which causes the ball to sheydrom the robot.
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7.6 Summary

This chapter addressed the dribbling control problem oéwiito soccer robots.
From a hardware perspective, the dribbling mechanism umsiieiRoboCup Mid-
dle Size League teams is mostly designed with a concave draht top compo-
nent, which help forcing the ball towards the center of theots front and pre-
venting the ball from rolling away. Although active dribldemay improve ball
handling, passive dribbling mechanisms are widely useetoehse the complex
hardware construction. The passive dribbling mechanisthefttempto soccer
robot also consists in a concave form and a top componentsgdwally designed
bigger facing size enables the robot to easily catch the ball

The main challenge of dribbling control is the difficulty ofosteling the in-
teractions between the robot and the ball, because it is thapdedict the fric-
tion coefficients and collisions between these two obje&though some teams
take the interactions as a black-box system and use an ANNotehit, the te-
dious process of collecting the training data and trainigANN motivates our
research of designing an analytical dribbling controllar the Attempto soccer
robots. Unlike the usual motion controller taking the robemtter of mass as the
controlled object, a reference point represented by thieegklsall’'s center is used
as the controlled object in the addressed dribbling costrategy. Analyzing the
ball's movement related to the robot, a sufficient constrafrkeeping the ball
is deduced, which indicates an appropriate choice for tis&retk robot orienta-
tions. Making use of the advantage of omnidirectional repoe. the decoupled
translation and rotation, the dribbling task is achieveddytrolling the reference
point to follow a pre-designed path and steering the robientation to track the
desired orientations simultaneously.

The dribbling strategy was fulfilled with the nonlinear nwosticontrol method
introduced in Chapter 4 and the nonlinear model predictov@rol scheme ad-
dressed in Chapter 5. Real experiments showed the highrpenfice and ef-
ficiency of the dribbling control strategy. Comparing theotmotion control
methods, the nonlinear motion control proved to be more @ateqin relation
to performance and run-time efficiency due to its low comporal time. But
the nonlinear model predictive control method showed vexydgperformance in
the case of ball dribbling along static paths. Besides ngag¢ements in the robot
laboratory, the dribbling strategy was successfully usgthle Attempto soccer
robots in the RoboCup 2006 in Bremen and revealed very goddrpgance. Ap-
pendix A shows some image sequences of the dribbling expatsiaken in the
laboratory and during the games of the RoboCup 2006 in Bremen
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Conclusions and Future Work

This thesis is concerned with motion control of omnidirentl robots. Con-
sidering important issues of mobile robots, such as aatuBtoamics, actuator
saturation and constraints of robot systems, this thesiss&s on achieving high
control performance. As a testbed, the motion control ofranidirectional robot
of the Tubingen Attempto robot soccer team, especiallyo#dedribbling control
of the soccer robot, has been considered in this thesis.

8.1 Conclusions

Before designing motion control methods, a control systemhining dynamics
and kinematics is adopted for the Attempto soccer robot.s Bnchitecture al-
lows to design high-level controllers based on the kineomrabdel and low-level
controllers according to the dynamic model. Although ther&rchy enables to
design and test the control law of each level's system seggrdhe influence
between each level has to be considered. For example, thddvigl controller
design has to take into account the performance of the lgel-tmntrolled sys-
tem. Taking actuator saturation and actuator dynamicsantount, the control
system presented in Chapter 3 builds a foundation to desigmlével controllers
with consideration of the low-level system’s performance.

Based on the robot control system, path following of ommiclional robots
was addressed in Chapter 4. The other two basic problem$of nootion con-
trol, trajectory tracking and point stabilization, can legarded as special cases
of the path following problem. The specialties are that thsid time param-
eterized velocities are designed in the trajectory tragkiroblem, and the point
stabilization problem only needs to stabilize the robotra desired pose. Ac-
cording to different ways of choosing the desired robot fpmss$ on the reference
path, two formulations of the path following problem for oigiinectional robots

119
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have been introduced, i.e. the orthogonal projectiondbésenulation and the
Virtual Vehiclebased formulation. Nonlinear controllers for these tworfola-
tions are designed based on Lyapunov’s stability theoresith& formulations of
the path following problem are only based on the path foll@merrors, but do
not depend on specific robot platforms, the proposed cdetsotan be applied
to other omnidirectional robots. Besides the path follgvoontrol, an omnidi-
rectional robot has another degree of freedom to contradrientation. A PD
controller was designed to keep the robot tracking the désrientations even
though the actuators reach saturation.

