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Abstract

In this work we developed machine learning-based methods with the aim to further our under-
standing regarding fundamental questions of molecular biology, using as our example the model
plant Arabidopsis thaliana:

What are the differences between genomes of individuals belonging to the same
species? Characterizing sequence variants (polymorphisms) genome-wide is a prerequisite for
establishing causal links between adaptive quantitative traits and the underlying genetic variants.
Single-nucleotide polymorphisms (SNPs) are the most abundant class of polymorphisms. In ad-
dition to SNP detection, we investigated genomic regions in which SNP calling algorithms tend
to fail: on the one hand, highly variable sequence tracts, for which, paradoxically, only very few
SNPs can be identified and, on the other hand, additional polymorphism types, such as insertions
and deletions. With our newly developed method (mPPR) we discovered hundreds of thousands of
polymorphic regions (with a false-discovery rate of < 3%). These correspond, in part, to SNPs, but
also contain deletions ranging from a few to several thousand nucleotides in length. Our results
revealed, for the first time, a comprehensive, fine-scale picture of the polymorphism patterns in
A. thaliana with dramatic differences between coding and noncoding regions and also between
individual genes and gene families.

What is an organism’s full complement of genes, in which tissues and developmental
stages are they transcribed and how is their expression altered in response to en-
vironmental changes? Transcriptome studies have provided the foundation for reconstruction
of the gene regulatory network, which describes the control of cellular processes, e.g., during cell
differentiation. We developed a transcript identification method (mSTAD), which recognizes genic
expression patterns. With mSTAD, we discovered thousands of new transcripts that were not
previously known despite extensive annotation efforts. Validation experiments confirmed > 75% of
the tested cases, corroborating mSTAD’s high accuracy. Moreover, we found hundreds of genomic
regions with evidence of stress-specific transcription. These include previously unannotated genes
as well as wrongly annotated parts of known genes.

Our computational methods are based on data generated with so-called tiling arrays, an advanced
DNA microarray which interrogates a whole genome in regular intervals. It facilitates both the de-
tection of polymorphisms and transcriptome profiling. Using this technology our analyses targeted,
for the first time, the whole genome and were not restricted to a few fragments.

Since the resulting data resources are the basis for further research, high accuracy was imperative.
However, microarray data typically exhibits high noise levels. We therefore devised new preprocess-
ing techniques to reduce systematic noise, in particular probe sequence effects. We demonstrated
the benefit of this technique for subsequent transcript identification. In contrast to that, compa-
rable methods investigated here failed in this aspect. In our attempts to detect polymorphic or
transcribed regions, we were facing segmentation problems. Recently developed machine learning
algorithms, especially Hidden Markov Support Vector Machines, were found to be very well-suited
for solving these problems. In the case of transcript identification, we could show mSTAD’s su-
perior accuracy compared to other widely used methods. Since no comparable methods exist for
polymorphic region prediction, however, no such comparison was possible. Although originally
developed for the analysis of A. thaliana data, our methods can nevertheless be broadly applied
to similar data sets, which already exist for a number of organisms. We furthermore discuss their
applicability to related data as it is, for instance, being generated by next-generation sequencing
technologies.
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Zusammenfassung

Im Rahmen dieser Dissertation wurden auf maschinellen Lerntechniken basierende, bioinformatis-
che Methoden entwickelt, um den Kenntnisstand in Bezug auf zentrale molekularbiologische Fragen
am Beispiel der Modellpflanze Arabidopsis thaliana zu erweitern:

Inwiefern unterscheiden sich die Genome einzelner Individuen derselben Spezies?
Sequenzvariation (Polymorphismen) im grofien Stil zu charakterisieren ist die Voraussetzung,
um adaptive, quantitative phénotypische Merkmale auf die urséichlichen genetischen Varianten
zuriickfithren zu konnen. Die héufigste Klasse von Sequenzvarianten sind Einzelnukleotidénderun-
gen (SNPs). Neben der Erkennung von SNPs untersuchten wir Genombereiche genauer, in denen
SNP-Erkennungsverfahren nur unzureichend funtionieren: FEinerseits hochvariable Regionen, fiir
die paradoxerweise nur sehr wenige SNPs identifiziert werden konnen, und andererseits weitere
Varianten, wie Insertionen und Deletionen. Mit unserer neu entwickelten Methode (mPPR) fan-
den wir hunderttausende polymorphe Regionen (unter denen wir < 3% Falschpositive erwarten), die
teils SNPs beinhalten, teils Deletionen mit einigen wenigen bis zu tausenden von Nukleotiden. Aus
diesen Resultaten entstand erstmal ein umfassendes, hochaufgelostes Bild der Polymorphismen-
muster in Arabidopsis, mit drastischen Unterschieden zwischen kodierenden und nichtkodierenden
Bereichen, aber auch zwischen einzelnen Genen und Genfamilien.

Wie sieht die Gesamtheit der Gene eines Organismus’ aus, in welchen Geweben und
Entwicklungsstadien werden sie transkribiert, und wie verindert sich ihre Expression
unter Umwelteinfliissen? Entsprechende Transkriptomanalysen bilden die Basis zur Rekon-
struktion des Genregulationsnetzwerks, welches die Steuerung zelluldrer Prozesse, z.B. der Zelldif-
ferenzierung, beschreibt. Wir entwickelten ein Verfahren zur Transkriptsuche (mSTAD), das Gene
aufgrund von Expressionsmessungen erkennen kann. Damit identifizierten wir tausende neue Tran-
skripte, die ungeachtet grofier vorhergehender Annotationsprojekte bisher unbekannt waren. Durch
Validierungsexperimente konnten > 75% der Kandidaten bestétigt und so mSTAD’s Genauigkeit
experimentell belegt werden. Dariiber hinaus fanden wir hunderte von genomischen Regionen, die
spezifisch unter Stressbedingungen transkribiert werden. Sie umfassen sowohl zuvor unbekannte
Gene, als auch bisher fehlerhaft annotierte Bereiche bereits bekannter Gene.

Unsere bioinformatischen Methoden basieren auf Daten von sogenannten Tiling-Arrays, einer
hochentwickelten DNS-Microarray-Technologie, die durch genomweite Messungen in einem feinen
Raster die Detektion von Genomvariation sowie Transkriptomanalysen ermdoglicht. So konnten wir
erstmals das ganze Genom untersuchen und mussten uns nicht auf wenige Fragmente beschréanken.

Da unsere Resultate die Grundlage fiir weitergehende Forschung bilden, ist hohe Genauigkeit der
Analysen von grofiter Bedeutung. Microarray-Daten kennzeichnet jedoch typischerweise starkes
Rauschen. Wir entwickelten deshalb neue Vorverarbeitungstechniken um systematisches Rauschen,
insbesondere Sondensequenzeffekte, zu verringern. Wir zeigten den klaren Nutzen dieser Technik
fiir anschlieende Transkripterkennung. Vergleichbare, hier untersuchte Vorverarbeitungsmethoden
versagten hingegen unter diesem zentralen Gesichtspunkt. Bei der Erkennung polymorpher Regio-
nen oder transkribierter Bereiche sind wir mit Segmentationspoblemen konfrontiert, die sich mit
kiirzlich entwickelten maschinellen Lernmethoden, insbesondere den Hidden Markov Support Vector
Machines, sehr gut 16sen lassen. Im Falle der Transkriptsuche konnten wir mSTAD’s iiberlegene
Genauigkeit im Vergleich zu anderen gingigen Analysetechniken empirisch belegen, wohingegen
zur Erkennung polymorpher Regionen keine konkurrierenden Methoden existierten. Obwohl fiir
Arabidopsis-Daten entwickelt, sind unsere Methoden anwendbar auf vergleichbare Datensétze, die
fiir viele weitere Organismen existieren. Wir diskutieren ferner ihre Eignung fiir die Analyse ver-
wandter Daten, wie sie z.B. mit neuen Sequenzierungstechniken erzeugt werden.
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1 Introduction

The publication of a human reference genome sequence [95] has fundamentally transformed
research in the life sciences. Notwithstanding that this was a milestone scientific achieve-
ment and truly a success for bioinformatics, it marked the beginning rather than the end
of genome sequencing efforts. The idea that every human being is a unique individual
is, in part, reflected by differences between our individual genome sequences. It has thus
become increasingly clear that without information on DNA variants, which distinguish
individuals and subpopulations, our knowledge of the human genome is incomplete. In
other words, the problem of deciphering the genome has been reframed as characterizing
DNA sequence variation. Discovering polymorphisms, i.e., sites where individual genomes
differ, has thus been a prime objective in the life sciences [162].

Although all cells of an organism share the same genome, i.e., contain the same hered-
itary information, their morphology and physiology exhibit a tremendous diversity. How
this diversity across different organs and developmental stages is reconstituted in a tightly
regulated manner in each individual has largely remained a mystery for complex organisms,
although it has been an absolutely central research question. As the first step, we seek to
understand which parts of the genome constitute genes that are expressed, i.e., transcribed
into RNA. These transcripts can in turn perform cellular functions or be further trans-
lated into proteins. Because gene expression is a highly dynamic process, we moreover
aim at monitoring when during development, where in the organism and at which rate,
certain genes are expressed. Eventually, comprehensive gene expression data will facilitate
to disentangle the regulatory network underlying the observed expression patterns. An
organism’s full complement of transcripts is also referred to as the transcriptome, and the
term transcriptomics was coined for the research area revolving around these problems.

Many experimental techniques have been developed to address these fundamental ge-
nomics and transcriptomics challenges. When I started my graduate studies, the most
advanced hybridization-based technique, tiling microarrays, was the leading technology
for comprehensive and relatively cost-effective whole-genome measurements, with diverse
applicability, including expression profiling and polymorphism discovery (or array-based
resequencing) [I17]. However, despite extensive research analyzing microarray data, which
is characterized by relatively high noise levels, many challenges have remained. In this con-
text, methods from statistics and machine learning have proven particularly well-suited;
for instance, the first application of support vector machines (SVMs) within the field of
computational biology was an analysis of microarray data [18].

In the following section, we will continue with a brief overview of some machine learn-
ing concepts relevant to our work. Subsequently, tiling microarrays will be introduced
in detail, including a review of previous work on array-based transcriptomics and rese-
quencing. Furthermore, we will discuss alternative experimental approaches and outline



2 INTRODUCTION

which computational methods we have developed for analyzing tiling arrays. In the final
introductory sections, we will present the model plant Arabidopsis thaliana and highlight
how our results have2 contributed to the understanding of its genome and transcriptome.

1.1 A Machine Learning Primer

In essence, machine learning algorithms are statistical models able to make accurate pre-
dictions (usually denoted by y) from example data (denoted by x). We talk about learning
or inference, if such a model is adaptive, i.e., has free parameters that are estimated from
the data in a process called training and is then able to make predictions on examples it has
not previously seen. Based on our understanding of the problem at hand, we sometimes
extract relevant information in the form of features as input for the learning algorithm
instead of directly using primary data. Depending on the nature of the predictions, three
problems commonly encountered in machine learning (and also within the scope of this
thesis) can be identified:

e If interested in classifying data into two classes, i.e., y € {—1,+1}, one uses algo-
rithms for binary classification. The classification scenario can also be generalized
to the case of multiple classes (y € {1,2,...,k} for some finite k € N).

e [f the prediction target is a continuous variable, i.e., y € R, the learning task is called
TegTession.

e When dealing with sequential data, where each example is itself a sequence of data
points (x = x1,...,x, of length n € N), one is often interested in predicting a label
sequence (y = y1,...,Yyn) for each example that assigns a (scalar) class label to
each position in z. If additional restrictions on valid label sequences exist or if one
wants to exploit global properties of the example sequences, label sequence learning
problems cannot simply be reformulated as multi-class classification problems.

The key contributions of this thesis are based on supervised machine learning algorithms.
In the supervised learning scenario, the algorithm is provided with a so-called set of la-
beled data, consisting of examples = together with corresponding labels y indicating what
the correct predictions should be. In genome research, we often encounter the following
situation: Whole-genome measurements are available from high-throughput assays, but
require additional automatic interpretation to extract biologically relevant information,
e.g., to identify SNPs or transcripts. Additionally, a few genes or regions have been char-
acterized in detail by in-depth experiments, which allow us to extract label information.
For instance, in its pilot phase, the ENCODE project focused experimental resources on
regions covering 1% of the human genome to create high-quality annotations [30]. Our
main motivation for the application of machine learning algorithms is to exploit this la-
beled data for training predictive models that are subsequently able to make accurate
predictions for the whole genome.

During training, a supervised learning algorithm is provided with data-derived input
features and associated labels allowing it to recognize properties that are predictive of a
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certain label. Once trained, it should be able to predict the label when it is only given
the features. Only if its predictions on previously unseen examples are accurate, does it
exhibit a good generalization performance; otherwise, if the model only fits the training
data well, it is said to overfit. Hence, to assess the predictive power of a learning algorithm,
one also needs a set of labeled examples that is disjoint from the training set. It is common
practice to evaluate the performance of a learning algorithm by means of cross-validation.
For this, the labeled data set is partitioned into subsets that are either used for training or
for validation, i.e., performance assessment. If hyperparameters of the learning algorithm
have to be adjusted, a third set can be reserved for model selection. The assignment of
subsets into training and test sets is then permuted until all data points have been used
once for validation; the validation error is reported by averaging across permutations.

Figure 1.1: Classification with a lin-
ear large-margin separator. The de-
cision boundary separates the space
(shown for two features) into two half-
spaces. Depending on the half in
which examples are located, they are
classified into different classes repre-
sented by stars and circles. The mar-
gin is defined as the distance between
the decision boundary and the clos-
est example. Among all linear de-
cision boundaries that correctly sep-
arate the examples, (hard-margin)
i Examples with class label -1 < SVMs select the one which maximizes
e o = this margin.

Second feature

First feature

For more than a decade, discriminative machine learning techniques have very ac-
tively been investigated. The most well-known representative, the support vector ma-
chine (SVM), classifies examples into two classes by means of the large-margin separation
principle [e.g., 6], 153]. It optimizes a linear decision boundary separating the classes
with respect to the distance between the closest examples and the decision boundary.
Maximizing this so-called margin confers robustness to the classification (Fig. for an
illustration). The large margin principle has been generalized to other learning scenarios,
including regression and label sequence learning. The former problem is addressed by a
technique called support vector regression (SVR) [153], whereas hidden Markov support
vector machines (HM-SVMs) have been proposed for the latter task [3, [I84]. These are
related to hidden Markov models (HMMs) [e.g.,44], a generative learning method which is
ubiquitous in computational biology and which has been applied to various segmentation
and label sequence learning problems such as gene finding [e.g., 20]. Recently, HM-SVMs
as well as other discriminative machine learning algorithms such as conditional random
fields (CRFs) [94] have been engineered to successfully tackle diverse problems arising
in computational biology and have been shown to achieve very competitive predictive

performance [e.g., [7, 40l 63, 140} 154 [155].
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Inherently, supervised machine learning methods are limited to problems for which suf-
ficient amounts of reliably labeled data exist. If this is not the case, training in a purely
supervised fashion can be problematic and accuracy assessment impossible or mislead-
ing. In such situations, statistical testing, or unsupervised or semi-supervised learning
approaches may be preferable. However, large experimental data sets exist for many
genomics and transcriptomics problems, such as polymorphism discovery, gene finding,
and genome annotation. In these scenarios the application of state-of-the-art supervised
machine learning methods is particularly promising.

1.2 Whole-Genome Tiling Microarrays

Whole-genome DNA microarrays are a high-throughput technique that can be seen as a
refinement of gene-centric microarrays commonly used in molecular biology and medicine
to measure gene expression. In general, DNA microarrays exploit the high specificity
with which duplexes between complementary single-stranded DNA (or RNA) molecules
form. On a microarray, single-stranded DNA probes with known sequence are immobilized
or directly synthesized. Currently, high-density microarrays can be manufactured with
individual probe features as small as 5 um?. After hybridizing fluorescently-labeled target
nucleic acid sequences prepared from a biological sample of interest (e.g., cellular RNA),
bound targets are quantified for each feature by a microscopic imaging device. Probe
features on gene-centric microarrays are typically designed to be complementary to known
(annotated) genes or expressed sequence tags (ESTs), and therefore only these sequences
can be quantified. Tiling arrays, in contrast, interrogate a whole genome (or large genomic
region) with probe features tiling the (nonrepetitive portions of the) sequence of interest
with a regular spacing. The average distance between the centers of tiling probes with
adjacent genomic location defines the resolution (or step size) of the array.

Due to their design, tiling arrays are a very versatile experimental tool for studying
an organism’s genome or transcriptome in a manner that is not biased by the current
state of its genome annotation. They have been used for experiments as diverse as tran-
scriptome profiling in a global and quantitative manner, chromatin immunoprecipitation
(“ChIP on chip”) for characterizing transcription factor binding sites, elucidating the his-
tone code or assaying chromatin accessibility, as well as DNA sequence variation detection
and methylation mapping [comprehensively reviewed in 117, 200]. In the following I will
focus on two applications: global characterization and quantification of transcripts as well
as polymorphism detection (also referred to as array-based resequencing).

1.2.1 General Properties of Tiling Arrays

Tiling arrays are a massively parallel high-throughput technology that facilitates complet-
ing whole-transcriptome measurements within hours (excluding time for sample prepara-
tion). Transcriptome tiling arrays are cost-effective in the sense that replicates are usually
affordable and the transcriptome can be monitored under a large number of conditions.
In contrast, resequencing array experiments are typically not replicated and the number
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of genotypes assayed rarely exceeds twenty. All tiling arrays produce quantitative data
with a large dynamic range, and reproducibility (after appropriate normalization of the
raw data, see e.g., Sections and is usually good despite non-trivial signal noise.
However, all DNA microarrays are limited in the sense that, for their design, target
(reference) sequences have to be known beforehand. The analog nature of the intensity
signal poses an analysis challenge, particularly so since the relationship between concen-
tration of bound target and signal intensity is complex, e.g., non-linear due to saturation
effects. Generally, the intensity signal appears noisy due to (i) experimental variability
and failures, e.g., uneven hybridization across the same array and even more dramatically
so across different arrays, and (ii) systematic influences on signal intensity other than
target concentration, e.g., probe-sequence effects, RNA secondary structure and cross-
hybridization [144, [161]. The analysis of microarray data is therefore non-trivial and
computational methods almost always apply statistical (learning) techniques. Within the
scope of this thesis, preprocessing and normalization methods are proposed that address
cross-hybridization issues (see Section and reduce systematic noise stemming from di-
vergent sequence properties of oligonucleotide probes that have not been optimized due to
constraints on the tiling array design. In particular, we have developed a regression model
which estimates deviations between observed and expected hybridization intensities from
oligonucleotide sequences. This transcript normalization (TN) method effectively reduces
the variance among hybridization signals from different tiling probes which measure the
same transcript and are thus ideally expected to produce identical signals (see Section.

1.2.2 Previous Transcriptome Studies Using Tiling Arrays

Most tiling arrays used for transcriptome studies employ oligonucleotide probes of length
25-70nt (depending on the manufacturer) with a resolution that varies between 4 and
35nt. On the Arabidopsis Tiling 1.0R Array manufactured by Affymetrix, 25-mer oligonu-
cleotides are spaced at approximately 35 bp intervals, tiling the whole euchromatic genome
of Arabidopsis thaliana. Upon hybridization with labeled cDNA transcripts converted from
cellular RNA, one generally measures strong signals for tiling probes mapped to exons and
weak signals for probes mapped to introns and intergenic regions. Probes partially over-
lapping exons generally produce intermediate signal values (Fig. .

The first tiling array-based transcriptome studies targeted the F. coli genome and hu-
man chromosomes [86, 143 158, [165]. Right from the beginning, emphasis was put on
profiling several conditions or cell lines and identifying differentially expressed transcripts.
Additionally, a major motivation for tiling array application was to confirm, refine and
complete existing genome annotations through the de novo detection of expressed tran-
scripts. Surprisingly, these less biased assays of transcriptional activity implied that a
much larger fraction of the human genome is transcribed and processed into mature tran-
scripts than previously estimated on the basis of EST data [8] 28], [86], [143], 149]. Evidence
of widespread transcription and expression outside of annotated gene and exon bound-
aries was later also reported for other organisms including A. thaliana and Drosophila
melanogaster [108, 174, 198]. This gap between current annotations and microarray-based
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Figure 1.2: Design principles of transcriptome tiling arrays. Oligonucleotide probes are regularly
spaced to interrogate the entire reference genome. Transcription can thus be assayed without
annotation bias. Indicated probe length and spacing refer to the Affymetriz Tiling 1.0R Array,
but depending on the design of the array, resolution can be increased until probes overlap. For
transcription assays, cellular RNA is converted to cDNA, fragmented and fluorescently labeled
before it is hybridized to the array (see also Section. As a result, for tiling probes complementary
to exons, a hybridization signal proportional to the gene expression level is expected (bright colors
indicate high intensity).

transcriptome data prompted speculation on the “dark matter of the genome” [79]. Possi-
ble explanations include the incompleteness of the catalog of protein-coding genes, limited
knowledge about non-coding and non-polyadenylated transcripts, uncertainties about the
prevalence of antisense transcription as well as the extent of alternative splicing and alter-
native transcription initiation. Consequently, several more recent studies used tiling arrays
to characterize certain classes of transcripts, such as RNAs with localization restricted to
the nucleus [87], small RNAs with potential regulatory roles [87], non-polyadenylated tran-
scripts [28], [65] as well as noncoding transcripts. In wild-type cells, such non-coding RNAs
may be undetectable when they are repressed, degraded or epigenetically silenced. In null
mutants of the RNase P enzyme [147], of catalytic exosome subunits [26] or methyltrans-
ferases functioning in DNA methylation [208], such non-coding transcripts accumulate and
are thus more easily detected.

Searching for explanations of the “dark matter” phenomenon, it was further discussed
to what extent tiling array-based transcription data could be the result of experimental
artifacts or of false positive computational predictions [79]. Discrepancies found between
different tiling array-based analyses for the same regions of human chromosome 22 [86,
143, [149] substantiated these concerns [79]. Although it appeared unlikely that false
positive predictions alone were sufficient to explain the phenomenon, it highlighted the
need for accurate computational tools. Amazingly, many analyses proceeded in an ad hoc
manner involving hand-tuned parameters [28, 65] [83], [85] [86, 87, 108, 143], 198], whereas
statistically rigorous approaches with a reasonable balance between false positive and false
negative rates were (and still are) rare [42), [55] [77, 120, 133].

1.2.3 State of the Art in Transcript ldentification from Tiling Array Data

In the following, I will briefly review conceptually related approaches to transcript iden-
tification from a single sample while omitting approaches that are only applicable to the
identification of regions with significant expression changes between two or more sam-
ples [e.g., [77, 133].
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The most widely used computational method for transcript identification from tiling
arrays is based on a sliding window approach, which, in the first step, detects probes
showing significant expression within a local context. In the second step, regions containing
several expressed probes interrupted by only a few non-expressed probes are reported as
so-called “transfrags” (transcribed fragments), using an ad hoc procedure [85]. In contrast
to most of the methods reviewed below, this method is non-adaptive and the generated
transfrag data strongly depends on user-specified parameters.

For the analysis of Saccharomyces cerevisiae tiling arrays, Huber et al. [72] proposed
a method that segments the yeast chromosomes such that the sum of the squared differ-
ences of signal intensities to their mean within a given segment is minimized. To solve
this problem, also known as Structural Change Model Segmentation (SCM), a dynamic
programming algorithm was adopted. One advantage of this method is that it very flex-
ibly handles large variance in expression between different genes. However, while this
relatively simple approach has been successfully applied to yeast tiling array data, the
segmentation problem is considerably more challenging for the transcriptomes of higher
eukaryotes, which have less gene-rich genomes and are capable of (alternative) splicing.
Note furthermore that it is not an adaptive learning approach and therefore the maximum
number of segments has to be specified by the user (to avoid the trivially optimal solution
of one segment per probe).

A more sophisticated model, called GenRate, has been proposed by Frey et al. [50].
It explicitly models coregulated units (CoRegs) such as exons that belong to the same
gene and hence exhibit the same expression level. However, the generative model for
sequences of hybridization measurements, which constitutes the core of their method, is
based on several assumptions about the structure of a transcript and the distribution of
hybridization measurements (e.g., Gaussian distribution of intensity differences from a
designated reference probe, geometrically distributed distance of the reference probe from
the transcript start etc.).

Transcript identification has also been approached using HMMs [42], 120, and others]. In
contrast to heuristic methods, HMMs offer a principled and flexible inference framework.
Although the proposed state models are very different between different HMM-based meth-
ods, they all share one limitation (albeit not a conceptual limitation of HMMs): Exons
with very different expression levels have to be recognized by the same state. Training
such an exon model on genes showing low expression can compromise its ability to dis-
tinguish between exon and background signals (see also Section . In Munch et al.
[120] this problem is addressed by an additional unsupervised training step subsequent to
supervised learning from annotated genes. The unsupervised re-training allows the model
to down-weight label information for wrongly annotated genes or genes that are not ex-
pressed in the RNA sample hybridized to the tiling array. To the best of our knowledge,
none of the previously proposed HMM methods has incorporated an explicit intron model.

To my knowledge, only a single method has been proposed which predicts transcripts
from a combination of hybridization signals and features of the genomic DNA [I83]. This
method, called ARTADE, first identifies probes with significantly higher hybridization
intensity than the background using a sliding window approach. In the next step, a Markov
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model is employed to infer the exon-intron structure of transcripts extending from these
highly significant spots of expression. The Markov chain not only models hybridization,
but also DNA features such as nucleotide composition.

1.2.4 Key Contributions of This Thesis to Tiling Array-Based Transcriptome
Profiling

Within this thesis, a machine learning-based method dubbed margin-based segmentation
of tiling array data (mSTAD) for the de novo identification of expressed transcripts is
presented (see Section . It was designed to segment the hybridization signal along
a tiling path into intergenic regions, exons and introns. An extension of this method
also exploits splice site predictions from the genome sequence as an additional feature in
order to more accurately delineate intron boundaries. Our approach is based on HM-
SVMs [3], [184], which combine the advantages of HMMs [44] for label sequence learning
with those of discriminative SVM classifiers [e.g., [153].

In contrast to the SCM method by Huber et al. [72], we make use of more flexible
scoring functions replacing the squared error terms in the SCM formulation. Their shapes
are estimated from data in order to predict the optimal segmentation of the sequence
of intensity measurements. As a supervised learning approach, mSTAD is trained on
hybridization intensities together with the correct segmentation determined from known
mRNA transcripts.

Our method supersedes previous HMM-based approaches in that it uses a state model
that comprises intron states and is thus able to exploit correlated expression between ex-
ons of the same transcript (similar to Frey et al. [55, 56]). Additionally, the state model
is composed of submodels, each of which is specialized for a certain expression range
(in this regard mSTAD can be seen as an adaptive, discrete approximation of the SCM
method [72]). These expression-specific submodels can be fitted more precisely, and one
thus expects improved accuracy for the recognition of expressed genes. Parameter esti-
mation for such a comprehensive model profits from the discriminative HM-SVM training
approach, which optimizes discrimination accuracy between exon and background probes
rather than learning a generative model of hybridization intensity. The fact that HMMs
and HM-SVMs are closely related inference techniques allowed us to comprehensively com-
pare their predictive performance in the task of transcript identification from tiling array
data (see Section . We showed that transcript recognition accuracy is significantly
improved compared to the most widely used competing method, an ad hoc approach to
identify transcribed fragments (“transfrags”) [85], and could be even further enhanced
when the intensity data were first preprocessed with our transcript normalization method
(see Section . The mSTAD framework was readily extended to incorporate splice
site predictions as an additional feature to obtain transcript structures with significantly
improved accuracy, especially for intron predictions (see Section .

Analyzing data from the Affymetrix GeneChip© Tiling 1.0R Array with mSTAD, we
identified thousands of genomic regions that give rise to transcripts expressed in diverse
tissues or under stress conditions and that have previously escaped detection by cDNA
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cloning, EST sequencing or gene prediction approaches (see Section . With RT-
PCR experiments, we achieved a validation rate of more than 75% for a small sample
of newly predicted transcripts representing diverse lengths and expression level, which
further corroborates mSTAD’s high accuracy. For the benefit of the research community,
mSTAD’s source code as well as example data are freely available.

1.2.5 Previous Work on Array-Based Resequencing

Describing the complement of sequence variation within a species is the first step in linking
genetic variation to phenotypes [31], and the development of methods for whole-genome
polymorphism discovery has been a top priority in the life sciences [162]. Towards this
goal, the creation of high-density oligonucleotide microarrays suitable for whole-genome
variation detection was a major technological breakthrough [e.g., 25 68, [131]. Within a
decade, these so-called resequencing arrays had scaled from 135,000 features interrogating
the human mitochondrial genome [25] to roughly 1.5 billion features complementary to
about 58% of the mouse genome [54].

Resequencing arrays employ a 1-bp tiling path to query sequences relative to a known
reference sequence. Each base is interrogated with eight features that consist of forward
and reverse strand 25-mer probe quartets. Within a quartet, oligonucleotides are identical
to the reference sequence except at the central position, where each sequence possibility
is represented. When hybridized to labeled genomic DNA, the highest signal intensity is
expected for the perfectly matching (PM) oligonucleotide, thereby predicting the base in
the corresponding target DNA sample (Fig. Fig. A).

Figure 1.3: Design principles of rese-
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Although conceptually simple, detection of polymorphisms from resequencing array data
computationally challenging [29] [34] [131]. For single nucleotide polymorphisms (SNPs),
relative differences in feature intensities at a polymorphic position indicate the base call,
and hybridization is reduced for flanking features as a consequence of off-center mismatches
(Fig. |1.4)B). The resulting hybridization pattern provides a “SNP signature”, which has
been exploited by several algorithms to predict SNPs from resequencing array data [29]
68, 131]. However, where multiple SNPs or insertion/deletion polymorphisms (indels)
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are closely adjacent (occur within the same 25-mer), all oligonucleotides harbor off-center
mismatches, and SNP prediction is generally not possible. For these regions, hybridization
is suppressed for contiguous features in a tiling path. This pattern is therefore a signature
of high underlying polymorphism, either in the form of closely linked SNPs or small indels,
or potentially of larger deletions (Fig. B). This phenomenon has limited the utility
of resequencing array data for describing patterns of genome-wide sequence variation.
Regions where no SNPs are predicted may be (i) monomorphic to the reference sequence
or alternatively, may be (ii) so dissimilar that no underlying polymorphisms are detected.

