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Chapter 1

Introduction

In 1932, Sir James Chadwick after a series of experiments suggested a hypothesis

of the existence of the neutron [Ch32]. His discovery gave rise to a new branch of

natural science – physics of atomic nuclei. Soon thereafter Ivanenko and Heisenberg

independently proposed a proton-neutron model of nuclear structure [Iv32]. Already

in 1936 a significant success in the description of binding energies of nuclei was

achieved on the basis of the semi-empirical mass formula by Bethe and Weizsäcker.

Since then the main question lying at the heart of nuclear physics still remains

the same: What is the origin of the nucleon-nucleon (NN) interaction? A big step

towards the understanding of the nature of nuclear forces was made by Yukawa.

Following his idea the interaction between two nucleons is mediated by the exchange

of massive particles. Nowadays the one-pion exchange model is used in the modern

realistic NN forces for the description of the long-range part of the interaction.

From the underlying theory of the strong interaction, quantum chromodynamics

(QCD), it became obvious that the NN interaction is not fundamental. However

due to the non-perturbative character of QCD in the low-energy regime the rigorous

derivation of the nucleon-nucleon interaction starting from the quark-gluon dynam-

ics remains obscure. The so-called realistic models used instead, based on fitting of

the scattering phase shifts, describe the interaction between nucleons neglecting the

quark degrees of freedom. Another promising way to describe the bulk properties of

finite nuclei over the whole periodic table is to construct a pure phenomenological

density-dependent force, like Skyrme or Gogny. All these models of the nucleon-

nucleon interaction, fitted to the properties of nucleons in vacuum as well as the
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CHAPTER 1. INTRODUCTION

experimental data of finite nuclei should yield predictions for nuclear systems under

extreme conditions. During the past several decades the properties of the matter

under high densities and temperatures is one of the hottest topics both in theo-

retical and experimental nuclear physics. Exploring, e.g, the kaon production and

the elliptical flow in heavy ion scattering experiments allows us to investigate the

nuclear equation of state (EoS) at the high temperature and about 2-4 times nuclear

saturation density. Such experiments with heavy ion beams is the only possible way

to test the behavior of nuclear matter under extreme conditions in a laboratory. The

alternative way for the experimental search is the observation of compact stars, like,

radio pulsars, which are thought to be highly magnetized, rotating neutron stars

emitting a beam of electromagnetic radiation at frequencies 108 − 1010 Hz. Thus

the neutron stars (NS) are considered as natural astrophysical laboratories in the

Universe.

Soon after Chadwick’s experiment Landau theoretically predicted the star collapse,

if the mass exceeds the critical value, known as the Chandrasekhar limit. Two years

later, in 1934, Baade and Zwicky proposed a model of a neutron star as a remnant

of the supernovae explosion [BZ34]. In 1967 Bell and Hewish discovered the regular

radio pulsar CP1919 in the Crab Nebula, which was identified with an isolated,

rotating neutron star. This event has ultimately confirmed that neutron stars really

exist in nature and opened a new epoch in astrophysics. Nowadays about 2000

neutron stars have been discovered in the Milky Way and the Magellanic Clouds.

An ordinary star remains quasistatic for millions of years. During nearly all the

lifetime of a star, the nuclear fusion reactions produce a thermal pressure which

supports the star against the gravitational collapse. In the core of a star, hydrogen

is fused into helium. After the hydrogen is exhausted the temperature is high enough

to produce the carbon from helium fusion. In the stars with more than eight solar

masses the fusion cycle continues until 56Ni is produced. The later decays radioac-

tively in a few months into 56Co and then 56Fe. Since iron has the highest binding

energy per nucleon among all the elements, it cannot produce any more energy by

fusion. At this point nothing can prevent the gravitational collapse. If the mass

of the star exceeds the Chandrasekhar limit, it becomes energetically favorable for

protons and electrons in the core to produce neutrons and neutrinos via the inverse

beta decay. In this way the neutron rich core is formed. Finally the collapse is
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stopped by the internal pressure of the degenerate neutron gas. Due to the low

compressibility of the neutron rich core the in-falling matter rebounds, forming the

shock wave propagating outwards. The surrounding outer core is blasted away by

the shock wave, leaving a compact remnant – a young neutron star. A newly formed

neutron star is very hot with temperatures as high as T ∼ 30−50 MeV and a proton

fraction of about 10 %. During the first seconds neutrinos are trapped within the

star. Once the interior of the star cools down to the temperature of several MeV,

the matter becomes transparent for neutrinos. The following cooling during the first

thousand years is controlled by the neutrino emission. It is worth noting that the

neutrino emission rates crucially depend on the matter composition.

A typical neutron star has the mass about M ∼ 1.4 M⊙ and the radius R ∼ 10 km.

The surface of NS is covered by a several centimeters thick atmosphere composed of

hydrogen, helium, and other light elements. At the density of about ρ = 106 g cm−3

the matter consists of 56Fe ions and electrons. In the density range 107 ≤ ρ ≤ 1011

g cm−3 (the outer crust) the matter consists of stable nuclei 62Ni, 80Zn, 82Ge, 84Se,
86Kr, 120Sr, 122Zr, 124Mo, and their isotopes. With increasing density, the nuclei

become more and more neutron rich due to the electron capture which converts

protons into neutrons. The chemical potential of neutrons rises and, finally, at the

density 1011 ≤ ρ ≤ 1013 g cm−3 (the inner crust) some neutrons drip out of the

nuclei. Therefore the nuclear matter consists of the neutron rich nuclei, the neutron

sea and the relativistic degenerate electron gas. Further increase of the density

leads to the spatial deformation of the nuclei. The cylindrical and planar quasi-

nuclei may occur. These nonspherical quasi-nuclear structures are known as the

pasta phase. The shape of the pasta is determined by the interplay between the

Coulomb and surface energies. At the saturation density ρ ≃ 2.4 × 1014 g cm−3

the matter dissolves into a uniform mixture of protons, neutrons and electrons. The

composition of the core of NS is still a matter of debate. Various theories predict

the existence of hyperons, quark matter, pion and kaon condensate.

The question concerning the inhomogeneous structure of the crust is of fundamental

interest for the NS cooling simulations and is tightly connected with the neutrino

opacity. Since the crust of NS plays an important role in the neutrino transport, the

occurrence of the pasta phase may significantly affect the neutrino opacity. One may

expect that the scattering of neutrinos on the quasi-nuclei may reduce the neutrino
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CHAPTER 1. INTRODUCTION

mean free path (NMFP) and change the cooling rate of the neutron stars. Therefore

accurate calculations of the neutrino mean free path in the inhomogeneous crust are

required.

In this Thesis the question of the neutrino propagation in the inhomogeneous nuclear

matter is investigated by using the Hartree-Fock technique with the phenomenologi-

cal Skyrme interaction as well as the density-dependent relativistic mean-field model.

The calculations are performed within the cubic Wigner-Seitz (WS) cell, which al-

lows to consider the nonspherical pasta phases. In the discussion of the pasta phase

special attention is paid to its temperature stability. In the cooling simulations of

the hot nuclear matter the knowledge of the critical temperature, at which the pasta

may occur, is of high relevance. The neutrino mean free path in the inhomogeneous

matter containing spherical droplets, cylindrical rods and planar slabs is extracted

from the cross section on the WS cell [GGM10]. The scattering of neutrinos on

the pasta structures is taken into account via the charged current absorption and

neutral current scattering reactions. The dependence of the NMFP on the spatial

distribution of the pasta phase are also highlighted.

The phenomenological interactions used to investigate the inhomogeneous nuclear

matter in the crust of neutron stars have originally been adjusted to describe the ex-

perimental data for the ground states of the finite nuclei and the empirical saturation

point of symmetric nuclear matter. A simple parameterization of such phenomeno-

logical forces through the local single-particle densities allows a simple solution of

the Hartree-Fock (HF) equations [VB72]. In neutron stars, these models are extrap-

olated far from the condition where they have been adjusted and might in some cases

become unstable [MNV02]. Thus the predictive power of such simple phenomenolog-

ical approaches could be rather limited and their predictions for the nuclear matter

calculations under extreme conditions may not be that reliable.

A possible way out of this problem is to investigate nuclear matter by using the

realistic models of the NN interaction, fitted to the scattering data. A general fea-

ture of such realistic interactions is the strong short-range and tensor components,

which cannot be handled within the standard perturbation theory. Different ap-

proaches have been suggested to overcome this problem: Bethe-Brueckner-Goldstone

expansion [Ba99], correlated basis functions [Fe69] [FF98], quantum Monte Carlo

[WP+00], self-consistent Green’s function theory [DM92], [DV05]. These methods
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were successfully applied to describe bulk properties of the homogeneous nuclear

matter [GV+09], pairing gap of nucleons [FF+08], weak response [Fa08] and shear

viscosity of nuclear matter [BC09]. However, these approaches are too complex to

be applied directly to the description of the pasta phase.

An alternative method, which preserves the accuracy of the realistic NN interactions

and allows to implement the Hartree-Fock technique similarly to the phenomeno-

logical forces is the low-momentum interaction Vlow-k. The basic idea of Vlow-k is to

separate the predictions for correlations at low momenta, constrained by the NN

scattering matrix below the pion threshold, from the high-momentum components,

which may strongly depend on the underlying model of the realistic NN interaction.

By introducing a cutoff Λ in momentum space, one separates the Hilbert space into

a low-momentum and a high-momentum part. The renormalization technique (see,

e.g., [BK+01], [LS80], [O54], [S82]) determines an effective Hamiltonian, which must

be diagonalized within the model space (below the cutoff). With the cutoff in the

range of Λ = 2 fm−1 Vlow-k becomes model independent, and reproduces the deuteron

binding energy, low-energy phase shifts, and half-on-shell T matrix with the same

accuracy as the initial realistic interaction. Therefore Vlow-k is also referred to as re-

alistic low-momentum nucleon-nucleon interaction. The absence of the short-range

core allows to employ Vlow-k in Hartree-Fock calculations. In this connection the

low-momentum potential is considered as a solid starting point to produce a new set

of nuclear equations of state, including the inhomogeneous structure of the crust.

In spite of its obvious advantages Vlow-k potential still remains quite a complicate

object. On the one hand, being nonlocal, it is represented in terms of matrix ele-

ments in momentum space for each partial wave channel. This nonlocality increases

the computational time in Hartree-Fock iterations, and prevents using Vlow-k if the

number of nucleons is too large. On the other hand, the renormalization technique

used to produce Vlow-k seems to be not that trivial. The resulting interaction is given

as a matrix table which is not an easy-to-use form and prevents this potential to be

popular in nuclear structure calculations. A possible way out is to find a separable

representation of Vlow-k, since it significantly simplifies the many-body calculation

[BF88], [TMR09]. Moreover recent calculations of triton binding energies demon-

strate that the Vlow-k can be very good approximated by a low-rank separable force

for low values of the cutoff Λ [KF+06]. In this Thesis the separability of Vlow-k is
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investigated by using the diagonalization of the matrix in momentum space for each

partial wave channel. This allows finding a low rank separable form of Vlow-k, which

can be used in the Hartree-Fock calculations of nuclear matter as well as finite nu-

clei. The resulted low-momentum separable interaction can be parameterized by a

simple algebraic function [GV+10]. This provides a particularly suitable framework

for calculations with the realistic low-momentum interaction omitting the robust

numerical technique producing it.

The present Thesis is organized as follows:

In Chapter 2 the general Hartree-Fock formalism is briefly outlined. After that it

is applied to the density-dependent Skyrme force. The set of the Skyrme Hartree-

Fock equations is outlined for the general case. Later it will be solved both for the

spherical and cubic Wigner-Seitz cells.

Below the critical temperature Tc ∼ 1 MeV all neutrons in the crust undergo a phase

transition to the superfluid state. Therefore the pairing correlations are included in

the Hartree-Fock code by means of the BCS approach. The details are reviewed

at the beginning of Chapter 3. After that the finite temperature BCS limit of the

general Bogoliubov theory is derived for a monopole pairing force. This provides

the solution of the Hartree-Fock equations at finite temperatures.

The pasta objects resulted from the Skyrme Hartree-Fock calculations with cubic

and spherical WS cells are displayed in Chapter 4. Varying the temperature in the

HF code the stability of the pasta objects is investigated. Assuming the spherical

symmetry, the single-particle structure of the droplet-phase is revealed and compared

to the structure of the homogeneous nuclear matter at the same average density.

Later on the dynamical response function S(q, ω) is calculated, and its connection

with the microscopical structure is considered.

In the next Chapter 5 the single-particle wave functions and energies resulting from

the Skyrme Hartree-Fock calculations within the cubic cell are used for computing

of the neutrino mean free path. The nuclear matter in β-equilibrium contains three

quasi nuclear structures: droplet, rod and slab. The scattering of neutrino on these

pasta objects is discussed. Both the charged and neutral current contributions to the

mean free path are considered in details. The comparison between the homogeneous

and inhomogeneous nuclear matter is used to reveal the influence of the pasta phase

on the neutrino opacity. The model dependence of the results is tested by performing
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similar calculations for a relativistic mean-field model.

The main advantages of the low-momentum nucleon-nucleon interaction Vlow-k are

discussed in Chapter 6. Thereafter both the renormalization group and unitary

transformation method to produce Vlow-k from a bare realistic interaction are con-

sidered. The resulting low-momentum potential is used in the Hartree-Fock approx-

imation to derive the bulk properties of nuclear matter. Later the bulk properties

as well as the single-particle structure of various nuclei are discussed. The second

part of this Chapter is dedicated to the construction of the separable version of

Vlow-k interaction. The separability is investigated for various partial wave channels

of a low-rank separable form of Vlow-k, called V
[2,3]
low-k. It assumes the second rank

approximation for the uncoupled channels and the third rank approximation for the

coupled ones. The accuracy of V
[2,3]
low-k is tested in the Hartree-Fock calculations of

finite nuclei and nuclear matter. Finally a simple parameterization of this separable

form is given.

The last Chapter 7 summarizes the main results of the Thesis and gives an outlook

for future investigations.
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Chapter 2

The Skyrme Hartree-Fock

Approach

In this chapter we consider the Hartree-Fock method, which is an approximate

method for the determination of the ground-state wave function and the ground

state energy of a quantum many-body system. After the introduction to the general

Hartree-Fock formalism we turn to the density-dependent Skyrme force. Later the

Hartee–Fock method is applied to the Skyrme energy functional to derive the set of

the Skyrme Hartree-Fock equations.

2.1 The General Hartree-Fock Formalism

To solve the nuclear many-body problem we start from a system of A interacting

nucleons, which can be characterized by the Hamiltonian

H =
A∑

i=1

Ti +
A∑

i<j

Vij, (2.1)

where Ti stands for the kinetic energy operator of i-th nucleon, Vij is the interaction

between i-th and j-th particles. The Schrödinger equation for this system described

by the many-body wave function |Φ(1 . . . A)〉 looks like

H|Φ(1 . . .A)〉 = E|Φ(1 . . .A)〉 (2.2)

and can be simplified within the independent particle model, in which the main

assumption is that all nucleons move independently in an average potential pro-
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CHAPTER 2. THE SKYRME HARTREE-FOCK APPROACH

duced by all of the nucleons independently. Thus the two-body potential Vij can be

approximated by the single-particle potential

A∑

i<j

Vij ≃
A∑

i

Vi (2.3)

and the Hamiltonian (2.1) can be split and written as a sum over kinetic Ti and

potential Vi energy for each nucleon. In this case the many-body wave function

|Φ(1 . . . A)〉 can be factorized and written as the multiplication of the single-particle

wave functions |ϕi〉

|Φ(1 . . . A)〉 = {|ϕ1〉|ϕ2〉 . . . |ϕA〉}A =

A∏

i=1

a†i |0〉, (2.4)

where the Fermion operator a†i creates a particle in ϕi state from the vacuum |0〉.
Such a wave function (2.4) being antisymmetric due to a permutation between two

nucleons to obey the Pauli principle is usually referred to as Slater determinant.

Now we define the Hartree-Fock method in the following way. We use the set

of Slater determinants consisting of A arbitrary but orthogonal single-particle wave

functions ϕi
1 as trial wave functions and minimize the energy within this set. Before

this minimization we have to calculate the HF-energy with many-body Hamiltonian

(2.1)

EHF = 〈Φ|H|Φ〉. (2.5)

On applying the second quantization formalism (also known as the Fock space) with

basis operators c†α, cα the Hamiltonian has the form

H =

A∑

i,j

〈i|T |j〉c†icj +
1

4

A∑

i,j,k,l

〈ij|V |k̃l〉c†ic†jclck, (2.6)

where c†α, cα, generally speaking, differ from the operators a†α, aα (2.4) and due to

the permutation asymmetry

〈ij|V |k̃l〉 = 〈ij|V |kl〉 − 〈ij|V |lk〉. (2.7)

1Usually the harmonic oscillator or the plane wave basis is used to expend ϕi.
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2.1. THE GENERAL HARTREE-FOCK FORMALISM

In virtue of the Wick’s theorem one can express the HF-energy (2.5) through the

single-particle density ρ

EHF [ρ] =
A∑

i,j

〈i|T |j〉〈Φ|c†icj |Φ〉 +
1

4

A∑

i,j,k,l

〈ij|V |k̃l〉〈Φ|c†ic†jclck|Φ〉

=

A∑

i,j

〈i|T |j〉 ρji +
1

2

A∑

i,j,k,l

ρki〈ij|V |k̃l〉ρlj .

(2.8)

Since the last expression does not depend on the basis we can assume that the HF-

basis as a basis in which the density matrix ρ is diagonal with the eigenvalues 0 and

1. In this case the HF-energy looks like

EHF =
A∑

i

〈i|T |i〉 +
1

2

A∑

i,j

〈ij|V |ĩj〉. (2.9)

To determine the HF-basis, the energy EHF has to be minimized with respect to all

product wave functions |Φ〉. The variation of the energy (2.8) is written

δE = E[ρ+ δρ] −E[ρ] =
∑

ij

HHF
ij δρij = 0, (2.10)

where the matrix HHF is the hermitian matrix of the single-particle Hamiltonian

HHF
ij =

∂EHF [ρ]

∂ρij
. (2.11)

Applying this derivative to (2.8) we obtain

HHF
ij = Tij + Γij , (2.12)

where Γ is a self-consistent one-body field, which depends on the density. Averaging

over all two-body interactions one gets

Γij =
∑

kl

〈ik|V |j̃l〉ρlk. (2.13)

The variation (2.10) is possible for particle-hole (ph) configurations. In this case δρij

does not vanish and it requires that the ph matrix elements of HHF have to vanish

HHF
ij = Tij +

∑

m

〈mj|V |ĩj〉 = 0 (i ≤ A, j > A). (2.14)
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The last statement means that HHF does not mix particle and hole states of density

matrix ρ and therefore both matrix HHF and ρ can be diagonalized simultaneously

[HHF , ρ] = 0. (2.15)

This defines the eigenvalue problem

HHF
ij = Tij +

∑

k

〈ik|V |j̃k〉 = εiδij , (2.16)

from which we obtain the single-particle states |ϕi〉 and the single-particle energies

εi. This eigenvalue problem (2.16) can be solved iteratively. First, one starts from

the initial wave functions (e.g., the harmonic oscillator basis) and calculates the

Hermitian matrix HHF
ij , which is later diagonalized to get the single-particle energy

spectrum and a new set of wave functions. After that this procedure should be

repeated until the convergence is achieved, that is, the potential stays constant in

two consecutive steps. After the single-particle basis set is defined one can obtain

the energy of the ground state

EHF = 〈Φ|H|Φ〉 =
∑

i

εi −
1

2

∑

ij

〈ij|V |ĩj〉, (2.17)

where the total energy of the system is not equal to
A∑

i=1

εi, but differs on the half of

interaction energy. Due to the Koopman’s theorem the HF single-particle energy εi

can be considered as the energy needed to remove the nucleon from i-th state.

Before we start the consideration of the density-dependent Skyrme interaction let us

briefly discuss some important features of the HF theory. The HF method conserves

the so-called self-consistent symmetries. This means that if the initial single-particle

wave functions have a certain spatial symmetry and if this symmetry is not violated

by the occupation of states, after the HF iteration the resulting wave functions

will also have the same symmetry. Therefore, if we expect a symmetry for the

solution, we can start with the initial single-particle wave functions, which possess

this symmetry to enhance the convergence of each iteration. For example, if we

consider the spherically symmetric nuclei a choice of the initial basis can be done

among the spherically symmetric orthogonal functions. However, if the absolute

minimum in (2.10) corresponds to the deformed Slater determinants, we will never

reach it starting with the spherically symmetric wave functions.
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2.2. THE DENSITY-DEPENDENT SKYRME FORCE

Having the ground state defined we have to face other difficulties. The initial Hamil-

tonian (2.1) is usually translationally invariant, but the choice of initial basis as a

combination of Slater determinants violates this symmetry. In other words, the mean

field localizes the nucleus and thus breaks translational invariance. There are differ-

ent methods to cure this lack. The center-of-mass corrections to the total energy can

be made, e.g., by subtracting the center-of-mass kinetic energy from the many-body

Hamiltonian. This correction is proportional to 1
A

and therefore is very important

for light nuclei. However this method is usually applied after variation and therefore

has influence only on the total energy of the system. The resulting wave function

remains, however, the same. A rigorous restoration of the translational invariance

before variation is possible with the help of the projection techniques [SG90], [SR91],

[Sc01].

The Hartree-Fock method fails in direct application to the bare NN interactions due

to the strong short-range components, which are necessary to describe the NN data

[MP00]. In case of the hard-core potentials like Hamada-Johnston [HJ62], which

describe these short-range components in terms of an infinitely repulsive core, the

Hartree-Fock calculations yield an infinite repulsive energy. The modern meson-

exchange realistic models of NN interaction contain softer cores, however, in the

Hartree-Fock approximation they lead to unbound nuclei [MuP00]. Different ap-

proaches have been developed to account for such correlations: Brueckner hole-line

expansion [Br54], [Ba99], the coupled cluster approach [KLZ78], the self-consistent

Greens functions method [DM92], correlated basis functions technique [Fe69], [FF98]

and quantum Monte-Carlo theory [SC91], [WP+00]. In Chapter 6 of this Thesis we

deal with the strong short-range components by using the low-momentum effective

NN interaction constructed from the bare NN force and apply the resulted potential

for calculations of the properties of finite nuclei and nuclear matter.

