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Chapter 1

Introduction

The prominence of formal logic is justified by its many successes. These
successes are more often related to logical syntax providing a concise means
of communicating the content it is reasoned about and less often about the
process of reasoning itself. This is especially the case for first-order logic,
which is often employed as universal specification language. Applications of
logic in this sense very often extend the logical language in order to obtain
the descriptiveness, which is required to detail the subject matter at hand.
More often than otherwise, the logical formalism is used as specificational
shorthand only, the actual reasoning being performed outside of the formal
system. Be that as it may, a significant side effect of such use of logical syntax
has been the emergence of the opinion that logic is about logical syntax, that
it is about expressing concrete content with the help of logical formalism.

Of course, such a conception is erroneous. Instead, logic is the study of
reasoning and of delivering sound argument. The focus lies specifically on
the structure of the argument and, ideally, the content of the argument can
be disregarded entirely. The Aristotelean syllogisms must be considered as
the first logical system in this sense.! Apart from numerous reviews and
commentaries and a few independent observations by medieval and early
modern scholars, Aristoteles observations outlasted 22 centuries without any
need of elaboration, let alone modification.

From the mid 19th century onward, logic was being recast into a quite new
discipline, however. This was almost always done in view of particular appli-
cations, especially investigations into the foundations of mathematics. These
endeavours suggested the deployment of a detailed formalism, into which the
existent mathematical formalism could easily be incorporated. However, just

IFor example, the syllogism, which is called modus barbara admits the progression from
the major premiss “all Y are Z” and the minor premiss “all X are Y ” to the conclusion
“all X are Z7, regardless of the instantiation of X, Y and Z.



as mathematical formalism is generally considered to be nothing but a means
of expression for ideal entities, the newly introduced logical formalism has
also fallen under the thrall of such a perspective. Logical formulae were as-
sumed to be meaningful only in view of the abstract value entities “truth” and
“falsity”, which were easily absorbed into mathematical structures. Hence,
formal logic enabled a shift from considering the structure of an argument
towards considering the structure of a complex proposition, as expressed by
a particular complex formula. However, the structure of a formula is merely
a series of instructions that specifies, how abstrract values are to be manip-
ulated.

In the year 1922, at the high time and in the immediate vicinity of
Hilbert’s formalist programme, the physicist Paul Hertz began advocating
the revivification of syllogistic reasoning. His logical articles evidence a highly
original mind, as he managed to create an entirely independent approach to
the industriously investigated discipline of logic on the basis of the syllo-
gistic rule modus barbara alone. Hertz studied the properties of systems of
sentences of the form (aq,...,a,) — b, which express relations of elemen-
tary assumptions and elementary assertions,? in view of an inference rule,
which is related to the syllogistic modus barbara. A decade later, Hertz di-
rectly argued against the constriction of logic to the realm of formal logic,
which he by then prejudicially referred to as “logical conventionalism”. Un-
fortunately, his ideas hardly received any recognition, until Gerhard Gentzen
picked them up in the early 1930s. However, Gentzen only briefly worked
with Hertz’ pure logic, before extending it and fusing it with formal logic
into his conception of logic, which is today called “ structural proof theory”.
While Gentzen certainly retained important ideas of Hertz, such as reason-
ing with implicit or explicit relations of assumptions and assertions, at the
same time he relegated them to a secondary status. In his logistic calculus
of explicit relations of assumptions and assertions, which he renamed “se-
quents”, Gentzen distinguishes logical rules, which are concerned with logical
formalism, from structural rules, which govern issues related to the structure
of the sequents. Simply by means of his terminology, the eminence of logical
syntax was reemphasised. This was even further corroborated by Gentzen’s
main result, the Hauptsatz, which states that the main structural rule of cut,
which is closely related to Hertz’ syllogistic inference rule, is obsolete in the
presence of the logical rules.

Far from marking the end point of the interest in structural reasoning,
it was the success of Gentzen’s structural proof theory, which paved the
way for a wider recognition of the structural aspects of reasoning. However,

2 Actually, Hertz also employs physical notions, such as events, causes and effects.
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such interest rarely goes as far as to challenge the formalist paradigm alto-
gether. In view of the swift fading of Paul Hertz’ original ideas, the question,
whether a purely structural approach in his sense is an adequate alternative
to Gentzen’s logistic calculus and its emphasis of logical language, or whether
it was necessarily restricted to a supporting role, has been awaiting closer
examination. It is this question that will be addressed in this investigation.

The Objectives

The guiding theme of our examination of the logistic calculus is the shift of
the emphasis from its syntactic aspects to its structural aspects. For this
purpose we adopt a bottom-up perspective on derivations in a particular
variant of the classical logistic calculus, called RK (for “reference calculus”).
Instead of eliminating instances of the cut rule, we will use a plenitude of
instances of this structural rule in order to separate every complex formula or
subformula, which occurs in a sequent, from its context by means of a unique
atomic formula. At the same time, very restricted instances of the logical
rules shall be employed, which are only applicable to sequents, which result
from such atomic cuts. By alternating applications of these rules, a sequent
can be decomposed into a large number of elementary structural sequents
(ESSs). As these elementary structural sequents do not contain any complex
logical formulae, they correspond to the sentences of Hertz.

We will then argue that the collection of these ESSs, which we shall
call the explosion set of the sequent, not only has the same expressiveness
as the original sequent and all of the formulae it contains, but that it can
indeed be considered as the meaning of the sequent and its formulae in the
first place. This argument consists of two parts. Firstly, we will exhibit
that each occurrence of a subformula in the sequent can be uniquely related
to a particular subset of this collection of ESSs. Secondly, we will show
that every branch of every possible derivation of that sequent in RK can be
mapped onto a family of particular subsets, which are called connexion sets,
which is linearly ordered by set inclusion, such that each of these subsets
corresponds to a particular sequent of that branch. Such a correspondence
is exhibited by employing the cut rule on the elementary structural sequents
of the connexion set. In a certain sense, we will thereby have achieved a
reversion to purely structural reasoning.

Another issue, which we wish to address, is that of a suitable interpre-
tation of elementary structural sequents. Although these sequents do not
contain logical syntax as far as logical connectives are concerned, they must
nonetheless be considered as syntactic entities, as the logistic calculus, from
which they were obtained, is a syntactic calculus. In Hertz’ conception of
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structural reasoning, on the other hand, sentences were considered as ex-
pressions of particular relations. Indeed, Paul Hertz had already used graph
representations for those special cases of sentences, which are of the form
a — b. We will extend this intuition and interpret explosion sets by a par-
ticular class of directed hypergraphs, which we will call tomographs.® An
elementary structural sequent aq,...,a,, — by,...,b, and its relational in-
terpretation ({al, can b {b, bn}) only differ in as far as the order of
elements is relevant in the syntactic representation of the sequent. Thus
the remaining logical meta-syntax of a sequent can be swiftly related to an
abstract set-theoretic entity in a loss-free manner.?

Significant Restrictions

There are a number of restrictions, which we had to impose on this inves-
tigation in order to keep it manageable. The first restriction concerns the
fact that the calculus, which is employed in order to obtain the explosion set
of a sequent, is intended to extract the structural constituents of sequents
containing logical formulae. It is not a calculus, which establishes, whether a
sequent is provable in the original logistic calculus or the variant RK, which
we shall consider. We will briefly address this issue by indicating, how a
procedure can be developed, which decides for any explosion set, whether it
was obtained from a provable sequent or not.

The most important limitation is that we will only consider the proposi-
tional fragment of the logistic calculus. This is done for a number of reasons,
to which we will only briefly allude. First and foremost, we wanted to consider
a contraction-free calculus, in which the number of subformula occurrences
cannot increase as a derivation is developed from the bottom-up. This will
allow the relation of formula occurrences in the end sequent to particular
elementary structural sequents and vice versa. As it is not possible to re-
tain the full strength of the logistic predicate calculus in the absence of the
contraction rule (or a reformulation of the rules for the quantifiers, which
amounts to the same increase of subformula occurrences), we desisted from
extending the investigation to the predicate calculus. Another issue, which
has a bearing on the question of considering the predicate calculus, is the in-
tended use of local logical rules. The variable condition of the quantifier rules

3The name expresses the fact that all of the internal vertices of a tomograph are cut
vertices, i.e. removing any one of these vertices results in a directed hypergraph, which is
disconnected. Thus, tomographs have a very frail structure.

4We have to introduce occurrence instances of sequents, in which different occurrences
of the same formula are explicitly distinguished. Otherwise, the relational interpretation
would identify such occurrences.

12



is non-local in the sense that we wish to adopt. While it might be possible
to add quantifier scope to explosion sets and their relational interpretations,
e.g. by considering particular subsets thereof, it would complicate matters
beyond the limits of this investigation.

Another important restriction lies in disregarding the intuitionistic logis-
tic calculus. This has, again, to do with our approach of employing local
logical rules. It is widely known that some of the intuitionistic variants of
the logical rules have a global effect on the state of a derivation in as far as
they can effect the discharge of certain formulae. Just as in the case of the
non-local effects of quantifier rules, a significantly more elaborate treatment
could account for the involved intricacies. As it is subject to debate, whether
the logistic calculus provides a natural framework for intuitionistic logic at
all, this matter is avoided at this point.

Outlining the Course of Action

In the first part, the context of this investigation, which has briefly been
summed up above, will be properly set out. In chapter 2, Paul Hertz’ struc-
tural logic is described in some detail and a discussion of its most distin-
guishing features is given. In chapter 3, Gerhard Gentzen’s contribution to
Hertz’ logic is presented and the logistic calculus is properly introduced and
compared to the purely structural logic. In chapter 4, we introduce the par-
ticular variant RK of the classical logistic propositional calculus, which is
particularly well-suited for proof-search and will serve as a reference calcu-
lus for the following investigations. Moreover, the restricted variants of the
inference rules, which are used in the explosion calculus, are also introduced
and discussed at that point.

The second part is concerned with the explosion procedure and explo-
sion sets. The three stages of the explosion procedure are presented in some
detail in chapter 5. In chapter 6, a number of examples for explosion proce-
dures are presented. Several properties of explosion sets are stated, the most
important of which is the uniqueness up to renaming of new variables. It is
demonstrated in chapter 7 that the meaning of formula occurrences as well as
the base structure of a sequent is indeed represented by particular collections
of elementary structural sequents of the explosion set obtained from that se-
quent. In chapter 8, we trace particular connections within explosion sets,
based on RK-derivations of the corresponding sequent. For this purpose, the
notions of connexion set and connexion tree are introduced. Based on these
notions, in chapter 9 we will turn to the issue of deciding, whether an explo-
sion set was derived from a provable sequent. For this purpose we introduce
a modified notion of connexion set, which does not depend on any particular
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RK-derivation. A simple refutation procedure is developed in detail, and a
sketch is provided, how it can be extended to a decision procedure.

The third part is concerned with the relational interpretation of explosion
sets. The required notions are introduced in chapter 10, including general
definitions of directed hypergraphs and their components, the extension of
the notions of traversals of graphs to corresponding partial notions and the
required notion of a total traversal of a hypergraph. In chapter 11 the rela-
tional interpretation of explosion sets is presented, connexion sets are related
to strands, and the notion of a logical tomograph, which is the immediate
development of a directed hypergraph from a logical sequent, is finally intro-
duced. The issues of refutability and decidability of a sequent based on its
relational interpretation, are addressed in chapter 12. For this purpose, the
connection between total traversals and connexion sets will be exploited in
order to relate these issues to those regarding explosion sets. In chapter 13,
a procedure for developing a relational interpretation of a sequent directly,
i.e. without first generating its explosion set, is presented. The hypergraphs
developed by that procedure are called logical tomographs. Chapter 14 con-
cludes this investigation with a brief discussion.

14



Part 1

The Elements of Structural
Reasoning
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Chapter 2

Paul Hertz — Satzsysteme

From the year 1912 until his emigration to the United States in the 1930s,
Paul Hertz held positions at the Georg-August-Universitiat in Gottingen.
Very likely due to the vicinity of Hilbert’s industry, Hertz eventually de-
veloped a taste for matters of logic. It is very remarkable, then, that he
managed to develop a highly original approach despite of this surely influen-
tial ambience. Thoroughly shunning the formalistic orientation of Hilbert’s
programme, Hertz’ logic instead refers back to the syllogistic method of Aris-
toteles, particularly the modus barbara. Thereby, Hertz was able to avoid
the particular focus of Hilbert’s programme and formal logic in general of
providing a formal framework for mathematics. His perspective on logic was
not bound to any particular kind of content but that of an abstract interest
in the process of reasoning itself. His entirely structural approach to logic
turned out to be quite different to the understanding of his contemporaries,
however. Only in the investigations of Gerhard Gentzen did Hertz’ logic bear
fruit, but not without the forfeit of one of Hertz’ most estimated principles.
For in his later works, he explicitly argued that logic is not about language,
and that, therefore, any formal approach must misrepresent the essence of
logic. A surprising aspect of Paul Hertz’ logic is, as we shall see, that it
bears a strong resemblance to and anticipates several notions of much later
developments in informatics, most notably graph theory.!

2.1 The Conception of Structural Logic

The title of Paul Hertz’ dissertation [Her04] reveals that, in the beginnig of
his scientific career, starting in 1903, his field of expertise was electrodynam-

IThis fact has also remained obscure, and certain important results and notions in
graph theory were independently reformulated several decades after Hertz' publications.
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ics. In the following years he made regular contributions to that field, up
to his habilitation in 1908. Around that time his attention shifted to ther-
modynamics with a particular focus on statistical mechanics. Following the
interruption caused by the Great War, Paul Hertz resumed his scientific work
in that very same field, culminating in his 1922 article Statistische Mechanik
[Her22a).

At this point, his interest shifted suddenly towards logic. In the same
year, his first in a series of articles is published: Uber Aziomensysteme fiir
beliebige Satzsysteme. 1. Teil. Sdtze ersten Grades [Her22b]. In this, Hertz
introduces his structural logic, which is based on the notion of sentences of
the form a — b, where a and b are taken from a set of real elements.? In
view of his later articles, these sentences are called sentences of first degree.

Hertz then gives a single rule of inference, which is simply called inference
(“Schluf”):

l.a—b
II.b— ¢

IIl. a — ¢

In this scheme, I. is called the minor sentence, 11. is called the major sen-
tence, and III. is called the conclusion; 1. and II. are called the premises.
A proof of a sentence ¢ is a system of inferences ending in e, where each
minor or major sentence of an inference is either taken from a fixed set of
sentences & or obtained as conclusion of another inference. Furthermore,
for a set of sentences &, that which Hertz calls a closed system of sentences
(“abgeschlossenes Satzsystem”)?, an independent aziom system 2 is a set of
sentences, from which each sentence of G can be obtained by repeated appli-
cations of the inference rule to sentences of 2, whereas no sentence of 2 can
be inferred from other sentences of 2 in this manner. Hertz then develops
a sufficient condition for the case that a system of sentences has a unique
axiom system. Moreover, he investigates, how the size of axiom systems can
be reduced by the introduction of ideal elements. For example, consider the
six sentences a; — by, a1 — by, a; — by and ay — by, as — by, as — bs.
Consider then an ideal element p, which does not occur in any sentence under
consideration and the five new sentences a; — p, as — p and p — by, p — ba,

2Here, “real” is understood as opposed to “ideal” in a very specific sense unrelated to
sets of numbers.

3The past participle “closed” corresponds to the German “abgeschlossen”, the past
participle of “abschliefen”. The latter is obtained by prefixing “schlieen”, which is trans-
lated into English as “infer”, with the prefix “ab-”, which already indicates closure. In
this sense, an “abgeschlossenes Satzsystem” is literally a “system of sentences closed with
regard to inference”.
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p — bs. It is obvious that each one of the former sentences can be inferred
by some pair of the latter sentences. Using ideal elements, Hertz established
several results about minimal systems of sentences, which are too involved
to go into at this point.

The first article on logic was succeeded in the following year by Uber
Axiomensysteme fiir beliebige Satzsysteme. II. Teil. Sdtze hoheren Grades
[Her23], in which his investigations are extended to include sentences of the
form ay,...,a, — b, so called sentences of higher degree. Utilising the ex-
tended structure of the antecedent, it should possible to weaken any sentence
by adding additional elements to the antecedent. Hertz introduces a new rule,
called itmmediate inference, which accounts for this possibility:

L. l(ay,as,...) — ¢

II. H(bl,bg,...al,ag,...) — C

The sole rule of inference, which was sufficient in the case of sentences of first
degree, is extended and renamed “syllogism”:

( (al,al,...) — by
I. (a%,a3,...) — by
\ :
II. H (bl,bg,...,al,a2,...) — C
ay,ay, ...
I1I. a%,a%,... ap,as,...| — ¢

In both rules the sentence or sentences above the line are the premiss or
premises and the sentence under the line is the conclusion. In the syllogism
rule, 1. is called the system of minor sentences and II. is called the major
sentence. In the antecedent of the major sentence, the elements by, bs, . .. are
called main elements and the ay, as, ... are called accessory elements. Note
that despite of the use of dots, none of the antecedents in any of the rules
may be an infinitary object. Repeated occurrences of the same element in an
antecedent are to be discounted, a fact that is explicitly emphasised in the
syllogism rule by the notational marker ||. The notion of proof is generalised
over these new rules. Hertz stipulated that the set of elements, from which
the succendent and the antecedent of a sentence are made up, be finite.
His purpose was to be able to characterise closed systems of sentences, by
which he understood finite sets of sentences that are closed under the rules of
inference. This self-imposed limitation to finite sets of sentences necessitates
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the restriction to a finite set of elements, as any application of immediate
inference can introduce a new element, which is not already present in any
of the sentences of the system, into an arbitrarily long antecedent, if there
were an infinite supply of them. Hence, a system of sentences cannot attain
closure under immediate inference, unless the set of elements is finite. In
addition to proposing the notion of a normal proof of a sentence, Hertz gave
a sufficient condition for the uniqueness of an independent axiom system
for a closed system of sentences. Furthermore, instead of resorting to ideal

elements as he did in the first part, he introduced (ay, ..., a,) — [b1,..., b |
as an abbreviation for the system of sentences ranging from (ay, ..., a,) — b;
to (a1,...,an) — by

In 1929, a third article Uber Aziomensysteme fiir beliebige Satzsysteme
[Her29] completed the series. Some of the results of the previous article were
restated in a revised and technically more concise form and subsequently
generalised to take into account what he called macro sentences of the form
ar(1, . T )y (T 41y -5 Thy) = BTk, - Thyy,) and infinite
systems of sentences. In the context of that article, those sentences, which
had been investigated in the two preceding publications, were called micro
sentences. As part of the revision, Hertz introduced two types of normal
proofs, each having a particular shape, the Aristotelian normal proof and
the Goclenian normal proof, and showed that each sentence, which has a
proof, also has a normal proof of each type.* For the treatment of macro
sentences, which is covered in a relatively independent second part of the
article, he gave up on the finitistic approach, which he had entertained in
the first articles, and had the x; range over an enumerable domain of entities.
He called these subordinary members, and from these the ordinary members
of the form «(xy,...,x;) are made up. In addition to immediate inference
and syllogism, he introduced another rule, called inference by binding, which
allows the replacement of all identical subordinary members of a sentence
by some other subordinary member of the same sentence. Hertz gave the
following example of binding, in which 3 is bound to z;:

p(xlv x2)7 p(flf27 ZI}'3> - p(xh ,’,U3)

p(x1, 2), p(T2, 1) — p(T1, 71)

Hertz briefly mentions that by modifying the notion of a normal proof, which
takes binding into account, the existence of normal proofs for provable sen-
tences holds even for macro sentences. As fourth and final rule, formal in-
ference allows the replacement of arbitrary symbols occurring in a sentence

4This has been investigated in detail by Schroeder-Heister in [SH02].
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by new symbols, as long as identical symbols in the sentence are replaced
by the same new symbol. The rule is added as a convenience in order to
“enhance the recognisability” of the conclusion of a sentence with regard to
its premiss or premises, as Hertz elucidated. Without this explicit fourth
rule, an application of binding, for example, might have to be expressed in
the following form in the context of some concrete proof:

p(x1,x2), p(w2, 13) — p(1,73)

p($37 $4)ap($47 373) - P($47 $4)

Although the bindings are adequately expressed in the conclusion, this is
not as immediately obvious as it was in the frist example of this inference
step. With the help of formal inference, changes in the names of subordinate
members have to be performed explicitly. The inference step above has to
be split into two separate steps:

p(xl,.]}'g),p(xg,flfg) - p(x17x3>
p(x1, 2), p(w2, 11) — p(T1,71)

p($37 $4)ap($47 373) - P($47 $4)

As premiss and conclusion of a formal inference represent the same structural
content, Hertz made clear that this rule of inference is only added because of
its utility in view of the sybolic representation of this content. Partial results
were developed for questions regarding the existence of axiom systems for
systems of macro sentences. Apart from these mostly technical results, Paul
Hertz” most important insight is to be found on less than two pages in the
initial part of this article concerning micro sentences, where he hinted at the
possibility of a “considerable generalisation” of some of the most fundamen-
tal results for micro sentences in the following sense. Abbreviating sentences
by ai,...,a,,b, and abbrevating inferences or, more generally, provability
relations by (ay,...,a,) = b, Hertz stated that the same two rules, which
he had introduced for the purpose of reasoning over sentences, immediate
inference and syllogism, were also suitable for reasoning over provability re-
lations. This observation is highly relevant in view of Gentzen’s suggested
relation between his calculus of natural deduction and the logistic calculus.
Three more of Paul Hertz contributions to logic, two of which are of a
more general philosophical nature, should be mentioned at this point. In
[Her28], he developed a semantics for micro sentences and addressed several
particularities concerning sentences of the first degree. In [Her31] Hertz gave
a very general justification of the modus barbara as the most important law
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of reasoning, which his rule of syllogism can be considered a generalisation
of. Finally, the article [Her37b] is an argument against the, as Hertz called
it, “logical conventionalism” of Carnap. His fundamental disagreement with
Carnap lay in Hertz’ rejection of the reduction of logic to formal language
and the corresponding reduction of reasoning to applications of admissible
transformations of formulae. He argued that, contrary to rules of admissible
transformation, which depend on the particulars of the chosen formal lan-
guage, the syllogistic modus barbara is a law of logical reasoning in itself, and
has, therefore, a more fundamental status. Even his late articles on physics,
[Her30] and [Her37a], which are concerned with very gerenal notions such
as causality and the direction of time, are rather epistemological in nature
with a particular focus on matters of reasoning about causation. In the first
of these articles, Hertz actually used the abbreviation a — b to express the
relation between a cause a and its effect b.

It should be apparent even from this very limited exposition of some of
the elements of Hertz” work that his conception of logic was very different
from that, which was in his eyes a “logical conventionalism”. His results
were at the same time groundbreaking, anticipating later developments in
proof theory, as well as conceptionally novel and technically intricate. Un-
fortunately, several of his ideas were only briefly sketched out or hinted at
but not thoroughly executed. All of these factors might have colluded to
eclipse Hertz” influence. Neither must it be forgotten that at the same time
and even at the same locality, Hilbert’s massive and widely acknowledged
endeavour was underway and being propagated. It could be speculated that
Paul Hertz articles of 1922 and 1923 were inspired by Hilbert’s program
and at the same time developed as a tentative alternative to the formalist
paradigm employed therein. What is certain is that the particular structural
nature of Paul Hertz’ logic was picked up and developed further by Gerhard
Gentzen, albeit at the cost of abandoning Hertz’ epistomological misgivings
regarding formalism.

2.2 Noteworthy Particularities

While Hertz put a particular emphasis on many technical issues, the fun-
damental principles, upon which his structural reasoning rested, were only
alluded to in an often matter-of-factly manner with little or no explication.
Any attempted return to a purely structural logic must begin with a revisi-
tation of its fundamental principles. Specifically, to give a brief and perhaps
acute summary, it shall be argued in the remainder of this chapter that Hertz’
structural logic rested upon three assumptions, namely that

22



1) logic is reasoning about the dynamics of systems;
2) finitistic logic is interesting in itself;
3) logic has nothing to do with language.

Assumption 1) summarises Hertz’ understanding of a logical sentence as a
particular causal relation between events, and a system of sentences as pro-
viding a specification for the entire dynamics of some abstract system. This
assumption, especially in connection with 3) contrasts the conventional value-
based, static logical semantics. Assumption 2), while it is not essential in
itself, is nonetheless important in view of a contemporary understanding of
Hertz" work, for, as we shall see, together with 1) it suggests a close corre-
spondence between logic and graph theory. The most important of Hertz’
assumptions by far is 3), for it suggests that any kind of formal logic, which
is at all concerned with complex formulae made up of logical connectives, in-
cluding proof theory, is at best a mere front-end for that, which is inherently
logical, namely the process of reasoning.

Logic as Descriptive Dynamics

Both the intuitive interpretation of sentences provided by Hertz in [Her29]°,
whereby a sentence (aq,...,a,) — b is taken as an expression of the en-
tailment of event b by events aq,ao,...,a,, and the usage of the very same
notation for the relation of cause and effect in [Her30] indicate that for Paul
Hertz logic was concerned with reasoning about chains of abstract events.
A logical sentence then expresses a single abstract relation of one or more
events, the causes, on one hand and a single event, the effect, on the other
hand. We might envisage such a relation as a process, which occurs when
all the causes coincide, thereby producing the effect. Since both events and
elements, from which sentences are made up, are abstract entities, we shall
not distinguish between them at this point. Likewise, sentences are to be
considered as expressing the aforementioned kinds of relations. Given a sys-
tem of causal relations, an inference step using the rule of syllogism is then
a means of generating a more immediate relation of this kind by discovering
effects in certain relations, which are at the same time contributing causes
of another relation. Syllogism can then be used successively to deduce less
and less “immediate” relations of this kind from a system of given relations.
Conversely, the rule provides a means for constructing an independent sys-
tem of such relations, which are at the same time the most elementary causal

5 “Dabei sind unter ay,asz,...,a, etwa Ereignisse (abstrakt genommen; nicht konkrete
Einzelereignisse) zu verstehen, deren Fintreten das Eintreten von b bedingt.”, p.459
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relations of the system and yet account for all the possible relations that are
consequences of the system, the axioms of the system. Immediate inference
can be used to weaken the dependencies of effects on causes. Then, out of all
possible configurations of simultaneous occurrences of events as causes, only
those that are absolutely essential for particular events have to be included.
Thereby, axioms can be kept as concise as possible as far as their causes are
concerned.

A collection of events could be considered as the state of some abstract
system, where the individual events are the variable attributes or micro states
of the system. This terminology is borrowed from that used in statistical
mechanics, the field Paul Hertz was working on before he turned his atten-
tion to logic. Of course, “state”, “micro state” and “state transition” are no
longer exclusively used in physics. Apparently, Hertz” concept of an “abstract
event” is very much related to the abstract states of automata in informatics.
Adopting this perspective, sentences represent individual tuples of relations
of a (generalised) state transition system, i.e. the relations represent the pos-
sible dynamics of such a system. Reasoning is then the process of obtaining
insights into the eventual or overall potential dynamics of a given system on
the basis of its elementary potential dynamics, as expressed bz the axioms,
without actually having the system undergo the transitions.

A dynamics of such systems in the sense of a very simple operational
semantics could be developed along the lines given in [Her28]. In the context
of establishing the result that every provable sentence has a normal proof,
Hertz called an element b distinguished with regard to distinguished elements
A, if (ay,...,a,) — bis an axiom and {ay,...,a,} C A.° The set A as subset
of the set of all elements could be considered a state of the system, and the
relation of being a distinguished element could be used to construct a simple
operational semantics along the lines of A — A U {b} or the slightly more
involved A — (A\ {a,...,a,}) U {b}.

While Paul Hertz did not actually develop an operational semantics of any
kind, the intuitive interpretation he provided for sentences clearly suggests
the possibility. His logic is not merely an instrument for describing state
transition systems, however. Instead, Hertz repeatedly suggested that logic
is inherently about dynamics. Sentences express the causal dynamics of
events, and reasoning is a dynamic process of inferring new sentences from
systems of sentences. The entirety of Hertz’ logic seems, therefore, aimed
at a general descriptive dynamics. Such an interpretation is corroborated
in [Her37b], where he argued that the attempt to capture complex logical

6This is a somewhat simplified account. In fact, Hertz inductively defines sets of i-
distinguished elements.
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correlations formally, i.e. by complex syntactic entities, which are inherently
static, is fundamentally flawed.”

What lies at the core of a descriptive dynamics is the relational aspect
of causes and effect, which is expressed in the logical sentences. Gentzen
explicitly shifted from this physical terminology to a logical one, and obtained
relations of assumptions and assertions. Regardless of the terminology, the
central claim of Hertz was that reasoning is inextricably concerned with the
manipulation of abstract relations, for which he chose descriptive dynamics
as his prime example.

Finitistic Logic

Hertz curious insistence in keeping the set of elements, from which sentences
are made up, finite, seems unfertile in contrast to the mathematical presenti-
ment that only infinite realms are worth investigating. The ostensible reason
for it is the fact that he wished to investigate sets of finite sentences, which
are closed under the application of the inference rules. In view of the rule
of immediate inference, the presupposition of an infinite number of elements
would make this scheme unattainable from the outset. This self-imposed
restriction becomes only understandable, when we consider some of Hertz’
results. For example, the characterisation of closed systems of sentences in
view of the kind of axiom systems that they possess makes clear that even
under this restriction there is a wealth of results to be uncovered. Often
enough, Paul Hertz did not elaborate on his curtly presented results, but
quickly moved on to address yet another aspect of his logic.

A detached vista on his logic, especially his first article [Her22b], in which
he presented his investigations into sentences of first degree, i.e. of the kind
a — b, reveals an unexpected conceptional ingenuity and pioneering spirit.
In order to see this, one has to step outside of the conceptional context of
logic, into which Hertz embedded this investigation simply by using logical
terminology. What Hertz called a “system of sentences”, say &, made up
from elements of a given “complex”, which we shall call £, could be under-
stood as a binary relation on a given set of elements. If this is written as
(E, ), it becomes immediately obvious that Hertz” systems of sentences cor-
respond to directed graphs. The condition of finiteness of F, curious from a
traditionalistic logical point of view, becomes the default assumption of con-
temporary graph theory, where the richness of the study of finite graphs is

"There is a particular comment of Hertz, which seems to indicate otherwise. However,
in the context of having giving only a very vague intuitive interpretation of the particular
association of symbols a — b, this remark can be conceived as an informal adduction for
readers, who are already familiar with the Russell-Hilbert approach.
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taken for granted, and where infinitary graphs lie at the periphery of the in-
terest. In order to corroborate the claim that Hertz anticipated graph theory,
the terminology of his 1922 article could be systematically related to graph
theoretical notions. Unfortunately, due to the extremely technical nature of
Hertz’ atricle, this cannot be adequately condensed into a brief exposition.
Moreover, due to his pre-orthodox approach, some of his most elementary
notions correspond to somewhat specific graph theoretical notions, which
makes an easily evident correlation difficult. What is obvious, however, is
the fact that the sole inference rule ( “Schluf”) enriches a system of sentences
by a single transitive step. A closed system of sentences on F, which is
obtained from a system of sentences (F, &), is then simply the transitively
closed graph (E,&*). An independent axiom system (E,2) is a minimal
directed spanning graph of the system of sentences (E,&). In contrast to
the early precursors of graph theory, Paul Hertz developed an original sys-
tematic graph theory in the guise of a study of systems of sentences as an
abstract model of the reasoning process.® He conceptionalised, investigated
and solved questions concerning such systems of sentences. In doing so, he
obtained several interesting results, such as the sufficient condition for the
unique existence of a minimal directed spanning graph of a directed graph.
Unfortunately, the generalisation of his logic to sentences of higher degree,
which have the richer general structure (aq,...,a,) — b, renders a simple
graph theoretical analogy impossible. Instead, two equivalent generalisations
are possible. The first one is a straightforward generalisation to relations
between non-empty sets of elements and sigleton sets of elements. In this
approach, the sentence above would represent the tuple ({ay,...,a,},{b}).
Given a set of elements F, a system of sentences could then be considered as
graph on P(FE), or, equivalently, a hypergraph on F itself. The second possi-
bility involves the introduction of sentence designators. For example, calling
the above sentence e, the set {(al, e),...,(an,e), (e, b)} could be considered
as a bipartite graph on the set of elements and the set of sentence desig-
nators. Paul Hertz did not explicitly provide any formal interpretation for
sentences of higher degree above the intuitive one. The manner, in which he
considered “complexes” (ay,...,a,) of elements suggests that the first graph
theoretical interpretation is more in spirit of Hertz than the second.’

8Leonhard Euler and Augustin Cauchy, who are generally considered as the originators
of graph theory, were inspired by specific problems or the realisation that particular classes
of graphs can be used as abstract representations of particular classes of concrete problems.
However, there is no theory concerning these abstract representations themselves worth
mentioning to be found in their works, certainly not in the sense of what are nowadays
considered as results in general graph theory.

90ccasionally, Hertz does use designators for sentences, such as e = (a1, ...,a,) — b.
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Hertz’ restriction to finite sets of elements, from which sentences are to
be constructed, and finite systems of sentences expressing relations are only
minor factors suggesting an interrelation between his structural logic and
graph theory. The entire set up and terminology of his investigations, es-
pecially in [Her22b] and [Her23], bear a striking resemblance to later graph
theoretical notions. Moreover, the focus of Hertz’ finitistic approach lies in
the investigation of the consequences of particular arrangements of individual
sentences occurring in systems of sentences in view of overall properties of
these systems, in particular the existence of independent axiom systems; the
same problems, with appropriately modified terminology, are typical ques-
tions of graph theory. Although Hertz strove to generalise his investigations
to infinite systems of sentences and macro sentences, this was envisioned as
an extension of the techniques, which he had developed and applied to the
finitistic investigations of micro sentences. Unfortunately, his remarks on
macro sentences are only of a very general nature.

Avoidance of Logical Language

Throughout his logical articles, Paul Hertz diligently evaded the use of logical
connectives or even sentence connectors of a more general kind in connection
with his sentences. Considering the historical context of his work, such an
avoidance cannot be considered a mere excentricity. For Hertz, this must
have been a deliberate commitment, but, unfortunately, he gave no reasons
for his abandonment of the then fashionable approach of Russell, which had
been picked up and advanced by Hilbert.

An explicit rejection of connectives can be found in [Her22b]. Having
introduced ideal elements in order to minimise the size of axiom systems,
Hertz remarks that by means of ideal elements the usage of the word “or” in
the antecedent as well as the usage of the word “and” in the succedent can
be avoided. For example, The six sentences a; — by, a; — by, a; — b3 and
as — by, as — by, as — bs can be replaced by the new sentences a; — p,
as — p and p — by, p — by, p — bs, where p is an ideal element, which does
not already occur in any other sentence. The meaning of Hertz' remark is
not entirely clear, but it can be speculated that he suggested that with the
help of connectives the six sentences could be expressed in a single sentence,
such as (a; or ay) — (by and by and bs3).** Tt appears that the avoidance
of logical connectives is achieved in passing. An explicit demonstration of
sentences enriched with logical connectives occurs in [Her30], where he made

OWhy such is avoided by means of the ideal element p, is not clear from this brief
example, however. For it should still be possible to obtain both (a; or az) — p and
p — (b1 and by and b3).

27



some cursory remarks on the validity of certain sentences, in which such
connectives occur, with respect to sentences, in which only elements occur.
The most impressive example, given on page 213, can be summarised as
follows. Assuming that it is a; — by, by — aq, as — by and by — a9, then it
is also a; — (by or by) and as — (by or by), but neither (by or by) — a; nor
(by or by) — ag. This clearly shows that he was aware of how the well-known
logical connectives could be incorporated into his logic.

In [Her37b], Paul Hertz explicitly argued against what he called logical
conventionalism, which he indirectly attibuted to Carnap. He completely
rejected the claim that logic has anything to do with language, including
the logical connectives. His motivation for such a rejection is based on epis-
temological grounds, for Hertz assumed that a logical sentence in Carnap’s
understanding is not a recognition of a fundamental regularity, but merely
a stipulation, an agreement, which has to be interpreted even in relation to
the language, in which it is expressed. It appears that Hertz eschewed such
a logical relativism, because it merely adds another layer, which requires jus-
tification and proper interpretation, without adding any real benefit. This
confirms Hertz’ understanding of logical sentences as expressing the most
elementary relations between abstracta.

The issue that he himself uses a meta-notation for these relations, which
incorporates both implicative aspects via the distinction between antecedent
and succedent of sentences as well as conjunctive aspects in their complex
antecedents, has no bearing on this position. For Hertz’, a logical sentence
was inherently about entailment and at the same time inherently about ex-
pressing possible joint dependencies, each sentence representing an elemen-
tary logical compound. The elements of an antecedent have the property of
conjointly entailing the succedent. Therefore, the notion of conjunction is
not (and cannot be) an isolated and static logical concept, but is inherently
meaningful only in view of such a conjoint causation. In his brief remark
on how the usage of “and” in the succedent can be avoided, Hertz indicates
that two or more sentences, which have the same antecedent, can be consid-
ered to express a conjunction of the elements of the succedent. A conjoint
effect is, then, simply an alternative of possible effects. Hence, although not
integral to a single sentence but instead expressed by combinations of sen-
tences, a conjunctive meaning in the succedent position is also possible. But
if this structural logic already possesses this expressiveness, the introduction
of explicit logical connectives is clearly unnecessary.'*

"Paul Hertz considered relations of conjoint causes and individual effects, which suffice
to give accounts of “and” in both antecedent and succedent. Dual to the representation of
“and” in the succedent by more than one sentence sharing the same antecedent, the “or”
in the antecedent is realised by two or more sentences sharing the same succedent. Since
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Paul Hertz’ strong sentiment against language as carrier of logical content
is very striking when regarding later developments in what is now called proof
theory, especially in view of the logistic calculi and their main results. What
is performed as a proof is constructed in a logistic calculus is to entangle many
elementary trivial relations in such a manner that a single relation between
complex formulae can be concluded; the particular constitution of these for-
mulae merely retains and expresses the particular kinds of entanglements.
Hence, even structural proof theory allocates a large part of its resources to
the investigation of logical language instead of focussing on what in Hertz’
view was the inherently logical: the investigation of dependency relations
between elementary abstract entities. Although Paul Hertz only voiced ex-
plicit objections in one of his late articles, the presentiment of the necessity
of avoiding logical syntax permeated all of his logical works. His deliberate
opposition to locigal conventionalism is, therefore, most prominent not in
his explicit argument against it, but in his outright refusal to take logical
connectives into consideration within his framework of logic.

Summary

Paul Hertz" contributions to logic did not meet with a wide reception. His
rejection of the paradigm of formalism, coupled with the unique and original
approach of only considering sentences expressing causal relations, which are
to be understood as relations between assumptions and assertions, placed
him outside of the scope of contemporary interest. Had it not been for the
effort of Gerhad Gentzen, who recognised the fundamental importance of the
relational character of reasoning and used it as the foundational principle of
his logical calculi, Hertz’ logic might well have been forgotten.

It is one of the main motivations of this investigation to heed Hertz’ pe-
culiarities by demonstrating that the elements of formal logic, which Gentzen
later introduced into Paul Hertz” structural logic, can be easily removed in
such a manner that finite systems of sentences are obtained, which can be
thought of as expressing causal relations.

Hertz” notion of causation is deterministic, a fact reflected in the restriction to a single
element in the succedent, the dual to the conjoint causation by elements in the antecedent,
an alternative of effects, is not represented in his logic. The suitable generalisation was
later introduced by Gentzen in the logistic calculus for classical logic. Unfortunately, Paul
Hertz gave no indication whatsoever how “not” might be represented in his logic.
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Chapter 3

Gerhard Gentzen — The
Logistic Calculus

Between 1928 and 1933, Gerhard Gentzen studied mathematics at various
universities, beginning with Greifswald, then Gottingen, Munich and Berlin.
Having returned to Gottingen, he began his dissertation under Hermann
Weyl, who was Hilbert’s successor. By that time the full extent of Hilbert’s
programme had already been shown impossible to accomplish. Rather than
thwarting the interest in formal logic, Godel’s negative result liberated the
discipline from the strict regime of Hilbert’s ambitions. In the wake of this
ruin, intuitionistic and generally constructivist ideas, formerly utterly dep-
recated by Hilbert, began to rise in value. It was this fertile state of logic,
upon which Gentzen’s seminal Untersuchungen tiber das logische Schlieflen
[Gen35] throve. He completed his dissertation in 1933 and one year later,
after Weyl’s departure from Germany, Gerhard Gentzen became the assis-
tant of Hilbert, who held the empty chair of mathematics as emeritus. It
can be assumed that Gentzen’s perspective on logic had been considerably
influenced by the formalist stance of Hilbert. At the same time, Gentzen
had already encountered and taken an interest in Hertz’ conception of logic.
It was a concurrence of disparate lines of thought, from which a new and
fruitful discipline came into existence: structural proof theory.

3.1 The Union of Formal and Structural Logic

Before the publication of his renowned dissertation in 1934, Gerhard Gentzen
had already had an article with the title Uber die Existenz unabhingiger Ax-
iomensysteme zu unendlichen Satzsystemen [Gen33] published. This investi-
gation was entirely based upon Hertz’ conception of logic. In the first part of
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the article, Gentzen recast Hertz’ concepts into a somewhat modified termi-
nology. The first change is merely a convention. Using capital letters for com-
plezxes of elements, such as K = (uq, ..., u,) and L = (vy,...,v,), he abbrevi-
ated sentences (ug,...,Uy) — wto K — w and (U1, ..., Uy, V1,...,0,) — W
to KL — w. With this simplification, he came up with a more concise ac-
count of Hertz’ rules of inference, which are also given new names along the
way. Immediate inference became thinning (“Verdiinnung”) and was defined
thus:

L —v
ML — v

Hertz’ syllogism was restricted to the case of one minor sentence and renamed
cut (“Schnitt”):

L —u Mu — v
LM — v

Gentzen showed how Hertz’ syllogism can be disassembled into combinations
of cuts and thinnings, particularised the notion of proof to his system and
gave a stricter definition of a normal proof. He established a completeness
result along the lines of that of Hertz. In the second and third parts of the
article, Gerntzen considered questions regarding independent axiom systems
for infinite systems of sentences. He described an infinite system of sentences,
which does not have an independent axiom system, and provided a method
for obtaining an independent axiom system for a particular class of infinite
systems of sentences.’

In his dissertation, which was published as Untersuchungen tiber das logis-
che Schliefien, Gerhard Gentzen distanced himself somewhat from the more
technical and exclusively structural aspects of Hertz’ investigations, while
retaining the essential aspect of Hertz’ intuition that reasoning is concerned
with the dynamics of cause and effect. Gentzen provided a more logical termi-
nology for this crucial recognition of Hertz by proposing means of reasoning,
in which assertions (“Aussagen”) are explicitly dependent (“abhéngig”) from
assumptions (“Annahmen”). Certainly in this regard, one of the particu-
larities of Hertz became the cornerstone of Gentzen’s approach. In doing
so he, he argued, he provided a formulation of logical deduction, which was

!The method is applicable to linear (enumerably) infinite systems of sentences, where
“linear” is Gentzen’s term for what Hertz had called “first order”. A linear system of
sentences may contain sentences, which are not linear, if it contains a linear sentence for
each of them, from which it can be inferred.
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closer to the real reasoning process (“dem wirklichen SchlieBen”) than the for-
malisations of Russell and Hilbert.? Bringing together structural logic and
the formal logic, he opened up the possibility of investigating both at the
same time and brought Hertz’ solitary endeavour to the attention of mathe-
maticians and logicians, who had followed the more prominent and vigorous
course of Hilbert. For this purpose, Gentzen introduced two different types
of calculi: the calculus of natural deduction, in which the dependencies be-
tween assumptions and assertions are implicit, and the logistic calculus, in
which these relations are explicit.> As the latter type of calculus is closer to
the structural calculus of Hertz, the former will not be discussed futher. It
shall suffice to recall that a derivation in the calculus of natural deduction
expresses the assertion of a formula B, which may depend on assumptions
Ay, ..., A,, which are also formulae, or may be independent of assumptions.
Following the formalist paradigm, the notion of formula is taken for granted
as the primary mode of expression of logical content throughout Gentzen’s
dissertation. Complex formulae are made up from propositional variables by
means of symbols =, &, V and D in the usual manner.* Reasoning is pre-
sented as a means of transforming formulae by either introducing additional
logical connectives to a given formula or eliminating the most accessible con-
nective.

The step from the calculus of natural deduction to the logistic calculus
consists in making the implicit relations between assumptions and assertions
explicit. Gentzen remarked that such a dependency could, in turn, be ex-
pressed by the formula A; & ... & A,, D B, but that such a representation
was impracticable in view of the fact that this would require additional rules
for the connectives & and D, which would disturb the rigorous regime of
introduction and elimination rules employed in the calculus of natural de-
duction for these connectives. Instead, Gentzen suggested the introduction
of the notion of a sequent, which should express dependencies of assumptions
and assertions as Ay, ..., A, — B. Thus, the notion of a formula, expressing
primary logical content, and that of a sequent, expressing meta-logical con-
tent, cannot interfere. This introduces a distinction between logical content,

2Even in Hilbert-type deduction the dependency of assertions from assumptions can be
construed, but it is not an integral characteristic of that formalisation of reasoning.

3Tt should be mentioned that Gerhard Gentzen’s dissertation was reconciliatory in
another regard. For not only did he provide two different frameworks for reasoning from
assumptions, he also addressed the even greater divide between the classical and the
intuitionistic conceptions by giving classical and intuitionistic variants of each one of his
calculi.

4n view of the investigation, which is to follow, we restict ourselves to the propositional
part even in this exposition of Gentzen’s logic.
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which corresponds to linguistic content in the sense of what Hertz would
a few years later call “logical conventionalism”, and meta-logical content,
which was the only proper logical content for Hertz.

A very gainful insight of Gentzen was the realisation that a generali-
sation of sequents in such a manner that more than one formula may oc-
cur in the succedent, as in e.g. Ay,..., A, — Bi,...,B,, gives the logistic
calculus the expressiveness of classical logic. It must be noted that a se-
quent of this kind is not an abbreviation for sequents A;,..., A,, — B; to
Aiq,..., A, — B,, as it was the case with a similar abbreviation of Hertz.
Instead, the By, ..., B, must be considered as alternative assertions, that is
from assumptions Ai, ..., A,, at least one of the formulae By,...,B, can
be asserted.” By allowing this kind of symmetry in the shape of sequents,
“or” became an intergral part of the meta-logic of the logistic calculus. Con-
sequently, in each sequent there are simultaneously conjunctive, implicative
and disjunctive properties inherent.®

Gentzen departs from Hertz' presetting in another aspect of the logis-
tic calculus. While Hertz had investigated inferences from given systems of
sentences, which were non-trivial in general, and had showed that trivial sen-
tences of the kind a — a do not have to be specifically considered, Gentzen
only considered derivations from sequents of the kind A — A, which he calls
initial sequents, where A can be any formula. An initial sequent expresses
the trivial relation that any assumed A can be asserted. Although arbitrary
systems of sequents, which could be used as initial sequents, could be consid-
ered, the introduction of logical syntax enriches the logistic calculus enough
to render such considerations unrewarding.

Inferences in the logistic calculus are governed by an array of inference
rules, which are to be instantiated from inference schemes.” Each one of the
inference schemes has one or two premises and a conclusion. In addition to
the logical inference schemes, i.e. schemes governing the logical connectives
(see figure 3.1), Gentzen provides structural inference schemes, which are con-
cerned exclusively with meta-reasoning, i.e. with operations on the structure
of sequents (see figure 3.2). The inference schemes, apart from the structural
rule (Cut), are distinguished by “A” or “S”, depending on that part of the

5Tt is interesting to note that the dependency relations, which are expressible in this
manner, cannot be realised in the calculus of natural deduction, as derivations in that
calculus always yield a single assertion.

6Not all of these properties are apparent in all sequents. For instance, consider the
sequent A — B, which lacks conjunctive and disjunctive features, whereas the sequent
— A, B only exhibits disjunctive features.

7As was mentioned before, in view of the scope of this investigation, only the inference
schemes for the propositional fragment of the classical logistic calculus LK are given.
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Figure 3.1: Logical inference schemes of LK

sequent, which is the focus of the scheme in its conclusion. All of the logical
inference schemes are introduction schemes in the sense that each premiss
of the rule has an occurrence of a unique formula, called side formula, from
which a new formula, called the main formula, is obtained in the conclusion.
In all the logical schemes, apart from (&A;), (&Az), (VS1) and (VSs), the
main formula contains the side formulae and the additional logical connective
corresponding to the scheme. In the cases of the exceptions, an arbitrary for-
mula, which does not have to occur in the premiss, is connected to the single
side formula by the new logical connective corresponding to the scheme. In
contrast to the logical inference schemes, the structural ones are not about
the introduction of logical connectives. Instead, they recapture the proper-
ties of Hertz’ inference system. The inference scheme (WA), weakening of the
antecedent, corresponds to what Gentzen had already called “Verdiinnung”
in [Gen33], i.e. Hertz’ immediate inference, although this variant only allows
the addition of a single formula. Correspondingly, (WS) weakens the suc-
cendent by adding another alternative assertion. The contraction inference
schemes (CA) and (CS) (“Zusammenziehung”) allow the fusing of multiple
occurrences of the same formula in either the antecedent or the succedent.
Hertz" calculus had provided for this by means of the symbol “||”, which
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Figure 3.2: Structural inference schemes of LK

can be found in several places in his rules of inference. In contrast to such
an implicit treatment, Gentzen made every manipulation of symbols explicit
by these separate rules. The same must be said for the exchange inference
schemes (XA) and (XS) (“Vertauschung”), by which pairs of formulae can
change positions within the antecedent or succedent. Hertz had not been
specific about the position, at which an element occurs, and it can be as-
sumed that the order, in which elements were listed in the antecedent, was
of no consequence; again, Gentzen makes this an explicit issue. Eventually,
the inference scheme (Cut) is a generalisation of the one Gentzen had given
in [Gen33]. The difference lies in the fact that the cut formula A can occur
as an alternative to other formulae in A; in the generalised sequents. The
extension is done in a manner, which retains the symmetry of the calculus.
In all the inference schemes with the exception of (XA), (XS) and (Cut),
I' and A represent sequences formulae, which are to occur adjacent to the
arrow in the premiss or premises and the conclusion; either of these may be
empty. In those exceptions, antecedent or succedent are split up further into
'y and I'; or Ay and A,, where, again, either may be an empty sequence
of formulae. The side formula or side formulae as well as the main formula
of logical inference schemes are attached to the left of an antecedent or the
right of a succedent. Derivations are obtained by connecting instances of
inference schemes in such a manner that the premiss of each one of these
instances is either an initial sequent or the conclusion of some other instance
of an inference scheme. The unique sequent in a derivation, which is the con-
clusion of an instance of an inference scheme, but not the premiss of another,
is called the end sequent of the derivation, and the derivation itself is called
the derivation of this sequent.
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Gentzen’s main result of his dissertation is the Hauptsatz. It states that
every derivation in a logistic calculus can be transformed into a derivation
having the same end sequent, in which no instance of (Cut) occurs. The
lengthy proof of this result makes up the second half of the first published
part of his dissertation. In a second part, he gives applications of the Haupt-
satz and proves the equivalence of the calculus of natural deduction, the lo-
gistic calculus and a calculus corresponding to Hilbert’s formalism, for both
the classical and the intuitionistic cases. This concludes the brief review of
Gentzen’s dissertation.

