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vorgelegt von

Ludwig Gauckler

aus Ulm an der Donau

2010



Tag der mündlichen Qualifikation: 20. April 2010

Dekan: Prof. Dr. Wolfgang Knapp

1. Berichterstatter: Prof. Dr. Christian Lubich

2. Berichterstatter: Prof. Dr. Andreas Prohl



Contents

Zusammenfassung in deutscher Sprache 1

Introduction 3

1 Hamiltonian Partial Differential Equations 10

1.1 Hamiltonian Functions and Hamiltonian Equations of Motion . . . . . . . 10

1.2 Conserved Quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Example — Linear Schrödinger Equations . . . . . . . . . . . . . . . . . . 14

1.4 Example — Nonlinear Schrödinger Equations . . . . . . . . . . . . . . . . 17

1.5 Example — Nonlinear Wave Equations . . . . . . . . . . . . . . . . . . . . 22

2 Long-Time Analysis of Hamiltonian Partial Differential Equations 27

2.1 Weakly Nonlinear Hamiltonian Partial Differential Equations . . . . . . . . 27

2.2 Long-Time Near-Conservation of Actions . . . . . . . . . . . . . . . . . . . 29

2.3 On the Non-Resonance Condition . . . . . . . . . . . . . . . . . . . . . . . 34

2.4 Long-Time Regularity and Long-Time Analysis of Mass and Momentum . 36

2.5 Long-Time Energy Distribution . . . . . . . . . . . . . . . . . . . . . . . . 37

2.6 Example — Nonlinear Schrödinger Equations of Convolution Type . . . . . 42

2.7 Example — Schrödinger–Poisson Equations . . . . . . . . . . . . . . . . . 48

2.8 Example — Nonlinear Schrödinger Equations . . . . . . . . . . . . . . . . 49

2.9 Example — Nonlinear Wave Equations with Periodic Boundary Conditions 53

2.10 Example — Nonlinear Wave Equations with Dirichlet Boundary Conditions 57

3 Modulated Fourier Expansions of Hamiltonian Partial Differential Equa-

tions 58

3.1 Modulated Fourier Expansions . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2 Iterative Solution of the Modulation System . . . . . . . . . . . . . . . . . 61

3.3 Estimating the Iterated Modulation Functions . . . . . . . . . . . . . . . . 64

3.4 The Modulated Fourier Expansion and the Exact Solution . . . . . . . . . 72

3.5 The Modulated Fourier Expansion on Long Time Intervals . . . . . . . . . 75

3.6 The Modulated Fourier Expansion for Partially Resonant Frequencies . . . 82

3.7 The Modulated Fourier Expansion with Scaled Norms . . . . . . . . . . . . 84

4 Long-Time Analysis of Spatial Semi-Discretizations of Hamiltonian Par-

tial Differential Equations 87

4.1 Spatial Semi-Discretizations of Hamiltonian Partial Differential Equations . 87

4.2 Long-Time Near-Conservation of Actions . . . . . . . . . . . . . . . . . . . 88

4.3 Long-Time Regularity and Long-Time Analysis of Energy, Mass, and Mo-

mentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90



4.4 Example — A Spectral Galerkin Method for Nonlinear Schrödinger Equa-

tions of Convolution Type . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.5 Example — A Spectral Collocation Method for Nonlinear Schrödinger

Equations of Convolution Type . . . . . . . . . . . . . . . . . . . . . . . . 96

4.6 Example — A Spectral Collocation Method for Nonlinear Wave Equations 101

5 Long-Time Analysis of Full Discretizations of Hamiltonian Partial Dif-

ferential Equations 108

5.1 Full Discretizations of Hamiltonian Partial Differential Equations . . . . . 108

5.2 Long-Time Near-Conservation of Actions . . . . . . . . . . . . . . . . . . . 110

5.3 On the Non-Resonance Condition and on Numerical Resonances . . . . . . 114

5.4 Long-Time Regularity and Long-Time Near-Conservation of Energy, Mass,

and Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.5 Long-Time Energy Distribution . . . . . . . . . . . . . . . . . . . . . . . . 118

5.6 Example — Split-Step Fourier Methods for Nonlinear Schrödinger Equa-

tions of Convolution Type . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.7 Example — Trigonometric Integrators for Nonlinear Wave Equations . . . 131

5.8 Example — The Störmer–Verlet Method for Nonlinear Wave Equations . . 140

6 Modulated Fourier Expansions of Full Discretizations of Hamiltonian

Partial Differential Equations 144

6.1 Modulated Fourier Expansions for the Full Discretization . . . . . . . . . . 145

6.2 Iterative Solution of the Modulation System . . . . . . . . . . . . . . . . . 147

6.3 Estimating the Iterated Modulation Functions . . . . . . . . . . . . . . . . 149

6.4 The Modulated Fourier Expansion and the Numerical Solution . . . . . . . 150

6.5 The Modulated Fourier Expansion on Long Time Intervals . . . . . . . . . 152

References 156



Zusammenfassung in deutscher Sprache

I ventured to write this thesis in English

because it will be more easily read

in poor English than in good German

by many of my intended readers.

frei nach [49]

Hamiltonsche partielle Differentialgleichungen sind partielle Differentialgleichungen, die

in Form eines Hamiltonsystems geschrieben werden können, wie beispielsweise die Bewe-

gungsgleichungen der klassischen Mechanik, allerdings auf einem unendlichdimensionalen

Phasenraum. Wichtige Beispiele sind Schrödinger- und Wellengleichungen, die sowohl

wegen ihrer mathematischen Struktur als auch wegen ihrer Anwendungen in der Physik,

zum Beispiel der Quantenmechanik, viel untersucht werden.

Erhaltungsgrößen oder Invarianten spielen in der Theorie Hamiltonscher partieller

Differentialgleichungen eine wichtige Rolle. Hierbei handelt es sich um Größen, die entlang

einer jeden Lösung einer solchen Gleichung erhalten werden. Sie stehen für wichtige

physikalische Eigenschaften wie beispielsweise Energieerhaltung sind aber auch bei einer

mathematischen Analyse der Gleichungen von entscheidender Bedeutung, um zum Bei-

spiel Wohlgestelltheit zu beweisen. Aus Sicht der numerischen Mathematik stellt sich nun

zwangsläufig die folgende Frage:

Wie verhalten sich Erhaltungsgrößen einer Hamiltonschen partiellen Differen-

tialgleichung entlang einer numerischen Lösung dieser Gleichung?

Hierbei handelt es sich um ein grundlegendes Problem der geometrischen numerischen

Integration, die sich mit der Konstruktion und Analyse strukturerhaltender Algorithmen

für Differentialgleichungen beschäftigt. Wie sich herausstellt, ist diese Frage eng verwandt

mit einer Frage aus der Störungstheorie.

Wie ändert eine kleine (nichtlineare) Störung die Dynamik einer linearen

Hamiltonschen partiellen Differentialgleichung?

Die vorliegende Dissertation trägt zur Beantwortung beider Fragen bei. Es wird

gezeigt, dass exakte Erhaltungsgrößen einer linearen Hamiltonschen partiellen Differen-

tialgleichung entlang von Lösungen einer nichtlinear gestörten Variante der Gleichung zu-

mindest annähernd erhalten werden, und zwar auf einem unerwartet langen Zeitintervall.

Dieses Ergebnis wird mit Hilfe einer modulierten Fourierentwicklung der Lösung erzielt.

Diese Methode erlaubt auch eine Beantwortung der ersten Frage nach dem Verhalten von

Erhaltungsgrößen entlang einer geeigneten numerischen Lösung der Gleichung. Es werden

weit verbreitete numerische Vefahren untersucht mit dem Ergebnis, dass Erhaltungsgrößen

der exakten Lösung entlang einer numerischen Lösung wenigstens näherungsweise erhalten

werden, und zwar wieder auf bemerkenswert langen Zeitintervallen.
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Introduction

Hamiltonian partial differential equations are partial differential equations, that can be

written in the form of a Hamiltonian system as for instance the equations of motion in

classical mechanics but on an infinite dimensional phase space. Important examples are

Schrödinger equations and wave equations which attract much interest because of both,

their beautiful mathematical structure but also their applications in physics, for instance

in quantum mechanics.

In the theory of (finite or infinite dimensional) Hamiltonian systems invariants or

conserved quantities play a dominant role. These quantities are conserved along a solution

of such equations and represent important physical properties such as energy conservation,

but they are also fundamental in a mathematical analysis of the equations, for instance to

show well-posedness. From the point of view of numerical analysis the following question

is then inevitable.

What is the behaviour of invariants of Hamiltonian partial differential equa-

tions along a numerical solution of such equations?

This is a fundamental problem in the field of geometric numerical integration which is

concerned with the construction and the analysis of structure-preserving algorithms for

differential equations. This question turns out to be closely related to a question in pertur-

bation theory concerning the exact solution of Hamiltonian partial differential equations.

How does a small (nonlinear) perturbation change the dynamics of a linear

Hamiltonian partial differential equation?

The present thesis contributes to the answers of both questions. We show that exact in-

variants of a linear Hamiltonian partial differential equation are approximately conserved

along solutions of a nonlinearly perturbed version of the equation on remarkably long time

intervals. This is done with the help of a modulated Fourier expansion of the solution. It

turns out that this technique also allows to study rigorously the first question, namely to

study conserved quantities of the exact solution of such Hamiltonian partial differential

equations along a numerical solution. We consider widely used numerical discretizations

with the result that invariants of the exact solution of weakly nonlinear Hamiltonian par-

tial differential equations are at least approximately conserved along suitable numerical

solutions, again on remarkably long time intervals.

Let us give a more detailed introduction to the above questions from perturbation

theory and geometric numerical integration.

Perturbation Theory for Hamiltonian Ordinary Differential Equations. Hamil-

tonian perturbation theory aims for an understanding of Hamiltonian differential equa-

tions that are perturbations of simple (completely integrable) equations with explicitly
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known solution. The interest in this problem arose in the 18th and 19th century when

many ordinary differential equations of classical mechanics were noticed to be such per-

turbations but resisted their global and explicit integration. In order to understand the

global behaviour of the solution one began to study the influence of the perturbation,

developing a rich theory of such perturbed Hamiltonian ordinary differential equations,

culminating in the developments of Lindstedt–Poincaré series in the late 19th century and

Kolmogorov–Arnold–Moser theory (KAM theory) in the middle of the 20th century, see

[2], [5], and [36, Chapter X].

A main result states that solutions of the perturbed equation stay close to the torus

on which solutions of the underlying completely integrable equation evolve. This seems

not surprising at first glance since one expects the influence of a perturbation of size ε

to be small on an appropriate time interval, namely on a time interval of length ε−1.

Remarkably, however, the result is valid on a long time interval of length ε−N or even

exponentially long in a negative power of ε [36, Chapters X.2 and X.4]. In this thesis we

are interested in this kind of result. Let us mention that the famous KAM result states

that some tori of the underlying completely integrable equations persist under a small

perturbation for all times [36, Chapter X.5], see also the original articles [37], [44], and

[1].

Perturbation Theory for Hamiltonian Partial Differential Equations. All the

above results have been established for Hamiltonian ordinary differential equations. Their

extension to Hamiltonian partial differential equations, which are infinite dimensional

Hamiltonian systems, has just begun to attract interest. KAM-type results for Hamil-

tonian partial differential equations are due to Kuksin, see his monograph [38]. These

results, however, affect only finite dimensional tori. Concerning tori of infinite dimension,

long-time results have been obtained by Bourgain in [8] and [10] and by Bambusi and/or

Grébert in [3], [4], and [31]. Cohen, Hairer, and Lubich [17] and Lubich together with

the author of the present thesis [29] obtain similar results using a completely different

technique of proof, the so called modulated Fourier expansions.

Let us comment more on the results on Hamiltonian partial differential equations

taking as an example the cubic nonlinear Schrödinger equation

i
∂

∂t
ψ(x, t) = −∆ψ(x, t) + ε|ψ(x, t)|2ψ(x, t) (NLS)

with periodic boundary conditions in one dimension, x ∈ T = R/(2πZ). Here and in

the following, ∆ denotes the Laplacian operator acting on the spatial variable x. This

equation considered with a small parameter ε is weakly nonlinear. It is a perturbation of

the linear Schrödinger equation (ε = 0)

i
∂

∂t
ψ(x, t) = −∆ψ(x, t). (LS)

Along solutions of this underlying unperturbed equation (LS), the actions

Ij(ψ) = |ψj|2 for j ∈ Z
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are exactly conserved, where ψj denotes the jth Fourier coefficient of ψ(x) =
∑

j∈Z
ψje

ijx.

In fact, the linear Schrödinger equation (LS) reads in terms of the Fourier coefficients

i d
dt

ψj(t) = j2ψj(t), i.e., ψj(t) = e−ij2(t−t0)ψj(t0) is its solution. In other words, solutions

of the linear Schrödinger equation (LS) evolve on tori

Tη = {ψ : Ij(ψ) = ηj }

for η = (ηj)j∈Z. If only finitely many ηj are nonzero, the torus is of finite dimension as

studied in the KAM-type results by Kuksin. Concerning infinite dimensional tori, results

of the following type are proven in all the works mentioned above.

The actions Ij are nearly conserved along solutions of the nonlinear equation

(NLS) over long times ε−N , i.e., solutions starting on an invariant torus of the

linear equation (LS) stay close to this torus over long times.

In order to prove such a result the frequencies, the eigenvalues of the operator −∆ describ-

ing the linear part, have to satisfy a non-resonance condition as in the finite dimensional

context (but now involving infinitely many frequencies). The frequencies of the nonlinear

Schrödinger equation (NLS) are j2, j ∈ Z, which are obviously resonant, 32 + 42 = 52.

For this reason one has to consider modifications of the nonlinear Schrödinger equation

(NLS) with non-resonant frequencies.

Geometric Numerical Integration of Hamiltonian Ordinary Differential Equa-

tions. Geometric numerical integration is concerned with a structure-preserving numer-

ical integration of differential equations. An outstanding (and characteristic) structure

of Hamiltonian differential equations is the symplecticity of their flow, and much effort

has been put in a symplectic numerical integration of such equations that preserves the

symplecticity, see the monographs [36], [47], and [39]. Often, a symplectic numerical in-

tegration is achieved by splitting the Hamiltonian function into two or more Hamiltonian

functions whose equations of motion are easy to solve and then composed, yielding a

symplectic scheme. Such schemes are called splitting integrators or split-step methods.

A major benefit of a symplectic numerical integration is that the preservation of the

symplectic structure leads to an advantageous behaviour concerning other structures of

the equation, namely invariants such as energy. Indeed, one can show in the case of

Hamiltonian ordinary differential equations that symplectic integrators nearly conserve

energy over long times, see [36, Chapter IX]. The tool to prove such a result is a backward

error analysis where the numerical scheme is interpreted as a solution of a modified

differential equation which turns out to be again Hamiltonian if the method is symplectic.

Geometric Numerical Integration of Hamiltonian Partial Differential Equa-

tions. Concerning Hamiltonian partial differential equations, backward error analysis

seems not to be an appropriate tool to explain the long-time behaviour of symplectic

schemes. The reason for this failure is that backward error analysis requires the product

of the time step-size and the highest frequency of the system to be small, and due to the
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unbounded frequencies in partial differential equations this would lead to an undesirable,

severe, and unrealistic step-size restriction for the results to be valid. Indeed, the fre-

quencies for instance in the nonlinear Schrödinger equation are j2, and a backward error

analysis would require the time step-size to be significantly smaller than 1/j2 where j2 is

the largest frequency appearing in the spatial semi-discretization of the equation.

Clearly, the same problem occurs in the numerical integration of highly oscillatory

Hamiltonian ordinary differential equations. In [33] the technique of modulated Fourier

expansion was developed by Hairer and Lubich to explain the good long-time behaviour

of some trigonometric methods applied to these highly oscillatory equations, see also

[36, Chapter XIII]. Just recently, this was adapted in [16] by Cohen, Hairer, and Lubich

and in [30] by Lubich and the author of the present thesis to the situation of infinitely

many high frequencies in partial differential equations such as the nonlinear wave and

the nonlinear Schrödinger equation. These were the first results explaining the favourable

long-time behaviour of symplectic methods applied to Hamiltonian partial differential

equations. It is shown for perturbations of linear equations such as (NLS) that the

conserved quantities energy and momentum are nearly conserved along suitable symplectic

numerical solutions over long times ε−N . The key for such results is the proof of the long-

time near-conservation of actions along the numerical solutions as observed along the

exact solution.

Discretizations for a general class of Hamiltonian partial differential equations have

been studied recently and independently by Faou, Grébert, and Paturel [25] and [26]

adapting the technique of proof used by Bambusi and/or Grébert [3], [4], and [31] for

the analysis of the exact solution. Let us finally mention the long-time results concerning

discretizations of linear Schrödinger equations due to Dujardin and Faou [22], Castella

and Dujardin [11], and Debussche and Faou [20].

The above problems and results all affect the numerical discretization in time. Con-

cerning the (semi-)discretization in space, there are also interesting problems and solu-

tions. A structure-preserving semi-discretization in space of a Hamiltonian partial dif-

ferential equation leads to a Hamiltonian ordinary differential equation whose long-time

behaviour can, in principle, be understood by applying the classical results to this ordinary

differential equation. This, however, yields different constants for different resolutions of

the spatial domain, i.e., for different spatial discretization parameters, which is unsat-

isfactory from a numerical point of view. In order to understand the influence of the

spatial discretization parameter on long-time results it seems to be inevitable to take the

underlying infinite dimensional structure into account. First long-time results for spatial

semi-discretizations of Hamiltonian partial differential equations with constants indepen-

dent of the spatial discretization parameter have been obtained by Hairer and Lubich in

[34] for nonlinear wave equations and in [29] for nonlinear Schrödinger equations.

Modulated Fourier Expansions. The proofs of the main results in this thesis rely on a

modulated Fourier expansion of the solution of a Hamiltonian partial differential equation

or of its discretization. Modulated Fourier expansions are particularly appealing because
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they allow to transfer the results for the exact solution and in particular their proofs in

an easy way to numerical discretizations.

A modulated Fourier expansion is an expansion of the exact or of the numerical so-

lution of a differential equation such as (NLS) in terms of products of solutions of the

underlying simple equation such as (LS). This turns out to be a two-scale expansion since

the coefficients of these products evolve on a slow time scale εt.

In the context of a long-time analysis, modulated Fourier expansions were introduced

by Hairer and Lubich in [33] in order to study numerical methods for highly oscillatory

differential equations with one high frequency over long times. In [14], together with

Cohen, they used modulated Fourier expansions to analyse exact solutions of these highly

oscillatory differential equations over long times, and in [15] this trio extended [33] to the

case of multiple high frequencies, see also the thesis of Cohen [12]. Another class of highly

oscillatory ordinary differential equations was considered by Cohen in [13]. Many of these

results can be found in the monograph [36, Chapter XIII]. The case of a time-dependent

high frequency was considered by Sigg [48].

In [17], Cohen, Hairer, and Lubich extended the technique of modulated Fourier ex-

pansions to weakly nonlinear wave equations and in [16] to their discretizations by trigono-

metric integrators. Modulated Fourier expansions were also used by Hairer and Lubich

to study spectral semi-discretizations of such nonlinear wave equations over long times

in [34]. In [29] and [30] modulated Fourier expansions are used to analyse exact and

numerical solutions of nonlinear Schrödinger equations.

Reviews of long-time results obtained with modulated Fourier expansions are given in

[35] and [32]. Yet, modulated Fourier expansions are not only used as a tool to analyse

differential equations and numerical methods but also as a numerical scheme for highly

oscillatory ordinary differential equations, see Miranker and van Veldhuizen [43], Cohen

[12], Sigg [48], and the recent contribution [18] by Condon, Deaño, and Iserles. More-

over, modulated Fourier expansions can be used to analyse the convergence of numerical

methods, see Hairer, Lubich, and Wanner [36, Chapter XIII.4] and Sanz-Serna [46].

How does the present thesis contribute to the above fields? In this thesis we show how

modulated Fourier expansions can be used to study the long-time behaviour of a general

class of Hamiltonian partial differential equations and their discretizations. This class

consists of weakly nonlinear Hamiltonian partial differential equations which are pertur-

bations of linear Hamiltonian partial differential equations. In particular, this generalises

and unifies the theory of modulated Fourier expansions developed in [17], [34], and [16] for

nonlinear wave equations and in [29] and [30] for nonlinear Schrödinger equations. The

thesis mainly builds up on the joint work [29] and [30] of the author with Lubich.

As a main result for the exact solution of a Hamiltonian partial differential equation

belonging to the general class mentioned above we prove the long-time near-conservation

of actions along its solution over long times. There is a similar result for a general class
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exact conservation

of energy (1.2, 2.1)
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Weakly nonlinear
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(1, 2.1):

Discretizations of

weakly nonlinear

Hamiltonian PDEs

(4.1, 5.1):

Perturbation Discretization

Figure 1: Outline

of equations by Bambusi and Grébert [4] obtained by Birkhoff normal form techniques.

The result in the present thesis is obtained with a completely different technique of proof.

It is slightly stronger than their result though we are working under less restrictive as-

sumptions.

The understanding of the actions is the starting point to study other invariants of the

linear equation that are not necessarily invariants of the nonlinear equation such as mass

and momentum. We can prove that both are at least nearly conserved over long times

along solutions of the nonlinear equations, see Figure 1. We apply our general results to

nonlinear Schrödinger and nonlinear wave equations.

Moreover, we use a refinement of the result to study the problem of energy distribution

in Hamiltonian partial differential equations. There, one studies initial values with only

finitely many nonzero Fourier coefficients, i.e., all the energy is located in a finite number

of modes, and tries to understand how this energy is distributed among the other modes.

We are able to show that the expected energy distribution is nearly conserved on an again

remarkably long time interval.

The results for the exact solution of Hamiltonian partial differential equations are

formulated in such a way that they are directly applicable also to suitable spatial semi-

discretizations of these equations. We show that invariants and near-invariants of the

exact solution are nearly conserved along solutions of the semi-discretization over long

times, see Figure 1. These results are independent of the spatial discretization parameter.

The examples include spectral semi-discretizations for nonlinear Schrödinger equations

and nonlinear wave equations.

Finally, we study full discretizations of Hamiltonian partial differential equations that
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are based on a splitting of the semi-discretization in space in its linear and its nonlinear

part. Trigonometric integrators for nonlinear wave equations as studied in [16] and split-

ting integrators for nonlinear Schrödinger equations as studied in [30] can be interpreted

as such symplectic numerical schemes. They are standard integrators for these equations.

As for the spatial semi-discretization we show that invariants and near-invariants of the

exact solution are nearly conserved along solutions of the full discretization over long

times, see again Figure 1. Moreover, we show that the results on energy distribution

along exact solutions are also true along these numerical solutions.

The present thesis is organised as follows. In the first chapter we introduce Hamil-

tonian partial differential equations in an abstract framework and derive their (possibly)

conserved quantities actions, energy, mass, and momentum. In the following Chapter 2

we formulate the main results on the exact solution of Hamiltonian partial differential

equations in a weakly nonlinear setting — long-time near-conservation of actions (Theo-

rems 2.5, 2.7, and 2.12), long-time regularity (Corollary 2.9), long-time near-conservation

of mass and momentum (Corollaries 2.10 and 2.11), and long-time energy distribution

(Corollaries 2.13 and 2.14). We exemplify the results using nonlinear Schrödinger and

nonlinear wave equations. Chapter 3 is solely devoted to the proof of the main results of

Chapter 2. This proof is based on modulated Fourier expansions.

In Chapter 4 we study spatial semi-discretizations for which the results of Chapter 2 are

also valid, see Theorems 4.2 and 4.3 and Corollaries 4.4, 4.5, and 4.6. Full discretizations

of Hamiltonian partial differential equations are considered in Chapter 5. Again, our

main results state long-time near-conservation of actions (Theorems 5.4, 5.6, and 5.12),

long-time regularity (Corollary 5.9), long-time near-conservation of energy, mass, and

momentum (Corollaries 5.10 and 5.11), and long-time energy distribution (Corollaries

5.13 and 5.14). These results are proven in the final Chapter 6 adapting the proof for the

exact solution of Chapter 3 to the fully discrete setting. Once again, the main tool is a

modulated Fourier expansion.



1 Hamiltonian Partial Differential

Equations

In this chapter we give a short and self-contained introduction to Hamiltonian partial

differential equations with an emphasis on conserved quantities and examples. For more

information we refer the reader to the monograph [38].

1.1 Hamiltonian Functions and Hamiltonian Equations of Mo-

tion

We introduce Hamiltonian partial differential equations as infinite dimensional Hamilto-

nian systems extending the well-known finite dimensional Hamiltonian formalism. Fol-

lowing [4] and [31] we work on complex phase spaces.

Functional Analytic Setting. By N ⊆ Z
d we denote a set of indices, and we write for

an index j ∈ N
|j| = max

(
1,

√
j2
1 + · · · + j2

d

)
.

For any s ∈ R we consider the Hilbert space

l2s = l2s(C
N ) = { ξ ∈ C

N : ‖ξ‖s < ∞}

of sequences ξ = (ξj)j∈N ∈ C
N of complex numbers equipped with the norm

‖ξ‖s =
(∑

j∈N

|j|2s|ξj|2
) 1

2
,

which is induced by the scalar product (ξ, η)s =
∑

j∈N |j|2sξjηj for ξ = (ξj)j∈N ∈ l2s and

η = (ηj)j∈N ∈ l2s . Note that ‖ξ‖s = ‖ξ‖s where ξ denotes the entrywise complex conjugate

of ξ.

Differentiability. Let U be an open subset of l2s . A map F : U → C is called Fréchet

differentiable in ξ ∈ U if there exists a bounded linear operator DF (ξ) : l2s → C, such

that

lim
κ→0

|F (ξ + κ) − F (ξ) − DF (ξ)κ|
‖κ‖s

= 0.

The gradient of F in ξ is then the sequence ∇F (ξ) = ( ∂F
∂ξj

(ξ))j∈N ∈ l2−s with

DF (ξ)κ = (∇F (ξ), κ)0 for any κ ∈ l2s ,

which exists by the Riesz representation theorem.
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Hamiltonian Systems. Let H : U×U → C be Fréchet differentiable in both components

and write

XH(ξ, η) = −i

( ∇ηH(ξ, η)

−∇ξH(ξ, η)

)
= −i




(
∂H
∂ηj

(ξ, η)
)

j∈N

−
(

∂H
∂ξj

(ξ, η)
)

j∈N


 ∈ l2−s × l2−s.

XH is called the Hamiltonian vector field of the Hamiltonian function H on the phase

space U × U . The Hamiltonian equations of motion are

d

dt

(
ξ(t)

η(t)

)
= XH(ξ(t), η(t))

or

i
d

dt
ξj(t) =

∂H

∂ηj

(ξ(t), η(t)), j ∈ N ,

−i
d

dt
ηj(t) =

∂H

∂ξj

(ξ(t), η(t)), j ∈ N .

We further assume for Hamiltonian functions H that

H(ξ, η) = H(η, ξ)

in an open neighbourhood of { (ξ, ξ) : ξ ∈ U }, implying ∇ξH(ξ, ξ) = ∇ηH(ξ, ξ) for

all ξ ∈ U . Then, for initial values satisfying η(t0) = ξ(t0), the Hamiltonian equations of

motion imply η(t) = ξ(t) for all t where the solution exists, and the Hamiltonian equations

of motion reduce to

i
d

dt
ξj(t) =

∂H

∂ηj

(ξ(t), ξ(t)), j ∈ N . (1.1)

A partial differential equation of the form (1.1) is called a Hamiltonian partial differential

equation, and we will always consider Hamiltonian functions leading to such equations.

Real Hamiltonian Systems. We consider again the equation (1.1). Introducing the

real variables

pj =
√

2 Re(ξj) and qj =
√

2 Im(ξj)

and the real Hamiltonian function H̃(q, p) = H(ξ, ξ), an easy calculation shows that√
2∇pH̃(q, p) = ∇ξH(ξ, ξ) + ∇ηH(ξ, ξ) and −i

√
2∇qH̃(q, p) = ∇ξH(ξ, ξ) − ∇ηH(ξ, ξ).

Hence, the Hamiltonian equations of motion (1.1) become

d

dt
qj(t) =

∂H̃

∂pj

(q(t), p(t)), j ∈ N ,

d

dt
pj(t) = −∂H̃

∂qj

(q(t), p(t)), j ∈ N .

(In fact, the above change of variables is a symplectic transformation preserving the

Hamiltonian structure of the system.) For finite sets N we recover the well-known finite

dimensional Hamiltonian formalism, see for example [36, Chapter VI].

Various partial differential equations fit into the abstract framework presented here.

Some of them are discussed in Sections 1.3, 1.4, and 1.5.
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1.2 Conserved Quantities

A very important topic in the theory of Hamiltonian partial or ordinary differential equa-

tions are quantities which are conserved along any solution of the Hamiltonian equations

of motion (1.1). These conserved quantities (or invariants) represent important physical

properties such as energy conservation and are also very useful in a mathematical anal-

ysis of the equations, see for example [50]. We assume throughout this section that the

Hamiltonian function H(ξ, η) is defined on a phase space U × U ⊆ l2s × l2s with s ≥ 0.

Energy. The energy is defined as the Hamiltonian function H(ξ, η). It is conserved along

any solution of the Hamiltonian equations of motion (1.1).

Proposition 1.1 (Conservation of Energy). Let ξ(t) be a solution of the Hamiltonian

equations of motion (1.1). Then the energy H is conserved along ξ(t),

d

dt
H(ξ(t), ξ(t)) = 0.

Proof. We compute

d

dt
H(ξ(t), ξ(t)) =

(
∇ξH(ξ(t), ξ(t)),

d

dt
ξ(t)

)
0
+

(
∇ηH(ξ(t), ξ(t)),

d

dt
ξ(t)

)
0
.

The Hamiltonian equations of motion (1.1) imply

d

dt
H(ξ(t), ξ(t)) =

(
i
d

dt
ξ(t),

d

dt
ξ(t)

)
0
+

(
i
d

dt
ξ(t),

d

dt
ξ(t)

)
0

= 0.

In addition to the energy, symmetries in the Hamiltonian function induce other con-

served quantities along solutions of the Hamiltonian equations of motion (1.1) such as the

“classical” invariants mass, momentum, and actions. This is made precise in the following

proposition closely related to Noether’s Theorem [36, Chapter VI, Theorem 6.5], see also

[2].

Proposition 1.2 (Noether’s Theorem). For θ ∈ R let gθ : U → U be such that g0 = id

and d
dθ
|θ=0gθ(ξ) = iAξ with a self-adjoint and bounded linear operator A : l2s → l20. If

the Hamiltonian function H(ξ, ξ) is invariant under the transformation ξ 7→ gθ(ξ) for all

θ ∈ R, then

(ξ, Aξ)0

is conserved along any solution ξ(t) of the Hamiltonian equations of motion (1.1),

d

dt
(ξ(t), Aξ(t))0 = 0.

Conversely, if the Hamiltonian function H(ξ, ξ) is not invariant under the transforma-

tion gθ as above for θ → 0 (i.e., there exists ξ and a sequence θn → 0 such that H(ξ, ξ) is

not invariant under gθn
(ξ)), then (ξ, Aξ)0 is not conserved along every solution of (1.1).
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Proof. Since H(gθ(ξ), gθ(ξ)) = H(ξ, ξ) for all ξ ∈ U and θ ∈ R, we have for a solution ξ(t)

of (1.1)

0 =
d

dθ

∣∣∣
θ=0

H(gθ(ξ(t)), gθ(ξ(t))) =
(
∇ξH(ξ(t), ξ(t)), iAξ(t)

)
0
+

(
∇ηH(ξ(t), ξ(t)), iAξ(t)

)
0
.

The Hamiltonian equations of motion (1.1) and the self-adjointness of A imply

0 =
(
i
d

dt
ξ(t), iAξ(t)

)
0
+

(
i
d

dt
ξ(t), iAξ(t)

)
0

=
( d

dt
ξ(t), Aξ(t)

)
0
+

(
ξ(t), A

d

dt
ξ(t)

)
0
.

The result follows.

Mass. We define the mass

m(ξ, η) = (ξ, η)0 =
∑

j∈N

ξjηj.

If H(ξ, ξ) is invariant under the transformation gθ(ξ) = eiθξ, θ ∈ R, then the mass m(ξ, ξ)

is conserved by Proposition 1.2. Indeed, we have d
dθ
|θ=0gθ(ξ) = iξ (A = id).

Proposition 1.3 (Conservation of Mass). Let ξ(t) be a solution of the Hamiltonian

equations of motion (1.1) and assume that H(ξ, ξ) is invariant under the transforma-

tion ξ 7→ eiθξ, θ ∈ R. Then the mass m is conserved along ξ(t),

d

dt
m(ξ(t), ξ(t)) = 0.

Momentum. The momentum is defined as

K(ξ, η) =
∑

j∈N

jξjηj.

The conservation of the lth component of the momentum (l = 1, . . . , d) along solutions

of the Hamiltonian equations of motion (1.1) is a direct consequence of Proposition 1.2

provided that the Hamiltonian function H(ξ, ξ) is invariant under the transformation

gθ(ξ)j = eiθjlξj, θ ∈ R and j ∈ N (in this situation (Aξ)j = jlξj and A maps to l20 for

s ≥ 1).

Proposition 1.4 (Conservation of Momentum). Let s ≥ 1, let ξ(t) be a solution of the

Hamiltonian equations of motion (1.1), and assume that H(ξ, ξ) is invariant under the

transformation ξj 7→ eiθjlξj, θ ∈ R, for an l = 1, . . . , d. Then the lth component Kl of the

momentum is conserved along ξ(t),

d

dt
Kl(ξ(t), ξ(t)) = 0.

Actions. By Proposition 1.2, invariance of H(ξ, ξ) under the transformation gθ(ξ)j =

eiθξj for fixed j ∈ N and gθ(ξ)l = 1 for all j 6= l ∈ N implies the conservation of the jth

action

Ij(ξ, ξ) = |ξj|2

along solutions of the Hamiltonian equations of motion (1.1).
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Proposition 1.5 (Conservation of Actions). Let ξ(t) be a solution of the Hamiltonian

equations of motion (1.1) and assume that H(ξ, ξ) is invariant under the transformation

gθ(ξ)j = eiθξj, θ ∈ R and fixed j ∈ N , and gθ(ξ)l = 1 for all j 6= l ∈ N . Then the jth

action Ij is conserved along ξ(t),

d

dt
Ij(ξ(t), ξ(t)) = 0.

In particular, if H(ξ, ξ) depends only on the actions (|ξj|2)j∈N , then all the actions are

conserved along any solution of (1.1).

Examples of Hamiltonian partial differential equations with and without conserved

quantities are given in the following Sections 1.3, 1.4, and 1.5.

1.3 Example — Linear Schrödinger Equations

Linear Schrödinger equations are fundamental in quantum mechanics. They are used

to describe non-relativistic particles, see for example [40, Chapter I], [42], or [52]. For

convenience we omit here all constants appearing in a physical context.

Free Schrödinger Equations. Consider the Hamiltonian function H : l21 × l21 → C,

H(ξ, η) =
∑

j∈N

ωjξjηj, (1.2)

with N = Z
d and the frequencies ωj = j2

1 + · · · + j2
d . Then

XH(ξ, η) = −i

(
(ωjξj)j∈N

−(ωjηj)j∈N

)
,

and the Hamiltonian equations of motion (1.1) are

i
d

dt
ξj(t) = ωjξj(t).

These are precisely the equations determining the Fourier coefficients ξj(t) along a solution

ψ(x, t) =
∑

j∈N ξj(t)e
i(j·x), where j ·x = j1x1 + · · ·+jdxd, of the free Schrödinger equation

i
∂

∂t
ψ(x, t) = −∆ψ(x, t) (1.3)

with periodic boundary conditions on [−π, π]d, that is x ∈ T
d = R

d/(2πZ
d).

Linear Schrödinger Equations with a Potential of Convolution Type. Consider-

ing the Hamiltonian function (1.2) with frequencies ωj = j2
1 + · · ·+ j2

d +Vj for j ∈ N = Z
d

instead of j2
1 + · · · + j2

d as for the free Schrödinger equation, where Vj are the Fourier
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coefficients of a 2π-periodic potential V (x) ∈ L2(Td) with real Fourier coefficients, leads

to the linear Schrödinger equation

i
∂

∂t
ψ(x, t) = −∆ψ(x, t) + V (x) ∗ ψ(x, t) (1.4)

on T
d = R

d/(2πZ
d). The potential V (x) =

∑
j∈N Vje

i(j·x) acts by convolution on ψ, i.e.,

by multiplication in the frequency domain.

Comparing (1.4) with the free Schrödinger equation (1.3), we notice that the potential

does not change the eigenfunctions ei(j·x), j ∈ N , of the operators on the right-hand

sides of the equations (−∆ and −∆ + V (x)∗) with periodic boundary conditions but

the corresponding eigenvalues ωj. This will be important in our investigations since we

can keep the comfortable eigenfunctions ei(j·x) but obtain frequencies ωj which can be

expected to be not anymore resonant — for the frequencies ωj of the free Schrödinger

equation (1.3) in one dimension (d = 1) we have for instance the resonance ω3 + ω4 = ω5

whereas the potential V in the linear Schrödinger equation (1.4) can be used to exclude

such resonances.

A more difficult situation than in (1.4), where the potential acts by multiplication

instead of convolution on ψ, is presented now in the case of Dirichlet boundary conditions

on [0, π] (dimension d = 1).

Linear Schrödinger Equations with a Multiplicative Potential. Another linear

Schrödinger equation is

i
∂

∂t
ψ(x, t) = −∆ψ(x, t) + V (x)ψ(x, t) (1.5)

with Dirichlet boundary conditions ψ(x, t) = 0 for x on the boundary of [0, π]. The real

potential V (x) satisfying Dirichlet boundary conditions acts here by multiplication on ψ.

As for the free Schrödinger equation (1.3) and the linear Schrödinger equation with

a potential of convolution type (1.4) we aim for a decomposition of the solution ψ(·, t)
in terms of the eigenfunctions of the operator −∆ + V (x) on the right-hand side of the

linear Schrödinger equation (1.5). There is a rich theory on such eigenvalue problems

−∆ϕ(x) + V (x)ϕ(x) = λϕ(x)

with Dirichlet boundary conditions which are referred to as Sturm–Liouville problems,

see for example [53, §27 and §28] and [45, Chapter 2]. In particular, there exists a

complete L2([0, π])-orthonormal set of eigenfunctions ϕj with corresponding eigenvalues

ωj, j ∈ N = N \ {0}, such that ψ(·, t) can be expanded in terms of these eigenfunctions,

ψ(x, t) =
∑

j∈N

ξj(t)ϕj(x).

The equations determining the coefficients ξj(t) are the equations of motion corresponding

to the Hamiltonian function (1.2) with the above eigenvalues ωj as frequencies. Since these

eigenvalues satisfy

c2|j|2 ≤ |ωj| ≤ C2|j|2 for all j ∈ N (1.6)
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with positive constants c2 and C2, the Hamiltonian function is again defined on l21 × l21.

For V = 0 we have ϕj(x) = sin(jx) = 1
2i

(ei(jx) − e−i(jx)) and ωj = j2. A choice

V 6= 0 changes the eigenvalues ωj as well as the eigenfunctions ϕj. This is different to

the situation of a potential of convolution type in (1.4) where the eigenfunctions do not

change for different potentials (but the eigenvalues do).

Conservation of Energy. According to Proposition 1.1 the energy

H(ξ, ξ) =
∑

j∈N

ωj|ξj|2

is conserved along any solution of linear Schrödinger equations (1.3), (1.4), and (1.5). In

terms of the function ψ = ψ(x) the energy becomes due to Parseval’s equality

H(ξ, ξ) =
1

(2π)d

∫

Td

ψ(−∆ψ) dx =
1

(2π)d

∫

Td

|∇ψ|2 dx

for the free Schrödinger equation (1.3),

H(ξ, ξ) =
1

(2π)d

∫

Td

(
|∇ψ|2 + ψ(V ∗ ψ)

)
dx

for the linear Schrödinger equation with a potential of convolution type (1.4), and

H(ξ, ξ) =
1

π

∫

[0,π]

(
|∇ψ|2 + V |ψ|2

)
dx

for the linear Schrödinger equation with a multiplicative potential (1.5).

Conservation of Mass. The invariance of the Hamiltonian function (1.2) under the

transformation ξ 7→ eiθξ implies by Proposition 1.3 the conservation of mass

m(ξ, ξ) =
∑

j∈N

|ξj|2

along solutions of linear Schrödinger equation (1.3), (1.4), and (1.5), which reads in terms

of ψ = ψ(x) by Parseval’s equality for the linear Schrödinger equations (1.3) and (1.4)

m(ξ, ξ) =
1

(2π)d

∫

Td

|ψ|2 dx = ‖ψ‖2
L2(Td)

and

m(ξ, ξ) =
1

π

∫

[0,π]

|ψ|2 dx = ‖ψ‖2
L2([0,π])

for the linear Schrödinger equation (1.5).
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Conservation of Momentum. Since the Hamiltonian function (1.2) is also invariant

under the transformations ξj 7→ eiθjlξj for l = 1, . . . , d, we have conservation of momentum

K(ξ, ξ) =
∑

j∈N

j|ξj|2

along solutions of linear Schrödinger equations (1.3), (1.4), and (1.5) due to Proposition

1.4. Once again, we can rewrite this quantity in terms of the function ψ = ψ(x) itself

using Parseval’s equality,

K(ξ, ξ) = Im
(∑

j∈N

ij|ξj|2
)

=
1

(2π)d

∫

Td

Im(ψ∇ψ) dx

for the free Schrödinger equation (1.3) and the linear Schrödinger equation with a potential

of convolution type (1.4).

Conservation of Actions. The Hamiltonian function (1.2) is also invariant under the

transformations ξj 7→ eiθξj for fixed j ∈ N and ξl 7→ 1 for all j 6= l ∈ N . This implies the

conservation of the actions

Ij(ξ, ξ) = |ξj|2

along solutions of linear Schrödinger equations (1.3), (1.4), and (1.5) by Proposition 1.5.

In fact, the conservation of actions can also be seen directly from the solution ξj(t) =

e−iωjtξj(0) of linear Schrödinger equations. Since energy, mass, and momentum are all

sums of the actions in the case of linear Schrödinger equations, the conservation of actions

also implies conservation of energy, mass, and momentum.

1.4 Example — Nonlinear Schrödinger Equations

A linear Schrödinger equation describing non-relativistic particles is defined on a space

whose dimension d equals three times the number of particles. In order to handle this

high dimensional problem one usually studies reduced models which result in Schrödinger

equations in lower dimensional spaces, see for example [40, Chapter II]. Often these equa-

tions are nonlinear of the types discussed below. Such nonlinear Schrödinger equations

also appear in various other physical contexts, see for example [50].

Nonlinear Schrödinger Equations with a Potential of Convolution Type. Con-

sider the nonlinear Schrödinger equation

i
∂

∂t
ψ(x, t) = −∆ψ(x, t) + V (x) ∗ ψ(x, t) + g(|ψ(x, t)|2)ψ(x, t) (1.7)

on T
d = R

d/(2πZ
d), which is a nonlinear version of (1.4). As for the linear Schrödinger

equation with a potential of convolution type (1.4), V (x) is in L2(Td) with real Fourier

coefficients, and the function g : R → R is assumed to be real-valued and analytic in a

neighbourhood of zero, g(y) =
∑∞

m=0 ymg(m)(0)/m!. Such nonlinear Schrödinger equations
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can be seen as a first attempt to understand the (physically) interesting situation where

the potential of convolution type is replaced by a multiplicative potential. They have

been considered for example by Bambusi and Grébert [4], Bourgain [9], and Eliasson and

Kuksin [23].

In terms of the Fourier coefficients ξj(t), j ∈ N = Z
d, of ψ(x, t) =

∑
j∈N ξj(t)e

i(j·x)

this equation reads

i
d

dt
ξj(t) = ωjξj(t) +

∞∑

m=0

g(m)(0)

m!

∑

j1+···+jm+1

−jm+2−···−j2m+1=j

ξj1(t) · · · ξjm+1(t)ξjm+2(t) · · · ξj2m+1(t)

(1.8)

with the frequencies ωj = j2
1 + · · · + j2

d + Vj. Hence, the nonlinear Schrödinger equation

(1.7) is a Hamiltonian partial differential equation with Hamiltonian function

H(ξ, η) =
∑

j∈N

ωjξjηj +
∞∑

m=0

g(m)(0)

m!(m + 1)

∑

j1+···+jm+1

−jm+2−···−j2m+2=0

ξj1 · · · ξjm+1ηjm+2 · · · ηj2m+2 ,

or in terms of ψ = ψ(x) =
∑

j∈N ξje
i(j·x)

H(ξ, ξ) =
1

(2π)d

∫

Td

(
ψ (−∆ψ + V ∗ ψ) +

∞∑

m=0

g(m)(0)

m!(m + 1)
|ψ|2m+2

)
dx.

We now show that this Hamiltonian function is defined on a neighbourhood U × U
of zero in l2s × l2s for any s > d

2
and s ≥ 1. We first note that

∑
j∈N ωjξjηj is defined on

l21 × l21. For the term resulting from the nonlinearity in (1.7) we have

∣∣∣
∑

j1+···+jm+1

−jm+2−···−j2m+2=0

ξj1 · · · ξjm+1ηjm+2 · · · ηj2m+2

∣∣∣ ≤
(∑

j

|ξj|
)m+1(∑

j

|ηj|
)m+1

and ∑

j∈N

|ξj| ≤
(∑

j∈N

1

|j|2s

) 1
2
(∑

j∈N

|j|2s|ξj|2
) 1

2
=

(∑

j∈N

1

|j|2s

) 1
2‖ξ‖s

by the Cauchy–Schwarz inequality. We finally show that

∑

j∈N

1

|j|2s
converges for s >

d

2
, (1.9)

since this implies together with the analyticity of g that the second term of the Hamilto-

nian function H is defined for sufficiently small ξ, η ∈ l2s with s > d
2
. To show (1.9) we

note that for given 0 6= n ∈ N a crude estimate of the number of j ∈ N with |j| = n is

2(2n + 1)d−1, and hence

∑

j∈N

1

|j|2s
≤ 2

∞∑

n=1

(2n + 1)d−1

n2s
≤ 2 · 3d−1

∞∑

n=1

nd−1−2s.
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The latter series is the well-known generalized harmonic series which converges for s > d
2
.

Note that this estimate is optimal with respect to the possible choice of s since we can show

that
∑

j∈N
1

|j|2s diverges for s ≤ d
2
, see [29, Lemma 1] and references therein. Summarising,

we have shown that the second term in the Hamiltonian function H can be estimated for

s > d
2

by

∣∣∣
∞∑

m=0

g(m)(0)

m!(m + 1)

∑

j1+···+jm+1

−jm+2−···−j2m+2=0

ξj1 · · · ξjm+1ηjm+2 · · · ηj2m+2

∣∣∣

≤
∞∑

m=0

|g(m)(0)|
m!(m + 1)

C2m+2‖ξ‖m+1
s ‖η‖m+1

s ,

(1.10)

and the latter series converges for sufficiently regular g and sufficiently small ‖ξ‖s and

‖η‖s.

Schrödinger–Poisson Equations. We consider an equation of Schrödinger–Poisson

type where g(|ψ(x, t)|2) in the nonlinear Schrödinger equation (1.7) is replaced by a po-

tential W (x, t) which is coupled to the solution ψ(x, t) through a Poisson equation. In

particular, we study the Schrödinger–Poisson equation

i
∂

∂t
ψ(x, t) = −∆ψ(x, t) + V (x) ∗ ψ(x, t) + W (x, t)ψ(x, t),

− ∆W (x, t) = |ψ(x, t)|2 − 1

(2π)d

∫

Td

|ψ(x, t)|2 dx,

∫

Td

W (x, t) dx = 0

(1.11)

on T
d = R

d/(2πZ
d) with a potential V (x) as in (1.4) and (1.7).

In the “standard” Schrödinger–Poisson equation defined on R
d with asymptotic bound-

ary condition ψ(x, t) → 0 as |x| → ∞ instead of periodic boundary conditions, the po-

tential W (x, t) is defined by the Poisson equation

−∆W (x, t) = |ψ(x, t)|2

with asymptotic boundary condition W (x, t) → 0 as |x| → ∞. Since we consider here

periodic boundary conditions for ψ and W , we give this Poisson equation a meaning by

requiring
∫

Td W (x, t) dx = 0 (note that the zeroth Fourier coefficient of W (x, t) is not

defined by the Poisson equation with periodic boundary conditions) and by subtracting
1

(2π)d

∫
Td |ψ(x, t)|2 dx on the right-hand side of the Poisson equation (note that the Poisson

equation with periodic boundary conditions only has a solution if the zeroth Fourier

coefficient on the right-hand side is zero).

