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1.1 Introduction 

 

“When we turn to look at the nature of biology itself we see stretching before us an almost 

unlimited number of important, interesting, and unsolved problems. This is partly due to the 

inherent complexity of biology and partly due to a passionate desire to understand the world 

around us and our own natures in particular”  

Francis Crick 

 

A living organism can be seen as a complex system, where precisely defined and hierarchically 

organized processes involve a countless number of distinct molecules. The understanding in 

what way molecules and cells develop into an individual as well as how constituent parts 

collaborate together to sustain a life would provide an essential knowledge concerning abnormal 

molecular and cellular processes leading to hereditary, but not only diseases
1
. The recognition of 

such aberrations at genetic or molecular level is a vital prerequisite to deliver the success of 

innovative therapies aiming for their early detection and correcting rather than only treating 

disease symptoms. Though in order to attain and study such vital biological targets, suitable 

methods are required that for years were only restricted to the invasive histology as well as 

molecular biological assays. Advances in imaging techniques provide a tool for the rapidly 

evolving fields of molecular and cellular imaging. Their expansion opened an avenue for 

noninvasive visualization of specific key molecules and their interactions in animals and humans 

over time using suitable imaging probes
2,3,4

. Among well established methods based on acquiring 

the biological targets using nuclear and optical imaging modalities the application of MRI was 

the latest. Even then, over recent years an impressive progress has been made in exploitation of 

MRI as powerful molecular imaging tool. This success has been driven through the combination 

of technological advances and the development of sophisticated MRI probes. The next sections 

will be devoted to the presentation of the importance of MRI in molecular and cellular imaging 

by highlighting the major achievements and challenges in this rapidly growing field of research.   

 

1.2 Magnetic Resonance Imaging and imaging probes 

Magnetic resonance imaging (MRI) has become over the years an invaluable tool of clinical 

diagnostic radiology
5,6,7

. The instantly growing popularity of this technology not only for clinical 

applications but also in experimental research derives from its capability to produce non-
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invasively three-dimensional images of opaque organism with high spatial and temporal 

resolution without using ionizing radiation
8
. MR images are generated using NMR signal of 

water hydrogen nuclei, where the measured signal intensity depends on water density in a given 

volume, longitudinal T1 (spin-lattice) and transverse T2 (spin-spin) relaxation times
9
. The 

differences in relaxation times and the heterogeneous distribution of water inside the body lead 

to an intrinsic contrast between different examined tissues. That makes it possible to create 

anatomical maps of the organism. Nevertheless, in some cases the observed contrast between 

examined areas of interest e.g. healthy and damaged tissue is not sufficient for their delineation 

due to the small differences in observed relaxation times. This sensitivity barrier, faced at early 

years of MRI developments, was successfully overcome by designing and application of 

pharmacological compounds called MRI contrast agents (CAs)
10

. These molecules alter the 

signal intensity by accelerating the relaxation times of water protons in their surroundings 

thereby increasing the contrast in the examined regions of interest. Such MRI probes are 

generally classified as positive T1-CAs (paramagnetic) and negative T2-CAs (superparamagnetic) 

regarding to the relaxation process they predominantly affect. Accordingly, the investigated 

region containing CAs can be visible as brighter area in T1-weighted images after administration 

of T1-CA (positive contrast enhancement) or as a darker region in T2-weighted images when T2-

CA was added (negative contrast enhancement). In general, the application of T1-CAs is 

preferred
11

 in MR examinations since the detection of positive contrast enhancement in the 

acquired image appears to be much easier as compared to the negative one. The majority of 

currently utilized T1-CAs are complexes based on the paramagnetic gadolinium metal ion (Gd
3+

). 

The popularity of this lanthanide ion originates from its excellent paramagnetic properties due to 

the high number of unpaired electrons (seven), the high magnetic moment and slow relaxation of 

electron spins
12,13

. However, the toxicity of free Gd
3+

 requires its complexation with a suitable 

chelate in order to render it biologically safe without impairing paramagnetic features
14

. The 

polydentante ligands such as acyclic DTPA (diethylenetriaminepentaacetic acid) and 

macrocyclic DOTA (1,4,7,10-tetracarboxymethyl-1,4,7,10-tetraazacyclododecane) are known to 

form kinetically inert and thermodynamically stable complexes of Gd
3+

. Both complexes are 

clinically approved and routinely used in medical MR examinations
15

. Even though Gd-DTPA 

and Gd-DOTA are extremely valuable for obtaining anatomical information, non-specificity and 

restriction to the extracellular space abandon their use per se in assessing information about 
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biological targets. In response to the emerging need for noninvasive visualization of anomalous 

as well as normal processes at cellular and molecular level in vivo a new generation of more 

specific MRI CAs was required
16

. Thus, the development of targeted and responsive MR CAs 

became an emerging and rapidly evolving field over past decade. The design of optimal MR 

probes is, however, challenging as there are a number of parameters, which can determine its 

effectiveness. These factors will be briefly discussed in the following chapter. 

 

1.3 Relaxivity 

The efficiency of a given MR CA is measured in terms of its relaxivity ri (mM
-1

s
-1

), which is 

defined as relaxation rate Ri (1/Ti) of water protons observed for a 1mM solution of contrast 

media, where subscript (i) stands for longitudinal (1/T1) or transverse (1/T2) rate. The theory of 

solvent nuclei relaxation in the presence of paramagnetic species has been described by 

Solomon
17

, Bloembergen and Morgan
18

. The observed overall enhancement of water proton 

relaxation rate (Ri,obs) is the sum of diamagnetic (Ri,d) and paramagnetic contributions (Ri,p 

=Ri,p
IS

 + Ri,p
OS

, where IS-inner sphere, OS-outer sphere) (Equation 1)
19

. The diamagnetic term 

corresponds to relaxation rate of solvent nuclei in the absence of CA (~ Ri of pure water), while 

the paramagnetic term is the relaxation rate enhancement in the presence of a paramagnetic 

substance, which is linearly proportional to the concentration of contrast media (Equation 2).  

 

Ri,obs= Ri,d+ Ri,p 
IS

 + Ri,p 
OS      

i=1,2 
   
(Eq 1) 

Ri,obs= Ri,d + ri [Gd]                          (Eq 2) 

 

Paramagnetic contribution encompasses of inner sphere (Ri,p
IS

) and outer sphere (Ri,p
OS

) 

components (Equation 1). The inner-sphere relaxation mechanism derives from the chemical 

exchange of the water molecules bound to the first coordination sphere of metal and bulk water, 

whereas the outer-sphere contribution arises from random translational diffusion
20

 of water 

molecules near the paramagnetic center. The inner-sphere term is easier influenced as compared 

to outer sphere component. Therefore, current design of CAs towards their relaxivity 

improvements focuses mainly on exploring and tuning the different parameters related to inner 

sphere relaxation. The longitudinal relaxation rate (1/T1,p)
IS

 is given by Equation 3, where q is 

the number of bound water molecules per Gd, τm- the mean residence time of the metal bound 
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inner sphere water protons (equal to the reciprocal exchange rate τm=1/kex), Pm- the mole fraction 

of bound water molecules, and T1m- the relaxation time of the bound inner-sphere water. Further 

important component characteristic of relaxation processes is the correlation time, determined by 

Equation 4, where τr is the rotational correlation time and T1e the electron spin relaxation time of 

the metal ion. 

 

(1/T1,p)
IS

=qPm/T1m+τm  (Eq 3) 

1/ τc= 1/T1e 1/τm+1/τr  (Eq 4) 

 

The equations shown in this chapter demonstrated, that total relaxivity depends on several 

parameters illustrated schematically in Fig.1. Amongst them q, τm and τr are generally used for 

the design of efficient CAs. Accordingly, a high relaxivity can be obtained by increasing q, 

optimizing τm and slowing down molecular tumbling (increasing τr)
21,22

. Although optimization 

of these parameters can dramatically increase r1, the practice showed that attaining their 

favorable combination still remains a formidable challenge. For instance, most extracellular MRI 

CAs used in medical applications show r1 in the range of 4-10 mM
-1

s
-1

 that is far away from 

maximum r1~100 mM
-1

s
-1

 predicted for them by relaxivity theory
23

. Due to low r1 such 

commercial MR probes are only efficient at high concentrations (≥ 1 mM), which is beyond 

detection limit of MR targeted imaging considering that biological targets are normally existing 

at low concentration (pico- and nanomolar range) and assuming one to one binding (Gd-chelate 

to targeted molecule) as pointed out by Caravan
24

. In order to overcome sensitivity limitations 

and to design a new generation of high relaxivity CAs for the detection of molecular targets by 

means of MRI, many valuable approaches where reported until now. 
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Figure 1. Schematic representation of model Gd-complex with one inner sphere coordinated 

water molecule in solution (bulk water) and parameters influencing relaxivity.  

(r- metal/proton distance, kex- water/proton exchange rate {kex=1/τm, τm- mean residence lifetime 

of bound water}, τr- rotational correlation time, T1/2e- electron spin relaxation time). 

 

1.4 Strategies for increasing the relaxivity of Gd-based MRI CAs 

The augmentation of the sensitivity of MRI probes is a key prerequisite for the development of 

MR-based molecular and cellular imaging applications. In general, this task has been attempted 

either by optimization of the molecular parameters that govern relaxivity for a single MR 

reporter unit, or by developing suitable amplification strategies leading to the accumulation of a 

large number of MR reporter units at the targeted site. The following sections are devoted to 

present these approaches. 

 

1.4.1 Gd-chelates with two coordinated water molecules 

The relaxivity can be improved markedly by increasing q (see Equation 3), but the toxicity of 

gadolinium limits the possibility for increasing the number of water molecules in its first 

coordination sphere
25

. Typically, the stability of a Gd-complex, being of overwhelming 

importance under in vivo conditions, is decreasing with the more coordination sites open for 

interactions with water molecules. But the increase in q may also result in reduced r1, if 

endogenous bicarbonates or phosphonates are able to replace the coordinated water. This 

behavior was observed e.g. in Gd-DO3A (q=2), which was not a proper ligand for achieving high 
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relaxivity as water molecules could be surrogated by various anions
26

. Thus, the alternation of q 

to increase r1, requires suitable ligands, that have to form stable Gd-complexes, but also provide 

restricted access of endogenous anions. Two promising systems with q=2 shown in Fig.2 have 

been presented recently. Gd-AAZTA is a polyaminopolycarboxylate system as well but its 

relaxivity of 7.1 mM
-1

s
-1

 (20 MHz, 25ºC) was doubled in comparison to Gd-DOTA or Gd-DTPA 

(q=1, typical agents)
27

. This complex proved to be stable and inert towards bidentante anions as 

well as transmetallation with Zn
2+

, Ca
2+

. The hydroxypyridinone (HOPO) class of compounds 

reported first in 1995 by Raymond and coworkers
28

 represents an innovative type of Gd-chelates, 

where metal ion is coordinated by six oxygen donor atoms. For that reason, two
29

 or even 

three
30,31 

water molecules can be coordinated to the lanthanide and importantly cannot be 

replaced by other anions due to the peculiar geometry of these complexes. Thus, with relaxivity 

in the range of 7-13 mM
-1

s
-1

, high stability and optimal water exchange such Gd-chelates are 

promising reporter units, where increase of MR probe sensitivity was achieved by optimizing 

molecular parameters. Moreover, both developed systems can be further utilized for 

amplification strategies with multiple complexes linked together. 

 

N
N

N
COO--OOC

COO-

COO-

Gd3+

N

O

NH HN

O

O

O O

O

HN O

Gd

N

2

Gd-AAZTA Gd-(HOPO)2(TAM)

NHN

N N

Gd

O

O

O
O O

O

Gd-DO3A  

 

Figure 2.  Structure of Gd-chelates with q=2. 

 

1.4.2 Macromolecular systems as a way to increase r1 

The use of macromolecular systems with multiple Gd-complexes was widely explored as 

valuable amplification strategy to achieve effective MR CAs with the capacity to detect 

molecular targets. Common approaches in preparation of such constructs exploit either a 

covalent or noncovalent grafting of Gd-chelates to macromolecules or their encapsulation into 
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nanocarriers. The self-assembling
32

 or hydrophobic aggregation by formation of micelles
33

 

represent methods to attain accumulation of a huge number of Gd-complexes. An interesting 

example of improving r1 through an encapsulation approach was provided by the entrapment of 

several commercial Gd-HPDO3A complexes (between 8-10) inside the spherical cavity of 

apoferritin
34

. The relaxivity of this construct was very high as a r1 value of 80±5mM
-1

s
-1 

was 

calculated per entrapped Gd-chelate. This was 20 times more than relaxivity obtained for free 

Gd-HPDO3A in water (4.2 mM
-1

s
-1

). The authors elucidated that a large part of observed 

relaxation enhancement arises from multiple interactions between the paramagnetic complex, 

exchangeable protons and water molecules (freely moving in the interior cavity or bound to the 

inner sphere of protein). Liposomes have also been explored as nanocarriers for Gd-complexes. 

Sipkins et al.
35

 reported on a Gd-containing polymerized liposome with an avidin moiety on its 

surface. It was demonstrated that endothelial integrin αvβ3 receptors on the tumor endothelium 

could be visualized by binding the liposome based MR probe to a biotinilated antibody against 

αvβ3. Several other examples with paramagnetic complexes located in the membrane
36,37,38 

or 

encapsulated in the liposomal cavity
39,40 

were reported.  

As predicted by the relaxivity theory a large enhancement of relaxivity of Gd-chelate is expected 

by increasing the rotational correlation time. Therefore, in tandem with developments of 

encapsulation approaches several studies have been focused on setting up amplification 

strategies, which involve the grafting of small and fast-tumbling Gd-complex to large molecules 

leading to its slower molecular tumbling and thereby increasing τr. The noncovalent binding of 

Gd-chelates to human serum albumin (HSA), which is i.e. a valuable target for MRI 

angiography, represents an approach for attaining high relaxivity by increasing τr
41

. However, in 

order to achieve a sufficient increase of r1 for HSA adducts a fast exchange of coordinated water 

is required. This dependence of observed r1 from τm was investigated by Caravan
24

. A Gd-DTPA 

analog MS-325 (Fig 3), having a fast water exchange yielded in a much higher relaxivity upon 

binding to HSA as compared to its bis(N-methyl)amido derivative with a slower water exchange. 

Amongst several investigated systems with q=1  a high relaxivity of 65.8 mM
-1

s
-1

 was reported
42

 

for Gd-TTDA-BOM as adduct with HSA. Further enhancement of relaxivity can be also 

expected with increasing the hydration number. Indeed, Aime and coworkers reported
43

 on Gd-

AAZTAC17 with q=2 (Fig 3) which upon binding to defatted HSA showed a r1 of 84 mM
-1

s
-1

, 
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which is so far the highest reported value for a Gd-based complex non-covalently bound to a 

slow-tumbling substrate. 

 

N
N

N
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COO-
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O

N

O

O
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O O

O O

O OO
O
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N

O

N

O

N

O O

O O

O OO
O
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O

Gd-TTDABOM
 

Figure 3. Structures of Gd-complexes binding to HSA. 

 

A further approach to increase sensitivity of MRI probes has been based on the construction of 

slow tumbling macromolecular system with covalently attached multiple Gd-chelates having a 

fast water exchange rate. The local rotational flexibility should be taken into account, while 

designing such constructs. In case of fast internal motion of Gd-complexes (attached by a 

flexible linker) the increase in τr associated with slow-moving macromolecules cannot be 

realized resulting in a meager change of observed r1. Thus, connecting Gd-chelates in linear 

fashion gives an oligomer showing low r1 enhancement due to anisotropic rotations despite an 

attained increase in molecular weight. Caseli et al.
44

 demonstrated a modified dextran polymer 

with Gd-DO3A-monoamide complexes (52 kDA) with a relaxivity of 10.6 mM
-1

s
-1

 (0.47 T, 

37ºC) per Gd. In comparison to linear polymers attachment of Gd-chelates to dendrimers 

provided constructs with higher r1 as result of the more isotropic rotation due to the more 

globular structure but internal motion of Gd-chelates were still present. Gadomer-17 (17 kDA), 

showing r1 of 16.5 per Gd (0.47 T, 40 ºC), represents such a polyamide dendrimer containing 

Gd-DO3A-monoamide chelates
45

. Recently virus capsids have been investigated as potential 

scaffolds for appending of multiple Gd-chelates
46,47,48

. In this fashion Reymond and coworkers 

obtained a system consisting of Gd(hopo)2(tam) chelates covalently attached to bacteriophage 
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MS2 capsids. The construct with tyrosine linkers showed a remarkably high relaxivity of 41.6 

mM
-1

s
-1

 per Gd and 3900 mM
-1

s
-1

 per particle while much lower r1 (30.7 mM
-1

s
-1

 per Gd and 

2500 mM
-1

s
-1

 per particle, 30 MHz, 25ºC) was observed in case of lysine linker. It was 

concluded, that the rigidity of the spacer incorporating the Gd-chelates to the macromolecule 

clearly governs its final relaxivity
49

. The role of internal flexibility was also investigated
50

 by 

Zhang et al. The authors reported on an attractive tetrameric agent, where a large increase in r1 

was induced due to the incorporation of two target binding sites that endow the system, which 

undergoes changes from a flexible to one with restricted molecular motion since it is rigidified at 

the targeted site (r1=41.3 mM
-1

s
-1

, before binding r1=10 mM
-1

s
-1

, 20 MHz, 37ºC). Another 

approach to restrict impact of motion on relaxivity can be achieved via placing the metal ion at 

the barycenter of the molecule. The Gubert group reported
51 

on such efficient CAs (r1=39 mM
-1

s
-

1
, 0.47T, 37ºC) consisting of Gd-DOTA with bulky hydrophilic arms attached to each of the α-

carbons of the acetate arms. Thus, the rigidity appears to be an influential parameter affecting 

relaxivity of slow-tumbling constructs.  

The example presented in this chapter briefly illustrated how relaxivity and thus the sensitivity of 

Gd-based CAs can be improved through altering the rotational dynamics (τr, rigidity), water 

exchange rate, hydration number and/or accumulating multiple Gd-chelates. The strong influence 

of these parameters on relaxivity provides the basis not only for a solely steady increase in the 

sensitivity of CAs, but also through the attentive design, MR reporters can be obtained, where 

modulation of these parameters and a change in relaxivity would occur in the presence of 

specific targeted molecules. Various systems were investigated with purpose to achieve such 

CAs.  

 

1.5. Biologically activated and responsive MRI Contrast Agents. 

In the recent years the development of Gd
3+

-based contrast agents, which specifically alter MR 

signal in the presence of biological targets has attracted a growing attention
52

. Several CAs were 

reported, that proved to be sensitive to diagnostically relevant parameters such as pH
53,54

, 

temperature
55

, enzymatic activity or ion concentrations (e.g. Ca
2+

, Zn
2+

). The illustrative 

examples of bioactivated or responsive MRI CAs with main focus on enzyme activated MR 

reporters will be presented in the following sections. 
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1.5.1 MRI reporters sensing on changes in their environment 

The subtle changes of physico-chemical variables like pH or ion concentrations that signals the 

occurrence of biological process or pathological changes can be used to create environment-

responsive Gd
3+

-based contrast agents.  