In his following works, Gerhard Gentzen turned to particular problems
regarding the foundations of mathematics, such as the consistency of arith-
metic [Gen36a] under particular consideration of the transfinite induction
principle [Gen43]. Although he employed the formalism of the logistic cal-
culus in these articles, it was used as a notational means, not as an object
of philosophical investigation. Therefore, we shall not go into any detail of
these later works at this point.

3.2 A Comparison with Hertz’ Logic

It is not necessary to emphasise the importance of Gentzen’s dissertation,
which is generally acknowledged as the beginning of structural proof theory.
What is not as widely known is that many of his ideas were not only inspired
by but almost directly taken from the structural logic of Paul Hertz. The
remainder of this chapter shall serve as an elaboration of the influence of
Hertz’ logic on Gentzen’s dissertation.

The Relational Nature of Logic

One of the most important elements of Gentzen’s logic in contrast to that of
Hilbert is the fact that the dependency of assertions on assumptions is intrin-
sic in the formulation of reasoning. Hilbert-style reasoning is a generation
of increasingly complex assertions from formula instances of axiom schemes,
which can be immediately asserted, by means of a single rule of inference.®
Although the dependency on assumptions can be worked into Hilbert-style
reasoning, this is achieved only by explicitly allowing additional formulae as
immediately assertible. In contrast to this, any formula can be assumed in
Gentzen’s calculus of natural deduction. Every step in the process of gen-
erating a deduction expresses a particular relation of zero or more assumed
formulae and a single asserted formula. Certain rules allow the discharge

8 At least in the propositional case, only a single rule of inference is required.
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of one or more assumptions, and the goal of the reasoning process is to ob-
tain a particular assertion, which is independent of any assumption. This is
indeed a more “natural” manner of reasoning than the static generation of
increasingly complex assertions of Hilbert-style reasoning.

Clearly, the idea that reasoning is about relations of assumptions and as-
sertions, particularly that of one or more assumptions and a single assertion,
can already be found in the very general remarks of Hertz. His sentences
ai,...,a, — b are exactly expressions of such dependency relations. While
Hertz did not use the commonplace logical terminology, instead mentioning
causal relationships between events, this could perhaps be attributed to the
association of the notions of “assumption” and “assertion” with the formal
approach, which he had rejected. Moreover, Hertz had not introduced “un-
conditional” events into his logic, although he had specifically mentioned such
a possibility in [Her29].? If this possibility had been developed by Hertz, such
unconditional elements might have been presented in the manner of sentences
of the form — b or simply by explicitly listing all continual elements inde-
pendently of the considered system of sentences. Gerhard Gentzen picked up
and fleshed out the idea and used an explicit extension of the relational con-
ception in such a manner that assertions are allowed, which are independent
of any assumptions. In fact, in his conception of reasoning it is the goal to
obtain a deduction, which expresses such a relation. The proof of a formula
B is a deduction, which does not have any uncancelled assumptions.

Regardless of this detailed implementation, it must not be forgotten that
the backdrop for Gentzen’s calculus of natural deduction is a calculus for
reasoning over relations of assumptions and assertions, as it had been pro-
vided in great detail, albeit in a very general manner, by Paul Hertz. Of
ocurse, this influence is unmistakably recognisable in Gentzen’s logistic cal-
culus. Gentzen himself remarks that this calculus is employed particularly in
view of its property that all such dependencies are explicit in every sequent.
It is this property, which made the proof of the Hauptsatz manageable for
Gentzen. Despite of this, Gentzen apparently gave this fundamental property
a mostly technical recognition.

The Meaning of the Logical Connectives

The structural paradigm of Hertz was given up by Gentzen in favour of the
formalist paradigm, which Hertz himself clearly held in disregard. It is, then,
particularly instructive to consider how logical syntax is introduced. In both

90n page 468, he states in footnote 19): “[...] unless one were to introduce distinguished
elements (which might denote continual states).”
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the calculus of natural deduction and the logistic calculus, the introduction
of a logical connective is justified by a particular inference scheme, especially
the relation of certain formulae occurring in its premiss or premises. For
the calculus of natural deduction, some of these schemes not only refer to
the premises, which are recently asserted formulae, but also to assumptions,
which may occur at a much earlier stage of the derivation. Due to these
long-distance dependencies, the inference schemes of the calculus of natural
deduction are less immediate than those of the logistic calculus. In the logistic
calculus, all of the inference schemes are immediate in the sense that each
sequent, which is the instance of a conclusion of such an inference scheme,
is only related to either a single premiss or to two premises, and to nothing
else.

The relation of the conclusion of a logical inference scheme and its premiss
or premises lies in the fact that the conclusion contains an additional logical
connective than the premiss or either one of the premises. Consider, for
example, the inference scheme (&S):

I —-AA Ir—AB
- AA&B

(&5)

The conclusion differes from its premises in the rightmost formula of the
succedent. Where the premises contain formulae A and B, the conclusion
replaces these by the formula A & B. Sequences I' and A have to be the
same in both premises and the conclusion. The scheme is to read as follows:
if both A and B can be asserted independently of one another, based the
same assumptions I' and in the context of the same alternative assertions
A, then A & B can be asserted from those assumptions in the context of
these alternative assertions. Considering the special case that A is empty,
the scheme is given as follows:

I'— A I'— B
rAien &

In the case that A, B and the (single) formulae in I' are propositional vari-
ables, i.e. elementary formulae, the premises have the shape of Hertz' sen-
tences. Moreover, the logical connective is introduced in the conclusion ex-
actly in such a manner, that it corresponds to the remark in [Her22b), where
Paul Hertz briefly comments on how “and” is to be avoided in the succedent
(see page 27). The same remark in view of the avoidance of “or” in the
antecedent has a bearing on the following special case of (VA):

A— A B — A
AV B — A

(VA)
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Similarly, the brief remark in [Her30], where Hertz states that with a; — b;
and ay — by it is also a; — (by or by) and ay — (by or by), is reflected in these
special cases of Gentzen’s logical inference schemes governing the connective
V in the succedent:

I'— A
I'—- AV DB

I' - B

(V81) I > AVE

(VS2)
Gentzen’s formulations of the logical rules concerning & and V were just suit-
able generalisations of Hertz’ remarks, compiled into a unified framework.
Of course, this approach completely disregarded Hertz’ opinion that logical
connectives should be avoided in the first place. As far as the negation is con-
cered, Gentzen found formulations for the intuition that — toggles formulae
between the roles of assumptions and assertions. The inference schemes for
D can be considered meta-rules obtained by the appropriate combinations of
schemes for — and V, interpreting A D B as =AV B.1°

In the justificational perspective of the inference schemes, which considers
the premises after the conclusion, each step in the justification process results
in less complex sequents in the sense that they contain less complex formulae.
If atomic formulae, i.e. propositional variables, were to be equated with Hertz’
elements, it could be said that each step of a justification process results in
sequents, which are closer to the shape of Hertz’ sentences.!! In fact, all of
the premises in Gentzen’s logical inference schemes have the shape of such
generalised sentences, as all of the premises only contain formula variables
A or B, and variables I' and A, which represent sequences of formulae. If
each formula variable is considered to be an element in the sense of Hertz,
then each inference scheme can be read as relating Hertz-style sentences of
the premises or premiss to a conclusion containing a single complex formula.
This formula is justified by some particular occurrence of an element in the
premiss sentence or the arrangement of two elements in the premiss sentences.

In Gentzen’s logistic calculus, the introduction of a logical connective into
a sequent is justified by the fact that one or two sequents have already been
obtained, which have particular properties as far as the role or roles of the
single side formula or the two side formulae is concerned. All the other for-
mulae of the antecedents and succedents form a common context in all of
the sequents, which are involved: conclusion and premiss or premises. An
inference scheme, then, specifies in the premiss or premises, which formulae

10We are restricting ourselves to the classical setting. This seems to be the more natural
choice for the logistic calculus for the reason that the inference schemes stand as they are
stated, without having to consider restrictions on the succedent.

Tn this we make allowance for the generalisation that the succedent may contain an
arbitrary number of elements.
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constitute the fixed and, if applicable, shared context, and which formula or
formulae justify by the position within the premiss or premises the introduc-
tion of the complex formula associated with the scheme.'? In other words,
the introduction of a formula in a particular position in the sequent and the
manner, in which it connects the one side formula or the two side formulae
occurring in its premiss or premises, is justified by the particular position of
the side formula or side formulae.

Summarising these observations, it can be concluded that Gentzen exe-
cuted in the logical rules of his logistic calculus ideas, which can partially
already be found in Hertz’ works. However, whereas Paul Hertz decidedly
avoided the accomodation of logical syntax in favour of a pure structural
logic, Gentzen took exactly this step. It must be said that Gentzen provided
a suitable generalisation of Hertz’ sentences, which extends to assertions of
a disjunctive character, and he considered the case of negation, which Hertz
had not mentioned at all.

The Subordination of Structural Reasoning

Meta-reasoning had already been suggested by Hertz in the sense of provabil-
ity relations, which he had expressed by a;,...,a, = b, where a;,...,a,,b
are themselves sentences, in contrast to sentences of the elementary level,
which are of the form ay,...,a, — b. A similar relation between reason-
ing on an elementary level and meta-reasoning is certainly established by
Gentzen in the relation of the calculus of natural deduction and the logis-
tic calculus. However, if Hertz' elementary level, generalised in a manner
that admits as elements arbitrary logical formulae, is related to the logistic
calculus, then the calculus of natural deduction undercuts the principles of
structural reasoning, as it is set at a level below what Hertz would consider
the domain of logic in the first place.

Another threat to the idea of a purely structural reasoning is formulated
in the Hauptsatz: The cut scheme, which is the remainder of the structural
reasoning rule of syllogism, Hertz’ main rule of inference, is no longer required
in a calculus that has is both formal and structural aspects. Reasoning in
the way evisioned by Hertz, namely as the process of deducing ever more
immediate causal relations from a set of givens or, alternatively, discover-
ing particularly elegant sets of such relations, from which all of the givens
can be deduced, is more or less relinquished. Instead, formal reasoning in a
structural framework of the logistic calculus is the discipline of justifying the

12The position of a formula is one out of two roles a formula can have in a sequent: it
can be either an assumption or an assertion.
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occurrence of a complex formula in a sequent by reverting to less complex
sequents, the most fundamental of which, the initial sequents, correspond to
Hertz’ trivial sentences. Hence, logical reasoning in the sense of understand-
ing the consequences of relations between assumptions and assertions, as it
had been envisioned by Hertz, was replaced by a method of justifying logical
syntax by successively reducing it to instances of the trivial relations between
a single formula occurring both as assumption and assertion. The Hauptsatz
fortifies the formal paradigm, because it makes the most important structural
reasoning principle obsolete.

In the calculus of natural deduction, the structural aspect is merely im-
plicit. Hertz’ vision of reasoning principles, which hold not only on the
elementary level of reasoning, but also on the meta-level, are certainly not
realised as far as structural aspects are concerned. But even as far as the
syntactic aspect of reasoning is concerned, while there is some correspon-
dence between the schemes for natural deduction and the logistic calculus
as far as introduction schemes and logical schemes for the succendent are
concerned, a similar correspondence does not hold for elimination schemes
and logical schemes for the antecedent. In summary, Gentzen put his focus
on the justificational character of formal reasoning.

Conclusion

When reviewing Gentzen’s logical calculi against the background of Hertz’
structural framework, it is obvious that Gentzen drew heavily from that
framework, while simultaneously immolating Hertz’ philosophical convictions
by enhancing — or diluting, depending on the perspective — a purely structural
logic with what Hertz had called conventionalist elements. Of course, this
is what was exactly the factor, which made the structural aspects of logic
widely accessible and appreciated by the mathematical community in the first
place. Unfortunately, this success throve on the abandonment of a purely
structural logic, which is most prominently demonstrated in Gentzens main
logical result. The Hauptsatz established that the cut inference rule, which
corresponds to Hertz’ main inference rule of syllogism, is obsolete in the
logistic calculus.!3

However, it has already been argued here and will become more evident
in the course of this investigation that the entire justificational mechanism of
the logistic calculus is inherently structural. The task is, therefore, to bring
this mechanism to visible appearance.

1380 striking is this result that the opinion has been voiced that a sequent-style calculus,
which does not have this property, must be fundamentally flawed.
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Chapter 4

The Calculus RK

Gentzen’s shift of focus towards the formal paradgim has cast Paul Hertz’
structural approach into a supporting role. At the same time, it is a sup-
porting role of fundamental importance, as the logical inference schemes of
Gentzen’s logistic calculus can be read as justifications of individual logical
connectives on the basis of relations of assumptions and assertions in the
vein of Hertz’ sentences. Hence, at least in the case of the logistic calculus,
formal reasoning is justified on the basis of structural reasoning.’

In this chapter, after a proper introduction of the propositional fragment
of the logistic calculus for classical logic, several preparatory modifications to
the calculus with the purpose of making the primacy of structural reasoning
explicit will be undertaken. This will result in the calculus RK, which will
be the basis for the subsequent investigation.

From now on, we will adopt the terminology rule of inference or just rule
for both rules of inference in the sense of Hertz as well as inference schemes
and instances thereof in the sense of Gentzen.

4.1 Basic Definitions

Rather than resorting to the modern formalism, we shall adhere to the sym-
bols that were used by Gentzen. The logical symbols are these: & for ”and”,
V for "or”, D for "if ... then ...” and — for "not”; the structural symbols are
— for the relation between assumptions and assertions and the comma as
separator for assumptions and assertions; the figurative symbol serves
as a separator between individual steps in the reasoning process. Further, an

IThe same could be argued in the case of the calculus of natural deduction. In that
case it is not as obvious due to the complications, which arise due to the fact that the
dependency relations of assertions on assumptions are not explicit.

43



enumerable set A of propositional variables is required, and the elements of
A are named a, b, c,d, .. .; capital letters A, B,C, ... will be used to denote
formulae?. From these elements, all that is required can be defined.

Definition 4.1 The formulae over A are given as follows:
e Fvery a € A is a formula, called an elementary formula;
e if A is a formula, so is - A;
e if A and B are formulae, so are A& B, AV B, AD B.

The function cmx(A) of the complexity of a formula A is given as follows:

)

e cmx(a) “

e cmx(—A) e cmx(A) + 1;

e cmx(A* B) o cmx(A) + cmx(B) + 1 for x € {&,V,D};

The set sub(A) of all subformulae of a formula A is given as follows:
e sub(a) & {a};

e sub(—A) u sub(A) U{-A4};

o sub(4+ B) % sub(A) Usub(B) U {A« B} for € {&,V,D};

Every formula is its own (improper) subformula. For a formula A x B with
* € {&,V, D}, formulae A and B are called its immediate subformulae; for
a formula —A, the formula A is called its immediate subformula.

In contemporary terminlology, elementary formulae are usually called atomic
formulae. When speaking of composing and decomposing formulae, we shall
use the latter term, and reserve the use of the former for sequents (see the
following definition). A formula that is not atomic is called a complex for-
mula. The complexity of A is simply the number of logical connectives that
occur in A.

2Gentzen used capitals for propositional variables and Gothic capitals for formulae. We
shall employ Gothic capitals otherwise, and, hence, we have to diverge from Gentzen in
this detail.
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Definition 4.2 A sequent is an expression of the form

Al,...,AmHBl,...,Bn,

where m > 0,n >0 and Ay, ..., Ay, By, ..., B, are arbitrary formula occur-
rences. The negative formula occurrences Ay, . .., A,, make up the antecedent
and the positive formula occurrences By, . .., B, make up the succedent of the

sequent. A sequent is elementary, if all of its formula occurrences are atomic.

A formula occurrence is a formula indexed by its position withing the an-
tecedent or succedent. The terminology of a polarity of formula occurrences
can be extended to include subformulae; this is done in appendix A. It is
useful to consider groups of formula occurrences as lists of formulae. Greek
capitals I', A, ... will be used to denote lists of formulae of the antecedent
and succedent of a sequent, occasionally indexed with natural numbers. This
notation is employed in the usual lax manner; for instance, I'y, A, B, I'; shall
denote a list of formulae. Let len(I") be the number of formulae occurring
in a list of formulae I'. Capital letters in script style S, 7, ... will be used to
denote sequents, and sequents will occasionally be set in square brackets as
delimiters. We extend the notion of complexity to sequents as follows:

cmx([Ay,..., A, — By,...,B,]) = ZcmX(Ai) + Zcmx(Bi)
i=1 i=1

Definition 4.3 For a list of formulae I' = Ay, ..., A,,, its legth is given by

len(I") o m, and its formulae are collected in the set {I'} g {A1,..., An}.

For a sequent S = [Ay,..., A,y — Bi,..., By, its formulae are collected in

the set {S| 9 {A1, ..., A, By,...,B,}.

The notation { - |} identifies multiple occurrences of the same formula in a
list or sequent. It simply collects all of the formulae that occur in some list

or sequent at all, regardless of their position.

Definition 4.4 An inference rule is a figure of the form

S - S,
T

)

where (n > 0) and Sy,...,8,,7 are sequents. The sequents Sy,...,S, are
called the premises and 7 is called the conclusion. Ifn = 0, then the inference
rule is called improper inference rule or axiom.
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For logical inference rules, the notions of a main formula occurring in the
conclusion of the rule, into which a particular logical connective has been
introduced, and the corresponding side formulae, which are always immediate
subformulae of the main formula that occurs in the premises of the rule, are
retained as it has been described in the preceding chapter.

Definition 4.5 A derivation is a figure, which consists of one or more se-
quents, which contribute to inference rules in the following manner:

e Fach sequent is conclusion of of at most one inference rule.

e Fach sequent, except for a single one, is the premiss of exactly one
inference rule.

Sequents, which are not conclusions of an inference rule, are called initial
sequents of the derivation, and the single sequent, which is not the premiss
of an inference rule, is called the end sequent of the derivation. A derivation,
which has no initial sequents, is called a proof of the end sequent. A sub-
derivation of a derivation is a figure, which consists of one or more sequents
of the original sequent, which themselves constitute a derivation.

Sometimes, when we consider very short derivations consisting of only a few
inference rules, we will call the initial sequents of that derivation its premises
and the end sequent its conclusion, as if the entire derivation were itself an
inference rule.

In the following point we disgress from Gentzen’s terminology. Where we
distinguish a proof from a derivation, Gentzen had only considered deriva-
tions. In his understanding, every derivation had as its initial sequents se-
quents of the form A — A. We want to be able to consider derivations,
which are partial in the sense that their initial sequents need not necessarily
be of that form. In order to recapture the notion of derivation in the sense
of Gentzen, we introduce the notion of proof and add the following improper
rule:

A5 A4 (Ax)
The label (Ax) represents the contemporary name of this improper rule:
axiom. Since every derivation in the sense of Gentzen always has initial
sequents of the form A — A, all of them can be endued with an instance
of (Ax), and since (Ax) has no premises, no initial sequents remain in the
modified derivation, and, hence, the derivation is a proof in our sense.

Greek capitals II, =, . .. will be used to denote derivations; taking the con-
text into account, it will not be possible to confuse derivations with sequences
of formulae.
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Definition 4.6 A path in a derivation 11 is a sequence (So,...,S,) with
n > 0, such that Sy is the end sequent of 11 and every S;11 is the premiss in
an inference rule of 11, which has S; as conclusion. A branch s a path, for
which S, is either an initial sequent of I1 or the conclusion of an instance of
(Ax) in II; in either case, S, is called a leaf of I1.

A branch is roughly what Gentzen called a thread, although a thread lists
seugents in reverse order. As we will adopt the bottom-up perspective of proof
search, i.e. consider some sequent and construct derivations in an attempt to
obtain a proof of it, it is more useful to have branches of derivations begin
with the respective end sequents. As every path contains the end sequent of
a proof — the only sequent, which does not occur as the premiss of a rule —
the end sequent is given the index 0. Thereby, the index of a sequent S; of
a path is also a measure of how many inference rules lie between it and the
end sequent.

From now on, we shall employ the bottom-up perspective, which corre-
sponds to a proof search. Derivations will be constructed from the bottom up,
starting with an arbitrary sequent, in an attempt to obtain initial sequents,
which can then be sealed by instances of (Ax). In particular, rules will be
read in the manner of an attempted justification: If we want to write down
the conclusion of a rule, we have to be allowed to write down the premiss or
all of the premises of the rule. In the bottom-up perspective, logical rules are
employed to eliminate logical connectives, and the structural rules of weak-
ening and contraction rather have the function of considering a strengthened
premiss or, respectively, a premiss, in which a particular formula occurrence
has been expanded into two occurrences.

4.2 From LK to RK

The calculus LK has several properties, which are undesirable for this inves-
tigation. The most important one is the fact that it includes rules for exis-
tentially and universally quantified formulae, i.e. LK is a predicate calculus.
Unfortunately, the rules governing the quantifiers do not have the subformula
property in the literal sense. It will become obvious in the following chapter,
that we aim at taking every aspect of the logical language literally, which
will even lead to making different occurrences of propositional variables ex-
plicit by using occurrence instances of these variables.® For this reason, it is
impracticable to extend these investigations to the predicate calculus at this

3Even a sequent a — a shall be rendered by the occurrence instance a; — as, in which
every occurrence of a propositional variable is replaced by a unqiue occurrence variable.

47



time. Fortunately, removing the four quantifier rules yields the propositional
calculus. The other undesireable properties will be briefly addressed and
remedied in turn in the remainder of this section.* The changes all have to
with the fact that we shall be mostly interested in the perspective of proof-
search, i.e. the generation of derivations from the bottom-up, for which it is
useful to accumulate and retain formulae in the sequents as the derivation is
constructed and to avoid choices. This will eventually lead to the calculus
RK, the calculus on the basis of which the following investigations shall be
executed.

Atomic Initial Sequents

Inital sequents in Gentzen’s logistic calculus may be of the form A — A for
an aribtrary formula A. In our variant of the calculus, this is represented by
the improper rule (Ax):

A5 A (Ax)

From a naive justificational perspective, it is curious that justifications for
the logical connectives in the two occurrences of formulae A may be avoided,
when the entire logistic calculus is nothing but a means of providing justifi-
cations for logical connectives occurring in formulae. Hence, it would have
been more in the spirit of the logistic calculus, if Gentzen had only allowed
elementary sequents of the form a — a, where a € A is a propositional vari-
able, as initial sequents. Certainly, a more immidiate relation of assumption
and assertion than that expressed by such sequents is not possible.

Of course, it is easy to see that every sequent of the form A — A, where A
is a complex formula, can be further justified by the usual inference schemes,
down to elementary sequents of the form a — a. Let us briefly consider
two particular cases of Gentzen’s initial sequents, which contain occurences
of a complex formula A, and see how they can be reduced to less complex
formulae:

e A=BVC(C:

Cc—-C

B — B C—-C'B
B— B, C C — B,C
Bv(C—B,C
Bv(C—BvVvVC

4For detailed descriptions of the feasability of these remedies, see e.g. [TS96].

(WS)

(VS)
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o A=-B:

B — B
—B.B— M
—— 0 (XA)
m( S)

The case of A = B D ('is similar to the first case, and the case of A = B&C'is
dual to it. If either B or C'is still a complex formula, it can be further reduced
to less complex formulae. Since every formula can only contain finitely many
logical connectives, this procedure terminates and results in a derivation for
A — A, whose initial sequents have the form a — a for a € A. Hence, every
derivation having initial sequents of the form A — A for complex formulae A
can be transformed into a somewhat larger derivation, in which all of these
sequents are end sequents of subderivations, which are constructed according
to the indicated procedure.

For this reason, we can replace the improper rule (Ax) by the more specific
improper rule (ax), which is only applicable to elementary sequents:

(ax)
a— a

Of course, proofs using (ax) instead of (Ax) are larger in general. However, all
of the logical connectives occurring in the end sequent are properly justified
by elementary sequents.

Absorbing Weakening into the Axiom

It is well-known that every application of weakening can be pushed upward
in the derivation, as the formula introduced by weakening can be passed
downward as one of the context formulae. Consider the following derivation
of A,I" — A, which has initial sequents I'; — A, for 1 <17 < n, and in which
the bottommost rule application is (WA):

1—‘1_>A1 FnHAn

I — A

Aar—a "

Instead of introducing A with the bottommost rule application, all of the
n initial sequents can be weakened by introducing the formula A, and then
A can be moved to the rightmost position of the respective antecedent by
len(I';) applications of (XA) (indicated by the double lines):
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F1_)A1 Fn_)An
AT — Ay AT, — A,
PlaA_>A1 PnaAﬁAn

(WA) (WA)

NA— A

AT — A
In the rightmost position of the antecedent, the formula A does not inter-
fere with the following rule applications, which can be carried over from the
original dervation. Eventually, A is moved to the leftmost position of the
antecedent by len(I") applications of (XA). The result is a derivation of the
same end sequent as before, in which the application of weakening has been
pushed upward into n topmost applications of weakening. The same proce-
dure can be repeated for every application of weakening occurring anywhere
within a given derivation, and the same can be performed for applications of
weakening in the succedent. This results in a derivation, in which all applica-
tions of weakening rules occur at the very top, i.e. in which no application of
a weakening rule occurs underneath an application of any other rule, except
for exchange rules.

As a result of these two observations, we can replace (ax) by the improper

rule (ax*):

(ax®)

F17a7F2 - A17a7 A2

When employing this new axiom, we can dispense of the two structural rules
(WA) and (WS). Any formula, which would to be introduced by applica-
tions of (WA) and (WS) can be introduced at the top of the derivation by
appropriate instances of (ax*).

In this point, it might appear that the taken direction is heading some-
what against the intuition of Hertz, in whose logic the rule of immediate in-
ference, which corresponds to (WA), is one of the two only rules. In [Gen33],
Gerhard Gentzen showed that in Hertz’ logic, every proof can be transformed
into a normal proof, in which there occurs only one application of imme-
diate inference (“thinning” in Gentzen’s terminology) at the very bottom.
Thereby, he had already established the mobility of this inference rule and
its relative insignificance compared to the cut rule. It is obvious that all of

SFrom the conclusion of this rule, a sequent of the form a — a could be obtained in
a bottom-up manner by len(I'y) applications of (XA) in order to move a to the right-
most position of the antecedent, followed by len(T';) + len(T's) applications of (WA), and
appropriate numbers of applications of (XS) and (WS).
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the extra elements, which are introduced into a sentence by a final appli-
cation of immediate inference do not contribute to the proof in an essential
manner. But then, all of these elements could already have been introduced
at the very top of the proof and passed through all applications of cut in the
proof unaffectedly. So even in Hertz’ logic, the rule of immediate inference is
of relatively low relevance. Recall that the rearranging of elements and the
contraction of multiple occurrences of the same element in the antecedent
of a sentence were integrated into the symbol ||, which occurs in the two
inference rules.

The question, at which point of a derivation weakening (immediate in-
ference) should be available, very much depends on the manner, in which
the calculus is to be employed. For proof construction, i.e. building deriva-
tions in a top-down manner, it is useful to start with sequents, which are as
lean as possible, and to introduce formulae by weakening only as they are
needed. Such a course of action keeps derivations as concise as possible. For
proof search, on the other hand, it is much more effective to simply retain
all the formulae that are introduced into the respective sequents rather than
deciding at every step of the construction of a derivation, whether it is safe
to remove a formula, which has just been extracted from a complex formula,
from the context by weakening. As we shall employ this latter perspective,
we do not require weakening rules for the derivations. Instead of delaying
the removal of superfluous formulae to the top of the derivation, we simply
modify the axiom in a manner that allows contextual formulae.

Moreover, in view of the preceding argument, namely that no complex for-
mula should occur in an axiom, the variant (ax*) seems counter-intuitive, as
the formulae occurring in I';, 'y, Ay and Ay are not restricted. For instance,
the introduction of A & B by weakening in

Ir— A
A& B,T — A

can be modified to independent weakenings by formulae A and B:
r—-A r—- A
AT — A B,I' = A
A& B,T — A
Of course, corresponding modifications are possible for other logical connec-
tives. Hence, weakening can be restricted to atomic formulae, i.e. we can
demand that sequences I'1, 'y, Ay and A, in (ax*) only contain atomic for-

mulae. We represent this by using lower case letters 1,2, 61 and &y for the
context. The final version of the axiom is then:

(ax")

(WA)

(WA)

Y, @, Y2 — 01, @, 0o
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Propositional Contraction

The two sets of logical rules (&A;) and (&A,) as well as (VS;) and (VS,)
have particularly undesirable properties. In each one of these rules, only one
of the immediate subformulae of the main formula occurs in the premiss.

AT — A Ir—AA

A& BT A W) F=AAvE VS
B.T — A I = AB

A& BT oA W) oA AvE (/5

Not only are arbitrary formulae introduced in the conclusion of the rule,
which do not occur in the premiss, B in the case of (&A;) and (VSs) and A
in the case of (&Aj) and (VS;). From the perspective of proof construction,
these rules require a choice to be made. As soon as a disjunction AV B in
the succedent of a sequent is to be treated, it has to be decided, which one of
the rules (VS;) and (VSs) should be employed for the purpose. This choice
is crucial, for only one of the subformulae A and B can be retained in the
premiss, but at that point of the proof search, it might not be immediately
obvious, which one can be safely abandoned without forfeiting the possibility
of obtaining a proof.

Fortunately, the contraction rules remedy this predicament. The rule
(CS) can be used in combination with the two rules for the disjunction in
the succedent to construct a short derivation, which has as topmost sequent
a premiss, in which both subformulae of the disjunction occur:

I —-AAB
- A A AVB
I - AAV B, A

- A AVB,AV B

I'—-AAVB

(VS2)
(XS)
(VS1)
(CS)

We can, therefore, introduce the following new rule (VS), in which both
subformulae of a disjunction in succedent position occur in the premiss:

I'—-AAB
'-AAVvB

(VS)

In the presence of (WS), the original premises of (VS;) and (VSy) could
easily be recovered. However, as we are expressly interested in accumulating
all subformulae, this will not be necessary at any point. As desired, both
subformulae are retained in the premiss of this new rule.
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(ax™)
Y1, QY2 — 51) a, 62

Fl,A,B,FQﬁA
Fl,B,A,FQﬁA

F_)AlaAaBaAZ
F_)AlaBaAaAZ

(XA) (XS)

Figure 4.1: Structural rules of RK

Dually, we can obtain the new rule (&A), replacing (&A;) and (VS,).
This new rule retains both subformulae of a conjunction in the antecedent
of its premiss:

A BT — A
A& B, T'— A

(&A)

As a consequence, the contraction rules have become obsolete for our
purpose, which is to successively remove all logical connectives in a proof
search until all the topmost sequents in a derivation are atomic. Applications
of contraction in the presence of (&A) and (VS) would only generate more
work in general, as the premiss of a contraction rule contains an additional
occurrence of some particular formula.

The calculus RK

We can now compile the calculus RK, which will be the basis for the investi-
gations in parts IT and IT1.° Apart from giving up (&A;) and (&A,) in favour
of (&A) and replacing (VS;) and (VSy) by (VS), the logical rules remain un-
changed. Since (CA) and (CS) are no longer necessary in view of the new
rules (&A) and (VS), they are removed. We also give up (Cut), as we only
want to consider cut-free derivations in RK, as we wish to avoid the possibil-
ity of introducing new complex formulae in a proof search.” Moreover, the
improper rule (ax*) is added to the structural rules, which allows the closure
of initial sequents and at the same time the removal of the structural rules
(WA) and (WS). We retain the structural rules (XA) and (XS) and will use
the abbreviation

I — A
I — A

6This calculus roughly corresponds to the propositional fragment of G3c of [TS96].
TA very restricted instance of cut, the atomic cut or prozy cut will be used in the
explosion calculus that will be introduced in the next chapter.
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A BT — A r—AA r—AB

A& BT oA WA Fr—AA&B W
AT — A B,FHA(\/A) I'—-AAB (v8)
AV B, I'—= A - A AVEB
FHAvA BvI‘HA A,F—>A,B
AS5BT A (DA) F—>A,ADB(DS)
I—AA AT — A
AT A Y A4 Y

Figure 4.2: Logical rules of RK

for zero or more applications of either exchange rule; the antecedent I of the
conclusion is then some permutation of the antecedent I' of the premiss, and
the same relation holds for the succedents. The structural rules, including
(ax*) are given in figure 4.1, and the logical rules of RK are collected in
figure 4.2.

The calculus RK is most useful for proof search. When constructing a
derivation starting from an arbitrary sequent, its set of rules guarantees that,
although each application of a logical rule will leave its premiss or premises
with one less logical connective, all of the formulae that occur as context in
the conclusion of the rule are still present in its premiss or premises, and,
moreover, all of the immediate subformulae of the main formula occur as side
formulae in the premiss or premises. The overall effect is that the calculus
allows the construction of derivations, in which all the information, which is
relevant for the justification of the logical connectives occurring in the end
sequent, is accumulated in the premises of the rules as the derivations are
developed towards their eventual initial sequents.

At the same time, a proof of a sequent in RK can be developed in such a
manner that all of its topmost sequents, i.e. conclusions of (ax*), only contain
atomic formulae. As sequents of this form, which we have called “elementary
sequents”, have the form of a generalised sentence in the sense of Hertz®, all
of the topmost sequents of a RK-proof constitute a system of sentences in
the sense of Hertz, i.e. an entirely structual justification of the end sequent.
Unfortunately, these sentences are nothing but relations of assumptions of

8This requires considering a generalisation in as far as succedents may contain any
number of elements.
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propositional variables and assertions of other propositonal variables, and
it is not possible in general to understand by just considering the topmost
sequents of a derivation, what the end sequent looks like. Consider the
following set of elementary sequents:

{[a,bﬁ a,a],[a,b,c—>a],[a,b—>c,a],[a,b,c—>c]}

Even in this rather concise example, it is hardly possible to survey these
sequents and design the end sequent of a proof, in which these sequents
occur at the top of its branches. The following proof is an example for a
proof, which has these elementary sequents as leaves:

*

(ax*) ————  (ax¥) (ax*)

(ax*)

a,b—a,a a,b,c —a a,b—c,a a,b,c — ¢
(DA) (DA)
aDc,a,b—a aDca,b—c
a,ba Dc—a a,b,a Dc—c

&S
a,badDc—akec (&5)

a&badc—akc (&A)

The relation of the elementary sequents to the sequent a & b,a D¢ — a & ¢
has to be facilitated by means of this proof.

It will be the purpose of the following part of this investigation to provide
some means of interrelating the leaves of particular RK-derivations, so called
explosion derivations, in such a manner, that it will be possible to understand
the meaning of the end sequent, from which these elementary sequents have
been generated, immediately on the basis of the collection of these leaves, i.e.
without having to consider or reconstruct that end sequent. It will become
apparent that these collections of leaves correspond to systems of axioms in
a somewhat generalised sense of Paul Hertz. For this purpose, particular
variants of the logical rules are required, which will be introduced forthwith.

4.3 From General Rules to Local Rules

We have argued that constructing a derivation of a sequent corresponds to
giving an entirely structural justification for the relation of assumptive and
assertive formulae therein. This perspective is immediately apparent, if the
logical inference rules are indeed regarded as schemes, i.e if all the formula
variables occurring in the premiss or premises are considered ”elementary”
in the sense of Hertz. In each of these justification schemes, the context,
consisting of the assumptive and assertive formulae, which are not relevant
to the complex formula introduced in the conclusion, can be momentarily
disregarded. This is respresented by collecting all contextual formulae into
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context variables I' and A, which occur without modification in the premiss
or premises and in the conclusion.

Unfortunately, the complex formulae occuring as context are in need of
justification themselves, and, hence, have to be considered in turn. Due to the
fact that some logical connectives are justified on the basis of the particular
interaction of two structural sentences, in the corresponding inference scheme
of two premises, the context formulae in I' and A have to be considered twice,
once in each premiss. Therefore, the justification for a complex formula
occurring in I' or A has to be given twice, even if the same justification can be
give in both cases. Of course, this problem engenders an explonential blowup
as other complex formulae may also have to be justified by two sequents.

It is obvious that this blowup results from the specific formulation of the
inference rules (VA), (DA) and (&S). All of these rules have two premises,
each of which must have the same context. For instance, consider the infer-
ence rule (&S):

r—AA r—AB
I - AA& B

(&5)

The premises agree in the entirety of their antecedents and almost all of their
succedents, except for the side formulae. As justification of the assertive for-
mula A & B, an assertion of A and an assertion of B is required.” In the
logistic calculus, assertions cannot occur as isolated formulae, however, and
(&S) simply accounts for the (unrestricted) posibilities of relations, in which
these assertions of A, B and A & B can be found. The rule then demands
that the contexts, in which these formulae occur, must be identical.'* For
the purpose of proof construction, this is a reasonable demand in the sense
that the required strict observation of the two contexts of the side formulae
puts the focus on the actual justification of the logical connective, which is

9This is akin to the introduction rule for the conjunction in the calculus of natural
deduction.
10 Another approach is possible, in which a mixing of different contexts is permitted.

1—‘1—>A1,A 1—‘2—>A2,B
I, I'o = A, A2, A& B

(&87)

When all the structural rules are freely available, this rule is equivalent to (&S). When-
ever structural rules are restricted or particular structural rules are entirely unavailable,
exchanging one rule for the other will result in a change of provable sequents. In linear
logic, where structural rules are restricted, the two different justifications are considered
concurrently, resulting in two different types of conjunction. In that context, the standard
justification introduces the additive conjunction, whereas (&S’) is used to introduce the
multiplicative conjunction.
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introduced. That is, logical connectives are to be introduced only under con-
trolled circumstances. From the perspective of proof search, the duplication
of the context will eventually amount to a considerable effort, especially in
the calculus RK, in which all the side formulae are retained and weakening
is worked into the axiom. Of course, this effort is absolutely necessary, for
simply omitting parts of the context will gnerally render the possibility of
obtaining a proof impossible. In what is to follow, we intend to separate
the derivation stage, in which the structural justification for all the logical
connectives in the end sequent is provided, from the decision stage, in which
it is checked, whether the provability of the end sequent can be decided on
the basis of the leaves of the derivation.

Hence, we can focus on extracting the justificational aspect of the general
logical rules with as little contextual burden as possible. By this we mean
that we want to express the justification a complex formula on the basis
of its immediate subformulae or subformula, and also retain the possibility
of relating all of these components to some context, but without explicitly
specifying an arbitrarily complex context in the rule itself. This is achieved
by moving from logical rules, in which context is explicitly represented, to
rules allowing as context at most a single propositional variable. The former
kind of rules shall henceforth be called general rules, the latter local rules.
The propositional variable represents as elementary a context as is required
in view of the relational nature of sequents. Via the intermediate step of this
propositional variable, any context can be connected to the relevant formulae
by an application of (Cut). For instance, compare the general rule (&S)

I—AA I'—-AB
- A A& B

(&85)

to the following short derivation, in which the propositional variable p must
not occur anywhere in A nor B nor in any formula of I' and A:

p—A p—B
r—Ap p— A& B
' - AA& B

(&5)
(Cut)

From a botom-up perspective, a new propositional variable p is introduced by
means of the cut rule in a first step, thereby disconnecting the main formula
A& B from the context. Note that the right premiss still has the form required
for the application of the local rule (&S). The new propositional variable p
is can be seen as representing the specific occurrence of the formula A& B in
the end sequent. Even if A should contain another occurrence of A& B, the
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variable p only serves as proxy for relating the very rightmost occurrence of
A & B to the succedent.!?

The connection between the formula and its original occurrence in the
sequent is represented by a unique variable, which is the cut formula. Such a
variable can, therefore, be viewed as representing an occurrence of a formula.
In the above example p can be considered an occurrence of the formula
A & B. Dually, it can be considered as the location at which some formula
occurs, e.g. in the sequent I' — A, p the propositional variable p marks the
location, where some formula may occur. Both occurrence and location refer
to an abstract entity relating a formula to a sequent or, more generally,
an immediate subformula to a formula. While it is common use to speak
of occurrences of formulae, the converse view of considering some complex
entity, sequent or formula, as providing locations for formulae is usually not
required. Instead, ”"occurrence” is used to simultaneously address both a
particular instance of a formula as well as the location, where it occurs.
While we are aware of the distinction, we shall not employ it. From here on,
the notions occurrence, location will be used interchangeably for propositional
variables that are introduced by applications of (Cut).*

Returning to the short derivation, the left premiss of (Cut) shall be called
the context premiss. Via the variable p, the context sequent I' — A, p is
shared by both of the logical premises, the premises of (&S):

p—A p—DB

v Akn W

This particular instance of (&S) has the intended property that it does not
justify the conjunction in an arbitrary context, but only relative to its occur-
rence, which is represented by the propositional variable p. Both premises of
this rule instance, as well as the conclusion express very simple relations of
the single assumption p and the respective single assertion. This instance of
(&S) therefore expresses the desired localised perspective on the justification
of an assertive conjunctive formula in the sense that only the immediately
relevant information is represented in the formulation of the logical rule.

In accordance with this example, we will introduce the remaining local
logical rules. These local variants of the logical rules will replace their general

HTn order to disconnect the second occurrence of A& B from the succedent, another new
propositional variable, say ¢, will have to be introduced by another application of (Cut) to
the left premiss, after that occurrence has been moved into the required position by one
or more applications of (XS). By repeated application of this procedure, every complex
formula can be detached from the succedent, and the same is possible for the antecedent.

12In the following part, we will explicitly introduce prozy variables, which will only be
used for this purpose.
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counterparts in the explosion calculus, which will be introduced in the second
part of this investigation.

Conjunction and Disjunction

The local rule (&S;), which is to be used instead of (&S), is simply the general
rule under the restriction of the antecedent to a single propositional variable
and of the succedent to the main formula in the conclusion or, respectively,
the side formulae in the premises.

p—A p—DB
» - A& D

(&S1)

Dually, the local rule (VA;) can be given as follows:

A—p B—p
AVB—p

(\/Al)

In this case, the main formula and the side formulae occur in the antecedent,
i.e. as assumptions. Hence, the propositional variable p, which represents the
occurrence of AV B, should be in the succedents of the involved sequents.
For both local rules, the premises can be understood as sentences of first
degree of Hertz’ structural logic. Applying this pattern to (&A) yields the
following local variant of that rule:

A B—p

ALB = p (&A)

The difference to the preceding two cases is the fact that (&A;) has a single
premiss, in which both side formulae occur. As the general rule has only
a single premiss, this local variant is not required in view of the aforemen-
tioned issue of duplicating complex formulae. However, a local variant of
every logical rule is required for the explosion calculus, as it will systemati-
cally introduce variables representing occurrences of complex formulae. By
taking A and B as elementary, the premiss A, B — p can be interpreted
as an elementary justification in the form of a sentence of Hertz’ structural
logic. The dual local rule (VS;) provides an elementary justification for the
introduction of an assertive disjunction:

p— A B

p— AVEB (vS1)
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In this case, the premiss only resembles a sentence of Hertz’ structural logic
in the sense that we allow an extension thereof along the lines of Gentzen’s
logistic calculus.

What we have obtained are local rules justifying the introduction of con-
junctive and disjunctive formulae in both assumptive and assertive roles,
which can be considered as elementary justifications in the sense that there
is no context of possibly complex formulae to consider in this formulation.
Moreover, a further restriction of these rules by removing the propositional
variable would render them useless. For instance, consider the following can-
didate for (VS;):

— A, B
— AV B

Although disjunction obtained in this manner could be used to either gener-
ate more complex formulae, it could never be set into any kind of structural
context of other formulae. The crucial feature of the logistic calculus, that of
allowing the reasoning about relations of assertions and assumptions, would
be lost. The single propositional variables make it possible to retain this fea-
ture. Instead, every formula occurrence is countered with a reference point,
and is meaningful only in relation to it. The importance of such a reference
point is the reason why we will later introduce a particular kind of variables,
which are specific for this purpose.

Negation and Implication

Applying the pattern from the previous cases to the general negation rule
(=A) yields this local rule:

—p, A

T—>p (—A)

As in the general variant, the assumption of a negated formula is justified
by the assertion of the formula itself, that is, the main formula occurs in
the antecedent, whereas the side formula occurs in the succedent. While the
conclusion of the local variant represents a relation between assumption and
assertion, this is no longer the case in the premiss. Instead, the justification of
the conclusion is an absolute assertion of the alternative of the formula A and
its occurrence, represented by the variable p. In contrast to the example given
above for a minimal justification of an assertive disjunction, the conclusion
contains a propositional variable, by which the negated formula can be joined
to any context. It is obvious that the analogy to Hertz’ sentences breaks down
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at this point, unless we take his remark seriously that unconditional effects
could also be considered. As far as the logistic calculus is concerned, this
local rule is straightforward, and, as we shall see, it will serve its purpose.
Similar remarks apply to the local variant of (=S):

Ap—

- W

The justification for the assertion of a negation finally lies well outside of that,
which Hertz had envisioned. Of course, Hertz had not taken negation into
consideration at all. Within the regularity of RK, this local rule is perfectly
acceptable, however.

The fact that a formula A D B is equivalent to the formula —-A V B in
the classical setting is reflected in the fact that in RK the premises of the
general rule

I - AA B,I'— A
ADB,I'—= A

(DA)

correspond to the two topmost sequents of this short derivation:

Ir—AA ()
AT =AY B,T — A va)
-AV B, I'—= A

Likewise, the premises of the local rule (DA;) resemble that of (—A;) and the
right premiss of (VA;):

—p, A B—p
ADB—p

(DAY)

Apart from the particular shapes of its premises, the local variant of (DA)
is otherwise unremarkable. Unfortunately, the similitude of the premises
will have consequences in the further proceedings in as far as certain case
analyses will become more involved. E.g. a sequent of the form — p,a
cannot be brought in relation to an instance of (DA;), as it could also be
related to (—A;). The same can be said for a sequent of the form b — p,
which can either be the premiss of an instance of (DA;) or (VA;). This
problem underscores the question, whether implication is a useful logical
connective in the classical context at all. It is particularly accentuated, as it
is our intention to emphasise importance of the structural relation —. The
justification of assertive implications makes this most evident, even in its
local variant:
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A B, —p

p—,A p—,B

AL B, p P A&B W
o A
e

L2 AP

Figure 4.3: Local logical rules

Ap—B

p— ADB (58)

An assertion of a logical implication A D B is just the formal expression of
the structural relation between an assumption A and an assertion B. In case
of (DS;), the propositional variable p is an additional assumption, by which a
particular instance of the relation is chosen. However, the justification does
have the shape of a sentence in the sense of Hertz.

Although the local logical rules for negation and (DA;) lack the elegance
of their counterparts for conjunction and disjunction, especially in view of
a possible interpretation as structural justifications for the respective con-
nectives, it is straightforward to obtain them by removing or reducing the
contexts from the general rules of RK.

Structural Rules

As the structural rules do not introduce any logical connectives, they have
no justificational character that is to be isolated. Hence, there are no local
variants of the structural rules. However, in a bottom-up perspective, in order
to obtain a sequent, to which a local logical rule can to be employed, it must
be possible to detach a single complex formula from either the antecedent or
succedent position by means of the cut rule. As the cut rule is not a rule
of RK, a means has to be provided, with which a new atomic cut formula
can be introduced. These atomic cut formulae act as proxies between the
complex formula and its context. Therefore, we will introduce the new rule
(Prx), called prozy cut or atomic cut, which ist the restriction of (Cut) to
atomic cut formulae:
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F1—>A1,p p,F2—>A2
Fl,r2—>A1,A2

(Prx)

The propositional variable p has the restriction that it must not occur as cut
formula in any other application of (Prx) within the same derivation or as
subformula in the end sequent.

In fact, (Prx) is the most general formulation of the rule. From what
we have indicated of the explosion calculus so far, the following two variants
would be sufficient:

A—p p,I'— A
AT — A

I —Ap p— A
Ir—AA

(Pl”Xl)

(PI’XQ)

The rule (Prx;) introduces a proxy for a formula occurring in the leftmost po-
sition in the antecedent, and (Prxs) does the same for the rightmost formula
of the succedent. Hence, the left premiss of (Prx;) can be the conclusion
of any local logical rule (xA), whereas the right premiss of (Prxs) can serve
as conclusion of any local logical rule (xS), where x € {&,V, D, —~}. In fact,
(Prx) will be used most of the time in one of these two manners. However,
another special case of (Prx) will be required:

I'—p p— A
r—A

(Pl”X3)

The necessity of this final variant will become apparent shortly. As three
specific instances of (Prx) would be necessary for our purposes, we will be
satisfied with the single rule (Prx) and not explicitly use these variants.
However, it will be useful to keep in mind that the rule will never be used in
another manner than given by one of these variants.
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Part 11

The Explosion Calculus
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Chapter 5

The Explosion Procedure

The aim of the explosion calculus is to reduce a sequent to a collection of a
particular kind of purely structural sequents. In contrast to leaves of RK-
derivations, from which it is near impossible to understand the end sequent,
from which they have been obtained by a proof search, the leaves of an
explosion derivation will make such understanding possible.!

