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Abstract

As-of the end of 2010 it has become commonplace that Next Generation Sequencing
(NGS) has revolutionized biology. Despite this it remains true that the advent of NGS
reduced the costs of whole-genome sequencing tremendously. Soon even small labs
will be able to afford sequencing of every genome of every species they like.
Nonetheless sequencing of genomes might be cheap, resultant sequence reads
alone are mostly not informative. It requires an army of new methods to handle the
requirements that Next Generation Sequencing data brings along.

In this thesis | present parts our efforts of the last four years to implement NGS
technologies in plant whole-genome sequencing. First, | will outline how NGS read
alignments against multiple reference sequences simultaneously can be performed
efficiently and how this affects the outcome of whole-genome sequencing.
Afterwards | will show how reference sequence guided assembly can further
improve the reconstruction of genomic sequences. And finally | will summarize how
we adapted our computational methods to plant genetics to pinpoint genomic

disruptions that were causal for previously identified phenotypes.
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Abstract (deutsch)

Gegen Ende des Jahres 2010 ist es schon zum Allgemeinplatz geworden, dass Next
Generation Sequencing (NGS) die Biologie revolutioniert hat. Doch das dndert nichts
an der Tatsache, dass seit der Einflilhrung von NGS die Kosten fir Genom-
Sequenzierungen drastisch gesunken sind. Schon bald werden auch kleine Labore in
der Lage sein jedes Genom von jeder beliebigen Art zu sequenzieren.

Aber obwohl das Sequenzieren von Genomen billig ist, sind die resultierenden
Sequenzen allein nicht hilfreich. Es bedarf schon einer ganzen Armee an vornehmlich
neuen Methoden, um mit den Anforderung, die NGS Daten mit sich bringen zu
Rande zu kommen.

In dieser Arbeit prasentiere ich Ausziige aus den Bemihungen aus den letzten vier
Jahren, in denen wir versucht haben NGS Technologien fir Pflanzengenom-
Sequenzierungen nutzbar zu machen. Zuerst beschreibe ich, wie wir NGS Daten
gleichzeitig, und trotzdem effizient, gegen mehrere Referenzsequenzen aligniert
haben und warum so ein Vorgehen das Ergebnis von Genom-Sequenzierung
verbessert. Danach zeige ich, wie man unbekannte DNA Regionen mit Hilfe von
Homologie-basiertem Assembly rekonstruieren kann. Und zum Schluss fasse ich
zusammen, wie wir unsere Methoden verandert haben, um genomische
Modifikationen, die phanotypische Veranderungen zur Folge hatten, Ding fest zu

machen.
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1 Introduction

Apart of being the introduction for my thesis Detlef Weigel and | used the first
chapter of this thesis as a working draft for a review article that was submitted to

Trends in Plant Sciences at the end of 2010 and is currently under review.

1.1 Bridging the phenotype/genotype divide with millions of short reads.

In 1944 Oswald T. Avery concluded from his experiments on transformation of
Streptococcus pneumoniae that DNA is the molecule that encodes the information
that is passed on to future generations and therefore determines performance of
the offspring [1]. This information destines the design, development and
performance of cells, components and body plans of whole organism. Where some
of the simple traits are exclusively determined by its underlying genotype, genotypes
are not all-embracing determining complex traits and the subsequent fait of an
organism. It is commonly accepted that genotype and environment orchestrate the
shape of a phenotype, though it is still questioned to what extend.

Bridging the phenotype/genotype divide will help to understand this complex
relationships that finds its practical importance in many different aspects of research
and industry. Currently there are three methods dominating this field: genome-wide
association studies (GWAS), quantitative trait locus (QTL) mapping and genetic
mapping. The former is performed on natural populations; it utilizes millions of
generations introducing recombination into this population and tries to correlate
phenotypic expression to the genotypes. The latter are performed on artificial
mapping populations that are usually only designed for this particular purpose. All
three methods share the need for segregating polymorphisms, i.e. genetic loci that
can act as markers to distinguish between the (parental) phenotypes.

Thus, the first challenge of bridging the phenotype/genotype divide is identifying
variation that segregates between the genomes of individuals of a species. As a
matter of course this task is tremendously simplified with the advent of Next
Generation Sequencing (NGS) technologies that allows for whole-genome

resequencing of hundreds of individuals. It can be seen as pure consequence that in
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the year 2008 the 1000 Genomes Project was launched, and followed by a similar
project in plants, the 1001 Arabidopsis thaliana Genomes Project [2]. As-of 2010 the
resequencing results of over 1,000 human genomes [3] and more than 100 plant
genomes are publically available already (1001genomes.org).

By means of some exemplary selected work we will first review the efforts of the last
years trying to decipher the complement of genomic variations in plant species and
how technological advancements improved this filed. And in the second part we will
then outline how whole-genome sequencing can be utilized to support plant

genetics.

1.1.1 DNA Sequencing of Arabidopsis thaliana: From the beginnings until now

In 1986, only 14 years before release of the whole-genome reference sequence of A.
thaliana, the first DNA sequence of one of its genes, ADH, was published [4]. Though
detected by sequence homology to its maize paralog the final steps of gene cloning
included tedious de novo determination of the actual gene sequence. This was
tremendously simplified with the advent of the whole-genome reference sequences.
Within the year 2000 the first plant genome was published and by then
straightforward PCR cloning of essentially all genes of this species became possible
[5].

This reference sequence was derived from a mono-genic sample of the most
commonly used lab strain Col-0, and further allowed insights in whole-genome
duplications, the consequential gene losses and the extensive local gene duplication
rate. Interestingly, there was already some appreciation of the high levels of genetic
differences between different strains. At the same time as the reference assembly
was constructed a whole-genome shotgun sequencing of a second strain, Landsberg
erecta (Ler), was performed and alignments against 82 Mb of the finished reference
sequence were scanned for single nucleotide polymorphisms (SNPs), insertion and
deletions (indels). In total the Arabidopsis Genome Initiative reported one SNP every
3.3 kb and nearly 15,000 indels sized from 2 bp to 38 kb. A significant proportion of
the large indels contained complete gene sequences (not related to transposons)
that were found elsewhere in the Ler sequences, illustrating the high dynamics in the

genomes of A. thaliana strains. Using the reference sequence and this set of Ler
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sequences Jander and co-workers demonstrated the usefulness of this resources for
map-based cloning and the enormous gain in speed that these two resources enable,
reducing the total effort from three to five person-years to less than one person-year
[5]. Ziolkowski and colleagues later studied the mechanistic origin of around ~8,500
of the large indels found within these sequences, distinguishing different
mechanisms leading to indel polymorphisms [6]. Multiple hundreds of these indels
overlapped with genes that were found to be expressed in Col-0.

The reference sequence allowed targeting genomic regions and thus the generation
of more data focusing the aspects of natural variation. Primers throughout the whole
genome allowed for targeted PCR studies of many individuals. Magnus Nordborg and
colleagues analyzed 876 multiple alignments (covering 0.48 Mb of the reference
sequence) scattered throughout the whole genome that were generated from a set
of 96 A. thaliana individuals sampled throughout the northern hemisphere. For the
first time they were able to use genomic sequence difference (revealed by these
alignments) for a systematic survey investigating the genome-wide haplotype
structure and allowing for population genetics across the genome rather than
studying genome-wide averages. They demonstrated that the patterns of
polymorphisms mostly agree with the expected distribution but they also highlighted
that the presence of population structure shared worldwide genomic distribution of
summary statistics deviate significantly from what was assumed by standard
population genetics models. Their gene biased set of alignment revealed 1 SNP every
~190 bp [7].

A very comprehensive study of natural variation in A. thaliana was performed with
resequencing microarrays at single base resolution. By hybridizing 20 accessions
Clark and co-workers found more than 1 million SNPs [8]. The comprehensive design
of the microarray included all theoretical possible single nucleotide variations. Tough
tightly linked SNPs, however, suppress hybridization and SNP detection was
confounded in highly diverged regions. The resultant absence of information was
used to identify polymorphic regions without resolving the underlying sequence [9].
These studies were a major break through in polymorphisms detection but also
stated the dawning of the era of microarray-based resequencing. With the advent of

the first Next Generation Sequencing (NGS) platforms in the year 2006 a more
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detailed view on these complex regions became possible. The first resequencing
studies in plants were performed with sequence reads that were not longer than ~40
bp but were sufficient for unambiguous alignments and a per-base readout of
sequence polymorphisms. In the first resequencing study performed on plants
Ossowski and colleagues reported one SNP every 200 bp [10]. But it required a more
sophisticated local assembly to reveal over 10,000 diverged regions harbored indels
as long as 600 bp. However, comparison with microarrays showed great overlap
between the detection of deleted and/or diverged regions of both technologies [11].
The first part of the work that is presented here we utilized the presence of
polymorphisms that are segregating in the population for the resequencing of the
genome of Arabidopsis thaliana Est-1. In addition to the reference sequence we
used known sequence variation as alignment target for the short read data [12].
Using a novel data structure we could show that detection of complex variation is
not limited by alignment constraints but by the variation data included in the
alignment targets.

Nevertheless assembly approaches hold the promise to be even more informative in
higly diverged regions. As a second part of this thesis | will describe our efforts to
assemble A. thaliana genomes. Using alignments against the reference sequence
they reduced the complexity of the whole-genome shotgun data and assembled
these subsets separately. Compared to the reference sequence the assemblies are of
lower quality, nevertheless 50% of the genome assembly resides in contigs that are
~200kb or larger. These assemblies compromise the first Arabidopsis thaliana
assemblies after the release of the reference sequence in the year 2000.

After NGS analysis was established the data yield of single sequencing runs increased
steadily allowing for population-scale sequencing projects. A large scale whole-
genome resequencing project for Medicago truncula (medicagohapmap.org) is on
the way and recently the resequencing results for 30 soy-beans varieties [13] and six
elite maize inbred lines [14] were reported. Resequencing in maize has revealed
more than 1.2 million SNPs and over 30,000 indels. Sequence comparisons between
lines revealed presence/absence variations (PAVs) of hundreds of expressed genes.
The authors speculate that PAV might play an important role in heterosis in maize —

outlining the immediate impact for breeders. Currently the most ambiguous
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community effort might be the 1001 Arabidopsis thaliana Genomes Project
(1001genomes.org) describing its goal as the discovery of whole-genome sequence
variation of 1001 strains. The first set of 80 genomes is released and allows new
interpretations of the genome of this species. Unexpectedly high proportions of the
genes harbor coding sequence disrupting polymorphisms leading to over 1,000

genes with deleterious changes per accessions.

1.1.2 Using NGS for computational genetics

After whole-genome sequencing was established the most straightforward
application for mutant identification should be direct sequencing of the mutant
genome. Nevertheless, as-of today we are not aware of any published analysis
reporting a plant mutant identification by merely screening the mutant genome
without exploiting any additional resources. Whole-genome mutant resequencing
suffers from the confounding variations (either natural, mutagen-induced or both)
that hitchhike in the background of the mutant genome or are introduced by the
other accessory parental genotypes [15]. These changes need to be distinguished
from the very limited number of causal changes (in mutagen-induced mutants this
typically only one). Thus, the first attempts of whole-genome sequencing of mutant
genomes were performed on mutants that were roughly mapped before hand. In
2008, Sarin et al were among the first to report eukaryotic mutant identification by
whole-genome sequencing in a 4 Mb mapping interval of an ethyl methanesulfonate
(EMS) induced Caenorhabditis elegans mutant [16], similar studies were reported for
Drosophila melanogaster [17] and yeast [18], [19]. Even though EMS mutagenesis is
common in plants too, one of the first direct whole-genome sequencing of a plant
mutant was reported on an spontaneous mutation in a non-reference strain of A.
thaliana [20]. This sequencing effort displays the first section of the last chapter of
this thesis, which describes how whole-genome sequencing can be used to find the
one causal change: After eliminating all natural variations found in the background
genome only one change remained and that was found to be causal for the
phenotype.

Except of work in yeast, mutant identification was based on rough prior knowledge

about the location or architecture of the mutation. Within the second part of the
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third chapter | will illustrate how we developed a method that allows to
simultaneous map and identify mutagen-induced changes without any prior
knowledge about the mutation [21]. As this method drastically reduces the amount
of work needed to map mutations, and as it is not specific for A. thaliana nor plants
this method was later introduced to C. elegans as well [22]. Using whole-genome
sequencing of a pool, so-called bulk segregant analysis (BSA), of phenotypically
striking plants implemented genotyping into the sequence analysis and significantly
reduced the time for mapping from months to days. Nevertheless this method
requires generation of mapping populations and for some phenotypes this might be
tedious or even impossible. Backcrossing mutant to the wild-type genome is typically
less challenging and is usually performed to eliminate mutagen-induced mutations
that blur the phenotype. In this process mutagen-induced nucleotide changes that
are genetically linked to the causal mutation and physically surround it will remain,
whereas unlinked nucleotide changes will be out-crossed. Consequently, mutagen-
induced variants will be enriched in the vicinity of the causal mutation. It has been
shown in C. elegans, though should be applicable to other systems as well, that such
an enrichment generated by 4-6 back-cross generations can generate a significant
pattern in whole-genome sequencing allowing to define mapping intervals as small
as a couple of Mb and that this reduction of the search-space is enough to pinpoint
causal mutations in reference strains [23]. Obviously combining these two methods
and using the mutagen-induced changes not only as indication for linkage to the
causal region but also as markers (like | will outline it in the last chapter), should
reveal the skew in the frequency of the parental lines (the mutagenized and the non-
mutagenized parents) in addition. This method would combine the advantages of
both methods: no need for out-crossing and only two rounds of backcrossing.
Nevertheless it still needs to be proven to be feasibly, especially the expected low
number of mutagen-induced changes serving as markers could confound the
analysis.

Many interesting and agricultural important traits deviate from Mendelian
segregation but rather show phenotypic expression at continuous levels. The
complexity of the underlying genetic architecture requires large mapping population

to dissect all loci with varying effects on the expression of the trait. Though in many
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cases genotyping and phenotyping on a sufficient scale will not be feasible without
pooling individuals [24]. Pooling of those plants with similar expression of
phenotypes in order to fix major effect QTLs, bulk segregant analysis (BSA), was
already introduced around 20 years ago and was already successfully used for
mapping of major effect QTL and Mendelian loci, e.g. [25]. This method was
advanced and tedious genotyping of individual plants was replaced by rapid
genotyping of thousands of markers using microarrays [26], [27]. Though pooling of
individuals allows handling of hundreds of individuals this still displays a limited
sample size and implicates the lack of sufficient statistical power for the detection of
small effect loci [28]. Recently Ehrenreich and co-workers overcome this problem by
drastically increasing the sample sizes in yeast [24]. By further extending BSA of
extreme traits with whole-genome sequencing to measure parental allele
frequencies throughout the whole genome they dissected quantitative traits with 20
major and minor effect loci.

It remains to be proven if such large pools of recombinants can established in crop
species as well. Like in conventional genetics mapping whole-genome sequencing
individuals would ease dissection of complex traits as single recombination events
can be correlated with individual (quantitative) phenotypes. Besides its feasibility
whole-genome sequencing is still rather expensive for large numbers of individuals.
Recent advancements in the complexity reduction of such genomes and
technological advancements in sequencing library preparation carry promises to
apply whole-genome sequencing on hundreds of individuals. Sequencing restriction-
site associated DNA (RAD) tags reduces the representation of genomes and thus
allows not only the for absence/presences variation detection of restriction sites but
also for polymorphism mining in homologous regions of multiple genomes - without
sequencing the whole genome [29]. Combined with bar-coding, i.e. labeling the DNA
sequence reads for their donor genome in order to divide the sequencing power of
NGS to multiple individuals hundreds of genomes can individually genotyped [30],
[31]. Additional genotyping of the parental lines the genotyping information of RAD
sequencing can immediately be used for genetic mapping even in complex genomes,
as demonstrated for stickleback and Neurospora crassa [29]. Interestingly, this

method can be extended to systems without reference sequence and thus
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introduces an eased way to genetic mapping in non-model species such as many of
the crop are. Rather than aligning the sequence reads to a reference sequence
clustering based on sequence similarity between the reads was shown to be
sufficient to identify markers with complete linkage to one of the parental lines [29].
Instead of analyzing homologous regions Huang et al reconstructed the parental
mosaics of 150 rice recombinant inbred lines (RIL) by whole-genome shotgun
sequencing using bar-coded samples [32]. Using a sliding window approach Huang et
al assessed the genotypes of each of the rice RILs. With only ~0.02x genome
coverage per RIL on average a resolution of recombination breakpoints of 40 kb was
reported. Using NGS improved this analysis compared to similar projects performed
with array technologies for A. thaliana [33] and rice [34]. Microarrays genotype at
predefined sites that might not work to distinguish every given pair of individuals,
whereas NGS technologies analyzes a genome without assumption and additionally
allows for bar-coding and thus a dramatic decrease in costs compared to arrays that
require one hybridization per individual. Xie and co-workers extended this method
to be parent-independent by assessing the parental genotypes from the RILs based
on a maximum parsimony method that prefers lower number of recombination
[35].