2.2 The Density-Dependent Skyrme Force

Since the density of heavy nuclei is rather a constant inside the nucleus, one can

replace the density dependence of the G-matrix by dependence on the local density

ρ. In such Local Density Approximation (LDA) the G-matrix inside the nucleus

coincides with theG-matrix of nuclear matter at the same local density. The effective
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CHAPTER 2. THE SKYRME HARTREE-FOCK APPROACH

density-dependent force constructed in this approximation may solve the hard core

problem in the Hartree-Fock theory and lead to a consistent re-summation of higher

order terms of the full many-body problem. The solution of the integrodifferential

HF equations with the effective interaction derived from the self-consistent G-matrix

still remains a very complicated problem. As an alternative approach one can replace

the density-dependent effective interaction by a density-dependent phenomenological

force. This idea was used to construct the Skyrme-like effective interaction which

was found to be a very successful tool in the many-body calculations of finite nuclei

and nuclear matter. In early 1950s Skyrme proposed a phenomenological velocity-

dependent nuclear force, which is now called the conventional Skyrme force [Sk59].

This phenomenological interaction is of zero range and therefore it is easy to use in

practical calculations. Later Vautherin and Brink [VB72] simplified the two-body

interaction and determined two sets of the conventional Skyrme force parameters

(the so-called SI and SIII) by fitting the experimental binding energies, nucleon

densities and root-mean-radii of finite nuclei over the whole periodic table. At the

same time Negele and Vautherin [NV72] explored the connection between Skyrme

force and the Brückner G-matrix. Recently Chabanat et al. [CB+97] constructed

a new version of the Skyrme potential, which is constrained to obtain results for

neutron-rich nuclear matter comparable to those of the microscopical calculations.

The Skyrme force consists of the two-body and the three-body terms

V Sk =
∑

i<j

V (2)(i, j) +
∑

i<j<k

V (3)(i, j, k). (2.18)

Following the standard analytical form one can write the two-body part as [CB+97]

V (2)(r1, r2) = t0(1 + x0Pσ)δ(r)

+
1

2
t1(1 + x1Pσ)

[
p′2δ(r) + δ(r)p2

]

+ t2(1 + x2Pσ)p′ · δ(r)p

+ iW0σ · [p′ × δ(r)p] ,

(2.19)

which contains a central term with the parameter t0 and x0, an effective range terms

depending on the parameters t1, x1, t2, x2, and the spin-orbit term with the spin-orbit

strength parameter W0. The three-body potential was originally written as

V (3)(r1, r2, r3) = t3δ(r1 − r2)δ(r2 − r3). (2.20)

18
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Here we introduce the relative coordinate r = r1−r2, the center-of-mass coordinate

of two particles R = 1
2
(r1 + r2), the relative momentum p = 1

2i
(∇1 − ∇2) with its

complex conjugate counterpart acting on the bra-state with momentum p′, the two-

body spin operator σ = σ1+σ2, and the spin exchange operator Pσ = (1+σ1 ·σ2)/2.

The three-body term is often modified to include the density dependence of σ-power

V (3′)(r1, r2) =
1

6
t3(1 + x3Pσ)[ρ(R)]σδ(r). (2.21)

For σ = 1 one recovers the original three-body interaction in equation (2.20). Except

the standard form there were suggested some additional non-standard parameteri-

zations, however, as it was shown by Negele and Vautherin [NV72], they often give

collapses in the equation of state of the symmetric infinite nuclear matter.

2.3 The Skyrme Energy Functional

The derivation of the Skyrme energy functional is based mainly on the Density

Functional Theory (DFT) which was developed to describe electronic systems [PS91],

[DG95]. Within this theory the quantum many-body problem described in terms of

the many-body wave functions Ψ(r1, r2, . . . , rN) or, in other words, in terms of the

many-body density matrices ρ(r1, . . . , rN; r′

1
, . . . , r′

N
), can be reduced to involve

only one-particle density ρ(r). Such reformulation of the many-body problem in

terms of the density ρ(r) instead of the wave function is based on the Hohenberg-

Kohn Theorem [HK64]. In virtue of this theorem the ground state energy of a system

of spinless fermions is uniquely determined by the functional of the local fermionic

density E[ρ]. When the density of such system coincides with its correct ground-

state value, the functional E[ρ] achieves its minimum value. That is the ground state

energy of the system. Later the Hohenberg-Kohn Theorem was extended to take into

account the finite temperatures [Me65] and spin of fermions (see, e.g., [PR72]).

In accordance with DFT, the local one-body density ρ(r) contains enough infor-

mation to determine the ground state of the system, if the exact functional E[ρ]

is known. However the derivation of the exact functional E[ρ] is equivalent to the

exact solution of the many-body problem. In this case DFT is forced to adopt some

approximations to the exact functional E[ρ] which are easy to handle in practice.

At the same time these approximations should reflect some important features of its
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CHAPTER 2. THE SKYRME HARTREE-FOCK APPROACH

nontrivial structure. In this sense the Skyrme-type interaction is a good ansatz to

refine the approximate ground-state energy-density functional.

The energy functional of Skyrme interaction depends not only on the nucleon density

ρ(r), but also on the kinetic energy density τ(r) and spin-orbit density J(r). The

two latter quantities can be expressed in terms of the single-particle wave functions.

An advantage of the Skyrme interaction consists in a simple derivation of the

Hartree-Fock equations, which are now differential equations. The total energy of a

system is the expectation value of the corresponding Hamiltonian with respect to a

Slater determinant |Φ〉
E = 〈Φ|H|Φ〉, (2.22)

where |Φ〉 consists of the single-particle wave functions ϕq
α(r, s) with the orbital,

spin and isospin quantum numbers α, s, and q, respectively. The occupation factors

ηq
α are determined by the Fermi energy εF,q and the desired scheme of occupation

described in Chapter 3. By using (2.1) and (2.18) one can rewrite the energy E as

E = 〈Φ|T + V (2) + V (3)|Φ〉 (2.23)

=
∑

i

〈i| p
2
i

2m
|i〉 +

∑

i<j

〈ij|V (2)|ĩj〉 (2.24)

+
1

3

∑

i<j<k

〈ijk|V (3)|ĩjk〉, (2.25)

where T is the kinetic energy operator, V (2) is the two-body part, and V (3) is the

three-body part of the Skyrme interaction. Because of zero range character of the

Skyrme force, it is possible to express E by an integral over an energy density

E =

∫
H(r)d3r. (2.26)

The quantity H(r) depends on various densities which are:

i) the nucleon density

ρq(r) =
∑

α,s

ηq
α |ϕq

α(r, s)|2, (2.27)

ii) the kinetic energy density

τq(r) =
∑

α,s

ηq
α |∇ϕq

α(r, s)|2, (2.28)
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iii) the spin-orbit density

J q(r) = −i
∑

α,s,s′

ηq
α (ϕq

α)∗(r, s′)∇ϕq
α(r, s) × 〈s′|σ|s〉. (2.29)

The gradient of the spin-orbit density ∇J = ∇Jp +∇Jn can be directly evaluated

without first calculating J :

∇J q(r) = −i
∑

α,s,s′

ηq
α ∇(ϕq

α)∗(r, s′) × ∇ϕq
α(r, s) · 〈s′|σ|s〉. (2.30)

A lengthy but straightforward calculation [VB72] gives the Hamiltonian density H

H = HK + H0 + H3 + Heff + Hfin + Hso + Hsg + HCoul, (2.31)

where HK is the kinetic energy term, H0 a zero range term, H3 a density dependent

term, Heff an effective mass term, Hfin a finite range term, Hso a spin–orbit term,

and Hsg a term due to the tensor coupling with spin and gradient. Here are the

explicit formulas for the parts of this functional:

HK =
~

2

2m
τ,

H0 = 1
4
t0
[
(2 + x0)ρ

2 − (2x0 + 1)(ρ2
p + ρ2

n)
]
,

H3 = 1
24
t3ρ

α
[
(2 + x3)ρ

2 − (2x3 + 1)(ρ2
p + ρ2

n)
]
,

Heff = 1
8

[
t1(2 + x1) + t2(2 + x2)

]
τρ

+1
8

[
t2(2x2 + 1) − t1(2x1 + 1)

][
τpρp + τnρn

]
,

Hfin = − 1
32

[
3t1(2 + x1) − t2(2 + x2)

]
ρ∆ρ

+ 1
32

[
3t1(2x1 + 1) + t2(2x2 + 1)

][
ρp∆ρp + ρn∆ρn

]
,

Hso = −1
2
W0

[
ρ∇J + ρp ∇Jp + ρn ∇Jn

]
.

Hsg = − 1
16

(t1x1 + t2x2)J
2 + 1

16
(t1 − t2)

[
J2

p + J2
n

]
(2.32)

The coefficients ti, xi, W0, and α are the parameters of the Skyrme interaction from

Section 2.2 and m is the nucleon mass. Here we used the usual notations for the

total density ρ = ρn + ρp, τ = τn + τp, and J = Jn + Jp.

Usually the time-odd part of interaction is omitted since the time-reversal invariance

in such calculations is assumed. If this symmetry is broken, e.g., for rotating states,

the density matrix and the resulting mean field have both time-even and time-odd

components.
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The energy density of equation (2.31) contains the contribution of the Coulomb

force, HCoul, which is calculated from the charge density ρC as

HCoul(r) =
e2

2
ρC(r)

∫
d3r′

ρC(r′)

|r − r′| − 3e2

4

(
3

π

)1/3

ρ
4/3
C . (2.33)

Here the exchange part of the Coulomb term is calculated within the Slater approx-

imation. Following Bonche et al. [BF+85] the charge density is replaced by the

proton density ρp and, whenever electrons are present, the electron density ρe is to

be subtracted

ρC(r) = ρp(r) − ρe(r). (2.34)

In Hartree-Fock method the center-of-mass motion generates spurious states and

their contribution Ecm to the total energy must be extracted

Ecm =
P

2mA
=

(
∑

i pi)
2

2mA
=

1

2mA

[
∑

i

p2
i +

∑

i6=j

pipj

]
. (2.35)

Usually one neglects the contribution of the second two-body term in (2.35), since it

is difficult to calculate. In fact, its direct part vanishes, and only the exchange part

gives non-zero contribution. In our calculations both terms of (2.35) are computed

after variation, since the double sum over single-particle states may increase the

calculation time for each HF-iteration. Therefore this correction does not contribute

to the Hartree-Fock equations.

The calculation of asymmetric homogeneous nuclear matter can be directly per-

formed from the energy functional (2.26), in which the kinetic energy density is

obtained from

τq = 2

∫
d3p

(2π)3
p2ηq(p) (2.36)

or in the Hartree-Fock occupation

τq =
(3π2ρq)

5/3

5π2
, (2.37)

which demonstrates the explicit density dependence [RS80]. The spin-orbit term

in asymmetric nuclear matter does not contribute to the energy and the Coulomb

interaction is neglected because of the charge neutrality of nuclear matter. The

baryon energy density is then E = H and the baryon energy per nucleon becomes

E/A = E/ρ. Further the chemical potential is obtained by

µq =
p2

F,q

2m∗
q

+ Uq(pF,q), (2.38)
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where m∗
q is the effective mass and Uq the single-particle potential, which are both

specified in the next Section. It is worth mentioning that the potential depends on

the density and the kinetic energy density, which are both determined by the Fermi

momentum pF,q.

2.4 The Skyrme Hartree-Fock Equations

In accordance with the density functional theory we have to vary the energy func-

tional (2.26) with respect to the density ρ(r) to get the set of Hartree-Fock equations.

However it is not possible since the kinetic energy density τ(r) and the spin-orbit

energy density J(r) do not depend on ρ(r) explicitly. This problem may be solved

if we recall that the local density ρ(r) determines completely the ground state, viz.,

the HF-density ρ(r) uniquely defines the single particle wave function ϕq
α(r, s). It al-

lows us to replace the variation with respect to ρ(r) by the variation with respect to

ϕq
α(r, s) with the constraint that the single particle wave functions are orthonormal.

Thus we end up with the following variation

δ

δϕ∗
α

{
E[Φ] −

∑

α,s,q

εq
α

(∫
d3r |ϕq

α(r, s)|2 − 1
)}

= 0, (2.39)

where the single-particle energies are the Lagrange multipliers. The energy func-

tional in the last formula can be used from (2.26). After the partial integration one

obtains the set of the Hartree-Fock equations for Skyrme interaction [RS80]

{
−∇

~
2

2m∗
q(r)

∇ + Uq(r) − iW q(r) · (∇ × σ)

}
ϕq

α(r, s) = εq
α ϕ

q
α(r, s). (2.40)

The effective mass m∗ depends on Heff of the energy functional (2.26)

~
2

2m∗
q(r)

=
~

2

2m
+ 1

8
[t1(2 + x1) + t2(2 + x2)] ρ(r)

+ 1
8
[t2(1 + 2x2) − t1(1 + 2x1)] ρq(r), (2.41)
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a central potential

Uq(r) = 1
2
t0
[
(2 + x0)ρ− (1 + 2x0)ρq

]

+ 1
24
t3(2 + x3)(2 + α)ρα+1

− 1
24
t3(2x3 + 1)

[
2ραρq + αρα−1

(
ρ2

p + ρ2
n

)]

+ 1
8

[
t1(2 + x1) + t2(2 + x2)

]
τ

+ 1
8

[
t2(2x2 + 1) − t1(2x1 + 1)

]
τq

+ 1
16

[
t2(2 + x2) − 3t1(2 + x1)

]
∆ρ

+ 1
16

[
3t1(2x1 + 1) + t2(2x2 + 1)

]
∆ρq

− 1
2
W0

[
∇J + ∇J q

]

+ δq,p VCoul (2.42)

with the Coulomb field

VCoul(r) = e2
∫
d3r′

ρC(r′)

|r − r′| − e2
(

3

π

)1/3

ρ
1/3
C , (2.43)

and a spin–orbit field:

W q(r) = 1
2
W0 (∇ρ+ ∇ρq)

− 1
8
(t1x1 + t2x2)J + 1

8
(t1 − t2)J q. (2.44)

The binding energy EHF can be calculated from the energy functional

EHF = 1
2

(∑

α, q

tqα + εq
α

)
+ Er, (2.45)

where the last term Er is the rearrangement energy (also known as the saturation

potential [RS80]) and it appears due to the density dependence of the underlying

interaction [PGR91]. The rearrangement term plays an important role in simultane-

ous description of the binding energy and charge radii of finite nuclei over the whole

periodic table. The rearrangement energy can be calculated after

Er = −
∫
d3r α

48
t3ρ

α
[
(2 + x3)ρ

2 − (1 + 2x3)(ρ
2
p + ρ2

n)
]

+
1

4

(
3

π

)1/3 ∫
d3r ρ4/3

p ,

(2.46)

where the Coulomb exchange part was also included as the second term.
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All equations considered so far are written in the form which allows the HF calcula-

tions within the cubic WS cell. If the spherical symmetry is considered, all equations

can be simplified. The general scheme of the solution of HF equations in this case

is described in details by Reinhard [PGR91]. Going beyond the region of stable

nuclei one can consider exotic nuclear structures, like the pasta phase, when the

occupation scheme cannot be determined experimentally, and therefore cannot be

used as a known input in the HF calculations. In this case, the occupation scheme

is determined by varying the chemical potential of nucleons with a constraint on

the desired particle number. It involves also the calculation of the pairing gap, if

the pairing phenomenon is taken into account. In the next Chapter we consider the

pairing of nucleons within the BCS approximation.
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Chapter 3

Pairing of Nucleons

It is known from the standard theory of superconductivity [BCS57] that two nucle-

ons on the same shell may form a pair – the energetically favourable state with the

total zero angular momentum. The pairing is a collective effect, since it becomes

possible in a field of other nucleons and cannot exist between two nucleons in vac-

uum. Therefore a many-body nuclear system may undergo a phase transition to a

superfluid state. The pairing of nucleons is described in terms of the short-range

residual interaction, since the preferable state of two nucleons has the zero total

angular momentum and they remain very close to one other.

The superfluid model of finite nuclei describes many features which cannot be ex-

plained within the framework of the shell model, such as the mass difference of

odd and even nuclei, the density of one-particle states, the moments of inertia of

deformed nuclei and many others [RS80]. In early 1960’s Migdal pointed out that

the interacting nucleons in the highly compressed matter inside the neutron stars

may become superfluid [Mi60]. The modern theory of NS considers three different

regions, where the hadron superfluidity may exist: in the inner crust, at relatively

low densities 10−3ρ0 ≤ ρ ≤ 0.7ρ0 neutrons form 1S0 pairs, since 1S0 partial wave

channel of NN interaction is attractive; in the core at ρ ≥ 0.7ρ0
1S0 channel be-

comes repulsive and neutrons form 3P2 pairs. The proton pairs exist in 1S0 state,

since their fraction is smaller than the neutron fraction. At baryonic density higher

than 0.7ρ0 various hyperons may exist and form pairs in the same way as nucleons.

Due to a significant difference in Fermi surfaces of protons and neutrons one usually

neglects the proton-neutron pairing.
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Since the pairing energy amounts to only about 1% of the total interaction energy,

the hadronic superfluidity does not change the relation between the pressure and

density inside a neutron star. Therefore the superfluidity has a minor influence on

mass-radii relations of an isolated neutron star. However the superfluid state plays

an important role in the description of the thermalization time and specific heat of

the crust. In fact, the heat capacity of superfluid states is lower and proportional to

exp (−∆/kT ), where ∆ is the pairing gap. The existing models of cooling are also

very sensitive to the formation of the Cooper pairs. In the absence of superfluidity,

the so-called ”standard”scenario, the cooling rate is determined mainly by the direct

and modified Urca reactions. The superfluidity suppresses the direct Urca processes

and changes the cooling time significantly. In this case the radiation of neutrino-

antineutrino pairs from the superfluid matter becomes possible [PGW06]. At the

end, the creation of quantized vortices, which carry all the angular momentum of

the superfluid, may explain the formation of pulsar glitches – sudden enhancement

of their rotational frequency.

In this Chapter the pairing phenomenon on the base of BCS theory is outlined.

Also the extension for finite temperatures is considered in the framework of Bo-

goliubov theory. This allows to include the pairing of nucleons in the Hartree-Fock

calculations with finite temperatures.

3.1 The BCS Model

Analogously to the ground state of superconductors in the BCS theory [BCS57], let

us consider the ground state of even-even nuclei in the form

|BCS〉 =
∏

i>0

(ui + vic
†
ic

†
ī
)|0〉. (3.1)

Here the coefficients ui and vi can be determined from the condition that the cor-

responding energy has a minimum. Assuming that the BCS state is normalized to

unity one obtains

u2
i + v2

i = 1. (3.2)

In other words, the coefficient v2
i is a probability that the state i is occupied, and,

respectively, the coefficient u2
i = 1 − v2

i is a probability that the same state is
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empty. Now the ground state (3.1) is completely determined by the parameter vi

and condition (3.2).

The ground state (3.1), being the superposition of different number of pairs, violates

the particle number conservation. This lack has no consequences in solid state

physics due to enormous number of particles, however in nuclei this gives rise to

serious errors. Therefore attempts have been made to project states with good

particle number. Any variational calculation however must be constrained by a

subsidiary condition, which fix the average particle number N

〈BCS|N̂ |BCS〉 = 2
∑

i>0

v2
i = N. (3.3)

Let us consider a system with N particles which is described by the Hamiltonian

H =
∑

i,j≷0

〈i|T |j〉c†icj +
1

4

∑

i,j,k,l≷0

〈ij|V |k̃l〉c†ic†jckcl, (3.4)

where the first term is a single-particle energy and the second is the residual two-

body interaction. The parameters ui and vi can be derived from the variation of

energy with the constraint on the particle number. It leads to a new variational

Hamiltonian

H ′ = H − λN̂, (3.5)

where the Lagrange multiplier λ is known as the chemical potential or the Fermi

energy of the system. The expectation value of (3.5) in BCS ground state reads

〈BCS|H ′|BCS〉 =
∑

i≷0

(〈i|T |i〉 − λ)v2
i +

1

2

∑

i,j≷0

〈ij|V |ĩj〉u2
i v

2
i +

∑

i,j>0

〈īi|V |j̃j̄〉uiviujvj.

(3.6)

The variation of (3.6) yields the set of BCS equations to determine vi and λ

2εiuivi + ∆i(v
2
i − u2

i ) = 0, (3.7)

with the single-particle energies

εi =
1

2
(〈i|T |i〉 + 〈̄i|T |̄i〉) +

∑

j≷0

(
〈ij|V |ĩj〉 + 〈̄ij|V | ˜̄ij〉

)
v2

j − λ, (3.8)

and the gap parameter

∆i = −
∑

j≷0

〈īi|V |j̃j̄〉ujvj. (3.9)
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Taking into account relations (3.2) and (3.7) one obtains two equations for v2
i and

u2
i

v2
i =

1

2

(
1 − εi√

ε2
i + ∆2

i

)
, (3.10)

u2
i =

1

2

(
1 +

εi√
ε2

i + ∆2
i

)
. (3.11)

Equations (3.8), (3.9) and (3.10) must be solved self-consistently. The gap equation

can be obtained by inserting (3.10) into (3.9)

∆i = −1

2

∑

j>0

〈īi|V |j̃j̄〉 ∆j√
ε2

j + ∆2
j

. (3.12)

In the infinite matter the last equation can be written as [BC+90], [EH98], [KM+03]

∆(k) = −2

π

∫ ∞

0

dk′k′2V (k, k′)
∆(k′)

2E(k′)
, (3.13)

where V (k, k′) is the bare momentum-space NN interaction in the 1S0 channel,

E(k′) is the quasiparticle energy given by E(k′) =
√

(ε(k′) − εF )2 + ∆(k′)2, ε(k)

is the single-particle energy of a nucleon with momentum k, and kF is the Fermi

momentum. The singe-particle spectrum ε(k) may be approximated by ε(k) =

k2/2m [EH98]. In more sophisticated approaches, where the so-called conventional

choice is used [KM+03], the single-particle energies below the Fermi energy are

parameterized in terms of an effective mass of nucleons and a constant energy shift

ε(k) = k2/(2m∗)+U , while for the states above the Fermi energy the single-particle

spectrum is replaced by the kinetic energy.

However in practical many-body calculations, e.g., in the Hartree-Fock method,

the gap equation must be solved for every iteration. Therefore for the economy

of cpu time the realistic interaction in (3.13) is usually replaced by an effective

interaction. Bearing in mind that the pairing phenomenon is important for nucleons

in vicinity of the Fermi surface, one can approximate the pairing interaction by a

density-dependent zero-range effective potential, as it was suggested by Bertsch and

Esbensen [BE91]

Vpair(r1, r2) = V0

(
1 − η

[
ρ(r1)

ρ0

]α)
δ(r1 − r2), (3.14)
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where the parameters V0, η, α were derived by Garrido et al. [GS+99] by fitting the

calculations of the symmetric matter with the Paris force. They found the following

values: V0 = 481 MeV fm3, η = 0.7, and α = 0.45. Integration in the gap equation

(3.13) was performed below the cutoff parameter εc = 60 MeV, which corresponds

to the cutoff in momentum space kc =
√

2mεc = 1.7 fm−1.