Figure 1.4: Hybridization pat-
A terns obtained from resequencing ar-
—C rays. (A) When resequencing non-
G
T

A 12

polymorphic tracts, the maximally
hybridizing feature within each probe
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(left center).
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Furthermore, advanced computational approaches to the detection of sequence variants
other than SNPs, e.g., indels or structural changes (inversions, translocations etc.) from
resequencing arrays have not been reported. In one study, Hinds et al. [69] used a simple
thresholding algorithm coupled with visual inspection to identify more than a hundred
deletions of length 70 bp to 7kb (median 750 bp) from resequencing array data for human.
More recently, [29, 202] applied a simple heuristic algorithm to predict tracts of highly
divergent or missing sequences from similar data for A. thaliana. Although this heuristic
algorithm generated several hundred predictions per accession, it only identified extended
polymorphic tracts (about 300 bp to many kb) consisting largely of deletions. Currently,
no methods have been reported to predict short indels (tens of bp) or clustered SNPs from
resequencing array data. This limited investment in methods reflects, in part, the complex
nature of the primary data [29] 202]. In contrast to most microarrays, resequencing arrays
harbor all possible oligonucleotides for tiled regions, including those that are repetitive
or that have inherently poor hybridization properties. Moreover, replication to reduce
experimental noise has typically not been performed for resequencing array studies owing
to the high cost of whole-genome analyses [29, [54], [6§].
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1.2.6 Contributions of This Thesis to Array-Based Resequencing

Due to the relatively high noise levels in tiling array data, adaptive learning approaches
are ideally suited for their analysis. A machine learning method able to predict regions
of high polymorphism density from resequencing array data is described in this thesis
(Section. It was developed for the task of labeling each tiled position in the genome as
either (i) conserved or (ii) at or immediately adjacent to a polymorphism. This method,
which we call margin-based prediction of polymorphic regions (mPPR), employs HM-
SVMs [3), 184] modeling the array measurement sequences to learn to identify polymorphic
regions (PRs). We applied mPPR to an A. thaliana resequencing array data set for 20
accessions that contains data generated for >99.99% of bases in the 119 Mb reference
genome [73] for each accession [29] (see Section [3.1)). This data was previously used to
identify approximately 648,000 SNPs at a precision of about 98% [29]. With mPPR, on
average about 288,000 polymorphic regions were predicted per accession at a precision
of about 97%. Non-redundantly, 27% of the genome was included within the boundaries
of PRs. A large proportion (about 66%) of a set of known SNPs were contained in PR
predictions, of which 42% were absent from the previous SNP data set. Because of its
applicability to similar data sets in other species, our method has already been utilized to
characterize tracts of elevated polymorphism in rice cultivars [10] (see Section [3.1)).

1.2.7 Alternative Technologies to Tiling Microarrays

Technologies competing with tiling arrays for addressing similar genomics and transcrip-
tomics questions are mostly based on DNA sequencing.

Alternative Approaches to Genome Resequencing

Traditionally, resequencing and sequence variation detection was carried out using the
classical dideoxy sequencing method. Despite substantial costs associated with this tech-
nology , large genome-wide polymorphism data sets had already been collected before
array-based resequencing became feasible for medium to large genomes [31], 128]. How-
ever, an array-based resequencing project for human greatly increased the number of SNPs
with associated allele frequencies deposited in the dbSNP database [68]. Before Clark et al.
[29] published an array-based polymorphism data set forA. thaliana, no whole-genome in-
ventory of SNPs had existed for this model plant.

About two years ago, “next-generation” sequencing (NGS) technologies began to rev-
olutionize genome research by dramatically increasing the throughput and lowering the
costs for large-scale sequencing efforts. Pyrosequencing (Roche / 454) and sequencing by
synthesis (Illumina / Solexa) as well as bead-based sequencing (ABI / SOLiD) have been
applied in numerous resequencing projects including one that targets A. thaliana acces-
sions (The 1001 Genomes Project!) [130, 189]. NGS technology is particularly applicable
to resequencing since its major drawback, short read lengths, can be overcome more easily
than for de novo sequencing. In the resequencing scenario, it is typically sufficient to map

"http://www.1001genomes . org


 http://www.1001genomes.org

12 INTRODUCTION

the reads to the reference genome sequence in order to very accurately detect the vast ma-
jority of SNPs and small insertions (up to 3bp) as well as deletions [e.g., 130]. However,
for resolving other structural variants, such as large insertions, assembly algorithms ad-
dressing the core problem of de novo shotgun sequencing are inevitably needed. Although
assembly is extremely challenging for small reads (~35nt), it does facilitate detecting at
least a fraction of structural variants [e.g., [I30]. In the near future, genome resequencing
will greatly benefit from extensions of sequencing by synthesis in the direction of paired-
end reads. This additional information will likely suffice to resolve structural variants in
great detail and depth [91]. Moreover, latest advances in single-molecule sequencing (one
of the emerging technologies that are sometimes called “next-next generation sequencing”)
indicate that it may be possible to routinely obtain sequence reads that are several kb in
length [47]. This would open up entirely new perspectives for resolving structural variants
and repetitive sequences — in the context of resequencing as well as for de novo genome
sequencing.

Alternative Approaches to Transcriptome Profiling

Transcriptome studies have for a long time been performed using EST-sequencing tech-
niques [I]. However, obtaining deep coverage is very expensive and the completeness
of EST-based genome annotations has therefore been challenged by many transcriptome
studies using tiling arrays [8, 28, 86| [102], 103, 108, 143], 149, and others]. For the same
reason, EST-sequencing does not allow a reasonable quantification of transcripts. Thus,
to be able to quantitatively assay the transcriptome with sequencing-based methods, tag-
based / signature sequencing methods have been developed [reviewed in [64]. Here, only
small fragments (< 20bp tags) from one or both ends of transcripts are sequenced, which
increases throughput into the range needed for quantification. However, focusing the
sequencing onto small tags inevitably results in sparse and non-uniform coverage of tran-
scripts. Consequently, these tag-based approaches are better suited to confirm predicted
transcripts than to identify transcript structures de novo. Lately, the first applications of
NGS technology to transcriptome sequencing (or “RNA-seq” for short) have been pub-
lished [I10} 18] [reviewed in [161], I88]. RNA-seq data has been shown to cover a large
range of transcript quantities, and the digital sequence data makes it possible to accurately
quantify and resolve (even alternative) transcript structures. Yet, data analysis is chal-
lenging, owing mainly to the small read length. Also, read coverage is highly non-uniform
even within the same transcript and reproducibility has not been tested so far [reviewed
in [161), [188]. Although RNA-seq data and tiling array data differ with respect to many
characteristics, our transcript normalization method may also be applicable to RNA-seq
data. Reducing sequence biases, which this kind of data exhibits to a similar extent as that
of tiling arrays, may improve transcript deconvolution and quantification from RNA-seq

data (see Section [3.5.2)).
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1.3 Arabidopsis thaliana as a Model for Studying Natural
Sequence Variation

The flowering plant Arabidopsis thaliana is a small weed from the mustard family (Fig.
A), which also contains some members of agricultural interest, e.g., cabbage, cauliflower,
rapeseed, radish, and turnip. Although A. thaliana itself is not an economically significant
plant, it was one of the first multicellular model organisms for which a reference genome
sequence became available, when the 120 Mb genome sequence of the Col-0 accession was
finished in 2000. While this was a milestone for plant research, it has become increasingly
clear that “a single genome is not enough” [189]. Therefore, past and future sequenc-
ing efforts have aimed to characterize sequence variants in a large number of A. thaliana
accessions [29, 128 [I130]. Sequencing the genomes of many individuals to complement
a reference sequence is being carried out in human [I0I]. Tremendous efforts are under
way [84] towards creating a new map of biomedically relevant human DNA variations at
previously unmatched resolution with the aim of providing the foundation for personal-
ized medicine. Projects for A. thaliana and Drosophila melanogaster are proceeding in
parallel [I89],2 and are advancing fast, owing to the smaller genome sizes. These model
organisms are resequenced with the primary goal of establishing comprehensive polymor-
phism resources, which are extremely valuable for studying comparative genomics, system
genetics and molecular evolution. Fine-scale conservation information will, for instance,
be leveraged to pinpoint functional DNA elements. Moreover, high-resolution sequence
variation data is the basis for genome-wide association studies aiming to genetically map
complex traits [127].

A. thaliana has a wide distribution over large areas of the northern hemisphere, and
accessions isolated from natural populations exhibit enormous phenotypic variation in
morphology and physiology (Fig. [L.5|B and [189]). Because A. thaliana proliferates pre-
dominantly by self-fertilisation, isolates from natural populations are largely homozygous
making them particularly amenable for polymorphism discovery and genotyping. In con-
trast to humans, individual plants that are genetically identical to the ones genotyped are
available to the research community and can be phenotyped in a large number of environ-
ments. A. thaliana is thus an ideal model for investigating how genetic variation causally
relates to complex (quantitative) phenotypic variation and adaptation [see, e.g., [189].

1.3.1 Contributions of This Thesis to Revealing Patterns of Polymorphisms
in Arabidopsis

The whole-genome resource of polymorphic regions predicted by mPPR with a false dis-
covery rate of <3% contained between ~ 240,000 and ~ 361,000 PRs per accession [203].
These provided a fine-scale view of polymorphic sequences in A. thaliana allowing us to
confirm findings that were initially based on SNPs identified from the same array data:
Polymorphism levels are very non-uniform across gene families, and NB-LRR genes, which
are involved in disease resistance, show extremely high levels. PR data is consistent with

Zservice004.hpc.ncsu. edu/mackay/Good_Mackay_site/DBRP.html
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Figure 1.5: The
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previous publications [4, [160] reporting that many members of this family are deleted or
completely divergent in some of the accessions, and we experimentally confirmed one such
case. Also, several members of the F-box genes [see also [I81] and receptor-like kinases
harbor extreme polymorphism levels. However, as a whole, these gene families exhibit less
extreme distributions (see Section . Although striking polymorphism patterns have
been described previously for many genes [4} [60, [61), 160, [166], our inventory of polymor-
phic regions provides, for the first time, a comprehensive, fine-scale view of the whole A.
thaliana genome.

Additionally, the PR data revealed patterns of polymorphism not apparent in SNP data,
especially for noncoding regions, e.g., around gene and exon boundaries and in miRNA
precursor genes. Generally, patterns of intra-specific sequence variation resembled those
observed for inter-specific variation: Exons have lower polymorphism levels than introns; in
miRNA precursor genes, levels were lowest in the regions that are processed into the mature
miRNA and miRNA*; and in core promoters, reduced levels were found in predicted cis-
elements and in the TATA-box (see Section [3.1.4)).

1.4 Arabidopsis thaliana as a Model for Transcriptomics

Being extensively studied as a model for genetics and developmental biology, A. thaliana
has been instrumental in gaining insights into plant development and physiology. This
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includes, for instance, flower formation, photosynthesis, plant biomass production, root
development and processes governing the uptake of water and nutrients. Discoveries made
in A. thaliana have even impacted human health [reviewed in 80]. In comparison to
economically important crop plants, A. thaliana is more easily grown and genetically
manipulated, and therefore experimental and computational resources for A. thaliana
are unmatched among plant species. Although existing gene annotations are of high
quality [I78] and supported by extensive experimental efforts [e.g., 157, [198], they are still
being continuously improved. Genome-wide expression maps, which complement these
static annotations, have become an indispensable tool for the research community [e.g.,
9, 89, [124], [152], 171] that has helped to elucidate transcriptional networks and attendant
promoter motifs, to uncover gene functions and to reveal molecular explanations for mutant
phenotypes [reviewed in [21].

Plants are also a prime model for studying stress response, with important implications
for agriculture. As limiting factors for agricultural productivity, abiotic stresses — salt and
drought in particular — have been a focus of research. Understanding stress response in the
model plant A. thaliana may also help to increase the tolerance of crop plants to adverse
environments and climate change. Eventually, this might increase (or at least stabilize)
yield and the proportion of arable land [reviewed in [38]. Being sessile, plants cannot
move away from extreme conditions such as heat, cold, high salinity or drought. These
stress situations trigger signals that alter plant physiology and growth to ensure survival
in hostile environments. Ultimately, signaling cascades downstream of stress sensors result
in altered expression of stress-responsive genes. Some of these encode proteins responsible
for the biosynthesis of hormones, such as abscisic acid (ABA), which can act as signaling
molecules that amplify and spread the initial stress signal. Interestingly, different stresses
as well as ABA treatment can change the expression of a common set of genes, indicating
that stress responses are mediated in part by overlapping signaling pathways [e.g., [75], [199].
However, these common signaling pathways might be activated in a different temporal and
spatial manner by individual stresses [e.g., 39, 89, 197]. In addition, there are signaling
events that are specific to a particular stress [199) and references therein]. Together, these
differential responses enable the plant to react adequately and specifically to different
stresses.

Several reports have characterized transcriptome changes in plant organs, during de-
velopment, and under abiotic stresses [9, 27, 50, 89, 89 02, [124], [152], 156l 171, among
others]. However, the vast majority of expression analyses have been performed with
full-length ¢cDNA arrays or oligonucleotide arrays targeting known transcripts. The main
disadvantage of these techniques is that they rely on prior information about potentially
transcribed regions based on cDNA cloning, ESTs or computational gene predictions.
The most widely used microarray platform for expression analyses in A. thaliana is the
Affymetrix ATH1 array, first launched in 2002 [141]. TIts design was based on experi-
mentally confirmed transcripts and gene predictions, but now lacks almost a third of the
32,041 genes found in the TAIR7 annotation [178]. All users of ATHI1 arrays are thus
confronted with this problem: As the number of newly discovered genes rises, expression
analysis becomes more and more restricted. These limitations may be even more severe
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for the analysis of stress-induced expression changes, because transcripts appearing only
under extreme environmental conditions may well have escaped previous annotation ef-
forts. Especially in the light of the growing appreciation of the roles of non-coding RNAs,
a more unbiased detection of stress-induced changes of the A. thaliana transcriptome is
of great importance [e.g., 51], 107, [I77]. Currently, whole-genome tiling arrays are among
the most cost-effective approaches to more unbiased detection of transcriptional activity.
Creating a tiling array-based community resource for A. thaliana transcriptomics was thus
very timely.

1.4.1 Contributions of This Thesis to Arabidopsis Transcriptomics

Having analyzed A. thaliana tiling array data for eleven tissues and developmental sta-
ges [97] and, additionally, data for five abiotic stresses collected at two time points after
treatment [205], we created an initial whole-genome expression atlas, dubbed Arabidopsis
thaliana tiling array expression atlas (At-TAX)3. It is intended to complement or even
replace gene expression atlases for A. thaliana that are based on conventional gene-centric
ATHI1 microarrays, such as AtGenExpress [152]. In addition to expression estimates for
a much more complete gene catalog than could be surveyed with ATH1 arrays, At-TAX
visualizes transcriptionally active regions (TARs) identified with mSTAD, including be-
tween 925 to 1,947 new TARs per sample that were predicted with high confidence, but
had been overlooked by previous annotation efforts (see Section [3.3.3)). Several hundred
(84 to 375) of these show significant expression changes under stress, and for a selected
set, we could experimentally confirm differential expression (see Section . Subse-
quent analyses suggest that several of these result from new genes, whereas the majority
may either be new constitutive exons of annotated genes or belong to stress-specific al-
ternative transcript isoforms arising from known loci (see Section . A comparison
of TARs generated from tiling arrays assaying polyadenylated RNA or total cellular RNA
suggested that the majority of A. thaliana transcripts that are expressed at detectable
levels are polyadenylated (see Section .

3http://www.weigelworld.org/resources/microarray/at-tax


http://www.weigelworld.org/resources/microarray/at-tax

2 Methods

This chapter first describes methods for the identification of repeats that are most likely
to produce artifacts in microarray analyses. Subsequently, properties of resequencing
and transcriptome tiling arrays are presented together with appropriate normalization
techniques. The central sections are dedicated to the HM-SVM learning algorithm, an
investigation of its basic properties in comparison to HMMs and its adaptation to the
bioinformatics problems of polymorphic region prediction and transcript identification
from tiling arrays.

2.1 Detection of Repetitive Oligonucleotide Probes

As for many other high-throughput technologies, genomic sequence repeats pose a chal-
lenge for the interpretation of microarray data. Hybridization signals from probes on the
microarray that are complementary to genomic repeats may result from cross-hybridization
and may thus reflect a complex mixture of hybridizing targets originating from several
places in the genome. Attributing such a signal to a unique genomic location is therefore
impossible and deconvoluting cross-hybridization signals is generally very difficult.

To avoid cross-hybridization artifacts in downstream analyses, we therefore determined
for each array probe whether its sequence matches with high complementary to additional
genomic locations. We subsequently used this information in the algorithms described
below or for ad hoc curation of predictions.

2.1.1 Annotating Repetitive Probes on Resequencing Arrays

Cross-hybridization of repetitive sequences confounds polymorphism detection from oligonu-
cleotide arrays, and can either (i) mask legitimate polymorphisms or (ii) introduce anoma-
lous intensity readings for nonpolymorphic regions that lead to spurious polymorphic pre-
dictions.

Exact, Short, and Inexact 25mer Matches

We distinguish three classes of matches between repetitive 25mer probes, each of which
is allowed a mismatch at the central (13th) position that varies as part of the array
design (Fig. . First, exact 25mer matches correspond to probes that are completely
complementary to at least two genomic locations (on either genomic strand) for positions
1-12 and 14-25. Second, because mismatches at the ends of probes have comparatively
little effect on hybridization strength [99], we identified short 25mer matches according to
the same rules except that mismatches were allowed on any or all of the 2bp on either
end of 25mer probes. Finally, inexact 25mer matches correspond to probes that have
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multiple complementary counterparts in the genome with one mismatch at positions 1-12
or 14-25. For inexact matches, the potential for stable duplex formation (and for cross-
hybridization on arrays) is more difficult to predict, and is expected to vary depending on
sequence properties and mismatch location within the probe [99].

The entire Col-0 reference genome sequence was used for 25mer annotation, as were
the chloroplast and mitochondrial genomes that were a contaminant in genomic DNA
preparations used for hybridization to arrays. Briefly, we generated a list that contained
2bmers with a 1-bp tile of the forward and reverse strands of the entire nuclear and
organellar genomes. Each 25mer was identified by its genomic location (i.e., the location
of its center position). In a second step this list was sorted according to the nucleotide
sequence, and 25mers occurring more than once were extracted from the sorted list in a
linear traversal.

The sorting algorithm was then modified to handle mismatches. We used a recursive,
position-wise partitioning method that begins by partitioning the tiling list according to
the nucleotide at position 1 of each 25mer. This partition is then recursively subdivided
according to subsequent positions. Mismatches at the central 25mer position are tolerated
by skipping the 13th partitioning step. Partitions created when sorting on position 12 are
therefore subdivided according to the nucleotides at position 14. The generalization of
the sorting method to short 25mer matches is straightforward: in addition to position 13,
positions 1, 2 and 24, 25 are skipped.

The class of inexact 25mer matches can be seen as a (disjoint) union of 20 subclasses each
containing matches with two fixed mismatch positions ¢ and 13, where subclass index ¢ €
3,4,...,12,14, ..., 22,23. Each subclass of inexact 25mer matches can be easily computed
with our approach by skipping a pair of fixed positions (7, 13). After independently running
the whole sorting and parsing procedure 20 times, we took the union of the resulting
matches to obtain the whole class of inexact 25mer matches.

As 25mers had been tagged with genome locations, mapping final partition blocks back
to the genome was straightforward. Counts of positions with exact, short, and inexact
2bmer matches are given in Table and Fig. More details on the annotation of
repetitive resequencing array probes can be found in Zeller [202].

Mismatch positions in exact 25-mer matches Figure 2.1: Match type definition for
} } } } } } } } } } } } } } } } } } } 2bmers. Squares denote positions in
probes from 1 to 25, and filled circles

Mismatch positions in inexact 25-mer matches indicate positions at which mismatches
‘ } } } }o}o}o}o}o}o}o}o}.}o}o}o}o}o}o}o}o}o}o} } } are tolerated. For inexact matches, a
single mismatch at one of the positions

indicated by open circles is tolerated.

Mismatch positions in short 25-mer matches
HHHHHHHHHHH
LTI [T
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2.1.2 Annotating Repetitive Probes on Tiling Arrays

For the annotation of perfect match (PM) probes on the tiling array, we extracted the
subset of repetitve resequencing probes with the following restrictions: (i) Only if the
reference probe of a quartet of resequencing probes matched without a center mismatch,
was the corresponding PM tiling probe annotated as repetitive. (ii) Repeat annotation
of resequencing probes was restricted to the subset of positions represented on tiling ar-
rays. (iii) Matches to organellar genomes were excluded, as contamination with organellar
genomes was found to be a problem of the resequencing data, but to a much lesser extent
for transcriptome tiling array data.

After filtering according to the above criteria, we retained 163,757, 236,832 and 163,757
PM tiling probes with exact, inexact and short matches, respectively. The resulting probe
annotation, in which approximately 12.8% of all PM tiling probes (389,264) were associ-
ated with any of the above repeat types, was used as a filter for subsequent analyses (see,

e.g., Section [3.3.3)).

2.2 Resequencing Array Data

Resequencing array data were generated for 20 accessions (derived from wild strains) of

Arabidopsis thaliana including the reference accession Col-0 by Perlegen Sciences!

(as
described in the supplement of [29]). Due to the costs associated with resequencing arrays
interrogating > 99.99% of the euchromatic sequence of the Arabidopsis thaliana genome
using > 950,000,000 different oligonucleotide probes distributed across five large wafers,
replicate experiments were not performed. (For more details on the resequencing data

see [29, 202].)

2.2.1 Correcting for Between-Array Variability

The raw resequencing array data were characterized by a high degree of variability in
hybridization intensity (Fig. [29] 202]). To facilitate comparisons between data from
different accessions and from different wafers, raw hybridization intensities were quantile-
normalized on a per-wafer basis [I1]. Quantile normalization involves computing the mean
over the empirical intensity distributions from individual wafers. This mean distribution
is then re-assigned to each of the wafer distributions, thus effectively removing differences
between intensity distribution of different wafers [I1]. The extent to which this proce-
dure reduced differences in the intensity distributions of probes interrogating a subset of
positions across all wafers corresponding to regions where polymorphisms have been char-
acterized before (see Section [128]) is visualized in Fig. When applying quantile
normalization, we assume that differences in hybridization intensities are largely due to
experimental variability and not the outcome of a biological process of interest. Although
the “true” intensity distributions are probably not identical across accessions, since poly-
morphism levels are not identical either, we expected the disadvantage of smoothing out

"http://www.perlegen.com/
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some real signal by quantile normalization to be outweighed by the benefit of intensity
data comparable across wafers and accessions.
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Figure 2.2: Illustration of variability in raw resequencing intensity data and the result of quantile
normalization [I1] (Reproduced from Zeller [202]). (A) Raw intensity data for the accession Bur-0
plotted along chromosomes 1 and 2 in a sliding window of length 15kbp. Wafers are shaded in
different colors and array boundaries are indicated by vertical lines. Note the pronounced discon-
tinuities at wafer boundaries. (B) Histograms of raw intensities by accession (see inset) generated
from all resequencing probes inclusive to 2010 regions (see Section [128]) (C) Intensity his-
tograms generated from the same probes as in (B), but after quantile normalization [I1].

2.3 Transcriptome Tiling Array Data

All tiling array data analyzed in the scope of this thesis were generated with Arabidopsis
Tiling 1.0R arrays manufactured by Affymetrix?.

For hybridization, total RNA of whole plants or plant organs was extracted (Table
for a description of sample generation). Typically, RNA was amplified using oligo-dT-T7
primers which target the polyA tail of polyadenylated messenger RNA molecules (also,
some data based on random primers was analyzed and compared to oligo-dT amplified
targets in Section . Resulting RNA was converted into double-stranded c¢cDNA,

®http://www.affymetrix. com
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fragmented, labeled and hybridized to Affymetrix tiling arrays (see Section 4] for details
of the hybridization protocol).

Prior to data analysis aiming at quantification of gene expression, discovery of new genes
or the detection of transcript isoforms, raw array data were subjected to a preprocessing
pipeline detailed below. It was established with help from Timo Sachsenberg, Stefan R.
Henz and Gunnar Rétsch.

2.3.1 Normalizing for Uneven Background

Background correction of the raw array data aims at reducing spatial variations in the
scanned array image that are the result of non-uniform hybridization, washing across
the glass slide of the array or spatial scanner and imaging biases. Since spot locations
are randomized, i.e., neighboring probes in a tiling path are very unlikely to be spotted
next to each other on the microarray, large spatial differences are very unlikely to be
the result of a biological phenomenon. Therefore, background correction is routinely
applied in standard expression analysis software [74, 194]. The background correction
we employed was proposed by Borevitz et al. [14]. It essentially computes background
intensity by a sliding window averaging procedure (we used a 51 by 51 feature window)
similar to a mean filter commonly used in image analysis. Assuming that background noise
is additive [43},[194, among others], this background image is subsequently subtracted from
the raw intensities [14].

2.3.2 Correcting for Between-Array Variability

To facilitate inter-array comparisons, all arrays included in subsequent comparative anal-
yses (typically all arrays of the same series) were jointly subjected to quantile normaliza-
tion [I1I]. In the context of tiling arrays, his procedure assures that measurements from
different arrays but with the same rank (within the respective array) are assigned the
same intensity value by quantile normalization. All intensity measurements were then
log, transformed for the subsequent normalization and analysis steps.

2.3.3 Normalizing for Probe Sequence Biases

Both sensitivity and specificity of binding at DNA microarray probes vary considerably
depending on the sequence of the probe itself as well as hybridization conditions [66,
113, [122] [145], 207, among others], and similar issues play a role for primer design [e.g.,
109, [146]. In contrast to PCR, hybridization conditions cannot be optimized for individual
probes but only for the whole microarray, and therefore probe selection algorithms have
been developed, particularly for gene expression arrays, which attempt to select probes
with favorable sequence properties given global hybridization conditions [e.g., 113]. How-
ever, when probe lengths are restricted to ~25nt [132] and probe positions are highly
constrained due to the tiling design, binding properties will inevitable exhibit high vari-
ability between different tiling probes. Hence, instead of selecting optimal probes, one
can only correct the hybridization data a posteriori to alleviate probe sequence-dependent
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biases [66} 145, 207]. Ideally, such a probe-sequence normalization would not require ad-
ditional hybridization experiments with a genomic DNA control [35] [72], but estimate
hybridization bias from the probe sequence itself.

Sequence Quantile Normalization (SQN)

Sequence quantile normalization (SQN) has been proposed as an extension of the above-
described quantile normalization to remove probe sequence effects [145]. For each 25mer
probe having nucleotide j € A,C,G,T at position k = 1,...,25, the rank r; ;; of its
intensity y; among all other probes with the same nucleotide at position k is calculated and
normalized by the number of such probes C} ;. These position-wise contributions are then

-
axs : Since the sequence bias is not uniform across positions and

averaged: S; = = Z

summands are not 1ndependent the multivariate regression problem is solved iteratively.
In each step, the above average is computed and afterwards intensities y; are replaced by
S; which is repeated until convergence [145).

As a side effect, intensities are substituted by relative ranks which are uniformly dis-
tributed between zero and one. In order to obtain normalized intensity values comparable
to the original measurements from the array, we modified the averaging as follows. In-
tensity distributions were approximated by piece-wise linear functions gi (75 ;%) ~ yi. In
our case g was parametrized by 200 supporting points with uniformly spaced x-values
sz between zero and one. The corresponding y-values s, were estimated by linear in-
terpolation between y,, and y, with ranks ry, ;. = ma/x{rm/’j’k | P je/Cin < sz} and
Tnjk = ng@i/n{rn/,j,k | o i k/Cjk > Sz}, respectively. Instrgad of averaging relative ranks, we

then calculated the mean g = 2—15 225:1 g of the supporting points s,. From this averaged
g we reconstructed the normalized intensities by linear interpolation between supporting
points of g.

Although SQN effectively reduces probe sequence biases (Fig. -B and Fig. [3.14]), we
decided to not include it in our preprocessing pipeline due to its property of increasing
within-gene variability. Instead, SQN was replaced by the transcript normalization method
detailed below.

Transcript Normalization (TN) Techniques

Ideally, one would expect constant hybridization intensity for all probes measuring the
same transcript. Similarly, the background signal of probes in untranscribed or intronic
regions of the genome would ideally be constant. However in practice, this is generally not
the case [see, e.g., 144} for discussion]. Assuming that the main reason for this discrepancy
are probe sequence biases, we developed a new method to effectively reduce the observed
within-gene variability. This was joint work with Stefan R. Henz, Sascha Laubinger, Detlef
Weigel and Gunnar Rétsch (see p. for author contributions) [204].

In a first step we estimated constant transcript and background intensities y; based on
the TAIR7 annotation [I78], in the following simply referred to as transcript intensities:
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For a probe i annotated as exonic, we set 7; to the median of the intensities y; of probes
in exons of the same gene. Similarly for intron probes, we computed g, as the median over
intronic probes of the same gene and for intergenic regions y; as the median of all probes
mapped to regions annotated as intergenic (Fig. see Section for details of tiling
probe annotation).

Figure 2.3: Illustration of transcript
intensity. Although ideally expected to
be constant, hybridization intensity ex-
hibits high variability across all probes
\ complementary to the same transcript.
5+ ‘ Median estimates of constant transcript
intensity as well es the deviation of ob-
served intensities from this constant are
shown in red (see inset). Unambiguous
probe annotations are indicated by cir-
cular or diamond shapes (see inset).
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first, we assumed that the concentration of mRNA hybridized to all exon probes of a
gene is constant thereby ignoring alternative transcripts. Our second assumption is that
the differences between the raw intensities and the transcript intensities ¢; := y; — y; are
largely due to probe sequence-specific effects — ignoring cross-hybridization, experimental
artifacts and thermodynamic noise (Fig. . Furthermore, it is conceivable that probe
effects also depend on the mRNA concentration, and hence the differences ¢; may also
depend on the transcript intensity g; (of the exons) of the gene. Since it is not obvious
how this dependency should be modeled, we would like to non-parametrically model the
difference by a function that depends on both, sequence features x; of the probe as well as
its transcript intensity, i.e., to estimate a function f(x;,7;) ~ y; —y,;. However, in order to
use this correction, one would have to know in advance whether a certain probe is exonic,
intronic or intergenic, which is not generally the case. We therefore decided to estimate
the function depending not on the transcript intensity, but instead on the raw intensities
as a proxy for the former, i.e., f(x;,y;) =~ y; — ;-

The large amounts of available data for estimating f(x,y), allowed us to discretize the
parameter y into () quantiles, and subsequently we estimated () independent functions
fq(x). Then f(x,y) had the following form.

fl(m) for ye'(”—oo,yl)
f(@,y) = { fitw) for yelyiiv:)
fo(=x) for YE€[Yyg—1,00)

As input x; to the regression function f, the sequence s; of probe ¢ was provided together
with additional features derived from the sequence: a) sequence entropy —Z?Zl fi X
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log(fi), with f; being the frequency of the nucleotide i € {A,C,G,T} in the probe se-
quence; b) GC content; ¢) two hairpin scores: First, the maximum number of base pairs
over all possible hairpin structures that a probe can form. The second one captured the
maximum number of consecutive base pairs over all possible hairpin structures (similarly
used for intensity modeling in Zhan and Kulp [206]).

Based on these sequence features, we considered two methods for learning the functions
fq based on Q sets of n training examples (z!,¢7), where §; = v; —y;, ¢ = 1,..., N and
g=1,...,Q: (i) Support Vector Regression [I53] and (ii) Ridge Regression [70], both of
which will be introduced briefly.

Support Vector Regression (SVR) We applied Support Vector Machines [e.g., [153] for
regression, employing a kernel function k(zx,2’) which computes the “similarity” of two
examples x and x’. Here we used a sum of the so-called “Weighted Degree” (WD) ker-
nel [136], 139, 167, [170] and a linear kernel. The WD kernel has been successfully used
to model sequence properties taking the occurrence and position of substrings up to a
certain length d into account [139, 140, 155, 167, 169, 170]. We considered substring
lengths of up to order d = 3 and allowed a shift of up to 1bp between the positions
of the substrings [139], which could be efficiently dealt with using string indexing data
structures [168]. The linear kernel computes the scalar product of the sequence derived
features described above. These kernels are implemented in the Shogun toolbox® [168].

Ridge regression (RR) For every training example, we explicitly generated a feature
vector from the sequence s having an entry for every possible mono-, di- and tri-nucleotide
at every position in the probe (one if present at a position, zero otherwise; similar to the
implicit representation in the WD kernel). The resulting feature vector was augmented
with the sequence derived features to form ;. In training, the A-regularized quadratic
error is minimized [70]:

n

min Allw|]” + > (w'x; — §;)?

i=1

with

n -1 n
W= ()\I + Z xixf) Z UiX;
=1 =1

T
q

Ridge regression was straightforwardly implemented relying on Matlab’s efficient matrix

being its solution. Then f,(x) = w, & was the resulting regression estimate.

operations. As it generated virtually identical results to SVR, but is much less demanding
in terms of computation time, it became a constitutive component of our tiling array
normalization pipeline.

