
LOCAS - a Low Coverage Assembler
for Next Generation Sequencing

and Resequencing Data

Dissertation
der Mathematisch-Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen
zur Erlangung des Grades eines

Doktors der Naturwissenschaften
(Dr. rer. nat.)

vorgelegt von
Dipl.-Bioinf. Juliane Damaris Klein

aus Halle an der Saale

Tübingen
2010

Tag der mündlichen Qualifikation: 16.02.2011
Dekan: Prof. Dr. Wolfgang Rosenstiel
1. Berichterstatter: Prof. Dr. Daniel H. Huson
2. Berichterstatter: Prof. Dr. Detlef Weigel

Abstract

Within the last five years, a new generation of sequencing technologies has dra-
matically reduced cost and at the same time increased throughput of genome
sequencing. For most application fields these technologies have proven to be good
alternatives to the traditional Sanger sequencing although they generate shorter
read sequences. For the study of sequence variations like SNPs, indels and longer
variant regions between highly related genomes, resequencing has become increas-
ingly popular. Such analyses help to reveal the impact of sequence variations on
responses to the environment and in developing diseases. They are, thus, of great
interest to disease control, personal genomics and phylogenetic studies.

Currently, the most popular approach to resequencing large and complex
genomes is the mapping-consensus approach. It maps the read sequences to a
highly related reference genome and from the alignment calculates a consensus
sequence which can be compared to the reference genome. Unfortunately, only
SNPs and small indels can be detected with this approach. A more promising
approach is homology-guided assembly. Here, the reads are mapped against a
reference sequence and the layout of the reads is refined before the calculation of
the consensus sequence. This method has the capability to additionally reveal the
sequences of longer variant regions such as long insertions.

In this thesis, I present an extension to homology-guided assembly that aims at
assembling not only regions that are homologous between the target and reference
genome but also longer variant regions. After the reads have been mapped to the
reference sequence, the reference sequence is partitioned into regions of a fixed
length, called blocks. In a reassembly step, the reads of each pair of consecutive
blocks are assembled together. In order to also find long variant regions, reads
that cannot be mapped onto the reference genome, so called left-over reads, are
recruited and incorporated in the assembly of the current blocks.

The main focus of this work was on the development of assembly algorithms for
current resequencing projects. To meet the needs of these projects the developed
algorithms were especially designed for short read data at low sequencing depth.
Furthermore, this work comprises extensions to these assembly algorithms, which
are used in the reassembly step of our homology-guided assembly approach. These
algorithms additionally incorporate left-over reads in the assembly and can utilize
mapping positions that are available for the reads. The assembly algorithms
are implemented in the assembly tool LOCAS (Low Coverage ASsembly) and its
extension SUPERLOCAS.

The developed tools were evaluated and compared to state-of-the-art assemblers
on short read data within a homology-guided assembly approach. For this purpose,

i

resequencing scenarios with a low sequencing depth were simulated. In the first
study, which simulated assemblies of blocks, LOCAS showed better or comparable
results regarding error rate and contig size while producing contigs with the best
trade-off between both measures. In the second study, which simulated assemblies
of blocks with the incorporation of left-over reads, SUPERLOCAS proved to be
the superior tool regarding contig size, error rate and runtime while assembling
the same amount of long insertion regions as comparable assemblers. In a third
study, which used real world data, LOCAS and SUPERLOCAS performed similar
as in the simulated studies. In all studies both tools proved to be very robust to
different parameter settings.

In conclusion, my homology-guided assembly approach overcomes the problems
of the mapping-consensus approach. In addition to homologous regions, it also
assembles longer variant regions. Compared to other assembly methods, LOCAS
and SUPERLOCAS are well suited for reassembly and show superior performances
in this scenario.

ii

Zusammenfassung

Eine neue Generation von Sequenziertechnologien hat in den letzten fünf Jahren
die Kosten für die Genomsequenzierung deutlich verringert und gleichzeitig den
Sequenzierdurchsatz erhöht. Die neuen Sequenziertechnologien haben sich in
vielen Anwendungsgebieten als vielversprechende Alternative zur traditionellen
Sangersequenzierung erwiesen, obwohl die erzeugten Sequenzfragmente, welche
als Reads bezeichnet werden, deutlich kürzer sind. Zur Untersuchung von Punk-
tmutationen (SNPs), kleinen Insertionen und Deletionen (Indels) sowie längeren
variablen Bereichen von nahverwandten Genomen wird inzwischen immer häufiger
das Verfahren der Resequenzierung eingesetzt. Mit diesem Analyseverfahren kann
die Bedeutung von Sequenzvariationen bei Krankheiten oder in der Reaktion auf
die Umwelt festgestellt werden. Daher ist die Resequenzierung von großem In-
teresse bei der Kontrolle von Krankheiten, in Bereich Personal-Genomics und in
phylogenetischen Studien.

Momentan wird bei der Resequenzierung von langen und komplexen Genomen
vor allem der Mapping-Consensus Ansatz verwendet. Dabei werden die Reads
gegen ein nahverwandtes Referenzgenom aligniert und die Consensus-Sequenz der
alignierten Reads berechnet, sodass diese mit der Referenzsequenz verglichen wer-
den kann. Da die Reads meist nur diskontinuierlich aligniert werden können,
besteht die Consensus-Sequenz meist aus mehreren Teilsequenzen, welche als Con-
tigs bezeichnet werden. Der Nachteil bei diesem Ansatz ist, dass meist nur SNPs
und Indels bestimmt werden können, während lange variable Bereiche unent-
deckt bleiben. Ein Ansatz, der hierfür weitaus erfolgversprechender ist, ist das
Homology-Guided Assembly. Hier werden die Reads ebenfalls gegen eine Ref-
erenzsequenz aligniert. Jedoch wird die Anordnung der Reads anschließend noch
einmal verbessert, bevor schließlich die Consensus-Sequenz berechnet wird. Dieser
Ansatz hat das Potenzial auch die Sequenz von längeren variable Bereichen, wie
langen Insertionen, zu bestimmen.

In meiner Dissertation stelle ich einen erweiterten Ansatz des Homology-Guided
Assemblies vor. Durch diesen neuen Ansatz werden nicht nur homologe Bereiche
des Referenz- und Zielgenoms assembliert sondern auch lange variable Bereiche.
Nachdem die Reads gegen die Referenzsequenz aligniert worden sind, wird die
Referenzsequenz in Abschnitte einer festen Länge unterteilt, welche als Blocks
bezeichnet werden. Diese Blocks werden anschließend reassembliert, d.h., alle
Reads die zu zwei aufeinanderfolgenden Blocks zugeordnet sind werden miteinan-
der assembliert. Dabei werden Reads, die nicht gegen das Referenzgenom aligniert
werden konnten (Left-Over Reads), in das Assembly eingebaut, sodass auch lange
variable Bereiche assembliert werden können.

iii

Der Hauptaugenmerk meiner Arbeit lag auf der Entwicklung von Assem-
blierungsalgorithmen, die in Resequenzierungsprojekten, welche die neue Genera-
tion der Sequenziertechnologien nutzen, angewendet werden können. Um den An-
forderungen dieser Projekte Rechnung zu tragen, wurden die Algorithmen speziell
an eine kurze Länge der Reads und an eine niedrige Sequenziertiefe angepasst.
Darüber hinaus wurden die Algorithmen so erweitert, dass sie auch zur Reassem-
blierung genutzt werden können. Durch diese Erweiterung werden auf eine ef-
fiziente Weise auch Left-Over Reads mit in das Assembly einbezogen. Weiterhin
können eventuell vorhandene Positionen der Reads bezüglich der Referenzsequenz
für die Assemblierung genutzt werden. Die Algorithmen wurden in das Assem-
blierungsprogramm LOCAS bzw. in dessen Erweiterung SUPERLOCAS imple-
mentiert.

Die entwickelte Software wurde in einer Vergleichsstudie evaluiert und mit
anderen aktuellen Assemblern verglichen. Die Assembler wurden zur Reassem-
blierung innerhalb des beschriebenen Homology-Guided Assembly Ansatzes ver-
wendet. Zu diesem Zweck wurden kurze Reads mit einer niedrigen Sequenzier-
tiefe innerhalb von Resequenzierungsszenarien simuliert. In der ersten Studie,
welche die Reassemblierung von Blocks simulierte, erzielte LOCAS bessere oder
vergleichbare Ergebnisse bezüglich der Fehlerrate und der Contig-Länge. Gle-
ichzeitig erreichte es den besten Kompromiss zwischen beiden Maßen. In der
zweiten Studie, welche die Reassemblierung von Blocks unter Einbeziehung von
Left-Over Reads simulierte, stellte sich SUPERLOCAS als der beste Assembler
bezüglich der Contig-Länge, der Fehlerrate und der Laufzeit heraus. In einer drit-
ten Studie, die auf realen Daten basierte, zeigten LOCAS und SUPERLOCAS
die gleiche Leistung wie in den Simulationsstudien. In allen Studien waren beide
Assembler sehr robust gegenüber unterschiedlichen Parametereinstellungen.

Aus den Ergebnissen dieser Arbeit lässt sich folgern, dass die angesprochenen
Probleme des Mapping-Consensus Ansatzes durch den vorgestellten Homology-
Guided Assembly Ansatz in weiten Punkten gelöst werden. Zusätzlich zu den
homologen Bereichen werden nun auch längere variable Bereiche assembliert. LO-
CAS und SUPERLOCAS erwiesen sich für die Reassemblierung von Genomen
innerhalb des Homology-Guided Assembly-Ansatzes als sehr geeignete Assembler,
da sie ausgezeichnete Ergebnisse für dieses Szenario erzielten.

iv

Acknowledgments

First of all, I want to thank my advisors Prof. Dr. Daniel Huson and Prof Dr.
Detlef Weigel for raising the interesting questions that formed the basis for this
thesis. I very much appreciated their support and their ideas, which I gratefully
adopted for this work.

Moreover, I would like to thank Prof. Dr. Daniel Huson, for his steady su-
pervision, for providing direction as well as setting clear limits for my works. I
am very thankful for the given freedom to explore and the trust that has been
put in me. I am grateful for my participating in scientific conferences, that gave
me the opportunity to get insights into current research topics and broadened my
scientific and personal horizon.

I thank my collaborators Dr. Stephan Ossowski, Korbinian Schneeberger and
Prof. Dr. Detlef Weigel from the Max Planck Institute in Tübingen for helpful
discussions. Furthermore, I would like to thank my colleagues at the University of
Tübingen. Their comments helped me to improve talks and publications. Working
together has been a pleasure.

I am also grateful to Sebastian Briesemeister, Nora Toussaint, Regina Bohn-
ert, Nico Weber and Korbinian Schneeberger for critically reading this thesis
manuscript. Their suggestions and corrections helped to improve it substantially.
In addition, I would like to thank my office room mates Dr. Regula Rupp, Dr.
Johannes Fischer and Nico Weber for their patience, frankness and for providing
a friendly atmosphere.

Moreover, I gratefully acknowledge funding from the BMBF GABI-GNADE
project.

Finally, I want to thank my sister, who always encouraged me to give my best
effort, and my parents, who have created a firm foundation for me to stand on.
I would like to express my deep gratitude to my friends for their patience and
constant encouragement during my Ph.D. – most of all I want to thank Johanna
and Nora. Last, but definitely not least, I would like to express my sincerest thanks
to Sebastian for inspiring discussions, his understanding and for his constant faith
in me during the last years.

v

In accordance with the standard scientific protocol, I will use the personal
pronoun ”we” to indicate the reader and the writer, or my scientific
collaborators and myself.

vi

Contents

1. Introduction 1

2. Introduction to Genome Resequencing 5
2.1. Sequencing Technologies . 5

2.1.1. Sanger Sequencing . 6
2.1.2. Second Generation Sequencing Technologies 7

2.2. Mapping-Consensus Approach . 13
2.3. De Novo Assembly Approach . 14

2.3.1. Greedy Assembly Approach 15
2.3.2. Overlap-Layout-Consensus Approach 17
2.3.3. De Bruijn Graph Approach 22
2.3.4. Prospects of De Novo Assembly with Short Reads 23
2.3.5. Scaffolding . 23

2.4. Homology-Guided Assembly Approach 24

3. An Extended Homology-Guided Assembly Approach (SHORE) 27
3.1. Workflow . 27

4. Short Read Assembly with a Low Sequencing Depth (LOCAS) 31
4.1. Overview . 31
4.2. Preprocessing . 32
4.3. Overlap Phase . 32
4.4. Reduction and Path Graph Construction 34
4.5. Cutting Cycles and Similar Structures 38
4.6. Resolving Repeats Using Mate-Pair Data 42
4.7. Contig Extraction . 46
4.8. Software Architecture . 47

5. Extension of Homology-Guided Assembly (SUPERLOCAS) 51
5.1. Incorporating Left-Over Reads . 51
5.2. Making Use of Mapping Positions of Reads 53
5.3. Software Architecture . 54

6. Evaluation and Comparison with Existing Assemblers 59
6.1. De Novo Assembly of Simulated Data 59

6.1.1. Evaluation of Assembly for the First Chromosome of
A. thaliana at a Sequencing Depth of 7.5x 60

vii

6.1.2. Evaluation of Assembly for the First Chromosome of
A. thaliana at a Sequencing Depth of 5x 63

6.1.3. Evaluation of Assembly for the Fourth Chromosome of
A. thaliana at a Sequencing Depth of 5x and 7x 65

6.2. Homology-Guided Assembly of Simulated Data 65
6.2.1. Evaluation of Homology-Guided Assembly for an Artificial

A. thaliana Strain . 66
6.3. Application to Real Data . 71

6.3.1. Evaluation of Homology-Guided Assembly Without Incor-
porating Left-Over Reads 71

6.3.2. Evaluation of Homology-Guided Assembly Incorporating
Left-Over Reads . 71

7. Discussion 73

8. Conclusion 77

A. Presentations 87
A.1. Talks . 87
A.2. Poster . 87
A.3. Articles . 87

B. Manual 89
B.1. Introduction . 89
B.2. Availability . 89
B.3. Installing . 89
B.4. License Details . 89
B.5. Author . 89
B.6. Running LOCAS . 90

B.6.1. How to choose the parameters kmer size and overlap length 90
B.6.2. Example of a LOCAS run 90

B.7. Running SUPERLOCAS . 91
B.7.1. Running SUPERLOCAS with mapping positions 92
B.7.2. Understanding the parameters of SUPERLOCAS 93
B.7.3. Example of a SUPERLOCAS run 93

C. Supplementary Tables 95

viii

1. Introduction

Studying sequence variation, like single-nucleotide polymorphisms (SNPs), inser-
tions and deletions, is important in disease genetics and pharmacogenomic studies.
The alteration of SNP positions or appearance of insertions and deletions within
gene sequences causes alterations in the function of proteins. Thus, these events
can result in diseases, changed responses to drugs or environmental toxins and
behavioral modifications.

The investigation of SNPs and other sequence variations in plants is essential
for dealing with the growing world population in the future. Especially, sequence
variations that have an effect on resistance and yield gain of cultured plants are of
great interest. Consequently, these variations and their effects are widely studied
in model organisms like Arabidopsis thaliana. Array-based genotyping, such as
methods supported by Illumina and Affymetrix, has been the most prominent ap-
proach to investigate sequence variations. Due to advances in Second Generation
Sequencing technologies (SGS, also called Next Generation Sequencing), whole
genome resequencing studies have come as an alternative approach into focus.
Popular examples are the 1000 Genomes Project, which aims at finding genetic
variants that have frequencies of at least 1% in the human population, and the
1001 Genomes Project, which aims at discovering such variations in A. thaliana.

Since their introduction in 2005, SGS technologies have increased the through-
put and cost-efficiency of sequencing by an order of magnitude. For example, at
present, the Illumina Genome Analyzer GAIIx, which became commercially avail-
able in 2009, can produce up to 10 Gb of sequence in less than three days, while
the latest sequencer of Illumina, the HiSeq 2000 system, yields up to 100 Gb in the
same amount of time. While the accuracy of new sequencing technologies is sim-
ilar to that of Sanger sequencing, the achievable read length has decreased from
1 kbp to less than 500 bases for the GS FLX Titanium instrument from Roche/454
Life Sciences or to around 100 bases or less for Illumina’s GAIIx or HiSeq and
Applied Biosystem’s SOLiD instruments.

The SGS technologies are used in resequencing studies that investigate varia-
tions between strains of the same organism or closely related species. Usually, a
known genome is used as reference genome in a mapping or mapping-consensus
approach, in which the reads are aligned to the reference sequence to detect vari-
ations between the reference genome and the target genome. While this allows
for the detection of small variations like SNPs or short insertions and deletions,
so called indels, regions with high divergence or long insertions will not be repre-
sented in the resulting consensus sequence as the respective reads are often not
alignable to the reference sequence.

1

An alternative approach is de novo assembly which calculates overlaps between
reads to assemble longer sequences, which are called contigs. De novo assembly
does not rely on alignments of reads onto a reference genome and, thus, is also
capable of assembling highly polymorphic and longer insertion regions. Unfortu-
nately, the de novo assembly of large genomes and genomes with complex regions
that were sequenced with SGS technology still faces unsolved issues. Such as-
semblies result in large numbers of short contigs and demand high amounts of
memory.

For short read data, neither the mapping-consensus approach nor de novo as-
sembly can be utilized to detect longer variations in complex eukaryotic genomes.
Thus, a novel assembly approach is required that detects all variations in a com-
plex and large target genome, including longer insertions and polymorphic re-
gions. Several strategies have been proposed to increase the number of detected
variant regions, like reduced representation libraries [KUA+07] and gene-boosted
assembly [SSPL08]. In addition, other approaches that detect rearrangements in
the target genome from read quantity or mate-pair data have been introduced.
However, these approaches do not reveal additional sequence information. Only
the homology-guided assembly [PPDS04, RKD+09] approach has the potential to
assemble eukaryotic genomes with longer variations. It combines the mapping-
consensus approach with de novo assembly.

Comparable to the mapping-consensus approach, homology-guided (or compar-
ative) assembly makes use of an available reference genome. The homology-guided
assembly strategy presented in this thesis starts with aligning short reads to a ref-
erence genome followed by the local assemblies of reads that have been aligned
within the same regions. These regions are called blocks. In the assembly of the
blocks, also non-alignable reads, so called left-over reads, can be incorporated to
reveal additional sequence information of the target genome, which often origi-
nates from insertions or highly polymorphic regions. This process of assembly
and incorporation is called reassembly.

Currently, available assembly tools, such as VELVET [ZB08, ZMMB09],
EULER-SR [CP08], ABySS [SWJ+09] and SOAPdenovo [LLZ+09], do not provide
time-efficient methods for problems that arise in reassembly such as the incorpo-
ration of left-over reads in a consecutive execution of multiple local assemblies.
The set of left-over reads can be huge compared to the set of reads belonging to a
block. Furthermore, it consists not only of reads from highly polymorphic regions
but also of erroneous reads, which, in our experience, can comprise about 5% to
20% of all reads from a sample. Since existing assemblers do not distinguish be-
tween aligned reads and left-over reads, they would have to assemble each block
using all left-over reads, leading to an unacceptable increase in runtime.

The reassembly problem becomes even more difficult in the context of genome
resequencing projects that are performed at low sequencing depth. The choice
to sequence with a low depth results from a simple cost-benefit analysis: Even
with a sequencing depth of 7x, most of the reference genome is covered by aligned
reads, enabling the detection of most SNPs and small indels. Current state-of-

2

the-art assemblers for short reads calculate exact sub-sequence matches (k-mers)
of the input reads, represent this information in a de Bruijn graph and extract
finally contigs from the graph. Thus, these assemblers do not calculate overlap
alignments between reads, i.e., alignments that involve the ends of both read
sequences, and, consequently, cannot detect overlaps of reads with a substantial
number of mismatches. However, for low sequencing depths it is necessary to
include as many overlaps as possible in order to assemble low-coverage regions.
Thus, assembly tools based on the de Bruijn graph paradigm are not well suited
for low sequencing depth assembly or reassembly as they typically require depths
of 20x to 30x [ZB08].

In the context of this thesis, we have developed algorithms to address the prob-
lems in reassembly of short read data at a low sequencing depth. These algorithms
have been implemented in a new assembly tool, LOCAS (LOw Coverage Assembly
Software). LOCAS is designed for assembling short to medium sized reads in a
de novo fashion using an overlap-layout-consensus approach. In this approach,
overlap alignments of reads are calculated and represented in a so called overlap
graph from which the final contigs are extracted. It explicitly handles data of
low sequencing depth by allowing mismatches in the overlap calculation of reads.
An extension of LOCAS, called SUPERLOCAS, efficiently incorporates left-over
reads in the assembly process. It calculates a pre-assembly for the left-over reads
once and assembles each block separately by incorporating the part of the pre-
assembly that overlaps with the reads of the respective block. In addition, it can
take advantage of alignment positions of reads within the reference sequence. SU-
PERLOCAS’ design is perfectly suited to the requirements of a homology-guided
assembly approach for large genomes.

We show that LOCAS produces assemblies that are often better than those ob-
tained by existing short read assemblers at a sequencing depth of 7.5x as measured
by the N50 size and error rate. In addition, for the task of incorporating left-over
reads, SUPERLOCAS shows to be superior to common assemblers regarding N50
size, error rate and runtime.

Following this introduction, in Chapter 2, sequencing technologies and compu-
tational approaches in genome resequencing are introduced. In Chapter 3, one of
these approaches, homology-guided assembly, is refined and adapted to the needs
of resequencing projects with short reads at a low sequencing depth. This approach
employs a reassembly step. In Chapter 4, we present algorithms to assemble short
read data at a low sequencing depth.We extend these algorithms in Chapter 5 to
fulfill the additional requirements that arise with our specialized homology-guided
assembly approach. The presented assembly algorithms have been implemented
in the tools LOCAS and SUPERLOCAS. The evaluations of both tools and a
comparison to other assemblers are provided in Chapter 6. Observed problems,
provided solutions and the experimental evaluations are discussed in Chapter 7,
before an overall conclusion of this work is given in Chapter 8.

LOCAS and SUPERLOCAS are open source projects that are distributed under
the terms of the GNU General Public License. Both software tools can be down-

3

loaded from http://www-ab.informatik.uni-tuebingen.de/software/locas.

4

http://www-ab.informatik.uni-tuebingen.de/software/locas

2. Introduction to Genome
Resequencing

This chapter gives an introduction into sequencing technologies. We will present
the traditional sequencing technology by Sanger as well as technologies of the
second generation. Furthermore, we will discuss three strategies for genome rese-
quencing and discuss their applicability to Second Generation Sequencing (SGS)
data. In addition to the widely used mapping-consensus and de novo assembly
approaches, we will introduce the more sophisticated homology-guided assembly
approach.

2.1. Sequencing Technologies

To understand the inheritance of traits in organisms their genomes have to be
studied. The genomes of many organisms are organized in chromosomes. A chro-
mosome is a single strand of coiled DNA (deoxyribonucleic acid) with DNA-bound
proteins, which stabilize its structure. DNA was discovered by Friedrich Miescher
in Tübingen, Germany, in 1869. Its three dimensional structure was characterized
by James D. Watson and Francis Crick in 1953. Chromosomal DNA consists of
two chains of nucleotide molecules, i.e., adenine, guanine, cytosine, and thymine.
Specific regions in DNA molecules, which are called genes, encode for RNA (ri-
bonucleic acid). In a process that is called transcription, genes are read by the
RNA polymerase to produce RNA molecules. If the gene codes for a protein,
the product of transcription is a messenger RNA (mRNA), which is later trans-
lated into a protein. Otherwise, the transcription product is a non-coding RNA
molecule which can have regulatory and other functions. With the regulation of
their genes, organisms control their cellular or overall function. Thus, we can learn
about genome function, developing diseases and evolution of species by analyzing
and comparing their DNA sequences.

The first sequencing technology was invented by Frederick Sanger and others
in the 1970’s [SC75]. The process of DNA sequencing determines the sequence
of nucleotides in a DNA molecule. Until the development of SGS technologies,
sequencing of DNA had been a very expensive and complex process [Met09].
In 2005, the first new sequencing technology, Roche’s FLX Genome Sequencer,
was released [MEA+05]. In the following years, further technologies such as Il-
lumina’s Genome Analyzer [Ben06, BBS+08] and Applied Biosystem’s sequencer
SOLiD [SPR+05] became commercially available. The first system towards a

5

Figure 2.1.: Sanger Sequencing. (A) The initial reaction mix contains the single-
stranded template DNA, dNTPs and in lower concentration ddNTPs with distinct flu-
orescent markers. DNA polymerase is added to start the PCR (not shown). After a
ddNTP has been incorporated by chance, the reaction terminates. (B) The resulting
sequence fragments have different length with distinct labels indicating their 3’-base.
(C) Finally, the sequence fragments are separated via electrophoresis in mass-produced,
gel-filled capillary tubes and their sequences are automatically determined as output.
These sequences are given as intensity curves of the base-specific colors. The curve of
each base displays the intensity of the base-signal for each position in the fragment.

third generation of sequencing technologies was the Helicos’ Genetic Analysis Sys-
tem [HBB+08].

2.1.1. Sanger Sequencing

In the 1970’s, two sequencing methods were developed independently: The
Maxam-Gilbert method [MG80] and Sanger sequencing, which is also known as
chain termination method. It was the more efficient and less toxic Sanger se-
quencing that became popular. Until today, the method has improved steadily
by taking advantage of other inventions like the polymerase chain reaction (PCR)
and fluorescent labeling. For determining the sequence of DNA fragments that ex-
ceed the length of a single sequencing run, a shot gun approach is used as follows
(see Figure 2.1 A):

1. DNA is fragmented to form a library of single-stranded DNA fragments.

2. The fragments are subcloned into bacterial vectors. The vectors are inserted
in bacterial cells for amplification. The amplified DNA fragments are used

6

as templates in the following sequencing process.

3. The fragments, deoxynucleotides (dNTPs) and primers that are complemen-
tary to the linked adapters are given into an assay.

4. Dideoxynucleotides (ddNTP), which are similar to dNTPs except for lacking
the 3’-hydroxyl group, that are fluorescently labeled with base-specific colors
are added in low concentration.

5. DNA polymerase is added to initiate the PCR starting at the DNA primers.

6. The PCR terminates after a ddNTP is incorporated by the DNA polymerase.

7. The resulting sequence fragments have different length and are labeled by
different colors attached to their 3’-base.

8. The sequence of a template fragment is obtained by separating all sequenced
fragments according to their length with a Capillary Array Electrophoresis
(CAE) and identifying their labeled 3’-bases.

As a result, the nucleotide sequence of each fragment in the library is deter-
mined. These sequences are called reads. The sequence of each read is given by
the bases that correspond to the highest peak in the intensity curve at the re-
spective positions. In addition, quality values are calculated from the curve that
reflect the error probability of each base in a read.

In order to gain information about the relative order of the generated reads, the
method can be extended to produce mate-pairs, i.e., pairs of reads for which the
orientation and approximate distance to each other are known.

2.1.2. Second Generation Sequencing Technologies

With the rise of a new generation of sequencing technologies, sequencing has be-
come cheaper and less time consuming [Met09]. Due to the dramatically increased
throughput of the sequencing technologies, more projects that study the genome
variation within and across species or the transcriptome of a species can be real-
ized.

The read sequences generated by the new technologies are shorter and tend to
be more erroneous than Sanger reads. The higher error rate can be compensated
to a certain extent by the higher amount of data that is available due to a higher
sequencing depth. The shorter read length, however, yields several new issues and
problems for the processing and analysis of sequencing data.

Like Sanger sequencing, most of the SGS technologies follow the sequencing-by-
synthesis approach, i.e., they synthesize a strand of a DNA molecule according to
a template strand and record the order of the incorporated nucleotides. Here, the
recording becomes feasible using a light signal that is emitted upon incorporation
and that is recorded by a camera. The whole cycle can easily be run in parallel,

7

synthesizing different fragments at the same time. The major difference to Sanger
sequencing is the use of reversible termination for DNA synthesis.

In the next sections, we will present two widely used SGS technologies in detail,
pyrosequencing by Roche/454 Life Sciences [LLT+03, MEA+05] and sequencing
using cyclic reversible termination by Illumina [Ben06, BBS+08]. Finally, we will
briefly describe other recent sequencing technologies.

Pyrosequencing (Roche/454 Life Sciences)

The FLX Genome Sequencer by Roche/454 Life Sciences is based on the py-
rosequencing technology, which detects the release of pyrophosphates when a nu-
cleotide is incorporated by the DNA polymerase. Each time a pyrophosphate is
released, it is converted into visible light using a series of enzymatic reactions. The
sequence of emitted light that codes for the nucleotide sequence of the synthesized
template is recorded.

At first, the DNA of the target organism is randomly broken into fragments to
create templates for the amplification. The main workflow continues as follows
(see Figure 2.2):

1. Single-stranded fragments are ligated to universal adapters at both ends.

2. Each fragment is captured onto one bead (favoring one fragment per bead)
in a water-oil-emulsion.

3. Amplification of each fragment by emulsion PCR such that populations of
identical template fragments are bound to each bead.

4. Beads are given individually into arrays of wells (PicoTiterPlate).

5. Sequencing-by-synthesis of the template fragments using single-nucleotide
addition:

a) One type of dNTPs is added per step.

b) From the synthesized dNTP molecule a pyrophosphate is cleaved that
converts provided APS (adenosine-5’-phosphosulfate) to ATP.

c) With the help of Luciferase, ATP is transformed into visible light that
is emitted proportional to the number of identical nucleotides that are
added simultaneously.

d) For the next nucleotide, the remaining dNTPs and ATPs are degraded.

The templates are amplified since imaging systems have problems with the de-
tection of single fluorescent signals. The light signal detected during the synthesis
is a consensus signal that is emitted simultaneously by all identical templates.
Due to incomplete extension or addition of multiple nucleotides to the identical
templates, the fluorescent signal is dephased occasionally. The order of light peaks
and their intensities determine the original sequence of the synthesized fragment.

8

Figure 2.2.: (A) Pyrosequencing - DNA Amplification Step. The DNA frag-
ments are captured by beads and these bead-DNA complexes are encapsulated into
single aqueous droplets. Within these droplets, the template fragments are amplified
by emulsion PCR. Several thousand copies of the same template sequence are bound to
each bead. (B) Pyrosequencing - Sequencing Step. A DNA fragment is synthesized
from the single stranded DNA template by the DNA polymerase. During that process,
dNTPs are added one at a time (here dGNTPs is added). With the incorporation of a
nucleotide a pyrophosphate (PPi) is released. The provided sulfurylase quantitatively
converts PPi to ATP. A light signal is emitted that is produced with the catalysator
luciferase in presence of ATP. The signal is detected by a charge coupled device camera
and represented as a peak in a pyrogram. The nucleotide degrading enzyme apyrase
continuously degrades unincorporated dNTPs and ATP. In the next step, the process
starts from the beginning by adding the next dNTP. Finally, the whole nucleotide se-
quence of the synthesized DNA strand is inferred from the signal peaks of the produced
pyrogram. Image (A) is from Metzker [Met09] and image (B) is from Armougom and
Raoult [AR09]

9

Homopolymer DNA segments, i.e., regions with multiple consecutive copies of a
single base, will result in higher intensities depending on their copy number. Since
this is difficult to measure exactly for longer homopolymer regions, the resolution
of homopolymer DNA segments is often erroneous. The most common error type
are insertions, the second most are deletions. The mean read length is 330 bp
while 1.29 Gb can be produced per day with a single machine.

Sequencing Using Cyclic Reversible Termination (Illumina)

Like the technology of 454/Roche, Illumina employs the sequencing-by-synthesis
approach for its sequencing system Genome Analyzer. Instead of adding just one
type of nucleotide, all types are provided to the sequencing reaction at the same
time. A reversible terminator at each nucleotide prevents the incorporation of sev-
eral nucleotides per step. The nucleotides are labeled with different fluoroscentic
signals such that their specific light spectrum can be recorded after incorporation.
The method works as follows (see Figure 2.3):

1. Adapter linkers are ligated onto both ends of the DNA fragment.

2. Fragments are tethered in great distance to a glass plate by the flexible
linker at their 5’-end and will eventually hybridize with primers linked to
the plate that are complementary to the 3’-adapter, forming a bridge on the
glass plate.

3. Amplification via bridge PCR produces clusters of identical fragments on
the plate.

4. Sequencing-by-synthesis with reversible termination:

a) dNTPs are flowed over the plate simultaneously and only one single
nucleotide is synthesized since the 3’-end of the dNTPs are blocked.

b) Not incorporated nucleotides are washed away.

c) Incorporated bases are detected via their fluorescent labels.

d) Fluorescent dye and 3’-block is removed and the process is repeated.

Substitutions are the most frequent error type of the Genome Analyzer. Also,
an under-representation of AT-rich and GC-rich regions has been reported. The
mean read length is about 75 bp or 100 bp. 4.5 Gb of reads can be produced per
day with a single machine. Currently, the Genome Analyzer dominates the market
of SGS due to its good trade-off between costs, reads length and accuracy.

Remarks and Outlook

All SGS technologies can also provide mate-pair information, i.e., two reads whose
approximate distance and orientation is known. The distance between them is

10

Figure 2.3.: (A) For the amplification with Illumina’s Genome Analyzer, forward and
reverse primers are covalently attached to a glass plate in the beginning. The single-
stranded DNA templates are hybridized to adapters at both ends. The templates are
attached to the slide by hybridizing one of their adapters to a complementary primer
on the slide. The templates are extended such that they build double-stranded bridges
with immediately adjacent primers on the slide. These bridges are denatured resulting
again in single-stranded templates tethered to the slide. The process is repeated until
a cluster of identical fragments is built for each template. (B) The four-color cyclic
reversible termination method is shown, starting with the incorporation of nucleotides
in the complementary strand to the template sequences, which are attached to the glass
slide. Incorporated nucleotides are labeled with different dyes that are imaged after all
unincorporated nucleotides have been washed off. Following imaging, the fluorescent
dyes are cleaved and the 3’-hydroxyl group is regenerated such that the synthesized
sequence can be elongated. Then, the cycle repeats with the incorporation of the next
labeled nucleotides that are blocked at their 3’-end. The image is from Metzker [Met09].

11

called insert size. To distinguish between pairs with a longer (at least 1 kbp) and
a shorter (at most 1 kbp) insert size, the terms mate-pair or paired-end reads
were introduced, respectively. We will use the term mate-pair in this work for
both types.

In the following, we briefly describe other SGS technologies and recent devel-
opments towards a third generation of sequencing technologies. Their sequencing
methods differ in the template preparation and the applied sequencing method.

Another SGS method is sequencing-by-ligation, in which DNA polymerase is
replaced by DNA ligase [SPR+05]. The method is commercialized in a sequencing
platform, called SOLiD (support oligonucleotide ligation detection), by Applied
Biosystem. The method became available in 2008 but is not used as often as the
previously described technologies of Roche/454 Life Sciences and Illumina.

The sequencing methods are steadily improving with increased read lengths and
decreasing sequencing costs. Furthermore, more mate-pair libraries with different
insert sizes are provided. Assembly approaches benefit from various insert sizes
and from longer read lengths, which will be discussed in Section 2.3. One technol-
ogy that is already commercially distributed is HeliScope of Helicos BioSciences,
which uses single-molecular templates instead of amplified templates [HBB+08].
This allows for an unbiased quantification of sequenced RNA molecules. The
platform applies a one-color cyclic reversible termination method for sequencing.

Another promising method is real-time sequencing developed by Pacific Bio-
sciences [EFG+09]. DNA synthesis is performed in real-time and labeled nu-
cleotides are measured at the moment of incorporation in the synthesized DNA
strand. With a fixation of the DNA polymerase, the light signals are emitted
within a reduced observation volume. Thus, the signals can be recorded in real-
time and reversible terminators are no longer required.

The most recent technology is ion torrent. The technology uses the fact that
during nucleotide incorporation a hydrogen ion is released. The template DNA
fragments are hold in microwells of an array such that the process can be performed
in parallel. The ion-sensitive layer and sensor, which are located beneath the array,
detect the release of a hydrogen ion upon nucleotide incorporation. However, the
methods still requires PCR amplification and terminates the sequencing process
after a nucleotide is incorporated [STK10].

In addition, nanopore sequencing, which has been under development since
1995, is currently improved by Oxford Nanopore. As the technology of Pacific
Biosciences, this technology uses also single-molecule DNA templates. In this
sequencing method, nanopores are utilized to detect and analyze nucleotides of
the templates. In one approach, individual nucleotides on the DNA template are
identified as it passes through a protein nanopore. There are still some problems
that have to be solved before this technology, which would be likely to be the
cheapest of the third generation sequencing technologies, will become commer-
cially available [Rus09].

12

2.2. Mapping-Consensus Approach

One of the challenges introduced by new sequencing technologies is the efficient
alignment of large amounts of short reads onto a reference genome. This process
is also called mapping.

