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SUMMARY

Insulin and insulin-like growth factor (IGF-1) rdgte renal electrolyte excretion and the
signalling includes PI3-kinase, PDK1, PKB and SG¢forms. Thus SGK isoforms are
expected to play a major role in the regulatiomesfal function which is evident from renal

phenotype ofgkl” mice.

The end effect of PI3-kinase signalling is phosptation of GSK3 by PKB/SGK1
which results in inhibition of its activity. Accoirtgly, similar/parallel renal phenotype can be
expected betweesgkl” mice andgsk3“' mice where GSK3 is resistant to PKB/SGK1
inhibition.

The first study was made to elucidate the role 8KG in renal electrolyte excretion
and hormone release. The plasma aldosterone arttcosterone concentrations were
significantly lower while 24-hour urinary aldostem was significantly higher and urinary
corticosterone tended to be highergsk3“' mice than ingsk3"" mice. The possibility of
reduced salt appetite due to low aldosterone waskeftl ingsk3“' mice .Thegsk3"" mice
drank more saline over tap water whijgk3“' mice drank similar amounts of tap and saline
water.gsk3“' mice display higher metabolic rate with signifidgmhore food and fluid intake,
fecal excretion, GFR, urinary flow rate and urin&ts’, K" and urea excretion with lower
plasma N&and urea concentrations and significantly higheod pressure.

Enhanced Naexcretion may at least partially be due to lowoatdrone levels which
should however, not increase but decrease the Knakcretion. Thus, a renal mechanism
involving enhanced ENaC activity presumably caws#snced renal Ksecretion as Lithium,
an inhibitor of GSK3 is shown to downregulate ENafpression. Higher fluid intake
accounts for higher urinary flow rate but does reflect decreased urine concentrating
ability, as urinary osmolarity is increasedgsk3“' mice. Water deprivation did not abrogate
the differences in urine output. GSK3 may partitépa the regulation of renal tubular water
transport. The unrestrained GSK3 could downregdesynthase which induces thirst. The
role of GSK3 in eNOS regulation may further conitéto differences in BP. The results thus
indicate that the renal phenotypegsk3“' mice is different from thegkl” mice in several

aspects, thereby suggesting a more direct roleSi¢33n renal electrolyte balance.

APC fosters degradation of [3-catenin which is knawnupregulate a variety of
proteins responsible for tumerogenesis. It was estgg and shown that SGK1 is among the
proteins that are upregulated. SGK1 expressioralsasbeen shown recently to be enhanced

Min/+

in gastric glands oépc mice. A similar upregulation was expected in thenkys of

2
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these mice and as SGK1 regulates renal electrblyteeostasis, a possible renal phenotype
for APC mutant mice was expected. The second suadytherefore conducted to explore the
kidney function in APC mutant mice and thereby &late the renal phenotype of those mice.
The body weight, food, fluid intake and fecal exicne were not significantly different

Min/+

between the genotypes. Urine flow tended to be fowmveapc mice thanapc™” and

apc"'"*/sgk1” mice. The glomerular filtration rate and Nexcretion were decreased while

Min/+

fractional excretion of Kwas enhanced iapc mice. The antinatriuresis and glomerular

filtration tended to be partially reversed by amfitl lack of SGK1. Fecal sodium and

MV mice than inapc’’* mice. The

potassium excretion were significantly higher dapc
additional lack of SGK1 could reverse the differenc fecal sodium excretion but not the
fecal potassium excretion.

The plasma aldosterone and corticosterone condenisavere significantly higher in
apc"™* mice. While plasma corticosterone concentration wiasilar in apc’’* mice and
apc"'"*/sgk1”" mice, plasma aldosterone was even highapit""*/ sgkl ” mice than in

apc"'™* mice. The hyperaldosteronism apc*"*

mice was paralleled by elevated plasma
volume and blood pressure. The difference in plagohame and blood pressure were slightly
reversed by additional lack of SGK1. The partialersal of anti-natriuretic, hypervolemic

Min/+

and hypertensive effects apc mice by additional lack of SGK1 implicates itseah the

abnormal elelctrolyte homeostasisapc™™*

mice. SGK1 defeciency augments the effect of
defective APC on plasma aldosterone indicatingraptex interaction of APC and SGK1 or

independent regulations of APC and SGK1 in hornretease.

The signalling cascade explaining insulin stimuwateenal tubular phosphate
reabsorption remains elusive. Renal phosphate ogatisn is regulated by membrane
abundance of the phosphate transporter, NaPilldP#tinase signalling possibly stimulates
renal tubular reabsorption by increasing the menmwrabundance of NaPilla. Again the
possible role of SGK isoforms could be expectee laed the third study thus focussed on the
regulation of renal phosphate handling by SGK3 Wwhg a downstream kinase in insulin
signalling. Metabolic studies isgk3“° mice showed significantly higher phosphate exoreti
in comparision to wild-type mice supporting thispbyhesis. Invitro studies involving
coexpression of SGK3 and NaPilla Xenopus oocytes provided additional evidence by
showing that phosphate induced current is sigmfigaenhanced in SGK3 and NaPilla
expressingXenopus oocytes. Food intake was significantly highesgi3 “© mice while the
plasma PTH and plasma phosphate concentrations sweritar to sgk3"" mice. Plasma
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vitamin-D concentration and bone mass were sigtffdower. Plasma and urinary calcium

levels were not different between the genotypes.

These observations reveal a direct role of SGK#&e phosphate transport and the
higher phosphate loss and low plasma vit-Dsgk3 “© mice could have contributed to the
demineralization of the bones$gk3“° mice.
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ZUSAMMENFASSUNG

Insulin und Insulin-like-Growth Factor (Insulindictier Wachstumsfaktor, IGF-1) regulieren
die Elektrolytausscheidung in der Niere. An dieSggnalkaskade beteiligen sich die PI3-
Kinase, PDK1, PKB und verschiedene Sgk-lsoformeamBufolge spielen Sgk-Isoformen
erwartungsgemal eine bedeutende Rolle bei der &egulder Nierenfunktion, die fur den
renalen Phanotyp vasgkl’ Mausen verantwortlich ist.
Am Ende der PI3-Kinase Signalkaskade steht die pturglierung der GSK3 durch
PKB/SGKZ1. Diese Phosphorylierung hat die Inaktiwrey der Kinase zur Folge. Demnach ist
ein ahnlicher Phanotyp bsikl” undgsk3' Mausen zu erwarten.
Der erste Teil der Studie sollte die Funktion de&8K3 in Bezug auf Nierenfunktion und
Hormonregulation aufklaren. Die Aldosteron- und #&miplasmaspiegel waren signifikant
erniedrigt. Gleichzeitig konnten signifikant erhéHftidosteronkonzentrationen bei dgsk3"'
im 24-Stunden-Urin gemessen werden. Die Kortisalelisidung war bajsk3“' tendenziell
hoher als beigsk3"" Mausen. Aufgrund der reduzierten Aldosteronplagiegel wurde
Uberpriift, obgsk3' Mause méglicherweise einen gesteigerten Kochsaizkn aufweisen.
Im Vergleich trankengsk3"" Mause mehr Kochsalzlésung als normales Trinkwasser
wahrend gsk3“ Mause keine Unterschiede im Trinkverhalten zeigtgsk3<' Mause
zeichneten sich durch eine gesteigerte von Nahrumgd Trinkwasseraufnahme, erhohtes
Fekalgewicht, sowie eine erhéhte GFR und Urinvolujmgesteigerte Elektrolyt- (Kund
Na') und Harnstoffausscheidung bei niedrigeren Plasmzdntrationen von Naund
Kreatinin, sowie signifikant erh6hten Blutdruck aus

Eine gesteigerte NaAusscheidung kann, zumindest teilweise, durch rided
Aldosteronspiegel erklart werden. Diese solltennédiés die K-Ausscheidung vermindern
und nicht erhéhen. Vermutlich ist dies ursachlicinctt einen renal stimulierten Mechanismus
zu erklaren, der eine gesteigerte ENaC-Aktivitat Ealge hat. Fur Lithium, einen GSK3-
Inhibitor, wurde beispielsweise eine Herunterregjotader ENaC-Expression gezeigt. Eine
vermehrte Flissigkeitsaufnahme resultiert in eirgggf3eren Urinvolumen, spiegelt jedoch
nicht eine verminderte Konzentrationsfahigkeit dgens durch die Niere wider. Die
Osmolaritat des Urins vogsk3<' Mausen war dementsprechend erhoht. Flussigkefisgnt
glich den Unterschied in der Ausscheidungsmengeschein den Genotypen nicht aus.
Maoglicherweise spielt die GSK3 beim Wassertranspater durch die Nierentubuli
gewahrleistet wird, eine Rolle. Die nicht-inhibeiGSK3 kdnnte die NO-Synthase, welche

Durstgefuihl vermittelt, herunterregulieren. Der fltiss der Kinase auf die NO-Bildung

5
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kénnte dariiber hinaus eine Ursache fiir den erhdBiedruck dergsk3“' Mause sein. Der
Konsens dieser Ergebnisse deutet auf einen nadiavers Unterschied des Nierenphanotyps
zwischen gsk3' und sgk1™ Méausen hin und lasst die Rolle der GSK3 bezighies
Elektolythaushaltes als bedeutender erscheinen.

APC fordert den Abbau von 3-Catenin, welches férHochregulation einer gro3en
Anzahl an Proteinen, die fur die Tumorgenese vowneBaing sind, wichtig ist. SGK1
befindet sich nachweislich unter diesen hochregeleProteinen. Ebenso konnte bewiesen
werden, dass die Expression der SGK1 in den Magsedrvon apcMin/+ Mausen erhdht ist.
Ahnliche Regulationsmechansimen hatte man in derdSsion der Nieren dieser Mause
erwartet, und, da bekannt ist, dass SGK1 die reBlktrolytausscheidung reguliert, auch
einen moglicher relevanter Nierenphanotyp. Der véeil dieser Studie wurde daher der
Exploration der Nierenfunktion von APC-defekten Mén gewidmet. Kopergewicht,
Nahrungs- und Trinkverhalten und Fekalvolumen wachin unterschiedlich. Das

Min/+ Min/+ und

Urinvolumen erschien bei dempc Mausen niedriger als bei deapc
apc"'"*/sgkl” Mausen. Die glomerulare Filtrationsrate und *Masscheidung waren

erniedrigt wahrend die fraktionelle "KAusscheidung bei den apcMin/+ erhoht war. Die
verminderte GFR und Exkretion von Naurde teilweise durch die Abwesenheit der SGK1
(apc

Vergleich zu denapc

Min™* /sgk17) aufgehoben. Der Naund K'-Gehalt in den Feces waren bei dgie™'™* im

M* Mausen signifikant erhéht. Die verminderte "Mausscheidung

wurde durch den zusétzlichen Mangel an SGK1 egalisidhrend die KkAusscheidung im
Stuhl unverandert blieb.

Die Konzentrationen an gemessenen Aldosteron- Kiodisolspiegeln im Plasma

Min/+ Min/+

waren bei derapc signifikant erhoht. Die Kortisolplasmakonzentragonderapc

und apc"™*/sgkl” Mausen waren gleich, die Aldosteronkonzentratioar vibei den
apc'*/sgk1”" sogar hoher als bei despc*™
apCMin/+

Blutdruck, beides wurde durch einen zusatzlichemddhan SGK1l zu einem gewissen Grad

Mausen. Der Hyperaldosteronismus der

Mause ging einher mit einem gesteigerten Plasmaveh sowie einem erhéhtem

normalisiert. Die partielle Aufhebung der antinatetischen, hypervolamischen und

Mi* 1s9k1” Mausen lasst einen Zusammenhang zwischen

Min/+

hypertensiven Effekte bei deapc
einem SGK1-knock-out und dem veranderten Elektnalyshalt derapc Mause

vermuten. Das Fehlen von SGK1 erhoht die Auswirkuag nicht-funktionellem APC auf
die Plasmaaldosteronkonzentration und deutet auaf kkomplexe Interaktion zwischen APC
und SGK1 hin. Eine unabhéangige HormonregulatiorcldudPC und SGK1 ist ebenfalls

denkbar und daher in Betracht zu ziehen.
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Die Signalkaskade, welche  die Insulin stimulierterenal-tubulare
Phosphatruckresorption erklaren konnte, bleibt amkDie Phosphatriickresorption in der
Niere wird durch die Anwesenheit von Phosphattrartspn (NaPilla) in der Membran
reguliert. Die PI3-Kinasekaskade stimuliert moghicheise diese Rickresorption, indem die
Menge des NaPilla in der Membran hochreguliert wigdich hier wéare ein mdglicher
Einfluss der SGK-Isoformen denkbar, daher fokussider dritte Teil der Studie die Wirkung
der SGKS, eine Kinase innerhalb der Insulinsignsitkale, auf den renalen Phosphattransport.
Untersuchungen an SGK3-defizientesgk3”) Mausen zeigten eine signifikant erhohte
Phosphatausscheidung. Dieser Befund unterstittédise einer moglichen Beteiligung der
Insulinsignalkaskade an der renalen Phosphatregulafoltage clamp Untersuchungen, die
in vitro Experimente an Oozyten beinhalteten, axigtlass die Koexpression von SGK3 und
NaPilla in den Oozyten den Phosphatausstrom ausZad#len signifikant erhohte. Die
Nahrungsaufnahme war beigk3” Mausen signifikant erhoht. Die Konzentrationen von

+/+

Parathormon und Phosphat im Plasma a&hnlich deren sgk3 Mausen. Die

+/+

Plasmakonzentration von Vitamin D und die Knochesseawaren bei desgk3™" Mausen
signifikant vermindert. Die Calciumkonzentration iRlasma und Urin unterschieden sich
nicht.