3http://www.shogun-toolbox.org
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2.3.4 Tiling Probe Annotation

Because it was required for several analyses we generated an annotation of each individual
tiling probe specifying whether its sequence was included in an annotated exon or intron
(and to which gene that belongs) or whether the corresponding genomic region is annno-
tated as intergenic. We therefore mapped tiling probes to Arabidopsis gene models using
the TAIRT7 annotation [I78]. We labeled as exonic, intronic or intergenic only those probes
that were in their entire length included in an annotated segment. All other probes were
labeled as ambiguous and ignored for the purpose of training and performance evaluation
of transcript normalization or transcript mapping. Ambiguous probes included ones that
span a transcript end or splice junction or ones complementary to regions where different
gene models overlap or where annotated transcript isoforms of the same gene differ in their
exon-intron structure.

One the one hand, the resulting tiling probe annotation was useful as a label sequence
for transcript mapping, i.e., the “true” sequence of expression states needed for training
an evaluation of such a method (see Section . On the other hand, the tiling probe
annotation allowed us to define a tiling probe set for each annotated gene as follows: From
all probes mapped to exons (either coding or untranslated region) in their entire length we
retained only those for expression analysis which correspond to constitutive exons in all
annotated splice forms of the same gene. We further excluded probes mapped to more than
one (overlapping) gene model, and in order to reduce cross-hybridization artifacts, we also
removed repetitive probes whose 25mer sequence occurred multiple times in the genome
(see Section . For expression measurements from tiling arrays, we only considered
the set of 30,228 annotated genes that are represented by at least three probes. This
tiling probe set definition was the basis for profiling the expression of nearly 10,000 genes
not represented on the ATH1 array and thus missed in previous expression analyses with
GeneChip© microarrays. Furthermore, introns and exons can be monitored individually
— a prerequisite for the detection and quantification of alternative transcript isoforms.
The results of tiling array-based expression analyses were presented in Laubinger et al.
[96], [97], Naouar et al. [123], Zeller et al. [205].



26 METHODS

2.4 Label Sequence Learning with Hidden Markov Support
Vector Machines

In label sequence learning, one is given a sequence of observations, which can for instance
be a sequence of hybridization intensities from a tiling path, i.e., tiling probes with con-
secutive genome coordinates. Then the task is to assign a label to each observation, for
example to distinguish between probes on a tiling array which interrogate exons from
probes in nonexpressed regions.

In computational biology, Hidden Markov Models (HMMs) are very popular and have
been the method of choice for solving label sequence learning problems [44]. Recently,
a new inference method, namely HM-SVMs, has been developed in the field of machine
learning [3| 137, [I84]. It can be seen as an extension of Support Vector Machines (SVMs).
HM-SVMs have been successfully applied in natural language processing [e.g., [ [159],
computational gene finding [140], and spliced sequence alignment [12| [154]. This diversity
illustrates the flexibility and power of the approach.

HMMs and HM-SVMs take essentially the same modeling approach, but differ in the way
parameters are estimated in training. While HM-SVMs use discriminative large-margin
techniques related to SVMs, HMMs are generative models that attempt to estimate prob-
ability densities over the observation sequence and the corresponding segmentation. How-
ever, it has been argued that generative approaches do not lead to the best discrimination
performance, as high-dimensional density estimation is known to be a harder task than
discrimination [125, 126], [I86]. Omne reason generative methods are often outperformed
by discriminative methods is that they typically need to assume independence between
observations in a sequence and also between features if several are used for learning. Since
the HM-SVM method does not assume independence, it is very well-suited for many tasks

in genome research for which measurements are dependent.

In addition to HM-SVMs, other discriminative structured output prediction algorithms,
most prominently Conditional Random Fields (CRF's) [94], have successfully been applied
to bioinformatics problems, such as gene finding or RNA secondary structure predic-
tion [37, 40, [63].

In the following sections, 1 will review the HM-SVM learning algorithm, describe a
powerful explicit feature map (an extended linear kernel) and finally empirically assess
and discuss basic properties of HM-SVMs in comparison to HMMs.

2.4.1 Label Sequence Learning Problem
Formally, to solve the label sequence learning problem, we would like to learn a function
f:X—>8

that predicts a label sequence (more precisely a sequence of states, or simply a path)
m € §* given the sequence of observations x € X (input features), both of equal length ¢,
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where S* denotes the Kleene closure. This is done indirectly via a discriminant function
F: Xx8 —R

that assigns a real-valued score to a pair of observation and state sequence [3]. Once F is
known, f can be obtained as

f(x) = argmax F'(x, 7).
weS*
In our case F' satisfies the Markov property, and, consequently, this decoding can be
computed efficiently by dynamic programming using the Viterbi algorithm [44] [57].

2.4.2 State Model

Allowed transitions between states are conveniently specified by a graphical state tran-
sition model. In such a graphical model, states are represented by nodes and allowed
transitions are represented by arcs. Most of our knowledge about the problem is encoded
in the structure of this state model. Examples are given below for the problems of poly-
morphic region prediction from resequencing arrays (Fig. and transcript mapping
from transcriptome tiling arrays (Fig. .

2.4.3 Parametrization

The goal of training an HM-SVM is to learn an optimal discriminant function Fyg (parame-
trized by €) which in conjunction with efficient decoding yields an optimal predictor of
label sequences f.

The input to the discriminant function Fg consists of observations x, a m x ¢ matrix of
m different features, and a sequence of states m = my,...,m. For every pair of features
J = 1,...,m and states k € S, we employ a feature scoring function g;, : R — R. Fp is
then obtained as a linear combination of the feature score contributions and the transition

scores ¢:
t m
Fo(x,m) = Z (Z Z[[Wp = kJ] 9j7k($j7p)) + ¢(mp—1,7p)
p=1 j=1keS
where [[.]] denotes the indicator function. For convenience of notation we assume a

pseudo-transition ¢(mg,m) = 0.

In this work, we modeled the feature scoring functions g; ;, as piecewise linear functions
as follows [similar to 140]: Let S be the number of supporting points s; (satisfying s; <
s1+1) and v; their values, then the piecewise linear function is defined by

U1 x < 81

— Ul(Sl+1—1‘)+Ul+1($—Sl)
e

s <x < 841

Vg T >xg
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Supporting points on the abscissa are typically chosen such that in each interval [s;, s;41]
there are approximately equally many feature values (determined on the training set). In
the following, 6;; will denote the value v; of g;;. Together with the transition scores
¢, the values at the supporting points 0;; constitute the parametrization of the model
(denoted by ).

2.4.4 Learning Algorithm

Let n be the number of training examples (x(?), 7)) i =1,... n. Following the discrim-
inative learning paradigm, we want to enforce a large margin of separation between the
correct path 7 and any other wrong path 7 # w® e,

Fy(xW, 7)) — Fy(xD 7)) > 0 v £ a0 vi=1,...,n

To achieve this, the following optimization problem is solved:

1~
i ht (i)
O{Iélélo - ;E +C Q(0)

s.t. Fy(xD, 7y — Fy(x@ 7)) > 1-¢D va£x0 vi=1,....n (21)

where 2 is an additional regularization term. Regularization is a technique commonly used
in empirical inference to avoid overfitting and to improve generaliztion. Regularization
strength can be adjusted using the hyper-parameter C.

A soft-margin is implemented by so-called slack variables £ [32] allowing some predic-
tion errors on the training set.

Except for the regularizer €2, which will be discussed in more detail later, Fyg is linear in
all parameters and hence the constraints in are linear. In case of a linear regularizer,
we thus have to solve a linear programming problem (LP), whereas a quadratic regularizer
leads to a quadratic programming problem (QP).

Because there are exponentially many wrong paths 7, we also have an exponential
number of margin constraints in , which prohibits solving the optimization problem
directly. Instead, starting from an empty set of margin constraints and an arbitrary
parametrization 0(1), we maintain an increasing working set of constraints corresponding
to paths which maximally violate the margin. For this we use the Viterbi algorithm [44]
which decodes the best path for a given parametrization and loss function. If it returns
the true path, no margin violation occurred for this example; otherwise we generate a new
constraint from the true path (known in the training set) and the wrong path (returned
by Viterbi decoding). Adopting a column generation technique, adding constraints and
solving the intermediate LP / QP is alternated till convergence to the (provably) optimal
solution [3, 67, 38] (Table 2.1). The intermediate LPs or QPs are solved using either
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the CPLEX* or the Mosek® optimization software, both of which facilitate training with
several thousand example sequences. In practice, we commonly resort to two heuristics
to reduce the computational cost of HM-SVM training: First, before solving intermediate
training problems, we do not consider constraints that were inactive by more than a
certain margin in the last iteration. The size of this margin depends on the loss (see (*)
in Table . Second, we terminate the training when the objective function has not
changed substantially during the last three iterations (less than 10~3 of its current value,
see (xx) in Table . Both of these heuristics only marginally affect the accuracy of the
learned model, while they speed up training significantly.

start at ¢t = 0 with an arbitrary parametrization o

and an empty working set of constraints W = ()

do
for each training example (x(, 7w(?))
decode the maximal margin violator 7 using the Viterbi algorithm
add a constraint of the form
Feo (x, @) — Jnax {Fo x,m)} = 1-¢0
to the working set W
end for
solve the intermediate training problem with the updated working set W
to obtain the next parametrization ¢+ (%)
t=1t+1
until no more constraints were added to W (%)

Table 2.1: The HM-SVM training algorithm in each iteration alternates between constraint gen-
eration and QP /LP solving.

2.4.5 Linear and Quadratic Regularization

Depending on the application, we used linear or quadratic regularizers. For each of them,

we give an example below.
m
Q0)=10]+> 105k — O j41]

This regularizer implements the idea that absolute parameter values should be small and
with the second term, large changes between the values v; and v;41 at adjacent supporting
points of the same feature scoring functions are penalized. This amounts to penalizing
large variation of the feature scoring functions (with respect to the choice of supporting
points) to obtain “smoother” or “simpler” functions, which appear more parsimonious.

A cplex.com
Swww.mosek. com


www.cplex.com
www.mosek.com
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The analoguous quadratic regularizer has the form

m S—1
Q0) =072+ Z Z Z(Qj,k,z — 0 ki+1)”

j=1keS =1

Quadratically penalizing the variation typically results in more gradually changing feature
scoring functions as compared to ones that are linearly regularized and often appear more
like step functions.

Furthermore, additional properties of the feature scoring functions can be encoded in
the regularizer using similar techniques. We can, e.g., couple scoring functions of different
states k and K’ via regularization on (6;; — 0; x;)* or enforce monotonicity by additional
constraints of the form 6, — 6; 41 < 0 (for monotonic increase; alternatively > 0 for
monotonic decrease) for all [ of some features j and states k.

2.4.6 Loss Function

In practice, the basic algorithm described above is augmented with a loss function A that
encodes a problem-specific dissimilarity measure for a pair of label sequences. It allows
us to adjust the loss, a predicted path incurs, depending on its similarity to the true
path. That is, a path that closely resembles the truth incurs a small loss compared to
one that is completely different from the that. We use the loss function to rescale the
margin (although slack-rescaling has also been proposed) [3] [I80], replacing the margin
constraints in with:

Fo(x®, 7)) — Fy(x 7) > A(x@D,7) - ¢ var£aWi=1,...n

During optimization, the loss is taken into account when decoding to find the maximal
margin violator:

argmax{Fé(x(i), ™) 4+ A(x@ 7))

A7)
The loss function is required to be non-negative and decomposable for efficient decoding
via dynamic programming. For instance, the Hamming loss is a simple function with the
desired properties. Below, we will also show problem-specific loss functions encoding our
prior knowledge about the problem.

2.4.7 Generative HMM Training with Identical Parametrization

In order to compare discriminative and generative learning algorithms, we used generative
maximum likelihood training techniques to fit a model with identical parametrization.
Transition probabilities were obtained as

Ay
kD) = —F
o(k,1) S Ar
l/
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for all state pairs (k,1) € S2. Ay, were counts of transitions observed in the label sequences
7 of the training set (i = 1,...,n)

n |7l
A=Y > llmh=kAm, =1
1

=1 p=

where |7?| denotes the sequence length and [[]] the indicator function [44].

For the estimation of emission probabilities we modified the standard HMM maximum
likelihood estimation [44] as follows to account for piece-wise linear feature scoring func-
tions g; 5. The values of the supporting points v; (I = 1,...,5) of g;; for feature j and
state k were estimated as

Here, E; are contributions from feature values x around the supporting point s; where k
is the true state. With

.
0 r<s8-1 V x2>S841
1 =1 AN x <8
¢(x) = :l:s% 1<i<S AN s_1<z<s
S|4+1—%
T I<i<S N sp<z <841
1 =5 AN T >Sg

FE; was obtained by summing up these position-wise weights over the training sequences
x; of the jth feature,

n |
Br=> > [lm =k ()

i=1 p=1
Finally, probabilistic parameters were log-transformed to be able to use the same additive
Viterbi decoding algorithm as for the HM-SVM.

2.4.8 Properties of HM-SVMs in Comparison to HMMs

We explore some of the properties of HM-SVMs, starting with an empirical analysis of their
run-time and generalization accuracy. For comparison, we also evaluated an identically
parametrized model fitted with the maximum-likelihood HMM training method. All ex-
periments in this section were based on the mSTAD model as an example (see Section
using the D_001 data set (see Table for details). mSTAD was implemented in Matlab
with performance-critical components written in C++. The mSTAD implementation has
621 parameters and additionally 1,528 auxiliary variables (for the regularizer). Together
with the slack variables (one per training example) the quadratic training problem can
have more than 4,000 free variables.

To facilitate a meaningful comparison, the examples for HMM training had to be selected
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more carefully than for the HM-SVM. Here, we chose the selection strategy that was found
to be most favorable for mSTAD HMM (see Section for details). Therefore, the fact
that training sets differed, poses a caveat to the interpretation of the results. However,
this can only be an advantage for HMMs in the following comparisons.

As a result of our first experiment, we found significantly higher (asymptotic) test
accuracy for the HM-SVM than for the HMM. Moreover, HM-SVMs seemed to approach
their asymptotic error faster (w.r.t. training set size) than HMMs (Table [2.2)).

Training set size

15 30 60 125 250 500 1,000 2,000
Total length 1.4K-2.3K 3.1K-3.6K 6.2K-6.3K 12K-14K 25K-26K 50K-52K 100K-104K 201K-209K
Training time
HM-SVM (QP) 4-5m 4-6m 6-8m 8-13m 19-30m 92-66m 3-4h 17-20h
HMM 0.6s 1.4-1.6s 2.3-2.4s 4.8-5.1s 9.3-10.2s 20-25s 47-48s 81-82s
Test accuracy [%]
HM-SVM (QP) 78.2-81.2 79.2-81.5 80.1-81.5 80.4-81.7 79.9-80.8 80.2-81.5 80.3-81.5 80.8-82.0
HMM 68.9-73.7 69.4-78.4 71.9-78.2 74.3-77.5 75.1-77.0 75.8-78.1 75.7-77.3 76.0-77.8

Table 2.2: Generalization accuracy and training time of HM-SVMs in comparison to HMMs.
We used the CPLEX optimization software (version 9) for solving the (intermediate) quadratic
training problem(s). All values are given with respect to three different training and test sets
(3 cross-validation folds with the same number of sequences). Note that small inaccuracies in
timing can also be due to the fact that experiments were carried out on a heterogeneous compute
cluster. As test error, we report the average of precision and recall for exon probe recognition (as
percentages). The same regularization strength has been applied throughout, although this might
lead to suboptimal results for some training set sizes (see below for a model selection).

Next, we explored the robustness of both, the HMM and the HM-SVM, with respect to
label noise. We determined their performance on three cross-validation folds (each con-
taining 500 training sequences and 500 test sequences) to account for random fluctuations.
Label noise was introduced by randomly choosing a certain proportion of segments and
converting their label to another type (from exons to introns and vice versa where the
result was still a valid gene segmentation, see also Section for details of mSTAD’s
learning task). Both label sequence learning methods were found to be relatively robust
to low noise levels (< 10%), but for higher levels, HMM performance declined more dra-
matically than that of HM-SVMs (Table . This is consistent with the finding that the
training set for HMMs had to be pre-filtered, which can be seen as removing unreliable,
more noisy example sequences (see also Section .

In another series of experiments, we evaluated the robustness of the HM-SVM learning
algorithm with respect to the hyperparameter C, which controls regularization strength,
i.e., the balance between fitting the training data and model complexity. These experi-
ments were carried out on fixed training and test samples with 500 examples each. We
observed that, generally, training time increased with decreasing regularization strength.
One explanation for this is that there is relatively more freedom to fit a weakly regularized
model and, hence, more constraints have to be generated until convergence. Too strong
regularization on the other hand resulted in suboptimal performance (Table . We also
conducted a model selection for HMM training with varying pseudocounts. However, here
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Proportion of (segment) label noise

0% 1% 2% 5% 10% 20% 50%

Test accuracy [%)]
HM-SVM (QP) 80.2-81.6 80.3-81.4 80.1-81.3 80.2-80.9 79.7-80.5 79.4-79.8 78.2-78.8
HMM 75.8-78.1 74.0-76.2 73.6-76.1 71.0-75.4 69.9-72.0 66.1-69.6 59.1-67.5

Table 2.3: Generalization accuracy of HM-SVMs and HMMs as a function of artificially introduced
label noise. The range of accuracies was determined on three cross-validation folds (with 500
training and test sequences each) and resulted from evaluating exon probe recognition in percent.
The percentage of noise is given relative to the number of (exon and intron) segments which can be
converted without generating invalid (gene) segmentations; the proportion of wrong labels among
all labels is substantially lower. Also note that, due to differences in the training sets for the HMM
and the HM-SVM, the exact number of converted segments also differs.

we found that Laplace’ rule (adding 1 to each unused parameter weight) worked best and
larger pseudocounts led to worse results (data not shown).

Regularization strength C'
500 50 5 0.5 0.05 0.005

Training time [m]

HM-SVM (QP) 49 23 34 69 87 192
Test accuracy [%)

HM-SVM (QP) 76.5 787 79.6 80.2 80.1 80.2

Table 2.4: Generalization accuracy and training time of HM-SVMs as a function of regularization
strength, which is controlled with the hyperparameter C. All values are given for a single training
and test set of 500 examples each. As before, we used exon probe recognition in percent as
our evaluation metric. (mSTAD actually employs a more complicated regularizer, but here we
systematically varied only Cs, for simplicity denoted by C'. C; was always set to 0.02 x C and Cj
to 0.2 x C, see Section for more details.)

Finally, we empirically assessed the influence of the choice of the loss function: First, we
considered one which is adapted to the problem at hand; second, we used the generic Ham-
ming loss. With the same implementation and experimental setup as before, we simply
replaced mSTAD’s loss function (see Section with the Hamming loss and reported
the generalization accuracy for a range of values for the hyperparameter C' (Table .
Another model selection was needed here, because the Hamming loss (theoretically) scales
in a manner that is different from mSTAD’s original loss (see also Section . For
the Hamming loss, the best model was found for the smallest value of C. However, fitting
models with weaker regularization turned out to be impractical due to convergence issues.
A comparison of the best models for the respective methods revealed that, indeed, the
problem-specific loss function contributes substantially to the HM-SVM’s model accuracy

(Table [2.5).
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Regularization strength C

500 50 5 0.5 0.05 0.005

HM-SVM test accuracy [%)]
using mSTAD’s loss 76.5 78.7 79.6 80.2 80.1 80.2
using Hamming loss 76.7 78.0 78.0 781 781  78.2

Table 2.5: Generalization accuracy of HM-SVMSs using a problem-specific loss (as in Table or
the Hamming loss (see Section for details of mSTAD’s regularizer and loss).

2.4.9 Discussion of HM-SVM Properties

In this work we augmented the HM-SVM learning algorithm proposed in Altun et al. [3]
with an expressive explicit feature map utilizing piece-wise linear functions (as similarly
proposed in Rétsch et al. [140]) [see also [I80, 184]. While the details of its application to
problems arising in genome biology are given in the following sections, here we explored
some basic properties of HM-SVMs in comparison to another label sequence learning al-
gorithm, namely generative HMMs. Specifically, we found that higher label-wise accuracy
can be achieved with HM-SVMs (for the application of transcript identification, see Sec-
tion. However, this is associated with substantially larger training efforts: on data sets
where HMM training takes less than a minute, training an HM-SVM can require several
CPU hours, even when commercial high-performance optimization software is employed
(Table [2.2). The fact that we rely on such software is an additional disadvantage for the
distribution and free use of our HM-SVM implementations. Furthermore, achieving opti-
mal performance with HM-SVMs requires to adjust regularization strength C' via model
selection. Our experiments, however, indicate that, in practice, a coarse grid search might
be sufficient, since we noticed only marginal deviations from optimal test accuracy for val-
ues of C ranging across three orders of magnitude (Table. Another factor contributing
to the high accuracy of HM-SVMs is a reasonably calibrated loss function: with the simple
Hamming loss, HM-SVM accuracy (78.2%) is similar to that of HMMs (75.8-78.1%, see
Tables . While our experiments indicate that carefully designing the HM-SVM
loss function pays off in terms of accuracy, this certainly poses an additional challenge
for successfully applying HM-SVMs to real-world problems — much like the choice of an
appropriate kernel for the problem at hand is crucial for obtaining an SVM classifier with
optimal performance. Despite all the limitations of HM-SVMs discussed here, it is of note
that already with a small training set, containing < 50 sequences, a better generalization
error is obtained with HM-SVMs than HMMs could achieve on any training set (up to
2,000 examples). For such a small data set, HM-SVM training is very practical, requiring
only 5 minutes with our implementation. In addition, our empirical results indicate that
HM-SVMs are much more tolerant to label noise than HMMs. This property is highly
desirable for any learning algorithm applied to biological data, because these are very
rarely free of label noise.

When comparing different label sequence learning methods on prediction tasks very
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dissimilar to ours, Nguyen and Guo [126] still arrived at the same conclusion that HM-
SV Ms performed better than HMMs. On these problems HM-SVMs were found to perform
even better than other discriminative label sequence learning methods such as CRFs [94].
For classification problems, it has long been a consensus that discriminative methods
outperform their generative counterparts given that there is sufficient training data, i.e.,
that discriminative classifiers have lower asymptotic error. An intuitive explanation for
this is that generative models, which learn the joint probability P(z,y) of inputs z and
labels y, try to solve a more general and, hence, more difficult problem than discriminative
ones directly modeling P(y|z), which is sufficient for classification [125] and references
therein]. Ng and Jordan [125] provide theoretical and empirical evidence for this in a
rigorous comparison of a Generative-Discriminative pair of classifiers.

On a more general level, another important difference between HMMs and HM-SVMs
can be added: while the latter are limited by their supervised learning approach, HMMs
can be trained in an unsupervised fashion [44] or using both supervised and unsupervised
techniques [e.g.,[120]. However, when there are sufficiently many labeled examples — even
of dubious quality — HM-SVM training may yield more accurate predictions than HMM

maximum likelihood training.

2.5 Engineering HM-SVMs for the Detection of Polymorphic
Regions

This section describes a first application of HM-SVMs to the detection of regions of elevated
polymorphism levels from resequencing array data and is based on joint work with Richard
M. Clark, Korbinian Schneeberger, Anja Bohlen, Detlef Weigel and Gunnar Rétsch (see
p. for author contributions) [203]. The resulting method is called margin-based pre-
diction of polymorphic regions (mPPR). It specifically addresses the extraction of label
data from experimentally characterized polymorphisms, the generation of relevant features
as well as adaptations of the HM-SVM algorithm to the problem at hand. Furthermore,
details of performance evaluation and biological validation are given. In the following, I
present joint work with Richard M. Clark, Korbinian Schneeberger, Anja Bohlen, Detlef
Weigel and Gunnar Rétsch (see p. for author contributions) [203].

2.5.1 Preparation of Hybridization, Repeat and Sequence Data

Our predictor of polymorphic regions was specifically developed for the analysis of a previ-
ously published Arabidopsis resequencing array data set, hereafter called “AtAD20” [29].
It contains data generated for >99.99% of bases in the 119 Mb reference genome [73] for
20 accession including the reference Col-0 [29]. For training an evaluation a made use of
a previously published polymorphism resource in Arabidopsis [128]. It contained 1,213
fragments of ~ 550 bp in length, which had been sampled by PCR and dideoxy sequencing
throughout the genome for 19 of the 20 AtAD20 accessions. This data set, hereafter called
“2010”, covers about 0.5% of the genome per accession, and comprises ~ 2700 SNPs and
~ 400 indel polymorphisms per target accession [128].
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Quantile normalized hybridization data from Clark et al. [29] facilitated the use of pre-
dictors trained with data from all accessions. Consequently, predictors were available to
make predictions on any accession. We used a data set (2010) of previously characterized
polymorphisms to generate the label set for both PRs and conserved regions (see Sec-
tion [29, 128]). Array measurements for repetitive oligonucleotides are much less
reliable than for unique oligonucleotides; therefore, we annotated repetitive 25mer oligonu-
cleotides on the resequencing arrays as described before (see Section . We combined
information for all types of 25mer repeats to create a 0/1-sequence that indicated whether
a site was repetitive according to any of the categories. This repeat-mask (called RM)
was an input for our algorithm.

2.5.2 Overview of the mPPR Algorithm

The graphical model underlying mPPR is displayed in Fig. Instead of predicting
the label (polymorphic or conserved) directly, our algorithm was designed to learn to
assign a state to each sequence position given the hybridization measurements. To do
this, each known sequence in the 2010 data set was first translated into a state sequence,
i.e., the “truth” that we tried to approximate. We then applied HM-SVMs [3] for label
sequence learning. We adapted these by defining an appropriate loss function, detailed
below (Table . From the predicted state sequence we afterwards inferred the label
sequence (see color coding in Fig. .

2.5.3 State Model

Figure 2.4: State model employed in
mPPR. States are drawn as colored
circles, transitions as arrows. Cy and
Cgp model conserved sites (unique and
repetitive, respectively). Similarly, Py
and Py model sites that are polymorphic
or nearby a polymorphism. Additional

D states T; model the gradual change in
hybridization signal between conserved

and polymorphic regions. The color of

each state indicates the corresponding
label (see also Fig. [3.1)).

®
‘®

The simplest possible model, with one state C for conserved nucleotides and one state
P for polymorphic regions was extended in two ways. First, we noted that hybridization
signal gradually decreases over a few nucleotides towards a polymorphism. We there-
fore included a series of three states Ty, Ty, T3 modeling decreasing intensities upstream of
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polymorphic regions and similarly three states T4, Ts, T for increasing intensities down-
stream (Fig. for details). The second extension relates to repetitive sequences, which
we modeled separately from unique sequences via duplicated states which effectively al-
lowed feature scoring functions for repetitive regions to be learned differently. The model
contains a state Cg for conserved, repetitive sequences (positions p where RM (p) = 1) and
a state Cy for conserved, unique sequences (where RM (p) = 0); likewise, a state Py for
polymorphic, unique sequences with Py as the repetitive counterpart. Transition states
T; were not duplicated. We denote the set of states by S. Allowed transitions between
the states are drawn as arcs in Fig. 2.4 Real-valued scores ¢(i, j) were associated with
transitions from state ¢ € S to state j € S, which were determined during training of the
method except for the transitions ¢(i, Cr) or ¢(i,Cy) that were made deterministically
depending on whether RM (p) =1 or RM (p) = 0, respectively (and similarly for ¢(i, Pg)
and ¢(i, Py)).

2.5.4 Generation of Labelings

To train our method we first generated the target state sequence that is to be reproduced
given only the input sequence. Initially, all polymorphic sites (deleted nucleotides, SNPs
and nucleotides directly upstream of an insertion site) known from the 2010 set were
assigned Py or Py states depending on the repeat annotation. In the next step, we assigned
Py or Py states to sites between two polymorphic labels at a distance of <18bp (for the
choice of this distance see Fig. . Every segment of P states was then extended 6 bp in
each direction and the transition states Ti,...,T3 and Ty,...,Tg were inserted upstream
and downstream of every segment of P states, respectively. Finally, Cy or Cy states were
assigned to the remaining positions. This procedure generated a state sequence for every
fragment in the 2010 data set.

2.5.5 Generation of Input Features

As input to our learning algorithm, seven features were derived from hybridization data.
Some of these also used information from the reference genome sequence. Three groups
of features were used. First, features directly derived from array intensities (Table
features 1-4). Some of these were based on a ratio between hybridization intensities of
the target and the reference accession. Second, one feature was computed from quality
scores (feature 5). Third, several features were included that capture the (dis)agreement
between raw base calls from the arrays and the reference sequence (features 6 & 7; quality
scores and raw base calls were as defined previously [29]). The result was a feature vector
of length m = 7 associated with every position in the genome. Additionally, the repeat
annotation RM was included; however, this was used to switch deterministically between
Cy and Cp states, as well as between Py to P, and not for learning per se.
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Feature Feature value derivation

IMy(p) = 5 [log(L,.(p)) +10g(10, (p)) ]
2 IR(p) = IM(p) — IMco(p)

3 IWG) =} 3 TR+

4 IN(p) = l§€{§+1}(IMt(p) — IMy(p +9))

5 OQNp =3 X >, (@Qip)/(1+Qi(p+9))

56{71»“"1} Se{“ﬁf}
4

6 MM (p) = 6;4(mismt (p+6) — mismeo(p + 90))

7 WL(p) =1+ logy(wl(p))
RM(p) = [[p € R]]

(V]

Table 2.6: Features used for polymorphic region prediction. Here we use the notation from the
supplement of Clark et al. [29]: In general, superscripts + or — denote the strand, and subscripts
Col or t denote the reference and target accession respectively (in the following collectively referred

to as acc), and [[.]] the indicator function. I%, . (p) denotes the maximum intensity in the probe

quartet which queries site p and strand s, Q*(p) the quality score assigned to that probe quartet,
MisMace(p) = [[Bi..(p) = seq(p)]] + [[Baee(p) = seq(p)]] a count of mismatches between raw base

acc
calls B and reference sequence seq at site p, and R the set of repetitive sites. Word length wi(p)

equals the number of consecutive sites p’ around p where B*(p') = seq(p’) Vs € {+,—}. (For
further details see supplement of Clark et al. [29].) All features were standardized prior to training
(mean and standard deviation were estimated on the training set).

2.5.6 Problem-Specific Regularization and Loss

For the prediction of PRs we employed an HM-SVM algorithm as detailed above (see
Section using the linear regularizer introduced in equation We further chose a
position-wise loss function ¢(p), which is summed over the whole sequence (of length t):

t
A = > {(p) (similar to a weighted Hamming loss). Details are given in Table
p=1

2.5.7 Cross-Validation, Evaluation and Whole-Genome Predictions

For 5-fold cross-validation, fragments in the 2010 set were randomly split into five sub-
sets, where we ensured that across all accessions overlapping sequences were assigned to
the same subset. The first predictor was trained on the first three subsets, its optimal
regularization parameter C' was selected on the fourth subset, and its performance was
evaluated on the fifth subset. For the other four predictors the assignment of training,
validation and test set was permuted in order to obtain unbiased (test) predictions for all
2010 data.