The mapping problem is certainly not new and there already existed many tools
that perform mappings for Sanger data. Also, conventional software tools such as
BLAST can be used for mapping to a certain degree. However, since it was not
designed for mapping short sequences onto a single reference sequence, BLAST
will take up to thousands of CPU hours to align the number of reads that are
produced in a typical sequencing project [TS09]. Due to limitations of existing
tools which result in long runtimes, the methods were adapted to the demands of
the new data. Mainly, the decrease in read length and the much greater amount
of data had to be considered, but also new sequence characteristics and specific
error distributions.

New alignment tools follow more or less the following workflow: First, possible
alignment positions of the reads in the reference genome are detected. Next,
read sequences are aligned against these regions and the consensus sequence of
overlapping aligned reads is calculated.

There exist two indexing strategies that can speed up the process of assign-
ing reads to possible alignment regions: hash table indexing or indexing with the
Burrows Wheeler Transformation (BWT) [FB09]. In the hash table approach,
either the reference genome or the set of sequence reads are indexed using seeds
or spaced seeds. While a seed is a sequence region that has to match exactly,
a spaced-seed allows mismatches at specified positions. Thus, not all charac-
ters of the seed have to be compared but only the positions that are required
to match. With a hash function, reads are associated to the seeds that match
their sequence. For each seed, the associated read identifiers are stored in the
hash table. The matched seeds between reference genome and read sequences
represent potential alignment regions of the reads to the reference. By index-
ing the reads, the reads are associated with positions in the reference genome
and can be quickly looked up with the help of the index. The same is possi-
ble for the reference genome if it is indexed. Then, the set of reads is used to
quickly scan the hash table of the reference genome. Short read alignment tools
based on hash tables are MAQ [LRD08], SOAP [LLKW08], ELAND [BBS+08],
SHRiMP [RLD+09], ZOOM [LZZ+08], BFAST [HMN09], MOSAIK [Mos] and
GenomeMapper [SHO+09]. In contrast, tools like Bowtie [LTPS09], BWA [LD10]
and SOAP2 [LYL+09] create a BWT of the reference genome and index this trans-
formation using a suffix array. This index is called FM index or compressed suffix
array. Possible alignment regions of reads in the reference genome are detected by
scanning for seeds of the reads in the FM index. The FM index takes advantage
from the compression of the reference genome by the BWT. The FM index is of-
ten smaller than the index of the original reference genome, while it still allows to
search for substrings at the same level of speed. Consequently, short read mappers

13

based on the BWT are much faster than hash-based methods at the same level of
sensitivity.

After detecting possible alignment positions, accurate alignments of the reads
to the reference genome are calculated at these positions by a gapped or ungapped
version of the Smith-Waterman algorithm. In addition, quality values of the se-
quenced bases can be taken into account. To obtain reliable alignment positions of
the reads, a threshold for the number of allowed mismatches is defined. For each
read, the alignments with the highest alignment score, representing the quality
of the alignment, are considered as best alignments. If there exists only one best
alignment for a read, the read can be uniquely assigned to the reference sequence.
If there exist several best alignments, the read is marked as belonging to a repet-
itive region. An alignment of mate-pair reads to the reference sequence can only
be classified as correct, if both reads align in a correct orientation to each other
and show a distance that matches their insert size.

Finally, the consensus sequence is determined. Either the determination is an
integrated part of the mapping software like in SOAPsnp [LLF+09] or it is handled
by a separate software like SAMtools [LHW+09]. For reads that are uniquely
aligned onto the reference sequence, the consensus sequence can be determined to
detect reliable differences between the target genome and the reference genome
such as SNPs and short indels. Quality scores of the consensus bases are taken
into account. Thresholds for the reliability of bases in the consensus sequence can
be adjusted to the type of read data used.

The mapping-consensus strategy has some limitations in the detection of longer
insertions and highly polymorphic regions in the target genome. Using conven-
tional mapping software, only a limited amount of these regions are detected
depending on their length. Thus, more sophisticated approaches are required for
covering long insertions or highly polymorphic regions. Moreover, rearrangements
like reversals, i.e., regions in the target sequences that are reversed compared to
the reference sequence, can not be found by mapping-consensus approaches.

2.3. De Novo Assembly Approach

In contrast to the mapping-consensus approach, de novo assembly does not uti-
lize a reference sequence. Reads are assembled in order to reconstruct the original
sequence of the target genome. The read sequences are overlapped and merged
with each other into a colinear arrangement without any additional sequence in-
formation. In this process, mate-pair information can be utilized.

Initially, the de novo assembly problem was formulated as the shortest super-
string problem [Pop04].

14

Definition 1. Shortest Superstring Problem (SSP)
For a given set S of read sequences, the shortest string that contains each read of
S as substring is the shortest superstring.

The problem of finding the shortest superstring is known to be NP-hard, which
means that for this problem no exact solution can be found in polynomial time
using a deterministic algorithm, unless P=NP. This simplified definition of the as-
sembly problem does not consider repetitive regions and sequencing errors. Thus,
even the exact solution for the SSP might not correspond to a correct solution of
the assembly problem.

Three approaches have been developed to approximate the assembly problem: A
greedy approach, the overlap-layout-consensus approach, and the de Bruijn graph
approach. Several tools based on one of these approaches have been designed to
assemble Sanger reads. However, tools that have been developed for Sanger reads
cannot be directly applied to short read data without adjusting their algorithms
to the shorter read length, higher coverage and the specific error characteristics
of SGS technologies.

2.3.1. Greedy Assembly Approach

When the assembly problem came up, several greedy algorithms [PSTU73, TY02,
AS98, KS05] were developed that worked according to Algorithm 2.3.1.

Algorithm 2.3.1: greedyAssemblySanger(readSequences)

contigs← readSequences
while there exist two sequences in contigs that overlap with each other

do


contigPair ← randomly choose two sequences in contigs

with best overlap
newContig ← merged contigPair according to alignment
contigs.delete(contigPair)
contigs.add(newContig)

return (contigs)

Due to the complex structure of most genomes and to errors in the read se-
quences, the genome sequence can only be approximated by a greedy algorithm.
Nevertheless, most sequencing errors in the reads can be handled in the greedy
strategy by allowing mismatches in the overlap alignments of reads. Unfortu-
nately, there exists no extension to the algorithm to handle repeat regions that
occur in the target sequence. Regions that are adjacent to such repeats are likely
to be combined in a wrong order during the greedy assembly process, leading to
false contigs.

15

Algorithm 2.3.2: greedyAssemblyShort(reads)

prefixTree← Prefix Tree for reads, 5’-prefixes of read sequences and
their reversed complements

contigs← empty List
newContig ← empty String
while there exists a sequence in reads that is not contained in contigs

do



newContig ← randomly choose sequence in reads that is not
contained in contigs

extendContigAt3’End(reads,newContig,prefixTree)
newContig ← newContig.reversedComplement()
extendContigAt3’End(reads,newContig,prefixTree)
contigs.add(newContig)

return (contigs)

Algorithm 2.3.3: extendContigAt3’End(reads, newContig, pTree)

nextReads← utilization of pTree to find a set of sequences in reads such
that their 5’ ends match exactly to the 3’ end of newContig
by maximizing the length of the exact matching

while nextReads is not empty and contains only similar sequences

do



newContig← extension of newContig by multiple alignment
of nextReads

reads.delete(nextReads)
nextReads← find a set of reads such that their 5’ ends match

exactly to the 3’ end of newContig by maximizing
the length of the exact matching using pTree

return (newContig)

With the rise of short read data, a similar greedy strategy has been devel-
oped, see Algorithm 2.3.2. To deal with the large number of reads, a prefix tree
that organizes the read sequences by their first bases is built such that potential
start regions of overlaps between reads can be detected efficiently. Sequencing
errors in the read data are taken into account by favoring read sequences with a
high sequencing depth for extending a contig. Mis-assemblies caused by repeats
are avoided by cutting the assembly if overlapping reads do not show a similar
elongation-sequence. Such reads could arise from different copies of a repeat.
Often they match at one end, indicating the repeat region, but have dissimilar
regions at the other end. Utilizing this approach often results in a large number
of very small contigs and a long runtime, for example 6 h to 19 h for a single
bacterial genome assembly. Variants of this algorithm are implemented in the
assembly tools SSAKE [WSJH07], VCAKE [JRB+07] and SHARCGS [DLBH07].

16

2.3.2. Overlap-Layout-Consensus Approach

In order to address problems in assembly like sequencing errors and the resolution
of repeats, the local nature of the greedy strategy has to be overcome. A more
sophisticated approach follows the overlap-layout-consensus paradigm. It has been
introduced for Sanger reads by Peltola et al. [PSU84] in 1984 and further developed
by Kececioglu and Myers [KM95, Mye95] in 1995. Here, the overlap information
between reads is represented in a graph structure, the overlap graph. In such
a graph, each read is represented by a vertex and each overlap between reads is
represented by an edge between the corresponding vertices, see Figure 2.4 C. With
this representation, the assembly problem can be formulated as the problem of
finding a Hamiltonian Path [Pop04].

Definition 2. Hamiltonian Path
In a given graph, a Hamiltonian Path visits each vertex exactly once.

The problem of determining the existence of a Hamiltonian Path is NP-
complete. Problems that are NP-complete lie in NP and any NP-hard problem
can be reduced to any of these problems. For a problem that lies in NP a provided
solution can be verified in polynomial time. For a problem that is NP-complete an
exact solution cannot be found in polynomial time using a deterministic algorithm,
unless P=NP.

Similar to the SSP, solving the assembly problem by finding a Hamiltonian
Path does not consider sequencing errors and repeat regions in the target genome.
However, with the overlap-layout-consensus approach, good approximations of the
real world assembly problem can be obtained by finding paths in the overlap graph.
Paths that are induced by sequencing errors or repeats have to be cut and perhaps
re-linked in the graph. For the final paths, the represented consensus sequence
is calculated and reported as contig. In general, the overlap-layout-consensus
approach executes the following three steps:

1. Overlap phase: Overlap alignments between read sequences are deter-
mined and represented in a graph structure.

2. Layout phase: A path is selected representing an alignment that assembles
the reads in a linear order.

3. Consensus phase: For the final path the consensus sequences, which corre-
spond to the most likely original sequence of the target genome, is calculated.

This workflow is illustrated in Figure 2.4. In the overlap phase, pairs of overlap-
ping reads are determined by calculating overlap alignments. In a näıve approach,
all read sequences are compared with each other to detect all pairwise overlap
alignments. To reduce the number of comparisons, a filtering step is often applied
revealing pairs of reads that possibly overlap. Often, reads share an identical sub-
sequence, a k-mer, if they overlap with each other. These k-mers are detected

17

A B

C D

TACG TCGAAC

CGCTCG AGTGC

CGTCAG GCTTTGACT

CAGTGC ACTTG AGC GCTTT
TGCAG TACGC

AGGTA GCATT
TAGGC TTCGG

CGTA

TACGC GCTTT CGCTCG AGTGC
AGC GCTT TAGGC GCATT
TACG TTCGG CGTCAG CAGTGC
ACTTG CGTA TGCAG TCGAAC
AGGTA

TACG

CGCTCG AGTGC

CGTCAG GCTTTGACT

ACTTG
TGCAG TACGC

AGGTA GCATT
TTCGG

TACGCTCGTCAGTGCTTTGACTTGCAGGTACGCATTCGG

E

Figure 2.4.: The workflow of the overlap-layout-consensus approach is shown using a
simple example. (A) Read sequences are obtained from a sequencing platform. In this
example, the read lengths vary between three and five bp. (B) In the overlap phase,
overlaps between the read sequences are determined. In a filtering step, which is not
shown here, pairs of reads that share a common k-mer are determined . For these
candidates, the pairwise overlaps are determined. (C) The overlap phase results in a
representation of the overlap information as an overlap graph. (D) In the layout phase,
cycles in the graph that arise from repeats, sequencing errors and polymorphisms are
handled. Here, the overlap graph shows two cycles arising from sequencing errors in
the reads CAGAGC and TATGC. These cycles are handled by deciding for one of their
paths. Furthermore, short paths arising from reads that overlap with only one other
read are deleted. (D) Finally, unique paths are extracted from the overlap graph. (E) In
the consensus phase, for each extracted path the consensus sequence of the underlying
read sequences is determined and reported as a contig.

18

using an indexing technique like a suffix-array. Only for pairs that share a k-mer,
an overlap alignment is determined.

To further reduce the time for the calculation of the overlap alignments, a
banded alignment algorithm can be applied. It reduces the time complexity of an
alignment from quadratic to nearly linear time by avoiding alignments that have
a longer gap in either sequence. This is managed by constraining the calculations
of the dynamic programming matrix to a diagonal band. The position of the band
can be determined by the positions of the equal k-mers that have been detected
by means of indexing in the beginning of the overlap phase.

For the actual overlap alignment calculation, constraints are set such as the
maximum number of mismatches, the minimum alignment length and gap bounds.
Unfortunately, there still exist false overlaps due to erroneous read sequences
or accidentally aligned reads that belong to different copies of a repeat. False
alignments can be induced by repeats, since reads that contain the same part of
a repeat sequence do not necessarily belong to the same copy of the repeat in the
target genome. To reduce the number of false overlaps, quality values that are
given for the read sequences can be used to penalize mismatches between high
quality bases stronger than mismatches between bases of lower quality. Not all
false overlaps can be detected with this approach and, thus, have to be handled
later in the workflow. In addition, it has to be considered that read sequences that
originate from the same region in the target genome are almost identical except
for sequencing errors. If they do not have the same length, one sequence might
be contained in another sequence. Thus, we have to merge these reads. Finally,
the calculated overlap information is represented in an overlap graph.

In the layout phase, final paths are selected from the overlap graph. The paths
represent alignments of reads in which the reads are linearly ordered. Different
optimization strategies can be chosen to select edges for these paths, e.g., the score
of the alignments, their quality or more sophisticated alignment statistics. The
layout problem has been shown to be NP-complete for the different optimization
targets [PSU84, KM95].

The size of the overlap graph tends to grow drastically, even for Sanger reads, to
up to tens of thousands or tens of millions of vertices for bacterial or mammalian-
sized genomes, respectively. Nevertheless, there exist several implementations
of the layout phase that calculate good approximations. Most of these greedy
methods transform the overlap graph in a graph of lower complexity by simpli-
fying subgraphs in the overlap graph for which the layout problem can be easily
solved [Mye95]. Often, these subgraphs represent regions between repeats in the
genome sequence. Then, more sophisticated approaches are applied to the reduced
graph by taking advantage of mate-pair information. The graph can be further
simplified by placing mate-pairs such that their distance and orientation in the
graph is consistent with their insert size and their real orientation to each other.
Variations of this idea are implemented in several assembly tools like the Celera
Assembler [MSD+00] or Arachne [BJS+02].

Often, several mate-pair libraries with different insert sizes are available, de-

19

pending on the technique the library was produced with. Repeat regions can only
be spanned by mate-pairs that have an appropriate insert size. Thus, different
mate-pair libraries are required for handling repeats of different sizes. In addition
to mate-information, the sequence depth offers the possibility to detect subgraphs
in the overlap graph that belong to repetitive regions. Usually, the sequencing
depth at a repetitive region depends on the number of its copies in the target
genome and is by this factor higher than the mean sequencing depth of all other
regions in the genome. The reads of each copy of a repeat align to each other
and, thus, will collapse into the same subgraph in the overlap graph. In order
to optimize the runtime, assembly tools often skip the assembly of longer repeat
regions by omitting all related overlap alignments.

In the consensus phase, the consensus sequence is calculated for the aligned
reads that are represented by the final selected paths. The consensus sequence
is determined from a multiple alignment that is constructed for the reads such
that the overall alignment score is maximized. The multiple alignment is often
only an approximation since an exact solution cannot be determined efficiently.
One heuristic to create a multiple alignment uses the already provided pairwise
alignments of reads. Often, only a subset of the pairwise alignments is used
such that no redundant alignment information is contained. More sophisticated
approaches calculate a multiple alignment of the reads iteratively by adding a
read sequence to the multiple alignment in each step. The placement of the newly
inserted read is guided by the already available pairwise alignments. A similar
approach by Anson and Myers [AM97] improves an initial multiple alignment of
the reads by an iterative procedure. In each step, a read sequence is deleted
from the multiple alignment and re-aligned again. The process terminates when
the multiple alignment cannot be improved any further. Other algorithms take
the overlap alignments of the reads as a first layout of the multiple alignment
and solely optimize local regions that contain mismatches. In order to obtain an
appropriate multiple alignment, the consensus is calculated for each position by
choosing the base with the highest relative frequency.

Besides the already mentioned Celera Assembler and Arachne, there ex-
ist various other sophisticated assembly tools that follow the overlap-layout-
consensus paradigm like Atlas [HCD+04], CAP3 [HM99] , PCAP [HWA+03],
Phrap [DLBM07], Phusion [MN03] and for short read data Edena [HFF+08] and
the here presented LOCAS. Until now, this approach has not been adapted to
SGS data very often since the number of pair-wise comparisons in the overlap
phase is huge due to the large amount of data. Furthermore, the reliability of
short overlap alignments that are required for short reads is not very high. At
present, the state-of-the-art approach for developing assembly tools for SGS data
is the de Bruijn graph approach.

20

CTGA TGAT GATG ATGC GACG ACGT

TGAT ATGC CCTG AGAC GCTG CTGA GCAA CAAT CTGC

TGCT GATG TGCA GACC GACG TAGA ACCT ACGT CTGC

TAGACGT GACCTGCT CCTGCTGC TGCTGCA ACCTGATGC

TAGA AGAC GACC ACCT CCTG TGCA GCAA CAAT

CTGC TGCT GCTG CTGC

GACG ACGT

TAGA AGACCTG TGCAAT

AGACGT

CTGCTGC

CTGATGC

TAGA AGACCTG TGCAAT

AGACGT

CTGCTGC

CTGATGC

TAGACCTGCTGCTGCAAT

A

B

C

D

E

F

Figure 2.5.: An example de Bruijn graph assembly is shown. (A) Sequence reads are
obtained from a sequencing platform. In this example, the read lengths vary between
seven and nine bp. (B+C) In the next step, the k-mers, in this example 4-mers, are
hashed, k-mers and their overlaps are represented in a de Bruijn graph. (D) The graph
is simplified such that each path that has no branching vertices is reduced to a single
vertex. From now on, vertices can represent sequences of different lengths. (E) In the
next step, the graph is reduced by handling cycles that arise from sequencing errors. In
addition, short paths resulting from k-mers that do not overlap at both sides are deleted.
Also, cycles induced by repeats are handled, which is not shown here. Finally, a graph
is obtained that approximates the genome sequence. (F) The sequence is determined
via the consensus sequences of the linear paths that can be extracted from the graph.

21

2.3.3. De Bruijn Graph Approach

Idury and Waterman [IW95] were the first to introduce the de Bruijn graph ap-
proach for sequence assembly. All overlapping k-mers, i.e., k-mers that overlap
exactly with a length of k − 1, in the set of sequence reads are detected using an
index structure. This information is converted into a de Bruijn graph by intro-
ducing a vertex for each k-mer and an edge between two vertices if the respective
k-mers overlap in k − 1 positions. Using this model, the sequence of the original
genome can be approximated by an Eulerian Path in the de Bruijn graph [Pop04].

Definition 3. Eulerian Path
In a given graph, a Eulerian Path visits each edge of the graph exactly once.

The Eulerian Path problem can be solved in linear time and returns a solution
to the assembly problem assuming error-free read sequences and a target genome
without repetitive regions. In order to consider also repeats and sequencing errors
in the assembly solution, a variation of the Eulerian Path has to be calculated.
This path has to traverse subgraphs that represent repeats several times. Sub-
graphs that belong to sequencing errors must not be included in the final path.
Furthermore, the problem of selecting such a path becomes even harder. For ex-
ample, each sequencing error in a read leads to a number of false k-mers, which
increases the number of vertices in the de Bruijn graph. It also may happen that
k-mers that are not adjacent to each other in an input read are represented by con-
nected vertices in the graph. Thus, incorrect sequence information is represented
in the graph.

The first implementation of the approach was released by Pevzner et
al. [PTW01b, PT01, PTW01a] addressing several of the above issues. In Fig-
ure 2.5, the workflow of the de Bruijn graph approach is illustrated. In addition,
Pevzner et al. developed an error correction method. Input reads are corrected
by counting the frequency of their k-mers in all read sequences and replacing less
frequent k-mers by similar k-mers of a high frequency. Furthermore, reads are
used to reduce the complexity of the de Bruijn graph. On one hand, edges be-
tween vertices that represent k-mers that are not present in one read sequence
are deleted. On the other hand, small repetitive regions can be handled by utiliz-
ing original read sequences that fully contain these repeats. In addition, Pevzner
and Tang developed a sophisticated method that handles longer repeats by using
mate-pair information [PT01].

A key advantage of the de Bruijn approach is the construction time, which is
linear in the number of reads, while the overlap-layout-consensus approach has a
quadratic runtime using a näıve implementation.

The de Bruijn approach has been first adapted to SGS data in the software
tool Newbler (Roche’s 454 assembler), which assembles reads produced by the
454/Roche technology. Several assembly tools that are compatible with reads
of the Illumina technology followed like VELVET [ZB08], EULER-SR [CP08],
ABySS [SWJ+09], ALLPATH [BMK+08, MPG+09], SOAPdenovo [LLZ+09] and

22

recently Contrail [SSK+]. They all use a de Bruijn graph but their approaches for
error treatment and for taking advantage of mate-pair information differ.

2.3.4. Prospects of De Novo Assembly with Short Reads

The natural limits of a short read assembly under the assumption of error-free
reads have been investigated by Whiteford et al. [WHW+05]. Excellent results
could be produced for bacterial genomes even with a read length of 30 bp.
For Escherichia coli, 75% of the genome was covered by contigs with at least
10, 000 bp and 96% of the genes were assembled within single contigs. For eukary-
otic genomes, 51% of the genome could be assembled into contigs with at least
10, 000 bp using reads of length 50 bp.

In de novo assembly of complex and large sized genomes, large amounts of
memory are required in the assembly process. With the de Bruijn graph approach,
which is used by most current assemblers, the data is presented in a compressed
fashion. However, additional data structures are required for assigning reads to the
graph, which produces a memory overhead for larger genomes. The high demand
for memory has been addressed in more sophisticated assembly approaches such
as SOAPdenovo by using compressed data structures that can be retained to
disk. To take advantage of multiple computers, a parallelized, MPI-cluster-based
approach is used by the assembler ABySS. Further, there exist homology-guided
approaches that use a reference sequence to partition the assembly problem into
smaller sub-problems in order to save memory. This approach will be discussed
in Section 2.4.

Repetitive regions still yield the main problems for assembly. Different libraries
of mate-pairs are required to handle repeats of different sizes. Consequently, at
least a portion of the read data should be provided with mate-pair libraries of
short and long insert sizes. The quality of the assembly will benefit from this
data. Nevertheless, the assembly depends strongly on the kind of target genome.
While bacterial genomes have often only a small number of repetitive regions with
a length of at most 200 bp, eukaryotic genomes such as the human genome are
more complex. The repeat length of these genomes depends on the appearance
of active SINE and LINE transposable elements, which have a length of 500 bp
to 1 kbp and about 4 kbp, respectively. The longer insert sizes of mate-pairs
that have recently been provided by the SGS technologies will facilitate de novo
assemblies of large complex genomes.

2.3.5. Scaffolding

Contigs produced by de novo assembly need to be ordered and oriented to each
other to obtain their correct position in the target genome. This is done in a
similar fashion to the mapping-consensus approach in a process called scaffolding.

Constraints defined by given mate-pairs are used in the scaffolding process by
ordering contigs according to adjacency information of their mate-pairs. The

23

orientation of mated reads to each other yields restrictions to the orientation of
the respective contigs. With the approximate distance between two mate reads,
the contigs can be ordered and their distance to each other can be determined.
Often, multiple libraries with mate-pairs of different insert sizes are generated,
which provides even more constraints.

Although some assemblers include scaffolding, there exist stand-alone scaffold-
ing tools like Bambus [PKS04]. It was originally developed for Sanger reads but is
also widely used for SGS data. The tool makes use of mate-pair information and
can utilize a complete genome sequence of a related organism to guide the contig
placement.

Further approaches for scaffolding are contig overlapping and the use of gene
synteny. The first uses additional information on detected overlaps between con-
tigs to order them and extract information on their orientation. Knowledge of
gene synteny is used to scaffold contigs that contain co-located genes. Therefore,
genes are detected within contigs that usually occur in clusters in most organisms.
Contigs containing the same gene sequence or genes from one cluster are placed
close to each other in the scaffolding solution.

2.4. Homology-Guided Assembly Approach

Similar to the mapping-consensus approach, homology-guided or comparative as-
sembly approaches exploit available reference genomes from the same or closely
related species. Often, different strains of the same species are sequenced in or-
der to identify polymorphisms and indels [RSP+02]. The comparative assembly
strategy works best when the genomes of two species are more than 90% identi-
cal [PS08].

Homology-guided assembly adapts from both, the mapping-consensus approach
as well as de novo assembly. The traditional overlap-layout-consensus approach is
transformed in a mapping-layout-consensus approach. The layout phase addition-
ally handles indels and rearrangements that occur between target and reference
genome. Usually, these regions complicate the mapping of the reads to the ref-
erence since reads may only partially match the reference genome or reads may
match non-adjacent regions of the reference. The overall workflow is as follows:

1. Read mapping: Align reads to the reference genome and utilize possible
mate-pair information.

2. Layout refinement: Rearrange reads to handle indels, divergent positions
and genome rearrangements.

3. Consensus phase: Generate consensus sequence for reads of the final lay-
out.

4. Scaffolding (optional): Orientate and order contigs.

24

Insertions appearing in the target genome are handled in the layout phase.
Reads belonging entirely to these regions will not align to the reference genome
while reads that align only partially with the insert region can align to the ref-
erence genome. The assembly will stop at the point of this insertion, resulting
in two separate contigs. In the case of smaller insertions that have at most the
length of a read, some reads from the edge of the insertion will align to the refer-
ence genome. These insertion regions can be resolved with the homology-guided
assembly approach and are reported as a single contig.

An advantage of placing reads on a reference genome instead of overlapping
them with each other is that more sequencing errors can be handled and, thus,
a considerable lower amount of read data is required to perform assembly. Also,
regions that lead to major problems in de novo assembly like repeats can be
handled more easily. The ability to detect expansions and contractions of long
tandem repeats is increased. Tandem repeats are repeated pattern sequences of
at least two nucleotides that are directly adjacent to each other. Moreover, isolated
repeats do not cause breaks in the assembly as they would do in a de novo strategy.
Reads belonging to repeats are randomly assigned to one copy of the repeat to
which they have a high quality alignment in the reference sequence [PS08].

One of the first comparative assemblers was AMOScmp [PPDS04]. It was first
created for Sanger reads and later adjusted to SGS data (AMOScmp-shortReads,
unpublished). Another tool developed for short read data is Crossbow [LSL+09],
a software pipeline for whole genome resequencing analysis. It utilizes the short
read aligner Bowtie and the genotyper SOAPsnp and applies them in a parallel
fashion exploiting multiple computers and CPUs wherever possible.

25

3. An Extended Homology-Guided
Assembly Approach (SHORE)

The homology-guided assembly approach uses a reference sequence to guide the
assembly process. Homologous regions are assembled and short polymorphic re-
gions and indels can be resolved with this approach, see Section 2.4. However,
longer insertion and highly polymorphic regions still raise problems.

In this chapter, we introduce a sophisticated method that extends the traditional
homology-guided assembly approach to additionally address the assembly of longer
insertion and highly polymorphic regions. The main steps of the workflow are a
mapping of all reads onto the reference and a pooling of all left-over reads, which
are reads that could not be mapped onto the reference sequence. In the following,
the mapped reads are assembled by incorporating left-over reads. This leads to a
new kind of assembly problem, which we call reassembly problem. Two kinds of
read sets have to be assembled. While the whole set of mapped reads has to be
assembled following the ordering of their mapping positions, only some left-over
reads have to be incorporated in the assembly. A left-over read is only incorporated
if it has a high quality overlap with a mapped read in order to recruit only left-
over reads that belong to the respective region. Though the mapped reads have
already an order defined by their mapping positions they can be rearranged in
the reassembly process. This happens if a deletion or small insertion occurred in
the target genome regarding the reference genome or a better placement of a read
becomes reasonable due to a replacement or an incorporation of other reads. We
will discuss methods for reassembly in Chapter 4 and Chapter 5, while we present
the main workflow of the homology-guided assembly approach in this chapter.

3.1. Workflow

After the read data is filtered for erroneous reads, the high quality reads are
mapped against a reference genome to receive a first ordering. Some reads be-
longing to homologous regions can contain a smaller number of SNPs and short
indels and still map onto the reference genome, while reads that belong to highly
polymorphic regions or insertion regions in the target genome will not align to the
reference. This is illustrated in Figure 3.1.

In the following, mapped reads are reassembled in order to accurately reveal
deletions and small insertions and additionally incorporate some left-over reads
that belong to longer highly polymorphic and longer insertion regions. The left-

27

reference

target

SNPs insertion

aligned reads

left-over reads

Figure 3.1.: The target genome differs from the reference sequence in one highly poly-
morphic region containing SNPs and one insertion region. The read sequences of the
conserved regions are aligned to the reference genome, while the reads belonging to the
polymorphic and insertion region do not align to the reference genome. They are pooled
together with erroneous reads and repetitive reads in the set of left-over reads.

block i block j

left-over reads

block i block j

SNPs

unassembled left-over reads

Figure 3.2.: Reads that are mapped to the reference genome are partitioned into
blocks. Here, reads are pooled into block i and j. All non-alignable reads are pooled
as left-over reads. The left-over read set contains erroneous and repetitive reads as
well as reads that belong to divergent regions. The region between the blocks i and
j is highly polymorphic and, thus, no read of the target sequence was mapped to the
reference in the respective region. In the next step, the blocks i and j are reassembled
by incorporating left-over reads that overlap with reads from the block. In an ideal
scenario, the assembled sequence covers the regions of the blocks as well as the highly
polymorphic region between them.

28

over reads are a mixture of erroneous reads, repetitive reads and those that are
referring to highly diverged regions and it is not obvious which read belongs to
which of these classes. Unfortunately, the set of left-over reads can have the size
of 5% to 25% of all reads.

It is self-evident that the reassembly problem and the incorporation of left-over
reads in particular gets harder with increasing number of reads. To keep the
amount of reads to be reassembled within a reasonable limit, the mapped reads
are partitioned into regions of overlapping alignments, called blocks. The reads
are assigned to their respective block and each block is reassembled separately. In
detail, the mapped reads are partitioned using a static region size or dynamically
by using regions with zero coverage or repetitive regions as natural borders. Two
consecutive blocks are assembled together by incorporating the left-over reads
that overlap with the reads of these blocks. An illustration of a reassembly of two
blocks is shown in Figure 3.2. Afterward, the produced contigs can be further
scaffolded. In the process of scaffolding, neighbored contigs can be merged within
one scaffold using mate-pair information.

The whole approach is implemented in the short read analysis framework
SHORE [OSC+08, SOO+] that is specifically designed for resequencing projects
with short read data. SHORE executes the following main steps:

1. Filtering: Trimming and quality filtering of reads.

2. Alignment: Reads are aligned to reference genome and left-over reads are
pooled.

3. Partitioning: Aligned reads are partitioned into blocks of reads belonging
to the same local region.

4. Reassembly: Assembly of the blocks to contigs by incorporating left-over
reads.

5. Scaffolding: Merging and scaffolding of the contigs.

The pipeline includes several tools developed for short read data. In the align-
ment step, alignment tools like BWA [LD10], Bowtie [LTPS09] and GenomeMap-
per [SHO+09] are applied. GenomeMapper aligns reads simultaneously against
multiple reference genomes after integrating these references in a single data struc-
ture. The other mapping tools, BWA and Bowtie, are discussed in Section 2.2. For
the reassembly step, de novo assemblers like VELVET [ZB08], ABySS [SWJ+09]
and EULER-SR [CP08] are supported as well as LOCAS and SUPERLOCAS,
which are specifically designed to reassemble low sequencing depth data. In addi-
tion SUPERLOCAS is the only assembly tool that provides an efficient method
for the incorporation of left-over reads. LOCAS and SUPERLOCAS will be pre-
sented in detail in Chapter 4 and Chapter 5. In the scaffolding step of SHORE,
the scaffolding tool BAMBUS [PKS04] is utilized.

The presented methods have been mainly developed and implemented by
Stephan Ossowski and Korbinian Schneeberger.

29

4. Short Read Assembly with a Low
Sequencing Depth (LOCAS)

This chapter gives an overview of the workflow of the assembler LOCAS and
implemented algorithms.

4.1. Overview

The assembly tool LOCAS is designed to assemble short to medium sized reads
at a low sequencing depth. Therefore, the assembler extends the classical overlap-
layout-consensus approach, which was originally developed to assemble Sanger
reads. The overlap graph is reduced by a transformation into a path graph fol-
lowing the ideas of Myers et al. [Mye95, MSD+00, Mye05]. In the path graph,
regions that can be unambiguously assembled are merged and represented as one
vertex.

The main steps of the workflow of LOCAS are as follows:

1. Preprocessing: Detection of pairs of reads that have an identical k-mers

2. Overlap phase: Calculation of overlap alignments for detected pairs and
construction of the overlap graph

3. Layout phase I: Transformation of the overlap graph into a path graph

4. Layout phase II: Cycle handling and extraction of final paths

5. Consensus phase: Determination of consensus sequences as contigs

To adjust the general overlap-layout-consensus approach to short-read data of
low sequencing depth, we modified the traditional algorithm that selects the final
paths in the path graph in the layout phase II: In comparison to Sanger reads, the
graph size is increased due to the higher amount of reads. In addition, the short
overlap length in comparison to Sanger reads leads to more overlaps, including
also false overlaps. This increases the graph size additionally and leads to a
higher complexity of the graph. We modified the algorithm such that it handles
the increased number of false overlaps and the larger graph as well as the relative
increase of branches in the graph. Paths are selected in the final graph using a
greedy strategy that aims at maximizing the total sequence depth and the total
quality of overlap alignments of the final paths.

31

4.2. Preprocessing

After all read sequences have been loaded, identical read sequences are eliminated.
Identical read sequences are detected with an enhanced suffix array of the SeqAn
library [DWRR08]. The frequency of each read sequence is counted and one copy
is kept for each sequence. Optionally, a filter for repetitive reads can be applied
that deletes all reads that contain a k-mer that occurs more often than defined by
a threshold in the original read set. The size of the k-mer and the threshold for
the minimum frequency can be set by the user. Next, pairs of reads are detected
that have the same k-mers. The k-mers are searched with an enhanced suffix
array that is built for all reads. The detected read pairs are reported as candidate
pairs that overlap potentially. The identical k-mers between candidate pairs are
the seeds for an overlap alignment following on phase two.

4.3. Overlap Phase

Overlap alignments are calculated for each candidate read pair with a minimal
overlap length allowing a maximal number of mismatches. Both values are input
parameters to the assembly tool. The number of maximal mismatches is either
static or it depends of the actual length of the alignment.

Unfortunately, the information to which DNA strand a read belongs to is not
provided by current sequencing machines since the produced reads are sequenced
randomly from both strands of the DNA. Thus, the overlap alignment of two reads
is calculated by aligning the sequences directly to each other and by aligning the
reversed complement of one sequence to the other sequence, which is called an
alignment with similar orientation or dissimilar orientation, respectively. Usually,
the alignment with the higher alignment score, which indicates a lower number of
mismatches, is preferred.

The calculated overlap alignment information is represented by an overlap
graph. Each read is represented by a vertex and each alignment by an edge.
Two types of edges exist: An overlap edge corresponds to an overlap alignment.
A containment edge represents a global alignment and indicates that one read is
aligned over its full length to the other read. If these two reads differ in their
length, one read is contained in the other read. A weight that corresponds to the
length of the alignment is assigned to each edge. Further, a score is assigned that
is equal to the alignment score and describes the quality of the alignment.

For each overlap edge, the attributes orientation and direction are stored. The
orientation is set to true if the corresponding reads align in similar orientation or
to false if they align in dissimilar orientation, meaning that one sequence is aligned
to the reversed complement of the other. The direction is set to right if the first
read is elongated at its 5’-end by the second read. Otherwise, the direction is
set to left. Thus, the overlap graph is implicitly a directed graph if we consider
only overlap edges and leaving out the containment edges: the overlap edges of a

32

true true false true false true true

A

B

Figure 4.1.: (A) Eight reads are shown that align pairwise to each other. Except the
fourth and the fifth read all reads are from the same DNA strand. Thus, the third reads
aligns to the reversed complement sequence of the fourth read. The fourth and the
fifth read align without building the reversed complement to each other. The reversed
complement of the fifth read aligns with the sixth read. (B) For these reads and their
alignments a seq-path is introduced in the overlap graph. The edge between the vertices
of the third and the fourth read and the edge between the vertices of the fifth and the
sixth read have a false orientation. For each of these edges the direction of the next
edge is opposite to their direction.

vertex that are directed to the left correspond to ingoing edges and edges that are
directed to the right to outgoing edges.