Diese Befunde decken einen direkten Einfluss @&{¥auf den Phosphathaushalt
und dessen Regulationsmechansimen, der den Vitarlaushalt und die

Knochenmineralisierung beeintrachtigt, auf.
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INTRODUCTION

KIDNEY

Kidneys are primarily responsible for the maintaseof body fluid homeostasis, which is
achieved by regulating the volume and concentradiobody fluids by selectively filtering
and reabsorbing materials from the blood and uf\eral and endocrine systems acting on
kidneys from outside the excretory system alondp &itto-regulatory mechanisms of kidneys
regulate the functional processes and thus helpeithomeostasis.
The main functions of kidney include:

» Regulation of water and electrolyte content oflibdy.

* Retention of substances vital to the body suchretim and glucose

* Maintenance of acid/base balance.

* Excretion of waste products, water soluble toxiostsances and drugs.

+ Endocrine functions

Water and electrolyte balance

Water content of the body is maintained by regntathe osmalality of body fluids. Loss of
fluid through lungs or skin increases while fluidtake decreases the osmalality. Kidney
regulation of water excretion through antidiureicormone (ADH) maintains the osmotic
pressure of the extracellular fluid (ECF) by negafeedback mechanism. The osmoreceptors
located in the anterior hypothalamus are sensttivihe changes in intracellular volume or
changes in osmotic concentration. With a rise irFESmotic concentration, the impulses
from the receptors are transmitted to the secrateryron endings in the posterior pituitary
which triggers ADH release. The released ADH insesawater reabsortion and continues
solute excretion reducing the osmotic concentratbrthe ECF providing the negative

feedback to osmoreceptors which in return indutierfahe rate of ADH release.

The hormones interact when blood loss or dehydratexcurs to maintain

intravascular volume.
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Excretion of waste products

Filtration occurs as blood flows through the gloules. Metabolic wastes and drugs that

cannot be filtered by the glomerulus are secretamthe tubule and excreted in the urine.

Regulation of Acid-Base balance

The body is very sensitive to its pH level. Altévas in the pH causes protein denaturation
and loss of function of enzymes. The kidneys mainéeid-base homeostasis by regulating
the pH of the blood plasma.

The lungs and kidneys work together to maintainstamt pH of 7.35 - 7.45 (34-46
nmol.I-1 H" concentration) in the extracellular fluid and ggs. The two buffer systems are
in dynamic equilibrium with the same hydrogen i@mmecentration (pH). The lungs assist in
maintaining a constant blood pH by removingC@hile the kidney excretes acid in the form
of H,PO; and NH" and alkali in the form of HCQ

Regulation of BP

The kidney influences blood pressure by:

* Constriction and dilatation of arteries arglns

* Increasing the circulating blood volume

Specialized cells called macula densa locatedgaraon of the distal tubule and in the wall
of the afferent arteriole sense the'Na the filtrate and the arterial cells (juxtaglamlar
cells) sense the blood pressure. When the bloaspre drops the juxtaglomerular cells sense
it and convey to the macula densa cells leadindetwrease in amount of Néiltered. The
juxtaglomerular cells then release an enzyme cakeih. Renin converts angiotensinogen
into angiotensin | which is then converted to ategisin Il by an angiotensin-converting
enzyme (ACE) that is found mainly in the lungs. Angnsin Il causes blood vessels to

contract and thus elevates the blood pressured-igur
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Blood N ¥ Arterial
Loss Pressure , *Gin

4 Angiotensin Il <— ;::;

/1N

4 ADH 4 Aldosterone 4 Thirst
4 Water 4 Salt 4 Water
Retention Retention Intake

Figure 1 A simplified flow chart of blood pressureregulation by the kidney.

Endocrine regulation and homeostasis

Aldosterone hormone regulation of sodium and potasum

The kidneys play a central role in the maintenaoc&la” homeostasis. It is important to
tightly regulate the urinary Naexcretion in order to maintain a constant exttatal volume
during varying dietary Naintake and extrarenal Néosses. The final concentration of renal
Na’ that is excreted is controlled by the ASDN (aldoshe sensitive distal nephron) which
includes the late distal convoluted tubule, thensmting tubule and the cortical (CCD) as
well as the medullary (MCD) collecting ductsNa" entry into the epithelial cells via the
epithelial Nd channel (ENaC) in the luminal membrane and exdubh the N§K*-ATPase

in the basolateral plasma membrane accomplishefrahsepithelial Natransport in these
segments. The rate-limiting step in this procesEN&C which is highly regulated It is
composed of three subunits, §, andy) *>° with a stoichiometry of @81y ’, although other

stoichiometries have also been suggested (octaonamers)* . Mutations in the genes
encoding - and-ENaC leads to Liddle’'s syndrome, an inherited foomsalt-sensitive

hypertensiort’. The PY motifs of ENAC sub-units are the bindifitgs for ubiquitin protein

10
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ligases of Nedd4/Nedd4-2 like famity*® Binding to these motifs ubiquitylates ENAC an
andy sub-units consequently leading to the internabratind degradation of ENaC in the
endosomal/lysosomal systefi=

Apart from its stimulatory effect on renal Naeabsorption, aldosterone has strong
kaliuretic action. The renal outer medullary Bhannel (ROMK) regulates the” Kecretion
occurring in ASDN. ROMK is coexpressed with ENaChe ASDN cells and the necessary
driving force for K secretion is provided by the Neeabsorption. Inhibition or genetic loss
of function of ENAC lowers renal Ksecretion leading to hyperkalemia. However, itagrs
unresolved whether the kaliuretic effect of aldoste is through direct regulation of ROMK
function or by N& reabsorption via ENAC activation. No measurabléeaf of acute
aldosterone administration on” Khannel number, open probability or conductance feand
by patch-clamp studies on rat CCEs’, but some data suggested that aldosterone induces
renal K secretion already at aldosterone concentraticaisdt not exhibit any measurable
effect on urinary Naexcretion'. Moreover, high K intake results in more efficient increase
in ROMK activity in intact rats than in adrenalemiiaed animals, suggesting that aldosterone

may have at least a permissive effect on ROMK atitin*°.

Parathyroid hormone and calcium and phosphate regul@on

Parathyroid hormone (PTH) is responsible for theloenne regulation of calcium and
phosphate. Decrease in blood levels of calciumwdtitas the production of PTH, which has

physiological effects on the kidneys.

In the kidneys the parathyroid hormone increasdésiura reabsorption in the renal
distal tubules, while it inhibits phosphate reapsion in proximal tubules and thus forces
renal phosphate wasting.

Phosphate homeostasis

Phosphate (Pi) homeostasis in higher organismsndspen the coordinated transport of Pi
across intestinal and renal epithelia. TranspoRiohcross the apical membrane is mediated
by the three members of the SLC34 family of sotariers referred commonly as ‘NaPf:
NaPilla (SLC34A1) and NaPillc (SLC34A3) are spemfly expressed in the brush border
membrane (BBM) of renal proximal tubules whereaNth (SLC34A2) has a broader
pattern of expression and is highly abundant inBB&1 of small intestine. The transporter

mediating the basolateral Pi exit in both renal amdstinal epithelia is unidentified. Na

11
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dependent electroneutral anion exchanger has beepoged to be at least partially

responsible for Pi exit in the proximal tubdfe

NaPilla and NaPillc mediate the reabsorption ofr®n the urine by using the free
energy provided by the electrochemical gradient N@a. NaPilla is electrogenic and it
preferentially transports divalent Pi with a stiitd’-Pi stoichiometry of 3:1, which results in
the net inward movement of one positive chargecpenansport cycle. In contrast, NaPillc is
electroneutral and functions with a 2:1 stoichiam¢FEigure 2)**?2 In mice, NaPi-lla is the
main phosphate transporter in the adult kidney,redee NaPillc appears to be more important
in weaning animals. This was further confirmed bg phenotype of NaPilla knockout mice
which suggested that this cotransporter is resptngor the bulk of renal Pi reabsorption
with a very small percentage potentially attributedNaPi-lic®>. The expression of NaPilla
and NaPillc is regulated to adapt the renal regdtgor of Pi to the needs of the organism.
Thus, the phosphaturic effect associated with pgraid hormone (PTH) is due to the
membrane retrieval of both cotransporters, whereasonditions of Pi deprivation their

expression is increasét®®

g &7

fl I M
+ &

Blood

Figure 2: Mechanisms of phosphate transport.

12



Introduction \Y/

Many hormonal and non-hormonal factors also reguiamal Pi reabsorption and the effect of
PTH and dietary Pi on NaPi-lla has been investiyiiedetail®’. These studies suggest that
regulation of NaPi-lla depends on its shuttlingrtoh the BBM. This contrasts with many
other transporters, whose activity is modulatedrimdification of the transport protein itself
(e.g. phosphorylation, dimerization etc). This nsetrat the body's requirements for a higher
Pi reabsorption (i.e. after low Pi-diet) are metibgreasing the expression of NaPitf&®2°
and NaPillc?* at the BBM. Acute upregulation of NaPilla is thndependent of changes in
transcription or translation and the increased @sgion of NaPilla must be due to either the
stabilization of the transporter at the BB or to an increased rate of insertion at the

membrané®.

On the other hand, reduced reabsorption of Pipen PTH release or high Pi-diet) is
achieved via downregulation of NaPilfa?®*! and NaPillc?® at the BBM. PTH-induced
downregulation of NaPilla has been studied extemgivand the identifiable steps are

summarized in Figure 2.

SGK1

Serum and glucocorticoid-inducible kinase, an imdlec Ser/Thr Kinase, sgkl) was
originally isolated in a differential screen seanghfor glucocorticoid-induced transcripts in a
mammary tumor cell lin€? It was found to be induced within 30 minutesheit by
glucocorticoids or by serum and in both mammarythgtial cells and fibroblasts. SGK1
belongs to AGC kinases family, which include prot&inase A (PKA), protein kinase G
(PKG), protein kinase C (PKC), and protein kinag&kgrac (PKB/AKkt). Its catalytic domain
shares 54% identity with those of Akt/PKB/rac kiess48% with that of PK@; 50% with
that of rat p70S6K kinase and 45% with that of PKA.

SGK1 is also induced by a very large spectrumiofudt distinct from glucocorticoids
and serum. These include aldosterdh® cell shrinkage®*® cell swelling®’, TGF$ ¥4
ischemic injury of the braif*** neuronal excitotoxicity*, memory consolidatiofr, chronic
viral hepatitis*®, DNA-damaging agent€, vitamin D; *’, psychophysiological stre$§ iron
9 glucose™, endothelin-1**, granulocyte-macrophage colony—stimulating fa¢@W-CSF)
*0 fibroblast growth factor (FGFY, platelet-derived growth factor (PDGE) phorbolesters
®1 follicle-stimulating hormone (FSHY? sorbitol >3 heat shock, oxidative stress, UV

irradiation and p53°°2
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SGK1 is phosphorylated on Ser422 in the C-termiegion by a so far unknown
kinase termed the hydrophobic motif (H-motif)/PDKRat is dependent on PI3 Kinase
signalling. SGK1 is an unstable protein with a dajpirnover and a half-life of approximately
30 minutes. Rapid degradation of SGK1 involvesuligquitylation followed by degradation
by the proteosome. Moreover, it appears that ubjiiqied SGK1 is preferentially associated

with intracellular membraneé
Target Proteins

SGK1 was shown to phosphorylate a variety of pnsterhe first demonstrated substrate for
SGK1 was glycogen synthase kinase 3 (GSK3), a &itfest is involved in the regulation of
glycogen and protein synthesis by insulin and iBaalso a substrate of PKB/ARE™®
Phosphorylation of GSK3 by both SGK1 and PKB/Aldds to an increase in the synthesis of
glycogen.