Writing the Schrödinger–Poisson equation (1.11) in terms of the Fourier coefficients
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ξj(t) and Wj(t), j ∈ N = Z
d, of ψ(x, t) and W (x, t), respectively, yields

i
d

dt
ξj(t) = ωjξj(t) +

∑

j1+j2=j

ξj1(t)Wj2(t),

(j2
1 + · · · + j2

d)Wj(t) =
∑

j1−j2=j

ξj1(t)ξj2(t) for j 6= 0,

Wj(t) = 0 for j = 0

with the frequencies ωj = j2
1 + · · · + j2

d + Vj, or

i
d

dt
ξj(t) = ωjξj(t) +

∑

j1+j2−j3=j
j2 6=j3

1

(j2
1 − j3

1)
2 + · · · + (j2

d − j3
d)

2
ξj1(t)ξj2(t)ξj3(t). (1.12)

Hence, the Schrödinger–Poisson equation (1.11) is a Hamiltonian partial differential equa-

tion with Hamiltonian function

H(ξ, η) =
∑

j∈N

ωjξjηj +
1

2

∑

j1+j2−j3−j4=0
j2 6=j3

1

(j2
1 − j3

1)
2 + · · · + (j2

d − j3
d)

2
ξj1(t)ξj2(t)ηj3(t)ηj4(t).

As for the nonlinear Schrödinger equation with a potential of convolution type (1.7) this

Hamiltonian function is defined on a neighbourhood U ×U of l2s × l2s for s > d
2

and s ≥ 1.

Nonlinear Schrödinger Equations with a Multiplicative Potential. We consider

a nonlinear variant of (1.5) leading to the nonlinear Schrödinger equation

i
∂

∂t
ψ(x, t) = −∆ψ(x, t) + V (x)ψ(x, t) + g(|ψ(x, t)|2)ψ(x, t) (1.13)

with Dirichlet boundary conditions ψ(x, t) = 0 for x on the boundary of [0, π], where g is

once again assumed to be real-valued and analytic in a neighbourhood of zero. Expressing

ψ(x, t) =
∑

j∈N ξj(t)ϕj(x) as in the linear situation (1.5) in terms of the (real-valued)

eigenfunctions ϕj(x), j ∈ N = N\{0}, of −∆+V (x), the nonlinear Schrödinger equation

(1.13) reduces to

i
d

dt
ξj(t) = ωjξj(t) +

∞∑

m=0

g(m)(0)

m!

∑

j1,...,j2m+1

Pj,(j1,...,jm+1),(jm+2,...,j2m+1)

ξj1(t) · · · ξjm+1(t)ξjm+2(t) · · · ξj2m+1(t),

where ωj are the eigenvalues corresponding to the eigenfunctions ϕj and

Pj,(j1,...,jm+1),(jm+2,...,j2m+1) =
1

π

∫

[0,π]

ϕj(x)ϕj1(x) · · ·ϕj2m+1(x) dx
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by the orthonormality of the eigenfunctions ϕj. These are the Hamiltonian equations of

motion corresponding to the Hamiltonian function

H(ξ, η) =
∑

j∈N

ωjξjηj +
∞∑

m=0

g(m)(0)

m!(m + 1)
∑

j1,...,j2m+2

Pj2m+2,(j1,...,jm+1),(jm+2,...,j2m+1)ξj1 · · · ξjm+1ηjm+2 · · · ηj2m+2

(note that Pj2m+2,(j1,...,jm+1),(jm+2,...,j2m+1) is symmetric in the indices j1, . . . , j2m+2). We

can show as for the nonlinear Schrödinger equation with a potential of convolution type

(1.7) that this Hamiltonian function is defined on a neighbourhood U ×U of zero in l2s × l2s
for s > d

2
and s ≥ 1.

Conservation of Energy. By Proposition 1.1 the energy H(ξ, ξ) is conserved along any

solution of the nonlinear Schrödinger equations (1.7), (1.11), and (1.13). We can write

the energy in terms of the function ψ = ψ(x) as

H(ξ, ξ) =
1

(2π)d

∫

Td

(
|∇ψ|2 + ψ(−∆ψ + V ∗ ψ) +

∞∑

m=0

g(m)(0)

m!(m + 1)
|ψ|2m+2

)
dx

for the nonlinear Schrödinger equation with a potential of convolution type (1.7),

H(ξ, ξ) =
1

(2π)d

∫

Td

(
|∇ψ|2 + V |ψ|2 + W |ψ|2

)
dx,

− ∆W = |ψ|2 − 1

(2π)d

∫

Td

|ψ|2 dx,

∫

Td

W dx = 0

for the Schrödinger–Poisson equation (1.11), and

H(ξ, ξ) =
1

π

∫

[0,π]

(
|∇ψ|2 + V |ψ|2 +

∞∑

m=0

g(m)(0)

m!(m + 1)
|ψ|2m+2

)
dx

for the nonlinear Schrödinger equation with a multiplicative potential (1.13).

Conservation of Mass. The Hamiltonian functions H(ξ, ξ) of the nonlinear Schrödinger

equations (1.7), (1.11), and (1.13) are all invariant under the transformation ξ 7→ eiθξ,

and hence Proposition 1.3 ensures the conservations of mass

m(ξ, ξ) =
∑

j∈N

|ξj|2 =
1

(2π)d

∫

Td

|ψ|2 dx = ‖ψ‖2
L2(Td)

along any solution of (1.7) and (1.11), and

m(ξ, ξ) =
∑

j∈N

|ξj|2 =
1

π

∫

[0,π]

|ψ|2 dx = ‖ψ‖2
L2([0,π])

along any solution of (1.13).
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Conservation or Non-Conservation of Momentum. For the nonlinear Schröding-

er equation with a potential of convolution type (1.7) and for the Schrödinger–Poisson

equation (1.11) the Hamiltonian functions H(ξ, ξ) are invariant under the transformation

ξj 7→ eiθjlξj for l = 1, . . . , d, and hence the momentum

K(ξ, ξ) =
∑

j∈N

j|ξj|2 =
1

(2π)d

∫

Td

Im(ψ∇ψ) dx

is conserved along any solution of these nonlinear Schrödinger equations.

However, the Hamiltonian function H(ξ, ξ) of the nonlinear Schrödinger equation with

a multiplicative potential (1.13) is not anymore invariant under the above transformation,

and Propositions 1.2 and 1.4 do not ensure the conservation of momentum K(ξ, ξ) along

solutions of this nonlinear Schrödinger equation.

Non-Conservation of Actions. None of the Hamiltonian functions H(ξ, ξ) for the

nonlinear Schrödinger equations (1.7), (1.11), and (1.13) is in general invariant under the

transformation ξj 7→ eiθξj for fixed j ∈ N and ξl 7→ 1 for all j 6= l ∈ N , and the actions

Ij(ξ, ξ) = |ξj|2

are in general not conserved along a solution of the nonlinear Schrödinger equations

(1.7), (1.11), and (1.13), see Propositions 1.2 and 1.5. Note however that the actions are

conserved quantities for the linear variants of these equations, see Section 1.3.

linear nonlinear

potential of Schrödinger – multiplicative

(equations (1.3), convolution type Poisson potential

(1.4), and (1.5)) (equation (1.7)) (equation (1.11)) (equation (1.13))

actions exact conservation non-conservation

energy exact conservation

mass exact conservation

momentum exact conservation non-conservation

Table 1: Conservation properties of Schrödinger equations.

The different results on conservation properties of linear and nonlinear Schrödinger

equations are summarised in Table 1. In Sections 2.6, 2.7, and 2.8 we will show that we

have at least long-time near-conservation for all items which are non-conserved.

1.5 Example — Nonlinear Wave Equations

In this section we introduce nonlinear wave equations as Hamiltonian partial differential

equations. We restrict our attention here to wave equations in one spatial dimension

since the theory of the following sections is restricted in the case of wave equations to this

situation. Moreover, we consider only real-valued initial values resulting in real-valued

solutions.
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Nonlinear Wave Equations with Periodic Boundary Conditions. Consider the

nonlinear wave equation

∂2

∂t2
u(x, t) = ∆u(x, t) − ρu(x, t) + g(u(x, t)) (1.14)

with a nonnegative real number ρ and a real-valued and analytic function g. We consider

this equation on T = R/(2πZ), i.e., with periodic boundary conditions. The Sine–Gordon

equation ∂2

∂t2
u(x, t) = ∆u(x, t) − ρ sin(u(x, t)) is an example for this type of equation,

where the nonlinearity is chosen as g(u) = −ρ sin(u) + ρu.

Introducing v(x, t) = ∂
∂t

u(x, t), this equation can be written as a first order equation

(in time), which reads in terms of the Fourier coefficients uj(t) and vj(t), j ∈ N = Z, of

u(x, t) and v(x, t), respectively,

d

dt
uj(t) = vj(t),

d

dt
vj(t) = −ω2

j uj(t) +
∞∑

m=0

g(m)(0)

m!

∑

j1+···+jm=j

uj1(t) · · ·ujm(t)
(1.15)

with ωj =
√

j2 + ρ. Assuming real-valued initial data u(x, 0) and v(x, 0), i.e., uj(0) =

u−j(0) and vj(0) = v−j(0) for j ∈ N , we also have real-valued solutions u(x, t) and v(x, t).

For j ∈ N we set

ξj =
ω

1
2
j uj + iω

− 1
2

j vj√
2

.

Then, uj = u−j ensures that uj =
ξj+ξ−j√

2ωj

and

i
d

dt
ξj(t) = ωjξj(t) −

1√
2ωj

∞∑

m=0

g(m)(0)

m!

∑

j1+···+jm=j

ξj1 + ξ−j1√
2ωj1

· · · ξjm + ξ−jm√
2ωjm

.

Hence, the nonlinear wave equation (1.14) is a Hamiltonian partial differential equation

with Hamiltonian function

H(ξ, η) =
∑

j∈N

ωjξjηj −
∞∑

m=0

g(m)(0)

m!(m + 1)

∑

j1+···+jm+1=0

ξj1 + η−j1√
2ωj1

· · · ξjm+1 + η−jm+1√
2ωjm+1

. (1.16)

Nonlinear Wave Equations with Dirichlet Boundary Conditions. Instead of pe-

riodic boundary conditions on [−π, π] in (1.14) we can consider the same nonlinear wave

equation
∂2

∂t2
u(x, t) = ∆u(x, t) − ρu(x, t) + g(u(x, t)) (1.17)

with Dirichlet boundary conditions u(x, t) = v(x, t) = 0 for x on the boundary of [0, π].

We assume in addition that the nonlinearity g is odd,

g(u) = −g(−u).
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This implies that an odd continuation u(−x, t) = −u(x, t) of a solution of (1.17) is a

solution of the nonlinear wave equation with periodic boundary conditions (1.14). In

particular, the nonlinear wave equation with Dirichlet boundary conditions (1.17) can

be considered as a Hamiltonian partial differential equation with the same Hamiltonian

function as the nonlinear wave equation with periodic boundary conditions (1.14).

We derive now another Hamiltonian function defined on a different phase space for

(1.17). We study u(x, t) and v(x, t) = ∂
∂t

u(x, t) in terms of the eigenfunctions sin(jx),

j ∈ Ñ = N \ {0} of −∆ + ρ with Dirichlet boundary conditions and their corresponding

eigenvalues ω2
j = j2 + ρ. By the theory of Sturm–Liouville problems, see [53, §27 and

§28] and [45, Chapter 2], we can express u(x, t) =
∑

j∈ eN ũj(t) sin(jx) and v(x, t) =∑
j∈ eN ṽj(t) sin(jx) in terms of these eigenfunctions. Note that the equations (1.15) then

take the form

d

dt
ũj(t) = ṽj(t),

d

dt
ṽj(t) = −ω2

j ũj(t) +
∞∑

m=0

g(m)(0)

m!

∑

j1,...,jm∈ eN

Pj,(j1,...,jm)ũj1(t) · · · ũjm(t)

with

Pj,(j1,...,jm) =
1

π

∫

[0,π]

sin(jx) sin(j1x) · · · sin(jmx) dx.

Since solutions of (1.17) are assumed to be real-valued, we have ũj(t) ∈ R and ṽj(t) ∈ R.

Similar as for (1.14) we can introduce complex variables

ξ̃j =
ω

1
2
j ũj + iω

− 1
2

j ṽj√
2

and η̃j = ξ̃j =
ω

1
2
j ũj − iω

− 1
2

j ṽj√
2

to see that the same nonlinear wave equation with Dirichlet boundary conditions (1.17)

is also a Hamiltonian partial differential equation with Hamiltonian function

H(ξ̃, η̃) =
∑

j∈ eN

ωj ξ̃j η̃j −
∞∑

m=0

g(m)(0)

m!(m + 1)

∑

j1,...,jm+1∈ eN

Pjm+1,(j1,...,jm)

ξ̃j1 + η̃j1√
2ωj1

· · · ξ̃jm+1 + η̃jm+1√
2ωjm+1

,

(1.18)

which is denoted again by H by a slight abuse of notation.

Conservation of Energy. We have conservation of energy H(ξ, ξ) along solutions of the

nonlinear wave equation with periodic boundary conditions (1.14) and Dirichlet boundary

conditions (1.17) by Proposition 1.1. In terms of the functions u = u(x, t) and v = v(x, t)

the energy reads by Parseval’s equality

H(ξ, ξ) =
1

2π

∫

T

(
|v|2 + |∇u|2 + ρ|u|2 −

∞∑

m=0

g(m)(0)

m!(m + 1)
um+1

)
dx
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in the case of periodic boundary conditions (1.14) and two times the same expression with

the integral only over [0, π] in the case of Dirichlet boundary conditions (1.17) (this is true

for both Hamiltonian formulations (1.16) and (1.18) of this equation presented above).

Non-Conservation of Mass. The Hamiltonian functions H(ξ, ξ) for the nonlinear wave

equation with periodic boundary conditions (1.14) and Dirichlet boundary conditions

(1.17) are in general not invariant under the transformation ξ 7→ eiθξ, and hence the mass

m(ξ, ξ) is in general not conserved along a solution of the nonlinear wave equations (1.14)

and (1.17) by Propositions 1.2 and 1.3.

Conservation or Non-Conservation of Momentum. For the nonlinear wave equation

with periodic boundary conditions (1.14) the Hamiltonian function H(ξ, ξ) is invariant

under the transformations ξ 7→ eiθjlξj for l = 1, . . . , d. Hence, the momentum

K(ξ, ξ) =
∑

j∈N

j|ξj|2 =
1

2

∑

j∈N

j(ωj|uj|2 + ω−1
j |vj|2 + iujvj − iujvj)

=
∑

j∈N

iju−jvj = − 1

2π

∫

T

( ∂

∂x
u
)( ∂

∂t
u
)

dx

is conserved along any solution of the nonlinear wave equations with periodic boundary

conditions (1.14), see Proposition 1.4.

For the nonlinear wave equation with Dirichlet boundary conditions we have to distin-

guish the two Hamiltonian formulations derived in this section. For the first formulation

(1.16), whose Hamiltonian function agrees with the one for periodic boundary conditions,

we have again conservation of the momentum K(ξ, ξ) =
∑

j∈N j|ξj|2. However, since

the solution satisfies Dirichlet boundary conditions, we have in this formulation that the

coefficients uj and vj, j ∈ N = Z are purely imaginary. This implies that ξ−j = −ξj and

K(ξ, ξ) = 0.

For the second Hamiltonian formulation with Hamiltonian function (1.18) we do not have

invariance under the transformations ξ 7→ eiθjlξj for l = 1, . . . , d anymore. Hence, we have

for this formulation no conservation of momentum

K(ξ̃, ξ̃) =
∑

j∈ eN

j|ξ̃j|2 =
1

2

∑

j∈ eN

j(ωj|ũj|2 + ω−1
j |ṽj|2).

This example shows that for different Hamiltonian formulations of Hamiltonian partial

differential equations different notions of momentum (for instance) occur with even dif-

ferent conservation properties.

Non-Conservation of Actions. The Hamiltonian functions H(ξ, ξ) for the nonlinear

wave equations (1.14) and (1.17) are not invariant under the transformation ξj 7→ eiθξj

for fixed j ∈ N and ξl 7→ 1 for all j 6= l ∈ N . By Propositions 1.2 and 1.5 the actions

Ij(ξ, ξ) = |ξj|2 =
1

2
(ωj|uj|2 + ω−1

j |vj|2 + iujvj − iujvj)
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for periodic boundary conditions (1.14) and

Ij(ξ, ξ) = |ξj|2 =
1

2
(ωj|uj|2 + ω−1

j |vj|2) = I−j(ξ, ξ)

respectively

Ij(ξ̃, ξ̃) = |ξ̃j|2 =
1

2
(ωj|ũj|2 + ω−1

j |ṽj|2)

for Dirichlet boundary conditions (1.17) are not conserved along solutions of these non-

linear wave equations.

linear nonlinear

periodic Dirichlet boundary conditions

boundary conditions formulation (1.16) formulation (1.18)

(equation (1.14)) (equation (1.17)) (equation (1.17))

actions exact conservation non-conservation

energy exact conservation

mass exact conservation non-conservation

momentum exact conservation non-conservation

Table 2: Conservation properties of wave equations.

As in the case of Schrödinger equations we can also consider linear wave equations

∂2

∂t2
u(x, t) = ∆u(x, t)

which result in the same Hamiltonian system (1.2) as linear Schrödinger equations (1.3),

(1.4), and (1.5) with the same conserved quantities actions, energy, mass, and momentum.

All conservation results on wave equations are summarised in Table 2. The non-conserved

quantities are nearly conserved over long times, as we will show in Sections 2.9 and 2.10.



2 Long-Time Analysis of Hamiltonian

Partial Differential Equations

We study solutions of Hamiltonian partial differential equations in the general framework

described in Chapter 1 on a long time interval (see the first two columns in Figure 1).

2.1 Weakly Nonlinear Hamiltonian Partial Differential Equa-

tions

We consider Hamiltonian functions of the form

H(ξ, η) =
∑

j∈N

ωjξjηj + P (ξ, η) (2.1)

on an appropriate phase space U × U ⊆ l2s × l2s whose Hamiltonian equations of motion

(1.1) become

i
d

dt
ξj(t) = ωjξj(t) +

∂P

∂ηj

(ξ, η), j ∈ N ⊆ Z
d. (2.2)

P is a function with P (ξ, η) = P (η, ξ) having a zero of order (at least) three at the origin,

and we will further specify it later on. The assumption P (ξ, η) = P (η, ξ) together with our

general assumption H(ξ, η) = H(η, ξ) implies that the frequencies ωj in the Hamiltonian

function (2.1) have to be real. The examples of Schrödinger and wave equations discussed

in Sections 1.3, 1.4, and 1.5 are of this form.

Linear Hamiltonian Partial Differential Equations. In the absence of the function

P in (2.1), the Hamiltonian equations of motion (2.2) reduce to linear equations1 with

solution ξj(t) = e−iωjtξj(0). The linear Schrödinger equations discussed in Section 1.3 are

of this form. By Proposition 1.1 the energy

H(ξ, ξ) =
∑

j∈N

ωj|ξj|2

is conserved along any solution of (2.2). Moreover, since (for P = 0) H(ξ, ξ) is obviously

invariant under the transformations ξ 7→ eiθξ, ξj 7→ eiθjlξj, and ξj 7→ eiθξj for fixed j ∈ N
and ξl 7→ 1 for all j 6= l ∈ N , also mass

m(ξ, ξ) = (ξ, ξ)0 =
∑

j∈N

|ξj|2,

momentum

K(ξ, ξ) =
∑

j∈N

j|ξj|2,

1For this reason we refer to P as the nonlinearity in (2.1).
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and all actions

Ij(ξ, ξ) = |ξj|2, j ∈ N ,

are conserved by Propositions 1.3, 1.4, and 1.5 along any solution of (2.2) if P = 0. In fact,

the conservation of actions can also be seen directly from the solution ξj(t) = e−iωjtξj(0)

(since the frequencies ωj are real) and implies the conservation of energy, mass, and

momentum which all are sums of the actions. These are the properties mentioned in the

first column of Figure 1.

Problem Setting. In the case P 6= 0, the equations of motion (2.2) are not necessarily

linear anymore. The conservation of energy

H(ξ, ξ) =
∑

j∈N

ωj|ξj|2 + P (ξ, ξ)

is still ensured by Proposition 1.1. However, in contrast to the linear situation, the be-

haviour of mass m, momentum K, and actions Ij along solutions of (2.2) is not clear

anymore. For instance, along solutions of nonlinear Schrödinger equations, we have con-

servation of mass and sometimes also of momentum, whereas the actions are not conserved

in general, see Section 1.4. For nonlinear wave equations mass, momentum, and actions

are not conserved in general, see Section 1.5.

In other words, the presence of the nonlinearity P in the Hamiltonian function (2.1)

can turn conserved quantities into non-conserved ones. Our aim is to study the influence

of the nonlinearity P on these quantities when the nonlinear effects are small. Can we

still expect mass, momentum, and actions to be at least approximately conserved? And

if so, on which time interval is this true?

The nonlinear effects are small if the initial value ξ(0) is small, of size ε say. This is

the situation we study here. Then, after changing to new variables of size 1 by ξ 7→ ε−1ξ,

the Hamiltonian equations of motion (2.2) take the form

i
d

dt
ξj(t) = ωjξj(t) + ε−1 ∂P

∂ηj

(εξ(t), εξ(t)), j ∈ N . (2.3)

Since P is assumed to have a zero of order (at least) three at the origin, the nonlinearity

in the equations of motion is expected to be of size ε. We refer to this situation as weakly

nonlinear.

What We Can Expect. Since the nonlinearity in the equations of motion (2.3) is of size

ε, we can expect the nonlinear effects to be small on a time interval of length ε−1. This

will be made rigorous in Section 3.4. In particular, we have at least near-conservation of

mass, momentum, and actions on such time intervals. We show here that this is actually

true on much longer time intervals of length ε−N for any given number N .

Birkhoff Normal Form Techniques. In order to understand the problem just described

in the finite dimensional context, Birkhoff [7], see also [31, Section 3], introduced in the
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early 20th century a sequence of changes of variables bringing the Hamiltonian function

(2.1) to the form

H
(n)
0 (|ξ(n)|2) + P (n)(ξ(n), η(n))

after n changes of variables. Here, H
(n)
0 depends only on the actions (|ξ(n)

j |2)j∈N , and P (n)

has a zero of order (at least) n+3 at the origin. Without P (n) we have exact conservation

of actions due to Proposition 1.5. As above, the nonlinear effects introduced by P (n)

can be considered small on a time interval of length ε−n−1, since the nonlinearity P (n) is

assumed to have a zero of order at least n+3 at the origin. This implies near-conservation

of actions on time intervals of length ε−n−1. Since mass and momentum are sums of the

actions, this is the key to understand also the behaviour of these quantities on long time

intervals.

This Birkhoff normal form technique was just recently adapted to the infinite dimen-

sional context by Bourgain [8], Bambusi [3], Bambusi and Grébert [4], and Grébert [31].

Here we follow a different approach based on modulated Fourier expansions, see Chapter

3. This approach has been so far applied to the examples of nonlinear wave equations

by Cohen, Hairer, and Lubich [17] and nonlinear Schrödinger equations [29], and it is

extended here to a general class of Hamiltonian partial differential equations.

2.2 Long-Time Near-Conservation of Actions

The key for understanding the long-time behaviour of weakly nonlinear Hamiltonian par-

tial differential equations as introduced in the preceding section is the near-conservation

of actions on a long time interval 0 ≤ t ≤ ε−N , where ε describes the smallness of the

initial value.

We fix N . For our study of the influence of the nonlinearity P in (2.1) on the con-

servation of actions we will need the following assumptions on the nonlinearity P and on

the frequencies ωj.

Assumption 2.1 (Regularity Assumption on P ). We assume that there is an s0 such

that ∂P
∂ηj

is analytic for any j ∈ N in a neighbourhood of zero in l2s × l2s for all s ≥ s0 with

an expansion

∂P

∂ηj

(ξ, η) =
∞∑

m,m′=0

∑

k∈Nm, l∈Nm′

Pj,k,lξk1 · · · ξkmηl1 · · · ηlm
′ , (2.4)

and has a zero of order at least 2 at the origin,

Pj,k,l = 0 for j ∈ N , k ∈ Nm, and l ∈ Nm′

with m + m′ < 2. (2.5)

Writing moreover

|P |m,m′

j (ξ1, . . . , ξm, η1, . . . , ηm′

) =
∑

k∈Nm, l∈Nm′

|Pj,k,l|ξ1
k1 · · · ξm

kmη1
l1 · · · ηm′

lm
′
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for ξ1, . . . , ξm, η1, . . . , ηm′ ∈ l2s we assume that |P |m,m′
= (|P |m,m′

j )j∈N ∈ l2s with

‖|P |m,m′

(ξ1, . . . , ξm, η1, . . . , ηm′

)‖s ≤ Cm,m′,s‖ξ1‖s · · · ‖ξm‖s‖η1‖s · · · ‖ηm′‖s. (2.6a)

Cm,m′,s are constants depending only on P , m, m′, and s, such that

∞∑

m+m′=2

Cm,m′,s|z|m+m′−2 ≤ Cs for all |z| ≤ C1 (2.6b)

with a constant C1 and a constant Cs depending only on P and s. For convenience we

write CL,s = maxm+m′≤L Cm,m′,s.

Taking the modulus of the coefficients Pj,k,l in Assumption 2.1 is referred to as taking

the modulus of a map in [4]. The regularity assumption implies in particular

∥∥∥
∂P

∂ηj

(ξ, ξ)
∥∥∥

s
≤

∞∑

m+m′=2

Cm,m′,s‖ξ‖m+m′

s ≤ Cs‖ξ‖2
s (2.7)

for ‖ξ‖s ≤ C1.

Assumption 2.2 (Condition of Small Dimension or Zero Momentum). We assume that

the frequencies ωj grow like a power of |j|, i.e., there exist positive constants c2, C2, and

σ such that

c2|j|σ ≤ |ωj| ≤ C2|j|σ for all j ∈ N . (2.8)

Moreover, we assume that

s0 ≤ σ and s ≥ N + 3 + 3s0 (2.9a)

with s0 and s from the regularity assumption 2.1. If (2.9a) is not fulfilled, we alternatively

assume that

Pj,k,l 6= 0 implies j = k1 + · · · + km − l1 − · · · − lm
′

(2.9b)

for j ∈ N , k ∈ Nm, and l ∈ Nm′
. In the latter assumption the addition + of indices is

not necessarily the addition in Z
d. Any addition such that the triangle inequality for |·|

is fulfilled can be considered.2

As we will see in the examples in Sections 2.6, 2.7, 2.8, and 2.9, we have σ = 2

and σ = 1 for d-dimensional Schrödinger and wave equations, respectively, and s0 can

be chosen as any number greater than d
2
. Accordingly, the assumption (2.9a) can be

interpreted as a condition of small dimension.

In [4], k1 + · · · + km − l1 − · · · − lm
′ − j is referred to as the momentum of (j, k, l).

Accordingly, condition (2.9b) is a condition of zero momentum which is indeed fulfilled

2If we study for instance the equations of motion of a semi-discretization in space of a Hamiltonian

partial differential equation, the addition of indices can be the addition modulo 2M for M ∈ N, see

Sections 4.5 and 4.6.



2 Long-Time Analysis of Hamiltonian Partial Differential Equations 31

in many examples. We emphasize that only one of the conditions, either the condition of

zero momentum (2.9b) or the condition of small dimension (2.9a), has to be satisfied.

We now turn to the formulation of a non-resonance condition on the frequencies ωj,

j ∈ N . For a sequence k = (kl)l∈N ∈ Z
N of integers kl indexed by N and the sequence

ω = (ωl)l∈N of frequencies we write

k · ω =
∑

l∈N

klωl, ‖k‖ =
∑

l∈N

|kl|, j(s−s0)|k| =
∏

l∈N

|l|(s−s0)|kl|, j(k) =
∑

l∈N

kll,

where j(k) is only defined (and also needed) if the condition of zero momentum (2.9b)

in Assumption 2.2 is satisfied with the addition of indices used there. Since we have to

divide by k · ω − ωj in our analysis, we impose the following non-resonance condition in

order to control the effect of possibly small denominators.

Assumption 2.3 (Non-Resonance Condition). Let ε ≤ ε0 for fixed ε0 ≤ 1. We define an

(ε-)near-resonant index (j,k) as an index with

‖k‖ ≤ 2N + 4 + 4s0, k 6= 〈j〉, and |k · ω − ωj| < ε
1
2 ,

where 〈j〉 = (δjl)l∈N with Kronecker’s delta. For given N and s ≥ s0 from the regularity

assumption 2.1 we impose the non-resonance condition

|j|s−s0

j(s−s0)|k|
ε

1
2
‖k‖ ≤ C0ε

N+3+2s0 for any (ε-)near-resonant index (j,k) (2.10)

and any ε ≤ ε0 ≤ 1 on the frequencies ωl, l ∈ N , with a constant C0 independent of ε

and (j,k). If the condition of zero momentum (2.9b) is satisfied in Assumption 2.2, only

near-resonant indices of the form (j(k),k) have to be considered in (2.10).

This non-resonance condition 2.3 can be interpreted as follows. Whenever a sum of

frequencies becomes small (in terms of ε
1
2 ), at least three of its frequencies have to be

large (in terms of ε−1).

The following additional non-resonance condition is not needed in our theorems and

their proofs, but we can prove stronger estimates if it is fulfilled in combination with the

condition of zero momentum (2.9b) in Assumption 2.2. It allows to avoid near-resonances

among three frequencies.

Assumption 2.4 (Additional (Optional) Non-Resonance Condition). There exists a pos-

itive constant C3 such that

|k · ω − ωj(k)| ≥ C−1
3 for all k 6= 〈j〉 with ‖k‖ ≤ 2, (2.11)

and the condition of zero momentum (2.9b) is satisfied in Assumption 2.2.

Under these assumptions we have the following theorem.
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Theorem 2.5 (Long-Time Near-Conservation of Actions). Fix N and let the regularity

assumption 2.1, the condition of small dimension or zero momentum 2.2, and the non-

resonance condition 2.3 be satisfied. Then for any ε sufficiently small compared to C1,

Cs0, Cs, and s ≥ 2s0 from 2.1, c2, C2, and σ from 2.2, C0 and ε0 from 2.3, and N and

for small initial values

‖ξ(0)‖s ≤ ε

we have near-conservation of actions

∑

l∈N

|l|2s |Il(ξ(t), ξ(t)) − Il(ξ(0), ξ(0))|
ε2

≤ Cε
1
2 (2.12)

over long times

0 ≤ t ≤ ε−N

along any solution ξ(t) of the Hamiltonian equations of motion (2.2) with a constant C

depending only on C1, Cs0, Cs, s0, s, c2, C2, σ, C0, and N , but not on ε.

The near-conservation of actions improves to Cε with a constant C depending in

addition on C3 if in addition the non-resonance condition 2.4 is satisfied.

The following Chapter 3 is devoted to the proof of this theorem.

Invariant Tori of Linear Hamiltonian Partial Differential Equations. Solutions

ξj(t) = e−iωjtξj(0) of linear Hamiltonian partial differential equations with P = 0 in the

Hamiltonian function (2.1) evolve on the torus

Tη = { ξ : Ij(ξ, ξ) = ηj }

for η = (ηj)j∈N = ξ(0). Theorem 2.5 implies that solutions ξ(t) of the nonlinear partial

differential equation (2.2) starting on the torus Tξ(0) with ‖ξ(0)‖s ≤ ε stay close to this

torus,

ds(ξ(t), Tξ(0)) ≤ Cε
5
4 , (2.13)

over long times. Here, ds denotes the distance in l2s defined by ds(ξ, η) = ‖ξ − η‖s. In

order to prove (2.13) we choose for ξ = ξ(t) an η ∈ Tξ(0) in such a way that ‖ξ − η‖s =

‖|ξ(t)| − |ξ(0)|‖s and use ||ξj(t)| − |ξj(0)||2 ≤ ||ξj(t)|2 − |ξj(0)|2|.
In the remaining part of this chapter we formulate adaptations of this theorem to

slightly more general situations, derive important implications, and apply it to various

examples.

The Case of Partial Resonances. For the nonlinear wave equation with periodic

boundary conditions as discussed in Section 1.5 the frequencies ωj =
√

j2 + ρ are com-

pletely resonant in the sense that a nontrivial linear combination of them can equal zero.

This is caused by the fact that ωj = ω−j. However, if this is the only reason for complete

resonances among the frequencies, we can adapt Theorem 2.5 on the long-time near-

conservation of actions to a long-time near-conservation of certain sums of actions. This

condition is now formulated precisely, replacing the non-resonance condition 2.3.
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Assumption 2.6 (Non-Resonance Condition in the Presence of Completely Resonant

Frequencies). We denote the resonance module (see [6] or [15]) by

M = {k ∈ Z
N : k · ω = 0 }.

The non-resonance condition 2.3 is then relaxed to the condition that only near-resonant

indices (j,k) with k−〈j〉 6∈ M are assumed to satisfy the non-resonance condition (2.10).

In order to control the complete resonances in M we assume that for any m ∈ N

if k ∈ M, then
∑

j∈N :|j|=m

kj =
∑

j∈N :|j|=m

kjωj = 0. (2.14)

Note that this non-resonance condition 2.6 does not control resonances which appear

for example for ρ = 0 in the nonlinear wave equation. It is an open problem how to deal

with such “hyper-resonant” Hamiltonian partial differential equations. For hyper-resonant

nonlinear Schrödinger equations ((1.7) with V = 0) long-time regularity in spatial dimen-

sion one (d = 1) is shown for many initial values by Bourgain [10].

If the non-resonance condition 2.3 is replaced by the non-resonance condition 2.6, we

cannot expect the actions to be approximately conserved anymore since exchanges among

the modes ξl with constant |l| are possible due to the resonances. However, we can control

the sums of actions ∑

l∈N :|l|=m

Il(ξ, ξ)

for m ∈ N in which the possibly exchanging actions are collected.

Theorem 2.7 (Long-Time Near-Conservation of Sums of Actions). Under the assump-

tions of Theorem 2.5 but with the non-resonance condition 2.3 replaced by the non-

resonance condition 2.6 we have near-conservation of sums of actions

∑

m∈N

m2s
|∑l∈N :|l|=m Il(ξ(t), ξ(t)) −

∑
l∈N :|l|=m Il(ξ(0), ξ(0))|

ε2
≤ Cε

1
2 (2.15)

over long times

0 ≤ t ≤ ε−N

with the constant C of Theorem 2.5.

As there, the estimate improves to Cε if in addition the non-resonance condition 2.4

is satisfied.

The proof of this theorem is also given in Chapter 3.

Comparison with the Dynamic Consequences of Birkhoff Normal Form Results

(Bambusi and Grébert [4], [31]). Similar results as in Theorems 2.5 and 2.7 have been

obtained by Bambusi and Grébert [4, Corollary 2.16] and [31, Corollary 4.8]. Our result

on the near-conservation of actions is slightly stronger since their result is an estimate of

the individual summands in (2.12) and (2.15), whereas we estimate the total sum.
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As in the present thesis they consider a general class of Hamiltonian partial differential

equations. Our assumptions defining the considered class are weaker than the assumptions

used by Bambusi and Grébert [4], [31]. In [4], a so called “tame estimate” replaces our

assumption (2.6) on the regularity of the nonlinearity P in 2.1. In this tame estimate

the product on the right-hand side of (2.6) is replaced by a sum of such products with

only one factor in the l2s-norm and all the other factors in lower norms, see [4, Definition

2.2]. This is clearly a stronger assumption than our Assumption 2.1. Moreover, the

proof of [31, Proposition 6.1] shows that the assumption used in [31] also implies a kind

of tame estimate stronger than our Assumption 2.1. In the following section we will

moreover show in Lemma 2.8 that the non-resonance condition used by Bambusi and

Grébert implies our non-resonance condition 2.3. Concerning our Assumption 2.2, we

mention that Bambusi and Grébert use a condition of zero momentum similar to (2.9b)

if they consider partial differential equations in more than one spatial dimension (which

do not satisfy the condition of small dimension (2.9a)).

2.3 On the Non-Resonance Condition

The non-resonance condition 2.3 (or 2.6 for partially resonant frequencies) turns out to

be the most crucial assumption we made. It excludes in particular hyper-resonant Hamil-

tonian partial differential equations such as nonlinear Schrödinger equations (1.7) with

V = 0 and nonlinear wave equations (1.14) and (1.17) with ρ = 0. However, we can show

that the non-resonance condition is satisfied in many situations. We do this by reducing

our non-resonance condition 2.3 to the one used by Bambusi and Grébert [3], [4], and

[31] which has been shown to be valid in many situations. Their non-resonance condition

reads as follows, see [4, Inequality (2.22)], [3, Inequality (3.3)], and [31, Definition 4.4].

Non-Resonance Condition by Bambusi and Grébert. For any r′ ∈ N there exist

γ > 0 and α ∈ R such that for any r ∈ N and any k̃ ∈ Z
N

|k̃ · ω| ≥ γ

rα
if 0 6= ‖k̃‖ ≤ r′ + 2 and

∑

|l|>r

|k̃l| ≤ 2. (2.16)

Similar to our non-resonance condition 2.3, this condition can be interpreted as a

condition requiring that a small sum of frequencies contains at least three large frequencies.

However, the sizes are here measured in terms of |j| for frequencies ωj whereas they are

measured in terms of ε in our non-resonance condition 2.3. Indeed, the non-resonance

condition 2.3 is implied by the non-resonance condition (2.16) used by Bambusi and

Grébert.

Lemma 2.8 ([17, Lemma 1]). If the asymptotics of the frequencies (2.8) in Assumption

2.2 is valid and if ε ≤ 1, then we have the following result.

If the non-resonance condition (2.16) is fulfilled for k̃ = k− 〈j〉 with a near-resonant

index (j,k), then this near-resonant index also satisfies the non-resonance condition (2.10)
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in Assumption 2.3 for s ≥ 2α(N + 3 + 2s0) + s0 and a constant C0 depending only on α,

γ, s0, c2, C2, σ, and N , where α and γ are chosen in (2.16) for r′ = 2N + 3 + 4s0.

In particular, the non-resonance condition (2.16) implies the non-resonance condition

2.3.

Proof. Let (j,k) be near-resonant, i.e., |k ·ω−ωj| < ε
1
2 , k 6= 〈j〉, and ‖k‖ ≤ 2N +4+4s0.

We have to show that
|j|s−s0

j(s−s0)|k|
ε

1
2
‖k‖ ≤ C0ε

N+3+2s0

for a constant C0.

The asymptotics of the frequencies (2.8) implies (without loss of generality we assume

C2 ≥ 1)

|j| ≤
( |ωj|

c2

) 1
σ ≤

( |k · ω| + ε
1
2

c2

) 1
σ ≤

(2C2‖k‖|l̄|σ
c2

) 1
σ

, (2.17)

where l̄ ∈ N denotes the largest index (not necessarily unique) with respect to |·| with

kl̄ 6= 0. Now, let r ∈ N be minimal such that
∑

|l|>r|kl| ≤ 1. In particular, we have r = |l̄|
and |kl̄| ≥ 2, or there exists l̄ 6= l ∈ N with r = |l| ≤ |l̄| and kl 6= 0. In both cases

j(s−s0)|k| ≥ |l̄|s−s0rs−s0 , and in conjunction with (2.17) we get

|j|s−s0

j(s−s0)|k|
≤

(2C2‖k‖
c2

) s−s0
σ 1

rs−s0
. (2.18)

This means that we can control |j|

j|k|
by 1

r
where ωl with |l| = r is asymptotically the second

largest frequency in k · ω.

We now use the non-resonance condition (2.16), where we choose r′ = 2N + 3 + 4s0,

which gives us a control on r. We write k̃ = k − 〈j〉 and note that 0 6= ‖k̃‖ ≤ r′ + 2 and∑
|l|>r|k̃l| ≤ 2. Then by (2.16)

γ

rα
≤ |k̃ · ω| = |k · ω − ωj| < ε

1
2 ,

and with (2.18)

|j|s−s0

j(s−s0)|k|
≤

(2C2‖k‖
c2

) s−s0
σ

(ε
1
2

γ

) s−s0
α

.

In other words, (j,k) satisfies (2.10) for s as specified in the lemma and

C0 =
(2C2‖k‖

c2

) s−s0
σ

γ−
s−s0

α .

Since the condition (2.10) becomes weaker the larger s, we can indeed choose C0 inde-

pendently of s.
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2.4 Long-Time Regularity and Long-Time Analysis of Mass and

Momentum

Theorems 2.5 and 2.7 on the long-time near-conservation of actions or sums of them

along solutions of (2.2) have several important consequences. A first implication of these

theorems is the long-time regularity of the solution of (2.2).

Corollary 2.9 (Long-Time Regularity). Under the assumptions of Theorem 2.5 or The-

orem 2.7 we have regularity

‖ξ(t)‖s ≤ 2ε (2.19)

over long times

0 ≤ t ≤ ε−N .

Proof. This follows immediately from Theorem 2.5 since

‖ξ‖s =
(∑

l∈N

|l|2sIl(ξ, ξ)
) 1

2
=

(∑

m∈N

m2s
∑

l∈N :|l|=m

Il(ξ, ξ)
) 1

2

and ‖ξ(0)‖s ≤ ε (we choose ε sufficiently small compared to the constant of Theorem 2.5

which depends only on C1, Cs0 , Cs, s0, s, c2, C2, σ, C0, and N).

We now study mass

m(ξ, ξ) =
∑

j∈N

|ξj|2

and momentum

K(ξ, ξ) =
∑

j∈N

j|ξj|2

along solutions of (2.2). Propositions 1.3 and 1.4 imply their exact conservation provided

that the Hamiltonian function is invariant under some transformations. If this is not

the case, Theorem 2.5 and for the mass also Theorem 2.7 still allow us to show their

near-conservation over long times, since they both are sums of the actions Ij(ξ, ξ) = |ξj|2.

Corollary 2.10 (Long-Time Near-Conservation of Mass). Under the assumptions of The-

orem 2.5 or Theorem 2.7 we have near-conservation of mass

|m(ξ(t), ξ(t)) − m(ξ(0), ξ(0))|
ε2

≤ Cε
1
2 (2.20)

over long times

0 ≤ t ≤ ε−N

with the constant C of Theorem 2.5.

As there, the estimate improves to Cε if in addition the non-resonance condition 2.4

is satisfied.
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Proof. We just note that

|m(ξ(t), ξ(t)) − m(ξ(0), ξ(0))| ≤
∑

m∈N

∣∣∣
∑

l∈N :|l|=m

Il(ξ(t), ξ(t)) − Il(ξ(0), ξ(0))
∣∣∣

≤
∑

l∈N

|Il(ξ(t), ξ(t)) − Il(ξ(0), ξ(0))|.

The result now follows from Theorem 2.5 or Theorem 2.7.

Corollary 2.11 (Long-Time Near-Conservation of Momentum). Under the assumptions

of Theorem 2.5 and for s ≥ 1
2

we have near-conservation of momentum

|Kl(ξ(t), ξ(t)) − Kl(ξ(0), ξ(0))|
ε2

≤ Cε
1
2 (2.21)

for l = 1, . . . , d over long times

0 ≤ t ≤ ε−N

with the constant C of Theorem 2.5.

As there, the estimate improves to Cε if in addition the non-resonance condition 2.4

is satisfied.

Proof. We have

|Kl(ξ(t), ξ(t)) − Kl(ξ(0), ξ(0))| ≤
∑

j∈N

|jl||Ij(ξ(t), ξ(t)) − Ij(ξ(0), ξ(0))|,

and since |jl| ≤ |j| the result once again follows from Theorem 2.5.

The proof of Corollary 2.11 is not applicable in the case of partial resonances discussed

in Theorem 2.7 (in contrast to the proof of Corollary 2.10). Long-time investigations of the

momentum in this situation rely on the particular structure of the Hamiltonian function

H, see for example Section 4.5.

2.5 Long-Time Energy Distribution

In this section we study again solutions of the Hamiltonian equations of motion (2.2) with

small initial values

‖ξ(0)‖s ≤ ε.

In addition we assume that there are only finitely many nonzero coefficients ξj(0) in the

initial value. We distinguish two different situations.

(a) All nonzero coefficients of the initial value are located in a finite band (of width

2B, centered at zero),

ξj(0) = 0 for |j| > B, (2.22a)

see also Figure 2.
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(b) There is a pair of nonzero coefficients ξj̃(0) and ξ−j̃(0) with j̃ 6= 0 in the initial

value,

ξj(0) = 0 for all ±j̃ 6= j ∈ N , (2.22b)

see also Figure 3.

In other words, all the energy is initially located in a finite number of modes (the

energy in a mode ξj is defined as the action Ij(ξ, ξ) multiplied with the frequency ωj). In

this section we examine how this energy is distributed among the other modes along a

solution of (2.2).

What We Can Expect. First of all, Theorem 2.5 (or Theorem 2.7 in the case of partial

resonances) ensures that the actions Ij (i.e., the energy in the jth mode) stay of size ε
5
2

(or even ε3) in all modes which are zero initially on a long time interval of length ε−N .

We have ∑

j 6∈B

|j|2sIj(ξ(t), ξ(t)) ≤ Cε
5
2 (or even Cε3),

where B = { j ∈ N : |j| ≤ B } in situation (2.22a) and B = {±j̃} in situation (2.22b),

over long times

0 ≤ t ≤ ε−N .

If we impose the condition of zero momentum (2.9b) in Assumption 2.2, we can expect

more, at least on a short time interval. The Hamiltonian equations of motion (2.2) then

take the form (see also (2.4))

i
d

dt
ξj(t) = ωjξj(t) +

∞∑

m+m′=2

∑

k1+···+km

−l1−···−lm
′
=j

Pj,k,lξk1 · · · ξkmξl1 · · · ξlm
′ (2.23)

with k = (k1, . . . , km) and l = (l1, . . . , lm
′
).

(a) Assuming an initial value as in (2.22a) with all the energy located in a finite band

we notice that for (m − 1)B < |j| ≤ mB the nonlinearity in (2.23) is of size εm since

it contains at least m modes of the initially excited band |j| ≤ B. Since ξj(0) = 0 for

|j| > B, we can therefore expect the modes ξj with (m − 1)B < |j| ≤ mB to be of size

εm, at least on a short time interval, see Figure 2.

0 1 B 2B 3B 4B−B−2B−3B−4B . . .. . . N = Z

ε2

ε4

ε6

ε8

Ij

Figure 2: Initial (grey dots) and expected (black dots) energy distribution for (2.22a).
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0 1 j̃ 2j̃ 3j̃ 4j̃−j̃−2j̃−3j̃−4j̃ . . .. . . N = Z

ε2

ε4

ε6

ε8

Ij

Figure 3: Initial (grey dots) and expected (black dots) energy distribution for (2.22b).

(b) For initial values with only an excited pair of modes ξj̃ and ξ−j̃ as in (2.22b) we

expect that — due to the condition of zero momentum — this mode distributes its energy

only among the modes ξj with j ∈ {mj̃ : m ∈ Z }. Here and in the following, the addition

used in the condition of zero momentum (2.9b) is used to compute mj̃. Moreover, we

expect by an analysis of the nonlinearity in (2.23) that ξ0 and ξ±2j̃ are of size ε2, ξ±3j̃ are

of size ε3, and so on, see Figure 3.

As it turns out, we are able to study all these situations on a long time interval by

the following generalisation of Theorem 2.5 (or Theorem 2.7) which enables us to treat

scaled norms

‖ξ‖s,e =
(∑

j∈N

ε−2e(j)(1−µ)|j|2s|ξj|2
) 1

2
= ‖(ε−e(j)(1−µ)ξj)j∈N‖s

and correspondingly scaled actions. As a scaling function we will later choose e(j) such

that ε2e(j) represents the expected energy distribution.

Theorem 2.12 (Long-Time Near-Conservation of Scaled Actions). Let e : N → R+

satisfy the triangle inequality and let 0 < µ ≤ 1. (If the nonlinearity ∂P
∂ηj

is at least cubic

for all j ∈ N and Pj,k,l 6= 0 only for k ∈ Nm+1 and l ∈ Nm, then the triangle inequality

has to be satisfied only for sums of at least three indices.)

Under the assumptions of Theorem 2.5 with the condition of zero momentum (2.9b)

satisfied in Assumption 2.2 and for small initial values

‖ξ(0)‖s,e ≤ εµ

instead of ‖ξ(0)‖s ≤ ε with εµ satisfying the smallness assumption of Theorem 2.5 we

have near-conservation of scaled actions

∑

l∈N

|l|2s |Il(ξ(t), ξ(t)) − Il(ξ(0), ξ(0))|
ε2e(l)(1−µ)+2µ

≤ Cε
1
2
µ

over long times

0 ≤ t ≤ ε−Nµ
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with the constant C of Theorem 2.5.

In the situation of partial resonances as in Theorem 2.7 we have near-conservation of

sums of scaled actions

∑

m∈N

m2s
|∑l∈N :|l|=m Il(ξ(t), ξ(t)) −

∑
l∈N :|l|=m Il(ξ(0), ξ(0))|

ε2e(m)(1−µ)+2µ
≤ Cε

1
2
µ

over long times 0 ≤ t ≤ ε−Nµ if e(l) = e(|l|) depends only on |l|.
The near-conservation of actions or sums of actions improves to Cεµ with a constant

C depending in addition on C3 if in addition the non-resonance condition 2.4 is satisfied.

The proof of this theorem is given in Section 3.7 and consists of an easy modification

of the proofs of Theorems 2.5 and 2.7 given in Chapter 3. For µ = 1 Theorem 2.12 reduces

to Theorems 2.5 and 2.7. In applying this theorem we focus first on the situation (2.22a)

of a finite band initial value ξ(0).