 

pH sensitive CAs 

Tissue acidosis is characteristic for inflammation
56

 and tumor processes
57,58

. The local changes in 

pH of the affected regions as compared to the normal tissues, even though small, can produce a 

measurable difference in relaxivity of suitably designed CA. In order to create pH-dependent MR 

reporters, the functionality attached to the Gd-complex should be able to alter its relaxivity along 

with pH variations due to the protonation/deprotonation state of appended groups. In the majority 

of the examples reported so far, alteration of q through binding/repulsion of chelating arms to the 

gadolinium center was used as driving force of pH dependent changes in r1. The examples of pH 

responsive MR CA include Gd-DO3A derivative bearing a phenyl group linked via an acid/base 

sensitive sulphonamide linkage
59

 or  a Gd-chelate containing p-nitrophenolic pendant arm
60

.  A 

basically different approach
61

 was used by Aime to achieve pH-responsive polymeric CAs. The 

pH-dependency of relaxivity origninated from changes in rotational correlation time due to 

protonation of polyornithine under low pH (higher mobility, shorter τr) or its deprotonation with 

increasing pH (intramolecular association, longer τr). 

 

Ion-responsive CAs 

Various biological signal transduction events involve divalent cations i.e. Ca
2+

, Zn
2+

 or Fe
2+

. 

Excess or deficiency may cause several diseases. Therefore, a design of specific MRI CA, which 

report on fluctuations in the concentration of these cations by changes in r1 is highly desirable. 

The pioneering work on ion-responsive MR probes was introduced by Meade and coworkers
62

 

by developing MRI probes sensing for Ca
2+

, an essential metal ion in numerous biological 

processes
63

. The proposed agent consists of the well known Ca
2+

 chelator BAPTA (1,2-bis(o-

aminophenoxy)ethane-N,N,N,N-tetraacetic acid) that bridges two Gd-DO3A complexes. The 

changes in r1 are observed due to alternation of free coordination sites for water molecules in Gd-

chelates. In the absence of Ca
2+

, the complex shows low relaxivity of 3.3 mM
-1

s
-1

 (500 MHz, 

25ºC) due to the binding of four aminoacetate arms of BAPTA domain to the Gd
3+

 ion thereby 
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giving a coordinatively saturated complex (q=0).  The addition of Ca
2+

 leads to 75% increase in 

observed relaxivity as result of conformational changes caused by strong and selective binding of 

the aminoacetate arms to Ca
2+

, thus allowing access of water to the paramagnetic metal ion. A 

further attempt was undertaken to synthesize Ca
2+

 responsive CAs by modifying Ca
2+

 binding 

part
64

. 

Zn
2+

 was also recognized as a metal ion with a critical role in cellular physiology being involved 

in catalytic activity and signal transduction pathways
65

. For instance it is known, that under 

anomalous stress conditions such as epileptic seizure or stroke a thousand-fold increase in 

concentration of the free Zn
2+

 is observed due to its release from synaptic nerves to the somatic 

tissue
66,67

. Examples of  MRI probes, whose relaxivity is Zn
2+

 concentration dependent include 

Gd-DTPA with pyridyl Zn
2+

 binding groups
68

 or recently published
69,70

 Gd-daa3. 

Comblin et al. used an innovative strategy based on self-assembling to obtain an iron-activated 

MRI CA
71

. 

 

1.5.2 Enzyme responsive MRI contrast agents 

Enzymes being highly specific biochemical catalysts function by converting one molecule into 

another. They are essential for a countless number of biological transformations taking place 

inside the living organisms
72

. For instance signal transduction or cell regulation including 

metabolic pathways demand the action of enzymes. These catalysts can serve as indictors of 

disease processes
73,74,75 

and have been used as important gene expression markers
76,77,78

. 

Therefore, development of enzyme targeting MRI CAs would provide an invaluable tool for 

mapping enzyme location or measuring their activity in vivo by means of MRI
79

. The formation 

or cleavage of specific bonds have been used to design such enzyme activable CAs. The clear 

advantage of applying enzymes as labeling tool is its regeneration after enzymatic reaction, thus 

a large signal amplification should occur. Despite clear relevance, the enzyme-based approach 

remains still in its infancy as design of such systems proved to be challenging. Attempts have 

been made to design a suitable MR probe to monitor gene expression. The bacterial LacZ gene 

encoding for the enzyme β-galactosidase is most commonly used as reporter gene
80,81

 when 

introduced together with the gene of interest to confirm transfection and monitor regulation 

processes. Meade and co-workers demonstrated the first time an enzyme activated MRI CA, 

EgadMe
82

 and its analogs
83,84,85

, designed to report on β-galactosidase activity to visualize LacZ 
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gene expression in vivo. This system based on blocking the access of water molecules to the first 

coordination sphere of the gadolinium metal by incorporation of a galactose moiety into a Gd-

DO3A chelate (q=0). In the presence of β-galactosidase, the masking sugar unit was cleaved 

from the Gd-complex, thus allowing water molecules to interact with gadolinium (q=1 or 2) 

leading to a significant increase of relaxivity (Scheme 1). The in vivo detection of LacZ gene 

expression in Xenopus laevis embryos with EgadMe was of great importance as prove of 

principle that MRI can be applied to image a reporter enzyme even if it is present at low 

concentrations. It should be mentioned that this CAs had to be introduced by microinjection due 

to the lack of transmembrane permeability. Recently, the same group demonstrated an approach 

based also on the modulation of q for the detection of β-glucoronidase
86

. 
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Scheme 1. Activation of EgadMe by β-galactosidase. 

 

A different approach to obtain the enzyme responsive MRI CAs explores changes of the 

rotational correlation time through a modulation of the imaging probe affinity towards proteins 

(e.g. HSA). In this scenario, the enzymatically cleavable moiety is introduced into a protein 

binding unit in order to prevent its strong interaction with protein in the absence of enzyme. The 

activation of such a CA occurs upon enzymatic reaction via cleavage of the masking group with 

subsequent binding of the fast tumbling Gd-complex to proteins to form a slowly tumbling 

macromolecular adduct (increase in τr) with higher relaxivity. Lauffer and coworkers first 

reported
87

 on such a CA, which was based on a hydrophobic 1,1’-dixydroxybiphenyl unit 

attached to Gd-DTPA with the masked binding affinity towards HSA by introducing of 
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hydrophilic phosphonate ester. In the presence of alkaline-phosphatase this ester was cleaved and 

concomitant an increase of r1 was observed. Recently, a β-galactosidase-activated MRI CA was 

obtained with the similar biphenyl unit and a suitable galactose residue as masking enzyme 

cleavable moiety (Scheme 2)
88

. In another example, the aromatic linker was replaced by a short 

peptide sequence showing high HSA binding affinity, which was temporarily concealed by the 

attachment of a short tri-lysine peptide. Upon enzymatic cleavage of the masking unit by 

thrombin activatable fibrinolysis inhibitor (TAFI) the Gd-DTPA linked positively charged 

peptide with poor HSA affinity was successfully converted into the strongly binding sequence
89

. 

A further interesting approach was used to detect stearase activity in macrophages
90

. In this case 

the solubility of CA was used as driving force for observed relaxivity enhancement in the 

presence of enzyme. Here, an insoluble MR probe with long aliphatic chains attached via ester 

spacers to a Gd-DTPA derivative was converted into a soluble and active form of CA by stearase 

due to the hydrolysis of ester linkages after internalization into the cells. 
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Scheme 2. β-galactosidase mediated activation of Gd-DTPA derivative interacting with HSA. 

 

The so far presented strategies were based on specific breaking of chemical bonds by enzymes 

leading to structure modifications of the CAs and its relaxivity enhancement. Along with 

developments towards enzyme hydrolysable MRI CA, the opposite activation mechanism was 

explored based on chemical bond formation specifically mediated by enzymes (e.g. polymerases 

and oxidoreductases). In this case a paramagnetic substrate can be oxidized by a certain enzyme 

to generate reactive products that subsequently oligomerizes in situ to produce larger molecules 

with a reduced tumbling rate, thus higher relaxivity. This strategy was initially demonstrated for 

a model Gd-DOTA derivative bearing a hydroxytyramide moiety, which proved to be a substrate 
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of horseradish peroxidase (HRP)
91

. An analog of this model compound was synthesized by the 

replacement of hydroxytyramide with 5-hydroxytryptamide (serotonin moiety) and used to 

image myeloperoxidase (MPO) activity
92

. This enzyme is secreted by leukocytes at the 

inflammation site and for instance MPO was found to reside in vulnerable atherosclerotic 

plaques at high local concentration
93

. In an attempt to further improve the enzyme-mediated 

relaxivity enhancement two oligomerizable moieties (tyramide or 5-hydroxytryptamide groups) 

were linked onto a Gd-DTPA derivative
94,95

. Such design facilitated cross-linking of enzyme 

genetrated reactive species and finally higher rigidity of polymeric product thereby leading to an 

increase in r1. The authors proposed that the observed relaxivity change was due to increase in 

the degree of oligomerization as well as to covalent interactions of CAs with proteins present in 

the MPO-rich area. Further applications of such enzyme-mediated MR amplification strategies 

were presented for targeted imaging in tumor models
96

. 

The detection of matrix metalloproteinase-2 using solubilility-switchable CA was recently 

presented by Jastrzębska et al.
97

 The presented biologically activated MR contrast agents 

although showing stunning properties are generally restricted to the extracellular environment 

thereby cell membrane impermeable. Actually most of physiological processes of interest take 

place inside the cell. Therefore, a design of suitable intracellular delivery strategies represents a 

vital prerequisite for the employment of such CAs in the imaging of biological targets at 

molecular and cellular level.  

 

1.6 Cell labeling strategies 

The persistently growing number of approaches (i.e. gene/cellular therapy, molecular/cellular 

imaging) aiming for cellular and molecular targets emerged a design of efficient delivery vectors 

able to transgress therapeutic or diagnostic cargo molecules across semi-permeable cell 

membranes
98

. Physical methods like microinjection or electroporation
99

 were used to load 

different molecules into the cells (e.g. DNA), but both methods possess several limitations as 

invasive techniques associated with potential cell damage. Thus, effective carriers that deliver 

cargo molecules specifically at desired locations in vivo at high levels and without inducing 

toxicity/immunogenic reactions are needed. Nevertheless, achieving such optimal carriers that 

would fulfill all efficiency criteria, proved to be difficult. Viral-mediated delivery was broadly 

applied to transfer genetic material into cells
100

. Although normally high levels of transduction 
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are obtained, the potential risk of random insertion of viral vector genomes into the host 

chromosome and immune responses are some of the main concerns for their widespread 

application. In contrast, currently used non-viral carriers like liposomes proved to be safe and 

non-immunogenic vectors for several cargo types, but their delivery efficacy have still to be 

improved
101,102,103 

. 

A relatively new but rapidly evolving group of delivery vectors is represented by cell penetrating 

peptides (CPPs)
104

. This is due to the great ability of CPPs to facilitate efficient internalization of 

cells a wide range of molecular cargos (e.g. small molecules, large particles, proteins or plasmid 

DNA into cells). Cargo molecules can be associated to the peptides via non-covalent 

interaction
105 

or linked covalently by various spacers
106

. CPPs are typically short sequences of 

amino acids containing either a high number of positively charged amino acids residue 

(polycationic peptide) or otherwise linked together in an alternating fashion hydrophobic 

(nonpolar) and charged (polar) amino acids (amphiphatic peptide). Most CPPs were designed 

based on the sequence of proteins called protein transduction domains (PTD) or on the 

amphipathic character of the entire proteins. Examples of such CPPs include Tat peptides
107

, 

VP22 derived peptides
108

, CYLOP-1
109

, penetratin
110

, and proline-rich peptides
111

. Several CPPs 

including polyarginine and polylysine
112,113 

were developed considering the critical role of 

positive charges for translocation abilities. CPPs hold a great potential for the intracellular 

delivery of various therapeutic molecules, but their widespread application is limited by the lack 

of cell specificity, which can be further improved by vast understanding of the translocation 

mechanism.  

 

1.7. Aim of the work 

The emerging need for suitable MR imaging probes that have an ability to translocate across the 

cell membrane and report on a biological process or signal the presence of a targeted molecule 

was an inspiration for the presented work. The particular aim of this project was to develop novel 

cell permeable MRI contrast agents targeting the intracellular localized enzyme β-galactosidase. 

Such a MR probe able of crossing cell membrane in both directions (influx and efflux into/from 

the cell) would be selectively entrapped only in β-galactosidase containing cells by its enzymatic 

conversion into form with increased cellular retention time due to cleavage of delivery vector. 

This thesis includes three major parts of completed work: 
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Chapter 2 presents the affords made towards design and synthesis of the intracellular MR probes 

based on a galactose moiety targeting β-galactosidase. A sugar core has to be synthesized 

containing modifications on C6 as well as on the glycosidic C1 to include the imaging reporters 

and to maintain the enzymatic activity to cleave off the delivery vector. The bimodality of these 

probes was achieved by incorporation of the suitable reporters FITC and Gd-DOTA detectable 

by optical imaging modalities and MRI. This allows the biological and MR evaluation of the 

synthesized MR probes in a transgenic cell line expressing β-galactosidase (C6/LacZ) in 

comparison to the parent cells (C6) without enzyme in order to reveal their ability for specific 

accumulation in enzyme containing cells. In search for parameters that govern the ability of these 

probes to enhance contrast in MR images, the relationship between the molecular structure and 

the relaxivity r1 was also investigated.  

Chapter 3 focused on the evaluation of the enzymatic activity of β-galactosidase on the 

intracellular MR contrast agent. In an attempt to understand the factors, which govern the 

interaction of these bulky conjugates with the enzyme, and thereby the enzymatic activity, a 

series of model molecules with particular structural variations were synthesized. Their enzymatic 

evaluation as well as the establishment of several enzymatic assays for the different types of 

substrates will be discussed in this section. 

In Chapter 4 a method for efficient labeling of macromolecules with MR and optical imaging 

reporters was established. This approach took advantage of combining bimodality and pre-

loading in the design of a suitable precursor, which can be appended to bulky molecules using a 

mild bioconjugation protocol. The synthesis and applicability of this precursor was shown.  
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Chapter 2 

Bimodal intracellular MR contrast agents targeting 

β-galactosidase as prospective tools for the evaluation 

of cellular therapies 
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2.1 Introduction 

Cell based therapies endow modern medicine with an invaluable tool for the treatment or 

complete averting many of the most severe diseases such as cancer
114,115

, neurodegenerative 

disorders
116,117  

as well as cardiovascular or inflammatory malfunctions
118,119

. The basic idea of 

this novel approach is that selected cells should act as a therapeutic drug after they are 

transferred into the patient. Theoretically such cells reach any side inside of the body and 

therefore can be used to restore the damaged tissues, recognize inflammation sites, fight diseases 

or take over the function of defective genes
120

. Despite the vast therapeutic potential and growing 

interest for numerous human applications the success of therapeutic approaches has been rarely 

seen. The major hindrance for improving these innovative methods is the insufficient 

understanding of the mechanisms, which determine the in vivo fate of the cells after their 

transplantation. In order to acquire such essential knowledge, the noninvasive monitoring of 

transplanted cells migration, biodistribution, survival and differentiation in the living organism 

over time becomes a vital necessity
121

.In the last two decades, many remarkable approaches for 

cell tracking using nuclear or optical techniques, but also more recently MRI were developed  

Such noninvasive imaging methods require efficient cell labeling protocols and suitable imaging 

probes in order to create “marked-cells” detectable by the corresponding imaging modality. The 

first clinically applied approach for noninvasive cell tracking was the leukocytes scintigraphy
122

. 

This technique is using the accumulation of externally radiolabeled leukocytes (
111

In-oxine
123,124

 

and 
111

In-tropolonate
124, 125 

or 
99

Tc-HMPAO
126,127

) to detect inflammation loci in patients using 

nuclear medicine modalities. Over the years, several interesting cell tracking strategies by means 

of optical techniques were developed. Shortly, cells can be tagged with fluorescent dyes
128,129

, 

quantum dots
130

 or “permanent marker”-genes expressing either fluorescent proteins (e.g. 

GFP
131,132

, RFP
133

)  

or enzymes (e.g. β-galactosidase
134,135

, luciferase
136,137

). Although application of optical methods 

for cell tracking in preclinical animal models is very useful, the transfer in human settings is 

limited due to light scattering and absorption in tissues. In addition, the usage of nuclear imaging 

methods for long-term evaluation of cell therapies in patients introduces health and safety 

concerns
138

. This is due to the compulsory repetitive use of ionizing radiation and thus 

administration of radioactive tracers in order to assess transplanted cell migration in vivo.  
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In contrast to optical and nuclear medicine techniques, MRI allows the repetitive and 

noninvasive acquisition of whole body images of intact, opaque organisms without exposure to 

ionizing radiation. These features situate MRI as a very powerful modality that meets all needs 

of monitoring cellular therapies as efficient and safe diagnostic method allowing repetitive 

imaging of transplanted cells in humans. Cellular imaging using MRI requires the incorporation 

of MRI contrast agents into the targeted cells. Thus, in vitro pre-labeling of therapeutic cells with 

MRI probes is mostly applied prior to their reintroduction into the living organism
139

. To date, 

several prospective applications utilizing this approach were presented. These include 

organogenesis studies by embryonic stem cell tracking
140,141 

or stem cell migration to lesions of 

cerebral ischemia
142,143,144 

and tumor
145

. However, the gradual diminution of CA over time as 

consequence of cell division and differentiation narrows the applicability of the pre-labeling 

approach for long term monitoring of cell trafficking. 

Keeping in mind these limitations, the goal of this project was to design novel MR contrast 

agents, which can be repetitively given to an individual after cell transplantation and would then 

selectively accumulate within the transferred cell populations. This approach would allow the 

long term monitoring of cell trafficking in vivo since such MR probe could be administrated 

multiple times, in contrast to only single time possible for in vitro cells pre-labeling. However, in 

order to utilize such a strategy, transplanted cells must possess distinctive “features” (e.g. 

receptor, enzyme), which set them as targets for the MR probe and allow their selective detection 

amongst millions of other cells in the body. In an established preclinical animal model (in 

collaboration with the Hannover Medical School Transplantation Research Center) the 

intracellular enzyme β-galactosidase (expressed by the bacterial LacZ gene in the transplanted 

cells) was chosen as unique cell “feature” targeted by the MR contrast agent. This paradigm was 

designed as a proof of principle to monitor the fate of hematopoietic stem cells from mice 

producing β-galactosidase (donor) after their transplantation into wild type mice (recipient) 

lacking this enzyme. In addition, there are many examples in clinical reality, where enzymes can 

be used as therapeutic drug but at the same time serve as target for tracking the transplanted 

cells. The Hurler syndrome (Mucopolysaccharidosis I) represents such a case, where the 

deficiency of an enzyme (α- L-iduronidase), leading ultimately to brain retardation and death, 

can be potentially corrected by transplanting hematopoietic stem cells containing α-L-

iduronidase from a healthy donor
146

.This enzyme could also used to follow the transplanted cells. 
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Thus, development of highly specific and biocompatible MR contrast agents which should 

accumulate inside the targeted cell by a specific interaction with a cytoplasmic enzyme is an 

intricate but vital prerequisite to achieve such cellular imaging in vivo. In this chapter the design, 

synthesis and biological evaluation of model intracellular MR contrast agents targeting β-

galactosidase will be presented, which consist of four functional domains: MRI/FR reporter, 

enzyme sensor and delivery vector (Fig 4). 