So far the lack of reference sequences, polyploidy and mere genome size prohibited
large-scale resequencing of many of the crop species. Possibilities to reduce the
sequenced genomic space using target enrichment sequencing promise nothing less
but the application of NGS-based genetics even for very large genomes. Various
different ways to enrich sequencing libraries have been introduced (see [36] for a
detailed review) and they all share the characteristics that they can reduce the
sequenced space of a genome to predefined loci. Noteworthy, in order to prepare
the enrichment targets it is not necessary to have near-to-complete knowledge
about the whole genome sequence, already partial knowledge about the genomic
sequence, e.g. EST or RNA-seq assemblies, can be accessed with target enrichment
sequencing. Combined with bar-coded sequencing [37] target enrichment
sequencing is expected to facilitate simple genetic mapping even in species with
large genomes without reference sequences — as it is case for many of the important

crop species.
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Genome-wide association studies (GWAS) are another way to uncover the genetic
variation that determines phenotypic differences. GWAS utilize the natural variation
and the accumulation of recombination introduced in natural population rather than
looking at artificial mapping population generated from pre-selected parental lines.
Where later methods suffer from the little number of recombination that is
introduced only by a very limited number of generations, GWAS is statically
challenged by population structure, genetic heterogeneity and — so far — by the lack
of resources for development of high-density haplotype maps and the drastic effort
needed to generate such genome-wide variation data.

Introduced in human genetics [38] and recently applied to plants for the first time
[39], GWAS in other than model species lack resources for development of high-
density haplotype maps. Besides the community-wide efforts in maize [40], soybean
[13], M. truncula and A. thaliana [2] NGS can overcome the costly generation of
individual genotypes and clearly constitutes a step forward compared to microarray-
based generation of HapMap type of resources [8], [41].

Huang and colleagues were first to demonstrate the practicability of GWAS to crop
species by studying 14 agronomic traits in over 500 rice genomes [42]. Bar-coded
sequencing to an average coverage of 1-fold revealed around one forth of the
genome of each individual. To compensate for missing genotypes Huang et al
applied a novel imputation method to fill missing genotypes and generate a detailed
haplotype map using approximately 3.6 million SNPs that represent ~80% of the
worldwide genetic diversity. Out of 80 loci that were found to be associated with 14
traits six were closely linked to traits that recently had been identified. On average
the genetic diversity explained 36% of the phenotypic variation — more than recently
reported for human. Surprisingly, Huang and his co-workers observed SNPs linked to
causal loci featuring higher association than causal SNPs themselves as similarly
described in A. thaliana before [39], [42]. They speculate that this might be reflected
by multiple causal alleles of the same gene code for identical phenotypes. Hence,
association studies combining the genotypic variation by their predicted effect on
gene function rather than associating single variations is presumably worth
exploring. Prerequisite of this, the access to structural variations and near-to-

complete genomic sequences of all individuals can only be achieved with whole-
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genome sequencing of all individuals, rather than microarray-based genotyping.
Advancement in methods for genome assembly and sequencing technologies

promise this for the near future.
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2 Aligning short reads against multiple reference sequences

This chapter describes our efforts to design and implement a short read alighnment
tool that can align short reads against multiple references simultaneously. This work
was published in Genome Biology in 2009 [12] and has been labeled as “highly
accessed” after only a month past publication. | implemented GenomeMapper
together with Jorg Hagmann, a diploma student under my guidance. Stephan
Ossowski and | preformed the resequencing analysis of A. thaliana Est-1 as a proof-
of-principle, for which Norman Warthmann had prepared the sequencing sample.
Sandra Gesing and Oliver Kohlbacher implemented a parallel version of
GenomeMapper. Gunnar Ratsch, Geraldine Jean, Fabio de Bona, Uta Schulze, Bettina
Hepp, Soren Sonnenburg, Lisa Thalheim, Dominik Diesch, Andre Kahles, Jorg
Hagmann and | merged the source code of GenomeMapper with that of QPLAMA

[43] introducing spliced alignments into GenomeMapper.

2.1 Resequencing depends on similarity between the reference sequence
and the focal genome

Genome resequencing with short reads generally relies on alignments against a
reference sequence. Even though this reference sequence might be generated of
genomes of multiple individuals it will always suffer of its linear characteristic and its
inability to capture and display allelic variation present within the respective species.
We have developed a new alignment algorithm GenomeMapper that supports
simultaneous alignments of short reads against multiple genomes by integrating
related genomes (e.g., individuals of the same species) into a single graph structure.
This constitutes the first alignment algorithm for handling multiple references.

To by-pass this problem of having no alignment in regions of high divergence partial
de novo assemblies of targeted regions have been attempted [10]. Even though this
helped to bridge some of the regions that could not be revealed by alignments alone
the recall of such regions was limited and regions longer than a couple of hundred

bp could not be dissected at all. Over 80% of the targeted regions could not be
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analyzed with this approach, i.e. the largest indel was not more than 641bp [10].
Thus short read analysis of complex genomes is greatly aided by using a sequence
backbone that features most of the alleles variations inherent in the focal genome.
But, of course, as the genome sequence of the focal genome is usually unknown, it
would be desired to align all short reads against all known variations simultaneously.
Further, we note that the information derived from resequenced individual genomes
is in itself useful for subsequent resequencing efforts, especially when the latter are
at lower sequence coverage than the earlier efforts. Incorporating known
polymorphisms increases the genome space against which the sample reads are
aligned, which should greatly improve the mapping results. For example, an
alignment suggesting a string of deleted bases in the focal genome becomes much
more reliable if this deletion is known to exist in the population. The incorporation of
such missing or inserted bases in the reference sequence would not only decrease
the complexity of the alignments, but also reduce sequencing costs, as more reads
can be placed on the genome.

Apart of such practical reasons, aligning against only a single reference biases the
analysis towards a comparison within the sequence space conserved with the
reference. Taking into account all known genome variants would reduce this bias.
Aligning reads against multiple genomes separately increases computation time and
storage space and introduces new problems of merging and interpreting redundant

results.

2.2 Multiple genomes in one index

One way to decrease runtime for the generation of sequence alignments is to build
index structures of either the reads or the reference sequence. We implemented
later strategy in GenomeMapper. To allow for simultaneous alignments against
multiple genome sequences, all target sequences have to be combined into one data
structure. GenomeMapper achieves this goal by building a joint index of all genomes
that are alignment targets. This index will be persistently stored and, once compiled,
the index does not need to be rebuilt for future alignment tasks.

The index is a simple hash-based mapping of k-mers (sequence signatures of 5 - 13

bp) to their locations within the target sequences. Each k-mer present in target
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sequences is unambiguously converted into a single integer, applying a two-bit
representation of the four DNA nucleotides. Each hash key points to one hash value
consisting of a list of all genome locations of the k-mer. While this rather simplistic
hash indexing approach has some disadvantages compared to more recently
developed strategies, e.g., Burrows-Wheeler indexing [44], the latter are usually
geared towards ungapped alignments and are not easily extendable to non-linear
structures imposed by multiple genomes. Further, spaced-seed approaches,
implemented in tools such as SHRiIMP or ZOOM, can be more sensitive [45].
However, when these approaches are applied to real data, they do not result in a
substantial increase in the number of alignments compared to an approach with
contiguous seeds followed by a complex alignment, because contiguous seeds are
usually chosen short enough, i.e., 9 to 12 bp, for anchoring and subsequent aligning
of reads (see below for comparison with other mapping tools).

Mapping indices tend to require a large amount of random access memory (RAM).
Current compute servers usually allow multiple processors to share physical RAM. To
avoid the unnecessary overhead of loading the same index multiple times,
GenomeMapper makes use of memory-mapped files, allowing computer processes
to share the same index structure within the memory. This reduces the overall
memory footprint when running several instances of GenomeMapper in parallel.

The input for GenomeMapper’s index creation step consists of the sequence of one
of the genomes and a list of differences in the other genomes compared to the first
one, i.e., one FASTA file and a list of single nucleotide polymorphisms (SNPs) and
indels of every additional genome. Each position not explicitly annotated as different
is assumed to be identical in all of the genomes, and will therefore only be stored
once. This is important to avoid redundant alignments to several genomes.
Divergent sequences are stored separately for each of the genomes. Identical
regions, which are represented once, need to be connected with polymorphic
regions, which are represented by branches in the index. Hence the reference looses
its linear/sequential characteristic, but rather forms a sequence graph. Note that

none of the genomes represents “the reference” anymore (Figure 2-1A).
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Figure 2-1: Efficient alignments against multiple genomes. (A) Only reads that are sufficiently similar
can be aligned against a single reference. (B) Separate alignment against multiple genomes allows
access to divergent regions, but result in redundant alignments of reads that match all targets (blue).
(C) Alignments against a graph index representing multiple genomes provide access to divergent
regions without redundant alignments.

In order to store this information efficiently, each of the genomes is partitioned into
non-overlapping sequence blocks of up to 256 bp, which represent the genomic
sequence of all genomes. The connections of blocks to their neighbors allow for
continuous reconstruction of each genome. Invariant regions will be represented by
one block only. Every variant, including all SNPs, will trigger the formation of
branches, which constitute the parallel blocks that account for the non-linearity of
the genome graph (Figure 2-2AB). Since complex differences such as inversions or
duplications can always be defined as combinations of deletions and insertions, they

can be readily incorporated into a graph index.
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Genome 2: CTGTGAGCCTCCAGTAGGC
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Read: CTCACTGTGAGCCTCCGGCTA

Best alignment against Genome 3:

Read: CTCACTGTGAGCCTCCGGCTA
Genome 3: CTCACTGTG--CCTCCGGCTA

GM Alignment Format: CTCACTGTG[-A][-G]CCTCCGGCTA

Transformed alignment against Ref. Seq.:

Read: CTCACTGTGAGCCTCC-~-~-~-GGCTA
Ref. seq.: CTCACTGTG--CCTCCAGTAGGCTA

GM Alignment Format: CTCACTGIG[-A][-G]CCTICC(A-) (G-) (T-) (A-)GGCTA

Figure 2-2: GenomeMapper’s graph index structure. (A) Examples of orthologous sequences in four
divergent genomes. Sequences at the beginning and end of each fragment are shared (underlain with
green boxes). Divergent regions start k-1 positions (in this case 6 positions) before the first true
variable position, to account for the k-mer length used for the hash key calculation. (B) Graph
structure created by these sequences, with k-mer length 7, and maximal block length of 10 (instead of
256) for reasons of illustration. The number attached to each block is its unique identifier. Note that
blocks do not occupy their maximal block length after an indel, exemplified by blocks 3 and 8. Blocks 1
and 12 correspond to sequences identical in all four genomes, and are present only once in the index
structure. Arrows between the blocks visualize the edges between the nodes in the genome graph, as
they are stored in the block table. (C) Alignment of a read against the most similar genome, Genome
3, with a 2 bp insertion. Although the insertion is also observed in Genome 2, the 4bp deletion
downstream in Genome 3 makes the read more similar to it than Genome 2 does. The transformed
alignment of the read against the original reference sequence (Ref. seq.) includes the 4bp deletion (as
supported by Genome 3) given in parentheses (green), whereas the 2bp insertion (which is neither
supported by Genome 3 nor the reference sequence) is annotated like a mismatch using square
brackets.
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A unique identifier for each block allows for a constant look-up time in a table that
stores all relevant block information. In addition to referring to the genomes, which
it is a part of, each block encodes for its sequence, the connections to its neighboring
blocks and the position within the genome. Each block thus harbors the genome
sequence of all or a subset of genomes with identical sequences within the
respective region. The block table is the implementation of a sequence graph, where
the blocks represent the nodes and the connections between them the edges (Figure
2-2B). From now on we refer to this table as genome graph. A comprehensive list of

all features stored in the block table is given in Table 2-1.
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Feature Size in bytes  Description

genome_pos 4 Start position of the block with respect to the
sequence it is derived from.
ref_pos 4 Start position of the block with respect to the

reference sequence.

Chr 4 Chromosome identifier

Strain 4 Genome identifier

Indel_offset 2 Stores the position of the indel within the
block

ins_pos 4 Stores the number of inserted bases
upstream.

Seq 256 Genome sequence, stored as transformed
alignment.

prev_block 4 Block identifier of preceding block

next_block 4 Block identifier of succeeding block

next_strain_front 4 Block identifier of the first block of the next

diverged strain (in diverged regions only). This
is the interconnection between the strains in
Fig 2 and 4.

next_strain_end 4 Block identifier of the last block of the next

strain (in diverged regions only)

Table 2-1: Features stored in block structure. Each block is represented by one such block structure in
the block table. Since the block table is an ordered list, the blocks do not need to store their identifier,
as this is encoded as their positions in the list (block table).

In order to show that storing genomes separately is more memory consuming than
building a genome graph we generated genome graphs incorporating the
information of one, two, or three strains in addition to the reference. A graph
featuring only the reference genome has 100% of conserved sequence.
Incorporating a single additional Arabidopsis thaliana strain reduced the conserved

genome space by about 5%, namely to 94.3% (for Bur-0) or 95.1% (for Tsu-1).
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Simultaneously adding both Bur-0 and Tsu-1 resulted in a further decrease of
conserved genome space, but by less than 4%, to 91.6%. Adding a third genome, Est-
1, reduced conserved genome space by less than 2%, to 89.9%.

Since all relevant information is stored in the genome graph, the positional
information attached to each k-mer in the hash described above (linking each k-mer
to its locations in the genome), must merely store the block identifier (represented
by 3 bytes) and the position within the block (1 byte). Based on this information the
position of every base within each of the genomes can be inferred. The 4 byte
encoding accommodates a combined length of all unique sequences of up to 4 Gb.
Efficient read mapping requires that each k-mer generated from one of the
sequences in the genome graph can be queried for its locations in a time linear to
the number of hits. This is achieved by building a hash table connecting the k-mer
(hash key) to its positional information in the genomes (hash value). Each hash key
refers to a list of entries. Each of these entries stores a block identifier and a block

position, allowing for a unique positioning of each k-mer.

2.3 Need for complex alignments

Earlier studies showed that in a random comparison of two natural Arabidopsis
strains, there is typically one SNP every 200 bp. In addition, using early-generation
[llumina single reads, over 60,000 small indels (1-3 bp) and 10,000 indels of up to
several hundred base pairs have been detected in two strains, presenting a lower
bound for the degree of polymorphism in this species [10].

Mismatches in alignments result not only from sequence differences, but also from
sequencing errors. The error probability of lllumina sequence reads has been shown
to be less than 1% for most, but not all parts of the read [10]. In comparison to the
rate of natural variation in Arabidopsis, mismatches from errors in individual reads
outnumber true SNPs approximately 17 to 1, while true gaps are almost as frequent
as gaps resulting from sequencing errors. In order to distinguish between sequencing
errors and real polymorphisms, we separated all mismatches (and gaps) at positions
resulting in SNP calls (or indel calls) from the mismatches (and gaps) at positions
with a high confidence reference call (based on the single reference alignments of

the Est-1 reads against the reference sequence). The outcome of this analysis
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depends on the divergence between sample and reference sequence, as well as on
the quality of the sequencing run. It does not allow for general conclusion about the
Illumina GA sequencing technology.

To avoid misplacement of individual reads, some mapping tools favor alignments
where the cumulative base quality of mismatching bases is low [46]. With respect to
the high level of natural differences in Arabidopsis, such a strategy could bias
alignments away from polymorphic regions. GenomeMapper instead performs for
each read an alignment based on dynamic programming similar to the Needleman-
Wunsch alignment algorithm [47].