The consensus sequence of a path in the overlap graph is the consensus sequence
of the aligned reads that are represented by the vertices along the path and the
alignment information of the edges of the path. Since edges in the overlap graph
are assigned with a direction and orientation, a path is not simply a list of edges
that are connected with each other. For example, two edges that are directed to
the right can only be part of a path if the orientation of the first edge is true and
hence the underlying reads are aligned in the same orientation. The same holds
for two left directed edges on a path. In contrast, if the orientation of the first edge
is false, the corresponding reads align in dissimilar orientation and the direction
of the second edge has to be opposite of the first edge. For an illustration, see
Figure 4.1.

We define a path that considers the orientation and direction of edges a seq-path.
It is defined as follows:

Definition 4. A seq-path is a sequence of consecutive overlap edges in the overlap
graph such that for each pair of consecutive edges e1 and e2 holds that the edges
e1 and e2 have the same direction if the orientation of edge e1 is true and the
opposite direction if the orientation of edge e1 is false.

After the graph construction, the number of edges is decreased by reducing the
redundancy in the graph. For vertices that are connected with a containment edge
and, thus, represent the same sequence information, an exemplar vertex is chosen
and the other vertices are assigned to it. For vertices assigned to the exemplar
vertex, all edges are deleted except the containment edge to the exemplar vertex.
Thus, the exemplar represents now additionally the read sequences of its contained

33

Read 1: AGCTGCGATGCGATGCGTAGTCGTTG

Read 2: GATGCGATGCGTAGTCGTTG

Read 3: CTGCGATGCGATGCGTAGT

Read 4: TGCGTAGTCGTGCGAACGCTGCGAATG

Read 5: GTAGTCGTGCGAACGCTGCGAATG

Read 6: TGCGTAGTCGTTGCGAACGC

Read 7: GCGTAGTCGTTGCGAACGCTGCG

1 4

2

3
5

6 7

Figure 4.2.: Seven read sequences that are aligned to each other are shown. Most
of the reads overlap with each other while read 2, read 3 and read 5, read 6, read 7
align globally with read 1 and read 4, respectively. The overlap graph of the reads is
shown on the right. Each read is represented by a vertex and each overlap alignment
by an overlap edge (solid). The global alignments are represented by containment edges
(dashed). Read 1 and read 4 are exemplar vertices. For the other reads, all edges except
the edge to the exemplar vertex are deleted (dotted).

reads.

The exemplar vertices are chosen using the following algorithm. A list L of all
potential exemplars is built. The read sequence of such a potential exemplar vertex
has to be longer than each read sequence of the vertices that are connected to it
with a containment edge. A score is assigned to each potential exemplar vertex
in L that is the average alignment score of its containment edges. L is sorted
according to this score. The vertex x with the highest score is iteratively taken
from L and assigned as exemplar vertex to each vertex v that has a containment
edge to it and to that no exemplar vertex has been assigned until now. Further,
the vertex x and all vertices that have been assigned to it are deleted from L.

Consequently, for vertex v an exemplar vertex x is chosen that has the highest
average alignment score of its containment edges and its read sequence is at least
as long as the read sequence represented by v. For all vertices that are assigned to
an exemplar vertex, all edges are removed except the edge to the exemplar vertex.
See Figure 4.2 for an illustration of the reduction.

4.4. Reduction and Path Graph Construction

In layout phase I, the overlap graph is further reduced by deleting transitive edges
that are defined as follows:

Definition 5. An overlap edge et = (v1, v2) with weight wt is transitive if the
following holds:

34

1. two edges e1 = (v1, x) and e2 = (x, v2) with weights w1 and w2, respectively,
exist such that w1 ≥ wt and w2 ≥ wt,

2. e1 and e2 are a seq-path,

3. the direction of et is equal to the direction of e1 and

4. the orientation of et is true if the orientations of e1 and e2 are equal or the
orientation of et is negative if the orientations of e1 and e2 are not equal

For a transitive edge et it holds that the edges e1 and e2 can exist in four different
cases regarding their orientation and direction. These cases and the underlying
read alignments are illustrated in Figure 4.3.

Algorithm 4.4.1: deleteTransitiveEdges()

for each vertex v
do

{
sort edges adjacent to v in decreasing order of their weight

for each vertex v

do



for each seq-path p = {e1, e2} adjacent to v

do



w ← end vertex of p
et ← edge between v and w
if et exists and has the same direction as e1

then



weight← weight(et)
if weight ≥ weight(e1) or weight ≥ weight(e2)

then break
else if et is transitive with respect to e1

and e2

then

{
et is marked as transitive
transitive edge weights of e1 and e2
are increased

for each edge e

do

{
if e is marked

then delete e

A transitive edge represents redundant alignment information. Thus, each tran-
sitive edge et can be deleted from the overlap graph. The information of each tran-
sitive edge et is saved in form of a transitive edge weight of edges e1 and e2. The
transitive edges are found and reduced using Algorithm 4.4.1. For each vertex v,
the adjacent edges are sorted in decreasing order of their weight. Then, seq-paths
that consist of two edges e1 = (v, x) and e2 = (x,w) are enumerated. Note that
the seq-paths are enumerated in decreasing order of the weight of their edges. For
each seq-path p = e1, e2, it is checked whether an edge et with et = (v, w) exists.

35

true true

true

false false

true

true false

false

false true

false

A B

Figure 4.3.: If three read sequences show pairwise overlaps with each other, a transitive
edge can occur in the overlap graph. (A) Four pairwise alignment settings of reads are
shown that induce a transitive edge in the overlap graph. A read is drawn as an arrow
pointing to right if the read sequence is aligned or as an arrow pointing to left if the
reversed complement sequence of the read is aligned. For example, in the lower right
alignment the first read is aligned to the reversed complement of the second read and
the third read. The second and third read align to each other and thus also their
reversed complements do. (B) For each alignment case, the corresponding sub-graph is
shown. The three edges represent the pairwise alignments. The direction of all edges is
right, which is indicated by an arrow, since all reads are elongated at their 5’-end. The
orientation is given by a label. In the lower right alignment case, two edges with false
orientation appear in the sub-graph. These edges represent the alignments of the first
read to the second and third read. Their orientations are set to false since the first read
is aligned with the reversed complements both reads. The remaining edge, with true
orientation, represents the alignment of the second and the third read.

If edge et is transitive with respect to e1 and e2 following Definition 5, we mark et
as transitive and increase the transitive edge weight of e1 and e2. This procedure
is repeated until we find an edge et that has the same direction like e1 but greater
weight than e1 or e2. Then the next seq-path is considered for v. After all vertices
are processed, marked edges are deleted.

The reduced overlap graph is transformed in a path graph. Therefore, all unique
seq-paths of maximal length are determined in the overlap graph. A seq-path is
unique if there exist no other seq-path that is adjacent to an inner vertex of
the seq-path. For each unique seq-path of maximal length in the overlap graph,
two vertices connected by an inner edge are introduced in the path graph. This
structure composed of two vertices and an inner edge is called seq-vertex. The
two vertices of the seq-vertex structure represent the ends of the unique seq-path
in the overlap graph or, more precisely, the outer ends of the first and the last
read sequence on the path. To both vertices of a seq-vertex structure a list of
reads and a list of their pairwise alignments is assigned that originate from the
seq-path in the overlap graph. To one vertex the original lists are assigned and to
the other vertex the reversed lists are assigned. To reduce memory, only a link to
the underlying read sequences and their alignments is stored for each seq-vertex.
The consensus sequence of a seq-vertex is identical to the consensus sequence of
the corresponding seq-path or to its reversed complement, depending on which

36

a b
c

d

f

ab

bc

bd

de

df

A) B)
e a` b`

b`` c`

d`` e`

d``` f`
b``` d`

b: ACGTCGTACAGTGT
d: TCGTACAGTGTCAGATG
e: GTGTCAGATGAGCTGC

Figure 4.4.: An overlap alignment graph is transformed into a path graph. (A) The
overlap graph and the aligned read sequences that are represented by the vertices b,
d and e are shown. The overlap graph is transformed into a path graph, which is
shown in (B). For each unique path in the overlap graph an inner edge is introduced
in the path graph (drawn in solid). For example, the unique path between b and d in
the overlap graph is represented by the inner edge (b′′′, d′) in the path graph. If two
vertices in the path graph represent two different ends of the same read, a real edge is
introduced (drawn as dashed lines). An example is the real edge (d′, d′′). Vertices d′

and d′′ represent the same read since they both correspond to vertex d in the overlap
graph. They represent different ends of the same read, since d′ has an inner edge to b′′′

representing an overlap alignment at the 3’-end of the read and d′ has an inner edge to
e′ representing an overlap at the 5’-end of the read.

direction the seq-vertex will be traversed. Note that every overlap edge in the
overlap graph is already a unique seq-path. Consequently, every overlap edge will
be represented by a seq-vertex in the path graph.

To connect seq-vertices in the path graph, for each adjacency between unique
seq-paths in the overlap graph a real edge is inserted into the path graph. A
real edge is introduced between two vertices in the path graph if these vertices
represent different ends of the same read, see Figure 4.4.

To consider only valid paths for the consensus sequence, we have to make sure
that a read sequence that has been traversed from one side is not traversed again
from the other side. Therefore, we define c-paths as follows:

Definition 6. A c-path is a sequence of consecutive edges in the path graph that
alternates strictly between inner edges and real edges starting with a real edge.

In other words, a c-path is a sequence of seq-vertex structures alternating with
real edges. The consensus sequence of a c-path is determined using the reads and
the alignment information of the seq-vertices along the c-path. The read list of a
c-path is determined by appending the read lists of the seq-vertices while the last
read of each seq-vertex is omitted. Only for the last seq-vertex of the c-path the
whole read list is added. The corresponding list of overlap alignments is received

37

A B

C

Figure 4.5.: In the path graph, different cycle types can occur. (A) An undirected
cycle is shown. The two c-paths connect the same vertices. If the consensus sequences
of both c-path are similar to each other, the structure arises from a sequencing error or
SNP. If the consensus sequences of both c-paths are dissimilar a false alignment is in
most of the cases the reason. (B) A directed cycle that usually arises from repeats or
polymorphisms is shown. The c-path can be traversed an infinite number of times and
thus should be cut. (C) A composed structure is shown. An undirected cycle offers two
alternative paths through the graph. In addition, two directed cycles exist due to the
alternative routes. A repeat region is represented by the c-path that does belong two
both directed cycles but not to the undirected cycle. If the undirected cycle is similar
then the repeat regions occurs with two copies in the target genome. Otherwise, the c-
paths of the undirected cycle represent the two region that appear between three copies
of the repeat in the target genome. Nevertheless, both directed cycles have to be cut
since they can also originate from sequencing errors and lead to errors in the assembly.

by appending the list of overlaps of the seq-vertices with each other. This is
feasible since two seq-vertices connected by a real edge represent the same read,
which is the first and last read of the second and first seq-vertex, respectively.
The length of a c-path is the length of its consensus sequence. Further, the length
of a c-path regarding to two selected reads s and t is defined as the length of the
consensus sequence of the c-path between the reads s and t.

4.5. Cutting Cycles and Similar Structures

In the next step, cycles in the path graph that arise from sequencing errors and
repetitive regions in the target genome are handled. To this end, we distinguish
between three different types of cycles. A directed cycle is a valid c-path that
enables to traverse a vertex more than once. In fact, every vertex in the cycle
can be traversed an infinite number of times. These cycles represent repeats and
have to be cut since the consensus sequence of c-paths adjacent to directed cy-
cles represent regions that originate from different regions in the genome. These
regions should not be associated with each other in an assembly and, thus, con-
necting edges are deleted. An undirected cycle contains two distinct c-paths that

38

connect the same start and end vertices. This is called undirected, because both
c-paths together create no c-path and hence cannot be traversed infinite times.
Instead, it represents alternative routes through the path graph. The c-paths of
an undirected cycle have either a similar or a dissimilar consensus sequence. The
first kind of cycle is called similar undirected cycle and arises from sequencing
errors or polymorphisms. The second kind of cycle is called dissimilar undirected
cycle and arises from repeats or false alignments. For both cycle types, one of the
c-paths has to be cut since the consensus sequence can contain only one of the
alternatives. In Figure 4.5 all three cycles types are shown.

Algorithm 4.5.1: calculateSpanningTree()

PriorityQueue← create Priority Queue of all real edges based on edge
score

UnionFind← create Union Find structure by defining each seq-vertex as set
SpaTree← empty List of real edges
DisEdges← empty List of real edges
while PriorityQueue not empty

do



candidateEdge← PriorityQueue.pop()
verL← seq-vertex v of candidateEdge = (v, w)
verR← seq-vertex w of candidateEdge = (v, w)
edgeToInsert← true
if UnionFind.find(verR) = UnionFind.find(verL)

then



undirCycle← getUndirectCycle(verR, verL, SpaTree)
if undirCycle exists

then


edgeToInsert← false
if dissimilar consensus sequence of undirCycle

then DisEdges.add(candidateEdge)
if cutDirectCyc(candidateEdge, SpaTree, DisEdges)

then edgeToInsert← false
if edgeToInsert

then

{
SpaTree.add(candidateEdge)
UnionFind.union(verR, verL)

return (SpaTree)

Cycles are handled by creating a spanning tree in the path graph such that no
directed and no undirected cycle is part of the solution. Consequently, c-paths be-
longing to distant regions in the target genome are disconnected. To determine the
spanning tree, Algorithm 4.5.1 is applied to the path graph by selecting iteratively
real edges. The algorithm is a variation of Kruskal‘s algorithm [KJ56] which finds
a minimum spanning tree for an undirected weighted graph. First, real edges are
scored by the quality of overlap alignments and sequencing depth assigned to the
two seq-vertices connected by the real edge. Then, all real edges are enumerated
in a decreasing order of their score such that regions of high sequencing depth

39

A B

Figure 4.6.: A directed cycle is cut in a path graph. (A) A directed cycle with short
dangling paths is displayed. (B) The cycle is shown after all short paths have been cut
off and the cycle has been cut open at each branch vertex.

and of high quality alignments are preferred for the assembly. An edge is only
selected if neither an undirected cycle nor a directed cycle is introduced in the
current solution, which is checked by Algorithm 4.5.2 and 4.5.3. Algorithm 4.5.2
determines whether a given edge introduces an undirected cycle in the current
spanning tree and returns eventually the cycle. If the returned cycle is dissimilar,
the edge is marked. Algorithm 4.5.3 checks whether an edge introduces a directed
cycle in the current spanning tree. Finally, the spanning tree, which is induced by
the selected edges in the path graph, is reported by Algorithm 4.5.1.

In the following, we will discuss Algorithm 4.5.2 and 4.5.3 in more detail. Both
algorithms are called with a spanning tree and an edge. Algorithm 4.5.2 deter-
mines the existence of an undirected cycle in the spanning tree that is introduced
with the given edge. All seq-vertices with degree of at least three in the neighbor-
hood of the given edge are determined where the neighborhood is restricted by a
heuristic threshold of 1000 bp. For each pair of the found seq-vertices, c-paths are
determined that connect both seq-vertices. If there exist two disjoint c-paths that
connect both seq-vertices such that only one of them traverses the given edge, the
two c-paths constitute an undirected cycle. The detected cycle is reported.

Algorithm 4.5.3 reports if a directed cycle is introduced in the spanning tree
with the given edge. For this purpose, marked edges will also be considered as
part of the spanning tree. This is done to detect more existing directed cycles in
the path graph, even those that are part of an undirected cycle that has been cut
already. As a consequence, read sequences from repetitive regions will be isolated.
The c-path of each directed cycle is cleaned of all short dangling paths, which
can be adjacent to vertices with degree larger than two, called branch vertices,
see Figure 4.6. Then, the c-path is cut at all repeat branches. Repeat branches
are branch vertices of the directed cycle that are adjacent to at least one longer
c-path that is not part of the cycle. The directed cycle and the repeat branches are
recorded for each cycle. The consensus sequence of a directed cycle represents the
repetitive sequence and the sequence between the copies of the repeat in the target
genome. In an ideal scenario, there exist two repeat branches on the c-path of the
cycle that indicate the start and end of the repetitive region. C-paths that are
adjacent to these repeat branches but are not part of the directed cycle represent

40

other regions that occur before, between or after the copies of the repeat in the
target genome. Repeat branches can be easily detected under the assumption
of error free reads and assuming that the copies of a repeat region in the target
genome are identical. In practice, the detection is complicated by branch vertices
that lie on the directed cycle and are adjacent to paths that do not belong to
the cycle. However, these paths are often short such that the branch vertices can
be distinguished from repeat branches. Unfortunately, directed cycles can arise
also due to sequencing errors. Since we cannot determine the correct order of the
paths that are adjacent or on the directed cycle, we simply cut the cycle and do
not relink the adjacent paths. Such a remodeling becomes possible if additional
information is available, for example mate-pair information.

Algorithm 4.5.2: getUndirectCycle(verL, verR, SpaTree)

branchV erticesR← seq-vertices with degree ≥ 3 near verR in SpaTree
branchV erticesL← seq-vertices with degree ≥ 3 near verL in SpaTree
for each pair (x, y) with x ∈ branchV erticesR and y ∈ branchV erticesL

do



path1← c-path between x and y on SpaTree
if path1 exists

then


path2← c-path from x to y on SpaTree via

edge = (verR, verL)
if path2 exists

then

{
undirectedCycle← merge path1 and path2
return (undirectedCycle)

return (false)

Algorithm 4.5.3: cutDirectCyc(verL, verR, SpaTree,DisEdges)

directedCycle← c-path from verL to VerR on SpaTree traversing at most one
edge of DisEdges

if directedCycle exists

then



branches← all seq-vertices on directedCycle with degree ≥ 3
for each b ∈ branches

do



longestPath← longest c-path from b to a leaf in SpaTree
without edges of directedCycle

if length(longestPath) < tresholdMaxLength
then delete all real edges of the subtree of b without

considering edges in directedCycle
else delete all real edges adjacent to repeat branch b

return (true)
else return (false)

41

By assuming seq-vertices as vertices and real edges as edges Algorithm 4.5.1
returns an acyclic graph, the spanning tree on the path graph.

After Algorithm 4.5.1 has been applied, we search for fragmented directed cycles.
A fragmented directed cycle is a c-path that has the same start and end vertex
but one edge of the c-path is missing. Such a c-path occurs if an overlap between
reads has not been detected and the related real edge is missing in the spanning
tree. As for directed cycles that are not fragmented, the consensus sequences of
adjacent paths represent regions of distant locations in the target genome that
should not be assembled to each other. Thus, fragmented directed cycles have to
be cut at the corresponding repeat branches.

The algorithm to detect and cut repeat branches of fragmented directed cycles
works as follows: The spanning tree is searched for repeat branches by searching
for vertices that are connected to at least two longer c-paths. Such paths need
to have a consensus sequence with a length of at least 125 bp. We found this
threshold to be a good trade off between false positive and true positive identified
repetitive regions. Edges adjacent to these vertices are deleted.

4.6. Resolving Repeats Using Mate-Pair Data

With the additional information provided by mate-pairs, some repeat induced
cycles can be resolved in the path graph following the strategy of Pevzner and
Tang [PT01]. At present, the approach is restricted to repetitive regions that
occur only with two copies in the target genome.

The repeat sequence and the sequence between the two copies of the repeat
in the target genome are represented by a directed cycle in the path graph. In
particular, the repeat sequence is represented by a sub-path of the directed cycle,
which is called repeat-path. A repeat-path is either a single seq-vertex consisting
of repeat branches or a path of two repeat branches connected by a c-path.

The sequence regions before and after the repeat copies are represented by paths
that are adjacent to the repeat-path but not part of the directed cycle. They are
called framing-paths. An example of a repetitive region and the corresponding
directed cycle is illustrated in Figure 4.7 A.

A directed cycle can be re-modeled such that it represents the original order
of the sequence in the target genome. Therefore, the repeat-path has to be du-
plicated and re-linked, which is also illustrated in Figure 4.7. However, these
new adjacencies have to be confirmed by mate-pairs in the directed cycle and the
framing-paths that restrict the order of the paths with their insert size.

Without mate pair information, directed cycles are detected, short dangling
paths are deleted and the cycles are cut using Algorithm 4.5.3. If mate-pair in-
formation is available, Algorithm 4.6.1 is called instead. Beforehand, the detected
directed cycle is cut from all short dangling paths.

With Algorithm 4.6.1 all possible repeat-paths of the directed cycle are deter-
mined. For each of these repeat-paths it is investigated whether the adjacent

42

R1 R2

A1 A2

R1 R2

B2 B1

C1 C2

C3

C4

C5

B2 B1

A1 A2

C1 C2

C3

C4

C5

A1 A2

R1 R2

B2 B1

R`1 R`2

C1 C2

C3

C4

C5

A

B

C

Figure 4.7.: (A) A directed cycle in a path graph is shown. The repeat region is
represented by the repeat-path between the repeat branches R1 and R2. The sequence
between the two copies of the repeat in the target genome is represented by the path
between B1 and B2. The path from A1 to A2, which represents the sequence before
the repeat region in the genome, and the paths between C1 and C2, C3 and C4, and
C3 and C5, which represent the sequence behind the copies of the repeat region in the
genome, are called framing-paths. (B) Short dangling paths in the directed cycle are
cut off. (C) The directed cycle is remodeled. The repeat-path is copied and re-inserted
as path between R‘1 and R‘2. All framing-paths of R2 are disconnected from the vertex
and linked to R‘2. The vertex B2 is disconnected from R1 and linked to R‘1.

43

A1 A2

R1 R2

B2 B1

C1 C2

A1 A2
R1 R2 C1 C2

A3 A4 C3 C4

A

B

Figure 4.8.: (A) For a path graph, a directed cycle with two assigned mate-pairs (red)
is shown. The repeat-path of the cycle is between the repeat branches R1 and R2. The
path between B1 and B2 represents the sequence between the copies of the repeat in
the target genome. The framing-paths are the paths between A1 and A2 and between
C1 and C2. The reads of the left mate-pair are assigned to the path between A1 and
A2 and the seq-vertex of B1, respectively. The insert size of the left mate-pair has
approximately the same length as the path between them connecting consecutively A2,
R1, R2 and B1. Thus, the mate-pair confirms this connection. The path that connects
the right mate-pair by traversing consecutively the vertices B2, R1, R2, C1 and C2 is
confirmed if the insert size has approximately the same length as this path. (B) A
fragmented directed cycle is shown. The repeat-path is between the branch vertices R1

and R2. The paths between A1 and A2, A3 and A4, C1 and C2 and between C3 and
C4 are adjacent to the repeat-path. In addition, two mate-pairs (red) are assigned to
these adjacent paths. The upper mate-pair assigns the path between A1 and A2 to the
path between C1 and C2. The insert size of the mate-pair has approximately the same
length as the path that connects them by traversing consecutively A2, R1, R2, C1 and
C2. This connection is confirmed by the mate-pair. The lower mate-pair confirms its
connecting path that traversed consecutively A4, R1, R2, C3 and C4.

44

paths of the repeat-path can be assigned to each other. Therefore, we search for
reads in the framing-paths that mate with reads in the respective beginning of the
directed cycle not considering the repeat-path. This is illustrated in Figure 4.8 A.
If the insert size of the mate-pair matches about the length of the repeat-path plus
the distance to the mate-pair reads, one copy of the repeat-path can be assigned
to the respective adjacent paths. If there are enough mate-pairs that confirm the
assignment, the directed cycle is remodeled. Therefore, Algorithm 4.6.2 duplicates
the repeat-path and re-links it according to the assignment.

Algorithm 4.6.1: resolveDirectedCycle(directedCycle)

branches← all vertices on directedCycle with degree > 2
for each pair v1 and v2 ∈ branches that are the ends of a repeat-path

do



repeatPath← repeat-path between v1 and v2
paths1← c-paths starting in v1 with each edge /∈ directedCycle
paths2← c-paths starting in v2 with each edge /∈ directedCycle
cycPath1← short c-paths starting in v1 with

each edge ∈ directedCycle
cycPath2← short c-paths starting in v2 with

each edge ∈ directedCycle
MateCount1c2← 0
MateCount2c1← 0
for each mate-pair (m1,m2) with m1 assigned to paths1

and m2 assigned to cycPath2

do



pathBetween← c-path connecting seq-vertex of m1 with
repeatPath and cycPath2

lengthB ← consensus sequence of pathBetween
from m1 to m2

if lengthB ≈ m1.length() + m2.length() + (m1,m2).size()
then MateCount1c2←MateCount1c2 + 1

for each mate-pair (m1,m2) with m1 assigned to cycPath1
and m2 assigned to paths2

do



pathBetween← c-path connecting seq-vertex of m2 with
repeatPath and cycPath1

lengthB ← consensus sequence of
pathBetweenfrom m1 to m2

if lengthB ≈ m1.length() + m2.length() + (m1,m2).size()
then MateCount2c1←MateCount2c1 + 1

if MateCount2c1 ≥ minNum and MateCount1c2 ≥ minNum

then

{
remodelDirectedCycle(directedCycle, repeatPath)
return (true)

return (false)

45

Algorithm 4.6.2: remodelDirectedCycle(directedCycle, repeatPath)

vertex1← start vertex of repeatPath
vertex2← end vertex of repeatPath
duplicatedRepeatPath← repeatPath.copy()
insert(duplicatedRepeatPath)
vertexDu1← start vertex of duplicatedRepeatPath
vertexDu2← end vertex of duplicatedRepeatPath
for each edge e = (vertex2, otherV ertex2) with e /∈ directedCycle

do

{
deleteEdge(e)
insertEdge(vertexDu2, otherV ertex2)

dirEdge← edge dirEdge = (vertex1, otherV ertex1)
with dirEdge ∈ directedCycle

deleteEdge(dirEdge)
insertEdge(vertexDu1, otherV ertex1)

After Algorithm 4.5.1 has been applied, fragmented directed cycles are resolved
by using mate-pair information. The procedure is similar to Algorithm 4.5.3.
It is investigated whether adjacent paths of one end of the repeat-path can be
assigned to adjacent paths of the other end of the repeat-path. If two reads of
such paths, are mated in a way that their insert size matches approximately the
distance between them when incorporating the repeat-path, they are assigned to
each other, see Figure 4.8 B. If all adjacent paths can be assigned unambiguously
and confirmed by a reasonable number of mate-pairs, the fragmented cycle is
remodeled. Therefore, the paths that are assigned to each other are connected
with one copy of the repeat-path. Thus, an alternative version of Algorithm 4.6.2
can be applied.

Finally, all fragmented directed cycles that could not be resolved by using mate-
pair information are detected and cut by scanning for potential repeat-paths that
do not lie on directed cycles as introduced in Section 4.5.

4.7. Contig Extraction

Since directed cycles and undirected cycles in the path graph were handled as
described in Section 4.5 and Section 4.6 the resulting graph is a disjoint set of
spanning trees, a spanning forest.

For each spanning tree in the forest, the longest path is determined to maxi-
mize the length of the consensus sequence. The longest paths in a spanning tree
can be determined in polynomial time with the algorithm of Bulterman et al.
[BvdSZ+02]. First, the longest c-path starting at each leaf in each tree are de-
termined and the end vertices are reported. In a second step, the longest c-paths
starting at each end vertex are determined. These final c-paths are longest paths
in the forest.

46

The consensus sequence is determined for each final path. Therefore, a multiple
alignment is calculated for the read sequences assigned to each final path. The
reads are ordered to a multiple alignment by considering their pairwise overlap
alignments. The consensus sequence of the multiple alignment is determined by
choosing the nucleotide with the highest relative frequency at each position in the
alignment.

4.8. Software Architecture

The assembly tool LOCAS is written in C++ with use of the SeqAn li-
brary [DWRR08]. Figure 4.9 shows an UML diagram that presents the class
hierarchy of LOCAS. The software operates in a serial manner. The class
Assembler instantiates and calls consecutively the classes ReadCollection,
Aligner, Reducer, Pather and ConsensusBilder. These classes represent dif-
ferent steps in the workflow of the software. Each class fulfills its function
via the main function apply(), which calls private functions of the class. The
class ReadCollection loads the read sequences, the class Aligner handles the
construction of the overlap graph, the class Reducer transforms the overlap
graph in a path graph, the class Pather determines the final paths in the
path graph, and the class ConsensusBilder determines the contigs. Except for
ReadCollection, the workflow classes instantiate and/or use an object of either
the class AlignmentGraph, PathGraph or ContigCollection. All three classes do
not represent steps in the workflow but rather blue prints of real data containing
objects. The AlignmentGraph represents an overlap graph, the PathGraph repre-
sents a path graph and the ContigCollection a set of contigs. For each of the
listed classes, only one instance exists during the workflow of the tool.

The ReadCollection holds several instances of the classes Mate and
SingleRead. The class SingleRead is a blue print of a read. The attributes
describe a read sequence with its nucleotide sequence, its id, its number of copies
in the data set, its fasta entry and which reads are contained in it. The class Mate
describes a mate-pair with the ids of the mate reads and the ids of the seq-vertices
to that the mate reads are assigned later in the workflow.

The standard workflow of the tool starts with the main function of the
ReadCollection. The read sequences and the mate-pair information are loaded
from the input files. Each read is stored as a SingleRead object and for each
mate-pair a Mate object is instantiated. Then, the set of SingleReads is reduced
by calling private functions of ReadCollection which delete identical reads and
assign contained reads to an exemplar read. After this step, the ReadCollection

object is utilized in the workflow as a data bank of the reads and the mate-pairs.

In the overlap phase, the Assembler object instantiates an Aligner object.
The main function of Aligner handles the construction of the overlap alignment
graph that is represented by an AlignmentGraph object. The SingleRead ob-
jects of ReadCollection represent the vertices of the graph by their id. For each

47

F
ig

u
re

4
.9

.:
T

h
e

U
M

L
d

ia
g
ra

m
sh

ow
s

th
e

class
h

ierarch
y

of
th

e
assem

b
ly

to
ol

L
O

C
A

S
.

T
h

e
class

A
s
s
e
m
b
l
e
r

m
an

ages
th

e
w

ork
fl

ow
b
y

callin
g

co
n

secu
tively

th
e

cla
sses

R
e
a
d
C
o
l
l
e
c
t
i
o
n
,
A
l
i
g
n
e
r
,
R
e
d
u
c
e
r
,
P
a
t
h
e
r

an
d
C
o
n
s
e
n
s
u
s
B
i
l
d
e
r
.

T
h

ese
classes

h
an

d
le

d
iff

eren
t

step
s

in
th

e
w

o
rk

fl
ow

a
n

d
are

a
llow

ed
to

m
o
d

ify
th

e
class

R
e
a
d
C
o
l
l
e
c
t
i
o
n
.

T
h

is
class

h
as

th
e

classes
M
a
t
e

an
d
S
i
n
g
l
e
R
e
a
d
,

w
h

ich
rep

resen
t

b
lu

e
p

rin
ts

o
f

m
ate-p

airs
a
n

d
read

s,
resp

ectively.
T

h
e

classes
A
l
i
g
n
m
e
n
t
G
r
a
p
h
,
P
a
t
h
G
r
a
p
h

an
d
C
o
n
t
i
g
C
o
l
l
e
c
t
i
o
n

are
in

sta
n
tiated

b
y

th
e

class
A
s
s
e
m
b
l
e
r
.

T
h

e
class

A
l
i
g
n
m
e
n
t
G
r
a
p
h
,

w
h

ich
rep

resen
ts

th
e

overlap
grap

h
,

is
m

o
d

ifi
ed

b
y

th
e

class
A
l
i
g
n
e
r

an
d
R
e
d
u
c
e
r
.

T
h

e
cla

ss
P
a
t
h
G
r
a
p
h
,

w
h

ich
is

a
b

lu
e

p
rin

t
for

a
p

ath
grap

h
,

is
m

o
d

ifi
ed

b
y

th
e

class
R
e
d
u
c
e
r

an
d
P
a
t
h
e
r
.

T
h

e
class

C
o
n
t
i
g
C
o
l
l
e
c
t
i
o
n

is
m

o
d

ifi
ed

b
y

th
e
C
o
n
s
e
n
s
u
s
B
i
l
d
e
r

an
d

rep
resen

ts
th

e
set

of
fi

n
al

con
tigs.

48

overlap, an AlignInfo object is instantiated in the AlignmentGraph object. The
AlignInfo class is a blue print for an overlap alignment between reads and, con-
sequently, represents an edge of the graph. The attributes describe features of the
overlap alignment like its length, its score, its number of mismatches as well as
features of the edge like the direction, orientation and the ids of the connected
vertices.

In layout phase I, an object of the class Reducer is instantiated in the Assembler
object. The Reducer object has the right to modify an AlignmentGraph object
to reduce the represented overlap graph. The actual reduction is performed by
the main function of Reducer. Then, the reduced graph is transformed in a
path graph. To this end, a PathGraph object is instantiated containing several
Path objects that represent the vertices in the seq-vertices of the path graph and
several PathConnection objects that represent the real edges. Each seq-vertex is
represented by two Path objects with a consecutive id. The inner edge connecting
them is not stored and exists implicitly.

The main workload of the tool is handled by the Pather object, which is instan-
tiated by the Assembler object, in layout phase II. The Pather object has the
right to modify the PathGraph object. Its main function calculates the spanning
tree of the path graph in the PathGraph object. Further, the longest paths are
calculated and stored as Path objects.

The Pather object hands over the Path objects containing the longest paths, to
an instantiated ConsensusBuilder object. The ConsensusBuilder instantiates
the ContigCollection object, which is only a container for Contig objects. For
each Path object, a Contig object, which represents a contig, is instantiated. Each
Contig object is responsible for extracting the contig of the assigned Path object.
Finally, it contains the consensus sequence and the position-wise sequencing depth.
The final set of contigs, which presents the final assembly solution, is collected
and reported in an output file by the ContigCollection.

49

5. Extension of Homology-Guided
Assembly (SUPERLOCAS)

In this chapter, we introduce algorithms for reassembly that are implemented in
the software tool SUPERLOCAS.

In our approach reads are assembled by utilizing a mapping onto a reference
genome. However, when using a mapping approach, regions of high divergence
as well as long insertions can often not be mapped to the reference, leaving a
set of left-over reads. These regions are reconstructed with SUPERLOCAS by
incorporating high quality left-over reads in the assembly.

We developed SUPERLOCAS as an extension of the regular assembly algorithm
implemented in LOCAS. SUPERLOCAS is adapted to the homology-guided as-
sembly approach of the SHORE pipeline [OSC+08, SOO+], which we introduced
in Chapter 3. With SHORE, reads are mapped against a reference genome. The
mapped reads are partitioned into blocks of given length and all left-over reads
are pooled. Similar to LOCAS, SUPERLOCAS handles the reassembly step. It
assembles each block individually while incorporating relevant left-over reads. In
addition, the tool takes advantage of given mapping positions of reads.

5.1. Incorporating Left-Over Reads

In this section, we discuss the overall workflow of the assembly tool SUPER-
LOCAS.

The algorithm of SUPERLOCAS is an extension of the basic assembly algorithm
that is implemented in LOCAS. In particular, SUPERLOCAS applies extended
algorithms of LOCAS to calculate a pre-assembly of the left-over reads and to
assemble mapped reads while incorporating a part of the pre-assembled left-over
reads. The workflow is shown in Figure 5.1. First, an overlap graph based on
the left-over reads is created, which is called left-over graph. The left-over graph
is re-used in later steps of the workflow. Then, each block is assembled sepa-
rately following the basic assembly algorithm with one additional operation: all
connected components of the left-over graph whose reads overlap with reads of
the current block are recruited and linked to the overlap graph of the block. The
resulting overlap graph is processed with the standard algorithms to extract the
longest paths and to determine the final contigs.

In the following, we will give more details of the workflow of SUPERLOCAS
in Algorithm 5.1.1. First, overlap alignments are calculated for all left-over reads

51

ACTCTAGTCTACTAGCGTGTCCGTGTC

A) B)

C)

D) E)

Figure 5.1.: Workflow of SUPERLOCAS. (A) For the left-over reads, an overlap graph,
called left-over graph, is constructed. (B) For the reads that are assigned to one block,
another overlap graph is constructed. (C) Overlaps are detected between the reads of
the block and the left-over reads. For each detected overlap, an edge is inserted between
the graphs. (D) For each inserted edge, the adjacent connected components of the left-
over graph are copied into the overlap graph of the block. (E) The extended overlap
graph is processed with the standard algorithms of LOCAS. Final paths are extracted
and the respective contigs are reported. The process from (B) to (E) is repeated for
each block.

52

and represented in a left-over graph. Then, the following procedure is applied for
each block: The overlap alignments between the reads of the block are calculated
and the overlap graph is created. Next, overlap alignments between left-over reads
and block reads are calculated. For each of these overlaps alignments, a new edge
and a new vertex are inserted in the overlap graph representing the alignment
and the left-over read, respectively. The new vertex is a copy of the vertex in the
left-over graph and represents the same read.

In addition, all other vertices of the respective connected component in the left-
over graph are copied into the overlap graph including all edges. This is done by
traversing the connected components via a breadth-first search starting with the
vertex that has been copied in the previous step. Note that each edge and each
vertex of the left-over graph is copied at most once to the overlap graph. With
this procedure the overlap graph of each block is extended such that overlapping
left-over reads are also represented in the graph. Hence, some of the left-over
reads are taken into account and can substantially elongate the resulting contigs.