All evaluations were based on data from 18 accessions (no predictions were made for
the reference, and for Van-0 no reliably labeled set exists [29]). Furthermore, known PRs
as well as predicted PRs were excluded from precision-recall estimation if they contained
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Predicted state Label

non-polymorphic SNP insertion deletion tolerance

Cu, Cr 0 0.5 0.5 1
Py, Px 0.5+ 0.1d 0 0 0
Ti,...,Tg 0.1+0.1d 0.1 0.1 0.1

Table 2.7: Position-wise loss ¢(p). We used a “tolerance” region, comprising non-polymorphic
nucleotides in labeled blocks (up to 9bp upstream and downstream of polymorphisms), where
neither C nor P states incur any loss. For non-polymorphic sites outside the tolerance region the
loss also depends on the distance to the nearest polymorphism; this distance contribution is denoted
by d. Let dist(p) be the distance from position p to the nearest polymorphism. Then, d(p) = 0, if
dist(p) <9, else d(p) = dist(p) — 9, if 9 < dist(p) < 21, and d(p) = 12, otherwise.

> 75% repetitive sites.

Replacing transition scores ¢(i,i), i € {Cy,Cg} after training by é(z,z) = ¢(i,i) + 9
resulted in predictions either with increased precision (§ > 0) or with increased recall
(0 < 0). Fifty-one values for § were uniformly chosen from the interval [—3, 2] to generate
precision-recall curves for all 5 test subsets. For Fig. 3.3 and Fig. [£.3] precision-recall
curves were averaged over the subsets.

The sequence type of each nucleotide was determined based on the TAIR6 A. thaliana
genome annotation [I78]. In cases where annotations overlapped, the sequence type was
assigned following the hierarchy: coding > UTR / intron > intergenic. PRs were assigned
a sequence type based on the majority of nucleotides contained.

Precision and recall for whole-genome predictions are expected to be slightly different
from the values estimated on the 2010 set as coding sequences are relatively overrepresented

in 2010 compared to the entire genome [29, [128]. To account for the compositional bias of

T
cod

the 2010 data, we applied the following correction: Let n”_, be the number of coding bases

in the 2010 data and ng)d the number of coding bases in the genome. Then, for the whole
G

genome, the number of true positives in coding regions is estimated as TPcf 4= :M 4 TPg; a

Applying the same corrections for false positives (F'P), true discoveries (TD)C(;md false

negatives (F'N), as well as for intergenic (ige) and UTR / intron bases (utr), precision
was recalculated as

TPS,+TPS, +TPS

CO ige utr

TPS,+TPS, + TP, + FPS,+ FPS, + FP{

Cox ige utr

and recall as
TDS +TDE +TDS

cod ige utr

TDG ,+TDS +TDC + FNS¢ + FNS + FNS

cod ige utr cod ige utr

To obtain PR predictions with high precision, transition scores were independently tuned
by choosing the smallest § for which each of the predictors achieved precision > 90% on
its test set. Whole-genome predictions were made independently with every predictor
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and a single prediction was assigned to every position according to the following scheme:
The genome was partitioned into chunks of ~ 1kb (breakpoints between chunks were only
set where all five predictors agreed on Cy or Cg). If a chunk contained a 2010 sequence
fragment, the respective test predictions were used. Otherwise one of the five predictors
was chosen randomly for the given chunk.

2.5.8 Evaluation on Representative Genomic Sequences

We aligned genomic sequences available for accessions Ler-1, C24, and Cvi-0 to the Col-
0 reference genome sequence to produce evaluation data sets for genome-wide PR pre-
dictions. For Ler-1 we used shotgun sequence contigs from the Monsanto A. thaliana
resequencing project [76] available at TAIR.® Only contigs of length > 1kb and contain-
ing only called nucleotides (i.e., A,C,G,T) were included in subsequent analyses. Using
BLAT [88], with parameters tileSize=10 and minIdentity=80, we aligned the Monsanto
contigs to the Col-0 reference genome. Given the shotgun nature of the data (about 2-fold
redundant; [76]), we applied several filters to remove potentially misassembled contigs and
misalignments. First, we removed alignments which contained Ler-1 deletions of length
100 nt or more. This was motivated by the observation that the alignments contained a
high proportion of very large gaps most of which are likely due to assembly errors in the
Ler-1 contigs. The bias resulting from this filter on performance assessment is expected to
be negligible as in the 2010 data 99.4% of all deletions are smaller than 100 nt. Relaxing
these filter criteria to a maximal deletion length of 1,000 nt only marginally changed the
precision and recall estimates (at most 1%). Finally, we also excluded Monsanto contigs
for which more than one high identity match to the reference genome was observed; only
if the second best BLAT match had at least 20% lower identity than the best match was
considered, and only the best matches meeting this criterion were used for subsequent
analyses.

For Cvi-0 and C24, we aligned finished BAC clone sequences (accession numbers EF637083
and EF182720, respectively) [163],[179] spanning the S-locus region to the reference genome
sequence with the alignment program stretcher in the EMBOSS package [119, [142]. Align-
ments were then manually corrected to give a total of 51 kb of aligned sequence from both
clones.

From the resulting sets of genomic sequence alignments, we extracted SNPs and indels
to construct label PRs, and we assessed precision and recall as detailed above. To cor-
rect for the large disagreement between the two sets of PR labels (Monsanto and 2010,
Table , which is most likely the result of sequencing or assembly errors in the shotgun
Monsanto data, we multiplied the corresponding recall estimate by the fold difference in
recall estimates for predictions evaluated on 2010 and on the genomic sequences for which
the data sets overlapped (a factor of about 1.5; see Table .

Shttp://www.arabidopsis.org/Cereon
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2.5.9 Ability of mPPR to Predict Long Deletions

We assessed the ability of our method to detect long deletions, which were absent in 2010,
our training data, by using a test set of known deletions in the AtAD20 accessions [29]. We
examined deletions > 300 bp, which corresponded to 127 deletions of lengths between 302
and 10,536 bp (in total 118,566 deleted bases were examined across all 19 target accessions).
Of the known deleted bases, 86.8% were included within PR boundaries in the appropriate
accession (Table [4.3). Where deleted bases were not included, 38.7% were repetitive as
defined by RM (see above), a 2.1-fold over-representation relative to the genome average
(Table and [29]). The deletions we employed for validation were initially identified
using array methods, and likely represent a comparatively simple prediction task (e.g.,
comparatively low repeat content; see Clark et al. [29] for a discussion). Minimally, how-
ever, our method was highly effective at identifying the approximate locations of long
deletion polymorphisms in unique sequences (Fig. B and Fig. .

2.5.10 Experimental Characterization of Predictions

We used PCR and dideoxy sequencing to characterize predictions at the RPM1 locus
for which high polymorphism had been reported previously [61, [160]. Genomic DNA was
prepared from three week old seedlings with standard methods. For PCR, primers flanking
RPM1 were design using Primer 3.0 [146]; the predictions themselves were used to select
primer pairs likely to hybridize to target sequences without mismatches (see supplement
of Zeller et al. [203] for primer sequences and details of PCR and sequencing protocols).
Sequence reads for each accession were aligned to the reference genome sequence using the
program MUSCLE [46] with a gap open penalty of 1000 and a gap extension penalty of
1075, Alignments were then refined manually and converted into a graphical representation

(Fig. 3.7).

2.5.11 Evaluation of Genome-Wide Polymorphism Levels

We assessed genome-wide patterns of polymorphism along each chromosome with sliding
windows of size 100,001 bp (Fig. and Fig. . Using the PR data, we calculated
a measure of polymorphism defined by the fraction of positions in a window that were
included within a PR in any accession. We calculated an analogous measure for the SNP
data in MBML2 [29].

2.5.12 Polymorphism Estimates for Noncoding Regions

We determined polymorphism for the 1000 bp upstream to the transcription start and
downstream to transcription termination sites for coding genes based on the TAIR6
genome annotation [I78]. Polymorphism at and nearby genes was calculated as the aver-
age percentage of accessions (excluding Col-0) harboring a PR prediction at the position.
We then averaged the results across all genes, thereby standardizing on the transcription
start and termination sites. For comparison, we calculated the analogous measure with
SNP data from MBML2. In the analysis, we only considered genes with annotated 5’ and
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3’ UTRs. An analogous calculation was also applied to assess polymorphism levels around
splice sites from positions—50 to +50 relative to the dinucleotide donors and acceptors.
For this, we only considered genes with a single annotated transcript isoform.

2.5.13 Relation of PRs to Predicted Cis-Elements

Position-wise cis-element density was calculated using the predictions of O’Connor et al.
[129] that were based on putative binding sites for 105 transcription factors (TFs). That
the overlap between PRs and cis-elements is highly unlikely to be a random observation
was established by permutation tests [supplement of [203].

2.5.14 Annotation of Predictions Relative to Genes

We calculated the overlap of PRs to coding sequences based on the TAIR6 annotation [178]
with gene family descriptions as previously reported [29]. When mapping PR predictions
to miRNA genes, we used the following divisions: precursor end (miRNA arm), miRNA,
loop region, miRNA*, precursor end (miRNA* arm) (Fig. [3.12). Since the location of
the miRNA* is not annotated in RFam [62], we calculated a secondary structure for each
miRNA using RNAfold [71]. The star region was defined as the region binding to the
annotated micro, shifted by two nucleotides to the 3’ end of the miRNA. To account for
length differences between miRNA genes, all were mapped to a prototypical miRNA gene
consisting of the five sections of length I, (r € {1,...,5}). For each section we set I,
to half the (rounded) average section length across all miRNAs. When mapping the PR
predictions to this prototype, positions in a section of length m, in a given miRNA were

rescaled by a factor a = I,./m, (Fig.|3.12]).

2.6 Engineering HM-SVMs for Transcript ldentification from
Tiling Array Data

In this section we describe mSTAD (margin-based Segmentation of Tiling Array Data),
an HM-SVM-based algorithm for transcriptional tiling array data. It incorporates ideas
that were similarly presented before [56, [72], but here we used a different strategy for
learning and inference — i.e., discriminative HM-SVM training rather than generative
modeling (see Section . The mSTAD algorithm was developed together with with
Stefan R. Henz, Sascha Laubinger, Detlef Weigel and Gunnar Rétsch (see also p. and
published in Zeller et al. [204]. Evaluations and biological applications are based on Laub-
inger et al. [97], Zeller et al. [205] and are the result of a collaboration with Sascha Laub-
inger, Stefan R. Henz, Timo Sachsenberg, Christian K. Widmer, Naira Naouar, Marnik
Vuylsteke, Bernhard Schélkopf, Gunnar Rétsch and Detlef Weigel (see p. for author

contributions).
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2.6.1 Problem Description and Modeling Approach

Our goal was to characterize each probe in a tiling path as either intergenic (not tran-
scribed) or as part of a transcriptional unit (either exon or intron). Instead of predicting
the label (intergenic, exonic or intronic) directly, mSTAD was trained to associate a state
with each probe given its hybridization measurements and the local context. From the
state sequence one can easily infer the label sequence (see color coding in Fig. . For
learning, we first had to define the target state sequence, i.e., the “truth” that we tried to
approximate. It was generated using known transcripts from the TAIR7 annotation [I7§]
together with hybridization measurements. We then applied HM-SVMs [3] for label se-
quence learning to build a discriminative model capable of predicting the state and hence
the label sequence given the hybridization measurements alone.

2.6.2 State Model

/\ Q Discrete Figure 2.5: State model
TN ¥ N Y ¥ expression level employed in mSTAD. For
(1) 1 each of Q = 20 discrete
expression levels there is a
submodel consisting of two
exon and two intron states.
Modeling introns depending
2 on the expression level of
the surrounding exons allows
carrying expression informa-
tion along the whole tran-
script. Colors indicate the la-
bels intergenic (blue), exonic
Q (red) and intronic (green).
Duplicated exon and intron
states were found to result
intergenic exonic intronic in slightly improved perfor-
mance compared to a model
with single exon and intron
states.

A simple version of the state model had only three states: intergenic, exonic and in-
tronic. We extended it in two ways: (i) by introducing an intron / exon start state that
allows modeling of the start and the continuation of exons and introns separately and
(ii) by repeating the exon and intron states for each expression quantile. This allowed
us to model discrete expression levels separately (Fig. [2.5)). To compensate for uneven
intensity decreasing from the 3’ transcript end (see Section, we additionally allowed
transitions from the exon states of an expression quantile to the next higher or lower level.
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2.6.3 Generation of Labelings

For genomic regions with known transcripts we considered the sense direction of up to
1kb flanking intergenic regions while maintaining a distance of at least 100 bp to the next
annotated gene. Within this region we used the probe annotation described in Section[2.3.4]
as the “true” label sequence. In a second step we subdivided genes according to the
median hybridization intensity of all exonic probes into one of () = 20 expression quantiles.
For each probe, a state was determined from its label and expression quantile. Probes
with ambiguous annotation, i.e., ones spanning transcript ends or splice junctions and
ones complementary to multiple genes or transcripts, were excluded from performance
evaluations.

2.6.4 Problem-Specific Regularization and Loss

In mSTAD, we incorporated a quadratic regularizer of the form

m s—1 m S
Q0)=C1 0%+ Z Z Z(Qj,k,z —0;511)° + Cs Z Z Z(ej,k,l —0;11)?
J=1kes =1 J=1 (kk) =1

where (k, k') denotes either a pair of exon states or a pair of intron states with correspond-
ing expression levels ¢ and ¢ + 1. In addition to penalizing the absolute parameter values
and differences between parameters of adjacent supporting points within one feature scor-
ing function, the third term constrained differences between feature scoring functions of
exon (and intron) states of neighboring expression levels. In doing so, we encoded our
preference for feature scoring functions which are similar between exon states (as well as
for intron states). Feature scoring functions resulting from training on root tissue (D1,
see Table are shown in Fig. Note that C, Cy and C5 allowed us to individually
adjust regularization strength for each term. When training on 1000 regions containing
one annotated gene each, model selection indicated optimal or nearly optimal generaliza-
tion performance for C; = 0.01 (with 100 x C; for squared transition scores), Cy = 0.5
and C5 = 0.1 (data not shown). Interestingly, mSTAD’s performance is relatively robust
with respect to these hyperparameters: changes in prediction accuracy are insignificant
even when hyperparameters change by an order of magnitude (see Section .

t

We designed a loss function A = Y~ #(p), which is position-wise (probe-wise) decom-
p=1

posable over a sequence (a tiling path) of length ¢. The position-wise loss function £(p) is

detailed in Table This loss function was designed to strongly penalize false positive
exon predictions in intergenic regions. False negative exon and intron predictions incur
only half the position-wise loss and a relatively low position-wise loss is incurred by ex-
ons for which the discrete expression level deviates from the “true” expression level in a
manner increasing with level difference.
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Figure 2.6: Feature scor-
ing functions that mSTAD
learned in training on tiling
array data from root tissue
(D1, see Table [i.4). (A)
Feature scoring function, i.e.,
the transformation from hy-
bridization intensity to fea-
1 ture score, utilized by the in-
3 tergenic state (Fig.[2.4). (B)
‘ ‘ ‘ ‘ ' Feature scoring functions of
Hyljridizatii)nime;r?sity(lz)bz) “ * " mtron Stat.:es (Il/, Flg.
v by expression level (I, color-
coded). (C) Feature scor-
ing functions of exon states
(E], see Fig. by expres-
sion level (I, color-coded).
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2.6.5 Comparing mSTAD to Other Transcript Mapping Methods

For the comparison of HM-SVMs to HMMs and the transfrag method [85], predictions were
generated as follows. Prediction sets with different trade-offs between precision and recall
were generated by adjusting transition scores after mSTAD HM-SVM training. Manipu-
lating the scores ¢(k, k') associated with transitions leaving any exon state k, was found
to yield a broad range of accuracy balances. Predictions were generated for ¢(k, k') + 8
with § € {—0.6,—0.5,...,0.5,0.6} (Fig.[3.19).

For mSTAD HMM (the same parametrization fitted with a generative HMM training
algorithm, see Section , different balances between precision and recall were realized
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Predicted state Probe label

intergenic intronic exonic

S (intergenic) 0 0.5 0.5
I,I' (intron) 0.5 0 0.5
E,E (exon) 1 0.5 0.16

Table 2.8: Position-wise loss (p). By § we denote the difference between the predicted discrete
expression level and the “true” expression level of an exon (inferred as the median intensity quantile
of all exon probes interrogating the same annotated transcript). Except for this exon-exon loss
term, the loss function is identical for all (predicted) expression levels. Regardless of the predicted
state, no loss is incurred for probes with ambiguous label (e.g., probes spanning splice junctions
or alternatively spliced portions of a gene). For details on the set of states, see Fig.

by sampling training sequences around genes with different expression levels. For this, all
annotated genes were partitioned into ten expression bins based on the median intensity
of annotated exon probes. Subsequently eight different training sets were sampled either
from all genes or the top N% expressed genes with N € {30,40,...,90}. As expected,
precision of the HMM predictions increased with the minimum gene expression level in
the training set used to fit the model.

Transfrags were computed as described by Kampa et al. [85] and implemented in the
Affymetrix Tiling Analysis (TAS) Software version 1.1 build 2. We evaluated 900 different
combinations of parameters on the same set of full-length cDNA-confirmed genes used for
the assessment of mSTAD’s performance. (bandwidth varied in steps of 25 between 50
and 150, signal threshold between 5 and 13, min run in steps of 20 between 20 and 100
and max gap in steps of 20 between 40 and 100).

For all methods prediction accuracy was determined on the same set of 1000 genomic
regions each containing exactly one annotated gene that was in its entirety supported
by full-length ¢cDNA sequences. None of these regions overlapped with examples used
for training or parameter tuning. For mSTAD HM-SVM and mSTAD HMM predictions
were made according to a two-fold cross-validation scheme using 1000 disjoint examples for
training; transfrags were directly evaluated on the test set. All evaluations shown (Fig.|3.19
and Fig. are based on tiling array data from root tissue (D_001, see Table .

Precision and recall were assessed in comparison to annotated genes on the level of
individual tiling probes, per exon, per intron and on the level of exon-boundaries (Fig.[3.19
for definitions).

2.6.6 Generating TARs for Developmental Data

After evaluating mSTAD’s capabilities of accurately recognizing transcripts from tiling
array hybridization data in comparison to existing methods, we turned to an application
of mSTAD to data from A. thaliana tissues and developmental stages (see Table for a
list of samples analyzed).
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Generating Genome-Wide TAR Predictions

After preprocessing the hybridization data using the above described pipeline (quantile
normalization followed by transcript normalization, see Section and Section
we applied the mSTAD algorithm (a version modeling @ = 10 discrete expression levels).

For each sample, we trained mSTAD separately on mean intensities across replicates
and used the trained instance only for prediction of array data from the same sample. To
obtain unbiased whole-genome predictions we employed cross-validation. After splitting
the genome between pairs of neighboring genes, one instance of mSTAD was trained on
500 of these genic regions and hyper-parameters were tuned on another 500 genic regions.
We trained and tuned a second instance of mSTAD on two further disjoint sets of 500
genes each. For region-wise whole-genome predictions, we chose the mSTAD instance
that had not seen the particular region during training and hyperparameter tuning (or
a random instance if neither of them had). From the predicted labeling of tiling probes
we extracted exon segments by assigning the genomic coordinates corresponding to the
start of the first and the end of the last probe of a run of consecutive exon labels. The
resulting segmentations are available as gff-files and visualized in the At-TAX Generic
Genome Browser [173].7

To determine overlap between TAR predictions and annotated regions, we used the
TAIR7 annotation [I78] and direct alignments with EST and ¢cDNA sequences.® Sample-
specific segments were obtained as residual after computing the overlap between predicted
exon segments in the tissue of interest to those from all other tissues (Fig.[3.23|B). Similarly,
we obtained predictions specifically made for polyA(+/-) conditions as exon segments that
were predicted for both polyA(+/-) samples (i.e., ones that overlapped between samples),
but did not overlap to predictions for any polyA(+) sample (Fig. [3.24]A).

Experimental Validation

See Laubinger et al. [97] for RNA extraction, cDNA synthesis and PCR protocols and
primer sequences used.

Computation of Transcribed Fragments (Transfrags)

As an independent method to compare transcriptional activity between polyA(+) and
polyA(+/-) samples, we computed transfrags as described by Kampa et al. [85] and im-
plemented in the Affymetrix Tiling Analysis Software version 1.1 build 2. In order to
select optimal parameters, we evaluated transfrags generated for root tissues for 900 dif-
ferent combinations of parameters in comparison to annotated genes as detailed above.
As optimal setting for all transfrag computations we chose the one with maximal recall
at a precision similar to mSTAD predictions (bandwidth 100, signal threshold 6, min run
100, max gap 40; see Fig. . Among non-repetitive transfrags (at most 25% repetitive
probes) comprising at least 4 probes and without overlap to annotated transcripts, the

"http://gbrowse.weigelworld.org/cgi-bin/gbrowse/attax/
8downloaded from TAIR http://www.arabidopsis.org, on 15 August 2007
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ones specific to polyA(+) or polyA(4/-) samples were computed the same way as for
high-confidence mSTAD predictions (Fig. [3.24|B).

2.6.7 Generating TARs for Stress Data

This section describes mSTAD’s application to tiling array data from stress treated A.
thaliana seedlings (see Table [4.4)), the identification of TARs showing stress-induced ex-
pression patterns and characterizes some properties of these TARs.

Detection of Unannotated Transcriptionally Active Regions (TARs)

Before we detected transcriptionally active regions (TARs) using the mSTAD algorithm,
we normalized raw tiling array data applying background correction (see Section m;
[14]), quantile normalization (see Section [2.3.2} [11]), and finally transcript normalization
(see Section[2.3.3). Afterwards we trained mSTAD on 1 h and 12 h mock controls. Genome-
wide predictions for 1h salt, osmotic, ABA, cold and heat stressed samples were made by
the models trained on the 1h mock control; for 12h of salt, osmotic, ABA, cold and heat
stress the models trained on the 12h mock control sample were used. From the predicted
TARs a set of unannotated, high-confidence predictions (referred to as “new TARs”) was
extracted (as also described in Section , requiring that the TARs included at least 4
probes, fewer than 25% repetitive probes, average expression level 6-10 and an overlap to
annotated exons of at most 25nt.

Testing TARs for Stress-Induced Expression

Each TAR meeting the above criteria of an unannotated high-confidence region was tested
for stress-dependent increase in expression level. With the Wilcoxon rank-sum test (also
known as Mann-Whitney-U-Test; we used the two-sample version of the Kruskal-Wallis
test implemented in the Matlab statistics toolbox) we compared the intensities of all
probes inclusive to the TAR of interest between the stress sample and the corresponding
mock control (pooling replicate intensities). When the median intensity under stress was
significantly higher than that of the control at a p-value of 5%, a TAR was called “stress-
induced”.

RT-PCR Analysis of New Stress-Induced TARs

RT-PCR validation experiments were performed using the same protocol as in Section[2.6.6]

Overlap Between New TARs Identified under Different Stress Conditions

In a pair-wise comparison of stress-induced new TARs, we counted positions where new
TARs induced by different stresses overlapped. Subsequently, we normalized these counts
by the total number of nonredundant positions corresponding to new TARs which were in-
duced by either of the two stress conditions to obtain the percentages shown in Fig. [3.26]C.
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Assessing Evolutionary Conservation of New TARs

Whole-genome alignments between Arabidopsis thaliana, Oryza sativa, Populus trichocarpa
and Sorghum bicolor were obtained from the VISTA project? [52]. These whole-genome
alignments were generated with methods described in Brudno et al. [19], Couronne et al.
[33], Kent [88]. As a proxy for conservation of a region of interest, we assessed the num-
ber of sequence identities in the alignment corresponding to a TAR. Afterwards, sequence
identity counts were normalized by transcript length and the number of aligned species
(three). As a control for the new TARs in each stress sample, we randomly sampled 100
times as many annotated exons assessing their degree of conservation in the same manner.
Resulting histograms are shown in Fig. [3.27]A for 1h salt stress and for all other stress

samples in Fig.

Calculating Distances Between TARs and Neighboring Genes

For each stress-induced new TAR, we determined the distance between its start and the
nearest annotated gene upstream as well as the distance between its end and the nearest
gene downstream. The histogram shown in Fig. [3.27]B was computed from the minimum
of these two distances. A distance of 1 can result either from a small overlap to (an)
exon(s) or from the new TAR being located in an intron of an annotated gene (for other

samples see Fig. .

2.7 Incorporating Sequence Information into mSTAD

In this section we describe an extension of the mSTAD method which enables it to exploit
features of the genomic sequence, specifically the local sequence context around splice sites,
in addition to hybridization measurements. Instead of directly incorporating sequence fea-
tures we provided mSTAD with pre-computed splice site predictions [I70]. A description
of the enhanced model is followed by details on evaluating its performance relative to the
original method. This is unpublished work done together with Jonas Behr and Gunnar
Rétsch.

As a first preprocessing step, genome-wide splice site predictions had to be mapped into
the probe-grid defined by the tiling array design. Moreover, we extended mSTAD’s state
model and re-defined its loss function as detailed in the following. We called the resulting
transcript mapping method margin-based segmentation of tiling array data with splice
site predictions (mSTADsp).

2.7.1 Splice Sites Predicted from Genomic DNA Sequences

Genome-wide splice site predictions from genomic sequences were computed by Jonas
Behr as described in Sonnenburg et al. [I70]. Support vector machines with a so-called
“Weighted-Degree kernel” [136] classified genomic sequences around known splice sites in
order to discriminate them from decoy sites exhibiting the same consensus dinucleotide

%http://pipeline.1bl.gov/downloads.shtml
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(“GT” and “GC” for donor and “AG” for acceptor splice sites). Two sets of splice site
predictions were generated, one where large sequence windows (as proposed in Sonnenburg
et al. [I70]) were extracted that contained 81 nt and 60 nt of exonic and intronic sequence,
respectively (in the following referred to as “w141”); for the second set of predictions the
input sequence was restricted to 40 nt of intronic and 10 nt of exonic sequence (referred to
as “wb0”), aiming to minimize preferential detection of splice sites in coding sequences.

2.7.2 The State Model Utilized by mSTADsp

The key idea for extending mSTAD’s state model is the introduction of a second set
of states which allow learning from splice site predictions when segmenting tiling array
data. All transitions in mSTAD’s original model where replaced by an additional splice
site state that was connected by newly inserted transitions to the adjacent hybridization
states (Fig. . On the basis of this interleaving of splice site states and hybridization
states, learning from hybridization and sequence features was possible within mSTAD’s
existing training and prediction framework. To compensate for the increase in model
complexity upon the introduction of splice site states, only a single exon state and a single
intron state were used per expression quantile, whereas mSTAD’s model contained a pair

of each of these (Figs. and [3.20]).
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Figure 2.7: Sketch of the state model employed in mSTADsp. Shown is a submodel with exon and
intron states for the first of () = 10 discrete expression levels. States corresponding to hybridization
signals are indicated by circles (S, E, 1) and splice site states by rectangles (don, acc, ssp-S, ssp-E,
ssp_l). For transcripts originating from the Watson strand, a strong splice donor signal (don+) is
expected between exon and intron, similarly a strong acceptor signal (acc+) between intron and
exon probes. When segmenting a gene on the Crick strand with this strand-insensitive model,
transitions between exon and intron correspond to splice acceptors (acc-), whereas intron-exon
boundaries feature splice donors (don-). Ideally, there are no strong splice signals at the remaining
splice site states (ssp-S, ssp-E, ssp_l). Transitions into submodels for the next expression level are

indicated by “...” and lead to the following states (not shown here) * — ssp_Eg, ** — Iy, *** —
ssp_ls.

2.7.3 Deriving Features for mSTADsp

As a first feature for mSTADsp we used exactly the same hybridization signals as in
mSTAD. Additional features captured information on the start and end of internal exons.
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Originally, splice site predictions were available for each consensus dinucleotide on Watson
and Crick strand (for the formal definitions below we assume a prediction score of —oo for
all other sites). The exon start feature x;. between probes i and i+ 1 with center locations
p; and p;11, respectively, was derived as follows:

2ie(i) = max({a"™(q) | pi < ¢ < pir1} U {d Q) | pi < q < pi1})-

where d)(¢q) and d(~)(q) denote a splice donor prediction score at position ¢ on Watson
and Crick strand, respectively. By a(t)(¢q) and a{~)(q) we denote the respective splice
acceptor prediction scores. The exon start feature was evaluated in the acc+ / don- state
(Fig. 2.7). In the don- / acc+ state, an exon end feature z.; was evaluated which was
derived analogously:

2ei(1) = max({d(q) | pi < ¢ < pira} U {a'(q) | pi < q < pig1})-

Finally, we employed a fourth feature, z,5(i) = max({x;c(i), x¢;(i)}). This feature was
evaluated in states denoted ssp_S, ssp_E or ssp_| (Fig. . Because within an exon, intron,
or intergenic region, ideally no strong splice signal should be encountered at all, we added
this feature to facilitate learning a feature scoring function that penalized the occurrence
of any of these cases.

2.7.4 Regularization and Loss

For mSTADsp we used the same quadratic regularizer as described before (see Sec-
tion , but additionally constrained the feature scoring functions of the splice site
states to be monotonic, considering that non-monotonic transformations of the SVM pre-
diction scores would be exclusively due to the stochastic nature of the learning process.
This was achieved by adding constraints of the following form to the optimization problem
introduced in Section 2.4.4}

IA

0 k0 — 0 k41 0 Vi=1,...,5—1 for monotonically increasing functions g;

0kt —0Ojkie1] = 0 VI=1,...,8—1 for monotonically decreasing functions g;,

for some feature j and state k; S denotes the number of supporting points of the piece-
wise linear feature scoring function g;;. For ,s monotonically decreasing feature scoring
functions were learned, whereas scoring functions for x;. and x.; were constrained to be
monotonically increasing. Moreover, constraints enforcing similar scoring functions for the
same splice site feature in corresponding states of different expression levels were added
(as described in Section [2.6.4).

The loss function employed in mSTAD was extended by additional penalties for confused
splice site states. All splice site state confusions incurred a position-wise loss of 1 that was
added to the path-loss A (see Section [2.6.4]).
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2.7.5 Performance Assessment

Augmenting the example sequences of hybridization signals used for mSTAD with addi-
tional splice site features as well as partitioning examples into training, validation and test
set in exactly the same manner helped to minimize biases when comparing the performance
of mSTAD and mSTADsp.

For evaluation purposes, a set of 1,000 full-length cDNA-confirmed genes annotated in
TAIRT7 [I78] was used and prediction accuracy was assessed for test predictions generated
in a two-fold cross-validation procedure. Two disjoint training sets, each containing 1000
sequences, were sampled around annotated genes such that they were also disjoint from
the respective test set. Two instances of mSTAD as well as two instances of mSTADsp
were trained on these sets. Both, mSTAD and mSTADsp, were retrained using maximum
likelihood estimation to obtain mSTAD HMM and mSTADsp HMM (see Section .
For mSTADsp, training and evaluation was repeated once more on corresponding data
based on the second set of splice site features to obtain mSTADsp w141 and mSTADsp w50.
Precision and recall were calculated with the same routines as for the evaluation of mSTAD
(see Section and Fig. [3.19). Finally, precision and recall estimates were corrected
for biased expression of test genes in order to more closely reflect the accuracy expected
for genome-wide predictions. Instead of directly assessing precision and recall across all
test examples, these measures were calculated separately for each discrete expression level.
Afterwards we averaged them across levels and thereby effectively down-weighted example
sequences around genes with medium to high expression level that were overrepresented
in the test set (Fig.|3.32).

2.8 Chapter Summary

Whole-genome tiling arrays hold great promise for many biological applications, yet the
analysis of the resulting hybridization data poses many challenges. We developed a normal-
ization pipeline to correct for several biases and sources of signal variability (Sections|2.3.1
. Its most important step, a novel transcript normalization method, addresses
the well-studied problem that the sequences of tiling probes themselves have a strong
influence on their hybridization properties and thus on the resulting signal. As a conse-
quence, signal variation due to divergent probe sequences impedes comparisons between
different probes and therefore also subsequent analyses, such as transcript identification.
We took a novel modeling approach to directly reduce the variance of observed signals
from an ideally expected, constant signal for all probes with the same concentration of
bound target molecules. Its benefits will be shown in the following chapter (Section .