Role of SGK1 in Aldosterone-Dependent NaReabsorption

SGK1 can directly interact with ENaC’ and increase ENaC channel activity by
phosphorylating the-ENaC subunits. The action of SGK1 on ENaC is cex@nd likely

involves (@) increase in the subunit abundancéenplasma membrane and (b) activation of
channels already in the plasma membrane combindd avi increase in ENaC opening

probability.

As an aldosterone-induced protein, SGK1 is thouwghnediate at least some of the
physiological effects of aldosterone on ENaC and,kfaATPase. The stimulatory effect of
aldosterone (or of dexamethasone) on SGK1 expressi® now been firmly documented and
extensively reviewed® Corticosteroids rapidly (within 30 minutes) in@uSGK1 at the
MmRNA and/or protein levels. This induction coin@deith enhanced phosphorylation of
Nedd4-2 and reduced renal Ngecretion in intact animals. The physiological artpnce of
aldosterone in SGK induction is supported by thet faat dietary N& restriction, which
physiologically increases plasma aldosterone, mldoces SGK1 mRNA in the renal cortex
*% The aldosterone-dependent induction of SGK1 acspecifically in the ENaC-positive
cells of the ASDN, whereas in other nephron podisuch as the thick ascending limb or the
proximal tubule SGK1 expression is not increasedldgsteroné®,
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Figure 3: Proposed interaction between SGK1, epittial Na* channel (ENaC) and renal outer medullary

K* channel (ROMK) in aldosterone-sensitive distal nefron. ®

Aldosterone stimulates the expression of ENaC, ROMifl SGK1. Activation of SGK1 (Sgkla) requires
phosphorylation of the kinase, which, in additionother factors, can be induced by binding of ims(lhs) or
arginine vasopressin (AVP) to their basolateraéptors. Sgkl is not absolutely required for inseridf ENaC

or ROMK into the apical membrane, explaining thédnphenotype of SGK1-deficient mice under standard
NaCl and K diet. SGK1-dependent upregulation of ‘N@absorption, however, is required under reduced
dietary NaCl intake as well as for upregulatiorrerial K* excretion in response to increased dietafyritake.
SGK1la increases Nareabsorption by activating R&*-ATPase and enhancing the abundance in the cell
membrane of ENaC through inhibition of ubiquitipdse Nedd4—2 mediated internalization of ENaC.disfef
SGK1la on ENaC and N&*-ATPase increase the electrical driving force fargeellular Clreabsorption as
well as the electrochemical driving force fof Eecretion through ROMK. In addition, SGK1 may emethe
abundance of ROMK in the apical membrane by symgrgiwith NHERF2. MR, mineralocorticoid receptor;
PKA, protein kinase A; PDK, 3-phosphoinositide-degent kinase.
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Mouse phenotype

The SGK1-deficient mice exhibiting rather a mildepbtype points to a certain degree of
redundancy in SGK1-dependent signal transducti@cames. SGK1 mice have no obvious
defect®. Closer analysis reveals the decreased abilit§@K1 knockout mice to retain salt
under a salt-deficient diét or to adequately enhance rendl éutput during a K load 2.
Presumably due to salt depletion, plasma aldosteconcentration is enhanc&dand renal
Cd" excretion is decreas&d The mice are relatively resistant to the hypesiteneffect of a
high-fructose dief* or a high-fat dief® together with salt excess. In the SGK1 knockout
mice, the stimulating effect of mineralocorticoinis salt appetit&® and the stimulating effect
on intestinal glucose uptakéis blunted and the uptake of glucose into braitip@cytes and

skeletal muscle following a glucose load is deczd&%
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GSK3

Glycogen synthase kinase 3 (GSK3) was originalgntdied as one of five protein kinases
that phosphorylate the rate-limiting enzyme glyaoggnthase (GS) of glycogen synthesis in
response to insulif’. GSK3 is a serine threonine kinase encoded byi$aforms GSK-3
and GSK-B °.

GSK3 is ubiquitously expressed and evolutionardpserved kinas€. In addition to
GS,GSK3 phosphorylates a broad range of substiatdading several transcription factors
such as c-Myc, c-Jun and c-Myband the translation factor elFZB GSK3 has also been
implicated in the regulation of cell fate Dictyostelium "* and is a component of the Wnt
signalling pathway required f@rosophila andXenopus development®. In mammalian cells,
on stimulation with insulin or other growth factpGSK3 is rapidly phosphorylated at serine
21 in GSK-3: or serine 9 in GSK{® resulting in inhibition of GSK3 kinase activity.
Protein kinase B (PKB/Akt), a serine-threonine kma located downstream of
phosphatidylinositol 3-kinase (PI3K), has been destrated to phosphorylate both of these
sites in vitro and in vivo, suggesting that grovdhtors downregulate GSK3 activity through
the PIBK—PKB signalling cascad® Consistent with its position downstream of th&8k4
PKB pathway, GSK3 activity suppresses cell prodifem and survival.

Regulation of GSK3 by the Wnt pathway

In multicellular organisms, GSK3 functions in selatistinct signalling pathways. Activation
of any of these pathways leads to inactivation 8KG kinase activity by one of the three
distinct mechanisms: (i) inhibition by the actioh Dishevelled, (ii) NH2-terminal domain

serine phosphorylation or (iii) tyrosine phosphatign.

In the absence of a Wnt signal, GSKS3 interacts Wittatenin, axin and APC in the
cytoplasm and phosphorylates these proteins, lgadm the SlimBTrCP-mediated
ubiquitination and proteolytic degradation [dfcatenin. Upon binding of Wnt by a seven-
transmembrane domain receptor, dishevelled is aetivresulting in the downregulation of
GSK3 kinase activity’(Figure 4).
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Regulation of GSK3 by other signalling pathways

GSK3 phosphorylates GS at four distinct sites. dititin of GSK3 causes activation of
glycogen synthase due to less phosphorylationnegatdi conversion of glucose into glycogen.
Stimulation of glycogen synthesis by insulin alsedlves the dephosphorylation of serine

residues in glycogen synthase.

Several signalling mechanisms independent of Wnrt Haeen proposed to explain
inhibition of GSK3. Some studies support the ineohent of mitogen-activated protein
kinase (MAPK) in GSK3 regulation.
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Figure 4: Role of GSK3 in phosphatidylinositol 3-knase signalling.

Upon receptor tyrosine kinase activation, PI3 kinasrecruited to the plasma membrane and phosiattesy
phosphoinositides at the 3‘-position of their inokring. This, in turn, recruits PH-domain-contaig proteins
such as PKB and the PDKs. Once phosphorylated &yiDKs, PKB is activated and phosphorylates GSK-3

leading to its inhibition.

GSKa3 inhibition

GSK3 can be inhibited by Akt phosphorylation, whishpart of insulin signal transduction.
Therefore, Akt is an activator of many of the sifing pathways blocked by GSK3
Experimentally, it has been shown that certain eatrations of lithium chloride (LiCl)
and/or 6-bromoindirubin-3'-oxime (BIO) will inhibi8SK3® in the Wnt signalling pathway.
This inhibition of GSK3 is currently believed toderlie the therapeutic usefulness of lithium
salts for the treatment of mood disordéfs GSK3 phosphorylation by PKC kinases in

hemopoietic cells regulate growth
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Mouse phenotype

Dario R. Alessi generated GSK3 knockin mice in whitie codon encoding Ser2l of
GSK3alpha and Ser9 of GSK3beta was changed to ereatn-phosphorylatable Alanine
residue. The GSK3 knockin mice display no overtryitgpe. GSK3 knockin mice develop
and grow normally (shown by growth curves from 4vi€eks of age) and are non-diabetic.
These mice can dispose of injected glucose atahe gate as wild type mice. They possess

normal fasted glucose and insulin lev8ls
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APC

The adenomatous polyposis coli (APC) gene was ifteohtby positional cloning in 1991.
APC is a large gene, encompassing 15 exons witipan reading frame of 8,538 base pairs.
It encodes a protein of 2,843 amino acids with demdar weight of 310kD. APC is
classified as a tumor suppressor gene, since vadictn of both alleles results in the loss of
control of cell growth and proliferation. Patient#th FAP have a germ-line mutation in one
of the two alleles of the APC gene. These mutatresslt from point mutations, insertions or
deletions that lead to a premature stop codon anghaated functionally inactive protefA
More than 300 different APC mutations have beerritesd®®,

The APC gene product is widely expressed in massuss, including brain, eye,
esophagus, stomach and liver tissues. Its strugsucharacterized by numerous functional
domains which mediate protein-protein interactianscell adhesion, the formation of
epithelial cell-cell contacts, regulation of [-cate and maintenance of cytoskeletal

microtubule$.

APC in WNT pathway

WNT acts as a ligand for a 7-pass transmembrazel&d receptor. When WNT is absent, 3 -
catenin is ubiquinated and degraded by the proteakpathway, resulting in low levels of 13-
catenin. WNT absence allows DSH to activate GSKi3icwthen phosphorylates 3-catenin,
followed by its ubiquination by TrCP and proteosbnugegradation. This involves a
multiprotein destruction complex composed of APXINM, GSK3, and TrCP. A LEF/TCF
transcription factor together with cofactors CBRBE, and Groucho repress target genes.
When WNT is present, DSH inhibits phosphorylatidri3ecatenin by GSK3. This results in
excess R-catenin which translocates to the nu@adstogether with LEF/TCF, upregulates
target genes. Regulation of [3-catenin is essetidhe tumor suppressor effect of APC. This
can be circumvented by mutations in either APC ecaténin, resulting in familial

adenomatous polyposis.
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Figure 5: A simplified illustration of canonical WNT pathway.

Mouse Phenotype

Mice homozygous for the Min mutation die as embyyeiile heterozygous mice develop a
severe phenotype characterized by numerous snteditimal adenomas and mammary tumors
8 Two different APC mutant mice having mutationsation 1638 were generated by gene
targeting. APC 1638N heterozygous mice that haveuah milder phenotype (five to six
small intestinal tumors per mouse) and APC1638Erbetgous mice that do not develop
intestinal tumors”®®”. A fourth mouse model, APC d716, develops 200 @0 ftestinal

adenomas.
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SGK3

Serum and glucocorticoid inducible protein kinas€S&K3) is an isoform of SGK like
SGK2. SGK2 and SGK3 share 80% amino acid sequelectitly in their catalytic domains
with each other and with SGR. For these reasons, SGK has been termed SGK1. SaBi¢3
termed cytokine-independent survival kinase (C1&8K)s distinguished by an NH2-terminal
PX (Phox) domain. Like SGK1, SGKS3 is expressed linhaman and murine tissues
examined, but expression is particularly high ie timouse heart and spleen and in the
embryo. SGK3 appears to be localized to vesicutanpartments in transfected 293 cells.
This localization is dependent on the PX domaie, rgmoval of which by truncation of the
NH2 terminus results in diffuse staining of SGK&otinghout the ceff®.

Regulation of SGK3 kinase activity

SGK3 protein kinase becomes functional after atbwaby phosphorylation, which is
accomplished through a signalling cascade involvii§-kinase, PDK1 and PDK2 or
"hydrophobic motif* (H-motif) kinasé>*°. Degradation of PIP3 by phosphatase and PTEN
leads to the disruption of activation of the SGR&KS is also activated by oxidation, insulin

and IGF-I through the same signalling cascade.

Functions

lon channels

Like sgkl, sgk3 regulates many ion channels like the Epithelial Maannel-ENaC, renal

epithelial C&" channel-TRPV5? , renal and inner ear Cthannel-CIC-K&*, ubiquitous Cl

channel-CIC2%, cardiac voltage-gated Nahannel-SCN5A®, cardiac and epithelial 'K
channels-KCNE1/KCNQZT®, voltage-gated K channels-Kv1.3, Kv1.5" and Kv4.3, and
amino-3-hydroxy-5-methyl-4-isoxazolic acid (AMPAdaeptor’®.