ENZYME
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MR REPORTER
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FLUORESCENT 

REPORTER (FR) 
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Figure 4. Schematic structure of enzyme targeting dual-labeled intracellular contrast agents 

 

2.2 Results and Discussion 

2.2.1 Design of bimodal CAs targeting β-galactosidase 

The design of CA-1 and CA-2 (Fig 5) was based on an enzyme activated trapping approach, 

where the targeted MR imaging probe with capacity for fast and effective penetration in both 

directions of the cell membrane is entrapped only inside cells expressing β-galatosidase by the 

cleavage of cell permeable delivery vector (peptide) upon β-galactosidase catalyzed reaction. 

This should lead to a reduction of the outflow of the MR imaging moiety, thus promoting its 

accumulation in the β-galatosidase expressing cells as illustrated on the Scheme 3 (in vitro 

experiment). The final goal is to use the same compounds to track transplanted stem cells in vivo 

(Scheme 3, in vivo experiments). An example showing an effect of cellular retention on the 

observed MRI contrast enhancement was presented for a polyarginine conjugated to Gd-DOTA 

through a disulfide bond that is non-specifically cleaved inside any given cell due the reductive 

intracellular environment
147

.  
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In order to obtain specifically accumulating CA-1 and CA-2 the peptide was attached via a 

linker at the position C-1 of galactose moiety, where enzymatic action takes place. Thus, the 

galactose moiety served as specifically cleavable spacer between both MR/FR reporters and the 

delivery vector. The hydroxyl groups at C-2, C-3 and C-4 are essential for the binding of the 

galactose derivative to the active site of the enzyme and their substitution will prevent the 

enzymatic reaction at anomeric center (detailed discussion in Chapter 3). Therefore position C-6 

of the galactose moiety was selected to attach the MR/FR reporters to fulfill the criteria of 

maintaining enzyme activity and specificity. 
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Figure 5. Synthesized Contrast Agents CA-1 and CA-2 

 

The peptides D-Tat49-57 and D-Tat57-49 were chosen as delivery vectors and compared for their 

translocating ability of CA-1 and CA-2. Moreover, the CPPs synthesized with D-amino acids 

were selected to ensure that observed cellular retention of MR reporter is due to enzymatic 

reaction and not due to peptidases mediated peptide degradation. The fluorescent dye 

fluoresceine isothiocyanate (FITC) was introduced into the molecular structure of these CAs in 
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order to create dual-modality probe detectable using MRI and optical imaging techniques. This 

allows combining of advantages of both technologies discussed in details in Chapter 4.  

In this chapter the synthesis, MR and biological examination of CA-1 and CA-2 will be 

presented to reveal their ability to act as intracellular β-galactosidase targeting MR contrast 

agents.  
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Scheme 3.  Proposed mode of action for intracellular β-galactosidase targeting MR contrast 

agents; a) Incubation of transgenic and parent cell lines with CA; b) Cells were labeled with CA; 
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c) Enzymatic reaction inside transgenic cells; d) Accumulation of MR/FITC reporters only in 

transgenic cells; e) Transplantation of β-gal expressing cells from donor into recipient f) 

Injection of CA to recipient mouse with transplanted cells expressing β-galactosidase and MR 

signal enhancement only in these cells. 

 

2.2.2 Synthesis of CA-1 and CA-2 conjugates  

Solid phase synthesis (SPS) was a major breakthrough in chemical multistep synthesis of 

biopolymers (peptides, oligosaccharides, peptide nucleic acids etc.)
148

 and became an essential 

tool used in drug development as well as in combinatorial chemistry
149

. In principle, SPS is 

based on repeated cycles of sequential deprotection-conjugation of protected building blocks 

resulting in the formation of the target molecule that is covalently attached via a linker to the 

insoluble polymeric support (resin). The main advantage of utilizing SPS in multistep synthesis 

over solution phase procedures is the easy purification during the synthesis. The excess of 

reagents as well as by-products of the synthesis can be washed from the growing product that is 

retained on the resin during a simple filtration/washing process after every reaction step. 

However, the prerequisite for highly efficient SPS is a nearly quantitative yield of the single 

coupling reaction. Thus, the suitable side-chain protecting groups of the building blocks, 

coupling reagents and resin have to be chosen carefully in order to facilitate the formation of the 

target compound in high yield
150

.The bimodal conjugates CA-1 and CA-2 (Fig 5) were 

synthesized manually on preloaded Wang resin by continuous SPS utilizing the Fmoc-N
α
 /tBu 

strategy. The main advantages of this protocol over Boc-N
α
/benzyl chemistry are the mild 

condition used for Fmoc-N
α
 group deprotection, elimination of hydrofluoric acid for cleavage of 

the final product and high specificity of removing Fmoc-N
α
 in the presence of side chain 

protecting groups
151

. In order to utilize the continuous Fmoc based scheme for the synthesis of 

CA-1 and CA-2 an appropriate Fmoc-protected β-galactose derivative 16 was required serving 

as the enzymatically cleavable linker.  

2.2.2.1 Synthesis of building block 16 

The main part of the proposed CAs was the monosaccharide building block 16 based on a 

galactose moiety, which was designed on the way to enable its conjugation to the Tat peptide (at 

the anomeric centre) and to the imaging moieties DOTA ligand /lysine-FITC (at C-6 position) on 

resin. The carboxylate and temporarily protected amino group (Fmoc carbamate) were selected 
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as orthogonal functions introduced to the final structure of the galactose unit. This would make 

compound 16 fully compatible with the Fmoc mediated SPS scheme. Hence, a substrate 

specificity of the enzyme β-D-galactosidase, as discussed already in the introduction part, 

demanded, that only position C-6 and C-1 of the galactose derivative can be used as attachment 

points for imaging and transduction moieties. In order to ensure, that a modification of the 

galactose part by substitution of hydroxy group at C-6 position would not prohibit an enzymatic 

hydrolysis, model compounds were synthesized. Their enzymatic activity was compared with a 

standard substrate p-nitrophenyl-β-D-galactopyranose (PNPG) (detailed discussion presented in 

the Chapter 3). Taking into account all structural requirements of the carbohydrate core 16 an 

efficient synthetic strategy had to be planned. Two feasible approaches for introducing the 

selected orthogonal functional groups (COOH and NH-Fmoc) into the sugar moiety were 

considered (Fig 6).  

 

O

OAc

AcO
OAc

O

O

16

NHFmoc

COOH

O

OAc

AcO
OAc

O

O NHR

COOtBu

O

PMBO

PMBO
OPMB

SPh

O NHCbz

O

OAc

AcO
OAc

O

OAc

COOtBu

O

OAc

AcO
OAc

OAc

OAc

Br NHRHO
COOtBu

Route BRoute A

Substitution at C-1

Substitution at C-6

R=Cbz,Boc

 

Figure 6. Retrosynthetic analysis for carbohydrate building block 16 
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Their assembly could be achieved via initial formation of the O-glycosidic bond at the C-1 

carbon (route A) or substitution at the C-6 position of galactose unit (route B). A numerous O-

glycosylation methods have been established until now
152

. Nonetheless, control of high 

stereoselectivity in the nucleophilic substitution at the anomeric center towards a desired α- or β-

anomeric product still remains a formidable challenge to the synthetic chemist. The broad scope 

of factors, which can play a critical role in the ratio between α/β anomers includes the activating 

method, neighboring group participation, kind of protecting groups on glycosyl donor and 

acceptor (steric and electronic effects), the anomeric effect, temperature and solvent
153

. 

Taking into consideration the complexity of the O-glycosylation reaction at the anomeric center, 

route A was primarily chosen to obtain the desired β-anomer 16. A key advantage of this 

approach could be ascribed to an early formation of the O-glycosidic bond. Hence, such strategy 

would offer the flexibility intended for the modification of activating method/glycosyl donors, in 

the case of poor α/β selectivity or low reaction yields, at the very beginning of the multistep 

synthetic route. Accordingly, a synthesis of 2 was initially attempted by Konigs-Knorr procedure 

based on acetobromogalactose 1 as glycosyl donor (Scheme 4). The treatment of commercially 

available galactose peracetate with 33% HBr/CH3COOH in DCM yielded 1 (95%), which was 

further reacted with tert-butyl 3-hydroxypropionate in the presence of the insoluble promoter 

Ag2CO3. However, a poor reaction yield demanded further modifications of glycosylation 

protocol as 2 was obtained in only 30%. The replacement of Ag2CO3 with AgOTf catalyst 

resulted in formation of 2 in a moderate 47% yield. The further increase of conversion towards 2 

was achieved by employing the thiogalactose donor 3, which was synthesized in 70% using a 

previously described procedure
154

. In its subsequent reaction with tert-butyl 3-hydroxypropionate 

in the presence of NBS-Me3SiOTf by adopting a method described by Qin et al.
155

, the resulting 

β-anomer 2 was efficiently obtained in 65% yield. Next, acetyl protecting groups were 

quantitatively removed prior to silylation of 4 with TBDMSCl in DMF in the presence of 

imidazole used as base. The compound 5 was obtained only in 35% yield but a further use of a 

mixture of Et3N and pyridine as solvent improved the yield of silylated product to 50%. In order 

to facilitate later on the formation of an ether bond at the C-6 position of the sugar moiety, 

suitable hydroxyl protecting groups (benzyl or its derivative), chemically stable as well as 

resistant to migration under the strong basic conditions had to be used. Nonetheless, formation of 

6 via benzylation of 5 with benzyl bromide and NaH used as base (DMF as solvent) could not be 
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accomplished due to the elimination of the 3-tert-butyl propionate linker under the applied 

reaction conditions. A complex mixture of side-products such as eliminated product (major), 

partially benzylated 5 and desired 6 (minor) were observed in LC-MS spectra in addition to TLC. 

Further optimizations of the reaction conditions like temperature and reagent ratio failed to 

provide feasible formation of intermediate 6.  
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Scheme 4. Synthesis of sugar core 16 (pathway A)  

Reagents and conditions: a) HBr/CH3COOH, DCM, rt, 2 h; b) thiophenol, BF3xEt2O, DCM, 

0°C, 4 h; c) Ag2CO3, DCM, -40°C or AgOTf, -20 °C-rt, DCM d) HO(CH2)2COO
t
Bu, 

NBS/TMSOTf, DCM, -50 °C e) NaOHcat., MeOH f) pyridine, Et3N, TBDMSCl, 0°C-rt g) NaH, 

BnBr, DMF, 0°C-rt. 

 

Due to several synthetic problems encountered while proceeding through pathway A, an 

alternative synthetic strategy B (Fig 6) was executed effectively leading to the formation of 

desired carbohydrate core 16 (Scheme 5). This approach was based on the transformations 

involving a thioglycoside renowned as versatile and robust glycosyl donor in carbohydrate 

chemistry. Consequently, the thiogalactose donor 3 was quantitatively deacetylated to give 7. 
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The selective silylation of primary 6-OH with TBDMSCl in pyridine/Et3N yielded 8 (80%). At 

this point, like it was mentioned before for derivative 5, introducing protecting groups, robust 

and migration resistant under strong basic conditions, was the requisite for efficient formation of 

11. Thus, p-methoxybenzyl (PMB) ethers were implemented as temporal protection for the free 

hydroxyl groups of 8. Moreover, this choice was dictated by a wide spectrum of mild cleavage 

conditions available for PMB ethers (oxidation, hydrogenation, acidolysis). At first, the synthesis 

of 9 was approached via benzylation of 8 with p-methoxybenzyl chloride (PMBCl) in DMF. 

However, the product was obtained in low yield (35%). Further optimization involving a longer 

reaction time (an increase from 12 to 24 h), heating and addition of more PMBCl after a certain 

reaction time did not improve the yield. In contrast, replacement of PMBCl with p-

methoxybenzyl bromide (PMBBr) resulted in an efficient formation of 9 (70%). Profitably, a 

much shorter reaction time (4 h) was required to complete the benzylation of 8. This enabled to 

eliminate the side-products observed during reaction with PMBCl, thus improve the overall yield 

of 9. Subsequent removal of TBDMS ether by treatment with a solution of TBAF in THF yielded 

compound 10 (69%). The following transformation involved the incorporation of a Cbz-

aminopropyl linker via an ether bond created at the primary hydroxyl group of carbohydrate 10. 

So far, there are hardly any reports on formations of tether alkylethers at the C-6 position of 

galactose moieties
156,157

. In general, a popular in organic chemistry approach towards ether 

synthesis is based on the reaction of in situ generated alkoxide (using base or metal hydride) with 

a sterically unhindered substrate possessing a good leaving group. Accordingly, the 

monosaccharide 11 was produced in 45% yield in a reaction carried out at room temperature 

between benzyl 3-bromopropylcarbamate
158

 and derivative 10 pre-activated with an excess of 

NaH (4 eq). Given that an incomplete conversion of 10 was observed, in an attempt to further 

improve the yield, the reaction temperature was increased to 55°C. However, this resulted in 

side-product formation (not detectable at room temperature) with apparently no significant shift 

in conversion towards 11 since the remaining starting material 10 was still detected on TLC and 

in ESI-MS spectra. Given that elimination of bromine might compete with formation of ether 

bond more alkylating agent (2 and 4 eq) was added after a certain reaction time at room 

temperature. Though, conversion of 10 was still not improved. Hence, the initially established 

protocol proved to be the best under the tested conditions to give derivative 11.  
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At this point, p-methoxybenzyl ethers at 2,3,4-hydroxyls of 11 were exchanged with acetyl 

protecting groups in order to: I) facilitate a subsequent formation of the required β-anomer 

(neighboring group participation effect) and II) stabilize an ordinarily quite labile glycosidic 

bond towards later applied acidic conditions
159

. Though a catalytic hydrogenolysis is the mildest 

and most convenient deprotection method of PMB ethers, the presence of the thiophenyl group 

excluded its application owing to catalyst poisoning as reported by Izumi et al.
157

 The attempts to 

remove PMB groups with 5% TFA/DCM (v/v) further increased to 10% TFA/DCM according to 

the procedure described by Yan et al.
160

 resulted in a mixture of completely and partially 

deprotected 11 as well as by-products, that could not be separated by column chromatography. 

Ultimately, the PMB groups were removed by oxidative cleavage with DDQ as oxidant in a 

DCM-water mixture (30:1) to give derivative 12 as brownish oil (60%). Initially applied 

proportions of DCM-water such as 18:1
161

 resulted in incomplete deprotection of 11. The ratio 

between dichloromethane and water had an important impact on the reaction rate, which 

increased significantly with decreasing amount of water. The obtained product 12 was acetylated 

with acetic anhydride in pyridine to give 13 (85%), which was afterwards reacted with tert-butyl 

3-hydroxypropionate in the presence of NBS-Me3SiOTf and activated molecular sieves by 

adopting a method described by Qin et al.
155

 The resulting β-anomer of 14 was formed at a 50% 

yield. The removal of the tert-butyl protecting group with a TFA-DCM mixture (1:1) occurred 

with the partial acidolysis of the Cbz group, followed by the catalytic hydrogenation (Pd/C) to 

give crude 15. The next reaction with Fmoc-OSu yielded the desired building block 16 (65%). 
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Scheme 5. Synthesis of building block 16 (pathway B) 

Reagents and conditions: a) NaOHcat., MeOH ; b) pyridine, Et3N, TBDMSCl, 0°C-rt; c) NaH, 

PMBBr, DMF, 0°C-rt; d) 1M TBAF/THF, THF; e) Br(CH2)3NHCbz, NaH, DMF, 0°C-rt; f) 

DDQ, H2O/DCM (1:30), rt; g) Ac2O, pyridine; h) Br(CH2)2COO
t
Bu, NBS, TMSOTf, DCM, -

50°C; i) 1): DCM/TFA 1:1, 2): H2/Pd , EtOH; j) FmocOSu, Na2CO3, DCM, water.  
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2.2.2.2 Solid phase synthesis of the ligands 24a and 24b 

SPS of ligands 24a and 24b was carried out manually by the Fmoc mediated strategy as 

illustrated in Scheme 6. Arginine pre-loaded Wang resin with a low level of substitution (0.4 

mmol/g) was chosen as a solid support in order to prevent an aggregation of growing 

product
162,163

. First, permeation peptides D-Tat49-57 and its inverse isomer D-Tat57-49 derived from 

the truncated basic domain sequence of the entire HIV-1 Tat protein were synthesized. The 

standard SPPS protocol based on sequential cycles of Fmoc deprotection with 20% 

piperidine/DMF solution and coupling of amino acid (4 eq) activated with HBTU/HOBt (3.6 eq) 

was employed. Initially applied conjugation time of 30 min was insufficient to complete the 

reaction of the amino acid, as analyzed by the Kaiser test
164

, and therefore it was further 

extended to 1 h. Subsequently, the carbohydrate core 16 was conjugated to the free N-amino 

terminal of the peptides. A longer coupling time (3 h) of 16 (3 eq) activated with HATU (3 

eq)/DIPEA (6 eq) in DMF was applied to ensure, that the reaction went to completion. A four 

times excess of reagents over the resin attached product is usually applied per coupling step in 

SPPS. Taking into consideration the intricate multistep synthesis of 16, a method with less 

amount of this carbohydrate used in a single conjugation step would be valuable. Thus, protocols 

with only one or two equivalents of carbohydrate 16 were examined by analyzing the sample 

aliquots by Kaiser test and ESI–MS at definite time points. It was found, that in case of two 

times excess of 16 the coupling time had to be further extended to 6 h. When an equivalent 

amount of 16 was used no complete coupling was observed even after 12 h reaction time. Hence, 

the protocol utilizing 2 eq of derivative 16 per synthesis cycle was optimal for the formation of 

intermediate 19 as it required less of 16 in combination with an still acceptable increase of 

reaction time. At this point, the Fmoc-D-Lys(Dde)-OH linker was conjugated to the free amino 

residue of 19 (at the sugar moiety) followed by selective Fmoc deprotection of 20. Next step 

involved a coupling of DOTA tris(tert-butyl) ester 28 to the α-amino group of lysine for 24 h 

(21). 
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Scheme 6. Synthesis of CA-1 and CA-2 conjugates 

Reagents and conditions: i) SPPS: single coupling: Amino acid (AA), HBTU/HOBt, DIEA, 

DMF, 1 h; ii) 16, HATU, DIPEA, DMF; iii) Fmoc-Lys(Dde)-OH, HATU, DIPEA, DMF; iv) 

DOTA-(t-Bu)3, HATU, DMF; v) a: 2% hydrazine hydrate, DMF; b: FITC, DIPEA; vi) TFA:m-

crezol:TIPS-H2O (90:5:2.5:2.5) vii) hydrazine hydrate/MeOH; viii) GdCl3x6H2O, 40ºC/12 h, rt 2 

days 



Chapter 2: Intracellular MR contrast agents targeting β-galactosidase 

   34 

The ligand 28 was synthesized as illustrated in the Scheme 7 using a modified procedure to that 

reported by Mizukami et al.
165
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Scheme 7. Reagents and conditions: a) BrCH2COO
t
Bu, K2CO3, CH3CN; b) BrCH2COOCH2Ph, 

K2CO3, CH3CN c) H2/Pd,   

Afterwards, the Dde group was removed from 21 by treatment with 2% hydrazine hydrate in 

DMF, and FITC was coupled on the designated ε-amino group of lysine for 18 h (22). 