The means by which this is to be achieved is the introduction of extra
atomic cut formulae of a particular sort, called prozy variables. In some sense,
they can be related to Hertz” ideal elements, which also had the purpose of
structuring systems of sentences. Each formula occurrence of the sequent
will be inextricably connected to a unique proxy variable, i.e. an atomic cut
formula. Moreover, all the propositional variables occurring in a sequent will
be replaced by proper occurrence variables in order to distinguish multiple
occurrences of the same variable. In view of the above comparison, occur-
rence variables have to be likeneded to Hertz’ real elements. Both kinds of
variables are called occurrence variables. Due to the introduction of occur-
rence variables, an explosion derivation will not result in any axiom leaves
whatsoever. Hence, the task of determining whether the structural elements
extracted from a given sequent correspond to a proof of the sequent or not,
is not performed by the explosion calculus.?

Instead, the explosion calculus mechanically decomposes any given se-
quent into its most elementary structural sequents. It is exactly this de-
composition, by which the problem of duplicating the formula context of a
main formula is avoided. Hence, each occurrence of a complex formula of
a sequent, including all the complex subformulae, will be subject to exactly
two rule applications in the explosion procedure.

In chapter 7, it will be argued that these collections of leaves constitute the meaning
of sequents.
2A decision procedure for this purpose will be presented in chapter 9.

67



The explosion procedure consists of three steps, each of which will be
described at length. Briefly, the three steps are:

1) initialisation of the sequent,
2) detachment of a complex formula,

3) application of local logical rule.

Throughout this desciption, we will employ the bottom-up perspective, as we
will decompose an arbtrary sequent I' — A into its elementary structural se-
quents. The initialisation step is performed exactly once for a given sequent.
It separates the antecedent from the succedent by the introduction of a proxy
variable, which is called the watershed proxy. After the initialisation, alterna-
tions of detachments by (Prx) and applications of an appropriate local logical
rule follow. The exact number of alterations of 2) and 3) is determined by the
number of logical connectives, which occur in I" and A, which is the number
of occurrences of complex subformulae in I' and A. The derivation obtained
by this procedure for a given sequent is called the explosion derivation of
that sequent.

5.1 Elementary Structural Sequents

Up to this point, we have considered formulae, which were generated in-
ductively on the set of propositional variables A. Formulae over A will
not be suitable for the purposes of the following investigation, however. In
order to illustrate this, consider some sequent I' — Ay, a V —a, Ay, where
a also appears in some or all of the sequences I',A;, Ay. The formula
a V —a contains two occurrences of the propositional variable a. In a proof
search, starting from this sequent, we might eventually arrive at a sequent
I, a, T — Al a, Al In this latter sequent, it is possible, but not certain,
that the a occurring in the antecedent was obtained from the right subfor-
mula —a of the disjunction and the a accuring in the succedent is the a
obtained from the left subformula of the disjunction. While it is possible to
establish whether this is the case or not by following the branch of derivation
that connects the two sequents, it is not obvious by simply looking at the
two sequents. In addition to this, logistic calculi distinguish different occur-
rences of the same propositional variable only by their position within the
antecedent or succedent, which is variable even under the exchange rules.
As we separate checking for provability from the extraction of elementary
structural sequents, there is no need to use the same propositional variable

68



to represent different occurrences thereof. Quite to the contrary, since our
first interest lies in the development of the pure structure inherent in a se-
quent, the identification of the atomic formulae would lead to problems.?
The solution to this problem is to employ occurrence variables instead of
propositional variables. Instead of using some propositional variable, say a,
repeatedly in a sequent, each one of the m occurrences of a is represented
by a unique occurrence variable, say aq, as, ..., a,. The first sequent in the
example above would then be represented by I' — Ay, apV —ayy1, Ag for suit-
able k. If the proof search of this sequent leads to I'}, ax41, Iy — A}, ax, A,
we would be able to immediately relate these occurrence Varlables to those
in the former. The obvious property of occurrence variables that different
occurrences thereof can never be identical results in the fact that a sequent
made up from occurrence variables cannot have a proof in RK.?

We introduce an enumerable set of proper occurrence variables O and
explain, how to replace propositional variables by occurrence variables and
how to reverse the process.

Definition 5.1 A sequent which contains only propositional variables, 1i.e.
no occurrence variables, is called a standard sequent. For every standard
sequent S, the occurrence instance S of S is the sequent that is obtained
by replacing each occurrence of a propositional variable in S by a new oc-
currence variable. A restoration function is a function p : O — A. For a
sequent T containing only occurrence variables and a restoration function p,
the restoration of 7 under p, written ’Tp, 1s the sequent that is obtained by
replacing every occurrence variable a in T by the propositional variable p(a).

The restoration function complements the generation of an occurrence in-
stance in the sense that for all sequents S, it is Sp = S.° The restoration
function retains the information about identity of atomic content. Techni-
cally, we obtain an occurrence instance of a sequent S and the correspondence
restoration function as follows: we begin with the everywhere undefinded
function as restoration function and scan S from left to right, replacing each
propositional variable a encountered by an occurrence variable x that is not

3Tt will be outlined in detail in the following where those problem would occur. Let it
suffice to state at this point that the result of the explosion procedure is a set of elementary
structural sequents, which would not adequately represent certain crucial multiplicities.

“However, if we were to consider all the leaves of such a derivation in turn and restore
all propositional variables therein, that is, replace each occurrence variable by the proposi-
tional variable that originally occured there, we could quickly establish whether the leaves
are conclusions of (ax*), and, hence, wether the derivation could be turned into a proof.

5Any given p is assumed to be inductively extended over formulae and sequents.

69



yet in the image of p, updating p by the assignment {z — a} and then pro-
ceeding to the next symbol in S. In view of this procedure, an obvious choice
for O is the cartesian product A x N and represent occurrence variables by
ay,Qg,...,a},ah, ..., b1, ba, ..., when a,a’,... b,... are used as symbols for
propositional variables. Note that we will, especially in later chapters, oc-
casionally refer to explosion derivations of some arbitrary RK-sequent, es-
pecially when comparing a derivation in RK to the explosion procedure. In
those cases, we take it to be understood that the explosion procedure is al-
ways applied to an occurrence instance of the sequent in question, not the
sequent itself.

For the explosion procedure we need additional variables that will be in-
troduced in order to detach complex formulae from their contexts. It is useful
to emphasize the difference between occurrences of propositional variables
themselves, which are the atomic constituents of formulae, and occurrences
of complex formulae. These variables are called prozy variables, because the
explosion procedure removes every complex formula from its context by in-
troducing such a proxy variable, and afterwards the formula can only be
related to its former context via this proxy variable.® In contrast to the
proper occurrence variables, proxy variables will always occur as atomic for-
mulae only. Since we do not want to run out of proxy variables during the
explosion procedure, we require an enumerable set of them, which we call
P. Letters p,q,r, s,t,... will be used for proxy variables, and we attach nat-
ural numbers as indices in order to generate additional variables whenever
required, e.g. p1, g3 etc.

The set of occurrence variables ) is the disjoint union of the set of propoer
occurrence variables and the set of proxy variables, i.e. V = O W P. We will
use letters x, y, . . . to denote arbitrary occurrence variables, attaching natural
number indices to the letters whenever required. A restoration function p in
the sense of definition 5.1 is extended over V in the trivial manner, i.e. p(p)
is undefined for every p € P.

Whenever a sequence of formulae contains no complex formulae, i.e. it
consists of only occurrence variables, proper or proxy, lower case greek letters
will be used to emphasize this fact; that is, we shall use v instead of I'; §
instead of A etc.

With the new sets of variables established, we can proceed to charac-
terise the specific kind of sequents, which we want to obtain as result of the
explosion procedure.

6As we have argued, proxy variables can be considered as occurrences of complex
formulae. This is the reason for the name proper occurrence variables for those variables
replacing propositional variables.
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Definition 5.2 An elementary structural sequent (ESS) is a sequent v — 9,
for which the following holds:

1) All the formulae of v and & are occurrence variables.
2) At least one of the formulae in v and 6 is a proxy variable.
3) Iflen(y) - len(d) = 0, then 1 < len(y) + len(d) < 2.

4) Iflen(y) - len(d) # 0, then len(vy) =1 or len(d) = 1.

Condition 1) states that an ESS must not contain any complex formulae
whatsoever. All formula occurrences in v — ¢§ are atomic, as it is already
indicated by the use of lower case greek letters. Condition 2) might be a
surprising restriction, because it clearly prohibits even occurrence instances
of the simplest axiom sequents, such as a; — ao, as elementary structural
sequents. However, we will see shortly that as a result of the explosion
procedure, every ESS must contain at least one proxy variable. Condition 3)
demands that ESSs, which have an empty antecedent or an empty succedent,
must have either one or two variables in their other part. Finally, condition 4)
forbids sequents that have more than one variable on both sides. If antecedent
and succedent both consist of one or more formulae, at least one of them must
consist of exactly one variable. This condition disallows sequents that have
more than one formula in both antecedent and succedent. Here are some
examples for elementary structural sequents:

a; — p
t — q1,92,q3
ay,r —
s — a37b27cl
— D, q
as, p,t — by
t —

On the other hand, none of the following sequents is an EES:

as &by — p violates condition 1)
as,by — ¢ violates condition 2)
a; — violates condition 2)

— q1,G2, (3 violates condition 3)

— violates condition 3)

p,q — 1,8 violates condition 4)
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We will see shortly, how iterateded alternating applications of the atomic
cut rule and local logical rules will decompose every sequent into a set of
elementary structural sequents.

5.2 Initialisation of the Sequent

For an arbitrary sequent I' — A, both I' and A can contain any number
of formulae. In order to emphasise the separation of those formulae in an-
tecedent and succedent, a proxy variable w, called the watershed proxy is
introduced by application of (Prx). This proxy variable explicitly delimits
the antecedent from the succedent.

I' - w w— A
= A (Prx)

Intuitively, instead of being able to move attention back and forth be-
tween antecedent and succedent within a single sequent, the introduction of
a watershed proxy variable demands that attention is instead shifted from
one sequent to another sequent. For instance, the antecedent I' of the orig-
inal sequent is found in the leftmost sequent of the two premises of (Prx).
Moving the attention to A now involves the intermediate step of discovering
w instead of A in the succedent of that first sequent. What has to be done
next is to investigate all the other available sequents in order to find the one
that contains the proxy w in the antecedent. This task is obviously trivial
at this stage, since there is only one other sequent, and A is its succedent.

What has been achieved by this separation step is that in any derivation,
which is constructed on top of this initialisation step, no sequent will contain
formulae or subformulae that originate from occurrences in both I' and A.”
Any explosion derivation that can be built on top of the left premiss can only
consist of sequents containing formulae and their subformulae that already
occur in I' and, in addition to that, proxy variables (including w). Consider
the occurrence instance a; — ay of the RK-axiom a — a. Even this trivial
sequent has to be initialised in the explosion calculus.

a; — w w — a9

(Prx)
a1 — Q2

" Assuming that neither I nor A are empty, it should be obvious that in general a RK-
proof of I' — A could not be obtained after the initialisation step. This already establishes
that the decision procedure for provability is not entwined with the justificational character
of the explosion calculus as is the case with the conventional lofistic calculi.
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Since this might seem rather perplexing at this point, we shall give a very
brief informal description of the decision procedure that is to be be applied
to the set of EESs obtained from some given sequent by the explosion cal-
culus. All paths connecting EESs via proxies are considered in turn. All the
proper occurrence variables occurring in the antecedents of ESSs connected
by such a path are collected in the set of antecedent variables, and all the
proper occurrence variables occurring in the succedents of ESSs connected
are collected in the set of succedent variables. Then the restoration function
is applied to these two sets. If the intersection of the result of the restoration
is not empty, such a path is closed. If all possible paths are closed, the given
sequent is provable in RK. In the example above there is only one path
connecting the ESS a; — w to the ESS w — ay. Accumulating all proper
occurrence variables occurring in antecedents along this path yields the set
{a1}, and doing the same for the succedents gives us {as}. The sequent was
obtained from an instance of @ — a, so the restoration yields the sets {a} and
{a}. Since the intersection of these sets is non-empty, a — a is (in this case
trivially) RK-provable. Of course, the execution of the decision procedure is
trivial in the case of an elementary instance of the axiom.

From this intuitive description of the decision procedure, it is already
apparent that the intitialisation step serves the important purpose of intro-
ducing a single proxy variable, which will occur in all possible proxy paths.
In other words, all the paths connecting ESSs obtained by the explosion pro-
cedure will pass through the watershed proxy w. In this sense, w can be
thought of as the unique representation of the entire set of ESSs that will
be obtained by exploding the original sequent I' — A, and hence, as the
occurrence of the entire sequent.

5.3 Detachment of a Complex Formula

Having made the separation of antecedent and succedent explicit by the in-
troduction of the watershed proxy, the next step addresses the task of trans-
forming sequents into a form, to which the local logical rules can be applied.
Since local logical rules are applied to sequents that contain exactly one com-
plex formula in either the antecedent or the succedent and one proxy variable
in the complementary part of the sequent, the detachment step is intended to
produce sequents fulfilling this specification. The detachment step can only
be employed, if there occurs at least one leaf in the explosion derivation,
which contains at least one complex formula in its antecedent or succedent.
If this is no longer the case, all the leaves of the derivation are already el-
ementary structural sequents, and the explosion procedure terminates. For

73



example, this is the case right after the intialisation step of a; — ao, as we
saw above, since neither one of the premises a; — w and w — ay contains a
complex formula.

Assuming there is a suitable complex formula in one of the sequents oc-
curring as leaves of the current explosion derivation, detachment begins with
a number of applications of (XA) or (XS), depending on whether the for-
mula occurs in the antecedent or the succedent, to move it into cut position.
This is followed by an application of (Prx) to introduce a new proxy vari-
able, which separates the complex formula from its context. Finally, (XA)
or (XS) is applied to the context premiss the same number of times in order
to move the proxy variable into that position within the sequent that was
previously occupied by the complex formula. This last step is not necessary.
It is included, however, to have, as result of detachment, an unmistakably
recognisable replacement of the complex formula in the sequent by its proxy.

The procedure is exemplified for an occurrence of AV B in the antecedent
of a sequent, say I'y, AV B,I'y — w, where w is the watershed proxy. The
complex formula AV B is to be isolated from its context for a later application
of the appropriate local rule.

I',p,I's —w

AV B —p p, [,y - w
AV B, T, Ty —w
I',Av B, Ty —w

(Prx)

The double lines correspond to len(I';) applications of the structural rule
(XA). First, AV B is moved into cut position, where it is detached from the
context by means of a proxy p, which is then moved back into the previous
position of AV B. Since the instances of (XA) are not particularly illumi-
nating, we will from now on use the following abbreviation for derivations,
which are similar to the one above:

AV B —p I'y,p, Iy — w
Fl,A\/B,F2—>w

(Prx)

The result of the detachment step is that the sequent, to which it is
applied, is transformed into two sequents, which occur as the two premises
of that short derivation. One premiss containing a proxy variable instead of
one of its original complex formulae is obtained as one sequent, the context
premiss, in which the proxy variable marks the former occurrence of the
complex formula. In this example this is the right premiss of (Prx). The
second premiss contains only said formula in either the antecedent or the
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succedent, depending on its occurrence in the original sequent, and the proxy
variable in the opposite position of the sequent. In this premiss, the proxy
variable represents a specific occurrence of the complex formula, and hence
this premiss is called the occurrence premiss. It is this premiss, to which
a local logical rule will be applied in the following step of the explosion
procedure. In the example, this is the left premiss of (Prx). The proxy
variable both uniqely identifies some location within a specific context and
an occurrence of a formula. Thereby the relative position of the detached
formula is retained via this proxy.

As a second example, consider the sequent ¢ — Ay, —A, Ay, where - A
is to be detached. What follows is the full derivation that performs the
detachment operation.

q— A17T7A2

q— A1, Agr r — —A
q— A1, Ny, 0A
q— Ala_‘Aa AZ

(Prx)

Since A occurs in the succedent, the structural rule (XS) has to be employed
len(A;) times to move the formula into cut position, and again as many
times to move the introduced proxy variable r back to the former position
of = A within the succedent after the proxy cut. The procedure, by which
this derivation is obtained, is symmetric to the previous case, in which the
complex formula was located in the antecedent. Instead of structural rule
(XA), the rule (XS) is required; moreover, the order of the leaves of the
derivation is exchanged, i.e. the left premiss is the context premiss and the
right premiss of (Prx) contains the occurrence of the complex formula. In
the simplified notation, the derivation can be given as follows:

q— Ay, As r — —A
q — Ala_'AvA2

(Prx)

Although a single detachment step is very simple in itself and has been
sufficently introduced by the two examples, it is still necessary to have a for-
mal description thereof. We assume that some explosion derivation is given,
and that a complex formula occurs in the antecedent of some leaf or in the
succedent of some leaf. For simplicity, the procedure is described for the de-
tachment of a complex formula occurring in the antecedent; the instructions
for a formula occurring in the succedent are symmetric. If there is no leaf
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anywhere in the explosion derivation, which has a complex formula in either
the antecedent or the succedent, the explosion procedure terminates.®

1) Decide on a leaf of the given explosion derivation containing at least
one occurrence of a complex formula in its antecedent.

2) Pick one complex formula and mark its location within the sequent. For
instance, for a complex formula C', divide a sequent into I'y, C, 'y — A.

3) Apply (XA) len(I'y) times, each time moving C' one place to the left.
4) Apply (Prx), introducing a new proxy variable r.

5) Apply (XA) len(I';) times, beginning with the right premiss of (Prx),
each time moving r one place to the right.

This procedure is expressed by the following derivation fragment:

C—r Fl,T,F2—>A
Fl,C,FQHA

(Prx)

The left premiss is the occurrence premiss, which relates the formula C' to a
unique proxy r. Therefore r can be understood as representing the specific
occurrence formula C'. The detachment step therefore corresponds to the
preparation of the formula C' for the application of a local logical rule by
detaching it from its context by means of the proxy. Similarly, all complex
formulae occurring in I'; and I's and all their complex subformulae will be
related to a unique proxy variable by some later detachment step of the
explosion procedure. This is especially important in view of the application
of a local logical rule that immediately follows the detachment of a complex
formula; for even though the connective will no longer be present in the
premiss or premises of that rule, the proxy variable can never disappear.
For instance, the sequent C' — r has the required form for the local logical
rule applicable to C', and although only the immediate subformulae of C' will
reappear in its premiss or premises, r will continue to represent the complex
formula C therein. The right premiss consists of the context premiss, in which
the location of the formula C' is retained by the same proxy r. The context
sequent I';,r,I'y — A has the following obvious properties:

8 An important result, which will be established later on is the following: The choice,
which complex formula is detached at any given point during the explosion procedure, does
not have any effect on the ESSs, which are yielded as the leaves of the entire explosion
derivation when the procedure has terminated. For the time being, we choose arbitrarily
at any stage the occurrence of a complex formula that is to be detached next and the
corresponding leaf of the derivation.
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1) It contains exactly one complex formula less than the sequent occurring
in the conclusion of the cut.

2) If 'y, Iy and A consist entirely of occurrence variables only, then the
leaf I'y,7, I’y — A is an elementary structural sequent and requires
no further treatment; otherwise, for some complex D occurring in ei-
ther I'y or I'y, this leaf must be revisited at a future point for another
detachment step.

It is important to stress the importance of adhering to the procedure as it
has been presented this far. An example will serve to illustrate the possible
problems arising from negligence. For sequent A & B — A, the initialisation
step yields:

A& B — w w— A
A& B— A

(Prx)
Without knowing more about the syntactic structure of A and B, nothing can
be done with the right premiss. However, since A & B is a complex formula,

we can proceed to develop the left premiss by detachment as follows:

A& B —p p— w

(Prx)
A&B_>'UJ w_>A(PI'X)

A& B — A

This step might appear redundant, since A & B — w already has the form
that allows the application of the local logical rule (&A;). Furthermore, the
sequent p — w might appear redundant at this point of the presentation.
While it is undoubtedly an elementary structural sequent, its relevance is
perhaps not obvious. There are very specific intended meanings for p and w,
however, and it is because of these meanings that the detachment step must
not be skipped. The watershed proxy w is introduced in the initialisation
step and is closely related to the sequent as a whole. The proxy p, on the
other hand, is only related to A & B, marking both its occurrence and its
location within a certain context. Here, we are simply facing the special
case that the antecedent of the end sequent consists of a single formula.
The elementary structural sequent p — w therefore relates this singleton
antecedent, consisting of the complex formula whose occurence is p, to the
sequent as a whole, represented by w. Thus, omitting the detachment step
would fuse the proxy related to the sequent as a whole to the occurrence
of A& B. Such a conceptual overlap must be avoided. A related problem
is that of fusing the occurrence of a formula and its subformulas. This will
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be explained in the next section. It is important to remember that the
detachment step must be performed, even if the sequent under consideration
already has a shape that would allow to skip it and proceed immediately to
the application of a local logical rule.

5.4 Application of the Local Logical Rule

In this step, the appropriate local logical rule is applied to the occurrence
leaf that was generated in the preceding detachment step. In view of the
application of a local logical rule, the important result of the detachment
step was to obtain either a sequent C' — p or a sequent p — C, where C is
some complex formula. The application step then consists of the application
of the local logical rule appropriate for C, given as follows:

AVB —p : (VA) p—AVB : (VS)
A&B—p : (&A) p—A&B : (&9)
ADB—p (DA) p—ADB (DS)

The actual derivations obtained in this step are exactly instances of the local
logical rules. Even though this step is quite straightforward, let us consider
the examples from the previous sections. Recall the first example we gave
for detachment:

AV B —p I'y,p, Iy — w
', AvB, 'y —w

(Prx)

After the detachment step, the left premiss AV B — p has the form required
by the local logical rule (VA;).

A—p B—0p
AV B —p

(\/Al)

This yields the following composite derivation of both the decomposition
step, followed by the application of the local logical rule:

A—p B—p
AV B —p I'y,p, 'y —w
Fl,A\/B,F2—>w

(\/Al)

(Prx)
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This is the derivation fragment, in which all the steps directly relating to
the proxy p are accomodated. It is introduced by (Prx), and immediately
afterwards it enables the application of the local logical rule to its occur-
rence premiss. Its role in the application of the local logical rule, (VA;) in
this example, is that of providing the only permitted context for such an
application, namely that of a single proxy variable in that part of the se-
quent opposite to the one in which the complex locial formula occurs. In
the premiss or premises of the local locical rule, it is the proxy variable that
retains the connection of the side formulae to the former context of the main
formula. This context is given in the context premiss of the preceding proxy
cut.

We can express the detachment step, followed by the application step,
by a meta rule, which combines all the necessary rule applications. Such a
meta rule has a single context premiss, resulting from the atomic cut, and as
many logical premises as the corresponding local logical rule. The meta rule
corresponding to the example above is:

A—p B—p TIyply— A
Fl,A\/B,FQHA

(VAR)

The comparison of the meta rule (VA,,) to the traditional logical rule (VA)?
demonstrates how duplication of the context is avoided by the introduction
of the proxy variable:

1—‘17*’47F2_)A FlaBaFZ_)A
Fl’A\/B’FQHA

(VA)

In the premises of (VA), there are two occurrences of each of the sequences of
formulae I'1, T’y and A, whereas in (VA,,) each of those occurs exactly once.

Recall the second example of the previous section: ¢ — Ay, ~A, Ay. The
detachment of = A from the context yieldeded:

qg— Ay, 1, A r— —A
q— Ala_'AvA2

(Prx)

The appropriate local logical rule for dealing with the right premiss is (—S;).

Ar—
oA

9As before, the double line indicate the required 2 - len(I';) applications of (XA).
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This yields the following derivation as the result of the detachment step,
followed by the application of the local logical rule:

Ar—
¢ AL A, 7oA
(Prx)
qg— Ah _'A7 A2

As in the previous example, we can express this derivation by a meta rule of
the following form:

F—>A1,T‘,A2 A,T—>
P—>A1,_\A,A2

(_‘Sm)

The traditional rule (—=S), including 2 - len(A,) applications of the exchange
rule (XS), has the following form:

A,F - AlaAQ
['— Ay, A Ay

(=S)

In the rule (—S) there is no duplication of the context. However, in contrast to
the single premiss of this rule, the meta rule (=S,,) expresses the context by
a separate context premiss and captures the purely logical part by a second,
the local logical premiss.

The more extensive example from the previous section was this short
derivation:

A& B —p p— w

A& B — w
A& B — A

(Prx)
w—= A pry

The left premiss of the upmost (Prx) purports an application of (&A;), which
results in the following derivation:

A B—p
A&Bﬁp(&Al) p— w
(Prx)
A& B —w wﬁA(Prx)
A& B — A

Using the meta rule (&A,,) corresponding to this case, the derivation can be
expressed as follows:

A B—p p— w
A& B — w (hm)
A& B— A

w— A (Prx)
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The pivotal role of the proxy variable can be fully appreciated now that
both working steps of the explosion calculus, detachment and application
of the local logical rule, have been presented. Its role in the detachment
step is to retain the connection of the detached formula to its context. In
the application of the local logical rule, this connection is surrendered to
the side formulae or side formula by means of the proxy variable. This
necessitates that the two working steps of the explosion calculus are always
employed conjointly in the sense that the proxy variable that is introduced
in the detachment step is the one that relates to the complex formula which
is resolved by the local logical rule.

Logical Meta Rules

A local logical rule requires a preceding introduction of a proxy variable by
a proxy cut. Since the premiss of such a cut, which contains the detached
formula and this proxy variable, can only be treated by the local logical rule
corresponding to the formula, it is convenient and advisable to bundle these
two derivation steps into meta rules.

All the possible combinations of (Prx) and one of the local logical rules
are represented by the meta rules in figure 5.1. To be exact, each meta rule
represents a derivation consisting of (from the bottom up):

1) anumber of instances of the exchange rule required to move the formula
under consideration into cut position;

2) an application of (Prx), by which the proxy variable is introduced;

3) the same number of exchange rules applied to that premiss of (Prx),
which retains the context; thereby the proxy is returned to the starting
position of the now detached formula;

4) the appropriate local logical rule, applied to the other premiss of (Prx).

Thus, each one of the meta rules has exactly one premiss more than the
corresponding local logical rule or RK rule. This additional premiss retains
the context, in which the complex logical formula originally occured. We
will maintain the terminology that was introduced previously and call this
premiss the context premiss. Likewise, any premiss of a meta rule, which is
not the context premiss, is a logical premiss.

From now on, we will present the explosion procedure using the meta
rules. This emphasizes the fact that a detachment step and an application
of a local logical rule always go hand in hand.
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Figure 5.1: Logical meta rules
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Chapter 6

Properties of the Explosion
Procedure

The purpose of the explosion procedure is to obtain as leafs of the derivation
elementary structural sequents only. The collection of all the ESSs obtained
by this procedure can be considered to be the structural skeleton of the
sequent. While all the logical connectives have been removed locally, the
meaning of each one is retained by certain collections of structural sequents.
Unlike in RK, this meaning is not only represented at the exact position in the
derivation, at which the corresponding logical rule is applied. In addition to
that, and more importantly, the meaning is also retained in certain collections
of ESSs that are obtained by the procedure, even if they are considered
independently of the derivation itself.

To gain an intuitive understanding of this idea, consider this continuation
of the first example, written down explicitly without the meta rules, and
assume that both A and B are complex formulae:

AA AB
A—q q_)p(PrX) B—r T—)p(PrX)
A—p B_>p(\/A)
AVB—p " Iy,p, 'y —w

(Prx)

T,AVB, T, —w

On top of the left premiss of (VA,,), A — p, we execute another detachment
step, followed by the application of the local logical rule that is appropriate
for A. That second step is merely indicated by A 4. Furthermore, we execute
yet another detachment step on the right premiss B — p, which, again, has
to be followed by the local logical rule corresponding to B; this is abbreviated
by Ap. Note that the two right premises of the topmost detachments, ¢ — p
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and r — p, are already elementary structural sequents. Hence, they are leafs
of the explosion derivation, since neither of them contains a complex formula.
Therefore, neither of them can be the conclusion of another detachment step.*
There is another sequent, in which the proxy p occurs, however, namely in
the right premiss of the bottom (Prx), I';,p,I's; — w. Since I'; and T’y
may still contain complex formulae, the sequent is not necessarily an ESS.
Assume that I'; contains m < len(I';) complex formulae and that I'y contains
n < len(I'y) such formulae. Then, these formulae can be replaced by proxy
variables in m + n steps.? This leaves an ESS 71, p, 72 — w, where both
and v contain only occurrence variables (proxy or proper). Furthermore,
since it is an ESS, no rule is applicable, and thus it is also a leaf of the
explosion derivation. Since p is a unique proxy variable, it can occur in no
other leaf of the explosion derivation than those that have been mentioned.
Even without the context of the derivation, the following information can be
obtained from the three elementary structural sequents ¢ — p, r — p and

Y1, D, Y2 — W

1) The ESSs ¢ — p and r — p retain the structural information of the
premises of the local logical rule. The proxy variables ¢ and r mark
the location of the side formulae A and B, respectively, of the original
disjunctive formula, whereas the proxy p represents the occurrence of
the disjunction itself.

2) The antecedent of the third ESS, 7, p, 72, gives the context, in which
the original disjunction A V B occured. The context is represented
by the proxies, which were introduced by detachments of the complex
formulae in I'; and I'y, and the proper occurrence variables that were
not detached. The proxy p itself marks the location, at which the
disjunction originally resided.

In summary, a proxy variable p occurs as the single formula in the succedent
of two ESSs and in some context 71, -, 2 in the antecedent of a third ESS.
Among the meta rules, this exact configuration can be found in the form
of premises of (VA,,), although there, the side formulae A and B in the
antecedents are not yet detached from the succedent p in the logcial premises,
and the context premiss is given in its general form. There is no other
possibility for deriving such a configuration of ESSs sharing the proxy p. For
recall that p is introduced in order to detach A V B from its context. In

'The sequents, from which they were obtained, A — p and B — p, each contained
exactly one complex formula, each of which was detached by an application of (Prx).
2 Atomic formulae are never detached by the explosion procedure.
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the context premiss, this proxy is not further treated, since it is already an
atomic formula. It is simply retained from one context sequent to the next.

These observations convey the information that p represents the location
of a disjuntion in the ESS ~;,p, 72 — w, and that the other two ESSs are the
structural representation of this disjunction.

6.1 Explosion Sets

Without the aid of a visual representation, which will be introduced in the
final part of this investigation, formal tools are required to state properties
about certain collections of ESSs. We will consider only explosion deriva-
tions that have been completely developed. This means that the explosion
procedure has terminated, because there is no leaf in the derivation that
still contains a complex formula. The main result of this chapter will be the
proposition stating that all possible completely developed explosion deriva-
tions of a sequent yield the same set of elementary structural sequents (up
to the names of the proxy variables).

Definition 6.1 For an explosion derivation Il of a sequent S with watershed
proxy wry and the set &g of all elementary structural sequents, which occur
as leaves of 11, the tuple (€, wy) is called the explosion set of II.

The watershep proxy wry, which is introduced in the first step of any explosion
derivation II, is a useful point of reference with regard to the set of leaves of
II. Hence, we will never consider just the set € alone, but instead the tuple
(€1, wyr) as explosion set of I1, although we shall occasionally also address €y
as explosion set, when wyy is not relevant. This overloading of the definiens
is tolerated at this point in order to avoid an unnecessary terminological
fabrication. In what follows, we will always assume that, whenever a set
of ESSs is given, the watershed proxy is understood from this set. As a
notational convenience, we will write sequents I' — A in square brackets
' — AJ, whenever several sequents have to be separated by commas, in
order to facilitate readability. This will be employed whenever ESSs are
accumulated in sets.

It will prove very useful for the characterisation of ESSs to keep track
of the order in which proxies are introduced. However, the exact order of
application of the rules, by which the proxies were introduced, is not of
interest. Instead, the relative distance of a proxy to the watershed proxy is
the important measure. This relative distance is measured by the number of
meta rules that lie between the one introducing said proxy and the intitial
atomic cut, which introduces the watershed proxy. To gain an intuitive
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understanding, which cuts are relevant for this measure, consider the sequent
from a previous example: 'y, AV B,I'y — w, where w is the watershed
proxy, len(I'y) = m and len(I'y) = n. Since A V B is a complex formula,
the explosion procedure will eventually detach it from its context I'y and I's.
However, since the choice of which formula to detach is arbitrary, there can
occur up to m + n applications of meta rules in an explosion derivation, by
which complex formulae are removed from I'y or I'y. This yields as rightmost
premiss of such a derivation the sequent I}, A V B, I, — w for suitable I'}
and I'y. If AV B is detached from this sequent by the introduction of a proxy,
say p, we obtain as context premiss the sequent I}, p, I, — w. After at most
m + n + 1 applications of meta rules, we obtain the ESS vy, p, 7. — w. All
the proxy variables, which occur in the antecedent of this sequent, have been
introduced by these rules applications which all treat the same context up
to detachment of complex formulae, and hence they share the property that
they were introduced in this sense immediately after the watershed proxy w.
According to the explosion procedure, they could not have been introduced
before w, since the first step is initialisation.

Y1,P, Y2 — W (*Am)

A—p B—p Lo Ty —w
WAV BT, - w

(*Am)

Fl,A\/B,F2—>w (*Am)
Now consider the sequents A — p and B — p, the logical premises of rule
(VA,,). Assuming that both A and B are complex formulae, they will be
detached from p and handled by the explosion procedure by means of new
proxy variables, say ¢ and r. The context premises of the two required meta
rule applications will be ¢ — p and r — p.

r—op
B —0p

qg—7p

s (xA,,)

(*An)

Hence, proxies ¢ and r are introduced after the proxy p. They could not be
introduced before p, because they are introduced to detach the side formulae
A and B of AV B; but in order to access A and B, the formula AV B must
already have been detached and handled.

The example shows that the right premiss of the initialisation has a se-
quence of succeeding context premises above it, which share common fea-
tures. The same is true for every logical premiss that occurs in an explosion
derivation. This is captured by the following notion.
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Definition 6.2 A context branch in an explosion derivation I1 is a sequence
of sequents (Sp, S1,...,S,) with n € N, in which Sy is a logical premiss of a
meta rule or a premiss of the initialisation step in 11, and every S;y1 is the
context premiss of the meta rule, the conclusion of which is S; in II. The
sequent Sy is called the base of the branch.

For each ¢ > 0, the sequent S; in a context branch is similar to the base
sequent Sy in the sense that it is the sequent Sy, with ¢ complex formulae
replaced by proxy variables.

Definition 6.3 For some sequent S containing complex formulae, the se-
quent 8, which is obtained from S by replacing any number of complex for-
mulae by proxy variables, is called a variant of S. It is called an immediate
variant of S, if it is obtained from S by replacing exactly one complex formula
by a single proxy variable.

As a limit case, it is useful to consider any sequent to be an (improper)
variant of itself.> Every context premiss of a meta rule is an immediate
variant of the conclusion, since exactly one complex formula is replaced by
a proxy variable. A context branch is a sequence, in which every element,
apart from the first, is an immediate variant of the preceding element.

Lemma 6.4 For every sequent S containing n complex formulae, which oc-
curs as a logical premiss or as a premiss of the initial atomic cut in a com-
pletely developed explosion derivation 11, the following holds:

1) The context branch of 11, whose base is S, has length n + 1, and its
last element is an elementary structural sequent, which is a variant of
S and contains n + 1 proxy variables.

2) If n > 0, then each S;y1 in the context branch (So,Si,...,S,) with
So = S is an immediate variant of S;.

PRrooOF: Note that § is not a context premiss. Hence, it cannot contain any
other proxy variables than the single one, which was introduced by the meta
rule or initialization step, of which § is a premiss. For either S is a logical
premiss, in which case it can only contain the new proxy variable and one
or two side formulae, each of which is either a complex formulae or a proper
occurrence variable, or it is a premiss of the initialization step, in which case
it can only contain the watershed proxy and the formulae of the antecedent
or succedent of the original sequent, each of which is, again, either a complex

3Thus, the notion of variant induces a partial order on the set of sequents.
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formulae or a proper occurrence variable. Hence, none of these formulae can
be, much less contain, any proxy variables. There are two cases to distinguish.
In the case that § contains no complex formulae, it is already an elementary
structural sequent. All formulae occuring in the sequent, apart from the
single proxy variable, must be proper occurrence variables. Furthermore, the
branch, which has the ESS S as its base, contains only &, and hence it is
a branch of length 1. In the case that S contains n > 0 complex formulae,
these formulae are detached in II by means of the appropriate meta rules.
This requires n applications of meta rules, each of which retains as context
premiss an immediate variant of the conclusion, which is also a variant of S.
After n applications of appropriate meta rules, the topmost context sequent
in this branch is that variant of the sequent S, in which all complex formulae
have been replaced by proxy variables. Hence, this context formula is an
ESS, and is, therefore, a leaf of the explosion derivation. Moreover, n rules
applications generate n context premises, of which each one has exactly one
proxy variable more than the previous one. Beginning with &, which already
contains exactly one proxy variable, this results in a branch of length n + 1,
where the leaf, which is the last element of the branch, contains n + 1 proxy
variables. 0]

Apart from the original sequent, every sequent that occurs in the explo-
sion derivation belongs to exactly one of the branches that are described by
lemma 6.4. For such a sequent S is either a logical premiss or a premiss of
the initialisation step, in which case a new and possibly trivial branch begins
at §; otherwise, S is a context premiss, in which case it belongs to some
branch beginning with a logical premiss or a premiss of the initialisation step
further down in the derivation. Because of this, the following corollary holds.

Corollary 6.5 For every ESS S containing n + 1 proxy variables, which
occurs as leaf in an explosion derivation using the meta rules, the following
holds: The context branch ending with S has length n 4+ 1 and begins with
either a logical premiss or a premiss of the initial atomic cut containing n
complex formulae. Furthermore, S is a variant of that premiss.

Lemma 6.4 and corollary 6.5 characterise the iterative development of
sequents along a context branch from the usual bottom up perspective and
the view from an ESS leaf down to the base of the context branch.

The example demonstrates that proxies, which occur in a sequent S, are
of one of two kinds. There is always exactly one proxy which relates S to a
context?. In addition to it, there can be zero or more proxies, which relate

4In the exceptional case of the watershed proxy w, this “context” is just the sequent
(or its variant) that was detached in the initialisation step.
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other sequents to & and its variants.

Definition 6.6 For a sequent S occuring in an explosion derivation, the
base proxy of S is the single proxy, which occurs in the base of the context
branch containing S. All the other prozies occuring in S are called branching
proxies.

A branching proxy is one which replaces a complex formula in a sequent. It is
important to realise that any proxy, apart from the watershed proxy, occurs
as both a branching proxy in some sequents of an explosion derivation and
as base proxy in others. A proxy p is a branching proxy in all the sequents
of the single context branch, in which p does not already occur as the single
proxy variable in the base of the branch. In the context branch or those
context branches, in which p already occurs in the base sequent, it is a base
proxy. Since the watershed proxy already appears in the base of two context
branches, it is always a base proxy.

Since all the branching proxies in sequents of a context branch are intro-
duced after the base proxy, and because they occur, in turn, as base proxies
of other sequents, there is a genealogy of proxy variables, beginning with the
watershed variable as the common ancestor.

Definition 6.7 The immediate predecessor relation on P induced by 11 s
given by:

L there is some S € €y, such that p is the base
P proxy of S and q is a branching proxy of S

The predecessor relation < on P induced by 11 is the transitive reflexive
closure <7 of <.

We will usually omit the index II, when the explosion derivation inducing
the order is understood from the context. The following lemma establishes
that < has the desired property.

Lemma 6.8 For every explosion derivation 11 with watershed proxy w, the
predecessor relation <y 1s a partial order with minimal element w.

PRrROOF: According to the definition, <j; is already a preorder. Recall that
<5 = =<4 U <%, where <j| is the transitive closure of <y, and <Y is the
reflexive closure of <r. Whenever p <j} ¢, then it is either p < ¢ or there
is a proxy v such that p <g v and v <j; ¢. In the former case, the proxy
q is introduced further up in that context branch of II, which begins with
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the base sequent that has p as base proxy. In the latter case, ¢ is introduced
in some other context branch of II that is part of the subderivation of II
beginning with the same base sequent. That is, the proxy ¢ is introduced
further up in II than p. Since every proxy is introduced exactly once, p
cannot be introduced again after q. Hence, the reverse ¢ <;; p cannot hold.
Furthermore, it is <} N <fi= 0, since <y is not reflexive, and p 4;; p.
Therefore, whenever there is both p <3 ¢ and p <} ¢, it must be p <% ¢ and
q <% p, i.e. p=q. Hence, the relation <} is antisymmetric.

Finally, w is the first proxy variable that is introduced in II, and, hence,
it is w < p for all proxy variables p that occur in I1. All those elements of
P, which do not occur in II, are not related to any other elements of P under
=< and only trivially to themselves under <. Therefore there is no p € P
such that p < w and w is a minimal element. O

Of course, if we consider the set of proxy variables that actually occur in II,
then w is the least element of that set.

For an explosion derivation IT with watershed proxy w of sequent I' — A,
we write 114 for the subderivation of the detached antecedent I' — w and Ilg
for the subderivation of the detached succedent w — A.

114 IIg
[ —w w— A
T A (Prx)

Following definition 6.7, relations <y, on the set P4 of proxy variables oc-
curing in IT4 and <, on the set Pg of proxy variables occuring in Ilg can be
defined. Since P4 NPs = {w} and neither <y, nor < is reflexive, we have
<1, N <ng= 0, i.e. the immediate predecessor relation of proxies occuring
in IT4 and that of proxies occuring in Ilg are independent of one another, as
expected. This separation property can be strengthened as follows.

Lemma 6.9 Let II be an explosion deriwation. Then, for all proxy variables
p,q, 7 with ¢ # r such that p < q and p < r, there is no prory variable s
such that ¢ < s and r < S.

PROOF: As every ESS has only a single base proxy, the ESSs, in which ¢ and
r are base proxies, are not identical. Hence, in II there is a subderivation II,
ending in a sequent, in which ¢ is the only proxy variable, and all the proxy
variables s’ with ¢ < s" are introduced further up in II,. Likewise, there is
a different subderivation of II, ending in a sequent, in which r is the only
proxy variable, and all the proxy variables s” with ¢ <1 s” are introduced
further up in II,. As Il is a tree, II, and II, cannot share any proxy variables
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that were introduced further up in II, and II,, and, hence, there is no proxy
variable s such that ¢ <y s and r <1 s. O

When considering the explosion set (€, wr) of an explosion derivation
IT, we will henceforth implicitly assume that, the base proxy of every ESS
can be identified. Formally, we could introduce a function €y — P, which
performs this identification, based on the inspection of the II, and include it
in the definition of an explosion set. Of course, the immediate predecessor
relation can be restored from € and wy alone. As w is the base proxy of
two ESSs, the branching proxies thereof must be base proxies of certain other
ESSs. A method related to this procedure we will be employed in chapter 9
for the purpose of deciding, whether some explosion set corresponds to a
provable sequent.

6.2 An Extensive Example

Consider the following schematic explosion derivation, using the meta rules,
of the sequent £ = [(by D ¢1) & =(c2 D a1),~(ba V dy),ds, a2 & by — w],
which is the left premiss of some initialisation step.

Every sequent that occurs in the derivation is either a logical premiss or a
context premiss of some meta rule. The former sequents are labelled by L,
indexed with the proxy variable that was introduced by the rule.> A possible
lower index differentiates two logical premises for certain rules. The context
premises, represented by C, are doubly indexed; the upper index retains the
upper index of the conclusion of the rule, while the lower index accumulates
all the proxy variables, by which complex formulae have been detached in
the context branch, to which the sequent belongs.

e L o

Lr m gr (ﬁA ) qu Lv (\/S ) LY ;)ljt,v (&A )

q q D m t m w m
L] 3 cr L ot
I P (&A,)

All the sequents that occur in the derivation are listed below.

5Tn this example, the premiss of the intialisation is called £¥, although it is, of course,
not a logical premiss, but the left premiss of the initial atomic cut.
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LY =[(by D 1) & (e Day),~(by Vdy),do,as & by — w)
- LP = [by D¢y, (e Day) — pl
L1 =1[— q,b] ESS
L3 =[e1 — ¢ ESS
-Ch = [q,~(c2 D ar) — p]

L7 = [—>7’,CQ Dal]

Cl=[—r s ESS
L% =[cg, 8 — aq] ESS
CPL=[q,7 — p) ESS

. C;)U = [p,_\(bg V dl),dg,ag & bg — w]
'£t: [—> t,bg\/dl]

-Cl=[— t,u] ESS

L% = [u— by, d] ESS
Cy = [p,t,da, az & by — w)j

- LY = [ag, by — 0] ESS

Cip = Doty doy v — W] ESS

The explosion set of this derivation is the following set:

¢ = {L£I,L3,CrL0C,. CL LY L0 CY, )

»¥q,r Y u)

[_> q, bl]v [Cl - q]7 [_> r, 5]7 [0275 - al]v [qu _>p]7

- {[Ht,u],[uﬁbg,dﬂ,[@g,b:;—>U],[p,t,d2,’0—>w] }

According to the remark following definition 6.1, we can also consider the
pair (&, w) as the explosion set of this derivation, if we want to emphasise
the watershed proxy.

Consider the rightmost context branch, beginning with the sequent L£".
The first meta step detaches by proxy p and subsequently detaches the
formula (by D ¢1) & —=(ca D ay) from L£*. This step yields the context
premiss C) = [p, (b2 V d1),da, a2 & by — w]. We further obtain the se-
quent Cy; = [p,t,d,as & b3 — w] by detaching —(by V di) and, finally,
C¥ ., = [p,t,ds,v — w], which is an ESS, by detachment of ay & b3. The

p,t,v
variable d is a proper occurrence variable, hence it is not detached from its
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context. In each rule application, the context premiss differs from the conclu-
sion only in the proxy variable, which replaces some complex formula. At the
same time, any sequent only contains a finite number of complex formulae.
Hence, there is a context branch consisting of variants of £ in the derivation,
beginning with £* and continued through the context premises C;, C;; and
Cv . The last sequent contains no more complex formulae, i.e. it is an ESS

tu®
ai)ld a leaf of the explosion derivation. Hence, the branch (£*,Cy,Cy, C, )
is a sequence of variants of L, where each sequent is an immediate variant
of the preceding sequent. The other context branches in this example are
(Lcr.cr.cr), (£7,CL), (£4,C)) and all the trivial branches that consist only
of logical premises that are already ESSs: (£%), (£1), (£%), (£*) and (L£").5
Note that the first entry of these sequences, the base of the branch, is always
either a logical premiss of a meta rule or the left premiss of the initialisation
step. Because of this, there is always a single new proxy variable present in
the corresponding sequent, and this single proxy is given as the upper index.
As we progress upwards through a branch, branching proxies are introduced
by successive detachments of complex formulae from the sequent. These
proxies are accumulated in the lower index. A branch always begins with a
sequent with empty lower index. Every successive context premiss contains
an additional proxy variable. For example, consider the branch (£?,CP,CP ).
The element L of the branch is the sequent b; D ¢;, =(c2 D a1) — p, which
contains only the base proxy p, by which the formula (b; D ¢1) A =(co D ay)
was detached from its context. The following application of (DA,,) yields the
context premiss ¢, ~(ca D ai) — p, the application of (—A,,) finally yields
as context premiss the ESS ¢, — p. The base of the branch contains only
the single base proxy variable; every succeeding sequent of the branch has
one complex formula less and one branching proxy variable more than the
preceding one. The final element of the branch, C? ., contains three proxy

variables: the base proxy p and branching proxies ¢ and r.
To continue the example, recall the explosion set of the explosion deriva-

tion:

¢ = [_) qabl]>[cl_)Q]a[_) T>S]7[C2>S_>al]>[Q>r_)p]a
[_> t,’LL], [’U, - b27d1]7 [a27b3 - U]a [p7t7d2vv - U)]

This set yields the following immediate predecessor relation on P:

In the case of (£) and (£1), the lower indices do not refer to proxy variables, but
merely serve to distinguish the two logical premises of (DA,;,). If any one of those premises
would have to be further exploded, the number indices could be dropped, since any context
premises occuring in the respective branches would be uniquely distinguished by the new
proxy variables that are introduced in the process.
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<= {(w,p), (w, 1), (w,v), (p, q), (p,7), t, ), (r;s)}

The pairs (w,p), (w,t) and (w,v) are obtained from the elementary struc-
tural sequent C; , = [p,t,da,v — w]|, where w occurs as base proxy and
p,t,v occur as branching proxies. For the next wave of pairs, all ESSs must
considered, in which p,t,v occur as base proxies. Those are C? . = [q,7 — p]
and C!, = [— t,u] and LY = [az, by — v]. The latter contains, apart from the
base proxy v, only proper occurrence variables, which do not fall under the
relation <. Hence, we obtain pairs (p, ¢), (p,7) and (¢,u). Among the second
elements of these pairs, only r occurs as base proxy in an ESS containing
another proxy variable: CI = [— r,s]. This yields the final pair (r,s), since
s only occurs as base proxy in the ESS £* = [¢y, s — a4], which contains no
branching proxies.

According to the definition of <, for every pair (z,y) with < y, there is
an ESS CJ, such that y occurs in [. In the preceding example, these are the
following ESSs:

cy ..cr . Ct.Cr

p,t,ur g, Yur Vs

Moreover, for every pair (z,y) with z < y, there is a context premiss Ciys
in which y appears for the first time in the context path, when reading the
derivation from the bottom up. It is obvious that all context premises that
occur in the explosion derivation are represented by such a pair, because
in each of those context premises, some y was introduced, replacing some
complex formula. The example contained the following context sequents,
each of which corresponds to one of the pairs of proxies of the immediate
predecessor relation:
Cy Co Coln CFLCE L Ct.Cr

However, the predecessor relation relies on the occurrence of branching prox-
ies in the ESSs of the explosion set, and does not accomodate the order, in
which the branching proxies of some ESS were introduced in the explosion
derivation. This already points towards the most important result regarding
the explosion procedure, which will be presented in the following section.