Algorithm 5.1.1: assembleWithLeftOverReads(leftis, blocks)

overlapsLeftis← calculate overlaps between leftis
graphLeftis← construct overlap graph for overlapsLeftis
while blocks not empty

do



blockReads← blocks.getReads()
overlapsBlock ← calculate overlaps between blockReads
graphBlock ← construct overlap graph for overlapsBlock
newOverlaps← calculate overlaps between blockReads and leftis
newEdges← construct edges for newOverlaps
newV ertices← vertices of newEdges in graphLeftis
for each v in newVertices

do

{
mark all edges and vertices visited during a breadth-first-
traversal starting at v in graphLeftis

graphBlock ← copy newV ertices, newEdges and all marked vertices
and edges into graphBlock)

return (graphBlock)

5.2. Making Use of Mapping Positions of Reads

In this section, we discuss extensions of the assembly workflow of LOCAS to make
use of provided mapping positions of reads. These extensions are implemented in
SUPERLOCAS. The read positions are used in the pre-processing as well as in
the overlap phase of the workflow.

In the regular pre-processing of LOCAS, pairs of reads are determined that
have an identical k-mer in their sequence. These pairs of read sequences, called

53

candidate pairs, overlap potentially with each other. Their common k-mer is used
as seed for their alignment. This pre-processing step is extended SUPERLOCAS.
In addition, to identical k-mers between read sequences, given mapping positions
are analyzed to detect possible candidate pairs. Each pair of reads with a small
distance to each other regarding the mapping positions is defined as candidate
pair.

In the overlap phase, overlap alignments are calculated for each candidate pair.
In the regular algorithm of LOCAS, the best alignment is calculated using the
same alignment constraints like minimal overlap length and maximal number of
mismatches for each candidate pair. However in case of SUPERLOCAS, five types
of candidate pairs are distinguished:

1. both reads are block reads and have a small distance to each other

2. both reads are block reads, have a regular distance to each other and have
an identical k-mer

3. both reads are block reads and have an identical k-mer while showing very
distant alignment positions

4. both reads are left-over reads

5. one read is a left-over read and the other one is a block read

For each type, different alignment constraints are used and can be changed
optionally by the user. Usually, more mismatches and a smaller overlap length
are allowed for reads with a small distance to each other such that more overlap
alignments can be detected in regions of low sequencing depth. To avoid false
overlap alignments between distant reads, strict overlap constraints are set for
these read pairs. With a reduced number of false overlaps, also the number of
dissimilar undirected cycles decreases in the path graph. Overlap constraints for
candidate pairs of type four and five are also very strict to avoid false overlaps of
left-over reads with each other or with block reads.

5.3. Software Architecture

In this section, we give details about the architecture of the software SUPER-
LOCAS. The tool is written in C++ with use of the SeqAn library. Most classes
are shared with LOCAS, while the classes Merger and AlignFinder are unique
to SUPERLOCAS.

Figure 5.2 shows the classes of SUPERLOCAS in an UML diagram. The
class Merger handles the workflow of the software by calling the class Assembler
for the assembly step and calling the class AlignFinder to handle the incor-
poration of left-over reads. The class Assembler loads the read sequences and

54

F
ig

u
re

5
.2

.:
T

h
e

cl
a
ss

h
ie

ra
rc

h
y

of
S

U
P

E
R

L
O

C
A

S
is

sh
ow

n
.

T
h

e
cl

as
s
M
e
r
g
e
r

h
an

d
le

s
th

e
w

or
k
fl

ow
b
y

ca
ll

in
g

th
e

cl
as

s
A
s
s
e
m
b
l
e
r

th
a
t

h
a
n

d
le

s
th

e
re

g
u

la
r

as
se

m
b

ly
p

ro
ce

ss
an

d
th

e
cl

as
s
A
l
i
g
n
F
i
n
d
e
r

th
at

h
an

d
le

s
th

e
in

co
rp

or
at

io
n

of
th

e
le

ft
-o

ve
r

re
ad

s
in

th
e

as
se

m
b

ly
p

ro
ce

ss
.

E
x
ce

p
t

th
e

cl
a
ss

es
M
e
r
g
e
r

an
d
A
l
i
g
n
F
i
n
d
e
r

al
l

cl
as

se
s

ar
e

sh
ar

ed
w

it
h

th
e

so
ft

w
ar

e
L

O
C

A
S

.

55

F
ig

u
re

5
.3

.:
T

h
e

fi
gu

re
sh

ow
s

th
e

ob
ject

cla
ss

of
th

e
softw

are
S

U
P

E
R

L
O

C
A

S
.
T

h
e

ob
ject

:
M
e
r
g
e
r

h
an

d
les

th
e

ov
erall

w
ork

fl
ow

.
T

h
e

o
b

jects
b

elon
gin

g
to

th
e

fi
rst

step
are

sh
ow

n
on

th
e

left.
T

h
is

step
is

h
an

d
led

b
y

th
e

ob
ject

L
e
f
t
O
v
e
r
A
s
s
:
A
s
s
e
m
b
l
e
r
.

T
h

e
left-over

read
s

are
stored

in
th

e
o
b

ject
L
e
f
t
O
v
e
r
R
C
:
R
e
a
d
C
o
l
l
e
c
t
i
o
n

an
d

overlap
s

are
d

eterm
in

ed
w

ith
th

e
ob

ject
L
e
f
t
O
v
e
r
A
:
A
l
i
g
n
e
r
.

T
h

e
left-over

grap
h

is
con

stru
cted

an
d

stored
a
s

o
b

ject
L
e
f
t
O
v
e
r
A
G
:
A
l
i
g
n
m
e
n
t
G
r
a
p
h
.

In
th

e
secon

d
step

each
b

lo
ck

is
assem

b
led

sep
arately.

T
h

e
p
ro

cess
is

h
an

d
led

b
y

th
e

o
b

ject
B
l
o
c
k
A
s
s
:
A
s
s
e
m
b
l
e
r
.

T
h

e
b

lo
ck

read
s

are
load

ed
in

th
e

ob
ject

B
l
o
c
k
R
C
:
R
e
a
d
C
o
l
l
e
c
t
i
o
n

an
d

th
e

overla
p

s
are

calcu
la

ted
w

ith
th

e
o
b

ject
B
l
o
c
k
A
:
A
l
i
g
n
e
r

th
at

con
stru

cts
also

th
e

overlap
grap

h
rep

resen
ted

b
y

th
e

ob
ject

B
l
o
c
k
A
G
:
A
l
i
g
n
m
e
n
t
G
r
a
p
h
.

N
ex

t,
overla

p
s

b
etw

een
th

e
b

lo
ck

read
s

an
d

left-ov
er

read
s

are
d

eterm
in

ed
w

ith
th

e
ob

ject
:
A
l
i
g
n
F
i
n
d
e
r
,

th
e

overlap
s

a
re

ad
d

ed
to

th
e

overlap
grap

h
rep

resen
ted

b
y

ob
ject

B
l
o
c
k
A
G
:
A
l
i
g
n
m
e
n
t
G
r
a
p
h

an
d

th
e

overlap
p

in
g

left-over
read

s
a
re

co
p

ied
to

th
e
B
l
o
c
k
R
C
:
R
e
a
d
C
o
l
l
e
c
t
i
o
n

ob
ject.

F
in

ally,
th

e
ex

ten
d

ed
grap

h
is

p
ro

cessed
an

d
con

tigs
are

p
ro

d
u

ced
b
y

th
e

B
l
o
c
k
A
s
s
:
A
s
s
e
m
b
l
e
r

o
b

ject
u

sin
g

th
e
:
R
e
d
u
c
e
r
,
:
P
a
t
h
e
r

an
d
:
C
o
n
s
e
n
s
u
s
B
i
l
d
e
r

ob
ject.

56

constructs the overlap graph via the classes ReadCollection and Aligner, re-
spectively. In addition, the class Assembler handles the transformation of
the overlap graph into a path graph and its reduction, the determination
of the final paths and the determination of contigs via the classes Reducer,
Pather and ConsensusBilder, respectively. The classes AlignFinder, Aligner,
Reducer, Pather and ConsensusBilder represent different steps in the work-
flow that manipulate objects of the classes AlignmentGraph, PathGraph and
ContigCollection, which represent blue prints of the overlap graph, path graph
and the set of contigs, respectively. The class ReadCollection is used to load the
input reads and to store the read data for the rest of the workflow.

In Figure 5.3, the used objects of the software is shown. The software works in
a serial manner, executing two main steps. In the first step, the left-over reads are
loaded and overlap alignments between them are calculated. In the second step,
each block is assembled individually by incorporating left-overs reads.

The first step handles the left-over graph construction and works as follows.
The object :Merger instantiates the objects LeftOverRC:ReadCollection,
LeftOverAG:AlignmentGraph and LeftOverAss:Assembler. The
LeftOverAss:Assembler object calls LeftOverRC:ReadCollection to
load the left-overs reads and instantiates the LeftOverA:Aligner

object that creates the left-over graph. The left-over graph is
stored as LeftOverAG:AlignmentGraph object. While the objects
LeftOverRC:ReadCollection and LeftOverAG:AlignmentGraph are kept
until the end of the overall workflow, the object LeftOverAss:Assembler is
immediately deleted by :Merger.

In the second step, the overlap graph for each block is constructed, ex-
tended with left-over reads and contigs are reported. First, the objects
BlockRC:ReadCollection, BlockAG:AlignmentGraph and BlockAss:Assembler

are instantiated by the object :Merger. The BlockAss:Assembler object han-
dles the following steps: The reads of the block are loaded by the object
BlockRC:ReadCollection. The object BlockA:Aligner is instantiated to con-
struct and modify the overlap graph of the block reads. The overlap graph is
stored in the BlockAG:AlignmentGraph object.

Next, the object :Merger instantiates the object :AlignFinder, which
detects overlap alignments between the left-over read set and the block
read set, represented by the objects LeftOverRC:ReadCollection and
BlockRC:ReadCollection, respectively. All left-over reads that overlap with
the block reads are added to the object BlockRC:ReadCollection. Further, the
overlap graph in the object BlockAG:AlignmentGraph is updated with the new
overlap information by copying the corresponding vertices and edges from the
LeftOverRC:ReadCollection and LeftOverAG:AlignmentGraph.

The object BlockAss:Assembler handles the last steps of the workflow. The
objects :Reducer, :Pather and :ConsensusBilder are instantiated and executed
iteratively. The object :Reducer transforms the overlap graph in the object
BlockAG:AlignmentGraph into a path graph that is stored as :PathGraph ob-

57

ject. The reduction and determination of the final paths in the path graph are
handled by the object :Pather. Finally, the object :ConsensusBilder deter-
mines and reports the consensus sequences of the contigs that are represented by
the object :ContigCollection.

58

6. Evaluation and Comparison with
Existing Assemblers

In this chapter, we present evaluations of LOCAS for de novo assemblies at
a low sequencing depth. In addition, we evaluated SUPERLOCAS in various
resequencing scenarios. Therefore, SUPERLOCAS was applied as part of the
SHORE [OSC+08, SOO+] framework to handle its reassemble step. For both
tools, we present comparisons to current state-of-the-art assembly tools.

LOCAS and SUPERLOCAS were evaluated in three studies using short read
data at low sequencing depths. In the first study, de novo assemblies of small
genomic regions were simulated. The performance of LOCAS was compared to
the short read assembly tools VELVET [ZB08, ZMMB09], EULER-SR [CP08],
ABySS [SWJ+09] and SOAPdenovo [LLZ+09, LZR+10]. In the second study,
we simulated a homology-guided assembly of a divergent strain of Arabidopsis
thaliana. Since the other assemblers ABySS, SOAPdenovo and EULER-SR did
not perform well enough for data with a low sequencing depth (shown in the
first study), we only compared SUPERLOCAS and VELVET. In the third study,
we evaluated LOCAS and SUPERLOCAS in a homology-guided assembly using
Illumina reads from the resequencing project of A. thaliana, the 1001 Genomes
Project (http://1001genomes.org/). In this study, we compared both tools with
VELVET.

6.1. De Novo Assembly of Simulated Data

For the simulation studies of de novo assemblies, we generated Illumina GAIIx
reads using METASIM [ROA+08] for the first and forth chromosome of A. thaliana
Col-0. We used an error model for Illumina reads with a read length of 80 bp, which
was estimated by resequencing the strain Col-0 and aligning the reads against the
sequence of Col-0 [F Ott, pers. comm.]. Paired end reads were generated with an
insert size of 300 bp and 200 bp, and a standard deviation of 30 bp and 20 bp for
the first and fourth chromosome, respectively.

The simulated reads were assigned to the reference sequence corresponding to
their origin positions and partitioned into blocks of length 10 kb. If two reads of the
same mate-pair were assigned to different blocks, both reads were assigned to the
block with the smaller index. Assemblies of the blocks, which correspond to local
regions in the target genome, were performed separately using the assembly tools
LOCAS, ABySS, EULER-SR, VELVET and SOAPdenovo. We ran all assemblers

59

using a wide range of parameter settings to show the achievable results with the
respective assemblers.

For the performance analysis of the assembly tools, each local assembly was
investigated separately. We used different measures to evaluate the assemblies. For
each measure, the average value of all local assemblies was calculated. Measures
that consider the length of the contigs are the avgN50 size, avgN90 size, the
average mean, minimal and maximal contig size. In our study, the N50 size is
defined as the length of the longest contig such that all contigs of equal or longer
length cover at least 50% of the positions of the block sequence. The N90 size
is defined analogous to the N50 size. The avgN50 size and the avgN90 size are
defined as the average N50 and N90 size, respectively. For measures that consider
the contig lengths, only valid contigs, which match the target sequence with at
most 10% mismatches and have a minimal length of 100 bp, were considered. In
addition, the average coverage avgCOV of the original block sequence with all
valid contigs and the average error rate avgERR were determined. The error rate
is the total number of errors divided by total length of all contigs of a block. The
total number of errors comprises the number of mismatches in the alignment of
all valid contigs plus the lengths of other contigs that could not be aligned.

The combination of avgN50 size and avgERR rate showed to be a good estimate
of assembly quality. Thus, we restricted the comparisons that are presented in
the following to these two measures. For the other measures, see Chapter C.

6.1.1. Evaluation of Assembly for the First Chromosome of
A. thaliana at a Sequencing Depth of 7.5x

For the first study, we used the first chromosome of A. thaliana Col-0 as target
genome and simulated reads at a sequencing depth of 7.5x. The results are shown
in Figure 6.1. For avgERR values lower than 1.5%, LOCAS performed best with a
maximum avgN50 size of 4, 558 bp. For an avgERR higher than 1.5%, VELVET
performed best with a maximum avgN50 size of 5, 500 bp. EULER-SR performed
well in respect to the avgN50 size, but had high avgERR values of 5 to 11%. The
avgERR values of ABySS were with at most 1.2% very low, but the tool showed
a low avgN50 size of at most 2, 577 bp. The avgERR values were even lower
for SOAPdenovo, while the avgN50 size was the lowest for all assemblers with
a maximum of 1, 991 bp. We examined also CPU time and RAM needed to
assemble the whole data set for each tool. The best performing method regarding
CPU time was VELVET with 10 min in average, followed by LOCAS with 19 min,
SOAPdenovo with 22 min and EULER-SR with 140 min. LOCAS and EULER-SR
used only 18 MB of RAM, VELVET used 87 MB and SOAPdenovo used 236 MB.

60

●

●

●

●●

●

0.02 0.05 0.10 0.20 0.50 1.00 2.00 5.00 10.00

0
10

00
20

00
30

00
40

00
50

00
60

00

average error (%)

av
er

ag
e

N
50

●

● ●●

●

●
●●●●

●

●

●

●

●●●

● ●●

●
● ●●●

●

●

●

●

●●●

●

● ●

●

● ●●●●●

● ● ●●

●

●

● ●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●●

●

●●

●

●

●
●

●

●

●●

●

●

●●

●

●

● ●

● ●
●

●

● ●

●

●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●
● ●

●

●

●

●

●

●

●

●

●

●

VELVET
LOCAS
ABYSS
EULER−SR
soapDeNovo

Figure 6.1.: Performance comparison of low sequencing depth assemblies. Illumina
GAIIx reads of the first chromosome of A. thaliana Col-0 were simulated at a sequencing
depth of 7.5x. The reads were assigned to the reference sequence corresponding to their
origin position and partitioned into blocks of a length of 10 kb. The avgN50 size
(average N50) is plotted against the avgERR (average error) for the assembly tools
LOCAS, EULER-SR, ABySS, VELVET and SOAPdenovo. For each assembler, several
runs are displayed corresponding to the different parameter settings. The data points
of ABySS are drawn in orange, EULER-SR in green, LOCAS in red, VELVET in blue
and SOAPdenovo in turquoise. Each point corresponds to a run.

61

●

●

●

●

●

●

0.2 0.5 1.0 2.0 5.0 10.0 20.0

0
20

0
40

0
60

0
80

0
10

00
12

00

average error (%)

av
er

ag
e

N
50

● ● ●●●

●

●●●

●
●●●●●

●
●

●

● ●●●

●●●

●

●

●

●
● ●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

VELVET
LOCAS
ABYSS
EULER−SR
soapDeNovo

Figure 6.2.: Performance comparison of assemblies with a sequencing depth of 5x for
the first chromosome of A. thaliana Col-0. The reads were assigned to the reference
sequence corresponding to their origin position and partitioned into blocks of a length
of 10 kb. The avgN50 size (average N50) is plotted against the avgERR (average error
rate) for the assembly tools LOCAS, EULER-SR, ABySS, VELVET and SOAPdenovo.
For each assembler, several runs are displayed corresponding to the different parameter
settings. The data points of ABySS are drawn in orange, EULER-SR in green, LOCAS
in red, VELVET in blue and SOAPdenovo in turquoise.

62

●

●
●● ●

●

0.05 0.10 0.20 0.50 1.00 2.00 5.00 10.00

0
10

00
20

00
30

00
40

00

average error (%)

av
er

ag
e

N
50

●

●

●

●●●●●●

●

●

●

●
● ●●●●●

●

●

●

● ● ●●●●●

●

●

●

●
● ●●●●●

●

●

●

● ● ●●●●●

●

●

●

● ●●●●●●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

● ●

● ●

●

●

●

●

●
●

●

●

●

●

●

● ●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

● ●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

● ●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●
●

●

●●

●

●

●●

●

●

●●

●

●

● ●

●

●

●●

●

●

●

●

●

VELVET
LOCAS
ABYSS
EULER−SR
soapDeNovo

Figure 6.3.: Performance comparison of assemblies with a sequencing depth of 7.5x
for the fourth chromosome of A. thaliana Col-0. After the reads were assigned to their
origin position in the reference sequence, they were partitioned into blocks of a length of
10 kb. The avgN50 size (average N50) is plotted against the avgERR (average error)
for the assembly tools LOCAS, EULER-SR, ABySS, VELVET and SOAPdenovo. For
each assembler, several runs are displayed corresponding to the different parameter
settings. Each data point corresponds to one run. The data points of ABySS are drawn
in orange, EULER-SR in green, LOCAS in red, VELVET in blue and SOAPdenovo in
turquoise.

6.1.2. Evaluation of Assembly for the First Chromosome of
A. thaliana at a Sequencing Depth of 5x

The second study was performed like the previous, while reads were simulated
at a lower sequencing depth of 5x. The results are shown in Figure 6.2. LOCAS
performed best with an avgN50 size of 1, 204 bp and anavgERRof 1.4% in the best
run. VELVET showed a maximum avgN50 size of 1, 199 bp with anavgERRof 2%.
For smaller avgERR sizes of less than 2%, the best avgN50 size of VELVET was
1, 170 bp. EULER-SR showed an avgERR that ranged between 8% and 14, 4%.
TheavgERRvalues were low for SOAPdenovo while the maximum avgN50 size
was 743 bp. ABySS showed the lowest avgN50 sizes in this comparison.

63

●

●●
●

●

●

0.1 0.2 0.5 1.0 2.0 5.0 10.0

0
20

0
40

0
60

0
80

0
10

00
12

00

average error (%)

av
er

ag
e

N
50

●
●

●

●●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●●

●● ●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●●

●
● ●●●●●●

●

●

●
●●●●●●●

●

●

●
●●●●●●●

●

●

● ●●●●●●●
●

●

● ●●●●●●●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

VELVET
LOCAS
ABYSS
EULER−SR
soapDeNovo

Figure 6.4.: Performance comparison of assembly with a sequencing depth of 5x for the
fourth chromosome of A. thaliana Col-0. The reads were assigned to their origin position
in the reference sequence that was partitioned into blocks of length 10 kb. The avgN50
(average N50) is plotted against the avgERR (average error) for the assembly tools
LOCAS, EULER-SR, ABySS, VELVET and SOAPdenovo. For each assembler, several
runs are displayed corresponding to the different parameter settings. Each data point
corresponds to one run. The data points of ABySS are drawn in orange, EULER-SR in
green, LOCAS in red, VELVET in blue and SOAPdenovo in turquoise.

64

6.1.3. Evaluation of Assembly for the Fourth Chromosome of
A. thaliana at a Sequencing Depth of 5x and 7x

In order to validate the results of the previous studies, we performed a similar
study by changing the target genome from the first to the fourth chromosome of
A. thaliana. The reads were simulated at a sequencing depth of 5x and 7.5x. The
results are shown in Figure 6.3 and 6.4. For a sequencing depth of 7.5x, LOCAS
performed best with an avgN50 size of 4, 384 bp and an avgERR of 1.4% in its
best run. At the same average error range, VELVET showed an avgN50 size of
3, 887 bp. VELVET showed a maximum avgN50 size of 4, 043 bp showing an
avgERR of 2.5%. The avgERR of EULER-SR ranged between 2% and 7.8%.
Its maximum avgN50 size was the lowest with 1, 395 bp. The maximum avgN50
sizes of SOAPdenovo and ABySS were 1, 959 bp and 1, 898 bp, respectively. Both
assemblers showed again a low avgERR.

In the second study with a sequencing depth of 5x, LOCAS was the best per-
forming assembly tool regarding the avgN50 size and avgERR. It showed an
avgN50 size of 1135 bp and an avgERR of 0.095% in its best run. VELVET
performed second best with an avgN50 size of 1072 bp and an avgERR of 2% in
its best run. The other assembly tools showed the same tendencies in their results
as in the previous studies. EULER-SR showed high error rates ranging between
2.4% and 9% with a best avgN50 size of 566 bp. SOAPdenovo and ABySS showed
again low avgN50 sizes while performing good considering the error rate. SOAP-
denovo achieved in its best run an avgN50 size of 758 bp while ABySS showed an
avgN50 of 768 bp in its best run. The avgERR of SOAPdenovo ranged between
0.15% and 2.7%. For ABySS the avgERR ranged between 0.29% and 0.48%.

6.2. Homology-Guided Assembly of Simulated Data

To evaluate performance in a homology-guided assembly approach, we simu-
lated a resequencing study of an artificial A. thaliana strain using a sequenc-
ing depth of 7.5x. First, we artificially generated a target genome by intro-
ducing SNPs, insertions and deletions into the reference sequence. The fre-
quency of SNPs, deletions and small insertions was modeled according to a set
of polymorphism from A. thaliana strains produced by the 1001 Genomes Project
(www.1001genomes.org). This synthetic strain was used to simulate paired-end
Illumina reads using METASIM. Paired-end reads were generated with an insert
size of 200 bp and a standard deviation of 20 bp.

In the next step, reads were aligned to the reference genome Col-0 using
SHORE [OSC+08, SOO+]. A read is deemed alignable if the alignment con-
tains a maximum of six mismatches and three gaps. Reads of a long insertion
or reads spanning a position with a long deletion in the genome are usually not
alignable. Of several alignment tools that are supported by SHORE, we preferred
GenomeMapper [SHO+09] for this study because it allows for high edit distances,

65

allows gaps and has a high sensitivity.

Next, the chromosomes were partitioned into blocks of 25 kb for the reassembly
step using SHORE. This was done using regions with zero coverage or repetitive
regions as natural borders and by using a static maximum block size. Almost 2.5%
of the reads were non-alignable and were defined as left-over reads. The left-over
reads of all chromosomes were pooled since they could also not be separated in a
real resequencing project.

The analysis was performed as for the first study in Section 6.1, with the fol-
lowing alteration: a contig was determined as valid if the global alignment to the
target sequence had at most 10% mismatches and if the length of the contig was
at least 500 bp. The measures were calculated not for each single block but for
the pooled contigs of all 100 sequential blocks, called the 100-block. Thus, con-
tigs were also considered in the analysis if they span two blocks with the help of
left-over reads.

6.2.1. Evaluation of Homology-Guided Assembly for an
Artificial A. thaliana Strain

Assemblies of the blocks incorporating the left-over reads were performed by ap-
plying the assembly tools SUPERLOCAS and VELVET. As VELVET does not
provide a special mode for left-over incorporation, we used VELVET as follows:
for each local assembly the complete set of left-over reads was given as an ad-
ditional input. We omitted EULER-SR, SOAPdenovo and ABYSS due to their
insufficient performance in the first study on data with low sequencing depth. In
Figure 6.5, the avgN50 sizes and avgERR values are shown for different runs of
VELVET and SUPERLOCAS. SUPERLOCAS performed best regarding avgN50
size and avgERR. In addition, the results vary only slightly for different runs.
We observed a maximum avgN50 size of 3, 132 bp and 2, 446 bp for SUPER-
LOCAS and VELVET, respectively. The error rates range from 0.17% to 0.21%
for SUPERLOCAS and from 0.09% to 0.53% for VELVET. The average maximum
contig size of SUPERLOCAS was larger (with up to 17, 821 bp) in comparison to
VELVET (up to 12, 996 bp). The CPU runtimes per run ranged from 3h 12min
for SUPERLOCAS to 7h 51min for VELVET. SUPERLOCAS took 433 MB of
RAM and VELVET took 224 MB. In addition, we examined the contigs of both
tools regarding the appearance of insertion regions. These regions are present in
the target genome but not in the reference genome. Most insertion regions with
a length of at least 100 bp can only be assembled with the help of left-over reads.
Figure 6.6 shows the number of insertion regions of different length that were as-
sembled without errors by SUPERLOCAS and VELVET. Both tools performed
in this task equally well, assembling a similar number of the insertions.

66

●
●

●

●
●

●

●
●

●

●●

●

0.0 0.2 0.4 0.6 0.8

0
50

0
10

00
15

00
20

00
25

00
30

00

average error (%)

av
er

ag
eN

50

●●
●●●●

●●●●●●

●

●

VELVET
LOCAS

Figure 6.5.: Performance comparison of homology-guided assemblies on simulated
data. We simulated a resequencing study of an artificial A. thaliana strain using a
sequencing depth of 7.5x. The simulated Illumina reads were aligned to the reference
genome Col-0 and partitioned into blocks of 25 kb using SHORE. The assembly tools
SUPERLOCAS and VELVET were applied to assemble the mapped reads of the first
chromosome and the remaining left-over reads. The avgN50 size (average N50) for
the assembly tools SUPERLOCAS and VELVET (in left-over incorporation mode) is
plotted against the avgERR (average error). SUPERLOCAS is displayed in red and
VELVET in blue.

67

100−139 140−179 180−219 220−259 260−299 300−339 340−379 380−419

TOTAL
SUPERLOCAS
VELVET

insertion length

nu
m

be
r

of
 in

se
rt

io
ns

0
10

20
30

40
50

60

Figure 6.6.: Number of detected insertion regions in a homology-guided assembly
on simulated data. For the artificial A. thaliana strain in the simulated resequencing
study, the total insertion regions in the target genome are plotted for different region
lengths. In addition, the number of error-free regions assembled by VELVET and by
SUPERLOCAS are shown.

68

● ●●●●●● ●●●●● ●

●

●

●

●

●
●
●●●

●

●

●

●

●

●
●
●●
●●

●

●

●

●

●

●
●●

●●●

●

●

●

●

●

●
●
●●●●

●

●

●

●

●

●
● ●●●●

●

●

●

●

●

●
●● ● ●●

●

●

●

●

●
●●●●●●

0.5 1.0 2.0 5.0 10.0

0
50

0
10

00
15

00

relative dissimilarity to reference (%)

av
er

ag
e

N
50

●●●

●

●

●
●

●
●

●
●

●
●

● ●

● ● ●

●● ●

●● ●

●

●

●

●
●

●

●
●

●
●

●
●

● ●

●
●

●

●

VELVET
LOCAS

Figure 6.7.: Performance comparison of reassemblies on real world data without uti-
lizing left-over reads. Paired-end reads were produced by Illumina GAIIx with a length
of 80 bp to a depth of 7.5x for the first chromosome of A. thaliana Ler-1. Reads were
aligned against the complete reference sequence (Col-0) and partitioned into blocks of
length 25 kb using SHORE. LOCAS and VELVET are applied in paired-end mode for all
blocks. The x-axis shows the avgN50 size (average N50) and the y-axis the avgERR
(average error). The runs of LOCAS produced with different parameter setting are
drawn in red and those of VELVET in blue.

69

●●●

SUPERLOCAS VELVET

90
0

10
00

11
00

12
00

13
00

14
00

15
00

av
er

ag
e

N
50

Figure 6.8.: Performance comparison of reassemblies on real world data utilizing left-
over reads. Illumina reads of the first chromosome of A. thaliana strain Ler-1 were
aligned against the reference sequence (Col-0) and partitioned into blocks of length 25 kb
using SHORE. Local assemblies were performed with SUPERLOCAS and VELVET by
incorporating left-over reads. While SUPERLOCAS provides algorithms specifically
adjusted to this task, VELVET had to assemble each block with the complete set of
left-over reads. A boxplot of the avgN50 (average N50) sizes of both assemblers is
shown.

70

6.3. Application to Real Data

To test performance on real world data, we used sequence reads from the first
chromosome of A. thaliana strain Landsberg erecta (Ler-1) produced within the
1001 Genomes Project [WM09]. Ler-1 was sequenced on the Illumina GAIIx with
80 bp paired-end reads to a depth of 7x. Reads were aligned against the com-
plete reference sequence and the first chromosome of the reference sequence was
partitioned into blocks of at most 40 kb using GenomeMapper [SHO+09] and
SHORE [OSC+08].

For sequencing data of the A. thaliana Ler-1 strain, the original genome se-
quence was not available and, thus, the performance analysis differed in some
points from the analysis of simulated data. As a proxy for the original sequence,
we used the reference sequence. Assembled contigs of all blocks were pooled and
aligned against the whole reference genome. If no left-over reads were provided
for assembly, the performance was evaluated as for the simulated data. If left-over
reads should be incorporated in the assembly, the evaluation differed. The error
rate was calculated by considering only contigs that had a minimum similarity of
75% with the sequence of their 100 − block. All non-alignable contigs were not
considered for analysis since these contigs do not have to be erroneous but can
belong to other regions in the Ler-1 strain covered only by left-over reads.

6.3.1. Evaluation of Homology-Guided Assembly Without
Incorporating Left-Over Reads

We applied both tools to assemble the reads of each block separately. Left-over
reads were not provided to the assemblers. Instead of the avgERR, we estimated
the average relative dissimilarity to the reference sequence over all blocks, denoted
as avgDISS. For avgDISS values higher than 1%, VELVET performed best con-
sidering avgN50 size, while for avgDISS values lower than 1%, LOCAS showed
the best avgN50 sizes, see Figure 6.7. We observed a maximum avgN50 size of
1, 606 bp and 1, 526 bp for VELVET and SUPERLOCAS, respectively.

6.3.2. Evaluation of Homology-Guided Assembly Incorporating
Left-Over Reads

We then evaluated SUPERLOCAS and VELVET on real world data while incorpo-
rating left-over reads. For VELVET, each block was assembled with the complete
set of left-over reads as in the second study. Contigs were determined as valid if
they featured a similarity with the reference sequence of at least 75%. We allowed
this high percentage of dissimilarity since contigs that are constructed with the
use of left-over reads often belong to insertion regions not represented in the ref-
erence genome. The avgDISS to the reference genome was not estimated since
it would be increased by contigs that are build from left-over reads and represent

71

insertion regions. Consequently, the avgDISS does not reflected the average error
rate over all contigs. The N50 sizes were higher for SUPERLOCAS with values
consistently about 1500 bp. The N50 sizes of VELVET ranged between 901 bp
and 1, 435 bp, showing much higher sensitivity to parameter choice. A boxplot
of the N50 values of both assemblers is shown in Figure 6.8. Furthermore, SU-
PERLOCAS performed best regarding CPU runtime. One run of SUPERLOCAS
was on average completed in 2h 8min, compared to an average running time of 7h
32min for VELVET. VELVET performed best considering RAM usage with only
1.73 GB, while SUPERLOCAS used 3.99 GB of RAM.

72

7. Discussion

In the first evaluation study, de novo assemblies of the first chromosome of A.
thaliana at a low sequencing depth of 7.5x were simulated. The assembly tools
ABySS [SWJ+09] and SOAPdenovo [LLZ+09] produced the lowest contig sizes
in comparison to the other tools. Possibly, these short contig sizes occur since
both tools are designed for a high sequencing depth. At least internal parameters
of these tools have to be adjusted before they can be applied to data of low
sequencing depth. The assembler EULER-SR [CP08] performed better considering
contig sizes but showed very high error rates. The assembly tool operates with an
initial step for error correction that substitutes k-mers in the read sequences that
occur with a low relative frequency in the whole read set by highly similar k-mers
with a high relative frequency. In case of low sequencing depth, this procedure
could introduce errors in the read sequences since the relative difference of k-mer
frequencies is very low. Thus, correct k-mers may be substituted by false k-mers.
VELVET produced longer contigs sizes in comparison to LOCAS [KOS+] while
showing higher error rates at the same time. These longer sizes may result from an
improved repeat handling strategy that is implemented in VELVET [ZMMB09].
In contrast to other methods, the algorithm tries to resolve also repeat regions
of higher complexity. The repeat resolution algorithm is applied iteratively to
resolve repeats. Some repeats become only resolve-able if other repeats have been
resolved already. Thus, more ambiguous regions can be spanned in the assembly.
While longer contigs can be produced, the approach seems to introduce more
errors into the assembly. In contrast, LOCAS achieved a good tradeoff between
low error rates and high contigs sizes.

We validated our results from the first study by performing similar studies
with an even lower sequencing depth of 5x and on an additional chromosome,
the fourth chromosome of A. thaliana. While SOAPdenovo and ABYSS showed
error rates and contig sizes that differed by a constant factor between all three
experiments, EULER-SR showed an even larger error rate for a sequencing depth
of 5x in comparison to a depth of 7.5x. This increase in the error rate follows from
the decreased amount of read data. As mentioned above, the error correction of
EULER-SR relies on a high sequencing depth. Consequently, the performance
of the correction will decrease with a low sequencing depth. In comparison to
the other assemblers, the contig sizes of EULER-SR and VELVET decreased to a
larger extend when moving from chromosome one to chromosome four. In contrast
to the other assembly tools, LOCAS performed constantly regarding the contig
size on both chromosomes. Thus, LOCAS seems to perform more robustly than
VELVET when being applied to different target chromosomes. When we ran the

73

assembly tools with different sets of parameters, the results of LOCAS differ less
than those from VELVET and ABySS. We conclude that LOCAS is less sensitive
to the parameter choice. This is an important feature of an assembler since a
manual parameter search is very time consuming and requires a certain expertise.

Considering runtime, VELVET was the best performing method in the first
study. The other tools, including LOCAS, needed twice the time, expect from
EULER-SR which needed 14 times as much. The different runtimes of VELVET
and LOCAS are a result of their different assembly strategies. VELVET utilizes
the de Bruijn graph approach that skips the calculation of pairwise overlap align-
ments between reads, while LOCAS calculates pairwise overlap alignments. These
calculations increase the runtime of LOCAS significantly. The overlaps are repre-
sented in an overlap graph and since more overlaps are detected, the size and the
complexity of the graph is larger compared to the corresponding de Bruijn graph.
Consequently, the following procedures applied to the graph during the workflow
require also more runtime. On the one hand, VELVET is superior regarding
runtime. However, on the other hand is is very sensitive to different parameter
settings. Hence, a lot of different settings have to be tested to assure that the
best setting is found, which also consumes runtime. Considering RAM usage, LO-
CAS and EULER-SR performed best. In contrast, VELVET and SOAPdenovo
required about four times and 11 times as much space, respectively. In LOCAS,
local copies of objects are avoided leading to a low RAM requirement.

In the second study, which simulated a resequencing project, we compared VEL-
VET and SUPERLOCAS [KOS+]. SUPERLOCAS performed best considering
the contig size and error rate. VELVET performed worse considering the contig
size since it does not distinguish between left-over reads and reads that are as-
signed to blocks and, thus, treats these reads equally. Consequently, also erroneous
left-over reads and false overlaps are introduced in the de Bruijn graph which leads
to more branches and cycles in the graph. Finally, this results in shorter contigs.
Due to its specialized method for incorporating left-over reads in the assembly,
SUPERLOCAS produced longer contigs with a lower error rate. SUPERLOCAS
does not treat reads equally, but uses different overlap alignment constraints for
different reads, resulting in a more reliable incorporation of left-over reads. Fur-
ther, repetitive left-over reads, which contain k-mers of a high frequency within
the left-over read set, are discarded before they are considered for incorporation.
This decreases the number of repetitive regions which often introduce errors in
the assembly. Both assembly tools assemble an equal amount of longer insertion
regions, which are regions that do not appear in the reference but in the target
genome. These regions can only be assembled utilizing left-over reads. Thus, we
can conclude that both tools are able to incorporate these reads in the assembly.