Our method ensures that all alignments within a given number of mismatches and
gaps are reported, provided that they share at least one identical substring of length
k when using a k-mer index. No other constraints are imposed on the number of
mismatches, gaps or base call quality. By default, GenomeMapper aligns against all
instances of a repeat, but it also can be instructed to align only against a subset of
them.

In our experience, resequencing projects of bacterial or medium-sized eukaryotic
genomes such as those of Arabidopsis strains do not benefit from utilizing
alignments other than the optimal ones. Nonetheless, GenomeMapper can be
configured to report not only the best scoring alignments, but also all hits within the
specified range of mismatches and gaps (all-hits instead of best-hits strategy). As
expected, this comes with an increase in runtime, especially for highly repetitive

genomes.

2.4 Aligning sequences against the graph

GenomeMapper’s alignment procedure is partitioned into three steps including
speed optimization. The optimization bypasses the costly calculation of alignment
matrices without decrease in sensitivity and is based on two observations: first, a
dynamic programming alignment is only required if the best alignment involves gaps;
and, second, the frequency of gaps is lower than that of mismatches. This is the case
for both sequencing errors in Illumina reads and true polymorphisms. To cope with
this, GenomeMapper applies a higher penalty for gaps than for mismatches.

Therefore alignments with a penalty lower than the gap penalty do not require
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dynamic programming. The optimization cannot be applied in an all-hits strategy
including gapped alignments, and will not increase speed if the best alignment
features gaps.

In the first step of the alighment procedure, GenomeMapper scans the hash index
for k-mers identical between read and genome graph to quickly detect all genomes
and locations with nearly identical alignments. In the second step GenomeMapper
determines the location and sequence of nearly identical maximal substrings (NIMS)
between read and genome graph. GenomeMapper will finally perform a k-banded
alignment applying dynamic programming to ensure a consistent gap placement.
The following describes these three steps in detail.

GenomeMapper starts by calculating the hash keys for a subset of non-overlapping
k-mers of the read sequence and retrieves their genomic positions from the hash
index. The selected k-mers are non-overlapping k-mers at the read positions 1, k+1,
2k+1... The last k-mer will be calculated starting at read length-k positions. The pair
consisting of a k-mer along with one of its positions in the genome will be referred to
from now on as hit. Each hit will then become target of a simple alignment algorithm
comparing the read and genome sequence surrounding the hit, not allowing for any
gaps. The rationale behind this approach is to identify all alignments, which feature
one mismatch less than non-overlapping k-mers fit into the actual read (compare to
g-gram lemma).

If the best alignment of a read contains up to one mismatch less than the number of
non-overlapping k-mers fitting into the read, at least one hit within this alignment
can be computed [48].

If the first step does not reveal a valid alignment, which is always optimal due to the
pre-requisite that one mismatch is less penalized than one gap, GenomeMapper
starts calculating hits not only for a subset, but for each of the k-mers within the
read sequence. If two hits are adjacent in the read and in the genome graph, they
will be merged resulting in so-called extended hits. If a single mismatch between
read and genome sequence is adjacent to extended hits on either side,
GenomeMapper can bridge this mismatch by merging the extended hits, now
harboring this mismatch. Once all hits are maximally extended (they now constitute

NIMSs), the read has to be aligned against the regions determined by each of the

32



NIMS, aborting as soon as the best possible alighnment will be worse than the
mismatch and gap constraints.

To retrieve the genomic sequence for the alignments, GenomeMapper needs to
follow the links between blocks. Starting from the block harboring the hit or NIMS,
respectively, GenomeMapper follows the edges of the genome graph to generate a
target sequence for the alignment. If multiple blocks reside next to one of these
blocks, each of the branches will generate a separate target sequence for an
independent alignment. Note that GenomeMapper will not concatenate sequences
from different genomes. The alignment phase is implemented with an efficient
parallelization, which substantially reduces runtime. It is distributed in a master-
slave model on shared-memory architecture. All alignment threads can access the
genome data and the read data. The master thread distributes individual hits by
signaling each alignment thread and collects the results. The number of threads used
by the parallel implementation is a user-defined parameter that can be adjusted to
the hardware. The parallel version of GenomeMapper relies on POSIX threads to
efficiently manage the individual compute threads. POSIX threads are available for
all relevant platforms (including Linux, Mac OS, and Windows).

GenomeMapper employs a k-banded dynamic programming alignment. The
alignment constraints of the upper limit of gaps implicates that all valid traceback
paths will not involve alighnment matrix cells which are more than k vertical or
horizontal trajectories distant from the main diagonal. Thus, only k cells on either
side of the diagonal have to be computed shaping a band with k being the number of
allowed gaps.

GenomeMapper's alignment method is similar to the Needleman-Wunsch algorithm
[47]. The only differences are modified traceback rules and the introduction of an
abortion criterion. Since reads are aligned not only against the genomic region
determined by NIMSs, but against an enlarged genomic region in order to allow for
gaps, the start and end of the traceback routine is limited to the cells in the last and
first row of the k-band and not only to the bottom-right and top-left matrix cell,
respectively, as required by the Needleman-Wunsch algorithm.

If the number of allowed edit operations is exceeded before the alignment is

finished, GenomeMapper will stop the computation. As the alignment matrix is filled
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column-wise and penalties are non-negative, its computation is aborted as soon as
the best score of all cells in each column is worse than the score resulting from the
maximal number of allowed gaps and mismatches.

Furthermore, if GenomeMapper runs in best-hit mode, the maximal number of edit
operations is not only defined by the global adjustments as set from the command
line, but are further restricted by the best alignment found so far. Every best
alignment will update the restrictions for the upcoming alignments of the same read.
Every alignment meeting the constraints of mismatches, gaps and edit operations is
stored and ranked by its score. The best-hit mode will only report the alignments

with the highest score.

2.5 Alignment representation

Independent of the algorithm used to detect the best alignments GenomeMapper
will report two different representations of the alignment. The first one constitutes
the alignment of the read against the genome it is most similar to (reference-free
alignment). Because commonly used tools for alignment consensus analysis such as
MAQ [49], Mosaik [50], SHORE [10], VAAL [51] report base calls based on the
location relative to one reference sequence, GenomeMapper implements a second
alignment representation, which transforms the strain alignment into an alignment
against the reference sequence. This reference-based alignment can then be used as
input for one of the tools mentioned above. Which of the genomes constitutes the
‘reference sequence’ is defined in the index creation. As the reference sequence is
not necessarily the most similar sequence to the read, the reference-based
alignment can feature more mismatches and gaps than the strain alignment and can
exceed the user defined constraints.

This transformation generates two categories of mismatches in the reference-based
alignment. The first category contains mismatches that are unique to the read
sequence. The second consists of mismatches identical between the read and the
strain it was aligned to, but different from the reference sequence. Such mismatches
are more likely to represent true polymorphisms, since they have already been
previously observed. GenomeMapper indicates the different types of mismatches

using round and square brackets (Figure 2-2C).
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An alignment is typically anchored by the position of the 5’ nucleotide in the target
sequence at which the alignment starts. Since different genomes may feature indels
of different lengths, however, even for identical sites positional information can
become ambiguous. The decision for one of the locations only, e.g., that of the
reference genome, would overvalue the reference.

Currently the sole community-wide accepted description of a genomic location is the
corresponding nucleotide within the reference sequence, which easily
accommodates gaps, but not insertions relative to the reference. We therefore
implemented two position descriptors into GenomeMapper. The first refers to the
particular genome against which the alignment was performed (the strain
alignment). The second represents the position of the alignment against the
reference (the reference alignment). Insertions are annotated using the upstream
reference position followed by the position of the inserted nucleotide within the
insertion, separated by a decimal point (e.g., “80359.12” describes the 12th
nucleotide within the insertion after position 80359 of the reference). Strain
alignments transformed to reference alignments lose their reference-free
characteristic and therefore are immediately comparable to conventional mapping
results.

SHORE’s consensus algorithm works on a proprietary input format (called map.list)
representing read ID, alignment and alignment locus, repetitiveness as well as read
and alignment qualities. We have extended this format to store both the alignment
of a read against the reference and against the best matching strain.

The consensus prediction including reference-like, SNP and indel positions is
performed identical to the decision tree algorithm used for single reference
alignments described in an earlier work [10], with two exceptions: First, SNPs and
deletions that are known from previously sequenced genomes have a decreased
threshold for minimum coverage (1 instead of 3). See later section why this still
allows for fair comparisons in the quality performance comparisons. Second, the
limit for the length of deletions and insertions (equal to maximum allowed gaps) is
removed completely. For insertions longer than the read length this means that
covering reads can have no anchor in the reference sequence anymore but are

completely contained within the insertion. In order to approximate the concordance
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of the consensus call for long insertions (reads supporting the insertion divided by all
reads covering a position), we compare the maximum read coverage within an
insertion to the total number of reads not supporting the insertion. This issue does
not apply to deletions, because deletions are always spanned by a read and
therefore concordance can be accurately calculated similar to reference or SNP calls.
‘SHORE consensus’ can be configured to run in graph mode with a single parameter.

The output format is identical to the one of the ‘single reference’ consensus.

2.6 Performance and quality comparison to other mapping tools

A major requirement for the practical relevance of short read alignment tools is their
runtime. Different approaches for fast mapping of short reads have been suggested,
including methods for indexing substrings of either the short reads or the reference
sequence with the use of k-mers or spaced seeds (academic tools such as Bowtie,
BWA, CloudBurst, MAQ, MOM, MosaikAligner, mrFAST, mrsFAST, Pash, PASS,
PatMaN, RazorS, RMAP, SeqMap, SHRiMP, Sliderll, SOAP, SOAP2, ssaha2 [10], [52],
[53], [54], [55], [56], [44], [57], [49], [58], [59], [46], [60], [61], [62], [63], [64], [65],
[66] and commercial tools such as ZOOM [67]). Further, it has been reported that
the current demand for rapid alignments can be met with new indexing strategies
[44]. However, this is normally at the cost of not allowing complex alignments
including gaps. For natural inbred strains of Arabidopsis thaliana, the high level of
individual differences constitutes a substantial challenge. It has been estimated that
several percent of the reference genome are either missing or very divergent in
other strains of this species, which features homozygous genomes that are 25 times
smaller than a haploid human genome [8], [9]. This results in regions inaccessible to
simple short read alignments, in particular for alignment algorithms that do not
accommodate many mismatches and gaps. Based on these requirements we have
set up a performance and quality comparison of GenomeMapper and other short
read alignment tools.

As GenomeMapper can also be used for alignments against a single target genome,
we could compare runtime and sensitivity of GenomeMapper (version 0.3.1s) to
SOAP (version 1.11 [58]), soap2 (version 2.01 [59]), bowtie (version 0.9.8 [44]) and
MAQ (version 0.7.1 [49]). SOAP and MAQ have previously been compared to bowtie
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[44], but with a human target. Here we aligned against the Arabidopsis thaliana Col-
0 reference genome [68] with seed length set to 12. All tests were performed on 10
independent read sets, each consisting of 500,000 reads randomly sampled from
reads generated in this work for the Arabidopsis thaliana Est-1 strain. We tried to
run all alignment tools with optimal parameters to achieve the best possible
sensitivity and runtime (Table 2-2). To be directly comparable with GenomeMapper,
we set SOAP, soap2 and MAQ to report all repetitive best hits rather than a random
subset of them, even though this comes with an additional investment in runtime.
All tests were performed on a compute server with 8 cores (two AMD Opteron quad
core processors) and 32 GB RAM. Figure 3 compares average runtimes, measured as
the wall clock, as well as sensitivity of all alignments and of gapped alignments, both
measured as the number of reads which could be aligned. As this analysis is based on
real data for which no gold-standard sequence information is available, nothing is
known about the true origin of the DNA reads. We therefore took the fraction of

aligned reads as a proxy for sensitivity.

GenomeMapper serial: -E mm -M mm -G gaps
serial with NIMS length 13: -E mm -M mm -G gaps -1 13
4 cores: -E mm -M mm -G gaps -t 3

4 cores and NIMS length 13: -E mm -M mm -G gaps -l 13 -t 3

SOAP -s12 -v mm -g gaps -w 10000 -c 0 -r 2

Bowtie Allowing for 0 mismatches: -v 0 --time --seed 8526367

Allowing for 2 mismatches: -v 2 --time --seed 8526361

soap2 Allowing for 0 mismatches: -M 0 -r 2

Allowing for 2 mismatches: -M 3 -r 2

MAQ Allowing for 0 mismatches: -n 1—-e 0-C 513 -N
Allowing for 2 mismatches: -n 2 —e 80 -C 513 —-N

Table 2-2: Command lines used for the different alignment tools. mm and gaps denote the maximal
number of allowed mismatches and gaps, respectively. Not given, options for input, output and index
files.
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Without allowing any mismatches, there was little difference in runtime or in
sensitivity between the alignment tools, with GenomeMapper being slower than
bowtie and soap2, but faster than SOAP and MAQ. Allowing two mismatches caused
similar increases in runtime for all tools. With respect to sensitivity, over 99% of the
differences in the reads that could be aligned with up to two mismatches resulted
from different strategies in aligning ambiguous base calls (Ns). SOAP, for example,
aligns Ns without an alignment penalty.

Different from SOAP, GenomeMapper’s runtime was drastically affected by allowing
additional gaps (which are not accommodated by the other tools tested) (Figure
2-3A). The first reason for this disparity is the different alignment strategy. SOAP
does neither allow for gaps combined with mismatches nor for multiple gaps in the
same alignment, while the dynamic programming alignment in GenomeMapper
supports any combination of gaps and mismatches. Secondly, even though SOAP was
set to run on one processor (option —p was set to 1), we found it running in parallel
on up to four CPUs, and therefore using more computational power than the other
tools.

By applying GenomeMapper’s parallelization set to run on four cores, runtime was
reduced significantly. Parallelization is geared towards complex alignments and did
not reduce runtime for ungapped alignments. Another way to lower runtime is
offered by skipping alignments triggered by NIMS/hits of length 12 (seeds that could
not be extended by at least one base, option —I, indicated by “NIMS 13” in Figure

3A), but this came at a cost of sensitivity being reduced by 0.6%.
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Figure 2-3: Performance of GenomeMapper compared to other short read alighment tools. (A)
Runtime, measured as wall clock time between invocation and termination of the program, averaged
from 10 independent tests with different random sets of 500,000 short reads from Est-1. The worst
test was excluded from average calculations. Error bars indicate standard deviation. mm, gaps and
edit refer to the maximal number of mismatches, gaps and edit operations allowed. GenomeMapper
was run with four different parameter settings: the serial version; the parallel version on four cores;
the serial version merely aligning NIMS of length 13 or longer; and the parallel version aligning only
NIMS of length 13 or longer. SOAP was found running on up to four CPUs instead of only 1 CPU as
configured with the command line (option -p). (B) Average sensitivity, measured as the percentage of
aligned reads. Only GenomeMapper and SOAP can perform gapped alignments. (C) Average
sensitivity of alignments, allowing for three gaps and four mismatches with a combined maximum of
four edit operations, measured as number of reads with gapped alignments. Fractions refer to the
number of all reads with gapped alignments.
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Compared to SOAP, GenomeMapper’s more accurate alignment method resulted in
higher sensitivity (Figure 2-3B; compare results for 4 MM/1 gap and 4 MM/3 gaps).
Considering only gapped alignments, GenomeMapper aligned over five times as
many reads as SOAP (Figure 2-3C), whereas only 1 out of 500,000 reads was aligned
by SOAP, but not GenomeMapper. This difference showcases GenomeMapper’s
ability to combine multiple gaps with mismatches in the same alignment.

Note that the reads used for benchmarking had been quality trimmed. This removes
the common trend of read endings having increased chances of harboring
mismatches because of higher error rates. Untrimmed reads with additional
mismatches would have almost completely prohibited SOAP from performing
gapped alignments. This is expected to be even more of an issue with longer reads.
GenomeMapper’s relatively high runtime when allowing a large number of gaps and
mismatches is mostly explained by the enormous number of alignments performed
once optimizations could not reveal the best alignment. Nonetheless accurate
alignments are important for correct read placement in regions of high divergence
and therefore justify the performance loss. While aligning against a genome graph
comes with additional computational costs, it greatly increases sensitivity. One can
compensate for increased runtime with computing power, but reads that are never

correctly aligned in the first place are lost for further analyses.