6.3 Uniqueness of the Explosion Set

The explosion procedure successively detaches and handles all the complex
formulae occuring in a sequent. The application of a meta rule yields a variant
of the consequence as context premiss, whereas new base sequents arise as
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logical premises. There are no intelligent choices required in the execution of
the procedure. The only choices regard the order, in which complex formula
are detached from the antecedent or the succedent of a sequent, if there do
indeed occur more than just a single one. Consider the following possible
explosion derivations of p — A & B, —C.

p—q¢r q¢q—A q—B

p— A& B,r ) o - (=Sm)
p— A& B,~C "
—st Ot . .
P > (ﬁsm)
p—s,~C s— A s— B -
p— A& B,-C (&5m)

In the second derivation the complex formulae are detached in the opposite
order from the first one. It is obvious that the two derivations have the same
premises, apart from the names of the proxy variables. However, after the
renaming {s — ¢,t — r} of proxy variables, both derivations have the same
premises.

Definition 6.10 A renaming of prozy variables is a permutation o : P — P.
The renaming of proxy variables in a sequent S, written as So, is obtained by
simultaneous replacement of every occurrence of a proxy p in S by o(p). The
renaming of proxy variables in a derivation II, written as llo, is obtained by
simultaneous replacement of every occurrence of a proxy p in every sequent of
IT by o(p). The renaming of proxy variables in a set of elementary structural
sequents 2, written as Ao, is obtained by simultaneous replacement of every
occurrence of a proxy p in every sequent of A by o(p).

Renaming of a single proxy variable p by ¢ will be written in the mapping
notation: {p+— ¢}. In every sequent and every explosion derivation, there
occur only finitely many proxy variables. Hence, relevant renaming opera-
tions can always be written as {p; — q1,...,p, — ¢} for some n € N. For
example, consider the following renaming of a set of ESSs:

{lw — pl,[as,p — bj]H{w — p,p—q} = {lp— dql,lai,q — b;]}

With this notion established, we can formulate the following generalisa-
tion of the property indicated by the example above.
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Lemma 6.11 The meta rules of the explosion calculus commute over their
context premises up to renaming of proxy variables.

PrOOF: Consider the case that both (R;) and (Ry) have one logical premiss.

LP S i L2

(Rz2)

The sequent Sy is the conclusion of meta rule (R;), which has context pre-
miss &7 and logical premiss £P'. At the same time, &; is conclusion of
rule (Ry), which has context premiss Sy and logical premiss £P2. As con-
text premiss of Sy, &7 is an immediate variant of it, that is, exactly one
occurrence complex formula C; in &) is replaced by a proxy variable p;.
Similarly, Sy is an immediate variant of S, i.e. an occurrence of complex
formula Cy is replaced by proxy ps. Commuting the rules yields context
sequents S7 of (Ry) and S of (Ry). In the former, the same occurrence
of (5 is replaced by some proxy variable ¢o. The latter is a variant of
the former, in which the same occurrence of ' as before is replaced by
a proxy variable ¢;. Hence, both Sy and &) are variants of Sy, which are
obtained by replacing the same occurrences of €} and Cy by proxy vari-
ables. Thus, it is So{p1 — q1,p2 — @2} = S5. Also we have obviously both
LPYpr — q1,p2— g2} = LD and LP2{p; — q1,p2 — ¢} = L2, After re-
naming, both derivations have the same premises and the same conclusion.
Therefore, (R;) and (Ry) commute over their context premises up to renam-
ing of the proxy variables that are introduced by the rules.”

The cases, in which one or both of the rules have two logical premises, can
be treated accordingly, since every one of the two logical premises receives
the same proxy variable. O

We can now state the main result about the uniqueness of explosion sets
up to the names of proxy variables.

Proposition 6.12 Let II; and 11y be two explosion derivations of some se-

quent with explosion sets (€1, w1) and (Ey,wy) Then there is a renaming o,
such that (€a, wy) = (&0, 0(wy)).

PRrOOF: The explosion set of a derivation is just the set of sequents that occur
as leaves in it. If II; and I, are two structurally different explosion deriva-
tions of the same sequent, then they can only differ in the order, in which

Tt is obvious that a strict observance of which proxy variable is introduced by which
rule in both derivations would enable us to use p; = ¢ and py = g2 throughout.
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certain rules are applied to detach complex formulae from their respective
contexts. Since the derivations are finite, lemma 6.11 can be applied finitely
often to rearrange Ily into a derivation II,, which matches the structure of
IT;. Each application of the lemma leaves the structure of the premises un-
changed, hence II, can only differ from II; in the names of the occurring
proxy variables. Therefore there is a renaming o, such that II,oc = II;. But
then it is particularly the case, that the leaves of II,o and those of II; are
identical, and hence it is €0 = &,. In addition to this, if II; has watershed
wy and Iy has watershed ws, then o(w;) = ws. O

The uniqueness of the explosion set of a sequent S is an important re-
sult, because it justifies the claim that the explosion set of S, the structural
skeleton of S, constitutes its meaning. This will be elaborated in the next
chapter. However, rather than relating explosion sets to specific explosion
derivations, the result allows us to relate them to sequents. Henceforth we
will write (€s, ws), if the particular explosion derivation for S is not relevant.
While we do not have a unique explosion derivation of S either, at least the
relevant information contained in explosion sets obtained by different explo-
sion derivations of § is invariant, such as the number of ESSs contained and
their relation to one another. It is therefore reasonable give an estimation
about the size of an explosion set €gs.

Lemma 6.13 For every sequent S, the following holds:
cmx(S) +2 < |€s| <2-cmx(S) + 2

PRrROOF: For every sequent S, there are two ESSs v — w and w — 9§ repre-
senting antecedent and succedent of S. These ESSs are those two elements of
€5, which are the leaves of the context branches beginning with the premises
of the initialisation step. Additionaly, every logical connective occuring in
S is resolved by an application of a meta rule. Each of these applications
retains as context premiss a variant of the conclusion and introduces one or
two logical premises. Since every logical premiss is the base sequent of an-
other context branch, and since there are as many ESSs as there are context
branches in the derivation of §, there are exactly as many ESSs, as there are
logical premises in the explosion derivation plus the two initial ESSs. The
sequent S contains cmx(S) logical connectives, and each of these engenders
one or two logical premises. This yields in the desired estimation. U

It is possible to determine the exact number of ESSs that make up the ex-
plosion set of a sequent S. The meta rules for the binary logical connectives
have one or two logical premises, depending on whether the connective occurs
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in the antecedent or in the succedent of a sequent. However, when such a
logical connective occurs as subformula of a negation or as subformula of the
hypothesis of an implication, the corresponding subformula changes position
during the derivation. In order to determine the exact number of ESSs, a
rigorous recursive regime regarding the polarity of subformulae has to be
established. This is done in appendix A. Let C& be the number of positive
occurrences of conjunctions in § and Cg be the number of negative occur-
rences of conjunctions; let D&, Dy and If, I give the same for disjunctions
and implications respectively, and let Ng be the number of occurrences of
negations. Using these measures, we obtain the exact size of the explosion
set.

Proposition 6.14 For every sequent S, the following holds:
|€s| =2 (C{+Dg +1I5)+C5 +Df +If + Ng+2

PROOF: Every explosion set contains the two ESSs v — w and w — 4, which
represent the structure of the antecedent and succedent. Now consider all
occurrences of subformulae of §. Every positive occurence of a conjunctive
subformula in § will be resolved by the explosion procedure by means of an
application of (&S,,), which introduces two new logical premises in addition
to retaining a variant of the conclusion in the context premiss. Each one
of the logical premises is the base sequents of a new context branch, which
ends in an ESS, which is a variant of this premiss. Hence, each positive
occurrence of a conjunctive subformula results in two additional ESSs. The
same argument gives two ESSs for every negative occurrence of an disjunctive
or implicative subformula in S, which are resolved by the rules (VA,,) and
(DA,,), each of which also has two logical premises. All other occurrences
of complex subformulae are resolved by rules, which have a single logical
premiss. Hence, a single logical premiss engendering another ESS is added
by every application of the corresponding meta rule. 0

The aspects of this argument, which relate to how the number of ESSs cor-
respond to an occurrence of a complex formula, will be revisited in much
greater detail in section structcomplex, especially in proposition 7.4 and its
corollaries.

6.4 Further Examples

Consider the explosion derivation of the sequent S = [(aVb) Ve — aV (bVc)],
the occurrence instance of which is S = [(a1 V b1) V ¢; — ag V (by V ¢3)]. The
explosion derivation for § is
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HA HS
(al\/bl)\/cl—>w wﬁag\/(bg\/02>
(a1 \/b1> \/01 — CLQ\/ (bg\/Cg)

(Prx)

where II 4 is the derivation

a—q bi—q qg—0p

(VA,,)
a Vb —p cp—p p—w

(a3 Vb)) Ve —w

(VAR)

and Ilg is the following derivation:

r— a9, S s — by, o

w—r T — as, (by V c2)

w—>a2\/(b2\/02)
The explosion set of S is given by:

€~:{ lar — g, [b1 — g, [q¢ — D], [er = ], }
S [p = wl, [w— 7], [r—as,s],[s — ba, 2
The structure of the antecedent is given by the ESS p — w and that of
the succedent by the ESS w — 7. The antecedent formula (a; V b1) V ¢; is
represented by the ESSs ¢ — p and ¢; — p for the outer disjunction and
the ESSs a; — ¢ and by — ¢ for the inner disjunction, both of which are
negative occurrences in S. The succedent formula as V (by V ¢3) is represented
by the ESSs » — ao, s for the outer disjunction and s — by, ¢y for the inner
disjunction. Both of these disjunctions have positive occurrences in S. Hence,
itis |€5)=2-D;+DL+2=2-2+2+2=38

As a second example, consider the explosion derivation of the sequent
7 = [— bV —b]. Its occurrence instance is 7 = [— by V —by]. For this, we
obtain the following explosion derivation:

p_>blvq 62,(1_)

w—p p — by, by

(Prx)

(VSi)
— W w — by V by

— bl \/_|bg

The explosion set of ’j:, taken off the leaves of the explosion derivation, is:

sz' = {[_> w]> [w - p]> [p - b2>Q]> [blaq _>]}
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Antecedent and succedent are represented by the two ESSs — w and w — p.
The formula by V —b is represented by the ESSs p — by, ¢ for the disjunction
and by, g — for the negation; the occurrence of the disjunction is positive in
T, hence, it is |€5] :D;—I—N%—I-QZ 1+1+2=4.

Judging by these examples, one might assume that, contrary to the claim,
this approach obfuscates meaning instead of emphasising it. An occurrence
instance of a RK-sequent is taken apart, and all the meaning is diluted into
inobvious arrangements of a large number of elementary structural sequents
via proxy variables. The main reason for the inaccessibility is the fact that
we have not introduced a reasonable representation for explosion sets. We
will delay this necessary task to the third part. Before, we will have a closer
look at very small and, hence, easily seizable subcollections of ESSs and the
question, how they relate to the structural meaning of the coarse structure of
the sequent as a whole and individual occurrences of the complex formulae.
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Chapter 7

Structural Representation of
Meaning

The explosion procedure is desiged to generate the localised justifications for
all the logical connectives that occur in an occurrence instance S. This re-
sults in a set of elementary structural sequents, the explosion set €z, which
has been shown to be unique up to the renaming of proxy variables. This
collection of ESSs contains thereby all of the structural information that is
syntactically expressed in the sequent itself.! Moreover, the structure of the
explosion derivation, which consists of alternated applications of atomic cuts
and local logical rules, is still retained by certain subcollections of ESSs.
These facts provide a solid basis for the claim that €z should be regarded as

the meaning of S. This means that not the structure of any concrete deriva-
tion is important, be it in a logistic calculus, for example RK, or the explosion
calculus, but the interlocking and connectedness of elementary structural se-
quents, which comprise the leaves of every explosion derivation. These se-
quents are the elementary structural constituents of S, and the explosion
procedure extracts and reveals them.

The explosion calculus puts the focus on the fine details, at the cost of
efficiency. Applications of (Prx), a restriction of the RK cut rule, introduce
single variables in order to separate complex formulae from their context,
logical rules are replaced by their local variants. The entire purpose of the
explosion calculus is to expose the inner structure of the sequent S to its
fullest extent. The proxy variables, which are introduced in the process and
occur in the ESSs of the explosion set, are the links, by which these elemen-

'However, bear in mind that the information about the idetity of atomic content is
not expressed in the ESSs. It is retained in the restoration function, which is completely
independent of the explosion set.
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tary structural sequents are connected to one another. The names of the
proxies, which are used to express these connections, are only circumstan-
tial, of course, as was established in the preceding chapter. They are chosen
ad-hoc, the only condition being that the same proxy variable does not occur
at some other place in the derivation to avoid unjustified connections.

In this chapter, we shall demonstrate in some detail, how meaning of the
sequent can be thought of as represented by particular elementary structural
sequents of the explosion set.

7.1 The Base Structure of a Sequent

While certain configurations of ESSs in the explosion set of a sequent S must
represent the meaning of the logical connectives of the formulae occuring in
S, others represent the meaning of the base structure of the sequent itself.
By this we mean, roughly speaking, the following:

1) the fact that the antecedent is related to the succedent and vice versa
and a means to access both;

2) the number and nature of the formulae occurring in antecedent and
succedent, divided as follows:

(a) the number of complex formulae occurring in the antecedent and
the succedent and the means by which these formulae can be ac-
cessed,

(b) all the proper occurrence variables of the antecedent and the succe-
dent.

It has to be clarified what we mean by the term access. Within the tradi-
tional framework, the accessing of the formulae occurring in the antecedent
or succedent of a sequent takes places implicitly by looking at the sequent.
It is difficult to look at a sequent, e.g. — —b,a,bV (a D ¢), without explicitly
accessing, that is, taking in and registering, the complex formulae occurring
in it. It is more of an effort to not access those formulae while looking at
the sequent than to do so. When we consider collections of ESSs, on the
other hand, nothing is easily accessible in this sense. Of course, it is ex-
actly the point of our course of action to demand that those tasks, which
are performed implicitly in traditional proof-theoretic endeavours, have to
be performed explicitly. In this sense, to access a sequent or formula means
to focus on its occurrence and take in the information contained therein.
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Let us properly formulate what has only been suggested informally so far.
For this purpose, it is necessary to relate occurrences of complex formulae in
an explosion derivation to proxy variables.

Definition 7.1 Let S be an occurrence instance of a sequent and Ilg be its
explosion derwation. Moreover, let Fg be the set of all subformulae occur-
ring in S and Vi be the set of occurrence variables in Ilg. The occurrence
mapping of Ils is the function wg : Fg — Vu,, which is given as follows:

1) m5(a) = a for every proper occurrence variable.

2) n5(C) = p, if C is a complex formula and there is an application of a
meta rule in Ilg, which has C as main formula and p as the new proxy
variable that is introduced.

This definition is sensible, because S is an occurrence instance of a sequent,
in which every subformula of § occurs exactly once. Conversely, every proper
occurrence variable occurs exactly once in S and every proxy variable in Ilg,
apart from the watershed proxy w, is newly introduced in the premises of the
rule, by which some subformula of S is decomposed. Hence, with the excep-
tion of w, every occurrence variable of Iz relates to exactly one subformula

of S. Now, the intuitive notion of accessing a formula that was used above is
formalised by the inverse 7r§1 of an occurrence mapping 7g. Note, however,

that no formula of of S corresponds to the watershed proxy w. Since the in-
verse mapping 7r§1 is a useful notion, this defect is remedied by considering

the occurrence mapping mg over the lifted domain F S$ with 7(L) = w, which

is a bijection. We will omit the index S , when the sequent is understood
from the context. Moreover, an occurrence mapping is extended naturally
to sequences of formulae, as they occur in antecedents and succedents of
sequents.

Proposition 7.2 Let S = [A — T'| be an occurrence instance of a sequent
and let 11z be its explosion deriwation with occurrence mapping 7, and let g
be its explosion set with watershed proxy w. Then €g contains ESSs v — w
and w — 0, such that m(I") =~ and w(A) = 0.

PROOF: The derivation Ilg contains the following initialisation step:

II4 IIg
I' - w w— A
A (Prx)
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The initialisation divides antecedent and succedent of a sequent into two
sequents by the introduction of the watershed proxy w. Both premises I' — w
and w — A are bottommost sequents of subderivations Il 4 for the antecedent
part of the explosion derivation and Ilg for its succedent part.

Consider the right premiss of the initialisation step, w — A. The sub-
derivation Ilg contains a context branch with that sequent as a base, which
makes w the base proxy of this sequent. According to lemma 6.4, by len(A)
applications of succedent meta rules (xS,,), the ESS w — 0 is obtained as the
leaf of this context branch, where the succedent ¢ contains only occurrence
variables, proper or proxy. This ESS is an element of the explosion set €gz.
Now, the ESS w — ¢ is the result of having replaced every complex for-
mula that occured in A by a proxy variable. Each rule application replaces
a complex formula C' of A by a proxy variable 7(C). Furthermore, proper
occurrence variables in A remain unchanged throughout and also occur in §.
Hence, we have m(A) = 4.

A corresponding argument for the context branch in II4, whose base is
[' — w yields that there is an ESS v — w such that 7(I") = ~. O

Since w — A retains the entire succedent A of the original sequent after the
initialization step, its variant w — ¢ represents the base structure of A in
the following sense:

1) The base proxy w is an abstract representation of the sequent as a
whole and, in this case, it is presented as relating to the succedent,
possessing a succedent, if you will.

2) As for 4, we can state the following:

(a) Every branching proxy, which occurs in §, relates to one of the
complex formulae occuring in A, and hence represents the occur-
rence of that formula in A. By means of the branching proxy, the
corresponding complex formula can be accessed.

(b) Every proper occurrence variable, which occurs in , represents its
own original occurrence in A.

As an example, consider the occurrence instance of the sequent that was
mentioned above: — —by,a1,bs V (a2 D ¢1). An explosion derivation of this
sequent is:

104



q—>b2,7" Q2,7 — C1

(DSim)
w — p,a,q q — by, (az D c1)
(VSm)
w — p,ai, by V (ag D cp) bi,p —
(ﬁsm)
—w w—>—|bl,a1,bg\/(a2301)
(Prx)

— ﬁbl,a,l,bg V (0,2 D) Cl)

The ESS w — p, aq, q is the leaf of the context branch that has the sequent
w — —by,a1,by V (ay D ¢p) as its base. This elementary structural sequent
w — p, ai, q has the following properties: by its base proxy w, it refers to the
antecedent, its branching proxies p and ¢ relate to the complex formulae —b,
and by V (ay D ¢1), whereas the proper occurrence variable a; represents itself.
This is a fine grained representaion of the role of the succedent in the original
sequent — —by, a1, by V (ay D ¢1); namely, that it is the second premiss of
an occurrence sequent sequent, and that it provides a list of three formulae,
the first and third of which are complex formulae, whereas the second one is
immediately provided.

The sequent w — ¢ is thus the unique ESS in &, which represents the
structure of the succedent. Note that there cannot be another sequent w — «
in &, because w is base proxy of the context branch, whose base is w — A.
Accordingly, the sequent v — w, which is obtained from I' — w, is the
unique ESS in €pp,, which represents the structure of the antecedent. These
two ESSs make up the base structure of the sequent. They both relate to one
another by means of the watershed proxy, which thereby uniquely identifies
the sequent itself, v represents the locations of the complex formulae in the
antecedent I' as well as the atomic occurrence variables occuring therein, and
finally, ¢ fulfills the corresponding task for the succedent A. Thus, the ESSs
v — w and w — J together represent the base structure of the sequent as
a whole. Note that both v and 0 can be empty lists, which results in ESSs
— w, as in the preceding example, or w —.

7.2 The Structure of Complex Formulae

The next step is to explain, what it means to access a complex formula
when we consider collections of ESSs. Clearly, formulae themselves, syntactic
expressions, are no longer present in any such collection. Instead, when
accessing a complex formula, we focus our attention to its structure. We
understand as its structure the following items of information:

1) the unique identification of the occurrence of the formula,

2) the number and nature of the formulae occurring in antecedent and
succedent, divided as follows:

105



(a) the number of immediate complex subformulae occurring in the
formula and the means by which these formulae can be accessed,

(b) the proper occurrence variables that are immediate subformulae,

3) the specific mode, by which the immediate subformulae are referred to.

While items 1) and 2) are comparable to those we porposed for the base
structure of a sequent, item 3) did not occur there. The reason for this is that
there is no need to specify the mode, in which the abstract representation
of the sequent, the watershed proxy, refers to its antecedent and succedent,
because all the formulae that occur in them are integral to the sequent. The
sequent expresses that all of the formulae that occur in the antecedent are to
be jointly considered and that, equally, all of the formulae that occur in the
succedent are to be jointly considered. This is not necessarily the case when
we explode the structure of a complex formula. Recall that in the logical
rules of RK, which have two premises, each premiss retains exactly one of
the two side formulae. Hence, those formulae are independently relevant
to the meaning of the corresponding connective. In logical rules having a
single premiss, there is no such independent relevance. The side formulae
are retained within a single sequent, and are given in a manner that is more
immediately integral to the sequent.

What does this mean for the explosion procedure? All complex formu-
lae are detached and treated locally in an explosion derivation, and all the
immediate complex subformulae are detached in turn. The intended struc-
tural representation of the meaning of a complex formulae is provided by
what is the logical premiss or premises of the meta rules. While a logi-
cal premiss of an instance of a meta rule is not necessarily already an ESS
within an explosion derivation, Lemma 6.4 states, that such a premiss is the
base of a context branch extending to a leaf, which is both a variant of this
premiss and an elementary structural sequent. Hence, there is an ESS for
every sequent which occurs as logical premiss anywhere within an explosion
derivation, and it is the ESS or ESSs originating in the logical premises of a
meta rule, which have to be considered as structural representations of the
corresponding main formula C. This means that there are two cases to be
distinguished, depending on the number of logical premises of the rule that
treats C.

(i) If C is decomposed by means of (&A,,), (VS,,) or (DS,,), (—A,,) or
(—=S,n), its structural representation is provided by that ESS, which oc-
curs as leaf in the context branch of the explosion derivation, extending
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from the logical premiss of the rule. In each of these cases, the occur-
rences of the immediate subformulae of C' become integral to the ESS,
trivially so in the cases that C' is a negation.

(i) If C is decomposed by means of (&S,,), (VA,,), (DA,,), its structural
representation is provided by those two ESSs, which occur as the leaves
in those context branches of the explosion derivation, whose bases are
the two logical premises of that rule. In each of these cases, the occur-
rences of the two immediate subformulae of C' do not become integral
to a single ESS. Instead, the occurrences are distributed into two inde-
pendent ESSs.

Recall that each ESS in question is a variant of such a logical premiss, and,
hence, the number of formulae occurring in its antecedent and succedent,
exactly matches the number of formulae occurring in the logical premiss itself.
The base proxy and proper occurrence variables are the same in the logical
premiss and the ESS, the difference lies in the fact that every occurrence of
a complex formula in the logical premiss is replaced by a branching proxy in
the elementary structural sequent.

It is necessary to establish a relation between the polarity of the occur-
rence of a formula and the position this formula has as a main formula of a
sequent in an explosion derivation.

Lemma 7.3 Let S be an occurrence instance of a sequent and let 11z be its
explosion derivation.

1) For every negative occurrence of a formula C in g, Iz contains a
sequent I'y, C, Ty — A.

2) For every positive occurrence of a formula C' in g, Iz contains a se-
quent I' — Ay, C| As.

PROOF: We have to establish 1) and 2) simultaneously. If C' is a formula
occurrence in the antecedent or succedent of S. , one of the statements holds
for C'. If C'is the immediate subformula of some formula occurrence D in S,
then we assume that one of the statements already holds for D. There are
eight cases to distinguish for D, out of which we consider three.

e If D = A& B has a negative occurrence in g, then Iz contains the
sequent I'y, A& B, 'y — A. But then, an application of (&A,,) yields:

A>B_)p Flapar2_)A
Fl,A&B,FQ—)A

(&Am)
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Both A and B have negative occurrences in A, B — p, and as C' = A
or C' = B, statement 1) holds for C.

e If D = AV B has a negative occurrence in g, then Ilz contains the
sequent I'1, AV B, 'y — A. But then, an application of (VA,,) yields:

A—p B—p Iy,p,I'y — A
Fl,A\/B,FQHA

(VAR)

Hence, A has a negative occurrence in A — p, and B has a negative
occurrence in B — p Since C'= A or C' = B, statement 1) holds for C.

e If D = A D B has a positive occurrence in S , then Iz contains the
sequent I' — Ay, A D B, A,. But then, an application of (DA,,) yields:

I'— A17p7A2 Aap_> B
I'— Al,A D) B,AQ

(DAm)

Both A has a negative occurrence in A,p — B, and B has a positive
occurrence therein. Either then statement 1) holds for C' = A, or
statement 2) holds for C' = B.

O

Having established all the necessary tools, we can easily relate elementary
structural sequents of an explosion derivation to subformulae of the of the
original occurrence instance.

Proposition 7.4 Let S be an occurrence instance of a sequent and let 11z be
its explosion derivation with occurrence mapping 7, and let €z be its explosion
set. Then the following holds:

1) For every negative occurrence of a subformula A& B in g, €5 contains
a unique ESS w(A), 7(B) — n(A& B).

2) For every positive occurrence of a subformula A& B in g, &z contains

two unique ESSs 1(A& B) — w(A) and 7(A & B) — m(B).

PRrRoOF:

1) If A& B has a negative occurrence in S, then somewhere in Iz there
is a sequent 'y, A& B,T's — A, which is the conclusion of (&A,,), i.e.
Iz contains the following subderivation:
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1I; II,
A>B_)p Flap>r2_)A
Fl,A&B,FQ—)A

(&Am)

The proxy variable p represents the occurrence of A& B in the context
sequent. Following definition 7.1, it is 7(A & B) = p. The logical
premiss A, B — p may or may not be the conclusion of other rules
applications in ITz. There are four cases to distinguish:

(a)

Both A and B are already proper occurrence variables. Hence, it
is both 7(A) = 7(a;) = a; for some index i and 7(B) = 7 (b;) = b;
for some j, and the logical premiss of (&A,,) can be written as
m(A), 7(B) — m(A & B), which is an ESS. Here, II; is empty.

Only B is already a proper occurrence variable and A is a complex
formula. In this case, the logical premiss is not yet of the desired
form. At this point we only have A, 7(B) — (A & B). However,
since A is the only complex formula in this sequent, it must be
the conclusion of a rule application in IIg, which introduces the
main connective of A. If the corresponding meta rule has a single
logical premiss, the subderivation II; has the following form:

1T
S) = bj
— {q, q,0; — D (xAp)
Aa bj —p
Thus we have m(A) = ¢, and the context premiss of this rule

application has the desired form w(A), n(B) — n(A & B).

If the corresponding meta rule has two logical premises, the sub-
derivation II; has a different form, but the context premiss is
identical to the case with one logical premiss:

I, I
GIHQ7EI @2_>Q7E2 Q>b]_>p

The case that A is already a proper occurrence variable and B is a
complex formula is treated correspondingly to the previous case.

If both A and B are complex formulae, then both formulae are
detached from A, B — pin Ilg, which requires exactly two succes-

109



sive rule applications. These must occur in one out of two possible
configurations.?

q,r—p
¢, B —p
A B—p

(*2Am)
(*x1Am)

q, 7" —p
Ar—p
A B—p

(*x1A.,)
(x2Am)

In both cases the leaf of the context branch beginning with the
logical premiss A, B — p is the ESS ¢,r — p. With n(A) = ¢
and 7m(B) = r, this ESS is of the form 7(A), 7(B) — m(A& B), as
required.

This concludes the four possible cases arising from the dependent pos-
sibilities for the complexity of A and B.

2) If A& B has a positive occurrence in S, then somewhere in I there
is a sequent I' — Ay, A & B, Ay, which is the conclusion of (&S,,).

I I, I3
FﬁAlapaAQ p_>A p_)B
F—>A1,A&B,A2

(&Sm)

As before, it is 71(A& B) = p. In this case, however, two logical premises
p — A and p — B can be considered independently of one another.
We treat the sequent p — A exemplarily and consider two cases:

(a) The formula A is a proper occurrence variable a; for some index 1.
Then the sequent is the ESS p — a;. With 7(A) = 7(a;) = a;, the
ESS has the desired form 7(A & B) — w(A). The subderivation
[T, is empty in this case.

(b) The formula A is a complex formula. At the same time, A is the
only complex formula occurring in p — A. Hence, this sequent
must be the conclusion of the rule introducing A. Depending on
the connective of A, this rule is either

?Depending on A and B, each rule application can have either one or two logical
premises. As we saw in (b), the number of logical premises does not influence the argument.
Therefore, we will only give the relevant context premises.
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H2

p—q ©O,q—E=

DA (*Sm)
or
11, 11}
D —q ©1,¢ — = O, q — Zy (x5m)
p— A

In either case, the context premiss is p — ¢, an ESS. Due to this
rule application, which introduces ¢, we further have 7(A) = q.
Hence, there is an ESS 7(A & B) — 7(A) contained in &g.

Independently, we obtain from the second logical premiss p — B that
(A& B) — m(B) is contained in €g. Since each of 7(A) and 7(B) is
either a unique proper occurrence variable or a new proxy variable, the
two ESSs are distinct.

U

Note that the argument depends on the fact that we use occurrence instances
of sequents. Consider the case of a positive occurrence of A & B, in which
both A and B are proper occurrence variables, say a; and a;,;. In this case,
the meta rule (&S,,) yields:

I'— Aup, Ay p—a;  p—aip
I'— Ay a; & a1, Ay

(&Sm)

The logical premises of (&S,,) are the elementary structural sequents p — a;
and p — a;41. If we were to use propositional variables instead of proper
occurrence variables, the two logical premises of (&S,,) would be, p — a
and p — a, which are identical. Hence, they would collapse in the explosion
set, violating the desired property that €z contains two unique ESSs. This
violation would pose a serious problem to the claim that the explosion set
represents the structural skeleton of a sequent, because these most simple
conjunctions could not be adequately represented.® This problem would
not arise in the case of a more complex conjunctive formula, in which the
propositional variable does occur twice, but not as immediate subformulae
of a conjunction. For instance, for the sequent p — a & (a & b) the explosion
procedure produces the four ESSs [p — al, [p — ¢|, [¢ — a] and [¢ — 0], each
of which is unique.

3The dual problem would arise for disjunctive formulae aVa occurring in the antecedent.
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However, it was not merely this technical problem, which motivated the
utilisation of occurrence variables. Instead, the intention was to effect a clear
separation between purely structural considerations and those of the identity
of atomic content. This example demonstrates that the former can only be
properly accomodated by using occurrence instances of sequents. The latter
is treated by means of the corresponding restoration functions, as we will see
shortly in the chapter on the decision procedure.

Similar properties to those stated in proposition 7.4 hold for the remaining
logical connectives.

Corollary 7.5 Let g, Iz, m and €z be as before. Then the following holds:

1) For every negative occurrence of a subformula AV B in :S‘V; €5 contains
two unique ESSs m(A) — n(AV B) and 7(B) — w(AV B).

2) For every positive occurrence of a subformula AV B in g, &5 contains
a unique ESS m(AV B) — w(A), m(B).

Corollary 7.6 Let g, Iz, 7 and €z be as before. Then the following holds:

1) For every negative occurrence of a subformula A O B in g, €5 contains
two unique ESSs — w(A D B),m(A) and 7(B) — w(A D B).

2) For every positive occurrence of a subformula A D B in g, ¢z contains
a unique ESS w(A), (A D B) — n(B).

Corollary 7.7 Let g, Iz, 7 and €5 be as before. Then the following holds:

1) For every negative occurrence of a subformula —A in g, €5 contains a
unique ESS — w(—=A), m(A).

2) For every positive occurrence of a subformula —A in :5‘: €5 contains a
unique ESS m(A), m(—A) —.

The proofs of corollaries 7.5 and 7.6 are dual to those of proposition 7.4.
For corollary 7.7, there is just a single subformula to consider in both cases,
which are dual to one another.

Figure 7.1 gives a summary of the structural configurations that have been
detailed in the preceding lemma and corollaries for complex formulae C'. In
every instance, 7(C') is the base proxy, which was introduced to detach the
complex formula. The variables 7(A) and, if appropriate, m(B) are either
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negative occurrence positive occurrence

& {7(A),7(B) — n(A& B)} { ;gﬁ z gg - Zgg)) }
n(A) — m(AV B) (A

v {IETIVE T rave - raam)

5 { - gfi DWQ’;T%‘; } {7(A),7(A> B) - n(B)}

- {—7(=4),7(A) } {m(A), 7(-A4) — }
Figure 7.1: The ESS or ESSs representing the meaning of a connective

proper occurrence variables or proxy variables, depending on whether the
side formula or side formulae are already proper occurrence variables or, in
turn, complex formulae. What is important are the different distributions
of base proxy and the other two occurrence variables into antecedent and
succedent of the single ESS or the two ESSs in question. The pattern of this
distribution is unique for each type of occurrence, positive or negative, of
each logical connective.

In order to relate the intuitive analysis that introduced this section to the
technical results we obtained, we can state that the structure of a complex
formula C' occurring somewhere within a sequent S is given by a collection
of ESSs €¢ C €5, which contains the following items of information:

1) The base proxy 7(C') occurring in all of the ESSs €¢ is an abstract
representation of the logical connective of the complex formula. The
same 7(C') occurs as a branching proxy in some context branch of the
explosion derivation.

2) The following holds for the occurrence variables 7(A) and, if appropri-
ate!, 7(B) occurring in €¢:

(a) Every branching proxy, which occurs in €¢, refers to a complex
subformula of C', and hence represents the occurrence of that sub-
formula in C'. By means of this branching proxy, the correspond-
ing complex formula can be accessed.

(b) Every proper occurrence variable, which can be found in ESSs in
o, represents its own original occurrence in C.

4If C is a negation formula, there is only one occurrence variable 7(A).
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3) The number of ESSs that comprise €¢ reflects the mode, by which
the subformulae are accessed. In the case that there is only a single
ESS, which contains the base proxy and both branching proxies, we can
think of an internal mode of access. This internal mode corresponds
to the observation made for the ESSs representing the antecedent and
succedent of the sequent itself in the preceding section. In the case that
there are two ESS, each of which contains exactly one of the occurrence
variables m(A) and 7(B), we can think of an external or independent
mode of access.

For example, consider the case of a positive occurrence of formulae A & B.
Then, according to proposition 7.4, A & B is the main formula of some ap-
plication of (&S,,), and the structural meaning of the connective is given
by the collection of sequents {[7(A & B) — w(A)],[7(A & B) — w(B)|},
which, for 7(A & B) = p and 7(A) = z and n(B) = y, is the set of ESSs
{l[p — z],[p — v]}. In both of these sequents and only in those, p occurs as
base proxy. By inspecting the collection of ESSs that have = or y as base
proxies, the structural meaning of the subformulae A or B can be obtained.
In the case that x or y is already an occurrence variable, there is no further
structural meaning to the corresponding subformula. Instead, p refers to a
unique and atomic occurrence of a propositional variable, say a or b, which
is represented by a unique occurrence variable a; or b;. Dually, we obtain as
meaning of a negative occurrence of AV B the set of ESSs {[z — p|, [y — p|}
and as the meaning of a negative occurrence of A D B, as it is to be expected
in the classical setting, the set of ESSs {[— p, ], [y — p|}. As above, x and
y refer to the structural meaning of formulae A and B or are proper occur-
rence variables. Note that in all three cases it is two elementary structural
sequents which constitute the structural meaning of the specific position of
the connective of the complex formula. In any one of these cases, = and
y are accessed from p independently of one another. In other words, when
accessing p itself and retrieving the structural representation of the complex
formula, whose occurrence the proxy p represents, two ESSs are retrieved.
At this point, a choice has to be made, which one of the subformulae, A or
B, should be further accessed by means of 7(A) or w(B). Every access of
either one of them has to be performed strictly independently of the other.
In all of the other cases, it is always a single ESS, which constitutes the
meaning of the corresponding connective. Within that ESS, all the relevant
occurrence variables are distributed in some configuration, which is specific
to the particular logical connective and its occurrence position in question.
When accessing the base proxy of that elementary structural sequent, all
of the occurrence variables are retrieved at the same time. For a negation
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formula, this is trivially the case, since this involves only a single occurrence
variable apart from the base proxy, but in the other cases, both of the occur-
rence variables m(A) and 7(B) are integral to the single ESS that constitutes
the structural meaning of the complex formula. This requres that whenever
A or B is accessed by means of the corresponding occurrence variable, the
other occurrence variable is not deposited in the process, but retained for a
possible future access. These two different modes of access will be studied in
detail in the following chapter.

We conclude that the ESSs resulting from the premises of some meta rule
do indeed represent the structural justification, and thereby the meaning, of
the connective of the main formula of the corresponding rule application. The
proof theoretic paradigm that the meaning of a logical connective is given by
the structure of the rule, which is used to introduce it, is retained in a certain
sense, albeit with a significant modification. In our teatment, the stripped-
down elementary variants of the premises of the local logical rules, which
might occur further up in a context branch starting at these premises, are
considered as structural meaning. Thereby, we consider as meaning only that
absolutely minimal part of the structure of a derivation that has a bearing
on the connective in question. Contexts have no bearing on the meaning of
a connective whatsoever, neither in some kind of structural representation
let alone in the form of the formulae themselves, and consequently they do
not contribute in any way to the ESSs that make up the structural meaning.
Even the immediate subformulae of a complex formula make no immediate
contribution to the meaning of the connective, and hence they do not appear
explicitly in the ESSs. Only by means of the branching proxies or proper
occurrence variables is its structural meaning related to that of the logical
connectives or propositional variables, to which it is connected.® Hence,
the meaning of a logical connective is represented entirely through a (often
singleton) collection of elementary structural sequents. In contrast to this,
the meaning of a logical connective is traditionally represented by a particular
substructure of the derivation itself, namely that part consisting of the rule
that introduces said connective, that rule’s premises and conclusion. Thereby
the meaning of a logical connective is unneccesarily syntactically emcumbered
with the subformulae it connects, the sequents’ formula contexts, and the
whole context of the derivation. None of this is the case in our approach.
The meaning of a logical connective can be considered independently of such
distractions.

5The propositional variables themselves are not part of the structural meaning, but
their occurrence instances are. Only by an application of the restoration function can the
propositional variables themselves be considered.
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Chapter 8

Explosion Sets and
RK-Derivations

After having investigated the properties of the explosion procedure and the
resulting explosion set in the previous chapters, it is now necessary to estab-
lish a relation between these results and derivations and proofs in RK. This
will be done in several steps.

The first step is to facilitate such a relation by supplying a stepping
stone between RK-derivations of regular sequents, i.e. sequents that do not
contain any occurrence variables, and explosion sets, which are derived from
occurrence instances of sequents. This will be accomplished by generalising
the notion of occurrence instance from sequents to derivations.

The second step is to establish how the various sequents that occur in an
occurrence instance of a RK-derivation can be related to particular subsets of
the explosion set, which is derived from the base sequent of that derivation.
These subsets will be called connexion sets, as they possess a particular
connection property. It will be shown, how successive sequents occurring
in some branch in a RK-derivation form a linearly ordered family of such
connexion sets.

In the third step we will demonstrate, how the different explosion sets
that can be obtained from the sequents of an occurrence instance of a RK-
derivation relate to one another. That is, instead of relating every sequent
to some subset of the explosion set of the end sequent of the derivation as
in the second step, one explosion set will be developed for every sequent
of the derivation. This perspective will prove to be complementary to that
established in the second step in a certain sense.

Eventually, these developments will allow us to ascertain, in which manner
certain connections that can be traced between occurrence variables of an
explosion set can be related to the generalised axioms of a RK-derivation.
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These connections will become especially interesting in view of the decision
procedures in the following chapter.

8.1 Revisiting RK-Derivations

Explosion sets are derived from occurrence instances of sequents and there-
fore contain occurrence variables instead of propositional variables. For this
reason, it would be very difficult to immediately relate a selection of ESSs
taken from the explosion set to some sequent occurring in a RK-derivation of
a standard sequent. In order to mediate the relation of explosion sets to RK-
derivations, we will have to consider RK-derivations of occurrence instances
of sequents instead of the derivations of the standard sequents.

Definition 8.1 For a RK-derivation = of a sequent S, its occurrence in-
stance = is is obtained from = by replacing every sequent occurring in = by
the appropriate occurrence instance thereof and removing all applications of
(ax*). The appropriate replacement is obtained by first replacing S by an
occurrence instance S and in the remaining replacements propagating the oc-
currence variables introduced therein upwards in such a manner that the rules
of = are respected. In the context of occurence instances of RK-derivations,
a RK-derivation, which does not contain any occurrence variables, is called
a standard RK-derivation.

An occurrence instance of a derivation = is best obtained by traversing the
derivation from bottom-up and constructing a derivation for S.!

The claim that = is a RK-derivation has to be established formally. More-
over, it is easy to show that no occurrence instance of any RK-derivation can
be a closed derivation.

Lemma 8.2 For a RK-derivation = of a sequent S and any occurrence in-
stance = thereof the following hold:

1)
2)

f = is to be constructed in a top-down manner instead, all initial sequents of = have
to be replaced by occurrence instances of these initial sequents, in which every occurrence
variable not only occurs uniquely in its own initial sequent, but uniquely in all of the
occurrence instances of these initial sequents. If this provision is not made, then the
construction could result in a derivation, in which the conclusion is not an occurrence
instance of S, because this conclusion contains one or more occurrence variables more
than once.

is a RK-derivation of the sequent S.

[11?

is no RK-proof of the sequent S.

(1l

118



PRrOOF: For 1), consider the construction of =. The conclusion of =, the
sequent S, is replaced by an occurrence instance S. This is the initialisation
of the construction of Z. If a sequent 7" occurring as conclusion of a rule in
= is replaced by 7, then the premiss or premises of this rule are replaced as
follows:

e If the rule is (&A), has conclusion 7 = [I'; A& B,I', — AJ and
premiss U = [I'1, A, B,I'y; — A], then T has been replaced in = by the

occurrence instance 7 = 'y, A& B,T'y — AJ. Since T is an occurrence
instance of 7, all occurrence variables thereof are unique and indepen-
dent of one another, especially those occurring in A & B. Hence, all
occurence variables of A and B are also unique and independent of one
another and of all occurrence variables of I'1, 'y and A, and therefore

—_——

U= 'y, A, B,T'y — Al is indeed an occurrence instance of the premiss
U. Moreover, it is premiss of (&A) with regard to the conclusion 7.
Consequently, U is replaced by U in =.

e If the rule is (&S), having conclusion 7 = [I' — Ay, A & B, Ay] and
premises Uy = [[' — Ay, A, Ag] and Uy = [I' — Ay, B, As], then T has

e

been replaced in = by the occurrence instance T = ' — A, A& B, Ay
Since 7T is an occurrence instance of T, all occurrence variables thereof
are unique and independent of one another, especially those in A & B.
Hence, all occurence variables of A and B are also unique and inde-
pendent of one another and of all occurrence variables of I'y, I'y and A,

and therefore U; = I' = Ay, A, Ay is indeed an occurrence instance
of the premiss U;, and ﬁg = [[' = Ay, B, Ay is an occurrence instance
of Us. Moreover, U; and Us are the premises of (&S) with regard to
the conclusion 7. Consequently, U, is replaced by Uy in =, and U, is
replaced by Us.

The remaining logical rules as well as (XA) and (XS) are treated accordingly.
For the case that the top of an open branch is encountered, nothing is added
to =, and the construction, as far as that branch is concerned, terminates.
Since all of the rules of =, with the exception of the improper rule (ax*),
which only occurs at the leaves of =, are respected in the construction of é,
it follows that = is indeed a RK-derivation of the sequent S.

For 2), we only need to observe that, according to the construction, all of
its initial sequents are occurrence instances of the initial sequents of =. Since
all atomic formulae of any occurrence instance occur uniquely, no formula
can occur both in the antecedent and the succedent. Hence, no initial sequent
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of = can be an instance of the axiom schema, and therefore = cannot be a
proof. O

As an example for the construction of occurrence instances of RK-derivations,
consider the following RK-proof Z of the sequent (a Vb)Vec—aV (bV c):

(ax”)
(VS)

(ax*)

a— a,b,c b—a,b,c (vS) (")

a—a,bVece b—>a,b\/c(vA) c—a,b,c
aVb—abVc c—a,bVe
(avb)Ve—a,bVc
(VS)
(avb)Ve—aV(bVc)

Its occurrence instance = is the RK-derivation

ay — ag, by, ¢y by — ag, by, o
aq HCLQ,bQ\/CQ blﬁag,bg\/CQ (&1 —>a2,b2,c2
0,1\/bl—>a2,b2\/02 cl—>a2,b2\/02

(0,1 V bl) V C1 — Q9, b2 V Cy (\/S)
(0,1 V bl) V C1 — Q2 V (bg \/02)

(VS) (VS)

(VA)

(VS)
(VA)

All the sequents in = are occurrence instances of their corresponding sequents
in =. What is more interesting is the fact that while = is a proof, = is not.
Strictly speaking, this makes = structurally different from =Z. However, due
to the fact that this structural difference only concerns the closure of the
leaves, this does not pose a problem. Recall that at this point, we are not
concerned with whether a derivation is in fact a proof, but only with providing
a method relating the sequents that occur in a RK-derivation to subsets of
the explosion set of its occurrence instance. For this purpose, it is sufficient
to relate all the sequents to their respective occurrence instances.

We are now in the position of being able to provide the occurrence
instance 7 of a sequent 7 that occur anywhere within a standard RK-
derivation of a sequent S, in which the occurrence variables are not simply
introduced ad-hoc, but by refering to the corresponding sequent in the occur-
rence instance of the original derivation. Thereby, the occurrence variables
of 7 correspond to those in S.

In any branch of a RK-derivation (standard or occurrence instance), se-
quents further up are made up of certain subformulae of those formulae that
comprise the sequents occuring further down in the branch. Although this
property is obvious, it is worth stating it in a lemma, because it is very
important for what we will develop in the remainder section.
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Lemma 8.3 Let = be a RK-derivation and (Sy, Sy, .. .,Sk) some branch in
=. Let Fs, be the set of all subformulae of S;. Then, for every 0 <1 < j <k,
it 1s Fs, 2 Fs;-

PRroOOF: For every pair S; and S, 1, the latter is the premiss of some rule
application, which has the former as a conclusion. Since = is a RK-derivation,
we have to consider exchange rules and logical rules. If the rule is an exchange
rule, then §; and S;4; contain exactly the same formulae, i.e. Fs, = Fs,,,. If
the rule is an exchange rule, then §; and S, 1 contain exactly the same context
formulae; however, S; contains the main formula C' of the rule application,
whereas all we can generally assert about &;.; is that, depending on the
rule, it contains one or all of its side formulae. Hence, we have Fs, 2 Fs,.,.

Transitivity of O yields the desired result. U

Note that we require DO instead of D for two reasons. If S; is the conclusion
of one of the rules (XA) and (XS), we have Fs, = Fs,,,. The second reason
is less obvious. For if §; is the conclusion of a logical rule, we might expect
Fs, O Fs,,,- But this only holds, if the main formula does not occur as
(subformula of) any context formula. However, for occurrence instances of
RK-derivations, we can state the following lemma:

Lemma 8.4 Let = be _an occurrence instance of a RK-derivation = and T
be the conclusion and U be a premiss of some logical rule in =, which has C
as main formula. Let F5 be the set of all subformulae of’T and Fz be the

set of all subformulae ofa. Then one the following cases holds:
1) If the logical rule has a single premiss, then Fz \ F; = {C'}.

2) If the logical rule has two premises, then C = A o B for formulae

A, B and logical connective o, and U contains A, but not B. Then
Fz\ F; =1{C} U Fp, where Fp is the set of all subformulae of B.

3) If the logical rule has two premises, then C = Ao B for formulae

A, B and logical connective o, and U contains B, but not A. Then
Fz\ Fi ={C} U Fa, where Fy is the set of all subformulae of A.

In any case, it is Fz O Fy.

PROOF: Since = is an occurrence instance of a RK-derivation, all the sequents
of = are occurrence instances. Since all the occurrence variables of such a
sequent are unique, every subformula occurring in such a sequent must be
unique. Hence, the main formula C' of 7" cannot also occur as (subformula
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of) any context formula in 7. Therefore, C' cannot occur in U , which already
establishes the strict inclusion Fz D F;.

The three cases sum up the case analysis for the different logical rules of
RK. We will exemplarily check the cases (&A), (=S) and (DA), keeping in

mind that = is an occurrence instance.

o If U is the premiss and T is the conclusion of an instance of the single
premiss logical rule (&A) in =, then A & B does not occur anywhere
in I" or A. Moreover, it is Fag p = Fa U FpU{A& B}. Since A& B
does not occur in U, it is F5\ F; = {A & B}. This is an instance of
case 1).

o If U is the premiss and T is the conclusion of an instance of the single
premiss logical rule (=S) in =, then =A does not occur anywhere in I'
or A. Moreover, it is F_4 = F4 U {—-A}. Since =A does not occur in

U, it is Fz \ F;; = {—A}. This is another instance of case 1).

o IfU is the left premiss and T is the conclusion of an instance of the two
premiss logical rule (DA) in =, then A D B does not occur anywhere
in I" or A. Moreover, it is Fanp = FaAUFpU{A D B}. Neither A D B
nor B (and, hence, no subformulae of B) occur in u , and, therefore,
we have Fz \ F; = {A D B} U Fp. This is an instance of case 2).

e We obtain an instance of 3) if we consider the right premiss and side
formula B as in the previous case: Fz \ Fi; = {A D B} U F4.

The remaining cases are treated accordingly. 0

For those rules, which have only one premiss, both side formulae (or the single
side formula) are retained in the premiss. Consequently, in those cases, we
have always F5 \ F;; = C, where C is the main formula. In the cases,
where there are two premises, more than a single formula disappears in the
comparison between the conclusion and a single premiss, because the second
side formula only occurs in the other premiss, which is not considered. We
generalise this result to the following corollary of lemma 8.3.