Ultimately, the complete molecules were cleaved off the resin using TFA/TIPS/m-cresol/water 

(90: 2.5: 5: 2.5), simultaneously deprotecting the acid-labile amino acid side chains as well as 

tert-butyl esters on the DOTA ligand. This cleavage cocktail containing m-cresol improved the 

solubility of obtained product as compared to the initially used mixture of TFA/TIPS /water (95: 

2.5: 2.5). The released O-acetylated products (23a, 23b) were purified by RP-HPLC and 

characterized by ESI-MS. Mass spectra of these conjugates showed the same molecular ion 

peaks as consequence of the identical molecular weight and composition (both peptides consists 

of the same amino acids). Due to this fact only the mass spectra of one conjugate with D-Tat49-57 

will be presented further on (both conjugates will be fully characterized in the experimental 

part). The detected molecular ions for 23a and ligand 23 b were consistent with the calculated 

mass of desired products (2659.34). 
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Figure 7. ESI-MS Spectrum of 23a.  

Detected molecular ions m/z = 1331.1 ((M+2H)
2+

), 1136.1((M-FITC)+2H)
2+

), 887.8 

((M+3H)
3+

), 758.2 ((M-FITC)+3H)
2+

) 666.1 ((M+4H)
4+

), 390 (FITC) were consistent with the 

calculated mass of product (2659.34). 

 

The O-deacetylation of the obtained conjugates 23a and 23b was difficult. Initial attempts to 

remove the carbohydrate protecting groups by hydrazinolysis, prior to release of molecules from 

the resin
166,167

 resulted in decomposition of the β-glycosidic linkage under the required acidic 

cleavage conditions. Therefore, deprotection of acetate groups, which are known to stabilize 

indirectly the ordinarily acid labile bonds, was performed after detachment of conjugates from 

the solid support. The commonly used deacetylation procedures like Zemplen deprotection
168

, 

saturated methanolic ammonia
169,170

, treatment with aqueous sodium hydroxide or 

diethylmethylamine/water
159

 resulted in incomplete deprotection of 23a and 23b with one 

remaining acetyl group most likely at 4-OH of the galactose unit. It was also described by Kunz 

and co-workers that due to the steric hindrance a removal of acetyl-O-4 might prove to be 

difficult
171,172

. Finally, the use of hydrazine hydrate in methanol (1:6)
173

 and 12 h reaction time 

with careful monitoring of the progress of reaction by analytical HPLC allowed obtaining the 

desired ligands 24a and 24b. The crude products were purified by semi-preparative RP HPLC 

and characterized by ESI-MS. The substantial decrease in the estimated quantity of the final 

ligands 24a and 24b was observed as result of this acetyl deprotection step (in average only 1/4 

of the initially calculated amount was obtained). The detected molecular ions for ligand 24a and 

ligand 24b were consistent with the calculated mass of the desired products (2533.31). 
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Figure 8. ESI-MS Spectrum of 24a. 

Detected molecular ions m/z = 1268.5 ((M+2H)
2+

), 1073.4 (M-FITC)+2H)
2+

), 845.9 5 

((M+3H)
3+

), 716.2 (M-FITC)+3H)
3+

), 634.7 ((M+4H)
4+

), 390 (FITC) were consistent with the 

calculated mass of the product (2533.31). 

 

2.2.2.3 Preparation of Gd
3+

 complexes of 24a and 24b 

The cell-permeable contrast agents CA-1 and CA-2 were obtained by adding a titrated solution 

of GdCl3 (0.9 eq) in ultrapure water to the solutions of 24a and 24b (1 eq). The ratio between 

ligand and metal was essential in order to avoid an excess of free gadolinium and its non-specific 

binding outside the ligand after loading. Initially, the applied standard chelation protocol
174

with 

heating at 60 ºC for 12 h resulted in the formation of side-products and only minor amounts of 

Gd
3+

-complexes. This was most likely due to the low stability of the sugar based conjugates at 

higher temperature. Hence, the loading conditions had to be optimized. In an experiment with 

heating at 40 ºC for 24 h similar, but less impurities were observed (based on the analytical 

HPLC and ESI-MS analysis). Ultimately, successful complexation with gadolinium was 

performed using a protocol with heating at 40 ºC for 12 h followed by stirring for 2 days at room 

temperature in order to ensure complete insertion of the lanthanide ion into the ligand cavity 

(monitored by analytical HPLC). Despite structural resemblance, ligand 24b was degrading 

faster as compared to 24a, when exposed to the higher temperature. The reasons for that 

inexplicable lower stability have still to be examined. The absence of free Gd
3+ 

ions in solution 

was verified by performing the xylenol orange indicator test
175

. The crude CA-1 and CA-2 were 

purified before performing biological and MR experiments. At first, RP-HPLC purification was 

performed to separate small impurities formed during the complexation. After lyophilization, the 

obtained CAs were dialyzed to remove inorganic salts. In addition, a competitive assay with 

DTPA confirmed the absence of free Gd
3+

 in the sample. The formation of the complexes was 
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verified by ESI-MS mass spectrometry in the negative and positive mode. The detected 

molecular ion peaks were consistent with the calculated mass of CA-1 and CA-2 (2688.20 

g/mol). The molecular ion peak in mass spectra of CA-1 at 1343.5 ((M-2H)
2-

) showed the 

characteristic isotopic pattern for Gd-containing molecules.  
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Figure 9. ESI-MS spectra of CA-1 recorded at negative polarity at the extended range of mass.  

Detected molecular ion at m/z = 2687 ((M-1H)
1-

), 1343.5 ((M-2H)
2-

) 
 
were consistent with the 

calculated mass of CA-1 (2688.20 g/mol). The inset shows the expanded region for the 

molecular ion peak detected at 1343.0 ((M-2H)
2-

) with the characteristic isotopic pattern for Gd-

containing molecules (for spectra recorded in the range of 100-2200).  

 

In general, a multistep synthetic strategy as a combination of solution phase (monosaccharide 16 

and MR chelate 28) and solid phase approach (O-acetylated ligands 23a and 23b) was 

established leading successfully to the formation of the desired conjugates CA-1 and CA-2. The 

preparation of the galactopyranose derivative 16, which fulfills criteria of enzymatic specificity, 

being at the same time compatible with Fmoc mediated SPS to incorporate MR/FITC and 

transduction moieties, proved to be challenging. Ultimately, the approach B based on a 

thiogalactoside led to an efficient formation of 16, in contrast to initially explored strategy A. 

The SPS of O-acetylated derivatives 23a and 23b was efficiently accomplished, but a subsequent 

acetyl group deprotection appeared to be difficult. Despite several explored deacetylation 

protocols, only small quantities of the final ligands 24a and 24b could be obtained (about 1/4 of 

calculated amount). The complexation protocol of these conjugates with GdCl3 required 

optimization. This was due to observed degradation of 24b than 24a under generally used 

conditions (60°C). In addition, despite structural resemblance, ligand 24b was degrading faster 
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as compared to 24a, when exposed to higher temperature. Nevertheless, even though many 

chemical problems were encountered during the synthetic course, both conjugates were 

ultimately obtained and could be explored for their ability to act as specific intracellular CA.  

 

2.2.3 In vitro biological studies on the intracellular delivery of CPP conjugated MR CAs 

The dual-labeled CA-1 and CA-2 containing D-Tat49-57 and D-Tat57-49 peptides, respectively, 

were compared for their translocation ability across the cell membrane. Fluorescence 

spectroscopy and microscopy were used to evaluate cellular uptake and subcellular localization 

in the transgenic C6/LacZ cell line (containing the target enzyme β-galactosidase) and its parent 

C6 glioma cell line (without target). The preliminary fluorescent studies were performed in order 

to select the more efficient conjugate for further detailed biological evaluation. These studies 

showed that both synthesized CAs could efficiently enter into the cells in a concentration 

dependent manner from 5 to 20 µM after incubating the cells for 18 h with contrast media (Fig 

10a and 10b). Only negligible toxicity was observed (data not shown). CA-1 showed 

significantly higher tendency for intracellular accumulation in C6/LacZ as compared to parent 

C6 glioma cells over the whole range of measured concentrations (Fig 10a). In contrary, no 

significant difference in the cellular uptake of CA-2 between both cell lines was observed at 

wide range of labeling concentrations (5, 10, 15 µM) with the exception of 20 µM applied 

concentration, where a significant distinction in the cellular accumulation between C6/LacZ and 

C6 glioma cells was detected (Fig 10 b).  
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Figure 10. Cell uptake of CAs into C6 and C6/LacZ cells measured by fluorescent spectroscopy.  

a) Cell internalization of CA- 1 means are ±SEM (n=2-4 with six replicates).  

b) Preliminary cell internalization studies with CA-2, means are ±SEM (n=2 with six replicates);  

Cells were incubated with CAs at various concentrations in complete serum containing medium 

for 18 h at 37°C. External fluorescence was quenched with trypan blue and successive washings 

with HBSS. *p<0.05, ***p<0.001, statistically significant different compared to control 

(Student’s t- test); 

 

Overall, the conjugate with D-Tat49-57 (CA-1) as compared to CA-2 showed substantially higher 

accumulation levels in the target containing cells over the complete range of tested 

concentrations. Taking into consideration the preliminary cellular uptake screening studies CA-1 

was selected for detailed biological studies. The statistically significantly higher accumulation of 

CA-1 in β-galactosidase containing cells was reproducibly detected as illustrated on Fig 10a. 

Although D-Tat57-49 (18) was reported to be a more efficient carrier than D-Tat49-57 (17) for other 

molecules
176

, the second peptide proved to be a better vector for intracellular delivery of our 

covalently attached cargo as shown on Fig 10a and 10b. The observed difference can be probably 

explained by the influence of the transported cargo on the transduction efficiency of the 

evaluated peptides. This conclusion was supported by a recent study reported by El-Andaloussi 

et al.
177

 The authors demonstrated that delivery efficacy and cytotoxicity of CPPs strongly 

depends on the nature and size of cargo but also its attachment position within the peptide. 

Moreover, as highlighted by Simon et al.
178

, a large differences in cellular uptake of Tat peptides 
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can be observed amongst various cell types and also for the same cells under different culture 

and treatment conditions. In view of these findings, one should keep in mind while comparing 

existing results in the literature with those obtained for CA-1 and CA-2, that different cell lines 

and serum containing culture medium (closer to in vivo conditions) were used to evaluate the 

efficacy of their cellular uptake and specificity, in contrast to the pre-existing literature reported 

conditions. 

An incubation time of 18 h was selected to facilitate a sufficient level of the intracellular 

accumulation of the imaging probe, thus achieving a significant MR contrast enhancement. 

However, the chosen duration for cellular labeling, certainly beneficial for MRI due to its 

intrinsic insensitivity, might influence cell metabolism and cause cytotoxicity. In order to 

confront these concerns an additional experiment with a short incubation time point (2 h) and 

two different concentrations of CA-1 was performed (Fig 11).  
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Figure 11. Cell internalization of CA-1 into C6/LacZ and C6 cells measured by fluorescent 

spectroscopy.  

Cells were incubated with contrast agents at various concentrations in complete medium for 2 

and 18 h. External fluorescence was quenched with trypan blue and subsequent washing with 

HBSS;  

The obtained preliminary results were compared with the 18 h incubation time and clearly 

demonstrated no influence of longer incubation on the observed cytotoxicity. As expected, much 

higher intracellular accumulation of CA-1 was observed at the longer incubation time, although 
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2 h were enough to detect a significant uptake into the cells in relation to control by the means of 

fluorescent spectroscopy.  

Further, the information about the subcellular localization of synthesized conjugates was 

assessed by fluorescence microscopy. The microscopic images showed a predominantly 

vesicular localization of CA-1 and CA-2 conjugates displayed as bright green punctuate dots in 

the peri-nuclear area of the cells (Fig 12).  

 

 

 

 

Figure 12.  Fluorescence microscopic images displaying the intracellular localization of CA-1 

(a, b) and CA-2 (c, d). in C6/LacZ (a, c) or C6 (b, d) cells were incubated with CAs at 20 µM in 

complete medium for 18 h. Cell nuclei were counterstained with Hoechst 33342 and external 

fluorescence was quenched with trypan blue, followed by subsequent washing with HBSS. 

Nuclei: blue (Hoechst 33342), CA: green (FITC fluorescence). The bar represents 20 µm.  
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This indicated to endocytosis as the main route of cell entry by CA-1 and CA-2. Little or no 

release into the cytosol was observed. The encapsulation of therapeutic or diagnostic agents in 

intracellular vesicles represents a bottle neck for several research areas aiming to target at 

cellular level
179

. Despite that, CA-1 and CA-2 could very efficiently label cells as revealed by 

fluorescence spectroscopy, their vesicular entrapment appears to be the major obstacle for 

specific interactions with the mainly cytosolic localized β-galactosidase. Therefore, further 

modifications of the conjugates are under progress in order to achieve a release of contrast media 

from the endosomes or a direct uptake to the cytosolic compartments of the cell. 

 

2.2.4 In vitro MR studies of CPP conjugated Gd-DOTA based MR contrast agents  

Among various small size Gd-chelates developed until now, gadotetrate (Gd-DOTA) exhibits 

advantageous high stability thanks to its macrocylic structure and eight strongly binding 

“attachments points” to the toxic Gd
3+

 metal ion. Consequently, Gd-DOTA functionalized on 

various ways proved to be a valuable synthon utilized in the preparation of CAs for in vivo 

application. In this section MR examination of the Gd-DOTA based conjugates will be discussed 

to assess their applicability as intracellular MR probes. 

 

2.2.4.1 Determining concentration and relaxivity of CPP conjugated MR contrast agents 

CA-1 and CA-2 in aqueous solution 

The ability of CA-1 and CA-2 to shorten water proton relaxation times T1, expressed by means 

of their relaxivity (r1), was studied at a proton Larmor frequency of 128 MHz (3T) at room 

temperature. In order to calculate r1, defined as increment of longitudinal T1 of water protons 

induced by a 1mM concentration of CA, the exact concentration of the studied metal chelate has 

to be known. The determination of accurate content of compound in the sample is an essential 

matter for molecules like peptides or proteins as they are obtained in the form of TFA salts after 

HPLC purification with buffers
178,179

. Relative purities of CA-1 and CA-2 conjugates were 

higher than 95% (analytical HPLC), however, an accurate quantity and nature of the counter-ions 

paired to the positively charged amino acid residues cannot be determined based on the HPLC 

profiles. Thus, the concentration values calculated by weight had to be corrected for the total 

mass of salts present in the sample (in average 70% for CA-1 and CA-2). Since each conjugate 

consist of single FITC molecule and Gd
3+ 

chelate, an exact concentration of the probes was 
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determined by UV-Vis absorption measurements of the fluoresceine at 485nm. The 

concentration of the stock solutions were calculated according to Lambert-Beer equation 

assuming εfluorescein 485 nm as 81,000 l/(mol·cm) (evaluated with a standard compound Gd-DO3A-

FITC) and further dilutions were made according to this calculated concentration of contrast 

media. Hence, UV-Vis absorption enabled the evaluation of the mM concentration without 

knowing the exact character of the counter-anions.  

Relaxivity of CA-1 and CA-2 was calculated by taking the slope of a plot of the relaxation rates 

R1 (1/T1) versus various concentrations (mM) of corresponding Gd
3+

 complexes as shown in the 

Figure 13. CA-1 and CA-2 showed relaxivity of 16.8±0.6 and 17.7±0.9 mM
-1

s
-1

 (means ± SEM, 

n=4), respectively.  
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Figure 13. Relaxation rates R1 versus different concentrations of CA-1 and CA-2 in aqueous 

solution. The mean 1/T1 of selected exemplary experiment is shown. Relaxivity (mM
-1

s
-1

) was 

determined by linear regression.  

No statistically significant difference between both complexes was found (Student’s t test) 

indicating, that the nature of the peptide had no influence on r1. The investigated Gd
3+

-complexes 

showed a remarkable increase of relaxivity as compared to the commercial Gd-DOTA chelate 

(Dotarem
®
) r1= 4.0±0.12 mM

-1
s

-1
 (measured under same conditions in our lab). The exact 

estimation of salts in the peptide and thus the real concentration of CA in the samples was 

critical to correctly determine the relaxivity as highlighted by Piwnica-Worms and coworkers
180

. 

Accordingly, if the concentration calculated by weight would be used to evaluate r1 of CA-1 (real 

concentration corresponded only to ~ 30% of weighted amount) the relaxivity would have been 
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incorrectly calculated as 5.04 mM
-1 

s
-1

, which is the range of typical values of small sized 

macrocyclic Gd chelates in the literature
181

. Even though relaxivities of Gd-DOTA-peptides were 

mostly published
180,182

 in the range of 6.8-8.5 mM
-1 

s
-1

, some conjugates showed a larger r1 

enhancement like demonstrated by Keelara et al.
183

 for Gd
3+

 DOTA-based chelators attached 

covalently to bombesin analogues  (r1=9.3-19.2 mM
-1

s
-1

). In order to broaden the understanding 

of the high relaxivity phenomenon of CA-1 and CA-2, a relation between r1 and the molecular 

structure of conjugates was further explored in the following chapter. 

 

2.2.4.2 Influence of the structure on relaxivity of dual-labeled targeted MR contrast agents 

The relaxivity of Gd
3+

-based complexes is governed by several influential factors (presented in 

the section 1.3). Amongst them, an increase in τr by slowing the tumbling rate with increasing the 

molecular weight of paramagnetic species is expected to radically escalate r1 values (discussed in 

section 1.4.2). Importantly, rigidity of these bulky constructs has to be taken into account while 

optimizing τr owing to its dependency on not only global but also local rotational dynamics 

(discussed in section 1.4.2).  

Taking into consideration the molecular structures of CA-1 and CA-2 the incorporation of lysine 

spacer with FITC introduced rigidity in close vicinity to the Gd
3+

-chelate, which might 

decelerated its internal mobility. In view of that, higher relaxivities of CA-1 and CA-2 could be 

apparently explained by their rotational dynamics due to the slow tumbling of the covalently 

attached metal ligand, reflecting the increase in molecular weight and its slow internal motion as 

consequence of created rigidity
184

. In order to understand the effect of internal motion, and 

rigidity on r1 values of CA-1 and CA-2, the model conjugate CA-3 (Fig 14) with a more flexible 

linker was synthesized as described in the subsequent chapter 2.2.4.2.1. In addition, the influence 

of molecular weight on the relaxivity was assessed by comparison with a middle sized complex 

CA-4 (synthesis and detailed characterization in Chapter 4). 
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Figure 14. Model conjugates CA-3 and CA-4 

2.2.4.2.1 Synthesis of the bimodal intracellular CA-3 with flexible linker 

CA-3 was obtained by continuous Fmoc mediated SPS strategy as demonstrated in Scheme 8. 