Corollary 2.13 (Long-Time Energy Distribution (a)). Let 0 < µ ≤ 1. Under the as-

sumptions of Theorem 2.5 or Theorem 2.7 with the condition of zero momentum (2.9b)

satisfied in Assumption 2.2 and for small initial values

‖ξ(0)‖s ≤ ε with (2.22a)

we have for any ε, such that εµ satisfies the smallness assumption of Theorem 2.5 or 2.7,

the energy distribution
∑

(m−1)B<|l|≤mB

|l|2sIl(ξ(t), ξ(t)) ≤ Cε2m(1−µ)+ 5
2
µ

for m ≥ 2 over long times

0 ≤ t ≤ ε−Nµ

with the constant C of Theorem 2.5.

The estimate improves to Cε2m(1−µ)+3µ if in addition the non-resonance condition 2.4

is satisfied.

Proof. Motivated by Figure 2 we apply Theorem 2.12 with the scaling function

e(l) =
⌈ |l|
B

⌉
.

This scaling function satisfies the triangle inequality since

e(l + j) =
⌈ |l + j|

B

⌉
≤

⌈ |l| + |j|
B

⌉
≤

⌈ |l|
B

⌉
+

⌈ |j|
B

⌉
= e(l) + e(j),

and we have for the initial value

‖ξ(0)‖s,e =
( ∑

|j|≤B

ε−2e(j)(1−µ)|j|2s|ξj(0)|2
) 1

2
= ε−(1−µ)‖ξ(0)‖s ≤ εµ.

The statement now follows from Theorem 2.12.
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Corollary 2.13 shows that the expected behaviour (see Figure 2) can be observed

on long time intervals up to a factor 1 − µ in the exponent of ε. In the case of no

partial resonances, Corollary 2.13 holds true if the (modified) Euclidean norm |·| in (m−
1)B < |l| ≤ mB is replaced by any other norm (or any other map satisfying the triangle

inequality). In this way we are able to treat not only finite bands with the form of a

circle, but also cubes, and so on.

Now we study the situation (b) where a pair of modes ξj̃ and ξ−j̃ is excited initially.

We denote for l ∈ {mj̃ : m ∈ Z }∩N by m(l) the minimal integer with respect to |·| such

that l = m(l)j̃.3 Again, we obtain the expected behaviour (see Figure 3) up to a factor

1 − µ on a long time interval.

Corollary 2.14 (Long-Time Energy Distribution (b)). Let 0 < µ ≤ 1. Under the assump-

tions of Theorem 2.5 with the condition of zero momentum (2.9b) satisfied in Assumption

2.2 and for small initial values

‖ξ(0)‖s ≤ ε with (2.22b)

we have for any ε, such that εµ satisfies the smallness assumption of Theorem 2.5, the

energy distribution

I0(ξ(t), ξ(t)) ≤ Cε4(1−µ)+ 5
2
µ,

|l|2sIl(ξ(t), ξ(t)) ≤ Cε2|m(l)|(1−µ)+ 5
2
µ

for 0,±j̃ 6= l ∈ {mj̃ : m ∈ Z } ∩ N over long times

0 ≤ t ≤ ε−Nµ

with the constant C of Theorem 2.5. If l 6∈ {mj̃ : m ∈ Z }, then ξl(t) = 0 for all times t.

The same result holds true in the situation of Theorem 2.7 in dimension one (d = 1).

The estimates improve by a factor ε
1
2
µ if in addition the non-resonance condition 2.4 is

satisfied.

Proof. We first show that

ξl(t) = 0 for all times t if l 6= mj̃ for all m ∈ Z. (2.24)

This is done by differentiating the Hamiltonian equations of motion (2.23) several times

with respect to t and evaluating at t = 0. Due to the condition of zero momentum the

nonlinearity then cancels for all l 6= mj̃. We thus have dn

dtn
ξl(0) = 0 for all n ≥ 0 and all

l 6= mj̃. This proves (2.24).

3Recall that in order to compute mj̃ the addition of indices introduced in the condition of zero

momentum (2.9b) is used. If this is the addition in Z
d, then an integer m with l = mj̃ is unique. If the

addition is, however, the addition modulo 2M for instance, an integer m with l = mj̃ is not necessarily

unique.
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We now apply Theorem 2.12 with the scaling function

e(l) =





|m(l)|, if 0 6= l = mj̃ for an m ∈ Z,

2, if l = 0,

∞, else

and the convention ε−∞0 = 0. The latter convention is justified by (2.24). The function

e satisfies the triangle inequality since we have for 0 6= l + j = m(l + j)j̃ = (m(l)+m(j))j̃

e(l + j) = |m(l + j)| ≤ |m(l)| + |m(j)| ≤ e(l) + e(j)

by the minimal choice of m(l). Moreover e(l + j) = 2 ≤ e(l) + e(j) if 0 = l + j. If

e(l + j) = ∞, then e(l) = ∞ or e(j) = ∞ and the triangle inequality is clear. For the

initial value we have ‖ξ(0)‖s,e ≤ εµ since e(l) ≥ 1 for all l ∈ N . The statement now

follows from Theorem 2.12.

In dimension one (d = 1) and the situation of Theorem 2.7 the property (2.24) remains

valid and e(l) = const if |l| = const, and hence Theorem 2.12 can be applied also in the

situation of Theorem 2.7.

2.6 Example — Nonlinear Schrödinger Equations of Convolu-

tion Type

In this section, we apply Theorem 2.5 on the long-time near-conservation of actions and

its Corollaries 2.9 on the long-time regularity and 2.13 and 2.14 on the long-time energy

distribution to nonlinear Schrödinger equations with a potential of convolution type (1.7),

i
∂

∂t
ψ(x, t) = −∆ψ(x, t) + V (x) ∗ ψ(x, t) + g(|ψ(x, t)|2)ψ(x, t), (2.25)

as discussed in Section 1.4, i.e., on T
d = R

d/(2πZ
d). In particular, V (x) ∈ L2(Td)

is assumed to have real Fourier coefficients, and g is assumed to be real-valued and

analytic in a neighbourhood of zero. As explained there, this partial differential equation

is Hamiltonian, and its Hamiltonian function H(ξ, η) is of the form (2.1). Note that

the Corollaries 2.10 on the long-time near-conservation of mass and 2.11 on the long-

time near-conservation of momentum are not of interest for the nonlinear Schrödinger

equation (2.25) since they are exact invariants of a solution, see Section 1.4. In order to

apply Theorem 2.5 we verify its various assumptions.

Verification of the Regularity Assumption 2.1. The regularity assumption 2.1 on

the nonlinearity ∂P
∂ηj

(ξ, η) of the nonlinear Schrödinger equation (2.25) is fulfilled for s ≥
s0 > d

2
and g(0) = 0. The constants C1, Cs0, Cs, and CL,s depend only on g, d, s0, and s

(and L).
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Since g is assumed to be analytic in a neighbourhood of zero, the nonlinearity in this

equation allows an expansion of the form (2.4) with

Pj,k,l =

{
g(m′)(0)

m′!
, m = m′ + 1, k1 + · · · + km − l1 − · · · − lm

′
= j,

0, else
(2.26)

for j ∈ N , k ∈ Nm, and l ∈ Nm′
, see (1.8). In order to satisfy (2.5) in Assumption 2.1

we require g(0) = 0, i.e., the nonlinearity in (2.25) is at least cubic.

We now turn to the main assumptions (2.6a) and (2.6b) of 2.1. Note that with the

notation |P |m,m′
as in Assumption 2.1 we have

‖|P |m,m′

(ξ1, . . . , ξm, η1, . . . , ηm′

)‖s =
|g(m′)(0)|

m′!

∥∥∥
( ∑

k1+···+km

−l1−···−lm
′
=j

ξ1
k1 · · · ξm

kmη1
l1 · · · ηm′

lm
′

)
j∈N

∥∥∥
s
.

for m = m′+1 ≥ 2 and |P |m,m′
= 0 else. Moreover, the Cauchy–Schwarz inequality yields

∥∥∥
( ∑

k1+···+km

−l1−···−lm
′
=j

ξ1
k1 · · · ξm

kmη1
l1 · · · ηm′

lm
′

)
j∈N

∥∥∥
2

s
=

∑

j∈N

|j|2s
∣∣∣

∑

k1+···+km

−l1−···−lm
′
=j

ξ1
k1 · · · ξm

kmη1
l1 · · · ηm′

lm
′

∣∣∣
2

≤
∑

j∈N

( ∑

k1+r=j

|j|2s

|k1|2s|r|2s

)( ∑

k1+r=j

|k1|2s|ξ1
k1|2|r|2s

∣∣∣
∑

k2+···+km

−l1−···−lm
′
=r

ξ2
k2 · · · ξm

kmη1
l1 · · · ηm′

lm
′

∣∣∣
2)

.

The triangle inequality (which is valid for |·|) yields |k1| ≥ 1
2
|j| or |r| ≥ 1

2
|j| if k1 + r = j,

and hence
∑

k1+r=j

|j|2s

|k1|2s|r|2s
≤ 4

∑

r∈N

1

|r|2s
.

The latter sum converges for s > d
2

by (1.9). Then we get inductively for s > d
2

∥∥∥
( ∑

k1+···+km

−l1−···−lm
′
=j

ξ1
k1 · · · ξm

kmη1
l1 · · · ηm′

lm
′

)
j∈N

∥∥∥
s
≤ Cm+m′‖ξ1‖s · · · ‖ξm‖s‖η1‖s · · · ‖ηm′‖s,

i.e., (2.6a) is satisfied with Cm,m′,s = Cm+m′ |g(m′)(0)|
m′!

for m = m′ + 1 ≥ 2 (and Cm,m′,s = 0

for m 6= m′ + 1 or m ≤ 1),

‖|P |m,m′

(ξ1, . . . , ξm, η1, . . . , ηm′

)‖s ≤ Cm+m′ |g(m′)(0)|
m′!

‖ξ1‖s · · · ‖ξm‖s‖η1‖s · · · ‖ηm′‖s

with a constant C depending only on d and s. Thus we can choose in Assumption 2.1

s ≥ s0 > d
2

arbitrarily in order to satisfy (2.6a) with constants Cm,m′,s depending only on

g, d, s, m, and m′.
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We now turn to the last assumption (2.6b) in 2.1. Let ρ be the convergence radius of

the Taylor series of g which is positive by the assumption on g. Then

∞∑

m+m′=2

Cm,m′,s|z|m+m′−2 = |z|−2

∞∑

m′=1

|g(m′)(0)|
m′!

C2m′+1|z|2m′+1

converges towards a constant Cs depending only on g, d, and s, provided that 0 6=
|z| ≤ C−1ρ

1
2 = C1. This verifies assumption (2.6b) and concludes the verification of the

regularity of the nonlinearity.

Verification of the Condition of Small Dimension or of Zero Momentum 2.2.

Assumption 2.2 is fulfilled with σ = 2 and constants c2 and C2 depending only on V . The

condition of zero momentum (2.9b) in this assumption is fulfilled.

For the nonlinear Schrödinger equation (2.25) the frequencies

ωj = j2
1 + · · · + j2

d + Vj

satisfy the growth condition (2.8) in Assumption 2.2 with σ = 2 and constants c2 and C2

depending only on the potential V .

As we learned from the verification of the regularity assumption, we can choose s0 > d
2
.

Hence, the condition of small dimension (2.9a) can only be satisfied in dimensions one

to three. However, the alternative condition of zero momentum (2.9b) is satisfied for the

nonlinear Schrödinger equation in any dimension d, see (2.26) (we choose as an addition

of indices the natural addition in N = Z
d). This concludes the verification of Assumption

2.2.

Verification of the Non-Resonance Condition 2.3. For m > d
2

and R > 0 let

V =
{

V (x) =
∑

j∈N

Vje
i(j·x) : |Vj||j|m/R ≤ 1

2

}

be a set of potentials endowed with the product probability measure. Then there exists a

subset S ⊆ V of full measure, such that the non-resonance condition 2.3 is fulfilled for

any potential V ∈ S with a constant C0 depending only on V , s0, and N .

Let us first consider indices (j,k) = (j, 〈l〉) with |j| = |l| ≥ 2 but j 6= l. Those indices

are usually near-resonant since

|k · ω − ωj| = |ωl − ωj| = |Vl − Vj| → 0 for |j| = |l| → ∞. (2.27)

However, they obviously do not satisfy the non-resonance condition (2.10). The same

remark applies to indices of the form (j, 〈j〉 + 〈l〉 − 〈l̄〉) with |l| = |l̄| but l 6= l̄.

But, since the condition of zero momentum is fulfilled for the nonlinear Schrödinger

equation of convolution type (2.25), the non-resonance condition 2.3 only has to cover

indices (j,k) with j = j(k). In particular, if k = 〈l〉 as above, then j = j(k) = l and

(j,k) = (j, 〈j〉) is not near-resonant. Similar, if k = 〈j〉+〈l〉−〈l̄〉, then j = j(k) = j+l− l̄
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and also (j,k) = (j, 〈j〉) is not near-resonant. This means that the situation described

above in (2.27) can be avoided.

The verification of the non-resonance condition 2.3 now mainly relies on Lemma 2.8

which allows us to reduce our non-resonance condition 2.3 to the one used by Bambusi

and Grébert [4]. It is shown in [4, Theorem 3.22] that there exists a subset S of V of full

measure, such that the non-resonance condition (2.16) is fulfilled for all k̃ ∈ Z
N with the

properties in (2.16) and in addition

k̃ 6= 〈l〉 − 〈l̄〉 with |l| = |l̄|,

see also [29, Proposition 1] and the comment following this proposition. By Lemma 2.8 any

near-resonant index (j,k) with k−〈j〉 6= 〈l〉− 〈l̄〉 then satisfies also (2.10) in Assumption

2.3. As explained above, near-resonant indices with k − 〈j〉 = 〈l〉 − 〈l̄〉 need not to be

considered in Assumption 2.3 due to the condition of zero momentum. In summary, our

non-resonance condition 2.3 is fulfilled for any potential V ∈ S.

Verification of the Additional Non-Resonance Condition 2.4. The additional non-

resonance condition 2.4 is fulfilled with a constant C3 depending only on V in dimension

one (d = 1).

We have to control |k ·ω−ωj(k)| for k 6= 〈j〉 and ‖k‖ ≤ 2. For ‖k‖ = 0 we have k = 0

and

|k · ω − ωj(k)| = |ω0| = |V0|,

which clearly can be controlled from below by a positive constant depending only on the

potential V , provided that the non-resonance condition 2.3 is satisfied.

For ‖k‖ = 1 we have necessarily k = −〈j〉 with j ∈ N , and

|k · ω − ωj(k)| = |−ωj − ω−j| = |2(j2
1 + · · · + j2

d) + Vj + V−j|

can be controlled from below by a positive constant depending only on V .

For ‖k‖ = 2 we have k = ±〈j〉 ± 〈l〉. In one dimension (d = 1) we can control

|k ·ω−ωj(k)| from below by a positive constant depending only on V , whereas this is not

possible in higher dimensions. For instance we have in dimension one for k = 〈j〉 + 〈l〉

|k · ω − ωj(k)| = |ωj + ωl − ωj+l| = |−2jl + Vj + Vl − Vj+l|

and for k = 〈j〉 − 〈l〉

|k · ω − ωj(k)| = |ωj − ωl − ωj−l| = |2l(j − l) + Vj + Vl − Vj−l|.

Hence the additional non-resonance condition 2.4 is fulfilled in one dimension with a

constant C3 depending only on V , but it is not satisfied in higher dimensions.

Summarising our results we get as corollary of Theorem 2.5 and Corollary 2.9.
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Corollary 2.15 (Long-Time Analysis of Nonlinear Schrödinger Equations (2.25)). Fix

N , s ≥ 2s0 > d, and assume g(0) = 0 and V ∈ S. Then for any ε sufficiently small

compared to the nonlinearity g, the dimension d, the potential V , s0, s, and N and for

small initial values

‖ψ(·, 0)‖s = ‖ξ(0)‖s =
(∑

j∈N

|j|2s|ξj(0)|2
) 1

2 ≤ ε

we have

• near-conservation of actions (2.12),

• exact conservation of energy, mass, and momentum,

• and regularity (2.19)

over long times

0 ≤ t ≤ ε−N

along any solution ψ(x, t) =
∑

j∈N ξj(t)e
i(j·x) of the nonlinear Schrödinger equation with

a potential of convolution type (2.25) in dimension d with a constant C depending only

on g, d, V , s0, s, and N , but not on ε.

The near-conservation of actions improves to Cε in dimension one (d = 1).

This result is very similar to [29, Theorem 1], but there the conservation of actions

was shown to be of size Cε
3
2 taking into account that the nonlinearity in the considered

nonlinear Schrödinger equation is cubic. Here, we applied our general result for Hamilto-

nian partial differential equations with quadratic nonlinearity. A similar result was also

obtained by Bambusi and Grébert [4, Theorem 3.26] in a slightly weaker form as explained

in Section 2.2.

Besides the results from Sections 2.2 and 2.4 we can also apply the results on the

long-time energy distribution of Section 2.5 to the nonlinear Schrödinger equation with a

potential of convolution type (2.25). For the situations (2.22a) of a finite band initial value

and (2.22b) of a double mode initial value we can apply Corollaries 2.13 and 2.14 since we

already verified the assumptions of Theorem 2.5. However, we can prove even stronger

results taking into account the cubic nonlinearity (instead of quadratic nonlinearity as in

our general framework) in the nonlinear Schrödinger equation (2.25).

Corollary 2.16 (Long-Time Energy Distribution (a) for Nonlinear Schrödinger Equations

(2.25)). Let 0 < µ ≤ 1. Under the assumptions of Corollary 2.15 and for small initial

values

‖ξ(0)‖s ≤ ε with (2.22a)

we have for any ε, such that εµ satisfies the smallness assumption of Corollary 2.15, the

energy distribution

∑

(2m−1)B<|l|≤(2m+1)B

|l|2sIl(ξ(t), ξ(t)) ≤ Cε2(2m+1)(1−µ)+ 5
2
µ
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for m ≥ 1 over long times

0 ≤ t ≤ ε−Nµ

with the constant C of Corollary 2.15.

The estimates improve by a factor ε
1
2
µ in dimension one (d = 1).

Proof. We repeat the proof of Corollary 2.13 but with a new scaling function

e(l) = 2
⌈ |l|
2B

+
1

2

⌉
− 1

adapted to the cubic nonlinearity. Indeed e(·) also satisfies the triangle inequality if we

have at least three summands,

e(l + j + k) = 2
⌈ |l + j + k|

2B
+

1

2

⌉
− 1 = 2

⌈ |l + j + k|
2B

+
3

2

⌉
− 3 ≤ e(l) + e(j) + e(k).

The statement then follows from Theorem 2.12 as in the proof of Corollary 2.13.

Corollary 2.17 (Long-Time Energy Distribution (b) for Nonlinear Schrödinger Equations

(2.25)). Let 0 < µ ≤ 1. Under the assumptions of Corollary 2.15 and for small initial

values

‖ξ(0)‖s ≤ ε with (2.22b)

we have for any ε, such that εµ satisfies the smallness assumption of Corollary 2.15, the

energy distribution

|mj̃|2sImj̃(ξ(t), ξ(t)) ≤ Cε2|m|(1−µ)+ 5
2
µ

for odd m ∈ Z with m 6= ±1 over long times

0 ≤ t ≤ ε−Nµ

with the constant C of Corollary 2.15. If l 6∈ {mj̃ : m ∈ Z odd }, then ξl(t) = 0 for all

times t.

The estimates improve by a factor ε
1
2
µ in dimension one (d = 1).

Proof. We repeat the proof of Corollary 2.14 and note in addition that ξl(t) = 0 for all

times t if l = mj̃ with an even m ∈ Z by analysing the nonlinearity as in this proof.

One could think about another initial energy distribution, where a single mode ξj̃ is

excited. This situation, however, is not interesting in many examples. For the nonlinear

Schrödinger equation (2.25) for instance one easily verifies that

ξj(t) =

{
e−i(ωj+|ξj(0)|2)tξj(0), for j = j̃,

0, else

is the solution for such initial values. In particular, the initial energy distribution is

exactly conserved for such initial values for all times and not distributed among other

modes.
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2.7 Example — Schrödinger–Poisson Equations

We now consider the Schrödinger–Poisson equation

i
∂

∂t
ψ(x, t) = −∆ψ(x, t) + V (x) ∗ ψ(x, t) + W (x, t)ψ(x, t),

− ∆W (x, t) = |ψ(x, t)|2 − 1

(2π)d

∫

Td

|ψ(x, t)|2 dx,

∫

Td

W (x, t) dx = 0

(2.28)

on T
d = R

d/(2πZ
d) as in Section 1.4, equation (1.11).

Verification of the Assumptions 2.1, 2.2, 2.3, and 2.4. Assumptions 2.1, 2.2, and

2.3 are fulfilled for potentials V ∈ S with S from the previous Section 2.6 with constants

depending only on V , d, s0, s, and N . Assumption 2.4 is fulfilled in one dimension

(d = 1).

Comparing the Hamiltonian equations of motion (1.12) of the Schrödinger–Poisson

equation with the ones of the nonlinear Schrödinger equation with a potential of convo-

lution type and a nonlinearity g(|ψ|2) = |ψ|2 (2.25) and (2.26), we see that the moduli

of the coefficients Pj,k,l (see Assumption 2.1) in the Schrödinger–Poisson equation are all

smaller or equal than the ones of the coefficients in the nonlinear Schrödinger equation

with a potential of convolution type. Hence, the regularity assumption 2.1 is also satisfied

for the Schrödinger–Poisson equation for s ≥ s0 > d
2

with constants depending only on d,

s0, and s, see Section 2.6.

Moreover, the condition of zero momentum (2.9b) in Assumption 2.2 is satisfied for

the Schrödinger–Poisson equation.

Since the frequencies of the Schrödinger–Poisson equation are the same as the frequen-

cies of the nonlinear Schrödinger equation with a potential of convolution type, also the

non-resonance conditions 2.3 and 2.4 are satisfied for the Schrödinger–Poisson equation

in the same way as for the nonlinear Schrödinger equation with a potential of convolution

type, see Section 2.6.

We have thus proven the following corollary.

Corollary 2.18 (Long-Time Analysis of Schrödinger–Poisson Equations (2.28)). Fix N ,

s ≥ 2s0 > d, and assume V ∈ S. Then for any ε sufficiently small compared to the

dimension d, the potential V , s0, s, and N and for small initial values

‖ψ(·, 0)‖s = ‖ξ(0)‖s =
(∑

j∈N

|j|2s|ξj(0)|2
) 1

2 ≤ ε

we have

• near-conservation of actions (2.12),

• exact conservation of energy, mass, and momentum,
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• and regularity (2.19)

over long times

0 ≤ t ≤ ε−N

along any solution ψ(x, t) =
∑

j∈N ξj(t)e
i(j·x) of the Schrödinger–Poisson equation (2.28)

in dimension d with a constant C depending only on d, V , s0, s, and N , but not on ε.

The near-conservation of actions improves to Cε in dimension one (d = 1).

To our knowledge, there have been no similar results for Schrödinger–Poisson equations

so far. As for the nonlinear Schrödinger equation with a potential of convolution type

(2.25) of Section 2.6 we get results on the long-time energy distribution for the Schrö-

dinger–Poisson equation, and Corollaries 2.16 and 2.17 are also true for solutions of the

Schrödinger–Poisson equation.

2.8 Example — Nonlinear Schrödinger Equations

In this section we apply the theoretical results of Sections 2.2 and 2.4 to the nonlinear

Schrödinger equation

i
∂

∂t
ψ(x, t) = −∆ψ(x, t) + V (x)ψ(x, t) + g(|ψ(x, t)|2)ψ(x, t) (2.29)

with Dirichlet boundary conditions ψ(x, t) = 0 for x on the boundary of [0, π], where g is

assumed to be real-valued and analytic in a neighbourhood of zero and the potential V (x)

also satisfies Dirichlet boundary conditions. The Hamiltonian structure of this equation

was established in Section 1.4.

Verification of the Regularity Assumption 2.1. The regularity assumption 2.1 is

fulfilled for s ≥ s0 > 1
2
, g(0) = 0, and even potential V (x). The constants C1, Cs0, Cs,

and CL,s depend only on g, V , s0, and s (and L).

The requirement g(0) = 0 ensures (2.5) in Assumption 2.1, namely that Pj,k,l = 0 for

j ∈ N = N \ {0}, k ∈ Nm, and l ∈ Nm′
with m + m′ < 2, see also Section 2.6. We note

for later purposes that Pj,k,l = 0 whenever m 6= m′ + 1, in particular whenever m + m′ is

even.

For the verification of (2.6a) we modify the proof of the corresponding result for the

nonlinear Schrödinger equation with a potential of convolution type in Section 2.6. The

main difficulty arises from the fact that ∂P
∂ηj

does not only contain nonzero terms for

k1 + · · · + km − l1 − · · · − lm
′
= j but for (in general) all j ∈ N , k ∈ Nm, and l ∈ Nm′

.

However, a result by Craig and Wayne [19] ensures that this situation is sufficiently close

to the situation of Section 2.6.

We imitate the estimates from Section 2.6 using that the coefficients Pj,k,l introduced

in Section 1.4 satisfy

Pj,k,l =
∑

r∈N

Pj,(k1,k2),(r)Pr,(k3,...,km),l
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for j ∈ N , k ∈ Nm, and l ∈ Nm′
by the orthonormality of the eigenfunctions ϕj. We

have for odd m + m′ (and m = m′ + 1).

‖|P |m,m′

(ξ1, . . . , ξm, η1, . . . , ηm′

)‖2
s =

|g(m′)(0)|2
(m′!)2

∑

j∈N

|j|2s

∣∣∣
∑

k1,k2,r∈N

Pj,(k1,k2),(r)ξ
1
k1ξ2

k2

∑

k3,...,km∈N

∑

l∈Nm′

Pr,(k3,...,km),lξ
3
k3 · · · ξm

kmη1
l1 · · · ηm′

lm
′

∣∣∣
2

.

The Cauchy–Schwarz inequality implies

‖|P |m,m′

(ξ1, . . . , ξm, η1, . . . , ηm′

)‖2
s ≤

|g(m′)(0)|2
(m′!)2

∑

j∈N

( ∑

k1,k2,r∈N

|Pj,(k1,k2),(r)||j|2s

|k1|2s|k2|2s|r|2s

)

( ∑

k1,k2,r∈N

|Pj,(k1,k2),(r)||k1|2s|ξ1
k1|2|k2|2s|ξ2

k2|2

|r|2s
∣∣∣

∑

k3,...,km∈N

∑

l∈Nm′

Pr,(k3,...,km),lξ
3
k3 · · · ξm

kmη1
l1 · · · ηm′

lm
′

∣∣∣
2)

.

We finally show that for s > 1
2

sup
j∈N

∑

k1,k2,r∈N

|Pj,(k1,k2),(r)||j|2s

|k1|2s|k2|2s|r|2s
≤ C and sup

k1,k2,r∈N

∑

j∈N

|Pj,(k1,k2),(r)| ≤ C (2.30)

with a constant C depending only on V and s. These two estimates imply inductively

‖|P |m,m′

(ξ1, . . . , ξm, η1, . . . , ηm′

)‖s ≤ Cm′ |g(m′)(0)|
m′!

‖ξ1
k1‖s · · · ‖ξm

km‖s‖η1
l1‖s · · · ‖ηm′

lm
′‖s,

i.e., (2.6a) in Assumption 2.1 is satisfied with constants Cm,m′,s depending only on g, V ,

and s. The second estimate (2.6b) needed in this assumption then follows as in Section

2.6.

In order to verify the estimates (2.30) we use [19, Proposition 6.4]. This result states

that the eigenfunctions ϕn, n ∈ N = N \ {0}, of −∆ + V (x) admit — suitably ordered

— an expansion

ϕn(x) =
∑

ñ∈N

ϕn,ñ sin(ñx) with |ϕn,ñ| ≤ Ce−σ|n−ñ|, (2.31)

where C and σ depend only on the regularity of V (more precisely, they depend on the

width of the strip around the real axis where V is analytic and periodic). This means

that the eigenfunctions ϕn(x) of −∆+V (x) are close to the eigenfunctions sin(nx) of the

unperturbed Laplacian −∆. This implies for the coefficients Pj,(k1,k2),(r) arising in (2.30)

Pj,(k1,k2),(r) =
∑

j̃,k̃1,k̃2,r̃∈N

ϕj,j̃ϕk1,k̃1ϕk2,k̃2ϕr,r̃
1

π

∫ π

0

sin(j̃x) sin(k̃1x) sin(k̃2x) sin(r̃x) dx.
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Obviously | 1
π

∫ π

0
sin(j̃x) sin(k̃1x) sin(k̃2x) sin(r̃x) dx| ≤ 1, and using sin(jx) = 1

2i
(eijx −

e−ijx) we see that 1
π

∫ π

0
sin(j̃x) sin(k̃1x) sin(k̃2x) sin(r̃x) dx = 0 unless j̃ = ±k̃1 ± k̃2 ± r̃.

For the latter statement the fact that the integral of an even number of sines is computed

is crucial; for this reason we apply in the above estimates the Cauchy–Schwarz inequality

to the sum over k1, k2, and r (and not only k1 and r as in Section 2.6). Using the result

by Craig and Wayne (2.31) we get

|Pj,(k1,k2),(r)| ≤ C4
∑

m∈N

e−σm
∑

k̃1,k̃2,r̃∈N :

|j−(±k̃1±k̃2±r̃)|+|k1−k̃1|+

+|k2−k̃2|+|r−r̃|=m

1.

This implies in particular

sup
k1,k2,r∈N

∑

j∈N

|Pj,(k1,k2),(r)| ≤ 8C4
∑

m∈N

e−σm(2m + 1)3,

and the second estimate in (2.30) is shown. Concerning the first estimate in (2.30), we

get

∑

k1,k2,r∈N

|Pj,(k1,k2),(r)||j|2s

|k1|2s|k2|2s|r|2s
≤ C4

∑

m∈N

e−σm
∑

k1,k2,r,k̃1,k̃2,r̃∈N :

|j−(±k̃1±k̃2±r̃)|+|k1−k̃1|+

+|k2−k̃2|+|r−r̃|=m

|j|2s

|k1|2s|k2|2s|r|2s
.

The denominator |k1| in the latter sum can be estimated by max(|k̃1|−m, 1)2s, and doing

the same for the other terms in the denominator the summands become independent of

k1, k2, and r. This yields

∑

k1,k2,r∈N

|Pj,(k1,k2),(r)||j|2s

|k1|2s|k2|2s|r|2s
≤ C4

∑

m∈N

e−σm(2m + 1)3

∑

k̃1,k̃2,r̃∈N :

|j−(±k̃1±k̃2±r̃)|≤m

|j|2s

max(|k̃1| − m, 1)2s max(|k̃2| − m, 1)2s max(|r̃| − m, 1)2s
.

Now we can proceed similarly as in Section 2.6, where we estimated
∑

k1+r=j
|j|2s

|k1|2s|r|2s . If

for instance |k̃1| ≥ |k̃2| and |k̃1| ≥ |r̃|, then |k̃1| ≥ |j|−m
3

, and the numerator |j|2s cancels

out. We get a constant depending polynomially on m, and this remains true if we omit

the summation over k̃1. We get

∑

k1,k2,r∈N

|Pj,(k1,k2),(r)||j|2s

|k1|2s|k2|2s|r|2s
≤ C4

∑

m∈N

e−σmp(m)
∑

k̃2,r̃∈N

1

|k̃2|2s|r̃|2s

with a polynomial p whose degree can be bounded in terms of s. Using (1.9) we finally get

the first estimate of (2.30). This concludes the verification of the regularity assumption

2.1 for the nonlinear Schrödinger equation (2.29).
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Verification of the Condition of Small Dimension or of Zero Momentum 2.2.

Assumption 2.2 is fulfilled if 1
2

< s0 ≤ 2 and s ≥ N + 3 + 3s0 with σ = 2 and constants c2

and C2 depending only on V . The condition of zero momentum (2.9b) in this assumption

is not fulfilled.

By (1.6) the asymptotics of the frequencies (2.8) in Assumption 2.2 is fulfilled with

σ = 2. The condition of small dimension (2.9a) is then fulfilled for 1
2

< s0 ≤ σ = 2 and

s ≥ N + 3 + 3s0. The condition of zero momentum (2.9b) is not fulfilled in general since

Pj,k,l 6= 0 generically for j 6= k1 + · · · + km − l1 − · · · − lm
′
.

Verification of the Non-Resonance Condition 2.3. For σ0 > 0 and R > 0 let

VR =
{

V (x) =
∑

j∈N

Vj cos(jx) : |Vj|eσ0j/R ≤ 1

2

}

be a set of potentials endowed with the product probability measure. Then for any N there

exists R > 0 and a subset S ⊆ VR of full measure, such that the non-resonance condition

2.3 is fulfilled for any potential V ∈ S with a constant C0 depending only on V , s0, and

N .

This statement follows from Lemma 2.8 and [4, Theorem 3.18], where it is shown

that the non-resonance condition (2.16) is fulfilled for any V in a suitable subset S ⊆ VR

provided that R is chosen large enough compared to r′.

Having verified the Assumptions 2.1, 2.2, and 2.3 we can apply Theorem 2.5 and

obtain near-conservation of actions over long times. Recall from Section 1.4 that energy

and mass are exactly conserved along solutions of (2.29) and from Corollary 2.11 in

Section 2.4 that the momentum is nearly conserved on a long time interval. The following

corollary of Theorem 2.5 is now proven.

Corollary 2.19 (Long-Time Analysis of Nonlinear Schrödinger Equations (2.29)). Fix

N , s ≥ N + 3 + 3s0, 4 ≥ 2s0 > 1, and assume g(0) = 0 and V ∈ S. Then for any ε

sufficiently small compared to the nonlinearity g, the potential V , s0, s, and N and for

small initial values

‖ψ(·, 0)‖s = ‖ξ(0)‖s =
(∑

j∈N

|j|2s|ξj(0)|2
) 1

2 ≤ ε

we have

• near-conservation of actions (2.12),

• exact conservation of energy and mass,

• near-conservation of momentum (2.21),

• and regularity (2.19)

over long times

0 ≤ t ≤ ε−N

along any solution ψ(x, t) =
∑

j∈N ξj(t)e
i(j·x) of the nonlinear Schrödinger equation (2.29)

with a constant C depending only on g, V , s0, s, and N , but not on ε.
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A similar result was obtained by Bambusi and Grébert in [4] with slightly weaker

estimates. Concerning the energy distribution for initial values with only finitely many

nonzero coefficients ξj(0) as discussed in Section 2.5, we cannot apply the theory developed

there to the nonlinear Schrödinger equation (2.29) since the condition of zero momentum

is not fulfilled. However, similar results to Corollaries 2.13 and 2.14 are expected to hold

true also for (2.29) since the nonlinearity behaves as the nonlinearity discussed in Section

2.5 up to exponentially decaying terms; this was also crucial for the above verification of

the regularity assumption 2.1.

2.9 Example — Nonlinear Wave Equations with Periodic Bo-

undary Conditions

We consider the nonlinear wave equation (1.14) from Section 1.5

∂2

∂t2
u(x, t) = ∆u(x, t) − ρu(x, t) + g(u(x, t)) (2.32)

with a nonnegative real number ρ and a real-valued and analytic function g. We impose

in this section periodic boundary conditions on [−π, π], i.e., we consider this equation on

T = R/(2πZ) (d = 1).

The frequencies

ωj =
√

j2 + ρ, j ∈ N = Z,

of this nonlinear wave equation are partially resonant in the sense of the non-resonance

condition 2.6 since ωj = ω−j. Therefore we aim for an application of Theorem 2.7 on the

long-time near-conservation of sums of actions suited for this situation.

Verification of the Regularity Assumption 2.1. The regularity assumption 2.1 is

fulfilled for s ≥ s0 > 1
2

and g(0) = g′(0) = 0. The constants C1, Cs0, Cs, and CL,s depend

only on g, ρ, s0, and s (and L).

The nonlinearity in the nonlinear wave equation (1.15) is similar to the one in the

nonlinear Schrödinger equation with a potential of convolution type (1.8). Therefore the

verification of its regularity as required by Assumption 2.1 is a slight modification of the

verification of the regularity of the nonlinearity in the nonlinear Schrödinger equation

carried out in Section 2.6.

The coefficients Pj,k,l take the form

Pj,k,l =





g(m+m′)(0)
(m+m′)!

−1

2
m+m′

2 (ωjω
k1 ···ωkmω

l1 ···ωlm
′ )

1
2

(
m+m′

m

)
, k1 + · · · + km − l1 − · · · − lm

′
= j,

0, else

for j ∈ N , k ∈ Nm, and l ∈ Nm′
. They satisfy (2.5) if g(0) = g′(0) = 0 as we require

from now on. This condition leads to a nonlinearity in (2.32) that is at least quadratic.
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Since c2|j| ≤ ωj ≤ C2|j| with positive constants c2 and C2 depending only on ρ, we

have for |P |m,m′

‖|P |m,m′

(ξ1, . . . , ξm, η1, . . . , ηm′

)‖s+1

≤ |g(m+m′)(0)|2−m+m′

2

(
m+m′

m

)
√

c2(m + m′)!

∥∥∥
( ∑

k1+···+km

−l1−···−lm
′
=j

ξ1
k1√
ωk1

· · · ξm
km√
ωkm

η1
l1√
ωl1

· · ·
ηm′

lm
′

√
ωlm

′

)
j∈N

∥∥∥
s+ 1

2

.

Provided that s ≥ s0 > d
2

= 1
2

the latter norm can be estimated by Cm+m′‖ξ1‖s · · · ‖ξm‖s ·
‖η1‖s · · · ‖ηm′‖s with a constant C depending only on ρ and s as was shown in Section

2.6. In particular, (2.6a) from Assumption 2.1 is satisfied with

Cm,m′,s =
|g(m+m′)(0)|√
c2(m + m′)!

2−
m+m′

2

(
m + m′

m

)
Cm+m′

.

Note that we have shown more than needed in Assumption 2.1 since we estimated |P |m,m′

in the l2s+1-norm instead of the l2s-norm. Indeed, the nonlinearity in the nonlinear wave

equation (2.32) is more regular than we actually need. This additional regularity is used

in [17], [34], and [16].

In order to verify (2.6b) in the same assumption we first note that

∞∑

m+m′=2

Cm+m′,s|z|m+m′−2 = |z|−2

∞∑

n=2

|g(n)(0)|√
c2n!

|2− 1
2 Cz|n

n∑

m=0

(
m + m′

m

)
.

Since
∑n

m=0

(
m+m′

m

)
= 2n , the latter sum converges towards a constant Cs if g is analytic

and if |z| is sufficiently small compared to g and s. The constant Cs depends only on g,

ρ, and s. This verifies (2.6b).

Verification of the Condition of Small Dimension or of Zero Momentum 2.2.

Assumption 2.2 is fulfilled with σ = 1 and constants c2 and C2 depending only on ρ. The

condition of zero momentum (2.9b) in this assumption is fulfilled.

The coefficients Pj,k,l in the nonlinear wave equation clearly satisfy the condition of

zero momentum (2.9b) in Assumption 2.1. We mention that in dimension one (d = 1) as

considered here the alternative condition of small dimension (2.9a) is also satisfied since

σ = 1 in the asymptotics of the frequencies (2.8) for the nonlinear wave equation and

s0 > d
2

= 1
2

in order to satisfy the Assumption 2.1.

Verification of the Non-Resonance Condition 2.6 for Completely Resonant

Frequencies. For any D > 0 there exists a subset S ⊆ [0, D] of full measure, such that

the non-resonance condition 2.6 is fulfilled for any ρ ∈ S with a constant C0 depending

only on ρ, s0, and N .

While the previous conditions could also be verified in higher dimensions, the fact

that we work in dimension one (d = 1) is crucial for the verification of the non-resonance

condition. Due to the partial resonances in the nonlinear wave equation we consider the
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non-resonance condition 2.6 instead of 2.3. We reduce here the non-resonance condition

2.6 once again to the non-resonance condition (2.16) used by Bambusi and Grébert by

means of Lemma 2.8. It is shown in [4, Theorem 3.12] (see also [3, Theorem 6.5]) that

there exists a subset S of [0, D] of full measure such that for any ρ ∈ S the non-resonance

condition (2.16) holds for all k̃ ∈ Z
N with the properties in (2.16) and in addition

k̃l = 0 if l < 0. (2.33)

In dimension one, an arbitrary k ∈ Z
N can be decomposed as k = k̃ + l such that k̃

satisfies (2.33) and

l0 = 0 and
∑

j∈N :|j|=m

lj = 0 for any m ∈ N.

Then k · ω = k̃ · ω since ωj = ω−j for all j ∈ N = Z. Applying the non-resonance

condition (2.16) for k̃ 6= 0 yields in particular that k ·ω = k̃ ·ω 6= 0 for ρ ∈ S, and hence

k 6∈ M unless k̃ = 0. This verifies the structure of the resonance module M as required

by (2.14) in Assumption 2.6.

We finally verify the non-resonance condition (2.10) for near-resonant indices (j,k)

with k−〈j〉 6∈ M. Decomposing k−〈j〉 = k̃+ l as above we have k̃ 6= 0 and |k ·ω−ωj| =

|k̃ · ω|. Lemma 2.8 then shows that (j,k) satisfies the non-resonance condition (2.10) as

required in Assumption 2.6.

Verification of the Additional Non-Resonance Condition 2.4. The additional non-

resonance condition 2.4 is fulfilled with a constant C3 depending only on ρ.

This can be verified in the same way as for the nonlinear Schrödinger equation in

Section 2.6.

We are now in the position to apply Theorem 2.7 and its corollaries. Recall from Sec-

tion 1.5 that energy and momentum are exactly conserved along solutions of the nonlinear

wave equation (2.32).

Corollary 2.20 (Long-Time Analysis of Nonlinear Wave Equations (2.32) with Periodic

Boundary Conditions). Fix N , s ≥ 2s0 > 1, and assume g(0) = g′(0) = 0 and ρ ∈ S.

Then for any ε sufficiently small compared to the nonlinearity g, ρ, s0, s, and N and for

small initial values

‖ξ(0)‖s =
(∑

j∈N

|j|2s
(ωj

2
|uj(0)|2 +

1

2ωj

|vj(0)|2
)) 1

2 ≤ ε

we have

• near-conservation of sums of actions (2.15) with Cε instead of Cε
1
2 ,

• exact conservation of energy and momentum,

• near-conservation of mass (2.20) with Cε instead of Cε
1
2 ,

• and regularity (2.19)
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over long times

0 ≤ t ≤ ε−N

along any solution u(x, t) =
∑

j∈N uj(t)e
i(j·x) and v(x, t) =

∑
j∈N vj(t)e

i(j·x) with ξj =

(ω
1
2
j uj + iω

− 1
2

j vj)/
√

2 of the nonlinear wave equation (2.32) with periodic boundary condi-

tions with a constant C depending only on g, ρ, s0, s, and N , but not on ε.

This result was proven in [17]. Now we apply the results 2.13 and 2.14 on the long-

time energy distribution of Section 2.5 to the nonlinear wave equation (2.32). To our

knowledge, similar results for nonlinear wave equations do not exist.

Corollary 2.21 (Long-Time Energy Distribution (a) for Nonlinear Wave Equations (2.32)

with Periodic Boundary Conditions). Let 0 < µ ≤ 1. Under the assumptions of Corollary

2.20 and for small initial values

‖ξ(0)‖s ≤ ε with (2.22a)

we have for any ε, such that εµ satisfies the smallness assumption of Corollary 2.20, the

energy distribution

∑

(m−1)B<|l|≤mB

|l|2sIl(ξ(t), ξ(t)) ≤ Cε2m(1−µ)+3µ

for m ≥ 2 over long times

0 ≤ t ≤ ε−Nµ

with the constant C of Corollary 2.20.

Corollary 2.22 (Long-Time Energy Distribution (b) for Nonlinear Wave Equations (2.32)

with Periodic Boundary Conditions). Let 0 < µ ≤ 1. Under the assumptions of Corollary

2.20 and for small initial values

‖ξ(0)‖s ≤ ε with (2.22b)

we have for any ε, such that εµ satisfies the smallness assumption of Corollary 2.20, the

energy distribution

I0(ξ(t), ξ(t)) ≤ Cε4(1−µ)+3µ,

|mj̃|2sImj̃(ξ(t), ξ(t)) ≤ Cε2|m|(1−µ)+3µ

for m ∈ Z with m 6= ±1 over long times

0 ≤ t ≤ ε−Nµ

with the constant C of Corollary 2.15. If l 6∈ {mj̃ : m ∈ Z }, then ξl(t) = 0 for all times

t.
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2.10 Example — Nonlinear Wave Equations with Dirichlet Bo-

undary Conditions

We finally apply the results from Sections 2.2 and 2.4 to the nonlinear wave equation

∂2

∂t2
u(x, t) = ∆u(x, t) − ρu(x, t) + g(u(x, t)) (2.34)

with Dirichlet boundary conditions u(x, t) = v(x, t) = 0 for x on the boundary of [0, π]

and with an odd nonlinearity g, g(u) = −g(−u). The Hamiltonian structure of this

equation was established in Section 1.5.

Using the first Hamiltonian formulation (1.16) of this equation, which is the same as

in the case of periodic boundary conditions, we have already verified the assumptions

needed for Theorem 2.7 and its corollaries and directly get that Corollaries 2.20, 2.21,

and 2.22 are also valid along solutions of (2.34) with appropriate notions of actions, mass,

and momentum, see Section 1.5. Note that the sums of actions in Corollary 2.20 are just

multiples of the actions since Ij = I−j, see also Section 1.5. This implies that we have

indeed long-time near-conservation of actions and not only of sums of actions.

Concerning the second Hamiltonian formulation (1.18) of (2.34), we mention that its

actions are just multiples of the actions for the first formulation since ũj = −2iuj and

ṽj = −2ivj. In this way, the long-time near-conservation of actions, mass, and momentum

with respect to the second formulation follows from the long-time near-conservation of

actions with respect to the first formulation.

For the case of Dirichlet boundary conditions we assumed an odd nonlinearity g. This

helped us to apply the theory developed for periodic boundary conditions also in the case

of Dirichlet boundary conditions. But this property of the nonlinearity is indeed crucial

since we are not able to verify the regularity assumption 2.1 with a general nonlinearity.



3 Modulated Fourier Expansions of

Hamiltonian Partial Differential

Equations

In this chapter we prove Theorem 2.5 on the long-time near-conservation of actions along

solutions of the Hamiltonian equations of motion (2.2) corresponding to the Hamiltonian

function (2.1) in a weakly nonlinear setting. This is done in Sections 3.1, 3.2, 3.3, 3.4,

and 3.5 using the technique of modulated Fourier expansions. The proof mainly relies

on a generalization of the corresponding proofs in [17] and in particular [29], where the

examples of nonlinear wave and Schrödinger equations are treated. In Sections 3.6 and 3.7

we finally comment on the modifications needed for the proof of the slightly more general

Theorems 2.7 and 2.12 on the long-time near-conservation of sums of actions in the case

of partial resonances and the long-time near-conservation of scaled actions, respectively.

We fix N , and we assume the assumptions in Theorem 2.5 to be satisfied. The con-

sidered Hamiltonian equations of motion (2.2) then take the form

i
d

dt
ξj(t) = ωjξj(t) +

∂P

∂ηj

(ξ(t), ξ(t))

= ωjξj(t) +
∞∑

m+m′=2

∑

k∈Nm, l∈Nm′

Pj,k,lξk1(t) · · · ξkm(t)ξl1(t) · · · ξlm
′ (t).

(3.1)

We study the weakly nonlinear situation where the initial value ξ(0) is small of size ε ≤ ε0,

‖ξ(0)‖s ≤ ε.

Here, ε0 is the constant appearing in the non-resonance condition 2.3, and we aim for

a near-conservation of actions on a time interval of length ε−N as stated in Theorem

2.5. We will also use the various other constants from the assumptions of Theorem 2.5.

Assumption 2.1 on the regularity of the nonlinearity P yields constants C1, s0 ≤ s, Cs0 ,

Cs, CL,s0 , and CL,s. Constants c2, C2, and σ result from Assumption 2.2 on the dimension

or the zero momentum, and Assumption 2.3 on the non-resonance of the frequencies yields

a constant C0 apart from ε0.

3.1 Modulated Fourier Expansions

The Idea of Modulated Fourier Expansions. In the absence of the nonlinearity

(P = 0) the functions e−iωjt are solutions of (3.1). Since the nonlinearity introduces

products, the idea in the theory of modulated Fourier expansions is to expand solutions

of (3.1) in terms of products of these exponentials,
∏

l∈N

(e−iωlt)kl = e−i(k·ω)t
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for sequences k = (kl)l∈N ∈ Z
N of integers with finitely many nonzero entries and with

k · ω =
∑

l∈N klωl. We hence make the ansatz

ξ̃j(t) =
∑

k

zk
j (εt)e−i(k·ω)t (3.2)

for the solution of (3.1), where the sum runs over all sequences k ∈ Z
N of integers with

finitely many nonzero entries indexed by N . This is called a modulated Fourier expansion

of ξj(t). It separates the timescale t and the timescale τ = εt on which the coefficients of

the products e−i(k·ω)t, the modulation functions zk
j = zk

j (τ), evolve. For an overview on

the short but lively history of modulated Fourier expansions we refer the reader to the

Introduction of the present thesis.