Corollary 8.5 Let = be an occurrence instance of a RK-derivation = and
(So; Sty -+ Si) some branch in Z. Let Fg be the set of all subformulae of

S;. Then, for every 0 <1 < k, the following holds:
° zfgZ is the conclusion of (XA) or (XS), then Fs =7F3

i+1’

° z’fg} is the conclusion of a logical rule, then Fg D ‘7:§z'+1‘

122



The next task is to demonstrate, how this property is reflected in view of
subsets of the explosion set derived from the end sequent of a RK-derivation.
However, it would be a futile attempt to consider any subset of the explosion
set. Instead, only those subsets of an explosion set have to be considered,
which correspond to some sequent ocurring in the RK-derivation under con-
sideration. However, we have to establish that there is such a correspondence
in the first place.

Up to this point, we have only considered explosion sets of (occurrence
instances of) individual sequents. From now on, we will consider some RK-
derivation = of a standard sequent & and its occurrence instance E, which
has the occurrence instance S of § as end sequent. Next, we generate the
explosion set €z for § by constructing an explosion derivation IIz. According
to definition 7.1, Iz engenders an occurrence mapping 75 : Fg — Vi, which
relates every subformula A occurring in S to some proxy variable mg(A).
With the preceding lemma we know that every for sequent ’f, which occurs
somewhere in Z, it is 7 C Fz. Hence, the occurrence mapping g not only
relates to formulae occuring in the end sequent S , but also to those formulae
that occur in every sequent 7" of Z. For this reason, we will omit the index
of the occurrence mapping from now. Since 7 relates formulae of S to the
occurrence variables of the explosion set, we can reformulate corollary 8.5.

Corollary 8.6 Let = be an occurrence instance of a RK-derivation =, and
let S be the end sequent of 2. Let w be the occurrence mapping obtained from
an explosion derivation 11 of S. Let (So, S1,...,Sk) be some branch of =,
ie. Sy = S. Let Fg be the set of all subformulae of S;. Then, for every
0 <i <k, the following holds:

o if S; is the conclusion of (XA) or (XS), then m(Fs) =7(F5,,,);
o if S; is the conclusion of a logical rule, then m(Fs) D 7(Fs,,)-

Just as each move from a conlusion of a locigal rule to a premiss removes
formulae from the set of subformulae occuring therein, the proxy variables
relating to these formulae are removed from the image of the set of these
subformulae under 7.

8.2 Connexion Sets

We will begin by establishing a complementary view on branches of a RK-
dervation to that of the preceding section. Instead of having shrinking sets
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of formulae or proxy variables as a branch is traversed from the bottom up,
we shall obtain a perspective, under which the set of proxy variables grows
as a branch is traversed upwards. As a consequence of such a view, we will
be able to relate a particular subset of the explosion set with each sequent
occurring in the derivation, and demonstrate that the subsets corresponding
to the sequents of a single branch yield an ascending family of such subsets.
Therefore, the resulting inclusion relations of these subsets will reflect the tree
structure of the derivation. For the purpose of demonstrating this property,
some auxiliary notions are required.

Definition 8.7 Let = be an occurrence instance of a RK-derivation =, and
let S be the end sequent ofH Let 7 be the occurrence mapping obtained from
an explosion derwation 11 ofS with occurrence variables Vii. Let T be some
sequent occurring in =. Then the occurrence set of this sequent is the set of
occurrence variables Vi < L r({T]).

The occurrence set of a sequent is the image of the set of all formulae occur-
ring immediately, i.e. not as subformulae, in the antecedent and succedent
under the occurrence mapping. Recall that the occurrence mapping 7 as-
signs a proxy variable to every complex subformula occurring in the sequent
S, whereas all the proper occurrence variables of S are mapped onto them-
selves. Since all formulae that occur in a sequent T somewhere in = are
subformulae of those occurring in S, it is Vz C Vi The occurrence set of a

sequent T provides the representations of these subformulae with respect to
the explosion derivation.

As well as the collection of occurrence variables that relate to some se-
quent 7 in an occurrence instance Z, it is interesting to keep track of the
proxy variables that correspond to the main formulae of those rules applica-
tions of =, which connect T to the end sequent S.

Definition 8.8 Let = be an occurrence imstance of a RK-deriation =, and
let S be the end sequent of = and T be some sequent of =. Let 7 be the
occurrence mapping obtained from an explosion derwation 11 of S with ex-
plosion set (Eg,w) and occurrence variables V. Let (S0, S, .. ., Sk) be that

path of = with Sy = S and S, = T. Then the base proxy set of T with re-

gard to (&g, w) is the set of proxy variables Bz —fBZk, where the Bz; C Vn
(0 <i < k) are defined as follows:

hd B'Z'(] ﬂ {’LU},

def p o . .
o B- Bz, if S; is the conclusion of an exchange rule;

Ti+1
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* Bz, d:BfBii U{n(Cy)}, if C; is the main formula of S;.

In order to illustrate the motivation behind the construction, we consider a
path (80,81, .. Sk) The initial step is to associate with Sy the singleton
set {w}, which consists of the watershed proxy of the explosion derivation II.
In the perspective of the preceding section, §0 was associated with the set
m(Fg,), the set of occurrence variables corresponding to all the subformulae

occurring in So. Recall from section 7.2 that if Vy is the set of occurrence
variables in II, then Vi \ m(Fg ) = {w}, since the watershed proxy w is the
only proxy variable, which does not correspond to some specific subformula
occurrence in Sy. Hence, considering {w} as representation of Sy does cer-
tainly correspond to the suggested intuition of a complementary view. Next,
consider a transition from §; to Si;1 in &, which is not due to a exchange
rule. In such a case, SZ- contains the main formula C; of the logical rule,
which relates S; and 3@+1 From C; we immediately obtain a proxy variable
7(C;), and, consequently, we can define Bz, ,, by Bz, U{m(C;)}. If S, is the
conclusion of an exchange rule, there is no main formula, and we can define
BT 1 to be the same as B~ Iterating this addition of base proxies as the
path is traversed, we obtaln the set Bz of all the base proxies corresponding
to the main formulae of = between S and 7.

The goal is to relate each sequent of a derivation with a subset of the
explosion set €z. Recall that the meaning of a complex formula is given by
one or two ESSs. The following definition assigns to each main formula of a
path one such elementary structural sequent and accumulates these ESSs in
a set.

Definition 8.9 Let = be an occurrence instance of a RK-derivation =, and
let S be the end sequent of = and T be some sequent of =. Let 7 be the
occurrence mapping obtained from an_explosion derwation 11 of S with ex-
ploswn set (&g, w). Let (S, S, .. Sk) be that path of = with So = S and
Sy = 7. Then the connexion set ofT with regard to (Eg,w) is the set of
ESSs X7 = X7, where the X5, C €5 (0 < i < k) are defined as follows:

o Xz70={ly = wl, [w—d]};
° z'fgi is the conclusion of an exchange rule , then Xz = X5,

e if C; is the main formula ofgi and D; is a side formula of ‘§+1, then

X701 = X5, U {5 €&

E contains w(C;) as base proxy
and 7(D;) as occurrence variable |-
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The definition provides a construction, which paralleles that of the base proxy
set of a branch. Recall from section 7.1 that the main structure of the sequent
S =5y =[I' = Al is represented by the two elementary structural sequents
v — w and w — J, where v and 0 are obtained from I' and A in the explosion
procedure, i.e. 7({I'} U {A}) = {7y} U {d}. Since both of these ESSs have
w as the base proxy, there is a relation between the set Bz, = {w} and

X7, = {ly — w|,[w — d]}. Unfortunately, for a transition from S to Sip1
in the path, which is not due to a exchange rule, such a relation is somewhat
more difficult to establish. Simply adding all of those ESSs of €z to Xz,
which contain the proxy 7(C;) as base proxy, where C; be the main formula of
gi, does not produce the desired result in all cases. For if C; is a conjunction
occuring in the succedent or a disjunction or implication occurring in the
antecedent, proposition 7.4, corollary 7.5 or 7.6, respectively, state that the
explosion set contains two ESSs having the base proxy 7(C;). In each of these
cases, this is due to the fact that the corresponding meta rule of the explosion
calculus has two logical premises, each one containing a single one of the two
side formulae in addition to the base proxy. In the derivation =, on the other
hand, the path (Sp, Sy, ..., Sk) contains only one of the logical premises of
the logical rule of RK corresponding to that meta rule, namely :SV}H, and this
S;41 contains only one of the two side formulae, called D; in the definition.
Hence, of the two elementary structural sequents of the explosion set, which
have 7(C;) as base proxy, only that one must be considered for X7,;,1, which
also contains 7(D;). Note that m(D;) is either a branching proxy, namely
if D; is a complex formula, or otherwise a proper occurrence variable. For
all other possible cases for the main formula C;, the lemma and corollaries
mentioned above and corollary 7.7 state that there is only a single ESS which
has 7(C;) as base proxy. Therefore, the clause of the definition

X7 = X7, U {5 € &5 and 7(D;) as occurrence variable

& contains m(C;) as base proxy }

yields the desired addition to Xz, in all possible cases. Therefore, this defi-
nition retains the relation to Bz, as far as the relevance of the base proxy
7w (C;) is concerned.

In view of the above complication, it appears that the base proxy set Bz

is not a sufficient representation of 7', because its definition does not imme-
diately involve the matter of logical rules having two premises. However, the
following important result establishes that X5 can be constructed simply by
selecting such ESSs from the explosion set such that all occurrence variables
thereof are contained in the base proxy set Bz and the occurrence set Vz
corresponding to the sequent under consideration.
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Proposition 8.10 Let = be an_occurrence instance of a RK-derivation =,
and let S be the end sequent of =. Let m be the occurrence mapping obtained
fmm an exploszon derivation 11 ofS with exploswn set (@S, w). Let further

(80,81, .. Sk) be some path ofu with Sy = S and S, = T. Let Bz be the

base proxy set, Vz be the occurrence set and X5 the connexion set of’T. Then
1t 18
Xz ={€e & [{€} C B UVz}

PROOF: We shall establish “C” first. It is X5 = (Jy<;<x X7,, and hence it
will suffice to follow this finite construction. For %io_:_{h = wl, [w — 4]}
we observe that w € Bz. Moreover, v and ¢ contain both those proper occur-
rence variables, which are already present in S , and all proxy variables cor-
responding to complex formulae of S, because those are detached by means
of such a proxy variable in the explosion derivation. Each of the latter for-
mulae is either still present in 7', or it must be the main formula of some
rule application somewhere in the path connecting S to 7. Since occurrence
variables corresponding to other formulae cannot be involved in this path, it
must be {y} U{d} C B5U V5, which yields X5, C {£ € €5 [{€} € BzUVz}.
For Xz,,, we only have to consider the case that X701 O X7, Accord-
ing to definition 8.9, Xz, ,, contains that ESS £ € €5 in addition to those
of X5,, where £ contains 7(C;) as base proxy, and hence 7(C;) € Bz, and
W(Di)’ as occurrence variable, and where C; and D, are main formula and
side formula of the rule, of which sequents §Z is the conclusion and §,~+1 is a
premiss. The formula D; is either still present in 7, or it becomes the main
formula of a rule application further up in the path. In the former case, it
is 7(D;) € Vz, in the latter case, it is 7(D;) € Bz. Since we know that C;
is a complex formula, we can draw on proposition 7.4 and its corollaries to
obtain the exact structure of £. In the cases that C; is a negation, a nega-
tive occurrence of an implication or a disjunction, or a positive occurrence of
a conjunction, the elementary structural sequent £ contains only these two
occurrence variables, i.e. it is {E} = {7 (C;), 7(D;)} € Bz U V. In the other
three cases, the ESS also contains m(E;), where E; is the other immediate
subformula of C;. But then ‘§i+1 must also contain F; in addition to D;,
since it is the premiss of the corresponding logical rule of RK. With the
same argument that we used for D;, we obtain that 7(E;) € Bz U V5, and
thus it is {€} = {n(C;), 7(D;), m(E;)} € Bz U Vz.

For “2” we recall that every ESS of €z is unique. Now, each & € €z such
that {€} € B UVz has a base proxy 7(C) for some complex formula C', and
it must be m(C) € Bz. For if 7(C) were an element of Vz instead, then C
would not be a main formula anywhere in the path under consideration, but
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would occur as complex formula in T. Hence, for every immediate subformula
D of C, we would have m(D) ¢ Bz U V5, since such a D could neither
occur as a main formula in the path, nor would it occur as a formula of
T; and, therefore, {m(C),n(D)} C {€} € Bz U Vz. But if n(C) € Bz,
then, according to definition 8.9, there is some 1 < i < k such that the ESS
e %7',2' C Xz. This concludes the argument. O

The above is the main result regarding the relation of explosion sets and RK-
derivations. In summary, it states that for every sequent occurring anywhere
in an occurrence instance of some RK-derivation, there is a corresponding
subset of the explosion set of the end sequent; the selection of ESSs to be
included in this subset depends both on the formulae which occur in the
sequent and the main formulae of the path in the derivation leading up to
the sequent. We can immediately infer from the definition of the connexion
set and the above proposition that, for every branch & = (Sy, Sy, ..., Sk) of
such a derivation, there is a corresponding family {Xg }o<i<i of subsets of
€z, where X5 C X5 forall0 <7 <k. This construction can be performed
for each branch of a derlvatlon and, hence, for the entire derivation itself.

We shall write {X;}s to denote such a family, whenever the individual
sequents of & are not given explicitly, and write X, for that element of
that family, which has index i, and Xg for the largest element of that family,
which obviously corresponds to the topmost sequent of the branch. Now, for
any two branches & and T of a derivation, there is always an initial segment
(So,S1,...,8y), i.e. a path, which is shared by both branches. At the least
this is the trivial branch (go), since all branches of the derivation converge in
the end sequent. Families of connexion sets corresponding to two branches
have noteworthy properties.

Corollary 8.11 Let = be an occurrence instance of a RK-deriwation =, and
let S be the end sequent of Z. Let (€g,w) be the eq;ploswn set obtained

from an explosion derivation of S. Let further & = (SO,SI,.. Sk) and
T = (76,7'1, o ,T) be two different branches of_ with Sy = Ty = S. Let
(80,81, LS, y) = (’]6,’]'1, e ’T) be the longest path, which is shared by &
and ¥. Then the following holds:

1) for every 0 <i <k and0 < j <lI, it is
XeiNXg;=1{€ € Cz|{€]} C (BsiUVe:)N(Bs;UVa)l
2) for every 0 <i < g, it is Xg,; = X<;;

3) for every g <i<kandg<j<l, itisXs; # X<,
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PROOF: 1) is simply a logical consequence of the preceding proposition.
Moreover, 2) follows immediately from 1), because, for 0 < ¢ < g, the i-th
sequent of & and the i-th sequent of T are identical. For 3), note that it must
be h < min(k,l), since © and ¥ are different branches. If it were the case
that h = min(k, (), then one of the two branches would be contained in the
other one and, therefore, would not be a proper branch at all, contradicting
the stipulation. Hence, there are distinct sequents Shil and 7;L+1; Both
sequents must be premises of some rule application of =, of which S, = 7,
is the conclusion, and, therefore, this must be the application of a loglcal
rule having two premises. Then S = ’T has as its main formula C, either
a disjunction or an implication occurring in the antecedent or a conjunction
occurring in the succedent, and each of Sh+1 and 7;L+1 contains one of its
subformulae, say D, in the case of Sh+1 and E, in the case of 77L+1 as side
formula; it is exactly these side formulae, which distinguish the two sequents.
It then follows from definition 8.9, that Xg 41 = Xen U {€}, where £ € €5
is that elementary structural sequent, which has 7(C,) as its base proxy and
m(Dy) as occurrence variable, and that Xz )41 = X<, U {F}, where F € &5
is that elementary structural sequent, which has 7(C}) as base proxy and
7(E,) as occurrence variable. Depending on the logical connective of C,, one
of proposition 7.4 2) or corollaries 7.5 1) and 7.6 1) applies. In any case
it is & # F, and thus it is Xg 41 # Xgpq1. Since it is Xg 41 2 Xg, for
all 0 <4 < k, and, likewise, X¢ ;11 2 Xg,; for all 0 < j <[, the inequality
carries over to all Xg; and X< ; with h <¢ < kand h < j <. O

Properties 2) and 3) state that, when tracing two branches from the bottom
upward, the connexion sets corresponding to the encountered sequents are
identical as long as the branches coincide and begin to differ as soon as the
branches diverge and that this difference is retained thereon. These prop-
erties come up as no surprise. Property 1) might seem even more obvious,
because it is a trivial logical consequence of proposition 8.10. However, this
seeming triviality hides a very interesting property of connexion sets. Con-
sider a case, in which the topmost sequent in a path shared by two branches
G and ¥ contains two complex formulae C7 and Cy. Out of the two formulae
(' is the main formula of the rule application, which causes the diverge of
the two branches, i.e. one premiss is contained in &, whereas the other is
contained in ¥. Since C5 is part of the context, it is simply copied into both
premises, and, henceforth, occurs at least in one sequent of both branches
above the one having ' as main formula. Now, for h < ¢,j assume that
(5 is the i-th and j-th main formula of rule applications in & and, respec-
tively, in ¥. According to the definition, the connexion set Xg; contains
an ESS &, which has 7(Cy) as its base proxy. Similarly, the connexion set
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X< ; must contain an ESS F, which also has 7(C5) as its base proxy. If the
rule applications, which have C5 as their main formula, have either a single
premiss, or if they have two premises, but the same side formula occurs in
the premises, which are contained in both branches & and %, then it must
be & = F.2 So although property 3) guarantees Xg; # X<, property 1)
and proposition 8.10 yield £ € Xg; N X< ;. This is an extremely important
property.

It is commonplace for a derivation in RK to have several rule applications
for different copies of the very same formula. This is an artifact of the
duplication of context formulae into two premises, that is intrinsic to logical
rules of two premises. All the complex formulae, which occur as context
formulae in the conclusion of an application of one of these rules, and which
are subsequently duplicated into two sequents, can, independently of other
copies of the same formula in other branches,® become the main formula of an
appropriate rule application. In other words, each copy of the same formula
must be treated by a separate application of the corresponding rule, and this
enlarges the total number of required rule applications.*

On the other hand, all connexion sets and families of connexion sets,
which can be constructed for any given derivation, are already contained in
the explosion set of its end sequent. Moreover, the intersection of connexion
sets corresponding to sequents, which occur in different branches, do not only
contain the ESSs, which are added for the sequents shared by the branches,
but, in addition to that, all the ESSs, which are due to rules applications
independently acting on two copies of the corresponding main formula in the
two branches, as long as the same side formulae occur in that premiss, which
is part of the respective branch.® Thus, the relative locality of ESSs has the

2According to definition 8.9, the condition for £ # F is that the rule applications,
which have C5 as their main formula, have two premises, but different side formulae occur
in those premises, which are contained in & and ¥, respectively.

3Further applications of context-duplicating rules could generate additional copies of
the formula.

4The same phenomenon occurs in derivations in LK. In that case, however, applications
of weakening can remove one or more copies of a duplicated formula from some branches
of a derivation.

5Actually, tying an ESS to a rule application of an RK-derivation is just a manner
of speaking. Definition 8.9 states that an ESS is really related the main formula of a
conclusion of a rule application and the corresponding side formula in a single premiss of
that rule application. So it is only adequate to speak of a relation in the above mentioned
sense in the cases of single-premiss rules. For rules having two premises, there are two
“related” ESSs. For such a relation to be one-to-one, we must instead of an entire rule
application consider pairs consisting of the conclusion of a rule application and a single
one of its premises. Obviously, for rule applications having a single premiss, there is only
one such pair, whereas there are two of them in the cases of rule applications having two
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interesting effect of obtaining shared ESS in connexion sets, not only if they
correspond to the same rule application in a shared path of two branches, but
even if they correspond to different, but related rule applications occurring
in the distinct parts of the branches.

Several examples shall demonstrate this property. Recall the occurrence
instance = of the proof of the sequent (aVb) V¢ — aV (bV c), which was an
earlier example of this section.

a; — ag, by, o by — ag, by, o
aq —>CL2,b2\/CQ bl HCLQ,bQ\/CQ C1 HCLQ,bQ,CQ
al\/bl—>a2,bg\/02 Cl—>a,2,bg\/02

(a1 V bl) V C1 — &2,62 V (&)

(VS) (VS)

(VA)

(VS)
(VA)

VS
(CLl\/bl)\/ClHGQ\/(bg\/Cg) ( )
The explosion set obtained for the end sequent is
Qf:{ [alﬁr]v[blHr]a[THQ]a[CIHQ]a }
[q - UJ], ['UJ - p]a [p — a2, S], [S - 62702]

with the occurrence mapping 7 given by the following table, where the trivial
cases of the form a +— a are omitted:

a7 V bl
(a1 V bl) V C1
a9 V (b2 V Cg)
b2 \/02

111
n TR 3

Let the three branches of = be called, from left to right, &, ¥ and 4. The
construction of the families of connexion sets for each of these brances begins
with the two ESSs representing the structure of the sequent: ¢ — w and
w — p. This gives Xgp = Xz0 = Xyo = {l¢ — w], [w — p|} as initial
connexion sets of the branches. For the next group of connexion sets, we
must consider the main formula of the bottommost rule application (VS),
which is as V (be V ¢2). The elementary structural sequents corresponding to
this rule application must have m(as V (by V ¢3)) = p as their base proxy. The
explosion set contains a single ESS having p as base proxy, namely p — ao, s.
This correspond with the fact that (VS) is a single premiss rule. It follows
that X1 = X<1 = Xy1 = {[l¢ — w|, [w — p|,[p — a2,s]}. As the next

premises.

It remains to remark that a connexion set can also be related to a sequent in the sense
of proposition 8.10. In this case, the sequent is understood in the role of the topmost
premiss of a path or branch.
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rule, (VA), has two premises, the connexion sets for the corresponding step
can no longer be equal. To be more precise, the branches & and ¥ still
share the left premiss of (VA), so it must still be Xg2 = Xz2. The main
formula of this rule application is (a; V b1) V ¢1, and, hence, the ESSs having,
7((a; V b1) V ¢1) = q as base proxy have to be considered. In this case there
are indeed two such sequents: r — ¢ and ¢; — ¢. Since w(a; V by) = r, the
former corresponds to the premiss, in which a; V by occurs as side formula,
i.e. the left premiss, whereas the latter corresponds to the right premiss, in
which ¢; is the side formula; note that m(c;) = ¢, since the proper occurrence
variable ¢; represents its own occurrence. For the construction along the left
branch we obtain Xga2 = Xz2 = {[r — ¢|,[¢ — w], [w — p|,[p — a2, s]},
whereas X2 = {[c1 — ¢],[¢ — w], [w — p|,[p — a2, s|} is the connextion
set for the premiss occurring in the right branch. In the left branch, the
next main formula is a; V b;. The two ESSs with base proxy m(a; V by) =7
are a; — r and by — r, again corresponding to the fact that (VA) has two
premises. We obtain Xg3 = {[a1 — 7|, [r — ¢, [¢ — w], [w — pl, [p — a2, s]}
and X<3 = {[by — r|,[r — ¢|,[¢ = w], [w — p|,[p — a2, s|} as connexion
sets. In the three branches, the final rule applications all have b, V ¢5 as main
formula. The single ESS having 7(by V ¢2) = s as base proxy is s — by, o,
and this is added as final elementary structural sequent to X3, X< 3 and
X2, resulting in these connexion sets:

%674 = {[al_)r]’[r_)q]’[q_)wL [w—>p],[p—>a2,s],[s—>b2,02]}
%‘174 = {[bl_)r]’[r_)qL[q_)wL [w—>p],[p—>a2,s],[s—>bg,02]}
Xus = {la—dleg—w), [w—pllp—azs][s = b}

These connexion sets are also the largest sets of their corresponding family,
le. it is %6 = %6,4 and %g = %574 and %u = %&3.

8.3 Connexion Trees

Handling connexion sets in this manner, is extremely unwieldy, however. For-
tunately, the incremental growth of the connexion sets up along the various
paths of a derivation can be depicted in a tree, which has the same structure
as the derivation, but is labelled by sets of ESSs instead of sequents.

Definition 8.12 Let = be an_occurrence instance of a RK-derivation =, and
let S be the end sequent of =. Let (€g,w) be the explosion set of S. The

connexion tree with regard to (Eg,w) is the tree which is obtained from = by
replacing each sequent T by its connexion set Xz.
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Due to the fact that, for every a branch & of a derivation, it is always
Xe,i € Xg,it1 for all 0 <@ < k, where k is the length of &, the following
convention provides for a much more economic presentation: For each sequent
T of the derivation, the corresponding node of the connexion tree displays
only that ESS, which is added in the last step of the construction of the
connexion set corresponding to 7T'. The entire connexion set corresponding
to T is obtained by forming the union of all sets of ESSs that occur in the
path of the connexion tree, which leads from the base of the tree and to that
node corresponding to 7. Whenever we speak of connexion trees, it shall
refer to this convention.
For the current example, compare the tree of the RK-derivation

ay — ag, b2702 bl - a2762702

S S
a; — ag, by V ey (v8) bi — ag, by V ¢y (v5) c1 — ag, by, ¢y
(VA) (VS)
al\/bl—>a2,b2\/c2 Cl—>a2,bg\/02 (\/A)
(a1 \/bl) \/Cl —>a,2,bg\/02 (\/S)
(0,1 V bl) V C1 — Q9 V (b2 V Cg)
to its connexion tree:
{S — bg, 02} (\/S) {S — bg, 02} (\/S)
{a; — 1} {by = r} {s — by, o}
(VA)  —————(VS)
{r—q} {a — g}
(VA)
{p — Ay, S} (\/S)

{g = wu{w — p}

The connexion set for the sequent ¢; — ao, ba, ¢9, the topmost sequent in the
rightmost path 4L, is obtained by forming the union of all sets of ESSs, which
occur in the rightmost branch:

{g—=w}U{w—plU{p—as,stU{cr = ¢} U{s — by, co}

This is, of course, exactly the set X3, i.e. the connexion set corresponding
to the third sequent of the RK-derivation (not counting the end sequent).
A note on the labels of rule applications is in order. The labels of rules
applications in a RK-derivation pertain to both conclusion and premiss or
premises. In a connexion tree, on the other hand, only those ESSs in premiss
positions are associated to the leftover labels of the rule application. For
this reason, the labels of the rules applications should not be understood as
relating premiss or premises to conclusions or vice versa. Instead, they merely
signify the rule application in the derivation tree, which corresponds to the
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addition of the ESS, which occurs in the respective premiss position or one
of the two respective premiss positions, in the construction of a connexion
set. For example, the leftmost, topmost node of connexion tree contains
the ESS s — by, co, where w(by V ¢3) = s. Hence, both main formula and
side formulae of the corresponding rule application (VS) are given by that
ESS alone. The ESS a; — 7, which occurs immediately underneath in the
connexion tree, is entirely unrelated to this rule application; it is related to
the main formula of an application of (VA) with the main formula a; V by, for
which it is w(a; V by) = r. Since the labels of rule applications are somewhat
ill-placed in the connexion trees, we will usually simply omit them.

Returning to the example, observe the following: The ESS p — as, s is
the first that is added to the initial two ESSs ¢ — w and w — p. Note that
out of the variables p, as and s only one already occurs in the inital ESSs,
whereas the other two are new. Similarly, in each of the two cases that would
be considered next, r — ¢ or ¢; — ¢, only one of the two variables, namely ¢
already occurs in those ESSs that have already been accumulated, whereas
the respective other one is new. The ESS s — b, ¢y contains new variables by
and co, whereas s already occurs in an ESS further down in the same branch.
This observation is generalised in the following lemma.

Lemma 8.13 Let X be a connexion tree for some occurrence instance = of
a derivation =. Let {G} be a node of X, which is not the base node. Let
(Mo, My, ..., My) be that path in X with My = {G}, and let M =y, M,
be the set of all ESSs that occur in any set in the path leading up to {G}.
Then the following holds:

1) [(Uger 1€} N {GH = 1.
2) There is ezactly one & € M such that |{€} N{G}| = 1.

PROOF: For 1), observe how the ESS G is added at some step during the
construction of a connexion set. According to definition 8.9, G contains some
base proxy m(C'), where C' is the main formula of the rule corresponding to
that step, and some (D) as occurrence variable, where D is a side formula.
In certain cases for C, the ESS also contains some 7(E) for a second side for-
mula £, as we know from proposition 7.4 1) and corollaries 7.5 2) and 7.6 2).
That is, we have either {G} = {n(C),n (D)} or {G} = {#(C),n(D),n(E)}.
In the sequent 7 of = corresponding to {G} in X, side formuala D occurs
for the first time as proper formula, i.e. not merely as subformula; the same
is the case for E, where this is relevant. Hence, neither 7(D) nor w(E) can
occur anywhere in the branch leading up to G. This leaves only 7(C) as
candidate. Now, (Jg . o {€] contains all the occurrence variables that make
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up those ESSs leading up to G in X. Since C' is the main formula of the
rule application in =, which has 7 as a premiss, C' must either be one of
the formulae in the antecedent or succedent of the end sequent of =, or it
must be the side formula of some rule application along the path connect-
ing the end sequent with 7, except the one having 7 as a premiss. But
then there is some €& € M such that £ contains 7(C). For it is either
7(C) € {7} U {0}, where v — w and w — ¢ are the elementary structural
sequents corresponding to the end sequent, or 7(C') is the branching proxy
of some ESS with base proxy B, where B is the main formula of the rule
application having C' as side formula. Either way, it is 7(C') € g o 1€}
and hence |(Ugc 1€} N{GH =1.

For 2), recall that proxy variables are introduced as new variables in the
explosion derivation. Therefore, depending on the logical meta rule introduc-
ing m(C'), there are either two or three ESSs containing this proxy variable:
one ESS, in which it occurs as branching proxy, and one or two, in which
it occurs as base proxy. The variable w(C) is the base proxy of G, meaning
that G is added, because C' is the main formula of a rule application in =.
Since no formula can be the main formula of more than one rule application
in any given branch of Z,° there cannot be another ESS in the path of the
connexion tree leading up to {G}, which has m(C) as a base proxy.” This
leaves only the single ESS & described above, which has 7(C) as branching
proxy. But, of course, £ itself can only be added once in the construction
of the connexion set corresponding to this path in the connexion tree. For
it is either one of v — w and w — ¢, which constitute the initial connexion
set, or it is some ESS with base proxy m(B), which is included due to a rule
application with main formula B. Again, B can only be the main formula
of one rule application in any given branch of =. Hence, there is exactly one

£ € M such that [{€} N {G}| = 1. O

Simply put, every ESS occurring in one of the sets above the very base of the
connexion tree contains as base proxy a variable, which already occurs in an
ESS further down in the path leading up to that set as a branching proxy.
Thus, connexion trees are not merely artificial and arbitrary constructions,
but they express very succinctly the idea of connection. When moving up-
ward within a branch of the connexion tree, each ESS that is added extends
the collection of ESSs, which have already been selected from the explosion
set, in such a way that it connects to this collection in exactly one shared
proxy variable. This means that ESSs are not added in an arbitrary manner,

5We are dealing with occurrence instances, which account for individual occurrences.
"We already know that in those cases, in which there is a second ESS having 7(C) as
base proxy, it occurs in the parallel premiss position to {G} of the connexion tree.
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but the succession of their additions retains and reflects the successive devel-
opment of the RK-derivation. In contrast to the derivation, which focusses on
individual, unrelated formulae, the connexion tree emphasises the intercon-
nectedness of the ESSs related to some particular branch of the derivation.
Moreover, in the entirety of its branches, it demonstrates the different direc-
tions, in which the common set of ESSs {[y — w], [w — 4]} extends within
the explosion set. It is also interesting to realise that the explosion set already
extends over all of the ESSs, which are contained in a connexion tree. In this
sense, the connexion tree corresponding to some particular derivation merely
provides instructions on some possibility of traversal through and ordering
of the explosion set of the end sequent of the derivation. In other words, the
explosion set already contains all relevant modes of connectedness that exist
among the elementary structural sequents; a connexion tree merely exem-
plifies some particular mode of explicitly bringing these connections forward
one after the other.

But what about different derivations of the same sequent and their respec-
tive connexion trees? Let us consider different derivations for the occurrence
instance (a; V by) V ¢; — as V (by V ) and inspect the different connexion
trees that are obtained for them, beginning with the following:

a1 — asg, b27c2 bl — a2, b2702
ap Vb — ag, by, cy

(VA)
C1 — A, 629 Co

(a1 Vv bl) V C1 — Qy, bg, Cy (\/S)
(a1 V bl) Ve — as, bg V ¢y (\/S)
(CL1 V bl) Ve — asV (b2 V CQ)

(VA)

Its connexion tree is:

{a1 —r} {br — r}

A
{7’ — C_I} (\/ ) {Cl — q} (\/A)
{S — bg, CQ}
———(V§)
{p — Qg, S} (\/S)

{g = wiu{w — p}

Note that although the ESS s — by, ¢5 only occurs once in this tree, whereas
it occurs three times in the connexion tree corresponding to the previous
derivation, it is not the case that this ESS is only added once in here and
three times there. Recall that the connexion tree is to be understood as
a bundling of the different developments of connextion sets corresponding
to a given derivation. This means that a connexion tree of three branches
represents an abbreviated representation of three separate developments of
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connexion sets. The ESS s — by, ¢y occurs in all three branches in both
connexion trees. In the former one, it had to be listed three times, because
it was added as the last ESS in all three cases, whereas in the last tree, it
is added before the three branches separate. Still, it represents the fact that
this ESS has to be added in each of the three connexion sets.

Lemma 8.13 necessitates that s — bs, co can only be added in a branch,
in which the ESS p — as, s has already been added. For example, since it is
({g — w} U {w — p}) N {s — be, o} = 0, no connexion tree can have the
following initial segment:

{8 _>.Z)2,CQ}
{¢ = w}U{w— p}

(VS)

In fact, lemma 8.13 exerts specific limitations on how a connexion tree for a
given explosion set can possibly be structured. Recall the explosion set for
the sequent (a; Vb)) Vep — as V (be V ca):

_J =l =] =gl fe — 4],
QE_{ [q—>w],[w—>p],[p—>a2,s],[s—>62,cz] }

It is {¢ — w}pu{w — p} = {q,w, p}, and since w occurs in no other ESS of &,
the possible candidates for the extension of {[¢ — w], [w — p]} must contain
p or ¢ as base proxies. Since in both previous examples the elementary
structural sequent p — ao, s was chosen, let us develop a third example based
on the alternative choice. There are two ESSs, which has ¢ as base proxy,
however, and, hence, there are two possible ways to extend this connexion
set. We obtain the following initial fragment of a tree representation:

roq  {a—dq
{¢g = w}u{w — p}

(VA)

The label indicating some logical rule is obtained by investigating the kind of
occurrence of the formula corresponding to the base proxy ¢, i.e. the formula
7 q). Tt is 7 '(q) = (a; V b1) V ¢1, which has a negative occurrence in the
sequent, and, hence, can only be the main formula of an application of (VA).
The extension of the connexion set for the right branch is straightforward,
for it is {¢g — w} U {w — p} U {c1 — qff = {q,w,p, 1}, an ESS containing ¢
has already been added, and ¢; is a proper occurrence variable, which occurs
in no other ESS of €&, leaving only p — as,s. A new proxy s has been
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added to those, which are possible candidates for base proxies of ESSs to
be included for the following extension of the connexion set, whereas both
p and ¢ have already been used to extend the connexion set. Hence, only
the sequent s — by, co remains to be added in this branch. This yields the
following fragment:

{s = by, o}

: {p — as, s}

- fa—d
{g = w}U{w — p}

(VS)
(VS)
VA)

Again, the labels correspond to the logical rules required for treating the main
formula corresponding to the base proxies introduced in the respective ESS.®
For the left branch, it is {¢ — w} U{w — p} U{r — ¢} = {q,w,p, 7}, and
since only w and ¢ have already been used up, there is a choice of whether to
proceed with p or r as base proxy of the next addition. Choosing the proxy
p results in the addition of p — as, s, which leaves s and r as base proxy for
the following addition of an ESS. After having chosen s as base proxy, the
tree looks thus:

{S — bg, 02}

ST 0T () s> by o} (vS)
{p — Ay, S} (\/S) {p — Ay, S} (\/S)
{r —q} {c1 — ¢} vA)

{¢ = wiu{w — p}

This leaves r as only choice for the completion of the left branch of the
connexion tree. Since r is the base proy of two ESSs, the left branch has to
be subdivided into two branches. After having added a; — r and b; — r,
respectvely, all of the proxies that occur at all in the explosion set do occur
twice in each one of the branches, wherefore no further extensions of the
connexion sets are possible in any branch. This is the resulting connexion
tree:

{a1—>r} {bl—>7’}

A
{S — bg, 02} \/S) (\/ ) {S — bg, CQ} (\/S)
{p — A2, S} (\/S) {p — A2, S} (\/S)
=, a0

{¢ = wiU{w — p}

8This refers to the ESS in premiss position relative to the position of the label.
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For this connexion tree, a RK-derivation can be constructed as follows. The
initial step is to replace {¢ — w} U {w — p} by the sequent, from which the
explosion set was generated. Proceeding upwards along the branches, each
set containing an ESS with base proxy p and occurrence variables x and v,
where applicable, is replaced by that sequent, which is obtained from the
one immediately below the current position in the tree by replacing in it the
main formula 7! (p) by the side formula 7~!(z), whenever the ESS contains
only two variables, or 7~1(x), 77! (y), whenever it contains three variables.
The application of this procedure yields the following tree:

ay — ag, by, o by —ag, by, ¢ (VA)
a1 V by — ag, by, c c1 — ag, by, c
CL11\/ bllﬁ a22 ’b;\/ 22 (\/S) Cllﬁ CL22 b22</ 22 (\/S)
: VS . VS
aq V bl — a2 V (bg V CQ) ( ) C1 — Q9 V (b2 V Cg) E\/A))

(a1 \/b1> \/Cl —>CL2\/ (bg\/Cg)

It is easily verified that this is, indeed, a RK-derivation.

A brief look at another example shall serve to illustrate the effect of the
exchange rule on connexion trees. Consider the sequent a,a D b — a& b and
its occurrence instance aj, as O by — a3 & by. This is a RK-derivation of the
occurrence instance:

a1 — az, as bi, a1 — as (DA) a; — by, as bi,a; — by (oA)
as O bi,a; — as as O bi,a; — by
(XA) XA)
a,az O by — ag ai,az D by — by (&5)
ay, g Dbl Hag&bg
The explosion of the end sequent
—q,a b—q a,q—w (5Am) w—p p-—a3 p— b (&A L)

al,angl—wU ’LU—>CL3&62

ay, g Dbl Hag&bg

(Prx)

yields the explosion set

_ [_> q,QQ],[bl_)Q],[al,q—)'LU],

3—{ [w — p|, [p — as], [p — b }

For each one of the four branches of the derivation, we can construct a family
of connexion sets. These are jointly displayed in this connextion tree:
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{— q, a2} {61 — q}
{}

{p — as}

{— q a2} {01 — q}
{}
{p — ba}

(DA) (DA)

(XA)

&S
g —w]Ulw =7} s

Consider the premiss positions of the applications of (XA). According to the
definition 8.9, no ESS is added to a connexion set in a step, which does not
correspond to a logical rule in the underlying RK-derivation. Therefore, the
node of the connexion tree corresponding to the premiss of an application of
the exchange rule must have the empty set as its label.

While this does not come unexpected, it makes the construction of a
connexion tree from an explosion set, which has an underlying RK-derivation,
difficult, albeit not impossible. The reason for this is the following: Due
to the manner, in which the logical meta rules of the explosion calculus are
given, each ESS retains in the position of an occurrence variable p the original
position of the first proper position of the formula 7=*(p) in a sequent of the
explosion derivation. This is the first occurrence of this formula as a proper
formula of the antecedent or succedent of a sequent. For example, in the
explosion derivation of the sequent ay, as D by — az&bs, the ESS representing
the antecedent is a1,q — w, and the implication ay D by is represented by
the two ESSs — ¢,a, and by — ¢. The extraction of the implication from
ai,as O by — w occurs in this single meta step of the explosion derivation:

— (, 02 blﬁq ap,q — w
ai, G Db —w

(DAL)

Recall that a meta rule comprises a local logical rule, an atomic cut and the
number of exchange rules required to move the main formula into cut position
and back into its previous position, which really represents the individual
steps

— {, a2 b1_>q ai,q — w

(DAY

(XA)
a; Db —q q,a; —w

Prx)
Ao O bl, a; — w

ay, as Db —w

(XA)

In other words, in order to facilitate the relating of ESSs to the sequent from
which they are derived, the explosion calculus generously inserts exchange
rules whenever it serves this purpose. Hence, the order of occurrence variables
in the ESSs of the explosion set follows the order of the first occurrence of the
corresponding formulae in an explosion derivation. On the other hand, in an
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RK-derivation of the exploded sequent the order of formulae can be changed
arbitrarily by applications of exchange rules. Since these applications are
explicit in a derivation tree, the are retained in the corresponding connexion
tree.

The difficulty of creating a connexion tree from scratch, i.e. from a given
explosion set instead of from an underlying RK-derivation, lies in the fact
that the insertions of empty sets into the connexion tree due to necessary
applications of the exchange rules in a RK-derivation, which would corre-
spond to the tree being constructed, cannot be imposed without adding some
bookkeeping regime on the position of proxy variables in ESSs. Rather than
following this tedious path, it is more in the spirit of this investigation to
relax the notion of a RK-derivation in the sense that exchange rules are no
longer given explicitly. Consider the following construction of a connexion
tree from the explosion set §:

{p—az}  {p— by}
{b1 — q}

{p—asy  {p—bo}
{—= ¢ a0}
{a1,9 = wi U{w — p}

(&S) (&S)

(OA)

This is the corresponding tree using logical rules of RK:

ap — as, 4 ap — by, ag bi,a1 — ag bi,a; — by
a1—>a3&b2,a2 bl,a1—>a3&b2
ai,as O bl — ag&bg

(&S) (&S)

(DA)

While the above tree is no RK-derivation, by means of the notational con-
venience of having double lines in a rule application represent zero or more
applications of either exchange rule before or after the explicity listed logical
rule, we obtain the following tree:

a; — as,a a; — by, a bi,a1 — a bi,ap — b
1 3, U2 1 2, W2 (&S) 1,41 3 1, W1 2 (&S)
alﬁag&bg,ag bl,alﬁag&bg

(DA)

ay, g Dbl Hag&bg

This tree is, of course, a proper RK-derivation.

In summary, this chapter investigated the relation between occurrence
instances of RK-derivations and the explosion set of its end sequent. We
began by pointing out the fact that in branches of occurrence instances of RK-
derivations the sets of subformulae contained in the sequents of each branch
get smaller as the branch is traversed from the root upward. This property
is due to the absence of naive contraction rules, which could retain copies
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of formulae and their subformulae. The next step was to proceed from sets
of subformulae to sets of occurrence variables, which especially encompasses
the transition from complex formulae to proxy variables. However, rather
than just transferring the aforementioned property from sets of subformulae
to sets of occurrence variables, we aimed to find some kind of incremental
correspondence. Accumulating the proxy variables corresponding to the main
formulae occurring in a branch proved to be the proper approach. Relating
these proxy variables to base proxies of the ESSs of the explosion set was
the means, by which incremental families of subsets of the explosion set, the
connexion sets, could be related to each branch of a given RK-derivation.
It turned out that the connexion set corresponding to some sequent in the
derivation encompasses exactly those elementary structural sequents, which
are made up of the proxies of all the main formulae that occur in the path up
to that sequentand the occurrence variables of all the formulae that occur in
the sequent. This characterisation of connexion sets is the main result of this
chapter, because it relates each sequent occurring in a RK-derivation to some
subset of the explosion set. And since this characterisation holds for every
possible derivation of an end sequent and its explosion set, the proposition
establishes the explosion set of a sequent as the structural skeleton underlying
all of its RK-derivations. Specifically, a particular family of connexion sets
corresponds to each branch of a derivation, where these connexion sets are
ordered by inclusion along the branch as it proceeds from base to leaf. Hence,
the largest connexion set, which is also the union of all the sets of the family,
corresponds to the leaf of the branch, and, thereby, the entire branch can be
represented by this largest connexion set. For this reason, each RK-derivation
can be represented by some set of connexion sets, i.e. a set of subsets of the
explosion set of its end sequent, each connexion set corresponding to a branch
of the derivation. In the last section of this chapter, a tree notation for the
connexion sets corresponding to a RK-derivation was introduced. The tree
structure of this notation is taken from the derivation itself, and the nodes,
i.e. the sequents, of the tree are labelled by sets of ESSs.
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Chapter 9

Decision Procedures on
Explosion Sets

The explosion procedure for an occurrence instance S of some sequent S
yields an explosion set €g, regardless of whether § is provable in RK or not.
Hence, it is necessary to have a decision procedure for determining from the
resulting explosion set, whether the original sequent & is provable in RK
or not. Several such decision procedures will be described in this chapter,
each of which corresponds to two conceptually different approaches. The
proof-theoretic version provides the insight as to what a decision procedure
has to achieve in the first place. The procedural version provides a method,
which operates directly on explosion sets without the proof-theoretic details,
although this method clearly mimics those details. In the section on the pro-
cedural approach, a probabilistic semi-decision procedure will be exhibited,
which refutes explosion sets of non-provable sequents. Moreover, a proper
decision procedure will be outlined, based on the refutation method.

What has to be achieved by a decision procedure is to reverse the complete
decomposition of the sequents into ESSs to a certain degree. In LK, sequents
A — A containing a single instance of a formula in the antecedent and
another instance of the same formula in the succedent and no other formula
beside those are the initial sequents, which close branches of derivations. An
initial sequent, in which A is a propositional variable, i.e. a — a, expresses
the immediate relation of the propositional variable a to itself. In a static
view, sequents of this kind would be understood as expressing the relation
of identity. A dynamic reading would take it to express the possibility of an
elementary movement from a onto itself, which might be called recurrence,
when the focus is put on the movement, or selfhood, when the focus lies
upon the atom. Within the framework of the logistic calculi, there is no
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more immediate relation expressible than this. It is this property, which
is captured by the axiom of RK under further consideration of contextual
atomic formulae:

(ax™)
Vis @, Y2 = 01, a, 02

Sequents that are instances of (ax*) are of the kind v — § where there is
at least one propositional variable a, such that a € {vy}} and a € {0}}. Con-
trasting the intuition of considering these immediate relations as elementary,
the rules of the explosion calculus are designed to emphasise distinctness and
dissimilarity. This emphasis is fundamentally enforced by the use of occur-
rence instances of sequents, which serve to account for different occurrences
of the same propositional variable, and it is further implemented by the
cuts embedded in the meta rules, which introduce a new proxy variable for
each occurrence of a complex formula. The explosion procedure yields two
ESSs even for an initial sequent a — a, as the following explosion derivation
demonstrates:

a; — w w — a9

(Prx)
a; — as

Hence, as a result of applying the explosion procedure to a sequent, there
will not be even a single leaf that is an instance of the RK axiom. The
immediacy of checking, whether a given sequent has the required form, is
lost. However, connections between occurrence variable in the antecedent
of an ESS and other occurrence variables in the succedent of another ESS
can still be traced. Such connections are mediated by sequences of proxy
variables, which connect these two ESSs, in general via yet other elementary
structural sequents.

Intuitively, the new proxy variables that are introduced in the explosion
procedure scatter and spread the proper occurrence variables, which have to
be compared in order to determine provability of the original sequent, over
several different ESSs. Any decision procedure therefore has to either remove
these proxy variables, thereby undoing part of the explosion procedure, or
follow the connections between certain ESSs that are implicitly given through
the proxies. However, since the explosion set is derived from an occurrence
instance of a sequent, all the proper occurrence variables in the explosion
set are distinct. For this reason, the restoration function of definition 5.1
has to be employed. The application of the restoration function to one or
more sequents produces such sequents, which have all their proper occurrence
variables replaced by propositional variables.
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A decision procedure must establish that, for all possible connections of
ESSs, some proper propositional variable, which occurs in the antecedent of
one of these ESS, matches a proper propositional variable occurring in the
succedent of another ESS.

9.1 Cut-Actions on Connexion Sets

A simple example shall serve to illustrate the idea of what a decision pro-
cedure has to accomplish. Consider the sequent S = [a,b — a & b] and an
explosion derivation of its occurrence instance S = la1,b; — as & bs]. The
restoration function is the mapping p : {a; — a,as — a,b; — b, by — b}.
Sequent S has the following proof in RK:

(ax™) (ax™)

a,b—a a,b—b (&S)

a,b—a&b

This is an explosion derivation of S:

w—p p—oa  p—b
ai, by — w w — as & by
ai,by — ay & by

(&Sm)

(Prx)
The corresponding explosion set is:

Cs = {lar, b1 — w], [w — pl, [p — az, [p — bl }

Notice that it is possible to trace a connection between a; occurring in the
antecedent of ay,b; — w and ay occuring in the succedent of another ESS by
passing through the sequent w — p by means of proxy w, arriving at p — as
through proxy p. Secondly, by passing through w and p, but selecting the
alternative sequent p — by instead of p — as, a connection can be traced
between by occuring in a1, b; — w and by occuring in p — by. The two subsets
of €z corresponding to these intuitive connections are:

€§,1 = {[al’bl - w]a ['LU - p]’ [p - a2]}

€§,2 = {[al’bl - w]a ['LU - p]’ [p - b2]}

Of course, these sets are just the two largest connexion sets arising from this
derivation of § in RK:

a1,51—>a2 ay, by — by
ay,by — a & by

(&5)
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It is possible to construct a top-down derivation from the ESSs contained in
the connexion set €5, using only (Prx):*

ap, by — w w—p

p
ap, by —p (Prx) P — a2

alabl — a2

(Prx)

Observe how applying the restoration function to the conclusion of this
derivation yields p([ai,b1 — as]) = [a,b — a]. The latter is the sequent,
which occurs as the left leaf of the RK proof of S. Accordingly, the following
derivation can be constructed from the elementary structural sequents that
constitute €z ,:

ai, by —w w—p

(Prx)

ap,by —p p — by

ay, by — by (Prx)

The restoration of the conclusion yields p([ai, by — bs]) = [a,b — b], which
is the right leaf in the proof of §. Removing the proxy variables that were
introduced by the proxy cuts of the explosion procedure and restoring the
conclusion of these operations, results in the two sequents, which are the
generalized axioms of the RK proof.