Solution of BCS equations must be performed for each iteration as it is shown on

Fig.3.1. This includes the following steps:

i) One starts calculating the local gap function

∆τ (r) = −Vpair(r)χ
τ(r), (3.15)

where Vpair(r) is the contact interaction from (3.14), χτ (r) is the anomalous density,

and τ denotes the isospin number.

ii) From the local gap function the state-dependent pairing gap can be derived

through

∆τ
α =

∫
d3r ∆τ (r) |ψτ

α(r)|2 (3.16)

and pairing energy, which contributes to the total energy per nucleon

Epair =
1

2

∑

α,q

∆αζα. (3.17)

iii) After that one should set a trial, initial value of the Fermi energy and calculate

the quasi-particle energy Eα

Eα =
√

(εα − εF )2 + ∆2
α, (3.18)

occupations vα, uα

v2
α =

1

2

(
1 − εα − εF

Eα

)
, (3.19)

u2
α =

1

2

(
1 +

εα − εF

Eα

)
, (3.20)

and at the end the particle occupation ητ
α

ηα = v2
α, ζα = uαvα. (3.21)

It allows to estimate the number of particles N from

N =
∑

α

ηα. (3.22)
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Figure 3.1: The self-consistent loop to determine the pairing gap and the occupation

scheme within the Hartree-Fock program.

If it is not equal to the desired number of nucleons – the Fermi energy εF in (3.18)

should be modified. In such a way it makes the self-consistent loop at each HF

iteration.

iv) Finally, the anomalous density is calculated from

χ(r) = 1
2

∑

α

ζα |ψα(r)|2 fc,α. (3.23)

To increase the convergence in the summation (3.23), the later must be multiplied

with a sharp cutoff, which varies between 0 and 1. This procedure works well if the

pairing phase space expanded up to 50 MeV above the Fermi surface. However more

stable solution may be achieved by using a soft cutoff [BF+85]

fc,α = [1 + exp((εα − (εF + εc))/∆ε)]
−1 , (3.24)

where the cutoff energy εc = 5 MeV and ∆ε = εc/10.
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3.2. PAIRING AT FINITE TEMPERATURES

3.2 Pairing at Finite Temperatures

In the last section the zero temperature pairing phenomenon based on BCS was

discussed. Being introduced into the Hartree-Fock calculations, this yields the so-

called Hartree-Fock plus BCS (HF+BCS) approach. In this Section this model is

extended in order to take into account the effects of finite temperatures.

The most general theory of pairing in the mean-field calculations allowing the fi-

nite temperature effects is the theory developed by Bogoliubov. Below the basic

formalism of this theory is outlined. Later it is adopted to formulate the finite

temperature BCS (FT-BCS) method used in the Hartree-Fock calculations. More

detailed description can be found in textbooks (see, e.g., [RS80]).

The main idea of Bogoliubov theory is to represent the ground state (3.1) of inter-

acting particles as a vacuum of non-interacting quasiparticles

αk|BCS〉 = 0, ∀k 6= 0. (3.25)

The particle creation and annihilation operators c†i , ci are related with the creation

and annihilation operators for quasiparticles α†
k, αk by the Bogoliubov transforma-

tion. Its matrix form can be written as
(
α†

α

)
=

(
U V

V ∗ U∗

)(
c†

c

)
, (3.26)

where matrices Uand V satisfy

UU † + V V † = 1, UV T + V UT = 0. (3.27)

By using the algebraic relations between particles and quasiparticles one can obtain

the Hartree-Fock-Bogoliubov (HFB) Hamiltonian from (3.5)

H − µN̂ ≈ HHFB = E0 +
∑

k

Ekα
†
kαk. (3.28)

Here µ stands for the chemical potential, N̂ is the particle number operator, Ek is

the quasiparticle energy and E0 is the ground state energy.

Now let us consider a system of N particles at finite temperatures in thermal equi-

librium. Its grand potential Ω is determined as

Ω = E − TS − µN, (3.29)
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where E is the total energy and S is the system entropy. At the constant temperature

T and the chemical potential µ the equilibrium state of mechanically isolated system

minimizes the grand potential

δΩ = 0. (3.30)

This variation is realized by
δΩ

δD = 0, (3.31)

where the density operator D has the property

TrD = 1. (3.32)

The trace in (3.32) assumes the summation over all states with any number of

particles or quasiparticles. The density operator, which satisfy both (3.32) and

(3.31) has the form

D = Z−1e−β(H−µN̂), (3.33)

where Z denotes the grand partition function

Z = Tr[e−β(H−µN̂ ] (3.34)

and β = 1/kT . In finite temperature Bogoliubov theory the HamiltonianH in (3.33)

and (3.34) is replaced with the HFB Hamiltonian (3.28). As it was derived in [Go81]

the HFB density operator is

DHFB =
∏

k

[nkα
†
kαk + (1 − nk)α

†
kαk], (3.35)

where nk stands for the quasiparticle occupation number of k-th orbit. This is

determined as the expectation value of the quasiparticle number operator Nk = α†
kαk

nk = 〈Nk〉 = Tr(DHFB Nk) =
1

eβEk + 1
. (3.36)

The Hartree-Fock Hamiltonian H has the same form as in zero temperature case

H = T − µ+ Γ. (3.37)

The HF potential and the pair potential are defined by

Γij =
∑

kl

〈ik|V |jl〉ρlk, (3.38)
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∆ij =
1

2

∑

kl

〈ij|V |kl〉τkl. (3.39)

Here the particle densities are derived from the inverse Bogoliubov transformation

ρ = UTnU∗ + V †(1 − n)V, τ = UTnV ∗ + V †(1 − n)U. (3.40)

The total energy, entropy and particle number are evaluated in HFB approximation

E = Tr[(T +
1

2
Γ)ρ+

1

2
∆τ †], (3.41)

S = −
∑

α

[nα ln(nα) + (1 − nα) ln(1 − nα)], (3.42)

N = Trρ. (3.43)

By using these expressions, one can derive the finite temperature HFB (FT-HFB)

equations from the variation (3.30)
(

H ∆

−∆∗ −H∗

)(
Uα

Vα

)
= Eα

(
Uα

Vα

)
. (3.44)

These equations have the same form as zero temperature HFB equations [RS80].

The difference consists in quasiparticle occupation (3.36), so that the densities ρ

and τ at T 6= 0 differ from those obtained at T = 0.

The finite temperature BCS limit of FT-HFB theory can be obtained if the time-

reversal symmetry together with a monopole pairing force are considered. In this

case the FT-HFB equations (3.44) become diagonal and yield the well-known FT-

BCS equations. Thus the gap equation can be written as

∆α = −1

2

∑

k′>0

〈kk̄|V̄ |k′k̄′〉(1 − 2nk′)
∆k′

2Ek′

, (3.45)

where |k̄〉 denotes the time-reversed state of |k〉. The quasiparticle energy Ek and

coefficients uk, vk are the same as in the BCS theory, and obey

ukvk =
∆k

2Ek

. (3.46)

From equations (3.45) and (3.46) the normal and anomalous occupation factors of

the Hartree-Fock single-particle states can be obtained from

ηk = (1 − 2nk)v
2
k + nk, (3.47)

ζk = (1 − 2nk) ukvk. (3.48)

Finally, both ηk and ζk are used instead of (3.21). This allows us to consider pairing

effects with finite temperatures in the Hartree-Fock calculations.
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Chapter 4

Structure of Pasta Phase

In this Chapter the region of existence of the pasta phase in the crust of neutron

stars is investigated. Also we pay a special attention to the comparison of the

inhomogeneous density distribution with the homogeneous matter and the temper-

ature stability of the inhomogeneous structures. All pasta objects resulted from the

Skyrme Hartree-Fock calculations in cubic WS cell are considered. Later we focus

on the internal structure of the droplet phase derived within the spherical WS cell.

It allows us to study the single-particle levels similar to the standard nuclear shell

model and investigate the dynamical response function of such droplet.

4.1 Microscopical Structure of Pasta Phase

To investigate the nuclear matter under conditions existing in the crust of neutron

stars we perform Skyrme Hartree-Fock calculations for the charge neutral nuclear

matter within the WS cell approximation as described in the Chapter 2. The matter

consists of protons, neutrons and electrons which exist in β-equilibrium, i.e. their

chemical potentials satisfy the relation

µn = µp + µe. (4.1)

The density distributions of protons and neutrons in the inner crust of neutron stars

are determined by the interplay of the Coulomb force and the surface tension, as

it was predicted in early 1980’s by Ravenhall et al. [RPW83]. At the low density

ρ ∼ 0.1ρ0 the nuclear matter is formed of spherical nuclei, since in this way the
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Figure 4.1: Density distribution of protons (left panel) and neutrons (right panel)

resulting from Skyrme HF + BCS calculation at an average density of ρ = 0.0166

fm−3 (droplet).

surface and Coulomb energies are minimized. With increasing density, however,

the density distributions may become very deformed, thus cylindrical and planar

geometries can occur.

At the density ρ = 0.0166 fm−3 the solution of the Hartree-Fock equations with SLy4

potential yields the spherically symmetric density distribution of nucleons, which is

often called the droplet phase (see Fig.4.1). As we will see later, the proton fraction

in the droplet phase is about 4%, therefore all protons are bound1, and their density

distribution is localized at the center of the WS cell similar to the finite nuclei.

Neutrons, in their turn, also form a quasinucleus at the center of the cell, however

on periphery their distribution is nonvanishing and uniform, and is determined by

the dripped neutrons. Due to the periodicity of the boundary conditions the crust

can be considered as a lattice of quasinuclei embedded in the sea of electrons and

dripped neutrons.

Increasing the global density of the matter the distributions of protons and neutrons

become deformed. At the density ρ = 0.0625 fm−3 the protons and neutrons density

profiles in x, y-plane are symmetric and localized at the center of the cell (see left

panels of Fig.4.2 and Fig.4.3). However in x, z-plane these distributions are asym-

metric (see right panels of Fig.4.2 and Fig.4.3), so that the density is a constant

along z-axis. This density profile can be identified with a cylinder or rod oriented

along z-axis. At the global density ρ = 0.775 fm−3 the central density distributions

1The β-equilibrium condition must be fulfilled.
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Figure 4.2: Proton density distribution for Skyrme HF + BCS calculation at an

average density of ρ = 0.0625 fm−3 (rod).
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Figure 4.3: Neutron density distribution for Skyrme HF + BCS calculation at an

average density of ρ = 0.0625 fm−3 (rod).
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Figure 4.4: Proton density distribution for Skyrme HF + BCS calculation at an

average density of ρ = 0.0775 fm−3 (slab).

of nucleons in x, y-plane become almost flat. They are shown on the left panels of

Fig.4.4 and Fig.4.5 for protons and neutrons, respectively. In x, z-plane the density

profiles are constant in x-direction but crosses the z-axis (right panels Fig.4.4 and

Fig.4.5). This quasinucleus looks like a slab. In the following we will refer to the

cylindrical and slab quasinuclei as rod and slab phases, respectively. In the liter-

ature they are also known as ”spaghetti” and ”lasagna”. Increasing the density up

to 0.6ρ0 we can observe the dissociation of neutrons: they drip out of nuclei, thus

the transition to the homogeneous matter occurs. As we can see, the pasta phase2

exists in a thin layer of the crust and connects the inner crust, where the nuclear

matter consists of the spherical nuclei embedded in the electron sea with the outer

core, characterized by the homogeneous nuclear matter distribution, which appear

at about the half of the saturation density ρ0.

Up to now the zero temperature case was discussed. To investigate the pasta phase

at T 6= 0 we performed the Skyrme Hartree-Fock calculations using the FT-BCS

scheme of the occupation, as described in the Chapter 3. If the temperature of matter

rises, the pasta phase structures become smooth and at some critical temperature

they disappear, so that the homogeneous density distribution is observed. For SLy4

potential the critical temperature was found to be about 5 MeV and 10 MeV for

slab and rod structures, respectively, while the droplet structure disappears at the

temperature higher than 15 MeV. Thus the spherically symmetric droplet phase will

play the main role in different simulations involving a wide range of temperatures.

2Under ”pasta” we will assume the droplet, rod and slab phases.
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Figure 4.5: Neutron density distribution for Skyrme HF + BCS calculation at an

average density of ρ = 0.0775 fm−3 (slab).

On the phase diagram ”temperature-density” Fig.4.6 we demonstrate schematically

the region of existence of the pasta phase, derived from the Skyrme Hartree-Fock

calculations, and the transition to the homogeneous matter with the increase of

density and temperature.

Now let us concentrate on the study of the inner structure of pasta objects, and for

simplicity we will restrict to the case of spherically symmetric droplet phase. This

reduces the computational time and allows to investigate the dynamical response

function by using the standard methods of nuclear physics.

Assuming the spherical symmetry the single-particle (s.p.) wave functions (WF’s)

are expended in a complete basis set of orthogonal states defined within a spherical

box of radius R

Ψ(r) =
∞∑

i=1

ciljϕiljm(r) ≈
N∑

i=1

ciljϕiljm(r), (4.2)

where cilj are expansion coefficients and ϕiljm(r) = 〈r|α〉 are the WF of the or-

thonormal basis. The number of basis states N has to be chosen to guarantee that

the results are not affected by this limitation. The orthonormal set of basis functions,

which are regular at the center of the box is given by

ϕiljm(r) = 〈r |iljm〉 = Ril(r)Yljm(θ, ϕ), (4.3)

where Yljm(θ, ϕ) represents the spherical harmonics including the spin degrees of

freedom by coupling the orbital angular momentum l with the spin to a single-

particle angular momentum j. The radial WF’s Ril are given by the spherical
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Figure 4.6: Phase diagram of inhomogeneous structures in nuclear matter derived

from HF calculations with SLy4 potential.

Bessel functions for the discrete momenta ki [MMM04],

Ril(r) = Niljl(kir), (4.4)

which fulfill the Dirichlet boundary conditions

Niljl(kiR) = 0, (4.5)

where the normalization constant is

Nil =





√
2√

R3jl−1(kiR)
, l > 0

iπ
√

2√
R3
, l = 0,

(4.6)

and it ensures the basis functions are orthogonal and normalized within the box. The

use of the Dirichlet boundary conditions for all s.p. WF’s leads to the suppression of

the local density at the border of the cell. There exists an alternative choice for the

radial wave functions, where the radial derivative of the WF vanishes at the border

of the cell (Von Neuman boundary conditions)

R̃il(r) = Ñiljl(k̃ir),
∂R̃il(R)

∂r
= 0. (4.7)
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Figure 4.7: Neutron single-particle structure of droplet (top) and homogeneous mat-

ter (bottom) at the same global density.

This determines a new set of momenta k̃i and normalization constants Ñil. To

get a smooth transition of density profile from one WS cell to another one Bonche

and Vautherin [BV81] suggested using a mixed basis by employing the Dirichlet

boundary conditions (4.5) for the states with even orbital momentum l, and Von

Neuman boundary conditions (4.7) for the states with odd l3

R∫

0

dr ϕ∗
iljm(r)ϕi′l′j′m′(r) = δii′δll′δjj′δmm′ . (4.8)

Many authors investigating the inner crust of NS consider, for simplicity, the homo-

geneous matter distribution and in such a way neglect the region where the pasta

phase occurs. Therefore we should pay a special attention for the comparison of

the pasta phase (inhomogeneous matter) with the homogeneous matter at the same

global density.

3See also discussions in [MMM04].
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For the comparison of the homogeneous and inhomogeneous density distributions

we take the configuration with Z = 14, N = 320 in the cell with radius of R = 20

fm and the average global density ρ = 0.0094 fm−3.

On the top of Fig.4.7 the energies of occupied single-particle neutron levels in droplet

are shown. The deepest occupied state occurs at the energy E
1s1/2

n = −44 MeV. One

can also observe a big amount of dripped (En > 0) neutrons: about 60% of the to-

tal number of neutrons. On the bottom of Fig.4.7 the single-particle spectrum of

neutrons in homogeneous matter is displayed. Evidently, in the case of the homoge-

neous density distribution neutrons are delocalized and weakly bound. About 10%

of neutrons in the droplet (from the left) are deeply bound (En < −5 MeV) and they

have no ”partners” in homogeneous matter, since all neutrons of homogeneous mat-

ter are distributed over a narrow energy interval from −5 MeV to 7 MeV. Further,

under the deeply bound neutrons, we will assume all neutrons of the inhomogeneous

matter phase (droplet) with the energy, which is less than the deepest occupied level

of neutrons in homogeneous matter at the same global density. The role of these

neutrons in formation of the inhomogeneous density distribution becomes obvious
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if we compare the neutron density profiles of the droplet and homogeneous matter

on Fig.4.8. First of all, one can notice that the density distribution of homogeneous

matter slightly fluctuates over the average value ρ = 0.0094 fm−3. Such fluctuations

cannot be avoided if one represents the infinite matter in the box of the finite vol-

ume. The nature of these fluctuations lies in the spurious shell effects due to the

discretized energy spectrum of the free neutrons [MMM04]. Coming back to the in-

homogeneous density distribution one can see that the core of the droplet is formed

mainly by the deeply bound neutrons (En < −5 MeV), while the dripped neutrons

contribute mainly to the ”tail” of the density distribution. So, as we expected, the

use of the mixed (Dirichlet-Von Neuman) boundary conditions gives a smooth non-

vanishing density at the border of the cell. In the next Section the connection of the

internal droplet structure with the dynamical response is investigated.

4.2 Dynamical Response of Pasta Phase

The nuclear response function to an external probe with the momentum transfer q

and the energy transfer ω, is proportional to the imaginary part of the polarization

propagator

S(q, ω) = −1

π
ImΠ(q, ω), (4.9)

where

Π(q, ω) =
∑

n 6=0

〈ψ0|Ôα(q)|ψn〉〈ψn|Ô†
α(q)|ψ0〉 (4.10)

×
[

1

~ω − (En −E0) + iη
− 1

~ω + (En − E0) − iη

]
, (4.11)

where {|ψn〉} is a complete set of the nuclear eigenstates with the energy En, Ôα(q)

is the vertex operator in the second quantization formalism, and α labels the spin-

isospin channel. In the following we will deal with the scalar-isoscalar channel, where

Ô(q) = eiqr. The response function S(q, ω) demonstrates the available phase space

for the absorption of an excitation phonon with a given q and ω.

In the mean-field model S(q, ω) can be written through the particle-hole (ph) po-
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larization propagator as

S(q, ω) = −1

π
Im
∑

J

ΠJ(q, ω), (4.12)

ΠJ (q, ω) =
∑

ph

AJJ0(q)[
1

~ω − (En −E0) + iη
(4.13)

− 1

~ω + (En − E0) − iη
]AJJ0 ∗(q), (4.14)

where p(h) labels a complete set of particle (hole) quantum numbers and

AJlσ(q) = 〈jpjh; J |lσ; J〉(−i)l+1
√

(2lp + 1)(2lh + 1) (4.15)

×
∞∫

0

drr2Rp(r)jl(qr)Rh(r)

(
lp lh l

0 0 0

)
. (4.16)

Here 〈jpjh; J |lσ; J〉 stands for the standard LS-jj coupling coefficient, Rp(h)(r) is

the radial wave function of particle (hole) state with the energy Ep(h). The re-

sponse function calculated from the discrete set of the final states within the WS

cell approximation consists of a collection of the delta function peaks localized at

the energies En = E0
4. Replacing the energy conserving δ-function by the Lorentz

representation with a finite width γ

δ(x) → 1

π

γ/2

(x− γ)2 + γ2/4
(4.17)

one can get S(q, ω) as a smooth function of ω. We used the value γ = 0.5 MeV for

the Lorentz width to reproduce the response of the free Fermi gas (Appendix A)

with the best accuracy.

In Fig.4.9 the response functions of neutrons in the droplet for the different values

of the momentum transfer q are shown. At q = 0.2 fm−1 the main contribution to

the response is due to the weakly bound neutrons at low excitations energy of about

3 MeV. The nature of this peak is easy to understand considering the radial integral

in (4.15). At small q the main overlap is between the radial wave functions, which lie

very close to the Fermi surface, i.e., the respective excitation energies are few MeV.

With increasing momentum transfer q up to 0.5 fm−1 increases proportionally the

4The finite size of the system will quantize the energy spectrum of the unbound single-particle

states.
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Figure 4.9: Response function of droplet (black solid). Contribution of deeply bound

neutrons (blue dashed). The global density ρ = 0.0094 fm−3.

transition probability from the deeper occupied states to the states above the Fermi

level. The maximum is thus shifted to the higher excitations energies. A smearing in

the overlap integral (4.15) leads to the respective smearing of the response function

over the wider range of ω. This effect becomes more significant at higher momenta.

Since one of the goals of this Chapter is to investigate the role of the deeply bound

neutrons in the formation of the response function of the nuclear matter, we sepa-

rated their contribution from the total result at different momentum transfers. It

is shown as the blue dashed curve on Fig.4.9. At the low momentum transfer the

response function of neutrons with the energy En < −5 MeV appears at high ex-

citation energies and is one order less amplitude than the total result at the same

excitation energy. The growth of the momentum q increases the role of the quasi-

nucleus since the overlap between the deeply bound initial and high-oscillating final

wave functions becomes larger. Nevertheless the absolute contribution of the deeply

bound neutrons to the total sum rule hardly exceeds few percent.

This situation is changed significantly if one considers lower densities, where the

difference between the homogeneous and inhomogeneous matter increases. Investi-
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Figure 4.10: Response of droplet (black solid). Contribution of deeply bound neu-

trons (blue dashed). The global density ρ = 0.0023 fm−3.

gating this case we consider the nuclear matter with the global density ρ = 0.0023

fm−3 in β-equilibrium. On the one hand, the proton fraction of the droplet in this

case exceeds 6% and the neutron potential well becomes deeper. On the other hand,

the proton fraction of the homogeneous matter is less than 0.2% and neutrons be-

come less bound and the first occupied neutron level appears at −0.7 MeV. Therefore

the number of the deeply bound neutrons in droplet increases, and proportionally

increases their role in the response function.

In Fig.4.10 the response of the inhomogeneous β-stable nuclear matter is shown.