The Modulation System. Inserting the ansatz (3.2) in the equations of motion (3.1)

and comparing the coefficients of the exponentials e−i(k·ω)t results in the modulation system

iεżk
j + (k ·ω)zk

j = ωjz
k
j +

∞∑

m+m′=2

∑

k1+···+km

−l1−···−lm
′
=k

∑

k∈Nm, l∈Nm′

Pj,k,lz
k1

k1 · · · zkm

km zl1

l1 · · · zlm
′

lm
′ (3.3a)

for the modulation functions zk
j of the modulated Fourier expansion (3.2). Here and in

the following, a dot ˙ symbolises the derivative with respect to the slow timescale τ = εt.

The initial condition for ξ(t) further yields

∑

k

zk
j (0) = ξj(0). (3.3b)

Comparison with the Modulated Fourier Expansion of Nonlinear Wave Equa-

tions in [17]. In [17], a modulated Fourier expansion for the nonlinear wave equation

(1.14) of Section 1.5 is used to prove Corollary 2.20 on the long-time near-conservation of

actions along solutions of (1.14).

In this reference, the function u = u(x, t) and its Fourier coefficients uj(t) are ex-

panded as a modulated Fourier expansion. The modulated Fourier expansion (3.2) for

the general class of Hamiltonian partial differential equations considered here yields a dif-

ferent modulated Fourier expansion for the nonlinear wave equation. Indeed, we expand

the complex coefficients

ξj(t) =
ω

1
2
j uj(t) + iω

− 1
2

j vj(t)√
2

as introduced in Section 1.5 which involve not only the Fourier coefficients uj(t) but also

their time derivatives vj(t) = d
dt

uj(t), both scaled with the corresponding frequency ωj.

Formal Analysis of the Modulation System. Formally, (3.3a) are the equations of

motion of a Hamiltonian system on a phase space of sequences z = (zk
j )j∈N ,k∈ZN with
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Hamiltonian function

H(z,w) = ε−1
∑

j∈N ,k∈ZN

(ωj − k · ω)zk
j wk

j

+ ε−1

∞∑

m,m′=0

∑

k1+···+km

−l1−···−lm
′+1=0

∑

k∈Nm, l∈Nm′+1

Pk,lz
k1

k1 · · · zkm

km wl1

l1 · · ·wlm
′+1

lm
′+1

(3.4)

with the same coefficients Pk,l as in the Hamiltonian function H(ξ, η). In particular, the

Hamiltonian function H also satisfies the condition H(z,w) = H(w, z), that we imposed

in Section 1.1 on Hamiltonian functions.

Since the sum in the Hamiltonian function H is over all k1, . . . ,km, l1, . . . , lm
′+1 with

k1+· · ·+km−l1−· · ·−lm
′+1 = 0, H(z, z) is invariant under the transformation zk

j 7→ eiθklzk
j

for l ∈ N . According to Proposition 1.4 this implies the conservation of the corresponding

component of the momentum

Kl(z,w) =
∑

j∈N ,k∈ZN

klz
k
j wk

j

along any solution of (3.3a).

Studying modulated Fourier expansions can hence be seen as blowing up the phase

space of the original Hamiltonian function while preserving the Hamiltonian structure of

the equations of motion. This blow-up introduces many conserved quantities Kl which

give much insight into the original system.

Outline of the Analysis of the Modulation System. In the following Section 3.2,

we will construct an approximate solution of the modulation system (3.3) in an iterative

way. The iterated modulation functions constructed in this way will be estimated in

Section 3.3 where also the defect of these iterated modulation functions in the modulation

system is analysed. In Section 3.4, we will show that the modulated Fourier expansion

corresponding to the iterated modulation functions describes the exact solution ξ(t) of

the Hamiltonian equations of motion (3.1) up to a very small error.

However, the complete analysis is valid only on a (rather) short time interval 0 ≤
τ = εt ≤ 1. The extension to a long time interval 0 ≤ τ = εt ≤ ε−N+1 is the subject of

Section 3.5. It is done with the help of the formal invariants Kl of the modulation system.

These turn out to be almost invariants (up to εN+2) along our approximate solution of the

modulation system, which are close to the actions Ij (up to ε
5
2 ) along the exact solution

of (3.1). We repeat the construction of iterated modulation functions on time intervals

1 ≤ τ ≤ 2, 2 ≤ τ ≤ 3, and so on. The almost invariants will allow us to put ε−N+1 of

them together yielding a long time interval 0 ≤ τ ≤ ε−N+1 on which the almost invariants

are nearly conserved (up to ε3) and close to the actions (up to ε
5
2 ). This finally completes

the proof of Theorem 2.5.
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3.2 Iterative Solution of the Modulation System

In order to make the formal analysis of the preceding section rigorous, we construct

iteratively an approximate solution of the modulation system (3.3) in this section. This

construction is valid on a short time interval 0 ≤ τ = εt ≤ 1.

Cut-Off. We do not cut off terms with high frequencies but instead work with all frequen-

cies. However, we cut off terms in which a large number of frequencies is accumulated,

i.e., terms with a large index k (recall that zk
j is the coefficient of e−i(k·ω)t). We set

zk
j = 0 if ‖k‖ > L (3.5)

with

L = 2N + 4 + 4s0

depending only on N and s0. Since the modulation functions decrease with increasing

‖k‖, we will be able to handle this cut-off.

Moreover, we cut off summands of the nonlinearity in (3.1), namely those with m +

m′ > L, and consider only

L∑

m+m′=2

∑

k1+···+km

−l1−···−lm
′
=k

∑

k∈Nm, l∈Nm′

Pj,k,lz
k1

k1 · · · zkm

km zl1

l1 · · · zlm
′

lm
′ .

Again, the size of the modulation functions will enable us to control this cut-off.

The Iteration. We aim for an iterative solution of the modulation system (3.3) on the

time interval 0 ≤ τ ≤ 1. We only consider indices k with ‖k‖ ≤ L since otherwise zk
j = 0

by (3.5). Initially we set on 0 ≤ τ ≤ 1

[
z
〈j〉
j

]0

= ξj(0) and
[
zk

j

]0

= 0 for k 6= 〈j〉.

Our iteration is motivated by an isolation of the dominant terms in (3.3a). We distin-

guish three different terms in the modulation system (3.3a).

• The nonlinear term is expected to be of size O(ε)z since the nonlinearity is quadratic

and since we expect z to be of size ε.

• The term iεżk
j is of size εż.

• The size of (k ·ω − ωj)z
k
j depends on k and j. It vanishes for k = 〈j〉 and is of size

Ω(ε
1
2 )z for not near-resonant indices; for near-resonant indices it is of size O(ε

1
2 )z.

For the indices (j,k) with k 6= 〈j〉 that are not near-resonant, the term (k ·ω − ωj) is

considered dominant in (3.3a). We collect those indices (and the indices (j,k) where |j|
is not too small if the condition of small dimension (2.9a) is satisfied in Assumption 2.2)

in the set Sε,

Sε = { (j,k) ∈ N × Z
N :k 6= 〈j〉, ‖k‖ ≤ L, |k · ω − ωj| ≥ ε

1
2 ,

|j| > ε|l| for all l ∈ N with kl 6= 0 }
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if the condition of small dimension (2.9a) is satisfied in Assumption 2.2 and

Sε = { (j,k) ∈ N × Z
N : k 6= 〈j〉, ‖k‖ ≤ L, |k · ω − ωj| ≥ ε

1
2 }

if the condition of zero momentum is satisfied in Assumption 2.2. The reason for these

different definitions will become clear later. Since the term (k · ω − ωj) is dominant in

(3.3a) for indices (j,k) ∈ Sε, we determine for those indices algebraically the (n + 1)th

iterate of the modulation function zk
j on 0 ≤ τ ≤ 1 by

[
zk

j

]n+1

=
1

k · ω − ωj

[
−iεżk

j +
L∑

m+m′=2

∑

k1+···+km

−l1−···−lm
′
=k

∑

k∈Nm, l∈Nm′

Pj,k,lz
k1

k1 · · · zkm

km zl1

l1 · · · zlm
′

lm
′

]n

.

(3.6a)

The notation [·]n means that the nth iterate of all modulation functions within the brackets

is taken.

For k = 〈j〉 the (n + 1)th iterate of z
〈j〉
j is defined on 0 ≤ τ ≤ 1 by the differential

equation

[
ż
〈j〉
j

]n+1

= −iε−1
[ L∑

m+m′=2

∑

k1+···+km

−l1−···−lm
′
=〈j〉

∑

k∈Nm, l∈Nm′

Pj,k,lz
k1

k1 · · · zkm

km zl1

l1 · · · zlm
′

lm
′

]n

(3.6b)

with initial value [
z
〈j〉
j (0)

]n+1

= ξj(0) −
[ ∑

k 6=〈j〉

zk
j (0)

]n

(3.6c)

motivated by (3.3b).

We are not able to identify the dominant term in (3.3a) for near-resonant indices with

|k · ω − ωj| < ε
1
2 . For this reason we set for n ≥ 0

[
zk

j

]n+1

= 0 (3.6d)

on 0 ≤ τ ≤ 1 for near-resonant indices with the firm expectation that the non-resonance

condition 2.3 allows us to control the induced error. Moreover, if the condition of small

dimension (2.9a) is satisfied in Assumption 2.2 and if |j| ≤ ε|l| for an l ∈ N with kl 6= 0,

we set on 0 ≤ τ ≤ 1 for n ≥ 0 [
zk

j

]n+1

= 0. (3.6e)

We collect the indices for which we set all the iterates to zero in the set Rε,

Rε = { (j,k) ∈ N × Z
N :k 6= 〈j〉, ‖k‖ ≤ L,

|k · ω − ωj| < ε
1
2 or |j| ≤ ε|l| for an l ∈ N with kl 6= 0 }

if the condition of small dimension (2.9a) is satisfied in Assumption 2.2, and

Rε = { (j,k) ∈ N × Z
N : k 6= 〈j〉, ‖k‖ ≤ L, |k · ω − ωj| < ε

1
2 }
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if the condition of zero momentum (2.9b) is satisfied in Assumption 2.2.

Summarising we have algebraic equations for modulation functions zk
j belonging to

indices (j,k) ∈ Sε, differential equations modulation functions belonging to (j, 〈j〉), and

we set zk
j to zero for (j,k) ∈ Rε.

Single-wave Modulation Functions. If the condition of zero momentum (2.9b) is

satisfied in Assumption 2.2, then for given k only one modulation function is nonzero,

[
zk

j

]n

= 0 for all j ∈ N with j 6= j(k) and all n on 0 ≤ τ ≤ 1. (3.7)

Recall that j(k) =
∑

l∈N kll. We refer to this phenomenon as single-wave modulation

functions. Indeed, the index k corresponds to a temporal evolution e−i(k·ω)t, while in our

examples in Sections 2.6, 2.7, and 2.9 the index j corresponds to a (spatial) wave ei(j·x).

The property (3.7) states that the evolution e−i(k·ω)t consists of a single wave ei(j(k)·x).

The proof of (3.7) is done by induction on n. The case n = 0 is clear, so let n > 0 and

consider the iteration (3.6a) for j 6= j(k). Inductively only those terms in the nonlinearity

are nonzero with

k1 = j(k1), . . . , km = j(km), l1 = j(l1), . . . , lm
′

= j(lm
′

).

Due to the condition of zero momentum (2.9b) only those terms in the nonlinearity are

nonzero where

j = k1 + · · · + km − l1 − · · · − lm
′

.

This implies

j = j(k1) + · · · + j(km) − j(l1) − · · · − j(lm
′

) = j(k)

and concludes the proof of (3.7).

Abstract Formulation of the Iteration I. We set

[[k]] =

{
1
2
(‖k‖ + 1), k 6= 0,

3
2
, k = 0,

and rescale the modulation functions with corresponding powers of ε,

ckj = ε−[[k]]zk
j .

This takes into account the powers of ε accumulating in the modulation functions zk
j .

Moreover, we split the rescaled variables in the “diagonal” part c
〈j〉
j and the off-diagonal

part ckj with (j,k) ∈ Sε, i.e.

ak
j =





0, (j,k) ∈ Sε,

ckj , k = 〈j〉,
0, (j,k) ∈ Rε or ‖k‖ > L

and bkj =





ckj , (j,k) ∈ Sε,

0, k = 〈j〉,
0, (j,k) ∈ Rε or ‖k‖ > L.
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Note that entries belonging to indices (j,k) ∈ Rε or to indices with ‖k‖ > L are set to

zero in the iteration. Therefore, we have indeed [c]n = [a]n+[b]n, where a = (ak
j )j∈N ,k∈ZN ,

b = (bkj )j∈N ,k∈ZN , and c = (ckj )j∈N ,k∈ZN .

In these variables the nonlinearity reads

F(c)kj =
L∑

m+m′=2

∑

k1+···+km

−l1−···−lm
′
=k

ε[[k1]]+···+[[km]]+[[l1]]+···+[[lm
′
]]

ε[[k]]

∑

k∈Nm, l∈Nm′

Pj,k,lc
k1

k1 · · · ckm

km cl
1

l1 · · · cl
m′

lm
′ ,

and the iteration (3.6) becomes

[
bkj

]n+1

=
1

k · ω − ωj

[
−iεḃkj + F(c)kj

]n

for (j,k) ∈ Sε,

[
ȧ
〈j〉
j

]n+1

= −iε−1
[
F(c)

〈j〉
j

]n

,
[
a
〈j〉
j (0)

]n+1

= ε−1ξj(0) −
[ ∑

k 6=〈j〉

ε[[k]]−1bkj (0)
]n

.
(3.8)

Abstract Formulation of the Iteration II. A second rescaling also takes into account

the frequencies accumulating in the modulation functions. We set

âk
j = j(s−s0)|k|ak

j , b̂kj = j(s−s0)|k|bkj , ĉkj = j(s−s0)|k|ckj ,

and

F̂(ĉ)kj =
L∑

m+m′=2

∑

k1+···+km

−l1−···−lm
′
=k

ε[[k1]]+···+[[km]]+[[l1]]+···+[[lm
′
]]

ε[[k]]

j(s−s0)|k|

j(s−s0)(|k1|+···+|km|+|l1|+···+|lm′ |)

∑

k∈Nm, l∈Nm′

Pj,k,lĉ
k1

k1 · · · ĉkm

km ĉl
1

l1 · · · ĉl
m′

lm
′ .

The iteration for b̂ then becomes
[
b̂kj

]n+1

=
1

k · ω − ωj

[
−iε

˙̂
bkj + F̂(ĉ)kj

]n

for (j,k) ∈ Sε. (3.9)

3.3 Estimating the Iterated Modulation Functions

In this section we estimate the iterated modulation functions [z]n constructed in the

previous section. We use the norm

‖|z|‖s =
∥∥∥
(∑

k

|zk
j |

)
j∈N

∥∥∥
s
=

(∑

j∈N

|j|2s
(∑

k

|zk
j |

)2) 1
2
.

This is the norm used in [29] and [30]. In contrast to the norm used in [17], [16], and

[34], namely (
∑

j∈N |j|2s
∑

k|zk
j |2)

1
2 , this norm is not completely l2-based but mixes an
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l2- with an l1-framework. The indices k are treated in the l1-framework, whereas the

indices j are treated in the l2-framework. It turns out to be an appropriate norm to

handle the Hamiltonian systems considered in this thesis, see also the comment following

the estimate (3.10) and Section 3.4. The additional regularity of the nonlinearity in the

nonlinear wave equation (see Section 1.5) allows the authors of [17], [34], and [16] to use

a completely l2-based norm.

Size of the Iterated Modulation Functions. In order to estimate the size of the

iterated modulation functions we estimate in the following lemma the nonlinearities F

and F̂ generalizing (2.7). This is done using the regularity assumption 2.1.

Lemma 3.1. Denoting by ·(ℓ) the ℓth derivative with respect to τ , we have for c = c(τ)

‖|F(c)(ℓ)|‖s ≤ Cε
1
2

with a constant C depending only on maxℓ̃=0,...,ℓ ‖|c(ℓ̃)|‖s, CL,s, ℓ, and L. Moreover, for

the diagonal elements and near-diagonal elements of F(c) we have

∥∥∥
∣∣∣
(
F(c)

〈j〉
j

)(ℓ)

j∈N

∣∣∣
∥∥∥

s
≤ Cε and

∥∥∥
∣∣∣
(
F(c)kj

)(ℓ)

j∈N ,‖k‖=1

∣∣∣
∥∥∥

s
≤ Cε

with the same constant.

The same estimates hold true if c, F, and s are replaced by ĉ, F̂, and s0, respectively.

Proof. We first restrict our attention to the case ℓ = 0. Note that for k1 + · · ·+km − l1 −
· · · − lm

′
= k and m + m′ ≥ 2

[[k1]] + · · · + [[km]] + [[l1]] + · · · + [[lm
′

]] ≥ max
(1

2
‖k‖ +

m + m′

2
,m + m′

)

≥ [[k]] +
m + m′ − 1

2
.

Therefore we have

∑

k

|F(c)kj | ≤
L∑

m+m′=2

ε
m+m′−1

2

∑

k∈Nm, l∈Nm′

|Pj,k,l|
(∑

k1

|ck1

k1 |
)
· · ·

(∑

km

|ckm

km |
)(∑

l1

|cl1l1 |
)
· · ·

(∑

lm
′

|clm
′

lm
′ |
)

=
L∑

m+m′=2

ε
m+m′−1

2 |P |m,m′

j (ξ, . . . , ξ)

with ξ = (
∑

k|ckj |)j∈N and |P |m,m′

j from Assumption 2.1. Using (2.6a) from the regularity

assumption 2.1 we finally get

‖|F(c)|‖s =
∥∥∥
(∑

k

|F(c)kj |
)

j∈N

∥∥∥
s
≤ ε

1
2

L∑

m+m′=2

Cm,m′,s‖ξ‖m+m′

s ≤ ε
1
2 CL,s

L∑

m+m′=2

‖|c|‖m+m′

s
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as claimed.

To handle the case ℓ > 0 we have to differentiate F(c) using the product rule. Then

the proof is very similar to the case ℓ = 0. Pick one resulting summand where ck
1

is differentiated ℓ1 times, ck
2

is differentiated ℓ2 times, . . ., and cl
m′

is differentiated

ℓm+m′ times. With the above calculation, this summand can be estimated using (2.6)

by ε
1
2 Cm,m′,s‖|c(ℓ1)|‖s · · · ‖|c(ℓm+m′ )|‖s ≤ ε

1
2 Cm,m′,s maxℓ̃=0,...,ℓ ‖|c(ℓ̃)|‖m+m′

s . A crude estimate

of the number of such summands for fixed ℓ, m, and m′ is (ℓ + 1)m+m′
. This yields the

result as stated in the lemma.

The estimate for the diagonal elements and near-diagonal elements of F is obtained

in the same way using

[[k1]] + · · · + [[km]] + [[l1]] + · · · + [[lm
′

]] ≥ m + m′ ≥ [[k]] + 1

for [[k]] = 1, i.e., ‖k‖ = 1. In order to estimate ‖|F̂(ĉ)|‖s0
and its derivatives, we just

notice that
j(s−s0)|k|

j(s−s0)(|k1|+···+|km|+|l1|+···+|lm′ |)
≤ 1

for k1 + · · · + km − l1 − · · · − lm
′

= k. The same calculations as above then yield the

result.

The estimates of the nonlinearity from Lemma 3.1 at hand, we are now able to control

the size of the iterated (and rescaled) modulation functions [c]n = [a]n + [b]n determined

by the iteration (3.8).

Proposition 3.2 (Size of the Iterated Modulation Functions). We have on 0 ≤ τ ≤ 1

‖|[c(ℓ)]n|‖s ≤ C

with a constant C depending only on CL,s from the regularity assumption 2.1, the number

of derivatives ℓ, the number of iterations n, and L.

The same estimate holds true if c and s are replaced by ĉ and s0, respectively, with a

constant depending in addition on CL,s0.

Proof. We have from (3.6c)

‖|[a(0)]n+1|‖s =
(∑

j∈N

|j|2s|[a〈j〉
j (0)]n+1|2

) 1
2 ≤ ε−1‖ξ(0)‖s + ‖|[b(0)]n|‖s. (3.10)

Note that for this estimate, it is crucial to work with the norm ‖|·|‖s as defined above. The

l2-norm used in [17], [16], and [34] does not allow such an estimate and requires additional

terms which are not present in our general setting. In combination with Lemma 3.1 we

conclude on 0 ≤ τ = εt ≤ 1

‖|[a(τ)]n+1|‖s ≤ ‖|[a(0)]n+1|‖s + sup
0≤θ≤1

‖|[ȧ(θ)]n+1|‖s ≤ ε−1‖ξ(0)‖s + ‖|[b(0)]n|‖s + C
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with a constant C = C(sup0≤θ≤1 ‖|[c(θ)]n|‖s, CL,s, L). In addition, Lemma 3.1 together

with the non-resonance condition 2.3 allows to estimate on this time interval

‖|[b]n+1|‖s ≤ ε
1
2‖|[ḃ]n|‖s + C

with the same constant C as in the above estimate of ‖|[a]n+1|‖s. Due to the appearance

of ḃ in the latter estimate, we also have to control derivatives with respect to τ denoted

by ·(ℓ) in order to estimate the size of [a]n+1 and [b]n+1. This also can be done by means

of Lemma 3.1 resulting in the estimates

‖|[b(ℓ)]n+1|‖s ≤ C
(

sup
0≤θ≤1

max
ℓ̃=0,...,ℓ+1

‖|[c(ℓ̃)(θ)]n|‖s, CL,s, ℓ, L
)
,

‖|[a(ℓ)]n+1|‖s ≤ ε−1‖ξ(0)‖s + C
(

sup
0≤θ≤1

max
ℓ̃=0,...,ℓ−1

‖|[c(ℓ̃)(θ)]n|‖s, CL,s, ℓ, L
)

for ℓ ≥ 1. Initially we have ‖|[a]0|‖s = ε−1‖ξ(0)‖s ≤ 1, ‖|[b]0|‖s = 0, and ‖|[c(ℓ)]0|‖s = 0

for all ℓ > 0. We conclude that

‖|[c(ℓ)]n|‖s ≤ C

with a constant C depending only on CL,s, ℓ, n, and L.

For the rescaled variables â, b̂, and ĉ we have

‖|[â(ℓ)]n|‖s0
= ‖|[a(ℓ)]n|‖s,

and the iteration (3.9) yields for [b̂(ℓ)]n+1 the same estimate as for [b(ℓ)]n+1 with s replaced

by s0. This proves the proposition on the size of the iterated modulation functions.

Defect of the Iterated Modulation Functions. After n steps of the iteration the

defect in the modulation system (3.3a) is

[
dk

j

]n

=
[
iεżk

j +(k ·ω−ωj)z
k
j −

∞∑

m+m′=2

∑

k1+···+km

−l1−···−lm
′
=k

∑

k∈Nm, l∈Nm′

Pj,k,lz
k1

k1 · · · zkm

km zl1

l1 · · · zlm
′

lm
′

]n

,

whereas the defect in the initial condition (3.3b) reads

[
d̃
〈j〉
j (0)

]n

=
[∑

k

zk
j (0)

]n

− ξj(0)

with d̃(0) consisting only of diagonal entries. We write

[
dk

j

]n

=
[
iεek

j + (k · ω − ωj)f
k
j + gk

j + hk
j + pk

j

]n
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with
[
ek

j

]n

has only nonzero entries for k = 〈j〉,
[
fk

j

]n

has only nonzero entries for (j,k) ∈ Sε,
[
gk

j

]n

has only nonzero entries for (j,k) ∈ Rε,
[
hk

j

]n

has only nonzero entries for ‖k‖ > L,

[
pk

j

]n

=
[
−

∞∑

m+m′=L+1

∑

k1+···+km

−l1−···−lm
′
=k

∑

k∈Nm, l∈Nm′

Pj,k,lz
k1

k1 · · · zkm

km zl1

l1 · · · zlm
′

lm
′

]n

.

The defects g, h, and p result from the various cut-offs made in the construction of

the iteration. They can be controlled as follows.

Proposition 3.3 (Defects from the Cut-Offs). For ε sufficiently small compared to C1,

CL,s0, CL,s, ε0, n, and L we have on 0 ≤ τ ≤ 1

‖|[g]n|‖s ≤ Cε
L
2
+2, ‖|[h]n|‖s ≤ Cε

L
2
+ 3

2 , ‖|[p]n|‖s ≤ Cε
L
2

with a constant C depending only on Cs0, Cs, CL,s0, and CL,s from the regularity as-

sumption 2.1, C0 from the non-resonance condition 2.3, the number of iterations n, and

L.

The estimates for h and p also hold true for ĥ, p̂, and s0 instead of h, p, and s.

Proof. The defect g in the indices (j,k) ∈ Rε is the effect of setting [zk
j ]n = 0 for those

indices in (3.6d) and (3.6e). We control this effect using the non-resonance condition 2.3

which is assumed for the near-resonant indices in Rε with ε ≤ ε0. If the condition of small

dimension (2.9a) is satisfied in Assumption 2.2, then the set Rε also contains indices (j,k)

with |j| ≤ ε|l| for an l ∈ N with kl 6= 0. But for those indices the non-resonance condition

(2.10) is also satisfied with C0 = 1 provided that s ≥ N + 3 + 3s0 as required in (2.9a)

since
|j|s−s0

j(s−s0)|k|
≤ εs−s0

for such indices. In this way, we get for the defect g using the non-resonance condition

2.3

‖|[g]n|‖2
s =

∑

j∈N

|j|2s
( ∑

k:(j,k)∈Rε

∣∣∣
[
gk

j

]n∣∣∣
)2

=
∑

j∈N

|j|2s
( ∑

k:(j,k)∈Rε

ε[[k]]j−(s−s0)|k||F̂([ĉ]n)kj |
)2

≤ sup
(j,k)∈Rε

( |j|s−s0ε[[k]]

j(s−s0)|k|

)2

‖|F̂([ĉ]n)|‖2
s0
≤ (CεN+4+2s0)2 = (Cε

L
2
+2)2

with a constant C depending on CL,s0 , CL,s, C0, n, and L by Lemma 3.1 and Proposition

3.2. Note that the non-resonance condition 2.3 is indeed only needed for near-resonant
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indices with j = j(k) if the condition of zero momentum (2.9b) in Assumption 2.2 is

satisfied due to zk
j = 0 for j 6= j(k) by (3.7). Moreover, note that the above estimate of

[g]n does not hold for the rescaled variables ĝ = (ĝk
j )j∈N ,k∈ZN = (j(s−s0)|k|gk

j )j∈N ,k∈ZN and

s replaced by s0.

h comprises the effect of setting zk
j = 0 for ‖k‖ > L. We can control this defect on

0 ≤ τ ≤ 1 by

‖|[h]n|‖2
s =

∑

j∈N

|j|2s
( ∑

‖k‖>L

∣∣∣
[
hk

j

]n∣∣∣
)2

=
∑

j∈N

|j|2s
( ∑

‖k‖>L

ε[[k]]|F([c]n)kj |2
)2

≤ εL+2‖|F([c]n)|‖2
s ≤ (Cε

L
2
+ 3

2 )2

with a constant C depending on CL,s, n, and L by Lemma 3.1 and Proposition 3.2. The

same estimate holds true in the rescaled variables ĥ and s replaced by s0 with the same

arguments and a constant depending in addition on CL,s0 .

The consequences of cutting off the expansion of the nonlinearity are collected in p.

As in the proof of Lemma 3.1 we get using the regularity assumption 2.1 on 0 ≤ τ ≤ 1

‖|[p]n|‖s =
∥∥∥
(∑

k

∣∣∣
[
pk

j

]n∣∣∣
)

j∈N

∥∥∥
s
≤

∞∑

m+m′=L+1

ε
m+m′−1

2 ‖|P |m,m′

(ξ, . . . , ξ)‖s

≤ ε
L
2

∞∑

m+m′=L+1

ε
m+m′−L−1

2 Cm,m′,s‖ξ‖m+m′

s

with ξ = (
∑

k|[ckj ]n|)j∈N . Note that by Proposition 3.2 ‖ξ‖s = ‖|[c]n|‖s ≤ C with a

constant depending only on CL,s, n, and L. Thus, for ε sufficiently small compared to C1,

CL,s, n, and L the latter sum converges by (2.6b), and we conclude

‖|[p]n|‖s ≤ Cε
L
2

with a constant C depending only on Cs, CL,s, n, and L. The same estimate holds true

in the rescaled variables p̂, ξ̂ = (
∑

k|[ĉkj ]n|)j∈N , and s replaced by s0 with a constant

depending in addition on Cs0 and CL,s0 . We have thus proven for the cut-off defects g, h,

and p the above proposition.

The defects e + f and d̃ are indeed the defects resulting from the iteration itself. For

their study we introduce rescalings of the nonlinearity

F̃(c)kj = ε[[k]]F(c)kj and
ˆ̃
F(ĉ)kj = ε[[k]]F̂(ĉ)kj ,

for which Lipschitz estimates are provided by the following lemma.

Lemma 3.4. Denoting by ·(ℓ) the ℓth derivative with respect to τ , we have for c = c(τ)

and c̃ = c̃(τ)

‖|F̃(c)(ℓ) − F̃(c̃)(ℓ)|‖s ≤ Cε max
ℓ̃=0,...,ℓ

‖|z(ℓ̃) − z̃(ℓ̃)|‖s
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with a constant C depending only on maxℓ̃=0,...,ℓ ‖|c(ℓ̃)|‖s, maxℓ̃=0,...,ℓ ‖|c̃(ℓ̃)|‖s, CL,s0, CL,s,

ℓ, and L. Moreover, for the diagonal elements of F(c) we have

∥∥∥
∣∣∣
(
F̃(c)

〈j〉
j − F̃(c̃)

〈j〉
j

)(ℓ)

j∈N

∣∣∣
∥∥∥

s
≤ Cε

3
2 max

ℓ̃=0,...,ℓ

∥∥∥
∣∣∣
(
z
〈j〉
j − z̃

〈j〉
j

)(ℓ̃)

j∈N

∣∣∣
∥∥∥

s

+ Cε max
ℓ̃=0,...,ℓ

∥∥∥
∣∣∣
(
zk

j − z̃k
j

)(ℓ̃)

j∈N ,k 6=〈j〉

∣∣∣
∥∥∥

s

with the same constant.

The same estimates hold true if c, c̃, F, F̃, and s are replaced by ĉ, ˆ̃c, F̂,
ˆ̃
F, and s0,

respectively.

Proof. The proof is similar to the proof of Lemma 3.1, and we start once again with the

case ℓ = 0. Here, in order to estimate the powers of ε in F̃, we use

[[k1]] + · · · + [[km]] + [[l1]] + · · · + [[lm
′

]] ≥ [[l]] + 1 (3.11)

for any l = k1, . . . ,km, l1, . . . , lm
′
if m + m′ ≥ 2. Moreover, we note the following equality

for a difference of products, which is easily shown by induction on m using 2(a1a2−b1b2) =

(a1 + b1)(a2 − b2) + (a1 − b1)(a2 + b2),

a1 · · · am − b1 · · · bm =
m∑

l=1

(a1 + b1) · · · (al−1 + bl−1)(al − bl)(al+1 · · · am + bl+1 · · · bm)2−l.

(3.12)

In a similar way as for F we then get

∑

k

|F̃(c)kj − F̃(c̃)kj | ≤ ε
L∑

m+m′=2

m+m′∑

l=1

(
|P |m,m′

j (

l−1︷ ︸︸ ︷
ξ + ξ̃, . . . , ξ + ξ̃, η, ξ, . . . , ξ)

+|P |m,m′

j (ξ + ξ̃, . . . , ξ + ξ̃︸ ︷︷ ︸
l−1

, η, ξ̃, . . . , ξ̃)
)
2−l

with ξ = (
∑

k|ckj |)j∈N , ξ̃ = (
∑

k|c̃kj |)j∈N , and η = (
∑

l|zl
j − z̃l

j|)j∈N . Finally, we get using

(2.6a) from the regularity assumption 2.1

‖|F̃(c) − F̃(c̃)|‖s ≤ ε
L∑

m+m′=2

m+m′∑

l=1

Cm,m′,s(‖ξ‖s + ‖ξ̃‖s)
l−1‖η‖s(‖ξ‖m+m′−l

s + ‖ξ̃‖m+m′−l
s )2−l,

which yields the result, since ‖ξ‖s = ‖|c|‖s, ‖ξ̃‖s = ‖|c̃|‖s, and ‖η‖s = ‖|z − z̃|‖s.

In order to estimate the diagonal elements we just note that the above estimate (3.11)

improves for l = 〈j̃〉 to

[[k1]] + · · · + [[km]] + [[l1]] + · · · + [[lm
′

]] ≥ [[l]] +
3

2

if k1 + · · ·+km − l1 −· · ·− lm
′
= 〈j〉 and m+m′ ≥ 2. The extension to higher derivatives

as well as for F̂(ĉ) − ˆ̃
F(ˆ̃c) is done as explained in the proof of Lemma 3.1.
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This lemma enables us to estimate the defects e and f from the iteration.

Proposition 3.5 (Defects from the Iteration). For ε sufficiently small compared to C1,

CL,s0, CL,s, ε0, n, and L we have on 0 ≤ τ ≤ 1

‖|[e(ℓ)]n|‖s ≤ Cε
n
4
+ 3

4 , ‖|[f (ℓ)]n|‖s ≤ Cε
n
4
+1, ‖|((k · ω − ωj)f

k
j )

(ℓ)

j∈N ,k∈ZN |‖s ≤ Cε
n
4
+ 3

2 ,

‖|[d̃(0)]n|‖s ≤ Cε
n
4
+ 3

4 , ‖|[d]n|‖s ≤ Cε
n
4
+ 3

2 + Cε
L
2 , ‖|[d]n − [g]n|‖s ≤ Cε

n
4
+ 3

2 + Cε
L
2

with a constant C depending only on Cs0, Cs, CL,s0, and CL,s from the regularity as-

sumption 2.1, C0 from the non-resonance condition 2.3, the number of derivatives ℓ, the

number of iterations n, and L.

The estimates for e, f , d̃, and d − g also hold true for ê, f̂ ,
ˆ̃
d, d̂ − ĝ, and s0 instead

of e, f , d̃, d − g, and s.

Proof. We have

[
fk

j

]n

=
[
zk

j

]n

−
[
zk

j

]n+1

for (j,k) ∈ Sε,
[
e
〈j〉
j

]n

=
[
ż
〈j〉
j

]n

−
[
ż
〈j〉
j

]n+1

,
[
d̃
〈j〉
j (0)

]n

=
[
z
〈j〉
j (0)

]n

−
[
z
〈j〉
j (0)

]n+1

.

Inserting the iteration, we have for n > 0

[
fk

j

]n

=
−iε

k · ω − ωj

([
żk

j

]n−1

−
[
żk

j

]n)
+

1

k · ω − ωj

(
F̃([c]n−1)kj − F̃([c]n)kj

)
,

[
e
〈j〉
j

]n

= −iε−1
(
F̃([c]n−1)

〈j〉
j − F̃([c]n)

〈j〉
j

)
,

[
d̃
〈j〉
j (0)

]n

= −
∑

k 6=〈j〉

([
zk

j (0)
]n−1

−
[
zk

j (0)
]n)

.

Note that on 0 ≤ τ ≤ 1

∣∣∣
[
z
〈j〉
j

]n−1

−
[
z
〈j〉
j

]n∣∣∣ ≤
∣∣∣
[
d̃
〈j〉
j (0)

]n−1∣∣∣ + sup
0≤θ≤1

∣∣∣
[
e
〈j〉
j (θ)

]n−1∣∣∣.

Using this estimate together with the Lipschitz estimates of Lemma 3.4 and Proposition

3.2 on the size of the iterated modulation functions [c]n we get on 0 ≤ τ ≤ 1 for n > 0

and ℓ ≥ 0

ε−
1
4‖|[f (ℓ)]n|‖s ≤ Cε

1
4‖|[d̃(0)]n−1|‖s + Cε

1
4 sup

0≤θ≤1
max

ℓ̃=0,...,ℓ
‖|[e(ℓ̃)(θ)]n−1|‖s

+ Cε
1
2 ε−

1
4 max

ℓ̃=0,...,ℓ+1
‖|[f (ℓ̃)]n−1|‖s,

‖|[e(ℓ)]n|‖s ≤ Cε
1
2‖|[d̃(0)]n−1|‖s + Cε

1
2 sup

0≤θ≤1
max

ℓ̃=0,...,ℓ
‖|[e(ℓ̃)(θ)]n−1|‖s

+ Cε
1
4 ε−

1
4 max

ℓ̃=0,...,ℓ
‖|[f (ℓ̃)]n−1|‖s
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with a constant C depending only on CL,s0 , CL,s, ℓ, n, and L. Here we used again the

non-resonance condition 2.3 to avoid small denominators |k · ω − ωj| < ε
1
2 . Moreover we

have

‖|[d̃(0)]n|‖s ≤ ε
1
4 ε−

1
4‖|[f(0)]n−1|‖s. (3.13)

This implies that any of the quantities ε−
1
4‖|[f (ℓ)]n|‖s, ‖|[e(ℓ)]n|‖s, and ‖|[d̃(0)]n|‖s reduces

by a factor ε
1
4 per iteration. For n = 0 we have ‖|[f (ℓ)]0|‖s ≤ ‖|[z(ℓ)]0|‖s + ‖|[z(ℓ)]1|‖s ≤ Cε,

‖|[e(ℓ)]0|‖s ≤ ‖|[z(ℓ+1)]0|‖s + ‖|[z(ℓ+1)]1|‖s ≤ Cε for all ℓ ≥ 0, and ‖[d̃(0)]0‖s ≤ ‖|[z(0)]0|‖s +

‖|[z(0)]1|‖s ≤ Cε by Proposition 3.2. This yields

‖|[e(ℓ)]n|‖s ≤ Cε
n
4
+ 3

4 , ε−
1
4‖|[f (ℓ)]n|‖s ≤ Cε

n
4
+ 3

4 , ‖|[d̃(0)]n|‖s ≤ Cε
n
4
+ 3

4

with a constant C depending only on CL,s0 , CL,s, ℓ, n, and L.

For the rescaled variables ê, f̂ , and
ˆ̃
d we have

‖|[ê(ℓ)]n|‖s0
= ‖|[e(ℓ)]n|‖s and ‖|[ˆ̃d]n|‖s0

= ‖|[d̃]n|‖s;

moreover we get the same estimate for ‖|[f̂ (ℓ)]n|‖s0
as for ‖|[f (ℓ)]n|‖s using the iteration (3.9)

for [f̂ ]n. Considering finally (k·ω−ωj)[f
k
j ]n, which appears in the defect dk

j instead of [fk
j ]n,

yields an additional factor ε
1
2 in the estimate. We have thus shown the proposition.

3.4 The Modulated Fourier Expansion and the Exact Solution

In the preceding sections, we constructed iteratively an approximate solution [z]n of the

modulation system (3.3) and estimated this solution on a short time interval 0 ≤ τ =

εt ≤ 1. These iterated modulation functions yield a modulated Fourier expansion

[ξ̃(t)]n = ([ξ̃j(t)]
n)j∈N with [ξ̃j(t)]

n =
∑

k

[zk
j (εt)]ne−i(k·ω)t for j ∈ N .

In this section we show that this modulated Fourier expansion indeed describes the ex-

act solution ξ(t) of the Hamiltonian equations of motion (3.1) with small initial values

‖ξ(0)‖s ≤ ε up to a small error.

Size of the Exact Solution. We first study the size of the exact solution ξ(t) of (3.1).

The variation-of-constants formula yields

ξj(t) = e−iωjtξj(0) − i

∫ t

0

e−iωj(t−θ) ∂P

∂ηj

(ξ(θ), ξ(θ)) dθ.

While ‖ξ(θ)‖s ≤ 2ε and if 2ε ≤ C1, we get with the estimate (2.7)

‖ξ(t)‖s ≤ ‖ξ(0)‖s + Cst sup
0≤θ≤t

‖ξ(θ)‖2
s ≤ ε + 4Cstε

2.

We conclude that

‖ξ(t)‖s ≤ 2ε for 0 ≤ t ≤ 1

4Cs

ε−1, (3.14)
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i.e., for initial values of size ε the solution of (3.1) stays of size 2ε on an interval of

length O(ε−1). This argument is referred to as a bootstrap argument, see for example

[51, Proposition 1.21]. In this way, the influence of the nonlinearity can be studied on a

time interval of length O(ε−1) as indicated in Section 2.1.

Size of the Iterated Modulated Fourier Expansion. The l2s-norm of [ξ̃(t)]n can

easily be estimated by the ‖| · |‖s-norm of the iterated modulation function [z]n,

‖[ξ̃(t)]n‖2
s =

∑

j∈N

|j|2s
∣∣∣
∑

k

[zk
j (εt)]ne−i(k·ω)t

∣∣∣
2

≤
∑

j∈N

|j|2s
(∑

k

|[zk
j (εt)]n|

)2

= ‖|[z(εt)]n|‖2
s.

This estimate suggests the use of the norm ‖|·|‖s since this norm of the modulation function

z is directly linked to the l2s-norm of the modulated Fourier expansion ξ. Proposition 3.2

on the size of the iterated modulation functions then allows us to control the size of the

modulated Fourier expansion [ξ̃(t)]n,

‖[ξ̃(t)]n‖s ≤ Cε for 0 ≤ t ≤ ε−1 (3.15)

with a constant C depending only on CL,s, n, and L.

Relating the Exact Solution and the Iterated Modulated Fourier Expansion.

Similar to Lemma 3.4 we obtain the following Lipschitz estimate of the nonlinearity ∂P
∂ηj

.

In contrast to there, we take here all terms of the nonlinearity into account without any

cut-off.

Lemma 3.6. We have for ‖ξ‖s + ‖ξ̃‖s ≤ C1

∥∥∥
(∂P

∂ηj

(ξ, ξ) − ∂P

∂ηj

(ξ̃, ξ̃)
)

j∈N

∥∥∥
s
≤ Cs(‖ξ‖s + ‖ξ̃‖s)‖ξ − ξ̃‖s.

Proof. As in the proof of Lemma 3.4 we get using (3.12)

∣∣∣
∂P

∂ηj

(ξ, ξ) − ∂P

∂ηj

(ξ̃, ξ̃)
∣∣∣ ≤

∞∑

m+m′=2

m+m′∑

l=1

(
|P |m,m′

j (

l−1︷ ︸︸ ︷
|ξ| + |ξ̃|, . . . , |ξ| + |ξ̃|, |ξ − ξ̃|, |ξ|, . . . , |ξ|)

+ |P |m,m′

j (|ξ| + |ξ̃|, . . . , |ξ| + |ξ̃|︸ ︷︷ ︸
l−1

, |ξ − ξ̃|, |ξ̃|, . . . , |ξ̃|)
)
2−l

with |ξ| = (|ξj|)j∈N and

∥∥∥
(∂P

∂ηj

(ξ, ξ) − ∂P

∂ηj

(ξ̃, ξ̃)
)

j∈N

∥∥∥
s
≤

∞∑

m+m′=2

m+m′∑

l=1

Cm,m′,s(‖ξ‖s + ‖ξ̃‖s)
l−1

‖ξ − ξ̃‖s(‖ξ‖m+m′−l
s + ‖ξ̃‖m+m′−l

s )2−l

The assumption ‖ξ‖s + ‖ξ̃‖s ≤ C1 together with
∑m+m′

l=1 2−l ≤ 1 and the regularity

assumption 2.1 yield the result.
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We are now able to prove the following theorem.

Theorem 3.7. Let ξ(t) be the exact solution of the Hamiltonian equations of motion

(3.1), and let

[ξ̃(t)]n = ([ξ̃j(t)]
n)j∈N with [ξ̃j(t)]

n =
∑

k

[zk
j (εt)]ne−i(k·ω)t for j ∈ N

be its iterated modulated Fourier expansions with the approximate solution [z]n of the

modulation system (3.3) constructed in Section 3.2. Under the regularity assumption 2.1

and the non-resonance condition 2.3 we have for ε sufficiently small compared to C1,

CL,s0, CL,s, ε0, n, and L

‖ξ(t) − [ξ̃(t)]n‖s ≤ Cε
n
4
+ 1

2 + Cε
L
2
−1 for 0 ≤ t ≤ ε−1 min

( 1

4Cs

, 1
)

with a constant C depending only on Cs0, Cs, CL,s0, and CL,s from the regularity as-

sumption 2.1, C0 from the non-resonance condition 2.3, the number of iterations n, and

L.

Proof. We omit the index n. For the difference ξ − ξ̃ we have

ξj(0) − ξ̃j(0) = −d̃
〈j〉
j (0),

and ξ − ξ̃ satisfies the differential equation

i
d

dt
(ξj(t)−ξ̃j(t)) = ωj(ξj(t)−ξ̃j(t))+

(∂P

∂ηj

(ξ(t), ξ(t))− ∂P

∂ηj

(ξ̃(t), ξ̃(t))
)
−

∑

k

dk
j (εt)e−i(k·ω)t.

The variation-of-constants formula yields

ξj(t) − ξ̃j(t) = e−iωjt(ξj(0) − ξ̃j(0)) − i

∫ t

0

e−iωj(t−θ)
(∂P

∂ηj

(ξ(θ), ξ(θ)) − ∂P

∂ηj

(ξ̃(θ), ξ̃(θ))
)

dθ

+ i

∫ t

0

∑

k

e−iωj(t−θ)dk
j (εθ)e−i(k·ω)θ dθ.

Taking the l2s-norm we get

‖ξ(t) − ξ̃(t)‖s ≤ ‖|d̃(0)|‖s +

∫ t

0

∥∥∥
(∂P

∂ηj

(ξ(θ), ξ(θ)) − ∂P

∂ηj

(ξ̃(θ), ξ̃(θ))
)

j∈N

∥∥∥
s
dθ

+ t sup
0≤θ≤t

‖|d(θ)|‖s.

The defects d̃ and d can be estimated with Proposition 3.5. For ε sufficiently small, (3.14)

and (3.15) ensure ‖ξ‖s + ‖ξ̃‖s ≤ Cε ≤ C1 on 0 ≤ t ≤ ε−1 min( 1
4Cs

, 1), and hence Lemma

3.6 can be used to estimate the integrand. This yields on this time interval

‖ξ(t) − ξ̃(t)‖s ≤ Cε
n
4
+ 1

2 + Cε
L
2
−1 + Cε

∫ t

0

‖ξ(θ) − ξ̃(θ)‖s dθ

with a constant C depending only on Cs0 , Cs, CL,s, CL,s0 , C0, n, and L, and the Gronwall

lemma can be used to show the estimate stated in the theorem.
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3.5 The Modulated Fourier Expansion on Long Time Intervals

So far, the rigorous analysis of the modulated Fourier expansion carried out in Sections

3.2, 3.3, and 3.4 is valid on a time interval of length O(ε−1). This is the time interval on

which results on the exact solution can be obtained by standard arguments, see Section

3.4. However, with the help of modulated Fourier expansions we are able to study the

exact solution on much longer time intervals of length ε−N for arbitrary N . The extension

to such long time intervals is the topic of this section.

Putting Together Modulated Fourier Expansions. Let

c0 = min
( 1

4Cs

, 1
)
,

such that Theorem 3.7, which links the exact solution and its iterated modulated Fourier

expansion, is valid on the time interval 0 ≤ t ≤ c0ε
−1 as well as the estimates of the

iterated modulation functions shown in the previous sections.

A first step towards longer time intervals is done by repeating the iterative construction

presented in Section 3.2 on the time interval c0 ≤ τ ≤ 2c0. This yields iterated modulation

function [z̃]n on c0 ≤ τ ≤ 2c0. The iterations (3.6a) for non-diagonal indices (j,k) ∈ Sε,

(3.6b) for diagonal indices k = 〈j〉, and (3.6d) and (3.6e) for indices (j,k) ∈ Rε remain

unchanged but are now performed for c0 ≤ τ ≤ 2c0, whereas the iteration (3.6c) for the

initial value in diagonal indices becomes

[
z̃
〈j〉
j (c0)e

−iωjc0ε−1
]n+1

= ξj(c0ε
−1) −

[ ∑

k 6=〈j〉

z̃k
j (c0)e

−i(k·ω)c0ε−1
]n

, (3.16)

and we set

[z̃
〈j〉
j e−iωjc0ε−1

]0 = ξj(c0ε
−1) and [z̃k

j ]0 = 0 for k 6= 〈j〉
initially on c0 ≤ τ ≤ 2c0. In other words, we repeat the iterative procedure starting again

on the exact solution ξ(c0ε
−1).

Since ‖ξ(c0ε
−1)‖s ≤ 2ε by (3.14), ξ(c0ε

−1) also satisfies the smallness condition with

2ε instead of ε, and hence Propositions 3.2, 3.3, 3.5, and Theorem 3.7 are also valid for

[z̃]n and its rescaling [ˆ̃z]n on the time interval c0 ≤ τ ≤ 2c0 with new constants depending

only on Cs0 , Cs, CL,s0 , CL,s, C0, ℓ, n, and L.