In a third study, we proved our previous results on real world data at a se-
quencing depth of 7x. We evaluated LOCAS like in the first study by assembling
reads that had been assigned to blocks. SUPERLOCAS was evaluated like in the
second study by incorporating left-over reads in the assembly of the blocks. First,
we compared the performance of LOCAS and VELVET: Compared to VELVET,

74

LOCAS performed again very robust for different parameter settings. Similar to
previous studies, LOCAS showed lower error rates than VELVET. In this study,
the error rate is measured as the rate of the relative dissimilarity of contigs to
the reference genome, which is approximately the sum of the error rate and the
relative difference between target and reference genome. While VELVET showed
larger contig sizes for high error rates, LOCAS experienced larger contigs for low
error rates. Again, LOCAS achieved a better compromise between contig size and
error rate. In the second part of this study, we performed assemblies of blocks
by utilizing left-over reads and compared SUPERLOCAS and VELVET consid-
ering the produced contig sizes. SUPERLOCAS performed superior to VELVET
for this special task. By including only high quality overlaps between left-over
reads and reads of blocks, SUPERLOCAS retains the low complexity and size of
its overlap graph. Thus, longer contigs can be reported. Similar to the previ-
ous study, SUPERLOCAS showed a robust performance for different parameter
settings while VELVET’s results strongly depend on the parameter choice.

In the second and third study, we also compared SUPERLOCAS and VELVET
regarding their runtime. The runtime of VELVET was 2 to 3.75 times higher
than the runtime of SUPERLOCAS. VELVET had to assemble all left-over reads
over and over again for each block, while SUPERLOCAS provides a method to
calculate a pre-assembly of the left-over reads, which can be later used for each
block. Considering RAM usage, VELVET performed best, using only half of the
RAM of SUPERLOCAS.

The presented results suggest that the overlap-layout-consensus approach imple-
mented in LOCAS and SUPERLOCAS is better suited for low sequencing depth
assembly than the de Bruijn paradigm used by VELVET, EULER-SR, SOAPde-
novo and ABYSS. We optimized overlap alignments between reads to span even
regions that are very sparsely covered with reads. However, by calculating exact
alignments instead of matches of k-mers, the number of overlaps increases leading
to a graph of higher complexity compared to the respective Bruijn graph. This
high complexity can not be reduced by using a coverage-based cutoff used in de
Bruijn graph approaches, which rejects regions from the assembly that are cov-
ered by a very low number of reads. The insufficient amount of reads permits
the estimation of a reasonable value for a coverage-based cutoff. In addition,
the probability of using false overlaps increases for alignment calculations that
allow for several mismatches compared to exact matches of k-mers. Since optimal
alignments are calculated, the construction of the overlap graph is slower than the
construction of the de Bruijn graph. Nevertheless, for lower error rates, longer
contigs and a higher overall coverage of the sequenced genome are the payoff for
dealing with a more complex graph.

We believe that utilizing alignment positions of reads and incorporating left-over
reads, as implemented in SUPERLOCAS, is a good compromise between resource
heavy de novo assembly and simple homology-guided assembly approaches. Simi-
lar to de novo assembly, the integration of left-over reads allows for identification
of highly polymorphic regions and insertions. In addition, our assembly approach

75

makes use of exact positions of aligned reads in a reference genome. This reduces
the assembly complexity and the number of false overlaps. Further, we think that
the assembly produced by our approach might be less affected by repetitive re-
gions than de novo assemblies because some repeats are already detected during
the alignment step. Since SUPERLOCAS distinguishes between left-over reads
and aligned reads, it can incorporate of left-over reads more reliably than other
short read assemblers. By creating an overlap graph for all left-over reads only
once, SUPERLOCAS can re-use this graph for the assemblies of the blocks and,
thus, performs much faster than other assemblers.

76

8. Conclusion

The study of sequence variations like SNPs, indels and longer variant regions
plays an important role in the investigation of disease development and changes
in physical characteristics of organisms. Since the introduction of new generation
of sequencing technologies in 2005, the cost of resequencing has been reduced by an
order of magnitude and the number of resequenced organisms has been increasing
steadily.

The aim of resequencing projects is the detection of sequence variations be-
tween closely related species. While existing approaches are capable of detecting
SNPs and indels, they do not address highly polymorphic regions and longer in-
sertions sufficiently. With the aim of also revealing longer sequence variations, we
investigated and extended the existing approach of homology-guided assembly.

We designed and implemented algorithms for resequencing projects of large
genomes that are performed with short read data of low sequencing depth. In our
homology-guided assembly approach, reads are aligned to a reference genome of
a highly related organism. The reference genome is partitioned into blocks and
reads aligned to one block are reassembled separately by incorporating left-over
reads. Our algorithms for reassembly are based on an overlap-layout-consensus
approach, which represents the input set of reads and their possible overlaps in
an overlap graph. Since mismatches are allowed in the used overlap alignment,
this approach is well suited for short read data of low sequencing depth. Our
algorithms for reassembly are implemented in the assembly tools LOCAS and
SUPERLOCAS.

LOCAS is specifically designed for de novo assemblies at a low sequencing depth
and, thus, it is capable to assemble reads of local regions in the context of rese-
quencing projects. SUPERLOCAS, the extension of LOCAS, allows for the execu-
tion of multiple reassemblies of consecutive blocks and handles the incorporation
of a huge amount of left-over reads in the local assemblies. SUPERLOCAS was to
the specific scenario of resequencing adapted. Alignment positions of reads on the
reference genome can be utilized for the calculation of overlap alignments. This
reduces the complexity of the assembly and the chance of false overlaps, which
leads to longer and less erroneous contigs.

The performances of both tools were evaluated in two studies that simulated
resequencing projects at a low sequencing depth of at most 7.5x. Further, an
additional study was performed using real world data from the 1001 Genomes
Project. In these studies, local assemblies of blocks were performed. When SU-
PERLOCAS was applied, left-over reads were additionally incorporated into these
local assemblies. We compared LOCAS and SUPERLOCAS with other state-of-

77

the-art assemblers for short read data. LOCAS and SUPERLOCAS achieved
better results than the other short read assemblers or at least similar. For local
reassemblies at a low sequencing depth, VELVET [ZB08, ZMMB09] and LOCAS
performed best considering contig size and error rate. However, LOCAS seems to
be less sensitive to the choice of parameters, while producing contigs that show
a good trade-off between error rate and size. When incorporating left-over reads
into the local reassemblies, longer insertion regions could be assembled with SU-
PERLOCAS and VELVET. However, SUPERLOCAS proved to be much faster
and more robust to different parameter settings than VELVET. In addition, due
to its ability to efficiently incorporate left-over reads, SUPERLOCAS produced
longer contigs.

SUPERLOCAS has successfully been used for the assembly of various A.
thaliana genomes such as Ler, C24, Bur-0 and Kro-0 in the context of the 1001
Genomes Project [SOO+].

Within recent years, the sequencing technologies have steadily improved. The
direction of this rapid development is not always easy to anticipate, e.g., three
years ago, the short length of produced reads was a challenging task for assembly
whereas today this read length has been already tripled for some technologies.
Assembly algorithms that process this kind of data have to be steadily adjusted
to the fast changes. At the same time, assembly algorithms will gain from im-
provements such as longer read lengths, which opens up new opportunities in
assembly.

We assume that our method will become increasingly valuable with future im-
provements in sequencing technologies such as longer reads. Our overlap-layout-
consensus approach can benefit from longer reads since it is more robust to se-
quencing errors at the end of reads. Furthermore, computing overlap alignments
rather than using exact matches of k-mers will become more important since longer
sub-sequences have a higher probability of containing sequencing errors. In addi-
tion, an increased overlap length between reads will contribute to the reliability
of left-over read recruitment. Finally, the potential of homology-guided assembly
will grow steadily with increasing numbers of completely sequenced genomes.

78

Bibliography

[AM97] E.L. Anson and E.W. Myers. ReAligner: a program for refining
DNA sequence multi-alignments. Journal of Computational Biology,
4(3):369–383, 1997.

[AR09] F. Armougom and D. Raoult. Exploring microbial diversity using 16S
rRNA high-throughput methods. J Comput Sci Syst Biol Volume,
2(1):069–092, 2009.

[AS98] C. Armen and C. Stein. A 2 2/3 superstring approximation algo-
rithm. 1998.

[BBS+08] D.R. Bentley, S. Balasubramanian, H.P. Swerdlow, G.P. Smith,
J. Milton, C.G. Brown, K.P. Hall, D.J. Evers, C.L. Barnes, H.R.
Bignell, et al. Accurate whole human genome sequencing using re-
versible terminator chemistry. Nature, 456(7218):53–59, 2008.

[Ben06] D.R. Bentley. Whole-genome re-sequencing. Current opinion in ge-
netics & development, 16(6):545–552, 2006.

[BJS+02] S. Batzoglou, D.B. Jaffe, K. Stanley, J. Butler, S. Gnerre, E. Mauceli,
B. Berger, J.P. Mesirov, and E.S. Lander. ARACHNE: a whole-
genome shotgun assembler. Genome research, 12(1):177, 2002.

[BMK+08] J. Butler, I. MacCallum, M. Kleber, I.A. Shlyakhter, M.K. Belmonte,
E.S. Lander, C. Nusbaum, and D.B. Jaffe. ALLPATHS: de novo
assembly of whole-genome shotgun microreads. Genome Research,
18(5):810, 2008.

[BvdSZ+02] RW Bulterman, FW van der Sommen, G. Zwaan, T. Verhoeff, AJM
van Gasteren, and WHJ Feijen. On computing a longest path in a
tree. Information Processing Letters, 81(2):93–96, 2002.

[CP08] M.J. Chaisson and P.A. Pevzner. Short read fragment assembly of
bacterial genomes. Genome Research, 18(2):324, 2008.

[DLBH07] J.C. Dohm, C. Lottaz, T. Borodina, and H. Himmelbauer. SHAR-
CGS, a fast and highly accurate short-read assembly algorithm for
de novo genomic sequencing. Genome research, 17(11):1697, 2007.

79

[DLBM07] M. De La Bastide and WR McCombie. Assembling genomic DNA
sequences with PHRAP. Current protocols in bioinformatics/editoral
board, Andreas D. Baxevanis...[et al.], 2007.

[DWRR08] Andreas Doring, David Weese, Tobias Rausch, and Knut Reinert.
Seqan an efficient, generic c++ library for sequence analysis. BMC
Bioinformatics, 9(1):11, 2008.

[EFG+09] J. Eid, A. Fehr, J. Gray, K. Luong, J. Lyle, G. Otto, P. Peluso,
D. Rank, P. Baybayan, B. Bettman, et al. Real-time DNA sequencing
from single polymerase molecules. Science, 323(5910):133, 2009.

[FB09] P. Flicek and E. Birney. Sense from sequence reads: methods for
alignment and assembly. Nature Methods, 6:S6–S12, 2009.

[HBB+08] T.D. Harris, P.R. Buzby, H. Babcock, E. Beer, J. Bowers,
I. Braslavsky, M. Causey, J. Colonell, J. DiMeo, J.W. Efcavitch,
et al. Single-molecule DNA sequencing of a viral genome. Science,
320(5872):106, 2008.

[HCD+04] P. Havlak, R. Chen, K.J. Durbin, A. Egan, Y. Ren, X.Z. Song, G.M.
Weinstock, and R.A. Gibbs. The Atlas genome assembly system.
Genome research, 14(4):721, 2004.

[HFF+08] D. Hernandez, P. François, L. Farinelli, M. Øster̊as, and J. Schrenzel.
De novo bacterial genome sequencing: millions of very short reads as-
sembled on a desktop computer. Genome Research, 18(5):802, 2008.

[HM99] X. Huang and A. Madan. CAP3: A DNA sequence assembly pro-
gram. Genome research, 9(9):868, 1999.

[HMN09] N. Homer, B. Merriman, and S.F. Nelson. BFAST: an alignment tool
for large scale genome resequencing. PLoS One, 4(11):e7767, 2009.

[HWA+03] X. Huang, J. Wang, S. Aluru, S.P. Yang, and L.D. Hillier. PCAP:
a whole-genome assembly program. Genome research, 13(9):2164,
2003.

[IW95] R.M. Idury and M.S. Waterman. A new algorithm for DNA sequence
assembly. Journal of Computational Biology, 2(2):291–306, 1995.

[JRB+07] W.R. Jeck, J.A. Reinhardt, D.A. Baltrus, M.T. Hickenbotham,
V. Magrini, E.R. Mardis, J.L. Dangl, and C.D. Jones. Extending
assembly of short DNA sequences to handle error. Bioinformatics,
23(21):2942, 2007.

80

[KJ56] J.B. Kruskal Jr. On the shortest spanning subtree of a graph and
the traveling salesman problem. Proceedings of the American Math-
ematical society, 7(1):48–50, 1956.

[KM95] J.D. Kececioglu and E.W. Myers. Combinatorial algorithms for DNA
sequence assembly. Algorithmica, 13(1):7–51, 1995.

[KOS+] J. D. Klein, S. Ossowski, K. Schneeberger, D. Weigel, and D.H. Hu-
son. LOCAS - A low coverage assembly tool for resequencing projects.
Genome Biology and Evolution, under review.

[KS05] H. Kaplan and N. Shafrir. The greedy algorithm for shortest super-
strings. Information Processing Letters, 93(1):13–17, 2005.

[KUA+07] J.O. Korbel, A.E. Urban, J.P. Affourtit, B. Godwin, F. Grubert, J.F.
Simons, P.M. Kim, D. Palejev, N.J. Carriero, L. Du, et al. Paired-end
mapping reveals extensive structural variation in the human genome.
Science, 318(5849):420, 2007.

[LD10] H. Li and R. Durbin. Fast and accurate long-read alignment with
Burrows-Wheeler transform. Bioinformatics, 26(5):589, 2010.

[LHW+09] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer,
G. Marth, G. Abecasis, and R. Durbin. The sequence alignment/map
format and SAMtools. Bioinformatics, 25(16):2078, 2009.

[LLF+09] R. Li, Y. Li, X. Fang, H. Yang, J. Wang, K. Kristiansen, and J. Wang.
SNP detection for massively parallel whole-genome resequencing.
Genome research, 19(6):1124, 2009.

[LLKW08] R. Li, Y. Li, K. Kristiansen, and J. Wang. SOAP: short oligonu-
cleotide alignment program. Bioinformatics, 24(5):713, 2008.

[LLT+03] J.H. Leamon, W.L. Lee, K.R. Tartaro, J.R. Lanza, G.J. Sarkis, A.D.
deWinter, J. Berka, and K.L. Lohman. A massively parallel Pi-
coTiterPlate based platform for discrete picoliter-scale polymerase
chain reactions. Electrophoresis, 24(21):3769–3777, 2003.

[LLZ+09] R. Li, Y. Li, H. Zheng, R. Luo, H. Zhu, Q. Li, W. Qian, Y. Ren,
G. Tian, J. Li, et al. Building the sequence map of the human pan-
genome. Nature biotechnology, 28(1):57–63, 2009.

[LRD08] H. Li, J. Ruan, and R. Durbin. Mapping short DNA sequencing reads
and calling variants using mapping quality scores. Genome research,
18(11):1851, 2008.

81

[LSL+09] B. Langmead, M.C. Schatz, J. Lin, M. Pop, and S.L. Salzberg.
Searching for SNPs with cloud computing. Genome Biol,
10(11):R134, 2009.

[LTPS09] B. Langmead, C. Trapnell, M. Pop, and S.L. Salzberg. Ultrafast and
memory-efficient alignment of short DNA sequences to the human
genome. Genome Biol, 10(3):R25, 2009.

[LYL+09] R. Li, C. Yu, Y. Li, T.W. Lam, S.M. Yiu, K. Kristiansen, and
J. Wang. SOAP2: an improved ultrafast tool for short read align-
ment. Bioinformatics, 25(15):1966, 2009.

[LZR+10] R. Li, H. Zhu, J. Ruan, W. Qian, X. Fang, Z. Shi, Y. Li, S. Li,
G. Shan, K. Kristiansen, et al. De novo assembly of human genomes
with massively parallel short read sequencing. Genome research,
20(2):265, 2010.

[LZZ+08] H. Lin, Z. Zhang, M.Q. Zhang, B. Ma, and M. Li. ZOOM! Zillions
of oligos mapped. Bioinformatics, 24(21):2431, 2008.

[MEA+05] M. Margulies, M. Egholm, W.E. Altman, S. Attiya, J.S. Bader, L.A.
Bemben, J. Berka, M.S. Braverman, Y.J. Chen, Z. Chen, et al.
Genome sequencing in microfabricated high-density picolitre reac-
tors. Nature, 437(7057):376–380, 2005.

[Met09] M.L. Metzker. Sequencing technologies-the next generation. Nature
Reviews Genetics, 11(1):31–46, 2009.

[MG80] AM Maxam and W. Gilbert. Sequencing end-labeled DNA with base-
specific chemical cleavages. Methods in enzymology, 65(1):499, 1980.

[MN03] J.C. Mullikin and Z. Ning. The phusion assembler. Genome research,
13(1):81, 2003.

[Mos] Mosaik. Website. Available online at http://bioinformatics.bc.

edu/marthlab/Mosaik; visited on November 4th 2010.

[MPG+09] I. MacCallum, D. Przybylski, S. Gnerre, J. Burton, I. Shlyakhter,
A. Gnirke, J. Malek, K. McKernan, S. Ranade, T.P. Shea, et al.
ALLPATHS 2: small genomes assembled accurately and with high
continuity from short paired reads. Genome biology, 10(10):R103,
2009.

[MSD+00] E.W. Myers, G.G. Sutton, A.L. Delcher, I.M. Dew, D.P. Fasulo, M.J.
Flanigan, S.A. Kravitz, C.M. Mobarry, K.H.J. Reinert, K.A. Rem-
ington, et al. A whole-genome assembly of Drosophila. Science,
287(5461):2196, 2000.

82

http://bioinformatics.bc.edu/marthlab/Mosaik
http://bioinformatics.bc.edu/marthlab/Mosaik

[Mye95] E.W. Myers. Toward simplifying and accurately formulating frag-
ment assembly. Journal of Computational Biology, 2(2):275–290,
1995.

[Mye05] E.W. Myers. The fragment assembly string graph. Bioinformatics,
21(suppl 2), 2005.

[OSC+08] S. Ossowski, K. Schneeberger, R.M. Clark, C. Lanz, N. Warthmann,
and D. Weigel. Sequencing of natural strains of Arabidopsis thaliana
with short reads. Genome research, 18(12):2024, 2008.

[PKS04] M. Pop, D.S. Kosack, and S.L. Salzberg. Hierarchical scaffolding with
Bambus. Genome Research, 14(1):149, 2004.

[Pop04] M. Pop. Shotgun sequence assembly. Advances in computers, 60:193–
248, 2004.

[PPDS04] M. Pop, A. Phillippy, A.L. Delcher, and S.L. Salzberg. Comparative
genome assembly. Briefings in bioinformatics, 5(3):237, 2004.

[PS08] M. Pop and S.L. Salzberg. Bioinformatics challenges of new sequenc-
ing technology. Trends in Genetics, 24(3):142–149, 2008.

[PSTU73] H. Peltola, H. Soderlund, J. Tarhio, and E. Ukkonen. Algorithms for
some string matching problems arising in molecular genetics. Infor-
mation Processing, 83:53–64, 1973.

[PSU84] H. Peltola, H. Söderlund, and E. Ukkonen. SEQAID: A DNA se-
quence assembling program based on a mathematical model. Nucleic
Acids Research, 12(1Part1):307, 1984.

[PT01] P.A. Pevzner and H. Tang. Fragment assembly with double-barreled
data. Bioinformatics, 17(suppl 1):S225, 2001.

[PTW01a] P.A. Pevzner, H. Tang, and M.S. Waterman. A new approach to
fragment assembly in DNA sequencing. In Proceedings of the fifth
annual international conference on Computational biology, page 267.
ACM, 2001.

[PTW01b] P.A. Pevzner, H. Tang, and M.S. Waterman. An Eulerian path
approach to DNA fragment assembly. Proceedings of the National
Academy of Sciences of the United States of America, 98(17):9748,
2001.

[RKD+09] T. Rausch, S. Koren, G. Denisov, D. Weese, A.K. Emde, A. Doring,
and K. Reinert. A consistency-based consensus algorithm for de novo
and reference-guided sequence assembly of short reads. Bioinformat-
ics, 25(9):1118, 2009.

83

[RLD+09] S.M. Rumble, P. Lacroute, A.V. Dalca, M. Fiume, A. Sidow, and
M. Brudno. SHRiMP: accurate mapping of short color-space reads.
PLoS Comput Biol, 5(5):e1000386, 2009.

[ROA+08] D.C. Richter, F. Ott, A.F. Auch, R. Schmid, and D.H. Huson.
MetaSim - A Sequencing Simulator for Genomics and Metagenomics.
PLoS One, 3(10):3373, 2008.

[RSP+02] T.D. Read, S.L. Salzberg, M. Pop, M. Shumway, L. Umayam,
L. Jiang, E. Holtzapple, J.D. Busch, K.L. Smith, J.M. Schupp,
et al. Comparative genome sequencing for discovery of novel poly-
morphisms in Bacillus anthracis. Science, 296(5575):2028, 2002.

[Rus09] N. Rusk. Cheap third-generation sequencing. Nature Methods,
6(4):244, 2009.

[SC75] F. Sanger and A.R. Coulson. A rapid method for determining se-
quences in DNA by primed synthesis with DNA polymerase* 1. Jour-
nal of Molecular Biology, 94(3):441–446, 1975.

[SHO+09] K. Schneeberger, J. Hagmann, S. Ossowski, N. Warthmann,
S. Gesing, O. Kohlbacher, and D. Weigel. Simultaneous alignment of
short reads against multiple genomes. Genome Biol, 10:R98, 2009.

[SOO+] K. Schneeberger, S. Ossowski, F. Ott, J.D. Klein, C. Lanz, L.M.
Smith, J. Cao, J. Fitz, N. Warthmann, S.R. Henz, D.H. Huson, and
D. Weigel. Homology-guided assembly of the four diverse arabidopsis
thaliana genomes ler, c24, bur-0 and kro-0. PloS Genetics, under
review.

[SPR+05] J. Shendure, G.J. Porreca, N.B. Reppas, X. Lin, J.P. McCutcheon,
A.M. Rosenbaum, M.D. Wang, K. Zhang, R.D. Mitra, and G.M.
Church. Accurate multiplex polony sequencing of an evolved bacterial
genome. Science, 309(5741):1728, 2005.

[SSK+] M.C. Schatz, D. Sommer, D. Kelley, M. Pop, et al. Assembly of Large
Genomes with Cloud Computing. In preparation.

[SSPL08] S.L. Salzberg, D.D. Sommer, D. Puiu, and V.T. Lee. Gene-boosted
assembly of a novel bacterial genome from very short reads. PLoS
Comput Biol, 4(9):e1000186, 2008.

[STK10] E.E. Schadt, S. Turner, and A. Kasarskis. A Window into Third
Generation Sequencing. Human molecular genetics, 2010.

[SWJ+09] J.T. Simpson, K. Wong, S.D. Jackman, J.E. Schein, S.J.M. Jones,
and İ. Birol. ABySS: A parallel assembler for short read sequence
data. Genome research, 19(6):1117, 2009.

84

[TS09] C. Trapnell and S.L. Salzberg. How to map billions of short reads
onto genomes. Nature biotechnology, 27(5):455, 2009.

[TY02] S.H. Teng and F. Yao. Approximating shortest superstrings. In
Foundations of Computer Science, 1993. Proceedings., 34th Annual
Symposium on, pages 158–165. IEEE, 2002.

[WHW+05] N. Whiteford, N. Haslam, G. Weber, A. Prügel-Bennett, J.W. Essex,
P.L. Roach, M. Bradley, and C. Neylon. An analysis of the feasibility
of short read sequencing. Nucleic Acids Research, 33(19):e171, 2005.

[WM09] D. Weigel and R. Mott. The 1001 genomes project for Arabidopsis
thaliana. Genome Biology, 10(5):107, 2009.

[WSJH07] R.L. Warren, G.G. Sutton, S.J.M. Jones, and R.A. Holt. Assem-
bling millions of short DNA sequences using SSAKE. Bioinformatics,
23(4):500, 2007.

[ZB08] D.R. Zerbino and E. Birney. Velvet: algorithms for de novo short
read assembly using de Bruijn graphs. Genome research, 18(5):821,
2008.

[ZMMB09] D.R. Zerbino, G.K. McEwen, E.H. Margulies, and E. Birney. Pebble
and rock band: heuristic resolution of repeats and scaffolding in the
velvet short-read de novo assembler. PLoS One, 4(12):e8407, 2009.

85

A. Presentations

A.1. Talks

• ”Algorithms to Support Resequencing with Ultra Short Reads“, BCI 2008,
9th September 2008, Trieste

• ”LOCAS - a low coverage assembler for short reads“, Short-SIG 2009 (special
interest group meeting at ISMB), 28 th June 2009, Stockholm

• ”LOCAS - a low coverage assembler for short reads“, TüBiT 2010, 21st May
2010, Tübingen

• ”LOCAS - a low coverage assembler for short reads“, GCB 2010, 21st
September 2010, Braunschweig

A.2. Poster

• ”LOCAS - A new low coverage assembler for short reads“, presented at
TüBit 2009, Tübingen

• ”LOCAS - A new low coverage assembler for short reads“, presented at
ISMB 2009, Stockholm

A.3. Articles

• ”LOCAS - a low coverage assembly tool for resequencing projects“, short
paper, appeared in abstract book of GCB 2010

• ”Homology-guided Assembly of the Four Diverse Arabidopsis thaliana
Genomes Ler, C24, Bur-0 and Kro-0“, under review at Plos Genetics

• ”LOCAS - a low coverage assembly tool for resequencing projects“, submit-
ted to Bioinformatics

87

B. Manual

B.1. Introduction

LOCAS is a program to assemble short reads of second generation sequencing
technologies. It explicitly handles low coverage data by allowing mismatches in
the overlap alignment of reads.

An extra module, called SUPERLOCAS, provides some additional features for
resequencing projects. In a resequencing project reads are mapped onto a closely
related reference genome and a consensus from the mapped reads is calculated
as an approximation of the new genome sequence. (Highly polymorphic regions
and insert sites are not covered with this consensus.) SUPERLOCAS can be used
to incorporate unmapped reads into the assembly of mapped regions and elon-
gate this consensus. Further, SUPERLOCAS takes advantage of given mapping
positions of reads. Both tools are written in C++.

B.2. Availability

Binaries and source code can be downloaded from http://www-ab.informatik.

uni-tuebingen.de/software/locas.

B.3. Installing

We provide binaries for LOCAS and SUPERLOCAS that are compiled on a
LINUX system (Redhat, 64-bit). Additionally, the source code is available.

B.4. License Details

The source code is distributed under the terms of the GNU General Public License.

B.5. Author

Juliane D. Klein

89

http://www-ab.informatik.uni-tuebingen.de/software/locas
http://www-ab.informatik.uni-tuebingen.de/software/locas

B.6. Running LOCAS

You can run LOCAS from the command line as follows:

LOCAS -I input reads.fasta -O output folder -F fasta -L 23 -S 2

LOCAS will assemble all reads in the file “inputreads.fasta” by calculating
overlap alignments with a minimal length of 23 and a maximum of 2 mismatches.
The result is written to folder output-folder. LOCAS will create this folder if it
does not exist.

Required options:
−I 〈string〉 defines the full name (including location) of your read file
−O 〈string〉 the name of the new folder which LOCAS will create for its output
−F fasta or
−F fastq chooses between fasta and fastq file formats

Additional options:
−C 〈int〉 〈int〉 the first number defines the minimal length and the second num-

ber the minimal coverage of the contigs that should be reported
(default: 0 0)

−S 〈int〉 the maximal number of allowed mismatches in an overlap align-
ment between two reads (default: 4)

−L 〈int〉 the minimal allowed length of an overlap alignment between two
reads (default: 27)

−P kmer 〈int〉 the length of the sub-sequence (kmer) which has to be equal in
two reads before an overlap alignment is calculated (default: 13)

B.6.1. How to choose the parameters kmer size and overlap
length

First LOCAS searches for pairs of possibly overlapping reads. This is done by
looking for equal kmers (sub-sequences of length k) between two reads. After this
filtering step, the real overlap alignments are calculated for all reads which share
a kmer.

The parameter −K controls the filtering step. The user can define for which
length equal sub-sequences are detected between reads. With the parameter −L
the minimal length of an overlap alignment is set.

B.6.2. Example of a LOCAS run

The data for an example can be found in the sub-folder “testset locas”. Open a
shell and change into this folder. Then execute the following command:

LOCAS -I simulated_reads.fasta -O my_locas_out -F fasta -L 21 -S 2

90

You can compare your results to those in sub-folder “locas out”. Now, you can
experiment with the parameter a little. For example, you can discard some contigs
by applying:

LOCAS -I simulated_reads.fasta -O my_locas_out2 -F fasta

-L 21 -S 2 -C 3 100.

Or you can change the minimal overlap length between reads by executing:

LOCAS -I simulated_reads.fasta -O my_locas_out3 -F fasta -L 19 -S 2

B.7. Running SUPERLOCAS

SUPERLOCAS is especially designed for use in resequencing projects. Here all
reads are mapped against the genome of a highly related species. Continuously
mapped sub-regions can be defined as blocks. All reads can be assigned to one
block or to a set of left-over reads.

Using SUPERLOCAS, you can reassemble the blocks and try to incorporate
left-over reads. Reads from different blocks should be placed in different files, and
the left-over reads should be placed in their own files, too.

Before you can start SUPERLOCAS, you have to create two special input-
files. The SUPERLOCAS Inputfile describes the input for SUPERLOCAS. The
SUPERLOCAS Outputfile describes the output for SUPERLOCAS. The first line
in the SUPERLOCAS Inputfile shows the names of all read files for the first block
separated by a space character. In the second line you find all names of the read
files of the second block and so on. In each line of the SUPERLOCAS Outputfile
you have to write the name of the output-folder of the corresponding block. For an
example file, see the files “super input file” and “super output file” in the folder
“testset superlocas/myoutput”.

SUPERLOCAS is started as follows:

SUPERLOCAS -I SUPERLOCAS_Inputfile -O SUPERLOCAS_Outputfile

-LO left_over_file_1 left_over_file_2 -F fasta

Required options:
−I 〈string〉 defines location and name of your SUPERLOCAS inputfile
−O 〈string〉 defines location and name of your SUPERLOCAS outputfile
−F 〈fasta〉 or
−F 〈fastq〉 chooses between these file formats
−LO 〈string〉 defines left-over files

Kmer options (optional):

91

−Kmerg 〈int〉 chooses kmer size which has to be equal in a read from the block
and a read of the left-over set to calculate an overlap alignment
(default: 30)

−P kmer 〈 int〉 chooses kmer size which has to be equal in two block reads before
an overlap alignment is calculated (default: 13)

−K 〈int〉 chooses kmer size which has to be equal in two left-over reads
(default: 33)

Overlap length options (optional):
−Lm 〈int〉 chooses minimal length of an overlap alignment between a block

read and a left-over read (default: 30)
−Lt 〈int〉 chooses minimal length of an overlap alignment between two block

reads (default: 21)
−Llo 〈int〉 chooses minimal length of an overlap alignment between two left-

over reads (default: 33)

Substitutions in overlap options (optional):
−Sm 〈int〉 chooses maximal number of allowed mismatches in an overlap

alignment between a block read and an left-over read (default:
1)

−St 〈int〉 chooses maximal number of allowed mismatches in an overlap
alignment between two block reads (default: 3)

−Slo 〈int〉 chooses maximal number of allowed mismatches in an overlap
alignment between two left-over reads (default: 1)

Additional options:

−C 〈int〉 〈int〉 chooses with the first number the minimal length and with the
second number minimal coverage of the contigs which should be
reported (default: 0 0)

−DR 〈int〉 〈int〉 determines that all left-over reads are discarded which have more
than a certain number of equal kmers in the set of left-over reads,
the kmer size is defined with the first number and the second
number defines the number of kmer matches (default: 21 500)

B.7.1. Running SUPERLOCAS with mapping positions

If mapping positions are also available for reads you can switch on a mode of
SUPERLOCAS that will take these information into account:

−P pos〈int〉 defines kmer size as usual, but in addition an overlap alignment is
also calculated if two reads are very close to each other with respect
to their mapping positions

Further alignment constraints can be defined for very close or distant reads (op-
tional):

92

−Ltn 〈int〉 defines minimal length of an overlap alignment between two block
reads which are close to each other (default: 11)

−Ltd 〈int〉 defines minimal length of an overlap alignment between two block
reads which are distant to each other (default: 25)

−Stn 〈int〉 defines maximal number of allowed mismatches in an overlap align-
ment between two block reads which are close to each other (default:
2)

−Std 〈int〉 defines maximal number of allowed mismatches in an overlap align-
ment between two block reads which are distant to each other (de-
fault: 0)

B.7.2. Understanding the parameters of SUPERLOCAS

SUPERLOCAS distinguishes between two types of reads: reads assigned to a
block (because they mapped to the same region to a reference) and reads of the
left-over set. The alignment constraints for these two types of reads differ and can
be defined independently with the following options:

If two reads belong to a block then parameters −Lt 〈int〉, −P kmer〈int〉, and
−St 〈int〉 define your alignment constraints. If both reads are left-over reads then
parameter −K 〈int〉, −Llo 〈int〉, and −Slo 〈int〉 define the overlaps. If a block
read is aligned to a left-over read then the constraints are set by −Kmerg 〈int〉,
−Lm 〈int〉, and −Slo 〈int〉.

If mapping positions are available for the block reads then SUPERLOCAS can
take them into account. This option can be switched on by applying the option
−P pos 〈int〉 (instead of −P kmer 〈int〉) to define the kmer size. In this case
SUPERLOCAS will not only look for equal kmers between reads to calculate an
overlap alignment, but it will also try to overlap read with a very close mapping
position. In this mode you can manipulate the overlap alignment constraints of
two reads depending on their mapping positions. Two block reads can be classified
as distant or close to each other with respect to their mapping position. In the first
case the constraints for the overlap alignment are defined using −Ltd 〈int〉 and
−Std 〈int〉, in the case of very close block reads with −Ltn 〈int〉 and −Stn 〈int〉.

B.7.3. Example of a SUPERLOCAS run

The sub-folder “testset superlocas” contains the files of an example application.
There are 16 blocks to assemble and 29199 left-over reads. A read file of single-end
Illumina reads and one of paired-end Illumina reads belongs to each block.

You can start SUPERLOCAS by changing into the folder “testset superlocas”
and execute the following command:

superlocas -I myoutput/super_input_file

-O myoutput/super_output_file -LO left_over_reads.fasta -F fasta

93

This should produce the same output as you can see in the folder output.
The two files “super input file” and “super output file” are the special input

and outputfile you have to generate for use with SUPERLOCAS.

94

C. Supplementary Tables

95

T
ab
les

T
able 1

 A

 -

 E
valuation of low

 sequencing depth assem
bly w

ith L
O

C
A

S
.