We formalized the biological tasks of polymorphic region prediction as well as tran-
script identification as segmentation (or label sequence learning) problems by extract-
ing meaningful label information and by deriving features useful for learning. To solve
these problems, we implemented and engineered Hidden Markov Support Vector Machines
(HM-SVMs) [3, (180, [184]. This included the design of an expressive linear feature map,
problem-specific state models, loss functions and regularizers (Sections [2.4.3} [2.5.3 [2.5.6]
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. For the problem of de novo transcript identification from tiling arrays, we
conducted a comprehensive empirical assessment of the properties of discriminative HM-
SVMs in comparison to generative HMMs. We observed that HM-SVMs, albeit costly to
train in terms of CPU time, made significantly more accurate test predictions and were
much more robust to label noise, highly desirable properties for the analysis of biologi-
cal data. Importantly, we found that the performance difference between HM-SVMs and
HMMs could largely be attributed to the careful design of the HM-SVM loss function —
for a simple, problem-independent loss, HM-SVMs and HMMs showed almost identical
accuracy (Section [2.4.8).

For the first time, we systematically identified polymorphic regions including deletions
from resequencing microarrays taking a rigorous approach based on HM-SVMs (Sec-
tion . Since no other computational methods were available for comparison, we care-
fully assessed our predictions against other data sources to verify their accuracy (results
will be shown in Section .

For the better-studied problem of transcript identification from tiling arrays, we devel-
oped a new HM-SVM-based method, which introduced several novelties in the modeling
approach (Section . Most importantly, we maintain different parameter sets for genes
with different expression levels in the form of an elegant state model. Moreover, we show
that this model can easily be extended to exploit genomic sequence features in addition to
hybridization features (Section . The existence of other methods for transcript identi-
fication [72] [77, 85, [120] allowed us to compare their performance to ours (results will be

shown in Section [3.3.2)).
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3 Results and Discussion

The first part of this chapter describes our analyses of resequencing microarrays in order to
identify highly polymorphic regions in the A. thaliana genome. We then turn to the anal-
ysis of transcriptome tiling arrays and present the results of our transcript normalization
method. Subsequently, we describe the results of our approach to transcript identification
including (i) an evaluation of its performance in comparison to other methods, (ii) the bio-
logical discoveries resulting from its application to tiling arrays profiling the transcriptome
of A. thaliana tissues and developmental stages and (iii) its application to a tiling array-
based survey of transcriptional stress response in A. thaliana. The last results section
covers the extension of our hybridization-based transcript identification method to one
which also exploits genome sequence information. The chapter is concluded by a discus-
sion about extending the developed transcript normalization and identification methods
such that they are applicable to RNA-seq, a sequencing-based assay of transcriptional
activity, which is currently revolutionizing transcriptomics.

3.1 Margin-Based Prediction of Polymorphic Regions (mPPR)

Whole-genome, oligonucleotide resequencing arrays have allowed the comprehensive dis-
covery of single nucleotide polymorphisms (SNPs) in eukaryotic genomes of moderate to
large size. With this technology, the detection rate for isolated SNPs is typically high [29].
However, where multiple SNPs or insertion/deletion (indel) polymorphisms are closely ad-
jacent (occur within the same 25-mer), all oligonucleotide probes interrogating this local
context harbor off-center mismatches, and SNP prediction is generally not possible. For
such regions, hybridization is suppressed for contiguous features in a tiling path. This
pattern is therefore a signature of high underlying polymorphism, either in the form of
closely linked SNPs or small indels, or potentially of larger deletions (Fig. A,B,C).
This phenomenon has limited the utility of resequencing array data for describing pat-
terns of genome-wide sequence variation. Regions where no SNPs are predicted may be
(i) monomorphic to the reference sequence, or alternatively may be (ii) so dissimilar that
no underlying polymorphisms are detected.

In this section, which is based on joint work with Richard M. Clark, Korbinian Schnee-
berger, Anja Bohlen, Detlef Weigel and Gunnar Rétsch (see p. for author contribu-
tions) [203], we describe a novel machine learning method, suitable for detecting tracts of
high polymorphism from resequencing array data. Formally, the prediction task is to label
each tiled position in the genome as either (i) conserved or (ii) at or immediately adjacent
to a polymorphism (Fig. [3.1]D). Here, we define polymorphic regions (PRs) as contiguous
regions of nucleotides each of which is at most 6 bp from a polymorphism, or is between two
polymorphisms separated by at most 18 bp (Fig. for a discussion of these distances).

95
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Figure 3.1: Effect of polymorphisms on hybridization patterns, labels for the mPPR algorithm,
and polymorphic predictions. (A) Logs intensities for oligonucleotides in a 56 bp tiling path
(chromosome 4, positions 8,375,747 to 8,375,802) for the reference Col-0 accession. Intensities for
each sequence (see inset) are given and are averages for the forward and reverse strand features
tiled on the arrays (see Section [2.5.5). (B) Corresponding data from accession Cvi-0 for which
3 SNPs and a 3 bp deletion are present relative to the tiled Col-0 reference sequence. Intensities
are suppressed flanking an isolated SNP (right) where the SNP probe shows a clear peak, and
intensities for all probes are reduced for the cluster of 3 polymorphisms including the deletion (left
center). (C) Logs intensities for the maximally hybridizing oligonucleotide at each tiled position
are shown for Col-0 and Bor-4 (see inset) for a particularly challenging sequence fragment in 2010
(chromosome 3, positions 10,245,203 to 10,245,702; gene AT3G27660). Hybridization properties
for much of the region are poor, as reflected by the low intensity values for the perfect match
Col-0 reference sequence. Known (2010) and predicted polymorphisms (MBML2) for Bor-4 are as
indicated. Only 2 of the 21 known Bor-4 polymorphisms (17 of which are SNPs) were predicted in
MBML2. (D) The corresponding PR label sequence for Bor-4 and resulting PR predictions (color
coding is as shown at bottom). Light gray shading that extends across panels C and D corresponds
to PR labels. Plotted data are from Clark et al. [29], Nordborg et al. [128].

Our method, which we call margin-based Prediction of Polymorphic Regions (mPPR),
employs HM-SVMs to accurately identify PRs from resequencing array data of the refer-
ence plant, Arabidopsis thaliana, where SNP polymorphism is higher than for human [192]
and references therein], and for which indel polymorphisms are common [73] [128].

We applied mPPR to a previously published Arabidopsis resequencing array data set,
hereafter called “AtAD20” [29]. It contains data generated for >99.99% of bases in the
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119 Mb reference genome [73] for each accession [29]. The data were previously used
to identify =~ 648,000 SNPs at a precision of about 98% (the “MBML2” SNP data set).
SNPs from highly polymorphic regions were underrepresented among these SNP predic-
tions, highlighting that such regions present a substantial challenge. Likewise, a fine-scale,
genome-wide map of insertions and deletions (indels) in Arabidopsis was lacking, as precise
methods for the identification of indels had not been developed. However, clustered poly-
morphisms and indels, which can comprise more than 15% of polymorphisms in eukaryotic
genomes [e.g., 306, [116], 190], are a central component of sequence variation, and contribute
to phenotypic variation. With mPPR, on average = 288,000 polymorphic regions were
predicted per accession at a precision of about 97% revealing a large proportion of poly-
morphisms absent from the MBML2 data set. While replicated hybridization measure-
ments are typically not available for primary whole-genome hybridization data, each base
in a tiling path is interrogated on the arrays, an ultimate determinant for the theoretical
accuracy of predictions. By using a machine learning method to overcome experimen-
tal noise and to relate complex, dependent hybridization measurements from overlapping
oligonucleotides to underlying polymorphisms, we detected even small clusters of SNPs or
indels (within less than 10 bp) with high accuracy.

3.1.1 Known Polymorphisms for Training and Evaluation

The mPPR algorithm required a set of accession-matched, known sequences for the gen-
eration of label sequences used for training and evaluation. For 19 of the 20 AtAD20
accessions, 1,213 fragments of ~ 550 bp in length and located throughout the genome had
been sampled by PCR and dideoxy sequencing [128]. This data set, hereafter called “2010”,
covers about 0.5% of the genome per accession, and harbors ~ 2700 SNPs and ~ 400 indel
polymorphisms per target accession [128]. Col-0, the reference accession, was included in
the AtAD20 accession set [29], and we used Col-0 array data to assess hybridization perfor-
mance of arrayed oligonucleotides. As a consequence, predictions could not be generated
for Col-0 itself (e.g., to detect errors in the reference sequence [73]). Our method also used
information about the repetitiveness of each arrayed 25mer oligonucleotide determined
from the Col-0 reference sequence (see Section and [29]). In particular, we separately
modeled repetitive sequences from non-repetitive sequences in an effort to avoid frag-
mentation of predictions in regions of low to moderate repeat content (see Sections
and .

We trained our method on 60% of the 2010 data, used 20% for hyper-parameter tuning,
and 20% for evaluation; we employed a 5-fold cross-validation strategy to obtain out-of-
sample predictions for all 2010 fragments. For our method, we considered a prediction as
a true positive (TP) if a portion A (or more) was covered by PR(s); else it was counted
as a false positive (FP). Conversely, a known PR was counted as a true discovery (TD) if
all underlying polymorphisms were inclusive to a prediction, or if at least A of its length
was contained in one or more PR prediction(s); else as a false negative (FN). We used
these counts to assess precision and recall' defined as TP/(TP +FP) and TD/(TD + FN),

Lwhich is the same as sensitivity
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respectively (Fig. for details). We excluded PRs from evaluation that were more than
75% duplicated elsewhere in the reference genome (these repetitive PRs constituted 3.4%
of examples in 2010).

Tuning an internal parameter of our algorithm on the five cross-validation sets allowed
us to adjust the trade-off between precision and recall (Fig. A7 and Section for
details). For 2010, we generated predictions at a precision of >90% for A = 75% (Fig.
for the effect of varying A on precision and recall). Across all sequence types and acces-
sions, our method identified 56% of PRs in 2010, and performance estimates varied only
moderately between accessions (Table . In Arabidopsis, coding sequences have higher
GC content and sequence complexity than noncoding sequences [73]. These factors are
favorable for hybridization-based methods [29, 9], and likely contributed to the higher
recall rate in coding regions (e.g., about a 1.3-fold difference compared to non-coding
sequences at a similar precision; see Fig. A and Table . As minor differences in pre-
diction boundaries affect performance estimates — especially for small predictions — we
also assessed the performance of the predictions with a relaxed overlap criterion (Fig. .
For A = 50%, recall was slightly higher, and precision was at least 95% for all sequence
types and ~97% on average (Table [3.1)).

Coding UTRs + introns Intergenic 2010  Genome

A =7%
Precision  92.6% 88.8% 88.3% 90.4% 89.3%
Recall 63.6% 50.9% 49.1% 55.6% 52.0%
A = 50%
Precision  97.4% 97.9% 95.8% 97.2%  96.6%
Recall 65.5% 54.4% 51.7% 58.2% 54.7%

Table 3.1: Precision and recall for PR predictions assessed with 2010 for different overlap cut-
offs, A (see main text). The relative abundance of sequence types differs between 2010 and the
whole genome [29], and precision and recall were re-estimated accordingly for the whole genome
predictions (column “Genome”, see Section .

The labels we used for training are abstractions for underlying polymorphism; however,
all polymorphism types were labeled (e.g., both SNPs and indels), and were thus targets
for prediction. We therefore assessed the polymorphism content of predictions on the
2010 test data. Sixty-two percent of predictions identified single SNPs, 3.4% harbored
single indels, and the remaining predictions identified complex mixes of polymorphism
types, with clusters of SNPs most common (Table . For indel polymorphisms, 53.3%
of deleted bases and 38.9% of insertion sites in 2010 were included within predicted PRs.
Across all prediction types, about 90% of bases within predictions were at or within 6 bp
to a known polymorphism (Fig. [3.3|B).

While PR predictions typically reflected the underlying patterns of polymorphisms with
high accuracy, prediction boundaries sometimes differed substantially from labels, and for
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Figure 3.2: Tlustration of performance assessment. To calculate recall, i.e., for whether each label
PR was a true discovery (TD, green shading) or a false negative (FN, yellow shading), we first
checked if all underlying polymorphisms were included in one or more PR predictions (boxes with
title “coverage”). If so, as for examples A, B and D, the label PR was counted as a TD. Otherwise,
depending on whether a portion > \ was overlapping with one or more PR predictions (boxes with
title “overlap”), it was still counted as a TD (as in C), else as a FN (as in E). Precision assessment
was only based on the proportion of a PR prediction overlapping with label PRs. If a fraction > A
of the prediction was also labeled as a PR, the prediction was counted as a true positive (TP, green
shading, as in A, B, C and E), and otherwise as a false positive (FP, yellow shading, as in D).

some regions even highly clustered polymorphisms were not identified (Fig. C,D). In
large part, such false negatives occurred for regions with poor hybridization properties in
the reference accession (e.g., compare predictions to reference feature intensities for regions
(2) and (5) in Fig. C,D; see also Fig. . Additionally, although explicitly modeled by
our method, repeats were overrepresented among false negative predictions. For example,
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Figure 3.3: Relationship between precision and recall for PR predictions with overlap criteria
A = 75%. (A) Precision-recall curves averaged over cross-validation test subsets for different
sequence types (see inset for color code). PRs that contained more than one sequence type were
assigned to the type comprising the majority of the prediction. (B) Precision at the nucleotide
level as calculated for each position within a prediction. Deleted nucleotides and SNP positions
were assigned a distance of 0. A cumulative histogram of these distances is displayed, showing
that, e.g., more than 90% of all nucleotides in PR predictions are within 6 nucleotides to a known
polymorphism. The dashed black line indicates the relationship expected by chance (that is,
predictions were assigned to random genomic locations for calculating distances).

Bases (kb) PRPs  Single-SNP  Multi-SNP  Deletion  Insertion Complex Empty

2010 10,967 20,073 12,435 4,584 438 242 1,607 767
C24 14 65 27 23 4 0 9 2
Cvi-0 37 169 76 60 6 2 23 2
Ler-1 37,871 76,020 41,052 18,331 2,257 1,319 9,771 3,290

Table 3.2: Polymorphisms in predicted PRs. We distinguished between PR predictions (“PRPs”)
containing only a single SNP (“Single-SNP”), multiple SNPs (“Multi-SNP”), one or more deletions
(“Deletion”), one or more insertion sites (“Insertion”), SNPs and indels in combination (“Com-
plex”), or no known polymorphism at all (“Empty”).

in 2010 5.5% of all positions were repetitive (see Section, while the fraction of repetitive
positions in false negative PRs was twice as high (10.9%). In contrast, only 2.1% of sites
in correctly predicted PRs were repetitive. Therefore, repeats are a source of error for our
predictions; however, mPPR was cautious in making predictions that included repetitive
sites.

3.1.2 Prediction Content and Comparison to SNP Calls

We designed mPPR to produce predictions that complement existing SNP data sets as-
certained from resequencing array data (Fig. . Although our method only identifies
the approximate location of polymorphisms, 74.8% of clustered SNPs (< 18 bp away from
the nearest polymorphism) in 2010 were included within boundaries of PR predictions
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(Table . This contrasts markedly to MBML2, for which a mere 12.4% of the clustered
SNPs were identified. Although mPPR performed well for clustered SNPs, the method
nevertheless also identified 55.4% of isolated SNPs (those > 18 bp to the nearest polymor-
phism). Compared to MBML2, 42% of 2010 SNPs were located exclusively within mPPR
prediction boundaries, whereas only 8% were found exclusively in MBML2. The most
striking differences between the data sets were for clustered SNPs in untranslated and
intergenic regions, where our method identified the approximate location of 7- to 10-fold

as many SNPs as MBML2 (Table [3.3).
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Figure 3.4: Dependency of SNP recall on distance between polymorphisms by detection method.
SNPs were partitioned according to the distance to the nearest polymorphism. The frequency of
SNPs in each distance bin (x-axis) is shown as bars. Recall rates per distance category are given
for MBML2 SNP calls (circles) and inclusion within PR prediction boundaries (crosses).

Coding UTR + intron Intergenic All

PRs MBML2 PRs MBML2 PRs MBML2 PRs MBML2

Clustered SNPs 85 (65) 21 71(64) 7 66 (57) 9 75(63) 12
[9196] [10793] [5608] [25597]

Isolated SNPs 61 (14) 69 54(22) 41 48(22) 37 55(18) 53
[10294] [6774] [5870] [22938]

All SNPs 72 (38) 46 64 (48) 20  57(39) 23 66(42) 31
[19490] [17567] [11478] [48535]

Table 3.3: Recall by polymorphism and sequence type. For MBML2 (precision ~98% [29]), the
percentage of SNPs for which the correct position and allele was identified is given; for the PR data,
the percentage of SNPs contained within PR, prediction boundaries is given (precision = 90%; see
Table , with the percentage of SNPs contained within PR predictions but absent from MBMIL2
given in parentheses. SNPs were classified as isolated if the distance to the nearest polymorphism
was > 18 bp, otherwise as clustered. Sample sizes are indicated in brackets. Untranslated regions
(UTRs) and introns were evaluated together owing to small UTR sample size in 2010.

3.1.3 Whole-Genome Predictions and Evaluation

HM-SVMs trained on 2010 data were used for genome-wide prediction on AtAD20 acces-
sions using the same settings as for evaluations on 2010 data (Table. Non-redundantly,
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27% of the Arabidopsis thaliana genome was included within the boundaries of the result-
ing predictions, and 92% of the predictions harbored < 75% repetitive sites, the criteria we
used for evaluation with 2010. Per accession, between 240,538 and 361,184 PRs were pre-
dicted, comprising between 5.3% and 8.5% of the genome (Table |4.2)). The accession with
the most predictions, Cvi-0, was known from earlier work to be highly dissimilar to Col-
0 [128, 150]. By sequence type, intergenic positions were most strongly overrepresented
within prediction boundaries (Fig. [3.5)).

A B
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[60,607,387]

intron 15.9%
[18,877,079] coding 28.0%

UTR 5.2% [33,264,780]
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UTR 4.1%
[1,301,802]

Figure 3.5: (A) Arrayed bases by sequence type. (B) Non-redundant bases included in PRs by
sequence type.

Given the size and genome-wide sampling for the 2010 data [I128], our performance
evaluations likely generalize well for much of the genome. Nevertheless, the 2010 data
is biased in several ways that potentially affect performance estimates. First, 2010 is
overrepresented for coding sequences, and we adjusted performance estimates for genome
predictions to account for the difference in sequence composition between 2010 and the
whole genome (Table|3.1). However, non-coding sequences in 2010 are also biased, and are
generally located in close proximity to coding sequences. A consequence is that polymor-
phism levels for the 2010 sequences are likely reduced compared to the genome average.
Another concern is that, irrespective of sequence type, the PCR-based 2010 data are un-
derrepresented for highly divergent or deleted sequences that could not be amplified by
PCR.

We therefore used several resources partially or entirely independent of 2010 to evaluate
genome-wide predictions. First, we assessed prediction quality using clone-based genomic
sequence data available for three of the studied accessions. This included 37 kb of BAC se-
quences available for accession Cvi-0 and 14 kb for C24. Here, precision was 96% and 100%
(for A=50%) at a recall rate of 67% and 45% for Cvi-0 and C24, respectively (Table [3.4)).
Moreover, we assessed our predictions using the much larger 2-fold draft shotgun sequence
data available for Ler-1 (see Section [2.5.8)). Although we excluded repetitive regions from
this evaluation, performance estimates with this genome-wide resource are expected to be
largely unbiased by sequence composition. After removing contigs that were likely the
result of assembly errors (see Section , the prediction quality assessed with 37.9 Mb
of aligned sequence data was found to be very similar to that assessed with the 2010 test
data: Among the Ler-1, Cvi-0, and C24 data sets, precision, which is not expected to
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be strongly affected by errors in the genomic sequence data, varied comparatively little
(Table and Table . However, at the first glance recall was markedly lower for the
shotgun Ler-1 data. To assess whether sequence errors in the Ler-1 contigs/alignments
were affecting the estimate of recall rates, we compared PR labels in regions where the
Ler-1 genomic contigs overlapped 2010 sequence data for Ler-1. In these overlapping
regions, which consisted of 269 kb, we also compared PR predictions to PR labels from
the 2010 set and to those extracted from the Ler-1 genomic data (Table . The large
disagreement between the two sets of PR labels, as well as the discrepancy between re-
call estimates for the different labels, indicated that a substantial proportion of apparent
polymorphisms in the genomic data resulted from either sequencing or assembly errors
in the shotgun Ler-1 data. We therefore multiplied the recall estimate for Ler-1 predic-
tions obtained from the genomic data by the resulting fold difference in recall estimates
for predictions evaluated on 2010 and on the genomic sequences for which the data sets
overlapped (a factor of about 1.5; Table . Both the uncorrected (u) and corrected
(c) estimates for recall for the genome-wide Ler-1 predictions are given in Table We
thus concluded that performance estimates with the genomic clone data were in general
agreement with the PCR-based test data even though the composition of the predictions
differed somewhat from those in the 2010 test set (e.g., more PRs harbored clusters of
SNPs or indels than observed for 2010, Table .

Bases (kb) PRs  PRPs A=T75% A=50%
Prec. Recall Prec. Recall

C24 14 124 65 95% 40% 100% 45%
Cvi-0 37 259 169 87% 61% 96% 67%
Ler-1 (u)® 37,871 186,916 74,354 88% 32% 96% 34%
Ler-1 (c)® 48% 53%

Table 3.4: FEvaluation on genomic sequences. Bases denotes the number of aligned bases, PRs
the polymorphic regions extracted from these alignments and PRPs the predicted polymorphic
regions for the corresponding regions. Precision (“Prec.”) and recall are given for two different
overlap cut-offs, A (see Section. (a) Precision and recall values were directly compared to the
alignments of the Ler-1 contigs to the Col-0 reference sequence. (b) We corrected the recall rate
by a factor estimated from the discrepancies of the recall rates in regions where the 2010 Ler-1
sequences overlap to the Ler-1 contigs (see Section and Table .

Second, we assessed the performance of predictions for long deletions, a polymorphism
type absent from 2010, and that we excluded from the clone-based data owing to align-
ment uncertainties in the draft genomic data (see Section . Long deletions pose a
challenge for our learning method as they were absent from the training data. Nonetheless,
deletions maximally suppress intensity measurements throughout a tiling path, and sup-
pressed hybridization is the pattern identified by mPPR. In our predictions, long deletions
were readily recognizable as (potentially interrupted) long PRs (Fig. MB for an example).
More than 100 known deletions of greater than 300 bp had been previously characterized
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A=T75% A=50%

Precision Recall Precision Recall

PRPs vs. 2010 PRs 90% 72% 97% 79%
PRPs vs. Monsanto PRs 90% 50% 97% 53%
2010 PRs vs. Monsanto PRs 97% 48% 99% 51%

Table 3.5: Performance evaluation of PRPs on regions overlapping between 2010 and Monsanto
Ler-1 sequences/contigs. The first two rows show performance assessments of PR predictions
(PRPs) against PRs extracted from alignments of 2010 Ler-1 sequences and against PRs extracted
from aligned Monsanto contigs, respectively. The third row shows overlap comparisons between
the two sets of PR labels.

in AtAD20 accessions [29], or were characterized in the current study (see Section [2.5.9)).
These deletions were almost entirely included within PR predictions (Table Fig.|3.6/B,
and Fig. .

Finally, we note that extended tracts of repetitive sequences (>500bp) are entirely
absent from our evaluations. Nonetheless, such sequences are common in Arabidopsis,
and are dispersed throughout the genome. To evaluate these as potential sources for false
predictions, we took advantage of large regions known to be substantially identical to
the Col-0 reference. Previously, Toomajian et al. [I82] used 2010 data to infer regions of
extended haplotype sharing (i.e., sequence identity) with the Col-0 genome for the AtAD20
accessions. In such accessions and regions, our method predicted few PRs, e.g., as can
be seen for a 600kb region in Est-1 for which all 2010 segments are identical to Col-0
(Fig. [3.6|A; [29, 182]). This suggests a low incidence of false predictions in regions that
are monomorphic to the reference genome sequence, but that have repetitive sequence
compositions broadly representative of the Arabidopsis thaliana euchromatic genome.

3.1.4 Polymorphism Patterns Ascertained with PR and SNP Data

An immediate use of PR predictions is the characterization of genome-wide patterns of
genetic variation. While PR predictions delineate clusters of SNPs and indels with high
accuracy, the nature of polymorphism underlying a given prediction is unknown. To
examine genome-wide polymorphism levels, we therefore simply counted whether a base
was included in a PR prediction in one or more of the AtAD20 accessions. To provide
insights into ascertainment biases introduced by different methods, we also calculated the
analogous polymorphism estimate with MBML2 SNP data.

Despite the inherent differences in prediction methods, patterns of polymorphism as-
sessed using the PR and SNP data sets were nonetheless broadly correlated at chromosomal
scales (Figs. and . Polymorphism patterns apparent in the PR data also resembled
that for pair-wise nucleotide diversity as previously calculated with MBML2 [29], as well
as for several data sets generated by dideoxy sequencing [29, 128, [I5I]. Moreover, the
patterns were also similar to those observed in single feature polymorphism data collected
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Figure 3.6: PRs reveal haplotype sharing at chromosomal and local scales. (A) Genes (green
boxes at top) and PRs (yellow blocks beneath) for 5 accessions for 0.8 Mb surrounding the FRI
locus. In Est-1 a region of about 0.6 Mb (dashed black box) including FRI (vertical red line) has
been reported to be nearly identical to the Col-0 reference sequence, but divergent in the other
accessions shown [29, [128]. Only few PRs are located in the Est-1 region that is monomorphic
with the tiled reference sequence. (B) Pattern of PRs for 8 kb at the RPMI locus. The location
of a 3.7kb deletion that segregates in the Arabidopsis thaliana population is as indicated (brown
box at bottom) [60} [160]. Experimental characterization revealed that the C24, Cvi-0, and RRS-10
accessions included in the current study harbored this deletion (the other accessions shown have
a Col-0 like haplotype). PRs delineate the deletion as well as flanking SNPs and indels (see also

Fig.|3.7).

with the Arabidopsis ATH1 microarray [15]. In particular, polymorphism tended to be
higher for centromeric and pericentromeric sequences, with additional regions of extended
high polymorphism also apparent on chromosomal arms (e.g., distal to the centromeres
on chromosomes 1 and 5; Fig. [3.8)).

We also examined polymorphism levels by sequence type by determining, for each posi-
tion, the fraction of bases included in predictions across all accessions. Here, polymorphism
apparent in PR and SNP data varied in a manner consistent with ascertainment biases
(Table [29]). Within genes, predicted polymorphism levels were on average higher for
intronic sequences than for coding sequences when assessed with PR, but not with MBML2
data (Fig. A). For the PR data, the observed pattern is consistent with the general
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Figure 3.7: Underlying polymorphism at locations of PR predictions at the RPM1 locus. (A)
Image of an agarose gel showing PCR products for seven accessions using primers flanking RPM1
(Lane 1: DNA ladder; Lanes 2-8: PCR products for accessions as indicated at top). Products for
three accessions (Bor-4, Fei-0, and Tsu-1; right) were of similar size to that of the Col-0 reference
(center). For accessions C24, Cvi-0, and RRS-10, smaller products were observed. (B) Schematic
of polymorphisms inferred from end sequencing of primary amplification products shown in panel
A. Chromosome and position is based on the reference sequence, and tan-colored boxes indicate
where sequence data was obtained for each accession. For the smaller PCR products (C24, Cvi-
0, and RRS-10; see panel A), complete sequence was obtained across amplicons, revealing many
sequence changes compared to other accessions (polymorphism types are indicated at bottom).
PR predictions for C24, Cvi-0, and RRS-10 (Fig. corresponded to large deletions at RPM1
or to dense clusters of SNPs and small indels flanking the transcribed RPM1 sequence. A small
number of polymorphisms were also identified for Bor-4, Fei-0, and Tsu-1, many of which were
also captured by PR predictions (see also Fig. [3.6]).

expectation of reduced evolutionary constraint for non-translated sequences, as well as
with estimates of nucleotide diversity from 2010 [128]. In addition, inclusion of indels
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Figure 3.8: Genome-wide patterns of polymorphism in PRs and MBML2 SNPs. A sliding window
of 100 kb was used, with values for every 10,000th position plotted. The y-axis displays the fraction
of bp in each window included within PRs non-redundantly over all accessions (yellow line). To
facilitate visualization, the analogous measure for the SNP data was multiplied by 50 (blue line),
and the two measures of polymorphism are broadly correlated (Fig. . Thick grey bars indicate
the approximate positions of centromeres as defined by repeat content (see Section and [29]).

as prediction targets for mPPR, coupled with the bias for indel polymorphisms in non-
coding regions [73], is a likely factor contributing to fine-scale differences in polymorphism
estimated from the different data sets.

We also used PR data to infer the distribution of polymorphisms in intergenic sequences
for which SNP recall for MBML2 is very low (Table [29]), and for which diversity es-
timates from 2010 are largely limited to sequences near genes [128]. Average levels of
polymorphism varied as a function of distance from coding sequences, and were asymmet-
ric relative to gene orientation (Fig. B). Extending upstream to 5° UTRs, polymor-
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phism reached a plateau at about 450 bp, while the analogous plateau was reached within
about 50 bp downstream from 3’ UTRs. Upstream to transcription start sites, polymor-
phism tended to be inversely associated with the density of predicted cis-regulatory ele-
ments [129]. The reduced polymorphism 5’ to genes may, therefore, reflect constraint on
cis-regulatory sequences, as suggested by permutation tests that revealed a highly signif-
icant under-representation for PR overlaps to predicted cis-regulatory sites (Fig. C;
Zeller et al. [supplement of 203], [129]). This observation is unlikely to result from an
artifact in the PR data; a similar pattern is apparent in an inter-specific comparison of
promoter regions between Arabidopsis thaliana and a close relative, Boechera stricta [191].
Constrained sequence evolution for regions immediately 5’ to genes may reflect the action
of purifying selection on cis-regulatory sequences, as suggested by a significant under-
representation of overlaps between PRs and transcriptional cis-elements predicted in a
previous study [129]. This finding indicates that in Arabidopsis the information required
for gene expression is densest in close proximity to transcript start sites even though
full recapitulation of complex expression patterns often requires substantially larger pro-
moter fragments [e.g., I00]. An implication of this observation is that deep sampling of
variation within Arabidopsis thaliana populations will be important for both detecting
cis-regulatory sequences and for characterizing their evolution.

3.1.5 Highly Polymorphic Genes and Gene Families in Arabidopsis

At the local scale, we used PR predictions to characterize, at high resolution, genes that
are highly polymorphic in the Arabidopsis thaliana population. On an accession basis,
an average of 117 of 26,541 coding genes had more than 75% of their coding sequence
within predictions. Across all accessions, we also assessed patterns of polymorphism
among classes of genes by determining the fraction of coding bases per gene included
in PR predictions (denoted “PR content”). Globally, intra-specific patterns of genic poly-
morphism predicted inter-specific conservation, with lower PR content for Arabidopsis
genes with orthologs in black cottonwood (Populus trichocarpa), the most closely related
plant with a sequenced genome [I85] [supplement of 203]. Among large gene families
within Arabidopsis thaliana (n >125; [29]), variation in PR content was readily apparent
(Figs. and . Generally, gene families with many members affected by SNPs
expected to impact on gene function (“large-effect SNPs”, [29]) also tended to have rel-
atively high levels of PRs in coding regions (Fig. [3.11]). Transcription factors, for which
MBML2 SNP data suggested strong purifying selection, harbored few members with high
PR content (Figs. and . In contrast, higher PR content was observed for F-box
genes (Figs. and , for which many inactivating mutations have been identified [29],
and for which patterns of sequence variation indicate high death rates in the Arabidopsis
thaliana genome [I81]. Among large gene families, nucleotide-binding leucine rich repeat
(NB-LRR) genes that mediate disease resistance exhibited extreme levels of polymorphism
(Figs. and , a finding that was even apparent in low resolution predictions of
polymorphic regions from AtAD20 data [29].