Although the proposed nonlinear motion controllers gueearclosed-loop
stability even though actuator saturation appears, ttseséili an opportunity to
improve the control performance by considering more infation about the given
path. In Chapter 5, Nonlinear Model Predictive Control (N&)Rvas adopted to
the motion control problem of the Attempto soccer robot. @kesigned NMPC
scheme guarantees closed-loop stability by choosing fkebéeiterminal penalty
and constraints. With the selected numerical solutiores réisults of real-world
experiments show the feasibility of applying NMPC on a fasving omnidirec-
tional robot and better control performance, compareddmtinlinear controllers
addressed in Chapter 4.

Before considering the dribbling control problem, thisdisdfirst focused on
tracking the ball’s relative position with respect to a sacmbot when the ball
is pushed by the robot. The relative position denotes winékieeball is moving
away from the robot and results in changing the robot belhswabball dribbling
and ball catching. A robust/, filter was developed to estimate the ball’s relative
position and velocity, which does not require a priori knealde about the statisti-
cal properties of the process noise and the measuremest o ly depends on
the assumption of finite noise power. The performance ofihefilter was eval-
uated and compared to a Kalman filter. Although the perfoneaf these two
filters is similar, the independence of noise statistics esakeH ., filter more
robust.

For the dribbling problem, this thesis focuses on desigminglytical drib-
bling control methods. With the analysis of the ball's moestrelative to the
robot, a sufficient constraint of keeping the ball is dedualich indicates an
appropriate choice for the desired robot orientations. nTihe dribbling task is
achieved by controlling a reference point denoting therdddoall’s center to fol-
low a pre-designed path and steering the robot orientatitratk the desired ori-
entations. Thanks to the decoupled mobility of the omna@diomal soccer robot,
these two subtasks can be assigned to the control of the tr@imsiation and ro-
tation, respectively. This dribbling control strategy usfifled with the nonlinear
motion control method introduced in Chapter 4 and the NMA@s® addressed
in Chapter 5. Real experiments in the robot laboratory siaitgh performance
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and efficiency of the dribbling control strategy. Moreow#e dribbling control
strategy was successfully used by the Attempto soccer saidRoboCup 2006
in Bremen and revealed very good performance, where theerefe point was
controlled to follow the desired moving direction, and m&hite the robot orien-
tation was controlled to track the desired orientation witPD controller.

Overall, the results in this thesis provide solutions torttaion control prob-
lem of an omnidirectional soccer robot. The control system eontrol meth-
ods presented in this thesis can also be applied to otherdimactional robots.
Moreover, several results addressed in this thesis oféeoiportunity for further
research.

8.2 Future Work

In the control system, the motion controllers are designased on the robot
kinematic model and take actuator dynamics and the maximaeeilwelocity
into account. Real-world experimental results show thedgoerformance of the
controlled system and the guaranteed closed-loop stabégardless of the ap-
pearance of the actuator saturation. However, there aee intiportant issues that
can be coped with to improve the robot motion control, fomagée, modeling the
wheel slippage on the ground and taking the maximum wheatiootacceleration
into account.

The NMPC scheme was successfully used in controlling theemewt of the
Attempto soccer robot. Its good control performance is shiovthe experiments
in Chapter 5. However, finding more efficient NMPC schemebénapplications
of controlling fast moving robots is still an attractive easch direction. The main
difficulty of applying NMPC is the computational effort, witi was shown in the
experimental results of dribbling control against movirgsiacles. Therefore,
to find and to apply more powerful optimization methods isuiesgd by NMPC
schemes. Although the stability problem is quite well sdieairrently, finding
better terminal constraints and penalties to increasedasilfility of the open-
loop optimal control problem is still an active topic in NMRP€search.