P
aram

e
te

r
S

e
ttin

g
s

M
e

an
M

in
M

ax
N

50
N

75
N

90
C

o
v

e
rag

e
E

rro
r

T
o

tal E
rro

r
U

n
m

ap
p

e
d

A
ll

km
er:1

3
 -L

 1
3

 -S
 4

16
55

.5
5

1
80

6
481

42
30

2
758

1
1

79
0

.9
781

8
5

0
.0

0
329

1
0

.0
2

379
9

49
3

21
60

1

km
er:1

3
 -L

 1
5

 -S
 4

1
774.2

8
1

92
6

739
45

58
2

9
39

1
2

57
0

.9
79

88
0

.0
0

30
5

0
.0

1
46

54
2

79
21

41
9

km
er:1

3
 -L

 1
7

 -S
 4

16
80

.3
2

1
74

6
432

42
36

2
6

74
1

1
72

0
.9

81
36

2
0

.0
02

9
54

0
.0

11
0

56
19

6
21

36
4

km
er:1

3
 -L

 1
9 -S

 4
1

541
.5

2
1

59
6

02
9

37
52

2
31

2
1

01
9

0
.9

81
48

7
0

.0
02

88
4

0
.0

09
2

58
1

53
21

32
7

km
er:1

3
 -L

 2
1 -S

 4
1

429
.9

1
1

55
56

6
8

33
86

2
0

86
9

2
7

0
.9

80
9

9
7

0
.0

02
87

0
.0

0
890

4
1

44
21

30
1

km
er:1

3
 -L

 1
3

 -S
 2

12
81

.0
9

1
37

6
0

84
37

40
2

345
9

48
0

.9
83

85
7

0
.0

0
377

0
.0

21
6

82
474

2
326

9
km

er:1
3

 -L
 1

3
 -S

 3
1

554.0
5

1
6

7
6

40
4

40
9

6
2

6
41

1
11

3
0

.9
81

2
48

0
.0

0
336

5
0

.0
22

30
3

470
22

01
8

km
er:1

3
 -L

 1
5

 -S
 2

1
455.6

2
1

40
6

345
40

87
2

56
8

1
12

1
0

.9
83

36
8

0
.0

0
337

4
0

.0
1

3336
26

2
22

589

km
er:1

3
 -L

 1
5

 -S
 3

1
726

.7
5

1
83

6
69

9
451

0
2

89
3

1
26

4
0

.9
80

89
0

.0
0

30
62

0
.0

1
40

79
2

71
21

66
3

km
er:1

3
 -L

 1
7

 -S
 2

1
42

8.5
7

1
37

6
0

83
381

8
2

41
4

1
06

2
0

.9
82

80
9

0
.0

0
31

45
0

.0
10

91
8

20
1

22
30

2

km
er:1

3
 -L

 1
7

 -S
 3

16
50

.7
9

1
72

6
41

5
42

0
8

2
6

48
1

1
75

0
.9

81
41

9
0

.0
02

90
4

0
.0

10
69

1
19

0
21

530

km
er:1

3
 -L

 1
9 -S

 2
1

326
.2

8
1

31
571

1
341

1
2

09
3

9
26

0
.9

81
576

0
.0

02
9

86
0

.0
09

7
16

9
22

09
6

km
er:1

3
 -L

 1
9 -S

 3
1

516
.1

4
1

58
6

00
9

37
42

2
29

5
1

01
2

0
.9

81
55

4
0

.0
02

78
3

0
.0

09
01

5
1

50
21

46
9

km
er:1

3
 -L

 2
1 -S

 2
12

47
.8

7
1

30
53

78
30

85
1

90
7

842
0

.9
82

2
72

0
.0

02
9

52
0

.0
0

89
4

1
48

22
02

7

km
er:1

3
 -L

 2
1 -S

 3
1

411
.7

3
1

53
56

47
33

78
2

0
79

9
26

0
.9

81
6

49
0

.0
02

76
2

0
.0

0
801

7
12

7
21

440

96

T
able 1B

 -

 E
valuation of low

 sequencing depth assem
bly w

ith V
E

L
V

E
T

.

P
aram

eter settings: -ins_
leng

th
 30

0
 -ins_

length_
sd

 30
 -scaffold

ing
 no

 –
sh

ortP
aired

P
aram

e
te

r S
e

ttin
g

s
M

e
an

M
in

M
ax

N
5

0
N

75
N

90
C

o
v

e
rag

e
E

rro
r

T
o

tal E
rro

r
U

n
m

ap
p

e
d

A
ll

km
er: 1

3
 -exp

_
cov 5

59
8.52

1
0

5
30

4
6

10
7

5
48

3
86

0
.86

1
40

7
0

.0
0

36
6

20
9

0
.0

1
6

80
96

2
42

1
79

44

km
er: 1

3
 -exp

_
cov 9

22
02

.0
4

2
62

6
21

6
39

0
8

2
383

859
0

.89
79

0
8

0
.0

0
69

852
5

0
.0

33
50

4
5

50
8

1
842

9

km
er: 1

3
 -exp

_
cov 1

5
22

41
.0

3
2

71
6

2
4

7
39

3
8

2
40

2
86

4
0

.89
6

879
0

.0
0

741
56

0
.0

36
70

9
6

56
0

1
840

9

km
er: 1

3
 -exp

_
cov 19

22
41

.6
5

2
72

6
2

4
7

39
3

8
2

40
2

86
4

0
.89

6
9

6
0

.0
0

742
51

0
.0

36
7

82
7

56
1

1
841

1

km
er: 1

5
 -exp

_
cov 5

1
501

.2
6

1
39

581
9

345
9

2
01

5
6

09
0

.9
2

772
0

.0
0

40
32

5
0

.0
1

3882
9

1
91

1
91

20

km
er: 1

5
 -exp

_
cov 7

2
72

8.3
5

379
74

8
2

541
9

35
31

1
430

0
.9

331
0

4
0

.0
0

52
81

9
4

0
.0

2
1

70
1

31
7

1
91

47

km
er: 1

5
 -exp

_
cov 1

3
2

839
.6

42
2

751
5

551
3

35
53

1
437

0
.9

2
8376

0
.0

0
61

37
74

0
.0

2
90

42
6

44
4

1
90

55

km
er: 1

5
 -exp

_
cov 1

5
2

842
.2

6
42

4
751
5

551
3

35
57

1
437

0
.9

2
8471

0
.0

0
61

6
01

9
0

.0
2

90
6

45
44

4
1

90
57

km
er: 1

5
 -exp

_
cov 1

7
2

843.1
6

42
4

751
5

551
3

35
57

1
437

0
.9

2
851

8
0

.0
0

61
771

5
0

.0
2

90
81

4
44

4
1

90
58

km
er: 1

5
 -exp

_
cov 19

2
843.6

3
42

4
751
5

551
3

35
57

1
437

0
.9

2
856

6
0

.0
0

61
84

53
0

.0
2

90
881

44
4

1
90

59

km
er: 1

7
 -exp

_
cov 5

1
80

7.4
7

1
82

6
30

6
40

2
8

2
435

839
0

.9
40

87
4

0
.0

0
352

80
5

0
.0

1
06

0
6

3
1

37
1

9
351

km
er: 1

7
 -exp

_
cov 7

2
443.2

7
30

4
6

91
7

480
5

30
88

1
2

38
0

.9
43

52
5

0
.0

0
430

52
2

0
.0

1
59

486
2

26
1

9
359

km
er: 1

9
 -exp_

cov 3
69

9
.41

5
1

0
8

33
5

7
12

3
3

6
45

1
74

0
.9

2
0

50
7

0
.0

0
0

79
60

3
0

.0
0

10
0

19
3

1
89

1
3

km
er: 1

9
 -exp_

cov 5
16

84
.7

6
1

49
58

3
2

353
6

2
1

34
781

0
.9

45
449

0
.0

0
331

39
2

0
.0

0
9

72
579

1
2

5
1

9
448

km
er: 1

9
 -exp_

cov 11
20

45
.3

9
2

2
4

6
16

2
39

0
4

2
41

3
9

81
0

.9
439

1
4

0
.0

0
41

9
2

85
0

.0
1

746
6

6
2

56
1

9
391

km
er: 1

9
 -exp_

cov 1
5

20
47

.7
8

2
2

4
6

16
6

39
0

3
2

41
6

9
80

0
.9

43
83

5
0

.0
0

42
2

81
8

0
.0

1
76

849
2

59
1

9
390

97

km
er: 1

9
 -exp_

cov 19
20

48
.2

5
2

2
4

6
16

6
39

0
3

2
41

6
9

80
0

.9
43

889
0

.0
0

42
31

9
9

0
.0

1
76

88
7

2
59

1
9

391

km
er: 2

1
 -exp_

cov 9
16

71
.9

7
1

62
540
5

31
2

4
1

92
7

75
7

0
.9

45
886

0
.0

0
37

39
73

0
.0

1
43

33
7

2
06

1
9

453

km
er: 2

1
 -exp_

cov 11
16

74
.7

3
1

6
4

540
2

31
1

8
1

92
5

75
5

0
.9

44
86

9
0

.0
0

38
45

82
0

.0
1

55
34

8
2

2
7

1
9

434

km
er: 2

1
 -exp_

cov 1
3

16
76

.2
4

1
6

4
540
0

31
19

1
92

5
75

4
0

.9
44

82
9

0
.0

0
386

1
6

9
0

.0
1

56
1

3
2

2
8

1
9

434

km
er: 2

3
 -exp

_
cov 5

12
41

.4
3

1
2

7
449
5

2
30

8
1

41
1

49
3

0
.9

47
50

2
0

.0
0

2
830

9
9

0
.0

0
73

74
43

89
1

9
52

4

km
er: 2

3
 -exp

_
cov 7

1
31

5.9
9

1
34

45
5

3
2

37
2

1
473

53
7

0
.9

479
9

8
0

.0
0

31
6

81
3

0
.0

0
90

842
7

1
1

5
1

9
52

3

km
er: 2

3
 -exp

_
cov 1

3
1

329
.6

1
36

456
2

2
37

7
1

477
53

3
0

.9
45

81
8

0
.0

0
34

570
2

0
.0

1
16

39
1

1
59

1
9

484

km
er: 2

3
 -exp

_
cov 1

5
1

329
.7

7
1

36
456
2

2
37

7
1

477
53

3
0

.9
45

88
0

.0
0

346
1

2
1

0
.0

1
16

43
3

1
59

1
9

485

km
er: 2

3
 -exp

_
cov 19

1
330

.1
9

1
36

456
3

2
37

7
1

477
53

3
0

.9
459

2
7

0
.0

0
34

70
87

0
.0

1
16

53
1

59
1

9
486

km
er: 1

3
 -exp

_
cov auto

96
9

.52
2

1
22

34
8

5
1

54
6

84
3

1
51

0
.8

52
56

2
0

.0
0

6
50

431
0

.0
45

56
6

7
72

2
1

76
12

km
er: 2

3
 -exp

_
cov auto

11
47

.3
2

1
40

42
1

1
20

12
1

1
58

32
9

0
.9

2
580

7
0

.0
0

2
7742

4
0

.0
1

0
787

5
1

53
1

90
62

km
er: 1

3
 -exp

_
cov 3

2
54.86

7
1

01
9

36
2

40
1

32
9

0
.7

80
6

0
9

0
.0

0
0

52
62

1
4

0
.0

0
10

47
81

8
1

61
66

km
er: 1

3
 -exp

_
cov 7

19
74

.9
5

1
9

5
6

02
2

36
4

3
2

2
33

76
6

0
.89

59
5

8
0

.0
0

6
548

54
0

.0
30

8
40

3
46

7
1

842
7

km
er: 1

3
 -exp

_
cov 11

22
32

.6
2

2
70

6
2

4
5

39
1

8
2

39
5

86
5

0
.89

6
86

1
0

.0
0

731
32

7
0

.0
36

1
41

9
551

1
840

8

km
er: 1

3
 -exp

_
cov 1

3
22

38
.5

8
2

71
6

2
4

7
39

3
6

2
40

0
86

4
0

.89
6

9
0

6
0

.0
0

73
85

83
0

.0
36

4
86

4
556

1
841

0

km
er: 1

3
 -exp

_
cov 1

7
22

41
.1

9
2

71
6

2
4

7
39

3
8

2
40

2
86

4
0

.89
6

9
09

0
.0

0
741

9
58

0
.0

36
7

772
56

1
1

841
0

km
er: 1

5
 -exp

_
cov 3

59
6

.80
8

1
09

2
6

4
8

91
3

50
2

1
44

0
.9

0
32

47
0

.0
0

06
0

771
7

0
.0

0
0

80
09

4
6

3
1

859
5

km
er: 1

5
 -exp

_
cov 9

2
812

.79
40

9
750
9

548
9

35
59

1
46

0
0

.9
30

1
2

7
0

.0
0

572
5

39
0

.0
2

62
75

7
39

9
1

90
88

km
er: 1

5
 -exp

_
cov 11

2
833.3

2
42

1
751
6

551
4

35
59

1
440

0
.9

2
89

06
0

.0
0

60
52

7
5

0
.0

2
82

91
8

431
1

90
66

98

km
er: 1

7
 -exp

_
cov 3

72
9

.1
6

1
10

342
3

1
30

8
6

91
1

83
0

.9
1

731
3

0
.0

0
06

89
37

8
0

.0
0

09
2

21
3

6
4

1
8842

km
er: 1

7
 -exp

_
cov 9

2
500

.0
1

32
8

6
9

4
5

482
2

31
0

8
1

2
49

0
.9

41
0

51
0

.0
0

47
70

9
8

0
.0

1
9

42
31

2
84

1
9

316

km
er: 1

7
 -exp

_
cov 11

2
50

8.0
6

330
6

9
3

3
481

8
30

9
4

1
22

5
0

.9
380

5
4

0
.0

0
50

1
89

7
0

.0
2

30
45

8
34

8
1

92
58

km
er: 1

7
 -exp

_
cov 1

3
2

510
.6

1
330

6
9

3
3

481
5

30
85

1
22

5
0

.9
37

851
0

.0
0

50
6

32
8

0
.0

2
336

9
5

35
3

1
92

54

km
er: 1

7
 -exp

_
cov 1

5
2

512
.2

9
331

6
9

3
4

481
5

30
87

1
22

4
0

.9
37

78
5

0
.0

0
50

6
541

0
.0

2
346

0
3

35
5

1
92

53

km
er: 1

7
 -exp

_
cov 1

7
2

512
.1

7
331

6
9

3
3

481
3

30
86

1
22

4
0

.9
37

87
5

0
.0

0
50

59
87

0
.0

2
34

54
7

35
5

1
92

54

km
er: 1

7
 -exp

_
cov 19

2
512

.7
6

331
6

9
3

3
481
3

30
86

1
22

4
0

.9
37

87
8

0
.0

0
50

6
1

52
0

.0
2

34
56

4
35

5
1

92
54

km
er: 1

9
 -exp_

cov 7
20

0
7.7

7
2

06
6

1
5

0
39

0
5

2
40

9
9

80
0

.9
471

4
7

0
.0

0
389

49
9

0
.0

1
2

882
8

1
74

1
9

460

km
er: 1

9
 -exp_

cov 9
20

40
.0

6
2

21
6

16
3

39
1

4
2

41
9

9
80

0
.9

44
57

3
0

.0
0

42
0

41
7

0
.0

1
62

51
9

2
34

1
9

409

km
er: 1

9
 -exp_

cov 1
3

20
47

.0
4

2
2

4
6

16
6

39
0

3
2

41
6

9
81

0
.9

43
889

0
.0

0
42

1
784

0
.0

1
76

0
6

2
58

1
9

391

km
er: 1

9
 -exp_

cov 1
7

20
48

.1
7

2
2

4
6

16
6

39
0

3
2

41
6

9
80

0
.9

43
88

0
.0

0
42

31
34

0
.0

1
76

881
2

59
1

9
391

km
er: 2

1
 -exp_

cov 3
6

33.9
9

4
1

0
8

30
6

8
10

7
7

56
4

1
54

0
.9

2
10

76
0

.0
0

09
36

79
1

0
.0

0
12

45
73

5
1

89
48

km
er: 2

1
 -exp_

cov 5
1

481
.89

1
36

52
3

0
29

58
1

80
2

6
61

0
.9

482
5

0
.0

0
31

1
32

9
0

.0
0

82
6

37
1

00
1

9
520

km
er: 2

1
 -exp_

cov 7
16

54
.7

5
1

58
539
6

31
2

4
1

92
9

76
0

0
.9

482
0

3
0

.0
0

339
2

0
8

0
.0

1
16

11
5

1
61

1
9

49
4

km
er: 2

1
 -exp_

cov 1
5

16
76

.2
4

1
6

4
539
9

31
19

1
92

5
75

4
0

.9
44

85
5

0
.0

0
386

82
5

0
.0

1
56

2
6

2
2

8
1

9
435

km
er: 2

1
 -exp_

cov 1
7

16
76

.3
7

1
6

4
539
9

31
19

1
92

5
75

4
0

.9
44

87
0

.0
0

38
70

45
0

.0
1

56
2

82
2

2
8

1
9

435

km
er: 2

1
 -exp_

cov 19
16

76
.4

9
1

6
4

539
9

31
19

1
92

5
75

4
0

.9
44

88
8

0
.0

0
38

73
89

0
.0

1
56

31
6

2
2

8
1

9
435

km
er: 2

3
 -exp

_
cov 3

56
1

.89
2

1
06

2
70

3
883

47
3

1
35

0
.9

1
9

774
0

.0
0

11
1

541
0

.0
0

1
379

58
4

1
89

54

km
er: 2

3
 -exp

_
cov 9

1
32

7.4
4

1
35

456
3

2
37

9
1

479
536

0
.9

46
46

7
0

.0
0

341
2

1
8

0
.0

1
0

841
8

1
45

1
9

49
7

99

km
er: 2

3
 -exp

_
cov 11

1
32

8.9
5

1
36

456
2

2
37

7
1

477
53

3
0

.9
459

2
3

0
.0

0
34

52
51

0
.0

1
1

445
5

1
55

1
9

487

km
er: 2

3
 -exp

_
cov 1

7
1

330
.1

1
36

456
3

2
37

7
1

477
53

3
0

.9
459

1
1

0
.0

0
346

9
4

7
0

.0
1

16
51

6
1

59
1

9
486

km
er: 1

5
 -exp

_
cov auto

20
75

.6
1

2
85

6
1

7
8

39
2

3
2

342
82

4
0

.9
1

10
33

0
.0

0
55

42
0

8
0

.0
2

99
81

2
472

1
872

2

km
er: 1

7
 -exp

_
cov auto

20
90

.6
3

2
84

6
32

5
40

7
9

2
470

89
7

0
.9

31
6

8
0

.0
0

44
40

2
6

0
.0

1
89

1
44

2
78

1
91

43

km
er: 1

9
 -exp_

cov auto
1

780
.0

5
2

09
57

4
5

339
7

2
0

45
742

0
.9

36
1

79
0

.0
0

370
7

52
0

.0
1

479
9

2
2

12
1

92
41

km
er: 2

1
 -exp_

cov auto
1

453.7
2

1
66

50
1

3
2

70
0

1
60

5
52

5
0

.9
340

52
0

.0
0

31
6

30
7

0
.0

1
22

42
1

75
1

92
1

3

T
able 1C

 -

 E
valuation of low

 sequencing depth assem
bly w

ith E
U

L
E

R
-S

R
.

P
aram

e
te

r
S

e
ttin

g
s

M
e

an
M

in
M

ax
N

50
N

75
N

90
C

o
v

e
rag

e
E

rro
r

T
o

tal E
rro

r
U

n
m

ap
p

e
d

A
ll

km
er:1

3
1

40
5.71

16
4

46
47

2
357

1
2

43
2

40
0

.8
47

3
0

.0
1

859
1

0
.12

2
6

36
2

20
6

1
755

8
km

er:1
5

20
35

.51
2

35
6

1
41

37
79

2
22

5
6

81
0

.89
6

9
43

0
.0

1
870

7
0

.0
71

30
4

1
1

35
1

852
4

km
er:1

7
22

91
.79

30
3

6
60

4
43

39
2

59
6

9
19

0
.9

1
1

72
8

0
.0

2
06

49
0

.0
5336

72
4

1
879

1
km

er:1
9

2
374.2

2
339

6
6

84
44

84
2

732
9

00
0

.9
1

21
73

0
.0

2
31

34
0

.0
51

1
88

58
4

1
879

0
km

er:2
1

2
374.2

7
349

6
6

45
44

52
2

70
4

82
8

0
.9

0
72

0
6

0
.0

2
6

845
0

.0
530

1
2

52
0

1
86

84
km

er:2
3

22
9

5.2
6

30
3

6
52

2
42

2
1

2
480

6
2

8
0

.89
2

35
4

0
.0

30
3

5
0

.0
62

6
0

4
6

39
1

838
8

T
able 1D

 -

 E
valuation of low

 sequencing depth assem
bly w

ith A
B

yS
S

.