Carriers and Pumps

SGK3 has been shown to upregulate amino acid toatesp like EAAT1 and EAATS1%
Na'-dicarboxylate cotransporter NaDC-1 is stimulategd ®GK1 and SGK3, an effect
requiring the participation of NHERF2™. Both SGK1 and SGK3 stimulate the activity of
Creatine transporter-CreaT (SLC6ASY. SGK3 modulates Na&K*-ATPase activity (Henke
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et al., 2004). IXenopus oocytes, SGK3 has been shown to stimulate theigctif’ the N&-

glucose cotransporter SGLTYE, which serves to absorb intestinal glucose.

SGK3 has been shown to confer cell surviialrhe antiapoptotic effect of SGK3 has
been attributed in part to its ability to phosphaty forkhead transcription factors, such as
FKRHL1%. Moreover, SGK3 has been shown to phosphorylatetiams inactivate Bad*
Phosphorylated Bad binds to the chaperone 14-3t3sahus prevented from traveling to the

mitochondria, where it triggers apopto&is

Mouse phenotype

The phenotype of SGK3 knockout mice is surprisingijd. SGK3 null mice do not exhibit
any of the phenotypes associated with the variepsrted PKB knockout mic€®. Mice
lacking SGK3 are viable and fertile and display efedt in post-natal hair follicle
development. Starting at post-partum day 4 (PP4)xlear difference in hair follicle
progression can be observed which becomes moregwnoed in later stages. In addition, the
hair follicle of the knockout animals is disorgagulz suggesting that SGK3 may also be
involved in cell differentiation and migration. SGKull mice also show a transient growth
defect until 7 weeks of ag®®. This delayed growth may be due to a decreasatastinal
glucose transport through the sodium-dependentogiidransporter SGLT1Y. Closer

inspection of the SGK3 knockout mice revealed dlsutecrease of locomotidfi
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AIMS OF THE STUDIES

The present studies aimed at identifying the réliniee different kinases involved in various
renal epithelial transport mechanisms and theiulegmn in hormone secretion.These include

the following

a) The role of PKB/SGK resistant GSK3 in renal wated &lectrolyte excretion as well
as steroid hormone release.

b) SGK1 dependence of renal electrolyte balance amohdre regulation in APC min
mice.

c) The role of SGK3 in renal phosphate handling.

Rationale for the present studies

a) The role of PKB/SGK resistant GSK3 in renal wateand electrolyte
excretion as well as steroid hormone release

GSK3 activity is inhibited by insulin®®*° an effect mediated by protein kinase®8'°and
the serum and glucocorticoid inducible kinase S&K

At least in theory, inhibition of GSK3 could coritute to SGK1 dependent effects of
insulin on renal electrolyte transport. Insulimstiates the renal epithelial Nahannel ENaC
and thus leads to renal retention of Nat*** The effect of insulin on ENaC involves the
Phosphatidylinositide-3 (P13)- kinas&™*'"and the serum and glucocorticoid inducible kinase
SGK1 3334118 wWhether or not the effects of SGK1 on EN&&*''°and further renal tubular

transport systents involves regulation of GSK3, has never been ade:s

Moreover, GSK3 could participate in the insulineligrowth factor (IGF)-dependent
regulation of aldosterone and cortisol synth&Sis

The first study explored, whether phosphorylatiow @nactivation of GSK3 could
participate in the regulation of renal tubular &lelyte transport and steroid hormone release.
To this end aldosterone and cortisol release a$ agelrenal electrolyte excretion were
analysed in mice carrying mutations of GSK® @sk3“'), in which the serines of the PKB
phosphorylation sites were replaced by alafiin@hose mice have previously been shown to
lack the known effecf*?* of insulin on muscle glycogen synthaSe Steroid hormone
release and renal electrolyte excretion, have, kew@ot been analysed in those mice.
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b) SGK1 dependence of renal electrolyte balance arwbrmone regulation in
APC min mice

Lack of APC leads to accumulation of [3-catenin,clhiravels into the nucleus and triggers
the expression of several gert&s*?®including the serum and glucocorticoid inducibiedse
SGK1 %125 As shown in gastric gland$®, SGK1 expression may indeed be enhanced in
those mice. Among other targets, SGK1 phosphoylglgcogen synthase kinase 3 (GSK3)
111 \which in turn phosphorylates R-catenin and is tinvolved in APC-dependent regulation
of cellular functions?’*?® SGK1 is a stimulator of a wide variety of ren@nsport proteins

% Moreover, lack of SGK1 leads to an increase a$mia mineralocorticoid concentratithn

The present study was thus performed to elucidéiether adrenal hormone levels
and/or electrolyte homeostasis are alteredpc”™* mice and if so whether the difference
may be dependent on the presence of SGK1. To tiiisreetabolic cage experiments were
M mice, in their wild type littermatesyic™*) and inapc™'™* mice lacking

in addition SGK1 &pc""™*'sgk1™).

performed inapc

c) The role of SGK3 in renal phosphate handling

Phosphate is a critically important component aiédminerals>%**! Accordingly, adequate
mineralization of bone depends on the precise turmh phosphate balance, which is a
function of intestinal absorption and renal exaneti****4*3 The latter depends on cellular

uptake of phosphate across the apical membraneoxinmal tubular cells™®*

, which is
accomplished mainly by the Naoupled phosphate transporter NaPtfia"** The carrier is
downregulated by parathyroid hormone P8 a hormone at least in part effective through

CAMP. Renal tubular phosphate reabsorption is dtited by insulin'®>*3°

and by insulin-
like growth factor IGF-2*". Little is known, however, about the signallingafved in insulin

and IGF-1 mediated regulation of phosphate exaretio

The signalling of insulin involves the serum andioglcorticoid-inducible kinase
SGK3 ®, which, similar to protein kinase B* and SGK1°° is activated through

phosphatidylinositol (P1)-3 kinase and phosphoitidsidependent kinase PDK1.

The present study thus explored the possibility 8&K3 may be involved in the
regulation of renal tubular transport. To this eimdvitro regulation of NaPilla by SGK3 was

studied in theXenopus oocyte expression system and in vivo significaoic8 GK3-sensitive
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phosphate transport elucidated by analyzing gergetied mice lacking functional SGK3

(sgk3“9) as well as their wild type littermatesgk3"") .
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MATERIALS

Equipment

Accucheck Sensor Comfort (Roche Diagnostics, ManhGermany)
Balance (Sartorius, Gottingen, Germany)
BioPhotometer Eppendorf (Eppendorf, WesselingzBerf, Germany)
Centrifuge 5417 R (Eppendorf, Hamburg, Germany)
Dri-chem clinical chemistry analyzer (FUJI FDC 3§@)ysmex, Norsted, Germany).
Flame photometry (AFM 5051, Eppendorf, Hamb@grmany)
Gamma Counter (Perkin Elmer, Massachusetts, USA)
Heparinized capillaries ( Hirschmann laborgerdtergtadt,Germany)
Hot air oven ( Memert,Schwabach,Germany)

High resolution microCAT-II (Siemens, Germany)

Magnetstirrer (IKA, Staufen, Germany)

Metabolic cages (Techniplast, Hohenpeissenligegnany)
Multireactiontubes (Eppendorf, Hamburg, Germany)
MultiChanelPipet (Eppendorf, Hamburg, Germany)
Multilevel counter (Victor 1420, PerkinElmer, &on, USA)
Osmometer (Osmomat 030, Gonotec, Berlin, Geynan
Petri dishes (Greiner Bio-one, Frickenhausesrngany)
Pipettes (Eppendorf, Hamburg, Germany)

Pipette tips (Carl Roth, Karlsruhe, Germany)

Shaker VIBRAX VXR ( IKA, Staufen, Germg

Spectronic GENESYS 6 (Thermo Fisher Scientific Massachusets, USA)
SpeedVac SVC 100 (Savant Life Sciences, Bath, UK

Sterile PS-tube 4.5 ml 12.4/75 MM (Greiner bio-oRackenhausen, Germany)
Sterile filters (Millipore, Cork, Ireland)

30-gauge insulin syringe (BD micro-fine, HeidelpeGermany).
Syringes, Omnifix-H, 1ml (Braun, Melsungen, Genya
Ultracentrifuge (Beckman Coulter, Krefeld, Genya
UV-cuvettes 8.5mm (Plastiband, Antwerp, Belgium)

Vortex (Labnet Abimed, Langenfeld, Germany)
Waterbath (Labortechnik, Seelbach, Germany)

28



Materials

Vi

Kits
Albumin determination kit

Aldosterone kit
ADH RIA kit

Corticosterone ELISA kit

Creatinine determination kit

for Plasma - creatinine PAP

Creatinine kit

for urine — Jaffe Kreatinin

Gamma-B

1.25-Dihydroxy-vitamin D

Glucose kit: gluco-quant
Inorganic Phosphate
Insulin ELISA kit

Intact parathormone ELISA kit

Mouse intact PTH Elisa kit
Plasma leptin ELISA kit
Urea determination kit

Chemicals

Aqua ad injectabili

Calcium chloride
Dexamethasone phosphate
disodium salt

Diethylether

DOCA pellets

Ethanol absolute (99%)

(microfluoral, Progdteidelberg, Germany)
(Demeditec, Kiel, Germany)
(Immunotech, Marseille, France; IBHamburg,
Germany)
(DRG Instruments, MarpuGermany)

(Lehmann, Berlin,r@any)

(Labor technik,Berlin,Germany)

(IDS, Boldon, UK)

(Roche Diagnostics, Ma&im, Germany)

(Roche Diagnostics, Mannh@ienmany)
(Mercodia, Uppsala, Sweden)

(Immunotopics, Sdariente, CA, USA)

(Immunotopics, Calii@, USA)

(Linco, St. Charles, USA)

(Lehman,Germany)

(Ampuwa, Niefern, Germany)
(Sigma-Aldirch, Hannover,Germjan
(Sigma, Taufkirchen, &g/m

(Carl Roth, Karlsruhe, Germany)
(50 mg, Innovative Research of AicgrSarasota,
Florida, USA)

(Carl Roth, Karlsruhe,rzaary)
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Evans Blue (Sigma, Taufkirchen, Germany)
Flumazenil (Roche, Mannheim, Germany)
HEPES (Sigma, Taufkirchen, Germany)
Ketamine (Sigma-Aldrich, Hannover, Germany)

Magnesiumchloride
Methanol absolute (99%)
Midazolam

Mouse albumin standard
Natriumchloride

Nitric acid(HNG;)-
Nitrogen liquide

Normal saline 0.9%
Phosphate-buffered saline
Potassium chloride

Sterilium

(Sigma-Aldrich; Hannover, Gany)
(Carl Roth, Karlsruherrzany)

(Sigma, Taufkirchen, Germany)
(Sigma, Taufkirchen, Gegha

(Sigma-Aldrich, Hannover, Gerrgan

(Sigma, Taufkirchen, Germany)

(Linde, Wiesbaden, Germany)
(Fresenius Kabi Bad HombGgrmany).
(PBS tablets, Invimpg@rsiruhe, Germany).
(Carl Roth, Karlsruhe, Gerynan

(Carl Roth, Karlsruhe, Germany)

Diets (Altromin, Heidenau, Germany)

Standard diet C1310/1314 [0.24%"N@&.71% K, 0.95% C&" (wt/wt)]
Control diet C1000 [0.24% Na0.71% K, 0.95% CA&" (wt/wt)]
Low-salt diet C1036 [0.015% Na0.71% K, 0.95% C&" (wt/wt)]

Software

Blood pressure

computerized data acquisition

Chart version.4.2

Data link version 1.0.0

GraphPad Instat version 3.05

Inveon Research Workplace

Magellan version 3.11
Sigma plot version 7.0

(PowerLab 400 and Chart 4, Coto&atings, Colorado
Springs, USA)

(Axon Instruments ,USA)
(Herbert &Scheneider ®afe &CAM, Siglingen,
Germany)
(GraphPad Software $an Diego, USA)
(Siemens, Germany)
(Tecan GmbH, Crailsheinnazy)
(Systat Software Inc. rattk, Germany)
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Animals

All animal experiments were conducted accordingthe guidelines of the American
Physiological Society and the German law for theecand welfare of animals and were

approved by local authorities.

gsk3*! mice were kindly provided by Dario Alessi which neebred homozygously.
The mice (6 males, age 16 weeks) were fed a cotigb(C1000, Altromin), 4 days a low salt
diet (C1036, Altromin) or 4 days a high salt dig@¥( NaCl solution in drinking water), as

indicated. The mice had free access to tap drimliaiggr and/or 1% saline as indicated.