2.7 Proof-of-principle analysis

To examine the practical relevance of graph based alignments against multiple
genomes we compared its performance to a conventional single reference approach
using reads from the genome of Arabidopsis thaliana strain Est-1 from Estonia,
generated in the Arabidopsis thaliana 1001 Genomes Project. 47.7 million alignable
single-end high quality reads were produced on an lllumina Genome Analyzer. After
guality trimming of the reads to 36 to 42 bp, the average depth of genome coverage
was 13 fold.

First, we used the reference sequence (TAIR8 [68]) as alignment target. In the
second analysis, we included two more Arabidopsis thaliana genomes, Bur-0 and
Tsu-1 (Figure 2-4). Previous lllumina single-read sequencing and comparison against

the Col-0 reference had revealed 570,100 and 502,036 SNPs, as well as 48,999 and
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47,765 indels of up to 3 bp, respectively [10]. In addition, 16,463 and 3,007 longer
indels of up to 641 bp had been discovered from targeted de novo assembly of
highly polymorphic regions [10]. These two genomes differ from the reference by 0.5
to 0.6%, which reflects a lower bound of sequence divergence, given the limitations

of short read analyses.
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Figure 2-4: Alignments against a 17 bp insertion present in a non-reference genome. (A) Alignments
of Est-1 reads against the graph of Arabidopsis chromosome 1, reference positions 20,166,584 to
20,166,747. Alignments against both the Col-O0 reference and the Bur-O variant genomes are
highlighted in dark gray, alignments of reads aligning best against a single genome are highlighted in
light gray. Most reads align against the Bur-0 allele, suggesting that Est-1 is more similar to Bur-0 at
this locus. In particular, the 17 bp insertion found in Bur-0 is supported by the Est-1 reads. Due to the
alignment constraints (maximum of four edit operations), these alignments could not have been
performed against the Col-0 sequence only. Within the second divergent region, indicated by a red
arrow, Bur-0 has a complex change, ACC->T, relative to Col-0, with Est-1 featuring a third allele, ACC-
>TA. Since this change is near the 17 bp insertion, only a subset of the alignments would have been
found with single reference alignments only. For simplicity, Tsu-1, which is also included in the graph
target, is not shown here. (B) Annotation of this region with respect to the Col-0 reference genome.
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The Bur-0 and Tsu-1 genomes together with the Col-0 reference genome were used
to build a multiple genome graph. To take advantage of the additional information
produced by the graph based alignments, and to make it comparable to a single
reference analysis, we updated SHORE [10], our genome resequencing analysis
pipeline. This included incorporation of GenomeMapper’s transformed alignment
representation, different scoring schemes for previously known and newly
discovered polymorphisms, and the support of indels up to any length, restricted
only by the maximal indel length within the known genome space.

More than 1% of all reads, 0.51 million reads, could be aligned to the genome graph,
but not to the single reference. These additional alignments resemble highly
divergent regions of Est-1, which are particularly interesting, but also constitute the
regions that are least accessible to conventional methods. Compared to the
“reference only” alignments, the graph alignments increased the number of
recovered SNPs by 15%, of deletions by 22.6%, and of insertions by 37.2% (Table
2-3). In particular, 1,551 deletions and 1,841 insertions longer than 3 bp, with a
maximum length of 641 bp and 281 bp, known from previous de novo assembly of
larger indels in Bur-0 and Tsu-1 [10], were detected. Only a small subset of the long
indels was represented in the “reference only” analysis (two 3 bp deletions can
modify the sequence in the same way as one 6 bp deletion). Due to the limitation of
three gapped positions per alignment, the vast majority of long indels could not be
discovered with the conventional “reference only” alignment. These observations
illustrate that indel detection is not limited by alignment constraints, but only by the

data included in the genome graph.
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Predicted by Private to Private to Total gain in

both genome graph reference- genome graph
analyses analysis only analysis  analysis
SNPs 401,158 66,264 5,423 15.0%
all 25,926 6,807 778 22.6%
é 1-3bp 25,865 5,256 778 16.8%
% >24bp 61 1,551 0 2,542%
= all 22,305 9,220 678 37.2%
S 1-3bp 22,285 7,379 678 29.2%
g >4bp 20 1,841 0 9,205%

Table 2-3: Recovery of Est-1 variants using SHORE. Predictions made by both analysis include
includes variants predicted by graph-analysis that have been found in the single reference analysis in
the same sequence context, though with a differing position resulting from ambiguous alignments.
Some of the variants longer than 3 bp could be reassembled in the single reference analysis, by
combining shorter indels.

The reliability of variant detection was improved as well, with 244,101 SNP calls
made in the “reference only” analysis having additional support from one of the
additional genomes in the graph (11,382 and 16,958 for deletions and insertions,
respectively). Similarly, recall rates for 1-3 bp indels were drastically increased. We
reduced the minimum coverage requirement for SNPs and short deletions supported
by other genomes from 3 to 1.

This is valid assumption; first, as the reliability of SNPs increases drastically if prior
knowledge about its existence is available. This prior knowledge is given through the
incorporation of known SNPs into the alignment target and mismatches of reads
against the reference supported by matches against the sequence of other genomes
are annotated in the alignment in a different format than non-supported
mismatches (e.g. a mismatch of A to T, non-supported: [39], supported: (AT)).
Second, validation results for single reference and genome graph analysis based on
600 kb of dideoxy sequences distributed throughout the Est-1 genome [7] are not
worse for the graph based analysis (Table 2-4). In a average Arabidopsis thaliana

strain, about 85% of SNPs are accessible with 36 bp single end short reads, with the
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remainder being located in repetitive regions [10]. Of 2,316 SNPs in the validation
set, 85.2% were called using genome graph analysis, an increase of over 7%
compared to the single reference analysis at a similar error rate of less than 0.5%.
Recall rates for indels were increased even more, by 14.8% for insertions and 8.4%

for deletions.

Graph analysis Single reference analysis

N* Recall§ FDRt Recall§ FDRt

SNPs 2,316 85.2% 0.4% 77.5% 0.4%

all 183 53.6% 2.0% 38.8% 2.7%

£ 13bp 132 68.2%  2.2% 53.8% 2.7%
g >4 bp 51 15.7%  0.0% 0 n/a

all 167 53.9%  2.2% 45.5% 1.3%

S 1-3 bp 128 66.4% 2.3% 59.4% 1.3%
g >4 bp 39 12.8%  0.0% 0 n/a

Table 2-4: Validation of polymorphism predictions in Est-1. * Number of known variants in 600 kb of
dideoxy sequence data from [7]. § Ratio of confirmed to the sum of confirmed and missed predictions
of the respective kind; indicates sensitivity of method. T False discovery rate, percentage of erroneous
calls.

For a final comparison, we aligned all Est-1 reads against the three known genomes
separately, with the Bur-0 and Tsu-1 genome sequences generated by introducing all
known variations into the reference Col-0 genome. As expected, nearly the same set
of reads could be aligned, but the graph alignments were 21.3% faster than the serial
alignments. This improvement would be even greater, if one took into account the
additional analyses needed for merging and filtering of separate and redundant
alignments.

The results of the graph analysis of Est-1 can be downloaded from the 1001

Genomes portal (1001genomes.org).

2.8 Discussion
The first goal for short read mapping tools was the design of efficient alignment

algorithms that were faster than the speed with which raw data were produced.
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Considering that intraspecific sequence differences are often more substantial than
previously anticipated, a major challenge is the requirement not to disregard or
misplace too many reads. With the rapidly increasing knowledge of variants, one
could simply align against all known genomes for a species separately. This would
not require any new methods, but it comes with the overhead of redundant
alignments in conserved regions. We have shown that graph alignments are already
superior with information from only two divergent genomes added to the first
genome sequence produced for Arabidopsis. This advantage should become much
more drastic once hundreds of genomes are incorporated into the graph structure.
In addition, this should improve the workflow, as the separate handling of hundreds
of separate references would become increasingly impractical.

We have demonstrated that short read alignment against a complex graph
representing multiple genomes is not only possible and produces meaningful results,
but also provides access to regions that are highly divergent from the first reference.
In addition, our approach reduces the number of false positive SNP calls caused by
misalignments near indels [10]. To our knowledge this constitutes the first approach
that efficiently incorporates multiple references and solves resultant problems. We
note in addition that the representation of multiple genomes in a complex graph
structure is not restricted to short read mapping or intraspecific analyses. Other
applications are easily conceivable, e.g., accurate local and global alignments of
longer reads (up to whole genomes) against all known genomes of a species or even
against a structure representing groups of related species, enabling analysis of
metagenomic samples in one step. Likewise, read alignments against splice graphs
representing known isoforms with differing exon-intron junctions would be
beneficial for mRNA analysis.

Once the species-wide genome graph of Arabidopsis covers most common variants
(see the Arabidopsis thaliana 1001 Genomes Project [2]), resequencing of newly
collected material will become easier, as fewer inaccessible regions remain. A
prerequisite for this are universal and community-wide accepted positional

descriptors of insertions.
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3 Reference-based assembly of four Arabidopsis thaliana

genomes

This chapter describes our efforts to design and implement a homology-guided
assembly tool used to assemble four diverse genomes of Arabidopsis thaliana. These
assemblies display the first four assemblies of this species after the release of the
reference sequencing in the year 2000. As-of today this work was submitted to PNAS
and send out for review.

Together with Stephan Ossowski | implemented this method that was designed in
collaboration with Juliane Klein, Daniel Huson and Detlef Weigel. Additional work
includes analysis of expression studies performed with the help of Lisa Smith, Stefan
Henz and Felix Ott. Norman Warthman and Christa Lanz performed the sequencing

of the Sanger validation data and the lllumina sequencing, respectively.

3.1 About the differences of assembly, homology-guided assembly and
resequencing

The original papers reporting the first complete eukaryotic genome assemblies were
published around the turn of the millennium; many of them had the words “the
genome of” in the title, and this was also true for the first assembled plant genome
released in 2000: “Analysis of the genome sequence of the flowering plant
Arabidopsis thaliana” [68]. In the past decade, there has been a growing
appreciation that individuals of the same species are not only distinguished by small
scale differences such as single nucleotide polymorphisms (SNPs), but that copy
number variants often account for an even greater difference in genetic material,
both within and between closely related species (e.g., [69]).

Since the advent of Next Generation Sequencing (NGS) technologies, the main
challenge of whole genome assembly has no longer been the generation of sufficient
amounts of sequencing data or the costs per sequenced base, but the complexity
and size of genomes, which are difficult to reconstruct with short reads produced in

a whole-genome shotgun approach. Where high-quality reference sequences are
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available, they can be used as alignment targets for short sequence reads (see earlier
chapters), followed by analysis of overlapping alignments and consensus base calling
[70], [71], [50], [10]. While these methods provide good sensitivity and specificity in
regions that are conserved between the reference sequence and the focal genome,
regions of high variability permit short alignments and this makes their analysis
unreliable or even impractical [10].

We have previously estimated that up to 7% of the A. thaliana non-centromeric
genome comprises highly diverged regions [10], [8], [9] and other plant species can
be even more polymorphic [40], [72]. Moreover, with the arrival of each new
sequencing technology, the estimated level of variation in A. thaliana has increased:
whole genome shotgun sequencing with Sanger dideoxy reads disclosed 1 SNP every
1,000 bp in a single divergent genome [68], while array hybridization of DNA from 19
divergent genomes identified 1 SNP every 800 bp, with an estimated false negative
rate of 75% based on targeted Sanger dideoxy resequencing of selected regions [8],
[7]. In agreement, the first NGS study revealed a density of at least 1 SNP every 200
bp between random pairs of strains [10]. The latter study followed the alignment-
consensus approach and thus excluded most regions of high divergence or
repetitiveness. Therefore the estimated divergence within and between populations
of A. thaliana is expected to be even higher than this recent estimation. All of these
studies were based on sequence differences that have been accessible through the
conservation between reference sequence and focal genome.

The general need for advanced whole genome assemblies is particularly acute in
light of efforts such as the Human 1000 Genomes Project [73] or the Arabidopsis
thaliana 1001 Genomes Project [2], both of which aim to identify all non-private
variations within the pan-genome of a single species.

Prediction methods for structural variants (SVs) have been developed to annotate
diverged regions based on paired-end sequencing. By comparing expected and
observed distance and orientation of the alignments of the two sequenced ends of a
single fragment from the focal genome to the reference genome, these methods can
reveal various types of variations between the structure of the reference sequence
and the sample genome [74], [75], [55], [76], [77], [78], [79], [80], [81].

Unfortunately, these predictions do not include the actual sequence of the variants,
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and they often miss larger rearrangements, complex changes, and small
insertion/deletions. The reasons include missing data and statistically insignificant
deviation from the expectation as well as complicated situations caused by multiple,
overlapping events that cannot be easily inferred from paired-end alignments only.
Further, regions similar in length to the reference but dissimilar in sequence content
will not form alignments with unexpected distance or orientation to each other. To
overcome these shortcomings, it has been suggested to locally assemble regions of
high dissimilarity between sample and reference sequence, but no study published
to date has applied this idea to all diverged regions or to the entire genome [71],
[49], [10]. The last chapter already outlined one way to reduce reference bias, i.e.
the efficient usage of multiple references as alignment target.

But perhaps the simplest way to by-pass all problems specific to reference-based
approaches is de novo assembly, being independent of any extrinsic homology
information, and therefore not biased towards the sequence of any other genome.
Even though this approach has been applied to complex genomes analyzed with
short NGS reads only [82], [83], the resulting contigs and scaffolds tend to be rather
short and are known to lack a substantial portion of the genome. Part of the
problem is the complexity inherent in whole genome shotgun data, even when the
reads are reasonably long. Different studies have tried to reduce the complexity by
introducing reduced-representation libraries through digestion of the genome prior
to sample preparation, leading to scaffolds that are dozens of kb long [84].

In this chapter | present our work on the assemblies of four homozygous A. thaliana
genomes, from the divergent strains Ler-1, C24, Kro-0, and Bur-0, based on a new,
multi-tiered approach of de novo assembly guided by homology to a reference
genome. Using 2 Mb of Sanger shotgun reads, we find that the per-base error is less
than 0.01%, with very few substantial mis-assemblies. These genome sequences
greatly expand our knowledge of the A. thaliana pan-genome. | further show how
this new information can be used for accurate estimation of strain-specific
expression differences by correcting the probe set definition for Affymetrix tiling
arrays, and by improving the accuracy of expression quantification from sRNA-seq

experiments.

49



3.2 Homology-guided assembly

3.2.1 Overview

Our whole genome homology-guided assembly approach is outlined in Figure 3-1.

Alignment
Blocks
Left-over
reads Superblocks
Contigs
— Supercontigs
Alignment
) Error corrected supercontigs
Scaffolding .
. Scaffolds
Alignment

Figure 3-1: Illlustration of homology-guided assembly workflow. Reads and their alignments are
shown in blue. Regions of constant coverage were defined as blocks. Adjacent blocks were combined
into superblocks until they reached a minimal length of 12 kb. Superblocks were defined in an
overlapping fashion, such that blocks could belong to several superblocks. All reads of a superblock
were assembled with reads that had not been aligned. Resulting contigs (dark blue) were merged into
a non-redundant set of supercontigs (green). Short read alignments against the supercontigs allowed
for error correction and scaffolding. Short read alignments against the scaffolds (red) allowed for final
quality assessment and filtering.

The data we used had been produced on the Illumina Genome Analyzer platform as
paired-end data, with individual reads of 36 to 80 bp, and average library inserts
from 177 to 4,700 bp. Read pairs coming from different ends of the same fragment
are subsequently referred to as mates. We started with filtering the raw reads and

aligning them against the A. thaliana reference sequence TAIR8
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(ftp://ftp.arabidopsis.org) followed by consensus calling using the short read analysis
pipeline SHORE [10] and GenomeMapper [12]. We partitioned the short reads based
on their alignment locations, i.e. we defined regions with constant coverage or
neighbored regions that were connected by the alignments of mate pairs as blocks
and combined adjacent blocks to superblocks, such that neighboring superblocks
shared at least one block. Each of these superblocks represented one subset of
reads, i.e. the reads that aligned to the constituent blocks. In addition we included
‘dangling’ reads that were not align-able to the reference but which had mates that
aligned to one of the constituent blocks.