Characterizing polymorphisms in transcribed Arabidopsis sequences at high resolution,
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Figure 3.9: Patterns of polymorphism apparent in PR and SNP data in noncoding regions. (A)
Polymorphism near splice donor (left) and splice acceptor (right) sites as averaged over 116,971
splice sites and assessed with both the PR prediction and MBML2 (SNP) data sets (see inset, and
Section for details of polymorphism estimation). Relaxed constraint at wobble positions is
apparent in the SNP data as sequential peaks in polymorphism with a 3bp offset (the observed
pattern reflects, in part, biased splicing at codon boundaries). SNP polymorphism is lowest at
splice sites, and polymorphism estimates with the PR and SNP data diverge for intronic sequences
(middle). (B) Comparison of the PR and SNP polymorphism estimates for the 1,000 bp located
5 and 3’ to transcription units for coding genes (averaged across 17,434 genes with annotated 5’
UTRs, and 17,430 genes with annotated 3’ UTRs). The average density of predicted cis-elements
for the 5’ region is as shown. A peak immediately 5’ to transcription start sites corresponds to the
TATA motif.

we found hundreds of transcribed regions containing or even largely covered by PRs in
one or more accession. As these represent genes from many families, the evolutionary
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forces shaping patterns of genic polymorphisms are expected to be manifold. In some
cases, PRs affecting a large proportion of gene loci may reflect the absence of selection at
annotated genes that are in fact pseudo-genes. In other cases, highly dissimilar sequences
may reflect the action of balancing selection, where linked mutations accumulate nearby
a selectively maintained polymorphism. Allele frequency patterns in SNP data support
balancing selection as a central force leading to high polymorphism levels for NB-LRR
genes [4, 29], the predominant class of disease resistance (R) genes in plants [81]. In
our study, family-wide polymorphism for NB-LRR genes was extreme, as also noted from
earlier work with the AtAD20 data [29], as well as from studies of a selected set of NB-LRR
genes in Arabidopsis [4, 61], 160]. Nevertheless, polymorphism levels for individual NB-
LRR genes varied greatly; some genes were almost entirely included in PRs (Fig. [3.6/B),
while others were predicted to be largely monomorphic across the AtAD20 accession set.
This might reflect the action of different selective pressures on specific family members,
and NB-LRR genes showing little or no variation may have been targets of recent positive
selection (sweeps) in Arabidopsis thaliana populations. Although the primary function for
NB-LRR genes is in race-specific resistance to pathogens, not all R genes are NB-LRR
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members [e.g.,[166]. The extent to which other highly polymorphic genes identified in this
study mediate interactions with the biotic (or potentially abiotic) environment requires
empirical study.

As our PR predictions have high precision and recall in non-coding regions, we also
used PR content to assess sequence variation within and among micro-RNA (miRNA)
genes, where comparatively little is known about within-species polymorphism. Among
Arabidopsis miRNAs with homologs in other species [82], very little variation was observed
for the 21 nt miRNA sequences required for miRNA-mediated gene suppression (Fig.|3.12)).
Marginally higher variation was observed for the complementary miRNA* sequence, while
PR content was substantially higher for precursor end and loop regions of miRNA pre-
cursor sequences. For a set of 68 validated or predicted miRNAs lacking homologs in
other species [48], [135], PR content was generally much higher, and the pattern of reduced
PR content for the miRNA sequence relative to the rest of the precursor was less clear
(Fig. . Whether this pattern reflects poor annotation for the non-conserved miRNAs,
or potentially the evolution of new genes that are not fixed in the population, remains to
be determined.
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3.1.6 Data Release

The PR prediction data set is available for download from The Arabidopsis Information
Resource (TAIR) [1I7§], as are fasta files for all accessions and annotated genes in which
PRs are indicated.? Furthermore, PRs are visualized in Generic Genome Browsers [173]
at TAIR® and at POLYMORPH.*

2ftp://ftp.arabidopsis.org/Polymorphisms/Polymorphic Region Predictions_Zeller_2008/
3http://gbrowse.arabidopsis.org/cgi-bin/gbrowse/arabidopsis/
“http://gbrowse.weigelworld.org/cgi-bin/gbrowse/polymorph/
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3.1.7 Utility of Predictions for Functional Studies

Our predictions are immediately useful for functional studies in Arabidopsis. Many genes
entirely covered by PRs are likely to be partially or completely deleted. These constitute
a potential source of loss-of-function alleles for genes for which knockout alleles have not
been found in sequence indexed Arabidopsis thaliana mutant collections [2]. Moreover, the
AtAD20 set was selected not only to maximally capture diversity within the species, but
also to include many parents of recombinant inbred line (RIL) populations constructed
for quantitative trait locus (QTL) mapping.® Deletions or highly polymorphic sequences
have been shown to underlie diverse phenotypes that segregate in Arabidopsis thaliana
populations [e.g., 78], and our predictions should be valuable for identifying causal alleles
found in QTL studies, or that are linked to SNPs employed in whole-genome association
mapping scans [90]. At a more basic level, our predictions will facilitate the design of
perfect match primers for genotyping and for collecting diversity data with PCR-based
methods. Further, the predictions are useful for identifying mismatched probes present
on microarrays employed for interrogating RNA expression in different accessions.

3.1.8 Application of Our Methods to Other Data and Broader Relevance

Although mPPR was tailored for predicting polymorphic regions with Arabidopsis re-
sequencing array data, it should be readily applicable to other resequencing array data
sets with some modifications. In previous experiments with human, mouse and rice [e.g.,
54, [68, [IT1], DNA hybridized to arrays was generated by pooling long-range PCR am-
plicons of selected regions. For Arabidopsis, the entire genomic DNA was subjected to
isothermal amplification [29]. Nevertheless, the framework of our learning algorithm can
be adapted to accommodate additional intensity variation resulting from concentration dif-
ferences between individual long-range PCR products. In humans, heterozygosity presents
an additional challenge, as does the lack of sample-matched training data. In contrast, for
other species hybridization was performed using inbred (homozygous) strains [53], 54} 112],
and sample-matched data sets that could potentially be used for training have been re-
ported for mouse [e.g., [121] and have been generated for rice [I11]. In rice, polymorphic
regions have recently been identified by Regina Bohnert using an extended version of
mPPR [10].

Shttp://www.inra.fr/internet/Produits/vast/RILs.htm
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3.2 Transcript Normalization of Tiling Array Data

In this section, we present a novel normalization technique for tiling array data which
aims to alleviate the effect of divergent sequence properties of oligonucleotide probes on
hybridization intensity (Fig. A). It was specifically designed to reduce the variability
among probes complementary to the same transcript. Ideally, all such (perfect match)
probes are expected to produce the same signal intensity because they all have approxi-
mately the same amount of target molecules bound. However, real tiling array data are
characterized by a high degree of signal variability, even for probes measuring the same
transcript [I44]. Assuming that the de facto deviations of individual probes from ideal
transcript intensities are largely due to sequence-dependent differences in affinity, our goal
was to learn a regression function which estimates the deviation between the observed
intensities of individual probes and the transcript intensity taking probe sequences as
input. Additionally, we modeled a dependency on the observed hybridization intensity
by employing an array of regression functions instead of a single one. Training each of
these functions on a specific quantile-range of intensities yielded separate predictors for
low, medium and highly expressed transcripts. Although conceptually simple, this quan-
tilization model offers a high degree of flexibility as it does not make any assumptions on
how probe sequence effects scale with transcript intensity, and can thus easily accommo-
date, e.g., saturation effects. For solving the regression problems, we used two different
techniques: Support Vector Regression (SVR) and Ridge Regression (RR).

Applying this so-called transcript normalization (TN) technique to Arabidopsis tiling
array data, we were able to demonstrate its effectiveness in reducing sequence bias and
its utility as a preprocessing routine for transcript mapping. Transcript normalization has
therefore become a pivotal preprocessing step for the identification of novel genes from
tiling array data. All results presented here as well as in Section are based on joint
work with Stefan R. Henz, Sascha Laubinger, Detlef Weigel and Gunnar Rétsch (see p.
for author contributions) [204]. Computational experiments were conducted on data from
a single sample (T_003, see Table [4.4)).

3.2.1 Computational Experiments

The computational experiments detailed below were performed with the aim of (i) charac-
terizing the probe sequence-bias in detail; (ii) showing that we can alleviate this sequence
effect with our transcript-normalization method to an extent comparable to the previ-
ously published Sequence Quantile Normalization (SQN) method [145] and (iii) demon-
strating that, unlike SQN and other normalization techniques evaluated in Munch et al.
[120], Royce et al. [I45], our transcript normalization improves the separation between
exon hybridization and background signal.

After preprocessing and normalizing the array data to reduce inter-chip variability (as
described in Zeller et al. [204], see Section , we partitioned the Arabidopsis thaliana
genome into ~ 300 regions while avoiding splits in annotated genes. Mapping perfect
match (PM) probes to genome locations resulted in ~ 10,000 probes per region. We
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randomly chose 40% of these regions for training, 20% for hyper-parameter tuning and
the remaining 40% as a test set for performance assessment (the test regions were further
used for segmentation experiments in Section [3.3]).

3.2.2 Alleviation of GC Bias

Hybridization intensity was found to be strongly correlated with differences in GC con-
tent of tiling probes. Extreme differences in GC content were associated with more than
4-fold changes in median intensity (Fig.|3.13)). This probe sequence effect was reduced
by all methods considered here. However, in part this effect can also be attributed to
GC-richness of coding regions (Fig. [73]). Position-specific sequence effects were
further investigated with so-called quantile plots [I45]. By analyzing the 90th intensity
percentile, which is expected to be enriched for measurements of highly expressed tran-
scripts, we focused this comparison on specific binding signals rather than on unspecific
binding effects. The strongest reduction of mono-nucleotide sequence effects was clearly
achieved with SQN, although positional sequence effects were reduced by all normalization
methods considered here (Fig. |3.14]).
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Figure 3.13: Median hybridization intensity as a function of probe GC content before and after
normalization. (A) Dependency of median hybridization intensity on GC content of oligonucleotide
probes. The histogram generated by partitioning probes according to the number of Gs and Cs in
the 25mer probe is shown as a bar plot. The frequency of exonic, intronic and intergenic probes
in each bin is color-coded (see inset). Median log-intensity per bin is shown before normalization
(black crosses). (B) Median log-intensity as a function of probe GC content after the application
of normalization methods (see inset; RR and SVR yielded virtually the same results, and therefore
only the curve for RR is shown [204]).

3.2.3 Reduction of Transcript Intensity Variability

We next assessed transcript variability, i.e., to which extent individual probe intensities y;
deviate from the constant transcript or background intensity 7;, for different normalization
methods. In principle, transcript intensities y; are unknown, but by using a robust sum-
mary statistics such as the median, we expected to obtain reasonable estimates. To assess
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transcript variability, we introduced two metrics, 77 and T5. Both relate the variability of

normalized intensities y; — f(;, y;) to the variability of raw intensities, and values smaller

than 1 indicate a reduction. We defined

_ doilyi — (s, yi) — 4l

as the normalized absolute transcript variability and

iy — f(@i, vi) — 7,)?
Zi(yi —yi)Q

T -

T2 =

as the normalized squared transcript variability. SVR minimizes the so-called e-insensitive
loss closely related to the absolute error. In contrast, Ridge regression minimizes the
squared loss. It was therefore not unexpected to observe smaller 17 values for SVR and
smaller T values for RR (see Table [3.6)). Both methods were found to effectively reduce
transcript variability to approximately half the values of raw intensities. For SQN, how-
ever, we observed both 77 and 75 greater than 1 indicating increased transcript variability.
One may argue that SQN is therefore not well-suited as a preprocessing routine for tran-
script mapping (see also Figs. and . This likely reflects that TN normalization,
in contrast to SQN, directly models and reduces the transcript variability.
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Table 3.6: Within-gene variabil-
ity after normalization compared be-
tween sequence-quantile normaliza-
SQN 1.83 3.16 tion (SQN) and transcript normaliza-

tion using either support vector re-
SVR 0.54 0.47 gression (SVR) or Ridge regression
RR 0.58 0.44 (RR). For a definition of 77 and 7%

see main text.

Method T1 T2

3.2.4 Modeling Transcript Amplification Bias Improves Normalization

In addition to probe sequence effects we found another major cause of intensity deviations
from ideal constant transcript intensities. Intensity was observed to be generally higher
near the 3’ transcript end (Fig. . The most likely explanation for this is a bias in the
T7-based linear amplification, which starts from an oligo-dT primer annealed to the poly A
tail demarcating the 3’ transcript end of the majority of plant mRNAs. The observed bias
may be explained by an amplification process that terminates with a certain probability
before the 5’ transcript end is reached.
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A correction for this bias can be simultaneously learned with sequence normalization
by providing SVR or RR with additional features capturing the distance between a given
probe and the 3’ transcript end on the level of the spliced mRNA. With appropriate
features, a piecewise-linear function can be estimated to quantify the distance effect on
deviation from the transcript intensity. However, such features can only be employed
for transcript normalization if transcript ends are known a priori. Although this may
be the case when one is interested in identifying splice forms given the transcript start
and end, this extension is of limited use for the identification of new transcripts and
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therefore not generally applicable. Nevertheless, we conducted experiments to quantify
the 3’ amplification bias relative to probe sequence effects (Fig. . When distance
features were provided for training and testing, we obtained T; = 0.44, T» = 0.33 for SVR
and 77 = 0.46, T = 0.31 for RR — a relative improvement of ~ 25% relative to transcript
normalization without distance features.

3.2.5 Distinguishing Between Exon and Background Signal

In a naive approach to identify transcriptionally active regions (i.e., expressed exons) we
used a simple threshold model on the hybridization measurements. Probes with intensities
above the threshold were classified as exonic, ones below the threshold as untranscribed or
intronic. Comparing the resulting classification of probe signals with the TAIR7 genome
annotation [I78], we computed precision and recall for a range of different threshold val-
ues. These are defined as the proportion of probes mapped to exons among all probes
with intensities greater than the threshold value and the proportion of probes with in-
tensities greater than the threshold value among all probes that are annotated as exonic,
respectively.

In the following evaluation, we compared TN to SQN and additionally included two
more normalization methods commonly applied to tiling array data. The first one makes
use of so-called mismatch (MM) probes synthesized on most Affymetrix DNA microarrays.
For each PM probe on the array, there is one MM probe that differs only at the central
nucleotide. This design is intended to allow quantification of unspecific binding, and,
theoretically, the specific binding component of the hybridization signal can be obtained
by subtracting the MM intensity from the corresponding PM intensity® (designated PM-
MM in the following). This strategy was evaluated in Royce et al. [145], and Munch et al.
[120] proposed to use it as signal transformation prior to transcript identification with
Hidden Markov Models. The second normalization strategy (denoted NM) is inspired by
Naef and Magnasco [122] and implemented by fitting a linear model to position-specific
contributions of different nucleotides to the overall PM probe signal [120), [I45]. It can thus
be seen as a simpler precursor method of our transcript normalization with three important
differences: First, NM does not consider di- and tri-nucleotide contributions. Second, it
attempts to directly relate probe sequence effects to the hybridization signal instead of
modeling the deviation from transcript intensities. Finally, it fits all data together, instead
of modeling intensity quantiles separately. Normalized intensities are eventually obtained
by subtracting the predicted signal from the observed PM intensity.

For all normalization methods compared, we first verified that the distribution of ex-
onic probe signals indeed exhibited only a heavy right tail relative to the distribution of
background signals. We therefore do not need to consider a statistical test which consid-
ers both tails of the distribution, but can instead directly apply the naive thresholding
approach outlined above because it assesses the overrepresentation of exon probes among
those with high intensities. (Fig. [3.16). Comparing intensity distributions already re-

5Since log-transformation of the PM - MM signals is impossible when the MM signal is stronger than the
PM signal, negative PM - MM differences are first set to 1.
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vealed that transcript normalization effectively reduced the variance of background probe
intensities compared to exon probe intensities (Fig. [3.16{C). However, this is clearly not
the case for SQN (Fig. [3.16/E). Observing to which extent the distribution of exon inten-
sities overlaps with that of background signals, one can appreciate that exon recognition
accuracy is limited not only for this naive method, but also for more elaborate techniques
(Fig. [3.16]).
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intron mapped to exons, introns
intergenic 4
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As a result of comparing different normalization methods with respect to their effect
on the separation between exon and background signal (Fig. A), we observed that
the two transcript normalization methods SVR and RR yielded the greatest improvement
compared to raw intensities. This was consistent across the whole range of possible trade-
offs between precision and recall. In contrast, for SQN, PM-MM and NM, exon recognition
deteriorated; most dramatically so for SQN (Fig.|3.17/A). However, when we sub-sampled
the probes prior to thresholding and evaluation such that both, the exon and the back-
ground probe set had the same GC-content (as similarly done in Royce et al. [145]), the
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performance of these three methods recovered, and the largest improvement relative to
raw intensities was observed for NM. Nevertheless even for the GC-corrected data set,
the improvements obtained with SVR and RR are still greater than for all other methods
evaluated (Fig.[3.17B). One needs to consider, however, that this artificial subsampling
strategy is of very limited use in practice, as it can not easily be applied to identify exon
probes on a genome scale [58, 204].
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Figure 3.17: Separation between exon probe intensities and intensities of probes in regions anno-
tated as untranscribed or intronic improves after normalization with SVR as well as after normal-
ization with RR but not for the other methods evaluated here (PM-MM — intensity signal after
subtraction of MM probe signal; NM — sequence normalization inspired by Naef and Magnasco
[122] as implemented in [120, [145]; SQN — sequence quantile normalization [145]; SVR — tran-
script normalization using support vector regression; RR — transcript normalization using Ridge
regression). (A) By varying the threshold value, we calculated the precision-recall curve from all
probes in the test regions. (B) Prior to thresholding and precision-recall estimation, probes were
sub-sampled to obtain the same GC-content among exonic and intronic / intergenic probes.

In a second experiment we only considered the transcribed regions of genes in the test
set with the aim of distinguishing between exon and intron probe intensities. For this,
we allowed a threshold to be chosen individually for each gene. Note that this problem
is expected to be much easier than finding a single globally optimal threshold. However,
the local thresholding approach cannot be directly applied when the transcript boundaries
are not already known. For each gene we estimated the Receiver-Operator-Characteristic
(ROC) curve separately and averaged them over all genes. We considered ROC curves in-
stead of precision-recall curves (PRCs) here, since the class sizes vary among genes making
PRCs incomparable. When comparing the area under the averaged ROC curves between
genes with different expression levels (approximated by transcript intensity quantiles), we
found that the ability to identify exons increases with increasing transcript intensities
(Fig. . Again, we observed that the application of transcript normalization resulted
in improved accuracy of exon probe recognition. Interestingly, transcript normalization
performs consistently better than random guessing (area under the ROC curve of 0.5) even
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for the most weakly expressed genes. However, several of the other normalization methods
considered here do not have this property. They probably introduce noise which severely
complicates the detection of genes especially when these are only weakly expressed.
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To our surprise, these evaluations indicate that previously proposed normalization meth-
ods are ineffective as a preprocessing step for transcript identification from Arabidopsis
tiling array data. This is particularly irritating because these methods were evaluated
on human tiling array data confirming that exon recognition improved after normaliza-
tion [120, [145]. However, Royce et al. [145] found only minimal improvements for a yeast
tiling array data set [35] for SQN and NM. Although all these data sets were generated
using Affymetrix tiling array technology and similar hybridization protocols, the investi-
gated transcriptomes are very different in many aspects including gene density, genomic
GC content, and relative differences in nucleotide composition between exons and intronic
or intergenic sequences.

In the following, we examined the hypothesis that the discrepancy between evaluations
for different organisms is largely due to differences in gene density. The smaller the
proportion of expressed exons, the closer do we expect the overall intensity distribution
to follow that of background probes. For human, where an estimated 1.5% percent of the
genome are part of coding exons’ [95], we conjecture that estimating sequence effects with
a representative training sample may essentially amount to only modeling sequence effects
for unspecific binding in the background with large error terms for the small proportion
of exon probes. Consequently, the resulting sequence correction may be inappropriate for
probes binding to expressed transcripts. Nonetheless, for a test sample containing very few
expressed probes, such a normalization might still be beneficial with respect to reducing

7a slightly lower proportion is estimated for untranslated exons [95]
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the number of false positive exon probe predictions. However, in the presence of a large
proportion of exons as, e.g., for Arabidopsis (with about one third of its genome annotated
as exonic), the proposed models are probably too simple to obtain good fits.

To test this hypothesis, we extended the NM normalization method in several steps
into the direction of our transcript normalization approach and evaluated the effect by
precision recall analysis as done before (Fig. . In the first experiment, we fitted the
NM model exclusively on intergenic and intronic probes. Indeed this resulted in improved
exon-background separation with an auPRC of 0.680 (compared to 0.627 originally ob-
tained for NM). This supports the notion that the linear model might have problems fitting
the possibly non-linear relationship between sequence effects and transcript abundance.
Second, we substituted the original target variable for NM by the deviation from the
corresponding transcript intensity, which is the regression target of our transcript normal-
ization approach. This resulted in a thresholding performance of 0.684 as measured by the
auPRC. In a third experiment, we used 20 independent NM models with the original NM
regression target, each of them specifically trained and used to make predictions for one
expression quantile. However, intensities normalized with the combined quantilized pre-
dictor exhibited extremely low thresholding accuracy of exon probe recognition (auPRC
of 0.528). Surprisingly, this is however due to the fact that the quantilized predictor is
now capable of also modeling exon intensities as NM normalization involves subtracting
predicted from observed intensities. For a perfect predictor, such a normalization would
eliminate intensity differences between exonic and background probes (assuming that we
used sufficiently many quantiles) making exon recognition impossible. Thus, quantiliza-
tion only makes sense in conjunction with the target variable used for TN, since in this
setting normalization reduces the variance about ideal transcript intensities, but preserves
intensity differences that are due to different quantities of bound target. Finally, to con-
firm this, we combined the last two extensions (quantilization and TN target variable)
and obtained an auPRC of 0.752, which is a significant improvement over raw intensities
and only slightly worse than for TN (RR) (0.762, Fig.[3.17]A). The remaining performance
difference can probably be attributed to a richer set of features as well as regularization
employed in TN.

Taken together, these results are consistent with our hypothesis that previously proposed
normalization methods may be appropriate for correction probe-sequence effects of unspe-
cific (background) binding. However, they do not model sequence effects sufficiently well
across the whole intensity range to benefit exon recognition in organisms with compact,
relatively gene-rich genomes. Although we have not addressed this directly, we conjecture
that the accuracy gain of our transcript normalization method is not an organism-specific
phenomenon. It remains to be tested, to which extent the more complex model would be
beneficial for tiling array data from human samples.
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3.3 Margin-Based Segmentation of Tiling Array Data (mSTAD)

For the de novo identification of transcribed regions from tiling array data, we developed
mSTAD (margin-based segmentation of tiling array data). It is a supervised machine
learning-based approach which is trained on regions around known genes using the dis-
criminative HM-SVM framework and is subsequently able to accurately predict transcrip-
tionally active regions genome-wide.

Conceptually, mSTAD constitutes a three-fold advancement over a previously proposed
transcript mapping method originally applied to yeast tiling array data [72]. First, mSTAD
is designed to recognize spliced transcripts and explicitly models introns. Second, a flexible
noise model is fitted during training which does not make strong assumptions about the
distribution of the hybridization signal. Third, supervised training and cross-validation
procedures for adjusting hyperparamters bypass the need to manually tune internal pa-
rameters such as the expected number of transcripts which facilitates the application of
mSTAD to larger eukaryotic genomes.

Before discussing its application to data sets of interest to biologist researchers, we
present a thorough assessment of mSTAD’s prediction accuracy compared to the naive
thresholding approaches introduced in Section as well as to more elaborate transcript
mapping techniques used in practice. The results of this section were (partially) published
in Zeller et al. [204] and generated together with Gunnar Rétsch, Timo Sachsenberg and
Sascha Laubinger (see also p. .

3.3.1 Assessment of Segmentation Accuracy Comparing Different
Normalization Techniques

For a first proof-of-concept experiment, we used triplicate array data from a single sample
(T_003, see Table and considered genomic regions around known genes. Each of these
regions (from the test set described in Section contained exactly one annotated gene,
as well as up to 1kbp of flanking intergenic sequence, truncated before the next known
transcript was encountered. We randomly chose 100 of these for training, 100 for model
selection and 500 other regions for evaluation. When comparing our method with the
two simple thresholding approaches described in the previous section, one should bear in
mind that the local thresholding method has an advantage because threshold values are
optimized individually per gene. It cannot be directly applied to de novo detection of
exon probes, since the threshold value is based on the expression levels of genes yet to
be identified, and a partition into single-gene regions is not available unless all genes are
known. In contrast to that, optimizing a global threshold can be realistically utilized for
exon probe identification.

For comparative performance assessment we applied mSTAD and the two thresholding
methods to raw as well as normalized hybridization intensities discussed in Section
mSTAD returned a segmentation of the tiling path into (“transcriptionally active”) exons,
introns and intergenic regions, whereas the thresholding methods partitioned tiling probes
into “active” (expressed) ones corresponding to exons as well as “inactive” (background)
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probes. A comparison of the accuracies for exon probe recognition between the three
methods (Table revealed that our method works considerably better than global
thresholding, and even slightly better than local thresholding. Moreover, we could re-
confirm the findings of the previous section that transcript normalization significantly
improved discrimination between transcriptionally active and inactive regions not only
when thresholding on a per-probe basis is applied, but also with a considerably more
complex segmentation algorithm.

Thresholding mSTAD
global local
Raw intensities 71.1% 79.3% 79.7%
Sequence quantile normalization 66.1% 75.3% 73.5%
Support Vector Regression 73.9% 82.0% 83.0%
Ridge Regression 73.8% 82.0% 83.8%

Table 3.7: Accuracy of transcript identification given regions with exactly one gene. Accuracy is
defined as the sum of true positive and true negative exon probes over the total number of probes
in a gene. Evaluation is based on data from inflorescence tissue (T_003, see Table [4.4)).

3.3.2 Prediction Accuracy in Comparison to Other Transcript Mapping
Methods

Next, we performed computational experiments to compare the performance of mSTAD
(trained discriminatively with the HM-SVM algorithm and thus called “mSTAD HM-
SVM?” in the following) to other methods commonly applied for the detection of transcrip-
tionally active regions (TARs).

Among previously proposed transcript mapping methods, the so-called transfrag method,
originally developed for the analysis of tiling array data from human samples [85], has be-
come a very popular tool [28, [65], [83] 108, and others]. It is based on determining expressed
probes in a local context by statistical testing. On top of that, a sliding window approach
is taken for the identification of TARs. It searches for regions with a certain number of
consecutive positive probes (minRun parameter) which are interrupted by no more than
a certain number of negative probes (maxGap parameter). In addition to those, a few
more hyperparameters are to be specified by the user. However, their influence on predic-
tion accuracy is not directly apparent and an optimal hyperparameter set is difficult to
determine a priori.

Hidden Markov Models (HMMs) have also been devised for the analysis of tiling array
data, at first with the purpose of identifying transcription factor binding sites in ChIP-chip
experiments [42, [77), [104], but later also for transcript mapping [77, 120]. They offer a
principled alternative to sliding window methods with the benefit that they require less
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manual tuning. As Hidden Markov Support Vector Machines (HM-SVMs) are a label
sequence learning technique which is closely related to HMMs, we could easily adopt an
HMM training algorithm for mSTAD while leaving the state model and decoding algorithm
unchanged (in the following abbreviated “mSTAD HMM?”). However when trained on a
representative set of annotated genes regardless of their expression state, HMM predictions
were found to be very unspecific. Precision could be improved — albeit at the cost of a
lower recall rate — when training examples were selected around genes with expression
above a certain level.

To minimize the effect of unreliable probe annotation on the assessment of prediction
accuracy, we evaluated all methods on a set of 1000 genes annotated in TAIR7 [178], for
which the complete structure was confirmed by full-length cDNA sequences. All methods
were trained (if necessary) on triplicate tiling array data from root tissue (D_001, see
Table on examples sampled from regions disjoint from the test set.

Prediction accuracy was compared by means of precision-recall analysis on the level
of individual probes, exons, and introns; furthermore we assessed how accurately exon
boundaries were predicted with respect to the resolution of the tiling array (Fig. [3.19
also for definitions of precision and recall). To facilitate a meaningful comparison, various
prediction sets with different trade-offs between precision and recall were generated for
each method. The transfrag method was evaluated for 900 different hyperparameter com-
binations corresponding to a wide range of precision-recall values. For mSTAD HMM, a
number of different training sets were prepared containing genes with increasing expres-
sion level resulting in increasing precision of the corresponding predictions. For mSTAD
HM-SVM we manipulated transition scores after training to adjust the trade-off between
precision and recall (as indicated in Fig. and detailed in Section .

As a result of the method comparison, we found that all other methods evaluated are
less accurate than mSTAD trained with the HM-SVM algorithm in terms of probe-level
accuracy (Fig. A). Only when restricted to highly expressed genes does the HMM
training algorithm achieve precision and recall comparable to the HM-SVM method. The
transfrag method is generally less accurate than mSTAD. When considering correctly pre-
dicted exons, we found that mSTAD HMM was more accurate for some training sets with
low gene expression threshold, but in the high-precision regime, the HM-SVM training
yielded slightly higher accuracy (Fig. [3.19/B). High exon recall of the HMM predictions
was, however, largely the result of comparably low recall for introns. In cases of introns
missed by mSTAD HMM, a large exon prediction typically spanned several annotated
exons and the intervening introns. This behavior positively influences exon accuracy, but
negatively impacts intron and per-probe accuracy (which was found to be up to ten per-
centage points lower than for comparable HM-SVM instances in terms of the average of
precision and recall). Conversely, mSTAD HM-SVM was superior — particularly more
sensitive — when compared to mSTAD HMM on the intron level (Fig. [3.19)C). Further-
more, exon recognition accuracy is traded off more flexibly against intron accuracy by
mSTAD HM-SVM compared to mSTAD HMM (Fig. . When assessing how accurately
exon boundaries could be predicted (with respect to the tiling probe resolution), we found
that mSTAD HM-SVM was roughly as accurate as mSTAD HMM: the average of precision
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Figure 3.19: Precision-recall curves showing mSTAD’s performance in comparison to other meth-
ods. The HM-SVM approach is compared to an equivalent HMM trained generatively and to the
transfrag method (implemented in the Affymetrix TAS package). To trade off precision and recall
(which is the same as sensitivity), transition-scores of the HM-SVM approach were manipulated
after training, different gene sets were used to retrain the HMM, and for the transfrag method
hyperparameters were varied in a grid search (see inset and main text for details). (A) Probe-
level evaluation. Recall is defined as the proportion of exonic probes contained in predicted exons
relative to all annotated exon probes. Precision indicates how many predicted exon probes are
annotated as such. (B) Evaluation of predicted exons. Here, recall is defined as the proportion
of annotated exons for which all included probes are predicted as such relative to all annotated
exons. Precision is equal to the proportion of predicted exons for which all probes also belong to
annotated exons. (C) Evaluation of intron predictions. Precision and recall are defined as for exon
predictions but with respect to introns and intronic probes. Because it only discriminates between
exonic and intergenic probes, the transfrag method could not be evaluated in this category. (D)
Evaluation of exon-boundary predictions. Here, only those exon predictions that include all an-
notated exon probes but none of the surrounding probes annotated as intronic or intergenic are
treated as correct predictions.

and recall was 34% and 32% for the best discriminative and generative model, respectively
— roughly twice as accurate as the transfrag method (Fig. [3.19/D).