Mice with mutated APC apc"'™*) and their wild type litermatesaggc™’*) with a

Min/+

mixed (C57/BI-6-Sv129J) background were generatgdteeding of maleapc mice

initially obtained from the Jackson Laboratory. Whdndicated, additional mice were

Min™* with gene targeted mice lacking functional SGEgk(™)

generated by crossbreediage
to generate mice carrying the mutant APC and samebusly lacking SGK1

(apc"™*/sgk1™). Sex and age matched mice of 3 months age werkfasthe experiments.

Generation and basic properties of the SGK3 knackuce 6gk3“°) were described
previously'®®. The mice were compared to their wild type littates §gk3"") and genotyped
by PCR on tail DNA using SGK3 and neo-R-specificrars as previously describé¥. The
mice (n = 10-13 in each group, age 3 months) wedleafcontrol diet (C1314, Altromin, Lage,

Germany) with free access to tap drinking water.
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METHODS

Collection of urine and feces

For evaluation of the renal and fecal excretiorwadi as daily food and fluid intake, mice

were placed individually in metabolic cages for s urine and feces collection with free
access to fluid and food. They were allowed a 3-dayituation period when food & water

intake, urinary flow, urinary excretion of saltctd excretion and body weight were recorded
every day to ascertain that the mice were adaptédet new environment. Subsequently 24h
collection of urine was performed for three conseeudays in order to obtain the urinary
parameters. To assure quantitative urine collectinatabolic cages were siliconized and

urine was collected under water-saturated oil.

Preparation of feces

To prepare feces for the analysis of the electeotgintent, feces samples were dried a€80
for about 3 hours and weighed. After addition ahbof 0.75 M HNQ to the feces, samples
were electrically shaken for 48 hours to yield anlbbgenous creamy mass. The mass was
centrifuged at 3000 g for 10 minutes, 1 ml of thpesynatant was centrifuged a second time at
10000 g for 5 minutes, and the resulting seconesigtant was used for further analysis.
Measured electrolyte concentrations were multiphth 5 to obtain excreted amount per day
(in pmol/24n).

Determination of plasma, urinary and fecal concentr ations

To obtain blood specimens, animals were lightly simetized with diethylether and
approximately 13Qul of blood was withdrawn into heparinized capikeriby puncturing the

retro-orbital plexus. Blood losses were replaceith wDO0 pl of 0.9 % NaCl subcutaneously.

Plasma, urinary and fecal concentrations of, M4 and C&" were measured by flame
photometry. Plasma and urinary creatinine conctgotra were measured using an enzymatic
colorimetric method (Creatinine PAP). Urinary creaite concentrations were measured
using the Jaffe method. Plasma, urinary and felbasphate were measured photometrically
using kits from Roche Diagnostics. Plasma and wyimalcium and plasma phosphate
concentrations in SGK3 were determined by a photemenethod according to the

manufacturer’s instructions (dri-chem clinical chsiny analyzer FUJI FDC 3500i).
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Urinary and plasma aldosterone concentrations waegermined by using a
commercial RIA kit (Demeditec), plasma and urineticosterone concentrations were
determined using an ELISA kit (DRG Instruments)adpha concentrations of insulin were
determined using an enzyme immunoassay kit (Meajodio estimate ADH release, the
urinary ADH excretion has been determined as aogate for the plasma ADH
concentration. Direct determination of plasma ADHneentration would require large
volume, which could not be obtained by decapitatioh the mice. Urinary ADH
concentrations were determined by radioimmunoa@esayunotech). In view of the circadian
rhythm of hormone release, plasma corticosteroneldewere determined prior to the

beginning of the dark cycle at 5 p.m

Plasma intact parathormone concentrations werasuaned using an ELISA-kit
(Immunotopics). Radioimmunoassay kits were emplagedetermine the concentrations of
plasma 1,25(0OH)-vitamin £XIDS). Plasma leptin levels were determined usindeLISA kit

(Linco). All measurements were done according ertfanufacturer’s instructions.

Blood pressure

Systolic arterial blood pressure was determinedhleytail-cuff method (IITC, Model 179) at
baseline and after respective treatments. Thecwéiilapproach to determine arterial blood
pressure requires certain precautions to reducsttéss of the animals, including appropriate
training of the mice over multiple days and adequmée-warming to dilate the tail artery. The
animals were placed in a heated chamber at an atrteimperature of 28-30 °C for 15 min
and from each animal 10-20 blood pressure traces meorded in one session. The readings
from 3 days were then averaged to obtain a meaadbfwessure under the respective
treatment. All recordings and data analysis wenmeedasing a computerized data acquisition
system and software (PowerLab 400 and Chart 4, Adtinstruments, Colorado, USA). All

measurements were done by one person during aeddfme (between 2-4 p.m).

Mineralocorticoid Treatment

To induce mineralocorticoid excegsk3<' andgsk3"" mice (8 months old, n = 6 each) were
implanted with 21-day-release 50 mg DOCA pellen@vative Research of America) in the
neck area during superficial general anesthesiefiaritoneal midazolam 5 mg/kg + ketamin
50 mg/kg), which was partially antagonized by fla@ail (0.5 mg/kg i.p.) afterwards. Prior

to the pellet implantation (control period) the micad free access to plain tap water. After
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the implantation, the tap water was replaced byN&el (high salt). Throughout the entire
study, mice had free access to a standard mous@di810, Altromin). Renal excretion was
determined before and after 18 days of DOCA+1%Nsg2itment.

For analysis of dexamethasone (DEXA) effegsk3<' andgsk3"" mice were injected
with dexamethasone phosphate disodium salt dissahv8.9% saline at a concentration of 1
mg/ml) at a dosage of 1iy/g body weight (BW) for four consecutive days gb.Bh. Mice
had free access to a standard mouse diet (C131@m#h) and tap water. Renal excretion

was evaluated before and after 4 days of dexanmikdseatment.

Determination of plasma volume

Plasma volume was assessed by dye dilution usiag€EBIue. Mice were anesthetized with
diethylether and 30-50 ul of an Evans Blue stockitemm (3 mg/ml in 0.9% NaCl) was
injected intravenously into the left retroorbitdéxus using a 30-gauge insulin syringe (BD
micro-fine). The exact applied volume was determibg weighing the syringe before and
after injection. Blood samples (20-25 ul) were dndvom the right retroorbital plexus during
superficial diethylether anesthesia after 10, 3Da6d 120 mins which each time yielded a
volume of 10 ul plasma after centrifugation. Absorte was measured at 620 nm against
blank mouse serum after recovery in 90 ul phospbatiered saline. Plasma concentrations
of Evans Blue were calculated using the stock swilutlissolved in mouse serum as a
standard. Division of the applied dose of EvanseBim mg) by the y-intercept (in mg/ml)
resulted in the distribution volume of Evans Blueieth was normalized for body weight.

Determination of Bone Density

For the analysis of bone density, animals werefgzamt and legs were amputated and fixated
in formalin. The samples were scanned with a higholution microCAT-1l (Siemens,

Germany) small animal computed tomography (CT) seansing a field of view of 3.1 x 3.1

X 4.8 cm3. The X-ray tube parameters were set &/g0and 400 pA. The images were
acquired with 720 angular projections (exposureetif@00 ms per projection) over 360° and
binned with a factor of two, yielding a spatial skgion of ~38 um. The total scan time was
24 minutes. Reconstructed CT images were analyaédtiae Inveon Research Workplace
software (Siemens, Germany) by drawing a standaetiscontainer around the femur and

applying a region growth routine to segment thbdcallar bone structure. For all samples, the
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same upper and lower density threshold were appliedcompared the relative numbers of

trabecular bone density.

In vitro experiments in SGK3

For generation of cRNA, constructs were used emgpdiild type NaPilla®® and SGK3*®
The cRNA was generated as described previotis§GK3 cDNA was kindly provided by Sir
Philip Cohen, the cDNA encoding NaPilla by Heini Mu For electrophysiologyenopus
oocytes were prepared as previously describ&tf* 7.5 ng of wild type SGK3 and 15 ng of
NaPilla cRNA were injected (one day) after preparabf Xenopus oocytes. All experiments
were performed at room temperature 4-5 days afijection. Two electrode voltage-clamp
recordings were performed at a holding potentialb6f mV. The data were filtered at 10 Hz,
and recorded with Digidata A/D-D/A converter anda@hv.4.2 software for data acquisition
and analysis (Axon Instruments). The control solufjsuperfusate / ND96) contained 96 mM
NaCl, 2 mM KCI, 1.8 mM CaG] 1 mM MgCL and 5 mM HEPES, pH 7.4. 3 mM phosphate
was added to induce NaPilla dependent currents.fldlerate of the superfusion was 20

ml/min and a complete exchange of the bath solwias reached within about 10 s.

Data are provided as means + SEM, n representsuimder of oocytes investigated.
All experiments were repeated with at least 3 bedclof oocytes; in all repetitions
gualitatively similar data were obtained. Data wiested for significance using ANOVA and

results with p < 0.05 were considered statisticsigyificant

Statistical analysis

Data are provided as means = SEM, n representsutinder of independent experiments.. All
data were tested for significance using paired rgraired Student t-test or ANOVA where
ever applicable and only results with p < 0.05 weomsidered statistically significant.
GraphPad InStat version 3.00 for Windows 95 (GraphBoftware, San Diego, USA) was

used.
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RESULTS

The role of PKB/SGK resistant GSK3 in renal water a  nd electrolyte

excretion as well as steroid hormone release

Food (Figure 6A) and water (Figure 6B) intakes wslightly but significantly larger in
gsk3*! than ingsk3"™ mice. In parallel to the enhanced food intakeafexcretion was again
significantly larger ingsk3“' than ingsk3"™ mice (Figure 6C). Despite the increased food and
water intake, body weight was similargsk3“' and ingsk3"" mice (Figure 6D).
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Figure 6: Food and fluid intake, fecal excretion, bdy weight and packed cell volume imgsk3" and gsk3""

mice on standard diet, low salt and high-salt inta&.

Arithmetic means + SEM (n=6 each group) of foodkat (A), fluid intake (B), fecal excretion (C), bodeight
(D) and packed cell volume (hematocrit, (E) in GSik®ckin mice ¢sk3', closed bars) and their wild-type
littermates ¢sk3", open bars) under standard diet (SD), under Ide$et (Low salt) and under high-salt diet
(High salt). # p < 0.05 vs respective value und2r*$ < 0.05 vs respective value gg3"" mice.
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Packed cell volume (hematocrit) tended to be higmegsk3' than ingsk3"" mice, a
difference, however, not reaching statistical gigance (Figure 6E). Further experiments
were performed to explore the food and fluid intakenormal cages. Food (211.2 + 8.7
mg/24h/g bw, n = 8 vs 149.6 + 7.42 ug/24h/g bw) timd inake (311.4 £ 19.5 pl /24h/g bw,
n =8 vs 192.8 + 12.4 pl /24h/g bw) were signifitatarger ingsk3' than ingsk3"" mice.

Plasma insulin concentrations were similarga3‘' mice (0.5 + 0.1 ng/ml) and in
gsk3" mice (0.4 + 0.1 ng/ml). In contrast, plasma codierone concentrations were
significantly lower ingsk3*' mice than ingsk3"" mice (Figure 7B). Moreover, aldosterone
concentration was significantly lower gsk3' than ingsk3"" mice (Figure. 7A). Low salt
diet increased and high salt diet tended to deerpéssma aldosterone levels. Neither diet
abrogated the difference between the genotypesirfdigA). In contrast to plasma hormone
concentrations, the urinary excretion of aldosterowas significantly higher and
corticosterone excretion tended to be highegsk8“' than ingsk3"" mice. Urinary excretion
of vasopressin (ADH) was similar gsk3“' andgsk3"™ mice during control diet and low salt

diet but increased to significantly higher levelsidg high salt intake (Figure 7C).
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Figure 7: Plasma aldosterone and corticosterone coantrations and urinary vasopressin excretion in
gsk3“ and gsk3"" mice on standard diet, low-salt and high-salt intke.

Arithmetic means = SEM (n=6 each group) of aldasmter plasma concentrations (A), Corticosterone
concentrations (B) and urinary vasopressin exanef®) in GSK3 knockin micegsk3"', closed bars) and their
wild-type littermates gsk3"" , open bars) under standard diet (SD), under itveiet (Low salt) and under
high-salt diet (High salt). # p < 0.05 vs respeztiralue under SD,* p < 0.05 vs respective valugskd3"" mice.