We can not expect [z]n and [z̃]n to agree at the interface c0. However, we are able to

bound the difference [z(c0)]
n − [z̃(c0)]

n.

Proposition 3.8. For ε sufficiently small compared to C1, CL,s0, CL,s, ε0, n, and L we

have

‖|[z(c0)]
n − [z̃(c0)]

n|‖s ≤ Cε
n
4
+ 1

2 + Cε
L
2
−1

with a constant C depending only on Cs0, Cs, CL,s0, and CL,s from the regularity as-

sumption 2.1, C0 from the non-resonance condition 2.3, the number of iterations n, and

L.

The same estimate holds true if z, z̃, and s are replaced by ẑ, ˆ̃z, and s0, respectively.
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Proof. We have using the iteration (3.16) for z̃
〈j〉
j (c0)

[
z
〈j〉
j (c0)

]n+1

−
[
z̃
〈j〉
j (c0)

]n+1

=
[
z
〈j〉
j (c0)

]n+1

−
[
z
〈j〉
j (c0)

]n

+
[∑

k

zk
j (c0)e

−i(k·ω−ωj)c0ε−1
]n

−
[ ∑

k 6=〈j〉

(zk
j (c0) − z̃k

j (c0))e
−i(k·ω−ωj)c0ε−1

]n

− ξj(c0ε
−1)eiωjc0ε−1

Splitting z − z̃ = u + v in its diagonal entries u and off-diagonal entries v, i.e., uk
j = 0

for k 6= 〈j〉 and vk
j = 0 for (j,k) 6∈ Sε (note that zk

j − z̃k
j = 0 for (j,k) ∈ Rε or ‖k‖ > L),

we get

‖|[u(c0)]
n+1|‖s ≤ ‖|[d̃(0)]n|‖s + c0 sup

0≤θ≤c0

‖|[e(θ)]n|‖s

+ ‖[ξ̃(c0ε
−1)]n − ξ(c0ε

−1)‖s + ε
1
4 ε−

1
4‖|[v(c0)]

n|‖s.

Moreover, the iteration (3.6b) for higher derivatives of u yields

[
(u

〈j〉
j )(ℓ+1)(c0)

]n+1

= −iε−1
[(

F̃(c)
〈j〉
j − F̃(c̃)

〈j〉
j

)(ℓ)

(c0)
]n

for ℓ ≥ 0, and the iteration (3.6a) for (j,k) ∈ Sε yields

[
(vk

j )(ℓ)(c0)
]n+1

=
−iε

k · ω − ωj

[
(vk

j )(ℓ+1)(c0)
]n

+
1

k · ω − ωj

[(
F̃(c)kj − F̃(c̃)kj

)(ℓ)

(c0)
]n

for ℓ ≥ 0. Estimating the right-hand sides with the help of the Lipschitz estimates of

Lemma 3.4 in combination with Proposition 3.2 shows

‖|[u(ℓ+1)(c0)]
n+1|‖s ≤ Cε

1
2 max

ℓ̃=0,...,ℓ
‖|[u(ℓ̃)(c0)]

n|‖s + Cε
1
4 ε−

1
4 max

ℓ̃=0,...,ℓ
‖|[v(ℓ̃)(c0)]

n|‖s,

ε−
1
4‖|[v(ℓ)(c0)]

n+1|‖s ≤ Cε
1
4 max

ℓ̃=0,...,ℓ
‖|[u(ℓ̃)(c0)]

n|‖s + Cε
1
2 ε−

1
4 max

ℓ̃=0,...,ℓ+1
‖|[v(ℓ̃)(c0)]

n|‖s

with a constant C depending only on CL,s0 , CL,s, ℓ, n, and L.

Initially we have ‖|[u(c0)]
0|‖s + ‖|[v(c0)]

0|‖s ≤ Cε by Proposition 3.2 and for the

derivatives of the initial values ‖|[u(ℓ)(c0)]
0|‖s = ‖|[v(ℓ)(c0)]

0|‖s = 0 for ℓ > 0. Together

with the estimates of d̃ and e from Proposition 3.5 and of ‖[ξ̃]n − ξ‖s from Theorem 3.7

we conclude

‖|[u(ℓ)(c0)]
n|‖s ≤ Cε

n
4
+ 1

2 + Cε
L
2
−1, ε−

1
4‖|[v(ℓ)(c0)]

n|‖s ≤ Cε
n
4
+ 1

2 + Cε
L
2
−1

with a constant C depending on Cs0 , Cs, CL,s0 , CL,s, C0, ℓ, n, and L. This proves the

estimate stated in the proposition. For the proof of the same estimate in the rescaled

variables we proceed as usual noting ‖|û|‖s0
= ‖|u|‖s and using the rescaled iteration (3.9)

for v̂ as for v.
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Almost Invariants of the Iterated Modulation Functions. In principle, we can

repeat the procedure of constructing new modulated Fourier expansions on time intervals

2c0 ≤ τ ≤ 3c0, 3c0 ≤ τ ≤ 4c0, and so on. So far, however, we are not able to control

the exact solution on these intervals, or more precisely at the boundary of these intervals,

better than ‖ξ(2c0ε
−1)‖s ≤ 4ε, ‖ξ(3c0ε

−1)‖s ≤ 8ε, and so on, having in mind the short-

time estimate (3.14). But this would imply an explosion of the constants in the estimates

of the iterated modulation functions of Sections 3.3 and 3.4 and in particular a heavy

dependence on ε on time intervals of length ε−N .

The tool to control the exact solution in l2s is provided by the structure of the modu-

lation system (3.3). As discussed in Section 3.1 the modulation system is a Hamiltonian

system with Hamiltonian function H(z,w), see (3.4). Many components of its momen-

tum, namely

Kl(z, z) =
∑

j∈N ,k∈ZN

kl|zk
j |2 for l ∈ N ,

are conserved along any solution of the modulation system due to the invariance of H(z, z)

under the transformation gθ(z) = (eiθklzk
j )j∈N ,k∈ZN , see Noether’s Theorem 1.2, Proposi-

tion 1.4 on the conservation of the momentum, and the formal analysis in Section 3.1.

However, the rigorous treatment of the modulation system in Sections 3.2 and 3.3 only

yields an approximate solution of the modulation system which satisfies the modulation

system (i.e., the Hamiltonian equations of motion for (3.3)) up to a small defect d

i
d

dτ
zk

j (τ) =
∂H

∂wk
j

(z(τ), z(τ)) + ε−1dk
j (τ),

where we omit the index n denoting the number of iterations used to compute z for

convenience. Repeating the calculation of the proof of Noether’s Theorem 1.2 taking into

account this defect yields with iAz = d
dθ
|θ=0gθ(z) = (iklz

k
j )j∈N ,k∈ZN

0 =
d

dτ
Kl(z(τ), z(τ)) − 2ε−1 Re

( ∑

j∈N ,k∈ZN

iklz
k
j (τ)dk

j (τ)
)
. (3.17)

Hence, we are able to control the (non-)conservation of the momentum by means of the

defect in the equation. In order to control the derivative of Kl in (3.17) we need the

following lemma, where we write

Ωẑ =
(
(k · ω − ωj)ẑ

k
j

)
j∈N ,k∈ZN =

(
(k · ω − ωj) j

(s−s0)|k|zk
j

)
j∈N ,k∈ZN .

Lemma 3.9. Let z and d = q+g with zk
j = qk

j = 0 for (j,k) ∈ Rε or ‖k‖ > L and gk
j = 0

for (j,k) 6∈ Rε. If the condition of zero momentum (2.9b) is satisfied in Assumption 2.2,

we assume moreover zk
j = 0 for j 6= j(k). Then, we have for s ≥ 2s0

∑

l∈N

|l|2s
∑

j∈N ,k∈ZN

|kl||zk
j ||dk

j | ≤ Cε−2s0‖|ẑ|‖s0
‖|q̂|‖s0

,

∑

l∈N

|l|2s
∑

j∈N ,k∈ZN

|kl||zk
j ||dk

j | ≤ C‖|ẑ|‖s0
‖|q̂|‖s0

+ C‖|Ωẑ|‖s0
‖|Ωq̂|‖s0
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with a constant C depending only on c2, C2, σ, and L. The term C‖|Ωẑ|‖s0
‖|Ωq̂|‖s0

only

appears if the condition of zero momentum is not fulfilled in Assumption 2.2.

Proof. Let c2, C2, and σ be the constants from Assumption 2.2 describing the asymptotics

of the frequencies, and let K = max(2L, (2C2L/c2)
1/σ). Since zk

j = 0 for (j,k) ∈ Rε, we

can write

∑

l∈N

|l|2s
∑

j∈N ,k∈ZN

|kl||zk
j ||dk

j | =
∑

j∈N ,k∈ZN

|j|2s0

∑
l∈N |kl||l|2s

j2(s−s0)|k||j|2s0
|ẑk

j ||q̂k
j |.

Estimating
∑

l∈N |kl||l|2s by ‖k‖|l̄|2s, where l̄ = l̄(k) ∈ N denotes the largest index with

respect to |·| with kl̄ 6= 0, we get

∑

l∈N

|l|2s
∑

j∈N ,k∈ZN

|kl||zk
j ||dk

j | ≤
∑

j∈N ,k∈Z
N

j|k|≥ 1
K
|l̄|2 or |j|≥ 1

K
|l̄|

|j|2s0
‖k‖|l̄|2s

j2(s−s0)|k||j|2s0
|ẑk

j ||q̂k
j |

+
∑

j∈N ,k∈Z
N

j|k|< 1
K
|l̄|2

and |j|< 1
K
|l̄|

|j|2s0
‖k‖|l̄|2s

j2(s−s0)|k||j|2s0
|ẑk

j ||q̂k
j |.

(3.18)

Clearly, since 4(s − s0) ≥ 2s, the first term in (3.18) can be estimated by C‖|ẑ|‖s0
‖|q̂|‖s0

using the Cauchy–Schwarz inequality. For the second term in (3.18) we distinguish two

cases, depending on whether the condition of small dimension (2.9a) or the condition of

zero momentum (2.9b) is fulfilled in Assumption 2.2.

(a) If the condition of small dimension (2.9a) is satisfied, then we proceed as follows

in order to estimate the second term in (3.18). In this case, Rε contains all indices with

|j| ≤ ε|l| for an l ∈ N with kl 6= 0, in particular we have in the second term |j| > ε|l̄| and

hence
‖k‖|l̄|2s

j2(s−s0)|k||j|2s0
≤ ‖k‖|l̄|2s

|l̄|2(s−s0)|kl̄| · · · ·
1

ε2s0 |l̄|2s0
≤ ‖k‖ε−2s0

for all (j,k) with q̂k
j 6= 0.4 Using the Cauchy–Schwarz inequality, this proves the first

estimate of the lemma since zk
j = 0 for ‖k‖ > L.

To avoid the dependence on ε in the second estimate stated in the lemma, more careful

considerations are necessary taking into account Ω. We rewrite the second term in (3.18)

as
∑

j∈N ,k∈Z
N

j|k|< 1
K
|l̄|2

and |j|< 1
K
|l̄|

|j|2s0
‖k‖|l̄|2s

j2(s−s0)|k||j|2s0 |k · ω − ωj|2
|(Ωẑ)kj ||(Ωq̂)kj |

4This is actually the reason why we set the iterated modulation functions to zero in (3.6e) if |j| ≤ ε|l|
for an l ∈ N with kl 6= 0 provided that the condition of small dimension is satisfied. If the condition of

zero momentum is satisfied, we can use other arguments, see below.
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and make use of |k ·ω−ωj|2 in the denominator. Using the asymptotics of the frequencies

in Assumption 2.2 we get

|k · ω − ωj| =
∣∣∣kl̄ωl̄ +

∑

l̄ 6=l∈N

klωl − ωj

∣∣∣ ≥ c2|kl̄||l̄|σ − C2

∑

l̄ 6=l∈N

|kl||l|σ − C2|j|σ.

The condition j|k| < 1
K
|l̄|2 implies |kl̄| = 1 and |l| ≤ 1

K
|l̄| for all l̄ 6= l ∈ N with kl 6= 0.

Together with |j| < 1
K
|l̄| and ‖k‖ ≤ L this implies

|k · ω − ωj| ≥ c2|l̄|σ − C2L
1

Kσ
|l̄|σ =

c2

2
|l̄|σ.

Using the condition of small dimension σ ≥ s0 (2.9a), we get for the denominator

j2(s−s0)|k||j|2s0 |k · ω − ωj|2 ≥ |l̄|2(s−s0) c2

2
|l̄|2σ ≥ c2

2
|l̄|2s.

The Cauchy–Schwarz inequality then yields an estimate C‖|Ωẑ|‖s0
‖|Ωq̂|‖s0

for the second

term in (3.18) proving the second estimate of the lemma.

(b) Now, we consider the case that the zero momentum condition (2.9b) is satisfied.

We show that in this case the second term in (3.18) is not present proving both estimates

of the lemma. Pick one nonzero summand of this term. Then by hypothesis j = j(k).

Moreover, j|k| < 1
K
|l̄|2 implies |kl̄| = 1 and |l| ≤ 1

K
|l̄| for all l̄ 6= l ∈ N with kl 6= 0. The

triangle inequality together with |j| < 1
K
|l̄| yields

|l̄| =
∣∣∣j(k) −

∑

l 6=l̄

kll
∣∣∣ ≤ |j| + ‖k‖

K
|l̄| < |l̄|,

a contradiction.

We remark that the proof of the preceding Lemma 3.9 is the only place where we need

Assumption 2.2. This lemma is used in the following proposition to study rigorously

• the conservation of Kl along our approximate solution [z]n of the modulation system

(3.3),

• the relationship between Kl along our approximate solution [z]n of the modulation

system (3.3) and the actions Il(ξ, ξ) = |ξl|2 along the exact solution of the Hamiltonian

equations of motion (3.1),

• and the difference of Kl at the interface of two iterated modulation functions [z]n

and [z̃]n.

Proposition 3.10. For s ≥ 2s0 and for ε sufficiently small compared to C1, CL,s0, CL,s,

ε0, n ≥ 6, and L ≥ 6 we have on 0 ≤ τ = εt ≤ c0

∑

l∈N

|l|2s
∣∣∣

d

dτ
Kl([z(τ)]n, [z(τ)]n)

∣∣∣ ≤ Cε
n
4
+ 3

2
−2s0 + Cε

L
2
−2s0 ,

∑

l∈N

|l|2s
∣∣∣Kl([z(c0)]

n, [z(c0)]
n) − Kl([z̃(c0)]

n, [z̃(c0)]
n)

∣∣∣ ≤ Cε
n
4
+ 3

2
−2s0 + Cε

L
2
−2s0 ,

∑

l∈N

|l|2s
∣∣∣Kl([z(τ)]n, [z(τ)]n) − Il(ξ(t), ξ(t))

∣∣∣ ≤ Cε
5
2
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with a constant C depending only on Cs0, Cs, CL,s0, and CL,s from the regularity assump-

tion 2.1, c2, C2, and σ describing the asymptotics of the frequencies in Assumption 2.2,

C0 from the non-resonance condition 2.3, the number of iterations n, and L.

The third estimate improves to Cε3 if the additional non-resonance condition 2.4 is

satisfied with a constant C depending in addition on C3 from the additional non-resonance

condition 2.4.

Proof. The first estimate follows from equation (3.17), Lemma 3.9 applied to z = [z]n,

q = [d]n − [g]n = iε[e]n + [((k · ω − ωj)f
k
j )j∈N ,k∈ZN ]n + [h]n + [p]n,

and g = [g]n, Proposition 3.2 on the size of z, and Propositions 3.3 and 3.5 on the defects

in q.

For the second estimate we note that

∑

l∈N

|l|2s
∣∣∣Kl(z, z) − Kl(z̃, z̃)

∣∣∣ ≤
∑

l∈N

|l|2s
∑

j∈N ,k∈ZN

|kl|
∣∣∣|zk

j |2 − |z̃k
j |2

∣∣∣

and ||zk
j |2 − |z̃k

j |2| ≤ |zk
j − z̃k

j ||zk
j + z̃k

j |. Hence, the result follows from Lemma 3.9,

Proposition 3.2 on the size of [z]n and [z̃]n, and Proposition 3.8 on the error [z]n − [z̃]n at

the interface c0.

Let’s turn finally to the third estimate. On the one hand, we have by the second

estimate of Lemma 3.9

∑

l∈N

|l|2s
∣∣∣Kl(z, z) − |z〈l〉l |2

∣∣∣ ≤
∑

l∈N

|l|2s
∑

j∈N ,k∈Z
N

(j,k) 6=(l,〈l〉)

|kl||zk
j |2

≤ C‖|(ẑk
j )j∈N ,k 6=〈j〉|‖2

s0
+ C‖|Ω(ẑk

j )j∈N ,k 6=〈j〉|‖2
s0

,

(3.19)

where we omit the index n of z, and z is evaluated at time τ = εt. On the other hand,

we have using the Cauchy–Schwarz inequality

∑

l∈N

|l|2s
∣∣∣|z〈l〉l |2 − |ξl|2

∣∣∣ ≤
(
‖|(zk

j )j∈N ,k 6=〈j〉|‖s + ‖ξ̃ − ξ‖s

)(
ε‖|a|‖s + ‖ξ‖s

)

since
∣∣∣|z〈l〉l |2 − |ξl|2

∣∣∣ ≤ |z〈l〉l e−iωlt − ξl||z〈l〉l e−iωlt + ξl| ≤ (|z〈l〉l e−iωlt − ξ̃l| + |ξ̃l − ξl|)(|z〈l〉l | + |ξl|),

where we omit again the index n of z, a, b, and ξ̃, and all quantities are evaluated at

time τ = εt and t, respectively. Note that ‖|a|‖s ≤ C by Proposition 3.2, ‖ξ‖s ≤ Cε by

(3.14), and ‖ξ̃ − ξ‖s ≤ Cε
n
4
+ 1

2 + Cε
L
2
−1 by Theorem 3.7 with constants depending only

on Cs0 , Cs, CL,s0 , CL,s, C0, n, and L. Hence,

∑

l∈N

|l|2s
∣∣∣|z〈l〉l |2 − |ξl|2

∣∣∣ ≤ Cε(‖|(zk
j )j∈N ,k 6=〈j〉|‖s + ε

n
4
+ 1

2 + ε
L
2
−1). (3.20)
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In order to control the right-hand sides of (3.19) and (3.20) we study ‖|(zk
j )j∈N ,k 6=〈j〉|‖s.

A direct application of Proposition 3.2 yields an estimate Cε since ε[[k]] ≤ ε but we can do

better. We consider the iteration (3.8) for bkj if [[k]] = 1. The estimate of the near-diagonal

entries of F in Lemma 3.1 together with Proposition 3.2 yields the estimate

‖|([bkj ]n)j∈N ,‖k‖=1|‖s ≤ ε
1
2‖|[ḃ]n−1|‖s + Cε

1
2 ,

and hence we have

‖|(zk
j )j∈N ,k 6=〈j〉|‖s ≤ ε‖|([bkj ]n)j∈N ,‖k‖=1|‖s + ε

3
2‖|([bkj ]n)j∈N ,‖k‖6=1|‖s ≤ Cε

3
2 . (3.21)

The same is true in the rescaled variables ẑ with s replaced by s0. Moreover, in order to

control the influence of Ω in (3.19), we note that the iteration (3.9) for b̂ yields

[
(Ωb̂)kj

]n

=
[
−iε

˙̂
bkj + F̂(ĉ)kj

]n−1

,

and hence ‖|[Ωb̂]n|‖s0
≤ ε‖|[ ˙̂b]n−1|‖s0

+ ‖|[F̂(ĉ)]n−1|‖s0
. Proposition 3.2 on the size of ĉ

and Lemma 3.1 then imply ‖|[Ωb̂]n|‖s0
≤ Cε

1
2 with a constant C depending only on CL,s0 ,

CL,s, n, and L, and hence

‖|Ω(ẑk
j )j∈N ,k 6=〈j〉|‖s0

≤ Cε
3
2 ,

where we omit again the index n. Using these estimates for zk
j in (3.19) and (3.20) finally

yield the third estimate of the proposition.

If the optional non-resonance condition 2.4 is satisfied, the estimate (3.21) of zk
j with

k 6= 〈j〉 improves to Cε2 instead of Cε
3
2 as we show next. Recall once again the iteration

(3.8) for b where we divide by k · ω − ωj. By the condition of zero momentum, only

indices (j,k) with j = j(k) yield nonzero modulation functions (3.7), and therefore only

denominators of the form k · ω − ωj(k) need to be taken into account. But for ‖k‖ ≤ 2

such denominators can be estimated independently of ε using (2.11) from the optional

non-resonance condition 2.4. That means that we don’t loose a factor ε
1
2 in the estimate

of those bkj with ‖k‖ ≤ 2. For them we hence get a factor ε
1
2 ε[[k]] = ε2 and for the other

indices ε[[k]] ≤ ε2. In this way we get ‖|(zk
j )j∈N ,k 6=〈j〉|‖s ≤ Cε2 with a constant C depending

in addition on C3 from Assumption 2.4. This proves the improved third estimate of the

proposition.

From Short to Long Time Intervals — Proof of Theorem 2.5. Recall that, in order

to put many modulated Fourier expansions together, we have to ensure the regularity of

ξ at the boundary of the intervals. This is done with the help of Proposition 3.10 as

indicated in Figure 4 and explained below.

The third estimate of Proposition 3.10 indeed yields an estimate for the exact solution

‖ξ(t)‖2
s =

∑
l∈N |l|2sIl(ξ(t), ξ(t)) in terms of the almost invariants

∑

l∈N

|l|2s|Kl([z(εt)]
n, [z(εt)]n)|.
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CεN+2
CεN+2

CεN+2
CεN+2

CεN+2
CεN+2

Cε3

Cε3

Cε3

C(2ℓ − 1)εN+2

∑
l∈N |l|2s|Kl|

∑
l∈N |l|2sIl

t
0 c0ε

−1 2c0ε
−1 ℓc0ε

−1. . .

Figure 4: From short to long time intervals

They are O(ε
5
2 ) (or even O(ε3) if Assumption 2.4 is fulfilled) close to each other. In

particular, ‖ξ(t)‖s can be bounded by 2ε as long as

∣∣∣
∑

l∈N

|l|2s|Kl([z(εt)]
n,[z(εt)]n)| −

∑

l∈N

|l|2s|Kl([z(0)]n, [z(0)]n)|
∣∣∣

≤
∑

l∈N

|l|2s
∣∣∣Kl([z(εt)]

n, [z(εt)]n) − Kl([z(0)]n, [z(0)]n)
∣∣∣

(3.22)

is bounded by Cε3 provided that ε is sufficiently small compared to C.

The first two estimates of Proposition 3.10 allow us to control (3.22) by Cε3: We let

the number of iteration n equal 4N +8s0 +2 (depending only on N and s0). Then we can

put c−1
0 ε−N+1 intervals of length c0ε

−1 together still ensuring inductively ‖ξ(t)‖s ≤ 2ε as

explained above. Using the third estimate of Proposition 3.10 in (3.22), this proves the

statement of Theorem 2.5. Note that CL,s ≤ C−L+2
1 Cs and that L depends only on N

and s0.

3.6 The Modulated Fourier Expansion for Partially Resonant

Frequencies

Now, we turn to the proof of Theorem 2.7 where the non-resonance condition 2.3 used in

Theorem 2.5 is replaced by the weaker non-resonance condition 2.6 allowing completely

resonant frequencies up to certain extent. Recall that the resonance module was defined

as

M = {k ∈ Z
N : k · ω = 0 }.

We use the ideas described for finite dimensional Hamiltonian systems with resonant

frequencies in [15].

Resonant Modulated Fourier Expansions. We are not able anymore to distinguish

temporal waves e−i(k·ω)t and e−i(l·ω)t if k− l ∈ M. For this reason, the summation in the
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modulated Fourier expansion (3.2) is not over all k ∈ Z
N but only over all residue classes

[k] = k + M ∈ Z
N/M in the case of a nontrivial resonance module,

ξ̃j(t) =
∑

[k]

z
[k]
j (εt)e−i(k·ω)t. (3.23)

We call this a resonant modulated Fourier expansion.

The Choice of a Representative. The resonant modulated Fourier expansion (3.23)

does not depend on the choice of the representative k of the residue class [k]. Here and in

the following, we choose as a representative always a member k of the residue class with

minimal ∑

l∈N :|l|=m

|kl|

for all m ∈ N. The linearity of the resonance module M and the condition (2.14) in

Assumption 2.6 ensure the existence of a representative (not necessarily unique) that

minimizes
∑

l∈N :|l|=m|kl| for all m ∈ N simultaneously. Indeed, (2.14) implies that M is

generated by those k ∈ Z
N with nonzero entries only for indices l ∈ N with |l| = m for

a single m ∈ N. Choosing the representative in this way also implies that it is minimal

with respect to ‖k‖, [[k]], and j(s−s0)|k|.

The Modulation System. In the same way as in Section 3.1, we are now able to derive

a modulation system (3.3), where the summation in the modulation system (3.3a) is now

over all residue classes [k1], . . . , [km], [l1], . . . , [lm
′
] with

[k1] + · · · + [km] − [l1] − · · · − [lm
′

] = [k],

and the summation in the Hamiltonian function (3.4) of the modulation system is over

all residue classes [k1], . . . , [km], [l1], . . . , [lm
′+1] with

[k1] + · · · + [km] − [l1] − · · · − [lm
′+1] = [0] = M.

Because of the form of the latter summation, the new Hamiltonian for the resonant

modulation system is not invariant under the transformation z
[k]
j 7→ eiθklz

[k]
j for l ∈ N

anymore. However, due to the condition (2.14) in Assumption 2.6, which ensures that

M is rather small, this new Hamiltonian is invariant under the transformation z
[k]
j 7→

eiθ
P

l∈N :|l|=m klz
[k]
j for m ∈ N, and this invariance leads to formal invariants

Km(z, z) =
∑

j∈N ,[k]∈ZN /M

( ∑

l∈N :|l|=m

kl

)
|z[k]

j |2 (3.24)

for m ∈ N and with z = (z
[k]
j )j∈N ,[k]∈ZN /M.

Iterative Solution of the Resonant Modulation System. We use the iteration

described in Section 3.2 to construct an approximate solution for the resonant modulation
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system. The estimates of Section 3.3 are also valid for this iteration if we define [[[k]]] and

j(s−s0)|[k]| by their values for the representative of the residue class [k] as chosen above.

Indeed, this choice ensures that all the inequalities used for

[[k1]] + · · · + [[km]] + [[l1]] + · · · + [[lm
′

]] and j(s−s0)|k1|+···+|km|+|l1|+···+|lm
′
|

are also valid for the residue classes. Then, the relation between the exact solution and

its iterated modulated Fourier expansion as stated in Theorem 3.7 is also shown as in

Section 3.4.

From Short to Long Time Intervals — Proof of Theorem 2.7. Also the extension

to long time intervals is done as in Section 3.5. However, since the “new” formal invariants

(3.24) not only contain |z〈l〉l |2 as a leading term (with respect to powers of ε) like the

invariants Kl in Section 3.5 but the sum
∑

l∈N :|l|=m|z
[〈l〉]
l |2, we cannot expect the third

inequality of Proposition 3.10 relating Kl and the action Il to be true anymore. But we

can show its variant

∑

m∈N

m2s
∣∣∣Km([z(τ)]n, [z(τ)]n) −

∑

l∈N :|l|=m

Il(ξ(t), ξ(t))
∣∣∣ ≤ Cε

5
2 ,

and the regularity of the exact solution ξ(t) can once again be ensured by

‖ξ(t)‖2
s =

∑

l∈N

|l|2sIl(ξ(t), ξ(t)) =
∑

m∈N

m2s
∑

l∈N :|l|=m

Il(ξ(t), ξ(t)).

In this way, the extension to long time intervals is done as in Section 3.5 yielding near-

conservation of the sums of actions

∑

l∈N :|l|=m

Il(ξ(t), ξ(t))

over long times 0 ≤ t ≤ ε−N as stated in Theorem 2.7.

3.7 The Modulated Fourier Expansion with Scaled Norms

In this section we comment on the modifications needed in the previous proofs of Theorems

2.5 and 2.7 in order to prove Theorem 2.12 where scaled actions are studied and scaled

norms

‖ξ‖s,e =
(∑

j∈N

ε−2e(j)(1−µ)|j|2s|ξj|2
) 1

2

are used.

A New Norm for Modulation Functions. In principle we can repeat the proofs of

the preceding sections. Since the initial value is now of size εµ in the norm ‖·‖s,e instead

of size ε in the norm ‖·‖s, any ε appearing in the estimates has to be replaced by εµ,
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and the scaling by ε[[k]] is replaced by εµ[[k]]. Moreover, the norm ‖| · |‖s for modulation

functions has to be adapted. We replace this norm by

‖|z|‖s,e =
∥∥∥
(∑

k

ε−e(k)(1−µ)|zk
j |

)
j∈N

∥∥∥
s
,

where

e(k) =
∑

l∈N

|kl|e(l)

for k ∈ Z
N .

Properties of the Scaling Function e. The main properties we need for adapting the

arguments of the preceding sections are

ε−e(k)(1−µ) ≤ ε−e(k1)(1−µ) · · · ε−e(km)(1−µ)ε−e(l1)(1−µ) · · · ε−e(lm
′
)(1−µ) (3.25)

for k = k1 + · · · + km − l1 − · · · − lm
′
,

ε−e(j1+j2)(1−µ) ≤ ε−e(j1)(1−µ)ε−e(j2)(1−µ) and ε−e(j)(1−µ) ≤ ε−e(k)(1−µ) (3.26)

for j = j(k) due to the triangle inequality of e(·), and

ε−e(l)(1−µ) ≤ ε−e(k)(1−µ) (3.27)

if kl 6= 0.

The first property (3.25) ensures that the estimates of the nonlinearity in Lemma 3.1

and Lemma 3.4 are also true in the norm ‖| · |‖s,e (with εµ instead of ε as mentioned

above).

The first part of the second property (3.26) ensures the validity of the estimates (2.6a)

in the regularity assumption and (2.7) with ‖·‖s,e instead of ‖·‖s. The second part ensures

that ∥∥∥
(∑

k

|zk
j |

)
j∈N

∥∥∥
s,e

=
∥∥∥
(
ε−e(j)(1−µ)

∑

k

|zk
j |

)
j∈N

∥∥∥
s
≤ ‖|z|‖s,e.

This is needed when replacing the norms ‖·‖s and ‖| · |‖s by ‖·‖s,e and ‖| · |‖s,e for the

estimates (3.10), (3.13), (3.15), and the estimate of u in the proof of Proposition 3.8.

The third property (3.27) is needed when adapting Section 3.5 to the new situation.

In order to have regularity in the norm ‖·‖s,e we should prove Proposition 3.10 with∑
l∈N ε−2e(l)(1−µ)|l|2s . . . instead of

∑
l∈N |l|2s . . .. This is done by adapting Lemma 3.9 to

this situation using (3.27) and replacing ‖| · |‖s0
by ‖| · |‖s0,e on the right-hand sides of the

estimates of Lemma 3.9.

The Case of a Cubic Nonlinearity. If the nonlinearity is (at least) cubic and if the

coefficients Pj,k,l of the nonlinearity are nonzero only if k ∈ Nm+1 and l ∈ Nm, then the

triangle inequality for e(·) is assumed in Theorem 2.12 only for sums of three or more

indices (recall that the triangle inequality was used to prove (3.26)). Indeed, for a cubic
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nonlinearity the first inequality of (3.26) is only needed for sums of (at least) three indices.

If in addition Pj,k,l is nonzero only for k ∈ Nm+1 and l ∈ Nm, the same calculation as for

the verification of the single wave property (3.7) shows that

[
zk

j

]n

= 0 for all k with
∑

l∈N

kl 6= 1 or j 6= j(k).

In particular, [zk
j ]n = 0 if k 6= 〈j〉 and ‖k‖ ≤ 2. This implies that the second inequality

of (3.26) is only needed for k = 〈j〉 and ‖k‖ > 2. In particular, the triangle inequality

for e(·) with three or more summands is sufficient for the second inequality of (3.26).

The same modifications can also be done in the partially resonant situation combin-

ing the above changes with Section 3.6. In this way, the proof of Theorem 2.12 is a

modification of the proofs of Theorems 2.5 and 2.7.



4 Long-Time Analysis of Spatial

Semi-Discretizations of Hamiltonian

Partial Differential Equations

In this chapter we study spatial semi-discretizations of the Hamiltonian partial differential

equations of Chapter 2 on a long time interval (see the last column in Figure 1).

4.1 Spatial Semi-Discretizations of Hamiltonian Partial Differ-

ential Equations

As in the previous chapters we focus here again on weakly nonlinear Hamiltonian partial

differential equations with Hamiltonian function (2.1),

H(ξ, η) =
∑

j∈N

ωjξjηj + P (ξ, η), (4.1)

where ωj, j ∈ N , are real frequencies and P is a function with a zero of order (at least)

three at the origin and with P (ξ, η) = P (η, ξ). We study spatial semi-discretizations of

such equations.

Spatial Semi-Discretizations. Standard methods for discretizing a partial differential

equation in space are spectral methods, finite differences, or finite elements. They all re-

duce the partial differential equation to an ordinary differential equation in time. We con-

sider here spatial semi-discretizations of Hamiltonian partial differential equations which

preserve the Hamiltonian structure, i.e., which result in Hamiltonian ordinary differential

equations. Various examples can be found in Sections 4.4, 4.5, and 4.6.

The Hamiltonian function of the semi-discretization in space is assumed to have the

form

HM(ξ, η) =
∑

j∈N

ωM
j ξjηj + PM(ξ, η), (4.2)

where M denotes the spatial discretization parameter, and (by a slight abuse of notation)

we denote again by ξ and η the variables belonging now to a finite dimensional phase

space l2s = l2s(C
NM ) with a finite set of indices NM ⊆ Z

d. We usually choose a full grid

NM = {−M, . . . ,M }d or NM = {−M, . . . ,M − 1 }d.

We assume again that PM has a zero of order at least three at the origin and that

PM(ξ, η) = PM(η, ξ). Moreover, we assume for the discrete frequencies ωM
j as for ωj in

the continuous Hamiltonian function (4.1) that they are real.

The variables ξ used in the semi-discrete Hamiltonian function (4.2) are related to the

variables in the underlying Hamiltonian function (4.1) by an embedding

ι : l20(C
NM ) → l20(C

N )
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of the finite dimensional space l20(C
NM ) of the spatial semi-discretization in the infinite

dimensional space l20(C
N ) of the underlying partial differential equation. This map repro-

duces from the semi-discrete numerical solution ξ a function ι(ξ) in the phase space of

the underlying equation. It is given in a natural way by the semi-discretization and can

be thought of as an interpolation. Often, we have a natural embedding ι = id (ι(ξ)j = ξj

for j ∈ NM and ι(ξ)j = 0 for j ∈ N \ NM).

Problem Setting. Long-time investigations of Hamiltonian ordinary differential equa-

tions such as (4.2) date back to Poincaré, Lindstedt, and Birkhoff in the 19th and early

20th century and are famous and well-known nowadays, see for example [36, Chapter X].

In the context of spatial semi-discretizations of partial differential equations however, it

is important to understand the influence of the spatial discretization parameter M in the

Hamiltonian function (4.2) on such results. Even more, one is interested in results which

do not depend on this parameter M . In order to tackle such questions it seems to be

necessary to take the underlying infinite dimensional problem (4.1) into account, and first

results for nonlinear wave equations [34] and nonlinear Schrödinger equations [29] have

been obtained only recently. Here, we generalise these results.

4.2 Long-Time Near-Conservation of Actions

From Theorem 2.5 (or Theorem 2.7 in the case of partial resonances) we know that un-

der suitable assumptions we have long-time near-conservation of actions along the exact

solution of a Hamiltonian partial differential equation. Is this still true along a spatial

semi-discretization of a Hamiltonian partial differential equation with constants indepen-

dent of the spatial discretization parameter M?

For the semi-discrete Hamiltonian function (4.2) we have two different notions of

actions. The first one is the notion of discrete actions IM
j associated to the discrete

Hamiltonian function HM (4.2), and we are interested in the behaviour of these actions

along the numerical solution ξ(t),

IM
j (ξ(t), ξ(t)) − IM

j (ξ(0), ξ(0)).

The second notion of actions arises naturally in the numerical context. We solve a semi-

discretization in order to have an approximation to the exact solution. Therefore, we are

interested in the behaviour of the actions Ij of the continuous Hamiltonian function (4.1)

along the numerical solution ι(ξ(t)) embedded to the space of the Hamiltonian partial

differential equation underlying the spatial semi-discretization,

Ij(ι(ξ(t)), ι(ξ(t))) − Ij(ι(ξ(0)), ι(ξ(0))).

Of course, in the often encountered situation of a natural embedding ι = id both notions

of actions agree,

Ij(ι(ξ), ι(ξ)) = IM
j (ξ, ξ). (4.3)
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Theorems 2.5 and 2.7 have been formulated in such a way that they also cover the finite

dimensional case where the set of indices is finite. If we are able to verify the assumptions

of these theorems for the semi-discrete situation (4.2) with constants independent of M , we

get long-time near-conservation of discrete actions IM
j along a spatial semi-discretization of

a Hamiltonian partial differential equation with constants independent of M . Concerning

the continuous actions Ij, we impose the following assumption relating them to the discrete

actions.

Assumption 4.1. If the non-resonance condition 2.3 is fulfilled for the discrete frequen-

cies ωK
j , j ∈ NM , we assume that there exist constants cl, l ∈ NM , such that

Il(ι(ξ), ι(ξ)) =

{
clI

M
l (ξ, ξ), l ∈ NM ⊆ N ,

0, else

for all ξ ∈ l20(C
NM ). By C4 we denote the maximum of cl, l ∈ NM .

If the non-resonance condition 2.6 is fulfilled for the discrete frequencies ωK
j , j ∈ NM ,

we assume that there exist constants cm, m ∈ N, such that

∑

l∈N :|l|=m

Il(ι(ξ), ι(ξ)) =

{
cm

∑
l∈NM :|l|=m IM

l (ξ, ξ), there exists l ∈ NM with |l| = m,

0, else

for all ξ ∈ l20(C
NM ). By C4 we denote the maximum of cm, m ∈ N.

An important example is the case of the natural embedding ι = id where Assumption

4.1 is fulfilled with all constants equal to one, see (4.3).

Theorem 4.2 (Long-Time Near-Conservation of Actions). Under the assumptions of

Theorem 2.5 on HM and ωK
l , l ∈ NM , instead of H and ωl, l ∈ N , we have near-

conservation of discrete actions

∑

l∈NM

|l|2s |IM
l (ξ(t), ξ(t)) − IM

l (ξ(0), ξ(0))|
ε2

≤ Cε
1
2 (4.4)

over long times

0 ≤ t ≤ ε−N

with the constant C of Theorem 2.5.

If in addition Assumption 4.1 is satisfied, we also have near-conservation of continuous

actions
∑

l∈N

|l|2s |Il(ι(ξ(t)), ι(ξ(t))) − Il(ι(ξ(0)), ι(ξ(0)))|
ε2

≤ Cε
1
2 (4.5)

over long times

0 ≤ t ≤ ε−N

with a constant C depending in addition on C4.

The near-conservation of actions improves to Cε with a constant depending in addition

on C3 if in addition the non-resonance condition 2.4 is satisfied.
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Proof. The long-time near-conservation of discrete actions (4.4) follows immediately from

Theorem 2.5. Concerning the continuous actions, we note that
∑

l∈N

|l|2s|Il(ι(ξ(t)), ι(ξ(t))) − Il(ι(ξ(0)), ι(ξ(0)))|

≤ C4

∑

l∈NM

|l|2s|IM
l (ξ(t), ξ(t)) − IM

l (ξ(0), ξ(0))|

by Assumption 4.1.

The remarkable long-time behaviour along the exact solution is thus transferred to the

numerical solution. In the case of completely resonant frequencies we get the following

theorem whose proof is the same as the proof of Theorem 4.2.

Theorem 4.3 (Long-Time Near-Conservation of Sums of Actions). Under the assump-

tions of Theorem 2.7 on HM and ωK
l , l ∈ NM , instead of H and ωl, l ∈ N , we have

near-conservation of sums of discrete actions

∑

m∈N

m2s
|∑l∈NM :|l|=m IM

l (ξ(t), ξ(t)) − ∑
l∈NM :|l|=m IM

l (ξ(0), ξ(0))|
ε2

≤ Cε
1
2 (4.6)

and, if in addition Assumption 4.1 is satisfied, also near-conservation of sums of contin-

uous actions

∑

m∈N

m2s
|∑l∈N :|l|=m Il(ι(ξ(t)), ι(ξ(t))) −

∑
l∈N :|l|=m Il(ι(ξ(0)), ι(ξ(0)))|

ε2
≤ Cε

1
2 (4.7)

over long times

0 ≤ t ≤ ε−N

with the corresponding constant C of Theorem 4.2.

The near-conservation of actions improves to Cε with a constant depending in addition

on C3 if in addition the non-resonance condition 2.4 is satisfied.

4.3 Long-Time Regularity and Long-Time Analysis of Energy,

Mass, and Momentum

As for the actions in the previous Section 4.2 we have two different notions of regularity

and of the other possibly conserved quantities energy, mass, and momentum. The first

one is the notion of regularity of ξ(t) and the notion of discrete energy HM , discrete mass

mM , and discrete momentum KM originating from the discrete Hamiltonian function HM .

The second one is the notion of regularity of ι(ξ(t)) and the notion of continuous energy

H, continuous mass m, and continuous momentum K along ι(ξ(t)). The second notion

is in particular important from a numerical point of view.

The following corollaries on the regularity of the semi-discrete solution and on long-

time near-conservation of mass and momentum along the semi-discrete solution follow

from Theorems 4.2 and 4.3 as their continuous counterparts 2.9, 2.10, and 2.11.
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Corollary 4.4 (Long-Time Regularity). Under the assumptions of Theorem 4.2 or The-

orem 4.3 we have regularity

‖ξ(t)‖s ≤ 2ε (4.8)

and, if in addition Assumption 4.1 is satisfied, also regularity

‖ι(ξ(t))‖s ≤ 2ε (4.9)

over long times

0 ≤ t ≤ ε−N .

The discrete mass mM is exactly conserved along a semi-discrete solution provided

that the discrete Hamiltonian function HM is invariant under some transformation as

required in Proposition 1.3. If it is not an exact invariant, we have the following corollary.

Corollary 4.5 (Long-Time Near-Conservation of Mass). Under the assumptions of The-

orem 4.2 or Theorem 4.3 we have near-conservation of discrete mass

|mM(ξ(t), ξ(t)) − mM(ξ(0), ξ(0))|
ε2

≤ Cε
1
2 (4.10)

and, if in addition Assumption 4.1 is satisfied, also near-conservation of continuous mass

|m(ι(ξ(t)), ι(ξ(t))) − m(ι(ξ(0)), ι(ξ(0)))|
ε2

≤ Cε
1
2 (4.11)

over long times

0 ≤ t ≤ ε−N

with the corresponding constant C of Theorem 4.2.

As there, the estimate improves to Cε if in addition the non-resonance condition 2.4

is satisfied.

Also for the discrete momentum KM we have either exact conservation by Proposition

1.4 or long-time near-conservation as stated in the following corollary. Note that exact

conservation of momentum along exact solutions does not necessarily imply its exact

conservation along semi-discrete solutions, see Section 4.5.

Corollary 4.6 (Long-Time Near-Conservation of Momentum). Under the assumptions

of Theorem 4.2 and for s ≥ 1
2

we have near-conservation of discrete momentum

|KM
l (ξ(t), ξ(t)) − KM

l (ξ(0), ξ(0))|
ε2

≤ Cε
1
2 (4.12)

and, if in addition Assumption 4.1 is satisfied, also near-conservation of continuous mo-

mentum
|Kl(ι(ξ(t)), ι(ξ(t))) − Kl(ι(ξ(0)), ι(ξ(0)))|

ε2
≤ Cε

1
2 (4.13)
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for l = 1, . . . , d over long times

0 ≤ t ≤ ε−N

with the corresponding constant C of Theorem 4.2.

As there, the estimate improves to Cε if in addition the non-resonance condition 2.4

is satisfied.

Discrete and Continuous Energy. Of course, the discrete energy HM is exactly con-

served along any solution of the semi-discrete system (4.2) by Proposition 1.1. Since the

discrete energy HM is conserved along the semi-discrete solution, the question on the

behaviour of H along the embedding of the semi-discrete solution reduces to the question

on the size of the difference

H(ι(ξ), ι(ξ)) − HM(ξ, ξ).

We will estimate this difference for our examples taking the special structure of H and

HM into account.

In the same way as the long-time estimates for actions, mass, and momentum, we can

transfer the results on energy distribution in Theorem 2.12 and its Corollaries 2.13 and

2.14 also to the semi-discrete situation.

4.4 Example — A Spectral Galerkin Method for Nonlinear Sch-

rödinger Equations of Convolution Type

We first consider a spatial semi-discretization of the nonlinear Schrödinger equation with

a potential of convolution type

i
∂

∂t
ψ(x, t) = −∆ψ(x, t) + V (x) ∗ ψ(x, t) + g(|ψ(x, t)|2)ψ(x, t) (4.14)

as studied in Sections 1.4 and 2.6, see equations (1.7) and (2.25). Recall from Section

2.6 that along any solution of such a nonlinear Schrödinger equation we have under suit-

able assumptions long-time near-conservation of actions, long-time regularity, and exact

conservation of energy, mass, and momentum by Corollary 2.15.

The Spectral Galerkin Method. A simple approach for a spatial semi-discretization

of the nonlinear Schrödinger equation (4.14) is a spectral Galerkin method. As an ansatz

for the solution ψ = ψ(x, t) of the nonlinear Schrödinger equation (4.14) we choose a

truncated spectral representation

ψM(x, t) =
∑

j∈NM

ξj(t)e
i(j·x)

in the finite dimensional approximation space 〈ei(j·x) : j ∈ NM〉 with a finite set NM ⊆
N = Z

d. A typical choice of the set NM , that will be investigated here, is a full grid

NM = {−M, . . . ,M }d
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with a spatial discretization parameter M . In view of the condition of zero momentum

in Assumption 2.2 we define the addition of indices from this set as the usual addition

in Z
d; in particular, NM is not closed under this addition. The embedding ι relating the

semi-discrete setting with the continuous one is in the light of ψ(x, t) =
∑

j∈N ξj(t)e
i(j·x)

the natural embedding ι = id.

In a Galerkin method we require that the residual of the ansatz ψM(x, t), when inserted

in the nonlinear Schrödinger equation (4.14), is orthogonal to the above approximation

space with respect to the L2(Rd) scalar product. Due to the orthonormality of the basis

functions ei(j·x) this results in the equations

i
d

dt
ξj(t) = ωjξj(t) +

∞∑

m=0

g(m)(0)

m!

∑

j1+···+jm+1

−jm+2−···−j2m+1=j

ξj1(t) · · · ξjm+1(t)ξjm+2(t) · · · ξj2m+1(t)

(4.15)

for j ∈ NM . These are the same equations as for the Fourier coefficients of the exact

solution (1.8), but the set of indices is restricted to NM (and implicitly ξj(t) = 0 for j 6∈
NM). The above semi-discrete equations (4.15) are again Hamiltonian with Hamiltonian

function

HM(ξ, η) =
∑

j∈NM

ωjξjηj +
∞∑

m=0

g(m)(0)

m!(m + 1)

∑

j1+···+jm+1

−jm+1−···−j2m+2=0

ξj1 · · · ξjm+1ηjm+2 · · · ηj2m+2

defined on a subset of the finite dimensional phase space l2s(C
NM )× l2s(C

NM ). In terms of

the ansatz ψM the equations (4.15) read

i
∂

∂t
ψM(x, t) = −∆ψM(x, t) + V (x) ∗ ψM(x, t) + P(g(|ψM(x, t)|2)ψM(x, t)) (4.16a)

with the L2(Rd)-orthonormal projection P on the approximation space 〈ei(j·x) : j ∈ NM〉,

P
(∑

j∈N

ϕje
i(j·x)

)
=

∑

j∈NM

ϕje
i(j·x).

The initial value ψM(·, 0) is defined by

ψM(·, 0) = P(ψ(·, 0)). (4.16b)

Verification of the Assumptions 2.1, 2.2, 2.3, 2.4, and 4.1. The Assumptions 2.1,

2.2, 2.3, and 2.4 are satisfied under the same conditions and with the same constants (in

particular independent of M) as for the continuous nonlinear Schrödinger equation with

a potential of convolution type in Section 2.6. Assumption 4.1 is fulfilled with C4 = 1.

The semi-discrete nonlinearity PM is just a truncation of the nonlinearity P in the

continuous nonlinear Schrödinger equation (4.14), where the summation is only over the

indices in NM . The nonlinearity P satisfied the regularity assumption 2.1 as was shown in
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Section 2.6, and hence the regularity assumption 2.1 is also fulfilled for the semi-discrete

nonlinearity PM with constants independent of the spatial discretization parameter M .

This also implies that the condition of zero momentum is satisfied in Assumption 2.2.