Owing to its convincing accuracy justifying the computationally more demanding HM-
SVM training, we decided to use mSTAD HM-SVM for annotating transcriptional activity
in the Arabidopsis thaliana genome.
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3.3.3 Genome-Wide Analysis of the Arabidopsis Transcriptome in Various
Tissues and Developmental Stages

Together with Sascha Laubinger, Stefan R. Henz, Timo Sachsenberg, Christian K. Wid-
mer, Naira Naouar, Marnik Vuylsteke, Bernhard Scholkopf, Gunnar Rétsch and Detlef
Weigel we analyzed tiling array data from diverse tissues and developmental stages of
Arabidopsis thaliana (D series, see Table with the goal to discover new transcripts
not present in the current genome annotation (see p. for author contributions) [97].
For genome-wide predictions of TARs, we applied mSTAD with a statemodel that approx-
imated continuous gene expression values by 10 discrete levels (Fig. |3.20)).
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New TARs in the Arabidopsis Genome

When comparing a genome-wide sample of all TARs predicted with mSTAD to annotated
genes, we found that the predictions are generally accurate for the more highly expressed
half of genes (Fig. . Accuracy was also found to be inversely correlated with repeat
content which is higher in and around centromeres (Fig. [3.22). We therefore restricted
further analyses to a selected set of high-confidence TARs (Fig. A). These contained a
minimum number of four consecutive probes predicted to be exonic, had predicted discrete
expression level between 6 and 10, and at most 25% repetitive probes. When evaluated on
the same set of 1,000 full-length cDNA-confirmed genes already used to compare different
transcript mapping methods (Fig. , the recall rate of high-confidence exons was about
half compared to all exons, as about one half of the exon predictions passed the above
filters. Precision improved from 75.3% to 78.9% on the exon level and from 90.8% to
98.9% on the exon overlap level.

Genome-wide, high-confidence TARs make up 37 to 50% of the total length of all pre-
dictions depending on the tissue analyzed. More than 97% of these high-confidence TARs
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overlap at least 25bp with annotated exons (Fig. |3.23)). Between 26 and 36% of the re-
mainder overlap with cDNAs and ESTs but not with annotated transcripts. In summary,
there are between 1,107 and 1,947 predicted high-confidence TARs per sample, for a total
length of 242 to 406 kb, that are neither included in the current annotation nor covered
by sequenced cDNA or EST clones. Non-redundantly across all analyzed tissues, unanno-
tated high-confidence TARs cover 2,127 kb, and about 46 kb of the Arabidopsis thaliana
genome are detectable with high confidence as transcriptionally active in all analyzed tis-
sues despite their intergenic annotation. The observed difference between the union and
the intersection of unannotated high-confidence TARs predicted for different samples likely
reflects large changes in gene expression between different plant tissues and developmental

stages.
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Figure 3.21: Segmentation accuracy for root tissue (D_001, see Table across ten discrete
expression levels (see inset). On the probe-level, sensitivity (recall) is defined as the proportion
of exonic probes contained in predicted exons relative to all annotated exon probes. Precision
indicates how many predicted exonic probes are annotated as such. On the exon level, we define
sensitivity (recall) as the proportion of annotated exons for which all contained probes are also
predicted to be exonic. Here, precision is defined as the proportion of predicted exons which do
not contain any probe annotated as intronic or intergenic.

Among the unannotated high-confidence TARs, 14 to 31% are specifically detected in
a single sample, with inflorescences and senescing leaves showing the highest proportion
(Fig. B). Whether these predictions indeed correspond to expressed transcripts was
tested for some of them by reverse transcriptase followed by PCR (RT-PCR). From TARs
which do not overlap with known cDNAs or ESTs, a subset of 47 segments was selected
so that different lengths as well as different predicted expression levels were covered. We
could confirm by RT-PCR more than three quarters (37) of these 47 predicted segments
as transcribed (see Fig. [3.23]C for several examples).

The “Dark Matter” of the Arabidopsis Genome

The fact that there is not only a good correspondence between TARs and annotated
genes, but that we also achieved high success rates for RT-PCR validation of new TARs,
corroborates mSTAD’s high prediction accuracy. Interestingly, despite a rather complete
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gruence  between
genes annotated in
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(TARs) predicted
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as the proportion
of annotated ex-
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genome annotation for Arabidopsis thaliana that is based on extensive cDNA cloning and

previous use of tiling arrays [e.g.,[198], we could detect more than one thousand additional

TARs per sample analyzed.

Initial tiling array-based transcriptome studies of the human genome reported evidence

of transcription from much more genomic sequence than was annotated as protein coding

loci [e.g., 86]. This discrepancy between annotated genes and tiling array-based evidence

for transcription, estimated to be as large as one order of magnitude [86], prompted

people to speculate about the “dark matter” of the (human) genome [79]. To bridge
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Figure 3.23: (A) Proportion of all transcriptionally active regions (TARs), high-confidence TARs
(see main text for definition), and unannotated TARs (high-confidence predictions that do not over-
lap with any annotated exon by at least 25 base pairs). Percentages are based on combined length
of each class. (B) Proportion of sample-specific TARs among all unannotated high-confidence
TARs. (C) Examples of RT-PCR validation of predicted new transcripts.

this gap, research has more recently focused on characterizing genes that produce RNA
capable of performing cellular functions rather than being translated into protein [65]
87, 147, 208, among many others]. Despite our finding of unannotated transcripts, the
proportion of annotated transcripts among TARs predicted from tiling arrays appears to
be much higher in Arabidopsis permitting the conclusion that the Arabidopsis annotation
is relatively complete. Nevertheless, tiling array analysis of Arabidopsis mutants impaired
in DNA methylation or RNA quality control has revealed over two hundred non-coding
transcripts that are normally transcriptionally silenced, indicating that the Arabidopsis
thaliana genome has at least the potential to generate a large number of transcripts from

intergenic regions [26], 03] 208].
The Non-Polyadenylated Arabidopsis Transcriptome

Previous analyses with whole-genome tiling arrays have focused on the polyadenylated
portion of the Arabidopsis transcriptome [26], 175, 198, 208]. However, studies in sev-
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eral other organisms have suggested that there is a large fraction of non-polyadenylated
RNAs [e.g., 28, [65]. In order to revisit this question in Arabidopsis, we isolated total
RNA from two different tissues, whole seedlings and inflorescences, and used two different
experimental protocols to generate tiling array hybridization data. RNA was prepared for
reverse transcription with either an oligo-dT primer, which targets only polyadenylated
RNA (polyA(+)), or random primers, which target both RNAs with and without a polyA
tail (polyA(+/-)). We then applied the mSTAD algorithm to these data to detect tran-
scription from unannotated regions. When we subtracted high-confidence TARs found in
at least one polyA(+) sample from the TARs found in both polyA(+/-) samples, TARs
totaling less than 100kb were identified as potential polyA(-) transcripts (Fig. A).
These regions represent less than 0.1% of the entire genome, which appears to be very
low compared to results reported for Caenorhabditis elegans tiling array studies using the
transfrag method [65]. To rule out the possibility that this discrepancy is a computational
artifact, we applied the transfrag method also to our tiling array data [85]. This method
led to similar estimates of non-repetitive polyA(4/-) specific transcribed fragments (trans-
frags), with a combined length of about 250kb, or 0.2% of the genome (Fig. |3.24|B).

A Py B 2644 Figure 3.24: Non-

TARs transfrags polyadenylated tran-
400 1000 ] scripts.  Proportion of
I unannotated transcripts
found in common or
exclusively in either
tra1n’s6f?:gs polyA(+) samples and
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respectively, as de-
termined  with  two
100 250 I independent  methods.
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These results imply that non-polyadenylated transcripts are much less abundant in
Arabidopsis compared to human and Caenorhabditis elegans. For these organisms, tiling
array-based studies indicated that about half of all transcripts are not polyadenylated [28],
65]. It is already known that specific classes of plant transcripts are generated in a different
manner than in animals. For example, some human microRNA precursors are transcribed
by RNA polymerase III and hence are not polyadenylated, while Arabidopsis miRNA
precursors feature characteristics of RNA polymerase II-generated transcripts [13}, [196].
Another reason might be differences in 3’ end processing. For example, histone mRNAs
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in land plants are polyadenylated, which is in contrast to histone mRNAs in animals that
are subject to a unique form of 3’ end processing resulting in a hairpin protecting the 3’
end from RNA degrading enzymes [22], 23] 24, [41, 193].

TARs Predicted by mSTAD are Part of the At-TAX Community Resource

We made our results easily accessible to the research community with the introduction
of the so-called At-TAX (Arabidopsis thaliana Tiling Array Expression Atlas) online
resource.® It includes a customized Generic Genome Browser [I73] that displays TARs
predicted by mSTAD across the genome as well as all raw expression values for each probe
in all analyzed samples (see Fig. for an example).

Protein-coding genes
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Figure 3.25: A customized Generic Genome Browser is part of the At-TAX online resource. The
screenshot displays predicted TARs (middle) and raw hybridization signals (bottom) along the
chromosome.

3.3.4 Identification of New Stress-Induced Arabidopsis Transcripts

After we had analyzed the Arabidopsis transcriptome of different plant organs and de-
velopmental stages (D series, see Table to identify transcriptionally active regions
(TARs) genome-wide, we investigated the plant transcriptome under various abiotic stress
conditions (S series, see Table . To this end, we extended our previously developed
methods by an additional statistical test for the detection of stress-induced TARs. The
following results are based on joint work with Stefan R. Henz, Christian K. Widmer, Timo
Sachsenberg, Gunnar Rétsch, Detlef Weigel and Sascha Laubinger (see p. for author
contributions) [205].

Identification of Stress-Responsive, Unannotated TARs

In a first step we applied mSTAD to discover new TARs outside of annotated exons as
described above. New high-confidence TARs (see Section for definition) were tested

8http://www.weigelworld.org/resources/microarray/at-tax
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same time point (upper
and lower triangular
matrix) or by the same
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for significantly higher expression in stress-treated samples relative to mock controls using
the Mann-Whitney-U test. Per individual stress treatment, we found 82 to 338 new high-
confidence TARs for which hybridization signal was significantly higher under stress at the
5% level. These stress-induced TARs covered 21kb to 104 kb of the genome (Fig. [3.26/A).
The accuracy of this approach was further examined by reverse transcription PCR (RT-

PCR) validation experiments. Indeed, in the tested cases TARs predicted to be strongly

stress-responsive are more abundant in stress-samples than in the corresponding mock

control (see Fig. |3.26|B for several examples).
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The size of individual stress-induced TARs ranged from approximately 135bp (4 tiling
probes) to almost 2kb (53 tiling probes). Most of them were found after 12 hour salt
stress treatment, while the fewest were identified after one hour osmotic stress or ABA
treatment (Fig. [3.26|/A). We also asked how specific the stress response of new TARs is.
In a pairwise comparison, we found the greatest overlap between new TARs after salt
stress, osmotic stress and ABA treatment (Fig. [3.26|C), resembling the pattern obtained
for annotated genes in a similar analysis [205]. However, the overall percentage of overlap
was lower for stress-induced TARs than for annotated genes.

TARs Supported by Massively Parallel Signature Sequencing (MPSS)

As an independent experimental validation of tiling array-based predictions of transcrip-
tional activity, data from massively parallel signature sequencing (MPSS) is ideally suited.
Even before it has become feasible to assay transcriptional activity with short read se-
quencing technology [106, 110, 118, among others], collecting small sequence tags of
approximately 15-20nt from the ends of transcripts has been an established sequencing-
based alternative to microarray technology for quantitative measurements of gene expres-
sion [17), 114] 115 [187].

To assess the fraction of TARs predicted by mSTAD that are also supported by MPSS,
we compared TARs to 20-bp signatures that were collected from five Arabidopsis tissues
and several mutants as well as one plant hormone treatment (salicylic acid applied to leave
tissue). We only considered signatures that could be reliably mapped to the genome and
were deemed significant in a previous analysis [114]. On average per sample, ~ 42% of high-
confidence TARs were found to have a reliable and significant MPSS tag mapped within
their boundaries when pooling MPSS tags that were originally mapped to either strand of
the genome (Table . The median support for unannotated, stress-induced TARs was
19% and therefore significantly lower than for all high-confidence TARs. Nevertheless,
the MPSS support for stress-induced TARs is comparable to that observed for annotated
exons suggesting only a moderate increase in false discovery rate (Table .

Genomic Location and Conservation of New Transcripts

To characterize new stress-responsive TARs in more detail, we determined conservation
of the genomic regions that give rise to these TARs in three other plant species for which
complete or nearly-complete genome sequences are available, Poplar trichocarpa, Oryza
sativa and Sorghum bicolor [5, 59, 185, 201]. Compared to annotated exons, new stress-
specific TARs are in general much less conserved (Fig. A). This finding could reflect
that these new TARs are evolutionarily younger or less stable. Alternatively, if these TARs
are mostly non-coding, primary sequence conservation might be less important. New
stress-specific TARs in the genome might either constitute unannotated exons of known
genes or they might be independent genes. A simple indicator for these alternatives can
be the distance of new TARs to annotated genes. Per sample, we identified between 21
and 69 unannotated stress-specific TARs separated by more than 500 bp from the nearest
annotated genes (Fig. B, examples shown in Fig. C; other samples see , while
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Sample high-confidence TARs stress-induced TARs
Number of TARs MPSS support  Number of TARs MPSS support

S_001 58,740 42.4%

S_002 61,536 40.9%

S_003 57,840 42.7%

S_004 61,398 40.2% 132 18.9%
S_005 56,180 42.2% 373 14.2%
S_006 58,471 41.3% 82 22.0%
S_007 53,368 42.9% 132 24.2%
S_008 57,431 41.1% 107 7.5%
S-009 52,568 42.7% 143 21.7%
S_010 60,209 41.8% 159 23.9%
S_011 56,054 43.1% 213 16.9%
S_012 56,729 41.6% 338 16.3%
S_013 54,790 42.4% 293 19.1%
annotated exons 158,070 25.2% 18,227 29.3%

Table 3.8: TARs predicted by mSTAD per sample and support by MPSS tags. For comparison,
MPSS support for exons annotated in TAIR7 [I78] is also shown; the last two entries in this row
correspond to exons in annotated genes detected to be upregulated on tiling arrays for any of the
analyzed stresses [205]. All numbers are based on reliable and significant MPSS tags from Meyers
et al. [114].

others are in close proximity to or even abut annotated genes (examples in Fig. D).
Because our method did not identify the strand from which transcripts arise, we examined
some of these cases by reverse transcription followed by PCR (RT-PCR). In one case,
there is apparently an additional exon that is specifically induced under salt stress, but
not others. Alternatively, this TAR might correspond to an independent stress-specific
transcript with a large overlap to the annotated gene (Fig. D, left). In another case, a
minor transcript form is present under all conditions, but becomes more abundant under a
specific stress (Fig. D, middle). In a third case, it appears that a constitutive exon of
a stress-responsive gene has simply been missed in previous annotation efforts (Fig. D,
right).

Incorporation of Stress Data into the At-TAX Online Resource

For the whole stress data set described here, we integrated single probe intensities as well
as predicted TARs along the chromosomes into our Arabidopsis thaliana Tiling Array
Express (At-TAX) visualization tools.” This enables the community to further investigate
the roles of new, uncharacterized transcripts. Raw data were deposited at the NCBI Gene

%http://www.weigelworld.org/resources/microarray/at-tax
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Figure 3.27: Stress-
responsive new TARs often
overlap ~ with  annotated
genes.  (A) Stress-induced
new TARs after one hour salt
stress were analyzed for their
conservation among other
plant species. The degree
of conservation was assessed
based on sequence align-
ments between Arabidopsis
and rice, poplar and sorghum
(for other stresses see [4.8)).
(B) New TARs identified
in salt-stressed plants after
one hour were analyzed for
their distance to the nearest
annotated gene. A distance
of 1 indicates overlap of the
new TAR with an annotated
gene. (C) Several examples
of new TARs (horizontal
red bars) identified under
different stress conditions are
located in intergenic regions
with a distance of more than
500bp to annotated genes.
Vertical bars show the signal
of individual tiling array
features. (D) Examples of
stress-induced mnew TARs
that are located close to
annotated genes. RT-PCR
analysis with one primer
located in the annotated
gene and one in the new
TAR (orange arrows) indi-
cates that these TARs likely
represent alternative or new
exons of annotated genes
rather than independent
overlapping transcription
units.
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3.4 Additional Sequence Features for Transcript Mapping
(mSTADsp)

In this section we will introduce an extension of mSTAD, dubbed mSTADsp, which incor-
porates additional DNA sequence features for the improved detection of transcriptionally
active regions (TARs). It contains unpublished results obtained with help from Jonas
Behr and Gunnar Rétsch.

3.4.1 Accurate Splice Site Recognition from Genomic Sequences

The sequence context around splice sites is probably the most important feature for the
ab initio prediction of gene structures from genome sequences [140, [155]. Acceptor and
donor splice sites delineate the boundaries of internal exons and can be predicted with
very high accuracy from the genome sequence alone. Using support vector machines
with sophisticated kernels engineered for the classification of genomic sequences [167],
Sonnenburg et al. [I70] could achieve an accuracy of 99.4% and 99.7% for Arabidopsis
acceptor and donor splice sites, respectively, as measured by the area under the ROC curve
(auROC). Corresponding values for the area under the precision-recall curve (auPRC) were
92.2% and 92.9%, respectively. We therefore incorporated these highly accurate splice site
predictions into our segmentation method for tiling array hybridization data with the aim
to improve the recognition of TARs in the Arabidopsis thaliana genome. Moreover, in
contrast to many other types of sequence information useful for gene prediction, splice
sites do not only occur in protein-coding genes. Hence, exploiting these sequence features
in mSTADsp was not expected to abolish its ability to recognize non-coding transcripts.

For the genome-wide splice site predictions used for the following experiments and kindly
provided by Jonas Behr, accuracy was very similar to that reported in Sonnenburg et al.
[170] (auROC 99.3% and 99.6% for acceptor and donor splice sites, respectively; auPRC
90.6% and 92.0%, respectively). In addition, Jonas Behr generated a second set of splice
site predictions, which were based on a locally restricted sequence context around intron
boundaries. While originally around each splice site sequences spanning 81 nt and 60 nt
of the adjacent exon and intron, respectively, had been used, the restricted splice site
predictors examined only 40nt of intronic sequence and 10nt of exonic sequence. These
locally restricted splice site predictions were generated with the goal of minimizing biased
detection of coding transcripts. However, as a consequence of the smaller sequence win-
dows, accuracy also deteriorated (auROC 98.5% and 99.3%; auPRC 79.4% and 83.4% for
acceptor and donor splice sites, respectively).

Before we incorporated splice site predictions as features into our segmentation method,
we assessed their predictive power in the context of segmentation with a strand-insensitive
model and in comparison to the hybridization signal. For use in strand-insensitive seg-
mentation, the original splice site predictions had to be processed in two ways. First, we
mapped them into the probe grid, i.e., obtained only a single value for all splice site pre-
dictions between two adjacent tiling probe centers. Essentially, this indicates how likely
a splice site is encountered between two consecutive tiling probes. Second, splice site
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predictions from both strands of the genome had to be reconciled with mSTAD’s strand-
insensitive segmentation model. We hence combined Watson-strand donor signals and
Crick-Strand acceptors to obtain a single (strand-insensitive) score for intron start points;
similarly a score for intron end points from Watson-strand acceptors and Crick-strand
donors (see also Section for details). The predictive power was evaluated for each
feature individually by means of ROC and precision-recall (PRC) analysis. More specifi-
cally, we assessed how informative the hybridization feature was for distinguishing exonic
probes from background. For the splice site features, we assessed how well exon-intron
and intron-exon transitions, respectively, could be distinguished from transitions between
consecutive exon probes, consecutive intron probes and adjacent intergenic probes without
annotated splice sites in between (Table . Lower PRC values for splice site features re-
flect a more unbalanced prediction problem than, e.g., exon probe recognition. Differences
between these accuracy values and those originally obtained for the splice site classifier
are likely due to discarding some information about strand and position when mapping
splice site predictions into the tiling probe grid.

Feature auROC auPRC
Hybridization signal 0.82 0.80
Exon-intron signal
wb0 0.94 0.46
wldl 0.97 0.63

Intron-exon signal
wb0 0.93 0.45
w141l 0.97 0.63

Table 3.9: Predictive power of sequence and hybridization signals. Splice site features were
derived from SVM predictions made with small (w50) and large (w141) sequence windows (see
text). auROC denotes the area under the ROC curve, auPRC the area under the precision-recall
curve.

3.4.2 Extending the Segmentation Model to Exploit Splice Site Features

As splice sites demarcate intron boundaries, learning from splice site features should be
associated with transitions in mSTAD’s original state model (Fig. . To devise a new
sequence- and hybridization-based segmentation method, dubbed mSTADsp, we therefore
extended the state model by introducing additional splice site states between hybridization
states (see Fig. for a simplified and Fig. for a more comprehensive illustration).

We derived features for mSTADsp in analogy to the extension of the state model dis-
cussed above (see Fig. for an illustration and Section for more details). While
hybridization states only exploited hybridization signals as a feature for learning, in splice
site states this feature was ignored and instead learning was based on splice site prediction
scores.
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Figure 3.28: Simplified state model employed in mSTADsp. Shown is a submodel with exon and
intron states for only one of () = 10 discrete expression levels. States corresponding to hybridization
signals are depicted by circles (S, E, 1) and splice site prediction states by rectangles (don, acc,
nossp). It captures the idea that strong splice donor signals are expected between exons and
introns of transcripts originating from the Watson strand, likewise strong acceptor signals between
intron and exon probes. Ideally, there are no strong splice site signals at the remaining transitions
between hybridization states (see also Fig. for a more comprehensive state model).
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Figure 3.29: Hybridization and sequence-based features utilized by mSTADsp (for simplicity con-
sidering only the Watson genome strand). (A) Schematic of a spliced mRNA transcript hybridizing
to the tiling array, exons drawn as green bars and introns as black lines. (B) Hybridization in-
tensity for the probes in the corresponding tiling path, bright green indicating strong signal, dark
green intermediate and grey low signal intensity. (C) Splice donor signals predicted from the
genome sequence. Blue bars correspond to true donor sites, red bars to other candidate sites with
the same consensus dinucleotide. Prediction score is indicated by bar height. (D) Splice accep-
tor predictions; colors as for splice donor predictions. (E) Schematic view of mSTADsp’s feature
matrix combining hybridization and splice site signals. For the “Don” and “Acc” features, orange
corresponds to high values, brown to intermediate ones and black to low ones. Gray squares indi-
cate that hybridization features were not evaluated in splice site states, whereas splice site features
were ignored in hybridization states.
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When extending the original model, we had to make the choice whether to keep a strand-
insensitive model (motivated from the strand-insensitive nature of our hybridization data),
or whether to devise a strand-consistent model. The latter option can be motivated by the
fact that splice site predictions are strand-specific. It has the advantage of ensuring that
a predicted transcript is consistent in the sense that all its donor and acceptor sites are
located on the same genomic strand. However, the number of states in such a model almost
doubles compared to the strand-insensitive version. We therefore restricted ourselves to
the simpler model, as the number of states proportionally increases computational costs for
training and prediction. Nevertheless, additional computational experiments comparing

both models would be necessary to exactly quantify the potential accuracy gain associated
with the more complex strand-consistent model.

3.4.3 Sequence-Based Splice Site Predictions Improve Exon and Intron
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Figure 3.30: Performance improvement of mSTADsp over mSTAD illustrated by precision-recall
curves. For mSTADsp, the HM-SVM approach is compared to an equivalent HMM trained gen-
eratively. Different trade-offs between precision and recall were obtained similarly as for mSTAD
by manipulating the trained segmentation model (see Fig. the performance obtained directly
after training is indicated by an additional cross). (A) Probe-level evaluation. (B) Exon-level eval-
uation (C) Intron-level evaluation (D) Evaluation of exon-boundary predictions. For definition of
precision and recall on the respective evaluation levels see Fig.
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For assessing the accuracy of TAR predictions made by mSTADsp, we conducted com-
putational experiments very similar to the ones described in Section We trained
mSTADsp discriminatively with the HM-SVM algorithm as well as generatively with HMM
training and compared the resulting predictions to those made with mSTAD without splice
site features (Fig. . Incorporating splice site features generated from large sequence
windows (w141) resulted in significantly more accurate predictions on probe level, exon
level, intron level and exon boundary level. The most considerable improvement was ob-
served for intron recognition, which is not surprising, as all introns are flanked by splice
sites, whereas the same is only true for internal, but not terminal exons. Also the correct-
ness of exon boundaries (with respect to tiling probe resolution) increased substantially,
now reaching an average of precision and recall of 57% on the test set compared to 34%
observed for mSTAD without splice site features — a relative improvement of 67%. We
furthermore observed that mSTADsp HM-SVM made consistently better predictions than
mSTADsp HMM across all evaluation levels.
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Figure 3.31: Dependency of mSTADsp’s accuracy on the size of the local sequence context ex-

ploited for splice site prediction. Precision-recall curves show the performance of mSTADsp with
splice site features based on a sequences of length 50 nt relative to another mSTAD instance which
utilized predictions on 141 nt sequences (Different trade-offs between precision and recall were ob-
tained as before and an additional cross indicates the original performance). (A) Probe-level eval-
uation. (B) Exon-level evaluation (C) Intron-level evaluation (D) Evaluation of exon-boundary
predictions. For definition of precision and recall on the respective evaluation levels see Fig. [3.19
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When splice site features were computed from a smaller local sequence context (mSTADsp
wb0), the resulting TAR predictions were considerably less accurate than those based on
splice site prediction with large sequence windows (mSTADsp w141), but nevertheless of
substantially higher accuracy than TARs predicted with mSTAD (Fig. [3.31)).

A comparative performance assessment of mSTADsp w50, mSTADsp w141 and mSTAD
with respect to gene expression levels further supports a clear gain in accuracy of intron and
exon (boundary) predictions. Moreover, it revealed that segmentation accuracy improves
more strongly for lower gene expression levels, but still helps for the most highly expressed
genes (Fig. A,B).

Noting that the test set of regions around full-length cDNA-confirmed genes exhibited
a biased expression distribution (Fig.|3.32|C), we re-calculated precision and recall aiming
to correct for this bias. Precision and recall were calculated separately for each expres-
sion level and subsequently averaged across levels. The resulting values are expected to
closely reflect prediction accuracy on a genome-wide scale. We observed improvements
in recall rates of up to 54%, 66%, and 45% on exon, exon boundary and intron level,
respectively, relative to those for TARS predicted by mSTAD without sequence features.
The corresponding precision estimates increased by 5%, 109%, and 73%, respectively
(Fig. [3.32/A,B). That the increase in precision on exon level appears very small is a con-
sequence of a rather unstable estimate of mSTAD’s precision for genes from the lowest
expression level, for which its sensitivity is almost 0% (Fig. [3.32]A,B).

3.4.4 TARs Evaluated at Single-Nucleotide Resolution

predicted intron correct > 1 splice site correct

mSTADsp w0 60.0% 80.6%
mSTADsp w141l 68.7% 81.7%

Table 3.10: Intron accuracy of mSTADsp at single-nucleotide resolution. We evaluated 3,778 and
4,336 introns of TARs predicted by mSTADsp w141 and mSTADsp w50, respectively, in genomic
regions around 1000 full-length ¢cDNA-confirmed genes (same test set as used before). The first
column indicates how many of the predicted introns were annotated with identical start and end
point; the second column contains the number of predicted introns for which at least one splice
site was also present in an annotated gene.

The fact that splice site predictions have single-nucleotide precision allowed us to resolve
TAR boundaries beyond the resolution of the tiling array. Intron boundaries in predicted
TARs were mapped back to the position of the splice site between the two adjacent tiling
probes for which the highest score was obtained. For the boundaries of terminal exons,
we chose the midpoint of the two adjacent tiling probe positions, as splice site information
cannot be used to map the ends of TARs. TAR ends are hence not expected to be accurate
at the nucleotide level. Intron boundaries, in contrast, could be evaluated at this level and
were found to be correct in the majority of predicted cases (Table . This evaluation
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Figure 3.32: Performance of mSTADsp relative to that of mSTAD by gene expression level.
Sensitivity (same as recall) (A) and precision (B) were evaluated for mSTADsp using splice site
features computed over small (w50) and large (w141) sequence windows (left and right bars of the
same color, respectively). Values for mSTAD without splice site features are indicated by grey bars
in front. Average performance is indicated below (mSTADsp w50 / mSTADsp w141l [mSTAD],
see main text for details). These values were obtained as averages per expression level to correct
for the expression bias of the test set. For definitions of precision and recall (i.e., sensitivity) on
probe, exon, exon boundary and intron level see Fig. (C) Expression bias of full-length
cDNA-confirmed genes used for evaluation relative to all annotated genes.

also shows that mSTADsp’s intron accuracy strongly depends on the accuracy of the
underlying splice site predictions.

To my knowledge, only one other method has been published which combines hybridiza-
tion and sequence features to predict transcriptionally active regions. ARTADE by Toyoda
and Shinozaki [I83] uses a Markov chain model to resolve exon-intron structures extend-
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ing from spots of strong hybridization signals in both, 3’ and 5 direction. It models the
tiling probe signals together with nucleotide content at single-nucleotide resolution in a
small window (10nt) around splice sites. In contrast to mSTADsp it requires strand-
specific hybridization data, which complicates a direct comparison to mSTADsp in terms
of prediction accuracy.

When ARTADE was evaluated on a single strand of the genome in regions around ~ 600
full-length ¢cDNAs, it was reported to predict 54.6% of all introns correctly and for 82.2%
of the predicted introns, at least one splice site was confirmed by ¢cDNAs [I83]. Although
these values are not directly comparable to those obtained with mSTADsp (Table ,
the fact that a very similar evaluation strategy was used suggests that the accuracy of our
method is probably not worse than that of ARTADE. In this context, it is further worth
mentioning that strand-specific hybridization data exploited by ARTADE is slightly more
informative than the hybridization data used in this work. Additionally, evaluation on
a single strand, as done in Toyoda and Shinozaki [I83], mitigates potential false-positive
errors due to so-called shadow effects caused by transcripts originating from the opposite
strand. (Many gene finders account for this effect by employing a shadow model [e.g.,
63, 172]). Furthermore, ARTADE’s TAR predictions appear to be optimized towards high
specificity rather than high sensitivity: genes for which significant expression could not
be detected in tiling array data were excluded from ARTADE’s test set, and on a whole-
genome scale, TARs overlapping by at least 1nt with known genes, were only predicted
for a minority of ~ 27,000 annotated genes [I83]. In contrast to that, mSTADsp w141 and
mSTADsp w50 predicted TARs that overlap with 90.5% and 95.0% of full-length cDNA-
confirmed test genes respectively, and these genes were not pre-filtered by expression
support. On a whole-genome scale, ~81% and ~71% of the 32,805 genes annotated in
TAIRS [I78] overlapped with TARs predicted by mSTADsp w141l and mSTADsp w50,
respectively. Considering all these arguments, we expect that in this indirect performance
comparison ARTADE’s performance appears better than it would in a direct comparison
on the same test data. Finally, this preliminary result prompts us to speculate that the
very high accuracy of the splice site predictions utilized by our method probably has a
stronger effect on accuracy than mSTADsp’s potential disadvantage of a strand-unspecific
model.
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3.5 Discussion of Our Normalization and Segmentation Methods

While the previous results sections highlighted the advantages of our newly developed
methods, we will discuss some of their limitations in the following and point out possibil-
ities for future extensions.