Plasma N&concentration was slightly but significantly lowiargsk3“' than ingsk3""
mice under control diet (Figure 8A). Low salt disignificantly decreased plasma Na
concentration ingsk3"" mice but not ingsk3“' mice and thus dissipated the difference
betweengsk3“' and gsk3"" mice. High salt diet was followed by a significantrease of

plasma N concentration in botlgsk3“' andgsk3"™ mice, and again dissipated the difference
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between genotypes (Figure 8A). Plasmadéncentration was similar igsk3<' and gsk3""

mice under control, low and high salt diet (Fig8B).
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Figure 8: Plasma N4 and K* concentrations ingsk3' and gsk3'" mice on standard diet, low-salt and

high-salt intake.

Arithmetic means + SEM (n=6 each group) of plasnaa ) and K (B) concentrations in GSK3 knockin mice
(gsk3“', closed bars) and their wild-type littermatgsk8"", open bars) under standard diet (SD), under ldw sa
diet (Low salt) and under high-salt diet (High yalt p < 0.05 vs respective value under SD,* p 850vs

respective value ajsk3"" mice.

Urinary flow rate was significantly larger igsk3' than ingsk3"" mice, an effect
persisting under both, low and high salt diet (Fég®A). Urinary N& excretion was similarly
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larger ingsk3<' than ingsk3"" mice. Low salt diet significantly decreased urjnhia” output
to similarly low levels in both genotypes (FigurB)9High salt diet significantly increased
renal Nd excretion in both genotypes. Urinary ‘Naxcretion remained, however,
significantly larger ingsk3' than ingsk3"" mice during high salt diet (Figure 9B). Under
control diet, urinary K excretion was again significantly highergsk3“' than ingsk3"'™ mice

(Figure 9C). The difference was, however, dissgdtelow and high salt diet (Figure 9C).
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Figure 9: Urinary flow rate and urinary excretion of Na" and K* in gsk3' and gsk3"" mice on standard

diet, low-salt and high-salt intake.

Arithmetic means + SEM (n=6 each group) of urinfloyv rate (A), and urinary excretion of N#B), and K
(C) in GSK3 knockin mice gsk3!, closed bars) and their wild-type littermateskB"", open bars) under
standard diet (SD), under low-salt diet (Low sald under high-salt diet (High salt). #p<0.05 @spective

value under SD, *p<0.05 vs respective valugsxB"™ mice.
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Under control diet the creatinine clearance as agelrinary urea, creatinine, glucose
and aldosterone excretions were significantly langgsk3“ mice than irgsk3"" mice (Table
1). Plasma creatinine and urea concentrations sligtly but significantly lower irgsk3"
than in gsk3"" mice under control diet (Table 1). Plasma glucosecentration was not
significantly different betweegsk3“' andgsk3"'™ mice (Table 1).

As shown in Figure 10, urine osmolarity was siigaifitly higher ingsk3' than in
gsk3™" mice. Water deprivation further increased urinenolsrity, an effect, reaching
statistical significance only imgsk3“ mice (Figure 10B). Plasma osmolarity was not
significantly different betweensk3*' and gsk3"" mice and was not significantly altered by
water deprivation (Figure 10C). Body weight deceshsluring water deprivation (Figure
10E), an effect significantly larger gsk3' mice (Figure 10D).
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Figure 10: Urinary flow rate, plasma and urinary osmolarity as well as body weight ingsk3" and gsk3""
mice on standard diet before and after water deprigtion. Arithmetic means + SEM (n=6 each group) of
urinary flow rate (A), urinary (B), and plasma (&@molarity, change ofA) body weight (D) as well as body
weight (E) in GSK3 knockin miceggk3“', closed bars) and their wild-type littermatgsk8"", open bars). # p <

0.05 vs respective value under SD, * p < 0.05 speetive value ofsk3"" mice.
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Additional experiments were performed to elucidaighether the decreased
aldosterone levels igsk3“' mice resulted in a reduced salt appetite. To ¢hid, the mice
were offered two drinking bottles, one containingiptap water and the other 1 % saline. As
illustrated in Figure 11, thgsk3"" mice significantly preferred saline. Thek3“' mice drank
similar volumes of saline but larger volumes of tapter thangsk3"" mice. As a result,

gsk3*! mice drank similar volumes of saline and tap wéégure 11).
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Figure 11: Fluid intake from tap water or saline bygsk3“ and gsk3"" mice.

Arithmetic means + SEM (n=6 each group) of volurtegs water intake (water) or 1% saline (1% NaCl)n#ru
per day (upper panel)as well as the preferencalafes i.e., the ratio of saline/water drunk (lowsnel) by
GSK3 knockin mice dsk3“', closed bars) and their wild-type littermatgsk8"", open bars). * p < 0.05 vs

respective value ajsk3"" mice.
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Systolic blood pressure was slightly but signifita higher ingsk3“' than ingsk3*""
mice during control diet and during low salt diEtgure 12), a difference abrogated by high
salt diet. Low salt diet significantly decreasee tilood pressure igsk3"" mice. To test,
whether the difference betwegsk3“' andgsk3"" mice was due to differences in circadian
rhythm, systolic blood pressure was measured dt, dotp.m and 10 p.m. Systolic blood
pressure was significantly higher gsk3"' than ingsk3"" mice at both, 1 p.m. (101.26 + 1.8
vs 90.3 + 1.8 mmHg) and 10 p.m. (102.46 £ 2.6 v4 891.2 mmHg, n=6-7).
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Figure 12: Systolic blood pressure ingsk3" and gsk3'" mice on standard diet, low-salt and high-salt

intake.

Arithmetic means+SEM (n=6 each group) of systolwoll pressure (BP) in GSK3 knockin migsi3"', closed
bars) and their wild-type littermategsk3"", open bars) under standard diet (SD), under Idaget (Low salt)
and under high salt diet (High salt). # p < 0.05espective value under SD, * p < 0.05 vs respeciaiue of

gsk3™" mice.

Body temperature was significantly highegak3“' mice (38.8 + 0.2C, n = 9) than in
gsk3"" mice (36.8 + 0.2C, n = 9).
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Further experiments were performed to exploreauyirNa and K excretion during
mineralocorticoid or glucocorticoid excess. Priothiormone application urinary Nand K
excretion was significantly higher igsk3' than ingsk3"" mice. Following treatment with
DEXA (Figure 13B) or DOCA (Figure 14B) the urinaa” excretion was still significantly
higher ingsk3“' than ingsk3"" mice. Urinary K excretion, however, was not significantly
different between the genotypes after the DEXA QA treatment (Figure 13C and Figure
14C).
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Figure 13: Urinary flow rate and urinary excretion of Na" and K* in gsk3“ and gsk3"" mice before and

after DEXA treatment.

Arithmetic means + SEM (n=6 each group) of urinfioy rate (A) and urinary excretion of N&B) and K (C)
in GSK3 knockin mice gsk3“', closed bars) and their wild-type littermategsk8"", open bars) before (left
panels) and after (right panels) 4-days DEXA treaitm# p < 0.05 vs respective value under SD, *(a05 vs

respective value ajsk3"" mice.
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Figure 14: Urinary flow rate and urinary excretion of Na" and K* in gsk3“ and gsk3"" mice before and
after DOCA treatment.

Arithmetic means + SEM (n=5-6 each group) of uynkow rate (A) and urinary excretion of N&B) and K
(C) in GSK3 knockin micegsk3“, closed bars) and their wild-type littermatgsk8"", open bars) before (left
panels) and after (right panels) an 18-day DOCA%4+NaCl treatment. # p < 0.05 vs respective valueuisD,

* p < 0.05 vs respective value gék3"" mice.
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Table 1: Effect of standard diet, low salt and higtsalt diet on plasma concentrations and urinary
excretion of electrolytes and hormones.

Creatinine, urea concentrations in plasma, renatetirns of glucose, urea, creatinine clearanaggstdrone,

corticosterone and fractional renal excretions @fahd K in both gsk3“ and ingsk3"™ mice.

|

Standard diet Low salt diet High salt diet
(n=6) (n=6) (n=6)
gsk3"" gsk3 gsk3"" gsk3 gsk3"" gsk3
[Creatinine] yasma (Mg/dl) 0.13+0.01 0.09+0.01| 0.18 +0.03] 0.21+0.62| 0.30 +0.05| 0.25+0.05
[Urea] pasma (Ma/dl) 54.9+2 47.0+2 47.2+5 45.6+3 51.5+3 44.0%2
[Glucose] pasma (Mg/dl) 137.66.7 126.69.0 ND ND ND ND
Urinary creatinine 13.9+1.2 17.0£0.7 | 22.6+1.5 22.4+1.7 16.5+1.3 16.5+1.3
(ng/24h/g BW)
Creatinine clearance 7.4+0.6 14.4+1.7 9.9+1.7 8.0+0.8 4.3+0.7 4.9+1.3
(ul/min/g BW)
Urine urea (mg/24h) 150.2+14 207.2+11 | 161.5x11 | 174.6£773 | 189.2+21 226.1+15
Urine glucose (mg/24h) 0.4£0.05 1.7+0.5 0.5%0.1 1.8+0.3 0.51£0.04 0.86+0.04
FE Na' (%) 0.49+0.06 0.42+0.07 | 0.04+0.01 0.04+0.0f | 3.14+0.48 | 4.02+0.8T
FE K" (%) 30.6+3.38 21.8+2.35| 17.0£1.95  14.3+2.3f  54.9+6.1669.7+13.27
Urine aldosterone 8.310.8 12711 | 19.7+4.8 | 22.1+41 7.410.7 10.8+1.1
(ng/24h)
Urine corticosterone 0.11+0.02 0.23+0.07 | 0.20+0/0B 0.42+0.14 | 0.15+0.03 | 0.29+0.11
(nmol/24h)

Arithmetic means + SEM® p<0.05 vs. respective value under SIP<0.05 vs. respective value g&3"" mice,

ND- Not determined.
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SGK1 dependence of renal electrolyte balance and ho  rmone

regulation in APC min mice

Min/+

The body weight was similar apc'™* mice,apc™’* mice andapc'™*/sgk1” mice (Table 2).

Similarly, food intake and fluid intake were nogisificantly different between the genotypes.

Min/+ Min/+

Urine flow tended to be lower @pc*"'™* mice than irepc™™ mice andapc™™*/sgk1”” mice, a

difference, however, not reaching statistical digance. Mean fractional urinary excretion of

M and apc™™*/sgk1” mice than inapc™* mice. In

Min/+

K* was significantly higher irapc

contrast, absolute urinary excretion of 'Neas significantly lower irapc mice than in

apc’’* mice. The absolute Naexcretion tended to be higher apc*'"*/sgk1” mice than in

apc""™* mice and was not significantly different from thespective value impc*’

+

mice
(Table 2). Thus, lack of SGK1 appeared to abrogfaedecrease of renal Naxcretion in

mice carrying the mutant APC.

Fecal excretion was studied to further clarify éhectrolyte homeostasis and as shown

in Table 2, feacal dry weight was not differentvie¢n the genotypes. Fecal sodium and

Min/+

potassium excretion was significantly higher apc mice than inapc™* mice. The

additional lack of SGK1 could reverse the differenic fecal sodium excretion but did not
reverse the increase of fecal potassium excrefiahlé 2).

Min/+

Serum creatinine concentration was significanityhlr inapc mice than irapc+’+

mice, a difference, which was abrogated by addifidack of SGK1 &pc™'"*/sgk1™ mice).

Min/+

The glomerular filtration rate was also signifidgrbwer in apc mice and the additional

lack of SGK1 tended to partially reverse the ddéfese (Table 2).

Plasma corticosterone and aldosterone concentsaticere significantly higher in

apc"'™* mice than irapc™* mice (Figure 15). While plasma corticosterone eoi@tion was

similar in apc™™ mice andapc™"*/sgk1” mice, plasma aldosterone was even higher in

Min/+ Min/+

apc"™* /sgk1”" mice than irepc mice (Figure 15).
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Figure 15: Plasma aldosterone and corticosterone moentrations in apd™™* mice, apc”* mice and
apd™*/sgkI” mice

Arithmetic means + SEM of plasma aldosterone cotmagans(n = 7-9) (A) and corticosterone conceitret (n

= 11-13) (B) in mice carrying a defective AP&¢"™*, black bar), their wild type littermateapc*’*, white
bar) and mice with defective APC and in additiockiag SGK1 &pc""*/sgk1”, grey bar). * indicates
statistically significant (p<0.05) difference betmeapc”* andapc™™* mice. # indicates statistically significant

Min/+

(p<0.05) difference betweeapc and apc"™*/sgk1” mice. § indicates statistically significant (p<®)0

difference betweeapc’* andapc'™*/sgk1” mice.