All such read subsets were assembled separately using three de Bruijn-graph based
tools, ABYSS [85], VELVET [86] and EULER-SR [87]. As optimal parameter settings of
these tools highly depends on the input data, we executed each tool eight times per
read set using eight different kmer-sizes for calculation of the de Bruijn graph (

Table 3-1).
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Command line

Comment

Assembly of partitioned read sets

Velvet
(0.7.60)

Abyss
(1.0.14)

Euler-SR
(2.0)

Superlocas
(0.0.1)

Superlocas
(0.0.1)

velveth outDir X -fastq -short <readfile> -
shortPaired <readfile>

velvetg outDir -scaffolding no -min_contig_lIgth
100 -cov_cutoff <dependent> -max_coverage
<dependent> -exp_cov auto -ins_length
<dependent> -ins_length_sd <dependent>

abyss-pe -j j=3 k=X n=10 name=outDir lib="'
se="<readfile>’

qualityTrimmer -minQual 6 -span 3 -maxTrim 8 -
fastg reads.fq -outFasta reads.fa
filterllluminaReads reads.fa reads_filtered.fa
Assemble.pl reads_filtered.fa X library.rules
joinsas shore_filtered.fa 8 shore_filtered.j
printContigs shore_filtered.j

superlocas -l <readfile> -0 <output> -LO <readfile
left overs> -F fastq -C 100 3 -P pos 15 -K 15 -
Kmerg 15 -Llo 25 -Lm 25 -Lt 21 -Slo 1 -Sm 1 -St 2 -
Ltn 12 -Ltd 25 -Stn 2 -Std 0 -DR 15 1000

superlocas -l <readfile> -O <output> -LO <left
overs> -F fastg -C 100 8 -P pos 31 -K 31 -Kmerg 31
-Llo 60 -Lm 60 -Lt 50 -Slo 1 -Sm 1 -St 2 -Ltn 50 -Ltd
60 -Stn 2 -Std 1 -DR 15 1000

Assembly of left over reads

Velvet
(0.7.60)

velveth outDir 25 -fastg -short <readfile> -
shortPaired <readfile> -shortPaired2 <readfile>
velvetg outDir -scaffolding no -min_contig_lIgth
100 -cov_cutoff 4 -max_coverage
<sample_dependent> -exp_cov auto -ins_length
<sample_dependent> -ins_length_sd
<sample_dependent>

Table 3-1: Short read assembly tools, versions and command line calls.
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80bp reads, 60x
coverage)

Used for Ler-1
(80bp reads only,
200x coverage)



Excluding read pairs with both reads not aligning to the reference would introduce a
bias towards regions conserved between reference and focal genome, and would
not reveal larger insertions. We therefore made use of the SUPERLOCAS assembler,
which allows for efficient incorporation of all left-over reads, as it builds the
assembly graph for the left-over reads only once and subsequently anchors each of
the local assembly graphs into the persistent left-over graph. VELVET was used to
assemble all unmapped reads (including read pairs with a dangling read) de novo, in
order to separately reconstruct long stretches of non-reference sequence.

About 14 Mb of the reference sequence corresponds to highly repetitive peri-
centromeric and centromeric sequences [8]. Because they attract many erroneous
mappings [10], we excluded all superblocks overlapping with these regions.

Our assembly pipeline introduces high levels of redundancy into the combined set of
contigs of the block assemblies, contigs of the SUPERLOCAS run, and contigs from
the VELVET run performed on the left-over reads. As this redundancy generates
overlaps between the contigs we used the homology guided Sanger assembler
AMOScmp to merge all contigs of each chromosome arm into a set of non-
redundant supercontigs.

To validate the supercontigs, we aligned all original short reads against these.
Consistent differences between supercontigs and short reads were taken as
indications of mis-assemblies. With this information we corrected or, in the most
extreme cases, removed supercontigs. Read pairs with ends that aligned to different
supercontigs were employed for scaffolding with BAMBUS [88].

Resulting scaffolds were used as alignment target for a third and final round of short
read mapping and consensus analysis. We developed a simple metric to assign per-
base quality values according to the base qualities of the consensus analysis.
Scaffolds shorter than 500 high-quality basepairs were discarded, and low quality
positions were masked, additionally we ran a more stringent base masking to
produce high quality though less informative assembly. Both assemblies can be

downloaded at 1001genomes.org.
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Bur-0 Cc24

CA AS” SAS CA AS” SAS
N50 (intrinsic) 6,563 193 185 6,154 109 105
L50 (kb) 3.7 147.3 147.1 4.0 273.2 273.7
N50 (target) 7,788 208 216 7,265 117 119
L50 (kb) 3.3 139.7 135.0 3.5 2604  251.2
# Scaffolds 145,683 2,526 2,143 138,438 2,052 1,740
Total length (Mb)  96.7 101.0  96.5 96.8 101.3 98.1
Longest scaffold 59 kb 1.12Mb 1.12Mb 64kb 218 Mb 2.18 Mb
# Ambiguous bases  0.0% 4.03%  8.30% 0.0% 3.60%  6.81%

Kro-0 Ler-1

CA AS” SAS’ CA AS” SAS’
N50 (intrinsic) 6,831 161 154 4,405 113 108
L50 (kb) 3.6 163.5 167.3 5.7 kb 272.5 270.8
N50 (target) 8,011 178 181 5,016 121 126
L50 (kb) 3.2 151.8 145.6 5.2 261.9 246.5
# Scaffolds 160,535 2,670 2,408 104,403 1,528 1,261
Total length (Mb)  97.3 99.9 96.7 98.6 100.8  96.3
Longest scaffold 51 kb 1.48Mb 1.48Mb 88kb 1.09Mb 1.09 Mb
# Ambiguous bases  0.0% 5.10%  8.12% 0.0% 1.3% 8.53%

Table 3-2: Assembly statistics comparison of alignment-consensus and assembly derived contigs. CA
= Consensus-alignment approach, AS = Assembly, sAS= stringently masked Assembly.

3.2.2 Combing the contigs with AMOScmp

The block assemblies, the SUPERLOCAS run and the VELVET assembly on the left-

over-reads introduced high levels of redundancy into the combined set of contigs.

This is evident at five levels: (1) different runs of different assembly tools performed

on identical sets of input reads; (ll) reads used two times if their respective block has

been allocated to two overlapping superblocks; (lll) unmapped reads can contribute

to multiple superblock assemblies as they are not removed from the SUPERLOCAS’
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left-over-graph once incorporated; (IV) reads re-used due to repetitive alignments to
multiple blocks; (V) assembling the left-over pairs was performed including the
dangling pairs that were also included in the block assemblies.

This redundancy generates overlaps between contigs. We use AMOScmp [89] in
order to assemble the contigs and at the same time purge the redundancy.
AMOScmp applies an alignment-layout-consensus approach using alignments against
the reference to guide the overlap calculation of contigs. In order to reduce
complexity and hardware requirements we ran AMOScmp on each chromosome arm
separately.

We used AMOScmp (version 2.0.8) to assemble the contigs that were produced by
the short read assembly tools. This allows removing redundancy inherent in the
contig assemblies. Contigs were separated by chromosome arm and assembled using
the respective chromosome arm reference sequence as homology target. Within the
AMOScmp script we executed all programs with default values except of casm-layout
using parameter —t 3500 (maximum ignorable trim length) and make-consensus

using parameter -o 10 (minimum overlap bases).

3.2.3 Correcting for mis-assemblies

We aligned all short reads against the set of supercontigs. Differences between
aligned reads and reference sequence reveal mis-assemblies in the supercontigs.
Any supercontig shorter than 100 bp, featuring an average coverage below 4 or
below 1% of expected coverage as well as supercontigs with an average
repetitiveness of read alignments of 1.8 or more were removed. Afterwards all
remaining supercontigs were split at any region where variant predictions indicate
mis-assemblies including uncovered regions, local clustering of differences (i.e. two
or more predicted differences in less than 10 bp) and regions with mate pairs that do
not align in the expected order and orientation. It has been shown that distance
and/or orientation of the alignments of the two reads of a read pair reveal
difference between focal genome and reference sequence [76], [79], [90], [91]. The
likeliness that observed distances of such read alignments reflect the sequenced
clone length is determined by the size distribution of all sequenced fragments that

can be estimated based on unique alignments in conserved regions. In order to

55



distinguish real mis-assemblies from wrong read placement we required that at least
10% of the positions that are spanned by the discordant read alignment not to be

covered by any unique alignment.

3.2.4 Scaffolding

Read pairs which reads aligned to two different supercontigs defined a connection
(bridge) between the respective supercontigs. Bridges suggest that two supercontigs
are in local vicinity and have a defined order in the focal genome. We also used
homology of supercontigs to the reference sequence to infer additional connections,
as described in the BAMBUS [88] manual.

Any supercontig providing at least 5 bridges to other supercontigs is classified as
essential. Next, supercontigs are filtered according to the following rules: ()
essential supercontigs smaller than 50 bp and non-essential supercontigs smaller
than 100 bp and (Il) essential supercontigs with more than 1 error per 200 bp and
non-essential supercontigs with more than 1 error per 1,000 bp are removed.

After running BAMBUS with the set of filtered bridges and connections based on
homology as input the final scaffolding graph was plotted, manually evaluated and
suspicious connections were removed.

By default BAMBUS connects contigs within scaffolds using a fixed number of 60 Ns,
which does not necessarily correspond to the real distance. We therefore predicted
the most likely distance between connected contigs based on the observed
alignment locations of read pairs mapped to two connected contigs and the insert
size distributions of the respective sequencing library and used this estimation as the

number of Ns to be inserted between contigs in a scaffold.

3.2.5 Base quality assessment and masking

In order to assign a final per-base quality value to the assembled scaffolds we
aligned the short reads used for assembly against the respective genome and used
SHORE’s resequencing pipeline for consensus analysis. Based on SHORE’s position-
wise quality values q.f (reference) and qar (variation) we assigned a per-base
guality gass to the residues of the assembly by the following scheme. If there was
only a SHORE call supporting the reference, then gass equals grer. If only a variation

quality was given then ga.ss equals 0. If there is evidence for two allele calls, ga.ss Was
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assigned the maximum of 0 and the difference of qgref and quar. Every base that was
assigned a quality value of less than 10 was masked. Every scaffold that featured
less than 500 unmasked bases was discarded. Ns at the beginning of scaffolds were
chopped. In order to produce a second, more sensitive though shorter assembly, we
masked all bases with a quality of less than 15. Additionally we masked all unmasked

regions that were shorter 100bp.

3.2.6 Short read mapping and consensus analysis

Short read alignments followed by a consensus analysis were used at three different
stages within the assembly. First, the read partitioning was based on short read
alignments against the reference sequence. Second, short reads were aligned
against supercontigs for assembly correction and scaffolding. Third, short reads were
aligned against the final scaffolds for per-base quality assessment and filtering.

For each such alignment-consensus analysis we used the short read analysis pipeline
SHORE with GenomeMapper as alignment tool. Within the alignment we allowed for
at most 10% of the positions of a read to mismatch, incl. 7% being involved in gaps.
Repetitive alighments were removed if another alignment of the same read in
combination with an alignment of the read pair was more likely to resemble the
sequenced clone (paired-end correction).

Base calling was performed using SHORE’s quality metric for homozygous variation.

For the third analysis we additionally allowed base calling in repetitive positions.

3.2.7 Assembly statistics

We used a mix of single-end, paired-end and mate-pair libraries for all four genomes,
with different contributions of single- and paired-end data, and different insert sizes.
Total coverage was greater than 70x for all and greater than 320x for Ler-1.

Two common metrics to assess assembly quality are N50 and L50, which indicate the
total number and minimum length, respectively, of all scaffolds that together
account for 50% of the genome. After exclusion of centromeric regions, we had
targeted for assembly sequences that correspond to around 105 Mb of the
reference. Based on this value, N50 and L50 for our assemblies ranged from 117 to
208, and 140 kb to 262 kb, respectively, with the longest scaffold in each assembly

being between 1.1 and 2.2 Mb. For comparison, contigs derived from a standard
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alignment-consensus with additionally concatenating consecutively called positions
yielded N50 and L50 values of 6,147 and 4.1 kb, respectively, for Ler-1 (Table 3-2).

The cumulative length of all scaffolds in each assembly was about 5% shorter than
the target of 105 Mb; we assume that this was mainly caused by repetitive
sequences. Indeed, the non-pericentromeric segments of the reference sequence
not covered by our assemblies were largely repetitive, with a 36 to 41% repeat
content, compared to an average of 8% of repetitive positions in non-centromeric

regions (as assessed with 36-mers [10]).

3.2.8 Comparison with a standard alignment-consensus approach

We performed standard resequencing analyses on all four strains in order to analyze
the difference between the homology-guided assembly and the alignment-
consensus methods, comparing both the contig sizes, genome coverage and the
resultant polymorphism calls. We used the same set of reads as for the assembly and
again applied SHORE’s resequencing pipeline using GenomeMapper as alignment
tool. We allowed for 10% and 7% of the nucleotide of a reads to mismatch and or to
gap, respectively. Concatenating adjacent base calls (including reference, SNP and
micro-indel calls) generated the alignment-consensus contigs. Table 3-2 shows that

homology-guided assemblies out-perform a standard analysis.

3.2.9 Assembly validation with 2 Mb of dideoxy data

To assess the quality and error rate of the assemblies, we used 955 shotgun Sanger
reads of the Bur-0 genome generated for this project, and a published set of 3,388
fragments of the C24, Ler-1 and Bur-0 genomes produced by targeted Sanger
resequencing [7]. We refer to these sets as “shotgun” and “MN2010”, respectively.
MN2010 is enriched for unique and genic sequences, whereas the shotgun set
results from a random sampling. All Sanger reads were aligned against the respective
assembly and the peri-centromeric portions of the reference using BLAST [92] (Table
3-3). Between 4.2% (48) and 4.4% (49) of MN2010 fragments aligned to organelles or
peri-centromeric regions. In the uncurated shotgun set , 28.0% (267) of the reads

aligned against organelles or peri-centromeric regions.
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Ler-1 C24 Bur-0 Bur-0
(MN2010)  (MN2010) (MN2010)  (shotgun)

Sanger reads 1,139 1,139 1,110 955
Organelle/centromere hits 48 48 49 267
No significant hits 12 4 6 52 (30)°
Euchromatic hits 1,079 1,087 1,055 658

1) Identical 1,069 1,074 1,046 629

2) with mismatching bases 6 9 4 17

3) with indels in simple repeats 2 4 4 4

4) with indels (up to 476 bp) 2 0 1 8
Nucleotides queried 580 kb 584 kb 563 kb 285 kb
# Mismatching bases 11 14 8 22

Table 3-3: Assembly validation. For Bur-0 52 reads were blasted against NCBI non-redundant
database, 21 reads featured alignments related to rDNA, one to human DNA (see cell with asterisk).

We found very high agreement between our assemblies and the MN2010 data. Of all
reads that aligned to euchromatic regions, at least 98.8% aligned uniquely and
without any mismatch, and only 0.4% to 0.8% had mismatches. An additional 0.2%
to 0.4% revealed short indel errors, all of which were associated with low sequence
complexity including simple repeats. There were only three MN2010 reads that
revealed long indel errors not associated with simple repeats, of up to 476 bp. The
total per-base error measured across all MN2010 alignments (excluding the three
with long indel errors) was less than 1 in 40,000 bp.

The per-base error estimate with the shotgun set for Bur-0 was higher, but still less
than 1 in 10,000 bp. Eight reads out of 658, compared to three out of 3,388 for the
MN2010 set, revealed long indel errors. This was not unexpected, as the shotgun set
was randomly sampled from the genome, and included more intergenic and
repetitive sequences that should be more difficult to assemble. In addition, the
shotgun reads had not been subjected to similarly extensive manual curation as the
MN2010 set, and were thus likely to contain more errors themselves.