P
a

ra
m

e
te

r S
ettin

g
s

M
ea

n
M

in
M

ax
N

50
N

75
N

90
C

o
v

era
g

e
E

rro
r

T
o

tal E
rro

r
U

n
m

a
p

p
e

d
A

ll

km
er:1

3
 n=

2
 b=

26
 c=

1.4
 e=

0
61

8.63
3

1
06

24
00

848
433

4
8

0.8073
74

0.0013
25

51
0.0077

31
25

11
8

1734
8

km
er:1

3
 n=

2
 b=

26
 c=

1.4
 e=

1
626

.3
53

1
07

23
81

822
4

06
3

0
0.7

91
088

0.0014
13

69
0.0099

02
67

155
1695

1

km
er:1

3
 n=

2
 b=

52
 c=

1.2
 e=

0
661

.05
2

1
06

2525
937

492
64

0.81
9

07
6

0.0015
74

51
0.006

62
99

6
93

1765
8

km
er:1

3
 n=

2
 b=

52
 c=

2.0
 e=

1
522

.4
53

1
05

2
006

636
2

88
7

0.7
706

84
0.0016

94
04

0.011
85

94
176

1637
3

km
er:1

3
 n=

6
 b=

26
 c=

1.4
 e=

0
3

01
.6

88
1

01
125

5
322

14
8

8
0.7

47
77

9
0.00049

97
33

0.002
885

05
37

1552
8

km
er:1

3
 n=

6
 b=

26
 c=

2.0
 e=

1
2

82
.7

68
1

01
114

0
26

8
1

08
0

0.7
13

91
2

0.0004
83

21
6

0.004
35

7
04

57
14811

100

km
er:1

3
 n=

6
 b=

52
 c=

1.0
 e=

0
1

07
.9

49
6

8
276

8
0

0
0.2

74
15

5
0.0003

46
94

3
0.0004

4
66

63
0

5643

km
er:1

3
 n=

6
 b=

52
 c=

1.4
 e=

1
3

06
.087

1
01

125
7

31
8

14
0

4
0.7

35
76

2
0.0006

01
071

0.003
4

066
43

1527
4

km
er:1

3
 n=

10
 b=

2
6

 c=
2

.0
 e=

0
225

.4
16

1
00

813
1

87
84

0
0.7

14
33

9
0.00032

04
23

0.0024
87

6
8

32
14880

km
er:1

3
 n=

10
 b=

5
2

 c=
1

.0
 e=

0
1

07
.9

42
6

8
276

8
0

0
0.2

74
15

2
0.0003

46
94

5
0.0004

4
66

64
0

5643

km
er:1

3
 n=

10
 b=

5
2

 c=
1

.0
 e=

1
113

.84
6

71
291

8
0

0
0.2

853
15

0.00029
75

09
0.0004

4
091

8
1

5871

km
er:1

3
 n=

10
 b=

5
2

 c=
1

.4
 e=

0
232

.3
51

1
00

858
2

04
99

1
0.7

35
13

3
0.00042

69
8

0.001
56

19
4

17
1532

7

km
er:1

3
 n=

10
 b=

5
2

 c=
2

.0
 e=

0
225

.7
21

1
01

815
1

89
86

0
0.7

16
86

0.00039
2

867
0.0025

92
16

32
1493

2

km
er:1

5
 n=

2
 b=

30
 c=

1.0
 e=

0
156

.061
91

431
37

0
0

0.4
3

05
57

0.00059
27

53
0.0009

02
72

8
3

8833

km
er:1

5
 n=

2
 b=

60
 c=

1.2
 e=

0
12

85
.01

139
439

1
222

8
134

3
419

0.9
22

52
1

0.0015
44

13
0.006

43
75

9
1

00
19309

km
er:1

5
 n=

2
 b=

60
 c=

2.0
 e=

1
774

.9
69

117
2

81
1

11
07

615
77

0.86
76

52
0.0016

56
57

0.01
042

75
162

1801
6

km
er:1

5
 n=

6
 b=

30
 c=

1.0
 e=

0
153

.4
55

91
4

06
35

0
0

0.4
2

83
93

0.00055
29

13
0.00081

2
96

1
2

87
87

km
er:1

5
 n=

6
 b=

30
 c=

1.2
 e=

1
1

083
.9

4
137

3
81

7
171

7
955

191
0.87

54
01

0.000883
5

0.004
44

81
6

65
1803

8

km
er:1

5
 n=

6
 b=

30
 c=

1.4
 e=

1
974

.9
66

127
349

9
15

08
835

157
0.87

21
42

0.000886
09

6
0.004

44
41

1
64

1794
6

km
er:1

5
 n=

6
 b=

30
 c=

2.0
 e=

1
7

04
.6

42
112

267
7

1
009

539
64

0.85
43

41
0.00091

35
08

0.0057
99

69
85

1756
6

km
er:1

5
 n=

6
 b=

60
 c=

1.4
 e=

1
996

.5
31

129
353

9
154

3
863

165
0.87

73
32

0.0012
55

5
0.0057

3
83

82
1807

8

km
er:1

5
 n=

10
 b=

6
0

 c=
2

.0
 e=

1
627

.4
69

1
09

25
03

9
02

475
54

0.85
27

61
0.00089

72
37

0.005
072

87
72

17525

km
er:1

7
 n=

2
 b=

68
 c=

1.2
 e=

0
147

2.93
154

47
86

2577
154

5
4

86
0.9

24
24

7
0.0014

95
77

0.007
037

1
113

19188

km
er:1

7
 n=

2
 b=

68
 c=

1.2
 e=

1
142

0
1

82
43

86
21

89
126

8
272

0.8856
55

0.0014
76

03
0.012

1
82

215
1835

6

km
er:1

7
 n=

6
 b=

34
 c=

1.4
 e=

0
113

8.85
132

4
05

3
193

3
112

6
3

02
0.9

085
08

0.000881
9

9
5

0.003
03

9
01

41
1867

8

km
er:1

7
 n=

6
 b=

68
 c=

1.4
 e=

0
117

2.41
134

411
1

19
86

116
7

321
0.9

13
59

9
0.0013

13
5

8
0.004

7
89

42
67

1882
6

km
er:1

7
 n=

6
 b=

68
 c=

2.0
 e=

1
76

0.73
5

11
8

274
5

1
06

9
5

84
73

0.86
12

61
0.0012

6
87

0.0057
64

77
79

17725

km
er:1

7
 n=

10
 b=

3
4

 c=
2

.0
 e=

0
7

07
.062

113
275

8
1

06
5

597
115

0.8852
26

0.0007
075

99
0.0025

55
26

33
18180

km
er:1

7
 n=

10
 b=

3
4

 c=
2

.0
 e=

1
696

.87
9

114
264

2
9

84
517

61
0.85

26
51

0.00062
87

96
0.003

11
7

43
1749

6

km
er:1

7
 n=

10
 b=

6
8

 c=
1

.0
 e=

1
293

.5
45

1
03

1
03

6
252

1
02

0
0.7

21
83

5
0.0004

65
13

6
0.0007

3
033

1
3

1479
0

km
er:1

7
 n=

10
 b=

6
8

 c=
2

.0
 e=

0
717

.5
67

114
2775

1
082

611
11

8
0.8887

0.00096
6

802
0.003

96
14

54
1826

1

km
er:1

9
 n=

2
 b=

38
 c=

1.4
 e=

0
123

4.24
13

8
42

02
2

06
8

12
04

31
8

0.9
0845

3
0.0012

13
49

0.004
5

01
8

64
18805

km
er:1

9
 n=

6
 b=

38
 c=

1.4
 e=

1
11

03
.5

1
141

373
2

169
1

949
1

88
0.87

73
94

0.00081
5

6
07

0.003
06

82
4

42
18009

km
er:1

9
 n=

6
 b=

76
 c=

1.4
 e=

0
119

5.76
133

424
5

212
4

129
9

4
83

0.9
5073

1
0.0012

79
3

8
0.0027

96
93

3
0

19602

km
er:1

9
 n=

6
 b=

76
 c=

2.0
 e=

0
752

.814
116

2
83

5
117

2
7

07
2

00
0.9

25
95

8
0.0011

77
03

0.0029
55

03
33

19069

km
er:1

9
 n=

10
 b=

3
8

 c=
1

.0
 e=

0
173

.6
83

99
479

97
0

0
0.5

41
871

0.00079
92

5
0.00081

6
1

89
0

1115
5

km
er:1

9
 n=

10
 b=

3
8

 c=
2

.0
 e=

0
691

.6
14

113
271

8
1

083
63

8
175

0.9
1

81
33

0.0007
049

66
0.001

75
16

6
2

0
1885

9

km
er:1

3
 n=

10
 b=

2
6

 c=
2

.0
 e=

1
225

.9
61

1
01

809
1

83
77

0
0.7

002
83

0.00032
1

07
0.002

817
44

36
14584

km
er:1

3
 n=

10
 b=

2
6

 c=
1

.2
 e=

1
234

.4
55

1
01

862
2

01
93

0
0.7

21
02

3
0.0003

33
2

09
0.001

47
94

2
17

15032

km
er:1

3
 n=

6
 b=

52
 c=

1.0
 e=

1
113

.85
7

71
291

8
0

0
0.2

853
1

8
0.00029

75
08

0.0004
4

091
6

1
5872

km
er:1

3
 n=

10
 b=

5
2

 c=
1

.4
 e=

1
233

.096
1

01
856

199
91

0
0.7

19
77

8
0.00039

74
86

0.001
83

06
7

21
15002

101

km
er:1

3
 n=

10
 b=

2
6

 c=
1

.0
 e=

0
31

.0096
21

74
0

0
0

0.05
72

849
0.00012

21
25

0.0001
4

74
6

0
1175

km
er:1

5
 n=

2
 b=

30
 c=

1.2
 e=

0
125

1.79
134

433
4

21
80

12
89

397
0.9

17
43

1
0.0011

059
9

0.0055
61

66
9

0
1923

2

km
er:1

3
 n=

10
 b=

5
2

 c=
1

.2
 e=

1
235

.088
1

01
868

2
03

95
0

0.7
24

31
1

0.0004
04

16
7

0.001
56

51
8

17
15101

km
er:1

3
 n=

2
 b=

26
 c=

1.0
 e=

1
33

.3
34

5
22

79
0

0
0

0.06
06

89
0.0001

081
6

3
0.0001

74
45

4
0

1245

km
er:1

5
 n=

2
 b=

30
 c=

2.0
 e=

1
763

.7
83

116
2792

1
088

599
74

0.86
3

059
0.0011

7
02

5
0.0093

75
6

8
151

17892

km
er:1

5
 n=

2
 b=

60
 c=

1.0
 e=

0
317

.5
06

1
01

126
0

293
1

00
0

0.7
17

07
9

0.000889
3

7
7

0.001
83

65
2

13
15084

km
er:1

5
 n=

6
 b=

30
 c=

1.2
 e=

0
1

086
.7

125
4

01
4

191
0

11
06

315
0.9

06
07

1
0.00093

46
29

0.003
16

59
2

41
1867

6

km
er:1

5
 n=

6
 b=

30
 c=

2.0
 e=

0
713

.2
1

112
277

4
1

080
6

02
12

0
0.8815

89
0.00093

26
5

8
0.004

84
99

8
7

0
1813

2

km
er:1

5
 n=

6
 b=

60
 c=

1.0
 e=

1
246

.4
33

1
01

844
1

87
6

0
0

0.6
77

95
2

0.00042
49

7
8

0.001
005

32
7

1391
6

km
er:1

5
 n=

10
 b=

3
0

 c=
1

.2
 e=

0
890.39

9
114

354
1

155
1

878
235

0.89
96

75
0.0007

847
39

0.0022
17

35
26

18503

km
er:1

5
 n=

10
 b=

6
0

 c=
1

.0
 e=

0
23

0.41
2

1
01

765
17

8
66

0
0.6

863
89

0.00057
52

6
8

0.00086
4

05
2

4
1412

5

km
er:1

7
 n=

2
 b=

34
 c=

1.0
 e=

0
179

.5
34

97
544

82
0

0
0.5

13
65

8
0.00073

83
1

3
0.001

03
85

9
3

1054
8

km
er:1

7
 n=

2
 b=

68
 c=

1.0
 e=

1
441

.9
34

1
04

175
6

5
09

176
0

0.7
5831

7
0.00075

39
54

0.001
76

44
7

15
16104

km
er:1

7
 n=

2
 b=

68
 c=

2.0
 e=

1
794

.4
4

12
0

2
81

2
112

9
62

0
7

8
0.86

57
87

0.0014
67

47
0.0086

7
35

1
133

17869

km
er:1

7
 n=

6
 b=

34
 c=

1.2
 e=

1
124

5.42
157

4
09

4
195

1
1

09
9

216
0.87

53
91

0.00075
6

864
0.004

34
51

1
66

17983

km
er:1

7
 n=

6
 b=

68
 c=

1.4
 e=

1
113

1.9
144

37
88

174
1

979
17

8
0.87

74
39

0.0011
71

06
0.006

35
3

87
97

1806
1

km
er:1

7
 n=

10
 b=

6
8

 c=
1

.4
 e=

1
1

03
0.2

9
134

363
7

161
6

886
151

0.87
27

81
0.00087

76
49

0.004
47

2
04

65
17922

km
er:1

9
 n=

2
 b=

38
 c=

1.4
 e=

1
117

3.54
147

3
83

7
175

8
963

167
0.86

6
869

0.0011
43

81
0.006

46
85

5
1

00
17897

km
er:1

9
 n=

2
 b=

76
 c=

1.0
 e=

1
5

06
.3

33
1

05
195

1
617

22
8

0
0.7

72
03

2
0.00075

09
17

0.001
71

21
2

15
1643

2

km
er:1

9
 n=

6
 b=

38
 c=

1.0
 e=

1
19

0.9
85

1
00

552
1

01
0

0
0.5

51
583

0.0004
872

11
0.0005

3
86

34
0

11288

km
er:1

9
 n=

6
 b=

38
 c=

1.2
 e=

1
126

7.52
155

414
0

199
5

112
7

244
0.88089

0.00079
0807

0.002
809

71
3

8
1809

1

km
er:1

9
 n=

6
 b=

76
 c=

1.2
 e=

0
141

9.95
143

4
882

267
7

162
7

647
0.9

56
181

0.0013
49

26
0.002

806
01

31
1973

3

km
er:1

9
 n=

6
 b=

76
 c=

2.0
 e=

1
73

0.4
07

117
269

3
1

06
7

621
1

06
0.89

3
034

0.001
07

33
0.004

24
62

6
6

0
1836

9

km
er:1

9
 n=

10
 b=

3
8

 c=
1

.2
 e=

1
116

2.1
8

144
4

007
191

9
113

0
29

8
0.9

083
6

0.0006
006

74
0.001

22
53

5
11

1862
5

km
er:1

9
 n=

10
 b=

3
8

 c=
2

.0
 e=

1
6

81
.2

57
113

261
2

99
8

565
93

0.8855
1

8
0.00056

25
6

0.002
023

35
27

1815
7

km
er:1

9
 n=

10
 b=

7
6

 c=
1

.2
 e=

0
125

0.49
129

457
9

23
80

143
6

534
0.9

5084
0.0011

082
7

0.003
44

96
9

49
1956

1

km
er:1

9
 n=

10
 b=

7
6

 c=
1

.2
 e=

1
123

3.82
149

419
9

2
05

7
122

0
32

8
0.9

12
93

4
0.00086

55
45

0.0027
19

29
37

1874
0

km
er:1

3
 n=

6
 b=

26
 c=

1.2
 e=

0
3

06
.9

93
1

01
12

80
335

155
11

0.7
52

55
4

0.00052
47

83
0.0024

85
23

31
1563

2

km
er:1

5
 n=

6
 b=

60
 c=

1.4
 e=

0
1

006
.85

124
372

3
169

1
979

273
0.9

07
47

4
0.0012

83
56

0.004
35

885
5

8
1871

4

km
er:1

3
 n=

2
 b=

26
 c=

1.0
 e=

0
31

.033
21

74
0

0
0

0.05
73

087
0.00012

22
69

0.0001
4

76
04

0
1176

km
er:1

5
 n=

2
 b=

30
 c=

1.2
 e=

1
123

6.72
15

0
4

083
194

7
111

0
239

0.885
055

0.0011
89

06
0.0099

6
046

175
1851

4

km
er:1

5
 n=

2
 b=

60
 c=

1.4
 e=

0
113

0.4
7

134
394

7
1

87
2

111
2

329
0.9

17
482

0.0014
83

01
0.006

74
36

2
1

05
1916

9

km
er:1

3
 n=

6
 b=

26
 c=

1.4
 e=

1
3

04
.7

02
1

01
125

2
314

13
8

4
0.7

32
585

0.0004
89

17
2

0.003
19

49
5

42
15207

km
er:1

5
 n=

2
 b=

30
 c=

2.0
 e=

0
775

.9
15

115
29

01
117

1
672

137
0.89

094
1

0.0011
01

83
0.0071

14
26

114
18488

km
er:1

5
 n=

2
 b=

60
 c=

1.0
 e=

1
339

.4
34

1
02

135
1

314
96

0
0.7

0852
7

0.00076
84

75
0.0022

7
84

22
1493

0

102

km
er:1

5
 n=

6
 b=

30
 c=

1.0
 e=

1
16

0.53
1

94
426

3
0

0
0

0.4
34

51
6

0.0003
87

45
7

0.0007
59

74
9

3
89

05

km
er:1

3
 n=

2
 b=

52
 c=

1.4
 e=

1
63

0.79
5

1
07

239
1

832
416

3
0

0.7
95

34
4

0.0016
5

01
3

0.01
014

71
156

17051

km
er:1

3
 n=

10
 b=

2
6

 c=
1

.2
 e=

0
233

.4
87

1
00

868
2

05
1

01
2

0.7
36

607
0.00037

05
46

0.001
2

06
82

12
1536

2

km
er:1

3
 n=

2
 b=

52
 c=

1.4
 e=

0
623

.1
1

06
24

08
860

443
49

0.81
16

8
0.0015

54
59

0.0079
05

57
11

8
1745

1

km
er:1

5
 n=

6
 b=

60
 c=

2.0
 e=

0
724

.4
67

112
2795

1
09

6
619

125
0.886

81
8

0.0013
17

08
0.0059

06
36

84
1825

8

km
er:1

7
 n=

2
 b=

34
 c=

1.0
 e=

1
1

88.62
5

99
5

87
7

8
0

0
0.5

14
43

7
0.00053

51
01

0.0009
75

07
3

4
1055

2

km
er:1

7
 n=

2
 b=

68
 c=

1.4
 e=

1
121

4.14
154

39
02

1
85

0
1

05
8

2
02

0.8827
03

0.0014
71

95
0.01

05
77

6
179

1827
8

km
er:1

7
 n=

2
 b=

68
 c=

2.0
 e=

0
817

.6
2

12
0

296
8

122
8

716
149

0.89
89

74
0.0014

45
94

0.006
62

885
9

8
1857

1

km
er:1

7
 n=

6
 b=

34
 c=

2.0
 e=

1
743

.9
29

117
271

8
1

04
7

563
69

0.85
64

97
0.00084

2
45

5
0.004

094
43

57
17592

km
er:1

7
 n=

10
 b=

3
4

 c=
1

.2
 e=

1
112

1.54
145

3
883

177
9

9
82

1
85

0.87
17

41
0.0006

092
4

0.0027
9

041
39

17883

km
er:1

7
 n=

10
 b=

3
4

 c=
1

.4
 e=

1
1

006
.2

132
35

86
156

9
857

144
0.86

85
6

8
0.00059

24
04

0.003
23

24
8

4
8

17819

km
er:1

7
 n=

10
 b=

6
8

 c=
2

.0
 e=

1
7

07
.5

98
115

265
9

1
001

532
62

0.85
62

49
0.000882

06
7

0.004
51

2
06

63
17577

km
er:1

9
 n=

2
 b=

38
 c=

1.2
 e=

0
144

5.91
147

475
9

253
1

149
4

42
8

0.9
12

63
4

0.0012
29

7
8

0.0053
15

15
81

19003

km
er:1

9
 n=

2
 b=

38
 c=

2.0
 e=

0
777

.3
93

119
2

84
3

114
2

649
122

0.885
835

0.0011
55

5
0.004

885
69

1826
8

km
er:1

9
 n=

2
 b=

38
 c=

2.0
 e=

1
749

.5
58

11
8

267
9

1
02

4
541

5
8

0.84
82

88
0.0011

13
95

0.006
1

02
42

89
1746

1

km
er:1

9
 n=

2
 b=

76
 c=

1.4
 e=

0
126

1.63
14

0
425

8
213

9
12

85
4

04
0.9

26
86

1
0.0014

83
33

0.004
45

885
6

0
19200

km
er:1

9
 n=

6
 b=

38
 c=

1.2
 e=

0
132

4.3
13

8
457

6
237

8
14

04
445

0.9
22

05
0.0009

892
64

0.0021
66

32
22

1897
8

km
er:1

9
 n=

6
 b=

38
 c=

1.4
 e=

0
115

3.74
132

4
09

4
197

8
116

4
343

0.9
17

808
0.00097

31
02

0.0021
91

23
1887

3

km
er:1

9
 n=

6
 b=

38
 c=

2.0
 e=

0
74

0.9
85

116
2

81
2

114
5

676
1

81
0.9

16
42

0.00084
801

3
0.001

85
99

1
8

1883
4

km
er:1

9
 n=

10
 b=

7
6

 c=
1

.0
 e=

1
323

.89
3

1
03

115
7

312
155

0
0.7

7003
8

0.00051
804

2
0.0006

1
47

6
1

1576
8

km
er:1

9
 n=

10
 b=

7
6

 c=
1

.4
 e=

0
1

07
4.02

126
4

02
0

192
1

116
2

413
0.9

45
581

0.001
05

2
02

0.0029
62

93
3

8
1945

2

km
er:1

9
 n=

10
 b=

7
6

 c=
1

.4
 e=

1
1

05
0.32

135
37

01
169

6
993

245
0.9

084
09

0.00083
4

801
0.003

14
56

6
46

1864
1

km
er:1

3
 n=

10
 b=

2
6

 c=
1

.4
 e=

1
232

.841
1

01
854

19
8

9
0

0
0.7

17
02

8
0.0003

19
34

1
0.001

74
67

5
21

1494
5

km
er:1

3
 n=

10
 b=

2
6

 c=
1

.4
 e=

0
232

.085
1

00
856

2
02

9
8

1
0.7

32
41

8
0.00035

05
29

0.001
47

822
17

1527
1

km
er:1

7
 n=

6
 b=

34
 c=

1.0
 e=

0
172

.9
5

97
477

7
8

0
0

0.5
084

16
0.0006

6
09

17
0.0007

91
3

07
1

1042
8

km
er:1

3
 n=

2
 b=

26
 c=

2.0
 e=

0
515

.827
1

04
2

02
3

649
3

01
16

0.7
815

26
0.0013

56
64

0.0095
99

22
143

1662
2

km
er:1

7
 n=

2
 b=

68
 c=

1.0
 e=

0
4

03
.06

8
1

03
163

2
467

175
0

0.7
72

05
5

0.00093
14

05
0.001

47
12

8
8

1637
1

km
er:1

5
 n=

2
 b=

60
 c=

1.4
 e=

1
111

0.2
8

14
0

372
3

169
0

971
19

8
0.8861

76
0.0015

95
86

0.01
07

01
6

179
18485

km
er:1

3
 n=

2
 b=

52
 c=

2.0
 e=

0
51

8.4
01

1
04

2
02

7
655

3
06

16
0.7

853
41

0.0015
86

39
0.009

884
6

9
145

16703

km
er:1

5
 n=

6
 b=

60
 c=

2.0
 e=

1
715

.9
8

113
269

8
1

02
5

556
67

0.85
95

2
0.0013

080
8

0.006
86

89
8

99
17689

km
er:1

7
 n=

2
 b=

34
 c=

1.2
 e=

1
137

7.76
173

43
09

213
9

122
7

25
8

0.8823
5

0.00099
54

25
0.0093

26
02

165
1834

9

km
er:1

7
 n=

6
 b=

68
 c=

1.2
 e=

0
134

8.9
2

142
459

9
239

6
141

3
421

0.9
17

92
8

0.0013
27

69
0.004

49
61

62
1892

1

km
er:1

5
 n=

10
 b=

6
0

 c=
1

.2
 e=

1
933

.9
96

122
353

7
151

6
831

153
0.87

42
23

0.00094
63

2
0.003

56
39

1
47

1797
1

km
er:1

3
 n=

6
 b=

26
 c=

1.0
 e=

1
33

.3
01

5
22

7
8

0
0

0
0.06

06
53

7
0.0001

079
06

0.0001
74

19
7

0
1244

km
er:1

5
 n=

10
 b=

6
0

 c=
1

.2
 e=

0
923

.5
56

115
366

2
163

9
931

251
0.9

04
49

5
0.001

0094
9

0.0027
63

17
32

1861
0

103

km
er:1

3
 n=

6
 b=

52
 c=

1.4
 e=

0
3

03
.03

1
1

01
126

0
326

15
0

8
0.7

5092
1

0.0006
11

13
6

0.003
06

06
1

39
15595

km
er:1

5
 n=

10
 b=

6
0

 c=
2

.0
 e=

0
629

.9
99

1
09

257
8

955
524

1
01

0.87
9

813
0.00093

84
88

0.004
2

85
65

6
0

1809
3

km
er:1

5
 n=

10
 b=

6
0

 c=
1

.4
 e=

1
839

.4
35

116
322

0
132

1
722

122
0.87

05
86

0.00092
21

95
0.003

69
2

86
49

17892

km
er:1

7
 n=

2
 b=

68
 c=

1.4
 e=

0
126

6.9
143

426
8

211
6

127
2

365
0.9

2022
0.0015

017
1

0.006
1

814
5

92
19079

km
er:1

5
 n=

10
 b=

6
0

 c=
1

.4
 e=

0
837

.4
32

113
335

1
142

0
805

2
05

0.9
0012

3
0.0009

837
43

0.0029
29

83
35

1851
3

km
er:1

3
 n=

10
 b=

5
2

 c=
1

.2
 e=

0
234

.1
28

1
00

874
2

07
1

03
2

0.7
39

87
0.0004

41
46

5
0.001

2
85

76
13

1543
0

km
er:1

7
 n=

2
 b=

34
 c=

1.4
 e=

0
124

0.66
14

0
424

1
2

082
123

9
35

0
0.9

16
16

6
0.001

03
89

0.005
05

069
7

8
1895

6

km
er:1

7
 n=

6
 b=

34
 c=

1.2
 e=

0
12

82
.2

6
137

444
6

226
1

133
2

3
86

0.9
12

17
1

0.00091
97

44
0.003

023
4

8
4

0
1876

4

km
er:1

3
 n=

10
 b=

2
6

 c=
1

.0
 e=

1
33

.3
01

5
22

7
8

0
0

0
0.06

06
53

7
0.0001

079
06

0.0001
74

19
7

0
1244

km
er:1

5
 n=

2
 b=

30
 c=

1.0
 e=

1
163

.6
27

94
457

32
0

0
0.4

37
01

7
0.0004

36
83

4
0.0009

14
01

5
4

89
58

km
er:1

3
 n=

6
 b=

26
 c=

1.0
 e=

0
31

.0096
21

74
0

0
0

0.05
72

849
0.00012

21
25

0.0001
4

74
6

0
1175

km
er:1

3
 n=

6
 b=

26
 c=

1.2
 e=

1
31

0.64
2

1
01

127
8

329
145

5
0.7

37
13

6
0.0005

011
8

0.0027
96

14
36

15307

km
er:1

7
 n=

6
 b=

34
 c=

1.0
 e=

1
1

80.61
8

99
5

04
74

0
0

0.5
0825

3
0.0004

36
06

1
0.0006

26
19

1
1

10404

km
er:1

3
 n=

6
 b=

52
 c=

1.2
 e=

0
3

09
.9

88
1

01
129

4
342

159
12

0.7
56

39
5

0.0006
32

9
88

0.0025
94

64
31

1571
1

km
er:1

7
 n=

6
 b=

68
 c=

2.0
 e=

0
779

.1
22

117
2

89
5

117
0

674
136

0.89
39

08
0.0012

9
02

9
0.005

003
31

6
8

18409

km
er:1

7
 n=

10
 b=

3
4

 c=
1

.4
 e=

0
1

02
4.06

125
3

83
3

176
2

1
01

1
256

0.9
04

57
4

0.00073
54

06
0.002

03
09

24
1857

9

km
er:1

7
 n=

10
 b=

6
8

 c=
1

.0
 e=

0
26

8.2
82

1
02

933
233

1
09

0
0.7

34
92

6
0.0006

67
11

6
0.00085

7
82

6
2

1511
6

km
er:1

7
 n=

10
 b=

6
8

 c=
1

.2
 e=

0
11

87
.9

1
12

8
432

5
213

3
124

2
347

0.9
12

45
6

0.001
062

23
0.003

59
055

49
1876

1

km
er:1

7
 n=

10
 b=

6
8

 c=
1

.2
 e=

1
11

80.2
1

14
8

4
04

0
1

889
1

04
3

2
01

0.87
6

065
0.00092

3
884

0.004
53

14
1

6
8

17995

km
er:1

7
 n=

10
 b=

6
8

 c=
1

.4
 e=

0
1

04
7.9

125
3

889
1

81
3

1
04

3
267

0.9
0869

4
0.001

02
4

04
0.003

34
7

05
43

18680

km
er:1

9
 n=

2
 b=

76
 c=

1.0
 e=

0
453

.2
2

1
03

179
3

562
217

1
0.7

869
04

0.00099
54

65
0.001

63
49

8
1

0
1674

3

km
er:1

9
 n=

2
 b=

76
 c=

1.2
 e=

0
15

01
.6

8
153

49
08

27
00

161
9

55
0

0.9
31

17
5

0.0015
1

09
6

0.0057
39

9
8

87
1929

4

km
er:1

9
 n=

2
 b=

76
 c=

2.0
 e=

0
7

86
.1

23
119

2
86

3
11

80
6

89
15

8
0.9

03
15

2
0.0013

74
06

0.004
36

74
2

57
1865

8

km
er:1

9
 n=

2
 b=

76
 c=

2.0
 e=

1
75

8.31
119

27
00

1
06

4
5

85
79

0.86
67

2
0.0013

27
08

0.0056
33

62
80

17869

km
er:1

9
 n=

6
 b=

76
 c=

1.2
 e=

1
134

1.7
161

435
6

22
07

132
7

3
80

0.9
17

52
8

0.001
09

44
6

0.003
49

79
7

49
18884

km
er:1

9
 n=

10
 b=

3
8

 c=
1

.0
 e=

1
19

0.97
3

1
00

553
112

0
0

0.5
67

11
0.0004

803
3

2
0.0005

29
7

82
0

11607

km
er:1

9
 n=

10
 b=

3
8

 c=
1

.4
 e=

1
1

02
5.61

133
365

4
165

6
964

234
0.9

04
6

85
0.00059

5
072

0.001
6

09
37

2
0

1855
3

km
er:1

9
 n=

10
 b=

7
6

 c=
2

.0
 e=

0
7

00.6
5

113
273

6
1

09
9

649
179

0.9
21

02
2

0.00092
17

89
0.002

889
52

37
1893

6

km
er:1

9
 n=

10
 b=

7
6

 c=
2

.0
 e=

1
69

0.44
5

114
262

8
1

01
2

57
8

95
0.8885

45
0.0007

857
91

0.003
39

023
4

8
1823

5

km
er:1

5
 n=

6
 b=

60
 c=

1.0
 e=

0
233

.87
7

1
01

7
88

1
81

67
0

0.6
869

04
0.0005

84
65

8
0.0009

41
27

1
4

1412
7

km
er:1

7
 n=

6
 b=

34
 c=

2.0
 e=

0
762

.822
116

2
87

1
114

7
653

129
0.8893

03
0.000889

2
93

0.003
2

07
9

42
1827

7

km
er:1

3
 n=

6
 b=

52
 c=

2.0
 e=

1
2

83
.9

12
1

01
114

4
271

11
0

0
0.7

16
867

0.00059
89

51
0.004

55
45

59
14874

km
er:1

3
 n=

10
 b=

5
2

 c=
2

.0
 e=

1
226

.2
7

1
01

812
1

84
7

8
0

0.7
02

83
0.00039

67
17

0.0029
22

57
37

1463
6

km
er:1

7
 n=

2
 b=

34
 c=

2.0
 e=

1
7

81
.82

2
119

2792
11

09
6

03
76

0.86
21

73
0.0009

89
86

1
0.0073

81
1

8
11

8
1775

3

km
er:1

9
 n=

2
 b=

76
 c=

1.2
 e=

1
142

5.73
176

442
2

223
3

129
0

3
02

0.8895
59

0.0014
1

873
0.0076

31
34

122
1836

9

104

km
er:1

5
 n=

10
 b=

3
0

 c=
2

.0
 e=

0
624

.6
31

1
08

256
1

944
513

9
8

0.87
59

84
0.00072

61
06

0.003
41

93
2

4
8

18009

km
er:1

7
 n=

2
 b=

34
 c=

1.4
 e=

1
11

88.84
15

0
3

87
6

1
81

9
1

02
8

193
0.87

87
19

0.00099
46

5
0.0091

29
32

15
8

1815
6

km
er:1

5
 n=

6
 b=

60
 c=

1.2
 e=

1
112

8.4
5

14
0

39
07

179
5

1
01

5
2

07
0.881

097
0.0012

71
63

0.0055
73

84
79

1817
4

km
er:1

9
 n=

10
 b=

3
8

 c=
1

.2
 e=

0
11

81
.09

12
8

436
1

22
00

132
9

4
89

0.9
46

64
7

0.00089
97

15
0.001

5
8872

13
1946

3

km
er:1

7
 n=

10
 b=

3
4

 c=
1

.0
 e=

1
1

80.6
07

99
5

04
74

0
0

0.5
0825

2
0.0004

36
06

2
0.0006

26
19

3
1

10404

km
er:1

9
 n=

2
 b=

38
 c=

1.0
 e=

1
2

04
.7

52
1

00
6

86
1

03
0

0
0.5

52
51

8
0.00062

66
02

0.0009
72

79
5

4
1134

0

km
er:1

5
 n=

10
 b=

6
0

 c=
1

.0
 e=

1
242

.5
26

1
01

820
1

84
6

0
0

0.6
77

36
5

0.0004
11

6
87

0.0009
49

45
9

7
1391

4

km
er:1

7
 n=

2
 b=

34
 c=

1.2
 e=

0
142

7.94
149

47
08

251
0

149
7

461
0.9

2044
3

0.001
039

95
0.0051

54
05

83
1917

1

km
er:1

3
 n=

2
 b=

26
 c=

1.2
 e=

1
664

.4
9

8
1

09
24

81
892

453
39

0.7
97

74
2

0.0014
5

85
9

0.0087
4

74
134

1715
6

km
er:1

5
 n=

10
 b=

3
0

 c=
1

.0
 e=

0
153

.4
49

91
4

06
35

0
0

0.4
2

83
92

0.00055
29

13
0.00081

2
96

1
2

87
87

km
er:1

3
 n=

6
 b=

26
 c=

2.0
 e=

0
2

80.66
8

1
01

114
0

273
11

8
2

0.7
27

85
6

0.00047
53

21
0.003

85
97

8
51

15104

km
er:1

9
 n=

2
 b=

76
 c=

1.4
 e=

1
119

6.86
151

3
86

7
1

81
5

1
03

8
224

0.886
025

0.0014
14

74
0.006

5
06

09
99

18300

km
er:1

3
 n=

2
 b=

52
 c=

1.0
 e=

1
116

.2
09

71
3

08
9

0
0

0.2
87

01
6

0.0003
19

24
1

0.0005
73

96
5

2
5909

km
er:1

3
 n=

2
 b=

26
 c=

1.2
 e=

0
653

.1
54

1
06

25
07

92
0

4
80

61
0.81

41
4

8
0.0013

47
64

0.006
3

893
93

17552

km
er:1

3
 n=

6
 b=

52
 c=

2.0
 e=

0
2

81
.7

66
1

01
114

4
276

119
2

0.7
3077

5
0.00059

19
76

0.004
03

63
6

52
1516

6

km
er:1

9
 n=

6
 b=

38
 c=

2.0
 e=

1
717

.2
02

116
267

1
1

05
1

6
03

1
01

0.8892
9

8
0.00074

45
29

0.0022
69

99
2

8
1825

3

km
er:1

9
 n=

2
 b=

38
 c=

1.0
 e=

0
193

.5
08

99
626

1
05

0
0

0.5
55

84
3

0.000881
7

5
7

0.001
06

82
6

2
1143

1

km
er:1

5
 n=

10
 b=

3
0

 c=
1

.0
 e=

1
16

0.52
7

94
426

3
0

0
0

0.4
34

51
3

0.0003
87

45
8

0.0007
59

74
9

3
89

05

km
er:1

7
 n=

10
 b=

3
4

 c=
1

.2
 e=

0
112

9.78
127

415
2

199
2

116
0

32
0

0.9
07

84
6

0.00076
87

09
0.0022

4
056

27
1864

7

km
er:1

9
 n=

6
 b=

76
 c=

1.0
 e=

1
331

.4
02

1
03

12
00

324
159

0
0.7

71
74

2
0.00054

43
22

0.0006
807

6
2

15799

km
er:1

3
 n=

6
 b=

52
 c=

1.2
 e=

1
313

.5
37

1
01

129
1

335
149

5
0.7

4096
5

0.0006
04

43
6

0.0029
5

846
37

15386

km
er:1

5
 n=

6
 b=

30
 c=

1.4
 e=

0
9

85
.6

8
122

36
80

165
6

951
261

0.9
02

13
4

0.00092
15

69
0.003

14
72

5
41

18581

km
er:1

5
 n=

10
 b=

3
0

 c=
1

.4
 e=

0
824

.7
53

113
33

09
13

89
7

83
19

8
0.89

57
21

0.00076
52

83
0.0023

1
86

6
2

8
1841

6

km
er:1

5
 n=

6
 b=

60
 c=

1.2
 e=

0
112

9.11
12

8
41

09
2

002
117

5
33

8
0.9

11
786

0.0012
9

86
0.004

3
05

35
57

1881
2

km
er:1

5
 n=

2
 b=

60
 c=

2.0
 e=

0
7

86
.84

1
116

291
9

119
0

6
89

142
0.89

56
52

0.0015
52

6
8

0.0079
83

53
122

1861
8

km
er:1

5
 n=

2
 b=

30
 c=

1.4
 e=

1
1

09
0

13
8

37
07

166
3

947
1

89
0.8815

23
0.0011

6
09

6
0.0094

74
81

164
1835

1

km
er:1

5
 n=

10
 b=

3
0

 c=
1

.4
 e=

1
826

.2
97

115
317

8
129

2
69

8
11

8
0.86

61
8

0.00069
71

83
0.003

086
7

7
42

17795

km
er:1

7
 n=

6
 b=

68
 c=

1.0
 e=

1
29

8.79
1

03
1

06
5

259
1

04
0

0.7
22

787
0.0004

86
008

0.0007
93

17
3

4
14803

km
er:1

9
 n=

6
 b=

76
 c=

1.0
 e=

0
26

0.61
6

1
01

925
237

123
0

0.7
59

23
4

0.00082
96

96
0.00087

3
74

6
0

1567
7

km
er:1

9
 n=

2
 b=

38
 c=

1.2
 e=

1
13

81
.06

167
432

8
211

6
11

80
222

0.87
054

3
0.0011

47
93

0.007
036

47
115

18081

km
er:1

9
 n=

10
 b=

7
6

 c=
1

.0
 e=

0
249

.823
1

01
854

223
12

0
0

0.7
58002

0.00082
083

8
0.00083

9
05

7
0

15688

km
er:1

9
 n=

6
 b=

76
 c=

1.4
 e=

1
113

3.41
141

3
83

2
1

81
1

1
07

5
2

82
0.9

13
21

5
0.0011

32
92

0.003
46

37
3

47
1879

2

km
er:1

5
 n=

10
 b=

3
0

 c=
1

.2
 e=

1
898.27

7
12

0
341

4
143

5
7

84
142

0.86
94

07
0.0007

05
045

0.0029
75

79
4

0
17865

km
er:1

7
 n=

2
 b=

34
 c=

2.0
 e=

0
804

.73
119

2952
12

09
699

143
0.89

52
67

0.0009
855

86
0.0055

81
37

86
1845

3

km
er:1

5
 n=

10
 b=

3
0

 c=
2

.0
 e=

1
621

.882
1

09
24

87
892

465
52

0.84
89

22
0.0006

85
1

09
0.004

12
97

6
59

1744
1

105

km
er:1

3
 n=

2
 b=

26
 c=

2.0
 e=

1
519

.3
22

1
05

2
001

63
0

2
82

7
0.7

66
65

9
0.0014

49
88

0.011
44

7
172

16288

km
er:1

7
 n=

10
 b=

3
4

 c=
1

.0
 e=

0
172

.9
35

97
477

7
8

0
0

0.5
084

15
0.0006

6
09

15
0.0007

91
3

05
1

1042
8

km
er:1

9
 n=

6
 b=

38
 c=

1.0
 e=

0
179

.3
79

99
5

04
99

0
0

0.5
46

24
3

0.0007
842

62
0.00081

9
79

1
0

1122
4

km
er:1

5
 n=

2
 b=

60
 c=

1.2
 e=

1
127

1.66
156

413
8

19
88

114
9

253
0.8899

7
8

0.0016
51

77
0.011

16
05

19
0

18604

km
er:1

9
 n=

10
 b=

3
8

 c=
1

.4
 e=

0
1

04
9.6

8
125

396
4

1
87

3
112

6
396

0.9
41

95
5

0.00083
3

01
3

0.001
47

55
8

12
1936

6

km
er:1

5
 n=

2
 b=

30
 c=

1.4
 e=

0
111

0.9
9

131
393

6
1

84
7

1
084

315
0.9

12
69

2
0.001

065
51

0.0057
15

35
92

19036

km
er:1

7
 n=

6
 b=

34
 c=

1.4
 e=

1
1

09
8.6

4
141

373
1

16
88

94
0

167
0.87

22
65

0.00073
85

2
8

0.004
65

81
1

73
1791

6

km
er:1

7
 n=

6
 b=

68
 c=

1.2
 e=

1
131

1.74
165

423
1

2
05

6
116

4
23

8
0.88087

3
0.0012

03
07

0.006
32

025
97

1813
9

km
er:1

3
 n=

2
 b=

52
 c=

1.2
 e=

1
672

.021
1

09
25

01
9

08
464

4
0

0.8026
1

0.0016
83

1
0.0091

36
75

137
1725

1

km
er:1

3
 n=

2
 b=

52
 c=

1.0
 e=

0
1

09
.7

42
6

8
2

89
8

0
0

0.2
75

46
1

0.0003
65

29
7

0.0005
34

49
8

1
5671

km
er:1

7
 n=

6
 b=

68
 c=

1.0
 e=

0
274

.5
13

1
02

971
241

111
0

0.7
35

91
7

0.0006
82

83
2

0.0009
01

8
3

1512
2

T
able 1E

 -

 E
valuation of low

 sequencing depth assem
bly w

ith soapD
eN

ovo.

P
aram

e
te

r
S

e
ttin

g
s

M
e

an
M

in
M

ax
N

50
N

75
N

90
C

o
v

e
rag

e
E

rro
r

T
o

tal E
rro

r
U

n
m

ap
p

e
d

A
ll

K
m

er: 1
3 -M

 0
38

4.79
1

0
4

1
540

471
2

73
82

0
.8

79
47

0
.0

0
0

472
35

7
0

.0
0

11
6

1
7

1
2

1
81

76
K

m
er: 1

3 -M
 1

44
7.51

1
1

06
1

79
6

586
342

1
12

0
.89

3
77

3
0

.0
0

06
46

36
3

0
.0

0
11

2
6

31
8

1
849

1
K

m
er: 1

3 -M
 2

49
8.88

3
1

0
7

2
0

77
70

0
40

4
1

35
0

.9
0

41
6

8
0

.0
0

0
782

71
6

0
.0

0
1

89
79

1
2

0
1

872
3

K
m

er: 1
3 -M

 3
50

0
.5

71
1

0
7

2
09

0
70

3
40

6
1

36
0

.9
0

47
55

0
.0

0
0

772
9

36
0

.0
0

1
89

871
2

1
1

8736
K

m
er: 1

5 -M
 0

48
7.0

34
1

0
8

1
9

50
6

6
5

39
2

1
34

0
.9

1
09

35
0

.0
0

0
535

88
4

0
.0

0
10

2
20

3
8

1
8772

K
m

er: 1
5 -M

 1
6

88.446
1

16
2

71
8

1
0

51
6

22
2

2
3

0
.9

2
66

1
5

0
.0

0
06

52
51

3
0

.0
0

09
49

0
38

5
1

90
85

K
m

er: 1
5 -M

 2
9

21
.76

1
1

2
3

36
35

1
59

8
9

40
33

8
0

.9
37

52
3

0
.0

0
0

70
20

1
6

0
.0

0
10

2
62

3
6

1
9

30
8

K
m

er: 1
5 -M

 3
9

31
.6

1
8

1
2

3
36

81
1

62
4

9
57

34
4

0
.9

38
59

7
0

.0
0

0
71

2
872

0
.0

0
10

36
5

4
6

1
9

331
K

m
er: 1

7 -M
 0

50
7

.59
4

1
0

8
2

01
2

71
2

42
5

1
50

0
.9

2
20

4
0

.0
0

06
2

9
373

0
.0

0
09

2
2

50
6

5
1

90
11

K
m

er: 1
7 -M

 1
78

8.2
43

1
19

30
0

7
1

2
43

750
2

82
0

.9
381

1
2

0
.0

0
0

70
51

0
6

0
.0

0
0

839
2

1
5

2
1

9
316

K
m

er: 1
7 -M

 2
1

0
75.43

1
30

40
9

6
1

92
9

1
1

57
441

0
.9

479
4

0
.0

0
0

732
0

59
0

.0
0

09
50

51
1

4
1

9
509

K
m

er: 1
7 -M

 3
1

09
3.6

1
30

41
81

1
99

1
1

1
83

45
4

0
.9

49
32

1
0

.0
0

0
7381

46
0

.0
0

09
51

6
49

4
1

9
540

K
m

er: 1
9 -M

 0
50

1
.36

1
1

0
8

1
9

87
70

6
42

1
1

53
0

.9
2

7751
0

.0
0

0
70

350
7

0
.0

0
10

0
41

2
5

1
91

58
K

m
er: 1

9 -M
 1

80
1

.0
9

8
1

20
30

41
1

2
76

782
2

92
0

.9
44

44
7

0
.0

0
0

7786
47

0
.0

0
09

542
82

3
1

9
46

7
K

m
er: 1

9 -M
 2

1
0

43.5
1

30
39

6
1

1
851

1
11

1
42

4
0

.9
52

78
7

0
.0

0
0

787
42

2
0

.0
0

09
750

81
3

1
96

26
K

m
er: 1

9 -M
 3

1
0

59
.86

1
31

40
2

6
1

89
7

1
1

36
43

7
0

.9
542

49
0

.0
0

0
80

56
6

1
0

.0
0

09
80

85
7

3
1

96
58

K
m

er: 2
1 -M

 0
486

.9
73

1
0

8
1

92
1

6
83

41
0

1
54

0
.9

30
6

78
0

.0
0

0
789

37
7

0
.0

0
11

0
459

6
1

92
60

K
m

er: 2
1 -M

 1
78

8.0
43

1
19

30
1

7
1

26
1

780
2

89
0

.9
482

2
9

0
.0

0
0

86
90

2
7

0
.0

0
10

0
0

5
2

1
9

577
K

m
er: 2

1 -M
 2

9
54

.2
1

2
1

2
5

36
45

1
6

44
1

00
3

379
0

.9
54

46
3

0
.0

0
0

876
88

7
0

.0
0

10
1

01
7

2
1

96
90

106

K
m

er: 2
1 -M

 3
9

6
3.70

4
1

2
5

36
6

9
1

66
4

1
01

7
38

5
0

.9
55

53
8

0
.0

0
0

89
22

82
0

.0
0

10
2

557
2

1
9

71
4

K
m

er: 2
3 -M

 0
47

3.52
4

1
0

7
1

845
6

62
39

6
1

53
0

.9
31

9
56

0
.0

0
0

8451
0

4
0

.0
0

12
2

6
76

7
1

9
329

K
m

er: 2
3 -M

 1
750

.86
4

1
1

8
2

86
9

1
19

5
73

3
2

73
0

.9
49

73
5

0
.0

0
09

0
51

0
8

0
.0

0
10

6
30

1
3

1
96

37
K

m
er: 2

3 -M
 2

84
8.9

6
3

1
21

32
32

1
42

0
86

5
32

2
0

.9
53

84
4

0
.0

0
09

1
9

877
0

.0
0

10
6

09
7

2
1

9
70

4
K

m
er: 2

3 -M
 3

85
3.9

87
1

21
32

47
1

42
7

870
32

5
0

.9
54

36
1

0
.0

0
09

39
31

7
0

.0
0

11
551

7
4

1
9

71
7

T
able 2A

 - E
valuation of hom

ology-guided assem
bly on sim

ulated data w
ith L

O
C

A
S

.

P
aram

e
te

r
S

e
ttin

g
s

M
e

an
M

in
M

ax
N

50
N

75
N

90
C

o
v

e
rag

e
E

rro
r

T
o

tal
E

rro
r

U
n

m
ap

p
e

d
A

ll

km
er:1

9
 -L 1

7 -S
 1

2
330

.7
5

50
0

1
71

01
2

9
74

1
71

6
382

0
.8

52
46

8
0

.0
0

2
32

6
5

1
0

.43
32

9
3

1
710

539
22

49
09

8

km
er:1

9
 -L 1

9 -S
 1

2
342

.0
8

50
0

1
71

01
2

9
86

1
72

6
38

3
0

.8
52

51
7

0
.0

0
2

332
5

0
.42

386
2

16
45

74
7

22
49

459

km
er:1

9
 -L 2

1 -S
 1

2
466

.4
2

50
0

1
69

0
5

30
49

1
773

39
1

0
.8

540
89

0
.0

0
19

88
79

0
.22

53
33

62
59

42
21

9
71

88

km
er:1

9
 -L 2

3 -S
 1

2
51

4.9
2

50
0

1
69

46
30

6
8

1
80

1
39

6
0

.8
54

81
0

.0
0

1
88842

0
.0

80
2

35
3

1
89

40
3

21
79

452

km
er:1

9
 -L 2

5 -S
 1

2
522

.1
7

50
0

1
69

46
30

74
1

80
4

39
9

0
.8

55
51

8
0

.0
0

1
8471

3
0

.0
60

47
7

7
1

391
02

21
80

19
3

km
er:1

9
 -L 2

7 -S
 1

2
534.5

8
50

0
1

7431
30

88
1

81
2

40
2

0
.8

56
30

4
0

.0
0

1
79

1
5

5
0

.0
49

1
41

3
11

11
1

7
21

80
76

8

km
er:2

1
 -L 1

7 -S
 1

2
491

.1
7

50
0

1
71

66
30

46
1

780
39

2
0

.8
54

87
7

0
.0

0
19

530
5

0
.1

30
53

5
31

99
1

7
21

830
8

3

km
er:2

1
 -L 1

9 -S
 1

2
487

50
0

1
71

66
30

50
1

780
39

2
0

.8
549

41
0

.0
0

19
92

7
7

0
.1

356
32

335
50

7
21

859
1

0

km
er:2

1
 -L 2

1 -S
 1

2
49

7.5
50

0
1

71
66

30
56

1
782

39
2

0
.8

54
87

5
0

.0
0

19
55

8
1

0
.1

30
19

31
90

9
8

21
831

3
8

km
er:2

1
 -L 2

3 -S
 1

2
52

4
50

0
1

72
87

30
72

1
80

9
39

8
0

.8
55

41
1

0
.0

0
1

833
4

5
0

.0
6

5580
6

1
51

840
21

79
39

6

km
er:2

1
 -L 2

5 -S
 1

2
532

.4
2

50
0

1
71

88
30

83
1

80
8

442
0

.8
56

0
56

0
.0

0
1

79
0

.0
51

20
3

5
11

59
84

21
79

21
1

km
er:2

1
 -L 2

7 -S
 1

2
542

.5
8

50
0

1
71

89
30

9
2

1
81

5
446

0
.8

56
57

8
0

.0
0

1
772

1
6

0
.0

4430
3

1
99

2
51

21
79

70
0

107

T
able 2B

 - E
valuation of hom

ology-guided assem
bly on sim

ulated data w
ith V

E
L

V
E

T
.

P
aram

e
te

r S
e

ttin
g

s
M

e
an

M
in

M
ax

N
5

0
N

75
N

9
0

C
o

ve
rag

e
E

rro
r

T
o

tal
E

rro
r

U
n

m
ap

p
e

d
A

ll

km
er:1

7
 -exp

_
cov 1

7
9

32
.8

3
3

50
0

50
34

36
7

0
0

0
.49

6
01

9
0

.0
0

6
5779

4
0

.9
0

55
58

1
76

33
72

4
1

851
3

53

km
er:1

7
 -exp

_
cov 7

9
1

8.5
8

3
50

0
441

4
29

7
0

0
0

.47
35

3
0

.0
0

6
41

66
2

0
.9

0
6

551
1

71
56

51
7

1
783

589

km
er:1

7
 -exp

_
cov auto

581
.2

5
50

1
874

0
0

0
0

.0
0

851
73

1
0

.0
0

12
1

87
0

.9
52

2
84

56
86

1
8

2
56

1
3

km
er:1

9
 -exp

_
cov 1

7
1

46
3

50
1

11
789

21
77

12
80

1
46

0
.81

40
79

0
.0

0
56

6
86

4
0

.89
7

82
2

2
70

10
2

32
31

2
51

9
5

km
er:1

9
 -exp

_
cov 7

1
447

.9
2

50
2

11
91

1
21

10
12

1
8

1
35

0
.80

6
09

9
0

.0
0

54
89

1
5

0
.89

76
2

6
810

1
2

7
31

0
9

346

km
er:1

9
 -exp

_
cov auto

86
8.9

1
7

50
0

40
06

1
76

0
0

0
.432

6
3

7
0

.0
0

09
0

0
55

2
0

.889
83

3
1

1
32

5556
1

40
570

8

km
er:2

1
 -exp

_
cov 1

7
1

46
4.0

8
50

0
12

50
2

22
21

1
306

1
87

0
.82

57
82

0
.0

0
39

34
8

0
.89

6
9

9
8

2
66

16
87

7
30

9
77

53

km
er:2

1
 -exp

_
cov 7

1
455

.8
3

50
0

12
445

21
84

12
75

1
83

0
.82

0
6

42
0

.0
0

36
580

6
0

.89
71

7
5

2
6

550
9

1
4

30
831

86

km
er:2

1
 -exp

_
cov auto

1
0

59
.1

7
50

0
6

761
69

6
43

0
0

.6
0

79
6

3
0

.0
0

11
11

4
0

.88
39

5
1

4882
6

9
1

1
96

1
838

km
er:2

3
 -exp

_
cov 1

7
1

36
7.2

5
50

0
11

448
1

854
10

9
3

0
0

.81
32

52
0

.0
0

380
3

35
0

.89
59

7
7

2
582

49
6

6
30

380
0

6

km
er:2

3
 -exp

_
cov 7

1
359

.9
2

50
0

11
2

42
1

82
8

10
71

0
0

.80
9

554
0

.0
0

35
86

9
5

0
.89

6
1

02
2

5770
1

4
5

30
2

6
377

km
er:2

3
 -exp

_
cov auto

1
06

4.8
3

50
0

66
52

66
7

0
0

0
.59

80
1

3
0

.0
0

12
41

33
0

.88
459

9
1

46
9

451
6

1
9

3431
1

T
able 3

 A

 –

 E
valuation of hom

ology-guided assem
bly on real w

orld data w
ith L

O
C

A
S

 (w
ithout utilizing left-over reads).