Moreover the semi-discrete frequencies ωM
j are the same as the continuous frequencies

ωj, and hence the non-resonance condition 2.3 is also satisfied in the semi-discrete situation

with constants independent of M . The same is true for the additional non-resonance

condition 2.4 in dimension one (d = 1). Assumption 4.1 is fulfilled with a constant

C4 = 1 since we have a natural embedding ι = id and hence Ij(ι(ξ), ξ) = IM
j (ξ, ξ) by

(4.3).

We get the following corollary corresponding to Corollary 2.15 in the continuous sit-

uation.

Corollary 4.7 (Long-Time Analysis of the Spectral Galerkin Discretization of Nonlinear

Schrödinger Equations (4.14)). Under the assumptions of Corollary 2.15 with smallness

of ψM(·, 0) instead of ψ(·, 0) we have

• near-conservation of discrete actions (4.4) and continuous actions (4.5),

• exact conservation of discrete and continuous energy, discrete and continuous mass,

and discrete and continuous momentum,

• and regularity (4.8) and (4.9)

over long times

0 ≤ t ≤ ε−N

along any solution ψM(x, t) =
∑

j∈NM
ξj(t)e

i(j·x) of the semi-discrete nonlinear Schröding-

er equation (4.16) in dimension d with the constant C of Corollary 2.15 independent of ε

and the spatial discretization parameter M .

The near-conservation of actions improves to Cε in dimension one (d = 1).

Proof. All assumptions of Theorem 4.2 are fulfilled. Long-time near-conservation of dis-

crete and continuous actions then follows from this theorem, and regularity follows from

Corollary 4.4.

Along solutions of the semi-discrete equation (4.15) the energies H and HM agree,

H(ι(ξ(t)), ι(ξ(t))) = HM(ξ(t), ξ(t)),

and hence we have exact conservation of H = HM along such solutions.

Since the discrete Hamiltonian function HM is, as the continuous one, invariant under

the transformations ξ 7→ eiθξ and ξj 7→ eiθjlξj for l = 1, . . . , d, discrete mass mM and

discrete momentum KM are also exact invariants of the semi-discrete system (4.15). Along

semi-discrete solutions ξ(t) they agree with the mass m and the momentum K of (4.1)

along ι(ξ(t)) since we have a natural embedding ι = id. Hence the continuous quantities

m and K are also conserved exactly along ι(ξ(t)).

This corollary shows that we can expect the same behaviour along the semi-discrete

solution as along the exact solution on a long time interval: near-conservation of ac-

tions and exact conservation of energy, mass, and momentum. Note that the smallness
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‖ξ(0)‖s ≤ ε of the discrete initial value ψM(·, 0) = P(ψ(·, 0)), as required in Corollary 4.7,

is implied by the smallness of the initial value ψ(·, 0) for the exact solution as required in

Corollary 2.15.

We now study the energy distribution along the Galerkin semi-discretization (4.16) in

the case of finite band initial values (2.22a) and initial values consisting only of a pair of

modes (2.22b). For the exact solution of the nonlinear Schrödinger equation (4.14) we

have studied the energy distribution in Corollaries 2.16 and 2.17. As there we get the

following semi-discrete counterparts using ι = id.

Corollary 4.8 (Long-Time Energy Distribution (a) for the Spectral Galerkin Discretiza-

tion of Nonlinear Schrödinger Equations (4.14)). Let 0 < µ ≤ 1. Under the assumptions

of Corollary 2.15 and for small initial values

‖ξ(0)‖s ≤ ε with (2.22a)

we have for any ε, such that εµ satisfies the smallness assumption of Corollary 2.15, the

energy distribution
∑

(2m−1)B<|l|≤(2m+1)B

|l|2sIM
l (ξ(t), ξ(t)) ≤ Cε2(2m+1)(1−µ)+ 5

2
µ

for m ≥ 1 over long times

0 ≤ t ≤ ε−Nµ

along any solution ψM(x, t) =
∑

j∈NM
ξj(t)e

i(j·x) of the semi-discrete nonlinear Schröding-

er equation (4.16) in dimension d with the constant C of Corollary 2.15.

The same energy distribution holds for the continuous actions Il(ι(ξ(t)), ι(ξ(t))). The

estimates improve by a factor ε
1
2
µ in dimension one (d = 1).

Corollary 4.9 (Long-Time Energy Distribution (b) for the Spectral Galerkin Discretiza-

tion of Nonlinear Schrödinger Equations (4.14)). Let 0 < µ ≤ 1. Under the assumptions

of Corollary 2.15 and for small initial values

‖ξ(0)‖s ≤ ε with (2.22b)

we have for any ε, such that εµ satisfies the smallness assumption of Corollary 2.15, the

energy distribution

|mj̃|2sIM
mj̃

(ξ(t), ξ(t)) ≤ Cε2|m|(1−µ)+ 5
2
µ

for odd m ∈ Z with m 6= ±1 and mj̃ ∈ NM over long times

0 ≤ t ≤ ε−Nµ

along any solution ψM(x, t) =
∑

j∈NM
ξj(t)e

i(j·x) of the semi-discrete nonlinear Schröding-

er equation (4.16) in dimension d with the constant C of Corollary 2.15. If l 6∈ {mj̃ :

m ∈ Z odd }, then ξl(t) = 0 for all times t.

The same energy distribution holds for the continuous actions Il(ι(ξ(t)), ι(ξ(t))). The

estimates improve by a factor ε
1
2
µ in dimension one (d = 1).
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The same discretization can be applied to the Schrödinger–Poisson equation as studied

in Section 1.4 and 2.7, see equations (1.11) and (2.28). Corollaries 4.7, 4.9, and 4.8 are

also true for the spectral Galerkin method applied to this equation.

4.5 Example — A Spectral Collocation Method for Nonlinear

Schrödinger Equations of Convolution Type

We consider another spatial semi-discretization of the nonlinear Schrödinger equation

with a potential of convolution type (4.14) by a spectral collocation method. This semi-

discretization is well suited for a subsequent discretization in time by a splitting integrator,

see Section 5.6.

The Spectral Collocation Method. As for the spectral Galerkin method of Section

4.4 we choose a truncated spectral representation

ψM(x, t) =
∑

j∈NM

ξj(t)e
i(j·x)

as an ansatz for the solution of the nonlinear Schrödinger equation (4.14). The set NM ⊆
N = Z

d is chosen as a full grid

NM = {−M, . . . ,M − 1 }d,

but this time the addition of indices from this set is defined modulo 2M in each entry in

such a way that NM is closed under the addition. It is clear that |·|, as defined in Section

1.1, satisfies the triangle inequality with respect to this addition. Again, the embedding

ι is the natural embedding id.

We insert the ansatz ψM in the nonlinear Schrödinger equation (4.14). We then

evaluate the residual at the collocation points

xk =
π

M
k for k ∈ NM

and require it to be zero,

i
∂

∂t
ψM(xk, t) = −∆ψM(x, t)|x=xk

+ V (x) ∗ ψM(x, t)|x=xk
+ g(|ψM(xk, t)|2)ψM(xk, t)

and

ψM(xk, 0) = ψ(xk, 0)

for all k ∈ NM . Using the discrete orthogonality

1

(2M)d

∑

k∈NM

e−i(l·xk)ei(j·xk) =

{
1, j ≡ l mod 2M , i.e., j − k = 0 in NM ,

0, else
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this can be rewritten in terms of the coefficients ξj of ψM as

i
d

dt
ξj(t) = ωjξj(t) +

∞∑

m=0

g(m)(0)

m!

∑

j1+···+jm+1

−jm+2−···−j2m+1=j

ξj1(t) · · · ξjm+1(t)ξjm+2(t) · · · ξj2m+1(t)

(4.17)

for j ∈ NM . These equations are formally the same as for the spectral Galerkin method

(4.15) but the condition j1 + · · · + jm+1 − jm+2 − · · · − j2m+1 = j in the nonlinearity is

now computed with the addition in NM , i.e., modulo 2M in each entry. They are the

Hamiltonian equations of motion of the Hamiltonian function

HM(ξ, η) =
∑

j∈NM

ωjξjηj +
∞∑

m=0

g(m)(0)

m!(m + 1)

∑

j1+···+jm+1

−jm+2−···−j2m+2=0

ξj1 · · · ξjm+1ηjm+2 · · · ηj2m+2 ,

(4.18)

where again the indices are summed up in NM modulo 2M . We can write the Hamiltonian

equations of motion (4.17) in terms of ψM as

i
∂

∂t
ψM(x, t) = −∆ψM(x, t) + V (x) ∗ ψM(x, t) + Q(g(|ψM(x, t)|2)ψM(x, t)) (4.19a)

with the trigonometric interpolation

Q
(∑

j∈N

ϕje
i(j·x)

)
=

∑

j∈NM

( ∑

l∈N :l≡j mod 2M

ϕl

)
ei(j·x).

This trigonometric interpolation is defined in such a way that Q(ϕ)(xk) = ϕ(xk) for all

k ∈ NM and hence the name. The initial value then satisfies

ψM(·, 0) = Q(ψ(·, 0)). (4.19b)

Verification of the Assumptions 2.1, 2.2, 2.3, 2.4, and 4.1. The Assumptions 2.1,

2.2, 2.3, and 2.4 are satisfied under the same conditions and with constants depending

on the same parameters (in particular independent of M) as for the continuous nonlinear

Schrödinger equation with a potential of convolution type in Section 2.6. Assumption 4.1

is fulfilled with C4 = 1.

The coefficients PM
j,k,l of the discrete nonlinearity are given by (2.26) as in the contin-

uous situation, but where the sum of indices is computed in NM , i.e.

PM
j,k,l =

∑

j̃∈N :j̃≡j mod 2M

Pj̃,k,l.
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In particular, we have using the Cauchy–Schwarz inequality

‖|PM |m,m′

(ξ1, . . . , ξm, η1, . . . , ηm′

)‖2
s

≤
∑

j∈NM

|j|2s
( ∑

j̃∈N :j̃≡j mod 2M

|P |m,m′

j̃
(|ξ1|, . . . , |ξm|, |η1|, . . . , |ηm′ |)

)2

≤
∑

j∈NM

( ∑

j̃∈N :j̃≡j mod 2M

|j|2s

|j̃|2s

)( ∑

j̃∈N :j̃≡j mod 2M

|j̃|2s|P |m,m′

j̃
(|ξ1|, . . . , |ξm|, |η1|, . . . , |ηm′ |)2

)

≤ sup
j∈NM

( ∑

j̃∈N :j̃≡j mod 2M

|j|2s

|j̃|2s

)
‖|P |m,m′

(|ξ1|, . . . , |ξm|, |η1|, . . . , |ηm′ |)‖2
s.

The sum
∑

j̃∈N :j̃≡j mod 2M
|j|2s

|j̃|2s can be bounded for s > d
2

and j ∈ NM (and hence |j| ≤√
dM) by a constant depending only on d and s using Lemma 4.10 below. In this way

the regularity assumption 2.1 for PM reduces to the one for P with constants depending

on the same quantities.

The relation of the coefficients Pj,k,l and PM
j,k,l also shows that the discrete nonlinearity

PM satisfies the condition of zero momentum in Assumption 2.2 (with the addition in

NM). Since the discrete frequencies are the same as the frequencies in the continuous

situation, the non-resonance condition 2.3 is also satisfied in the discrete situation, and

the same is true for the additional non-resonance condition 2.4 in dimension one (d = 1).

Assumption 4.1 is fulfilled since we have a natural embedding ι = id.

We finally give the proof of the lemma that we used in the above estimates.

Lemma 4.10. We have for any j ∈ NM and any s > d
2

M2s
∑

j 6=j̃∈N :j̃≡j mod 2M

1

|j̃|2s
≤ C

with a constant C depending only on d and s.

Proof. We have

M2s
∑

j 6=j̃∈N :j̃≡j mod 2M

1

|j̃|2s
≤

∑

06=j̃∈N

M2s

|j + 2Mj̃|2s
∞

≤
∑

06=j̃∈N

1

(2|j̃|∞ − 1)2s
≤

∑

06=j̃∈N

ds

|j̃|2s
,

where |·|∞ denotes the supremum norm in R
d. The latter sum converges for s > d

2
as was

shown in (1.9).

The following corollary corresponds to Corollary 2.15 in the continuous situation. It

was first proven in [29].

Corollary 4.11 (Long-Time Analysis of the Spectral Collocation Discretization of Non-

linear Schrödinger Equations (4.14)). Under the assumptions of Corollary 2.15 with small-

ness of ψM(·, 0) instead of ψ(·, 0) we have



4 Long-Time Analysis of Spatial Semi-Discretizations 99

• near-conservation of discrete actions (4.4) and continuous actions (4.5),

• exact conservation of discrete energy,

• near-conservation of continuous energy

|H(ι(ξ(t)), ι(ξ(t))) − H(ι(ξ(0)), ι(ξ(0)))|
ε2

≤ CM−sε2,

• exact conservation of discrete and continuous mass,

• near-conservation of discrete momentum (4.12) and continuous momentum (4.13),

• and regularity (4.8) and (4.9)

over long times

0 ≤ t ≤ ε−N

along any solution ψM(x, t) =
∑

j∈NM
ξj(t)e

i(j·x) of the semi-discrete nonlinear Schröding-

er equation (4.19) in dimension d with a constant C depending on the same parameters

as the constant of Corollary 2.15, but not on ε and the spatial discretization parameter

M .

The near-conservation of actions and momentum improves to Cε in dimension one

(d = 1).

Proof. We can apply Theorem 4.2 and Corollary 4.4 to obtain long-time near-conservation

of discrete and continuous actions and long-time regularity.

Both, the Hamiltonian function HM for the spatial semi-discretization and the Hamil-

tonian function H of the nonlinear Schrödinger equation (4.14), are invariant under the

transformation ξ 7→ eiθξ. This implies exact conservation of discrete mass mM along the

semi-discrete solution. Since ι = id, we have mM(ξ, ξ) = m(ι(ξ), ι(ξ)) and hence also

exact conservation of continuous mass.

Note that the momentum KM is not an exact invariant of the semi-discrete solution,

whereas the momentum K is an exact invariant along the exact solution. This is due to

the fact that HM is not invariant under the transformations ξj 7→ eiθjlξj for l = 1, . . . , d

anymore, since the summation of indices in its nonlinearity is done in NM , i.e., modulo

2M . However, Corollary 2.11 ensures at least near-conservation of discrete and continuous

momentum over long times along the semi-discrete solution.

In contrast to the situation in Section 4.4, where we studied a spectral Galerkin dis-

cretization, the discrete energy HM is not the same as the energy H of the nonlinear

Schrödinger equation. We thus cannot expect exact conservation of H along semi-discrete

solutions, but a bound on the difference HM −H can help us to understand the long-time

behaviour of H along the semi-discrete solution, see Section 4.3 (recall that HM is exactly

conserved by Proposition 1.1). We have

HM(ξ, ξ) − H(ι(ξ), ι(ξ))

=
∞∑

m=0

g(m)(0)

m!(m + 1)

∑

06=j̃∈N :
j̃≡0 mod 2M

∑

j1+···+jm+1

−jm+2−···−j2m+2=j̃

ξj1 · · · ξjm+1ξjm+2 · · · ξj2m+2 ,
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where the indices belonging to NM are now summed up with the addition in N = Z
d.

Writing

Pm
j̃

=
∑

j1+···+jm+1

−jm+2−···−j2m+2=j̃

ξj1 · · · ξjm+1ξjm+2 · · · ξj2m+2

we get using the Cauchy–Schwarz inequality

|HM(ξ, ξ) − H(ι(ξ), ι(ξ))| ≤
∞∑

m=0

|g(m)(0)|
m!(m + 1)

∑

06=j̃∈N :
j̃≡0 mod 2M

|Pm
j̃
|

≤
∞∑

m=0

|g(m)(0)|
m!(m + 1)

( ∑

06=j̃∈N :
j̃≡0 mod 2M

1

|j̃|2s

) 1
2
( ∑

06=j̃∈N :
j̃≡0 mod 2M

|j̃|2s|Pm
j̃
|2

) 1
2
.

By Lemma 4.10 we have
∑

06=j̃∈N :j̃≡0 mod 2M
1

|j̃|2s ≤ CM−2s with a constant C depending

only on d and s. Using the arguments of Section 2.6 and g(0) = 0 we then get

|HM(ξ, ξ) − H(ι(ξ), ι(ξ))| ≤ CM−s‖ξ‖4
s

provided that ‖ξ‖s is sufficiently small with a constant C depending only on g, d, and s.

Combining this estimate with the long-time regularity and the exact conservation of HM

finally yields the long-time near-conservation of energy along the semi-discrete solution

with a constant C independent of M ,

|H(ι(ξ(t)), ι(ξ(t))) − H(ι(ξ(0)), ι(ξ(0)))| ≤ CM−sε4

for 0 ≤ t ≤ ε−N .

For the actions we have proven the same kind of long-time near-conservation as for the

exact solution in Corollary 2.15. For energy and momentum, which are exactly conserved

along the exact solution, we have proven that they are at least almost conserved over long

times.

Concerning the energy distribution for finite band initial values (2.22a), we get the

same long-time behaviour along the solution of the spectral collocation method as for the

exact solution in Corollary 2.16 and the spectral Galerkin method in Corollary 4.8.

Corollary 4.12 (Long-Time Energy Distribution (a) for the Spectral Collocation Dis-

cretization of Nonlinear Schrödinger Equations (4.14)). Let 0 < µ ≤ 1. Under the as-

sumptions of Corollary 2.15 and for small initial values

‖ξ(0)‖s ≤ ε with (2.22a)

we have for any ε, such that εµ satisfies the smallness assumption of Corollary 2.15, the

energy distribution
∑

(2m−1)B<|l|≤(2m+1)B

|l|2sIM
l (ξ(t), ξ(t)) ≤ Cε2(2m+1)(1−µ)+ 5

2
µ
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for m ≥ 1 over long times

0 ≤ t ≤ ε−Nµ

along any solution ψM(x, t) =
∑

j∈NM
ξj(t)e

i(j·x) of the semi-discrete nonlinear Schröding-

er equation (4.19) in dimension d with the constant C of Corollary 4.11.

The same energy distribution holds for the continuous actions Il(ι(ξ(t)), ι(ξ(t))). The

estimates improve by a factor ε
1
2
µ in dimension one (d = 1).

Concerning the situation (2.22b) of an initial value with (only) a pair ξj̃ and ξ−j̃ of

initially excited modes, we get the following corollary. It differs from Corollaries 2.16

for the exact solution and 4.8 for the spectral Galerkin discretization since indices are

added modulo 2M in the spectral collocation discretization. According to Corollary 2.14

we expect ξl(t) to be nonzero for l = mj̃ with m ∈ Z, where mj̃ is computed with the

addition of NM , i.e., modulo 2M in each component. Hence, the energy will be distributed

among all modes l that are multiples of j̃ modulo 2M . This is an aliasing effect due to the

aliasing formula, and we will see this effect also in the numerical experiments of Section

5.6 for the full discretization. We have the following result.

Corollary 4.13 (Long-Time Energy Distribution (b) for the Spectral Collocation Dis-

cretization of Nonlinear Schrödinger Equations (4.14)). Let 0 < µ ≤ 1. Under the as-

sumptions of Corollary 2.15 and for small initial values

‖ξ(0)‖s ≤ ε with (2.22b)

we have for any ε, such that εµ satisfies the smallness assumption of Corollary 2.15, the

energy distribution

|l|2sIM
l (ξ(t), ξ(t)) ≤ Cε2|m(l)|(1−µ)+ 5

2
µ

for 0,±j̃ 6= l ∈ {mj̃ : m ∈ Z odd }, where mj̃ ∈ NM is computed in NM (i.e., modulo

2M), over long times

0 ≤ t ≤ ε−Nµ

along any solution ψM(x, t) =
∑

j∈NM
ξj(t)e

i(j·x) of the semi-discrete nonlinear Schröding-

er equation (4.19) in dimension d with the constant C of Corollary 4.11. If l 6∈ {mj̃ :

m ∈ Z odd }, then ξl(t) = 0 for all times t.

The same energy distribution holds for the continuous actions Il(ι(ξ(t)), ι(ξ(t))). The

estimates improve by a factor ε
1
2
µ in dimension one (d = 1).

Again, the spectral collocation method can be applied also to Schrödinger–Poisson

equations, see Sections 1.4 and 2.7, and Corollaries 4.11, 4.12, and 4.13 are also true for

this method applied to these equations.

4.6 Example — A Spectral Collocation Method for Nonlinear

Wave Equations

The nonlinear wave equation

∂2

∂t2
u(x, t) = ∆u(x, t) − ρu(x, t) + g(u(x, t)) (4.20)
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in dimension one (d = 1) with periodic boundary conditions was studied in Sections

1.5 and 2.9, see equations (1.14) and (2.32). In this section we study a spatial semi-

discretization of this equation with a spectral collocation method as for the nonlinear

Schrödinger equation in Section 4.5.

The Spectral Collocation Method. As an ansatz for the solution of (4.20) we choose

again a spectral representation

uM(x, t) =
∑′

|j|≤M

uj(t)e
i(j·x) and vM(x, t) =

∑′

|j|≤M

vj(t)e
i(j·x)

with a spatial discretization parameter M . The symbol
∑′ means that the first and the

last summand are taken with a factor 1
2
. We require that this ansatz fulfills the nonlinear

wave equation in the collocation points xk = k π
M

, k ∈ NM , where we choose again a full

grid NM = {−M, . . . ,M − 1} equipped with the addition modulo 2M . This yields an

ordinary differential equation

∂2

∂t2
uM(xk, t) = ∆uM(x, t)|x=xk

− ρuM(xk, t) + g(uM(xk, t))

with initial values

uM(xk, 0) = u(xk, 0) and vM(xk, 0) = v(xk, 0)

for all k ∈ NM . Due to ei(Mxk) = ei(−Mxk) these equations only determine 1
2
(u−M + uM)

and 1
2
(v−M + vM), and we therefore require in addition

u−M(t) = uM(t) and v−M(t) = vM(t).

Using the trigonometric interpolation Q′ defined similarly as in Section 4.5 we can rewrite

the equations as

∂2

∂t2
uM(x, t) = ∆uM(x, t) − ρuM(x, t) + Q′(g(uM(x, t))) (4.21a)

with initial values

uM(·, 0) = Q′(u(·, 0)) and vM(·, 0) = Q′(v(·, 0)), (4.21b)

where now

Q′
( ∑

j∈N=Zd

ϕje
i(j·x)

)
=

∑′

|j|≤M

( ∑

l∈N :l≡j mod 2M

ϕl

)
ei(j·x).

This is the spectral collocation method applied to the nonlinear wave equation. The

primes ensure that for real initial values u(·, 0) and v(·, 0) as considered in Section 1.5 the

initial values uM(·, 0) and vM(·, 0) for the spectral collocation method are also real-valued

leading to real-valued solutions uM and vM .
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In order to establish the Hamiltonian structure of the equation (4.21) we introduce as

in Section 1.5 variables

ξj =
ω

1
2
j uj + iω

− 1
2

j vj√
2

for j ∈ NM . The embedding ι : l20(C
NM ) → l20(C

N ) is thus not the natural embedding but

ι(ξ)j =





ξj, |j| < M,
1
2
ξ−M , |j| = M,

0, |j| > M.

Assuming real-valued solutions uM(x, t) we can rewrite (4.21a) as in Section 1.5 in terms

of ξ as

i
d

dt
ξj(t) = ωjξj(t) −

1√
2ωj

∞∑

m=0

g(m)(0)

m!

∑

j1+···+jm=j

ξj1 + ξ−j1√
2ωj1

· · · ξjm + ξ−jm√
2ωjm

, (4.22)

where the summation of indices from NM is in NM , i.e., modulo 2M , and we use the

convention ξM = ξ−M . Hence, the semi-discrete nonlinear wave equation (4.21) is a

Hamiltonian ordinary differential equation with Hamiltonian function

HM(ξ, η) =
∑

j∈NM

ωjξjηj −
∞∑

m=0

g(m)(0)

m!(m + 1)

∑

j1+···+jm+1=0

ξj1 + η−j1√
2ωj1

· · · ξjm+1 + η−jm+1√
2ωjm+1

with summation again in NM and the convention ηM = η−M .

Verification of the Assumptions 2.1, 2.2, 2.4, 2.6, and 4.1. The Assumptions 2.1,

2.2, 2.4, and 2.6 are satisfied under the same conditions and with constants depending

on the same parameters (in particular independent of M) as for the continuous nonlinear

wave equation in Section 2.9. Assumption 4.1 is fulfilled with C4 = 1.

The Assumptions 2.1, 2.2, 2.4, and 2.6 follow from the corresponding assumptions for

the continuous situation in the same way as in Section 4.5 for the spectral collocation

method applied to the nonlinear Schrödinger equation. Concerning Assumption 4.1, we

note that

Ij(ι(ξ), ι(ξ)) =





IM
j (ξ, ξ), |j| < M,

1
4
IM
−M(ξ, ξ), |j| = M,

0, |j| > M

due to the definition of ι. This implies that Assumption 4.1 is fulfilled with cm = 1 for

m < M and cM = 1
2
.

We get the following corollary stating long-time near-conservation of actions, energy,

mass, and momentum along semi-discrete solutions. Such a result can also be found in

[34], where slightly better estimates for energy and momentum are proven (with additional

factors M−1 and M−2 by exploiting the frequencies in the denominator of the nonlinear-

ity of the nonlinear wave equation). The proof of the near-conservation of energy and

momentum, that we present here, is the same as in [34].
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Corollary 4.14 (Long-Time Analysis of the Spectral Collocation Discretization of Non-

linear Wave Equations (4.20)). Under the assumptions of Corollary 2.20 we have

• near-conservation of sums of discrete actions (4.6) and continuous actions (4.7)

with Cε instead of Cε
1
2 ,

• exact conservation of discrete energy,

• near-conservation of continuous energy

|H(ι(ξ(t)), ι(ξ(t))) − H(ι(ξ(0)), ι(ξ(0)))|
ε2

≤ CM−sε,

• near-conservation of discrete mass (4.10) and continuous mass (4.11) with Cε in-

stead of Cε
1
2 ,

• near-conservation of continuous momentum

|K(ι(ξ(t)), ι(ξ(t))) − K(ι(ξ(0)), ι(ξ(0)))|
ε2

≤ CM−s+1εt,

• and regularity (4.8) and (4.9)

over long times

0 ≤ t ≤ ε−N

along any solution uM(x, t) =
∑′

|j|≤M uj(t)e
i(j·x) and vM(x, t) =

∑′
|j|≤M vj(t)e

i(j·x) with

ξj = (ω
1
2
j uj + iω

− 1
2

j vj)/
√

2 for j ∈ NM of the semi-discrete nonlinear wave equation (4.21)

with a constant C depending on the same parameters as the constant of Corollary 2.20,

but not on ε and the spatial discretization parameter M .

Proof. Long-time near-conservation of sums of discrete and continuous actions is ensured

by Theorem 4.3. Corollaries 4.4 and 4.5 imply regularity and long-time near-conservation

of discrete and continuous mass.

Exact conservation of discrete energy HM is ensured by Proposition 1.1. The near-

conservation of continuous energy H can be shown similarly as in the proof of Corollary

4.11 in Section 4.5 for the spectral collocation method applied to the nonlinear Schrö-

dinger equation. However, the difference HM(ξ, ξ) − H(ι(ξ), ι(ξ)) not only contains a

nonlinear term as in this proof but also a term

∑

j∈NM

ωjI
M
j (ξ, ξ) −

∑

j∈N

ωjIj(ι(ξ), ι(ξ)) =
1

2
ωMIM

−M(ξ, ξ)

due to the difference of discrete and continuous actions. By the long-time near-conserva-

tion of sums of discrete actions (4.6) we have
∣∣∣ωMIM

−M(ξ(t), ξ(t)) − ωMIM
−M(ξ(0), ξ(0))

∣∣∣ ≤ CM−2s+1ε3

for 0 ≤ t ≤ ε−N . The nonlinearity in the difference can be estimated similar as in the

proof mentioned above, and we get long-time near-conservation of energy as stated in the

corollary.
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The momentum is not an exact invariant of the semi-discrete solution since the summa-

tion of indices in the Hamiltonian function HM is modulo 2M . In order to prove at least

its near-conservation we cannot apply Corollary 4.6 due to the resonances in the nonlinear

wave equation. We proceed as in [34, Section 6] choosing ξ̃ as a solution of the Hamilto-

nian equations of motion of (4.1) for the exact solution with initial value ι(ξ(0)). Along

ξ̃(t) the momentum K is exactly conserved by Corollary 2.20. Since ‖ι(ξ)‖s ≤ ‖ξ‖s ≤ ε,

we have by (3.14)

‖ξ̃(t)‖s ≤ Cε and ‖ι(ξ(t))‖s ≤ ‖ξ(t)‖s ≤ Cε (4.23)

for 0 ≤ t ≤ c0ε
−1 with constants c0 and C depending only on g, ρ, and s. The equations

of motion for ξ̃ take the form

i
d

dt
ξ̃j = ωj ξ̃j +

∂P

∂ηj

(ξ̃, ξ̃).

For semi-discrete solution ξ(t) we have

i
d

dt
ι(ξ)j = ωjι(ξ)j + ι(∇ηP

M(ξ, ξ))j

= ωjι(ξ)j +
∂P

∂ηj

(ι(ξ), ι(ξ)) + ι(κ(∇ηP (ι(ξ), ι(ξ))))j − (∇ηP (ι(ξ), ι(ξ)))j

with κ : l20(C
N ) → l20(C

NM ) defined by

κ(ξ)j =
∑

l∈N :l≡j mod 2M

ξl

for j ∈ N . This is similar to the trigonometric interpolation Q′. Proceeding as in the

proof of Theorem 3.7 and using the smallness of ξ̃ and ι(ξ) (4.23), we get for 1
2

< s′ ≤ s

and 0 ≤ t ≤ ε−1

‖ξ̃ − ι(ξ)‖s′ ≤ Cε

∫ t

0

‖ξ̃(θ) − ι(ξ(θ))‖s′ dθ + t sup
0≤θ≤t

‖η(θ) − ι(κ(η(θ)))‖s′ (4.24)

with η = ∇ηP (ι(ξ), ι(ξ)). We now estimate η − ι(κ(η)) which is just the error of the

trigonometric interpolation Q′. This can be estimated following [34, Lemma 4.2]. The

Cauchy–Schwarz inequality implies

‖η − ι(κ(η))‖s′ ≤
( ∑

|j|≥M

|j|2s′ |ηj|2
) 1

2
+

( ∑

|j|≤M

|j|2s′
( ∑

j 6=j̃∈N :j̃≡j mod 2M

|ηj̃|
)2) 1

2

≤ CM−(s−s′)‖η‖s +
( ∑

|j|≤M

CM−2(s−s′)
( ∑

j 6=j̃∈N :j̃≡j mod 2M

|j̃|2s|ηj̃|2
)) 1

2

with CM−2(s−s′) ≥ ∑
j 6=j̃∈N :j̃≡j mod 2M

|j|2s′

|j̃|2s by Lemma 4.10 with a constant C depending

only on d, ρ, s′, and s. This implies ‖η − ι(κ(η))‖s′ ≤ CM−(s−s′)‖η‖s with a constant

depending only on d, ρ, s′, and s. Using (2.7) and (4.23) for η = ∇ηP (ι(ξ), ι(ξ)) we get

‖η − ι(κ(η))‖s′ ≤ CM−(s−s′)ε2
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on 0 ≤ t ≤ c0ε
−1 with a constant depending in addition on Cs′ . Using this estimate in

(4.24), the Gronwall inequality implies for 0 ≤ t ≤ c0ε
−1

‖ξ̃(t) − ι(ξ(t))‖s′ ≤ CM−(s−s′)ε2t.

This finally yields using the Cauchy–Schwarz inequality

|K(ξ̃(t), ξ̃(t))−K(ι(ξ(t)), ι(ξ(t)))| ≤ ‖ξ̃(t)− ι(ξ(t))‖1(‖ξ̃(t)‖0 +‖ι(ξ(t))‖0) ≤ CM−(s−1)ε3t

for 0 ≤ t ≤ c0ε
−1. The exact conservation of the momentum K along ξ̃ finally yields the

short-time estimate

|K(ι(ξ(t)), ι(ξ(t))) − K(ι(ξ(0)), ι(ξ(0)))| ≤ CM−(s−1)ε3t, (4.25)

which is valid for 0 ≤ t ≤ c0ε
−1. We repeat this procedure on c0ε

−1 ≤ t ≤ 2c0ε
−2 with

initial value ι(ξ(c0ε
−1)) for ξ̃(t), on 2c0ε

−1 ≤ t ≤ 3c0ε
−2 with initial value ι(ξ(2c0ε

−1)),

and so on. The long-time regularity of ι(ξ(t)) ensures that all the initial values satisfy the

smallness condition ‖ι(ξ(nc0ε
−1))‖s ≤ 2ε for 0 ≤ nc0ε

−1 ≤ ε−N , and (4.25) is valid on this

time interval with constants independent of the particular time interval. Putting together

the time intervals proves the long-time near-conservation of momentum as stated in the

corollary.

As for the exact solution we can study the problem of energy distribution along so-

lutions of the semi-discrete equations (4.21). From Corollaries 2.13 and 2.14 we get the

following results.

Corollary 4.15 (Long-Time Energy Distribution (a) for the Spectral Collocation Dis-

cretization of Nonlinear Wave Equations (4.20)). Let 0 < µ ≤ 1. Under the assumptions

of Corollary 2.20 and for small initial values

‖ξ(0)‖s ≤ ε with (2.22a)

we have for any ε, such that εµ satisfies the smallness assumption of Corollary 2.20, the

energy distribution
∑

(m−1)B<|l|≤mB

|l|2sIM
l (ξ(t), ξ(t)) ≤ Cε2m(1−µ)+3µ

for m ≥ 2 over long times

0 ≤ t ≤ ε−Nµ

with the constant C of Corollary 4.14.

The same energy distribution holds for the continuous actions Il(ι(ξ(t)), ι(ξ(t))).

Corollary 4.16 (Long-Time Energy Distribution (b) for the Spectral Collocation Dis-

cretization of Nonlinear Wave Equations (4.20)). Let 0 < µ ≤ 1. Under the assumptions

of Corollary 2.20 and for small initial values

‖ξ(0)‖s ≤ ε with (2.22b)
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we have for any ε, such that εµ satisfies the smallness assumption of Corollary 2.20, the

energy distribution

IM
0 (ξ(t), ξ(t)) ≤ Cε4(1−µ)+3µ,

|l|2sIM
l (ξ(t), ξ(t)) ≤ Cε2|m(l)|(1−µ)+3µ

for 0,±j̃ 6= l ∈ {mj̃ : m ∈ Z }, where mj̃ ∈ NM is computed in NM (i.e., modulo 2M),

over long times

0 ≤ t ≤ ε−Nµ

with the constant C of Corollary 4.14. If l 6∈ {mj̃ : m ∈ Z }, then ξl(t) = 0 for all times

t.

The same energy distribution holds for the continuous actions Il(ι(ξ(t)), ι(ξ(t))).

In the latter corollary we observe again aliasing effects as for the spectral collocation

method applied to the nonlinear Schrödinger equation in Section 4.5.



5 Long-Time Analysis of Full

Discretizations of Hamiltonian Partial

Differential Equations

In this chapter we transfer the results from Chapters 2 and 4 on exact and spatially

discrete solutions of Hamiltonian partial differential equations to full discretizations (see

the last column in Figure 1).

5.1 Full Discretizations of Hamiltonian Partial Differential Equ-

ations

In Chapter 4 we considered spatial semi-discretizations of Hamiltonian partial differential

equations with Hamiltonian function

H(ξ, η) =
∑

j∈N

ωjξjηj + P (ξ, η) (5.1)

in a weakly nonlinear setting with real frequencies ωj, j ∈ N , where P is a function

with a zero of order (at least) three at the origin and with P (ξ, η) = P (η, ξ). The

studied spatial semi-discretization was a (finite dimensional) Hamiltonian system with

Hamiltonian function of the form

HM(ξ, η) =
∑

j∈NM

ωM
j ξjηj + PM(ξ, η), (5.2)

where M denotes the spatial discretization parameter. The embedding ι : l20(C
NM ) →

l20(C
N ) is used to relate the finite dimensional phase space of the semi-discrete Hamiltonian

function with the phase space of the continuous Hamiltonian function. In this chapter we

finally discretize this ordinary differential equation in time.

Splitting Integrators. For a full discretization of the Hamiltonian equations of motion

of (5.1) we use a splitting integrator (split-step method) for the time discretization of the

spatially discrete Hamiltonian equations of motion of (5.2), see for example [36, Chapter

II.5]. The idea of such a discretization is to split the Hamiltonian function (5.2) into two

Hamiltonian functions

HM,h
0 (ξ, η) =

∑

j∈NM

ωM,h
j ξjηj and PM,h(ξ, η),

which are related to
∑

j∈NM
ωM

j ξjηj and PM(ξ, η), and solving their Hamiltonian equations

of motion

i
d

dt
ξj(t) =

∂HM,h
0

∂ηj

(ξ(t), ξ(t)) = ωM,h
j ξj(t) (5.3a)
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and

i
d

dt
ξj(t) =

∂PM,h

∂ηj

(ξ(t), ξ(t)) (5.3b)

one after another over short times h (or h
2
, . . .). The benefit is that these equations are

often easy to solve: The first equation (5.3a) is a decoupled linear equation, and in all

our applications the second equation (5.3b) is also easy to solve, see Sections 5.6 and 5.7.

The function PM,h is assumed to be a Hamiltonian function such that (5.3b) are

Hamiltonian equations of motion. Often ωM,h
j = ωj and PM,h = PM are independent of

the time step-size h as in Section 5.6 for the nonlinear Schrödinger equation and also in

Section 5.7 for the nonlinear wave equation. However, they may depend on h (and are not

the same as in the semi-discretization) for instance due to a filter function as in Section

5.7 for the mollified impulse method applied to the nonlinear wave equation. Here and in

the following, we omit the indices M and h of the frequencies ωM,h
j and write again ωj.

Examples of Splitting Integrators. For the (first order) Lie–Trotter splitting we per-

form first a time step h with the flow of the equation (5.3b), and take the result as an

initial value for a time step h with the flow of the equation (5.3a). Denoting by ΦH0
t and

ΦP
t the flows of the Hamiltonian equations of motion (5.3a) and (5.3b), respectively, i.e.,

ξ(h) = ΦH0
h (ξ0) if ξ(t) is a solution of (5.3a) with initial value ξ0 and similar for P , the

Lie–Trotter splitting reads

ξn+1 = ΦH0
h ◦ ΦP

h (ξn) for n = 0, 1, 2, . . . (5.4)

with given initial value ξ0. ξn is supposed to approximate the exact solution ξ(tn) at time

tn = nh.

The symmetric (second order) variant of the Lie–Trotter splitting is the Strang splitting

which reads

ξn+1 = ΦP
h/2 ◦ ΦH0

h ◦ ΦP
h/2(ξ

n) for n = 0, 1, 2, . . . . (5.5)

Of course, in an implementation of a sequence of time steps of the Strang splitting (5.5)

we use that

ξn = ΦP
h/2 ◦

(
ΦH0

h ◦ ΦP
h

)n

◦ ΦP
−h/2(ξ

0). (5.6)

For more informations on splitting integrators we refer to [36, Chapter II.5].

Problem Setting. In Chapters 2 and 4 we studied the long-time behaviour of the exact

solution of (5.1) and its spatial semi-discretization (5.2). We have shown that under

suitable assumptions the actions are nearly conserved along both, the exact as well as

the semi-discrete solution, on a remarkably long time interval. This enabled us to study

conserved quantities of the exact solution, such as energy, mass, and momentum, along

the semi-discrete solution. Indeed, they are (at least) nearly conserved on a long time

interval.

In this chapter we investigate the long-time behaviour of a fully discrete solution of the

Hamiltonian partial differential equation with Hamiltonian function (5.1). More precisely,
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we study exact invariants (such as energy) and almost invariants (such as actions) of the

exact solution along the fully discrete solution. Our aim is to prove that the behaviour of

the exact solution is well reproduced by the numerical solution. In particular, we want to

show that all these quantities are at least nearly conserved on a long time interval similar

as we did for the semi-discretization in space.

In principle, the backward error analysis arguments of [36, Chapters IX and X] could

be applied to the time discretization of the finite dimensional Hamiltonian system (5.2)

from the semi-discretization in space. However, the constants then would depend on the

spatial discretization parameter M whereas we seek for results that are independent of

M as in Chapter 4. Moreover, backward error analysis requires hωmax to be very small,

where ωmax denotes the largest frequency of the semi-discretized system, see [36, Chapters

IX and XIII] and [32]. We would like to avoid such a severe step-size restriction.

5.2 Long-Time Near-Conservation of Actions

Near-conservation of actions turned out to be a good starting point for the long-time

analysis of the exact and the spatially discrete solution of a Hamiltonian partial differential

equation. In this section we formulate a corresponding result for the fully discrete solution

of such a partial differential equation. We recover the long-time near-conservation of

actions along the exact and the spatially discrete solution also along the fully discrete

solution. This is done under suitable assumptions which are formulated next.

In order to study the numerical solution over long times we need a regularity assump-

tion on the flow of the nonlinearity PM,h. This is different to the continuous situation

where the regularity assumption 2.1 was imposed on the nonlinearity itself. This is due to

the modulated Fourier expansion of the numerical solution that we will study in Chapter

6. There, we use the numerical solution itself (and in particular for the splitting inte-

grators (5.4) and (5.5) the flow of PM,h) for the derivation of the modulation system for

the modulated Fourier expansion, whereas we used in Chapter 3 the differential equation

determining the exact solution (and not the exact solution itself) in order to determine

the modulation system.

Assumption 5.1 (Regularity Assumption on the Flow of PM,h). We denote by ξ(t) the

solution of (5.3b) with initial value ξ0 and assume that there exists an expansion

ΦP
t (ξ0)j = ξj(t) =

∞∑

ℓ=0

tℓ

ℓ!

dℓ

dtℓ
ξj(0)

= ξ0
j +

∞∑

m+m′=2

∑

k∈Nm
M

, l∈Nm′
M

tP̂j,k,lξ
0
k1 · · · ξ0

kmξ0
l1 · · · ξ0

lm
′

(5.7)

of the flow ΦP
t of the nonlinearity PM,h with coefficients P̂j,k,l = P̂j,k,l(t) depending on

t. This expansion is obtained formally by differentiating the equations of motion (5.3b)
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which are assumed to be of the form

i
d

dt
ξj(t) =

∞∑

m+m′=2

∑

k∈Nm
M

, l∈Nm′
M

Pj,k,lξk1(t) · · · ξkm(t)ξl1(t) · · · ξlm
′ (t) (5.8)

similar to (2.4) in Assumption 2.1. The coefficients P̂j,k,l are hence sums of products of

the coefficients Pj,k,l multiplied with (−it)ℓ/l!.

We assume that the expansion (5.7) indeed converges by requiring regularity as in

Assumption 2.1, estimate (2.6), of

|P̂ |m,m′

j (ξ1, . . . , ξm, η1, . . . , ηm′

) =
∑

k∈Nm
M

, l∈Nm′
M

|P̂j,k,l|ξ1
k1 · · · ξm

kmη1
l1 · · · ηm′

lm
′

for t ≤ 1 with constants Cm,m′,s, CL,s, Cs, and C1 independent of ε, M , h, and t.

The regularity of the flow of PM,h as required in Assumption 5.1 is usually implied

by the regularity assumption 2.1 for the nonlinearity P as we will see in our examples in

Sections 5.6 and 5.7.

In the continuous situation of Chapter 2 we imposed in Assumption 2.2 alternatively

a condition of small dimension (2.9a) or of zero momentum (2.9b). In the fully discrete

situation we necessarily need in our proofs the condition of zero momentum and therefore

leave the condition of small dimension aside.

Assumption 5.2 (Condition of Zero Momentum). We assume that the frequencies ωj =

ωM,h
j grow like a power of |j|, i.e., there exist positive constants c2, C2, and σ such that

c2|j|σ ≤ |ωj| ≤ C2|j|σ for all j ∈ NM .

Moreover, we assume that

P̂j,k,l 6= 0 implies j = k1 + · · · + km − l1 − · · · − lm
′

for j ∈ NM , k ∈ Nm
M , and l ∈ Nm′

M . In the latter assumption the addition + of indices is

not necessarily the addition in Z
d. Any addition such that the triangle inequality for |·|

is fulfilled can be considered.

The derivation of the coefficients P̂j,k,l from the coefficients Pj,k,l in Assumption 5.1

shows that this zero momentum condition is implied by the zero momentum condition

Pj,k,l 6= 0 implies j = k1 + · · · + km − l1 − · · · − lm
′

for j ∈ N , k ∈ Nm, and l ∈ Nm′
on the coefficients Pj,k,l of PM,h in (5.8), which we

imposed on the nonlinearity ∂P
∂ηj

in Assumption 2.2 for the exact solution.

As in the continuous situation we need a non-resonance condition on the (discrete)

frequencies ωj = ωM,h
j , j ∈ NM . This non-resonance condition, however, also includes the

time step-size h, a parameter of the discretization, suggesting the possibility of numerical

resonances. We will discuss this topic and also the validity of the non-resonance condition

in Section 5.3.
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Assumption 5.3 (Non-Resonance Condition). Let ε ≤ ε0 for fixed ε0 ≤ 1. We define an

(ε-)near-resonant index (j,k) as an index with

j = j(k), ‖k‖ ≤ 2N + 4 + 4s0, k 6= 〈j〉, and
|ei(ωj−k·ω)h − 1|

h
< ε

1
2 ,

where again 〈j〉 = (δjl)l∈NM
with Kronecker’s delta. For given N and s ≥ s0 from the

regularity assumption 5.1 we impose the non-resonance condition

|j|s−s0

j(s−s0)|k|
ε

1
2
‖k‖ ≤ C0ε

N+3+2s0 for any (ε-)near-resonant index (j,k) (5.9a)

and the non-resonance condition
∑

l∈NM
|kl||l|2s

j2(s−s0)|k||j|2s0
≤ C0ε

N for any (ε-)near-resonant index (j,k) (5.9b)

for any ε ≤ ε0 ≤ 1 on the frequencies ωl, l ∈ NM , with a constant C0 independent of ε,

M , h, and (j,k).

A non-resonance condition of the form (5.9a) was also used in the continuous situation

in Assumption 2.3. A non-resonance condition (5.9b) was not needed there but turns out

to be closely related to (5.9a). We will show in Section 5.3 that it is indeed fulfilled in

many situations.

Under these assumptions we have the following theorem. It states that we have long-

time near-conservation of actions as in Theorem 2.5 not only for the exact solution of the

Hamiltonian equations of motion but also for the fully discrete schemes (5.4) and (5.5).

As in the semi-discrete situation of Section 4.2 we distinguish between discrete actions IM
j

related to the semi-discrete Hamiltonian function HM (5.2) and the continuous actions Ij

related to the underlying continuous Hamiltonian function H (5.1).

Theorem 5.4 (Long-Time Near-Conservation of Actions). Fix N and let the regularity

assumption 5.1, the condition of zero momentum 5.2, and the non-resonance condition

5.3 be satisfied. Then for any ε sufficiently small compared to C1, Cs0, Cs, and s ≥ 2s0

from 5.1, c2, C2, and σ from 5.2, C0 and ε0 from 5.3, and N and for small initial values

‖ξ0‖s ≤ ε

we have near-conservation of discrete actions

∑

l∈NM

|l|2s |IM
l (ξn, ξn) − IM

l (ξ0, ξ0)|
ε2

≤ Cε
1
2 (5.10)

over long times

0 ≤ tn = nh ≤ ε−N

along any numerical solution ξn of the Hamiltonian equations of motion defined by the

Lie–Trotter splitting (5.4) or the Strang splitting (5.5) with a constant C depending only
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on C1, Cs0, Cs, s0, s, c2, C2, σ, C0, and N , but not on ε, the spatial discretization

parameter M , and the time step-size h ≤ 1.

If in addition Assumption 4.1 is satisfied, we also have near-conservation of continuous

actions
∑

l∈N

|l|2s |Il(ι(ξ
n), ι(ξn)) − Il(ι(ξ

0), ι(ξ0))|
ε2

≤ Cε
1
2 (5.11)

over long times

0 ≤ tn = nh ≤ ε−N

with a constant C depending in addition on C4.

The proof of this theorem will be given in Chapter 6 following the proof of Theorem

2.5 in Chapter 3. Similar results have been obtained recently and independently by Faou,

Grébert, and Paturel [25] and [26] with a different proof based on normal form theory.

In the same way as for the exact solution in Section 2.2, we can handle the case of par-

tially resonant frequencies, which occur for instance in the nonlinear wave equation with

periodic boundary conditions, see Sections 1.5 and 2.9, if we replace the non-resonance

condition 5.3 by the following condition.

Assumption 5.5 (Non-Resonance Condition in the Presence of Completely Resonant

Frequencies). The non-resonance conditions (5.9a) and (5.9b) are fulfilled for any near-

resonant index (j,k) such that k − 〈j〉 does not belong to the resonance module

M = {k ∈ Z
NM : k · ω = 0 }.

This resonance module is assumed to fulfill

if k ∈ M, then
∑

j∈NM :|j|=m

kj =
∑

j∈NM :|j|=m

kjωj = 0.