The contribution of neutrons with the energy less than −0.7 MeV is substantial and

rises with the transferred momentum. Starting from q = 0.5 fm−1 these neutrons

dominate in the formation of the response function at high energies.

Thus we conclude that the deeply bound neutrons play the main role in the forma-

tion of the inhomogeneous density distributions, although their contribution to the

response function is quite small, and does not exceed few percent in terms of the

energy weighted sum rules.
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Chapter 5

Neutrino Mean Free Path in the

Crust

In this Chapter we formulate an approach to calculate the neutrino mean free path

(NMFP) in nuclear system, which is described in Skyrme Hartree-Fock as well as

in the relativistic mean field model with inclusion of pairing correlations. We pay

special attention to the details of neutrino propagation in the presence of pasta

phase, taking into account all its geometrical shapes: spherical droplets, cylindrical

rods and planar slabs. Therefore we will use the results of the self-consistent HF

calculations with SLy4 potential within the cubic WS cell, considered in Chapter 4.

To describe the charge neutral matter containing protons, neutrons and electrons in

β-equilibrium we consider a box of a typical size about 20 fm. Pairing correlations

were included in terms of the BCS approximation by assuming a density-dependent

zero-range pairing force as described in Chapter 3.

5.1 The Skyrme Hartree-Fock Model

We perform the self-consistent HF calculations with inclusion of pairing in a periodic

lattice of WS cells of cubic shapes. The symmetry of such WS cell not only allows

the formation of triaxial structures but also includes rod- and slab-like structures

and provide a natural transition to homogeneous matter [G07].

At the density 0.0166 fm−3, we observe the spherical droplet phase, while density

distributions identified with rods and slabs appear at 0.0625 fm−3 and 0.0775 fm−3,
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CHAPTER 5. NEUTRINO MEAN FREE PATH IN THE CRUST

respectively. Thus we fix three values of density, whose profiles possess a clear

spatial distribution and can be identified with the known pasta structures from

other calculations [MH02]. Increasing density from 0.0166 fm−3 to 0.0775 fm−3, one

obtains a variety of different intermediate density profiles which smoothly connect

three representatives: droplet → rod → slab.

As mentioned above, the Hartree-Fock calculations were performed within the WS

cell approximation, assuming that the inner crust is divided into independent cubic

cells, and the wave functions of dripped, unbound neutrons satisfy the periodic

boundary conditions. However, from the standard model of neutron stars [BBP71],

it is known that the inner crust is a perfect crystal and therefore the band theory of

solids should be applied for the unbound neutrons. In this case the energy spectrum

of unbound neutrons will be formed of ”bands” in momentum space, thus containing

more information than in the WS cell approximation. However, as it has been

shown in recent investigations by Chamel et al. [CN+08], the differences between

the full band theory and WS approximation are expected to be essential when the

processes under considerations involve energy transfer, which is comparable with

the level spacing induced by discretization. In our calculation such level spacing in

the energy spectrum of unbound neutrons does not exceed 200 keV; therefore, we

suppose that the WS approximation is a good starting point for the calculation of

NMFP with energies of the incoming neutrinos 10 ≤ Eν ≤ 100 MeV. To check the

accuracy of our method we also perform the plane wave test, which is considered in

the next Section.

The single-particle energies and wave functions for protons and neutrons resulted

from the Hartree-Fock calculations were used to evaluate the NMFP by using the

method outlined in the following Section.

5.2 Mean Free Path in Nonrelativistic Model

In Appendix A we show how one can derive the NMFP of a free Fermi gas from

the cross section of neutrino in charged current (CC) and neutral current (NC)

processes. Following this idea we extract the mean free path in nuclear matter from

the cross section of neutrinos on quasi nuclear structures inside the WS cell.

The matrix element for the neutrino-nucleus interactions ν + n→ ν + n
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(ν + n→ p+ e−) is given by

M =
GFC√

2
Jµj

µ, (5.1)

where

Jµ = iūn(p)(V γµ + Aγµγ5)un, (5.2)

jµ = −iūνγ
µ(1 − γ5)uν(e) (5.3)

are hadronic and leptonic currents, respectively. The parameters A, V must be

replaced by the respective values of coupling constants and C stands for the Cabbibo

factor in the charged-current reaction [SL]. The total cross section can be written

as

σ =
∑

f

pν(e)Eν(e)
1

2

1∫

−1

d(cosϑ)|M | 2, (5.4)

|M | 2 =
G2

FC
2

π

[
V 2(1 + cosϑ)|M1|2 + A2(1 − 1

3
cosϑ)|M2|2

]
, (5.5)

M1 = 〈ϕ4|eiqr|ϕ2〉, M2 = 〈ϕ4|σeiqr|ϕ2〉, (5.6)

where within this non-relativistic approach we neglect the lower components in Dirac

spinors u ≃ (ϕ
0 ). In the charged current reaction, the influence of the Coulomb

field on the outgoing electron can be taken into account by multiplying the cross

section by the Fermi function F (Zf , Ee) [EG70]. For this reaction, M1 and M2 stand

for the Fermi and Gamow-Teller matrix elements, respectively. The integration

is performed over the spatial angle ϑ between the momenta of incoming and the

outgoing leptons. The single-particle wave functions ϕ(r) and single-particle energies

εf (εi) are obtained from the solution of the HF equations. Note that these single-

particle energies enter (5.4) as the energy for the outgoing lepton is defined as

Eν(e) = Ein
ν + εi − εf ,

where Ein
ν is the energy of the incoming neutrino.

The formalism described so far is appropriate for the neutrino-nucleus interaction.

With some extensions it may also be used to evaluate the interaction of neutrinos

with the quasi-nuclear structures in the crust of neutron stars. Unlike spherical

nuclei and the case of the droplet phase, the cross section of neutrino on rods and

slabs, generally speaking, depends on the spatial orientation of momentum transfer q
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in (5.6), since the density distributions of rod and slab phases are nonspherical, as it

is shown on Figs.4.2-4.5. The precise averaging over all possible mutual orientations

of vectors q and r requires additional numerical efforts. Thus, in order to reduce this

effort, we considered three particular cases, with the vector q along the direction of

the x, y and z-axis. Doing so, we determine the averaged cross section as

σ =
1

3
(σx + σy + σz), (5.7)

where σx(y,z) represents the cross section calculated for the momentum transfer along

x(y, z)-axis.

In contrast to a finite nucleus, the WS cell of the inhomogeneous nuclear matter

contains a large number of unbound neutrons, which give nonzero contribution to

the total cross section. Thus, the cross section consists of two parts: the cross section

due to the interaction with the nucleons bound in the quasi-nuclear structure and

the cross section due to the interaction with unbound neutrons. Therefore, one can

consider (5.4) as a cross section of neutrinos with all nucleons in a given volume Vcell

of a WS cell. The reverse NMFP can then be written as

1

λ
=

σ

Vcell
. (5.8)

Another important distinction of the pasta structures in the crust of neutron stars

from the finite, isolated nuclei consists in the existence of the electron sea in the

volume of the WS cell. Therefore, the nonzero chemical potential of electrons must

be taken into account in the evaluation of charged current reactions by a blocking

of final states for electrons with energies below the respective Fermi energy µe.

To test the accuracy of our approach we perform a numerical check in the absence

of the nucleon-nucleon interaction. Thus all particles are free and can be described

by plane waves. The NMFP in this case can be determined analytically from the

response function S(q, ω), as described in Appendix A. On Fig.5.1 we compare the

NMFP derived from the WS cell with the analytical result in CC reaction for two

values of matter density: 0.01fm−3 (upper curve) and 0.02fm−3 (lower curve). A

small deviation is caused by the discretization of the continuum energy spectrum.

The single-particle WF’s derived from the HF calculations within the cubic WS cell

are determined with the meshsize 1 fm [GM07], and the deviation in the calculated

energy spectrum may achieve 10%.
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Figure 5.1: Neutrino mean free path of free Fermi gas. Results of WS cell calculations

(dashed lines) are compared with analytical result (dots) from Appendix A. The

upper curve corresponds the density ρ = 0.01 fm−3, and the lower curve for ρ = 0.02

fm−3.

The Hartree-Fock calculations are performed at the temperature T = 1 MeV. This

temperature is relatively low to connect our calculations of the mean free path with

a certain astrophysical scenario, e.g., the cooling of NS. However, the main goal

of our work is to investigate the difference of NMFPs in the pasta and homoge-

neous matter due to the different spatial density distributions. This difference will

be largest at low temperature as at higher temperatures the inhomogeneous mass

distributions tend to disappear. Therefore, the low temperature considered here

determines the maximal effect of the spatial density distribution on the mean free

path. For higher temperatures this influence becomes weaker and vanishes at the

melting temperature, which is around T = 15 MeV.

Comparing the spectra of single-particle energies obtained for the homogeneous

and inhomogeneous solutions, one observes that the single-particle energies for the

localized states in inhomogeneous matter show more negative energies than the

lowest single-particle states for the homogeneous approach. This effect was already

discussed in Chapter 4. In the β-equilibrium, all proton states are localized and
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Figure 5.2: Proton abundance in the case of uniform matter (dashed line) and pasta

phase (solid line). The symbols refer to specific calculations, whereas the lines have

been added to guide the eye. The results for Skyrme-Hartree-Fock calculations are

shown in the upper panel and the relativistic mean-field results in the lower one.

The dashed arrows indicate typical densities leading to pasta structures of droplet,

rod and slab shape.
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therefore tend to have more attractive single-particle energies in the inhomogeneous

as compared to the homogeneous density calculation. The variational calculations

allowing for pasta structure yield larger proton fractions than obtained for the β-

equilibrium of homogeneous matter at the same global density.

This can be seen from inspecting Fig.5.2. The upper panel of this figure contains

results of the proton abundances for baryonic matter in β-equilibrium that resulted

from non-relativistic Skyrme Hartree-Fock calculations. The proton abundance of

homogeneous matter is a monotonically increasing function of total density and it

reaches the value of 4% at the density of 0.1 fm−3. Allowing for inhomogeneous mat-

ter distribution, one obtains a significant increase of the proton fraction at densities

below 0.03 fm−3, while in the density region from 0.03 to 0.08 fm−3 its value is almost

constant around 3.2%. The lower panel of Fig.5.2 displays the corresponding results

derived from the relativistic mean field approach. This relativistic approach seems

to provide a smaller symmetry energy at these low densities, which leads to smaller

proton abundances in the inhomogeneous as well as the homogeneous solution.

In Fig.5.3 we intend to demonstrate the dependence of the neutrino cross section

for the charge current reaction on the spatial orientation of the momentum transfer

q. This is displayed in terms of the corresponding neutrino mean free path, which

has been calculated according to (5.8) from σx (solid line) and σz (dashed line),

respectively. Note that due to our choice of the coordinate system, the results for

σy are identical to those for σx for the rod as well as the slab structures.

For the density ρ of 0.0625 fm−3, which leads to a rod structure, we obtain results for

the NMFP ranging from 20 km for neutrinos with an energy of 10 MeV down to 30

cm for neutrinos with an energy of 100 MeV. For low-energy neutrinos, the NMFP

for reactions with a momentum transfer parallel to the x-axis is larger by a factor

of 2 as compared to a momentum transfer parallel to the z-axis, a difference which

disappears for neutrinos with larger energies. This factor of 2 is non-negligible but

small on the scale of variations for the NMFP as a function of the neutrino energy.

Therefore, the simple averaging procedure of Eq.(5.7) seems to be adequate.

Similar results are obtained for the slab configuration as can be seen from the lower

panel of Fig.5.3. Note that the results for the NMFP are considerably smaller at

low neutrino energies (by a factor of 10) and even at neutrino energies as large as

100 MeV smaller by a factor 2, although the ratio of the inverse densities is only
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Figure 5.3: The neutrino mean free path (NMFP) calculated for the charged current

reaction in case of rod and slab configurations demonstrate the dependence of the

result on spatial orientation of the momentum transfer q. For these calculations we

have employed results of the Skyrme HF approach and ignored the blocking of final

electron states.
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about 1.2.

The NMFP calculated in CC (left panel) and NC (middle panel) reactions for homo-

geneous and inhomogeneous matter distributions are shown in Fig.5.4. First, let us

compare the NMFP of homogeneous matter for both types of reactions. The main

influence on NMFPs results from the available phase space for each reaction. In

fact, the proton fraction of homogeneous matter does not exceed 1% for the densi-

ties considered here. Thus we have to consider a much larger blocking effect for the

neutrons in the final states NC reactions than for the protons in the CC reactions.

Therefore, the cross section of CC absorption is larger than in NC scattering, and

consequently, the mean free path is shorter, as it is shown by the red dashed lines

in Fig.5.4. Due to the small proton abundances in homogeneous matter, the Pauli

blocking factor of final electron states affects the result for the CC reaction only at

very small neutrino energies Eν < 10 MeV.

Fig.5.4 also presents results for the NMFP of inhomogeneous matter for both types

of currents (left and middle panels). First of all, we should emphasize the larger

influence of electron blocking factor on CC current reaction in the droplet phase.

This is due to the larger proton abundances in the β-equilibrium of the inhomo-

geneous matter. At a neutrino energy around Eν ≃ 10MeV, the mean free path

of CC processes is longer in comparison with NC scattering, because in this region

the Pauli blocking of electrons in CC reaction dominates over the differences in

phase spaces of the baryonic states. If the energy of incoming neutrino Eν rises,

the Pauli blocking drops exponentially and the ratio of the cross sections for CC

and NC reactions is determined by the available phase space for the baryonic states

as discussed above for the homogeneous matter calculation. This means that the

NMFP of absorption due to CC becomes shorter than the respective result in NC

scattering. At higher densities, where rods and slabs appear, the influence of Pauli

blocking of electrons is partially compensated by the effects of the baryonic phase

space. Therefore, the NMFP of CC reaction remains shorter in comparison with NC

reaction for all neutrinos with 10 ≤ Eν ≤ 100.

The same features are also observed in the comparison of NMFP due to the different

currents for the models of inhomogeneous baryonic matter, which are based on the

relativistic mean field calculations displayed in Fig.5.6.

The cross section for neutrino scattering in homogeneous matter increases with the
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Figure 5.4: Skyrme-Hartree-Fock calculations of NMFP for pasta phases (solid

curves) and the respective results for homogeneous matter at the same global density

(dashed curves). The results for the charged current reaction are shown in the left

column, the neutral current NMFP in the middle, and the total NMFP is shown in

the right panel.

baryonic density in a non-linear way (see the discussion above). Therefore, one may

expect that the mean free path in the inhomogeneous matter is shorter than the

corresponding one for homogeneous of the same global density, since the scattering

on the quasi-nuclear structures shall enhance the respective cross section. Neverthe-

less, the NMFP obtained for the charged current reaction, shown in the left column

of Fig.5.4, demonstrates the opposite behaviour, specially at low densities, where

the droplet phase occurs. The NMFP obtained from absorption in inhomogeneous

matter is longer than the respective result derived from homogeneous matter calcu-

lations.

To explain this effect the difference in proton fractions of homogeneous and inho-
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mogeneous matter discussed in the beginning of this Section is to be considered.

At a typical density of 0.0165 fm−3 where the droplet phase occurs, the proton

abundance in inhomogeneous matter is significantly larger than the respective value

obtained in the homogeneous matter. This difference in the proton fractions has two

effects. First, the homogeneous matter contains less protons in comparison with the

inhomogeneous one. Consequently, the number of unoccupied final proton states

is larger and more transitions, contributing to the total cross section, are possible.

Second, the chemical potential of electrons compensating the charge of the protons

in matter is lower in case of homogeneous matter and the respective Pauli blocking

factor for the produced electrons is lower than those obtained for the inhomogeneous

matter. This effect again modifies the cross section considerably at low Eν . With

the increase of energy of incoming neutrinos, the Pauli blocking of electrons rapidly

drops and more transitions become possible, so that the differences between ho-

mogeneous and inhomogeneous matter distributions are getting less significant and

the respective NMFPs become closer one to another. At higher densities of matter,

where the rod and slab phases occur, the difference in proton abundances are less

important; therefore, the resulted mean free paths are very similar and the effect of

inhomogeneous structure becomes negligible.

At the end we should note that at neutrino energies less than 10 MeV, the NMFPs

of homogeneous and inhomogeneous matter distributions calculated in CC reaction

significantly exceed the typical neutron star radius. Therefore, one can conclude

that the charged current reaction is kinematically suppressed [Bo81].

The results of neutral current reaction are shown on the middle panel of Fig.5.4. It is

obvious that the appearance of pasta phase in this case has no important influence on

neutrino propagation, since this type of reaction does not depend on Pauli blocking

of neutrino in final state (no trapped neutrinos). The only small difference in NMFPs

of homogeneous matter and droplet phase may be explained by different values of

matrix elements in (5.6), since the single-particle wave functions of bound neutrons

in droplet significantly differ from wave functions of homogeneous matter. However,

even this small effect becomes negligible if the global density increases the density

profiles become smoother and transition to the homogeneous phase approaches.

The total NMFP, which combines both reactions, is shown on the right panel. It

can be seen that the total mean free path is slightly shorter than the mean free path
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Figure 5.5: Skyrme-Hartree-Fock calculations of NMFP for droplet phase (solid

curve) and the respective results for homogeneous matter (dashed curve) at the

same global density ρ =0.0166fm−3. The effects of electron blocking factor and

β-equilibrium were ignored.

in charged current reaction. Therefore, we conclude that this reaction is dominant

in the total neutrino response of the system.

Up to now we considered the nuclear matter in β-equilibrium and found that the

main role in NMFP of charged current reaction is played by the electron blocking

factor and the difference in phase spaces, caused by different proton numbers in

the pasta phase and homogeneous matter at the same global density. Therefore, all

effects due to different spatial distribution were hidden. To investigate the influence

of density distributions on NMFP the calculations in homogeneous and inhomo-

geneous matter with the same proton fraction can be performed. For comparison

we choose the non-relativistic droplet phase and homogeneous matter at the same

density with fixed proton fraction 3.5%, ignoring the electron blocking factor. The

results are shown in Fig.5.5. The mean free path is shorter for inhomogeneous den-

sity distributions; however, the difference between two curves is only about 20% at

the neutrino energy Eν =10 MeV. Since the core of droplet phase, localed at the
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center of WS cell originated from the deeply bound states1, its contribution becomes

less significant with the increase of energy Eν . In fact, when energy and momentum

transfers rise, the contribution of deeply bound states becomes less important and

in contrast the contribution of transitions between weakly bound and free states of

neutrons and protons increases.

5.3 The Relativistic Mean-Field Model

To test the sensitivity of the results on the underlying nuclear model and the choice

of the NN interaction, we also investigated the NMFP in the inhomogeneous nu-

clear matter evaluated within a relativistic mean-field (Hartree) approximation by

using a model of density-dependent meson-nucleon coupling constants. The pa-

rameterization of these constants has been fitted to reproduce the properties of

the nucleon self-energy evaluated in Dirac-Brueckner-Hartree-Fock (DBHF) calcu-

lations of asymmetric nuclear matter but has also been adjusted to provide a good

description for bulk properties of finite nuclei [Kl+06, VFF07, SM01, HKL01]. The

density-dependent relativistic mean-field (DDRMF) approach has also been used to

describe the properties of inhomogeneous nuclear matter in the crust of neutron

stars [GV+08].

The density-dependent relativistic mean-field approach is an effective field theory of

interacting mesons and nucleons. Following the usual notation, we consider scalar

(σ, δ) and vector mesons (ω, ρ), which with respect to the isospin correspond to

isoscalar (σ, ω) and isovector (δ, ρ), respectively. The Lagrangian density consists

of three parts: the free baryon Lagrangian density LB, the free meson Lagrangian

density LM and the interaction Lagrangian density Lint:

L = LB + LM + Lint, (5.9)

1See the discussion concerning the deeply bound neutrons in the previous Chapter.
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κ JP I m [MeV] aκ bκ cκ dκ

σ 0+ 0 550 7.7868 2.58637 2.32431 3.11504

ω 1− 0 782.6 9.73684 2.26377 7.05897 -

δ 0+ 1 983 2.68849 6.7193 0.503759 0.403927

ρ 1− 1 769 4.56919 5.45085 1.20926 -

Table 5.1: Parameter set from DBHF by van Dalen et al. [VFF07] for the density

dependent relativistic mean field approach.

which take the explicit form

LB = Ψ̄( iγµ∂
µ −M)Ψ,

LM = 1
2

∑

ι=σ,δ

(
∂µΦι∂

µΦι −m2
ι Φ

2
ι

)

− 1
2

∑

κ=ω,ρ,γ

(
1
2
F(κ)µν F

µν
(κ) −m2

κA(κ)µA
µ
(κ)

)
,

Lint = − gσΨ̄ΦσΨ − gδΨ̄τΦδΨ

− gωΨ̄γµA
µ
(ω)Ψ − gρΨ̄τγµA

µ
(ρ)Ψ

− eΨ̄γµ
1
2
(1 + τ3)A

µ
(γ)Ψ,

(5.10)

with the field strength tensor F(κ)µν = ∂µA(κ)ν − ∂νA(κ)µ for the vector mesons. In

the above Lagrangian density, the nucleon field consisting of Dirac-spinors in isospin

space is denoted by Ψ and the nucleon rest mass by M = 938.9 MeV. The scalar

meson fields are Φσ and Φδ, the vector meson fields A(ω) and A(ρ). Bold symbols

denote vectors in the isospin space acting between the two species of nucleons. The

mesons have rest masses mκ for each meson κ and couple to the nucleons with the

strength of the coupling constants gκ, which depend on a density of the nucleon field

Ψ. This density dependence of the coupling constants was parametrized by

gκ(ρB) = aκ +
[
bκ + dκx

3
]
exp(−cκx), (5.11)

where x = ρB/ρ0 and ρ0 = 0.16 fm−3 is the saturation density of symmetric nuclear

matter. The values obtained for the fit of the coupling functions are summarized in

Table 5.1.