P
aram

e
te

r
S

e
ttin

g
s

M
e

an
M

in
M

ax
N

50
N

75
N

90
C

o
v

e
rag

e
E

rro
r

T
o

tal E
rro

r
U

n
m

ap
p

e
d

A
ll

km
er:1

3
 -L

 1
1 -S

 4
1

312
50

0
731

2
1

50
1

74
4

0
0

.7
77

36
2

0
.0

0
49

2
9

5
3

0
.0

09
582

4
9

1
734

7
36

9
2

439

km
er:1

3
 -L

 1
3

 -S
 4

1
31

3
50

0
731

2
1

50
8

752
0

0
.7

786
1

8
0

.0
0

488
42

4
0

.0
09

35
31

4
1

6
80

4
372

50
40

108

km
er:1

3
 -L

 1
5

 -S
 4

1
353

50
0

9
26

6
1

51
9

732
0

0
.7

71
9

5
0

.0
0

44
44

3
1

0
.0

0
801

1
88

1
330

1
36

9
84

37

km
er:1

3
 -L

 1
7

 -S
 4

1
342

50
0

9
46

3
1

471
6

9
4

0
0

.76
1

7
37

0
.0

0
42

9
26

3
0

.0
0

82
80

6
5

1
46

29
36

37
86

0

km
er:1

3
 -L

 1
9 -S

 4
1

32
4

50
0

70
46

1
40

1
6

61
0

0
.7

50
9

9
2

0
.0

0
42

45
5

3
0

.0
0

76
858

5
1

2
406

35
78

34
8

km
er:1

3
 -L

 1
1 -S

 3
12

99
50

0
731

2
1

488
746

0
0

.7
782

5
8

0
.0

0
48

41
0

3
0

.0
10

72
47

2
21

20
371

9
2

53

km
er:1

3
 -L

 1
1 -S

 5
1

316
50

0
731

2
1

51
8

74
4

0
0

.7
751

58
0

.0
0

488
81

1
0

.0
09

70
9

0
1

1
80

6
7

371
1

2
52

km
er:1

3
 -L

 1
3

 -S
 3

1
302

50
0

731
2

1
488

74
8

0
0

.7
78

40
8

0
.0

0
482

6
1

9
0

.0
10

55
79

2
1

561
372

1
9

87

km
er:1

3
 -L

 1
3

 -S
 5

1
31

8
50

0
731

2
1

51
7

74
7

0
0

.7
75

44
0

.0
0

48
74

3
1

0
.0

09
69

1
5

1
1

80
6

7
371

41
70

km
er:1

3
 -L

 1
5

 -S
 3

1
343

50
0

9
26

6
1

50
1

730
0

0
.7

73
45

0
.0

0
45

33
7

5
0

.0
09

20
43

1
1

7449
370

1
56

8

km
er:1

3
 -L

 1
5

 -S
 5

1
357

50
0

9
26

6
1

52
6

72
6

0
0

.76
9

5
3

0
.0

0
450

1
6

1
0

.0
0

872
1

8
1

570
2

36
882

35

km
er:1

3
 -L

 1
7

 -S
 3

1
333

50
0

9
46

3
1

454
6

99
0

0
.76

4
372

0
.0

0
43

76
2

8
0

.0
0

88589
6

1
6

490
36

46
0

1
8

km
er:1

3
 -L

 1
7

 -S
 5

1
346

50
0

9
46

3
1

474
6

87
0

0
.7

59
9

7
0

.0
0

431
0

2
0

.0
09

6
489

1
9

552
36

2
69

77
km

er:1
3

 -L
 1

9 -S
 3

1
316

50
0

70
46

1
39

1
6

70
0

0
.7

54
34

0
.0

0
43

70
2

7
0

.0
0

840
2

7
9

1
46

01
359

0
39

2

km
er:1

3
 -L

 1
9 -S

 5
1

326
50

0
70

46
1

40
1

6
54

0
0

.7
50

2
82

0
.0

0
430

9
5

2
0

.0
09

11
77

7
1

732
0

356
9

30
4

km
er:1

3
 -L

 2
1 -S

 3
1

30
3

50
0

70
46

1
346

6
44

0
0

.7
45

886
0

.0
0

42
6

44
2

0
.0

06
1

71
7

3
6

79
2

35
39

0
52

km
er:1

3
 -L

 2
1 -S

 4
1

311
50

0
70

46
1

357
6

38
0

0
.7

42
30

3
0

.0
0

41
2

46
0

.0
06

546
2

5
859

3
352

51
87

km
er:1

3
 -L

 2
1 -S

 5
1

31
3

50
0

70
46

1
36

0
6

2
7

0
0

.7
41

471
0

.0
0

42
2

35
0

.0
0

81
784

4
1

40
2

7
351

76
9

8

km
er:1

3
 -L

 2
3

 -S
 3

12
77

50
0

6
2

85
1

2
72

6
12

0
0

.7
372

2
4

0
.0

0
42

2
34

1
0

.0
06

52
9

1
2

80
89

34
85

33
8

km
er:1

3
 -L

 2
3

 -S
 4

12
84

50
0

6
2

85
1

2
72

6
12

0
0

.7
34

849
0

.0
0

41
31

8
7

0
.0

06
1

0
85

8
6

91
5

34
76

8
74

km
er:1

3
 -L

 2
3

 -S
 5

12
87

50
0

6
2

85
1

2
80

6
0

5
0

0
.7

332
6

8
0

.0
0

42
0

92
7

0
.0

0
7886

3
9

1
2

853
346

7
82

6

km
er:1

3
 -L

 2
5

 -S
 3

12
55

50
0

6
2

85
1

22
1

581
0

0
.72

6
381

0
.0

0
41

6
6

3
0

.0
06

50
81

80
46

341
3

52
5

109

7
2

km
er:1

3
 -L

 2
5

 -S
 4

12
60

50
0

6
2

85
1

21
8

57
8

0
0

.72
5

40
7

0
.0

0
41

48
8

3
0

.0
06

1
60

8
1

6
90

8
341

2
2

88

km
er:1

3
 -L

 2
5

 -S
 5

12
6

3
50

0
6

2
85

1
22

2
57

3
0

0
.72

32
6

0
.0

0
41

6
85

2
0

.0
0

750
0

8
6

1
1

41
8

340
0

72
5

km
er:1

3
 -L

 1
1 -S

 1
12

75
50

0
71

9
4

1
438

72
4

0
0

.7
76

1
9

6
0

.0
0

48
74

3
4

0
.0

09
48

87
2

1
71

6
5

36
846

0
0

km
er:1

3
 -L

 1
1 -S

 2
12

92
50

0
71

9
4

1
481

74
4

0
0

.7
789

8
4

0
.0

0
481

4
3

8
0

.0
09

871
4

8
1

89
92

371
8

44
3

km
er:1

3
 -L

 1
3

 -S
 1

12
76

50
0

71
9

4
1

438
72

4
0

0
.7

76
2

37
0

.0
0

482
4

7
3

0
.0

09
6

873
6

1
80

99
36

86
0

0
6

km
er:1

3
 -L

 1
3

 -S
 2

12
9

5
50

0
71

9
4

1
481

74
7

0
0

.7
79

1
2

4
0

.0
0

48
372

6
0

.0
09

86
0

4
1

1
8881

372
1

7
35

km
er:1

3
 -L

 1
5

 -S
 1

1
31

4
50

0
9

1
48

1
449

72
2

0
0

.7
70

0
2

6
0

.0
0

450
1

5
8

0
.0

0
82

86
7

3
1

40
2

3
36

740
42

km
er:1

3
 -L

 1
5

 -S
 2

1
337

50
0

9
1

48
1

488
741

0
0

.7
74

379
0

.0
0

450
7

4
0

.0
0

877
56

3
1

59
52

370
4

57
8

km
er:1

3
 -L

 1
7

 -S
 1

1
310

50
0

9
46

3
1

41
7

6
85

0
0

.76
2

46
8

0
.0

0
430

1
0

1
0

.0
0

79
357

7
1

32
77

36
2

380
0

km
er:1

3
 -L

 1
7

 -S
 2

1
32

7
50

0
9

46
3

1
440

70
8

0
0

.76
49

9
7

0
.0

0
43

736
1

0
.0

0
826

54
6

1
431

5
36

47
79

1

km
er:1

3
 -L

 1
9 -S

 1
12

9
5

50
0

70
46

1
358

6
49

0
0

.7
50

82
8

0
.0

0
42

6
1

7
3

0
.0

06
70

0
3

8
87

53
356

52
2

3

km
er:1

3
 -L

 1
9 -S

 2
1

312
50

0
70

46
1

383
6

76
0

0
.7

54
75

4
0

.0
0

436
0

6
3

0
.0

06
82

6
0

9
89

2
4

359
4

89
4

km
er:1

3
 -L

 2
1 -S

 1
12

79
50

0
70

46
1

30
2

6
26

0
0

.7
41

87
5

0
.0

0
40

70
0

3
0

.0
0

572
6

8
8

58
45

350
7

58
8

km
er:1

3
 -L

 2
1 -S

 2
12

96
50

0
70

46
1

338
6

48
0

0
.7

46
40

7
0

.0
0

42
0

20
5

0
.0

0
5789

1
56

50
35

39
46

2

km
er:1

3
 -L

 2
3

 -S
 1

12
55

50
0

6
2

85
1

2
47

59
2

0
0

.7
32

2
59

0
.0

0
40

43
4

9
0

.0
0

56
66

7
6

56
35

34
51

71
7

km
er:1

3
 -L

 2
3

 -S
 2

12
73

50
0

6
2

85
1

2
57

6
1

4
0

0
.7

36
0

3
0

.0
0

41
9

77
1

0
.0

0
59

79
5

6
21

4
346

6
6

52

km
er:1

3
 -L

 2
5

 -S
 1

12
31

50
0

6
2

85
1

1
77

56
4

0
0

.72
0

49
0

.0
0

39
882

3
0

.0
0

56
544

56
56

33
75

42
8

km
er:1

3
 -L

 2
5

 -S
 2

12
49

50
0

6
2

85
1

21
0

582
0

0
.72

5
83

5
0

.0
0

41
46

5
3

0
.0

0
571

9
4

5
539

5
341

0
31

9

110

T
able 3

 B

 –

 E
valuation of hom

ology-guided assem
bly on real w

orld data w
ith V

E
L

V
E

T
 (w

ithout utilizing left-over reads).

-ins_leng
th

 2
00

 -ins_
length_

sd 2
0 -scaffolding

 no
P

aram
e

te
r S

e
ttin

g
s

M
e

an
M

in
M

ax
N

5
0

N
75

N
9

0
C

o
ve

rag
e

E
rro

r
T

o
tal E

rro
r

U
n

m
ap

p
e

d
A

ll
km

er:1
1

 -exp
_

cov 3
737

60
2

873
0

0
0

0
.0

00
549

2
5

7
0

.0
06

1
01

6
9

0
.0

0
61

0
16

9
0

1
475

km
er:1

1
 -exp

_
cov 5

59
2

50
5

873
0

0
0

0
.0

0
46

79
6

7
0

.0
16

86
47

0
.0

9
49

1
88

11
2

5
1

30
45

km
er:1

1
 -exp

_
cov 7

6
35

50
0

12
78

0
0

0
0

.0
1

859
0

6
0

.0
12

0
378

0
.0

532
1

32
2

32
3

5341
5

km
er:1

1
 -exp

_
cov 9

6
43

50
0

12
78

0
0

0
0

.0
42

89
6

8
0

.0
0

875
85

8
0

.0
441

52
5

46
9

7
12

6
847

km
er:1

1
 -exp

_
cov 1

1
69

2
50

0
2

50
7

0
0

0
0

.0
789

9
32

0
.0

0
81

41
2

8
0

.0
32

5
50

1
61

02
2

41
854

km
er:1

1
 -exp

_
cov 1

3
70

5
50

0
2

50
7

0
0

0
0

.1
0

8582
0

.0
0

770
80

8
0

.0
336

2
1

9
89

72
334

58
4

km
er:1

1
 -exp

_
cov 1

5
72

0
50

0
2

50
7

0
0

0
0

.1
32

746
0

.0
0

70
2

34
0

.0
2

9
31

47
9

541
41

546
8

km
er:1

1
 -exp

_
cov 1

7
72

6
50

0
2

50
7

0
0

0
0

.1
4451

5
0

.0
06

846
2

5
0

.0
32

2
74

5
12

0
40

4582
0

7

km
er:1

1
 -exp

_
cov 1

9
732

50
0

2
50

7
0

0
0

0
.1

52
35

0
.0

0
70

26
3

0
.0

31
82

39
12

547
489

87
4

km
er:1

1
 -exp

_
cov 2

1
736

50
0

2
50

7
0

0
0

0
.1

558
52

0
.0

0
71

552
4

0
.0

31
31

89
12

547
50

29
88

km
er:1

1
 -exp

_
cov 2

3
737

50
0

2
50

7
0

0
0

0
.1

576
1

2
0

.0
0

712
2

7
0

.0
31

0
1

8
12

547
50

879
6

km
er:1

3
 -exp

_
cov 3

6
82

50
0

1
885

0
0

0
0

.2
60

83
3

0
.0

0
322

6
9

3
0

.0
1

0
892

7
6

451
832

36
9

km
er:1

3
 -exp

_
cov 5

72
2

50
0

20
82

0
0

0
0

.379
32

9
0

.0
0

46
880

2
0

.0
2

1
556

5
21

6
53

12
559

6
7

km
er:1

3
 -exp

_
cov 7

836
50

0
36

35
52

9
0

0
0

.52
39

2
4

0
.0

0
56

46
0

8
0

.0
2

61
86

8
40

441
19

1
726

0

km
er:1

3
 -exp

_
cov 9

9
86

50
0

56
47

737
0

0
0

.6
2

334
7

0
.0

06
11

6
5

7
0

.0
349

2
51

753
87

2
52

543
5

km
er:1

3
 -exp

_
cov 1

1
11

38
50

0
61

06
10

02
0

0
0

.6
82

9
31

0
.0

06
71

43
4

0
.0

349
6

6
6

859
79

29
36

849

km
er:1

3
 -exp

_
cov 1

3
12

54
50

0
756

3
11

9
8

52
2

0
0

.70
76

5
4

0
.0

06
9

31
2

2
0

.0
39

2
9

0
4

10
61

52
31

51
53

7

km
er:1

3
 -exp

_
cov 1

5
1

321
50

0
756

3
1

309
550

0
0

.71
45

42
0

.0
0

72
0

71
0

.0
39

31
36

10
8551

32
480

46
km

er:1
3

 -exp
_

cov 1
7

1
339

50
0

756
3

1
340

56
4

0
0

.71
82

6
6

0
.0

0
72

41
1

4
0

.0
41

1
456

11
60

52
32

82
0

79

km
er:1

3
 -exp

_
cov 1

9
1

355
50

0
851

8
1

357
578

0
0

.72
0

09
5

0
.0

0
730

78
0

.0
41

49
6

8
11

7742
330

0
9

54

111

9
km

er:1
3

 -exp
_

cov 2
1

1
354

50
0

851
8

1
359

586
0

0
.72

1
9

78
0

.0
0

72
478

2
0

.0
41

9
84

11
99

59
330

84
43

km
er:1

3
 -exp

_
cov 2

3
1

354
50

0
851

8
1

361
589

0
0

.72
332

0
.0

0
72

572
3

0
.0

41
9

51
4

11
99

59
331

2
56

0

km
er:1

5
 -exp

_
cov 3

855
50

0
41

6
7

550
0

0
0

.53
781

8
0

.0
0

311
81

2
0

.0
0

72
542

8
8430

20
2

333
7

km
er:1

5
 -exp

_
cov 5

877
50

0
41

6
7

6
42

0
0

0
.59

881
7

0
.0

0
371

1
9

5
0

.0
1

2
8878

21
42

4
2

30
472

1

km
er:1

5
 -exp

_
cov 7

10
00

50
0

542
4

834
0

0
0

.6
70

45
7

0
.0

0
479

1
4

5
0

.0
1

587
79

31
12

9
2

76
32

57

km
er:1

5
 -exp

_
cov 9

11
75

50
0

9
833

11
21

559
0

0
.72

0
79

9
0

.0
0

548
5

0
.0

1
53

45
31

6
42

31
59

89
1

km
er:1

5
 -exp

_
cov 1

1
1

311
50

0
9

833
1

326
62

8
0

0
.741

2
2

0
.0

0
586

2
0

9
0

.0
1

55
38

5
331

9
1

3376
780

km
er:1

5
 -exp

_
cov 1

3
1

401
50

0
9

833
1

510
66

9
0

0
.750

6
9

5
0

.0
0

59
780

9
0

.0
1

785
4

42
09

2
3481

0
4

3

km
er:1

5
 -exp

_
cov 1

5
1

441
50

0
9

833
1

543
6

87
0

0
.75

451
1

0
.0

06
1

555
0

.0
1

9
870

6
49

31
4

352
41

6
3

km
er:1

5
 -exp

_
cov 1

7
1

457
50

0
11

455
1

575
69

6
0

0
.75

59
6

9
0

.0
06

1
66

6
5

0
.0

2
00

1
56

50
0

84
354

40
6

3

km
er:1

5
 -exp

_
cov 1

9
1

459
50

0
11

455
1

583
71

1
0

0
.75

80
2

2
0

.0
06

34
48

9
0

.0
1

99
2

59
49

32
1

3559
2

4
4

km
er:1

5
 -exp

_
cov 2

1
1

462
50

0
11

455
1

59
5

71
5

0
0

.759
1

52
0

.0
06

50
9

9
3

0
.0

2
00

786
49

32
1

356
1

9
41

km
er:1

5
 -exp

_
cov 2

3
1

46
3

50
0

11
455

16
06

71
7

0
0

.759
5

56
0

.0
06

45
30

7
0

.0
2

00
1

34
49

32
1

356
43

52

km
er:1

7
 -exp

_
cov 3

887
50

0
41

1
7

582
0

0
0

.55
78

84
0

.0
0

30
96

0
5

0
.0

0
36

40
0

1
11

58
21

21
09

1

km
er:1

7
 -exp

_
cov 5

90
5

50
0

41
1

7
6

74
0

0
0

.6
16

1
83

0
.0

0
3730

4
6

0
.0

0
71

81
6

8350
2

402
11

7

km
er:1

7
 -exp

_
cov 7

10
38

50
0

46
83

89
6

0
0

0
.6

830
6

8
0

.0
0

4436
3

7
0

.0
1

12
80

2
19

6
47

2
8383

59

km
er:1

7
 -exp

_
cov 9

11
99

50
0

841
9

11
58

56
7

0
0

.72
2

6
84

0
.0

0
49

751
9

0
.0

1
16

2
6

3
21

51
7

31
9

746
4

km
er:1

7
 -exp

_
cov 1

1
1

31
7

50
0

91
9

4
1

36
3

62
9

0
0

.739
9

7
0

.0
0

522
0

0
6

0
.0

1
09

88
4

19
72

6
3382

1
46

km
er:1

7
 -exp

_
cov 1

3
1

392
50

0
9

458
1

476
6

56
0

0
.74

73
57

0
.0

0
5439

9
6

0
.0

1
11

6
20

1
43

3482
1

9
3

km
er:1

7
 -exp

_
cov 1

5
1

421
50

0
9

458
1

51
4

66
7

0
0

.749
6

6
5

0
.0

0
5546

7
0

.0
1

29
99

9
26

56
1

351
739

4

112

2
km

er:1
7

 -exp
_

cov 1
7

1
429

50
0

9
458

1
52

7
6

74
0

0
.752

1
7

4
0

.0
0

5589
1

7
0

.0
1

32
37

3
2

7373
3531

6
49

km
er:1

7
 -exp

_
cov 1

9
1

435
50

0
9

458
1

543
6

85
0

0
.75

39
1

7
0

.0
0

56
46

6
9

0
.0

1
358

78
2

851
4

3541
89

5

km
er:1

7
 -exp

_
cov 2

1
1

437
50

0
9

458
1

553
69

2
0

0
.75

40
9

6
0

.0
0

56
735

0
.0

1
36

1
0

8
2

851
4

354
349

3
km

er:1
7

 -exp
_

cov 2
3

1
436

50
0

9
458

1
553

70
4

0
0

.75
489

1
0

.0
0

56
9

32
0

.0
1

36
72

3
2

869
3

3546
86

1
km

er:1
9

 -exp
_

cov 3
90

4
50

0
443

5
59

7
0

0
0

.56
536

2
0

.0
0

311
0

3
5

0
.0

0
432

1
4

8
26

30
21

62
1

38

km
er:1

9
 -exp

_
cov 5

92
2

50
0

443
5

69
7

0
0

0
.6

26
77

8
0

.0
0

356
87

0
.0

0
70

88
7

9
875

7
2

470
0

88

km
er:1

9
 -exp

_
cov 7

10
59

50
0

66
19

92
8

0
0

0
.6

89
09

0
.0

0
432

2
3

8
0

.0
0

79
9

59
4

10
741

29
00

48
7

km
er:1

9
 -exp

_
cov 9

12
19

50
0

842
1

11
73

575
0

0
.72

2
49

7
0

.0
0

4889
0

6
0

.0
0

80
581

6
10

31
3

32
2

802
1

km
er:1

9
 -exp

_
cov 1

1
1

32
8

50
0

842
1

1
36

5
62

3
0

0
.73

59
3

4
0

.0
0

521
44

0
.0

0
841

6
4

2
10

9
57

339
31

0
4

km
er:1

9
 -exp

_
cov 1

3
1

384
50

0
842

1
1

42
7

6
54

0
0

.742
6

5
7

0
.0

0
5336

8
9

0
.0

0
92

58
8

7
1

370
6

346
2

31
4

km
er:1

9
 -exp

_
cov 1

5
1

406
50

0
842

1
1

447
66

6
0

0
.74

581
7

0
.0

0
540

1
3

9
0

.0
0

9
4870

5
1

441
4

349
44

73

km
er:1

9
 -exp

_
cov 1

7
1

41
4

50
0

842
1

1
470

6
73

0
0

.746
8

45
0

.0
0

543
39

7
0

.0
0

9
4751

3
1

430
2

350
55

43

km
er:1

9
 -exp

_
cov 1

9
1

416
50

0
842

1
1

478
6

81
0

0
.746

89
8

0
.0

0
559

81
7

0
.0

0
9

444
5

3
1

362
7

350
9

36
4

km
er:1

9
 -exp

_
cov 2

1
1

420
50

0
842

1
1

480
6

84
0

0
.74

742
9

0
.0

0
559

55
0

.0
0

9
439

2
7

1
362

7
351

1
75

3

km
er:1

9
 -exp

_
cov 2

3
1

420
50

0
842

1
1

482
6

87
0

0
.74

81
59

0
.0

0
56

21
1

2
0

.0
0

9
46

22
6

1
362

7
351

40
70

km
er:2

1
 -exp

_
cov 3

90
0

50
0

46
12

60
2

0
0

0
.572

8
72

0
.0

0
322

38
4

0
.0

0
46

6
1

5
6

31
44

21
76

59
9

km
er:2

1
 -exp

_
cov 5

92
2

50
0

46
12

69
4

0
0

0
.6

2
871

0
.0

0
352

1
2

8
0

.0
0

6
473

3
5

731
5

2
461

88
7

km
er:2

1
 -exp

_
cov 7

10
53

50
0

66
1

8
91

6
0

0
0

.6
885

73
0

.0
0

42
66

5
4

0
.0

0
99

0
83

5
16

53
3

29
01

41
1

km
er:2

1
 -exp

_
cov 9

12
0

4
50

0
6

761
11

45
56

2
0

0
.71

9
6

5
0

.0
0

472
55

8
0

.0
0

9
40

51
7

1
51

70
32

11
2

46

km
er:2

1
 -exp

_
cov 1

1
1

30
5

50
0

6
761

1
312

60
5

0
0

.730
1

9
2

0
.0

0
492

48
0

.0
0

9
39

54
1

51
51

335
72

3
3

113

9
3

km
er:2

1
 -exp

_
cov 1

3
1

343
50

0
69

57
1

353
61

5
0

0
.73

40
2

5
0

.0
0

51
51

6
5

0
.0

1
0

52
71

1
8559

341
6

1
89

km
er:2

1
 -exp

_
cov 1

5
1

358
50

0
69

57
1

376
62

5
0

0
.736

3
49

0
.0

0
52

02
3

5
0

.0
1

0
52

9
3

1
852

9
3441

71
2

km
er:2

1
 -exp

_
cov 1

7
1

360
50

0
69

57
1

378
62

8
0

0
.73

76
4

8
0

.0
0

531
53

9
0

.0
1

1
32

36
20

9
52

344
772

7

km
er:2

1
 -exp

_
cov 1

9
1

36
3

50
0

69
57

1
384

6
30

0
0

.73
75

48
0

.0
0

5342
3

7
0

.0
1

1
3472

20
9

52
3449

59
4

km
er:2

1
 -exp

_
cov 2

1
1

36
5

50
0

69
57

1
384

6
30

0
0

.73
73

82
0

.0
0

5351
5

9
0

.0
1

1
355

7
20

9
52

3450
0

0
4

km
er:2

1
 -exp

_
cov 2

3
1

36
5

50
0

69
57

1
385

6
30

0
0

.73
73

34
0

.0
0

534
84

2
0

.0
1

1
56

0
7

21
6

76
344

886
9

km
er:2

3
 -exp

_
cov 3

89
3

50
0

541
9

59
4

0
0

0
.56

58
54

0
.0

02
91

52
2

0
.0

0
50

449
46

2
5

21
60

732
km

er:2
3

 -exp
_

cov 5
92

0
50

0
541

9
69

4
0

0
0

.6
2

378
0

.0
0

340
79

4
0

.0
0

6
388

3
4

7389
2

46
336

2

km
er:2

3
 -exp

_
cov 7

10
57

50
0

66
19

91
3

0
0

0
.6

82
0

54
0

.0
0

40
81

3
2

0
.0

0
92

2
50

8
1

502
8

2
89

46
50

km
er:2

3
 -exp

_
cov 9

12
01

50
0

66
19

11
20

52
9

0
0

.70
9

70
6

0
.0

0
442

1
0

8
0

.0
0

886
1

8
3

1
426

2
31

831
5

8

km
er:2

3
 -exp

_
cov 1

1
12

69
50

0
6

836
12

1
3

56
2

0
0

.71
9

478
0

.0
0

46
2

50
2

0
.0

0
9

56
0

7
7

16
42

3
32

9
5550

km
er:2

3
 -exp

_
cov 1

3
1

300
50

0
6

836
12

54
574

0
0

.72
2

1
76

0
.0

0
482

88
5

0
.0

0
96

89
3

4
16

42
3

3346
1

3
7

km
er:2

3
 -exp

_
cov 1

5
1

312
50

0
6

836
12

73
584

0
0

.72
476

1
0

.0
0

50
373

7
0

.0
0

96
6

75
2

1
5756

3370
0

1
3

km
er:2

3
 -exp

_
cov 1

7
1

31
5

50
0

6
836

12
75

585
0

0
.72

481
7

0
.0

0
50

882
4

0
.0

0
99

2
6

5
4

16
49

7
337

582
2

km
er:2

3
 -exp

_
cov 1

9
1

316
50

0
6

836
12

75
584

0
0

.72
446

3
0

.0
0

50
536

8
0

.0
1

0
42

87
1

832
2

337
31

8
8

km
er:2

3
 -exp

_
cov 2

1
1

316
50

0
6

836
12

74
585

0
0

.72
50

36
0

.0
0

50
89

6
7

0
.0

1
16

46
9

22
371

3371
9

30

km
er:2

3
 -exp

_
cov 2

3
1

316
50

0
6

836
12

74
583

0
0

.72
446

0
.0

0
50

92
9

3
0

.0
1

16
52

22
371

3370
9

4
7

km
er:2

5
 -exp

_
cov 3

89
7

50
0

542
1

59
1

0
0

0
.56

51
39

0
.0

02
9

554
6

0
.0

0
389

2
9

20
44

21
71

91
5

km
er:2

5
 -exp

_
cov 5

92
9

50
0

542
1

69
2

0
0

0
.6

22
10

4
0

.0
0

339
36

4
0

.0
0

61
431

7
6

860
2

479
6

41

114

km
er:2

5
 -exp

_
cov 7

10
66

50
0

581
2

91
3

0
0

0
.6

781
77

0
.0

0
39

584
7

0
.0

0
69

51
4

7
878

8
29

1
577

3

km
er:2

5
 -exp

_
cov 9

11
84

50
0

585
7

10
78

51
0

0
0

.70
2

11
4

0
.0

0
42

486
6

0
.0

0
76

77
5

8
10

90
8

31
56

75
8

km
er:2

5
 -exp

_
cov 1

1
12

41
50

0
6

836
11

42
52

6
0

0
.70

76
3

4
0

.0
0

439
44

9
0

.0
0

76
84

3
9

10
79

0
32

545
30

km
er:2

5
 -exp

_
cov 1

3
12

6
3

50
0

6
836

11
6

4
534

0
0

.70
9

2
34

0
.0

0
4459

9
8

0
.0

0
8846

6
9

1
452

9
32

82
74

8

km
er:2

5
 -exp

_
cov 1

5
12

6
8

50
0

6
836

11
6

8
538

0
0

.71
0

2
32

0
.0

0
46

29
3

1
0

.0
0

871
8

3
7

1
3587

32
9

379
6

km
er:2

5
 -exp

_
cov 1

7
12

69
50

0
6

836
11

74
540

0
0

.71
1

32
0

.0
0

46
20

9
0

.0
0

870
1

8
1

1
3587

330
0

43
7

km
er:2

5
 -exp

_
cov 1

9
12

70
50

0
6

836
11

75
543

0
0

.71
1

776
0

.0
0

472
2

4
5

0
.0

0
880

0
8

9
1

3587
330

2
1

01

km
er:2

5
 -exp

_
cov 2

1
12

69
50

0
6

836
11

75
544

0
0

.71
2

09
5

0
.0

0
4740

3
1

0
.0

0
881

76
4

1
3587

330
2

9
48

km
er:2

5
 -exp

_
cov 2

3
12

70
50

0
6

836
11

77
544

0
0

.71
1

9
84

0
.0

0
475

30
9

0
.0

0
8831

9
7

1
3587

330
1

6
42

T
able 4

 A

 –

 E
valuation of hom

ology-guided assem
bly on real w

orld data w
ith L

O
C

A
S

 (utilizing left-over reads).

-Lt 1
5 -S

t 4 -P
 km

er 1
3

 -K
(K

m
erg

) 21
P

aram
e

te
r S

e
ttin

g
s

N
5

0
km

er:2
1

 -Llo(Lm
) 19

 -S
lo(S

m
) 0 -D

R
 1

9 1
50

1

51
4

km
er:2

1
 -Llo(Lm

) 19
 -S

lo(S
m

) 0 -D
R

 2
1 1

50

1
51

4
km

er:2
1

 -Llo(Lm
) 19

 -S
lo(S

m
) 0 -D

R
 1

7
 30

0

1
51

4
km

er:2
1

 -Llo(Lm
) 19

 -S
lo(S

m
) 0 -D

R
 1

7
 50

0

1
51

3
km

er:2
1

 -Llo(Lm
) 21

 -S
lo(S

m
) 0 -D

R
 1

9 1
50

1

51
4

km
er:2

1
 -Llo(Lm

) 21
 -S

lo(S
m

) 0 -D
R

 2
1 1

50
1

51
4

km
er:2

1
 -Llo(Lm

) 21
 -S

lo(S
m

) 0 -D
R

 1
7

 30
0

1
51

4
km

er:2
1

 -Llo(Lm
) 21

 -S
lo(S

m
) 0 -D

R
 1

7
 50

0
1

51
3

km
er:2

1
 -Llo(Lm

) 2
3 -S

lo(S
m

) 0 -D
R

 1
9

 1
50

1
51

4
km

er:2
1

 -Llo(Lm
) 2

3 -S
lo(S

m
) 0 -D

R
 2

1
 1

50
1

51
4

km
er:2

1
 -Llo(Lm

) 2
3 -S

lo(S
m

) 0 -D
R

 1
7

 30
0

1
51

4
km

er:2
1

 -Llo(Lm
) 2

3 -S
lo(S

m
) 0 -D

R
 1

7
 50

0
1

51
3

115

km
er:2

1
 -Llo(Lm

) 19
 -S

lo(S
m

) 0 -D
R

 1
7

 1
50

1
51

4
km

er:2
1

 -Llo(Lm
) 21

 -S
lo(S

m
) 0 -D

R
 1

7
 1

50
1

51
4

km
er:2

1
 -Llo(Lm

) 2
3 -S

lo(S
m

) 0 -D
R

 1
7

 1
50

1
51

4

T
able 4

 B

 –

 E
valuation of hom

ology-guided assem
bly on real w

orld data w
ith V

E
L

V
E

T
 (utilizing left-over reads).

-ins_leng
th

 2
00

 -ins_
length_

sd 2
0 -scaffolding

 no
P

aram
e

te
r S

e
ttin

g
s

N
5

0
km

er:1
9

 -exp
_

cov 2
7

1
435

km
er:2

1
 -exp

_
cov 1

7
1

379
km

er:2
1

 -exp
_

cov 2
7

1
379

km
er:2

3
 -exp

_
cov 1

7
12

85
km

er:2
3

 -exp
_

cov 2
7

12
9

3
km

er:2
1

 -exp
_

cov 7
9

35
km

er:2
3

 -exp
_

cov 7
9

35
km

er:1
9

 -exp
_

cov 1
7

1
42

7
km

er:1
9

 -exp
_

cov 2
7

1
435

km
er:1

9
 -exp

_
cov 7

90
1

km
er:1

9
 -exp

_
cov auto

11
10

km
er:2

1
 -exp

_
cov 1

7
1

379
km

er:2
1

 -exp
_

cov 7
9

36
km

er:2
1

 -exp
_

cov auto
11

96
km

er:2
3

 -exp
_

cov auto
11

60

116

	Introduction
	Introduction to Genome Resequencing
	Sequencing Technologies
	Sanger Sequencing
	Second Generation Sequencing Technologies

	Mapping-Consensus Approach
	De Novo Assembly Approach
	Greedy Assembly Approach
	Overlap-Layout-Consensus Approach
	De Bruijn Graph Approach
	Prospects of De Novo Assembly with Short Reads
	Scaffolding

	Homology-Guided Assembly Approach

	An Extended Homology-Guided Assembly Approach (SHORE)
	Workflow

	Short Read Assembly with a Low Sequencing Depth (LOCAS)
	Overview
	Preprocessing
	Overlap Phase
	Reduction and Path Graph Construction
	Cutting Cycles and Similar Structures
	Resolving Repeats Using Mate-Pair Data
	Contig Extraction
	Software Architecture

	Extension of Homology-Guided Assembly (SUPERLOCAS)
	Incorporating Left-Over Reads
	Making Use of Mapping Positions of Reads
	Software Architecture

	Evaluation and Comparison with Existing Assemblers
	De Novo Assembly of Simulated Data
	Evaluation of Assembly for the First Chromosome of A. thaliana at a Sequencing Depth of 7.5x
	Evaluation of Assembly for the First Chromosome of A. thaliana at a Sequencing Depth of 5x
	Evaluation of Assembly for the Fourth Chromosome of A. thaliana at a Sequencing Depth of 5x and 7x

	Homology-Guided Assembly of Simulated Data
	Evaluation of Homology-Guided Assembly for an Artificial A. thaliana Strain

	Application to Real Data
	Evaluation of Homology-Guided Assembly Without Incorporating Left-Over Reads
	Evaluation of Homology-Guided Assembly Incorporating Left-Over Reads

	Discussion
	Conclusion
	Presentations
	Talks
	Poster
	Articles

	Manual
	Introduction
	Availability
	Installing
	License Details
	Author
	Running LOCAS
	How to choose the parameters kmer size and overlap length
	Example of a LOCAS run

	Running SUPERLOCAS
	Running SUPERLOCAS with mapping positions
	Understanding the parameters of SUPERLOCAS
	Example of a SUPERLOCAS run

	Supplementary Tables