To achieve more proficient dribbling, the first attempt migéto design more
advanced dribbling mechanisms, for example, using actil@lkgrs, mounting
special sensors to measure collisions between the robothanlall. Although
the dribbling strategy presented in this thesis servesdsiging analytical drib-
bling controllers, there are also controller parametenseed of adaption. This
denotes another future research of combining the dribldorgrol strategy with
learning methods to obtain the optimal values of these patenst Moreover,
the dribbling strategy depends on a planned path. The patingt used in this
work only designs a collision-free path without considgtine constraints of suc-
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cessful dribbling. As a consequence, some designed patks/Bay sharp turns,
which always result in the ball sliding away from the robohefefore, merging
the constraints of dribbling into the path planner is aldorfe work.



Appendix A

Dribbling Control Results

This appendix shows image scenarios of dribbling experisierthe robot labo-
ratory with a size 0.1 x 4.2 m?. Two scenarios in the games of the RoboCup
2006 in Bremen are illustrated at the end.

123
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Figure A.1: Scenarios of the NMPC-based dribbling contltohg the sinusoidal
reference path described in 7.4.
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Figure A.2: Scenarios of the NMPC-based dribbling contiohg the eight-
shaped reference path described in 7.4.



126 Appendix A. Dribbling Control Results

3 3 3

£2s £2s g25

15 U 15 @ U 15

05 — 05 — 05
% 1 6 7 % 1 2 5 6 7 % 1 6 7

3 4 3 4 3 4
X (m) X (m) X (m)

Figure A.3: Scenarios of a successful dribbling experini@sted on the NMPC
method with one moving obstacle. The line of asterisks dentite planned path.
The solid circle denotes the opponent. The dotted circlevshbe target field.
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Figure A.4: Scenarios of a failing dribbling experiment &&on the NMPC
method with one moving obstacle. The line of asterisks denibte planned path.
The solid circle denotes the opponent. The dotted circlevshibe target field. In
the third image, the robot was required to turn nearly 180eakgyto follow the
planned path. The resulting sharp turning of the robot leate loss of the ball.
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Figure A.5: Scenarios of a successful dribbling experintasied on the nonlin-
ear control method with one moving obstacle. The line ofrésite denotes the
planned path. The solid circle denotes the opponent.
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Figure A.6: Scenarios of a failing dribbling experiment é&&®on the nonlinear
control method with one moving obstacle. The line of asksridenotes the
planned path. As shown in the second and third images, theslm#d away

from the robot when the robot tuned its orientation accaydmthe changes of
the planned paths. The resulting sharp turning of the radaat to the loss of the
ball.
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Figure A.7: Scenarios of a successful dribbling experinbasied on the nonlin-
ear control method with two moving obstacles. The line oéasks denotes the
planned path. The solid circles denote the opponents. Tteddarcle shows the
target field.
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Figure A.8: Scenarios of a failing dribbling experiment é&®on the nonlinear
control method with two moving obstacles. The line of asteidenotes the
planned path. In the fourth image, the robot was requiredirio more than 90
degrees for following the planned path. The resulting shanping of the robot
lead to the loss of the ball.
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Figure A.9: Scenarios of a successful dribbling in the gageErest the Brain-
stormers Tribots at the RoboCup World Cup 2006 in Bremen. Attempto
soccer robot No. 5 makes two full rotations around the badlhield it from the
opponents at the beginning and the end of the scenarios.eBatthe two rota-
tions, the robot dribbles the ball to approach the goal. Tiegies are sorted from
left to right and from top to bottom.
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Figure A.10: Scenarios of a successful dribbling in the gageenst the AIS/BIT
robots at the RoboCup World Cup 2006 in Bremen. The Attempteaer robot
No. 5 catches the ball in the neighborhood of two opponentshigs the ball out
of this tight situation, avoids the third approaching opginand finally shoots
towards the goal. The images are sorted from left to rightfeord top to bottom.
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