Applying the variational principle to the Lagrangian we obtain a Dirac equation for

the nucleons and Klein-Gordon and Proca equations for the meson fields. Due to
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density-dependent vertices, the variation principle changes to

δL
δΨ̄

=
∂L
∂Ψ̄

+
∂L
∂ρ

δρ

δΨ̄
, (5.12)

where the second expression creates the so-called rearrangement contribution ΣR to

the self-energies of the nucleon field. These rearrangement contributions contribute

only to the zero component of the vector self-energy. Including these additional

contributions, we denote the Dirac equation for the nucleonic single-particle wave

function ψα in the Hartree approximation

(
αp + (Σ0 + ΣR) + β(M + ΣS)

)
ψα = ǫα ψα, (5.13)

where the self-energy contributions read

ΣS = gσΦσ + gδΦδτ3,

Σ0 = gωA
(ω)
0 + gρA

(ρ)
0 τ3 + e

1

2
(1 − τ3)A

(γ)
0 , (5.14)

and the rearrangement self-energy contribution ΣR is obtained by

ΣR =
(∂gσ

∂ρ
Φσρ

s +
∂gδ

∂ρ
Φδρ

s
3 +

∂gω

∂ρ
γµA

(ω)
0 ρ+

∂gρ

∂ρ
A

(ρ)
0 ρ3

)
. (5.15)

The various densities are obtained from the nucleon single-particle wave functions

in the ”no-sea” approximation as

ρs(x) =
∑

α

ηα ψ̄α(x)ψα(x)

ρs
3(x) =

∑

α

ηα ψ̄α(x)τ3ψα(x)

ρ(x) =
∑

α

ηα ψ̄α(x)γ0ψα(x)

ρ3(x) =
∑

α

ηα ψ̄α(x)γ0τ3ψα(x)

ρ(em)(x) =
∑

α

ηα ψ̄α(x)1
2
(1 − τ3)ψα(x) [−ρe(x)]. (5.16)

where ρs is the scalar density, ρ the baryon density, ρs
3 the scalar isovector density,

ρ3 the vector isovector density, and ρ(em) the charge density. The occupation factors

ηα have to be determined from the desired scheme of occupation.
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Neglecting retardation effects, the Klein-Gordon equations reduce to inhomogeneous

Helmholtz equations with source terms

(−∆ +m2
σ) Φσ = −gσ ρ

s

(−∆ +m2
δ) Φδ = −gδ ρ

s
3

(−∆ +m2
ω)A

(ω)
0 = gω ρ

(−∆ +m2
ρ)A

(ρ)
0 = gρ ρ3

−∆A
(γ)
0 = e ρ(em), (5.17)

from which the self-energy contributions (5.14) are obtained. The Dirac equation

for the nucleons (5.13), the evaluation of the resulting densities (5.16), these meson

field equations (5.17) and the calculation of the resulting self-energy contributions

(5.14) form a set of equations, which have to be solved in a self-consistent way.

For the description of nuclear matter in a Wigner-Seitz cell, the Dirac equation

(5.13) and the meson field equations (5.17) are solved in spatial representation. The

numerical procedure to solve the Dirac equation in the cubic box is the same as that

for the non-relativistic Skyrme Hartree-Fock approach described above. Pairing

correlations are included in terms of the BCS approximation assuming a density-

dependent zero-range pairing force [MMM04].

The resulting single-particle energies and spinors were used in the calculation of

NMFP as described in the next Section.

5.4 Mean Free Path in Relativistic Model

First, let us consider the charged current reaction. Here we will exploit the most

general form for the nucleonic current, which is allowed due to the Lorentz, parity

and isospin invariances [SL]:

JCC
µ = iψ̄p[F

v
1 (q2)γµ + F v

2 (q2)σµνqν + FA(q2)γ5γµ − iFp(q
2)γ5qµ]ψn, (5.18)

where F v
1 and F v

2 are isovector electromagnetic formfactors, FA is the axial-vector

formfactor, Fp is the induced pseudoscalar formfactor. Following the common prac-

tice, we ignore the contribution of the second-class currents. The leptonic current

has the same structure as in (5.3). Analogously to (5.1) and (5.5), the averaged
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squared matrix element for the charged current reaction can be written in the form

|M | 2 =
G2

FC
2

2
[ |M1|2(1 − pl

3El
cosϑ) + |M2|2(1 +

pl

El
cosϑ) (5.19)

+|M3|2(p2
l + E2

ν − 2plEν cosϑ− p3
l

3El
cosϑ− pl

3El
E2

ν cosϑ+
2p2

l

3El
Eν)

+|M4|2
pl

El
((p2

l + E2
ν) cosϑ− 2ElEν cosϑ+ plEl +

El

pl
E2

ν − 2plEν)],

where

M1 = F1ψ̄pγψn + FAψ̄pγ5γψn,

M2 = F1ψ̄pγ0ψn + FAψ̄pγ5γ0ψn − iFpψ̄pγ5q0ψn,

M3 = F2ψ̄pΣψn,

M4 = Fpψ̄pγ5ψn,

and

Σ =

(
σ 0

0 σ

)
.

Dirac spinors ψ and the respective single-particle energies are obtained from the

solution of the Dirac equation [GV+08].

The hadronic part of the neutral current involves additionally isoscalar electromag-

netic formfactors F s
1 and F s

2 , so that

JNC
µ =

i

2
ψ̄n[FA(q2)γ5γµ − iFp(q

2)γ5qµ (5.20)

+(1 − 2 sin2 θW )(F v
1 (q2)γµ + F v

2 (q2)σµνqν)

−2sin2θW (F s
1 (q2)γµ + F s

2 (q2)σµνqν)]ψn,

where θW is the Weinberg angle. The respective matrix element for this reaction

looks like

|M | 2 =
G2

F

8
[ |N1|2(1 − 1

3
cos ϑ) + |N2|2(1 + cosϑ) (5.21)

+|N3|2(E ′2
ν + E2

ν − 2EνE
′
ν cos ϑ− 1

3
E ′2

ν cosϑ− 1
3
E2

ν cosϑ+ 2
3
EνE

′2
ν )

+|N4|2(Eν − E ′
ν)

2(1 + cosϑ)],
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Figure 5.6: Results of NMFP due to NC (dashed lines) and CC (solid lines) reactions.

The description of the inhomogeneous baryonic matter distributions results from

the density dependent relativistic mean-field calculations. As examples we present

results for the droplet phase displayed in the left panel at a density of 0.034 fm−3

and for the rod phase (right panel) at 0.055 fm−3.

where

N1 = ((1 − 2 sin2 θW )F v
1 − 2 sin2 θWF

s
1 )ψ̄nγψn + FAψ̄nγ5γψn,

N2 = −FAψ̄nγ5γ0ψn − ((1 − 2 sin2 θW )F v
1 − 2 sin2 θWF

s
1 )ψ̄nψn + iFP ψ̄nγ5ψn,

N3 = ((1 − 2 sin2 θW )F v
2 − 2 sin2 θWF

s
2 )ψ̄nΣψn,

N4 = Fpψ̄nγ5ψn.

Substituting (5.19) and (5.21) in (5.4), one obtains the mean free path of neutrinos in

relativistic mean-field model for charged and neutral current reactions, respectively.

A comparison of NMFPs of charged and neutral currents in case of pasta phase based

on a relativistic mean-field model in a WS cell is displayed in Fig.5.6. It is worth
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mentioning that within the relativistic model we could not find any formation of slab

structures. Therefore, only results for droplet and rod structures are shown. Also

the global density at which the droplet phase occurs in the relativistic mean-field

model is two times larger than the respective density in the nonrelativistic model.

The difference between proton fractions of homogeneous matter and pasta phase is

not so significant. In fact, the values of proton abundance around ρ = 0.02 fm−3,

displayed in the lower panel of Fig.5.2, are about 40% smaller than the corresponding

values obtained in the Skyrme model (the upper panel). Therefore, we omit the

comparison between NMFPs of homogeneous and inhomogeneous matter; however,

we compare the mean free paths of pasta phase for both types of reactions. One

can see that at Eν < 20MeV, the behavior of CC curves is determined by the Pauli

blocking, while at higher energies the result becomes sensitive to the structure of

phase space available for the reactions. Both charged and neutral current mean free

paths decrease if the global density of matter rises.

Summarizing we conclude that the NMFP is determined by three different factors.

The first of them – the Pauli blocking effect of final electrons in CC reaction –

plays the most important role at low neutrino energy and drops exponentially if

the energy increases. The second factor is the difference in baryonic phase spaces of

different reactions. The phase space of CC absorption is larger than in NC scattering,

because the Fermi energy of final (proton) states is considerably lower than the

neutron Fermi energy. The last factor, related to a significant difference of the

spatial density distributions, leads to the reduction of the NMFP in inhomogeneous

matter; however, it plays a smaller role in comparison with other effects.
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Chapter 6

Low-momentum NN Interaction

Many approaches have been developed to predict the properties of nuclear matter

under extreme conditions. Some of them are based on the phenomenological mod-

els which successfully describe the ground state properties of stable nuclei. Along

this line the non-relativistic density-dependent Skyrme model has been constructed

[Sk59], [VB72], [NV72], [SP07]. There exist more than 87 different Skyrme param-

eterizations, adjusted to fit the bulk properties of finite nuclei and nuclear matter.

However only 27 of them give the satisfactory neutron star models [SM+03]. This

emphasizes a large sensitivity of the effective theories on the phenomenological input

they are based on. The relativistic mean-field (RMF) approaches use the effective

interaction represented by a Lagrangian density, dependent on a set of the coupling

constants (sometimes density-dependent [GV+08]), which is fitted to the saturation

properties of nuclear matter and ground state of finite nuclei [Gl00]. However the va-

lidity of this approach in the high density regime raises doubts, since the meson fields

used in RMF theory may be not that reliable in the density region 1ρ0 ≤ ρ ≤ 5ρ0

[AP+98].

The nuclear matter calculations based on the realistic models of NN interaction

allow us to test the predictions of phenomenological models. In this Chapter we

outline a method, allowing to incorporate the realistic NN interaction in many-body

Hartree-Fock calculations.
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Figure 6.1: The 1S0 channel of various realistic forces in the coordinate representa-

tion. Taken from Ref. [AHI08].

6.1 Historical Overview

The theoretical description of finite nuclei and nuclear matter applying a micro-

scopic theory is a major challenge of nuclear physics. It is assumed that the NN

interaction is based on the available free-space data, viz., the elastic nucleon-nucleon

and neutron-deuteron scattering phase shifts. Then the theoretical predictions can

be obtained from the many-body calculations, developed for strongly interacting

systems.

At low densities and energies the nucleons are mostly treated as non-relativistic

point-like fermions. A proper derivation of the nucleon-nucleon interaction from the

first principles remains obscure, since the fundamental theory of strong interaction,

QCD, is non-perturbative in the energy regime characteristic for the low-energy

nuclear physics. Therefore the many-body calculations are commonly based on the

phenomenological meson-exchange models for the two-nucleon force1. The three-

(or even four-) body forces must be introduced to enhance the capability of such

models and to obtain accurate results for few-body systems.

1In the literature such a NN interaction is often referred to as ”residual”QCD strong interaction.
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As is well known, there are several high precision models of the nucleon-nucleon

interaction VNN , which we will refer to as the ”realistic” interactions. In these models

the long-range part of interaction, corresponding to the inter-nucleon distances of the

order 2 fm∼ 1/mπ, is described by the model-independent one-pion exchange (OPE)

[Yu35]. However the intermediate-range attraction ∼ 1/(2mπ) and the short-range

repulsion are treated by using different phenomenological form factors. In Fig.6.1

some of the realistic forces are shown in the coordinate representation. One can see

that these models, being significantly different at short distances, possess however

the same long-range parts. In the following we outline the most popular realistic

interactions:

• The Bonn potentials [MHE87] use the multiple one-boson exchange interactions

and the two-pion exchange potential calculated in perturbation theory. The two-

pion exchange is then approximated by an energy-independent σ-meson exchange

term. At short distances the potential is regularized by the form factors. The CD-

Bonn potential [MSS96], [Mac01] considers in addition the non-local contributions

from the covariant amplitudes.

• The local Argonne potential consists of the one-pion exchange regularized at short

distances, and a phenomenological parametrization at short and intermediate dis-

tances [WS+95]. Starting from the distance r ∼ 0.5 fm the core is controlled by the

Woods-Saxon functions.

• The Nijmegen potentials [SK+94] are based on the multiple one-boson exchange.

The parameters of interaction depend on the partial waves. The exponential form

factors regularize the potential at very short distances.

• The Paris potential includes the two-pion exchange using the dispersion-theory

[LL+80]. The local potential is described by several static Yukawa functions. The

ω-meson exchange is included as a part of the three-pion exchange. The potential

accounts for the repulsive core at distances about 0.8 fm. At very short distances

an energy-dependent soft core is used.

Recently a great progress was achieved in deriving the low-energy NN interactions

within the framework of the Effective Field Theory (EFT) [ORK94], [KSW98],

[Pa+98], [EGM00], [BB+]. EFT is constructed below the chiral symmetry break-

ing scale Λχ ∼ 1GeV, where the appropriate degrees of freedom for nuclear systems

are nucleons and pions. The other degrees of freedom such as higher mass mesons,
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Figure 6.2: The diagonal matrix elements of the high precision potentials VNN versus

the relative momentum in 1S0 partial wave channel.

nucleon resonances, antinucleons or other baryons are not relevant for low-energy

physics and may be considered as to be integrated out of the theory. The pion-

nucleon Lagrangian, constrained by the symmetries of QCD, contains all possible in-

teractions consistent with the chiral symmetry. Along this line one obtains the chiral

symmetric EFT, which is used to construct either perturbative or non-perturbative

controlled approximations for the low-energy nuclear systems. The EFT thus pro-

vides a model-independent description of the two-body systems. However, the high

precision description of NN scattering data provided by realistic models is at present

not achieved by the rigorous EFT potentials.

• By using the EFT the Idaho potential was developed [EM01]. Unlike the rigorous

EFT this potential is model-dependent, since it contains several terms, which must

be omitted in the power-counting scheme. However they allow a better description

of the scattering phase shifts.

All mentioned potentials are tuned to fit about 3000 data which constitute the

database for NN scattering below the pion threshold Elab ≃ 350MeV 2. This energy

corresponds to a cutoff parameter in momentum space Λdata ≃ 2 fm−1. Unfortu-

2Following Ref. [SK+93] it is the uppermost energy for which the data would be included in

NN database because of the pion-production threshold. At higher energies the NN collisions are

no longer elastic.
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nately the experimental data is not sufficient to resolve the short-range behaviour of

the forces. Therefore the strong model-dependence of the high precision potentials

is observed in the momentum-space matrix elements (see Fig.6.2), in spite of their

common successful description of low-energy experimental data3. This leads to the

conclusion that the low-energy physics is not sensitive to the parameterization of the

short-range (high-momentum) part of NN interaction. This argument plays an im-

portant role in the theory of low-momentum effective NN interaction, the so-called

Vlow-k, discussed in this Chapter.

Apart from the unwanted model-dependence, the short-range repulsion prevents

the use of realistic potentials in the lowest order many-body calculations based

on the standard Hartree-Fock mean-field theory. This problem can be overcome

by the Brueckner-Hartree-Fock approximation [Br54], [BL55], in which the model

space is restricted to one Slater determinant and the initial realistic interaction

gives the scattering G-matrix through the solution of the Bethe-Goldstone equation

[Go57]. In this case the G-matrix may be interpreted as a kind of effective NN

interaction. However, from a formal point of view, G-matrix is not the effective

interaction, because it is energy-dependent and usually non-Hermitian (theG-matrix

is Hermitian only for a constant starting energy) and it has no decoupling property

between the model space and its complement [S82], [SO94].

Another promising way of solving the short-range problem consists in decoupling

of the initial Hilbert space on two model spaces, by introducing the cutoff momen-

tum Λ. In such a way one can separate the predictions of correlations at low and

medium momenta, which are constrained by the NN scattering data below the pion

threshold, from the high momentum components, which may strongly depend on the

underlying model of the realistic interaction. After that the contribution of the high-

momentum components (above Λ) can be integrated out. The effective interaction

Vlow-k, constructed in such a way, does not have momentum components larger than

the cutoff. Thus it is considerably softer than the initial high-precision potential,

and can be used in the standard Hartree-Fock calculations. Also it was found that

for a cutoff parameter Λ ≃ 2 fm−1 the Vlow-k interaction becomes independent on

the underlying realistic interaction (compare Fig.6.2 and Fig.6.3).

3The model dependence of high-momentum components may lead to an uncertainty in predic-

tions of nuclear matter properties under extreme conditions we are interested in.
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Figure 6.3: The diagonal matrix element of Vlow-k potential generated from Argonne

V18 and CDBonn potentials in 1S0 channel. One can observe that in momentum

space both realistic interactions give the same Vlow-k force at the cutoff Λ ≃ 2 fm−1.

There are two equivalent methods to construct the effective low-momentum interac-

tion. One of them is based on the renormalization group (RG) treatment [BS+01],

[BK+01], [BK+02], while the alternative method was proposed by Suzuki [S82] and

Okamoto [SO94] on the basis of the unitary-model-operator-approach referred to

shortly as UMOA, which is a natural extension of the model-space method by Lee-

Suzuki [LS80], [SL80] and Okubo [O54]. The equivalence of the model-space meth-

ods to the RG equation is obvious, since both of them preserve the half-on-shell

(HOS) T -matrix, the bound state poles, and the P -space projection of low-energy

eigenstates 4. Below we will briefly outline both methods.

6.2 The Renormalization Group Approach

The renormalization group approach to the nucleon-nucleon interaction was pro-

posed by Bogner et al. [BK00]. It removes the short-distance model dependence of

the bare potentials preserving their high accuracy in describing the nucleon-nucleon

scattering data and deuteron binding energy. The fundamental principle of an up

4The equivalence of model space techniques and the renormalization group approach for a

separable potential are considered in [BK00]. See also [BF+08].
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to date effective theory is that low-momentum physics is not sensitive to the details

of high-momentum one. Therefore an effective theory replacing the short-distance

dynamics by effective interactions and preserving the low-momentum symmetries

can be constructed.

Let us consider a quantum system with interaction Vbare. This contains the long-

range part VL, which is determined mainly by OPE potential and the short-range

part VH , which is poorly understood. In this case the total interaction can be

separated as

Vbare = VL + VH . (6.1)

The full Hamiltonian of the system can be written

H = H0 + VL + VH , (6.2)

where the operator H0 denotes the one-body part of the two-body system and con-

tains the kinetic energy of the interacting particles. The cutoff Λ can be imposed

on the intermediate state energies and momenta. This cutoff decouples the low-

energy states, which are important in low-energy physics, from the high-energy

states. The potential VH cannot be simply neglected since it has an effect on the

low-momentum part and must be included as a correction term. These correction

terms are determined by demanding that an effective Hamiltonian Hlow-k reproduces

all the low-energy spectra and amplitudes in the low-momentum space (below the

cutoff).

An arbitrary amplitude can be written in perturbation theory as

〈f |A|i〉 = 〈f |Vbare|i〉 +
∞∑

n=0

〈f |Vbare|n〉〈n|Vbare|i〉
Ei −En

+ O(V 3
bare), (6.3)

where the summation runs over both the low- and high-energy states of the full

Hilbert space. Now the bare potential Vbare is replaced by Vlow-k. In this case the

sum does not run anymore to infinity but over the low-momentum space up to the

cutoff Λ. Vlow-k is defined introducing a correction term δVct instead of the high-

momentum potential VH

Vlow-k = VL + δVct. (6.4)

This correction term can be well approximated by contact interactions since the

cutoff Λ results in short distance propagation of about 1/Λ. The general form of
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δVct should contain all local contact operators consistent with the symmetries of the

high-momentum potential. Using Vlow-k one obtaines the schematic equation for the

amplitudes

〈f |A|i〉 = 〈f |Vlow-k|i〉 +

Λ∑

n=0

〈f |Vlow-k|n〉〈n|Vlow-k|i〉
Ei − En

+ O(V 3
low-k). (6.5)

The requirement that Vlow-k should be independent from the cutoff Λ and reproduce

the same phase shifts as the bare potential leads to a renormalization group equation

d

dΛ
〈f |A|i〉 = 0 −→ d

dΛ
Vlow-k = β([Vlow-k],Λ), (6.6)

where the flow of the renormalization group β depends on the low-momentum po-

tential and the cutoff. The process of solving this equation is called ”integrating out”

or decimating the high-energy degrees of freedom. The details of high-momentum

physics relevant for the low-momentum interaction are filtered out. The power

counting scheme of EFT is a useful tool to truncate the correction terms δVct and

fit the couplings to the low-energy data [BK+03].

To derive the RG equation explicitly one starts from the Lippmann-Schwinger (LS)

equation for the off-shell matrix

T = VNN + VNNG0T (6.7)

or in the partial-wave notation

T (k′, k;ω) = VNN(k′, k) +
2

π
P
∫ ∞

0

VNN(k′, p)
p2dp

ω − p2
T (p, k;ω), (6.8)

where under VNN a realistic potential is assumed, k and k′ are the relative momentum

of incoming and outgoing nucleons respectively, and T is the T -matrix. The next step

is to replace the ”bare”LS equation (6.8) by the cutoff one, which incorporates Vlow-k

interaction instead of the ”bare”VNN . However, there is no such energy-independent

potential that satisfies the resulted equation for the fully off-shell T -matrix [Ha08].

In this situation the modified Lippmann-Schwinger equation may be determined

only for HOS T -matrix

Tlow-k(k
′, k; k2) = Vlow-k(k

′, k) +
2

π
P
∫ Λ

0

Vlow-k(k
′, p)

p2dp

k2 − p2
Tlow-k(p, k; k

2), (6.9)
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where Λ is the cutoff. The rigorous mathematical bridge between the standard LS

equation (6.8) and the last equation(6.9), which determines Vlow-k, is not trivial

and can be provided by introducing the so-called Q̂-box within the Kuo-Lee-Ratcliff

(KLR) folded diagram theory [KLR71] 5. From the condition

d

dΛ
Tlow-k(k

′, k; k2) = 0 (6.10)

we obtain the RG equation for Vlow-k

d

dΛ
Vlow-k(k

′, k) =
2

π

Vlow-k(k
′,Λ)T (Λ, k; Λ2)

1 − (k/Λ)2
. (6.11)

By construction, the low-momentum HOS T -matrix of the initial interaction is pre-

served by Vlow-k interaction obtained from the solution of differential RG equation

(6.11)

T (k′, k; k2) = Tlow-k(k
′, k; k2); for k′, k ≤ Λ. (6.12)

The main result of the renormalization is that up to a cutoff of about Λ ≈ 2.1

fm−1 the effective interaction Vlow-k remains independent on the input model. In

Fig.6.4 this is shown by a collapse of two different realistic forces in 1S0 channel

after the renormalization. This allows us to say, that Vlow-k is unique and, as it

reproduces by construction the experimental phase shifts and the deuteron binding

energy as accurate as the high precision models, it can also be regarded as a realistic

low-momentum interaction. There is no need anymore to make assumptions on the

short-range part of interaction. The renormalization filters out the short distance

details of the input potential and preserves the high-momentum correlations which

contribute to low-momentum observables. Therefore the low-momentum potential

Vlow-k is softer as usual many-body potentials and it is easier to apply it to many-body

calculations because no Brueckner ladder resummation or short-range correlation

methods are needed.