First, D-Tat47-59 (17) was synthesized on pre-loaded Wang resin as described in section 2.2.1.1. 

The Fmoc-Lys(Dde)-OH residue was further introduced as spacer unit bridging FITC and 

carbohydrate-DOTA building block. Subsequently, the free α-amino terminal of Lys(Dde) was 

reacted with the sugar moiety 16 (3 eq) activated with HATU (3 eq)/DIPEA (6 eq) in DMF for 

3h to result in intermediate 30. Selective Fmoc deprotection was followed by coupling of DOTA 

tris(tert-butyl) ester 28 on the α-amino group of sugar moiety for 24 h (31). Afterwards, the Dde 

group was removed by treatment with 2% hydrazine hydrate in DMF, and FITC was coupled to 

the designated ε-amino group of lysine for 18 h (32). Ultimately, complete molecules were 

cleaved off the resin using TFA/TIPS/m-cresol/water (90:2.5:5:2.5) simultaneously deprotecting 

the acid-labile amino acid side chains as well as tert-butyl esters on the DOTA ligand. The 

released O-acetylated product 33 was purified by RP-HPLC and characterized by ESI-MS. The 
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O-deacetylation of 33 was accomplished with hydrazine hydrate/methanol (1:6) with careful 

monitoring of the progress of reaction by HPLC and ESI-MS. The crude product 34 was purified 

by semi-preparative RP HPLC and characterized by ESI-MS. The detected molecular ions were 

consistent with the calculated mass of 34 (2533g/mol). Subsequently, ligand 34 was chelated 

with gadolinium using an analogous protocol like for CA-1 and CA-2 with heating at 40 ºC for 

12 h followed by the stirring at room temperature for 2 days. The crude product, after confirming 

a complete loading, was purified by semi-preparative RP-HPLC, dialyzed for 48 h and 

lyophilized. The detected molecular ions in ESI-MS spectra were consistent with the calculated 

mass of desired product CA-3 (2688.20g/mol). The MR measurements were acquired as 

described before and r1 was calculated as 10.8 mM
-1

s
-1

. 
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Scheme 8. Synthesis of CA-3  

Reagents and conditions: i) SPPS: single coupling: Aa, HBTU/HOBt, DIPEA, DMF, 1h; ii) 16, 

HATU, DIPEA, DMF; iii) DOTA-(t-Bu)3, HATU, DMF; v) a: 2% hydrazine hydrate, DMF; b: 
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FITC, DIEA; vi) TFA:m-crezol:TIPS-H2O (90:5:2.5:2.5) vii) hydrazine hydrate/MeOH; viii) 

GdCl3x6H2O, 40ºC/12h, rt 2 days 

 

2.2.4.2.2 Relaxivity as function of molecular structure and rotational dynamics: 

comparison of CA-1, CA-2 with CA-3 and CA-4 

In an attempt to elucidate the effect of molecular parameters such as internal motions as well as 

increase in molecular weight on the relaxivity of CA-1 and CA-2, a comparison of r1 values with 

those acquired for the model conjugates CA-3 and CA-4 was assessed (Fig 15).  
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Figure  15. Comparison of r1 values acquired at 3T for CA-1, CA-2, CA-3, CA-4, Gd-DOTA.  

 

Taking into consideration the molecular structures of CA-1 and CA-2 it was hypothesized that 

the measured r1 values were obtained as result of effective increase in global rotational 

correlation time, being a consequence of the internal rigidity introduced by neighboring effect of 

FITC to the Gd-chelate and higher molecular weight, as compared to the small fast tumbling Gd-

DOTA itself. As pointed out by Caravan
185

 a significant increase of relaxivity for slow tumbling 

constructs can be observed in case of slow or no internal motion of the attached metal chelates. 

Hence, fast internal motion of the the Gd-based complex would result in overall poor relaxivity 

despite a sluggish tumbling associated with the large size molecule as discussed in Chapter 1. In 

CA-1 and CA-2, the Gd-DOTA chelate was covalently attached to the α-amino group of lysine 
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spacer and FITC was introduced at its ε-amino position. Such an arrangement created sterical 

rigidity in close vicinity to the metal chelate and restricted its free rotation. This apparently 

resulted in slower internal motions leading in combination with the slow global tumbling 

induced by molecular size to the effective increase of observed r1 values (Fig 15). To investigate 

the impact of internal motion on the measured relaxivity CA-3 (Fig 14) was designed to 

introduce more rotational flexibility into the molecular structure nearby the metal chelate by 

moving the FITC to the peptide part of the molecule. Accordingly, Gd-DOTA chelate was 

attached onto the sugar moiety and a lysine spacer with FITC at N
ε
-position was incorporated 

between galactose moiety and D-Tat49-57 (Scheme 8). The measured relaxivity of CA-3 (r1=10.8 

mM
-1

s
-1

) was inferior compared to CA-1 and CA-2 (Fig 15) as result of the free rotation of the 

attached Gd-chelate via the flexible linker. Given that all three conjugates had the same 

molecular weight, it was clearly demonstrated, that the structural rigidity introduced near the Gd-

chelate has a large influence on the ability of CAs to increase relaxation rates of water protons in 

their surroundings.  

Furthermore, a possible relationship between molecular weight and relaxivity of CA-1 and CA-2 

was explored by comparing the obtained r1 values with that of the dual-labeled contrast agent 

CA-4 (Fig 14). In CA-4, metal chelate and FITC were linked together via a lysine spacer in the 

same fashion like in CA-1 and CA-2 but its molecular weight is considerably lower. The 

measured relaxivity r1=9.2 mM
-1

s
-1

 of CA-4 was substantially lower as those obtained for CA-1 

and CA-2 (r1=16.8 and 17.7 mM
-1

s
-1

 respectively). This difference could be associated with the 

increase in molecular size a well known phenomenon reported in the literature (discussed in 

Chapter 1). On the other hand, relaxivity of CA-3 (r1=10.8 mM
-1

s
-1

) though higher than that of 

Gd-DOTA itself (4.0 mM
-1

s
-1

), was only slightly different from r1 of CA-4, but still lower as 

compared to CA-1 and CA-2.  

It seems that both factors, the interaction of the neighboring FITC and Gd-chelate introducing 

higher rigidity as well as increase in molecular weight had an additive influence on the relaxivity 

of CA-1 and CA-2. Thus, these results clearly demonstrated, that not only increase in molecular 

weight, but also surroundings and interactions in close vicinity to the Gd-chelate should be 

considered while designing bulky contrast agents with amplification of r1 by slowing down the 

tumbling rate. 
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2.2.4.3 In vitro MR studies on transgenic C6/LacZ cells and its parent cell line C6 

The ability of CA-1 and CA-2 to increase the cellular relaxation rate R1,cell  was assessed. 

Transgenic cells containing β-galactosidase (C6/LacZ) as well as the parent C6 glioma cells, not 

expressing the targeted enzyme, were incubated for 18 h with 20 µM of respective Gd
3+

-

complex. The long incubation time of 18 h was chosen to facilitate a higher intracellular 

accumulation of CA (discussed in the chapter 2.3.2). Subsequently, MR imaging of cell pellets 

was performed at a 3T (128 MHz) human MR scanner at room temperature (details in 

Experimental section). Cells incubated identically without CAs were used as controls. The 

obtained MR results clearly demonstrated the ability of CA-1 and CA-2 to significantly increase 

the apparent cellular relaxation rate R1,cell in comparison to control cells without CA as 

summarized in Fig1. The contrast enhancement in T1-weighted MR images of controls and cells 

with CAs was satisfactorily observed as well (Fig 16).  
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Figure 16. Relaxation rate R1,cell in C6 and C6/LacZ cells after loading with CA-1 and CA-2. 

Cells incubated for 18 h with 20 µM of CAs. Afterwards the cells were trypsinized, centrifuged 

and re-suspended in 1.5 mL Eppendorf tubes at 2 × 10
7
 cells/500 µL in complete DMEM for MR 

studies. Control: cells incubated identically with culture medium without CA. *p<0.05, 

**p<0.01, ***p<0.001, statistically significant different compared to control (ANOVA, Tukey’s 

post test); 
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Figure 17.  T1-weighted MR images of LacZ/C6 cells after loading with CA-1 and CA-2 for 18 

h. All experiments scanned 256
2
 voxels in a field-of-view of 110 mm in both directions resulting 

in a voxel volume of 0.43 × 0.43 × 1 mm
3
. Control: cells incubated identically with culture 

medium without CAs. 

 

No statistically significant difference in R1,cell values between both complexes as well as cell 

lines was found (ANOVA, Tukey’s post test), although in the fluorescent measurements a 

significantly higher accumulation of CA-2 was observed for C6/LacZ compared to C6 cells at 20 

µM labeling concentration (Fig 10b). On the other hand a statistically significant higher level of 

fluorescence was detected in the transgenic cells as compared to C6 cells at various labeling 

concentrations (5, 10 and 15 µM) of CA-1 (details see chapter 2.3.2.). The largest difference was 

observed at 10 µM labeling concentration of CA-1 (Fig 10a). In order to examine, if this 

behavior would be also reflected in MR images, both cell lines were incubated with 10 µM of 

CA-1 for 18 h and measured at 3T (Fig18). The applied concentration was sufficient to induce an 

statistically significant increase of R1,cell values for C6/LacZ cells in comparison to the controls, 

whereas no difference was detected for C6 cells. Though a tendency for a larger increase of R1,cell 

in enzyme containing C6/LacZ cells as compared to C6 cells was observed at 10 µM, this change 

was not sufficient to be a statistical significant. Nevertheless, a similar trend in intracellular 

accumulation of CA-1 has been detected using optical and MR modalities, with larger difference 

observed by fluorescence spectroscopy. This variation might be related to the sensitivity gap 

between both methods, because imaging by means of MRI requires much higher concentration of 

contrast media
186

 and due to large “unspecific” MR signal contribution from vesicular entrapped 
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probes, it is likely that changes already observed by optical method were beyond the level of 

MRI detectability. It was reported by Aime et al.
187

, that vesicular entrapment of contrast media 

is responsible for “quenching” of intracellular relaxation rates R1,cell. The authors demonstrated a 

vast increase in measured longitudinal relaxation rates for cell labeled with CA by 

electroporation (diffused in cytosol) versus those labeled with contrast media by pinocytosis 

(endosomal entrapment). Thus, a structural modification of synthesized CAs is required to 

achieve their escape from endosomes to allow interactions with enzyme, but also to avoid 

“quenching effect” of R1,cell. 
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Figure 18. Relaxation rate R1,cell in C6/LacZ and C6 cells after loading with 10 µM of CA-1 for 

18 h.  

Cells trypsinized, centrifuged and re-suspended in 1.5 mL Eppendorf tubes at 2 × 10
7
 cells /500 

µL in complete DMEM for MR studies. Control: cells incubated identically with culture medium 

without CA. **p<0.01 statistically significant different compared to control (ANOVA, Tukey’s 

post test);  
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2.3 Summary & Conclusions 

The multistep synthesis was established leading successfully to the formation of the desired 

bimodal conjugates CA-1 and CA-2 based on the galactose derivative targeting β-galactosidase. 

The synthesis of the galactose spacer 16 based on thiogalactoside proved to be more efficient as 

compared to that utilizing O-glycosyl donor as starting building block (route A). This can be 

explained by versatility and robustness of thiogalactoside donor allowing a variety of reaction 

conditions and chemical transformation in its presence. The O-deacetylation of conjugates 23a, 

23b and 33 was difficult leading to significant reduction of expected product quantity. Probably 

steric hindrance around sugar moiety created by different functional domains of bulky conjugate 

was disturbing an efficient removal of all acetyl groups.  

CA-1 and CA-2 showed high relaxivities (16.8 and 17.7 mM
-1

s
-1

 respectively) as compared to 

the small, fast tumbling Gd-DOTA (4.0 mM
-1

s
-1

). This phenomenon can be explained by 

increase in molecular weight in combination with neighboring effect of FITC incorporated in 

close vicinity to Gd-chelate that created a more rigid system with restricted local motions leading 

to higher relaxivity. The attachment position of FITC had an important effect on acquired 

relaxivity since conjugate CA-3 with flexible linker allowing fast local motions of Gd
3+

-chelate 

showed lower r1 (10.8 mM
-1

s
-1

) as compared to CA-1 and CA-2 even though all three molecules 

had the same molecular weight. Thus, it was concluded, that high relaxivity can be acquired by 

increase in molecular weight but this can be further significantly amplified by creating rigidity 

near the Gd
3+

-chelate e.g. as in the described molecules by the positioning of the FITC. Although 

CA-1 and CA-2 were both very efficiently internalized into the cells as revealed by fluorescence 

spectroscopy, a conjugate with D-Tat49-57 (CA-1) showed substantially higher accumulation level 

in β-galactosidase expressing cells as compared to C6 cells (without enzyme) over the complete 

range of tested concentrations (5-20 µM). Whereas no significant difference between both cell 

lines was observed for CA-2 except for the highest labeling concentration. The studies at shorter 

(2 h) and longer incubation time (18 h) showed that there was no influence of incubation time on 

the observed cell toxicity, however, much higher levels of intracellular accumulation were 

observed after 18 h incubation. Thus, longer incubation time proved to be better as yielding a 

higher quantity of MR/FR reporters inside the cell without affecting their viability. The MR 

studies of cells incubated with CA-1 and CA-2 showed that both conjugates could efficiently 

enhance cellular relaxation rate R1,cell of water. Nevertheless, at high concentration (20 µM) no 
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difference was observed between both cell lines. Similarly like in case of fluorescence studies 

CA-1 showed a slight tendency for higher MR signal enhancement in enzyme containing cells 

indicating to an enzyme induced specific accumulation. However, no substantial increase in 

cellular retention of the MR probe in target expressing cells due to the selective cleavage of cell 

permeable peptide from CA-1 and CA-2 was detected, despite a very efficient intracellular 

uptake of conjugates. This can be most likely explained by the predominantly endosomal 

localization of CAs inside the cells as revealed by fluorescent microscopy. The vesicular 

entrapment of targeted CAs prevents their specific interactions with the β-galactosidase present 

in the cytosol. There seems to be an observable tendency for specific accumulation of CA-1, but 

owing to the mainly unspecific vesicular accumulation of probe, these changes were probably 

beyond the levels detectable by MRI. In addition, the vesicular entrapment will reduce a fast 

efflux of uncleaved probe from non-targeted cells, what would contribute significantly to a high 

unspecific “background label” masking potential specific accumulation. Hence, the endosomal 

escape of CAs or a direct uptake into the cytosol is critical if binding and/or reaction between 

molecular probes and cytosolic targets should lead to a significant increase in MR signal. Thus, 

further modifications involving the attachment of MR(Gd)/FITC-sugar building blocks to 

peptides showing endosomolytic activity are required to permit the proper interaction of the 

targeted β-galactosidase with such dual-labeled probes.  
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3.1 Introduction 

The β-galactosidase from Eschericha coli catalyzes the breakdown of the β-glycosidic bond at 

the anomeric center of the galactosyl moiety while retaining the same stereochemistry of the 

substrate in the product
188,189

.
 
The enzyme is a homotetramer (MW 464 kDa) and comprises of 

four identical units. Each is built up by a polypeptide chain with 1023 amino acids folded into 

five sequential domains with an extended fragment at the amino terminus
190,191

. β-galactosidase 

has four active sites
192

 and Na
+
 and Mg

2+
 cations are needed for maximal catalytic activity of the 

enzyme
193,194

. β-galactosidase exhibits fairly strict specificity towards the sugar residue
195,196

, but 

shows wide permissiveness for various aglycons (functionality attached at the C-1 position) 

including alkyl, aryl or another sugar residue
197

. A change in conformation at the C-1 position to 

the α-anomer induced complete loss of enzymatic activity
198

. Studies with a series of methyl β-

lactoside derivatives reported by Bock and Adelhorst
199

 showed that alternation of hydroxyl 

groups at the positions 2, 3 and 4 of the galactose resulted in an inhibition of enzymatic activity 

for these substrates. Thus, only the changes at the C-6 position are compatible with enzymatic 

hydrolysis, but also dependent on the type of the introduced modifications
200,201

. Accordingly, 

substrates with a -CH2-OH group replaced by substituents like hydrogen
202

, methyl
203

 or 

methylene
204 

were hydrolyzed at a slower rate. This indicates that although the hydroxyl at C-6 is 

important for the binding to the enzyme its absence does not cause a total loss of enzymatic 

activity
195

. On the other hand substrate, in which 6-OH was substituted by tosyl
204

 was not 

hydrolyzed. Hence, an alternation of the C-6 position could maintain β-galactosidase activity if 

cautiously done. Taking into account these enzyme specificity requirements, MR/FR reporters in 

CA-1 were introduced at the C-6 position of galactose moiety via an alkyl linker to avoid steric 

hindrance, which would be created in case of direct attachment of these units to position C-6.  

To date numerous studies about enzymatic specificity and catalytic mechanism of β-

galactosidase were mainly performed for low molecular weight compounds such as p-

nitrophenyl-β-galactopyranoside (PNPG), o-nitrophenyl-β-galactopyranoside (ONPG) and other 

derivatives
205,206,207

. In contrast, the molecular structure of CA-1 is complex and as discussed 

above many factors like substitution at the C-6 position, introduced moiety (FITC, MR reporter), 

attachment of a peptide as aglycon and molecular size can notably influence its interactions with 

the β-galactosidase. Therefore, in order to understand the relationship between molecular 

structure and enzymatic reactivity for CA-1, the effect of modifications at the galactose and the 
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aglycon part was explored individually. Model conjugates CA-5 and CA-6 being C-6 modified 

analogs of PNPG were synthesized and used to evaluate the influence of this type of alteration on 

β-galactosidase activity. To further investigate the influence of peptide or peptide/FITC 

attachment at the anomeric center on the catalytic activity the model galactose-peptide 

conjugates 54, 56 and 61 were synthesized and evaluated. Like CA-1 these conjugates do not 

contain a chromogenic moiety, which will be released upon enzymatic reaction and could be 

measured by optical techniques. Thus, other assays allowing the detection of enzymatic 

hydrolysis had to be established for such conjugates. In this chapter, the synthesis and biological 

studies of these model molecules as well as evaluation of interactions involving CA-1 and β-

galactosidase will be presented. 