Theorem 5.6 (Long-Time Near-Conservation of Sums of Actions). Under the assump-

tions of Theorem 5.4 but with the non-resonance condition 5.3 replaced by the non-

resonance condition 5.5 we have near-conservation of sums of discrete actions

∑

m∈N

m2s
|∑l∈NM :|l|=m IM

l (ξn, ξn) − ∑
l∈NM :|l|=m IM

l (ξ0, ξ0)|
ε2

≤ Cε
1
2 (5.12)

and, if in addition Assumption 4.1 is satisfied, also near-conservation of sums of contin-

uous actions

∑

m∈N

m2s
|∑l∈N :|l|=m Il(ι(ξ

n), ι(ξn)) − ∑
l∈N :|l|=m Il(ι(ξ

0), ι(ξ0))|
ε2

≤ Cε
1
2 (5.13)

over long times

0 ≤ tn = nh ≤ ε−N

with the corresponding constant C of Theorem 5.4.

The proof of this theorem is given in Chapter 6.
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5.3 On the Non-Resonance Condition and on Numerical Reso-

nances

In the non-resonance condition 5.3 the near-resonant indices are defined essentially by

|ei(ωj−k·ω)h − 1|
h

< ε
1
2 ,

whereas they are defined by

|k · ω − ωj| < ε
1
2

in the non-resonance condition 2.3 for the continuous situation. In the continuous sit-

uation we have shown in Section 2.3 that the non-resonance condition is valid in many

situations. Here, we study the validity of the non-resonance condition 5.3 for the discrete

setting in the case that the discrete frequencies ωM,h
j agree with the continuous ones.

The Possibility of Numerical Resonances. We first note that the definition of near-

resonant indices in 5.3 includes the step-size h, a numerical parameter. This suggests the

possibility of numerical resonances, i.e., resonances that are not present in the equation

itself but simply due to the numerical discretization or more precisely a bad choice of the

step-size h.

Indeed, the non-resonance condition in the discrete setting has to control all indices

(j,k) where |k ·ω − ωj|h is close to an integer multiple of 2π, whereas the non-resonance

condition in the continuous situation only has to control indices with |k · ω − ωj| close

to zero. In particular, if the step-size h is chosen as 2πm/|k · ω − ωj| with a positive

integer m and (j,k) not satisfying (5.9a), then the non-resonance condition 5.3 is not

satisfied, and we cannot apply our Theorem 5.4, although the frequencies themselves may

be non-resonant in the sense of Assumption 2.3 and Theorem 2.5 is applicable. As our

numerical experiments show, we encounter indeed numerical resonances in such situations

and Theorem 5.4 is not valid, see Section 5.6.

There are at least two general situations where the discrete non-resonance condition

5.3 is valid. We emphasize that neither of them is necessary for the discrete non-resonance

condition to be fulfilled.

Restriction of the Time Step-Size h in Terms of the Spatial Discretization

Parameter M . Note that in the limit h → 0 the definition of near-resonant indices

in the discrete setting reduces to the one for the continuous setting. This suggests to

use a step-size restriction in order to reduce the discrete non-resonance condition to the

continuous one which is fulfilled in many situations. Note that |eix−1| = 2|sin(x/2)|, and

hence

2

π
|k · ω − ωj| ≤

|ei(ωj−k·ω)h − 1|
h

≤ |k · ω − ωj| for |k · ω − ωj|h ≤ π.

Since only indices with ‖k‖ ≤ 2N +4+4s0 can be near-resonant, we conclude that under

the step-size restriction

hωmax ≤ π

2N + 5 + 4s0

(5.14)
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the sets of near-resonant indices are the same for the discrete and the continuous situation

(up to factor π/2 in front of ε
1
2 , which does not change the non-resonance condition

qualitatively). Here we denote by ωmax the largest frequency which is present in HM,h
0 .

Typically ωmax ≤ C2

√
dσMσ with the spatial discretization parameter M and C2 and σ

from Assumption 5.2. Note that (5.14) implies N ≤ C
hωmax

, and hence the length of the

time interval 0 ≤ t ≤ ε−N depends on the smallness of hωmax.

We now show that no numerical resonances occur under the step-size restriction (5.14).

More precisely, we show that under the above step-size restriction (5.14) the non-resonance

condition (2.16) on the frequencies used by Bambusi and Grébert (in the continuous

situation) implies our non-resonance condition 5.3 used in the discrete setting. The main

point is to handle the additional non-resonance condition (5.9b) used in the discrete

but not in the continuous setting. Recall that we have shown in Lemma 2.8 that the

non-resonance condition (2.16) used by Bambusi and Grébert implies our non-resonance

condition 2.3 used in the continuous situation.

Lemma 5.7. If the asymptotics of the frequencies in Assumption 5.2 is valid and if ε ≤ 1,

then we have the following result.

If the step-size restriction (5.14) is fulfilled and if the non-resonance condition (2.16) is

fulfilled for k̃ = k−〈j〉 with a near-resonant index (j,k) as in 5.3, then this near-resonant

index also satisfies the non-resonance conditions (5.9a) and (5.9b) in Assumption 5.3 for

s ≥ 2α(N + 3 + 2s0) + 2s0 and a constant C0 depending only on α, γ, s0, s, c2, C2, σ,

and N , where α and γ are chosen in (2.16) for r′ = 2N + 3 + 4s0.

In particular, the step-size restriction (5.14) and the non-resonance condition (2.16)

imply the non-resonance condition 5.3.

Proof. Under the step-size restriction (5.14) we have

2

π
|k · ω − ωj| ≤

|ei(ωj−k·ω)h − 1|
h

(5.15)

as explained above, and hence Lemma 2.8 ensures that the first part (5.9a) of the non-

resonance condition 5.3 is fulfilled.

We now turn to the second condition (5.9b) in the non-resonance condition 5.3, i.e.,

we have to control ∑
l∈NM

|kl||l|2s

j2(s−s0)|k||j|2s0
.

We combine the ideas of the proofs of Lemma 2.8 and Lemma 3.9. The numerator can

be estimated by ‖k‖|l̄|2s where l̄ ∈ NM denotes the largest index with respect to |·| with

kl̄ 6= 0. As in the proof of Lemma 2.8 we choose r ∈ N minimal such that
∑

|l|>r|kl| ≤ 1.

In order to estimate the denominator we distinguish two cases as in the proof of Lemma

3.9 and make use of the condition of zero momentum 5.2.

(a) If |l| > 1
2‖k‖

|l̄| for l̄ 6= l ∈ NM with kl 6= 0, then

j2(s−s0)|k| ≥ 1

(2‖k‖)2(s−s0)
|l̄|4(s−s0) ≥ 1

(2‖k‖)2(s−s0)
|l̄|2sr2s−4s0 .
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(b) On the contrary, if |l| ≤ 1
2‖k‖

|l̄| for all l̄ 6= l ∈ NM with kl 6= 0, then due to the

condition of zero momentum 5.2

|j| = |j(k)| ≥
∣∣∣
∑

l∈NM

kll
∣∣∣ ≥ |l̄| −

∑

l̄ 6=l∈NM

|kl||l| ≥
1

2
|l̄|.

We conclude that

j2(s−s0)|k||j|2s0 ≥ |l̄|2(s−s0)r2(s−s0) 1

22s0
|l̄|2s0 .

As in the proof of Lemma 2.8 and using (5.15) we get for (numerically) near-resonant

indices (j,k) that 1/rα ≤ πε
1
2 /(2γ) with α and γ from (2.16). Using this in the above

estimates of the denominator we get

∑
l∈NM

|kl||l|2s

j2(s−s0)|k||j|2s0
≤ C0ε

2s−4s0
2α

with a constant C0 depending only on α, γ, s0, s, and N . The second non-resonance

condition (5.9b) in 5.3 is thus fulfilled provided that s ≥ αN + 2s0.

Restriction of the Spatial Discretization Parameter M in Terms of ε. Instead

of imposing a step-size restriction as in Lemma 5.7, we can impose a restriction on the

spatial discretization in terms of ε in the spirit of [25]. In that paper a non-resonance

condition of the form
|ei(ωj−k·ω)h − 1|

h
≥ γ∗

Mα∗ (5.16)

for k 6= 〈j〉 is used, see [25, Hypothesis 3.4], where M denotes the spatial discretization

parameter. It is shown that there exists a step-size h0 such that this non-resonance

condition is fulfilled for all time step-sizes h in a dense subset of (0, h0) provided that the

frequencies satisfy a (continuous) non-resonance condition in the spirit of (2.16) and in

the case of a typical spatial discretization where ωmax ≤ C2

√
dσMσ.

The non-resonance condition (5.16) is clearly weaker than our non-resonance condition

5.3 if 1/Mα∗ ≥ ε
1
2 since this excludes any near-resonance. In other words, our non-

resonance condition 5.3 is an empty condition in this situation, and we have the following

lemma.

Lemma 5.8. If the non-resonance condition (5.16) holds and if M ≤ ε−
1

2α∗ , then the

non-resonance condition 5.3 holds for any s and any constant C0.

We note that α∗ grows with N , and hence M has to be small for large N . This is

the situation studied in [25] where M ≤ ε−σ with 1/σ growing with N is assumed. We

have here in Lemma 5.8 an explicit bound for σ in terms of the non-resonance condition,

whereas it seems to be difficult to bound σ in [25] explicitly, see Remark 4.3 therein.

A study of resonances in the numerical integration of weakly nonlinear Hamiltonian

partial differential equations is given in [24] as well as a possible way to avoid such

resonances by truncating the linear part of the equation.
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5.4 Long-Time Regularity and Long-Time Near-Conservation

of Energy, Mass, and Momentum

In the same way as in Sections 2.4 and 4.3, we get from Theorems 5.4 and 5.6 the

following corollaries on the long-time regularity of the numerical solution ξn and on the

near-conservation of discrete mass mM , continuous mass m, discrete momentum KM , and

continuous momentum K over long times along the numerical solution.

Corollary 5.9 (Long-Time Regularity). Under the assumptions of Theorem 5.4 or The-

orem 5.6 we have regularity

‖ξn‖s ≤ 2ε (5.17)

and, if in addition Assumption 4.1 is satisfied, also regularity

‖ι(ξn)‖s ≤ 2ε (5.18)

over long times

0 ≤ tn = nh ≤ ε−N .

Corollary 5.10 (Long-Time Near-Conservation of Mass). Under the assumptions of The-

orem 5.4 or Theorem 5.6 we have near-conservation of discrete mass

|mM(ξn, ξn) − mM(ξ0, ξ0)|
ε2

≤ Cε
1
2 (5.19)

and, if in addition Assumption 4.1 is satisfied, also near-conservation of continuous mass

|m(ι(ξn), ι(ξn)) − m(ι(ξ0), ι(ξ0))|
ε2

≤ Cε
1
2 (5.20)

over long times

0 ≤ tn = nh ≤ ε−N

with the corresponding constant C of Theorem 5.4.

Corollary 5.11 (Long-Time Near-Conservation of Momentum). Under the assumptions

of Theorem 5.4 and for s ≥ 1
2

we have near-conservation of discrete momentum

|Kl(ξ
n, ξn) − Kl(ξ

0, ξ0)|
ε2

≤ Cε
1
2 (5.21)

and, if in addition Assumption 4.1 is satisfied, also near-conservation of continuous mo-

mentum
|Kl(ι(ξ

n), ι(ξn)) − Kl(ι(ξ
0), ι(ξ0))|

ε2
≤ Cε

1
2 (5.22)

for l = 1, . . . , d over long times

0 ≤ tn = nh ≤ ε−N

with the corresponding constant C of Theorem 5.4.
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Note that mass and momentum may also be exact invariants along the numerical

solution provided that both Hamiltonian functions HM,h
0 and PM,h are invariant under

the transformations needed to apply Propositions 1.3 and 1.4. Another possibility is

that mass (or momentum) is an exact invariant of the exact solution but not of the

numerical solution. In this situation Corollary 5.10 (or Corollary 5.11) ensures at least

near-conservation of mass (or momentum) over long times.

Long-Time Near-Conservation of Energy. The semi-discrete energy HM is exactly

conserved along the spatial semi-discretization, but this is typically not true along the

fully discrete solution. Accordingly, we cannot proceed as described in Section 4.3 in order

to study the continuous energy H along the fully discrete solution. However, the energy

H can be written in terms of the actions Ij as

H(ι(ξ), ι(ξ)) =
∑

j∈N

ωjIj(ι(ξ), ι(ξ)) + P (ι(ξ), ι(ξ)),

and Theorems 5.4 and 5.6 provide near-conservation of actions over long times. In order

to show near-conservation of continuous energy

|H(ι(ξn), ι(ξn)) − H(ι(ξ0), ι(ξ0))|
ε2

≤ Cε
1
2 (5.23)

over long times 0 ≤ tn = nh ≤ ε−N , it suffices therefore to control the nonlinearity

|P (ι(ξ), ι(ξ))| ≤ Cε
5
2

on this time interval. Since this nonlinearity is cubic, and since we have by Corollary 5.9

long-time regularity ‖ξ(t)‖s ≤ 2ε, the nonlinearity can usually be bounded in this way

ensuring the long-time near-conservation of energy along the fully discrete solution.

In the same way, one can obtain near-conservation of discrete energy

|HM(ξn, ξn) − HM(ξ0, ξ0)|
ε2

≤ Cε
1
2 (5.24)

over long times 0 ≤ tn = nh ≤ ε−N by controlling the semi-discrete nonlinearity PM .

5.5 Long-Time Energy Distribution

In Section 2.5 we studied the energy distribution along solutions of Hamiltonian partial

differential equations in situations where the energy is located initially in a finite number

of modes (2.22a) and (2.22b). We have shown that the energy is then distributed among

the other modes as expected, and that this distribution is preserved on a remarkably long

time interval. In this section we give corresponding results for the fully discrete solution

showing again that the behaviour of the exact solution is well reproduced.

The key for the results of Section 2.5 was an extension of Theorems 2.5 and 2.7 to

the case of a scaled norm. The corresponding result for the fully discrete solution is the

following theorem whose proof is given in Chapter 6.
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Theorem 5.12 (Long-Time Near-Conservation of Scaled Actions). Let e : NM → R+

satisfy the triangle inequality and let 0 < µ ≤ 1. (If the nonlinearity ∂P
∂ηj

is at least cubic

for all j ∈ NM and Pj,k,l 6= 0 only for k ∈ Nm+1
M and l ∈ Nm

M , then the triangle inequality

needs to be satisfied only for sums of at least three indices.)

Under the assumptions of Theorem 5.4 and for small initial values

‖ξ0‖s,e ≤ εµ

instead of ‖ξ0‖s ≤ ε with εµ satisfying the smallness assumption of Theorem 5.4 we have

near-conservation of scaled discrete actions

∑

l∈NM

|l|2s |IM
l (ξn, ξn) − IM

l (ξ0, ξ0)|
ε2e(l)(1−µ)+2µ

≤ Cε
1
2
µ

over long times

0 ≤ tn = nh ≤ ε−Nµ

with the constant C of Theorem 5.4.

In the situation of partial resonances as in Theorem 5.6 we have near-conservation of

sums of scaled discrete actions

∑

m∈N

m2s
|∑l∈NM :|l|=m IM

l (ξn, ξn) − ∑
l∈NM :|l|=m IM

l (ξ0, ξ0)|
ε2e(m)(1−µ)+2µ

≤ Cε
1
2
µ

over long times 0 ≤ tn = nh ≤ ε−Nµ if e(l) = e(|l|) depends only on |l|.
The same energy distribution holds for the continuous actions Il(ι(ξ

n), ι(ξn)) with the

corresponding constant of Theorem 5.4 if in addition Assumption 4.1 is satisfied.

The following corollaries treat the cases of initial values with a finite band of initially

excited modes (2.22a) and a pair of initially excited modes (2.22b). They follow from

Theorem 5.12 in the same way as the corollaries of Section 2.5 follow from Theorem 2.12

using a scaling function e(·) that represents the expected energy distribution.

Corollary 5.13 (Long-Time Energy Distribution (a)). Let 0 < µ ≤ 1. Under the as-

sumptions of Theorem 5.4 or Theorem 5.6 and for small initial values

‖ξ0‖s ≤ ε with (2.22a)

we have for any ε, such that εµ satisfies the smallness assumption of Theorem 5.4 or 5.6,

the energy distribution
∑

(m−1)B<|l|≤mB

|l|2sIM
l (ξn, ξn) ≤ Cε2m(1−µ)+ 5

2
µ

for m ≥ 2 over long times

0 ≤ tn = nh ≤ ε−Nµ

with the constant C of Theorem 5.4.

The same energy distribution holds for the continuous actions Il(ι(ξ
n), ι(ξn)) with the

corresponding constant of Theorem 5.4 if in addition Assumption 4.1 is satisfied.
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In the following corollary we denote as in Section 2.5 for l ∈ {mj̃ : m ∈ Z } ∩ NM by

m(l) the minimal integer with respect to |·| such that l = m(l)j̃. Note that we consider

here finite sets NM of indices with a possibly different addition than in the set of indices N
in Chapter 2. Hence, m(l) in the discrete situation may defer from m(l) in the continuous

situation, see also Section 4.5.

Corollary 5.14 (Long-Time Energy Distribution (b)). Let 0 < µ ≤ 1. Under the as-

sumptions of Theorem 5.4 and for small initial values

‖ξ0‖s ≤ ε with (2.22b)

we have for any ε, such that εµ satisfies the smallness assumption of Theorem 2.5, the

energy distribution

IM
0 (ξn, ξn) ≤ Cε4(1−µ)+ 5

2
µ,

|l|2sIM
l (ξn, ξn) ≤ Cε2|m(l)|(1−µ)+ 5

2
µ

for 0,±j̃ 6= l ∈ {mj̃ : m ∈ Z } ∩ NM over long times

0 ≤ tn = nh ≤ ε−Nµ

with the constant C of Theorem 5.4. If l 6∈ {mj̃ : m ∈ Z }, then ξl(t) = 0 for all times t.

The same energy distribution holds for the continuous actions Il(ι(ξ
n), ι(ξn)) with

the corresponding constant of Theorem 5.4 if in addition Assumption 4.1 is satisfied.

Moreover, the same result holds true in the situation of Theorem 5.6 in dimension one

(d = 1).

5.6 Example — Split-Step Fourier Methods for Nonlinear Sch-

rödinger Equations of Convolution Type

We study a full discretization of the nonlinear Schrödinger equation with a potential of

convolution type

i
∂

∂t
ψ(x, t) = −∆ψ(x, t) + V (x) ∗ ψ(x, t) + g(|ψ(x, t)|2)ψ(x, t) (5.25)

on T
d = R

d/(2πZ
d) as introduced in Section 1.4, equation (1.7). In Section 2.6 we stud-

ied the exact solution of such equations. We have shown long-time near-conservation

of actions and exact conservation of energy, mass, and momentum, see Corollary 2.15.

Moreover, we studied the energy distribution for special initial values in Corollaries 2.16

and 2.17. In Sections 4.4 and 4.5 we studied spatial semi-discretizations of these equations

by a spectral Galerkin and a spectral collocation method and proved long-time results

in Corollaries 4.7, 4.8, 4.9, 4.11, 4.12, and 4.13. In particular we proved (at least ap-

proximatively) the same behaviour of actions, energy, mass, and momentum along the

semi-discrete solution as along the exact solution. In this section we study a full dis-

cretization of (5.25) and apply Theorem 5.4 on the long-time near-conservation of actions

along the fully discrete solution and its corollaries to this discretization.
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Split-Step Fourier Methods. In order to discretize the nonlinear Schrödinger equa-

tion (5.25) in time and space we apply a splitting integrator (5.4) or (5.5) to the semi-

discretization in space by a spectral collocation method as described in Section 4.5. This

is called a split-step Fourier method based on the Lie–Trotter splitting (5.4) or the Strang

splitting (5.5) and is widely used for the numerical integration of (nonlinear) Schrödinger

equations, see [41] and references therein. From the semi-discretization in space we have

the embedding ι = id.

For the splitting integrators (5.4) and (5.5) we solve the equations of motion (5.3a)

and (5.3b) with

HM,h
0 (ξ, η) =

∑

j∈NM

ωjξjηj and PM,h(ξ, η) = HM(ξ, η) − HM,h
0 (ξ, η),

where HM is the Hamiltonian function (4.18) of the semi-discretization in space by the

spectral collocation method and NM = {−M, . . . ,M − 1}d is a full grid with addition

modulo 2M as in Section 4.5. In terms of the ansatz ψM(x, t) =
∑

j∈NM
ξj(t)e

i(j·x) the

equations of motion (5.3a) and (5.3b) determining the split-step method then read

i
d

dt
ξj(t) = ωjξj(t) for j ∈ NM ,

i
∂

∂t
ψM(xk, t) = g(|ψM(xk, t)|2)ψM(xk, t) for k ∈ NM .

The first equation is linear with solution

ξj(t) = e−iωjtξj(0), j ∈ NM .

For the second equation we first note that |ψM(xk, t)|2 is conserved along any solution as is

shown by a multiplication of the equation with ψM(xk, t) (g is assumed to be real-valued).

Its solution can therefore be easily computed as

ψM(xk, t) = e−ig(|ψM (xk,0)|2)tψM(xk, 0), k ∈ NM . (5.26)

Note that ψM(xk, t) and ξj(t) are related by the discrete Fourier transform F2M : C
2M →

C
2M ,

F2M(ξj(t))j∈NM
= (ψM(xk, t))k∈NM

,

which can be efficiently computed using the fast Fourier transform (FFT).

The Lie–Trotter Split-Step Fourier Method. One time step of the split-step Fourier

method based on the Lie–Trotter splitting (5.4) starting with ξn = (ξn
j )j∈NM

can be

written as

ψM,n = (ψM,n(xk))k∈NM
= F2M(ξn), (5.27a)

ψM,n,+ = (e−ig(|ψM,n(xk)|2)hψM,n(xk))k∈NM
, (5.27b)

ξn,+ = (ξn,+
j )j∈NM

= F−1
2M(ψM,n,+), (5.27c)

ξn+1 = (e−iωjhξn,+
j )j∈NM

. (5.27d)
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In the first equation we transform the vector ξn from the frequency domain to the space

domain using the fast Fourier transform. In the space domain we then solve (5.3b) in the

second equation by simply multiplying each component with a complex number (5.26).

After having transformed the result back to the frequency domain in the third equation

using again the fast Fourier transform, we finally perform a time step h with (5.3a) again

simply by multiplying each component with a complex number. In this way we compute

from ξn ≈ ξ(tn) a new approximation ξn+1 ≈ ξ(tn+1) at time tn+1 = (n + 1)h = tn + h,

where all steps are very easy (and fast) to compute.

The Strang Split-Step Fourier Method. Similarly, the split-step Fourier method

based on the Strang splitting (5.5) reads

ψM,n = (ψM,n(xk))k∈NM
= F2M(ξn), (5.28a)

ψM,n,+ = (e−ig(|ψM,n(xk)|2)h
2 ψM,n(xk))k∈NM

, (5.28b)

ξn,+ = (ξn,+
j )j∈NM

= F−1
2M(ψM,n,+), (5.28c)

ξn,− = (e−iωjhξn,+
j )j∈NM

, (5.28d)

ψM,n,− = F2M(ξn,−), (5.28e)

ψM,n+1 = (e−ig(|ψM,n,−(xk)|2)h
2 ψM,n,−(xk))k∈NM

, (5.28f)

ξn+1 = F−1
2M(ψM,n+1). (5.28g)

In order to apply Theorem 5.4 and its corollaries to the split-step Fourier methods

(5.27) and (5.28) we verify its various assumptions.

Verification of the Assumptions 5.1, 5.2, 5.3, and 4.1. The Assumptions 5.1 and

5.2 are satisfied under the same conditions and with constants depending on the same

parameters (in particular independent of M and h) as for the continuous nonlinear Sch-

rödinger equation with a potential of convolution type in Section 2.6. Assumption 4.1 is

fulfilled with C4 = 1.

Assumption 5.1 imposes a regularity condition on the flow of the nonlinearity PM,h =

PM . From (5.26) we know that the flow can be written in terms of the function ψM(x, t) =∑
j∈NM

ξj(t)e
i(j·x) as

ψM(x, t) = Q
(
e−ig(|ψM (x,0)|2)tψM(x, 0)

)
=

∞∑

m=0

(−it)m

m!
Q

(
g(|ψM(x, 0)|2)mψM(x, 0)

)

using the trigonometric interpolation Q as introduced in Section 4.5. Writing this equation

in terms of the Fourier coefficients ξj, we clearly see that the flow ΦP
t has an expansion of

the form (5.7) as required in Assumption 5.1 with coefficients P̂j,k,l satisfying the condition

of zero momentum 5.2. For the verification of (2.6) for |P̂ |m,m′
we restrict ourselves to

the case of a cubic nonlinearity in (5.25), i.e., g(|ψ|2) = |ψ|2. This is done just for

notational simplicity (though the formulas are still complicated . . .); all the calculations
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can be redone for a general (real-valued and analytic) nonlinearity g. In the case of a

cubic nonlinearity the expansion (5.7) of the flow of PM,h = PM takes the form

ξj(t) = ξ0
j +

∞∑

m=1

(−it)m

m!

∑

j1+···+jm+1

−jm+2−···−j2m+1=j

ξ0
j1 · · · ξ0

jm+1ξ0
jm+2 · · · ξ0

j2m+1

for initial value ξ0, i.e.,

P̂j,k,l =

{
(−i)m′

tm
′−1

m′!
, m = m′ + 1 ≥ 2, k1 + · · · + km − l1 − · · · − lm

′
= j,

0, else

for j ∈ NM , k ∈ Nm
M , and l ∈ Nm′

M . This means that |P̂ |m,m′
as introduced in Assumption

5.1 equals |PM |m,m′
from Section 4.5 for the spectral collocation method for the nonlinear

Schrödinger equation (5.25) up to a constant factor (depending on t). The estimates from

Sections 4.5 and 2.6 hence imply that

‖|P̂ |m,m′

(ξ1, . . . , ξm, η1, . . . , ηm′

)‖s ≤ Cm+m′ tm
′−1

m′!
‖ξ1‖s · · · ‖ξm‖s‖η1‖s · · · ‖ηm′‖s

for m = m′ + 1 with a constant depending only on d and s provided that s > d
2
. This

verifies (2.6a) for |P̂ |m,m′
. Moreover a calculation as in Section 2.6 shows that (2.6b) is

satisfied for any constant C1 (in general, C1 depends on the convergence radius of g). This

verifies that for any s ≥ s0 > d
2

the regularity assumption 5.1 on the flow of PM,h = PM

is satisfied with constants depending only on g, d, s0, and s. Moreover, the condition of

zero momentum 5.2 and Assumption 4.1 are satisfied.

The non-resonance condition 2.3 used in Chapter 2 for the exact solution is satisfied for

the frequencies ωj, j ∈ NM , as we verified in Section 2.6 for “typical” potentials V ∈ S.

In Section 5.3 we mentioned situations where this non-resonance condition implies the

non-resonance condition 5.3 needed in the fully discrete context. In other situations this

non-resonance condition 5.3 stays an assumption and has to be verified.

We have the following corollary stating that the exact invariants energy and momen-

tum of the exact solution are nearly conserved over long times along the fully discrete

solution. For the actions we have the same kind of long-time near-conservation for the

fully discrete solution as for the exact solution.

Corollary 5.15 (Long-Time Analysis of Split-Step Fourier Methods Applied to Nonlinear

Schrödinger Equations (5.25)). Fix N , s ≥ 2s0 > d, and assume g(0) = 0 and the non-

resonance condition 5.3 on the frequencies and on the time step-size h. Then for any ε

sufficiently small compared to the nonlinearity g, the dimension d, the potential V , s0, s,

C0, ε0, and N and for small initial values

‖ξ0‖s ≤ ε

we have
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• near-conservation of discrete actions (5.10) and continuous actions (5.11),

• near-conservation of discrete energy (5.24) and continuous energy (5.23),

• exact conservation of discrete and continuous mass,

• near-conservation of discrete momentum (5.21) and continuous momentum (5.22),

• and regularity (5.17) and (5.18)

over long times

0 ≤ tn = nh ≤ ε−N

along any numerical solution ξn of the nonlinear Schrödinger equation with a potential

of convolution type (5.25) in dimension d defined by the Lie–Trotter split-step Fourier

method (5.27) or the Strang split-step Fourier method (5.28) with a constant C depending

only on g, d, V , s0, s, C0, and N , but not on ε, the spatial discretization parameter M ,

and the time step-size h ≤ 1.

Proof. Having verified the Assumptions 5.1, 5.2, and 4.1, Theorem 5.4 ensures the long-

time near-conservation of actions along the fully discrete solution, and Corollary 5.9 en-

sures its long-time regularity.

The discrete mass mM is an exact invariant also of the fully discrete solution since

both, HM,h
0 = HM

0 and PM,h = PM , are invariant under the transformation ξ 7→ eiθξ.

Hence, their flows conserve mM by Proposition 1.3, and the numerical scheme is just a

composition of these flows. This implies exact conservation of discrete mass mM along

ξ(t) and also of continuous mass m along the embedded numerical solution ι(ξ(t)).

The same argument is not true for the momentum, an exact invariant of the exact

solution, since the nonlinearity PM,h = PM does not satisfy the required invariance,

see also Section 4.5. However, Corollary 5.11 ensures the long-time near-conservation of

momentum along the numerical solution.

For the energy we proceed as described in Section 5.4 by estimating the nonlinearity

P . Indeed, we have by (1.10) and Corollary 5.9

|P (ξ, ξ)| ≤ Cε4,

for ε sufficiently small since g(0) = 0. This yields the long-time estimate (5.23) for the

energy. The same estimate is true for the discrete nonlinearity PM , and hence we also

have long-time near-conservation of discrete energy HM .

This corollary was first proven in [30, Theorem 2]. Note that discrete actions IM
j (ξ, ξ)

and continuous actions Ij(ι(ξ), ι(ξ)) agree for the nonlinear Schrödinger equation since

ι = id, and that the same is true for mass and momentum. All properties proven for

nonlinear Schrödinger equations with a potential of convolution type (5.25) and their

discretizations are summarised in Table 3. Split-step Fourier methods can also be applied

to Schrödinger–Poisson equations, see Sections 1.4 and 2.7, and Corollary 5.15 is also true

in this situation.

Besides Theorem 5.4 and its corollaries we can also apply Corollaries 5.13 and 5.14

on energy distribution to the fully discrete solution in a similar way as we did for the
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exact solution spectral semi-discretization full discretization

Galerkin Collocation split-step Fourier

(Corollary 2.15) (Corollary 4.7) (Corollary 4.11) (Corollary 5.15)

actions long-time near-conservation

energy exact conservation long-time near-conservation

mass exact conservation

momentum exact conservation long-time near-conservation

Table 3: Conservation properties of nonlinear Schrödinger equations with a potential of

convolution type (5.25) and their discretizations.

semi-discrete solution in Section 4.5 and for the exact solution in Section 2.6. Once again,

we get the same behaviour along the fully discrete solution as along the exact and the

semi-discrete solution under suitable assumptions.

Corollary 5.16 (Long-Time Energy Distribution (a) for Split-Step Fourier Methods Ap-

plied to Nonlinear Schrödinger Equations (5.25)). Let 0 < µ ≤ 1. Under the assumptions

of Corollary 5.15 and for small initial values

‖ξ0‖s ≤ ε with (2.22a)

we have for any ε, such that εµ satisfies the smallness assumption of Corollary 5.15, the

energy distribution
∑

(2m−1)B<|l|≤(2m+1)B

|l|2sIM
l (ξn, ξn) ≤ Cε2(2m+1)(1−µ)+ 5

2
µ

for m ≥ 1 over long times

0 ≤ tn = nh ≤ ε−Nµ

with the constant C of Corollary 5.15.

The same energy distribution holds for the continuous actions Il(ι(ξ
n), ι(ξn)).

Corollary 5.17 (Long-Time Energy Distribution (b) for Split-Step Fourier Methods Ap-

plied to Nonlinear Schrödinger Equations (5.25)). Let 0 < µ ≤ 1. Under the assumptions

of Corollary 5.15 and for small initial values

‖ξ0‖s ≤ ε with (2.22b)

we have for any ε, such that εµ satisfies the smallness assumption of Corollary 5.15, the

energy distribution

|l|2sIl(ξ
n, ξn) ≤ Cε2|m(l)|(1−µ)+ 5

2
µ

for 0,±j̃ 6= l ∈ {mj̃ : m ∈ Z odd }, where mj̃ ∈ NM is computed in NM (i.e., modulo

2M), over long times

0 ≤ tn = nh ≤ ε−Nµ

with the constant C of Corollary 5.15. If l 6∈ {mj̃ : m ∈ Z odd }, then ξl(t) = 0 for all

times t.

The same energy distribution holds for the continuous actions Il(ι(ξ
n), ι(ξn)).
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Figure 5: Numerical Experiment 5.18: Actions (black lines), discrete energy (upper grey

line), and momentum (lower grey line).

In the following numerical experiments illustrating the theoretical results 5.15, 5.16,

and 5.17 we restrict our attention to the cubic nonlinear Schrödinger equation with a

potential of convolution type

i
∂

∂t
ψ(x, t) = −∆ψ(x, t) + V (x) ∗ ψ(x, t) + |ψ(x, t)|2ψ(x, t) (5.29)

on T
d = R

d/(2πZ
d), i.e., we consider (5.25) with g(|ψ|2) = |ψ|2. For other numerical

experiments with this nonlinear Schrödinger equation we refer to [30] and [25].

Numerical Experiment 5.18 (Long-Time Near-Conservation of Actions, Energy, and

Momentum in One Dimension). We apply the Lie–Trotter split-step Fourier method (5.27)

to the nonlinear Schrödinger equation (5.29) in one dimension (d = 1) with a potential

V (x) such that

ωj =
√
|j|4 + rj (5.30)

with rj = 0.5 for j > 0 and rj = 0.8 else. As initial value we choose

ψ(x, 0) =
1

10

( 1

2 − cos(x)
+ i

(x

π
− 1

)3(x

π
+ 1

)2)
, (5.31)

i.e., in our numerical scheme ψ0 = Q(ψ(·, 0)). We apply the split step method (5.27) with

2M = 28 collocation points and with a time step-size h = 0.1 on a time interval of length

107. The evolution of the first 11 actions and 14 other actions as well as discrete energy

and momentum is plotted in Figure 5 on this time interval. All these quantities are well

(though not exactly) conserved. This behaviour is explained by Corollary 5.15. We com-

pute the discrete energy HM instead of H for computational simplicity; the computation

of the nonlinearity in H is very expensive.

Numerical Experiment 5.19 (Long-Time Near-Conservation of Actions, Energy, and

Momentum in Two Dimensions). We now study the cubic nonlinear Schrödinger equation
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Figure 6: Numerical Experiment 5.19: Actions (black lines), discrete energy (upper grey

line), and first component of momentum (lower grey line) for non-resonant frequencies

(left) and for hyper-resonant frequencies (right).

(5.29) in two dimensions (d = 2) solved with the split-step Fourier method (5.27). We

perform 108 steps of length h = 0.1 on a full grid with (2M)2 = 210 grid points and with

initial value

ψ(x, 0) =
1

10

( 1

(2 − cos(x1))(2 − sin(x2))
− i

(x2
1

π2
− 1

)2(x2
2

π2
− 1

)2)
.

In a first experiment the potential V (x) is chosen in such a way that

ωj =
√

(j2
1 + j2

2)
2 + rj

with rj = 0.5 for j1, j2 ≥ 0, rj = 0.6 for j1 ≥ 0 and j2 < 0, rj = 0.7 for j1 < 0 and

j2 ≥ 0, and rj = 0.8 else. In Figure 6 we see on the left-hand side the near-conservation

of actions, discrete energy, and the first component of the momentum as explained by

Corollary 5.15. Here, the first 9 and 16 other actions are plotted.

On the right-hand side of Figure 6 the results of the same experiment without potential

(V = 0), i.e., with hyper-resonant frequencies

ωj = j2
1 + j2

2 ,

are plotted. This hyper-resonant situation is not covered by Corollary 5.15.

Numerical Experiment 5.20 (Resonant Time Step-Sizes). We consider again the cubic

nonlinear Schrödinger equation (5.29) with frequencies (5.30) and initial value (5.31) in

one dimension (d = 1) as in the Experiment 5.18. We apply the split-step method (5.27)

with M = 27 and a time step-size

h =
2π

ω7 + ω−3 + ω1 − ω5

≈ 0.1834.
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Figure 7: Numerical Experiment 5.20: Actions (black lines), discrete energy (upper grey

line), and momentum (lower grey line) for a resonant time step-size h = 2π/(ω7 + ω−3 +

ω1 − ω5) ≈ 0.1834 (left) and h = 0.18 (right).

This time step-size is of the form 2πm/|k ·ω − ωj(k)| and therefore resonant as explained

in Section 5.3. The behaviour of the first 11 actions and 14 other actions as well as energy

and momentum is plotted in the left part of Figure 7 when integrated on a time interval

of length 3 · 104. The effects of the numerical resonance is clearly visible. However, if we

perform the same experiment with a slightly different time step-size h = 0.18, we don’t

see these effects, see the right part of Figure 7.

This observation motivates the following study of numerical resonances in dependence

of the time step-size h. We perform the above experiment for different time step-sizes

h ∈ [0.01, 0.2] on a time interval of length 5000. In Figure 8 the maximal deviation in

actions, energy, and momentum is plotted. The resolution of the interval of time step-sizes

is chosen as 10−4.

Numerical Experiment 5.21 (Long-Time Energy Distribution (a)). We now solve the

cubic nonlinear Schrödinger equation (5.29) with frequencies (5.30) in one dimension

(d = 1) for a finite band initial value (2.22a)

ψ(x, 0) =
1

100

(1

2
+cos(x)+cos(2x)+cos(3x)+cos(4x)+cos(5x)

)
=

1

200

5∑

j=−5

eijx (5.32)

using the split-step Fourier method (5.27) with a time step-size h = 0.1 and 2M = 27 grid

points. Initially, all the energy is located in a finite band of width 11 (B = 5 in (2.22a)).

In Figure 9 the initial energy distribution is plotted with grey dots (the many nonzero

but very small values are rounding errors originating from the computation of the Fourier

coefficients of the initial value with the fast Fourier transform). This energy is distributed
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Figure 8: Numerical Experiment 5.20: Maximal deviation in actions (upper image),

discrete energy (middle image), and momentum (lower image) for time step-sizes h ∈
[0.01, 0.2].

among the other modes according to Corollary 5.16. In Figure 9 the distribution at

time 107 is plotted with black dots and agrees with the energy distribution predicted by

Corollary 5.16.

In Figure 10 the evolution of the energy distribution in time is plotted. Starting with
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Figure 9: Numerical Experiment 5.21: Energy distribution at time t = 0 (grey dots) and

t = 107 (black dots) for the finite band initial value (5.32).
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Figure 10: Numerical Experiment 5.21: Time evolution of the energy distribution for the

finite band initial value (5.32).

the energy distribution in grey dots at time t = 0 the final energy distribution in black

dots at time t = 107 is reached after very few time steps and is then approximately

conserved.

Numerical Experiment 5.22 (Long-Time Energy Distribution (b)). Now we choose

ψ(x, 0) =
1

10
cos(15x) =

1

20
e15ix +

1

20
e−15ix (5.33)

as initial value for (5.29). This is an example for the situation (2.22b) where all the energy

is located initially in a pair of modes (j̃ = 15 in (2.22b)) as plotted in grey dots in Figure

11. We solve the nonlinear Schrödinger equation (5.29) with frequencies (5.30) as in the

Experiment 5.21 using the split-step Fourier method (5.27) with a time step-size h = 0.1

and 2M = 27 grid points. The energy distribution at time t = 107 is plotted in Figure

11 in black dots, and the time evolution of the energy distribution on the time interval

0 ≤ t ≤ 107 is plotted in Figure 12.

We observe the behaviour as stated in Corollary 5.17. The energy of size 10−3 (or

more precisely 1
4
10−2) in the modes ξ15 and ξ−15 is distributed among the modes ξ45 and

ξ−45 with size 10−3·3 (up to a factor 1 − µ), among the modes ξ75 = ξ−53 and ξ−75 = ξ53

with size 10−5·3, and among the modes ξ105 = ξ−23 and ξ−105 = ξ23 with size 10−7·3. The

latter two effects are aliasing effects as explained in Section 4.5. The energy distributed

among the other modes ξ135 = ξ7, . . . is not distinguishable from the rounding errors in

all modes.
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Figure 11: Numerical Experiment 5.22: Energy distribution at time t = 0 (grey dots) and

t = 107 (black dots) for the two-mode initial value (5.33).
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Figure 12: Numerical Experiment 5.22: Time evolution of the energy distribution for the

two-mode initial value (5.33).

5.7 Example — Trigonometric Integrators for Nonlinear Wave

Equations

In Section 4.6 we studied a spatial semi-discretization by a spectral collocation method

of the nonlinear wave equation

∂2

∂t2
u(x, t) = ∆u(x, t) − ρu(x, t) + g(u(x, t)) (5.34)

in one dimension (d = 1) with periodic boundary conditions, see equations (1.14), (2.32),

and (4.20). As explained there, the spatial semi-discretization is a Hamiltonian ordinary

differential equation with Hamiltonian function (5.2), where ωM
j = ωj =

√
j2 + ρ for
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j ∈ NM = {−M, . . . ,M − 1 } and

PM(ξ, η) = −
∞∑

m=0

g(m)(0)

m!(m + 1)

∑

j1+···+jm+1=0

ξj1 + η−j1√
2ωj1

· · · ξjm+1 + η−jm+1√
2ωjm+1

.

The embedding ι : l20(C
NM ) → l20(C

N ) is given by

ι(ξ)j =





ξj, |j| < M,
1
2
ξ−M , |j| = M,

0, |j| > M,

see also Section 4.6. For the discretization in time of this spatial semi-discretization we

consider the symplectic trigonometric integrators of [36, Chapter XIII]. They all can be

interpreted as a Strang splitting (5.5) as introduced in Section 5.1.

Deuflhard’s Method. We apply the Strang splitting (5.5) with

HM,h
0 (ξ, η) =

∑

j∈NM

ωjξjηj and PM,h(ξ, η) = PM(ξ, η)

in (5.3a) and (5.3b) to the spatial semi-discretization. The solution of (5.3a) is

ξj(t) = e−iωjtξj(0). (5.35a)

The differential equation (5.3b) takes the form

i
d

dt
ξj(t) = − 1√

2ωj

∞∑

m=0

g(m)(0)

m!

∑

j1+···+jm=j

ξj1 + ξ−j1√
2ωj1

· · · ξjm + ξ−jm√
2ωjm

,

and a simple calculation shows that d
dt

(ξj(t) + ξ−j(t)) = 0 along any solution of (5.3b).

Hence, the solution of (5.3b) takes in this situation the simple form

ξj(t) = ξj(0) +
it√
2ωj

∞∑

m=0

g(m)(0)

m!

∑

j1+···+jm=j

ξj1(0) + ξ−j1(0)√
2ωj1

· · · ξjm(0) + ξ−jm(0)√
2ωjm

,

(5.35b)

and the numerical scheme (5.5) is indeed easy to compute.

We now write the numerical discretization (5.5) in terms of the variables uj and vj.

Recall from Section 1.5 that for j ∈ NM

ξj =
ω

1
2
j uj + iω

− 1
2

j vj√
2

.

Hence, (5.35a) can be written as

uj(t) = cos(ωjt)uj(0) +
1

ωj

sin(ωjt)vj(0),

vj(t) = −ωj sin(ωjt)uj(0) + cos(ωjt)vj(0),
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and (5.35b) as

uj(t) = uj(0),

vj(t) = vj(0) + t

∞∑

m=0

g(m)(0)

m!

∑

j1+···+jm=j

uj1(0)√
2ωj1

· · · ujm(0)√
2ωjm

,

where the sum is over indices j1, . . . , jm ∈ NM and their sum is computed in NM modulo

2M . Using these equations, the Strang splitting (5.5) reads in terms of the Fourier

coefficients uj and vj of uM and vM , respectively,

un+1
j = cos(ωjh)un

j +
1

ωj

sin(ωjh)vn
j +

h

2ωj

sin(ωjh)gj(u
n),

vn+1
j = −ωj sin(ωjh)un

j + cos(ωjh)vn
j +

h

2
cos(ωjh)gj(u

n) +
h

2
gj(u

n+1),

where

gj(u
n) =

∞∑

m=0

g(m)(0)

m!

∑

j1+···+jm=j

un
j1√

2ωj1

· · · un
jm√

2ωjm

= F−1
2M(g(F2M((un

k)k∈NM
)))j.

We get precisely Deuflhard’s method which reads in a two-step formulation

un+1
j − 2 cos(ωjh)un

j + un−1
j = h2 sinc(ωjh)gj(u

n), (5.36a)

2h sinc(ωjh)vn
j = un+1

j − un−1
j , (5.36b)

see [21] and [36, Chapter XIII.1.2].

The Mollified Impulse Method. The mollified impulse method was introduced in [27],

see also [36, Chapter XIII.1.4]. As Deuflhard’s method, this method is a Strang splitting

(5.5) but with the nonlinearity PM(ξ, η) replaced by PM(φ(ωh)ξ, φ(ωh)η). Here, φ is a

real-valued filter function with φ(0) = 1 and bounded values φ(ωjh), j ∈ NM , that acts by

pointwise multiplication on ξ. Usually φ is chosen such that φ(ωjh) → 0 as ωjh → ∞, that

is φ(ωh)ξ = (φ(ωjh)ξj)j∈N filters out components of ξ corresponding to large frequencies.

A typical choice for the filter function φ is

φ = sinc .

In (5.3a) and (5.3b) we have

HM,h
0 (ξ, η) =

∑

j∈NM

ωjξjηj and PM,h(ξ, η) = PM(φ(ωh)ξ, φ(ωh)η).

If φ = 1, the mollified impulse method reduces to Deuflhard’s method. The same calcu-

lations as for Deuflhard’s method yield (5.35a) for the solution of (5.3a) and

ξj(t) = ξj(0) +
itφ(ωjh)√

2ωj

∞∑

m=0

g(m)(0)

m!

∑

j1+···+jm=j

φ(ωj1h)
ξj1(0) + ξ−j1(0)√

2ωj1

· · ·φ(ωjmh)
ξjm(0) + ξ−jm(0)√

2ωjm

(5.37)
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for the solution of (5.3b). This finally results in the same equations for un+1
j and vn+1

j as

for Deuflhard’s method but with

g̃j(u
n) = φ(ωjh)gj(φ(ωh)un)

instead of gj(u
n). In a two-step formulation this reads

un+1
j − 2 cos(ωjh)un

j + un−1
j = h2 sinc(ωjh)φ(ωjh)gj(φ(ωh)un), (5.38a)

2h sinc(ωjh)vn
j = un+1

j − un−1
j . (5.38b)

Verification of the Assumptions 5.1, 5.2, 5.5, and 4.1. The Assumptions 5.1 and

5.2 are satisfied under the same conditions and with constants depending on the same

parameters (in particular independent of M and h) as for the continuous nonlinear wave

equation in Section 2.9 and in addition on the bound for the filter function φ(ωjh), j ∈
NM . Assumption 4.1 is fulfilled with C4 = 1.

The verification of the regularity assumption 5.1 on the flow of PM,h is easy for Deu-

flhard’s method (5.36), since in this case the coefficients P̂j,k,l from (5.7) in Assumption

5.1 agree with the coefficients Pj,k,l from (5.8) (see (4.22) and (5.35b)). The regular-

ity assumption 5.1 is therefore satisfied if the regularity assumption 2.1 is satisfied for

PM,h = PM . In Section 4.6 we verified that this is the case for g(0) = g′(0) = 0 and

s ≥ s0 > d
2

= 1
2
. The requirement of a bounded filter function φ in the mollified impulse

method (5.38) ensures that the same is true for this scheme. Note that the usual choice

φ = sinc is bounded by one.

The condition of zero momentum 5.2 is also satisfied since we verified it in Section

4.6 for Pj,k,l = P̂j,k,l. As in Section 4.6, Assumption 4.1 can be verified with a constant

C4 = 1. For the non-resonance condition 5.5 we refer to the discussion in Section 5.3 and

to Section 2.9, where the related non-resonance condition 2.3 was verified for many values

of ρ.

The following corollary summarises the long-time behaviour of Deuflhard’s method

(5.36) and the mollified impulse method (5.38) when applied to nonlinear wave equations.

Corollary 5.23 (Long-Time Analysis of Deuflhard’s Method and the Mollified Impulse

Method Applied to Nonlinear Wave Equations (5.34)). Fix N , s ≥ 2s0 > 1, and assume

g(0) = g′(0) = 0 and the non-resonance condition 5.5 on the frequencies and on the time

step-size h. Then for any ε sufficiently small compared to the nonlinearity g, the bound

for the filter function φ(ωjh) (j ∈ NM), ρ, s0, s, C0, ε0, and N and for small initial

values

‖ξ0‖s ≤ ε

we have

• near-conservation of sums of discrete actions (5.12) and continuous actions (5.13),

• near-conservation of discrete energy (5.24) and continuous energy (5.23),

• near-conservation of discrete mass (5.19) and continuous mass (5.20),
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• near-conservation of continuous momentum

|K(ι(ξn), ι(ξn)) − K(ι(ξ0), ι(ξ0))|
ε2

≤ CM−s+1εtn,

• and regularity (5.17) and (5.18)

over long times

0 ≤ tn = nh ≤ ε−N

along any numerical solution ξn of the nonlinear wave equation (5.34) defined by Deufl-

hard’s method (5.36) or the mollified impulse method (5.38) with a constant C depending

only on g, the bound for the filter function φ(ωjh) (j ∈ NM), ρ, s0, s, C0, and N , but not

on ε, the spatial discretization parameter M , and the time step-size h ≤ 1.