The example underscores the fact that, in view of RK-provability, the ex-
plosion calculus accomplishes too much. Since we are interested in a decision
procedure, some of that extra work has to be undone in order to establish the
elementary relation expressed in the axiom of LK. The following proposition
gives a generalised account of this observation.

Proposition 9.1 Let = be an occurrence instance of a RK-derivation = with
restoration function p and let (€ w) be the explosion set of the end sequent

of_ with occurrence mapping 7. Let further T be some sequent occurring in
=, let T be the correspondmg sequent occurring in Z, and let X5 C € be the

connexion set of T. Then there is a top-down derivation ©, whose leaves are
the elementary structural sequents of Xz, and which uses only the exchange

rules and |X5| — 1 applications of the proxy cut rule, of a sequent a, such
that p(r="(U)) = p(T) =T.

'Due to the nature of the logical meta rules of the explosion procedure, applications of
exchange rules are generally necessary in order to move proxy variables into cut position.
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PROOF: The sequent U is constructed along the construction of X5 = X5,
for some k. It is X7, = {[y — w], [w — d]}, where w is the watershed Proxy.
Let 79 = v and 99 = o. We initialise the derivation by ©g, which is the
following application of (Prx):

Y0 — W w — 0y
Yo — 0o

(Prx)

The sequent m*(y9 — dp) is just the end sequent go of E, and, hence, the
restoration p(7=(y9 — o)) is the end sequent Sy of =. This initialisation
uses one application of (Prx).

Next, assume that the derivation ©; of v; — d; has already been con-
structed, and that S; = 77 !([y; — 4;]) and S; = p(S;). According to defini-
tion 8.9, the difference ®; = %7',2' +1 \ %7',2' is either empty, or it contains a
single ESS &41. If ©; = (), then there is an application of an exchange rule
in = corresponding to this step. Hence, let ©,.; be a derivation

CH
Vi — 0;
Yit1 — Oit1

such that §Z~+1 = 7 Y([7is1 — 0;+1]) is the premiss of the exchange rule with
conclusion S; = 771([y; — &]) in Z. Moreover, p(S;11) = Siy1 is the premiss
of the corresponding exchange rule in =. If ©; = {&;1}, then, according
to definition 8.9, &1 has the base proxy p; = m(C;), where C; is the main
formula of S;. Moreover, since m(S;) = [y — 6], it is either p; € {v}
or p; € {0;}. While it is unproblematic to give the derivation ©,.;, the
reconstruction of :SV}H does not only depend on &;,1, but also on whether &
contains other ESSs, which have p; as base proxy. Out of the eleven cases,
one for each possibility for how &, is obtained, we will cover five in detail.

1) If &1 = [— pi, ;] and € contains another ESS with the same base
proxy p;, then g@ contains the main formula C; = D; D Ej; in its
antecedent, where w(D;) = z;. Since C}, as the main formula of S;, is
the first formula of its antecedent, p; must be the first formula in the
antecedent of 7; — 9;, i.e. for a suitable ¢; it is 7; = p;, €;. Then the
following is the desired derivation ©;:

— P, Ty (XS) O;

— T4, Pi Dis € — 0; (Prx)
€ — Ty, 5i
€ — 0;,T;
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We let [’)/2'4_1 — 52'4_1] = [Ei — (51,1’@] Clearly, Si—l—l = 7T_1([€Z' — 527']:1])
is the sequent, which is obtained from S; by removing C; from the
antecedent and adding D; as last formula to the succedent. But this is
exactly the left premiss of the application of (DA) for the conclusion
S; in é, from which &; was derived in the first place. Of course, under
the restoration function p, this observation carries over to the original
derivation Z=.

If &1 = [— pi, z;] and € does not contain another ESS with base proxy
pi, then 3; contains the main formula C; = =D in its antecedent, where
m(D;) = z;. Since C}, as the main formula of §;, is the first formula of
its antecedent, p; must be the first formula in the antecedent of v, — ¢,
i.e. for a suitable ¢; it is v; = p;, €;. Then the following is the desired

derivation ©;:

— Dis Ti (XS) CF

— Ti, Di Pir€i = 0% p
€ — Ti, 0
€ — 0i, T

The remainder of the argument for this case is the same as in the
previous one. We let [v;11 — d0;11] = [6; — 0;,x;]. Once more, the
sequent :SV}H = 7 Y([e; — d;,2;]) is obtained from §Z by removing C;
from the antecedent and adding D; as last formula to the succedent.
This is the premiss of the application of (—A) in = with the conclusion
gi, from which & was derived. Again, under the restoration function

p, this observation carries over to the original derivation =.

If &1 = [yi — p;] and € contains an ESS [— p;, z;] with the same
base proxy p;, then 3; contains the main formula C; = D; D E; in its
antecedent, where 7(FE;) = y;. Since Cj, as the main formula of S;, is
the first formula of its antecedent, p; must be the first formula in the
antecedent of 7; — ¢;, i.e. for a suitable ¢; it is 7; = p;, ¢;. Then the
following is the desired derivation ©;;:

O;
Yi — Pi pis € — 0;
Yi, € — 0;

(Prx)
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In this case, we let [v;11 — div1] = [yi,&; — 0;]. Then the sequent
3;-+1 = 7 Y[y;, &; — J;]) can be obtained from S, by replacing C; by
E; in the antecedent. This is just the right premiss of the application
of (DA) with conclusion §; in =, from which & was derived. Under
the restoration function p, this observation carries over to the original
derivation =.

If &1 = [yi — pi] and € contains an ESS [z; — p;| with the same
base proxy p;, then g@ contains the main formula C; = D; V E; in its
antecedent, where 7(E;) = y;. Since C;, as the main formula of S, is
the first formula of its antecedent, p; must be the first formula in the
antecedent of ~; — 9;, i.e. for a suitable ¢; it is 7, = p;, ;. Then the
following is the desired derivation ©;,1:

O;
Yi = Di  Pi& — 0
Yis € — 0

(Prx)

Identically to the preceding case, we let [y 1 — 0;11] = [y, & — &
Then the sequent §Z~+1 = 7 ([y;, &; — 0;]) can be obtained from S; by
replacing C; by E; in the antecedent. This is just the right premiss
of the application of (VA) with conclusion S; in Z, from which &; was
derived. Of course, under the restoration function p, this observation
carries over to the original derivation =.

If &1 = [pi — x;,yi], then S; contains the main formula C; = D; V E;
in its succedent, where 7(D;) = z; and 7(FE;) = y;. Since C;, as the
main formula of gi, is the last formula of its succedent, p; must be
the last formula in the succedent of v; — ¢;, i.e. for a suitable ¢; it is
0; = €;, p;- Then the following is the desired derivation ©;,:

O;
Yi — €iy Di Pi — Ti, Ui
Vi = €iy Tiy Yi (Prx)
We let [vi1 — div1] = [ — €, xi,y;]. In this case, the sequent

Siv1 =7 Y[y — €, 1, y]) can be obtained from S; by replacing C; by
D;, E; in the succedent. But this is the premiss of the application of
(VS) with conclusion §; in =, from which & was derived. Again, under
the restoration function p, this observation carries over to the original
derivation = and the relevant sequents therein.
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The remaining six cases are analogous. Note that in each of the cases (apart
from the initialisation), in which an ESS from the connexion set is used, one
application of (Prx) is required. In the initialisation step, which uses another
application of (Prx), two of the ESSs of the connexion set are involved. Thus,
a derivation ©; with end sequent v, — J; containing |X5| — 1 applications
of (Prx) and the required applications of (XA) and (XS) is obtained after k
steps, and we set © = O, and U= [k — Ok]. According to the construction,
it is w‘l(g) = gk, where S, = 7. Of course, the restoration of T is just
p(T)="T.

Moreover, every ESS contained in Xz is used exactly once as a leaf in the
construction of ¢, and, according to lemma 8.13, there is exactly one proxy
variable in every nontrivial step of the construction, which can be used as
cut formula. Therefore, © and U are unique for any given 7. U

The proposition has established a procedure, which retrieves from a connex-
ion set that sequent, from which it was constructed in the first place. We can
generalise this notion by abstracting from the sequent in question, thereby
arriving at a useful tool for working with connexion sets, as follows.

Definition 9.2 Let (&, w) be an explosion set and X C € be some connextion
set. Then the cut-action C(X) is a derivation containing only applications
of the proxy cut rule and the exchange rules and having as leaves all of the
elementary structural sequents of X.

A cut-action removes some or all of the proxy variables occurring in a con-
nexion set, which were introduced in the explosion procedure. Although
applications of the exchange rules are required to move the proxies into cut
position, a cut-action is essentially an iterated application of the proxy cut.
In order to be able to write C(X), we will consider cut-actions to be con-
structed deterministically following the proof of the preceding proposition.
It is obvious that various derivations observing the conditions mentioned in
the definition could be built from a connexion set.

The proposition was stated for an arbitrary sequent 7 occurring in some
RK-derivation. However, for the question of decidability, it is the leaves of
RK-derivations, which are of particular interest. Hence, we will narrow our
focus on a trivial consequence of the proposition.

Corollary 9.3 Let = be an occurrence instance of a RK-derivation = with
restoration function p and let (& w) be the explosion set of the end sequent

ofg. Let further X C € be the connexion set of some branch & occurring
in E. Then the cut-action C(X) has the conclusion U, such that T U)=U
is the leaf of & and p(U) is the corresponding leaf of =.
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PRrROOF: To the largest part, this follwos from the preceding proposition,
when the sequent 7" of the proposition is specifically the leaf of the branch
S. However, the proposition only states that there is some U to be con-
structed by means of a cut-action such that 771(U) = 7, whereas here we
have the stronger assertion that w‘l(lj )= U. The difference between 7 and
U in the proposition is that the former is some sequent occurring in é, pos-
sibly containing complex formulae, whereas the latter is the end sequent of
the cut-action, which is obtained from elementary structural sequents only,
and which can therefore only contain occurrence variables. In this case,
the sequent under consideration, is a leaf of an occurrence instance of a
RK-derivation, which does not contain any complex formulae, only proper
occurrence variables. But 7 acts as identity on the set of proper occur-
rence variables, and hence, no complex formula can be reinstated by 7= (Uf).
Therefore, it is w‘l(g) = U. Trivially, the restoration of U, i.e. p(Zj ), yields
a leaf of =. O

Not only have we established cut-actions as a means to obtain sequents from
arbitrary connexion sets, which correspond to those sequents, from which
those connexion sets were constructed. The corollary shows that the cut-
action on a connexion set corresponding to a leaf of a derivation yields the
leaf itself. These observations are the basis for the decision procedures that
will be developed.

9.2 A Simple Refutation Procedure

Until now, connexion sets have been constructed for specific RK-derivations
and their occurrence instances. Hence, for a given sequent, we first determine
its explosion set, then we have to provide a RK-derivation, and only then is it
possible to construct the connexion sets based on this derivation. In view of
an efficient decision procedure operating on explosion sets, this is obviously
an untenable detour. In fact, for the purpose of deciding whether a given
sequent is provable or not, the construction of the explosion set and con-
nexion sets would be unnecessary, if a RK-derivation had to be constructed
at the same time. What is required, then, is a means to find connections
directly within an explosion set. Fortunately, it is very simple to find just
any connexion set, as we shall see shortly. Somewhat more effort will have
to be put into establishing sufficient sets of connexion sets, which can be
put in correspondence with RK-derivations, although the essential ideas are
closely related to the notion of connexion trees, and some ideas, which have
a bearing on this section, have already been mentioned in that context.
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In the preceding section we saw that every cut-action on a connexion
set is initialised by undoing that cut of the explosion derivation, which in-
troduced the watershed proxy, i.e. the initialisation step of the explosion
procedure. To be more precise, the initialisation of the explosion procedure
for a sequent I' — A will yield sequents I' — w and w — A, which will, in
general, be different from the ESSs v — w and w — §, which are contained
in the explosion set. However, we certainly have 7=([y — w]) = [[' — w]
and 7 ([w — 4]) = [w — A], and it is in this sense that the initialisation
of a cut-action can be thought of undoing the initialisation of the explosion
procedure. We put this idea to good use by taking the watershed proxy w of
an explosion set (€, w) to be the germ, from which every connexion set can
be constructed. Based on this image, we shall call the result of the following
construction a germinated connexion set. The difference between cut-actions
and the intended construction lies in the set of elementary structural se-
quents, which are available. In the former, the connexion set is already
given, and the cut-action can only draw from the ESSs contained therein.
Moreover, the manner, in which the connexion set is constructed according
to a given derivation, determines the order, in which these ESSs are added to
the cut-derivation. In the latter, the entire explosion set is available, and the
germinated connexion set has to be constructed from this in a meaningful
manner without the guidance of a given derivation. The following definition
describes the construction procedure, which will accomplish this feat.

Definition 9.4 Let (&, w) be an explosion set. A germinated connexion set
X is generated by the following procedure:

e [nitialisation: Let

Xo = {ly — w], [w— 4]},
Go = {yl U {d}-

e Iteration: While G; NP # ), select some ESS & € €\ X; such that
G, N{E} # 0 and let

X1 = X, U{&},
Gi1 = (GiU{EP \ (Gin{ED).
If k is the number with G, NP =0, let X = X},.

The procedure constructs, in an interleaving manner, a family of sets of germs
and a family of connexion sets. The watershed proxy is implicitly assumed
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to be the common germ for all germinated connexion sets.?

The construction begins by setting Xy = {[y — w],[w — 6]}, thereby
adding the only ESSs, which share the common germ w. Then, the set
of germs is initialised by collecting the occurrence variables of v and § as
Go = {7y} U {d}. Keep in mind that the construction is intended to follow
the principles underlying the generation of a cut-action. A cut-action using
the ESSs of X results in the sequent v — . Any ESS £ that is to be added
to those of X in the first iteration has to fulfil the condition that it must be
possible to perform a cut on the sequents v — 0 and £. The only possible
cut formulae are the proxy variables that occur in v and §. Since no proper
occurrence variable can ever occur in more than one ESS and, hence, can
never be cut formulae, it is of no ill consequence to collect them as well. If
we were to remove the proper occurrence variables, the initialisation would
have to be Gy = ({7v}} U{d}) N P. But then the iteration step would become
somewhat unwieldy. As no harm is done in keeping the proper occurrence
variables, we shall do so. Note that all the proxies that are included in G|
are branching proxies, since w is the base proxy in both ESSs of Xj.

In the iteration step, an ESS is chosen, which has one of the germs in Gj
as one of its proxy variables. There must be such an ESS for every proxy
variable of G;. For any proxy variable, say p, in the germ set is a branching
proxy, i.e. in the explosion derivation, from which & was obtained, p must
have been introduced by the application of (Prx), and, thereby, there must
be one or two ESSs contained in €&, which have the same p as base proxy.
What is more, p as a branching proxy and p as a base proxy always occur in
complementary positions of the two respective ESSs. Hence, for each p € Gj,
there must be at least one ESS € in &\ X; having p as base proxy. Note that,
since ESSs are chosen from €\ X; by virtue of their base proxies, and since
every ESS contains exactly one base proxy, those that are already contained
in X; should not be rechosen. Adding an ESS to a germinating connexion set
means that the cut-action is extended to include this ESS, and, thereby, that
proxy variable, which is the cut formula, is removed. This means that every
proxy variable in the germ set must only be used once. This accounts for the
instructions of the iteration step. One ESS & is arbitrarily selected, which
contains one of the germs. Since the usable germs are branching proxies, £
must contain that variable as base proxy. The clause X;; = X; U{E} simply

2In order to account for the motivation of w as being the germ for all connexion sets, we
could try to add a pre-initial step with X_; = () and G_; = {w}, but then the iteration step
would not produce the correct set Xy. For the sake of elegance, we leave the guiding idea
of having connexion sets germinate from w represented only implicitly in the initialisation
step of the construction. This irregularity is due to the fact that w occurs as base proxy
in both v — w and w — 4.
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adds £ to the connexion set. The modification of the set of germs, given by
the clause G411 = (G; U{E}) \ (G; N {E]), is more interesting. First, all the
occurrence variables of £ are added to G;. Note that {€] contains, apart from
the base proxy, proper occurrence variables and branching proxies. Then, the
base proxy of £, which is also a germ of G;, is removed from that set. This
corresponds to the cut-action having performed the proxy cut on this proxy
variable. Since the base proxy of £ is removed, the set G,,1, again, only
contains proper occurrence variables and branching proxy variables.

Obviously, the first thing, which has to be done in the iteration step, is
to inspect, whether the set of germs still contains a proxy variable at all. For
if it does not, no ESS can be found satisfying the condition G; N {E} # 0.
The procedure will terminate eventually, because the explosion procedure
introduces pairs of base proxies and branching proxies only finitely often,
and, hence, the cut-action underlying this construction, accordingly removing
them in pairs, will eventually use up all the (branching) proxy variables of
the germ set.

The following two properties are obvious consequences of the construction
procedure, but it is worth stating them explicitly, because they demonstrate
important relations between a germinating connexion set the explosion set,
from which it is derived.

Lemma 9.5 Let S be the occurrence instance of a sequent and let (&, w) be
the explosion set of S with occurrence mapping w. Let X be a germinated
connexton set.

1) If X contains an ESS with two branching prozies q and r, then X con-
tains an ESS with base proxy q and also an ESS with base proxy r.

2) If € contains two ESS having the same base proxy p, then X contains
at most one of these.

PROOF: For 1), a review of the initialisation step and the iteration step
reveals that all the branching proxies of the ESSs, which are added to the
connexion set in that step, are added to the germ set. Proxies can only
be removed from the germ set by adding an ESS, which contains it as base
proxy. Since, all proxies that are added as germs have to be removed again in
that manner, this is especially true for two proxy variables, which are added
through the addition of a single ESS. For 2), recall that every proxy variable
p of & (apart from the watershed proxy w) occurs as a branching proxy in
exactly one ESS. Therefore, if the ESS containing p as branching proxy is
ever added to the connexion set, p is added as a germ. When p is removed
from the germ set, one of the ESSs having p as a base proxy is added to
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the connexion set. But since the ESS containing p as branching proxy is
already a member of the connexion set, p cannot be added as a germ again.
Hence, the second ESS containing p as a base proxy cannot be added to the
connexion set. O

The two properties are quite relevant for the understanding of the different
manners of connectedness that are to be found within a connexion sets.

The first property, which we shall henceforth call internal branching, sug-
gests that if an explosion set contains three ESSs £, F; and F5, which are
connected by the sharing of two proxy variables in the manner that they both
occur as branching proxies in &£, and that each one of F; and F, contains
one of the two as base proxy, then every connexion set containing £ must
also contain F; and F3. An example of this property is, according to propo-
sition 7.4, item 1), given by the ESS w(A),n(B) — 7(A & B), where A and
B are complex formulae®, and the two ESSs having 7(A) and 7(B) as base
proxies in their succedent. Other possible cases are given by corollaries 7.5
2) and 7.6 2), but also by the two ESSs containing the watershed proxy w;
for in v — w and w — ¢, either one of v and  can contain more than one
branching proxy each, all of which are germs and have to be followed up and
connected to other ESSs.

The second property will be called external branching, since it is concerned
with the fact that two particular ESSs cannot be members of a connexion
set at the same time. Consider three ESSs £, F; and F, of an explosion
set, which are connected by a single proxy variable occurring as branching
proxy in £ and as base proxy in both F; and F;. Then any connexion set
containing £ will contain either F; or F3, but never both. An example of this
property corresponding to the one given above is due to proposition 7.4 2).
It comprises some ESS having the branching proxy m(A& B) in the succedent
and the two ESSs 7(A & B) — 7(A) and 7(A & B) — w(B). For the other
cases see corollaries 7.5 1) and 7.6 1). This property is related to logical rules
having two premises. As a connexion set is always related to a single path
or branch of some derivation, it can only contain ESSs related to one of the
premises of applications of two premiss rules.

Note that the two properties can overlap, in a manner of speaking, as
we shall see in the following example for the generation of a connexion set.
Consider the sequent a & ¢,a D b — b and its explosion set

¢ = {[al,cl —pl,[= q a2}, [b1 — g, [p,q — W], [w — bQ]}

Any germinated connexion set must contain the ESSs p,¢ — w and w — by,

3If A or B is not a complex formula, then 7(A) or 7(B) is not a proxy variable, and,
hence, the precondition of the property is not fulfilled.
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and we initialise the procedure by

Xo = {lp,q — wl, [w— ba]},
GO = {p7Q>b2}‘

The ESS p,q — w contains two branching proxies p and ¢. Due to prop-
erty 1) of the preceding lemma, two ESSs will have to be selected from & for
any connexion set, one of which contains p as base proxy and one of which
contains ¢ as base proxy. For the former there is only one choice, and we
choose this for the next construction step, which yields

X1 = {lar,c1 — ], [p, g = w], [w — by},
Gl = {a17017q7 b2}

The only proxy in the germ set is ¢. The ESSs — ¢, as and b; — ¢ both
contain ¢ as a base proxy and are candidates for addition. They are also the
only ESSs available in € \ X;. According to property 2) of lemma 9.5, only
one of them can be added. We select the former and obtain

X2 = {[~ q.a2], las, 1 — pl, [p, g — w], [w — bo] },
G2 = {a27a17cl7b2}'

Since it is G5 NP = 0, the procedure terminates. The overlapping of the
two properties occurs in the proxy variable ¢. It is one of the two branching
proxies of p,q — w, which, according to property 1), require the addition
of two ESSs, one with base proxy p and the other with base proxy ¢. But
the explosion set contains two candidates fulfilling the latter, which is the
condition of property 2). Consequently, only one of the two can be added in
the construction.

Incidentally, the same connexion set could be constructed along the left
branch of this RK-proof of a & ¢,a D b — b:

— (ax* — (ax*
a,c—>b,a( ) b,a,c —b )
(oA)
aDbac—b
XA)
a,a Dbc—b
a,c,a Db—b (XA)
Y Y (&A)

a&c,adDb—b

Since a germinated connexion set is constructed from the explosion set alone,
it is not related to any particular RK-derivation. Of course, this is quite in
the spirit of the claim that the explosion set is a more fundamental rep-
resentation of the meaning of a sequent than a derivation. However, some
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relation between germinated connexion sets and RK-derivations has to be es-
tablished in order to have properties of such sets reflect back to derivations.*
The following lemma establishes this relation.

Proposition 9.6 Let S be the occurrence instance of a sequent and let (&, w)
be the explosion set ofg with occurrence mapping w. Then, for every germi-
nated_connezion set X, there is a RK-derivation = with end sequent S such
that = contains a branch &, whose leaf is the end sequent of the cut-action

C(%).

PRrROOF: We construct & following the construction of X and the correspond-
ing cut-action. Note that the explosion derivation yields an occurrence map-
ping 7, the inverse of which will be used to generate sequents of the desired
branch from the end sequents of cut-actions. Let {X;}o<i<x be the family of
connexion sets leading up to X = X;. The cut-action on Xy yields a sequent
Yo — g, and Sy = 7 1([vo — &]) = S, which is the base of the branch.
For X, (i < k), we consider the ESS &4, given by X;11 \ X; = {&11}.
The sequent &;11 contains a base proxy, which also occurs in the end sequent
v; — 0; of the cut-action on X;. However, the cut-action on X;,,, resulting in
Yir1 — 0;41, no longer contains that proxy, but all the remaining occurrence
variables of &£ ,1. According to the proof of proposition 9.1, the logical rule
and, in the appropriate cases, the choice of one of two premises of that logical
rule and its main and side formula or side formulae can be inferred from &;,
and an inspection of €. Then S;; = 7 '([yi41 — ;1)) is the corresponding
premiss of that rule with regard to the conclusion S; = 7 ([vi — &]) up to
the applications of exchange rules required to move the appropriate main for-
mula into the required position. Then, clearly, for a RK-derivation, in which

applications of exchange rules are abstracted from, with a path (So,...,S;)
already given, (So,...,S;, S;11) must also be a path of that derivation. The
construction terminates after £k steps, yielding (Sy,...,Sk). Moreover, the

germ set Gy does not contain any proxy variables. Therefore, v, — d; can-
not contain any proxy variable, and, hence, Sy cannnot contain any complex
formula and must be a leaf of that derivation. Finally, a branch & of a tree,
in which the applications of the exchange rules are explicit, can swiftly be
constructed from (So, . .., Sk) by inspecting pairs (S;, S;11) for 0 < i < k and
inserting the required intermediate sequents, which are obtained by appro-
priate applications of exchange rules. O

An easy corollary of this proposition will finally provide the desired refutation
procedure.

4This will be exploited for the refutation procedure.
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Corollary 9.7 Let S be the occurrence instance of a sequent S and let p be
the restoration function. Let (€, w) be the explosion set of S with occurrence
mapping w. Let X C € be any germinated connexion set, and let U be the
end sequent of the cut-action C(X). If the restoration p(U) is not an instance
of (ax*), then S does not have a RK-proof.

PROOF: According to the preceding lemma, L{ S is the leaf of branch
(SO, ..., Sp) of some RK-derivation =. Then p(i{) is the leaf of a derivation
=, Wthh is obtalned by applying the restoration function p to every sequent
occurring in Z. Clearly, if p(if) is not an instance of (ax*), then Z is not a
RK-proof.

It remains to be shown that under these circumstances there can be no
RK-proof of §. First of all, no leaf of any RK-derivation can contain any
complex formula, every complex formula occurring anywhere in the branch
must eventually be the main formula of a rule application. Moreover, each
sequent S; with i # k of the branch (Sy, . .., Sk), which is not the conclusion
of an exchange rule, contains a main formula C};, of which side formula D;
and, where applicable, side formula E; are identifiable. We collect these main
formulae in the set M = {C; | 0 <4 < k and C; is main formula of S} In
developing the branch from 80 to Sk, each one of these main formulae is
addressed by an application of the corresponding rule. Of course, if D; is a
complex formula, then, for some i < j < k, it is D; = C}, as side formula D;
becomes the main formula of another rule application. The same goes for a
second side formula F;. Hence, any other RK-derivation of & must contain a
branch having the same set M of main formulae, and, hence, have U as one
of its leaves, thereby rendering the branch open. 0

Therefore, in order to refute the provability of a sequent S, given the ex-
plosion set of its occurrence instance, some germinated connexion set X has
to be found such that, for the end sequent U = [y — 4] of the cut-action
C(X), it is p({7]}) N p({6}) = 0. This property can be exploited for a refuta-
tion procedure. For this purpose, two additional sets are constructed, which
accumulate the proper occurrence variables of antecedent and succedent posi-
tions of the selected ESSs. On the other hand, the accumulation of the ESSs
themselves is, strictly speaking, no longer required, although it can be re-
tained if the demonstration of a counterexample in the form of a germinated
connexion set is required.

Definition 9.8 Let (&, w) be the explosion set of an occurrece instance S of
a sequent S, and let p be the restoration function. The refutation procedure

for S is given by the following algorithm.
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o [nitialisation: Let

Xo = {[7_>wL[w - 5]}’

Go = {7y} U {3},
Ao ={7} N0,
So = {3} N O.

e Iteration: While G;N'P # 0, select ESS € = [n — 0] € €\ X; such that
G, N{E} # 0 and let

%i—l—l = %z U {g},

Gy = (GiU{ED \ (Gin{EY),
A =40 ({0} N 0),
Siv1=S; U ({0} n0O).

Let k be the natural number such that G, NP = 0. If p(Ax) N p(Sk) = 0,
then reject S on the basis of the counterexample Xy, otherwise restart with
the initialisation step.

The refutation of a sequent & succeeds, if some germinated connexion set
can be constructed, which has the desired property stated in corollary 9.7.
A connexion set, which does not have this property, can be the result of a
wrong choice in one of one out of two ESS. In this case, this simple refutation
procedure simply restarts the construction. Obviously, the procedure presup-
poses a random element in the selection of ESSs in the iteration step, such
that the probability of obtaining any particular germinating connexion set is
non-zeo. It is also obvious that a procedure, which instead deterministically
generates all the possible choices, is a decision procedure.

The particularities of constructing the intersection are important. While
it would be somewhat more efficient to perform the test for non-emptiness
of the intersection in an interleaved manner with the construction of the
sets rather than after the iteration has terminated, it would result in an
incomplete connexion set, which could not serve as a counterexample.®

In order to illustrate the refutation procedure, we shall consider the se-
quent a Vb — a&b. We yield the following explosion set from its occurrence
instance a; V by — ag & by with restoration function p:

~J lar = pl, [0 = ], [p — w]
QE_{ [wﬁq]>[q_>a2]>[q_)b2] }

50f course, counterexamples could be generated from that set by continuing the original
construction procedure for germinated connexion sets.
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Initialising the procedure, beginning at the watershed proxy w, gives

Xo={lp — w], [w— q]},

GO = {p7Q}>
AO = ®>
So = 0.

Since Gy NP = {p, q}, some ESS other than those already in X, containing
either p or ¢ has to be added. In this case, any one of the remaining ESSs
fulfils the requirement. We choose the sequent a; — p and obtain

X =A{la = pllp — w], w — g},

Gl = {al,Q},
Al = {al}a
S = 0.

With G; NP = {q}, one of the sequents ¢ — as and ¢ — by have to be
chosen. Selecting the former yields

Xy = {[a1 = pl,[p — w], [w — g, [qg — a2]},

G2 = {al,ag},
A2 = {al}a
52 = {&2}.

Since Gy NP = (), the iteration terminates. With p(As) N p(S2) = {a}, there
is no basis for rejecting a Vb — a & b, however. Hence, the procedure restarts
with the initialisation. Assume that the second run yields sets X = X,
G| =Gy, A} = Ay and S} = S5;. This time, we choose the other ESS having
q as a base proxy, ¢ — by, which was not selected in the first course, and
thereby obtain

%2 = {[al _>p]7 [p - w]v [w - Q]v [q - b2]}7

Gy = {a17b2}7
A2 = {a1}7
Sg — {bg}

Again it is GHLbNP = (), and the iteration terminates. Since p(AL)Np(S5) = 0,
the sequent is eventually rejected. The end sequent of the cut-action C(X%)
is the sequent a; — by. Its restoration a — b can be found as a leaf in both
RK-derivations of the sequent a V b — a & b, neither of which constitues a
proof:
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(ax™) (ax™)

a— a a—>b(&s) b— a b—>b(&s)

a—a&b b—a&d
aVb—akd (VA)
(ax") ()
a—a b—a (VA) a—b b—b (VA)
aVb—a aVb—b (&S)
aVb—ak&hb

The refutation procedure terminates for any unprovable sequent and provides
a connexion set, from which a sequent can be constructed by means of a cut-
action. The restoration of that sequent occurs as leaf in every RK-derivation
of that sequent, and it is not an instance of (ax*). In this sense, the connexion
set constitutes a counterexample to the provability of the sequent. However,
if the sequent happens to be provable, the procedure does not terminate.

9.3 Remarks on a Decision Procedure

It is evident that the refutation procedure can be utilised for a decision
procedure by checking every possible germinated connexion set. However,
we will merely provide an estimate of the number of connexion sets that
have to be considered for this purpose.

We begin by investigating an example. Consider the provable sequent
S =[a,a Db— a&b]. The following is the explosion derivation of S:

w—q g—az g—b
w — asz & by

—pay bi—p a,p—w
a,as Dby — w
a1, a2 Db —>a3&bg

(DAn)

(&Sm)

(Prx)

The explosion set of S is then

¢s = {[= pasl, [y = pl, [ar,p — wl, [w — g}, [g = as], [g = b]}.

When constructing germinated connexion sets there are two choices to be
made: one for the proxy p and one for the proxy ¢. For after the initialisation
step, both p and ¢ are germs, and for each of them two ESSs remain to be
chosen as additions to the connexion set. Since either p or g can be selected
as germs for the first iteration step, these choices of ESSs are independent of
one another. Hence, they result in four possible connexion sets:

Xg, = {[— p a2, [ar,p = w), [w — q], [g — as]}
Xz, ={[b1 — 1], Jar,p = w], [w — g, [¢ — as]}
%5,3 = {[_> p, azl, (a1, p — w|, [w — ql,[q — bz]}
%5,4 = {[bl — pl, [a1,p — w], [w — g, [¢ — bz]}
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As the example shows, the number of different connexion sets, which can
be developed from any given explosion set, depends on external branchings
occurring therein. In fact, we can derive a limit to the number of possible
connexion sets from the number of external branchings.

Lemma 9.9 Let € be an explosion set and let n be the number of external
branchings that occur in €. Then € contains at most 2" different germinated
connexion sets.

Proor: Consider all cases of an ESS £, in which some proxy variable p
occurs as branching proxy, and two ESSs F; and F3, in which the same
proxy occurs as base proxy in the complementary position of the sequent.
According to definition 9.4, if such a configurations is encountered in the
construction of a germinated connexion set, i.e. if £ is already contained in
the connexion set that is being generated, then eventually a choice has to be
made, which one of F; and ;5 should be included in the connexion set. Since
with property 9.5, item 2) the ESS, which is not chosen, cannot be added to
the connexion set in a later step of the construction, it is clear that at this
choice is indeed essential. The worst case is that, in which the choices are
independent of one another, i.e. in which every possible choice actually has
to be made in each possible construction of a germinated connexion set. [

Of course, the number of different connexion sets contained in any given
explosion set, can also be determined by looking into how the different kinds
of ESSs arise in the explosion procedure.

Corollary 9.10 The explosion set €5 of an occurrence instance S has at

Ct4+D=Z+IZ ;. .
most 2°sTPs s different connexion sets.

PROOF: A proxy p of an explosion derivation, which occurs in two logical
premises and a context premiss, is introduced due to a conjunctive main
formula in the succedent or a disjunctive or implicative main formula in the
antecedent of a sequent. These two logical premises are the base sequents
of two context branches, whose leaves are two ESSs of the explosion set
containing p as a base proxy. It is these ESSs, which give rise to an external
branching. The ESS, which is taken from the leaf of the context branch,
contains p as branching proxy. When we consider a sequent S, we must
take into consideration the fact that only those conjunctive subformulae of
S, which have positive occurrences, and only those disjunctive or implicative
subformulae, which have negative occurences, will lead to such configurations
in the explosion derivation. 0J
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An example of a worst case has been given in the sequent S above. A simple
general scheme for a worst case is a sequent Ay, ..., A,, — Bi,..., B,,, where
each A; is a disjunctive or implicative formula, whose immediate subformulae
are proper occurrence variables, and each B; is a conjunctive formula, whose
immediate subformulae are also proper occurrence variables. According to
the preceding lemma, the explosion set of such a sequent contains 2™*"
connexion sets.

As another example, in which the maximal number of germinated con-
nexion sets is not reached, consider the sequent 7: (a D b)V ¢ — bV c. There
is a negative occurrence of an implication occurring underneath a negative
occurrence of a disjunction, and we can expect a dependent choice in this
case. The explosion set of 7T is:

U [_> q’a1]>[bl_)Q]a[q_)p]a[cl_)p]’
QET_{ [p = w], [w — 7], [r — by, 2 }

For all possible connexion sets of T , the initialisation is the set containing
the two ESSs representing the structures of antecedent and succedent, i.e.

Xo = {[p — w|, [w — r]},
Go = {p,7}.

Out of the two germs p and r, the latter leads to the sequent r — by, co,
which must therefore be part of every connexion set. Adding it in the first
iteration, we obtain

X = {[p — w|, [w—r],[r— bg,Cg]},
Gy = {p,b2,c2}.

The other proxy p leads to the external branching of the ESSs ¢ — p and
c1 — p, only one of which can be added to any connexion set. However, if
the latter is added, this yields

Xo = {[er = pl[p = w] [w — 7], [r — b, o]},
G2 = {Cl, bQ,CQ}.

With GoNP = (), the construction is complete. The ESSs, which are not part
of the connexion set, are €5\ Xy = {[—> q,a],[b1 — q|,[qg — p]} Since ¢ did
not become a germ in this construction, neither one of the ESSs constituting
an external branching on this proxy can be chosen. If instead of ¢; — p the
sequent ¢ — p had been chosen, a third iteration step with the only germ ¢
would have to be performed, which would have lead to a dependent choice
between the sequents — ¢,a; and by — ¢. Hence, there are 1 + 2 different
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connexion sets to be developed in €z from the germ w:

X7, ={la = pllp—wl [w—r][r— b2 0]}
X7, ={l= ¢l la = pl.[p = wl, [w — 1], [r — b2, o] }
X7y ={lbr = dl,la—pl,[p = w], [w— 1], [r — b2, o] }

These examples shall suffice to demonstrate that the explosion calculus is
far from being suited as a method akin to proof search. The employment of
(Prx) in the explosion procedure disperses contexts with considerable effort
by means of the introduction of proxy variables. A decision procedure has
to reverse this dispersal for each possible connexion set, which is contained
in the explosion set. Although relatively efficient ways of doing this could
be described, such as the retaining of common shared sets of ESSs, any such
procedure is far more involved than a proof search in RK. The price of
having generated an extensive and entirely structural meaning of a sequent
is to have to put considerable additional effort into generating and checking
its connexion sets.
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Logical Tomography
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Chapter 10

Hypergraphs and Bipartite
Graphs

In this part, we will develop the notions that are required to relate ESSs
and explosion sets to suitable set-theoretic entities. The most immediate
approach is to interpret an elementary structural sequent v — ¢ as a tuple
(7,9) for suitable interpretations 7 and 0. Then, an entire explosion set

¢ = {7, — &;}; can be related to a set ¢ = {7, gz)}l of such tuples. The set

€ is the desired relational interpretation of the explosion set. For a suitable
carrier set Ui = {7, 0; }s, which encompasses all the interpretations 4; and 6;
of the antecedents and succedents of the explosion set, the whole explosion
set is interpreted by the graph (g, €). For an ESS v — §, both v and 0 are
sequences of proper occurrence variables and proxy variables, and the most
immediate interpretation would give Uz C (O U P)* = V*.

However, elements of V* are ordered tuples, in which each occurrence of a
variable is related to a specific position within the tuple. The exact position
of individual occurrence variables (and formulae in general) within a sequent
can be changed without any prerequisite by means of the exchange rules,
however. The explosion calculus in particular makes an unrecorded use of
exchange rules in its meta rules. Therefore, the ESSs, which are obtained as
leaves of an explosion derivation, do not in any way represent applications of
exchange rules. Of course, this was never intended in the first place. Gentzen
had envisioned the structure of sequents as less tight than that of formulae
in the sense that it is manipulable by means of the structural rules of LK in a
manner that allows certain changes of the formal structure while retaining the
logical content. The exchange rules of LK are thus understood as providing
a means for compensating the order of formulae inherent as a notational
artifact of linear notation. Since one of our goals is to give a non-syntactic
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relational interpretation of sequents, it is certainly an imperative to remove
the intrinsic element of syntactic representations: the imposition of a linear
order upon its components. It is generally known that the combination of
exchange rules and contraction rules in LK allow antecedent and succedent
of a sequent to be treated as ordered representations of sets of formulae:
exchange rules allow to obtain any permutation of the order, in which the
formulae are given, while the contraction rules (in top-down perspective of
the rules) can be used to remove duplicities of formulae.

Our use of occurrence instances of sequents had the purpose of explicitly
accounting of duplicities by effectively removing them. It is for this reason
that the contraction rules do not play any role in RK. However, we have
explicitly maintained the exchange rules up to this point. In moving from
sequents as syntactical entities to their relational interpretation, we will cast
off this last remnant of syntactical representation. By means of repeated
applications of the exchange rules, every possible rearrangement of the an-
tecedent and succedent of a sequent can be obtained. Hence, ESSs v — ¢
and 7' — ¢’, for which there is a derivation consisting only of applications of
(XA) and (XS)

,y/ N 6/
EEYE

should be modelled by the same relational entity. For our interpretation
this would suggest to let ¥ C O U P and § C O U P, which would lead to
Bz C P(OUP) = P(V), where P is the powerset operator. The interpretation

of an explosion set € would then be the graph (U, @ Although this would
be a perfectly reasonable representation as far as the interpretation of a
sequent goes, it has the drawback of using sets of variables as fundamental
entities. This takes the notion of a formula, which has already been reduced
to a somewhat featureless level by only considering variables, i.e. atomic
formulae, as constituents of ESSs, to yet another level of abstraction. The
representation of the ESSs as pairs of sets of occurrence variables is not in
question. However, sets of variables should not be considered as the carrier
of these tuples, but rather the individual variables themselves. Briefly, the
interpretation of explosion sets, which will be introduced in detail in the next
chapter, is as follows. For an explosion set € = {v; — 4;};, we will define

€= {50}, = {(uh 461}, and Ve = VU, (brb U 161). and we let
(Vg, €) be the hypergraph that serves as relational interpretation of €. That

'The terminology is intended to reflect Hertz’ tenet that reasoning is primarily con-
cerned with relations between abstract elements.
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is, instead of using graphs on subsets of P(V), we will use hypergraphs on
subsets of V' as models for explosion sets.

In the remainder of this chapter, the required graph-theoretical notions
required for the treatment of hypergraphs will be introduced. While certain
notions can be generalised from standard graphs, the additional structure of
hyperarcs will require the introduction of new concepts.

10.1 Directed Hypergraphs and Hyperarcs

In this context, we will use the term standard graph to refer to the usual un-
derstanding of the term “graph”. Although undirected hypergraphs will not
be used in the interpretation of explosion sets, we shall introduce them very
briefly in order to present the graph-theoretical context of directed hyper-
graphs and also to slowly set the mood for the peculiarities that distinguish
hypergraphs from standard graphs.

The notion of a standard graph or directed standard graph on a set of
vertices V' can be extended to accomodate the possibility of an edge or arc
connecting more than two vertices simply by replacing the binary relation
on V' by a binary relation on P(V'). This is very straightforward, especially
considering that we only have to concern ourselves with finite sets.

Definition 10.1 A hypergraph is a pair (V,9), where V' is a finite set of
vertices (or nodes) and $ C P(V) is a finite set of hyperedges.

Since $ C P(V), $ is a finite family of subsets of V. Therefore, a hypergraph
can be visualized by a Venn diagram. If we write P, (M) for the set of
all subsets of M of cardinality n, then in the special case of §§ C Pyo(V)
the hypergraph is just a standard graph.? Even in the general case, some
notions from standard graphs, suitably modified, can be used to characterise
hypergraphs.

Definition 10.2 In a hypergraph (V. $)), a vertex v € V is incident with the
hyperedge ¢ € 9, if v € e. Two vertices v,w with v # w are adjacent (or
neighbouring), if there is a hyperedge ¢ € §) such that v € ¢ and w € ¢. For a
vertex v, the neighbourhood of v, denoted by v°, is the set of all neighbouring
vertices. Hyperedges ¢,f € $ with ¢ # { are n-adjacent, if [eNf| = n > 0.
They are adjacent, if they are n-adjacent for some n > 0. A hyperedge ¢ is
said to be subsumed by the hyperedge f, if ¢ C §.

2The set of edges of a standard graph is occasionally given in just this manner instead
of as a binary relation, i.e. instead of a set of pairs.
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Adjacency of vertices is a more general notion for hypergraphs, since the
number of neighbouring vertices of some vertex v is not necessarily equal
to the number of hyperedges, to which v is incident. Moreover, adjacency
of hyperedges is no longer a primitive notion, since the number of vertices
mediating such an adjacency is variable. For example, in the hypergraph
(V. 9) with V.= {p,q,r,s,t} and $ = {{p,q,r}, {r, s}, {p, r,t}}, hyperedges
{p,q,r} and {p,r,t} are 2-adjacent, since both contain the vertices p and
r, whereas hyperedges {p,q,r} and {r,s} as well as hyperedges {r, s} and
{p,r,t} are 1-adjacent.

Since undirected hypergraphs are not relevant for the suggested inter-
pretation of elementary structural sequents, we shall not, apart from a few
references, consider them further. Instead, we swiftly proceed to the defini-
tions of directed hypergraphs and hyperarcs.

Definition 10.3 A directed hypergraph is a pair H = (V,$), where V is
a finite set of vertices or vertices and $ C P(V) x P(V) is a finite set of
directed hyperedges or hyperarcs. For hyperarc ¢ = (S,T), S is the set of
initial vertices, denoted by ®e, and T is the set of terminal vertices, denoted by
¢®, and SUT s the set of supporting vertices, denoted by ®e®; the indegree
deg™(e) is the number of its initial vertices, i.e. deg™ (¢) = |%¢|, and the
outdegree deg™ () is the number of its terminal vertices, i.e. deg™ (e) = |e®].
For a vertex v, the outdegree deg® (v) is the number of edges, for which
v € %¢, and the indegree deg™ (v) is the number of edges, for which v € e°.
Vertex v is initial in H, if deg™ (v) = 0; it is terminal in H, if deg™ (v) = 0;
it is external in H, if it is initial or terminal; it is internal in H, if it s
neither initial nor terminal.

For example, in the directed hypergraph H = (V, $)) with V' = {p, u, v, w, z,y}
and § = {({u, v}, {w}), ({w}, {p}), {p}. {}), ({p}, {y}) }, for vertex p, it
is deg™(p) = 1 and deg™(p) = 2, and for the hyperarc e = ({u, v}, {w}), it
is deg”(e) = 2 and deg ™’ (e) = 1. Vertices u and v are initial in H, vertices z
and y are terminal in H, and vertices p and w are internal in H. For directed
standard graphs, in- and outdegrees of edges are always 1, so the notion has
been specifically introduced for directed hypergraphs. See figure 10.1 for the
rendering of a sizeable directed hypergraph.?

In view of the above definition, plain hypergraphs are sometimes called
undirected hypergraphs. Of course, any undirected hypergraph can easily
be turned into a directed hypergraph by giving each of its hyperedges an
orientation.

3We will use graph representations for displaying hypergraphs. This notions will be
formally defined shortly.
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Figure 10.1: A directed hypergraph

Definition 10.4 A strict orientation of the hypergraph (V,$) is a directed
hypergraph (V. 9), such that for every hyperedge ¢ € $), the set § contains
exactly one hyperarc € € P(V) x P(V'), where *¢N¢® =0 and *€Ue® =e.

Every directed edge ¢ of a strict orientation is thus an ordered 2-partition of
the underlying edge ¢ in the undirected hypergraph. Hence, every hyperedge ¢
has 2/l possible orientations, and the hypergraph (V, §) has [Tecs 2lel different
orientations.* Conversely, every directed hypergraph (V, f)> has an underlying
undirected hypergraph (V. $)), which is obtained by replacing every hyperarc
(S, T) by the hyperedge S UT. Due to the loss of extra structure, it is
in general only |9 < [|. For example, both hyperarcs ({p.q},{r}) and
({p}, {q, r}) collapse onto the single hyperedge {p, q,r}. Also note that it is
possible that S NT # (). For example, the hyperarc ({a, b}, {0, c}) collapses
onto the hyperedge {a, b, c}.

Some of the notions introduced in definition 10.2 have to be modified in
order to accomodate directed hypergraphs.

Definition 10.5 In a directed hypergraph (V, ), a vertex v € V' is incident
with the hyperarc e € ), if v € ®e or v € ¢*. Verter v immediately preceeds
vertex w, denoted by v < w, if there is a hyperarc ¢ € § such that v € *e and

4The condition *¢N¢*® = @ is not necessary, which makes the definition “strict”.
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w € e*; in this case, w 1s said to immediately succeed v, denoted by w > v.
For a vertex w, the predecessor neighbourhood of w, denoted by w”™, is the
set of all immediately preceeding vertices; the successor neighbourhood of v,
denoted by v=, is the set of all immediately succeeding vertices.

Due to the fact that a directed hyperedge is an ordered pair, the notion of
incidence is no longer fine enough. In its stead, we have the two symmetric
binary relations < and > on V', which are defined by the hyperarcs in .
A hyperarc ¢ with deg™ (¢) = m and deg™ (e) = n contributes m - n pairs to
both relations. Of course, general adjacency on hypergraphs can be defined
as the relation < U . For the hyperarc ¢ = ({u, v}, {w}) from the preceding
example, it is u < w and v < w, and, thus, w™ = {u,v}.

As for vertices, adjacency is too general a notion for directed hypergraphs.
In its stead, we must introduce several new notions.

Definition 10.6 In a directed hypergraph (V. 9), a hyperarc e € § k-preceeds
hyperarc § € §, denoted by e <* §, if [e* N *f| = k > 0; hyperarc e preceeds f,
denoted by e < §, if ¢ k-preceeds | for some k > 0. A hyperarc § k-succeeds
hyperarc e, denoted by f =% e, if e k-succeeds §. A hyperarc f succeeds hy-
perarc ¢, denoted by f = e, if ¢ preceeds f. Hyperarcs e and f with ¢ # | are
k-seceding, denoted by e A¥§, if |*¢e N *f| = k > 0; they are seceding, denoted
by e A f, if they are k-seceding for some k > 0. A verter v with deg™ (v) > 2
is called a secession vertex. Hyperarcs e and § with ¢ # f are k-conceding,
denoted by e Y*§, if |e* Nf*| = k > 0; they are conceding, denoted by e Y §, if
they are k-conceding for some k > 0. A vertex v with deg™ (v) > 2 is called
a concession vertex. The hyperarc e is subsumed by the hyperarc §, if *e C *f
and ¢* C §°.