 

3.2 Influence of modifications at the C-6 position of the galactose moiety  

3.2.1 Synthesis of CA-5 and CA-6 

The synthesis of CA-5 and CA-6 presented in Scheme 9 started from acetobromogalactose 1, 

which was obtained as described in chapter 2. Subsequent coupling with p-nitrophenol in the 

presence of benzyltrimethylammonium bromide gave 35 in a 65% yield, followed by a 

quantitative Zemplen deprotection of acetyl groups (36). In order to obtain the monosaccharide 

39, a trityl (Tr) group was introduced as temporal protection of the primary 6-OH in p-

nitrophenyl-β-D-galactopyranose (PNPG). Initially, the protection of 6-OH was attempted by  

reaction of 36 with triphenylmethyl chloride in DMF in the presence of DMAP by adopting 

procedure described by Chaudhary et al. 
208

, but not complete conversion of 36 was observed. A 

further tritylation of 36 in pyridine, followed by in situ benzoylation using procedure described 

by Ekborg et al.
209

 was more efficient yielding 38 in 85% after 2 steps
209

. Although the authors 

reported the efficient detritylation of crude 38 within 30 min on a steam bath using 90% 

CH3COOH/H2O, similar results could not be achieved with this method. A longer deprotection 

time (up to 4h) and more solvent as compared to reported volume were required instead to 

completely deprotect the trityl derivative 38. Thus, the original procedure was modified 

accordingly and finally 39 was obtained in 65% yield. This derivative has been further used as a 

building block for the synthesis of CA-5 and CA-6 containing alkyl spacer of variable length 

connecting MR chelate and sugar unit. 
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Scheme 9. a) Benzyltrimethylammonium bromide, K2CO3, CHCl3, 48 h; b) 1) Ph3Cl, DMAP, 

DMF, 24 h; 2) Ph3Cl, pyridine, 3 days; c) BzCl, pyridine 24 h; d) 90 % H2O/CH3COOH, 60°C, 

4-5 h; e) 1,5-dibromopentan or 1,9-dibromononane, NaH, DMF, conditions see Table 1; f) 

cyclen, CHCl3, rt-60°C, g) BrCH2COOMe or BrCH2COOEt, K2CO3, DMF, 55°C; h) cyclen, 

BrCH2COOEt, CHCl3, Na2CO3; i) K2CO3, DMF, 55°C; j) 1)NaOMe, pH=10-11 2) 1M NaOH aq 

k) GdCl3xH2O, 3 days, rt. 
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A compromise had to be found, in exploring reaction conditions and protecting groups, which 

will facilitate an ether formation, but at the same time can be removed without affecting the β-

glycosidic bond and p-nitrophenyl group (PNP). The favored benzyls or O,O-acetyls as 

protecting groups of 3,4-hydroxyls of galactose assisting the formation of ether bond at C-6 

position under basic condition (i.e. NaH) could not be used, as their removal will affect β-

glycosidic bond or PNP. Therefore, benzoyl groups were selected since they should be 

sufficiently stable to enable the alkylation at C-6 position of PNPG under carefully applied basic 

conditions. Subsequently, pentyl and nonyl linkers were introduced via an ether bond formed at 

the primary hydroxyl group of the monosaccharide 39. Up to now, only few reports on the 

formation of tether alkylethers at the C-6 position of a galactose moiety can be found in the 

literature
157,158

. Commonly used approaches involve the reaction of an in situ generated alkoxide 

with a sterically unhindered substrate possessing a good leaving group (e.g. halides or sulfonate 

esters). The synthesis of 40 and 41 proved to be difficult and both derivatives were obtained only 

at modest yields of 35% and 14%, respectively. The problems associated with the synthesis of 40 

and 41 will be described below. A wide spectrum of reaction conditions, summarized in Table 1 

was tested in order to facilitate the formation of 40. In general, 1,5-dibromopentan was reacted 

with 39 in the presence of NaH using different reagent ratios, temperatures and reaction times.  

Entry NaH (eq) Br-CH5-Br 

(eq) 

Solvent Temp 

[°C] 

Time 

[h] 

Product 

[%] 

1 1.2 5 DMF 0-rt 3 - 

2 2 5 DMF 0-rt 6 - 

3 2 5 THF 0-50 6 - 

4 10 21 DMF -15-rt 0.5 - 

5 2 21 DMF 0-rt 0.5 - 

6 1.7 1.7/TBAIcat DMF 0-rt 24 traces 

7 2 10 DMF -10-rt 0.5 traces 

8 3 21 DMF -15-rt 0.5  14 

9 3 21 DMF -30-rt 25 min 35 

 

Table 1. Optimization of reaction conditions carried out for the formation of 40.  
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Initially only one or two equivalents of base were applied (Entry 1 and 2), but the product 7 

could not be obtained as monitored by LC-MS and TLC. When the solvent was changed to THF 

and temperature was increased (Entry 3), the color of reaction mixture turned to dark brown 

similarly like in case of long reaction time indicating to a degradation of the starting material. 

Mariner et al. 
210

 reported on an efficient formation of an ether bond at the 2-OH position of a 

thiogalactoside derivative in a reaction using a large excess of 1,4-dibromobutane and NaH. This 

procedure was adopted for the synthesis of 40. However, a very rapid decomposition of starting 

material 6 occurred under these conditions. It was assumed, that at lower temperature 6 should 

be more stable in the presence of a strong base. Subsequently, sodium alkoxide of 40 was 

generated at -15ºC and reacted with 1,5-dibromopentan at room temperature (Entry 4). This 

attempt gave insufficient result similarly like for the next reaction carried out with a little excess 

of NaH (Entry 5), where 40 was also not formed. Further on, as presented in Entry 6, TBAI was 

added as catalyst, which is known to increase the solubility of alkoxides. Nevertheless, only 

traces of 40 were observed with a large amount of remaining starting material 39. Considering, 

that a better stability of 39 was observed at low temperature, its conversion towards 40 was 

approached by generating an alkoxide with 2 eq of base at -10°C and followed by adding the 

alkylating agent with a subsequent increase in temperature (Entry 7). With this approach only 

traces of 40 were isolated, but 6 was still present. Therefore, the excess of NaH was slightly 

elevated and the temperature was further decreased. Thus, the synthesis of 40 was ultimately 

accomplished by activating 6 with NaH (3 eq) at -15 and -30ºC leading to 14% and 35% of 

isolated product, respectively. The potential product of bromine elimination 7a (assumed due to 

the corresponding ion mass peak in ESI-MS) was observed increasing in amount at extended 

reaction time (1 h). In summary, the formation of an ether bond at the primary hydroxyl group of 

6 appeared to be difficult. This problem had already been explored in Ziegler’s group, where a 

number of methods were examined towards O-alkylation at the C-6 position of monosaccharides 

with despondent results
211

. The low yield of 40 can be attributed to many factors. An excess of 

NaH was required to facilitate the formation of an ether bond, but at the same time caused 

competitive elimination of bromine from 40. In addition, although heating and long reaction 

times should help in the conversion of 39 towards 40, both factors induced decomposition of 39 

under the applied conditions. The optimized procedure established for the synthesis of 40 was 

further used to obtain 41 (longer linker) with a yield of 14%.  
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The following incorporation of the MR chelate in 40 or 41 could be approached via the primary 

formation of mono-substituted cyclen and afterwards introduction of protected carboxymethyls 

into the macrocycle (Scheme 9, f and g) or alternatively, a pre-synthesized tri-substituted DO3A 

derivative could be coupled (Scheme 9, i). The latter strategy was initially selected for the 

synthesis of 44. Selective and high yield alkylation of cyclen is a vital prerequisite to obtain its 

pure derivatives in order to avoid the difficult separation of the side-products, mainly tetra-

substituted cyclen in case of DO3A. The methyl ester was initially selected as protection for the 

carboxylate groups of DO3A since the ester can be easily cleaved under mild base-catalyzed 

conditions. However, an attempt to alkylate the cyclen with methyl bromoacetate to obtain 

DO3A (tris-methyl ester) 43a resulted in the mixture of 43a and tetra-substituted cyclen, which 

could not be separated by a column chromatography (traces of the side product seen in 
1
H-NMR 

and ESI-MS spectra). This was probably due to the low steric hindrance introduced by methyl 

esters and a fast alkylation rate leading to a poor selectivity as compared to the formation of 

DO3A(tris-tert-butyl ester) using tert-butyl bromoacetate. As consequence, the synthetic strategy 

was changed. 40 (1eq) was reacted with an excess of cyclen (8 eq) in chloroform for 8 h at room 

temperature (to avoid formation of disubstituted by-product), followed by heating to 60ºC in 

order to increase its conversion to 42. Next, the excess of cyclen was removed by extraction with 

water/DCM and the crude intermediate 42 was further alkylated with methyl bromoacetate in the 

presence of sodium carbonate yielding 44 in 40% in two steps. Thus, it was concluded, that even 

the preliminary chosen methyl groups are optimal due to their easy deprotection, the synthesis of 

methyl protected MR chelate appeared to be difficult. In an attempt to the further increase the 

reaction yield, ethyl esters were introduced since a synthesis of DO3A (tris-ethyl ester) 43 was 

already described in the literature
212

. Thus, 43 was obtained in 60% by reacting of cyclen with 

ethyl bromoacetate in the presence of sodium bicarbonate in chloroform at -10°C with slow 

increase to room temperature to facilitate the formation of tree-substituted DO3A. Afterwards, 

43 was reacted with 40 to give 45 in 85% yield. Thus, a significant increase in the overall yield 

was observed in comparison to the methyl ester protected derivative 43a. Since this procedure 

proved to be optimal, 46 was synthesized in the same way. Accordingly, 41 was reacted with 43 

in the presence of potassium carbonate with heating for 24 h at 55ºC giving 46 in 70% yield. 

Subsequently, the benzyol groups were removed by stirring of 45 or 46 with sodium methoxide 

in methanol at pH 10-11. Next, the ethyl esters were deprotected by dissolving the crude 
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intermediate in ultrapure water and slowly adding 1N NaOH (pH ~10-11). The progress of the 

reaction was monitored by ESI-MS and after the ethyl esters deprotection was completed, pH 

adjusted to 7, the samples were concentrated and purified by RP-HPLC using MeOH/water and 

lyophilized to yield 55% and 40% of 47 and 48, respectively.  

The complexation with GdCl3 (ligand: metal ratio 1:0.9) was carried out in ultrapure water with 

stirring at room temperature for 3 days. The pH of the solution had to be maintained in the range 

of 6.5-7 since at lower pH precipitation of 47 and 48 was observed. Crude CA-5 and CA-6 were 

purified by RP-HPLC using acetonitrile/water as mobile phase and characterized by ESI-MS. 

The molecular ion peaks measured in the positive mode with the characteristic isotopic pattern of 

gadolinium containing compounds were consistent with the molecular weight of CA-5 and CA-

6. The obtained conjugates were further evaluated for their relaxometric properties and as 

substrates for β-galactosidase. 

 

3.2.2 In vitro relaxometry studies of CA-5 and CA-6 

Relaxivity studies of CA-5 and CA-6 were performed at 128 MHz (3T) and room temperature. 

The longitudinal relaxation times T1 were measured for six different concentrations of contrast 

media in the range of 5-40 µM. The relaxivity was found to be 9.01 mM
-1

s
-1

 for CA-5 and 

unexpectedly only 1.68 mM
-1

s
-1

 for CA-6. This result could be explained by the precipitation of 

CA-6 observed in the samples after the measurements leading to an error in acquired r1 values. 

Thus, it was not possible to measure r1 of CA-6 correctly. The lower solubility of CA-6 in water 

associated with long hydrophobic nonyl linker was probably responsible for observed 

precipitation.  
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3.2.3 Evaluation of enzymatic activity of β-galactosidase on CA-5 and CA-6 

In order to investigate the influence of the modification at the C-6 position of the PNPG 

substrate, its analogs CA-5 and CA-6 were examined as substrates for β-galactosidase. 

Enzymatic activity on CA-5 and CA-6 was measured by monitoring the formation of the 

released p-nitrophenoxide anion at 405 nm at 37ºC with unmodified PNPG as reference. The 

obtained results (Fig 19) demonstrated that a substitution of the hydroxyl group at C-6 position 

of the galactose moiety caused a decrease of catalytic rate for CA-5 and CA-6 as compared to 

PNPG.  

Nevertheless, such modifications still allowed enzymatic hydrolysis of CA-5 and CA-6 although 

at a slower rate as compared to PNPG. The relative enzymatic activity for CA-5 and CA-6 were 

determined to be 20±2% and 10±2% (means ±SEM, n=4) of β-galactosidase activity on PNPG 

(Fig 1b). The more rigid CA-5 derivative with a pentyl linker proved to be a better substrate for 

the enzyme as compared to CA-6. Thus, not only substitution but also the length of the linker 

incorporated between the MR chelate and the C-6 hydroxyl group had an influence on the 

enzymatic activity. Incorporation of the Gd-DO3A complex via an alkyl linker still allowed 

binding of these substrates to the active site of β-galactosidase. 
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Figure 19. β-galactosidase activity on CA-5, CA-6 and PNPG.  

a) Exemplary kinetic curves of PNPG, CA-5 and CA-6 b) Relative activity of β-galactosidase on 

CA-5 and CA-6 calculated by setting enzyme activity for PNPG to 100%. Values are means 

±SEM. β-galactosidase activity was measured in 96well plates in phosphate buffer containing 

MgCl2 , mercaptoethanol, and 553 μM of CA-5, CA-6 or PNPG as reference, at pH = 7.3 and 
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37°C. The release of the yellow p-nitrophenolate was detected in a multiplate reader at 405 nm in 

kinetic mode for 15 min.  

 

3.3 Influence of the aglycon moiety on enzymatic activity 

The broad tolerance of β-galactosidase regarding the aglycon moiety allows the attachment of 

various types of residues such as alkyl, aryl or another sugar (see introduction) into the galactose 

moiety at its anomeric center. However, the nature of the appended molecule has a strong  

influence on the catalytic rate of enzymatic reaction and enzyme-substrate binding affinity. Until 

now, the majority of the examined substrates for β-galactosidase were low molecular weight 

molecules
213,214

. As pointed out by Skold et al.
215

 many factors such as molecular weight and 

positive charge of substrate as well as ionic strength of the solution can significantly affect 

kinetics of the enzymatic hydrolysis for macromolecular substrates. In case of CA-1 and CA-2 

positively charged Tat peptides were attached at the anomeric center of the galactose moiety to 

be cleaved off leading to cellular retention of the MR/FR reporters. In order to investigate the 

effect of the peptide on the enzymatic activity, the model conjugate 54 was synthesized with Tat 

attached via the same spacer like in CA-1 but keeping the C6 position of the sugar unsubstituted. 

To evaluate the influence of the type of spacer between glycon and peptide as well as of the 

incorporation of FITC into peptide on the hydrolysis rate conjugates 54, 56 and 61 were 

synthesized and further examined as substrates for β-galactosidase. 
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Figure 20 . Galactose-linker-Tat49-57 conjugates. 

 

3.3.1 Synthesis of 54 and 56 

The galactose conjugates 54 and 56 were obtained by utilizing Fmoc mediated SPS strategy as 

shown in Scheme 10. First, side-chain protected D-Tat47-59 (17) and lysine linker containing 29 

were synthesized on the pre-loaded Wang resin as described in the chapters 2.2.2.2 and 2.2.4.2.1 

respectively. The galactose moiety 49 was obtained in 60% through deprotection of tert-butyl 

protecting group of 3. The Fmoc group was removed from the N-amino terminal of peptides 17 

and 29 (20% piperdine /DMF) followed by coupling of 49 (3 eq) activated using HATU (3 

eq)/DIPEA (6 eq) in DMF to a free amino function of peptide 17 for 3 h, to give the 

intermediates 50 and 51. Afterwards, the Dde group was removed from 51 by treatment with 2% 

hydrazine hydrate in DMF (2x), and FITC was coupled on the designated ε-amino group of 

lysine for 12 h (53). The complete molecules were cleaved off the resin using TFA/TIPS/m-

cresol/water (90: 2.5: 5: 2.5) simultaneously deprotecting the acid-labile amino acid side chains 

protecting groups of peptides. 
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Scheme 10. Synthesis of conjugates 54 and 56. 

Reagents and conditions: i) TFA/DCM (1:1 v/v); ii) 16, HATU, DIPEA, DMF, 3h; iii) TFA:m-

crezol:TIPS-H2O (90:5:2.5:2.5) iv) FITC, DIPEA, DMF; v) NH3/MeOH (7N). 

 

The released O-acetylated product 52 and 55 were preliminary purified by RP-HPLC and 

characterized by ESI-MS. Their O-deacetylation was carried out in saturated methanolic 

ammonia with monitoring the progress of reaction by LC-MS. The crude products 54 and 56 

were purified by RP-HPLC and characterized by ESI-MS (Fig 21 and 22). The detected 
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molecular ions were consistent with the calculated mass of desired product (1573.81 g/mol and 

2091.36 g/mol for 54 and 56 respectively). 
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Figure 21. ESI-MS spectrum of 54 (positive mode). 

Detected molecular ions m/z = 1575.2 ((M+1H)
1+

), 787.6 ((M+2H)
2+

), 525.4 ((M+3H)
3+

) were 

consistent with the calculated mass of the product (1573.81 g/mol). 
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Figure 22 . ESI-MS spectrum of 56 (negative mode). 

Detected molecular ions m/z = 2089.5 ((M-1H)
1-

), 1044.7 ((M-2H)
2-

), were consistent with the 

calculated mass of the product (2091.36 g/mol). 
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3.3.2 Synthesis of 61 with an aryl linker 

Synthesis of 61 began with the galactose moiety 58 bearing an aryl linker for the attachment of 

peptide. In order to obtain such a carbohydrate building block first the nitrophenyl group of 35 

was reduced to amino function in a mixture of ethyl acetate/ethanol to give 25 in 70% yield. In 

the next reaction of 57 with succinic anhydride 58 was formed in 55% yield. Peptide 17 was 

synthesized on pre-loaded Wang resin as described in chapter 2.2.1.1 and the Fmoc group was 

removed with 20 % piperidine/DMF. The following conjugation of 58 (3 eq) activated with 

HATU (3 eq)/DIPEA (6 eq) in DMF to the free α-amino terminal of peptide gave the 

intermediate 59, which was further cleaved off the resin with a mixture of TFA/TIPS/m-

cresol/water (90:2.5:5:2.5). The acid-labile protecting groups of the amino acid side chains in the 

peptides were simultaneously removed in this step.  
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Scheme 11. Synthesis of 61. 
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Reagents and conditions: i) H2/Pd, EtOAc/EtOH (1:1 v/v), 5 h, rt;  ii) succinic anhydride, 

pyridine, 12 h, rt; iii) 20% piperidine/DMF,  10 min (2x) iv) HATU, DIPEA, DMF, 3 h; v) 

TFA:m-crezol:TIPS-H2O (90:5:2.5:2.5), 3 h; vi) NH3/MeOH (7N). 

 

The O-acetyl groups of 60 were removed with saturated methanolic ammonia (7N). The progress 

of deprotection was monitored by LC-MS. After the reaction was completed, the crude product 

was purified by RP-HPLC, lyophilized and characterized by ESI-MS (Fig 23). The detected 

molecular ions were consistent with the calculated mass of 61 (1692.93 g/mol). 
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Figure 23. ESI-MS Spectrum of ligand 61 (negative mode). 

Detected molecular ions m/z = 1690.9 ((M-1H)
1-

), 844.9 ((M-2H)
2-

), 1437.8 ((M-frag)-1H)
1-

)  

and 718.4((M-frag)-2H)
2-

), were consistent with the calculated mass of the product (1692.93 

g/mol). 