To test whether enhanced corticosterone and &icost concentrations were the
result of volume depletion, plasma volume was deiteed utilizing Evans blue distribution.
As illustrated in Figure 16, plasma volume was igently higher inapc™”* mice than in
apc’’* mice, a difference partially reversed by additidaek of SGK1 apc™™*/sgk1™ mice).
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Figure 16: Plasma volumein apd*™*mice, apc”’*mice andapd"™*/sgkI’” mice
A. Representative experiment demonstrating the-tlefgendent decay of Evans Blue plasma concentration

B. Arithmetic means + SEM (n = 8-14 ) of relativiegma volume (per gram body weight) of mice cagyin
defective APC gpc"'™*, black bar), their wild type littermateapc™, white bar) and mice with defective APC

and in addition lacking SGKlapc""*/sgk1”, grey bar). Plasma volume has been determineidingjl Evans

Min/+

Blue.* indicates statistically significant (p<0.0difference betweeapc*’* andapc mice.

As body weight was similar in the three genotygespite the differences in plasma
volume, the increased extracellular volume of ARfGiaient mice may have been paralleled
by a decrease of body fat. Thus, serum leptin qunatons were measured in order to depict
differences in body fat. Serum leptin concentragiorere significantly lower in botapc™™*
and apc"'™*/sgk1”" mice than inapc™* mice (Table 2). Thus, APC deficiency decreased the

body fat, an effect not sensitive to additionaklat SGK1.

Additional experiments were performed to elucidateether the altered renal Na
output was paralleled by enhanced salt appetitehiSend, animals were offered two bottles,
one with tap water and the other with saline. Aenamin Figure 17, neitheapc“’””’+ mice nor
apc’* mice preferred water or saline and there wereifferences in salt appetite between

the two genotypes.
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Figure 17: Plain tap water and saline consumptionfan apd"™* mice andapc™ mice

Arithmetic means + SEM (n = 12 each group) of ddilinking volumes of plain tap water (water) and §&tine

Min/+ +/+

(NaCl) in mice carrying a defective AP@¢c™" ", black bar) and their wild type littermategp¢™ ", white bar).

Hyperaldosteronism is known to elevate blood pressThus, blood pressure was
determined in an additional series of experimefssillustrated in Figure 18, blood pressure

Min/+

was indeed significantly higher iapc mice than inapc’”* mice. The difference was

partially reversed by additional lack of SGKap¢"""* /sgk1™).
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Figure 18: Systolic blood pressure impd"™* mice,apc” mice andapd®™*/sgk1” mice

Arithmetic means + SEM of systolic blood pressuB®) in mice carrying a defective AP@pc""™*, n = 7,

+/+

black bar), their wild type litermatesdc™", n = 6, white bar) and mice with defective APC amdaddition

lacking SGK1 &pc"'"*/sgkl™, n = 5, grey bar). * indicates statistically sifigant (p<0.05) difference between

Min/+

apc+/+ andapc mice. # indicates statistically significant (p<®)Odifference betweerapc""*and

ap

M 1sgk1 ™ mice.
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Table 2: Body weight, food and fluid intake, urinaly flow, fecal dry weight, creatinine clearance, alidute

and fractional urinary Na*, K* excretion, plasma and fecal Ng K* concentrations and plasma leptin

++

concentration in apc’ mice, apd"™* mice andapd™*/sgkI” mice (n = 13-16, except leptin [n = 6)).

ap " ap(fv"n“ ap(fv"n“ /s gkI/'
Body weight (g) 256+1.0 25.0+0.9 24.3+0.7
Food intake (mg/24h) 4.0+0.2 3.9+£0.2 3.8+£0.2
Fluid intake (ml/24h) 6.1+04 55+0.2 55+0.3
Urinary flow (ul/24h/g BW) 38.9+£3.9 28.2+4.7 342+43
Fecal Dry Weight (mg/24h/g BW) 48 +5 54 +3 52+3
[Creatinine] piasma (Mg/dl) 0.30 £ 0.02 0.43+0.04 0.36 £ 0.03
Urinary creatinine (ug/24h/g BW) 27+ 2 22+2 21+2
Creatinine clearance (ul/min/g BW) 6.6 +0.6 40+05 4.4+0.6
Urinary Na ™ excretion (umol/24h) 134 +14 79+ 14 123 +17
Urinary K * excretion (umol/24h) 509 £ 26 431 £ 45 448 + 50
Plasma Nd concentration (mM) 150+ 2 151+2 152 +2
Plasma K" concentration (mM) 3.82+0.10 3.76 £0.09 3.73+0.08
Plasma Leptin (ng/ml) 2.38+0.57 0.77 £0.13 0.67 £0.16
FE Na' (%) 0.42+0.03 0.43 +0.07 0.61 +0.06
FE K* (%) 66.+ 6 98+1 96 + 10
Fecal Na (umol/24h) 148 + 17 206 + 14 120 + 108
Fecal K" (umol/24h) 229 +15 286 + 20 286 +19

* indicates statistically significant (p<0.05) difence with respect tpc

+/+

mice.

# indicates statistically significant (p<0.05) eifénce with respect apc"™" mice.

52



Results VIl

The role of SGK3 in renal phosphate handling

A first series of experiments analysed the in vitriluence of the serum and glucocorticoid-
inducible kinase isoform SGK3 on NaPilla, the majenal tubular phosphate transporter.
Exposure of noninjectedenopus oocytes to phosphate (3 mM) in the bath solutimhrobt
induce a significant current, indicating that thosecytes do not express significant
endogenous electrogenic phosphate transport (Fig@yeIn oocytes injected with cRNA
encoding NaPilla, however, the addition of phosph@& mM) induced an inward current
(Ipi). Coexpression of SGK3 significantly increasga in NaPilla-expressing oocytes.
Expression of SGK3 alone did not induce Ipi, intiog that SGK3 was indeed effective by

stimulating NaPilla.
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Figure 19: Coexpression of SGK3 stimulates electregic phosphate transport in NaPilla-expressing

Xenopus oocytes

Arithmetic means + SEM of phosphate (3 mM)-inducedrents (IPi) in Xenopus oocytes injected with evat
(H-0) or SGK3 or NaPilla, or SGK3 and NaPilla cRNAndicates significant difference from absence of
NaPilla cRNA. ### indicates significant absencef®GK3 cRNA (p<0.001).
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A second series of experiments explored whethd€3S@articipates in the regulation
of renal phosphate excretion in vivo. To this anéfabolic cage experiments were performed
in gene targeted mice lacking functional SGKgkB“®) and their wild-type littermates
(sgk3"™). As shown in Table 3, the body weight was simitesgk3“® mice andsgk3"" mice.
Fluid intake tended to be slightly highersgk3“° than insgk3"" mice, a difference, however,
not reaching statistical significance (Table 3).oéfdntake was slightly but significantly
higher insgk3“© than insgk3"™ mice (Table 3).

No significant differences were observed betwdengenotypes in plasma €and
phosphate concentrations (Table 3).

Urinary flow rate and creatinine clearance eacilée to be slightly higher isgk3°
mice than insgk3"" mice, a difference, however, not reaching staastignificance (Table
3). Absolute (Table 3) and fractional (Figure 2@gretion of CA" were not significantly
different between the two genotypes. In contrdstphute (Table 3) and fractional (Figure 20)
excretion of phosphate were significantly highesgk3*® mice than irsgk3"" mice. Neither

in thesgk3"" nor in thesgk3“® mice glucosuria was observed.
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Figure 20: Fractional excretion of calcium and phoghate in sgk3‘° and sgk3"" mice

Arithmetic means + SEM (n = 10-12 each group) atfional urinary calcium (left panel) and phospHaight
panel) excretion in SGK3 knockout micggk3“?, closed bars) and their wild type littermategk8"", open
bars).* p<0.05 vs. respective valuesgk3"" mice.

The phosphaturia could have been secondary tceased parathyroid hormone
release. Thus, plasma PTH levels were determingdlustrated in Figure 21C, PTH plasma
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concentration was not significantly different betwe genotypes. However, plasma

1,25(0OH)D; concentration was significantly lower Byk3“° than in sgk3"" mice(Figure
21D).
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Figure 21: Plasma calcium, phosphate, PTH and 1,25{),D; concentrations insgk3‘© and sgk3"" mice

Arithmetic means + SEM of plasma calcium (A), phusie (B) (n = 10 each group), PTH (C) and 1,25(Dkl)
(D) (n = 10-12 each group) concentration in SGK®dkout mice $gk3“°, closed bars) and their wild type

littermates $gk3"", open bars).* p<0.05 vs. respective valuegsB"" mice.
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Renal loss of phosphate was expected to fostemeeatization of bone. Thus, bone
density was determined syk3“° andsgk3"" mice. As shown in Figure 22, the bone density

was indeed lower iagk3“° mice than irsgk3"'" mice.
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Figure 22: Bone density o6gk3‘° and sgk3"™ mice

Arithmetic means + SEM (n = 6 each group) of boaasity in SGK3 knockout micesgk3“?, closed bars) and

their wild type littermatessgk3"", open bars).* p<0.05 vs. respective valuegiB"™ mice.
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Table 3: Analysis of blood and urine ofsgk3° and sgk3"™ mice
Body weight, food and fluid intake, plasma concatitns and renal excretions ofCand phosphate, urinary flow

rate, creatinine clearance and fractional renatetions of C&" and phosphate in SGK3 knockout misgkB“®)

and their wild type littermatesgk3"'").

sgk3'T sgk3©

Body weight (g) 24.01+0.69 23.48+0.75

Food intake (mg/g BW) 180.9+8.9 210.4+8.9*
Fluid intake (mg/g BW) 299.9+16.7 318.7+16.6
[Ca*]plasma (mg/dl) 9.31+0.08 9.33+0.11
[Pilplasma (mg/dl) 6.70+0.22 7.15+0.19

Urine Ca®* (umol/24h/g BW) 0.30+0.02 0.31+0.03
Urine P; (umol/24h/g BW) 0.18+0.03 0.62+0.12
Urinary flow (ul/24h/g BW) 51.47+8.77 63.93+5.47
Creatinine clearance (ul/min/g BW) 4.78+0.55 6.05+0.95
Fractional excretion of C&* (%) 1.92+0.19 1.79+0.13
Fractional excretion of R (%) 1.50+0.42 3.20+0.69

Arithmetic means £ SEM (n = 10 - 13); * indicatégrsficant difference between genotypes(.05).
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DISCUSSION

The role of PKB/SGK resistant GSK3 in renal water a  nd electrolyte

excretion as well as steroid hormone release

The present study reveals several subtle differeibetweergsk3 and gsk3"" mice. Food
intake was significantly higher igsk3*' than ingsk3"™ mice even though the body weight
was similar in both genotypes. In search for a ibptessexplanation for this seeming
discrepancy, we hypothesized thgsk3' mice had enhanced metabolic turnover and thus
determined body temperature. Rectal temperatureineed significantly higher igsk3
than ingsk3"" mice. The elucidation of enhanced body temperasitgeyond the scope of
this study and future studies shall be directe@ltwidate the underlying cause. Enhanced
metabolic turnover is further reflected by enhanaedary urea excretion, an indicator for
enhanced protein degradatitii. Increased urinary urea excretion could have dmrted to

the higher urine osmolarity igsk3' mice 1**. Notably, plasma urea concentration is rather

lower and thus, renal urea clearance enhanced.

Enhanced food intake is paralleled by increasedtelyte intake. Enhanced renal™Na
excretion may at least partially be due to reducegldsma aldosterone levels.
Hypoaldosteronism should, however, not increasedbatease urinary Kexcretion. Plasma
K* concentration was not different betwegsk3“' andgsk3"" mice at any of the diets offered
to the mice and differences in plasmadoncentration cannot account for the kaliuresighef
gsk3“' mice. Thus, a renal mechanism presumably causkaneed renal K excretion.
Lithium, an inhibitor of GSK, downregulates distephron ENaC expressidft’, which is
expected to decrease distal tubuldrdécretion. Conversely, overactivity of GSK3gek3"

mice may enhance ENaC activity, thus enhancingltiving for K" secretion.

Fluid intake was again significantly higher gek3' than in gsk3"™ mice. The
enhanced fluid intake parallels the enhanced wyiflaw rate ofgsk3“' mice. The enhanced
urinary flow rate ingsk3“' mice does not reflect decreased ability of urinaogicentration, as
urinary osmolarity is increased. Moreover, watgordation did not abrogate the differences
in urinary output betweegsk3“' and gsk3"™ mice. At high salt diet, the increased urinary
osmolarity could be explained by increased ADH etion. Beyond that, GSK3 may
participate in the regulation of renal tubular wat@nsport. Along those lines lithium, an
inhibitor of GSK3, causes nephrogenic diabetes pidss '*°. Lithium increases
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cycloxygenase expression, leading to enhanced tmmaf prostaglandins and subsequent

polyuria®.