The notion of adjacency for hyperarcs breaks up into four notions, of which
precession and succession (which are symmetric to one another) are the rela-
tions that reflect the directedness of hyperarcs. Two seceding hyperarcs share
at least one common inital vertex, whereas two conceding hyperarcs share
at least one common terminal vertex. In the examples of figure 10.2, the
secession vertices and the concession vertex are rendered in grey. Note that
two hyperarcs can be both seceding and conceding. For example, consider
the hyperarcs ¢ = ({p,q},{r,s,u}) and f = ({q,t,u},{r,s,p}), for which
*eN°*f={q} and ¢* Nf* = {r,s}. In this very involved case, it is even ¢ < f
and f < e, because ¢*N°*f = {u} and §*N*e = {p}.”> As it is obvious from the

SFortunately, as we will see, such mixed cases will not appear in the interpretations of
explosion sets. Instead, for any two hyperarcs ¢ and f, we will always have at most one of
e<f,f<e,eAfandeY .
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KAV

Figure 10.2: 2-seceding, 1-seceding and 1-conceding hyperarcs

definition, both A and Y are symmetric relations. They are not transitive,
however. For let ¢ = ({p},{u}), f = ({p,q},{v}) and g = ({¢}, {w}); then
it is both ¢ A f, because ¢ and f share the initial node p, and | A g, because
f and § share the initial node ¢, but e Xg, since *e N *g = . It follows from
the definitions that an internal vertex v of a hypergraph is incident with two
hyperarcs e, f such that ¢ < f, whereas for an external vertex there are no
such hyperarcs. External vertices can be coincident with two or more hyper-
arcs, however. For example, a vertex, which is initial to a hypergraph, can
be incident with two seceding hyperarcs.

As it is the case with standard graphs, the interesting aspect of hyper-
graphs is certainly their manner of connectedness. It is therefore useful to
be able to abstract from the actual supporting vertices. For this purpose we
introduce the generalisation of the notion of graph isomorphism.

Definition 10.7 Directed hypergraphs (V,$) and (W,J) are isomorphic, if
there is a bijection o : V. — W, such that ¢ € $) if and only if o(e) € 7.

In the definition, o(e) is used in the manner o(¢) = o((S, 7)) = (0(5),o(T)),
where o(M) = {o(v)|v € M}. If two directed hypergraphs are supported by
sets of vertices V, W C U, then they are isomorphic if there is a permutation
0 : U — U such that e € $ if and only if o(e) € J.

Another notion, which is useful in the study of standard graphs is that
of a rooted graph. This is easily generalised in the following definition.

Definition 10.8 A rooted directed hypergraph is a tuple H = (V, $, w), such
that (V. $)) is a directed hypergraph and w is a distinguished element of V,
called the root of 'H.

All notions, which have been introduced so far as well as those that will be
introduced in the following sections can be trivially extended over rooted
directed hypergraphs. For example, two rooted directed hypergraphs are
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isomorphic, if the directed hypergraphs are isomorphic, and the root of the
first is mapped onto the root of the second. Most of the time, we shall
omit the designation “rooted” and just speak of directed hypergraphs, even
though a root is provided.

We shall sometimes want to add labels to vertices. This is straightforward,
and again, there is no difference to be made between directed and undirected
hypergraphs.

Definition 10.9 A tuple (V, 9, \) is called a vertex-labelled directed hyper-
graph on L, if (V,$) is a directed hypergraph and X : V — L is a (partial)
labelling function, which maps vertices of V' to elements of L.

The labelling function can be a partial function, as it is not required that
every vertex is assigned to an element of L. In particular, certain vertices
can be emphasised by having elements of L assigned to them. For a rooted
directed hypergraph (V, $), w), its vertex-labelled variant is given by the tuple
(V. 55, w, \).

Graph Representations of Hypergraphs

The visualisation of directed hypergraphs themselves is still uncharted terri-
tory. Although the notion proves to be very useful for modellings in various
emerging practical fields, especially in bioinformatics and in cheminformatics,
directed hypergraphs have not been investigated in great depth in traditional
graph theory. As a consequence, there has not been a particular demand for
visualising hypergraphs. Fortunately, there is a simple solution to this prob-
lem. Instead of visualising the hypergraph itself, we consider a standard
bipartite graph, which suitably represents each hyperarc by several standard
arcs.

Definition 10.10 The graph representation of directed hypergraph (V, $)) is
the directed bipartite graph (V,$,*E'W E®), where *E and E* are defined as
follows:

*E={(p,e)|peV ande € $H, such that p € *e¢}

E*={(e,p) | e € 9 and p € V, such that p € ¢*}

The definition is extended over rooted directed hypergraphs in the obvious
manner. For a vertex-labelled directed hypergraph (V) $,\), we have to
consider the vertex-labelled directed bipartite graph (V, $, *EWE® '), where
A is the trivial extension of the labelling function A\ to the domain V @ §,
i.e. M|y = A and X|g is everywhere undefined.
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For every hyperarc e contained in §), the relation *E contains a pair (p, ¢)
for every initial vertex p of e¢. Likewise, £ relates hyperarcs to their terminal
vertices. A hyperarc e with deg™(e) = m and deg™ (e) = n, therefore, induces
m + n arcs in the corresponding bipartite graph. For example, the hyperarc
e = ({p, q,7}, {s, t}) produces the standard arcs (p, ¢), (g, ¢), (r,¢), (¢, s), (e, 1)
for a suitable bipartite graph.

Renderings of bipartite graphs will be used here for the purpose of visu-
alising hypergraphs. In those renderings, elements of § will be represented
by tiny circles, elements of V' will be represented by large cirlces, and a root
will be represented by a large shaded circle. Note that arcs from the set E*®
will be rendered as arrows, whereas arcs from the set *FE will be rendered
by mere lines, although elements of *E are ordered pairs, just as elements of
E* are. The reason for this is that hyperarcs ¢ with large number of initial
vertices would have a large amount of incoming arrowheads on the vertex
representing e. For example, consider the central vertices in the leftmost
example of figure 10.2. It is obvious that arrowheads would make the bi-
partite graphs extremely unsightly. Moreover, this convention shall support
the intuition that the rendering of hypergraphs by bipartite graphs is only
an auxiliary construction solely for the purpose of visualising hypergraphs.
This visualisation should not distract from the fact that the chosen realm of
interpretation for explosion sets is that of directed hypergraphs. Note that,
from the visualisation, possible orderings of the initial and terminal vertices
could mistakenly be assumed, for instance by reading them clockwise relative
to the hyperarc vertex or from the top downward. Such orderings are mere
artifacts of the chosen visualisation, however.

The Taxonomy of Hyperarcs

It will prove very useful to define notions for distinguishing hyperarcs on the
basis of the size of their sets of inital and terminal vertices. The size of these
sets gives a hyperarc a specific shape, when it is visualized. For instance, if
for a hyperarc e, it is both deg™(¢) = 1 and deg™ (¢) = 1, then the hyperarc is
shaped like a standard arc in a standard graph. If deg®(e) > 1, then e breaks
up and fans out in the direction of its terminal vertices. We will consider a
hyperarc’s terminal vertices as lying in its forward direction, and its initial
vertices as lying in its backward direction.

Definition 10.11 A hyperarc e is called a backward branching hyperarc
(B-arc), if deg™(e) < 1; it is called a forward branching hyperarc (F-arc), if
deg™ (e) < 1; it is called a standard hyperarc (S-arc), if both deg™ (¢) = 1 and
deg™(e) = 1.
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Figure 10.3: General, proper and elementary fusion arcs

A hyperarc is classified as B-arc, if its set of terminal vertices, the forward
end, is a singleton set or the empty set. Intuitively, the backward end of
the B-arc can still be interesting, but the forward end is not. Respectively,
the interesting end of an F-arc is the set of terminal vertices, whereas its set
of initial vertices is a singleton set or the empty set. Note that a standard
hyperarc ¢ with deg™(¢) = deg®(e¢) = 1 is both a B-arc and a F-arc. For
hyperarcs lacking initial vertices or terminal vertices, the interesting end is
the one, which is not devoid of any node. A hyperarc f with deg™ (f) = 0
and deg® (f) = 1 is also both a B-arc and a F-arc, as is a hyperarc g with
deg”(g) = 1 and deg™(g) = 0 and even the pathological case of a hyperarc
b with deg™(h) = 0 and deg®(h) = 0. Those hyperarcs, which are neither
B-arcs nor F-arcs, are, in a sense, too interesting, because they cross-relate
more than one initial vertex with more than one terminal vertex. However,
such a hyperarc could be cut into a B-arc and a F-arc by introducing a new
vertex.

Some additional notions will enable us to speak of specific kinds of B-arcs
and F-arcs, examples for which are given in figures 10.3 and 10.4.

Definition 10.12 A hyperarc ¢ is called
e ¢ fusion arc, if it is a B-arc with deg™ (e) > 1;
e q proper fusion arc, if it is a B-arc with deg™ (e) > 2;
e an elementary fusion arc, if it is a B-arc with deg™ (e) = 2.
e q fission arc, if it is a F-arc with deg™(e) > 1;
e a proper fission arc, if it is a F-arc with deg™ (e) > 2;

e an elementary fission arc, if it is a F-arc with deg™(¢) = 2.
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Figure 10.4: General, proper and elementary fission arcs

These notions express the relation of the indegree and the outdegree of a
hyperarc. Since for a B-arc ¢ it is deg™ (¢) < 1, a fusion arc has the property
deg™(e) > 1 > deg*(e). For a proper fusion arc the set of initial vertices
must not be a singleton, i.e. deg™(¢) > 1 > deg™(¢), and for an elementary
fusion arc the set of initial vertices contains exactly two vertices, i.e. it is
specifically deg™(e) = 2 > 1 > deg™ (e). Intuitively, assuming that attention
is a quantifiable resource, when moving the focus of attention from the inital
vertices of the proper fusion arc to the terminal node, the attention can
be relaxed or fused, since there are less terminal vertices to consider than
initial vertices. For F-arcs and fission arcs, the dual relationships apply. This
reflects the intuition that, when moving the focus of attention from the initial
node to the terminal vertices, the attention has to be split up to account for
all the vertices which become relevant. Trivial arcs, which have exactly one
initial node and exactly one terminal node, are both (improper) fusion arcs
and fission arcs. The notions of proper fusion arc and fission arc rule out this
pathological case.

10.2 Partial and Total Traversals

It will be necessary to talk about certain parts of hypergraphs. In this section
we will generalise many notions from standard graphs to hypergraphs and
introduce a very important new one, that of a flow. The various notions
of subgraphs are generalised from standard graphs. They can be applied to
both directed and undirected hypergraphs.

Definition 10.13 A (directed) hypergraph H = (V,$) is called a subgraph
of the (directed) hypergraph H' = (V',9'), written H C H', if V C V' and
$H C 9. Itis called a vertex-induced subgraph, if § = H'N(P(V)xP(V)). It
is called an edge-induced subgraph, if there is no V" C V' such that (V" )
s a graph.
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Suitable generalisation of traversals, such as walks, paths and cycles, are
also useful for directed hypergraphs. For traversals within standard graphs,
directed or undirected, there is always a single vertex to be reached when
following any edge from any given vertex. Hence, all possible traversals of
a standard graph are sequential. Due to the generally non-standard shape
of hyperarcs, we can in general only obtain partial sequential traversals. For
example, a movement from p along a hyperarc ({p}, {q, r}) requires a choice
one of the vertices ¢ and r as target of the traversal. However, partiality
is only necessary, if the sequentiality of traversals within hypergraphs is to
be maintained, that is, if the movements along some hyperarc should always
lead from a single vertex to another single vertex. Let us begin with the
generalisation of the traversal notions from standard graph theory, in which
sequentiality is maintaied, and which can, therefore, only lead to partial
concepts.’

Definition 10.14 Let H = (V, $)) be a directed hypergraph. A directed par-
tial walk of length n in 'H is an alternating sequence of vertices and hyperarcs
w0 = (vg, €1, V1, ..., Up_1, en, V) with v; €V for all 0 < i < mn and e; € § for
all 1 <11 < n, such that, for all 1 < i < n, it isv;_1 € *¢; and v; € ¢}. It
1s called a directed partial path of length n, if for all 1 < i < j < n it s
e; 7 ¢j. If it is further vy = vy, then w is called a directed partial circuit of
length n. Moreover, if n > 2 and v; # v for all 0 <7 < j < n, then w is
called a directed partial cycle.

Instead of recording a walk in full detail, i.e. including vertices and hyperarcs,
it is sufficient to write down the hyperarcs: w = (e1,¢es,...,¢,). Note that
this practise can lead to ambiguities if, for some 1 < ¢ < n and k > 2,
hyperarc ¢;_; k-preceeds e¢;. As we will see later on, this cannot be the case
with interpretations of explosion sets, and for this reason the abbreviation
is safe to use within this context. The defined notions are all partial in
the following sense: For every hyperarc ¢;, only two vertices are considered,
namely some v;_; € ®¢; and some v; € ef. A partial walk w at vertex v;_
continues over some hyperarc ¢; with v;_; € ®¢;, and immediately afterwards
another vertex v; is chosen from e as continuation. The remaining vertices
in ®e; \ {v;1} and e? \ {v;} are not taken into consideration. Note that the
standard notions of walk, path, circuit and cycle are obtained, if the walk
contains only standard edges, i.e. if deg™ (e;) = deg™(e;) = 1 for 1 < i < n.
In figure 10.5, the directed partial cycle, which is contained in the directed
hypergraph of figure 10.1, is emphasised.

6We shall not call these notions hyperwalks, hyperpaths etc. but retain the terminology
of standard graphs and rather explicitly call them partial walks, partial paths and so on.
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Figure 10.5: A directed hypergraph containing a partial cycle

It is apparent that the notion of a partial walk and its derivatives is
no more than an attempt of retaining familiar notions from standard graphs.
They do not extend to the additional expressiveness of hypergraphs in an ad-
equate manner. Let us review the fundamental problems that are involved.
Partial paths in hypergraphs, as generalisations of paths in standard graphs,
are alternating sequences of vertices and nodes. In traversing a partial path,
for each hyperedge taken, one of its terminal vertices is chosen as starting
point for the following step, and the previous starting point can be released.
It is evident that a sequential account of a traversal, which fans out to more
than two terminal vertices and funnels in from more than one initial vertex,
is impossible. This would already fail in the very simple case that a hyper-
arc has a single initial node and two terminal nodes. There are even more
problematic instances of hyperarcs, which have to be accounted for. Con-
sider, for example, the hyperarc ({v,w}, (7)), which is reached in a traversal
via the vertex v. Should a traversal have to end at this point or should it
also account for the possibility of reaching this dead end via w? We shall
opt for the latter requirement for our notion of total traversal. Moreover,
it should certainly be possible to connect other hyperarcs via the vertex w.
In summary, we want to develop a spreading traversal of hyperarcs, which
is capable of reversing from an initial vertex to other initial vertices of the
same hyperarc and vice versa. At the same time, just as a partial path can
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begin and end at any node, it should be possible to develop the traversal for
only a selection of the initial and terminal vertices of any hyperarc. Finally,
to retain at least a local sequentiality, a single vertex should be initial node
to at most one hyperarc and terminal node to at most one hyperarc and, at
the same time, any two hyperarcs must not have more than one vertex in
common.

We will first provide a top-down characterisation of the desired traversal,
which we call spread. This means that rather than describing, how a spread
is successively developed, we will characterise, what kind of directed hyper-
graph already constitutes a spread. A procedure for generating spreads will
be given afterwards. It is necessary to introduce a few auxiliary notions in
order to work up to the desired notion. Firstly, a notion of weak connected-
ness has to be introduced, which is a notion of connectedness that ignores
the directions of hyperarcs.

Definition 10.15 A directed hypergraph H = (V,$) is connected, if, for
every pair of vertices u and w, there is some n and an alternating sequence
of vertices and hyperedges v = (vg, e1,vV1, . .., Up_1, 8n, V) with v; € V' for all
0<i<nande; €% foralll <i <n, such that u = vy and w = v,, and,
foralll <1 <mn,itisvi_y €% and v; € ®¢}, and, for all1 <1< j<mn, it
is ¢; # ¢;. A maximally connected component of H is a connected subgraph
(V',$)') such that, for all verticesv € V\V' there is now € V' such that there
is a hyperarc e with {v,w} C *e*. A vertexv € V is a cut vertex, if the vertex
induced subgraph on V '\ {v} has more mazimally connected components than
the original graph.

By refering to the support of hyperarcs, their direction is ignored. Thereby
connections between vertices can also be traced via two initial nodes or two
terminal nodes of the same hyperarc. This notion of connectedness, therefore,
refers to paths in underlying undirected hypergraphs.

In a second step, we have to now narrow our attention to particular kinds
of connected directed hypergraphs, whose structure can accomodate spreads.

Definition 10.16 A connected directed hypergraph (V. $)) is called a directed
cut hypergraph, if it meets the following conditions:

1) every internal vertex is a cut vertex;
2) for every initial vertex v € V, it is deg™ (v) = 1;
3) for every terminal vertex v € V', it is deg™ (v) = 1;

4) for all hyperarcs e, f, it is |*e® N *f*| < 1.
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Figure 10.6: Two maximal strands of a directed hypergraph

A directed cut hypergraph must be connected, which means that its hyper-
arcs and vertices contained a single component. Moreover, removing any
internal vertex, i.e. any vertex, which is both initial and terminal vertex,
disconnects the directed cut hypergraph. Every internal vertex is, there-
fore, indispensible for the connectedness of the graph. For this reason, a
directed cut hypergraph cannot contain a partial cylce. The next two condi-
tions demand that every initial node and every terminal node of a directed
cut hypergraph connects to at most a single hyperarc, which means that no
weak connection of two hyperarcs can be traced over external nodes. The
inequalities are required to accomodate the trivial directed cut hypergraph
consisting only of a single vertex and no hyperarcs. The last condition pre-
vents that two hyperarcs share more than one vertex. Note that this is not
a consequence of the other conditions. A counterexample is a directed hy-
pergraph containing hyperarcs ({p},{q,r}) and ({q,r},{s}). Removing ¢
results in the removal of both hyperarcs, leaving the unconnected vertices
p,7,s. Removing r instead would also leave the hypergraph disconnected.
Hence both ¢ and r are cut vertices.

On the basis of this suitably well-behaved class of graphs, the following
definition finally introduces the desired notion.

Definition 10.17 A directed cut hypergraph H = (V, 9) is called a strand,
if, for every internal v € V, it is deg”(v) = deg®(v) = 1. It is called
a maximal strand in hypergraph H', if H C H' and there is no H" with
H CH' CH that is a strand.

In a general directed cut hypergraph, the indegree and outdegree of any
internal node v is not limited beyond its defining condition that it must

neither be deg™ (v) = 0 nor deg®(v) = 0. Hence, any internal node of a
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directed cut hypergraph can be a secession vertex, from which two or more
hyperarcs depart, or a concession vertex, into which two or more hyperarcs
lead. This is prohibited in a strand, as any internal vertex must not only be
incident with exactly two hyperarcs, but it must be so as initial vertex in one
and as terminal vertex in the other. Hence, a hyperarc ¢ of a strand can, in
fact, connect to as many as deg” (e) + deg™ (e) different hyperarcs. Whereas
there is always just a single vertex to keep track of after each step in a
partial traversal of a hypergraph, a total traversal of a hypergraph requires
significantly more effort and bookkeeping, as becomes evident in the following
lemma.

Lemma 10.18 Let H = (V. §) be a directed hypergraph. A subgraph H' is
a maximal strand in H, if and only if it can be constructed by the following
procedure.

o [nitialisation: For some w € V', let

Vb - {’LU},
$Ho = ®;

[0 = {’UJ},
TO = {’UJ}

e [teration: If possible, select one of the following options:

1) For some v € T; and some ¢ € H \ 9; such that v € *¢ and
Vin<e* = {v}, let
Vier = ViU e,
Hit1 = H; U {e},
Livi=1; U (%e\ {v}),
Ton = (T\ {0}) Ue"
2) For some v € I; and some ¢ € § \ 9; such that v € ¢* and
Vin<e* = {v}, let
Vigr = ViU ®e®,
Hit1 = H; U {e},
i1 = (I; \ {v}) U*®e,
Tipr =T; U (e \ {v}).

If k be the natural number, for which none of the options is possible, then let
H' = (Vi Hr)-

182



PROOF: For “«<"” we observe that the procedure generates a family of sub-
graphs (V;, 9:)o<i<x of H, in which each (V;, $;) C (Vii1,9i41) for 0 <i < k.
The sets I; and T; contain all the initial vertices and all the terminal vertices
of the respective subgraph. A vertex v € I; can be used to extend the sub-
graph by adding a hyperedge, which has v as a terminal vertex; similarly, a
vertex v € T; can be used to extend the subgraph by adding a hyperedge,
which has v as an initial vertex. In the initialisation step an arbitrary start-
ing vertex is chosen, which is both initial and terminal vertex for puspose of
the development of the subgraph in both forward and backward directions.
The iteration step is repeated as long as there are fresh vertices and hyper-
arcs that do not connect to the present graph in a second vertex. In each
step of the iteration one of the alternatives 1) and 2) has to be selected. The
difference is that in case 1), the chosen vertex is used to add a hyperarc, of
which it is an initial vertex, whereas in case 2) it is a terminal vertex of the
chosen hyperarc. The considered hyperarc ¢ is added to $;, and its support
*¢® is added to Vj, thereby extending the subgraph. The terminal vertices
of ¢ are added to T;, as any hyperarc, which has one of those vertices as
initial nodes, succeeds ¢ and can be selected in a following iteration step; in
a similar manner, the initial vertices of ¢ are added to I;, thereby allowing
all hyperarcs, which precede ¢, to be added at a later stage. In any case,
the vertex v has to be removed from that set, either I; or T;, from which it
was selected at the outset of the iteration step, as it has in this very step
fulfilled its role as terminal vertex in case 1) or as initial vertex in case 2).
Since v thereby fulfils its role of internal node connecting the new hyperarc
¢, it must also be exempt from being added to the set of terminal nodes or,
respectively, initial nodes. Thereby, each vertex v is used at most once as
initial vertex in some hyperarc and at most once as terminal vertex in some
other hyperarc, which guarantees deg™ (v) < 1 and deg™ (v) < 1. The con-
struction maintains I; as the set of initial vertices of (V;, ;) and T; as the
set of its terminal vertices. Hence, every vertex v € V; \ (I; UT;) must be
an internal vertex of (V;, $);). Neither present in I; and T;, it must be initial
node of some hyperarc and at the same time terminal node of another, which
renders deg™ (v) > 1 and deg™ (v) > 1. With the added condition above, this
vields deg™ (v) = deg™ (v) = 1 for all internal nodes v. The condition that
ViN*e® = {v} further ensures that a selected hyperarc does not accidentally
connect to the hitherto constructed subgraph in any other node, and there-
fore guarantees that v is a cut vertex. This already implies that |*e*N*f*| < 1
for all f € $;. Hence, for 0 < i < k the procedure traces a strand in H.

If H' = (Vi, $x) is not the entirety of H and, hence, trivially maximal,
and if it is not a maximally connected component of H, then there must be
some hyperarc e of H, which is not included in £, but for which *e*NV;, # ().
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We consider the various possibilities of how e and H’ can be connected.

e If *e N7}, # (), then another step 1) of the procedure would include e.
As the procedure has terminated, this case it not possible.

o If e* NT, # (), then two hyperarcs of H concede on the same vertex
v € ¢* N Ty. Hence, it is deg™ (v) > 1. Consequently, including e would
violate definition 10.16 3).

o If e* N I # (), then another step 2) of the procedure would include e.
As the procedure has terminated, this case it not possible.

e If e N [}, # (), then two hyperarcs of H secede from the same vertex
v € *eN I;. Hence, it is deg™ (v) > 1. Consequently, including e would
violate definition 10.16 2).

e Otherwise, it must be ®e®* N (V \ ([ UT})) # 0. Let v be a vertex
of that intersection. As v is an internal vertex of the strand H’, it
must be deg” (v) = deg®(v) = 1 with respect to it. But in H the
hyperarc ¢ also has v as either initial or terminal node, which renders
either deg™(v) > 1 or deg™ (v) > 1 with respect to H. Consequently,
including e would violate definition 10.17.

Therefore, H' is a maximal strand in H.

For “=7 the given strand H’ is traced. We initialise the procedure with
an arbitrary vertex w of H'. Each iteration step adds some hyperarc of H’'.
Since H' is a strand, each internal vertex v is incident with two hyperarcs,
in one it is initial and in the other one it is terminal. In the first case, the
corresponding hyperarc can be added to $; by option 2), in the second case
it can be added by option 1). In either case, the vertices of the new hyperarc
extend the appropriate sets, its initial vertices are added to [, its terminal
vertices to T; and all of them to V;. The vertex v is removed appropriately
from the new sets, as it has been used up in the trace. It is safe to do
this, because two hyperarcs of H' can share at most a single vertex, and,
hence, the addition of a hyperarc can never connect back to a vertex that
has already been visited. In any case, the new iteration step has extended the
trace to another hyperarc of H' and its respective vertices. The procedure
continues until all the hyperarcs of H' have been added. In this case, I}
contains the initial vertices of H’, and T} contains its terminal vertices. As
‘H' is a maximal strand in H, there are no hyperedges in ‘H that could be
added to H' without destroying some property of strands. As the iteration
step can only add hyperarcs that maintain the necessary properties, it must
terminate as soon as all of H’ has been traced. O
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Compared to the notion of a path in standard graphs and its generalisation
to a partial path in hypergraphs, the notion of a strand, which corresponds
to a total traversal of a hypergraph, is somewhat involved. This is, of course,
due to the fact that hyperarcs have a much richer structure than standard
arcs. This extra structure requires that the state of a traversal is not only a
single vertex but a set of vertices, each of which can connect to yet another
hyperarc, which adds any number of new vertices to the state, while only
removing a single one.

We will see in the following chapter that maximal strands are the hy-
pergraphical correspondence to germinated connexion sets. As an entire
explosion set generally contains several germinated connexion sets, which
have non-empty intersections, explosion sets will not correspond to maximal
strands, but only to the more general directed cut hypergraphs.
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Chapter 11

Explosion Sets as Hypergraphs

In this chapter, we will consider the specifics of the hypergraph interpretation
of explosion sets and their connexion sets. It will be shown that connexion
sets are represented by maximal strands and explosion sets to general directed
cut hypergraphs. Particular consideration will be given to the question of
how different RK-derivations of the same sequent can be obtained from such
an interpretation. We will further demonstrate how to construct a directed
cut hypergraph directly from a given sequent, which is, of course, simply a
different if instructive perspective on the explosion procedure.

11.1 Interpreting Explosion Sets

The elements of the interpretation of explosion sets, which shall be employed,
have already been briefly indicated in the previous chapter. At this point, we
will provide a more detailed demonstration and give a number of examples.

The key to the interpretation is to relate a sequence of atomic formulae

v to a set 7 =l {7}- Recall the the set V of occurrence variables is the

union of the set of proper occurrence variables O, which are the variables
replacing propositional variables, and the set of proxy variables P, which are
introduced by applications of (Prx) in the explosion procedure. As all the
elementary structural sequents of an explosion set contain only occurrence
variables, all of the formulae of v are occurrence variables and, therefore,
distinct from one another. As a consequence, none of these variables are
identified in 7, and we have len(y) = |y|. This is an important property,
since the identification of formulae within a set-theoretic framework would
result in the loss of important structure. The sequent & = [y — ¢] will be
interpreted by the tuple £ = (7, 5\) All of the tuples corresponding to the
ESSs of an explosion set will then make up a binary relation on sets of those

187



occurrence variables, which do occur in the explosion set. We can then define
the interpretation of an explosion set as follows.

Definition 11.1 For an explosion set (€ = {v; — 0;};,w), the relational
interpretation thereof is the rooted directed hypergraph (Vg, €, w), where

~ def o~
¢ = {(,0)}
Ve = VﬂUz(:}/\ZUB\Z)

The relational interpretation of the occurrence instance S of a sequent is the
relational interpretation of the explosion set (€z,wg).

Proposition 11.2 Let S and S' be two different occurrence instances of the
sequent S. Then the relational interpretations ofS and S' are isomorphic.

PROOF: Let (€5, wg) and (Eg,wg) be the explosion sets of S and &', As
each occurrence of a propositional variable a in § is mapped to a unique
occurrence variable a; in S and a; in S, there is a permutation 7 : O — O
such that ST = &'. Then ¢ 37 = €5 and €g are explosion sets of the same
occurrence instance. According to proposition 6.12, there is a renaming
o : P — P such that €z70 = &5, Of course, it is especially o(7(wg)) = wg.
AsV = O P, the comp081t10n o o7 is a permutation of V. Hence, the
relational interpretations of S and S are isomorphic. (|

The fact that the explosion sets of different occurrence instances have iso-
morphic relational interpretations allows the following definition.

Definition 11.3 Let S be an occurrence instance of a sequent S with restora-
tion function p, and let (V,$,w) be the relational interpretation of S. Then
the relational interpretation of S is the labelled rooted directed hypergraph
(V. $9,w,p).

Recall that the restoration function p : O — A maps an occurrence instance
of a sequent back to the sequent itself, that is Sp = S. As, for a relational
interpretation, it must be V' C V, the function p, trivially extended over
Y = O W P, assigns a propositional variable a as label to those vertices,
which are proper occurrence variables representing occurrences of a, and no
labels to proxy variables.

Of course, it is also possible to use other labelling functions, such as the
identity function idp on the set of occurrence variables, trivially extended
to V, if the proper occurrence variables should be displayed as labels, or the
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Figure 11.1: The relational interpretation of a — a V b

identity function 7dp on the set of proxy variables, again trivially extended
to V, if the vertices should be labelled only with proxy variables. Another
labelling function that will become very relevant shortly is the inverse of the
occurrence mapping 7 for an occurrence instance S.

As an example, consider the sequent S = [a — a V b] and its occurrence
instance S = [a; — ag V by]. The explosion procedure yields the following
explosion set:

& = {far — wl,fw — pl,[p — az, by}

The binary relation on P(V) corresponding to € is:

¢ = {({m}, {w}), ({w} {p}), ({p}. {az, b:})}

The relational interpretation of & is the labelled hypergraph (Vg, @,w, o),
where Vi = {a1,w,p,a,0:} and p = {a; — a,az +— a,by — b}. See fig-
ure 11.1 for the representation of this hypergraph, and recall the convention
that the watershed proxy is emphasised by a grey vertex.

The example shows how the commutativity of positive occurrences of the
disjunction is directly reflected in the interpretation. The positive occurrence
of the disjunction as Vb in the succedent is represented by the ESS p — as, b;.
Both this ESS and the ESS p — by, as, which would be obtained by an
explosion of a; — by \V ay, have the same interpretation ({p}, {as,b;}).! This
property is due to the fact that the succedent by, as is a permutation of as, by,
which are both interpreted by the same set {ay, b1 }. In the same manner, our
interpretation results in the inherent commutativity of negative occurrences
of the conjunction.

Consider the sequent 7 = [a,b — a & b] as an example for a positive
occurrence of the conjunction. The explosion set of T is:

'As always, this is understood up to renaming of proxy variables. If necessary, a
permutation of proxy variables guarentees that the same proxy variable p is used for the
detachment of as V by and by V as.
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Figure 11.2: The relational interpretation of a,b — a & b

a a

§ = {[abbl - UL [U - Q]> [q - a2]> [q - b2]}

The following relation is the relational interpretation of §:

§ = {({av b} fo}). (v} a}): (ad, {azd). (g} {021))

The relational interpretation of the explosion set § is the graph (Vx, §, v, (),
where Vz = {a1,b1,w,p, a2,b1} and ¢ = {a1 — a,a2 — a,b; — b, by — b}.
Figure 11.2 depicts this hypergraph. The conjunction is represented in §
by the two ESSs ¢ — az and ¢ — by. In §, these ESSs are interpreted
by the pairs ({p}, {a2}) and ({p}, {b2}). Since F is also a set, the order, in
which these pairs occur, is of no consequence. Hence, the occurrence instance
ar, by — by & ap, in which the order of ay and by is reversed, has the same
relational interpretation as 7.

A similar argument gives us commutativity of negative occurrences of
the disjunction. Hence, in addition to the desired properties, the proposed
interpretation of explosion sets gives identical representations for sequents
that differ only in the order of the immediate subformulae of disjunctive and
conjunctive formulae.

11.2 Connexion Sets and Strands

Having established that the relational interpretation of an explosion set of
an explosion set corresponds to a logical tomograph, we will now consider
particular subsets of the explosion set of a sequent, namely germinated con-
nexion sets of chapter 9, and investigate their relational interpretations. The
connexion sets of chapter 8 differ from those only the manner, in which the
latter are to be developed, as determined by an already given derivation, and
hence are merely a special case.

Recall that, given an explosion set (&, w), elementary structural sequents,
which are connected via proxy variables, can be consecutively selected from
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¢, starting at the watershed proxy w. This procedure yields a subset X C &,
in which any two ESSs share at most a single proxy variable. Such a subset
of & is called a connexion set. The procedure for constructing connexion sets
resembles that for generating a total traversal of a hypergraph.

Proposition 11.4 Let (€ w) be an explosion set and X be a germinated con-
nexion set thereof. Then the relational interpretation (Vz, X, w) is a mazimal
strand in the relational interpretation (Vg, €, w).

PRrOOF: Consider the construction of a germinated connexion set of defini-
tion 9.4. For the initialisation of the procedure, Xy = {[0 — w],[w — 7]},

the relational interpretation Xy = (Vg , %0, w) is obviously a strand. The set
of germs is initialised to Gy = {7y} U {d}, all of which, as branching proxies
or proper occurrence variables, are external vertices in X,. For the iteration
step, we assume that X; is a strand. For one of the external vertices p of
G, some ESS & is selected, in which p occurs as base proxy. In fact, p is
an internal vertex of X1, as a base proxy occurs in the antecedent of an
ESS, if its branching proxy occurs in the succedent of another ESS, and vice
versa. We obtain the relational interpretation Xj; = (V3 U*E®, X;U{E}, w).
Although the construction only demands G; N {€]} # (), the intersection is
always a singleton, as an ESSs from an explosion set at most shares a single
proxy variable with any other ESS, and each proper occurrence variable only
has a single occurrence in one ESS. Because of this, it is even Vg neg* = {p}.

This establishes properties 1) and 4) of definition 10.16 for the new hyper-
graph. For 2) and 3), we observe that the external vertices of X, are given
by the set Gy1 = (G;U*E*)\{p}, all of which are branching proxies or proper
occurrence variables. As these properties held for all vertices in GG; and, inde-
pendently, hold for all vertices in *£®, they also hold for all external vertices
of Xj,1. As p is no longer external to X;, 1, it is now deg™ (p) = deg™(p) = 1
Hence, &, is a strand. Finally, the termination condition of the construc-
tion of a germinated connexion set is GNP = (), i.e. G} contains only proper
occurrence variables, each of which occurs exactly in a single ESS already in-
cluded in the germinated connexion set. Consequently, no other ESS can be
added and, correspondingly, no other hyperarc can be added to (Vz, X, w).

Hence, it is maximal in (Vg, @, w) . d

Corollary 11.5 Let (€ w) be an explosion set and X be a germinated con-
nexion set thereof. Then all of the internal vertices of its relational inter-
pretation (Vz, X, w) are elements of P, and all of its external vertices are
elements of O.
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Figure 11.3: The relational interpretation of a D b,b D¢ —a D¢

PROOF: The termination condition of the procedure that generates a germi-
nated connexion set is G; NP =0. AsG; CV = O WP, it must be G; C O.
Consequently, all the external vertices in (Vg, X, w), which are all elements
of GG;, must be elements of O. At the same time, all the elements that are
ever removed from the set of germs during the construction of X are proxy
variables, i.e. elements of P. As we saw above, those make up all of the
internal vertices of (Vz, X, w). O

This corollary has a bearing on the relational interpretation of a sequent S,
which, according to definition 11.3, is a labelled rooted directed hypergraph
(V,$,w, p), where p is the restoration function O — A. For, if, in every
maximal strand in that hypergraph, all the external vertices are elements of
O and all the internal vertices are elements ogf P, then p labels all of the
external vertices of that hypergraph (and only those), because every vertex
of it belongs to at least one maximal strand.

Just as an explosion set encompasses a family of connexion sets, the
relational interpretation thereof encompasses a family of maximal strands.
As an example, let us consider the sequent S = [a D b,b D ¢ — a D ¢| and
its occurrence instance S = [a1 D by,by D¢y — as D cs). Its explosion set is:

qu{ (= p,ail, [y = 9], [= 4, b2], [er — d, }

[pvq - w]? [w Hp]v [p - a2vc2]

The relational interpretation of € is presented in figure 11.3. It is easy to
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Figure 11.4: The four maximal strands of a D b,b Dc—a D¢

see that four different connexion sets can be germinated from the watershed
proxy w. They are:

X5, = {[=p il [= ¢,ba [p. g — w], [w— pl, [p — az, 2]}
35 ={] I [= ¢, ba], [p, g = w), [w — pl, [p — as, 2] }
={I | [er = 4, [p, g — wl, [w — pl, [p — as, 2]}
= {[=p,ail,[er = dl, [p, g = w], [w — p|, [p = as, 5] }

by —p
by —p

Figure 11.4 represents the four maximal strands, which correspond to these
connexion sets. The two choices, which are involved in the construction of
the germinated connexion sets giving rise to the four maximal strands, are
clearly visible as two pairs of conceding hyperarcs.

Proposition 11.4 has already established the most general correspondence
between germinated connexion sets and maximal strands. The case of con-
nexion sets, which correspond to particular sequents occurring in a bottom-up
derivation of some sequent, is merely a special case.

Corollary 11.6 Let ENbe the occurrence instance of a RK-derwation of g,
and let & = (Sy,...,S) be a branch of = with Sy = S. Let (&, w) be
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an explosion set ofg with ocurrence mapping w. Let X, be the connez-

ion set corresponding to S;. Then the family of relational interpretations
{(Vz. » X, w) fo<ick s a family of strands in the relational interpretation

%3 @, w), such that, for 0 <i <k, it is V@G e V@G - and %671- C %67“1.

PROOF: We construct a germinating connexion set by following the branch
S upward. Sequent Sy corresponds to the initialisation of the construction.
For each step, it has to checked, whether S; has main formula C; in =. If
it does, then we select an ESS &, which has 7(C;) as base proxy and 7(D;)
as side proxy for a side formula D; in §i+1, and add it to Xg;. Recall
that, for each sequent in &, proposition 8.10 guarantees that such a selection
results in a connexion set. Otherwise, we let %6 i+1 = X 2 In any case,
it is Xs; € X@,i+1, and, thereby, also %62 C %6 i+1, which further implies
V;EW - V%,Z_H. As a consequence of the preceding proposition, all of the
relational interpretations of this construction are strands. O]

To every branch of a derivation = corresponds a family of strands ordered
by inclusion. The topmost sequent in that branch corresponds to the largest
strand of that family.

The following corollary concerning the relational interpretation corre-
sponding to individual sequents occurring in RK-derivations, is a trivial con-
sequence of the preceding corollary.

Corollary 11.7 Let = be the occurrence instance of a RK-derwation of S
and let T be a sequent occurring in =. Let (€ w) be an explosion set ofS
with occurrence mapping w. Let Xz be the connexion set corresponding to T.

Then (Vge%,if,w) is a strand in (V@,@,wy

PROOF: Simply consider that relational interpretation of the construction
above, which corresponds to 7" in the development of the family of strands
corresponding to the branch in = that contains 7. 0

These results are indeed important, as they show that the relational interpre-
tation of the explosion set of a sequent S already contains all the relational
interpretations of all the sequents, which can occur in any RK-derivation
thereof. Note, however, that occurrence instances have to be considered, be-
cause the construction of connexion sets has been formulated with the help of
occurrence mappings w. These mappings are only functions, if all formulae,
which occur in a sequent, are distinct. After the constructions have been

2Consequently, a sequent, which is the premiss of an exchange rule, and its conclusion
are interpreted by the same strand.
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performed, it is no longer necessary to use occurrence instances. Hence, we
can revert to standard formulae, sequents and derivations by applying the
restoration function p to the involved entities.

Bearing this in mind, we consider the following derivation = of the sequent
a D bbDc— aDc, of which the relational interpretation has already been
given in figure 11.3.

a— a,b, c a,b—cb ca,b—c
7 (Dsm) ) Y ) Y (DAm)
—a,b,a Dc a,c— a,c bDca,b—c
(XS) ————— (OSw) (XA)
—a,aDcb c—a,aDc a,b>Dc,b—c
(xXs) —————(X9) (XA)
—aDca,b c—adca a,bb Dc—c
(DAL) (DSm)
bDc—aDca bbDc—aDec
(DAL)

aD>bbDc—aDec

For the moment we are not interested that each of the branches of = could be
closed off by an application of (ax*). Instead, we want to consider how each
of its four branches gives rise to a family of strands. Instead of =, we consider
the connexion tree of the occurrence instance a; D by, by D ¢ — as D ¢o:

{as, 7 — e} {—=¢q¢,b} {a—q}

- = (OSm (DAL)
L (XS) M (5Sm) L (XA)
L (XS) {7} (XS) L (XA)
{—> q, 52} {01 - Q} {a2,r - 02}
(DAR) T oo (OSm)
{—>p,a1} { 1 —>p} (5A)

{p.¢ > wiu{w—r}
In exploring the four branches of this derivation, the relational interpreta-
tions corresponding to its intermediate sequents are obtained by adding the
interpretations of the ESSs as they are encountered. Hence, from the four
branches of =, families of strands can be generated. They are depicted in
figure 11.5 with the family of strands corresponding to the respective branch
developed from left to right. In each case, the initial hypergraph consists
of the two hyperarcs connected to the root w. Similar explorations can be
generated for any RK-derivation of the sequent a D b,b D ¢ — a D c.

Just as each connexion set, which can be constructed along the branch
of any derivation of some sequent, is always contained in the explosion set
of that sequent, so is the maximal strand corresponding to the connexion
set always contained in the relational interpretation of the explosion set. All
the maximal strands share the common root w. It is in this sense that the
directed hypergraph, which is the relational interpretation of an explosion
set, contains every branch of every possible derivation of its generating se-
quent. Hence, the relational interpretation of an explosion set contains all
the information that is already contained in the explosion set itself.
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Leftmost branch:

N >/ >/
Second to left branch:
Second to right branch:

T 1 -7 ol
Rightmost branch:

S

Figure 11.5: Exploring the four branches of =
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Chapter 12

Decision Procedures on
Hypergraphs

Since the relational interpretation of a sequent is obtained from the explosion
set of that sequent, the ideas on decision procedures for explosion sets of
chapter 9 should carry over to hypergraphs in a straightforward manner.
Hence, we will introduce bridging actions on strands as a corespondence of
cut-actions on germinated connexion sets and examine the particularities of
this correspondence. Bridging actions on strands will generate new hyperarcs
that relate initial nodes of the strand with its terminal nodes, and the most
simple refutation procedure compares the labels of the initial vertices and
the terminal vertices of these hyperarcs.

However, there is a more elegant approach to the decision problem for
relational interpretations of explosion sets that does not resort to a compar-
ison of labels. This approach instead focusses on the identification of partial
cycles. As the hypergraphs that are obtained as relational interpretations
are cut hypergraphs, strands cannot contain such cycles. For this reason,
co-identity arcs have to be systematically added to a given hypergraph. A
co-identity arc is a hyperarc that connects the terminal node and the initial
node of matching labels within such a hypergraph. The co-identity arcs that
have to be added to a given relational interpretation will be considered as a
new sort of hyperarcs, which is always explicitly considered in addition to an
already given relational interpretation of a sequent.

12.1 Bridging Actions on Strands

The notion of cut-actions on connexion sets was crucial for the suggested
refutation and decision procedures described in chapter 9. Recall that cut-
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actions are derivations using only proxy cut rule and exchange rules, which
derive from a given connexion set Xg a sequent U that is related to the leaf
U of the branch & of a given RK-derivation of a sequent & by means of the
restoration function p, i.e. p(U) = U. It was established in proposition 9.6
that every cut-action on a gerimated connexion set generates such a leaf. The
key to the refutation procedure was the observation made in the corollary of
that lemma, which states that, if the restoration of that leaf is not an instance
of the RK-axiom (ax*), then S is not provable in RK. Now, according to
proposition 11.4, the relational interpretation of a germinated connexion set
is a maximal strand. Hence, the correspondence to the refutation condition
mentioned above is easy to give, at least intuitively.

A cut-action on a connexion set, i.e. a set of ESSs, successively applies
proxy cuts, thereby yielding new sequents. As in the case of connexion sets,
the contextual formulae are always atomic, the rule (Prx), as used in cut-
actions, always has this form:

71— 0L,p  p,Y2 — 0o
71,72 — 01, 02

(Prx)

Hence, a proxy cut collects the atomic formulae in the antecedents and succe-
dents of its two premises, apart from the proxy variable that is the cut for-
mula, into a single antecedent and a single succedent of the conclusion. In
general, the conclusion is not an ESS; as it may contain multiple atoms in
both antecedent and succedent.

A strand, the relational interpretation of a connexion set, is a cut graph.
That is, every internal vertex of the strand has the property that removing
it, and thereby the hyperarcs it is incident with, renders the remaining hy-
pergraph disconnected. Now, recall that the internal vertices correspond to
the proxy variables in the ESSs in a connexion set. The first proxy cut of
a cut-action produces from two ESSs, which share a proxy variable, a new
atomic sequent. Those two ESSs play no further role in the cut-action, as
they have already been used. Correspondingly, the first step of what shall
correspond to a cut-action on a strand should remove a cut vertex and the
hyperarcs it is incident with. The newly disconnected hypergraph has new
terminal vertices. They are those vertices that used to be the initial nodes
of that hyperarc, which had the cut vertex as its terminal node. The hyper-
graph also has new initial vertices, namely those vertices that used to be the
terminal nodes of the other hyperarc, which had the cut vertex as its initial
node. In order to reconnect the hypergraph resulting from the removal of
the cut vertex and the two hypergraphs, a new hyperarc has to be added
that restores the new external vertices to internal vertices, i.e. that has the
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new terminal vertices as its initial vertices and the new initial vertices as its
terminal vertices. The new hyperarc obviously corresponds to the conclusion
of the proxy cut of two ESSs. This process can be iterated by removing other
cut vertices in this manner. Formally, the procedure that was sketched out
above can be defined formally by means of the following notion.

Definition 12.1 Let (V,$) be a directed hypergraph. Let v be a cut vertex
thereof, and let ¢ be the preceding hyperarc with ¢* = {v} and § be the suc-
ceeding hyperarc with *f = {v}. A bridged cut on v is the hypergraph (V', $')
such that V! =V \{v} and ' = (9 \ {e,f}) U{(%e,f*)}. The hyperarc (*e,§*)
is called the bridge of the bridged cut.

While a cut simply removes the vertex v and yields the vertex induced sub-
graph on V'\ {v}, a bridged cut further adds a hyperarc that connects the
former initial vertices of ¢ to the former terminal vertices of §.

Bridged cuts can be used to bridge cut vertices in arbitrary directed
hypergraphs. However, for the purpose of iterating bridged cuts, it is useful
to consider hypergraphs that are strands. In this case bridged cuts can be
iterated along the entire strand as follows.

Definition 12.2 Let (V,$)) be a strand. The bridging action on the strand
is any sequence of bridged cuts developed as follows:

e [nitialisation: Let (Viy, o) be the original strand.

o [teration: If (V;, 9;) has an internal vertex v, then let (Viiy, $Hir1) be
the bridged cut on v; otherwise terminate the procedure.

The final (Vi, 9x), which has no internal vertez left, is called the result of
the bridging action.

As it is not specified, which cut vertex should be chosen at any stage, the
procedure is non-deterministic. This is not a difficulty, however, as we shall
see promptly.

For example, consider figure 12.1, which shows three possible bridging
actions for a strand.! The strand itself, consisting of four hyperarcs, is de-
picted in black, the successive bridged cuts are depicted in progressively
lighter shades of grey. Every bridge replaces the vertex and the two hyper-
arcs immediately above it in the corresponding part of the illustration. In
the bottommost example, the first two bridged cuts are independent of one

I'The strand consists mostly of S-arcs. Of course, this is not a typical case, but it serves
the clarity of the illustration.
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Figure 12.1: Different bridging actions on the same strand

another and could occur in any order. In each case there are exactly three
bridged cuts, the result of the bridging actions is in all cases the same hy-
perarc, and its vertices are the external vertices of the original strand. The
following lemma generalises these important properties.

Lemma 12.3 Let H = (V,$) be a strand, and let (Vi, Hx) and (V}, ;) be
results of two bridging actions on it. Then the following holds:

1) k=1

2) 9. = 9, are singletons containing a hyperarc, which has the initial
vertices of H as its initial vertices and the terminal vertices of H as its
terminal vertices;

3) Vi =V} both contain the external vertices of H.

PRrROOF: Let H have m internal vertices. A strand is a connected directed cut
hypergraph having certain properties. One property is that every external
vertex is incident with exactly one hyperarc. Furthermore, for every internal
vertex v, it is deg” (v) = deg*(v) = 1. Hence, no pairs of hyperarcs of H
can be seceding or conceding. Consequently, two hyperarcs can at most be
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succeeding on a single internal vertex. Hence, H must contain m + 1 hyper-
arcs. Now, in one bridging action each bridging cut will remove one of the m
internal vertices, say v;, and its preceding and succeeding hyperarcs, say e;
and f;. Each bridge (®e;, f?), however, leaves the status of the initial vertices
of ¢; and of the terminal vertices of f; within the remaining hypergraph un-
changed: vertices that were internal before the bridging cut remain internal,
and those that were external before remain external. Regardless of the order
in which the internal vertices are cut and bridged in the bridging action, there
will always be exactly m bridging cuts, i.e. kK = [ = m. Furthermore, each of
them removing two hyperarcs and adding a new one. Consequently, after m
bridging cuts, the originally m + 1 hyperarcs result in a single hyperarc in
$Hm- Moreover, since all of the internal vertices of H have been removed, only
its external vertices remain in V,,,. Finally, the single hyperarc then connects
all of the initial vertices of the strand to all of its terminal ones. U

Since the result of a bridging action is a hypergraph consisting of a single
hyperarc and vertices that are incident with it, the hyperarc itself can also
be called the result of the bridging action.

A cut-action on a connexion set results in a sequent that is the leaf of a
RK-derivation, and the test whether that leaf is an instance of (ax*) or not is
the basis for the refutation procedure in chapter 9. The result of a bridging
action is a single hyperarc. If the strand is a maximal strand in a relational
interpretation of an explosion set, then the vertices of this resulting hyperarc
are all elements of O. If the restoration function p is used as labelling,
then those vertices have atomic formulae as their labels. This allows us to
formulate the result sketched out in the beginning of this section.