We compared all reads of the shotgun set without significant BLAST hit (E value < e

10y against NCBI’s non-redundant database [92]. Twenty-one of 52 reads
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corresponded to rDNA, and one was apparently the result of contamination with
human DNA. The remaining 30 reads, or 4.4% of all reads excluding organelles,
centromeres and contamination, present an upper boundary for the “unassembled
space”. This is in agreement with the total scaffold length of 96.2% of the size of the
reference (Table 3-2), and less than what had been estimated to be inaccessible

using alignment-consensus analysis [10].

3.3 Whole Genome Alignment

One disadvantage of assemblies in general compared to the resequencing
approaches is the lack of a one-to-one relation of the bases of one genome to the
homologous bases of the other assembly. Though this becomes necessary if one
needs to annotate the difference between them.

We used the MUMmer whole genome alignment tool to align all scaffolds of each
strain to the reference sequence and followed the instructions for “Mapping a draft
sequence to a finished sequence”
(http://mummer.sourceforge.net/manual/#mappingdraft). For this we ran nucmer
using a parameter setting favoring specificity over sensitivity (“nucmer --mum -b 100
-g 90 -I 35 -c 80 -f --prefix=outputFolder referenceSquence assemblySequence”).
Thus, we only allowed for alignment anchors that were unique in both the reference
and query. Further we allowed nucmer to extend alignments across poor scoring
regions by maximally 100 edit distance, while longer diverged regions or indels larger
than 50bp always lead to an alignment break. Finally we increased nucmer’s default
values for minimum length of a single match and a cluster of matches and restricted
the alignment to matches of the forward strand of the query.

The reasoning behind using strict alignment parameters is that relaxed alignments
tend to produce false positives due to aligning regions that are not orthologous to
each other. Long indels can nonetheless be accurately defined by annotating the
alignment breakpoints and the distance between high-scoring segment pairs (HSPs).
Resultant scaffold to reference alignments were parsed in order to retrieve SNPs,
insertions and deletions without any further filtering except that ambiguous
insertions featuring more then 10% Ns were removed. Additionally we analyzed

alignments with multiple HSPs by annotating the alignment breaks (gaps between
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HSPs) to distinguish between simple deletions or insertions, highly diverged regions
and spurious alignments in repetitive regions. Therefore a deletion was defined if
more than 20bp of the reference sequence are not matched by scaffold sequence,
while the scaffold sequence could be fully aligned to the HSPs upstream and
downstream of the break. Vice versa an insertion is defined if more than 20bp of
scaffold sequence is not matched by reference sequence. Finally we defined a highly
diverged region (HDR) if more than 20bp from both reference and scaffold could not
be aligned against each other, thus the break between the HSPs represents diverged

but not deleted alleles in the reference and the analyzed strain.

3.4 Sequence assemblies capture large scale variations

The major advantage of genome assembly compared to resequencing followed by
short read alignment-consensus analysis is the ability to detect large-scale
rearrangements. We used the whole genome alignments introduced in the last
chapter in order to annotation differences between the genomes. The parameter
setting used for the whole genome alignment favored correct alignments over
sensitivity. Because not all regions where forced to align to the reference sequence,
some large-scale structural differences as well as differences in repetitive regions are
likely to have remained un-annotated. The portion of the reference genome that
cannot be aligned against our assemblies was as low as 3.7%, while the lowest non-
aligned fraction with an alignment-consensus approach was almost three fold
higher, 10.3% (Table 3-4). Based on the regions that were accessible through the
whole-genome alignments, we annotated SNPs, deletions, insertions as well as

HDRs.
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Accessibility SNPs Micro-deletion Micro-insertion

(MB)
Assembly
Bur-0 101.0 (96%) 541,713 52,429 49,421
C24 101.3 (96.3%) 552,177 53,157 50,596
Kro-0 99.9 (94.9%) 451,928 43,847 40,659
Ler-1 100.8 (95.8%) 530,081 50,230 49,025

Consensus Q25

Bur-0 93.9 (89.2%) 487,550 37,231 38,136
C24 94.1 (89.4%) 484,757 37,340 37,035
Kro-0 94.4 (89.7%) 391,301 32,203 31,271
Ler-1 93.7 (89.1%) 478,925 47,902 47,731
Overlap

Bur-0 n/a 440,254 31,815 30,553
C24 n/a 439,990 32,457 31,002
Kro-0 n/a 355,170 27,159 26,005
Ler-1 n/a 426,107 36,247 35,658

Table 3-4: Comparison of accessibility, SNPs, deletions and insertions. Differences were obtained by
assembly and alignment-consensus approaches, respectively.

There was good concordance between SNPs and micro-indels (one to three bp)
predicted either based on the whole genome alignments, or by the alignment-
consensus approach (Table 3-4). This overlap greatly depended on the quality cutoff
used for a set of SNPs, the parameter settings used in the whole genome alignment
or in the consensus calling. The assemblies, though, revealed more small-scale
changes: On average, an additional 12% SNPs were called, and 29% and 23% more
micro-deletions and micro-insertions, respectively (Table 3-4).

We also analyzed the length distributions of apparent deletions and insertions
relative to the reference and HDRs (Table 3-5, Table 3-6, Table 3-7 and Table 3-8).
Over 1.7 Mb of reference sequence was missing from the Ler-1 assembly, with the

majority in deletions over 2 kb. As expected, deleted regions were significantly
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enriched for transposable elements (63.5%, compared to 13.7% of all positions in

non-centromeric regions).
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Deletions Insertions HDRs > ~30 pr

Variation n Cumulative n Cumulative n Cumulative
length length (bp)* Length (bp)* Length (bp)*
1 35,370 35,370 34,261 34,261

2 9,861 55,092 10,060 54,381

3-4 8,305 83,313 7,963 81,529

5-8 5,816 120,122 5,677 117,295

9-16 3,757 163,795 3,505 157,730

17-32 1,824 205,347 1,238 185,530 66 1,752
33-64 663 235,657 579 211,943 165 9,885
65-128 296 261,847 340 241,753 379 45,063
129-256 219 302,672 127 263,429 406 121,191
257-512 204 376,717 63 286,029 359 250,682
513-1,024 240 553,208 20 298,852 217 406,617
1,025-2,048 160 776,910 2 302,228 138 599,170
>2,048 208 1,773,452 4 318,357 99 1,137,349

Table 3-5: Variants of different sizes between Ler-1 and Col-0. TLength in the reference genome.
*Cumulative length of all variants shorter and including the class in that row.
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Deletions Insertions HDRs > ~30 pr
Variation n Cumulative n Cumulative n Cumulative
length length (bp)* length (bp)* length (bp)*
1 36,694 36,694 34573 34,573
2 10,423 57,540 10135 54,843
3-4 8,858 87,660 7859 81,566
5-8 6,354 127,727 5438 115,700
9-16 4,334 178,050 3274 153,534
17-32 1,827 218,583 1166 180,073 70 1,756
33-64 762 253,147 481 202,186 180 10,483
65-128 350 283,895 291 227,851 358 44,313
129-256 241 328,747 85 242,314 352 108,845
257-512 210 404,027 50 259,966 282 210,541
513-1024 234 578,935 13 267,508 199 350,250
1025-2048 163 807,032 1 269,546 106 502,459
>2048 189 1,894,724 3 301,511 64 829,494

Table 3-6: Variants of different sizes between Bur-0 and Col-0. +Length in the reference genome.
*Cumulative length of all variants shorter and including the class in that row.
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Deletions Insertions HDRs > ~30 pr
Variation n Cumulative n Cumulative n Cumulative
length length (bp)* length (bp)* length (bp)*
1 31,032 31,032 28571 28,571
2 8,592 48,216 8031 44,633
3-4 7,082 72,321 6677 67,284
5-8 5,141 104,635 4583 96,108
9-16 3,713 148,204 2789 128,140
17-32 1,971 191,726 946 149,716 54 1,397
33-64 554 217,174 479 172,047 154 8,877
65-128 279 241,148 236 192,416 310 37,666
129-256 215 281,291 92 207,723 254 85,067
257-512 174 345,001 21 214,713 232 168,391
513-1024 188 484,314 6 218,032 145 274,326
1025-2048 112 641,926 5 223,883 80 387,252
>2048 162 1,591,653 3 335,397 60 713,869

Table 3-7: Variants of different sizes between Kro-0 and Col-0. *Length in the reference genome.

*Cumulative length of all variants shorter and including the class in that row.

66



Deletions Insertions HDRs > ~30 pr

Variation n Cumulative n Cumulative n Cumulative
length length (bp)* length (bp)* length (bp)*
1 37,595 37,595 35,206 35,206

2 10,355 58,305 10,457 56,120

3-4 8,714 87,954 8,346 84,571

5-8 6,367 128,071 5,633 120,093

9-16 4,225 177,409 3,496 160,648

17-32 1,851 219,350 1,216 188,266 71 1,815
33-64 720 252,104 601 215,796 176 10,362
65-128 401 287,031 306 242,921 396 47,240
129-256 251 333,547 153 268,914 415 123,628
257-512 209 409,796 64 291,084 337 242,964
513-1024 248 590,609 20 303,683 258 430,356
1025-2048 186 852,734 4 309,567 124 604,152
>2048 185 1,764,217 10 496,155 119 1,409,065

Table 3-8: Variants of different sizes between C24 and Col-0. *Length in the reference genome.
*Cumulative length of all variants shorter and including the class in that row.

The lengths of HDR alleles were strongly correlated (Figure 3-2), even though they
were too divergent to be aligned directly. Additionally there was an
overrepresentation of HDRs where the divergent accession had a shorter allele than
the reference Col-0 strain. That we did not find the opposite case might again reflect
the imperfectness of the assembly of long insertions.

Inversions constitute a class of rearrangements that should be included in the HDRs,
as suppressed recombination could lead to greater sequence differences. Careful
manual curation of regions with reverse complimentary alignments compared to

flanking sequences revealed eighteen inversions.
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Figure 3-2: Allele length comparisons of highly diverged regions (HDRs).

3.4.1 Annotation of polymorphisms

All polymorphisms overlapping exons were characterized as either major
(deleterious) or minor changes. Deleterious changes encompass long indels and
HDRs as well as micro-indels causing a frame-shift or SNPs introducing or removing a
stop codon. Micro-indels changing the length of the coding sequence by a factor of
three (including multiple compensating indels in the same gene) are classified as
minor changes as are any amino-acid changes except for stop mutations. Genes not

featuring any mutation or only synonymous SNPs are classified as conserved.

3.4.2 Shared polymorphisms and their effect on genes

When comparing only four individuals, a large fraction of polymorphisms is expected
to be found in only a single strain [10], [8], [9], [7] and this expectation is met in our
accessions. Kro-0 has overall the fewest variants, both relative to the Col-0 reference

and to the other three accessions (Figure 3-3). This could reflect closer relationship
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between these two genomes, though might also be affected by different overall
gualities of the assembly. Of the 27,929 genes within the TAIR 8 annotation
(excluding TEs and pseudogenes) that are present in the 105 Mb target reference
genome, more than 95% could be at least partially detected in our assemblies.
Slightly less than half, 45%, of the protein-coding genes had no non-synonymous
change (Table 3-9). In each accession, over 3% of the genes with completely aligned
sequences featured large disruptions in their coding sequence, with Kro-0 having the
fewest changes (Table 3-9). Among genes with partial alignments representation,

between 1,212 and 1,540 were interrupted by a HDR.

Bur-0 C24 Kro-0 Ler-1
Accessible genes 26,842 26,823 26,673 26,727
Fully aligned 23,220 23,262 23,448 23,770
Conserved 7,986 7,918 10,354 8,897
Minor change 14,320 14,438 12,306 14,007
Non-synonymous 14,224 14,350 12,237 13,904
Deletion* 379 398 311 380
Insertion* 315 342 305 378
Major change 914 906 788 866
Deletion* 342 317 291 311
Insertion* 338 325 283 319
Stop 300 336 271 314
Stop “reversion” 99 92 73 83
Partially aligned 3,622 3,561 3,225 2,957
HDR in genes 1,369 1,540 1,212 1,461
HDR in exons 374 422 314 365

Table 3-9: Functional annotation of polymorphisms. Annotations were made in respect to 27,929
non-centromeric genes (TAIR8 annotation). *Minor-effect indels have a length that is multiple of 3 bp.
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Figure 3-3: Number of sharded polymorphisms by types.

In humans, indels occur preferentially in multiples of 3 bp, consistent with such
indels not causing frame shifts [93]. In our assemblies, 1 bp deletions were the most
prevalent group, although there were distinct peaks at multiples of 3 bp that were
not seen in intergenic sequences. When considering all indels in the coding sequence

of a gene, the amount of deleterious changes of 1 bp was reduced, though this class
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was still the second most frequent in coding sequences. Intriguingly, we found that
more than 20% of the genes with a length variation of a multiple of 3 bp were
assembled from multiple indels with individual lengths that are not a multiple of 3
bp. This is in agreement with the total variation in coding sequence length, which
showed more pronounced peaks at multiples of 3 bp (Figure 3-4).

The pairwise alignments of all assembled genes can be accessed through our web

tool POLYMORPH (http://1001genomes.org/projects/assemblies.html).
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Figure 3-4: Length variation in coding sequences.

3.5 Using the assemblies for accurate expression analyses

3.5.1 Correcting expression estimates for protein-coding genes

Although RNA-seq is starting to eclipse microarray-based investigations of genome-
wide expression profile, like arrays it suffers from typically relying on reference
sequences; these are the basis of probe design for arrays, and alignment targets for
RNA-seq analysis. Lack of sequence conservation between individuals easily

confounds expression estimates [94].
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We first investigated whether our genome assemblies would improve the
interpretation of results from hybridization of RNA-derived probes to tiling arrays.
We synthesized probes from RNA extracted from whole inflorescences of the Col-0
reference strain along with Bur-0 and C24, and applied these to the Affymetrix
Arabidopsis Tiling 1.0R Array [95], [96].

We removed probes from about 90% (27,607) of genes, because the sequence was
not identical between the focal and the reference genome. After probe removal, 8%
(2,432) of genes were no longer considered, because fewer than three probes had
been retained. Overall, average estimates of expression levels increased slightly and
were changed for many loci, especially for genes where half or more of the probes
targeted polymorphic sequences (Figure 3-5A). We also noticed that the variance in
expression estimates for conserved genes (i.e. all genes where less than 2.5% of
exonic positions differed between Col-0, Bur-0 and C24) was substantially lower than
for polymorphic genes, even though the average estimate was the same (Figure

3-58,C).
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Figure 3-5: Tilling array expression analysis. (A) Effect of probe correction on expression estimates
for 7,056 genes for which half or more of all probes were removed. Note that the distribution is
skewed toward the estimates being higher after correction. (B) Expression of conserved genes (at
least 97.5% of exonic nucleotides conserved between Col-0, Bur-0 and C24) (C) Expression of
polymorphic genes (at least 2.5% of exonic nucleotides differ between Col-0, Bur-0 and C24).

3.5.2 Correcting expression estimates for small RNA loci

Loci that spawn populations of small RNAs (sRNAs) are much more difficult to define
than mRNA producing loci, because they are defined by a collection of molecules.
Because sRNAs are short, typically 20 to 24 nucleotides long, it is self-evident that
even small-scale differences between the focal accession and the reference will
greatly affect the number of correctly mapped sRNAs. We defined sRNA loci by
consecutive and overlapping alignments of sequence reads from a sRNA library, and
used the normalized number of reads in such segments to estimate expression of

the entire locus.
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We sequenced sRNA libraries from C24 and Bur-0 inflorescences with two biological
replicates each. The resulting 6.5+5.6 and 5.8+6.8 million reads for Bur-O0 and C24,
respectively, were aligned against the reference genome allowing for one mismatch
base using SHORE and GenomeMapper. Reads that did not align against the
reference were further aligned against the Bur-0 or C24 assemblies, allowing for one
mismatch. For Bur-0 (C24), 4.5+3.6 (4.6+5.4) million reads could be aligned against
the reference, and 0.33+0.25 (0.28+0.38) million reads only against the new
assembly.

Based on the reference alignments, we defined 30,787 segments with continuous
coverage of at least 10 reads from each replicate for Bur-0, and 28,174 segments for
C24. Taking not only the reads that aligned against the reference, but also those that
aligned against the respective assembly into account, significantly changed the
expression estimates of 348 segments (1.1%) for Bur-0, and 284 (1.0%) for C24
(Figure 3-6). In addition, 1,283 (4.0%) of Bur-0 segments, and 1,184 (4.0%) of C24
segments, could only be revealed by alignments against the non-reference genome.
Finally, 579 (1.9%) of Bur-0 segments, and 556 (2.0%) of C24 segments that had been
defined by reference alignments alone were merged with neighboring segments by

adding the alignments to the strain assemblies.
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Figure 3-6: SRNA expression analysis. Increase in expression estimates for distinct SRNA loci resulting
from incorporating information from genome assemblies.