The increased fluid intake g&k3“' mice was not dependent on salt intake. Moreover,
when offered the choice between tap water andesatiregsk3*' mice drank similar volumes
of saline as thesk3"" mice, but continued to drink larger volumes of tagter than their
wild-type littermates. Accordingly, unlike thgsk3"" mice, gsk3' mice did not drink
significantly more saline than tap water. The emeanfluid intake ofgsk3“' mice cannot be
explained by enhanced plasma’Nancentration or osmolarity. Notably, inhibitioh ®SK3
by lithium has been reported to upregulate eN®Sand inhibition of NO-synthase by L-
NAME enhances thirst following Lipopolysaccharidd®8) injection™*’. Taken together, one
may speculate that unrestrained GSK3 could dowteiegiO-synthase and that the lowering
of NO induces thirst. Clearly, additional experirtedreffort is needed to determine the role of
GSK3 in the regulation of thirst.

The role of GSK3 in the regulation of eNG® may further contribute to or even
account for the differences of blood pressure bengek3“' andgsk3"" mice. Blood pressure
was higher irgsk3"' than ingsk3"™ mice both, at 1 p.m. and 10 p.m.

In both, gsk3¢' and gsk3"" mice, hematocrit increased significantly followiaglow
Na' diet. The reduced salt intake led to a decreag#asima N concentration, a difference
reaching statistical significance @3k3"" mice. The decreased extracellular’ Mancentration
is expected to favour water movement from extratallspace into cells and thus increase the

erythrocyte volume at the expense of plasma volume.

Under control diet the creatinine clearance wasifitgntly higher ingsk3*' than in
gsk3"" mice. The present study did not attempt to defiree underlying mechanisms. It is
noteworthy, however, that GSK33 expressed in tbmgtula inactivates Snail, which in turn
decreases the transcription of nephtfi Thus, GSK3R presumably participates in the

regulation of glomerular function.

Plasma aldosterone at 10 a.m. and plasma corticostéevels were at 5 p.m. indeed
significantly lower in gsk3' than in gsk3"" mice. However, the urinary excretion of
aldosterone was significantly higher and corticaste excretion tended to be highegah3"'
than ingsk3"" mice. The discrepancy may result from an influen€e5SK on circadian
rhythm "°“% Moreover, according to unpublished observatiptesma protein concentration
is decreased igsk3“' mice. Decreased plasma protein binding could dmrte to the reduced

plasma steroid levels in those mice.
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gsk3*! mice are devoid of SGK1-dependent regulation oK&SAccordingly, some
parallel findings were expected g3k3“' mice and in gene targeted mice lacking functional
SGK1 gkl”). However, the properties gk3' andsgkl” differ in a variety of aspects. As
compared to their wild type littermatesgkl” mice have enhanced plasma aldosterone levels
and are unable to adequately decrease urinahobiaut following exposure to salt-deficient
diet®. In contrastgsk3*' have lower plasma aldosterone concentrationsd&@!” mice and
adequately decrease urinary ‘Nexcretion during salt depletion. Moreovegkl’™ mice are
unable to adequately increase rendlekcretion during acute and chronié Kading®. In
contrast, renal K excretion is rather enhanced gsk3“' mice despite normal plasma’K
concentration. Thus, SGK1-dependent regulatiorenfir Nd and K excretion is obviously
not due to phosphorylation and inhibition of GSHKAstead, SGK1 is partially effective
through stimulation of ENaC expressibif, phosphorylation of the ENaC alpha-subunit
and phosphorylation of Nedd4*2'. Apparently, GSK3 influences renal water and etéyte

excretion via SGK1 independent mechanisms.

In conclusion, insensitivity of GSK3 to the inhitmy action of PKB and SGK1 leads
to a decrease of plasma corticosterone and aldostelevels, decreased salt appetite,
enhanced renal Naxcretion, hyponatremia, enhanced susceptibditwater deprivation and
increased blood pressure. The present observatisc®se a completely novel element in the

regulation of water and electrolyte metabolism.
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SGK1 dependence of renal electrolyte balance and h  ormone

regulation in APC min mice

The present observations reveal several subtlerdiites between mice carrying a mutation
in the APC geneapc"™*) and their wild type littermatesagc™’*). Most importantly, the
apc"'™* mice had higher plasma aldosterone and plasma&a@sterone concentrations than

theapc™* mice.

Lack of APC could, at least in theory, modify dtetyte homoestasis by decreased
degradation of R-catenin with subsequent incredsB-eatenin levels and stimulation of
SGK1 expression. As demonstrated earlier, genesgufated by R-catenin include SGK1
125126 \which in turn phosphorylates glycogen synthasede 3 (GSK3}°? and thus blunts
the downregulation of R-catenin by GSK3 dependémtsphorylation*?”*?° SGK1 further
stimulates the expression and/or activity of a etgri of channels and carriers
33160:1221123,140:141:152-1%81d js thus important for renal Neetention®>*> Enhanced expression
of SGK1 would be expected to foster renal’ Metention and thus increase plasma volume.

M mice, a

Accordingly, urinary N& excretion was indeed significantly decreasedhpn
difference reversed by additional lack of SGK1. idiiflike changes were observed in fecal
Na" excretion. Unlike renal tubular Naeabsorptio?**>> colonic N& reabsorption appears

not to depend on SGK1®* The fractional urinary Naexcretion was not significantly

Min/+ +

different betweerapc mice andapc’’* mice, as glomerular filtration rate was similarly

M mice than inapc™™ mice, a difference, however, not reversed by atuit

lower inapc
lack of SGK1. The observations point to a role &Q\in the maintenance of glomerular
function.

According to the experiments with Evans blue, plasmlume was significantly larger

M mice, an effect partially blunted mpc"'™*/sgkl™ mice. Thus, SGK1 dependent

in apc
Na' retention could have led to hypervolemia. Incrda&GK1 expression following
treatment with a PPARgamma agonist was similargmshto enhance plasma volurfté an

effect in part dependent on SGK1.

Hypervolemia would in turn be expected to decreddesterone release. The opposite
is observed, i.e. plasma aldosterone levels amgfisigntly higher inapc™'™* mice than in
apc’™* mice. Moreover, the hyperaldosteronism was nagnsad but augmented by additional
knockout of SGK1. The further increase of plasnbsterone concentration is in line with

the enhanced plasma aldosterone levels obsen®@Hki deficient mice, a result of impaired
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renal N4 retention in those animai&® Clearly, the hyperaldosteronismagc'"* mice is
not due to enhanced SGK1 expression and is neitherto volume depletion nor due to
hyperkalemia. Instead, APC-dependent signalling nmflyence aldosterone release more
directly. Corticosterone levels were not signifitardifferent betweenapc"™*/sgk1”~ and
apc"'"™* mice. Thus, unlike the increase of aldosteronel&gthe increase of corticosterone
levels may be dependent on the presence of SGK1.

Even though plasma aldosterone levels were evghehiin apc*™*/sgkl” mice,

urinary Nd excretion tended to be higher in those mice tmeaapc™'™*

mice, an expected
finding in view of the known effect of SGK1 on rérabular Nd transport®®**> The
enhanced plasma aldosterone levels could furth@laiex the increased fractional "K
excretion and the elevated blood pressu@f'™* mice than irapc™* mice.

Min/+

In contrast to plasma volume, body weight was different betweerapc mice

+

and apc’”™" mice. Thus, the possibility was considered that abundance of body fat was

decreased inapc"'™*

mice. As body fat mass is correlated with leptitasma
concentrations®, plasma leptin levels were determined. As a reAlRC deficiency was
paralleled by marked decrease of plasma leptiner@nations, pointing to reduced body fat
mass. Recent observations indeed point to an wombieffect of 3-catenin signalling on

adipocyte differentiatio>®*°*

In conclusion, plasma aldosterone and corticostetevels, plasma volume and blood
pressure were higher in mice carrying the defectNRC gene. The effects are partially
reversed by lack of SGK1 pointing to a role of tkisase in APC-dependent regulation of
electrolyte homoestasis. However, SGK1 deficiengynaents the effect of defective APC on
plasma aldosterone levels, pointing to a SGK1 ierddpnt role of APC in the regulation of
adrenal hormone release. Clearly, the signallingcade of APC and SGK1 is more
complicated than a simple serial chain and thegmtedata shed some light but still do not

clarify the final interactions.
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The role of SGK3 in renal phosphate handling

The present observations disclose a novel funaio®GK3, i.e. the stimulation of renal
tubular phosphate transport. According to the @rpaEmts onXenopus oocytes, coexpression
of SGK3 leads to a marked increase in NaPilla @gtiihe in vivo relevance of SGK3

sensitive NaPilla regulation is underscored byphesphaturia o$gk3© mice.

The phosphaturia 06gk3® mice was not due to increased plasma phosphate
concentrations and occurs without significant aliens of PTH plasma concentrations. The

hormone is well known to downregulate renal phospteansport®?

, and its release is
inhibited by enhanced plasma phosphate concentr&fioThe plasma levels of 1,25(Of)y
are significantly decreased Byk3“® mice. The rate-limiting enzyme in the generatidn o
1,25(0OH)Ds is the renal @-hydroxylase'®*®* which is stimulated by PTE* and cellular

phosphate depletioti®.

As 1,25(0OH)Ds is a powerful stimulator of intestinal phosphatansport'®® the
decreased plasma 1,25(QB) concentrations may have contributed to the rehakphate

loss.

The sgk3“° mice suffer from a subtle but significant impairmhef bone mass, which
may again be partially due to decreased formatfdh2b(OH}D3. The hormone is known to
counteract apoptosis of osteobla€tsand is thus known to enhance bone mineralizafion
The effect of 1,25(0OH); is mediated by the phosphatidylinositol 3-kinas¢thpay*®®, and
may thus at least partially involve SGK3. The degmatization of bone may further be due to
phosphate depletion, as phosphate inhibits thedtbom of new osteoclasts and stimulates
apoptosis of mature osteoclast$ The present observations do not rule out thegiaation
of further mechanisms. For instance, SGK3 sharesrakfunctions with Akt2/PKBR ",

which may confer survival of osteoblastéand osteoclasts"*

In conclusion, the present observations reveal Intunction of SGK3, i.e. its
involvement in the regulation of 1,25(0Of; plasma concentration, renal phosphate

excretion and mineralization of bone.
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Abbreviations

ABBREVIATIONS

ACE
ADH
ADP
APC
ASDN
ATP
AVP
BBM
BIO
BW
CaCb
CCD
CISK
Dexa
dL
DOCA
ECF
ENaC
FAP
FE
GFR
GS
GSK3
HEPES
IGF-1
Ins
KCI
MAPK
MCD
mg
MgCl,
Min
MR
NacCl
NaPi
Ng
NHERF2
Nmol
PBS
PDK1
P9

Pi
PI3K
PKA
PKB
PKC
PKG
PTH
ROMK

Angiotensin converting enzyme
Anti Diuretic hormone
Adenosine diphosphate
Adenomatous polyposis coli
Aldosterone sensitive distal nephron
Adenosine triphosphate
Arginine vasopressin
Brush border membrane
6-bromoindirubin-3”-oxime
Body weight
Calcium chloride
Cortical collecting duct
Cytokine independent survival kinase
Dexamethasone
decilitre
Deoxycorticosterone acetate
Extracellular fluid
Epithelial sodium channe
Familial adenomatous polyposis
Fractional excretion
Glomerular filtration rate
Glycogen synthase
Glycogen synthase kinase-3
N-2-Hydroxyethylpiperazine-N’-2-ethanesulfoacid
Insulin like growth factor-1
Insulin
Potassium Chloride
Mitogen-activated protein kinase
Medullary collecting duct
milligram
Magnesium Chloride
minute
Mineralocorticoid receptor
Sodium Chloride
Sodium-phosphate cotranspoter
nanogram
Sodium-hydrogen exchanger regulatory faZto
nanomoles
Phosphate buffered saline
Phosphoinositide dependent kinase 1
Picogram
Phosphate
Phosphatidylinositide-3-kinase
Protein kinase A
Protein kinase B
Protein kinase C
Protein kinase G
Parathyroid hormone
Renal outer medullary potassium channel



Abbreviations

SD Standard diet

SGK Serum and glucocorticoid inducible kinase
Hng microgram

ML microlitre
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