Proposition 12.4 Let H = (V, 9, w, p) be the relational interpretation of a
sequent §. Let e be the hyperarc, which is the result of the bridging action
on some mazimal strand of H. If p(*e) N p(e*) = 0, then S does not have a
RK-proof.

ProOOF: If H is the relational interpretation of a sequent S, then (V| 9, w)
is the relational interpretation of the corresponding occurrence instance &
and, consequently, of an explosion set (& w). Let X C & be some germi-

nated connexion set thereof. Let further p(U) be the restoration of the end
sequent of the cut-action C(X). According to corollary 9.7, if p(i) is not
an instance of (ax*), then § does not have a RK-proof. Now, according to
proposition 11.4, the relational interpretation of X is a maximal strand in
H. Then the result of the bridging action, e, is the relational interpretation

of U, because each step in the cut-action can be matched by a bridged cut
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removing the vertex corresponding to the proxy variable that is cut and the
hyperarcs corresponding to the premises of the cut. Hence, the initial ver-
tices of e correspond to the proper occurrence variables in the antecedent of
U and, correspondingly, its terminal vertices correspond to the proper occur-
rence variables in the succedent of Y. If p(U) is not an instance of (ax*), then
there is no propositional atom, which occurs both in its antecedent and in its
succedent. The corresponding condition in terms of the result of the bridging
action, the hyperarc e, is that none of its initial and terminal vertices bear
the same label, i.e. p(®e) N p(e®) = 0. O

Following the remarks on a refutation procedure for explosion sets and, in
particular, defition 9.8, a refutation procedure for relational interpretations
of sequents can be given as follows:

Definition 12.5 Let (V, 9, w, p) be the relational interpretation of a sequent
S, and let N be the set of internal vertices thereof. The refutation procedure
for S is given by the following algorithm.

e [nitialisation: Let

Vo = {nh U {w} U {a},
90 = {3, {w}), {w}.9)},

EO = {[7]} U {[5]};
Io={7}\ N,
Ty= {4\ V.

o [teration: While E; NN # 0, select a hyperarc ¢ € $\ $H; such that
v e B, N%e® and let
V;l-‘,—l = ‘/z U .e.;
Dip1 = Hi U {e},
B = (E;U %)\ {v},
Ii-l-l = ]ZU (.Q\N),
Tiv1 =T;U(e*\ N).
Let k be the number such that E, "N = 0. If p(Iy) N p(T) = 0, then
reject S on the basis of the counterexample (Vi, 1), otherwise restart with

the initialisation step.
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Figure 12.2: The results of the bridging actions on a & b — a & b

The procedure generates a family of strands (V;, 9;)1<i<k, the last of which
contains as external vertices only external vertices of the relational interpre-
tation of S.2 Set E; contains all of the external vertices of the corresponding
strand, including those that are internal to the relational interpretation of
S. Sets I; and T; collect all of the initial and, respectively, terminal nodes of
the current strand that are also external to the relational interpretation of S.
Consequently, I, and T}, are the initial and terminal vertices of the maximal
strand therein. But then, the result of any bridging action on (Vj, ) is
the hyperarc (I, T)). According to the preceding proposition 12.4, S does
not have a RK-proof, if p(®¢) N p(e*) = 0 for the result ¢ of the bridging
action. In this case, this corresponds to the condition p(Ix) N p(Ty) = 0
of the procedure. If the condition is not met, this merely means that the
attempted refutation has failed for the generated maximal strand, whereas
another maximal strand of the relational interpretation of S might still refute
the provability of S.

See figure 12.2 for an example of the sequent a&b — a&b, whose relational
interpretation has two maximal strands. For both of these strands, the result
of the bridging action is also displayed in light grey. One of these hyperarcs
has initial vertices with labels a and b and a terminal vertex with label a,
the other one has the same initial vertices and a terminal vertex with label b.
For both of these hyperarcs, the condition of the refutation procedure fails.
Consequently, the refutation procedure on the relational interpretation will
fail to refute the provability of a & b — a & b in RK.

As we remarked in section 9.3, a decision procedure can be obtained by
first generating all possible maximal strands of a given relational interpreta-
tion of a sequent & and then checking the crucial property for each of those
strands, rejecting the provability of S as soon as one of the maximal strands
has that property and confirming its provability if none of them has that

2Compare this procedure to that of lemma 10.18, but bear in mind that sets I; and T}
serve different purposes in the two procedures.
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property. In the example of figure 12.2, such a decision procedure would
obviously confirm the provability of a & b — a & b, because, as we have just
seen, both strands fail the refutation procedure.

These procedures were designed to closely mimic the corresponding pro-
cedures for explosion sets. The crucial property in view of refutability and
decidability of a sequent is the relation of the labels of the initial and termi-
nal vertices of the maximal strands in its relational interpretation. If there is
a single maximal strand, in which the intersection of the set of labels of the
initial vertices and the set of labels of the terminal vertices is empty, then
the sequent is not provable. Based on these observations, a more elegant
approach can be presented in the following section.

12.2 Partial Cycles and Co-Identity Arcs

Instead of unraveling the maximal strands of a hypergraph and comparing
the labels of its external vertices, it would be preferable to refute or de-
cide the provability of a sequent based on some property of the structure
of the hypergraph. However, the labels of the external vertices contain es-
sential information about their identity in view of the sequent, from which
the hypergraph was obtained. This identification is given by means of the
labelling function p, which is originally used to restore the disambiguation of
propositional variables into occurrence instances. Recall that the unique rep-
resentation of occurrences of porpositional atoms was of crucial importance
for an adequate treatment of explosion sets. This forced disambiguation was
carried over to relational interpretations of explosion sets by the manner in
which this interpretation is performed. In this sense, the restoration func-
tion p undoes the excessive disambiguation. Taken as a labelling function
for a relational interpretation, it assigns labels to its external vertices. As
this function is not injective, it can be seen as marking certain vertices as
identical. What is required is a means by which vertices can be identified
without having to resort to labels.

The most immediate (and at the same time the most extreme) possibility
of identification is to merge vertices bearing the same label into a single
vertex. This would require a modification of the property that is crucial for
refutability and decidability, which consisted in tracing a maximal strand and
checking its initial and terminal vertices for identical labels. The problem is
that in the process of merging vertices bearing the same label, both initial and
terminal vertices can be merged into a single vertex, which, being both initial
vertex of some hyperarc and terminal vertex of another hyperarc, is no longer
an external vertex of the new hypergraph. As the termination condition of
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a run of the refutation procedure depends on the fact that eventually no
further internal vertices can be found, the procedure cannot terminate as it
should in that case. This apparent problem is, however, the key to the sought
after structural criterion. For the procedure cannot terminate at this point,
because it has traced a part of the new hypergraph that is no longer a strand
but a partial cycle! In the case that the traced maximal strand does not
contain any labels shared by both initial and terminal vertices in the original
hypergraph, it terminates as before.

Of course, it cannot be expected that a procedure designed for a particular
type of hypergraph, specifically a directed cut hypergraph, can be employed
on hypergraphs that might no longer have one of the most important prop-
erties. If any initial and terminal vertices are merged, a hypergraph loses the
cut property, because removing the merged vertex from the resulting graph
will not disconnect it in general.®> More specifically, merging initial vertices
with terminal vertices of the same label creates partial cycles, because a max-
imal strand that contains a partial path from the initial vertex of that label
to the corresponding terminal vertex has its first and final vertex merged.
Hence, the hypergraph resulting from this merger contains a partial cycle
where the original hypergraph contained a maximal strand.* Consequently,
a decision procedure for thus merged relational interpretations of sequents
could be formulated as follows: If the given hypergraph contains any maxi-
mal strand that is not contained in a cycle, then the sequent, of which the
hypergraph is the relational interpretation, is not provable.

The problem of the suggested solution by merging vertices lies in the
fact that the hypergraph obtained as relational interpretation of a sequent
has to be modified in a significant manner. While the operation itself is
trivial, through merging of vertices the explicit information about different
occurrences of the same propositional variables is lost. As a merged vertex
is in general no longer an external vertex, i.e. either initial or terminal, the
different polarities of its various occurrences are lost. Of course, the informa-
tion is still implicitly present in the hyperarcs the merged vertex is incident
with. However, this raises another, even more pressing problem. As soon
as the labels are removed from merged vertices, the ones that induce partial
cycles can no longer be distinguished from formerly internal vertices. The

3In the case that one or more of the the hyperarcs incident with the merged vertex
is a proper fusion arc or a proper fission arc, other initial or terminal vertices might get
disconnected by the removal of the merged vertex.

4The partial cycle still covers hyperarcs that make up a maximal strand; in fact, re-
moving any one of the hyperarcs from those comprising the partial cycle yields a maximal
strand. Before, a maximal strand was obtained simply by tracing hyperedges until the
external vertices of the embedding hypergraph were reached.
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idea of explicitly representing every aspect of the meaning of a sequent would
thereby be undone. What is required is an approach that provides the in-
formation about the identity of vertices in a manner that leaves hypergraph
obtained as relational interpretation intact. The aim must be to obtain a
hypergraph that contains a partial cycle wherever the relational interpreta-
tion of some sequent contains a maximal strand that has initial and terminal
vertices bearing the same label, but without merging vertices.

Co-Identity Arcs

Fortunately, the solution is extremely simple. Instead of merging vertices
that have the same label, additional hyperarcs are systematically added from
terminal vertices to initial vertices of the same label. For example, in order
to express the identity of an initial vertex v of some label ¢ and a terminal
vertex w of label a, the S-arc ({w},{v}) is added. If there are m initial
vertices of some label and n terminal vertices of the same label, m - n of these
S-arcs have to be added to the hypergraph for that label alone. The original
hyperarcs that represent the structural meaning of the sequent and those
that are added by this method are considered to be of different sorts; the
former are called meaning arcs, and the latter are called co-identity arcs.’

Definition 12.6 Let H = (V, 9, w, p) be the relational interpretation of a
sequent S. The directed rooted hypergraph H' = (V,$,7, w) with

J = {({w},{v}) | w is terminal and v is initial in H and p(v) = p(w)}

1s called the relational interpretation of & with structural identity informa-
tion. For a 'H' thus given, the graph (V,$),w) is called the occurrence trunk.

The occurrence trunk is what remains of the relational interpretation of a
sequent & with structural identity information, after the co-identity arcs
have been removed. Essentially, this is the same graph as the relational
interpretation of an occurrence instance S of S (see definition 11.1).

The hypergraph, which is obtained by removing the restoration function
p and instead adding co-identity arcs, does not retain any remnant of logical

°The standard axiom (Ax) of LK is occasionally called (Id) for “identity”, as a se-
quent A — A can be considered to express the identity of “assumption”, i.e. antecedent,
and “assertion”, i.e. succedent. S-arcs relate terminal vertices of some label, i.e. vertices
that were obtained by interpreting the succedent position of ESSs, with initial vertices of
that label, i.e. vertices that were obtained from antecedents of ESSs. Hence, the S-arcs
connecting these terminal vertices to the corresponding initial ones express the notion of
co-identity.
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Figure 12.3: Replacing labels by co-identity arcs

language. The restoration function p, which relates vertices to logical atoms,
is no longer present. Of course, since H was constructed from an explosion
set, its vertices are still elements of O U P, so even though the function p
is given up, a vertex in V' could still be checked for memembership in O or
P. However, the nature of the vertices is utterly immaterial at this stage,
and, hence, any hypergraph isomorphic to the construction contains all the
relevant information about the sequent S. Any vertex that is incident with
some hyperarc in J is a vertex that was external in H, i.e. a vertex that
represents the occurrence of a propositional variable in S. Any other vertex
was internal in H and is either the root w or represets the occurrence of a
complex formula in S.

For example, in figure 12.3 the top hypergraph depicts the relational in-
terpretations of the sequent a & b — a & b, the bottom one has the labels
replaced by structural identity information. The part of the bottom hyper-
graph that is depicted in black is the occurrence trunk. According to the
preceding lemma, the hypergraph is also the relational interpretations with
structural identity information for sequents a & ¢ — a& cand c& d — c& d
and so forth. This has an interesting consequence.

Lemma 12.7 Let S be a sequent, let 7 : A — A be a permutation of propo-
sitional variables and let T be a sequent with T = St. Then the relational
interpretation with structural identity information of S and that of T are
1somorphic.

PrRoOOF: The permutation 7 simultaneously substitutes all occurrences of
propositional variables. Hence, for all pairs of occurrences of propositional
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variables in § it holds that, they are the occurrences of the same variable
if and only if the corresponding occurrences in 7 are also occurrences of
the same variable. If (V,$),w, p) is the relational interpretation of & and
(V' 9w, p') is the relational interpretation of 7, then the hypergraphs are
isomorphic and p’ = Top. In the construction of the co-identity arcs of J, the
condition p(v) = p(w) and the condition 7(p(v)) = 7(p(w)) coincide for all
v, w, because T is a bijection. Consequently, (V,$,7,w) and (V', ', T, w’)
are isomorphic. O

This result confirms that the identity of the propositional variables them-
selves is lost. For, if p(v) = p(w) = a for initial v and terminal w in H, then
J contains the co-identity arc ({w}, {v}), but this hyperarc is not related to
a in any way.

With the desired purely structural notion in place, we can turn to the
question of a suitable refutation procedure.

Proposition 12.8 Let H = (V, 9,73, w) be the relational interpretation of a
sequent S with structural identity information. Consider any mazximal strand
H' of the occurrence trunk of H, and let I and T be the sets of initial and
terminal vertices of H'. If there is no co-identity arc i € J with *iNT # ()
andi* N1 # (), then S does not have a RK-proof.

PROOF: We can obtain hyperarc ¢ as the result of the bridging action of H’'.
Observe that *e = I and ¢®* = T'. According to proposition 12.4, provability
of § is refuted, if p(I) N p(T) = 0, i.e. if there are no vertices v € I and
w € T with p(v) = p(w). If that is the case, however, then, according to the
definition, there is no co-identity arc i connecting any of the vertices in T" to
any of those in I. O

The co-identity arcs are only referred to in order to check a property similar to
the one previously given by labels. However, the desired structural criterion
is easily derived from the proposition. In the following case, a partial cycle
in the entire hypergraph, i.e. including the co-identity arcs, is sought.

Corollary 12.9 Let H = (V, 9,3, w) be the relational interpretation of a
sequent S with structural identity information. Consider any maximal strand
(V' 9, w) in the occurrence trunk of H. If (V', 9,3, w) does not contain a
partial cycle, then S does not have a RK-proof.

PROOF: According to the preceding proposition, provability of S is refuted,

if, for some maximal strand (V. ', w), no co-identity arc i € J can be found
that connects one of its terminal nodes to one of its initial nodes. If such
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an i did exist, then it would connect one of the terminal vertices of the
maximal strand to one of its initial vertices. But then, the graph consisting
of the maximal strand and i would contain a partial cycle. Consequently,
provability of § is refuted, if there is a strand maximal in the occurrence
trunk of H, which cannot be extended into a hypergraph containing a partial
cycle by the addition of hyperarcs in J. U

This result immediately suggests the structural decision procedure for
relational interpretations H with structural identity information of a sequent
S. Every maximal strand in the occurrence trunk of H, which is extended by
the structural identity information, contains a partial cycle, if and only if the
provability of § cannot be refuted, i.e. if and only if S is provable. It follows
from corollary 9.10 that the relational interpretation of a sequent S has at
most 265 TPs*Ls different maximal strands, which have to be considered by
such a procedure.
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Chapter 13
The Growth Procedure

We will show that it is not necessary to generate the relational representation
of an explosion set via the explosion procedure. Instead, a the directed cut
hypergraph of a sequent can be “grown” directly. For this purpose, we will
demonstrate properties of the relational interpretation of an explosion set
and use this as a basis for a growth procedure.

Recall the taxonomy of hyperarcs that was introduced in chapter 10.
It can be used to characterise elements of the relational interpretation of
a sequent by drawing parallels to chapter 7. We begin by considering the
relational interpretation of the base structure of a sequent.

Proposition 13.1 Let S be an occurrence instance of a sequent, and let
(V.$,w) be its relational interpretation. Then $ contains a B-arc e with
¢* = {w} and a F-arc f with *f = {w}.

PROOF: According to proposition 7.2, the explosion set of S contains ESSs
v — w and w — §, where w is the watershed proxy. The relational inter-
pretation of v — w is the hyperarc (7, w) = (7, {w}), which is a B-arc with
the single terminal vertex w. The relational interpretation of w — ¢ is the

~ ~

hyperarc (w,d) = ({w}, ), a F-arc with the single initial vertex w. O

Of course, the same proposition holds for relational interpretations that in-
clude some labelling function, such as the relational interpretation (V, $), w, p)
of a sequent §. The labelling will, in general, be of no consequence for the
hyperarcs that are the relational interpretation of the base structure of a
sequent.

The structure of complex formulae can be interpreted by one or two hy-
perarcs, depending on how their structure is given by one or two ESSs. This
is summarised in the following proposition and its corollaries, which are coun-
terparts to proposition 7.4 and its corollaries 7.5, 7.6 and 7.7. In this case, the
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occurrence mapping 7, which is always available for an occurrence instance
S, is required to keep track of the correspondences.

Proposition 13.2 Let S be an occurrence instance of a sequent with occur-
rence mapping 7, and let (V,$,w) be its relational interpretation. Then the
following holds:

1) For every negative occurrence of a subformula A& B in g, $ contains a
unique elementary fusion arc ({x,y},{p}), where x = n(A), y = m(B)
andp =n(A& B).

2) For every positive occurrence of a subformula A & B in g, $ contains
two unique S-arcs ({p},{x}) and ({p},{y}), where x = w(A), y = n(B)
andp=n(A& B).

PROOF: For 1), recall from proposition 7.4 that the explosion set of S con-
tains a unique ESSs 7(A), m(B) — w(A & B). Its relational interpretation is
just the hyperarc ({m(A),7(B)}, {m(A& B)}). Case 2) is analogous. O

The observations made for explosion sets of occurrence instances of sequents
still hold for their respective relational interpretations. The same holds for
negative and positive occurrences of disjunctive, implicative and negated
formulae.

Corollary 13.3 Let S and (V, 9, w) be as before. Then the following holds:

1) For every negative occurrence of a subformula AV B in g, H contains
two unique S-arcs ({x}, {p}) and ({y},{p}), where x = w(A), y = n(B)
andp=m(AV B).

2) For every positive occurrence of a subformula AV B in g, $H contains a
unique elementary fission arc ({p},{x,y}), where z = w(A), y = w(B)
andp =m(AV B).

Corollary 13.4 Let S and (V. $,w) be as before. Then the following holds:

1) For every negative occurrence of a subformula A O B in g, $H contains a
unique F-arc (0, {p,x}) and a unique S-arc ({y},{p}), where x = w(A),
y=m(B) and p=m(AD B).

2) For every positive occurrence of a subformula A O B in g, $H contains a
unique elementary fusion arc ({x,p},{y}), where x = n(A), y = m(B)
and p =m(A D B).
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Corollary 13.5 Let S and (V. $,w) be as before. Then the following holds:

1) For every negative occurrence of a subformula —A in :S‘V; $H contains a
unique F-arc (0, {p,xz}), where v = n(A) and p = w(=A).

2) For every positive occurrence of a subformula —A in g, $H contains a
unique B-arc ({z,p},0), where v = w(A) and p = n(—A).

All of the above correspondences taken together not only confirm that prop-
erties of explosion sets carry over to their relational interpretations. The
interpretation is straightforward enough to render those facts quite obvious.
However, combined with in interesting labelling function, these properties
give rise to interesting insights.

Consider the relational interpretation (V,$),w, p) of a sequent S, which
can be restored from its occurrence instance S by means of the restoration
function p. First of all, it is obvious that the same observations that were
made in the propositions and the corrolaries hold in the presence of any
labelling. Now, instead of taking the restoration function p : O — A, a more
general labelling function can be constructed from the occurrence mapping
7 of an occurrence instance S of § and the restoration function p, namely
the function p o 7=!. Recall that 7! : Vi, — Fg is the function that
assigns to each occurrence variable a formula according to some explosion
derivation Ilz. The inductive extension of p maps all formulae over O, i.e.
occurrence instances of formulae, to all formulae over A, i.e. the proper logical
formulae. Clearly, Fz is a subset of the set of formulae over O, which makes
the composition feasible. As Vg = Vi for some explosion derivation Ilg
that produces the explosion set € in the first place, the labelling function
pomn tis a function Vi — Fs, i.e. a function that assigns to each vertex
of the relational interpretation of a sequent & some occurrence of a formula.
Using this labelling not only labels the external vertices of the relational
interpretation to propositional variables, as it is the case with the labelling
function p. Instead, all of the vertices bear as labels the original formulae
of the sequent & that correspond to them by abstracting from occurrence
instances. Note that restricting (p o 7~!) to external vertices O yields p.

Proposition 13.6 Let (V, 9, w) be the relational interpretation of the se-
quent g, which is an occurrence instance_of S with restoration function p,
and let m be the occurrence mapping of S. Let X = po =t be a labelling
function of the vertices. Then the following properties holds:

1) In the hyperarc (S,{w}) € $, for every x € S, A(x) is a formula of the
antecedent of S.
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In the hyperarc ({w}, T) € $, for every x € T, X(x) is a formula of the
succedent of S.

2) In any other hyperarc (S,T) € §, there is one vertex p € SUT such
that, for all vertices v € S UT with x # p, Ax) is an immediate
subformula of \(p).

PROOF: For 1), recall from proposition 13.1 that w is a vertex that is incident
with exactly two hyperarcs, both of which result from ESSs that are the base
structure of the sequent: v — w and w — 6. Hence, S = %5 and T' = 4.
Then, for each x € S, 771(x) is some formula of the antecedent of S, which
is restored to a formula of the antecedent of S by p. Analogously, for each
r €T, 7 !(x) is some formula of the succedent of S, which is restored to
a formula of the antecedent of S by p. For 2), it must be understood that,
for every other hyperarc (S,T) € $ and every x € SUT, n~!(z) is some
occurrence instance of a formula in S. Now, (SUT)7w ! must contain a single
formula C' of maximal complexity (see below). Let p € SUT be the vertex
with p = 7(C'). As C is some occurrence of a complex formula in S , according
to proposition 13.2 and its corollaries, there must be a unique hyperarc in $
such that p = 7(C) is a vertex thereof and, for all other vertices x thereof,
x = m(A), where A is an immediate subformula of C. If (SUT)r~! were to
contain two or more formulae of equal complexity, it would be a contradiction
to proposition 13.2 or one of its corollaries. 0]

The combination of the preceding results suggests a procedure for the
direct, incremental construction of the relational interpretation of a sequent.!
The following procedure initialises with the hypergraph made up from the
B-arc and the F-arc that are, according to 1) of the preceding proposition,
the structural representation of the sequent’s antecedent and succedent. In
each step of the procedure, one or two new hyperarcs will be attached to
an external vertex of the existant hypergraph (which is an internal vertex
of the resulting hypergraph), depending on the formula label of the vertex
and whether it is an initial vertex or a terminal vertex. These additions are
done in such a manner that the hyperarcs that are obtained in one step are
exactly those that would be obtained as relational interpretations of the ESS
or ESSs corresponding to that formula, i.e. the labels of the new vertices
must be the subformulae of the label of the selected vertex. Note that it
is not necessary to resort to occurrence instances of formulae, because the
different occurrences of formulae are distinguished by the vertices that bear
them as their labels.

Tt is this procedure or the notion of the hypergraphs, which are derived by it, that is
picked up in the title for this dissertation.
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Definition 13.7 Let S = [Ao, ..., Ay — By, ..., By] be a standard sequent.
The logical tomograph of sequent S is a labelled rooted directed hypergraph
Hs = (V, 9, w, \), which is generated by the following growing procedure.

o [nitialisation: Let w,x1,...,Tm,Y1,...,Yn € V be pairwise distinct ver-
tices such that, for all1 <1 < m, letx; € O, if A; is an atomic formula,
or x; € P otherwise, and, for all 1 < i < n, let y; € O, if B; is an
atomic formula, or y; € P otherwise. Let

%:{wazla"'axmayla"'ayn}7

$o = {({1’1, s axm}a {w})> ({w}> {yb cee ayn}>};

M=A{rzi— A |1 <i<m}U{y;— B;|1<i<n}.

o [teration: For some external vertex p of (Vi, 9, w, A\;) with A\;(p) = AxB
for x € {&,V, D} or \i(p) = A do the following:

(a) If N\i(p) = A& B, let x,y be new vertices such that x € O, if A
is an atomic formula, or x € P otherwise, ory € O, if B is an
atomic formula, and y € P otherwise. Let

‘/;-i-l = V; U {ZE,y},
If p is an initial vertez, then let

i1 =Hi U {({fﬂa Yy}, {p}) }f

if p is a terminal vertex, then let

sz'—i—l =9 U {({p}a {ZL’}), ({p}a {y}>};

(b) If \i(p) = AV B, let x,y be new vertices such that v € O, if A
is an atomic formula, or x € P otherwise, ory € O, if B is an
atomic formula, and y € P otherwise. Let

‘/i—l—l = ‘/Z U {xvy};
If p is an initial vertez, then let

'5731'+1 =9 U {({x}v {p})7 ({y}v {p})}7
if p is a terminal vertex, then let
$iv1=H U {({p}7 {z, y}) }:’

(c) If \i(p) = A D B, let x,y be new vertices such that x € O, if A
1s an atomic formula, or x € P otherwise, ory € O, if B is an
atomic formula, and y € P otherwise. Let
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‘/i-l-l = ‘/Z U {xvy};

If p 1s an initial vertex, then let

f)i+1 =9 U {(@7 {p, SL’}), ({y}7 {p})}7

if p is a terminal vertex, then let

(s) If \i(p) = —A, let q be new vertices such that x € O, if A is an
atomic formula, or x € P otherwise. Let

‘/H-l - ‘/Z U {Zlf},
)‘H—l = )\Z U {ZL’ = A}
If p is an initial vertex, then let

i1 = Hi U {(@> {p, 1’}) };'

if p is a terminal vertex, then let
ﬁi-ﬁ-l - f.)z U {({zap}a (b)}

As each iteration step turns an external vertex, which has a complex formula
as a label, into an internal one and introduces one or two new external nodes,
which have the immediate subformula or subformulae as label or labels, the
procedure terminates after k steps. Let V = Vi, H = Hr and A = Ap.

Observe that each step of the iteration adds one or two hyperedges, which
only share a single vertex with the previous hypergraph. All of the vertices,
which eventually become internal vertices in the logical tomograph, are ele-
ments of P. Obviously, the labelling of vertices is necessary to control the
procedure. However, when it has terminated, it is not required that \; is
used as labelling function. Using instead the restriction A = A\;|p, as we shall
do in the examples, removes the labels from the internal vertices of Hgs.
Figure 13.1 shows the growing of the logical tomograph of the sequent
a&b,(aDc)&(bDd) — c&d. Note that in each step only the labels of the
respective external vertices are displayed. Step [ is the initialisation of the
procedure, which introduces two hyperarcs, one of which has initial nodes,
say p and ¢, which are labelled by a & b and (a D ¢) & (b D d), the other of
which has a terminal node, say r, which is labelled by c&d. Since none of the
labels is an atomic formula, all of the vertices are taken from P. Their shared
internal node is the root w of all of the following directed hypergraphs. For
step [, out of the three external nodes, which are to be developed, vertex
q with the label (a D ¢) & (b D d) is selected. Two new vertices, say s and
t with labels a D ¢ and b D d, are introduced as new initial vertices and
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Figure 13.1: Growing the tomograph for a & b,(a D ¢) & (b D d) — c& d
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connected to that node by means of the elementary fusion arc ({s,t},{q}).
This results in a directed hypergraph having four external vertices. In step
[, the initial vertex ¢ is developed. Due to its label b D d, two vertices have
to be introduced, and since the subformulae of the implication are atomic,
these vertices have to be elements of O, say b; and d;. Hyperarcs ((Z), {t, bl})
and ({d;},{t}), which concede on the vertex t, are added. Neither of b; and
d; have complex formulae as labels, so these vertices will remain external
vertices to the very end of the construction. Step [ visits terminal vertex
r, which is labelled by ¢ & d. As the subformulae are atomic, two vertices
c1 and dy, which are elements of O, are introduced and labelled by ¢ and d,
and hyperarcs ({r},{c1}) and ({r},{d2}), which secede from r, are added
to the directed hypergraph. For step [, we consider the initial vertex p,
which has the label a & b. Again, the subformulae are atomic and demand
the introduction of two elements of O, say a; and by, which are labelled
accordingly. The fusion hyperarc ({al,b2}, {p}) is added. Eventually, step
[] treats the initial vertex s, which has the label a D ¢. Vertices ay and
co, taken from O, are introduced and labelled accordingly, and hyperarcs
(0, {s,a2}) and ({c2},{s}), which concede at s, are added. As all vertices
bear atomic formulae as labels, the procedure terminates.

The following observation is an obvious, but very important property of
hypergraphs, which are obtained by this procedure.

Proposition 13.8 Let S be any sequent. Then its logical tomograph Hg is
a directed cut hypergraph.

ProoOF: We show that each step of the construction results in a directed
hypergraph, which satisfies properties 1) to 4) of definition 10.16. The
initialisation step introduces two hyperarcs ¢ = ({xl, ) ..,xm},{w}) and
f = ({w}.{y1,-...ya})}. The root w is an internal node, which is a cut
vertex, satisfying 1). It is also ®¢®* N *f* = {w}, which establishes 4). More-
over, each of the z; is an initial vertex of (Vj, $y) and only incident with
¢, and each of the y; is a terminal vertex of (V{, $) and only incident with
f, satisfying 2) and 3). For the iteration step, we observe that in each case
either one or two new vertices x and, if applicable, y and one or two new hy-
perarcs are added to the existing hypergraph on one of its external vertices p
and no other vertex of the existing graph. Thereby property 4) is maintaned.
An inspection of the cases reveals that in any case, the vertex p becomes an
internal vertex. Removing p from the new hypergraph disconnects x and, if
applicable, y, and, thus, p is a cut vertex; This establishes property 1) for
the iteration step. Finally, the new vertices are external and are only inci-
dent with one of the new hyperarcs, which maintains 2) and 3). Therefore,
a logical tomograph is a directed cut hypergraph. O
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It will be useful to relate formula occurrences of the sequent S to partic-
ular elements of its logical tomograph. In particular, positive and negative
formula occurrences can be distinguished by the type of vertices that have
them as labels.

Lemma 13.9 Let S be a sequent and Hs be its logical tomograph as above.
If a complex formula C' has a positive (negative) occurrence in the sequent
S, then there is a vertex p of Hs with A(p) = C, such that, at some stage |
in the procedure, p is terminal (initial) in (V;, $), and, at stage | + 1 in the
procedure, p is internal in (Viy1, Hi41)-

PROOF: A straightforward induction is hampered by the fact that the proce-
dure can develop the tomograph at different vertices. Every formula occur-
rence C'in § = [Ay,..., A, — By, ..., B,] is the subformula of either some
formula occurrence A; or some formula occurrence B;. We further consider
the sequence (Cy, . ..C}) of formulae, where each C;,; is an immediate sub-
formula occurrence of C; and C, = C. In the construction of Hg, each Cj,
which is complex, is addressed eventually at stage [; and one or two vertices
are introduced, (one of) which is labelled with ;. We will now inspect the
sequence of stages (lo, l1,. .., k).

According to definition A.2; all formulae A; in the antecedent of S have
negative occurrences, and all formulae B; in the succedent of & have positive
occurrences. If Cp = A; for some 1 < j < m, then Cj is a negative oc-
currence. Per definition, $)o contains the hyperarcs ({pl, ey Pm)s {w}) and
({w}, {q1, . .,qn}), and, hence, it is A\, (p;) = Cy for an initial node p; of
(Vio, 91,)- An investigation of those cases, in which an initial node is treated
in the construction, reveals that in each instance a hyperarc is added, which
has p; as terminal node, which leaves p; an internal node of the hypergraph
at stage lp + 1. In the case that Cy = B; for some 1 < j < n, then it is
A (g;) = Cy for a terminal node g;, which becomes an internal node at stage
lo + 1, and this status is not changed until stage [;.

At stage [;, we have to consider either a positive occurrence of C;, which
can be assumed to be the label of a terminal vertex p or a negative occurrence
of C;, which can be assumed to be the label of an initial vertex p. From the
eight cases that have to be distinguished, we treat only two, as the remaining
cases can be treated correspondingly.

o I[f C; = AV B is a positive occurrence in S and p is a terminal vertex,
the procedure adds the hyperarc ({p}, {z, y}), where both z and y are
new terminal vertices in the new hypergraph with A, ;1(z) = A and
Ai+1(y) = B. According to definition A.1, both A and B have positive
occurrences in §. If C;,; = A, then it has a positive occurrence in S
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and z is a terminal vertex of (Vj. 41, 9;,41); if Cix1 = B, then it has a
positive occurrence in § and y is an terminal vertex of (Vj, 11, 91,41)-

o If C; = A D B is a negative occurrence in S and p is an initial vertex,
the procedure adds hyperarcs (@, {p,x}) and ({y}, {p}), where both
x and y are new vertices. Hence, x is terminal and y is initial to the
new hypergraph with A, 41(x) = A and A, 411(y) = B. According to
definition A.1, A has a positive occurrence in S and B has a negative
occurrence in §. If ;1 = A, then it has a positive occurrence in S
and z is a terminal vertex of (Vj. 41, 9;,41); if Ci11 = B, then it has a
negative occurrence in S and y is an initial vertex of (V, 41, 97,41)-

In any case, after the addition of these respective hyperarc or hyperarcs, p is
an internal node of the new hypergraph at stage [; + 1 and remains so until
stage l;y1. O

Note that a logical tomograph is not a strand in general. In three of the
eight cases in the iteration of the procedure, two new hyperarcs are added to
an external vertex p of the hypergraph, which leaves either deg™(p) > 1 or
deg™(p) > 1.

The following result establishes that the development of a logical tomo-
graph Hg sufficiently distinguishes the different formula occurrences of the
sequent S.

Lemma 13.10 Let S be a sequent and S an occurrence instance thereof.
Then the logical tomograph Hs of S and the logical tomograph Hg of S are
isomorphic.

PROOF: Sequent § and its occurrence instance S only differ in their atomic
formulae, as Sp = § for the restoration function p : O — A. Formula oc-
currences are retained in Hgs and Hg only by the labelling functions A and
AN (for which it is p o X = X). We retrace the generation of the two tomo-
graphs interleavedly, first relating their roots and the vertices representing
the formula occurrences of antecedent and succedent by a bijective mapping
o satisfying A(p) = p(N(c(p))), and then by extending this mapping to all
vertices, which are added during the procedure. O]

The lemma establishes that the procedure develops a hypergraph in such
a manner that all occurrences of subformulae of a sequent S are uniquely
represented by vertices in Hs. We are now set up to formulate the main result
of this section, which establishes that the growth procedure does exactly what
it is supposed to do.
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Proposition 13.11 Let R be the relational interpretation of a sequent S,
and let Hs be the logical tomograph of S. Then R and Hs are isomorphic.

PRrROOF: According to lemma 13.10, the logical tomographs Hs and Hg
are isomorphic, and thus we will use the latter. We show that, for every
hyperarc that is added in the construction of Hg, there is a corresponding
hyperarc in R, and that thereby all of the hyperarcs of R are tapped, and
define a bijection o between the vertices of the two hypergraphs. Let S have
occurrence mapping 7 and let Hg = (V. $H,w, A). (The vertices of Hg are
marked with a dot to facilitate readability.)

Let S be the sequent I' — A. Consider the relational interpretation of
the base structure of a sequent, (ﬁ, {w}) and ({w}, 0), both hyperarcs in R.
At the same time, Hgz is initialised with hyperarcs ({p1,...,pm}, {w}) and
({@},{q1,- -, gn}), where m = len(I') = len(y) and n = len(A) = len(d),
and so we can already initialise 0 = {w — w} U {& — 7(C) | AN(2) = C};
the root of Hs is mapped to the watershed proxy, and every other vertex &
is mapped to that occurrence variable, which is the image of the label of &
under the occurrence mapping.

Whenever a vertex @ of Hgz is considered, new vertices and hyperarcs
might be added, depending on the formula C' = A(#) occurring as its label
and whether # is an initial or a terminal node. For this formula we also
obtain an occurrence variable 7(A(x)), for which the bijection o has already
been defined to yield o(i) = w(C). Now, if C' is an atomic formula a,
then & need not be considered any further, because m(a) = a € O. For
neither does the growth procedure connect any hyperarc to a vertex = with
label a, as new hyperarcs are only added to vertices bearing some complex
formulae as a label, nor can the relational interpretation R contain more than
a single hyperarc connected to a vertex in O, as it resulted from a proper
occurrence variable, each of which only occur in a single ESS of the explosion
set. Otherwise, we have to distinguish eight cases. We will exemplarily
consider two of them.

o If C = A& B is a positive occurrence in S, then p is a terminal node
at that stage of the construction. Hence, hyperarcs ({p},{i}) and
({p},{y}) are added to the hypergraph for new vertices & and § with
AMz) = A and A(y) = B. According to proposition 13.2; item 2), R
contains two hyperarcs ({p}, {z}) and ({p},{y}) with p = 7(A & B),
r=7(A) and y = 7(B). We extend o to o U {3 — 7(A),y — 7(B)},
and as A and B have not yet been considered, o is still an injection.

e If ' = —A is a negative occurrence in S, then p is a initial node at
that stage of the construction. Hence, the hyperarc ((D, {p, a:}) is added
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to the hypergraph for a new vertex & with A\(#) = A. According to
lemma 13.5, item 1), R contains a hyperarc (0, {p, x}) with p = w(=A)
and 7(A). Then, o can be extended to o U {& — m(A)}. As A has not
yet been considered, o is still an injection.

For the remaining cases, proposition 13.2 and corollaries 13.3, 13.4 and 13.5
have to be considered.

This establishes that an injection o between vertices can be constructed.
It is easy to see that o must also be a surjection. Every hyperarc in R is
obtained from an ESS of the explosion set of § has a base proxy p, for which
it is C = 7 !(p) for some complex formula occurrence of S. But then Hg
contains some vertex p with A(p) = C, which is certainly addressed during
the construction, which renders ¢ a surjection. 0

In view of this result, we can use the notion of relational interpretation of
an explosion set and that of logical tomograph interchangeably. Hence, for
a given sequent, these two notions merely specify the manner, in which the
corresponding directed hypergraph has been obtained. This is a brief sum-
mary of the two alternative methods for obtaining a rooted cut hypergraph
for a given sequent S:

1) Generate a relational interpretation of the explosion set of S by exe-
cuting the following three steps:

(a) Let S be an occurrence instance of S with restoration function p.
(b) Obtain the explosion set (&, w) by an explosion derivation of S.
(c) Obtain the relational interpretation (V, & w,p).

2) Directly generate the logical tomograph Hs by the growing procedure
that was described in this chapter.

Method 1) follows the rather involved path by which the different ideas have
been successively presented. Method 2) is the much more concise and imme-
diate method. Already starting out with a core hypergraph that has formulae
as labels, the vertices serve as occurrence markers, relating each formula oc-
currence a unique vertex. The growth procedure adds exactly those vertices
and hyperedges to a vertex of the existant hypergraph that correspond to the
ESSs that would be obtained in the explosion procedure from the formula
that is the label of that vertex. In this sense, the growth procedure is a more
immediate method for obtaining the relational interpretation of a sequent.
Of course, it is possible to abandon the labelling function altogether in
favour of structural identity information provided by co-identity arcs in the
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manner introduced in the last chapter. These arcs would have to be derived
from the external vertices of the logical tomograph, i.e. from the function
A = Ao, as follows.

Definition 13.12 Let Hs = (V, 9, w, \) be the logical tomograph of a se-
quent S. The directed rooted hypergraph H' = (V, 9,73, w) with

J = {({w},{v}) | w is terminal and v is initial in Hs and A(v) = N(w)}

is called the logical tomograph of & with structural identity information. For
a H' thus given, the graph (V,$,w) is called the occurrence trunk.

This definition is exactly the same as definition 12.6, and, consequently, the
following holds.

Corollary 13.13 Let R be the relational interpretation of sequent S with
structural identity information, and let Hs be the logical tomograph of S
with structural identity information. Then R and Hs are isomorphic.

PROOF: This is a trivial consequence of proposition 13.11 0

The refutation procedures and the decision procedures that were outlined
in the previous chapter are applicable to logical tomographs with structural
identity information.
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Chapter 14

Discussion

It was the purpose of this investigation to demonstrate how formal reasoning
can be traced back to a purely structural reasoning and, moreover, to find a
method for presenting the basic constituents of such a structural reasoning
in a more intuitive and accessible manner than by elementary structural
sequents. It has always been the exercise of structural proof theory from
the time of its inception by Gerhard Gentzen in [Gen35], to exhibit how
individual elements of logical language relate to particular structural aspects
of the derivations that serve as justifications for these elements. Usually these
structural aspects are represented by derivation trees, which are furnished
with syntactic entities, such as formulae or, for logistic calculi, sequents.

Rather than agreeing to Gentzen’s work as point of origin of structural
proof theory and thereby endorsing these traditional presentations of struc-
tural aspects, a significant part of this investigation consisted in demonstrat-
ing that the inspiration for the structural aspects, which Gentzen employed
for his purposes, can be traced back to the works of Paul Hertz, and to
use those as a source of inspiration. Our approach towards exposing these
structural aspects was therefore guided by taking some of Hertz’ somewhat
curious positions seriously, the most prominent of which can be summarised
as follows:

e Reasoning should be concerned with the manipulation of relations, such
as relations of causes and effects or relations of assumptions and as-
sertions. Individual components of these relations, which are called
sentences, are the elementary logical constituents.

e The realm of relations, about which we reason, is not interesting in its

potential for an infinity of arrangements, but in the particular arrange-
ment of even a finite number of them.

225



e Reasoning is not about language. By emphasising logical syntax, the
actual matter, namely the aforementioned structural relations, is lost
out of sight.

By focussing on these three positions, it became almost immediately ap-
parent that the elements of Hertz structural logic, which he calls sentences,
can be retrieved by undoing in a particular manner Gentzen-style sequents
by means of a procedure that explodes them into its elementary structural
constituents by means of a modified calculus that employs only the cut rule
restricted to atomic cut formulae and local logical rules, i.e. logical rules,
in which the context is a single propositional atom. We have demonstrated
how the collection of the thereby generated elementary structural sequents,
the explosion set, can be considered to represent the meaning of the orig-
inal sequent. Furthermore, it was demonstrated that the provability of a
Gentzen-style sequent can be decided by investigating its explosion set.

It became apparent that the elementary structural sequents obtained by
this procedure are ideally represented by graph-theoretical entities. Due to
the somewhat involved form of sequents and Hertz’ sentences of higher de-
gree, we had to resort to directed hypergraphs. As it turned out, it is in
particular rooted directed cut hypergraphs, which can serve as the relational
interpretations of the structural constituents of logical sequents. We have
shown how every sequent containing occurrences of complex formulae can be
either dissected by means of the explosion calculus and then transformed into
a the relational interpretation thereof or, equivalently, directly decomposed
into a logical tomograph. In any case, the result of the procedure is a rooted
directed cut hypergraph, the hyperarcs of which are made up of the elemen-
tary structural relations. Finally, the question of provability was shown to
be decidable by considering partial cycles in the resulting hypergraphs that
are enhanced by structural identity information.

In summary, we have shown that propositional logic can be presented
entirely structurally in the spirit of Paul Hertz without losing any expres-
siveness. The overemphasis of primarily formal entities and their derivations,
which obstructs the view of the structural foundations of logic, might be
loosened or at least supplemented by the elementary structural and graph-
theoretical perspective that we have presented.

Perspectives

Several areas for further investigations, which have been deliberately avoided,
were already mentioned in the introduction. For one, it remains to be seen,
whether concise hypergraphical representations of sequents of the predicate
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calculus can be given. It seems promising to consider Hertz” macro sentences
for this purpose, as it is conceivable that the issue of scope can be captured in
that way. Moreover, in connection with macro sentences, it might be a fruitful
endeavour to experiment with inference rules, which are based on syllogisms
other than the modus barbara, the only syllogism that Hertz himself ever
considered. In a similar manner, it should be explored, whether the non-local
effect of certain intuitionistic rules can be accomodated in our approach in
an elegant manner. Rather than a brute force interpretation, in which a
new explosion set has to be generated for each critical rule application, it is
conceivable to instead introduce a selection function, which assigns to each
state of an intuitionistic derivation a particular subset of a single explosion
set. It is unclear at present, however, whether such an approach would result
in an intuitive representation.

An entirely different field of investigation is opened up by the following
observation. There is a close correspondence between directed hypergraphs
and directed bipartite graphs, which was exploited for the purpose of display-
ing hypergraphs. At the same time, directed bipartite graphs are employed
for depicting the structure of discrete distributed system as perti nets. It
might be well worth studying the dynamics of hypergraphs in a manner re-
lated to the dynamics of petri nets. This is particularly relevant in view of
Paul Hertz’ allusions that reasoning is indeed closely related to descriptive
dynamics. In addition to finding and investigating a suitable dynamics for
logical tomographs, the modification of such a dynamics under the addition
of shortcutting or intermediating hyperarcs could be a rewarding area of
study.
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Appendix A

On Formula Occurrences

Definition A.1 An occurrence of a subformula of a formula C' is either a
positive occurrence or a negative occurrence. The two notions are mutually
recursively defined as follows:

C' s a positive occurrence in C.

If A& B is a positive occurrence in C, then both A and B are positive
occurrences in C'. If A& B is a negative occurrence in C', then both A
and B are negative occurrences in C.

If AV B is a positive occurrence in C, then both A and B are positive
occurrences in C. If AV B is a negative occurrence in C', then both A
and B are negative occurrences in C'.

If A D B is a positive occurrence in C', then A is a negative occurrence
in C' and B is a positive occurrence in C. If A D B is a negative oc-
currence in C, then A is a positive occurrence in C' and B is a negative
occurrence in C'.

If = A is a positive occurrence in C, then A is a negative occurrence in

C. If = A 1s a negative occurrence in C, then A is a positive occurrence
in C.

Definition A.2 An occurrence of a subformula F' of a sequent S is positive,
if it is a positive occurrence of a formula, which occurs in the succedent of S,
or if it 1s a negative occurrence of a formula C', which occurs in the succedent

of S.

An occurrence of a subformula F of a sequent S is negative, if it is a

negative occurrence of a formula, which occurs in the succedent of S, or if it
is a positive occurrence of a formula C, which occurs in the succedent of S.
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Definition A.3 For a formula C, the functions C{ and Cg, counting the
number of positive/negative occurrences of conjunctions occuring in C, are
defined by mutual recursion on the auziliary functions CE and Cg as follows:

Cr=0 C =0

C= a a

aed ey Ce =0

Cf&Bch"‘Cg CE&B:CEWLC%

C— AVE Cl=Ci+CLt+1 CL,;=C,+Cj
Cl,z=C5+C% Ch,;=Ci+CH+1

C=A>SB CXDB=C§+CE ZDB:CE‘l'CE%
CﬁDB:CX_"C% CEDB :CZX—I—C%

C = —A Ci_A:Cf C:Azci

Definition A.4 For a sequent S: C4,...,C,, — Dq,...,D,, the functions
C! and Cg, counting the number of positive/negative occurrences of con-
Junctions occuring in S, are given as follows:

C+:205i+203-

Cs =) CL+> Cp,
=1 =1

Definition A.5 For a formula C, the functions D} and Dg, counting the
number of positive/negative occurrences of disjunctions occuring in C, are
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defined by mutual recursion on the auziliary functions DS and D as follows:

C=acA

C=A&B
C=AvVB

C=ADB
C=-A

Definition A.6 For a sequent S: C1, ..

D)5 =D)+Dj
DY, =D} +Dj
D),p =D} +Dj+1
DY,z = D§ + Dj
D}z = D + D}
DY = D} + D}

D; =0

DS =0

D, =D, +Dj3
D} 5 = DY + D}
D,z =D, +Dj
DS,z =D§ +Dj +1
D,-; = D} + Dj
D}z = D} + Dj

D', = Dj D”, =Dj
D¢, =D} DY, =D,
Cpn — Dq,...,D,, the functions

+ — . oy . . . .
D3 and Dy, counting the number of positive/negative occurrences of disjunc-
tions occuring in S, are given as follows:

D{=) D; +>» Dj
i=1 i=1

D5 =Z;Da+Z;DBi

Definition A.7 For a formula C, the functions 1. and Ig, counting the
number of positive/negative occurrences of implications occuring in C, are
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defined by mutual recursion on the auziliary functions I and Ig as follows:

I"=0 I =0
C=acA * ¢
¢ ¢ = 0 1°=0
Iiep=1+13 iep=11+13
i =1;+15 e =1;+15
C—Aon I§33:1§+I§+1 IégBII?JFIé
I, =19 -, =19
coa a7l =l

Definition A.8 For a sequent S: C4,...,C,, — Dq,...,D,, the functions
IS and Ig, counting the number of positive/negative occurrences of conjunc-
tions occuring in S, are given as follows:

IE=> "1, +> I,
i=1 i=1

Ig=> 15 +> I,
i=1 i=1

Definition A.9 For a formula C, the functions N} and N, counting the
number of positive/negative occurrences of implications occuring in C, are
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defined by mutual recursion on the auziliary functions N and N as follows:

C—ucA Nir=0 N, =0
- N& = 0 N© = 0
Nﬁ&B:ijLN% Ni&B:NE“‘N%
ceavp Nas=Ni+Ng Navp =Ny +Np
B N4,z = N§ + Nj NSz = N + Nj
AVB — A B AVB — A B
ceasp Naop=Ni+Np+1 Nip=Nj+Ng
Nip = Nj +Nj Niop =Ny +Np+1
NrA:Nﬁ N:A:Nj
¢=-4 N®, = N+ N©, = N-
—-A A —-A A

Definition A.10 For a sequent S: Cy,...,C,, — D1, ..., D, the functions
N¥, N3 and Ng, counting the number of positive/negative/total occurrences
of negations occuring in S, are given as follows:

N{=> Ng + > Nj
i=1 i=1

N3 :;Ngi+;NBi

Ns = Nf + N
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