3.6 Discussion

Since the release of the A. thaliana reference genome sequence ten years ago [68],
no other whole-genome assemblies have been reported for this species or any other

member of the genus. The reference genome was generated for some 70 million US
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dollars with a Bacterial Artificial Chromosome (BAC)-by-BAC strategy using dideoxy
sequencing [97]. Differently from the first human genomes, a single individual, Col-0,
the most commonly used lab strain, was assembled. This reference has not only
been a boon to functional studies of A. thaliana, but it also revealed many new
insights into how plant genomes evolve [98], [99].

The reference was also essential for efforts to record sequence variation between
natural strains of A. thaliana [100]. However, only recently has there been broad
realization how variable individual genome sequences in many eukaryotic species
are [69], [10], [8], [9], [40], [72]. Thus, simple alighment-based methods do not
provide the complete picture to mine and exploit species-wide sequence diversity.
De novo assembly of individual genomes would be the obvious alternative. However,
with our off-the-shelf computational resources, none of the common short read
assembly tools were able to produce assemblies from the entire read set of the
genomes we investigated. Causal factors might be the complexity of the A. thaliana
genome, the length and quality of NGS reads as well as the limited insert sizes of our
libraries.

The only previous work comparable to ours is that of Huang and colleagues [101],
who reported a whole-genome assembly of Illlumina short read data from the 367
Mb cucumber genome. While their L50 values are not too dissimilar from ours, a
larger fraction of the genome was completely missing, and there was no validation
of the lllumina-only genome assembly. Thus, a direct comparison is difficult.

Our homology-guided assemblies combine the advantages of having a reference
genome of very high quality and being able to assemble short reads de novo. These
assemblies consist of scaffolds that can be over 2 Mb long (Table 3-2). An obvious
next application would be to use this approach for improving draft genome
sequences, through an iterative process, in which the initial draft genome is used as
a reference for homology-guided assembly of NGS reads from the same strain.

A comparison of our four assemblies confirms the value of having a well-balanced
mixture of libraries with different insert sizes. Conventional paired-end libraries yield
more data and longer reads than mate-pair libraries, and supply most of the
sequence information for the initial sequence assemblies. Mate-pair libraries are

generated from larger, circularized DNA fragments, they are limited to shorter reads,
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yield less data and they suffer from a higher level of clonal events than paired-end
libraries. Thus, they alone are not sufficient for assembling a genome, but their
insert size of several kb is advantageous for scaffolding.

Notably, there was a limit to improving assembly statistics with additional short read
data. We do not know whether this reflects an inability of the assembly tools to
exploit more than about 70x coverage, or whether this is an intrinsic property of
read lengths and library insert sizes used and genomic repeat content. Assemblies
also did not improve significantly with longer reads. For example, the C24 and Ler-1
assemblies have almost the same N50 and L50 and genome coverage, despite C24
being sequenced mostly with 40 bp reads, and Ler-1 with 80 bp reads. Again, the
assembly tools used might not be optimized for increasing read lengths, or there are
not many repeats that can be spanned by 80 bp, but not 40 bp reads.

While there was near-symmetry of deletions and insertions up to about 16 bp, larger
insertions were underrepresented, likely reflecting a weakness of the homology-
guided assembly approach. Still, over 300 kb of novel sequence were recovered. In
comparison, in a recent study where we applied local assemblies of single-end reads
to bridge gaps in homology alighments we could only reveal a fifth of that amount
[10]. Notably, based on partial shotgun dideoxy data, a very rough estimate has been
that on the order of 1,500 genes would be affected by medium- to large indels in a
comparison between Ler and Col-0 [6], which is in broad agreement with the almost
3,000 genes that can only be partially aligned between our Ler assembly and the Col-
0 reference (Table 3-5).

In addition to comparing genome sequences, there is great interest in studying
individual patterns of DNA methylation, chromatin modifications and RNA
expression.

We have already demonstrated how our assemblies improve mRNA and sRNA
expression studies. We expect a similar impact on DNA methylation analyses. In
humans, it has already been shown that more than half of methylation differences
can be due to mutations in the underlying DNA sequence, so that it cannot be
methylated anymore [102]. Thus, having knowledge of the genome sequence is

essential if one wants to interpret changes in DNA methylation.
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Our assemblies have also shed new light on the functional consequences of
sequence variants. For example, we have shown that a substantial fraction of 1 and 2
bp indels in coding regions are compensated by nearby indels that restore the coding
frame (Figure 3-4). Current genome-wide association studies generally do not
consider the nature of a variant, because not all variants are analyzed or even
known. With complete information, it would be possible to annotate the predicted
effect of the combination of sequence variants in an allele, and subsequently base
genome-wide association studies on classes of alleles with reduced or increased
activity, rather than ignoring such information.

Finally, the availability of several reference sequences should improve the
identification of variants in the 1001 Genomes projects that is underway for A.
thaliana, by exploiting all known variants as targets for mapping of short reads [12]

as suggested in an earlier chapter.
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4 Mutant detection by deep sequencing

This chapter describes two projects published in Plant Physiology and Nature
Methods, respectively [20], [21]. First we used our SHORE pipeline to analyze the
genome of a mutant. Conventional genetic mapping revealed a 530 kb mapping
interval harboring a spontaneous change causal for small growth and purplish
leaves. The task was to distinguish all the natural occurring changes from the one
that was new and causal within the given interval. For this we additionally
sequenced the parental background in which the mutation occurred as well. This
project was performed with Roosa Laitinen who had identified the mutant plant and
performed all experiments together with Noemie Jelly. | performed the SHORE
analysis of the mutant and the background genome, as well as the final mutation
identification.

In the second part of this chapter, | will introduce a novel method to use the deep
sequencing data not only to detect the mutation but also to perform the genetic
mapping. The ultimate advantage of this method is the speed in which it can be
performed. Where conventional mapping could take months, this method was
finished within eight working days after DNA was extracted. Ryan Lister already
introduced this idea [103], but we provided the proof-of-concept study and software
allowing every biologist worldwide to map his or her mutant with deep sequencing.
My part of this project was the design and implementation of the analysis software,
the mutation annotation pipeline and the application of this pipeline to our
sequencing data. All of this has been done together with Stephan Ossowski. Stig U.
Andersen had performed all experiments expect of the Illlumina sequencing, which

was done by Christa Lanz.

4.1 Identification of a mutation in a non-reference background
Within this chapter we show that short read sequencing is also suitable for the
analysis of new mutations in a non-reference inbred accession that differs from the

reference genome in about 0.5% of all positions.
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4.1.1 A spontaneous mutation

Roosa Laitinen crossed two normal appearing, green individuals of Arabidopsis
thaliana accessions, Kro-0 and Anh-1, to each other. The F1 plants were all normal,
but the F2 population segregated purplish, small and non-flowering plants. Plants
could be prompted to flower in high humidity, but the resulting seeds were not
viable. Leaves were about 10 times smaller than in wild type, but leaf cell number
was reduced only about three fold, indicating that both decreased cell expansion
and division contributed to the dwarf phenotype.

Using conventional mapping with almost 1,900 F2 plants of the Kro-0 x Anh-1 cross,
we identified a 530 kb interval, between 21.36 and 21.88 Mb on chromosome 1, that
was linked to the dwarf phenotype. The mapping interval contained 116.5 kb of
repetitive DNA, which is often polymorphic and may suppress recombination [104],
possibly explaining the failure to further reduce the final mapping interval.

Based on the mapping data we concluded that plants showed the dwarf phenotype
had inherited both alleles from Kro-0 genotype. Since the original Kro-0 line did not
exhibit the dwarf phenotype, and other Kro-0 x Anh-1 crosses did not produce
abnormal F2 progeny, we concluded that a spontaneous mutation had occurred in

the germline of the particular Kro-0 individual used for the original cross to Anh-1.

4.1.2 Sequencing and analysis of the background and mutant genomes

We sequenced the entire Kro-0 parental genome at 25-fold coverage, with 36 to 42
bp paired-end reads generated on lllumina’s Genome Analyzer. In parallel, we
produced 25-fold coverage of the haploid genome from F3 mutant plants. The
reason not to directly sequence one individual but a pool from 100 plants was to
obtain sufficient material for sequencing. SNPs and indels were called for both the
parent and mutant pool, by independently comparing them to the Col-0 reference
using the SHORE pipeline [10]. For background cleaning we made use of all variants
detected in the Kro-0 parent. To predict mutations private to the dwarf sample, only
those with a SHORE quality value of at least 25 were considered.

Within the 530 kb mapping interval, we identified 5,691 single nucleotide differences
in the dwarf pool relative to the Col-0 reference sequence. Of these, 4,023 were

predicted with high confidence. This level of polymorphism is similar to that found in
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other accessions in this region, with 4,036 and 3,511 found in the genomes of Bur-0
and Tsu-1, respectively [10]. Of the 4,023 high-quality polymorphisms, 531 were
predicted to change the coding potential of 63 genes. All but one were shared with
the normal Kro-O parent. The one remaining mutation in the dwarf pool, a 1-bp
deletion, resided in the seventh exon of the gene At1g58440, located in the middle
of the mapping interval at 21.718 Mb. The deletion disrupted the At1g58440 open
reading frame (Figure 4-1). Dideoxy sequencing confirmed that the mutation was
specific to F3 individuals with the dwarf phenotype. A Col-O line with a T-DNA
insertion in At1g58440 (N522763) showed the same purplish, dwarf and abnormal
root phenotype as these plants. At1g58440 encodes SQUALENE EPOXIDASE 1 (SQE1),
which catalyzes a key step in sterol metabolism, and the morphological phenotypes
of sqel mutants are very similar to the ones seen in our dwarfs, including partial

rescue by growing plants in 90% humidity [105], [106].
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21.0 22.0 Mb

AT1G58420 AT1G58430 AT1G58440 AT1G58450 AT1G58460
- <HN. HENH 1 Wb Y

21.71 21.72 Mb

CCGAAAGCAAAGATACTGGTCCACTTGTGCACATACCCCC-AG
CCGAAAGCAAAGATACTGGTCCACTTGTGCACATACCCCC-AG
CCGAAAGCAAAGATACTGGTCCACTTGTGCACATTCCCCC-AG
CGAAAGCAAAGATACTGGTCCACTTGTGCACATACCCCC-A
GAAAGCAAAGATACTGGTCCACTTGCGCACATACCCCC-A
AAAGCAAAGATACTGGTCCACTTGTGCACATACCCCC-AGGCC
AAGATACTGGTCCACTTGTGCACATACCCCC-AGGCCCAGATA
GATACTGGTCCACTTGTGCACATACCCCC-AGGCCCAG
TGGTCCACTTGTGCACATACCCCC-AGGCCCAGATAATCGAA
TCCACTTGTGCACATACCCCC-AGGCCCAGATAATCG
CACTTGTGCACATACCCCC-AGGCCCAGATAATCGAAGCA
CACTTGTGCACATACCCCC-AGGCCCAGATAATCGAAGCAAGC
ACTTGTGCACATACCCCC-AGGCCCAGATAATCGAAGCAA
CTTGTGCGCATACCCCC-AGGCCCAGATAATCGAAGCAAGC
TTGTGCACATACCCCC-AGGCCCAGATAATCGAAGCAAGCTTC
CACATACCCCC-AGGCCCAGATAATCGAAGCAAGCTTCCC
CACATACCCCC-AGGCCCAGATAATCGAAGCAAGCTTCCCTC
CACATACCCCC-AGGCCCAGATAATCGAAGCAAGCTTCCCTCA
ACATACCCCC-AGGCCCAGATAATCGAAGCAAGCTTCCCTCAT
CCCC-AGGCCCAGATAATCGAAGCAAGCTTCCCTCATCTCGTT
CC-AGGCCCAGATAATCGAAGCAAGCTTCCCTCATCTCGTTTC
C-AGGCCCAGATAATCGAAGCAAGCTTCCCTCATCTCGT

mutant F3 pool

ARAGCAAAGATACTGGTCCACTTGTGCACATACCCCCGAGGC
GCAAAGATACTGGTCCACTTGTGCACATACCCCCGAGGCCCA
CAAAGATACTGGTCCACTTGTGCACATACCCCCGAGGCCCAG
AAGATACTGGTCCACTTGTGCACATACCCCCGAGGCCCAGA
TCCTGGTCCACTTGTGCACATACCCCCGAGGCCCA
TACTGGTCCACTTGTGCACATACCCCCGAGGCCCAGATAATC
ACTGGTCCACTTGTGCACATACCCCCGAGGCCCAGATAATC
TGG~CCACTTGTGCACATACCCCCGAGGCCCAGATAATCGA
TGGTCCACTTGTGCACATACCGCCGAGGCCCAGATAAT
GGTCCA"TTGTGCACATACCCCC"AG CCCAGATAATCGA
GTCCACTTGTGCACATACCCCCGAGGCCCAGATAATCGAAGC
TCCACTTGTGCACATACCCCCGAGGCCCAGATAATCG
ACTTGTGCACATACCCCCGAGGCCCAGATAATCGAA
ACTTGTGCACATACCCCCGAGGCCCAGATAATCGAAGCAAGC
CTTGTGCACATACCCCCGAGG"CC-GATAATCGAAGCAAG
TGTGCACATACC” CCGAGGCCCAGATAATCGAAGCA
GCACATACCCCCGAGGCCCAGATAATCGAAGCATGC
GCACATACCCCCGAGGCCCAGATAATCGAAGCATGC
CACATACCCCCGAGGCCCAGATAATCGAAGCAAGCTTCCCTC
CCCCCGAGGCCCAGATAATCGAAGCAAGCTTCCCTCATCTC
CCCCCGAGGCCCAGATAATCGAAGCAAGCTTCCCTCATCTCG
CCCCCGAGGCCCAGATAATCGAAGCAAGCTTCCCTCATCTCG
CCC/AGGCCCAGATAATCGAAGCAAGC/TCCCTCATCTCGTT
CCGAGGCCCAGATAATCGAAGCAAGCTTCCCTCATCTCGTT
GAGGCCCAGATAATCGAAGCAAGCTTCCCTCATCTCGTTTC

Kro-0 wild type

CCGAAAGCAAAGATACTGGTCCACTTGTGCACATACCCCCGAGGCCCAGATAATCGAAGCAAGCTTCCCTCATCTCGTTTC
<SS L L SV ?PGSTCMGS GTLGULYDTFT CAEITZRMMENR

Figure 4-1: Detection of the causal mutation with natural occurring ones. Mapping interval (purple)
on chromosome 1, and polymorphisms in the vicinity of the causal mutation (red). Green and blue
lines indicate single nucleotide changes and deletions, respectively, shared with the parental Kro-0
strain. Bottom shows alignments of Illumina DNA sequence reads against the reference genome
sequence, positions 21,714,424 to 21,714,504 (TAIR9). The amino acid sequence encoded by the
reverse strand is given below.

This study provides a proof of concept for identifying mutations in a background
other than a high-quality reference genome using direct whole genome sequencing.
Different from conventional studies aimed at identifying causal mutations, we took
an unbiased approach, and did not use any prior information on candidate genes
associated with the phenotype in question.

In summary, our work indicates that short-read sequencing is sensitive enough for
mutation identification, as long as a high-quality reference sequence from close

relatives is available.
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4.2 Simultaneous mapping and identification of mutants

Identification of causative point mutations after phenotypic mutant screens typically
begins with genetic mapping, followed by transformation rescue or candidate gene
sequencing. We present a one step alternative: performing hundreds of thousands
of genotyping assays while sequencing all candidate genes. This is accomplished by
deep sequencing of a pool of F2 progeny obtained from a cross to a polymorphic

strain and does not require prior knowledge of mapping markers.