 

3.3.3 Evaluation of enzymatic activity on 54, 56 and 61 

The investigated galactose conjugates 54 and 61 do not contain a chromophore residue, which 

release upon enzymatic reaction could be easily detected due to the observed changes in the 

absorbance. Therefore, an alternative colorimetric assay described by Diepenbrock et al.
216 

was 

used to assess the enzymatic activity on 22 and 29 by quantitative determination of the formed 

galactose. The substrates were incubated first with β-galactosidase and reaction was stopped at 

various time points by removing the enzyme from samples by centrifugation using Nanosep 

Centrifugal Devices 10k with a MWCO 10000. Afterwards, the galactose content of these 

samples was determined using a two step procedure. In this method NADH was formed as result 

of the catalytic oxidation of galactose by D-galactose dehydrogenase, followed by its 

quantification in a second reaction with diaphorase, in which the colourless  
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p-iodonitrotetrazolium violet (INT) was transformed into a formazan showing an absorbance 

maximum at 492 nm. The amount of galactose was determined by using a galactose standard 

curve and was used to estimate the reaction rate of β-galactosidase at the indicated time points. 
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Figure 24. Colorimetric assay for determination of β-galactosidase activity. 

 

The conversion of 54 and 61 using this assay was measured with an initial starting concentration 

of 0.5 mM calculated by weight. The real concentration of these conjugates was determined 

fitting the curve and were found to be 0.3 mM and 0.4 mM for 54 and 61, respectively, (plateau 

phase, for details see Experimental part). The results demonstrated that the conversion rate of 54 

with the alkyl linker was relatively slow (0.0018 µmol/min) as compared to 61 (0.0227 

µmol/min) (Fig 25). Based on these results in can be concluded that linker incorporated between 

peptide and galactose has sidnificant influence on enzymatic conversion of such substrates. A 

longer incubation time of 6h with enzyme was required, for derivative 54 in order to observe its 

complete conversion to galactose and peptide. This might be attributed to the alkyl linker since 

most of low molecular weight substrates containing aryl groups are hydrolyzed faster as 

compared to alkyl-galactose or disaccharides
217,218

. On the other hand such an alkyl spacer as in 

54 introduced a higher flexibility near to the galactose moiety. That could potentially influence 

the binding efficiency between enzyme and 22.  
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Figure 25. Conversion of 54 and 61 by β-galactosidase measured at different time points.  

Conversion of 54 and 61 measured in the range of 0-18 h. Conjugate 54 reached plateau at ~ 0.03 

µmol corresponding to a real concentration of ~0.3 mM (instead of 0.5 mM), conjugate 61 

reached plateau at ~ 0.04 µmol corresponding to a real concentration of ~0.4 mM. 

 

In order to examine whether the presence of FITC in the molecule has an influence on β-

galactosidase activity, the derivative 56 was investigated.  
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Figure 26. Schematic illustrations of enzymatic hydrolysis for 56. 

 

Since the absorbance maxima of FITC and formazan are almost at the same wavelength, the 

above described assay could not be applied. Thus, the β-galactosidase catalyzed reaction with 56 
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after incubation for 0, 3 and 18 h (stopped like in case of 54 and 61) was monitored by an ESI-

MS (HCT Ultra, Bruker Daltonics, Bremen) with direct infusion alternating in positive and 

negative ion modus
*
. A complete conversion was observed already after 3 h at 37ºC (Fig 28). 

The detected molecular ions in mass spectra acquired from mixture before (Fig 27) and after 

enzymatic reaction (Fig 28) were consistent with the calculated mass of substrate 56 (2091.36 

g/mol) and the cleaved Tat-FITC residue (1928 g/mol).  
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Figure 27. ESI-MS spectrum of 56 in solution without β-galactosidase. 

Detected molecular ions m/z = 1046.7 ((M+2H)
2+

), 851.6 ((M-FITC)+2H)
2+

), 697.68 

((M+3H)
3+

), 568.32 ((M-FITC)+3H)
3+

) 523.73 ((M+4H)
4+

), 390 (FITC) consistent with the 

calculated mass of substrate (2091.36 g/mol). 
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Figure 28. ESI-MS spectrum after cleavage of 56 by β-galactosidase (incubation 3h). Detected 

molecular ions m/z=770.47 ((M-FITC)+2H)
2+

), 643.97((M+3H)
3+

), 482.21 ((M+4H)
4+

), 390.02 

(FITC) were consistent with the calculated mass of expected product Tat-FITC of enzymatic 

reaction (1928.21 g/mol). *in collaboration with Dr. Guido Sauer, MPI for Developmental Biology, Tuebingen.  
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In general, mass spectrometry provides a good alternative to colorimetric assays since the 

enzymatic activity can be followed based on the intensity ratio of detected ion mass peaks of 

substrate and product in the reaction mixture
219

. It was found, that the attachment of FITC to the 

peptide did not affect the enzymatic activity on 56 as compared to 54. These results showed that 

this method can also be used to monitor the enzymatic cleavage of CA-1. 

 

3.4 Evaluation of β-galactosidase activity on CA-1 

The studies presented in chapters 3.2.3 and 3.3.3 showed that modifications at the glycone part 

as well as the aglycone part of galactose moiety had a significant impact on the observed 

enzymatic activity of the β-galactosidase. These experiments assisted to establish the ESI-MS 

assay for the ultimate investigation of the activity of β-galactosidase on CA-1, which similarly to 

54, 56 or 61 does not contain chromogenic residues undergoing changes in absorbance upon the 

enzymatic reaction.  
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Figure 29. Expected products A (MW=1295.43) and B (1411.66 g/mol) as results of β-

galactosidase catalysed hydrolysis of CA-1.  

 

CA-1 was incubated with β-galactosidase at 37 ºC for defined time points (0, 0.5, 1, 3, 6 and 18 

h) after which the reaction was stopped like in case of 54. The obtained samples were further 

analyzed by ESI-MS. In the mass spectra of measured samples (Fig 30 and 31) a molecular ion 
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peak at 471.27 ((M+3H)
3+

) was detected, which apparently corresponds to the molecular weight 

of B (1411.67 g/mol). This assignment was supported by the fact, that an identical mass peak 

increasing with incubation time was observed in mass spectra of 54 after β-galactosidase 

reaction. Subsequently, in the mass spectra of samples after incubation of CA-1 with enzyme an 

increase in the intensity of ion mass peak 471.27 (B) was observed as compared to that of 673.0 

(CA-1), indicating to an enzymatic conversion of CA-1. The exemplary mass spectra of samples 

after incubation times of 0 min (Fig 30) and 1 h (Fig 31) presented below shows this change in 

intensities of the investigated molecular peaks of substrate m/z=673 ((M+4H)
4+

) and product 

471.27 ((M+3H)
3+

) with calculated ration between B and CA-1 equal 0.29 (B/CA-1) at 0 min 

and 1.01 (B/CA-1) at 1 h time points. 
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Figure 30. ESI-MS spectrum of sample of the immediately stopped β-galactosidase reaction (0 

min). Detected molecular ions m/z = 897.0 ((M+3H)
3+

),  673.0 ((M+4H)
4+

), 390 (FITC) 

consistent with the calculated mass of CA-1 (2688 g/mol). 
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Figure 31. ESI-MS spectrum of sample after incubation with β-galactosidase for 1h. 

Detected molecular ions m/z = 697.68 ((M+4H)
4+

), 390 (FITC) consistent with the calculated 

mass of CA-1 (2688 g/mol) and 471.27 ((M+3H)
3+

) apparently corresponds to molecular weight 

of B (1411.66 g/mol). 
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The enzymatic conversion was also investigated by gel shift assay. This method is based on the 

different mobility of molecules in acrylamid gel depending on their molecular size and charge. 

The obtained samples of CA-1 after incubation with enzyme for various time points were run on 

the gel (16.5%, Tris-Glycine SDS Page without urea) prepared as described by Fling & 

Gregerson
220

 followed by silver staining, which is commonly used to visualize proteins and 

peptides separated through electrophoresis
221

. The product B (Fig 29) was expected in case of an 

enzymatic cleavage of CA-1 by β-galactosidase. The gel separation of CA-1 and the potential 

hydrolysis product B is difficult due to the relative small differences in size of these conjugates. 

For that reason, a derivative NH2-k(FITC)-Tat49-57 (P) was used as reference, since its molecular 

weight (MW=1857.2 g/mol) is in the range between those of CA-1 and B allowing to assign 

developed bands on the gel according to their size. In the silver stained gel (Fig 32) an additional 

band of a peptide in the molecular weight range of B was observed in the samples incubated with 

enzyme for definite time (0.5-18 h). In addition, the intensity of this band, which apparently was 

not visible at 0 min, increased time dependently between 0.5-3 h, what should be expected as 

consequence of longer incubation of substrate with β-galactosidase.  

 

 

 

Figure 32. Gel shift assay of samples after incubation of CA-1 with β-galactosidase for indicated 

time points. CA-1 (MW= 2688 g/mol), P: NH2-k(FITC)-Tat49-57 (MW=1857.2 g/mol) used as 

standard, M: molecular weight marker (3496, 6500, 14200, 17000, 26600 g/mol). After 

electrophoresis gel was fixed and silver stained. 
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The similar slow increase in observed hydrolyzed product was seen in case of model derivative 

54 (data not shown). In case of the incubation of CA-1 with enzyme for 6 h and 18 h dark brown 

bands appeared on the gel in the high molecular weight range above CA-1. However, their origin 

could not be explained and requires further investigation 

The preliminary results obtained by ESI-MS and gel shift assay are comparable and apparently 

indicate that a slow conversion of CA-1 by β-galactosidase was taking place. The evaluation of 

the enzymatic activity for CA-1 proved to be difficult due to the complexity of its molecular 

structure and the several factors affecting its interaction with enzyme. Therefore, further studies 

are required to ultimately confirm these results and quantify the enzymatic activity.   

 

3.5 Summary & conclusions 

The in vitro evaluation of interaction between the cell-permeable CA-1 and targeted β-

galactosidase proved to be difficult. This was due to the complex molecular structure of CA-1 

comprising of MR and fluorescence reporters, the modified galactose moiety and cell-penetrating 

peptide. Each unit could potentially affect the enzyme activity towards hydrolysis of CA-1, 

dependent on the structure of glycon and aglycone. The series of model compounds with a 

modified galactose moiety (CA-5 and CA-6) or various types of aglycone residues were 

synthesized and evaluated as β-galactosidase substrates. This approach was based on “breaking 

down” the structural complexity of CA-1 into simpler and smaller elements in order to 

understand the influence of alternation in the molecule structure on its interactions with β-

galactosidase. It was demonstrated that the modifications at the C-6 position of galactose reduced 

the conversion rate as compared to PNPG standard substrate. However, the introduced changes 

were still compatible with enzymatic hydrolyzobility. CA-6 with a nonyl linker was a poor 

substrate for enzyme as compared to CA-5, showing that the length of the linker had a 

significant influence on the observed enzymatic activity. Thus, different spacers should be 

considered while designing an optimal substrate for enzymes.  

The enzymatic studies on the galactose-peptide conjugates 54, 56 and 61 demonstrated that the 

catalytic rate of the enzymatic reaction was strongly depending on the type of the linker 

connecting the anomeric center with the cell-permeable peptide. The derivatives with alkyl linker 

(22 and 24) required a longer time to be completely hydrolyzed. The slow hydrolysis of 54 most 

likely originated from the nature of this spacer as alkyl linker was cleaved generally slower in 
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comparison to aryl. It was observed that, the presence of a positively charged peptide affects the 

rate of enzymatic hydrolysis as compared to standard small size PNPG reference.  

The preliminary results for CA-1 indicated to its enzymatic conversion in the presence of β-

galactosidase. Nevertheless, further experiments are required to clearly confirm these findings 

and to quantify enzymatic activity.  

The results presented in this chapter showed, that a design of an efficient, cell permeable enzyme 

responsive MRI probe, which fulfills criteria for proper enzymatic activity, but also 

internalization and high relaxivity, is challenging. Modifications at the C-6 position of galactose 

mainly determined the interactions between β-galactosidase and CA-1. The type of the linker has 

a smaller influence on observed efficiency of enzymatic conversion as compared to alterations of 

the galactose moiety, but this impact is still substantial and should be taken into account when 

designing an optimal enzyme targeting probe. Further optimization of this first generation of β-

galactosidase targeted CAs was required in order to achieve their more efficient enzymatic 

conversion. Therefore, the synthesis of a second generation of such CAs is under progress in 

which the galactose moiety was not modified. The self-imolative linker connecting galastose and 

MR chelate was introduced and in the future cell penetrating peptides showing cytosolic and non 

vesicular distribution will be appended to this structure.  
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4.1 Introduction  

Multimodality imaging is a rapidly evolving field aimed at integrating the advantages of various 

imaging technologies (e.g. MRI, PET, SPECT, ultrasound, optical imaging), thus conquering 

their individual limitations to facilitate visualization of specific biological targets as well as 

biological pathways in vivo
222

. Hence, the development of suitable multimodal probes that 

incorporate two or more reporters visualized by different modalities emerges in many clinical 

and research areas
223

. Amongst the several multifunctional agents reported up to date
224,225

, those 

combining the benefits of MRI and optical technologies remain most popular. The 

complementarity of these two techniques originates from deep tissue penetration along with a 

high spatial resolution for MRI and exceptional detection sensitivity for optical methods. These 

advantages compensate for the inherent low sensitivity of MRI and the light scattering associated 

with optical imaging.  

A common approach to obtain dual-labeled reporter molecules involves the covalent attachment 

of a fluorescent molecule to T1- or T2-MRI contrast agents. The pioneering report on such dual 

MRI-optical probes was published in 1998 by Huber et al.
226

, where CAs based on a polymeric 

scaffold (polylysine or polydextran) containing numerous DTPA chelates were functionalized 

with the fluorescent dye tetramethylrhodamine (TRITC). These polymeric agents GRIP (Gd-

(DTPA)-tetramethylrhodamine-hydroxypropyl(D-lysine) and GRID (Gd-(DTPA)-

tetramethylrhodamine-aminedextran) were successfully applied in vivo to study embryonic cell 

lineage in Xenopus Laevis embryos. In further application of these probes stem cells were 

labeled with GRID prior to transplantation, what enabled the tracking of their migration in the 

rat brain into ischemic lesions 
142,143

.  

Besides Gd-based molecules, the use of T2-based contrast agents has been extensively explored 

as a valuable platform to obtain multimodal probes. Weissleder and coworkers
227,228 

first reported 

on dextran cross-linked iron nanoparticels (CLIO) derivatized with the cell permeable TAT 

peptide conjugated to FITC dye. Moreover, DTPA chelates were incorporated into the aminated 

dextran with purpose of radioisotope labeling. These triple-labeled particles showed an efficient 

cellular uptake in various cell lines and enabled in vivo mapping of progenitor cells. Further 

examples for the application of the multimodal and/or targeted CLIO nanoparticles as diagnostic 

tools include delineation of brain tumor boundaries using CLIO nanoparticles functionalized 

with a near-infrared fluorescent dye (Cy5.5)
229

, imaging of mucin-1 tumor antigen (uMUC-1) as 
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characteristic sign of tumorigenesis
230

, visualization of microvascular leakage as an indicator of 

insultis progression studied in mouse model of type 1 diabetes (T1D)
231

 and imaging of apoptotic 

cells via the detection of the lipid target phosphatidylserine (PS)
232

.  

An alternative strategy to achieve multimodality imaging involves the administration of a 

mixture of monofunctional probes that are chemically equivalent. This approach was utilized by 

Aime and coworkers to visualize stem cells that are labeled with Gd-HPDO3A and Eu-HPDO3A 

complexes (HPDO3A=1,4,7-tris[carboxymethyl]-10-[2'hydroxypropyl]-1,4,7,10-tetraazacyclodo 

decane) by means of MRI and fluorescence microscopy
233

. The presented brief overview clearly 

highlighted the importance of this rapidly evolving field as future direction of the imaging 

methodologies.  

The growing interest for the application of multimodality imaging in various research areas is 

indivisibly associated with the development of new multimodal probes. The commonly used 

protocols in the synthesis of Gd
3+

-based bimodal contrast agents utilize a stepwise strategy. 

Thus, MR ligand and optical reporter are introduced „one by one” to the main core structure 

followed by complexation with the lanthanide metal ion. Whereas this approach works well for 

small size molecules, an identical procedure for the synthesis of dual-labeled macromolecules / 

multivalent CAs, which contain numerous MR chelates or fast degrading bioactive molecules, 

appears to be rather more complicated. The major drawbacks can be summed up as follows: 

solubility problems, possible underloading or overloading of MR ligands with Gd
3+

, increased 

probability of non-specific binding of gadolinium inside macromolecular structures during 

complexation, stability as well as purity issues related to the number of synthetic 

transformations. To overcome some of these limitations, the design of pre-loaded bimodal Gd-

precursors, which can be directly attached to a desired macromolecule in a single conjugation 

step, appeared as a valuable alternative to the classical stepwise strategy. Subsequently, a model 

precursor CA-7 derived from the complex CA-4 was synthesized. Both paramagnetic complexes 

consist of Gd-DOTA derivative and fluorescein isothiocyanate (FITC). These commonly used 

synthons in MR and optical imaging are linked together via a lysine spacer. Complex CA-4 with 

a carboxylate group of lysine masked as methyl ester was initially designed as a bimodal, middle 

size contrast agents with potential cell-permeability. But it also proved later to be a feasible 

precursor of CA-7. Hence, the same synthetic strategy was utilized to obtain CA-4 and CA-7. 

Moreover, given that the r1 relaxivity of high molecular weight conjugates depends on the global 
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rotational correlation time further governed by the internal motions inside the molecule (see 

chapter 2), the α-amino group of lysine was preferentially selected over the ε-position for 

covalent attachment of the Gd-DOTA chelate while designing CA-7. The free α-carboxylate 

group of CA-7 was chosen as feasible functionality for its further coupling to other molecules. 