3.5.1 Limitations and Extensibility of the Proposed Methods

With our newly developed method for the detection of polymorphic regions from
resequencing array data, mPPR (see Section , we revealed a large additional fraction
of polymorphisms unidentifiable by existing SNP calling techniques (see Section [3.1.2).
This is not primarily due to relaxing the stringency of these predictions compared to SNP
calling. The resulting PR predictions, however, are less informative than SNP calls since
they can essentially contain any type of sequence variant, but we cannot exactly specify
which. Furthermore, they only approximately indicate the location of the underlying poly-
morphisms. Although PR localization is rather precise (Fig. , it nevertheless remains
challenging to assign alleles across accessions. The main reason for this is that prediction
boundaries can vary slightly across accessions even if the underlying polymorphisms are the
same. Together, these properties severely limit the possibilities for subsequent analyses.
For instance, a small PR in the coding region of a gene could either reflect a synonymous
SNP without effect on the encoded protein, a nonsense mutation resulting in a truncated
protein, or a small deletion causing a shift in the reading frame, etc. The physiological
outcome and evolutionary consequence of these sequence variants is extremely different,
highlighting the limited use of PR data for further biological analyses.

Even though huge resequencing array data sets exist for a few other organisms, array-
based resequencing is already much more expensive than next-generation sequencing (NGS)
technologies and the array data has several disadvantages compared to sequence data. This
limits the scope of application of mPPR and as NGS-based resequencing projects progress,
the PR data generated thus far will soon lose its relevance. Nevertheless the algorithm
might — with modifications — be applicable to the analysis of other types of data, such as
array-based comparative genome hybridization (aCGH) [e.g., 134, [164]. Currently, aCGH
is still a relatively cost-effective technique, especially for clinical applications, and a very
active field of research. The detection of deletions and copy number variants from NGS
resequencing data might be another route for developing mPPR further.

Our transcript normalization method (see Section effectively removes probe
sequence bias (Figs. and and thereby improves the difference between the exon
and the background intensity distributions (see Section . Nevertheless, it has several
limitations, some of which could possibly be overcome by future extensions. First of all,
the transcript normalization model assumes that the ideal transcript intensity is constant.
However, we know that this is not the case for real data due to an amplification bias
(Fig. . We even demonstrated that normalization accuracy can be improved when
using a more flexible transcript intensity model (see Section [3.2.4). However, this model
additionally requires information on transcript structures and can thus not be incorporated
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in a preprocessing routine that is independent of existing gene annotations or subsequent
transcript identification methods.

Another shortcoming of the transcript normalization method is its inability to deal
with the additional information contained in mismatch (MM) probes in a satisfactory
manner. In the current Affymetrix Tiling Array 1.0R array for Arabidopsis, half the array
is occupied by these mismatch probes and in previous work, they have been successfully
used to estimate (probe sequence-dependent) unspecific background hybridization and to
improve exon-background separation [e.g., 120], 195]. Including MM intensities directly as
additional features into our transcript normalization procedure did, however, not improve
the results. Future experiments are necessary to explore, whether there are alternatives
on how to incorporate these data such that they improve normalization accuracy.

Finally, although we demonstrated the benefits of modeling different intensity quantiles
individually (see Section , this complete separation seems artificial and may even be
suboptimal in terms of normalization accuracy. For instance, we cannot guarantee that
the joint normalization is monotonic across intensity quantiles for a fixed probe sequence.
Transferring knowledge across submodels could be realized via a joint regularization term
that couples the individual solutions. Whether solving the larger joint problem justifies
possible accuracy gains remains to be investigated.

Currently, the most obvious disadvantage of our transcript identification method,
mSTAD (see Section , is that it is designed to segment data from each sample sep-
arately. Due to the limited accuracy of predicted segment boundaries, it is difficult to
compare predictions across samples to distinguish biologically relevant differences from
ones which result from noise in the data and from the stochastic nature of the algorithm
(e.g., Fig. . Ideally, several samples should be segmented in conjunction to reduce
the uncertainty at segment boundaries; the remaining differences should then mainly re-
flect differential expression of genes or transcript isoforms. This is, however, not easily
formalized as a label sequence learning problem (with a small set of labels) and hence
poses a theoretical challenge. A practically more viable alternative might be an additional
second layer of segmentation models that exploit as additional features the output of the
first segmentation layer obtained for other samples (e.g., similar to the two-layered SNP
calling method proposed in Clark et al. [29]).

A more general limitation results from the array design itself. The probe density along
the chromosome imposes a limit on segmentation accuracy; in case of the Arabidopsis
tiling array analyzed here, many exons and especially introns are covered by very few
(0 — 2) tiling probes and are thus difficult to detect accurately.

Finally, mSTAD’s state model (Fig. , which treats genes separately depending on
their expression level, contributes substantially to high segmentation accuracy (Fig. [3.21]).
However, the discrete model of differential expression yields only rough expression esti-
mates, which are of limited use for identifying differentially expressed genes or exons.
We therefore had to separately derive accurate gene expression measurements and apply a
separate statistical test to identify differentially expressed genes and TARs, which appears
suboptimal, e.g., in comparison to Huber et al. [72].
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In case of transcript identification using sequence features with mSTADsp (see
Section , many of mSTAD’s limitations apply as well, with the exception that se-
quence features, such as splice sites, allow resolving gene structures beyond the resolution
of the tiling array (see Section [3.4.4). Further possibilities to extend mSTADsp appear
promising: i) It is relatively straight-forward to implement a strand-consistent state model
(as discussed in Section . ii) More sequence-based features could be employed; for
instance, transcription start site predictions [169] could help improve the accurate detec-
tion of gene boundaries — currently a weakness of mSTADsp. iii) Taking a semi-Markov
approach would allow us to additionally model segment properties, such as length dis-
tributions or nucleotide content to further improve prediction accuracy [137]. This has
already proven useful in the context of sequence-based gene finding [e.g., 155, [172].

General limitations of the methods presented in this dissertation are first of all related
to their complexity. Training an HM-SVM involves solving a linear or quadratic optimiza-
tion problem, which typically comprises thousands of variables (see Sections and .
For this, we used commercial optimization software, which facilitates training on many
more examples than would be possible with freely available software. Together with the
fact that the proposed methods are implemented in Matlab, this impedes their wider ap-
plication. Furthermore, to achieve good generalization performance it is necessary to tune
several hyperparameters of the learning algorithms. Doing this in a systematic model
selection is very demanding in terms of computation time. To address these issues, we
intend to provide a version of the source code that is fully compatible with Octave and
facilitates the use of free optimization software. Additionally, we will provide a web server
version, which offers preselected hyperparameters and allows external users to profit from
our software resources.

Another general shortcoming of our methods relates to the underlying supervised learn-
ing algorithms. While they generalize well on unseen data that is represented well in their
training set (i.e., if the distributions of training and target data are identical), that does
not have to be the case if this assumption is invalid. Usually, the learnt models are too
complex to easily understand or predict their behavior on examples that are underrep-
resented among the available labeled data. For instance, PR predictions were made for
the whole genome including repetitive regions and large deletions, which were absent from
our training and test data. We therefore had to perform additional evaluations based on
further data sources to ensure that predictions were reasonable in these regions as well
(see Section [3.1.3)).

The modular nature of our methods for transcriptome tiling array analysis was moti-
vated by practical reasons. However, a method that combines transcript normalization
and transcript identification may yield better results than obtained by sequential appli-
cation of normalization (TN) and segmentation (mSTAD). Such a combined approach
could potentially model the intensity bias along the transcript and thereby overcome the
limitation of constant transcript intensities inherent in TN and mSTAD.

Eventually, although the methods presented in this thesis were originally developed for
and tested on Arabidopsis tiling arrays, they are, however, not limited in application to
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these data. Resequencing array data sets similar to the one generated for Arabidopsis
thaliana also exist for human, mouse, rice and yeast [54} [68, 111, [148], and the prediction
of polymorphic regions has already been successfully applied to rice resequencing data [10].
Comprehensive corpora of transcriptome tiling array data have been generated for many
model organisms including human, fly, worm, rice, and yeast [28], 35|, 86, 102, 108, and
others|. Further experiments with these data would be highly desirable to enhance the
visibility of our methods and to confirm that their accuracy is not due to peculiarities of a
single organism, but rather due to the power of the underlying machine learning methods.
As a first step towards this goal, we intend to analyze data for several C. elegans tissues

and specific cell types collected within the scope of the modENCODE project.'®

3.5.2 Applicability of the Proposed Methods to RNA-seq Data

Although whole-genome tiling arrays became available for a large research community only
recently [117], it seems to be a commonplace among computational biologists that this
technology is soon going to be replaced by next-generation sequencing [I61]. Ultra-high
throughput sequencing of the transcriptome (RNA-seq for short) has already been demon-
strated to yield quantitative and structural information at unprecedented resolution [e.g.,
118]. Consequently, developing tools for the analysis of RNA-seq data is currently a top
priority in bioinformatics. In the following paragraph, I will sketch how our methods for
analyzing tiling array data might also be applicable to RNA-seq data.

Despite the fact that tiling arrays and RNA-seq are technologically very dissimilar,
some of the problems encountered in the data analysis phase are related: Measurements
of transcript quantities with both, RNA-seq and tiling arrays, are confounded by sequence
effects. We and others characterized sequence effects of tiling array probes in detail (in
Section [e.g., [145]). For next-generation sequencing of genomes and transcriptomes,
it has also been shown that the efficiency of generating a read depends on the sequence of
the target (template) DNA [e.g., 105 130]. Here, we analyzed the dependency of RNA-
seq read coverage within annotated exons on the local GC content in a 25-bp context
(Fig. see also Fig. .11 For this, we only considered positions covered by more
than one read. Estimates for GC-poor regions (< 20%) appear very uncertain, possibly due
to mismapped reads originating from polyA tails. Elsewhere, we observe an approximately
five-fold increase in read coverage with GC content (between 25% and 60%; Fig. [3.33)).
This finding suggests that accurate transcript quantification may benefit from sequence
normalization techniques similar to our transcript normalization method (see Section .

The identification of new transcripts from RNA-seq data is arguably easier than from
tiling array data. When read coverage is sufficient, RNA-seq data will not only facilitate
exon-background separation, but spliced reads will also accurately delineate exon-intron
boundaries at 1-bp resolution, and even provide direct support for introns [12]. Neverthe-
less, the structures of transcripts with low expression, which are only sparsely covered by

Ohttp://www.modencode.org
"TFor generating and mapping the underlying Arabidopsis RNA-seq data, I would like to gratefully ac-
knowledge Jun Cao, Stephan Ossowski, Korbinian Schneeberger, Fabio De Bona and Regina Bohnert.
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RNA-seq reads may be less obvious from the primary data. Importantly, our tiling array-
based transcriptome studies indicate, however, that new genes are expected to exhibit rel-
atively low overall expression levels with patterns that are probably restricted to specific
conditions or tissues [97]. Only such genes are likely to have escaped previous annotation
efforts in extensively studied model organisms such as Arabidopsis thaliana. Techniques
like our method for tiling array segmentation (mSTAD, see Section , may hence be
well-suited to more accurately resolve the structures of such transcripts. More precisely,
we envision several possibilities to exploit RNA-seq data for transcript identification. A
straight-forward strategy would be to convert mapped RNA-seq reads into (exon) cover-
age counts and simply treat them as a 1-bp tiling for the purpose of segmentation. Here,
unmappable and repetitive regions could be handled similarly as cross-hybridizing probes.
Several extensions of this naive approach are conceivable: First, it appears promising to
combine read-coverage features with genomic sequence features as done with mSTADsp
(see Section . Second, it would also be possible to convert spliced reads into an intron
coverage feature to further improve intron recognition accuracy. Such approaches require
only minor adjustments of mSTAD or mSTADsp. There are however additional prop-
erties of RNA-seq data which one might like to exploit, e.g., the connectivity structure
imposed by intron reads spanning two splice sites or mate pair information connecting
two reads. Devising a segmentation which takes these properties into account is, however,
much more difficult. These long-range dependencies are not easily reconciled with the
Markov assumption, that the optimal segmentation at a given position only depends on
directly adjacent positions. Even when using semi-Markov models, as e.g., proposed in
Rétsch and Sonnenburg [137], intron connectivity could be modeled in simple cases, but
mate-pair information still poses a challenge. When analyzing RNA-seq data with our seg-
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mentation methods, their inability to predict alternative transcripts is a severe limitation
as the data is in principle well-suited for the discovery of alternative isoforms. Transcript
mapping from RNA-seq data can also be approached from a different perspective, i.e., by
using sequence-based gene finding systems which incorporate RNA-seq reads as additional
features similar to the way ESTs are typically handled [e.g., [I55]. While segmentation
approaches like mSTAD and mSTADsp may generally be less accurate than sequence-
based gene finders, they might, however, complement such approaches. As mSTAD and
mSTADsp make no or very little assumptions about genic DNA sequences, respectively,
they are expected to readily detect expressed non-coding transcripts, whereas the models
employed in sequence-based gene finders are typically restricted to protein-coding genes.
In conclusion, notwithstanding that we might soon witness “the end for microarrays”
[161], the analysis methods presented in this work are rather broadly applicable. With
a few modifications, they will be applicable to RNA-seq data. As there exists a pressing
need for computational tools to cope with the rapidly increasing output of sequencing
instruments, this seems to be a very promising direction for future development.

3.6 Chapter Summary

In this chapter I presented the application of newly developed machine learning-based
methods to the analysis of whole-genome microarrays.

More specifically, the application of mPPR (see Section to resequencing array data
from Arabidopsis revealed 240,538 to 361,184 polymorphic regions (PR) per accession (5.3-
8.5% of the genome). Although the exact types of contained polymorphisms cannot be
specified based on this data, I carefully verified that their location coincided very precisely
with known polymorphisms. Additionally, we could even accurately predict large deletions
and monomorphic regions that were absent from the training set (Section . When
we analyzed the PR distribution around annotated genes, we found striking nonrandom
patterns with exons, core promoters and miRNAs exhibiting significantly reduced poly-

morphism levels (Sections [3.1.4] and [3.1.5). We also found large variation in PR content

of genes in different families and that resistance genes (NB-LRR) were exceptional in that
they had the highest overall PR level and the largest variation between individual family
members (Section . Taken together, these results suggest large differences between
the functional gene complement of individual plants

Furthermore, I developed a normalization pipeline (Section with a novel transcript
normalization method as its core component. Although many methods have been proposed
to alleviate probe sequence biases [e.g., 120, 122 [145], comparisons of our transcript
normalization to these methods showed that ours is the only one which effectively reduces
these biases and improves signal-to-noise ratio (as measured by exon-probe recognition
on normalized data). Additional experiments indicated that other methods failed in this
aspect, probably because they primarily model sequence effects for unspecific binding and
only poorly account for specific binding to exons of expressed transcripts. Combining this
normalization with a newly developed de novo transcript mapping method (Section
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allowed us to recognize expressed transcripts with unprecedented accuracy corroborated
by a comparative evaluation including other methods (Section and by experimental
validation (Section . As a result of the application of these methods to a large
body of transcriptome tiling array data for Arabidopsis, 1 discovered more than 1,000 new
transcriptionally active regions (TARs), per sample. These were absent from the current
gene annotation, despite the fact that it is based on previous tiling array experiments.
Interestingly, the expression of hundreds of these TARs was found to be significantly
altered upon treatment with abiotic stresses, suggesting that potentially genes with a
function in adaptation to adverse environments may be included. Extending the transcript
mapping method such that it exploits additional sequence features, I demonstrated that
the accuracy can be improved even further (Section . Finally, the applicability of
similar methodology to the task of recognizing transcripts from RNA-seq data is discussed
as a promising route for future development (Section .



4 Conclusion

In this dissertation, I present state-of-the-art machine learning methods for the analysis
of data from whole-genome tiling arrays. These methods were developed specifically for
two major applications of tiling arrays, namely transcriptome profiling and polymorphism
discovery.

I faced a number of technical challenges associated with the primary microarray data [see
also[I44]. First, to minimize artifacts due to cross-hybridization in regions of repetitive se-
quence, I created a custom repeat-annotation (Section . From the genome sequence,
I identified those repeat classes with the greatest potential of confounding the tiling probe
signals. A second issue, especially with transcriptome tiling array data, is a well-known
probe-sequence bias (Section : the fact that hybridization properties diverge strongly
between different probe sequences has a pronounced effect on the signal read-out. Because
reference data was collected within the scope of the resequencing project, I could use it
as an indirect means of normalization (Section . In the case of tiling array-based
transcriptomics, our newly developed transcript normalization method effectively allevi-
ates the probe sequence bias (Sections and [204]. Additionally, it reduces the
variance in the hybridization signal in a way that benefits subsequent transcript iden-
tification. This is in sharp contrast to other methods developed for this purpose. The
ones I investigated in this work reduce probe sequence effects at the cost of diminishing
true transcript signals, which essentially renders them useless as preprocessing routines for
transcript identification (Section [3.2.5). Third, we developed methods for the detection
of polymorphic regions (Sections and [203], as well as for transcript identification
(Sections and [07, 204] from tiling array data, which are able to accurately seg-
ment hybridization measurements in the presence of high noise levels that are typical of
DNA microarray data. For both applications, accuracy is of prime importance because
biological interpretation demands very low false discovery rates.

The methods which we developed to solve these problems are based on state-of-the-art
supervised machine learning techniques, including support vector machines (SVMs) [e.g.,
0, 153] and hidden Markov SVMs (HM-SVMs) (Section [3, 184]. Where competing
computational tools were available for comparison, as for transcript identification, I could
demonstrate the superior accuracy of our methodology (Section . Its predictive
power, however, comes at the cost of several limitations (discussed in Section |3.5.1): The
complexity of our methods, e.g., computationally demanding training procedures, may
limit their usability by other researchers. Simplified implementations and a web-server
interface will help to alleviate this problem. Thus far, I have tested our methods only
on data from a single organism, Arabidopsis thaliana. Further experiments using existing
data sets from several other organisms are necessary to underline their general applicability
to a diverse set of organisms and to confirm that their accuracy is not due to the peculiar-
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ities of a particular one. The rapid development of next-generation sequencing technology
might soon bring “the end for microarrays” [161]. It is therefore of central importance to
extend the methodology to handle sequencing-based polymorphism and transcriptome data
(Section [3.5.2)). Fortunately, adjusting them to the particulars of new experimental tech-
nologies is greatly facilitated by the fact that they are based on adaptive machine learning
techniques. I thus believe that the contributions of this thesis to methodology will outlive
the current, sequencing technology-driven revolution in genomics and transcriptomics.

I applied our methods to data from Arabidopsis whole-genome arrays to gain insights
into the patterns of natural sequence variation (Section , as well as to reveal tran-
scriptional activity and dynamics (Section . Both studies were global in the sense that
we could exploit, for the first time, data from the whole genome of Arabidopsis thaliana.
Polymorphic region (PR) predictions indicated the approximate locations (with a pre-
cision of 97%) of a substantial proportion of sequence variants undetected by previous
efforts [29] 203]. An estimated 42% of total single-nucleotide polymorphisms (SNPs) were
included within PR boundaries in addition to those discovered previously with different
methods at a precision of 98% (Section [3.1.2)) [29, 203]. Moreover, PRs contained insertion
sites and deletions (indels) as well as highly divergent sequence tracts varying in length
from a few nucleotides to several thousands (Section [3.1.3). The resulting Arabidopsis
polymorphism resource was thus the first one to contain small to large indels on a whole-
genome scale. This data allowed us to identify genes which are probably nonfunctional
in several of the accessions studied, due to SNPs disrupting splicing or truncating the
encoded protein, or due to PRs indicating partial or complete gene deletions. We also
found surprisingly large differences between the functional gene complement of individual
plants (Section [29, 203]. Our tiling array-based transcriptome atlas, At-TAX [97],
provided, for the first time, whole-transcriptome measurements for several Arabidopsis
tissues, developmental stages and stress conditions. It comprises expression profiles for
nearly 10,000 genes that were neglected by previous studies because they could not be
analyzed with the most widely used gene-centric microarray platform for Arabidopsis [97].
Additionally, the results of our de novo transcript identification method revealed expressed
regions on a genome-wide scale irrespective of gene annotations (Section . A global
comparison of polyadenylated and nonpolyadenylated transcripts based on these data sug-
gests that nonpolyadenylated RNAs only make a minor contribution to the Arabidopsis
transcriptome. This finding is in surprising contrast to studies in human and Caenorhab-
ditis elegans where about half of all transcripts are not polyadenylated (Section .
Monitoring the Arabidopsis transcriptome under abiotic stress conditions, I found several
hundred regions that are not annotated as genes but exhibit interesting stress-responsive
expression patterns. These not only include candidates for entirely new genes but also pre-
viously overlooked exons and alternative transcripts of known genes (Section [205].
Taken together, our computational tools provide an excellent foundation for further char-
acterizing the Arabidopsis transcriptome, in particular the global effects of genetic defects.
For instance, investigating mutants impaired in the biogenesis of small RNAs (se, hyl1,
dcll), we recently discovered defects in pre-mRNA splicing, microRNA processing and
suppression of transcripts originating from transposable elements [96, 08]. In the near fu-
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ture, I expect to see many similar studies creating a demand for our computational tools.
In favor of this prospect, Brady and Provart [16] lately highlighted the value of both, the
Arabidopsis polymorphism inventory and the At-TAX atlas, as publicly available resources
for generating hypotheses in plant biology.
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Appendix

Supplementary Protocols

Hybridization protocol for Arabidopsis tiling arrays

For synthesis of hybridization targets, 1 ug of total RNA was used as template for genera-
tion of cRNA using the MessageAmp II-Biotin Enhanced Kit (Ambion, Austin, TX, USA).
We followed the manufacturer’s instruction with one exception: Biotinylated NTPs were
replaced by unmodified NTPs (stock solution 25 mM each). 7 ug unmodified cRNA was
converted into dsDNA (GeneChip© WT Double-Stranded cDNA Synthesis Kit, Affymetrix,
Santa Clara, CA, USA) and dsDNA was purified using the MinElute Reaction Cleanup
Kit (Qiagen, Hilden, Germany). 7.5ug dsDNA was fragmented and labeled using the
GeneChip®© WT Double-Stranded DNA Terminal Labeling Kit (Affymetrix). Targets were
hybridized to Arabidopsis Tiling 1.0R arrays for 14h at 42°C, washed (Fluidics Station
450, wash protocol FS450.0001) and scanned using a GeneChip®© Scanner 3000 7G. For
comparison of polyA(+) and polyA(+/-), rRNA was depleted from 10 ug total RNA using
RiboMinus™ Yeast Transcriptome Isolation Kit (Invitrogen) and an Arabidopsis-specific
RiboMinus™ LNA oligonucleotide mix kindly provided by Invitrogen. rRNA-depleted
RNA was precipitated and resuspended in 12 ul water, from which 11 ul were used for
reverse transcription using MessageAmp II-Biotin Enhanced Kit (Ambion) with an oligo-
dT-T7 primer (MessageAmp II-Biotin Enhanced Kit) or a random-T7 primer (included
in the GeneChip© WT Amplified Double-Stranded cDNA Synthesis Kit, Affymetrix).
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Supplementary Tables

25mer match type Match pairs® Repetitive positions®
Exact 333,577,772 12,970,807
Inexact 305,844,001 14,510,324
Short 292,464,314 7,059,270
Union of exact and short 626,042,086 15,537,335
Union of exact, short, and inexact 931,886,087 21,338,048

Table 4.1: Whole-genome annotation with repetitive resequencing probes for A. thaliana. ¢ Pairs
of genomic positions with similar probe sequence by match type criteria. ® Unique positions tiled
on the arrays corresponding to the various repetitive classes.

Accession  Number of PRs % genome in PRs Precision Recall

Bay-0 271,644 6.3 92.2%  54.9%
Bor-4 276,256 6.1 91.7%  55.6%
Br-0 276,913 6.5 88.4%  53.8%
Bur-0 284,143 6.6 93.0%  52.2%
C24 293,558 6.7 93.7%  52.7%
Cvi-0 361,184 8.5 87.1%  57.3%
Est-1 240,538 5.3 92.0%  49.9%
Fei-0 277,788 6.4 88.1%  55.4%
GOT-7 284,596 6.5 85.9%  55.9%
Ler-1 302,450 7.0 90.0%  59.0%
Lov-5 320,648 7.3 87.6%  60.8%
NFA-8 283,544 6.5 92.3%  56.2%
RRS-10 260,721 5.9 93.8%  55.7%
RRS-7 275,700 6.3 89.6%  55.6%
Shakhdara 304,471 7.4 90.6%  55.8%
TAMM-2 307,564 7.2 88.7%  54.2%
Ts-1 303,340 7.0 91.2%  57.4%
Tsu-1 272,438 6.2 92.9%  56.8%
Van-0 281,600 6.6 NA NA

Table 4.2: Whole-genome PR predictions and performance by accession. Predictions are for 90%
specificity on 2010 as assessed across all accessions excluding Van-0 (cf. Table A = 75%).
Precision and recall for each accession as determined from 2010 is also given. 2010 data for Van-0
was not available; nevertheless, we used HM-SVMs trained across data from all other accessions
to predict PRs in Van-0. The absence of test data precluded evaluation of precision and recall for
the Van-0 accession (NA is “not applicable”).
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Non-repetitive

Repetitive

Known deleted bases (total)
Known deleted bases in PRs

Known deleted bases not in PRs

109,118
99,527
9,591

Table 4.3: Known deleted bases in 127 long deletions (>300bp) included within PR prediction
boundaries by repeat content.

Series  Sample-ID  Replicates Tissue Genotype  Amplification  Growth conditions
D D_001 3 biological  roots Col-0 oligo-dT
D D_002 3 biological  seedlings Col-0 oligo-dT
D D_003 3 biological  young leaves Col-0 oligo-dT
D D_004 3 biological  senescing leaves Col-0 oligo-dT
D D_005 3 biological  vegetative apex Col-0 oligo-dT
D D_006 3 biological inflorescence apex  Col-0 oligo-dT
D D_007 3 biological stem Col-0 oligo-dT
D D_008 3 biological inflorescences Col-0 oligo-dT
D D_009 3 biological inflorescences clv-8 oligo-dT
D D_010 3 biological flowers Col-0 oligo-dT
D D_011 3 biological  fruits Col-0 oligo-dT
D D_012 3 biological inflorescences Col-0 oligo-dT
D D_013 3 biological  seedlings Col-0 oligo-dT
D D_014 3 biological inflorescences Col-0 random
D D_015 3 biological  seedlings Col-0 random
S S_001 3 biological  seedlings Col-0 oligo-dT control at t=0
S S_002 3 biological  seedlings Col-0 oligo-dT mock control at t=1h
S S_003 3 biological  seedlings Col-0 oligo-dT mock control at t=12h
S S_004 3 biological  seedlings Col-0 oligo-dT 1 h salt stress
S S_005 3 biological  seedlings Col-0 oligo-dT 12 h salt stress
S S_006 3 biological  seedlings Col-0 oligo-dT 1 h osmostic stress
S S_007 3 biological  seedlings Col-0 oligo-dT 12 h osmotic stress
S S_008 3 biological  seedlings Col-0 oligo-dT 1h ABA?® treatment
S S_009 3 biological  seedlings Col-0 oligo-dT 12h ABA® treatment
S S.010 3 biological  seedlings Col-0 oligo-dT 1h cold stress (10°C)
S S-011 3 biological  seedlings Col-0 oligo-dT 12h cold stress (10°C)
S S_012 3 biological  seedlings Col-0 oligo-dT 1h heat stress (30°C)
S S_013 3 biological  seedlings Col-0 oligo-dT 12h heat stress (30°C)
T T_003 3 technical  inflorescences Col-0 oligo-dT
T T_004 3 technical roots Col-0 oligo-dT

Table 4.4: Plant samples used for tiling array transcriptome analyses. Arrays of the same series
were hybridized with RNA from plants grown under comparable conditions and data was normal-
ized and analyzed together. (a) Abscisic acid (ABA), is a plant hormone that plays a major role in
mediating stress response [reviewed in[49] 209]. Data from the D series was analyzed in Laubinger
et al. [97]. Zeller et al. [205] was based on data from the S series. Array data from the T series
was used for experiments in Zeller et al. [204].
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Supplementary Figures
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Figure 4.1: Intersection between non-redundant positions tiled on resequencing arrays with 25mer
matches. For example, of 8,069,407 positions where there is an exact and inexact 25mer match,
3,904,046 also have a short 25mer match. Absolute numbers for match types are given in Table [L.1]
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Figure 4.2: Intensities for features located between adjacent polymorphisms is reduced. Regions
between polymorphisms at a distance <26 bp to each other were extracted and categorized ac-
cording to this distance (see inset). For each distance category the maximal intensities for each
probe quartet between polymorphisms were averaged for the forward and reverse strands resulting
in a single curve per category (circles and solid lines). The outermost circles and dotted lines
indicate the average intensities at polymorphic sites. All curves are centered and positions on the
x-axis are relative to the center. Intensity at sites between polymorphisms <18bp from each other
was generally suppressed. Intensities recovered for features between polymorphisms at greater
distances (light blue and green curves). These findings motivated our use of 18 bp for defining PR
and clustered SNPs (see main text).
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Figure 4.3: Dependency of performance on the choice of the minimal required overlap A between
known PRs and PR predictions. Shown are the precision-recall curves for 4 different choices of A

(panels A-D).
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Figure 4.4: Detection of PRs is difficult in regions where hybridization intensities for the reference
accession, Col-0, were reduced due to unfavourable hybridization properties of oligonucleotides.
Intensity histograms were calculated separately for true positive (TP), false positive (FP), true
negative (TN) and false negative (FN) sites from the maximum intensity in each probe quartet
and were divided by the total counts to obtain frequencies on the ordinate (note different scales).
(A) Histograms for the reference accession, Col-0. (B) Histograms for the accession in which PRs
were predicted.
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Figure 4.5: Correlation between estimates of polymorphism from PR predictions and MBMIL2
SNPs. Polymorphism was calculated as in Fig. for positions central to non-overlapping 100 kb
windows, and estimates from the two data sets are significantly correlated (Pearson’s cor = 0.54,
P-value | 107!%), even though the estimates sometimes differ substantially (see also Fig. [3.§). In
these cases, polymorphism estimated from the PR data is often disproportionately higher. This
finding is generally consistent with known ascertainment biases in the data sets. Regions of very
high polymorphism are well delimited in the PR data, but are too divergent for explicit SNP
prediction (i.e., they would largely be absent from MBML2; see also Table . Furthermore, PR
predictions capture indel polymorphisms, including long deletions, and such predictions would lead
to elevated estimates of polymorphism in the PR data relative to the SNP data. Ascertainment
biases in both data sets, however, likely also contribute to differences in polymorphism estimates
(e.g., for repetitive regions).
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Figure 4.6: Distribution of coding genes by percent inclusion in PRs by gene family classification.

See Fig. [3.I0/A, B for additional information and gene families.
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Figure 4.7 mSTAD HM-SVM and mSTAD HMM differ in the way exon prediction accuracy is
traded off against intron accuracy. (see inset, Sectionm and Fig. for definition of precision
and recall on exon and intron level). (A) Balance between exon and intron recall. (B) Balance
between exon and intron precision. (C) Balance between F1 scores for exons and introns. The F1
score is the harmonic mean between precision and recall: F'1 = (precision x recall)/(precision +
recall)
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Figure 4.8: Histograms of (normalized) sequence identity of stress-induced TARs. For each
treatment and time point a comparable histogram of randomly sampled annotated exons is shown
as well (see inset and Section [2.6.7)).
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