An alternative method to define an effective Hamiltonian for a model space is based

on a unitary transformation of the initial Hamiltonian. Such approach was suggested

by Lee and Suzuki ([LS80]), and leads to the energy-independent, hermitian effective

interaction.

5For details see [Ha08].
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Figure 6.4: The 1S0 channel of Vlow-k(k, k) potential generated from Argonne V18

(circules) and CDBonn (squares) potentials for different values of the cutoff Λ.

6.3 The Model Space Technique

The decoupling of the full Hilber space on two model spaces, which incorporate

the low- and medium-momenta, and its complement with the high-momentum com-

ponents was proposed by Suzuki and Okamoto on the basis of the unitary-model-

operator-approach referred to shortly as UMOA. The UMOA was first formulated by

Providencia and Shakin [PS64], and followed by several authors [S82], [SO94]. Later

these authors developed new principles for determining the unitary transformation

by applying the effective-interaction theory of the Hermitian form. The new version

of UMOA enables us to use the Hermitian, energy-independent and decoupled ef-

fective interaction instead of the G-matrix. UMOA has also been used to calculate

the ground state properties of finite nuclei [SO94], [KSO97], [FOS04], [RP+06].

The effective NN interaction is defined in a low-momentum subspace of the Hilbert

space, the so-called P -space. This subspace is determined by the projection operator

P̂ . The complement (Q-space) of P -space is uniquely identified by the projection

operator Q̂. For simplicity we will omit the ”hat” notation for operators Ô → O.
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The projection operators P and Q satisfy the usual relations as

P +Q = 1, (6.13)

P 2 = P, Q2 = Q, (6.14)

PQ = QP = 0, (6.15)

thus the transformed Hamiltonian does not couple the P - and Q-spaces.

In the UMOA the resulting Hamiltonian can be evaluated by using of a cluster

expansion of unitary transformed Hamiltonian. The cluster expansion technique

yields the effective interaction terms between two, three and more particles, even

if one considers a realistic interaction with two-body terms only 6. In the previous

study of the finite nuclei the contribution of the three-body clusters was investigated.

It was found that the three-body clusters do not have a significant contribution and

therefore one can neglect the three-body terms for simplicity.

Here we determine an effective two-body interaction and consider only two-body

systems. The effective interaction of Hermitian type is written as

Veff = U−1(h0 + v12)U − h0, (6.16)

where v12 is the bare two-body NN interaction and U is an operator, which deter-

mines this transformation. The one-body term h0 contains the kinetic energy ti.

However if we consider an effective interaction between two nucleons in the medium

of nuclear matter the single-particle potential ui must be added

h0 = t1 + u1 + t2 + u2. (6.17)

Following [S82] one can define the operator U as

U = (1 + ω − ω†)(1 + ωω† + ω†ω)−1/2, (6.18)

where ω is defined as an operator satisfying the conditions

ω = QωP, (6.19)

PωP = QωQ = PωQ = 0. (6.20)

The operator ω is active only when a P -space is multiplied from the r.h.s. or a

Q-space states from the l.h.s. This leads to the property ω2 = ω† 2 = ω3 = · · · = 0.

6A very simple schematic illustration to this statement is given in [FN+97].
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Figure 6.5: The 3S1-
3D1 channel of Vlow-k(k, k) potential generated from Argonne

V18 (circles ) and CDBonn (squares) potentials for different values of the cutoff Λ.

Historically the operator ω was introduced to construct the non-Hermitian effec-

tive interaction within the Rayleigh-Schrödinger perturbation theory. Following the

original paper by Suzuki [S82] the operator U can be written as

U = exp {G}, (6.21)

where G fulfills the relation G† = −G. The connection between G and ω can be

proved to be

G = arctahn(ω − ω†) =

∞∑

n=0

(ω − ω†)2n+1

2n+ 1
. (6.22)

In this case the operator U is related with ω as

U = exp {arctahn(ω − ω†)} = (1 + ω − ω†)(1 + ωω† + ω†ω)−1/2. (6.23)

Thus we recover (6.18). Operators ω†ω and ωω† are active only in the P -space and

in the Q-space, respectively. This expression for U (6.18) agrees with the block form

obtained by Okubo [O54]

U =

(
P (1 + ω†ω)−1/2P −Pω†(1 + ωω†)−1/2Q

Qω†(1 + ω†ω)−1/2P Q(1 + ωω†)−1/2Q

)
.
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Now to determine the effective interaction (6.16) one needs the matrix element of

ω. First, one starts solving exactly the two-body eigenvalue equation

(h0 + v12)|Φk〉 = Ek|Φk〉, (6.24)

where |Φk〉 is the eigenvector. Now the matrix elements of ω in the basis of |p〉 (|q〉)
states in the P (Q)-space are determined from

〈q|ω|p′〉 =

Np∑

p=1

〈q|Q|Φp〉〈ϕ̃p|p′〉, (6.25)

where Np stands for the dimension of the P -space, and 〈ϕ̃p| is the biorthogonal state

of |φk〉 = P |Φk〉 satisfying

∑

p

〈ϕ̃k|p〉〈p|ϕk′〉 = δkk′, (6.26)

∑

k

〈p′|ϕ̃k〉〈ϕk|p〉 = δpp′. (6.27)

The Eq.(6.25) determines those Np, which have the largest overlap with the P -space.

Now, to obtain the matrix elements of U , we solve the eigenvalue equation for ω†ω

in the P -space

ω†ω|χp〉 = µ2
p|χp〉. (6.28)

The solution of this eigenvalue problem gives a new ket vector |νp〉

|νp〉 =
1

µp
ω|χp〉, (6.29)

which is due to the relation ω = QωP can be written as

〈q|νp〉 =
1

µp

∑

p′

〈q|ω|p′〉〈p′|χp〉. (6.30)

Now, with the help of Eqs.(6.28)-(6.30) we obtain the matrix elements for unitary

transformation operator U

〈p′′|U |p′〉 = 〈p′′|(1 + ω†ω)−1/2|p′〉 (6.31)

=

Np∑

p=1

(1 + µ2
p)

−1/2〈p′′|χp〉〈χp|p′〉, (6.32)
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〈q|U |p′〉 = 〈q|(1 + ω†ω)−1/2|p′〉 (6.33)

=

Np∑

p=1

(1 + µ2
p)

−1/2µp〈q|νp〉〈χp|p′〉, (6.34)

〈p′|U |q〉 = −〈p′|ω†(1 + ωω†)−1/2|q〉 (6.35)

= −
Np∑

p=1

(1 + µ2
p)

−1/2µp〈p′|χp〉〈νp|q〉, (6.36)

〈q′|U |q〉 = 〈q′|(1 + ωω†)−1/2|q〉 (6.37)

=

Np∑

p=1

{(1 + µ2
p)

−1/2 − 1}〈q′|νp〉〈νp|q〉 + δq,q′. (6.38)

This matrix element of U can then be used to determine the matrix elements of the

effective interaction Veff in P -space, where Veff is nothing else but Vlow-k [BDM06,

FOS04].

In Fig.6.4 we demonstrate the evolution of 1S0 channel7 of Vlow-k produced for CD-

Bonn and Argonne V18 potentials at different values of Λ. One can see that the

model independence of Vlow-k is reached at the cutoff around Λ ≃ 3.0 fm−1. This

value of the cutoff lies below the masses of ω and ρ mesons, and therefore the re-

sulted low-momentum interaction is not sensitive to the details of the short-range

core.

The origin of the tensor interaction of Vlow-k can be investigated in the coupled

channel 3S1-
3D1. The evolution of this channel with increasing cutoff Λ is shown

in Fig.6.5. It can be seen that for the relative momenta below k ≤ 0.7 fm−1 both

realistic potentials are identical. Since the momentum k ≃ 0.7 fm−1 corresponds

to the pion mass mπ we can conclude that the underlying realistic forces have the

same one-pion-exchange part, as mentioned already above. The high-momentum

part (k > 0.7 fm−1) of the matrix element is sensitive to the choice of Λ.

Note that this separation into low- and high-momentum components is only for

two nucleons in the vacuum. Employing the resulting interaction in a many-body

calculations is essentially based on the assumption that this separation is not affected

7Here the nuclear spectroscopical notation 2S+1LJ is used, where S is the total spin of the NN

system, J denotes its total angular-momentum, and L denotes its orbital angular momentum.
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by the medium of other nucleons. If the same scheme would be applied, e.g., to a

basis of three-nucleon states the resulting low-momentum Hamiltonian will contain

terms, which have to be treated as an effective three-body interaction.

6.4 Vlow-k Hartree-Fock Calculations

The Vlow-k interaction can be produced by using either the RG treatment or the

model space technique. Both approaches are equivalent and lead to the same energy-

independent potential. In practice, however, most calculations with Vlow-k are based

on the model space method rather than the differential equations of the RG because

the latter are numerically more robust [BF+08]. In the following we will consider

Vlow-k produced after UMOA.

Since Vlow-k does not contain the strong short-range components it can be used

in the Hartree-Fock calculations. Performing such calculations8 for the symmetric

nuclear matter one obtains a binding energy increasing with density in a mono-

tonic way [BDM06, GV+09, KM+03]. It is shown on Fig.6.6 by solid line. This

absence of the saturation is one of the main problems in calculations employing

Vlow-k. This problem cannot be cured by the inclusion of correlations beyond the

HF approximation, e.g., by means of Brueckner-Hartree-Fock (BHF) approximation

[BDM06]. Therefore one can argue that the low-momentum interaction does not

reproduce the saturation as it misses the quenching of the short-range correlations

in the nuclear medium. Here we should stress, that in fact the BHF calculations

lead to the saturation of symmetric nuclear matter, however such results are not

able to reproduce the empirical saturation point [MP00, CC+70]. The correct satu-

ration can be achieved if one includes a three-body force [LLZ00], or by considering

the relativistic effects, viz., the change of the nucleon Dirac spinors in the medium

[VFF04, VFF07, BM84, MMB90]. Recent relativistic calculations by van Dalen

and Müther demonstrate that saturation in the symmetric nuclear matter can be

achieved within the Vlow-k approach by inclusion of relativistic effects in dressing

the Dirac spinors, used to evaluate the underlying realistic interaction [VDM09]. In

8Calculations of the bulk properties of infinite homogeneous matter require only the diagonal

part of matrix element Vlow-k(k, k) (see, e.g., [HT70]). Study of the single-particle spectrum is

possible within the WS cell approximation.
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Figure 6.6: Comparison of binding energy per nucleon of symmetric nuclear matter.

Results of Hartree-Fock calculations with Vlow-k (solid) and Vlow-k plus contact term

(dashed).

nonrelativistic calculations it corresponds to the inclusion of a density-dependent

two-body interaction [GV+09] or an effective three-body force [BS+05]. Therefore

we supplement the low-momentum interaction by a simple contact interaction (CT),

which takes into account three-body correlations and was chosen due to conventional

Skyrme parameterization

∆ν = ∆ν0 + ∆ν3, (6.39)

with

∆ν0 =
1

4
t0[(2 + x0)ρ

2 − (2x0 + 1)(ρ2
n + ρ2

p)] (6.40)

and

∆ν3 =
1

24
t3ρ

α[(2 + x3)ρ
2 − (2x3 + 1)(ρ2

n + ρ2
p)], (6.41)

where ρp and ρn refer to the local densities for protons and neutrons while the matter

density is denoted as ρ = ρn + ρp. The parameters of the contact interaction are

t0, x0, t3, x3 and α. As described below we have chosen a fixed value of α = 0.5

and x0 = 0.0 and fitted t0, t3 and x3 in such a way that Hartree-Fock calculations

using Vlow-k plus contact term of Eq.(6.39) yield the empirical saturation point for

symmetric nuclear matter with a binding energy E/A = -16.0 MeV at the density ρ0
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Figure 6.7: The symmetry energy as a function of baryon density. The Hartree-Fock

calculations with Vlow-k (solid) and Vlow-k plus contact term (dashed).

= 0.16 fm−3 (see dashed line on Fig.6.6). We should notice that only the isoscalar

part of the contact term (6.39) can be fixed with the help of the symmetric nuclear

matter. The isovector part can be adjusted by inspecting the symmetry energy. On

Fig.6.7 the symmetry energy as a function of density is shown. The calculations

with Vlow-k gives only Esym = 21 MeV at the saturation density, thus only about

two-thirds of the experimental value. This can be explained by the softness of Vlow-k.

We choose α = 0.5 and x0 = 0.0 and the remaining three parameters are fixed in

order to reproduce the symmetry energy as well as the saturation point. These

parameters are summarized in Table 6.1.

After the contact interaction has been adjusted to reproduce the saturation of sym-

metric nuclear matter, one can proceed investigating the bulk properties of finite

nuclei. The Hartree-Fock calculations must be performed in the WS cell approxi-

mation, thus the whole space is restricted to a spherical cell. Within the HF ap-

proximation the interaction model Vlow-k leads to a single-particle Hamiltonian for

protons and neutrons (τ = n, p) of the form

Hτ = Hkin +HVlow-k

τ + ∆Hct
τ +HCoul

τ δτp, (6.42)

where Hkin is the kinetic part, ∆Hct originates from the contact interaction of
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Eq.(6.39). This part is given by

∆Hct
τ =

t0
2

[(2 + x0)ρ− (1 + 2x0)ρτ ] +
t3
24

[(2 + x3)(2 + α)ρ1+α (6.43)

− (2x3 + 1){2ραρτ + αρα−1(ρ2
n + ρ2

p)}]. (6.44)

The Coulomb contribution for protons

HCoul = UCoul
dir + UCoul

exch , (6.45)

where the direct term is

UCoul
dir = 4πe2





∫
dr′r′2ρp(r

′)/r, r′ ≤ r
∫
dr′r′ρp(r

′), r′ ≥ r,
(6.46)

and the exchange term can be written as

UCoul
exch = −e2

(
3

π

)1/3

ρ1/3
p . (6.47)

Since the effective interaction Vlow-k is nonlocal and defined in terms of matrix ele-

ments in momentum space the Hartree-Fock calculations has to be performed in a

Hilbert space using an appropriate basis |α〉, |β〉 . . . . The HF Hamiltonian is then

expressed in terms of the matrix elements between these basis states 〈α|HHF |β〉 and

the single-particle states |Ψn〉 are defined in terms of the expansion coefficients in

this basis

|Ψn〉 =
∑

α

|α〉〈α|Ψn〉 =
∑

α

cnα|α〉. (6.48)

The part of the HF Hamiltonian originating from Vlow-k can be expressed in terms

of two-body matrix elements by

〈α|Hlow-k|β〉 =
∑

γ,δ

〈αγ|Vlow-k|βδ〉ργδ, (6.49)

where ργδ is the single-particle density matrix. As the next step one has to choose

an orthogonal basis system. The matrix element 〈αγ|Vlow-k|βδ〉 is easy to calculate

within the harmonic oscillator (HO) basis. First, one calculates the oscillator matrix

element using the momentum representation of the relative basis. After that this

matrix element must be transformed from the two-body center-of-mass system to

the laboratory system by using the well-known Talmi-Moshinsky brackets [Mo59,
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Interaction t0 [MeV fm3] t3 [MeV fm3+3α] x3

CT -584.1 8330.7 -0.5

Table 6.1: Parameters of the contact interaction defined in Eq.(6.39).

Interaction 16O 40Ca 48Ca 60Ca 208Pb

E/A [MeV]

Vlow-k+CT -7.91 -8.57 -8.42 -7.75 -7.76

Experiment -7.98 -8.55 -8.67 – -7.87

rch [fm]

Vlow-k+CT 2.79 3.50 3.54 3.68 5.51

Experiment 2.74 3.48 3.47 – 5.50

Table 6.2: The binding energy per nucleon and rms charge radii of finite nuclei

derived from Hartree-Fock calculations with Vlow-k+CT interaction. The center-of-

mass correction to the binding energy was performed after variation (see Eq.(2.35)).

The charge radii were found from the charge density (6.51). Experimental data

taken from Refs. [Br98, AW93, Ch+96, Fr+95].

Ta52, Ta93]. The HO basis is used successfully in calculations of the bulk properties

of deeply bound nuclei. The validity of this basis in description of weekly bound

wave functions of nucleons is rather questionable. Such weekly bound nucleons exist

in exotic nuclei close to the dripline, as well as in pasta structures, which appear

in the inner crust of neutron stars. The asymptotic behavior of weekly bound wave

functions can be very good approximated by an exponential, but not the Gaussian

typical for HO basis. Therefore it was suggested that the nucleon wave functions

should be expanded in terms of plane waves (4.4). In the PW basis the calculation

of Vlow-k matrix elements in the relative basis is trivial, however the transformation

from the relative to the laboratory coordinate frames is much less convenient, since

it involves the evaluation of the vector brackets [KKR79, BM89].

The calculations with the PW basis are sensitive to the radius of the cell RWS. For

small radii the resolution of the radial momenta kil (see Eq.(4.4)) may be insufficient.

For larger cells, however, one needs a larger number of basis function in order to
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cover the relevant range of momenta. It was found that the optimal choice is a

radius of WS cell, which is about 5 times larger than the nuclear radius. So we used

RWS = 15 fm for nuclei from 16O to 60Ca, while RWS = 40 fm for nucleus 208Pb.

In Table 6.2 the energy per nucleon of finite nuclei is shown. The Vlow-k interaction

is supported with the contact interaction, which is adjusted to the properties of

nuclear matter. This interaction model gives a good agreement for binding energies

and charge radii of finite nuclei in comparison with the experimental data. The

nuclear charge radius can be found from

rC =
√
〈r2〉 =

∫
d3rr2ρC(r)∫
d3rρ(r)

, (6.50)

where the charge density is calculated from the proton density ρp

ρC(r) =

∫
d3r′fp(r− r′)ρp(r

′). (6.51)

Here the proton form factor fp(r − r′) is taken as a Gaussian [BM+87, VB72]

fp(s) =
1

r3
0π

3/2
e
− s

2

r2
0 , (6.52)

with r0 =
√

2/3〈rp〉rms and the root-mean-square charge radius of the proton taken

as its free value 〈rp〉rms = 0.8 fm. The radii calculated in such a way are slightly

larger than the experimental values due to a small global underbinding of nuclei.

This reflects a very strong correlation between binding energies and charge radii of

nuclei known for many years [CC+70].

To investigate the single-particle structure of nuclei in details we show the single-

particle energies9 of 16O in the Table 6.3. The deviation from the experimental

values is on average about 10%. Although a large deviation in 1s1/2 level between

the calculated value -37.162 MeV and experimental -47.0 MeV one should bear in

mind that this level has a large experimental uncertainty.

All the results discussed above indicate that Vlow-k interaction, being constructed

to describe the low-energy scattering data, may be successfully used in many-body

calculations of finite nuclei and homogeneous nuclear matter. This universality of

Vlow-k is a great advantage over those phenomenological models of NN interaction

fitted to the bulk properties of nuclei and nuclear matter itself. So we can conclude

9The principal quantum number n is counted from 1, not from 0: n = 1, 2, 3 . . .
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Level Neutrons Protons

Vlow-k+CT Exp. Vlow-k+CT Exp.

1s1/2 -37.162 -47.00 -33.601 -44± 7

1p3/2 -20.006 -21.839 -16.632 -18.451

1p1/2 -16.484 -15.663 -13.155 -12.127

1d5/2 -3.739 -4.144 -0.690 -0.601

2s1/2 -1.566 -3.273 0.839 -0.106

1d3/2 0.339 0.941 1.886 4.399

Table 6.3: Single-particle energy levels of 16O derived from Hartree-Fock calculations

with Vlow-k+CT interaction.

that the predictive power of Vlow-k, which is so necessary in the astrophysical land-

scape due to the lack of experimental data, is rather plausible. In the nearest future

Vlow-k will be used in calculations of the inhomogeneous nuclear matter, which exists

in the crust of neutron stars. In this case the matter must be considered within the

WS cell approximation (see Chapter 4). Therefore we would like to demonstrate

a simple test for this approximation in Vlow-k Hartree-Fock calculations. With this

aim the binding energy of the homogeneous, symmetric nuclear matter is calculated

within the plane wave approximation (see Fig.6.6) as well as in the cell with Dirich-

let boundary conditions. The influence of the shell effects on the kinetic energy is

excluded, so that only the potential energy per nucleon is considered. The solid line

in Fig.6.8 corresponds to the plane wave calculations, while energies resulting from

the cell calculations are shown by various symbols.

The systematic discrepancy between the infinite matter and calculations in the WS

cell of different radii is observed. This discrepancy cannot be explained by a small

size of the cell, since upon varying the radius from RWS = 6 fm to RWS = 10 fm

all points remain on the same line. Let us therefore suppose that the problem is

hidden in the transition from the infinite matter to its representation within the

isolated cell. This transition leads to the discretization of the energy spectrum of

nucleon. Thus all particles occupy levels, which are characterized by the radial mo-

menta kli (see Eq.(4.4)). Therefore one can identify the momentum kli of the last

fully occupied level with the Fermi momentum kF . It turns out that kF defined in
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Figure 6.8: Potential energy per nucleon of symmetric nuclear matter. Infinite

matter (solid line) versus WS cell approximation (symbols). The Fermi momentum

is determined as kF = (3π2ρ/2)1/3.
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such a way does not coincide with the Fermi momentum derived from the relation

kF = (3π2ρ/2)1/3, which is shown on the ordinate axis of Fig.6.8. There occurs an

uncertainty in definition of the Fermi momentum due to the discretized representa-

tion of the continuous energy spectrum. To check whether kF is connected to the

wave vector kli or the average density of nucleons ρ = (N + Z)/Vcell the potential

energy as a function of kF = kli was computed. The respective results are shown in

Fig.6.9. In spite of larger shell model oscillations the WS cell approximation gives

results which are closer to the predictions of infinite matter. Therefore we may con-

clude that kF determined as the radial momentum of the highest occupied orbit is

the correct assumption. It leads to a new definition of the density, which instead of

ρ = (N + Z)/Vcell should be calculated from the Fermi momentum ρ = 2k3
F/(3π

2).

One should keep in mind this difference by calculating the inhomogeneous nuclear

matter.

Jumping ahead, we would like to notice, that all Vlow-k Hartree-Fock calculations

within the WS cell remain very time consuming in comparison with the standard

Skyrme Hartree-Fock scheme, mainly due to the nonlocality of Vlow-k. One can solve

this problem by construction of a separable form of Vlow-k, as explained in the next

Section.