Proof. Theorem 5.6 ensures long-time near-conservation of sums of actions along the

fully discrete solution computed with Deuflhard’s method (5.36) or the mollified impulse

method (5.38). Corollaries 5.9 and 5.10 ensure the long-time regularity and the long-time

near-conservation of mass. In the same way as for the nonlinear Schrödinger equation in

Section 5.6, we get long-time near-conservation of energy by estimating the nonlinearities

|P (ι(ξn), ι(ξn))| ≤ Cε3 and |PM(ξn, ξn)| ≤ Cε3 and using the regularity of ξn.

In order to study the behaviour of the momentum K along the fully discrete solution

we consider separately the solutions of (5.3a) and (5.3b) which form the numerical scheme

(5.5). Note that we have exact conservation of continuous momentum along any solution

of the linear equations (5.3a),

K(ι(ΦH0
h (ξ)), ι(ΦH0

h (ξ))) = K(ι(ξ), ι(ξ)), (5.39)

since the actions are conserved along these solutions. Concerning the steps with the

nonlinear part (5.3b), we proceed as in the proof of Corollary 4.14 on the spatial semi-

discretization. Besides considering ΦP
h/2(ξ) we also consider a solution ξ̃(h/2) computed

with the flow of the continuous nonlinearity P for the initial value ι(ξ). The proof of

Corollary 4.14 then shows that

|K(ι(ΦP
h/2(ξ)), ι(Φ

P
h/2(ξ))) − K(ι(ξ), ι(ξ))| ≤ CM−(s−1)ε3h. (5.40)

Putting (5.39) and (5.40) together yields for the Strang splitting near-conservation of

momentum as stated in the corollary.

A similar result was proven in [16, Theorem 3]. There, improved near-conservation of

actions and energy (with Cε instead of Cε
1
2 on the right-hand sides of the estimates) is

shown using an additional non-resonance condition. The near-conservation of momentum

in [16] is of the form C(ε + M−s + M−s+1εtn), whereas our analysis following the proof of

Corollary 4.14 yields an estimate CM−s+1εtn. The non-resonance condition used in [16]

seems to be stronger than ours since our notion of a near-resonant index is weaker than

the one used in [16]. Moreover, we don’t need an additional non-resonance condition of
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the form |sin(ωjh)| ≥ hε
1
2 as in [16] but only an additional non-resonance condition (5.9b)

that is closely related to the non-resonance condition (5.9a), see Section 5.3.

Table 4 summarises the properties proven for exact and numerical solutions of nonlin-

ear wave equations (5.34) in Corollaries 2.20, 4.14, and 5.23.

exact solution spectral semi-discretization full discretization

Collocation Deuflhard, mollified impulse

(Corollary 2.20) (Corollary 4.14) (Corollary 5.23)

sums of actions long-time near-conservation

energy exact conservation long-time near-conservation

mass long-time near-conservation

momentum exact conservation long-time near-conservation

Table 4: Conservation properties of nonlinear wave equations (5.34) and their discretiza-

tions.

Applying Corollaries 5.13 and 5.14 we get the following results on the energy distri-

bution along fully discrete solutions of the nonlinear wave equation (5.34) computed with

Deuflhard’s method or the mollified impulse method. We observe the same behaviour as

along the exact solution 2.21 and 2.22 up to aliasing effects which were already observed

for the spatial semi-discretization in Corollary 4.16.

Corollary 5.24 (Long-Time Energy Distribution (a) for Deuflhard’s Method and the

Mollified Impulse Method Applied to Nonlinear Wave Equations (5.34)). Let 0 < µ ≤ 1.

Under the assumptions of Corollary 5.23 and for small initial values

‖ξ0‖s ≤ ε with (2.22a)

we have for any ε, such that εµ satisfies the smallness assumption of Corollary 5.23, the

energy distribution

∑

(m−1)B<|l|≤mB

|l|2sIM
l (ξn, ξn) ≤ Cε2m(1−µ)+ 5

2
µ

for m ≥ 2 over long times

0 ≤ tn = nh ≤ ε−Nµ

with the constant C of Corollary 5.23.

The same energy distribution holds for the continuous actions Il(ι(ξ
n), ι(ξn)).

Corollary 5.25 (Long-Time Energy Distribution (b) for Deuflhard’s Method and the

Mollified Impulse Method Applied to Nonlinear Wave Equations (5.34)). Let 0 < µ ≤ 1.

Under the assumptions of Corollary 5.23 and for small initial values

‖ξ0‖s ≤ ε with (2.22b)
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we have for any ε, such that εµ satisfies the smallness assumption of Corollary 5.23, the

energy distribution

IM
0 (ξn, ξn) ≤ Cε4(1−µ)+ 5

2
µ,

|l|2sIM
l (ξn, ξn) ≤ Cε2|m(l)|(1−µ)+ 5

2
µ

for 0,±j̃ 6= l ∈ {mj̃ : m ∈ Z }, where mj̃ ∈ NM is computed in NM (i.e., modulo 2M),

over long times

0 ≤ tn = nh ≤ ε−Nµ

with the constant C of Corollary 5.23. If l 6∈ {mj̃ : m ∈ Z }, then ξl(t) = 0 for all times

t.

The same energy distribution holds for the continuous actions Il(ι(ξ
n), ι(ξn)).

We conclude this section with some numerical experiments. Other experiments can

be found in [16]. We consider the nonlinear wave equation with a quadratic nonlinearity

and ρ = 1
2

∂2

∂t2
u(x, t) = ∆u(x, t) − 1

2
u(x, t) + u(x, t)2 (5.41)

on T = R/(2πZ).

Numerical Experiment 5.26 (Long-Time Near-Conservation of Sums of Actions, En-

ergy, and Momentum for Deuflhard’s Method). We solve the quadratic nonlinear wave

equation (5.41) numerically with Deuflhard’s method (5.36) with 2M = 28 grid points

and a time step-size h = 0.1. As initial values for u and ∂
∂t

u we choose

u(x, 0) =
1

10(2 − cos(x))
and

∂

∂t
u(x, 0) =

1

10(2 − sin(x))
.

In Figure 13 the first 20 sums of actions, discrete energy, and momentum are plotted on

a time interval of length 107. The near-conservation of these quantities is explained by

Corollary 5.23.
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Figure 13: Numerical Experiment 5.26: Actions (black lines), discrete energy (upper grey

line), and momentum (lower grey line).
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Figure 14: Numerical Experiment 5.27: Actions (black lines), discrete energy (upper grey

line), and momentum (lower grey line).

Numerical Experiment 5.27 (Long-Time Near-Conservation of Sums of Actions, En-

ergy, and Momentum for the Mollified Impulse Method). We perform the same numerical

experiment as in 5.26 but with the mollified impulse method (5.38) with φ = sinc instead

of Deuflhard’s method (φ = 1). Again, we observe long-time near-conservation of sums

of actions, discrete energy, and momentum, see Figure 14.

Numerical Experiment 5.28 (Long-Time Energy Distribution (b) for Deuflhard’s Me-

thod). We choose

u(x, 0) =
∂

∂t
u(x, 0) =

1

20
cos(15x) =

1

40
e15ix +

1

40
e−15ix (5.42)

as initial value for (5.41), i.e., all the energy is located in a pair of modes (2.22b). This

initial energy distribution is plotted in grey dots in Figure 15. For the numerical solution

of (5.41) we choose Deuflhard’s method (5.36) with a time step-size h = 0.1 and 2M = 27

grid points. At time t = 107 we get the energy distribution plotted in black dots in Figure
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Figure 15: Numerical Experiment 5.28: Energy distribution at time t = 0 (grey dots) and

t = 107 (black dots) for the two-mode initial value (5.42).
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Figure 16: Numerical Experiment 5.28: Time evolution of the energy distribution for the

two-mode initial value (5.42).
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Figure 17: Numerical Experiment 5.28: Time evolution of the energy distribution for the

two-mode initial value (5.42) on a short time interval.

15. The time evolution of the energy distribution on the time interval 0 ≤ t ≤ 107 is

plotted in Figure 16. The short-time evolution of the energy distribution on 0 ≤ t ≤ 500

is plotted in Figure 17.

We observe the behaviour as stated in Corollary 5.24. Note that even less energy than

expected is distributed. This is certainly due to the special form of the nonlinearity in the



140 5.8 Example — The Störmer–Verlet Method for NLW

nonlinear wave equations where frequencies appear in the denominator, see also Sections

1.5 and 2.9.

In contrast to the corresponding Experiment 5.22 for the cubic nonlinear Schrödinger

equation the energy is distributed not only among odd multiples of j̃ = 15 but among all

of its multiples.

Numerical Experiment 5.29 (Long-Time Energy Distribution (b) for the Mollified

Impulse Method). We perform the same numerical experiment as in 5.28 but use the

mollified impulse method (5.38) with φ = sinc instead of Deuflhard’s method. We obtain

an energy distribution as plotted in Figure 18.

Compared to Deuflhard’s method (see Figure 15) even less energy is distributed. The

reason for this behaviour is the filter function φ = sinc used in the mollified impulse

method which reduces the influence of the nonlinearity for large frequencies and large

time step-sizes.
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Figure 18: Numerical Experiment 5.29: Energy distribution at time t = 0 (grey dots) and

t = 107 (black dots) for the two-mode initial value (5.42).

5.8 Example — The Störmer–Verlet Method for Nonlinear Wa-

ve Equations

In this section we consider again the nonlinear wave equation (5.34) with periodic bound-

ary conditions, see also equations (1.14), (2.32), and (4.20). We study a full discretization

of this equation by the famous Störmer–Verlet method. We apply this time discretization

again to the spatial semi-discretization in space by a spectral Galerkin method as studied

in Section 4.6.

The Störmer–Verlet Method. The Störmer–Verlet method applied to the spatial semi-

discretization of the nonlinear wave equation reads

un+1
j − 2un

j + un−1
j = h2(−ω2

j u
n
j + gj(u

n)), (5.43a)

2hvn
j = un+1

j − un−1
j . (5.43b)
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The Störmer–Verlet Method as a Trigonometric Integrator. Following [36, Chap-

ter XIII.8] we introduce for step-sizes in the linear stability interval,

hωj ≤ c < 2 for all j ∈ NM ,

modified frequencies ωM,h
j with

1 − h2ω2
j

2
= cos(ωM,h

j h) (5.44)

and minimal ωM,h
j ≥ 0. Moreover, we introduce new variables

ûn = (ûn
j )j∈N = (sinc(ωM,h

j h)
1
2 un

j )j∈N = sinc(ωM,hh)
1
2 un and v̂n = sinc(ωM,hh)−

1
2 vn.

Note that sinc(ωM,h
j h) is positive. In the new variables the Störmer–Verlet method (5.43)

becomes the mollified impulse method

ûn+1
j − 2 cos(ωM,h

j h)ûn
j + ûn−1

j = h2 sinc(ωM,h
j h)

1
2 gj((sinc(ωM,hh)−

1
2 ûn), (5.45a)

2h sinc(ωjh)v̂n
j = ûn+1

j − ûn−1
j (5.45b)

with φ = sinc−
1
2 . This filter function is bounded under the restriction hωj ≤ c < 2 by a

constant depending only on c.

Long-Time Analysis of the Störmer–Verlet Method. As in [16], the interpretation

of the Störmer–Verlet method (5.43) as a trigonometric integrator (5.45) allows us to

perform a long-time analysis as for the trigonometric integrators in Section 5.7. We

assume that the modified frequencies (5.44) together with the time step-size h satisfy the

non-resonance condition 5.5. By Corollary 5.23 we then have long-time near-conservation

of sums of actions in the new variables,

∑

m∈N

m2s
|∑l∈NM :|l|=m IM

l (ξ̂n, ξ̂n) − ∑
l∈NM :|l|=m IM

l (ξ̂0, ξ̂0)|
ε2

≤ Cε
1
2 , (5.46)

where

ξ̂j =
(ωM,h

j )
1
2 ûj + i(ωM,h

j )−
1
2 v̂j√

2
.

This can be transferred to a result in the original variables. Note that the sums of actions

read in terms of the original variables u and v
∑

l∈NM :|l|=m

IM
l (ξ, ξ) = IM

l (ξ, ξ) + IM
−l(ξ, ξ) = ωl|ul|2 + ω−1

l |vl|2

if l ∈ NM with |l| = m. This implies

∑

l∈NM :|l|=m

IM
l (ξ, ξ) −

∑

l∈NM :|l|=m

IM
l (ξ̂, ξ̂) =

( ωl

ωM,h
l sinc(ωM,h

l h)
− 1

)
ωM,h

l |ûl|2

+
(ωM,h

l sinc(ωM,h
l h)

ωl

− 1
)
(ωM,h

l )−1|v̂l|2.
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Using the relation (5.44), i.e., sin(1
2
ωM,h

l h) = 1
2
ωlh, we get

ωl

ωM,h
l sinc(ωM,h

l h)
=

1

cos(1
2
ωM,h

l h)

and hence
∣∣∣

∑

l∈NM :|l|=m

IM
l (ξ, ξ) −

∑

l∈NM :|l|=m

IM
l (ξ̂, ξ̂)

∣∣∣ ≤ Ch2
∑

l∈NM :|l|=m

|l|2IM
l (ξ̂, ξ̂)

with a constant C depending only on ρ and ωMh = c < 2. This finally implies with (5.46)

also near-conservation of sums of discrete actions in the original variables

∑

m∈N

m2s−2
|∑l∈NM :|l|=m IM

l (ξn, ξn) − ∑
l∈NM :|l|=m IM

l (ξ0, ξ0)|
ε2

≤ C(ε
1
2 + h2)

over long times

0 ≤ tn = nh ≤ ε−N .

The same estimate holds true for the continuous actions since Assumption 4.1 is satisfied.

Note that we have in this estimate a factor m2s−2 instead of m2s as in (5.12).

We then get regularity

‖ξn‖s−1 ≤ 2ε + Cεh

and near-conservation of mass

|m(ξn, ξn) − m(ξ0, ξ0)|
ε2

≤ C(ε
1
2 + h2)

over long times

0 ≤ tn = nh ≤ ε−N

along the numerical solution computed with the Störmer–Verlet method (5.43). Note

that the long-time regularity is in a weaker norm than the regularity of the initial value.

Applying the same arguments as for the long-time analysis of Deuflhard’s method and

the mollified impulse method we get near-conservation of energy

|H(ξn, ξn) − H(ξ0, ξ0)|
ε2

≤ C(ε
1
2 + h2)

and near-conservation of momentum

|K(ξn, ξn) − K(ξ0, ξ0)|
ε2

≤ CM−s+1εtn,

over long times

0 ≤ tn = nh ≤ ε−N .

In summary we have shown similar long-time results for the Störmer–Verlet method (5.43)

as in Corollary 5.23 for Deuflhard’s method (5.36) and the mollified impulse method (5.38).
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Numerical Experiment 5.30 (Long-Time Near-Conservation of Sums of Actions, En-

ergy, and Momentum for the Störmer–Verlet Method). We perform the same numerical

experiment with the quadratic nonlinear wave equation (5.41) as in 5.26 but this time

with the Störmer–Verlet method (5.43). The time step-size h = 0.1 does not fulfill the

stability condition hωj ≤ c < 2 for all j ∈ NM , see Figure 19. Choosing a time step-size

h = 0.01 we get again long-time near-conservation of sums of actions, discrete energy, and

momentum, see Figure 19.
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Figure 19: Numerical Experiment 5.30: Actions (black lines), discrete energy (upper grey

line), and momentum (lower grey line) for h = 0.1 (left) and h = 0.01 (right).



6 Modulated Fourier Expansions of Full

Discretizations of Hamiltonian Partial

Differential Equations

The proof of Theorems 5.4, 5.6, and 5.12 on the long-time near-conservation of actions

along fully discrete weakly nonlinear Hamiltonian partial differential equations (5.4) and

(5.5) given in this chapter follows the lines of the corresponding proofs for the exact

solution presented in Chapter 3. Once again, modulated Fourier expansions are the main

tool. It turns out that the ideas and the techniques used in the continuous situation also

apply in the fully discrete setting.

Throughout this chapter we work under the assumptions of Theorem 5.4 (and later

also Theorems 5.6 and 5.12). We consider small initial values

‖ξ0‖s ≤ ε.

For fixed N we study the numerical solution defined by the Lie–Trotter splitting (5.4) or

the Strang splitting (5.5) on time intervals of length ε−N . From Assumption 5.1 on the

regularity of the flow of the nonlinearity PM,h we have constants C1, s0 ≤ s, Cs0 , Cs, CL,s0 ,

and CL,s, from the condition of zero momentum 5.2 we have constants c2, C2, and σ, and

from the non-resonance condition 5.5 we have constants C0 and ε0. For convenience, we

write in this chapter N instead of NM and ωj instead of ωM,h
j .

On the Strang Splitting. Without loss of generality we prove Theorems 5.4, 5.6, and

5.12 only for the Lie–Trotter splitting (5.4). Indeed, the results for the Strang splitting

(5.5) follow immediately from the corresponding results for the Lie–Trotter splitting since

the result of the Strang-splitting after n time steps differs from the one of the Lie–Trotter

only by half a time step with the nonlinearity at the beginning and at the end (5.6) which

of course do not affect the long-time behaviour.

The Splitting Integrator in Formulas. We now introduce rather complicated formulas

for the Lie–Trotter splitting (5.4) which will be needed below.

The flow ΦH0
h of (5.3a) is readily written down,

ΦH0
h (ξ) = (e−iωjhξj)j∈N ,

and the regularity assumption 5.1 yields an expression for the flow ΦP
h of (5.3b). Putting

the two expressions together we get the following formula for the Lie–Trotter splitting,

ξn+1
j = e−iωjhξn

j + e−iωjh

∞∑

m+m′=2

∑

k∈Nm, l∈Nm′

hP̂j,k,lξ
n
k1 · · · ξn

kmξn
l1 · · · ξn

lm
′ (6.1)

with P̂j,k,l = P̂j,k,l(h). Due to the condition of zero momentum 5.2 the coefficients in this

expression satisfy P̂j,k,l = 0 for j 6= k1 + · · · + km − l1 − · · · − lm
′
.
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6.1 Modulated Fourier Expansions for the Full Discretization

The Modulation System. As for the exact solution of the Hamiltonian equations of

motion in Section 3.1 we seek for a modulated Fourier expansion

ξ̃j(t) =
∑

k

zk
j (εt)e−i(k·ω)t

of the fully discrete solution ξn, n = 0, 1, 2, . . . , given by the Lie–Trotter splitting (6.1).

The sum in the expansion runs again over all sequences k ∈ Z
N of integers with finitely

many nonzero entries indexed by N . The requirement ξ̃j(tn) = ξn
j with tn = nh for

n = 0, 1, 2, . . . and a comparison of the coefficients of e−i(k·ω)t lead to equations

zk
j (ε(t + h))e−i(k·ω)h = e−iωjhzk

j (εt)

+ e−iωjh

∞∑

m+m′=2

∑

k1+···+km

−l1−···−lm
′
=k

∑

k∈Nm, l∈Nm′

hP̂j,k,lz
k1

k1 · · · zkm

km zl1

l1 · · · zlm
′

lm
′

for the modulation functions zk
j in the modulated Fourier expansion, where the modulation

functions in the nonlinearity are evaluated at time εt. A Taylor expansion of zk
j (ε(t + h))

yields the modulation system

ei(ωj−k·ω)h − 1

h
zk

j (εt) + εżk
j (εt)ei(ωj−k·ω)h +

∞∑

ℓ=2

εℓhℓ−1

ℓ!
(zk

j )(ℓ)(εt)ei(ωj−k·ω)h

=
∞∑

m+m′=2

∑

k1+···+km

−l1−···−lm
′
=k

∑

k∈Nm, l∈Nm′

P̂j,k,lz
k1

k1 · · · zkm

km zl1

l1 · · · zlm
′

lm
′ ,

(6.2a)

where the dot and ·(ℓ) denote derivatives with respect to the slow time τ = εt. The initial

condition ξ̃(0) = ξ0 further yields
∑

k

zk
j (0) = ξ0

j . (6.2b)

Note that the modulation system (6.2) for fully discrete Hamiltonian partial differential

equations is formally very similar to the one (3.3) for the exact solution of such equations.

In both systems we have the modulation function multiplied with a possibly small number

k · ω − ωj or (ei(ωj−k·ω)h − 1)/h, we have its derivative multiplied with ε, and we have a

nonlinearity. In the modulation system for the fully discrete equation we have in addition

higher derivatives of the modulation function multiplied by corresponding powers of ε.

Formal Analysis of the Modulation System. The modulation system (3.3) for the

exact solution of a Hamiltonian partial differential equations is again Hamiltonian, see

Section 3.1. For the modulation system of the fully discrete solution (6.2) this is — in

general — not true anymore. This is the major difference in the analysis of the exact and

the numerical solution.
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Of course, the presence of higher derivatives is a first problem in establishing a Hamil-

tonian structure in the modulation system. However, for our analysis it would be sufficient

to establish a Hamiltonian structure of the nonlinear term in the modulation system. But

this is also impossible in general since a possible Hamiltonian function P for the nonlinear

term in the modulation system does in general not satisfy the condition P(z,w) = P(w, z)

that we imposed in Section 1.1 on Hamiltonian functions.

To exemplify this fact, let us consider the Lie–Trotter split-step Fourier method applied

to the cubic nonlinear Schrödinger equation (5.29) studied in Section 5.6. We verified in

Section 5.6 that the nonlinearity in the modulation system consists in this situation of

terms of the form

∑

k1+···+km′+1

−l1−···−lm
′
=k

∑

k1+···+km′+1

−l1−···−lm
′
=j

(−i)m′
hm′−1

m′!
ξk1

k1 · · · ξkm′+1

km′+1 ξl1

l1 · · · ξlm
′

lm
′

for m′ ≥ 1. In a possible Hamiltonian function this would lead to a term of the form

∑

k1+···+km′+1

−l1−···−lm
′+1=0

∑

k1+···+km′+1

−l1−···−lm
′+1=0

(−i)m′
hm′−1

(m′ + 1)!
ξk1

k1 · · · ξkm′+1

km′+1 ξl1

l1 · · · ξlm
′+1

lm
′+1 .

But for odd m′ this term does not fulfill the above condition on Hamiltonian functions.

For trigonometric integrators for the nonlinear wave equation as studied in Section 5.7

this situation does not occur since the coefficients P̂j,k,l in the corresponding modula-

tion system agree with the coefficients Pj,k,l originating from the nonlinear Hamiltonian

function PM,h = PM , see also [16].

The reason for the difference between the modulation systems for the exact and the

numerical solution is the same as the reason why we impose the regularity assumption

5.1 on the flow of the nonlinearity PM,h instead of the nonlinearity itself as for the exact

solution, see Assumption 2.1: The modulation system (6.2) was derived by considering

the numerical solution itself (and not the differential equations determining this numerical

solution), whereas the modulation system (3.3) for the exact solution was derived by

considering the equations of motion determining the exact solution (and not the exact

solution itself).

Introduction of an Auxiliary Modulation System. To overcome the problem of a

missing Hamiltonian structure of the modulation system (6.2a) we consider an auxiliary

modulation system related to the flow of the nonlinearity PM,h but based on the equations

of motion determining this flow. We follow the lines of [30] and consider the auxiliary

modulation system

i
d

dt
vk

j =
∞∑

m+m′=2

∑

k1+···+km

−l1−···−lm
′
=k

∑

k∈Nm, l∈Nm′

Pj,k,lv
k1

k1 · · · vkm

km vl1

l1 · · · vlm
′

lm
′ . (6.3)
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Up to a summand (k ·ω)vk
j , this is the modulation system that we would obtain from the

equations of motion (5.3b) and (5.8) of the nonlinearity PM,h, i.e., from the differential

equation determining the nonlinear step of the Lie–Trotter splitting (5.4). Since this

modulation system is directly related to Hamiltonian equations of motion, we can detect

formal invariants

Kl(v,u) =
∑

j∈N ,k∈ZN

klv
k
j uk

j (6.4)

as in Section 3.1 using Proposition 1.4 and the invariance of the associated Hamiltonian

function

P(v,u) =
∞∑

m,m′=0

∑

k1+···+km

−l1−···−lm
′+1=0

∑

k∈Nm, l∈Nm′+1

Pk,lv
k1

k1 · · · vkm

km ul1

l1 · · ·ulm
′+1

lm
′+1

under the transformation vk
j 7→ eiθklvk

j . Here, the coefficients Pk,l are the coefficients of

the Hamiltonian nonlinearity PM,h, and hence we have P(v,u) = P(u,v).

Outline of the Analysis of the Modulation System. In summary, we are not able

to detect a Hamiltonian structure (and subsequently formal invariants) in the modulation

system (6.2) originating from the Lie–Trotter splitting but we can detect a Hamiltonian

structure in the modulation system (6.3) originating from the differential equations de-

termining the individual steps of the Lie–Trotter splitting.

The modulation system (6.2) is not useless however since we use this modulation

system to determine an approximate solution in Section 6.2. Due to the analogy of the

modulation system (6.2) with the modulation system (3.3) of the exact solution, this can

be done in a very similar way as in Section 3.2. The same is true for the estimates of

the iterated modulated Fourier expansion in Section 6.3 and for the comparison of the

modulated Fourier expansion with the (exact) numerical solution in Section 6.4.

The formal invariants of the modulation system (6.3) are then needed to extend the

considered time intervals to long ones in Section 6.5. In order to complete the analysis,

we finally relate the solutions of the two modulation systems to each other.

6.2 Iterative Solution of the Modulation System

In this section we construct as in Section 3.2 iteratively an approximate solution of the

modulation system (6.2).

Cut-Off. As in Section 3.2 we cut off all summands of the nonlinearity in the modulation

system (6.2) with m + m′ > L, where again

L = 2N + 4 + 4s0,

and we set all modulation functions zk
j with ‖k‖ > L to zero. In contrast to the modulation

system (3.3) for the exact solution, the modulation system (6.2) also contains higher

derivatives of the modulation functions zk
j . We truncate all derivatives greater than L

2
.
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The Iteration. The iteration is constructed in exactly the same way as in Section 3.2

by isolating the dominant terms in (6.2a), but now the (possibly small) denominators are

(ei(ωj−k·ω)h − 1)/h instead of k · ω − ωj. With the notation

Sε,h = { (j,k) ∈ N × Z
N : k 6= 〈j〉, ‖k‖ ≤ L, |ei(ωj−k·ω)h − 1|/h ≥ ε

1
2 }

the iteration then reads on 0 ≤ τ ≤ 1

[
zk

j

]n+1

=
h

ei(ωj−k·ω)h − 1

[
−

L/2∑

ℓ=1

εℓhℓ−1

ℓ!
(zk

j )(ℓ)ei(ωj−k·ω)h

+
L∑

m+m′=2

∑

k1+···+km

−l1−···−lm
′
=k

∑

k∈Nm, l∈Nm′

P̂j,k,lz
k1

k1 · · · zkm

km zl1

l1 · · · zlm
′

lm
′

]n
(6.5a)

for (j,k) ∈ Sε,h,

[
ż
〈j〉
j

]n+1

= ε−1
[
−

L/2∑

ℓ=2

εℓhℓ−1

ℓ!
(z

〈j〉
j )(ℓ)ei(ωj−k·ω)h

+
L∑

m+m′=2

∑

k1+···+km

−l1−···−lm
′
=〈j〉

∑

k∈Nm, l∈Nm′

P̂j,k,lz
k1

k1 · · · zkm

km zl1

l1 · · · zlm
′

lm
′

]n (6.5b)

for indices (j, 〈j〉) with initial value

[
z
〈j〉
j (0)

]n+1

= ξ0
j −

[ ∑

k 6=〈j〉

zk
j (0)

]n

, (6.5c)

and [
zk

j

]n+1

= 0 (6.5d)

for near-resonant indices

(j,k) ∈ Rε,h = { (j,k) ∈ N × Z
N : k 6= 〈j〉, ‖k‖ ≤ L, |ei(ωj−k·ω)h − 1|/h < ε

1
2 }.

Initially we set again [zk
j ]0 = 0 for k 6= 〈j〉 and [z

〈j〉
j ]0 = ξ0

j on 0 ≤ τ ≤ 1.

Abstract Formulation of the Iteration. We use the notation [[k]] and the rescalings

ckj = ε−[[k]]zk
j and ĉkj = ε−[[k]]j(s−s0)|k|zk

j as in Section 3.2, and we split again the rescaled

variables ckj = ak
j + bkj and ĉkj = âk

j + b̂kj with ak
j = âk

j = 0 for k 6= 〈j〉 and bkj = b̂kj = 0

for (j,k) 6∈ Sε,h. We can again reformulate the iteration for the rescaled variables leading

to similar formulas as (3.8) and (3.9) containing higher derivatives of the modulation

functions and other denominators.
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6.3 Estimating the Iterated Modulation Functions

Since the modulation system (6.2), for which we constructed iteratively an approximate

solution [z]n in the preceding Section 6.2, is qualitatively the same as the modulation

system (3.3), whose iterated modulation functions were estimated in Section 3.3, we can

proceed as in this section to estimate the iterated modulation functions (6.5) of (6.2).

Size of the Iterated Modulation Functions. The estimates of the iterated modulation

functions in Proposition 3.2 can be proven in the same way as in Section 3.3 for the new

iterated modulation functions (6.5). We just mention the differences.

• The (possibly small) denominators are now (ei(ωj−k·ω)h−1)/h instead of k·ω−ωj and

can be controlled in the same way as in Section 3.3 using the definition of near-resonant

indices in the non-resonance condition 5.5 instead of the non-resonance condition 2.3 used

there.

• The nonlinearity in the modulation system (6.2) can be controlled in the same way

as the nonlinearity in (3.3). Indeed, the regularity assumption 5.1 on the flow of PM,h

corresponds exactly to the regularity assumption 2.1 when considered on the level of

modulation systems (6.2) and (3.3), respectively.

• The higher derivatives appearing in the modulation system (6.2) don’t affect the

estimates of Section 3.3 since they only imply a stronger dependence on ℓ and L of the

constants.

Keeping these arguments in mind, the same proof as in Section 3.3 yields the following

proposition on the size of the iterated modulation functions.

Proposition 6.1 (Size of the Iterated Modulation Functions). We have on 0 ≤ τ ≤ 1

‖|[c(ℓ)]n|‖s ≤ C

with a constant C depending only on CL,s from the regularity assumption 5.1, the number

of derivatives ℓ, the number of iterations n, and L.

The same estimate holds true if c and s are replaced by ĉ and s0, respectively, with a

constant depending in addition on CL,s0.

Defect of the Iterated Modulation Functions. We now study the defect

[
dk

j

]n

=
[ei(ωj−k·ω)h − 1

h
zk

j (εt) +
∞∑

ℓ=1

εℓhℓ−1

ℓ!
(zk

j )(ℓ)(εt)ei(ωj−k·ω)h

−
∞∑

m+m′=2

∑

k1+···+km

−l1−···−lm
′
=k

∑

k∈Nm, l∈Nm′

P̂j,k,lz
k1

k1 · · · zkm

km zl1

l1 · · · zlm
′

lm
′

]n

in the modulation system (6.2a) after n iterations and the defect

[
d̃
〈j〉
j (0)

]n

=
[∑

k

zk
j (0)

]n

− ξ0
j
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in the initial conditions (6.2b) of the modulation system.

The cut-off defects g, h, and p resulting from setting zk
j = 0 for (j,k) ∈ Rε,h or

‖k‖ > L and truncating the nonlinearity for m + m′ > L (see Section 3.3) can be

estimated as in Proposition 3.3 of Section 3.3. The additional cut-off effect resulting from

the truncation of the Taylor expansion of zk
j (ε(t+h)) can be estimated using the integral

form of the remainder term of the Taylor expansion,

∞∑

ℓ=1

(εh)ℓ

ℓ!
(zk

j )(ℓ)(εt) −
L/2∑

ℓ=1

(εh)ℓ

ℓ!
(zk

j )(ℓ)(εt) =

∫ ε(t+h)

εt

(ε(t + h) − θ)L/2

(L/2)!
(zk

j )(L/2+1)(θ) dθ.

In the norm ‖| · |‖s as well as in the norm ‖| · |‖s0
this can be estimated by Cε

L
2
+1 using

Proposition 6.1 on the size of z with a constant C depending only on CL,s, CL,s0 , n, and

L.

The defect from the iteration can be estimated as in Section 3.3 with the modifications

as used for the estimates of the size of the iterated modulation functions. We finally get

the following Proposition using the same notations for the defects from the iteration as

in Section 3.3 (e and f).

Proposition 6.2 (Defect of the Iterated Modulation Functions). For ε sufficiently small

compared to C1, CL,s0, CL,s, ε0, n, and L we have on 0 ≤ τ ≤ 1

‖|[e(ℓ)]n|‖s ≤ Cε
n
4
+ 3

4 , ‖|[f (ℓ)]n|‖s ≤ Cε
n
4
+1, ‖|((ei(ωj−k·ω)h − 1)/h)fk

j )
(ℓ)

j∈N ,k∈ZN |‖s ≤ Cε
n
4
+ 3

2 ,

‖|[d̃(0)]n|‖s ≤ Cε
n
4
+ 3

4 , ‖|[d]n|‖s ≤ Cε
n
4
+ 3

2 + Cε
L
2 , ‖|[d]n − [g]n|‖s ≤ Cε

n
4
+ 3

2 + Cε
L
2

with a constant C depending only on Cs0, Cs, CL,s0, and CL,s from the regularity as-

sumption 5.1, C0 from the non-resonance condition 5.3, the number of derivatives ℓ, the

number of iterations n, and L.

The estimates for e, f , d̃, and d − g also hold true for ê, f̂ ,
ˆ̃
d, d̂ − ĝ, and s0 instead

of e, f , d̃, d − g, and s.

6.4 The Modulated Fourier Expansion and the Numerical So-

lution

In this section we show that the iterated modulated Fourier expansion

[ξ̃(t)]n = ([ξ̃j(t)]
n)j∈N with [ξ̃j(t)]

n =
∑

k

[zk
j (εt)]ne−i(k·ω)t for j ∈ N

agrees at time t = tν = νh with the numerical solution ξν after ν time steps defined by

the Lie–Trotter splitting (6.1) up to a small error ε
n
4
+ 1

2 +ε
L
2
−1.5 This is done as in Section

3.4 for the exact solution.

5The notation ν for the number of time steps in the numerical discretization is used from now on to

avoid confusion with the index n denoting the number of iterations in the iterated modulation function.



6 Modulated Fourier Expansions of Full Discretizations 151

Size of the Numerical Solution. For the numerical solution defined by (6.1) we get

using the regularity assumption 5.1 on the flow of PM,h as in the proof of (2.7)

‖ξν+1‖s ≤ ‖ξν‖s + Csh‖ξν‖2
s

provided that ‖ξν‖ ≤ C1. Inductively, we get ‖ξν+1‖s ≤ ‖ξ0‖s + Csh(‖ξν‖2
s + · · ·+ ‖ξ0‖2

s).

We conclude that

‖ξν‖s ≤ 2ε for 0 ≤ tν = νh ≤ 1

4Cs

ε−1. (6.6)

Size of the Iterated Modulated Fourier Expansion. The size of the iterated mod-

ulated Fourier expansion [ξ̃(t)]n is estimated as in Section 3.4 by

‖[ξ̃(t)]n‖s ≤ ‖|[z(εt)]n|‖s ≤ Cε for 0 ≤ t ≤ ε−1 (6.7)

with a constant C depending only on CL,s, n, and L.

The numerical solution ξν can then be related to the iterated modulated Fourier

expansion [ξ̃(tν)]
n as follows.

Theorem 6.3. Let ξν be the numerical solution defined by the Lie–Trotter splitting (5.4),

and let

[ξ̃(t)]n = ([ξ̃j(t)]
n)j∈N with [ξ̃j(t)]

n =
∑

k

[zk
j (εt)]ne−i(k·ω)t for j ∈ N

be its iterated modulated Fourier expansions with the approximate solution [z]n of the

modulation system (6.2) constructed in Section 6.2. Under the regularity assumption 5.1,

the condition of zero momentum 5.2, and the non-resonance condition 5.3 we have for ε

sufficiently small compared to C1, CL,s0, CL,s, ε0, n, and L

‖ξν − [ξ̃(tν)]
n‖s ≤ Cε

n
4
+ 1

2 + Cε
L
2
−1 for 0 ≤ tν = νh ≤ ε−1 min

( 1

4Cs

, 1
)

with a constant C depending only on Cs0, Cs, CL,s0, and CL,s from the regularity as-

sumption 5.1, C0 from the non-resonance condition 5.3, the number of iterations n, and

L.

Proof. For notational simplicity we omit the index n denoting the number of iterations.

Note that

‖ξ0 − ξ̃(0)‖s = ‖|d̃(0)|‖s

since ξ0
j − ξ̃j(0) = −d̃

〈j〉
j (0). Moreover, by the definition of the defect d

eiωjhξ̃j(tν+1) =
∑

k

zk
j (ε(tν + h))e−i(k·ω)tνei(ωj−k·ω)h

= ξ̃j(tν) +
∞∑

m+m′=2

∑

k∈Nm, l∈Nm′

hP̂j,k,lξ̃k1(tν) · · · ξ̃km(tν)ξ̃l1(tν) · · · ξ̃lm
′ (tν)

+ h
∑

k

dk
j (εtν)e

−i(k·ω)tν .
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Subtracting this equation from the equation (6.1) determining the splitting we get

‖ξν+1 − ξ̃(tν+1)‖s ≤ ‖ξν − ξ̃(tν)‖s + Cεh‖ξν − ξ̃(tν)‖s + h‖|d(tν)|‖s,

where we used Lemma 3.6 applied to the nonlinearity appearing in the splitting (6.1) (note

that the regularity assumption 5.1 ensures that this nonlinearity has the same properties as

the nonlinearity in Lemma 3.4). This estimate is valid for 0 ≤ tν = νh ≤ ε−1 min( 1
4Cs

, 1),

where ‖ξν‖s + ‖ξ̃(tν)‖s ≤ Cε ≤ C1 by (6.6) and (6.7) for ε sufficiently small. The claimed

estimate now follows inductively using Proposition 6.2 on the defects d and d̃.

6.5 The Modulated Fourier Expansion on Long Time Intervals

In this section we extend the analysis of the (iterated) modulated Fourier expansion,

which is so far only valid on short time intervals of length ε−1, to long time intervals ε−N .

For the exact solution we used for this purpose the formal invariants of the modulation

system in Section 3.5. For the numerical solution studied in this section we use the formal

invariants of the auxiliary modulation system (6.3) due to the lack of formal invariants of

the modulation system (6.2).

Putting Together Modulated Fourier Expansions. In Sections 6.2, 6.3, and 6.4 we

constructed and analysed an iterated modulated Fourier expansion [z]n on a time interval

0 ≤ τ = εt ≤ min( 1
4Cs

, 1). We now construct and analyse in the same way an iterated

modulated Fourier expansion [z̃]n on a new time interval of length O(ε−1). This is done

as in Section 3.5 with the exception that we have to ensure that the lengths of the time

intervals are multiples of the time step-size h. We set

c0 = εh
⌊ε−1 min( 1

4Cs
, 1)

h

⌋

and proceed as in Section 3.5 considering the time interval c0 ≤ τ ≤ 2c0 (but with this

slightly smaller c0). In the same way as in that section, we can bound the difference

[z]n − [z̃]n as follows.

Proposition 6.4. For ε sufficiently small compared to C1, CL,s0, CL,s, ε0, n, and L we

have

‖|[z(c0)]
n − [z̃(c0)]

n|‖s ≤ Cε
n
4
+ 1

2 + Cε
L
2
−1

with a constant C depending only on Cs0, Cs, CL,s0, and CL,s from the regularity as-

sumption 5.1, C0 from the non-resonance condition 5.3, the number of iterations n, and

L.

The same estimate holds true if z, z̃, and s are replaced by ẑ, ˆ̃z, and s0, respectively.

Analysis of the Auxiliary Modulation System. We derive an expression for the

solution of the auxiliary modulation system (6.3). Recall that we derived in Assumption
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5.1 an expression for the solution of the differential equation (5.8) (which is (5.3b)). This

differential equation (5.8) can be written due to the regularity assumption 5.1 and the

condition of zero momentum 5.2 as

i
d

dt
ξj(t) =

∞∑

m+m′=2

∑

k1+···+km

−l1−···−lm
′
=j

Pj,k,lξk1(t) · · · ξkm(t)ξl1(t) · · · ξlm
′ (t),

where k = (k1, . . . , km) and l = (l1, . . . , lm
′
). This equation is very similar to the auxiliary

modulation system (6.3). Therefore, the solution of the auxiliary modulation system can

be derived in the same way as the solution of this equation in Assumption 5.1. Indeed,

the same calculation as in Assumption 5.1 shows that

vk
j (h) = vk

j (0) +
∑

m+m′=2

∑

k1+···+km

−l1−···−lm
′
=k

∑

k1+···+km

−l1−···−lm
′
=j

hP̂j,k,lv
k1

k1 (0) · · · vk1m
km (0)vl1

l1 (0) · · · vlm
′

lm
′ (0)

(6.8)

is a formal solution of the auxiliary modulation system (6.3) with the coefficients P̂j,k,l =

P̂j,k,l(h) from (5.7). This fact heavily relies on the condition of zero momentum 5.2, since

we are not able to establish the analogy between (5.8) and (6.3) otherwise. As shown

in Section 6.1, the invariants Kl(v,u) as defined by (6.4) are conserved along (v,v) as

defined by (6.4),

Kl(v(h),v(h)) = Kl(v(0),v(0)). (6.9)

Relating the Modulation System (6.2) and the Auxiliary Modulation System

(6.3). If we choose v(0) = z(εtν) as initial value of the auxiliary modulation system, then

an exact solution of the modulation system (6.2) satisfies

ei(ωj−k·ω)hzk
j (εtν+1) = vk

j (h)

due to (6.2) and (6.8). Since we do not have an exact solution of the modulation system

(6.2) at our disposal but only an approximate solution [z]n, we get

ei(ωj−k·ω)h
[
zk

j (εtν+1)
]n

= vk
j (h) + h

[
dk

j (εtν)
]n

for vk
j (0) =

[
zk

j (εtν)
]n

,

where d is just the defect from Section 6.3. This means that our approximate solution [z]n

agrees at the discrete point εtν and εtν+1 with the solution v of the auxiliary modulation

system (6.3) up to a small defect and a phase factor. Equation (6.9) implies almost

conservation of Kl along discrete points of [z]n,
∣∣∣Kl(z(εtν+1),z(εtν+1)) − Kl(z(εtν), z(εtν))

∣∣∣

=
∣∣∣

∑

j∈N ,k∈ZN

kl|vk
j (h) + hdk

j (εtν)|2 −
∑

j∈N ,k∈ZN

kl|vk
j (0)|2

∣∣∣

≤ 2h
∑

j∈N ,k∈ZN

|kl||zk
j (εtν+1)||dk

j (εtν)| + 3h2
∑

j∈N ,k∈ZN

|kl||dk
j (εtν)|2,

(6.10)
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where we omit the index n denoting the number of iterations. After a multiplication by

|l|2s and a summation over all l ∈ N the first term on the right-hand side of the last

estimate can be estimated by means of Lemma 3.9. For the second term, however, we can

not use this lemma since d contains nonzero entries for (j,k) ∈ Rε,h. We therefore prove

the following extension of Lemma 3.9 which makes use of the non-resonance condition

(5.9b) in Assumption 5.3 not needed in the continuous situation in Chapters 2 and 3. Note

that we have single wave modulation functions due to the condition of zero momentum

5.2, and hence dk
j = 0 for j 6= j(k).

Lemma 6.5. We have for d with dk
j = 0 for j 6= j(k)

∑

l∈N

|l|2s
∑

(j,k)∈Rε,h

|kl||dk
j |2 ≤ Cε

L
2
−2−2s0‖|d̂|‖2

s0

with a constant C depending only on s0, s, C0, and L.

Proof. We have

∑

l∈N

|l|2s
∑

(j,k)∈Rε,h

|kl||dk
j |2 ≤

∑

(j,k)∈Rε,h

|j|2s0

∑
l∈N |kl||l|2s

j2(s−s0)|k||j|2s0
|d̂k

j |2,

and the non-resonance condition (5.9b) ensures

∑
l∈N |kl||l|2s

j2(s−s0)|k||j|2s0
≤ C0ε

L
2
−2−2s0 .

Now, we are in the position to prove the analogue of Proposition 3.10 in order to

control Kl along the iterated modulated Fourier expansion and on the interface, and to

relate these almost invariants and the actions.

Proposition 6.6. For s ≥ 2s0 and for ε sufficiently small compared to C1, CL,s0, CL,s,

ε0, n ≥ 6, and L ≥ 6 we have for 0 ≤ εtν = ενh ≤ c0

∑

l∈N

|l|2s
∣∣∣Kl([z(εtν)]

n, [z(εtν)]
n) − Kl([z(0)]n, [z(0)]n)

∣∣∣ ≤ Cε
n
4
+ 3

2
−2s0 + Cε

L
2
−2s0 ,

∑

l∈N

|l|2s
∣∣∣Kl([z(c0)]

n, [z(c0)]
n) − Kl([z̃(c0)]

n, [z̃(c0)]
n)

∣∣∣ ≤ Cε
n
4
+ 3

2
−2s0 + Cε

L
2
−2s0 ,

∑

l∈N

|l|2s
∣∣∣Kl([z(εtν)]

n, [z(εtν)]
n) − IM

l (ξν , ξν)
∣∣∣ ≤ Cε

5
2

with a constant C depending only on Cs0, Cs, CL,s0, CL,s, s0, and s from the regularity

assumption 5.1, c2, C2, and σ describing the asymptotics of the frequencies in Assumption

5.2, C0 from the non-resonance condition 5.3, the number of iterations n, and L.

Proof. The second and the third estimate are proven in exactly the same way as the

corresponding estimates in Proposition 3.10.
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For the first estimate we consider (6.10) since

∑

l∈N

|l|2s
∣∣∣Kl([z(εtν)]

n, [z(εtν)]
n) − Kl([z(0)]n, [z(0)]n)

∣∣∣

≤
ν∑

ν′=1

∑

l∈N

|l|2s
∣∣∣Kl([z(εtν′)]n, [z(εtν′)]n) − Kl([z(εtν′−1)]

n, [z(εtν′−1)]
n)

∣∣∣.
(6.11)

The first term on the right-hand side of (6.10) can be estimated with the first estimate of

Lemma 3.9, Proposition 6.1 on the size of [ẑ]n, and Proposition 6.2 on the defect [d̂]n−[ĝ]n

by

Chε−2s0+1+ n
4
+ 3

2 + Chε−2s0+1+ L
2

with a constant C depending on Cs0 , Cs, CL,s0 , CL,s, c2, C2, σ, C0, n, and L. In the second

term on the right-hand side of (6.10) the sum of indices (j,k) 6∈ Rε,h can be estimated

using Lemma 3.9 and Proposition 6.1 by the same quantity. In order to estimate the

indices (j,k) ∈ Rε,h in the second term on the right-hand side of (6.10) we use Lemma

6.5. Note that by Lemma 3.1 and Proposition 6.1

‖|[ĝ]n|‖2
s0

=
∑

j∈N

|j|2s0

(∑

k

ε[[k]]|F̂([ĉ]n)kj |
)2

≤ ε2‖|F̂([ĉ]n)|‖2
s0
≤ Cε3.

Lemma 6.5 yields for the sum of the indices (j,k) ∈ Rε,h on the right-hand side of (6.10)

the estimate

Ch2ε3+ L
2
−2−2s0

with a constant C depending on CL,s0 , CL,s, s0, s, C0, n, and L. Summing up the

estimate (6.10) ν times as in (6.11) proves the first estimate in the proposition (note that

ν ≤ c0ε
−1h−1 ≤ ε−1h−1).

From Short to Long Time Intervals — Proof of Theorem 5.4. Proposition 6.6 at

hand, the extension to long time intervals can be done as in Section 3.5 putting c−1
0 ε−N+1

intervals of length c0ε
−1 together, see also Figure 4 in that section. In this way we

get long-time near-conservation of discrete actions IM
l . This implies the long-time near-

conservation of continuous actions Il if Assumption 4.1 is satisfied as in the proof of

Theorem 4.2. This finally concludes the proof of Theorem 5.4.

The Modulated Fourier Expansion for Partially Resonant Frequencies and

with Scaled Norms — Proof of Theorems 5.6 and 5.12. The proofs of the exten-

sions of Theorem 5.4 to the case of partially resonant frequencies in Theorem 5.6 and of

scaled norms in Theorem 5.12 are obtained by the modifications described in Sections 3.6

and 3.7 for the continuous situation.
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