4.2.1 State-of-the-art in genetic mapping

Identification of sequence polymorphisms causing mutant phenotypes typically
begins with genetic mapping. Not only is this laborious, but a major limitation is
often the final size of the mapping interval, which may be hundreds of kb and
contain dozens of candidate genes [107], [16], [108]. Two different approaches have
been taken to overcome this drawback. The first is to use high-throughput
genotyping assays and a dense marker map, allowing rapid genotyping of many
recombinants. Thereby only a narrow candidate region needs to be analyzed for the
presence of causative mutations by candidate gene sequencing or transformation
rescue [109], [110]. The second approach involves performing few genotyping assays
to arrive at a wide candidate region (several Mb), followed by whole-genome
sequencing to pinpoint potential causative mutations within this region [16]. The
first method requires multiple, successive rounds of genotyping, whereas the second
is less well suited when mutation density is high, such as that commonly
encountered in ethyl methane sulphonate (EMS)-mutagenized Arabidopsis
populations [111]. Moreover, both approaches involve two discrete steps -
recombinant genotyping and candidate gene sequencing or transformation rescue.
Array hybridization or transcriptome profiling have been employed to rapidly
identify larger deletions causing mutant phenotypes, but these methods are
generally not applicable to point mutations [110], [112], [113]. Comprehensive
whole-genome detection of single nucleotide polymorphisms (SNPs) using array
technology is feasible for yeast [114], but challenging for more complex genomes. To

dramatically speed up the identification of causative point mutations, we combine
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genome-wide genotyping and candidate gene sequencing to a single step by deep

sequencing a large pool of recombinants, as outlined in a recent review [103].

4.2.2 Proof-of-principle experiment

For a proof-of-principle experiment, we used an allelic group of recessive EMS-
induced Arabidopsis mutants displaying abnormally slow growth and light green
leaves due to a lesion in an unknown gene. One of the mutants, in the Columbia
(Col-0) background, was crossed to a wild-type Landsberg erecta (Ler-1) plant and
the offspring were allowed to self-fertilize to produce a genetic mapping population
consisting of Col-O/Ler-1 recombinants, following the principle of bulk segregant
analysis [25], [115]. Five hundred recombinants displaying the mutant phenotype,
and therefore all harboring the causative mutation within a homozygous Col-0
genomic region, were selected and a single genomic DNA sample was prepared from
pooled plants. Sequencing a single-end Illlumina library yielded 2.6 Gb of high-quality
data that could be mapped to the Col-0 reference genome using SHORE and
GenomeMapper [10], providing 22-fold genome coverage. By combining information
from adjacent makers in a sliding window approach, one can effectively interrogate
many more recombinant chromosomes than represented at individual positions. For
example, with a density of 160 markers/200 kb, and 22-fold coverage, almost 4,000
chromosomes are analyzed within a 200-kb window, since the lllumina reads are
much shorter than the inter-marker distance and thus constitute random sampling
of independent chromosomes. Thus, the great majority of the 1,000 recombinant
chromosomes represented in our DNA sample is predicted to contribute to the
definition of the mapping interval. In conventional mapping of Arabidopsis
mutations with individual recombinants, the final mapping interval from 1,000
chromosomes would be 0.1 cM, or on average 20 kb.

We developed the software package SHOREmap to allow simultaneous genetic
mapping and identification of causal mutations, based on SHORE output of aligned
reads from pools of recombinants. A map of 82,127 high-quality Col-0/Ler-1 SNPs is
available (almost 1 SNP/kb in non-repetitive regions), as is a set of 1,219 annotated

reference sequence errors [10], [8].
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Figure 4-2: Method workflow. In the wet-lab, the lllumina library was prepared using genomic DNA
extracted from a pool of recombinants. SHORE was used to align lllumina reads to the reference
sequence. Based on the alignments, base counts per position and SNPs were defined. The candidate
region was then delimited using SHOREmap, with (INTERVAL) or without (DENOVO) marker position
information. Finally, SNPs corresponding to candidate mutations were prioritized and annotated using
SHOREmap ANNOTATE to allow identification of the causal mutation.

First, reads were filtered, masked and trimmed using SHORE. Read alignments to the
reference sequence were performed with GenomeMapper, considering alignments
of up to four mismatches including gaps. Final consensus calling produced the input

files for SHOREmap. The homozygous SNP calls, the base counts per position,
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together with the positions of Ler-1 markers [110] and reference errors [111] were

used as input for SHOREmap INTERVAL. See Figure 4-2 and Table 4-1 for command

line calls.

Program
SHORE
1 PREPROCESS

2 ILLUMINA2FLAT
(the -c parameter
requires that the
GAPipeline was run
with the --with-sig2

flag )

3 MAPFLOWCELL

4  MERGE

5  CONSENSUS

SHOREmap
6 INTERVAL

86

Parameters

-f TAIR8.fa

—i IndexFolder

-r

-142

-a genomic

-i 1001

-b BustardOutputFolder
-0 Run_01

-C

-m 42

-k 36

-n4

-0 Run_01

-i IndexFolder/TAIR8.fa.shore
-p Run_01

-d AlignmentFolder

-n Mutant

-f IndexFolder/TAIRS8.fa.shore
-0 AnalysisFolder

-i map.list

-V

-r

--consensus=consensus_summary.txt

--marker=ler-1.marker_pos.txt

Run time

6h

2h

6 h (8 CPUs)

30 min

1h

1h



--chrsizes=At.chrsizes.txt
--referrors=At.ref.errors.txt

7 ANNOTATE --snp=homozygous_snps.txt 3 min
--dist=SHOREmap_INTERVAL.output.txt
--chrom=4
--start=15,000,000
--end=18,000,000

8 DENOVO --snp=minor_allele_frequency.txt 1h
--refseq=reference.txt
--chrsizes=At.chrsizes.txt
--support=4 (recommended 2 to 4)

--freq=0.15 (recommended 0.1t0 0.2)

Table 4-1: Command line calls. Parameters and run time used. Run time is estimated on one core of
an Intel Xeon processor with 2.3 GHz except for MAPFLOWCELL. Memory requirements depend on
genome size and range approximately from 1 to 16 GB.

SHOREmap INTERVAL determines base frequencies of the Col-0 and Ler-1 alleles at

each marker position and plots the parameter r:

0, if ler = col
—ler, if col=0
r=4 col, if ler=0
col/ler, if col>ler
—(ler / col), if ler > col

where ler and col are the sums of reads supporting the Ler-1 and Col-0 alleles at
each marker position. Ten plots with different sliding window parameters are

automatically generated by SHOREmap INTERVAL, based on r values.
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Figure 4-3: Delimiting the candidate region. (A) Visual output from SHOREmap INTERVAL. Red lines
indicate r values in a sliding window of 200 kb. The black line delimits the candidate region analyzed
using SHOREmap ANNOTATE. (B) Close-ups of SHOREmap INTERVAL and DENOVO plots. The dashed
vertical line indicates the position of the causal mutation. (C) Mapping accuracy is displayed as the
distance in kb between the peak and the causal mutation. Coverage: fold genome coverage.
kb/marker: genome size in kb divided by the total number of markers used. de novo: markers were
solely based on de novo prediction from the mutant sequence data generated on the lllumina
platform.

A mapping interval for the causative mutation was readily apparent with a 200 kb
sliding window (Figure 4-3). Mutations within this region were then used as input for
SHOREmap ANNOTATE, which ranks base pair substitutions according to their
distance from the highest r value (the peak in Figure 4-3A,B), and outputs the effect
of base changes according to feature annotation (Table 4-2). Any General Feature
Format (GFF) file can be applied; in this case, Arabidopsis TAIR8 annotation

(ftp://ftp.arabidopsis.org/home/tair/Genes/TAIR8 genome_release/) was used. A
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mutation causing a serine to asparagine non-synonymous codon change in the

AT4G35090 gene was positioned very close to the peak, within less than 10 kb. The

second closest mutation was more than 150 kb away and the next closest mutation

causing an amino acid change was found at a distance of 300 kb (Table 4-2). All three

were G/C-to-A/T transitions, as is typical for the majority of EMS-induced mutations

in Arabidopsis [111]. AT4G35090 was therefore unambiguously the prime candidate

gene.
Chr Position Base Mutant Distance Annotation Gene
(bp) base peak AGI ID
4 16,702,262 C T 4,035 Coding AT4G35090 Nonsyn.
4 16,940,438 C T 242,211 Intergenic
4 17,005,131 C T 306,904 Coding AT4G35900 Nonsyn.
4 16,287,342 C T 410,885 Intergenic
4 16,287,340 C T 410,887 Intergenic
4 17,129,041 C T 430,814 Intronic AT4G36195
4 17,240,494 A G 542,267 Intronic AT4G36520
4 17,245,055 A G 546,828 3'UTR AT4G36540
4 16,091,082 C T 607,145 Intergenic
4 17,317,842 G T 619,615 Intergenic

Table 4-2: Candidate ranking. Top 10 ranked mutations from the SHOREmap ANNOTATE output.

Conventional dideoxy sequencing validated the mutation found in this mutant line.

Four additional allelic mutants all contained lesions in the AT4G35090 open reading

frame as well, confirming that the mutation responsible for the altered phenotype in

this line had been correctly identified (Table 4-3).
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Allele CDS Codon change  AA change Identified by

at4g35090-3 545 AGT -> AAT Ser -> Asn [llumina sequencing
at4g35090-4 751 GCG -> ACG Ala -> Thr dideoxy sequencing
at4g35090-5 801 TGG -> TGA Trp -> Stop dideoxy sequencing
at4g35090-6 879 TGG -> TGA Trp -> Stop dideoxy sequencing
at4g35090-7 1350 TGG -> TGA Trp -> Stop dideoxy sequencing

Table 4-3: Identification of additional AT4G35090 mutant alleles. The AT4G35090 open reading
frame was sequenced in four mutants allelic to that used for lllumina sequencing. This revealed one
single base pair change within the coding sequence (CDS) of each mutant. Three of the changes cause
premature stop codons, and one results in an amino acid substitution.

We varied marker density and genome coverage, to determine the minimal
thresholds for accurate mutation identification. Six-fold genome coverage was
sufficient at high marker densities (less than 3 kb/marker) and little accuracy was
gained at coverage above 11-fold. Likewise, even a low density of markers (30
kb/marker) was sufficient to identify the causal mutation, as long as more than 20-
fold sequencing depth was used. Little gain in accuracy was seen for marker
densities above 3 kb/marker (Figure 4-3). We also note that bulk segregant analysis
makes the method robust to occasional misphenotyping of recombinant individuals,
which can be a considerable source of error in conventional mapping. If Ler-1 reads
do not disappear near the peak of r values, this would indicate the presence of
misphenotyped individuals in the mapping population. This information can in turn
be taken into account when identifying potential causative mutations.

For many organisms, a dense map of SNP markers is not yet available. We probed
the usefulness of our method in such cases by performing de novo marker prediction
using the same data set. Markers were defined at positions with significant support
(here we used 15% minor allele frequency) for two alleles based on the SHORE base
count per position output. A sliding window analysis of the position-wise average
distance to the closest identified marker divided by the local marker density was
performed with SHOREmap DENOVO (Figure 4-3B). This value is highest at the site of
the causal mutation, since it resides in a pure Col-0 background in all selected

recombinants. Running SHOREmap ANNOTATE on the candidate region defined by
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the peak ranked the causal mutation as the top candidate. As expected, the mapping
accuracy suffered slightly using de novo predicted markers because of a drop in
marker density in the candidate region. High genome coverage was critical for de
novo marker prediction mapping (Figure 4-3B,C), since supporting two alleles during
marker discovery demands a large number of reads per position. Subsampling of
genome coverage revealed the minimum requirement for SHOREmap DENOVO to be
approximately 11 fold, while 6-fold coverage moved the peak 1.2 Mb away from the
causal mutation.

SHOREmap DENOVO determines marker positions based on the base count from the
SHORE output. Each position featuring four or more reads (22-fold coverage) or two
or more reads (11-fold coverage) from two alleles and a frequency of at least 15%
for both of these alleles will be recorded as a marker position. The number of such
marker positions in and near the mapping interval will be reduced due to the
homozygous nature of the mapping interval. SHOREmap DENOVO determines the
density within a sliding window as the average of the sum of position-wise distance
to the nearest marker (dist;,,) multiplied with the inverse sum of frequencies of the

Ler-1 allele at the predicted marker positions (ler):

. 1
Edmtm *W

window size

density = xref?,

window

where

ref calls
ref =.f—.
window size

is the percentage of reference calls within the sliding window used to normalize for
the accessibility of the genomic region to base calling mostly influenced by
repetitiveness. The output plot from SHOREmap DENOVO is shown in Figure 4-4, and
the commands used in Table 4-1. A target interval of 3 Mb was chosen based on the
SHOREmap DENOVO visualization for which all included base changes were ranked
using SHOREmap ANNOTATE. The causal mutation was ranked number one for both
tested datasets (22-fold and 11-fold).
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Figure 4-4: SHOREmap DENOVO output. Red lines visualize scarcity-values in a sliding window of 200
kb.

Compared to other approaches, our method combines mapping by recombinant
genotyping and candidate gene sequencing into a single seamless step. This shortens
the overall time required for genetic mapping from months to weeks and,
importantly, greatly reduces investigator hands-on time. The steps requiring
investigator input are: DNA isolation (1 day), library preparation and validation (4
days), Illumina cluster generation and sequencing (2 days), and data analysis (1 day).
Once the mapping population has been established, the present method therefore
allows a single investigator to identify a causative mutation within only eight working
days — approximately an order of magnitude faster than with conventional methods.
Since high-quality reference sequences and dense SNP maps are also available for
other model organisms such as Caenorhabditis elegans and Drosophila melanogaster
[109], [116], the method described here is broadly applicable across species.
Furthermore, the de novo marker prediction mapping, as implemented in
SHOREmap DENOVO, opens a door to advanced genetics for an even wider

community working with species not yet considered genetically tractable.
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4.2.3 Further application of SHOREmap
4.2.3.1 Mapping large deletions
Small deletions (approximately 1-10 bp) are annotated in the SHOREmap ANNOTATE
output table. In case larger deletions are expected, for example after fast neutron
mutagenesis, they should be considered as potential causal mutations within the
candidate region. Since the number of large deletions within the candidate region
will usually be relatively small, the relevant entries can easily be inspected manually.
4.2.3.2 Mapping recessive lethal or dominant mutations
Mapping of fully-penetrant gain-of-function mutations and recessive lethal
mutations are two very interesting possible applications of our method. Consider
two polymorphic strains, “A” and “B”. The mutant allele resides in the “A”
background and is designated “a”.
For dominant mutations, the mapping cross could be:

aAx BB — aB aB AB AB or

aaxBB — aB aB aB aB
Select individuals presenting the mutant phenotype (aB) and self:

aB xaB — aa aB aB BB
Select individuals presenting mutant phenotype (aa and aB) and sequence pooled
DNA. Since BB individuals are discarded, 2/3 of the alleles in the candidate region
will be of “A” origin - a significant overrepresentation. Candidate causal mutations
would be identified as positions where 2/3 of the bases at a given position do not
match the “A” or “B” reference sequence.
For lethal recessive mutations, the mapping cross would be:

aA xBB — aB aB AB AB
Select aB individuals, based on segregation of dead aa offspring, and self:

aBxaB — aaaB aB BB
Select viable individuals (aB and BB) and sequence pooled DNA. Since aa individuals
are discarded, 2/3 of the alleles in the candidate region will be of “B” origin.
Candidate causal mutations would be identified as positions where 1/3 of the bases

at a given position do not match the “A” or “B” reference sequence.
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We expect that high genome coverage, at least 22x, will be necessary for these
approaches to allow accurate determination of the candidate region and reliable
identification of candidate mutations.

4.2.3.3 QTL mapping

We consider SHOREmap well suited for QTL mapping, but its success will depend on
genetic architecture (how much variation is explained by one QTL) and, perhaps
even more importantly, the number of sequence changes in the QTL region relative
to the reference genome.

The strategy would be to use bulk segregant analysis and sequence two pools of
recombinants at each extreme of the phenotypic distribution. SHOREmap analysis of
these data would then provide accurate information about the relative
representation of parental alleles at each genomic locus as well as data on the
differences between parents in candidate regions. This approach is similar to
eXtreme array mapping implemented by [26], which suffered from peaks being very
broad. We expect that the digital signal from sequencing combined with SHOREmap

analysis will lead to an improved signal to noise ratio and much sharper peaks.
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