6.5 Separable Form of Vlow-k

In the previous Section we considered the realistic low-momentum interaction Vlow-k

and its application in many-body calculations of finite nuclei and nuclear matter.

Here the separability of low-momentum interaction is investigated by using the diag-

onalization of Vlow-k matrix in momentum space for each partial wave channel. This

allows finding a low rank separable form of Vlow-k, which simplifies the Hartree-Fock

calculations.

Originally Vlow-k is nonlocal and defined in terms of matrix elements in a basis of NN

states labeled by the relative momentum for pairs of nucleons. Thus for each partial

wave channel there exists a matrix, which represents Vlow-k(k, k
′) on a mesh of N

discretized relative momenta k and k′ in the range 0 ≤ k, k′ ≤ Λ. Since this matrix

is real and symmetric with respect to k, k′ one can diagonalize it, so that it can be
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values ai of 3S1-
3D1 channel.

written as a sum of N real eigenvalues multiplied with the respective eigenvectors

Vlow-k(k, k
′) =

N∑

i=1

aif
∗
i (k)fi(k

′), (6.53)

where N is the number of mesh-points and the dimension of Vlow-k matrix. The

eigenvectors fi(k) satisfy the orthogonality relation

2

π

∫ Λ

0

dkk2fi(k)fj(k) = δij. (6.54)

In the following we will omit the symbol of complex conjugation because all eigen-

vectors are real. The last equality (6.53) is nothing else but the general definition of

a separable potential of the rank N . If the rank of the separable potential equals to

the dimension of the matrix Vlow-k(k, k
′) the whole information is exactly restored

from the eigenvalues ai and eigenvectors fi. As we will see later, some of eigenvalues

ai can be zero or negligibly small so that one can reduce the rank of separable inter-

action taking into account only the n eigenvalues with the largest absolute values.

It leads to a new approximated separable interaction V
[n]
low-k(k, k

′)

Vlow-k(k, k
′) ≃ V

[n]
low-k(k, k

′) =
n∑

i=1

aifi(k)fi(k
′), (n ≤ N). (6.55)
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The low-rank separable representation of NN interaction leads to significant simpli-

fications in many-body calculations.

In the following we discuss the results for symmetric nuclear matter as well as

finite nuclei obtained from HF calculations. These calculations are performed in the

model space, which is defined by a cutoff parameter Λ in the two-body scattering

equation, employing the corresponding low-momentum interaction Vlow-k, derived

from the CDBonn [MSS96] interaction using the technique described in the previous

Section. The NN interaction has been restricted to partial waves with total angular

momentum J ≤ 6.

We start our discussion with the comparison of the eigenvalues ai obtained from

diagonalization of 20×20 matrix of Vlow-k(k, k
′) in 1S0 channel. The resulted nonzero

eigenvalues are shown on the top of Fig.6.10 for different values of Λ. As it was

discussed above, Vlow-k interaction becomes model independent at Λ = 2 fm−1. At

this value of the cutoff parameter Λ the diagonalization procedure yields only 11

nonzero eigenvalues, in other words, Vlow-k interaction in 1S0 channel is a separable

interaction of the 11th rank or, following (6.53), one can write

V
[11]
low-k(k, k

′) = Vlow-k(k, k
′). (6.56)

The nonzero eigenvalues are essentially independent on N , the dimension of the
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matrix representing Vlow-k. Going further one can notice, that many of the nonzero

eigenvalues are nevertheless very small, and only some of them, e.g., at i = 1, 2, 20

carry the main part of the information about the interaction model. This gives rise to

a substantial lowering of the rank of separable potential, as it was shown in Eq.(6.55).

With the increase of the cutoff Λ the absolute values of the eigenvalues increase as

well and as a consequence the rank n of the separable form V
[n]
low-k defined in (6.55)

has to be increased to achieve a reasonable accuracy. Increasing Λ more information

about the short-range components of the underlying bare interaction is included,

which requires a larger rank in the separable representation of the interaction.

In case of the coupled channels, like 3S1-
3D1 channel, the dimension N of the Vlow-k

matrix is twice as large if one keeps the number of mesh-points in each channel the

same as for the uncoupled partial waves. It turns out that also the number of nonzero

eigenvalues increases as shown in the lower panel of Fig.6.10. It is obvious that the

rank of the separable potential should be higher than for 1S0 channel. It is a general

feature that coupled channels require higher rank separable interaction than the

uncoupled ones [HP84]. Also one observes pairs of positive and negative eigenvalues

which have about the same absolute value. This picture remains for higher values

of Λ. As we will see later, this symmetry between positive and negative eigenvalues

will play a crucial role in convergence of the separable form V
[n]
low-k to the initial Vlow-k

with increase of rank.

In order to determine a minimal rank for a reliable separable approximation in each

channel we calculate the square deviation η of the separable form V
[n]
low-k from the

original potential Vlow-k for each rank n

η =
∑

k,k′

∣∣∣Vlow-k(k, k
′) − V

[n]
low-k(k, k

′)
∣∣∣
2

/
∑

k,k′

|Vlow-k(k, k
′)|2 . (6.57)

In case of the 1S0 channel this deviation is shown in Fig.6.11. At Λ = 2 fm−1 one

observes a fast convergence to zero deviation already at the rank n = 2. A very

similar behavior is also observed for the other uncoupled channels. This indicates,

that the separable potential of the second rank V
[2]
low-k approximates with a high

accuracy all uncoupled channels of the original Vlow-k. The growth of the cutoff

monotonically increases the rank of the separable potential. At Λ = 3 fm−1 one may

expect a good accuracy starting from n = 5.

In Fig.6.12 we display the deviation η for 3S1-
3D1 channel. First, at low n the
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Figure 6.12: Squared deviation of the separable V
[n]
low-k(k, k

′) from the original

Vlow-k(k, k
′) in 3S1-

3D1 channel for different values of the cutoff parameter Λ.

absolute value of the deviation is one order of magnitude higher than for uncoupled
1S0 channel. Increasing the rank one observes a non-monotonic, oscillating decrease

of η, specially for high Λ. As we have seen, the diagonalization of the channel 3S1-
3D1

yields both positive and negative eigenvalues, which are symmetrically distributed

over i. So that they form ”pairs” with very similar absolute values. Assuming the

odd rank we take into account either uncompensated positive or negative eigenvalue.

This eigenvalue will be compensated in the next (even) rank, and the accuracy will

be significantly improved.

The deviation η for other channels at Λ = 2 fm−1 is shown in Figs.6.13, 6.14. In

the following we choose the second rank approximation for the uncoupled channels

(n = 2) and the third rank for the coupled one (n = 3). Below, the respective

separable version of Vlow-k will be referred to as V
[2,3]
low-k.

Now let us turn to the binding energy of symmetric nuclear matter, displayed in

Fig.6.15. The HF calculations using V
[2,3]
low-k (dashed line) yields essentially the same

result as the one employing the original Vlow-k interaction (solid curve). The deviation

does not exceed 1% at the saturation density ρ0 and 1.7% at the density 2ρ0. We

also compared the binding energy of pure neutron matter for both potentials and

found that the discrepancy is less than 1% for the same range of densities.
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Figure 6.13: Squared deviation of the separable V
[n]
low-k(k, k

′) from the original

Vlow-k(k, k
′) for various uncoupled channels at Λ = 2 fm−1.
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Figure 6.14: Squared deviation of the separable V
[n]
low-k(k, k

′) from the original

Vlow-k(k, k
′) for various coupled channels at Λ = 2 fm−1.
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Figure 6.15: Energy per nucleon of symmetric nuclear matter as a function of the

density. Results of Vlow-k interaction (solid line) compared with the separable form

V
[2,3]
low-k (dashed line) and the respective fitted form V

[2,3]
fit (dashed-dotted line).

However, neither of the 2 calculations yields a saturation point, i.e. a minimum

in the energy versus density plot, as it has been observed before [KM+03, BS+05].

This absence of the saturation is one of the main problems in calculations of nuclear

matter employing Vlow-k. It cannot be cured by the inclusion of correlations beyond

the HF approximation, e.g., by means of the BHF approximation [BDM06]. Recent

relativistic calculations by van Dalen and Müther demonstrate that saturation can

be achieved within the Vlow-k approach by inclusion of relativistic effects in dressing

the Dirac spinors which are used to evaluate the underlying realistic interaction

[VDM09].

All the results obtained so far indicate that V
[2,3]
low-k is an accurate low-rank separable

representation of Vlow-k interaction. However, in order to make it accessible to other

users, it should be parameterized in a simple form. Here we suggest the fitting

function for all fi(k) in all channels

fi(k) = αi + (βi exp (γik
δi) + µi) sin(kσi + λi), (6.58)

which contains 7 parameters for each partial wave channel and each fi(k). In Ap-

pendix B, we summarized all parameters of the separable fitted form for coupled
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Interaction t0 [MeV fm3] t3 [MeV fm3+3α] x3

CT -584.1 8330.7 -0.5

CT1 -548.0 7890.13 -0.5

CT2 -565.467 8180.0 -0.5

Table 6.4: Parameters of the contact interaction defined in Eq.(6.39). The set CT

was produced for Vlow-k [VGM09], while CT1 and CT2 supply V
[2,3]
fit .

Interaction ρ0 [fm−3] E/A(ρ0) [MeV] K [MeV]

Vlow-k+CT 0.16 -16.0 258

V
[2,3]
fit +CT1 0.16 -16.1 241.9

V
[2,3]
fit +CT2 0.156 -16.0 240.5

Table 6.5: Bulk properties of symmetric nuclear matter derived from Vlow-k and its

separable representation. They are supplemented by the respective contact interac-

tion.

and uncoupled channels. By using the values from both tables shown there one

can reproduce the fitted version of V
[2,3]
low-k for a given partial wave channel. In the

following we will identify the respective separable fitted potential as V
[2,3]
fit .

In order to check the accuracy of our fit we perform HF calculations of nuclear

matter employing V
[2,3]
fit . The respective binding energy as a function of the density

of symmetric nuclear matter are displayed on Fig.6.15 by a dashed-dotted line. One

observes that at up to saturation density ρ0 ≃ 0.16 fm−3 the fitted potential V
[2,3]
fit

reproduces the results of V
[2,3]
low-k (dashed), while at higher densities it becomes slightly

less bound and lies closer to the original Vlow-k (solid). Thus the deviation of the

fitted separable potential V
[2,3]
fit from Vlow-k does not exceed 1% of binding energy.

Not going into details we mention that the deviation rises mainly from 3S1-
3D1 and

3P2-
3F2 coupled channels.

As we have already seen form Fig.6.15 Vlow-k interaction as well as its separable form

V
[2,3]
fit does not describe the empirical saturation point. To achieve the saturation in

nuclear matter one has to add three-body interaction terms or a density-dependent

two-nucleon interaction. Therefore we support the low-momentum interaction by a
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Figure 6.16: Energy per nucleon of symmetric nuclear matter as a function of the

density. Results of Vlow-k + CT interaction (solid line) compared with the fitted

separable form V
[2,3]
fit + CT1 (dashed line) and V

[2,3]
fit + CT2 (dashed-dotted line).

simple contact interaction (6.39). Following [GV+09] we label by CT the contact

interaction produced for Vlow-k, and the respective interaction model by Vlow-k+CT.

For the fitted potential V
[2,3]
fit we suggest two possible parameterizations: CT1 and

CT2. Their parameters and properties of nuclear matter are shown in Tables 6.4

and 6.5, respectively.

The interaction V
[2,3]
fit + CT1 gives the binding energy per nucleon of symmetric

nuclear matter E/A=-16.1 MeV at the density ρ0 = 0.16 fm−3. The HF calculations

of nuclear matter (see Fig.6.16) for V
[2,3]
fit + CT1 give results (dashed line) very

similar to the non-separable initial interaction Vlow-k + CT (solid line). However,

in the calculation of finite nuclei we observe a deviation of about 0.12MeV in the

binding energy of light nuclei, like 16O (see Table 6.6). The picture can be improved

if we assume, that the saturation density is not defined exactly and allow for a

small deviation. Along this line the second parameterization CT2 was produced.

The interaction V
[2,3]
fit + CT2 gives E/A=-16.0 MeV at the density ρ0 = 0.156 fm−3.

This corresponds to a small shift of the saturation point with respect to the initial

Vlow-k interaction (see Fig.6.16). It allows to improve the accuracy in the binding
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Interaction 16O 40Ca 48Ca 60Ca 208Pb

E/A [MeV]

Vlow-k+CT -7.91 -8.57 -8.42 -7.75 -7.76

V
[2,3]
fit +CT1 -7.79 -8.56 -8.35 -7.78 -7.76

V
[2,3]
fit +CT2 -7.84 -8.58 -8.37 -7.79 -7.76

Experiment -7.98 -8.55 -8.67 – -7.87

rch [fm]

Vlow-k+CT 2.79 3.50 3.54 3.68 5.51

V
[2,3]
fit +CT1 2.81 3.51 3.55 3.68 5.52

V
[2,3]
fit +CT2 2.82 3.53 3.58 3.71 5.56

Experiment 2.74 3.48 3.47 – 5.50

Table 6.6: The binding energy per nucleon and rms charge radii of finite nuclei.

Experimental data taken from Refs. [Br98, AW93, Ch+96, Fr+95].

energies of finite nuclei: one can notice that the contact interaction CT2 leads to a

better description than CT1. However, comparing the rms charge radii of nuclei in

Table 6.6, we see that due to the shift in saturation density the interaction V
[2,3]
fit +

CT2 yields larger radii than the interaction V
[2,3]
fit + CT1.

For all models considered here the compressibility modulus at saturation density is

in the range 240.5 ≤ K ≤ 258 MeV. This means that the respective equations of

state (EoSs) displayed in Fig.6.16 are rather soft, at least at densities up to about

two times saturation density. Such a prediction of a soft EoS is in agreement with

data extracted from heavy ion reactions. For example, heavy ion data for transverse

flow [St+04] or from kaon production [St+01] support the picture of a soft EoS in

symmetric nuclear matter.

The simple separable form of Vlow-k constructed here can significantly simplify the

Hartree-Fock calculations. In the nearest future this permits us to make one step

further in our study, towards the investigation of inhomogeneous nuclear matter and

its exotic shapes, which merge under extreme pressure, density, and temperature in

the inner crust of neutron stars.
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Chapter 7

Summary and Outlook

The properties of nuclear matter under extreme conditions is one of the most im-

portant ingredient for the study of compact objects in modern astrophysics. The

knowledge of the EoS is of high relevance for the treatment of the astrophysical

phenomena such as neutron stars or supernovae core collapse. Recently a significant

progress in understanding of the nature of compact stars was achieved by using the

standard methods of the many-body nuclear physics.

In early eighties the existence of the inhomogeneous nuclear matter, which is also

known as the pasta phase, in supernovae and in the crust of neutron stars was pre-

dicted in the Thomas-Fermi calculations. This opened a new era in the application

of the many-body technique to the astrophysical environment. It is expected that

the existence of the pasta phase will play a crucial role in neutrino transport proper-

ties, which are an essential ingredient in the description of the gravitational collapse

of supernovae and the cooling of young neutron stars. In spite of the significant

achievements in numerical simulations there still exist, however, plenty of questions

of fundamental interest: How does the pasta phase influence the neutrino opacity?

What is the proton fraction in the crust of neutron stars? What is the range of

temperatures and densities over which the pasta phase exits? How strong is the

model dependence in the nuclear matter calculations? Some of these questions were

covered in the present work.

In the first part of this Thesis the properties of the inhomogeneous nuclear mat-

ter and their influence on the neutrino propagation have been investigated. The

structure of the charge neutral baryonic matter, containing protons, neutrons and
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electrons is considered performing the Skyrme Hartree-Fock calculations with the

inclusion of pairing correlations and finite temperatures in a periodic lattice of WS

cells of cubic shapes. This allows to observe a smooth transition from the neutron

rich nuclei embedded in neutron sea, which exist in the outer crust, to the homo-

geneous matter, which appears at higher densities. The symmetries of the WS cell

allow the existence of the non-spherical quasinuclear structures, like cylindrical rods

and planar slabs. Forming such shapes the energy is reduced compared to the ho-

mogeneous matter distribution. The result of the Hartree-Fock calculations at the

finite temperatures is that all pasta structures disappear at the temperature about

15 MeV. This critical temperature was found to be in agreement with relativistic

calculations by other groups. Thus, these effects of the pasta phase become relevant

after a young and hot neutron star is cooled down to this temperature.

The Skyrme Hartree-Fock calculations within the WS cell approximation provide us

with the information about the pasta phase structure on a single-particle level. The

resulting single-particle energies and wave functions of nucleons can be used as a

solid starting point for further studies of the neutrino-pasta interaction and neutrino

opacity. In this Thesis the neutrino mean free path is extracted from the total cross

section of neutrinos on the volume of WS cell. The cross section, in its turn, is

derived from the Fermi and Gamow-Teller transition matrix elements for the charged

current absorption and neutral current scattering reactions. Due to the absence

of the spherical symmetry the mean free path has been averaged over the spatial

orientations. It was found that the existence of the pasta phase inside the crust

affects the NMFP mainly through the charged current reaction. The variational

calculations for pasta structure yield larger proton fractions, in comparison with the

homogeneous matter at the same global density. Consequently the WS cell with

the inhomogeneous matter distribution contains a larger number of electrons. This

reduces the number of possible transitions in the charged current reaction, since

the blocking effect for the final electrons should be taken into account. It leads

to a longer mean free path in the inhomogeneous nuclear matter in comparison to

the homogeneous one. The described mechanism emphasizes the role of the proton

fraction in neutrino propagation. It was also found that the effect of inhomogeneous

density distributions is less pronounced for the neutral current reaction.

The model dependence of the results has been tested by imploying relativistic mean-
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field calculations as an alternative. Within the relativistic model with the density-

dependent coupling constants only two pasta structures have been observed: spher-

ical droplets and cylindrical rods. The proton fraction of the inhomogeneous matter

was found to be closer to the homogeneous matter predictions, so that its influence

in the charged current reaction becomes less significant as in the non-relativistic

Skyrme model.

The phenomenological models, being adjusted to the experimental data on finite

nuclei and empirical saturation point of nuclear matter possess rather a limited pre-

dictive power in determination of the EoS at high densities. Therefore the nuclear

structure calculations should be performed with the realistic forces constructed to

describe the experimental scattering data. In this connection, the realistic low-

momentum interaction Vlow-k is discussed in details in the second part of the Thesis.

This low-momentum potential is constructed from the realistic models of NN in-

teraction, by introducing a cutoff Λ in momentum space, and integrating out the

high-momentum components of the initial interaction. It was found that with the

cutoff in the range of Λ = 2 fm−1 Vlow-k becomes model independent, and reproduces

the deuteron binding energy, low-energy phase shifts, and half-on-shell T matrix

with the same accuracy as the initial realistic interaction. The absence of strong

short-range components in Vlow-k allows to involve this potential in the standard

Hartree-Fock calculations.

The Vlow-k Hartree-Fock calculations demonstrate a monotonic increase of binding

energy of symmetric nuclear matter as a function of the nucleonic density, thus the

empirical saturation point cannot be reproduced. Therefore Vlow-k interaction was

supplemented by a simple density-dependent contact term (CT), which accounts for

the three-body correlations. The parameters of the contact term are adjusted to

the saturation point and compressibility of the nuclear matter. Finally, the Hartree-

Fock calculations with the interaction model Vlow-k + CT allow to describe the bulk

properties of nuclear matter as well as the bulk properties and the single-particle

structure of finite nuclei fairly well.

Vlow-k is nonlocal and therefore is represented in terms of a matrix elements in

momentum space for each partial wave channel. This nonlocality increases the com-

putational time in the self-consistent Hartree-Fock calculations, so that it prevents

the use of Vlow-k in calculations of the EoS in the crust for a wide range of densities.
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This situation can significantly be improved if a separable form of Vlow-k is found.

The separability of Vlow-k has been investigated by using the diagonalization of ma-

trix in the momentum space for each partial wave channel. It was found that at

Λ = 2 fm−1 the low-momentum interaction can be accurately approximated by a

low-rank separable interaction. The later can be used in the Hartree-Fock calcula-

tions of the nuclear matter as well as the finite nuclei. This separable form of Vlow-k

is parameterized in a simple way to make it accessible for various nuclear structure

calculations.

In the nearest future Vlow-k potential will be used in calculations of the pasta phase.

Furthermore, by using the separable version of Vlow-k the detailed investigation of

the equation of state with inclusion of the inhomogeneous nuclear matter can be

performed. This will allow to test the predictions of the phenomenological models.

In parallel, one can explore the transformation of Vlow-k from the momentum to the

coordinate space by using the Fourier-Bessel transform. Starting with a separable

interaction in k-space one obtains a separable interaction in r-representation. The

latter can be used in construction of a new type of the phenomenological models.
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Appendix A

In this Appendix we consider the calculation of the NMFP in noninteracting nuclear

matter for charged current reaction ν + n → e− + p. The matrix element of this

reaction is given in terms of the current-current interaction

Mfi =
GF cos θC√

2
jµJµ, (7.1)

where the leptonic and baryonic currents are

jµ = ūeγ
µ(1 − γ5)uν, (7.2)

Jµ = ūp(gV γµ − gAγµγ5)un, (7.3)

with GF = 1.66 × 10−11MeV −2 is the Fermi constant, gV = 1 and gA = 1.23. Thus

the squared matrix element |Mfi|2 is given by

|Mfi|2 =
G2

F cos2 θC

2
[ūeγ

µ(1 − γ5)uν ][ūνγ
ν(1 − γ5)ue] (7.4)

× [ūp(gV γµ − gAγµγ5)un][ūn(gV γν − gAγµγ5)up] (7.5)

Now one should average over initial and sum up over final states

|M̄fi|2 =
G2

F cos2 θC

4
Tr[(p̂e +me)γ

µ(1 − γ5)p̂ν(1 + γ5)γν ] (7.6)

× Tr[(p̂p +mp)γµ(gV − gAγ
5)(p̂n +mn)(gV + gAγ

5)γν ], (7.7)

where we used the notation p̂i = uiγ
α. Further calculation involves the standart

evaluation of traces with γ-matrices, which can be found in [Ma05]. At the end we

arrive to

|M̄fi|2 = 16G2
F cos2 θC (7.8)

× [(gV + gA)2(EeEp −Eepp cos θep)(EνEn − pnEν cos θνn) (7.9)

+ (gv − gA)2(EnEe − pnEe cos θne)(EνEp − Eνpp cos θνp) (7.10)

− (g2
V − g2

A)mpmn(EνEe − EνEe cos θνe)], (7.11)
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where cos θij is the angle between momenta of i-th and j-th particles. Afterwards

the transition rate from initial to final states can be written as

Tfi =
¯|M |2

16EνEnEeEp

. (7.12)

Inserting (7.8) in (7.12)

Tfi = G2
F cos2 θC [(gV + gA)2(1 − vp cos θep)(1 − vn cos θνn) (7.13)

+ (gv − gA)2(1 − vn cos θne)(1 − vp cos θνp) (7.14)

− (g2
V − g2

A)mpmn(1 − cos θνe)], (7.15)

where we used nucleon velocities vi = pi/Ei. Since we consider nonrelativistic

baryons (vi/c << 1) the terms proportional to vi can be simply neglected.

Tfi = G2
F cos2 θC [g2

V + 3g2
A + (g2

V − g2
A) cos θνe]. (7.16)

We can also omit the last term since it is proportional to g2
V − g2

A. The cross section

per unit volume or the inverse neutrino mean free path thus can be written

1

λ
=
σ(Eν)

V
= G2

F cos2 θC

∫
d3pe

(2π)3
(1 − f(Ee))[g

2
v + 3g2

A]S(q, ω), (7.17)

where f(Ei) stands for the Fermi-Dirac distribution

f(Ei) =
1

1 + exp
(

Ei−µi

T

) (7.18)

and

S(q, ω) = 2

∫
d3pp

(2π)3

∫
d3pn

(2π)3
(1 − f(Ep))f(En)(2π)4δ4(p1 + p2 − p3 − p4) (7.19)

The function S(q, ω) is the so-called dynamic form factor and it characterizes the

response of the system to the external probe with momentum transfer q and energy

ω. In the charged current reaction ~q = ~qe − ~qν and ω = Ee − Eν . By using the

relation

d3pe = 2πq(Ee/Eν)dωdq (7.20)

we obtain

1

λ
=
G2

F cos2 θC

4π2
(g2

V + 3g2
A)

∫ Eν

−∞
dωEe/Eν(1 − f(Ee))

∫ 2Eν−ω

|ω|
dqqS(q, ω) (7.21)
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The calculation of the response function is rather strightforward and we skip the

details which can be found, e.g., in [RPL98]. The result is

S(q, ω) =

m2T
πq

1 − exp
(
−ω

T
− µn−µp

T

) ln




1 + exp
(

µn

T
− m

2q2T
(ω − q2

2m
)2
)

1 + exp
(

µp

T
− m

2q2T
(ω + q2

2m
)2
)


 (7.22)

Relations (7.21) and (7.22) determine the NMFP and response function of free

fermi gas at finite temperature. In the limit of zero temperature the Fermi-Dirac

distribution must be replaced by the θ-function and this particular solution for the

response function is considered in [FW71].
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Appendix B

Parameters for the fitted separable version of Vlow-k.

Channel i ai αi βi γi δi µi σi λi

1S0 1 -0.16344E+02 0.10772E-03 -0.43234E-03 0.17650E+00 0.92610E+00 0.10316E-02 0.99335E+00 0.14191E+01

2 -0.66770E+00 -0.20749E-03 -0.18295E-01 0.66232E-01 0.86815E+00 0.20236E-01 0.17925E+01 0.11085E+01

1P1 1 0.15105E+01 0.41103E-04 -0.30056E-02 0.46402E-01 0.12591E+01 0.36618E-02 0.22676E+01 -0.66286E-02

2 0.14569E+02 -0.36052E-02 0.12380E-02 0.30093E+00 0.15720E+01 0.24098E-02 0.46996E+00 0.14196E+01

3P0 1 -0.36339E+01 0.12254E-03 0.20982E-03 -0.59888E+00 0.10769E+01 0.30373E-03 -0.21878E+01 0.96652E+01

2 0.36518E+01 0.34915E-04 -0.39191E-03 0.74648E-01 0.35155E+01 0.35779E-03 0.20292E+01 0.14199E+01

3P1 1 0.11011E+01 -0.44421E-03 0.18896E-02 -0.63158E+00 0.24471E+01 0.94546E-04 0.73498E+00 0.22558E+00

2 0.15410E+02 -0.33598E-03 0.15182E-02 -0.12701E-02 0.54199E+01 -0.85450E-03 0.59810E+00 0.52799E+00

1D2 1 -0.47228E+01 0.23948E-03 0.11514E-02 0.78532E-01 0.83080E+00 -0.14043E-02 0.15502E+01 0.12639E+01

2 -0.42720E+00 0.43276E-03 -0.13308E-02 -0.76108E+00 0.22797E+01 0.89215E-03 0.12810E+01 0.17046E+01

3D2 1 -0.14755E+02 0.23661E-03 -0.16214E-03 -0.20028E+00 0.47727E+01 -0.79636E-04 0.12915E+01 0.17118E+01

2 -0.20625E+01 0.46873E-03 -0.13299E-02 -0.70797E+00 0.22075E+01 0.85842E-03 0.14395E+01 0.16497E+01

1F3 1 0.45580E+00 0.45434E-03 0.34263E-02 -0.23846E+01 -0.12925E+01 -0.45576E-03 0.18623E+01 0.14425E+01

2 0.21276E+01 0.11682E-03 -0.24864E-03 -0.15328E+01 -0.76112E+00 -0.11725E-03 0.20029E+01 0.14366E+01

3F3 1 0.26740E+00 0.44076E-03 0.35397E-02 -0.24171E+01 -0.12481E+01 -0.44204E-03 0.18298E+01 0.14500E+01

2 0.11895E+01 0.12811E-03 -0.89537E-04 -0.63186E+00 -0.13835E+01 -0.12893E-03 0.20960E+01 0.13909E+01

1G4 1 -0.56713E+00 0.93511E-04 -0.32673E-03 -0.14289E+01 -0.10215E+01 -0.94613E-04 0.19148E+01 0.13505E+01

2 -0.09176E+00 0.92267E-02 -0.14963E-01 -0.55660E+01 -0.18735E+01 -0.92335E-02 -0.37857E+00 0.16284E+01

3G4 1 -0.30270E+01 0.10774E-03 -0.16121E-03 -0.77810E+00 -0.15648E+01 -0.10940E-03 0.18745E+01 0.13214E+01

2 -0.5061E+00 0.10191E-03 -0.62066E-03 -0.10817E+01 -0.10648E+01 -0.10392E-03 0.31194E+01 0.13385E+01

1H5 1 0.01455E+01 0.99849E-04 -0.38155E-03 -0.64624E+00 -0.24138E+01 -0.10803E-03 0.33677E+01 0.95975E+00

2 0.06095E+01 0.14458E-06 -0.43467E-03 -0.30481E+00 0.34986E+01 0.43536E-03 0.13486E+01 -0.29605E+00

3H5 1 0.00727E+00 0.86739E-04 -0.36173E-03 -0.88687E+00 0.29817E+01 0.45115E-03 0.32408E+01 -0.20198E+01

2 0.03736E+01 0.17206E-06 -0.45636E-03 -0.28889E+00 0.34083E+01 0.45708E-03 0.13780E+01 -0.31990E+00

1I6 1 -0.01407E+01 0.18615E-04 -0.27820E-04 0.15265E+01 0.97282E+00 0.15276E-04 0.20513E+01 0.15767E+01

2 -0.00281E+01 0.63551E+00 -0.26703E+00 0.18734E+00 0.19309E+01 -0.36758E+00 0.39862E+00 0.15760E+01

3I6 1 -0.08297E+01 -0.18713E-04 -0.30695E+00 0.31341E-03 0.21961E+01 0.30694E+00 0.19374E+01 0.16207E+01

2 -0.0153E+01 0.94460E-04 -0.30640E+00 0.53129E-03 0.14854E+01 0.30630E+00 0.33132E+01 0.79134E+00

Parameters of V
[2,3]
fit for uncoupled channels. See Eq.(6.58).
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Channel i ai αi βi γi δi µi σi λi

3S1 1 -0.39195E+02 0.14710E-03 -0.27882E-02 0.10166E+00 0.98761E+00 0.33148E-02 0.73493E+00 0.91775E+00

2 -0.46417E+01 -0.21867E-04 0.31258E+00 0.17566E-02 0.78784E+00 -0.31368E+00 0.18855E+01 0.11761E+01

3 0.20913E+02 -0.97562E-04 0.33292E+00 0.50609E-03 0.87732E+00 -0.33339E+00 0.14274E+01 0.12444E+01

3D1 1 -0.39195E+02 0.90122E-04 0.31369E-05 0.38917E-03 0.12444E+02 -0.93123E-04 0.13384E+01 0.15561E+01

2 -0.46417E+01 -0.22645E-03 -0.41235E+00 0.40973E-03 0.18283E+01 0.41258E+00 0.15668E+01 0.15335E+01

3 0.20913E+02 0.11207E-03 -0.13705E-04 0.48296E+00 0.24592E+01 -0.97861E-04 0.21818E+01 0.15329E+01

3P2 1 -0.11712E+02 -0.12771E-01 0.74967E-02 0.29157E-01 0.83736E+00 0.53084E-02 0.11992E+00 0.14904E+01

2 -0.21898E+01 -0.92101E-04 0.28219E+00 0.19554E-02 0.11980E+01 -0.28296E+00 0.12014E+01 -0.12709E+00

3 0.17808E+01 0.14009E-03 0.34622E+00 0.13719E-02 0.12162E+01 -0.34694E+00 0.12159E+01 0.29393E+01

3F2 1 -0.11712E+02 -0.37975E-05 -0.26753E-09 0.11862E+02 0.11520E+00 -0.69054E-05 0.10568E+01 -0.53109E+00

2 -0.21898E+01 0.71589E-04 -0.98497E-14 0.22438E+02 0.54423E-01 -0.69308E-04 -0.23032E+01 -0.46525E+01

3 0.17808E+01 0.24733E-03 -0.69363E-04 0.12429E+01 0.45015E+00 0.40433E-03 0.11919E+01 0.40019E+01

3D3 1 -0.60466E+01 0.18332E-03 0.14266E+00 0.41443E-03 0.17445E+01 -0.14284E+00 0.21656E+01 0.15038E+01

2 0.91410E+00 -0.11606E-03 0.18114E+00 -0.13213E+00 0.12510E-02 -0.15901E+00 0.33728E+01 -0.79666E+00

3 0.54641E+01 -0.27373E-03 -0.45681E+00 0.67993E-03 0.90916E+00 0.45713E+00 0.18906E+01 0.99510E+00

3G3 1 -0.60466E+01 0.41921E-04 -0.65759E-01 0.79378E-03 0.18207E+01 0.65717E-01 0.14240E+01 0.16750E+01

2 0.91410E+00 0.78827E-04 -0.73989E-01 -0.17382E-02 0.15332E+01 0.74065E-01 0.30794E+01 -0.18745E+01

3 0.54641E+01 0.15808E-03 -0.16419E-03 -0.10345E+00 -0.99477E+00 0.28959E-03 0.19522E+01 -0.25907E+01

3F4 1 -0.16095E+01 0.18033E-03 0.37879E+00 -0.39428E-03 0.37390E+00 -0.37852E+00 0.21928E+01 -0.23390E+01

2 -0.30360E+00 -0.32058E-03 -0.11873E+01 0.28972E-03 0.16371E+01 0.11877E+01 0.20173E+01 0.11166E+01

3 0.56160E+00 0.24168E-03 -0.11138E+01 -0.80823E-04 0.27458E+01 0.11135E+01 0.19919E+01 0.13089E+01

3H4 1 -0.16095E+01 0.30449E-07 0.28581E-01 -0.69621E+01 -0.54467E+00 0.15057E-05 0.10041E+01 0.30546E+01

2 -0.30360E+00 -0.14910E-02 0.20920E+00 0.26023E-02 0.24400E+01 -0.20770E+00 0.59266E+00 0.16380E+01

3 0.56160E+00 0.17531E-04 0.22351E+00 0.34114E-03 0.19278E+01 -0.22349E+00 0.16346E+01 -0.12499E+01

3G5 1 -0.12501E+01 0.13111E-03 -0.13521E+00 -0.10757E+00 0.10162E-02 0.12130E+00 0.28269E+01 0.70560E+00

2 0.30880E+00 -0.31841E-03 -0.53598E+00 0.61243E-03 0.18397E+01 0.53633E+00 0.23654E+01 0.99154E+00

3 0.16137E+01 -0.93523E-04 -0.48952E+00 -0.88510E-04 0.10928E+01 0.48961E+00 0.25801E+01 0.11545E+01

3I5 1 -0.12501E+01 0.19169E-04 0.29512E+00 0.15469E-03 0.26251E+01 -0.29510E+00 0.17038E+01 -0.16316E+01

2 0.30880E+00 0.38821E-04 0.36156E+00 0.35017E-03 0.19665E+01 -0.36153E+00 0.30449E+01 -0.21756E+01

3 0.16137E+01 0.14023E-04 0.36754E+00 -0.14039E-03 0.25880E+01 -0.36755E+00 0.17978E+01 0.15991E+01

3H6 1 -0.30540E+00 -0.65438E-03 0.65143E+00 0.56031E-03 0.23634E+01 -0.65075E+00 0.48747E+00 0.18318E+01

2 -0.63700E-01 0.25601E-03 0.39808E+00 0.29243E-03 0.32313E+01 -0.39836E+00 0.22583E+01 0.10325E+01

3 0.20960E+00 0.61333E-04 0.25966E+00 -0.32893E-03 0.13102E+01 -0.25972E+00 0.25754E+01 0.11963E+01

3K6 1 -0.30540E+00 -0.10269E-04 0.23504E+00 0.14785E-03 0.31131E+01 -0.23503E+00 0.18245E+01 0.14457E+01

2 -0.63700E-01 -0.19663E-04 0.26322E+00 0.39336E-03 0.23907E+01 -0.26320E+00 0.29488E+01 0.91309E+00

3 0.20960E+00 0.12093E-04 -0.36799E+00 0.11473E-03 0.30036E+01 0.36798E+00 0.18060E+01 0.14804E+01

Parameters of V
[2,3]
fit for coupled channels. See Eq.(6.58).
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[BDM06] P. Boźek, D. J. Dean, and H. Müther, Phys. Rev. C 74, 014303 (2006).

[BE91] G. F. Bertsch and H. Esbensen, Ann. Phys. 209 327 (1991).

111



[BF88] M. Baldo and L. S. Ferreira, Nucl. Phys. A480, 271 (1988).

[BF+85] P. Bonche, H. Flocard, P.-H.Heenen, S. J. Krieger, M. S. Weiss, Nucl.

Phys. A443 39 (1985).

[BF+08] S. K. Bogner, R. J. Furnstahl, and A. Schwenk, arXiv:nucl-th/0806.1365

(2008).

[BF+85] P. Bonche, H. Flocard, P.-H. Heenen, S. J. Krieger, and M. S. Weiss,

Nucl. Phys. A443 39 (1985).

[BK00] S. K. Bogner and T. T. S. Kuo, arXiv:nucl-th/0009077v2 (2000).

[BK+01] S. K. Bogner, T. T. S. Kuo and L. Coraggio, Nucl. Phys. A684 432

(2001).

[BK+02] S. K. Bogner, T. T. S. Kuo, L. Coraggio A. Covello and N. Itaco, Phys.

Rev. C 65 05130(R) (2002).

[BK+03] S. K. Bogner, T. T. S. Kuo, and A. Schwenk, Phys. Rep 386, 1 (2003).

[BL+05] M. Baldo, U. Lombardo, E. E. Saperstein, and S. V. Tolokonnikov, Nucl.

Phys. A750 409 (2005).

[BL55] K. A. Brueckner and C. A. Levinson, Phys. Rev. 97, 1344 (1955).

[BM+87] A. Bouyssy, J.-F. Mathiot, N. Van Giai, and S. Marcos, Phys. Rev. C

36 380 (1987).
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Zusammenfassung

Die Beschreibung der Eigenschaften von Kernmaterie unter exotischen Bedingungen

ist ist eine Herausforderung on die Theoretische Kernphysik, die vor allen Dingen

durch die moderne Astrophysik gestellt wird. In den letzen drei Jahrzehnten wurden

wesentliche Fortschritte in der Untersuchungen und Modellierung von Neutronen-

sternen auf der Basis der kernphysikalischen Ergebnisse erreicht. Von besonderem

Interesse ist dabei die Kruste der Neutronensterne, die von aussen nach innen mit

zunehmender Dichte den Übergang von isolierten Atomkernen zu einer ausgedehnten

Kernmaterie mit konstanter Dichte enthalten sollte.

Beispielsweise sagen Vielteilchen Rechnungen für diesen Bereich die Existenz einer

inhomogenen nuklearen Materie, die sogenannte Pasta Phase, vorher. Diese Pasta

Phase kann die Beweglichkeit von und die Absorption von Neutrinos und damit

die Energietransporteigenschaften stark beeinflussen. Die Berechnung der mittleren

freien Weglänge der Neutrinos ist besonders wichtig in Untersuchungen des Küh-

lungmechanismus und Kühlungsrate eines jungen Sterns.

Im ersten Teil der vorliegenden Dissertation wurde die mittlere freie Weglänge der

Neutrinos in neutraler baryonischer Materie untersucht. Die Vielteilchen Rech-

nungen der inhomogenen Kernmaterie wurden in der Hartree-Fock Näherung mit

sogenannten Skyrme Wechselwirkungen in kartesischen Wigner-Seitz (WS) Zellen

durchgeführt. Im Dichtebereich zwischen 0.01 und 0.08 fm−3 wurden drei Pasta-

Strukturen (Droplets, also Knöpfle artige Strukturen baryonischer Materie, Rods,

also die Form von Spaghetti und Slabs, in der Form von Lasagne) beobachtet. die

von neutronenreichen Kernen biz zu homogener Kernmaterie reichen. Dabei zeigte

sich, dass im β-Gleichgewicht der Protonenanteil der inhomogenen Materie höher

ist als in der homogenen Kernmaterie bei gleicher Dichte.

Die freie Weglänge wurde aus dem Streuquerschnitt der Neutrinos an der WS Zelle
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für geladene und neutrale Reaktionen ausgerechnet. Der Unterschied im Proto-

nenanteil wirkt stark auf die freie Weglänge der Neutrinos in geladener Stromreak-

tion ein. In der neutralen Stromreaktion spielt die Pasta Phase eine unwesentliche

Rolle.

Um die Modellabhängigkeit der Ergebnisse abzuschätzen, wurden ähnliche Rech-

nungen in einer relativistischen Mittelfeldnäherung durchgeführt. Es zeigt sich, dass

die Modellabhängigkeit grösser als die Effekte der inhomogenen Dichteverteilung ist.

Alle phenomenologischen Modelle (wie z.B. das Skyrme Potential), die die exper-

imentellen Daten von endlichen Kernen und den empirischen Sättigungspunkt der

symmetrischen Kernmaterie beschreiben, haben einen begrenzten Vorhersagekraft

für die verschiedenen Eigenschaften der Kernmaterie unter extremen Bedingun-

gen. Diese Modelle sind rein phenomenologisch und angepasst an die Eigenschaften

von normalen Atomkernen. Einer Extrapolation dieser Modelle in Bereiche grösser

Baryonendichte und starker Proton-Neutron Asymmetrien ist also mit Vorsicht zu

begegnen. In dieser Hinsicht sollten die Vielteilchen Rechnungen auf der Basis von

realistischen Nukleon-Nukleon Potentialen durchgeführt werden. Solche realistis-

chen Modelle beschreiben sowohl die zugänglichen Zwei-Nukleon Daten aus der NN-

Streuung, als auch die Eigenschaften des Deutrons mit hoher Präzision.

Im zweiten Teil der Dissertation wurden die Hartree-Fock Rechnungen mit der im-

pulsrenommierten Wechselwirkung Vlow-k durchgeführt. Dieses Potential enthält

keine starken kurzreichweitigen Komponenten und ist daher für die Hartree-Fock

Näherung geeignet.

Die Vlow-k Hartree-Fock Rechnungen der symmetrischen Kernmaterie zeigen eine

wesentliche Überschätzung der Nukleonenbindungsenergie und der Sättigungsdichte.

Um diesen Nachteil zu beheben, wurde Vlow-k durch einen Kontakt-Term (CT) unter-

stützt, der die Effekte von Drei-Nukleon Wechselwirkungen darstellt. Die Param-

eter des Kontaktterms wurden so angepasst, dass die Sättigungseigenschaft sym-

metrischer Kernmaterie reproduziert wird. Damit erzielt man nicht nur eine er-

folgreiche Beschreibung von unendlicher Kernmaterie sondern ist auch in der Lage

die Ladungsradien, sowie Bindungsenergien endlicher Kerne in der Hartree-Fock

Näherung sehr gut zu beschreiben.

Kernstrukturrechnungen mit diesem erfolgreichen Modell einer realistischen Wech-

selwirkung sind jedoch nicht einfach. Einerseits ist es ziemlich kompliziert, das Vlow-k
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Potential aus einem realistischen Potential durch die Anwendung von Renormierungsver-

fahren zu generieren. Andererseits hat diese Wechselwirkung eine nichtlokale Struk-

tur. Deswegen wird sie numerisch für jede Partialwelle im Impulsraum gespeichert.

Man umgeht dieses Probleme durch die Benutzung einer separablen Version von

Vlow-k. Im Rahmen der vorliegenden Arbeit wurde eine solche separable Darstellung

erarbeitet und in einfacher algebraischer Form parameterisiert. Das ermöglicht eine

weitere Anwendung von Vlow-k in kernphysikalischen Berechnungen.

In naher Zukunft sollen Vlow-k, sowie die entsprechende separable Version in Hartree-

Fock Berechnungen der Pasta Phase benutzt werden. Solche Berechnungen sollen

die Vorhersagen der Skyrme und RMF Modellen überprüfen.
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I would like to express my deep thankfulness to my wife Nadia and my parents for

their belief and patience during these years.

128



Curriculum Vitae

Personal information

Name: Pavlo Grygorov

Nationality: Ukrainian

Date of Birth: 17.06.1984

Gender: male

Marital Status: married

Address: Fichtenweg 28/401, 72076 Tuebingen

Email: Pavlo.Grygorov@gmx.de

Academic preparation

07.2007 - till present PhD Student at the University of Tuebingen.

PhD Thesis: ”On the transition from nuclear

matter to finite nuclei”.

Scientific advisor: Prof. Dr. H. Müther
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Tübingen, 3. Mai 2010