To demonstrate the applicability of such a dual-labeled precursor in the synthesis of bulky 

molecules, the pre-metallated chelate CA-7 was efficiently coupled to poly-L-glutamic acid 

(PGA) yielding the high molecular weight conjugate CA-8. This biodegradable and nontoxic 

anionic polymer has been commonly used as a macromolecular drug carrier
234

. In this chapter 

the synthesis, characterization as well as the biological evaluation and potential application of 

CA-4, CA-7 and CA-8 will be described.  
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Figure 33. Designed dual-labeled contrast agents. 
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4.2 Synthesis of conjugates CA-4 and CA-7  

The straightforward synthetic strategy to obtain the bimodal Gd
3+

 chelators CA-4 and CA-7 was 

established (Scheme12). At first, compound 62 was obtained with 59 % yield by coupling of 

DOTA tris(tert-butyl) ester 28 to the α-amino group of N-ε-carbobenzyloxy-lysine methyl ester 

hydrochloride in dry DMF using EDC/HOBt as activating agent and NMM base. Afterwards the 

N-ε-carbobenzyloxy group was removed from 62 by catalytic hydrogenation in a Parr-apparatus at 2 

bar over 10% Pd/C yielding 63. The incorporation of FITC into the ligand structure was approached 

by two ways. Initially, acid labile tert-butyl groups of 63 were deprotected using a mixture of 

TFA/DCM (6:4 v/v) and after co-evaporation with toluene, the crude intermediate 64 was reacted 

with FITC in water at pH 8.5 adjusted with aqueous  Na2CO3. However, as monitored by LC-MS 

only a very poor conversion towards compound 66 was observed. Thus, an alternative approach was 

utilized, where 63 was first reacted with FITC in DMF in the presence of DIPEA base. After that, the 

crude intermediate 65 was further deprotected using a mixture of TFA/DCM (6:4 v/v) for 12 h, co-

evaporated with toluene and purified by RP-HPLC as described in experimental section to give 66 

with 62% yield after 2 steps. The exact concentration of the ligand was determined by UV-VIS 

measurements before performing the loading with GdCl3 in order to avoid an excess of gadolinium in 

the sample. The complexation with the lanthanide was performed by stirring ligand 66 with GdCl3 

(ratio ligand: metal 1:0.9) in ultrapure water at 45 ºC for 12 h, followed by 2 days at room 

temperature. During the loading procedure, the pH of solution was maintained in the range of 6.5-

7.5 since precipitation of 66 at lower pH occurred. The crude product CA-4 was purified by RP-

HPLC using acetonitrile/water. In order to obtain a pre-metallated complex CA-7 for further 

conjugation to macromolecules, methyl ester protection was removed from carboxylate group by 

stirring a solution of CA-4 in water at pH 10 for 2 h followed by RP-HPLC purification and 

lyophilization of the obtained product. Both complexes were characterized by ESI-MS mass 

spectrometry. The molecular ion peaks measured in the negative mode with the characteristic 

isotopic pattern distribution for Gd3+ complexes were consistent with the molecular weight of CA-4 

(1090 g/mol) and CA-7 (1075 g/mol). 
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Scheme 12. Synthesis of CA-4 and CA-7 complexes 

Reagents and conditions: a) EDC, NMM, DMF, 0°C-rt ; b) H2/Pd , EtOH, rt; c) DCM/TFA 

1:1v/v, 0°C-rt, 12 h d) FITC, DIPEA, DMF, 12 h, rt; e) DCM/TFA 1:1v/v, 0°C-rt, 12 h f) 

GdCl3x6H2O, 40ºC/12 h, rt 2 days; g) water, 1M NaOH aq., (pH~10), 2 h. 
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4.3 In vitro relaxometry and cell studies of CA-4 

The longitudinal relaxation times T1 of water protons for various concentrations of CA-6 were 

measured in the range 5-40 µM at 128 MHz (3T) and room temperature. The real concentration 

of CA-4 was determined to be 70% by weight based on FITC absorption measurements at 485 

nm. This estimated concentration of the stock solution corresponded well to the gadolinium 

concentration obtained by BMS measurements. The determined relaxivity of CA-4 was 9.15 

mM
-1

s
-1

 and by this higher than that of the commercial available Gd-DOTA chelate (Dotarem
®
, 

4.0 mM
-1

s
-1

). This behavior related to neighboring effect of FITC was already discussed in 

Chapter 2.  

Given that lanthanide coordination complexes attached to hydrophobic chromophores could 

efficiently enter the cells as reported by Parker and collaborators
235,236

, CA-4 was further 

investigated for its ability to penetrate through the cell membrane. In vitro cell studies were 

performed, in which C6/LacZ cells were incubated with 10, 20 and 100 µM of CA-4 in complete 

medium for 18 h. Indeed, CA-4 proved to be cell-permeable as demonstrated by fluorescent 

spectroscopy (Fig 1a) with significant levels of intracellular accumulation at 100 µM, whereas at 

lower labeling concentrations of CA-4 only poor cellular uptake was detected. Importantly, no 

apparent cytotoxicity of CA-4 over the whole concentration range was observed as compared to 

control cells based on the Hoechst 33342 assay. Thus, this bimodal probe appeared to be well-

tolerated for cells. Moreover, Trypan blue was included in the washing protocol of the cells as 

efficient quencher of extracellular fluorescence (bound to outer cell membrane or found in dead 

cells). This assay allowed for quantification of exclusively intracellulary located CA-4 by means 

of fluorescent spectroscopy. The vesicular localization of CA-4 (displayed as green spots) 

around the nucleus (blue) as shown in Figure 34 was distinctly visible in fluorescence 

microscopic images, however, only at higher labeling concentration (100 µM) of CA-4 (images 

for lower concentration not shown). 
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Figure 34. a) Cell internalization of CA-4 into C6/LacZ cells measured by fluorescent 

spectroscopy. Cells were incubated with contrast agents at 10, 20 and 100 µM in medium 

containing serum for 18h. External fluorescence was quenched with Trypan Blue and subsequent 

washings with HBSS. b) Fluorescence microscopic images displaying the intracellular 

localization of CA-4 in C6/ LacZ cells after incubation for 18 h with CA at 100 µM in complete 

medium. Cell nuclei were counterstained with Hoechst 33342 Nuclei: blue (Hoechst 33342), CA: 

green (FITC fluorescence). The bar represents 20 µm.  

 

Subsequently, the effect of the cell-permeable conjugate CA-4 on the cellular relaxation rates 

R1,cell was examined. C6/LacZ cells were incubated for 18 h with 10, 20 and 100 µM of this 

Gd
3+

-complex and prepared for MR measurements as described in Chapter 2.2.4.3. Since only a 

faint uptake of CA-4 was observable at lower labeling concentrations of CA and because of the 

sensitivity gap between MR and optical techniques, only incubation for 18 h was chosen to 

achieve an efficient accumulation of CA in the cells. The obtained MR results clearly 

demonstrated the capacity of CA-4 to increase relaxation rates R1,cell in comparison to control 

cells (Fig 35). In harmony with the results obtained by fluorescent spectroscopy (Fig 34a), a 

small but statistically significant enhancement of R1,cell values (104% of control) was observed at 

10 and 20 µM labeling concentration of CA-4 with no difference between 10 and 20 µM. A 

more pronounced increase in R1,cell (115% of control) was detected after incubation with 100 µM 

of CA-4. 

In summary, conjugation of the Gd-DOTA based chelate to a methyl protected lysine-FITC 

residue resulted in the formation of the bimodal contrast agent CA-4 with the capacity to 
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penetrate the cell membrane and to increase the cellular relaxation rates R1,cell although to a much 

lower extent as compared to CPP-coupled CA-1 and CA-2. No influence on cell viability was 

detected even at the highest labeling concentration indicating that CA-4 was well-tolerated by 

the cells. Thus, MR and cell internalization studies clearly revealed a potential of CA-4 to serve 

by itself as a bimodal cell-permeable CA for optical and MR imaging of cells.  
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Figure 35. Cellular relaxation rate R1,cell in C6/LacZ cells after loading for 18 h with 10, 20 and 

100 µM of CA-4. After incubation cells were trypsinized, centrifuged and re-suspended in 1.5 

mL Eppendorf tubes at 2 × 10
7
 cells /500 µL in complete DMEM for MR studies. Control: cells 

were incubated with culture medium without CA. *p<0.05, ***p<0.001, statistically significant 

compared to control;  

 

4.4 Conjugation of pre-metallated CA-7 to poly(L-glutamic acid)  

Poly(L-glutamic acid), PGA, as biodegradable and nontoxic anionic polymer has been reported 

to be a valuable macromolecular drug carrier
237,238

. Its applicability in the preparation of MRI 

blood-pool agents used for imaging of vascular abnormalities has been recently shown 
239,240,241

. 

Although, many macromolecular MRI agents showed high relaxivities and increased blood 

retention sufficient for MRI examination, their application in clinical settings is still limited. The 
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reason is an incomplete or slow excretion from the body of currently existing MRI blood-pool 

agents, which raises safety issues regarding their toxicity
242

. In contrast, the polymeric PGA 

conjugated to Gd-chelates proved to be a valuable platform for developing a new class of 

macromolecular MRI CAs 
240

. It was demonstrated that due to PGA biodegradation no apparent 

toxicity was observed during in vivo examination. Consequently, PGA was selected as a model 

for macromolecular carrier to evaluate the applicability of pre-metallated complex CA-7. 

 

4.4.1 Synthesis of biomodal PGA-lysine-FITC/Gd-DOTA conjugate (CA-8) 

The PGA-lysine-FITC/Gd-DOTA complex (CA-8) was obtained via a two-step reaction utilizing 

the NHS based strategy as illustrated in Scheme 13. At first, CA-7 with a free carboxylate group 

was reacted for 20 min with NHS ester in the presence of EDC in aqueous 0.1 M MES buffer at 

pH= 5.5 to give the intermediate 67. The exact concentration of CA-7 was determined prior to 

the reaction in order to maintain the ratio of complex to EDC/NHS 1:1.5. Thus, a large excess of 

EDC/NHS reagents was avoided, which could otherwise lead to cross-coupling side reactions in 

the next step. The following conjugation of CA-7 N-hydroxysuccinimide ester to the α-amino 

group of anionic PGA polymer (average MW~15000g/mol) was carried out in 0.1 M MES at 

pH~6.5 for 3 h at room temperature. The obtained crude sample (MW~ 16075 g/mol) was 

dialyzed for 48 h in the dark using a Float-A-Lyser (Spectrum Laboratories, Inc., USA) dialysis 

system with MWCO of 2000 to remove salts and unreacted complex. Afterwards, the remains 

were lyophilized to give conjugate CA-8 with a yield of 72% with the content of CA-8 of 95% in 

the sample estimated by FITC absorbance). Thus, it was observed that a pre-loading strongly 

reduced salt contamination as compared to protocol applied for CA-1 and CA-2 were 30% of 

compound was present in the sample. 

The activation time of CA-7 with EDC/NHS had a large influence on its conjugation efficiency 

to PGA. In case of an initially applied procedure with 1 h activation time followed by 3 h 

reaction of intermediate 67 with PGA less CA-8 was found as determined by FITC absorbance. 

This observation was supported by the presence of CA-7 in the outer solution of dialyzed 

samples (analyzed by ESI-MS) indicating to an incomplete coupling of the semi-stable NHS 

ester to the anionic polymer. Hence, the protocol with the shorter activation time of CA-7 

showed to be optimal to facilitate the formation of CA-8. The obtained PGA-lysine-FITC/Gd-
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DOTA complex was further examined for its relaxometric properties as described in following 

chapter. 
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Scheme 13. Synthesis of the conjugate CA-8 

Reagents and conditions: a) EDC, NHS, 0.1 M MES, pH=5.5 b) 41, PGA, 0.1 M MES, pH=6.5 

 

4.4.2 In vitro relaxometry studies of dual-labeled CA-8 conjugate 

The paramagnetic properties of the high molecular weight conjugate CA-8 were examined at 128 

MHz (3T) and room temperature. The longitudinal relaxation times T1 were measured for six 

different concentrations of CA-8 in the range of 5-40 µM. CA-8 showed reproducibly a 

relaxivity of 12 mM
-1

s
-1

. Hence, a significant increase in r1 in comparison to CA-4 was observed 

as summarized in Fig 3. Apparently a covalent attachment of CA-7 complex to PGA resulted in 

an efficient decrease of the molecular tumbling rate, due to an increase in molecular weight, 

leading to the favorable gain in relaxivity. However, the obtained relaxivity of CA-8, even if 
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much higher than that of Gd-DOTA, was lower than expected with this large increase in 

molecular weight. This can be probably explained by too slow rotation of CA-8, that would be 

certainly profitable for r1 at low magnetic field (<1.5T) but for higher magnetic fields as the 

applied 3T, an increase of molecular weight may work in disfavor of observed r1 value as 

concluded by Caravan
24

. 
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Figure 36. Comparison of r1 values of CA-4, CA-8 and Gd-DOTA. 

In general, the established protocol using the pre-loaded bimodal complex CA-7 for conjugation 

with PGA proved to be an excellent strategy to achieve efficient labeling of macromolecules for 

MR and optical imaging. Moreover, in comparison to published data by Lu et al.
239

 for a PGA-

cystamine-Gd
3+

-DOTA conjugate the use of the pre-loading approach proved to be 

advantageous. As reported by the authors a large solubility problem occurred during the 

complexation of PGA-cystamine-DOTA with gadolinium due to formation of a precipitate after 

addition of GdCl3. The reason for this was an unspecific binding of the metal ions to the 

carboxylic groups of PGA. EDTA had to be applied to strip off PGA-bound Gd
3+

-metal. 

Furthermore, the described conjugate provided only a relaxivity of 2.5 mM
-1

s
-1

 per complex, 

hence, r1 was much lower as compared to the reported value for Gd-DOTA as pointed out by the 

authors themselves. This was probably attributed to an incomplete loading of the attached 

chelates in the molecule. Such problems were not observed during the synthesis of our model 
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PGA conjugate CA-8 since the gadolinium pre-loaded complex was used excluding problems 

associated with nonspecific binding and underloading of attached ligand.  

4.5 Summary & Conclusions  

A straightforward synthetic strategy was established to obtain middle-size complex CA-4. This 

dual-labeled imaging probe proved to be cell-permeable, however showing very poor uptake at 

low concentration typically used for CPP conjugated molecules. Thus, relatively high 

concentrations had to be applied to attain visible cellular accumulation. Such concentrations in 

the range of 50-100 µM were also typically used for literature reported middle size Gd-chelate 

with hydrophobic groups. On the other hand even if the observed internalization was modest a 

still statistically significant increase of cellular relaxation rates could be observed. This was 

probably due to relatively high relaxivity observed for CA-4, which enabled to acquire 

observable changes in R1,cell. The relaxivity of CA-4 was doubled as compared to Gd-DOTA, 

what can be ascribed to the potential neighboring effect of FITC and the higher rigidity in the 

close vicinity of the Gd-chelate. However, in order to understand this behavior in details 

additional relaxometric studies are required. Although high concentrations were applied, CA-4 

was still well tolerated by cells and therefore can be potentially used to for in vitro cell labeling 

protocols.  

The facilitative approach towards the synthesis of bimodal high molecular weight conjugates was 

established based on application of precursor CA-7. The very efficient coupling of this dual-

labeled and pre-loaded gadolinium complex to the macromolecular carrier PGA proved its utility 

for grafting into macromolecules (CA-8). The combination of attractive features ascribed to 

utilize precursor CA-7 derives from its pre-loading with Gd
3+ 

(elimination of nonspecific 

binding, under- or overloading), the incorporation of two imaging reporters for MR and 

fluorescent detection to targeted molecule in a single step, mild bioconjugation methods and easy 

synthesis. Morover as compared to standard procedure amount of salts in sample was 

significantly reduced. Therefore, the reported complex CA-7 holds a great potential for efficient 

and easy labeling of a wide range of organic and/or biomolecules such as proteins, dendrimers, 

antibodies, polymers etc. as illustrated in Fig 37. In order to explore a feasible scope of its 

application a conjugation to peptides and proteins as well as further modifications are under 

progress. 
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Figure 37. Potential applications of pre-metalated precursor CA-7.



Summary  

 

5. Summary  

The work presented in this doctoral thesis has been divided into three main sections. 

In the first part a multistep synthesis was established leading to the successful formation of 

bimodal intracellular MR contrast agents CA-1 and CA-2 based on the galactose moiety serving 

as enzymatically cleavable spacer between MR reporter and CPP. These conjugates showed 

advantageously high relaxivity and this phenomenon were investigated by relaxometric 

comparison with model conjugates CA-3 and CA-4. It was shown that increase in molecular 

weight and FITC neighboring mainly govern r1 of CA-1 and CA-2. The internalization studies 

by fluorescent spectroscopy and microscopy revealed intracellular localization of these 

conjugates. CA-1 showed substantially higher levels of intracellular localization in C6/LacZ 

cells expressing β-galactosidase. Although both CAs could efficiently enhance intracellular 

relaxation rates, their mainly endosomal entrapment hindered the interactions with cytosolic β-

galactosidase and only a tendency for higher accumulation in transgenic cell lines was observed 

by MR. 
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In the second phase of the work an influence of molecular structure on enzymatic activity of β-

galactosidase was investigated. In order to understand parameters that determine interactions of 

bulky intracellular MR contrast agents with targeted enzyme, a series of model molecules with 

introduced particular variations were synthesized and evaluated. Thus, an influence of the 

modification at glycon part (CA-5, CA-6) on β-galactosidase was elucidated by incorporation of 

MR reporters at C6 position of galactose moiety. Further in attempt to investigate an influence of 
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peptide as well as FITC incorporation via different spacer at C-1 position, a model conjugates 

54, 56 and 61 were synthesized. It was shown that substitution at C-6 position as well as the 

modifications at aglycone part decresed a rate of enzymatic reaction. 
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In the third phase of presented work on the base of experiences related to the complexity of 

synthesizing Gd-loaded dual-labeled bulky conjugates an efficient approach towards synthesis of 

such conjugates was established. The suitable precursor CA-7 was obtained, that integrated 

benefits of preloading approach and bimodality. In order to prove its applicability CA-7 was 

appended to macromolecular poly-L-glutamic acid (CA-8) using mild bioconjugation methods. 

In this chapter also middle size Gd
3+

 complex CA-4 bearing hydrophobic FITC residue was 

considered as potential intracellular CA, which eventually showed the ability to penetrate across 

cell membrane.  
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6. Experimental part. 

6.1 General remarks, materials and intrumentation 

All reagents and solvents were purchased from Acros Organics, Fluka, Sigma Aldrich, Merck 

and used without further purification unless otherwise stated. Tetraazacyclododecane (cyclen) 

was obtained from Strem Chemicals (Newburyport, USA). The Fmoc protected amino acid 

derivatives, 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluoro-phosphate 

(HBTU), and pre-loaded Wang resin were obtained from Novabiochem. 2-(1-H-7-

azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HATU) was purchased 

from McTony (Canada), dry, anhydrous solvents: N,N’-dimetylformamid (DMF), 

dichloromethane (DCM), acetonitrile (ACN) were purchased from Acros Organics as Sure-Seal 

bottles with molecular sieves. Water was purified using a Milipore Milli-Q Synthesis purifier.  

Thin Layer Chromatography (TLC) 

Aluminium sheet silica gel plates with 0.2-mm-thick silica gel 60 F254 (E. Merck, Germany) 

were used to run thin-layer chromatography using appropriate mobile phases as required. The 

compounds were visualized by UV254 light, were applicable, by charring with 5% H2SO4/EtOH 

(carbohydrates) or were developed in an iodine chamber (DOTA like compounds). 

 

High Performance Liquid Chromatography (HPLC) 

Analytical and semi-preparative reversed-phase high performance chromatography (RP-HPLC) 

were performed at room temperature on a Varian PrepStar Instrument (Australia) equipped with 

PrepStar SD-1 pump heads. UV absorbance was measured using a ProStar 335 photodiode array 

detector at 214 and 245 nm. Analytical RP-HPLC was performed in  

a Polaris C18-Ether column (4.6 × 250 mm, particle size 5 μm, particle pore diameter 100 Å, 

Varian, Advanced Chromatographic Solutions) and preparative RP-HPLC were performed in 

Polaris 5 C18-Ether column (21.2 × 250 mm, 5 μm, 100 Å, Varian Advanced Chromatographic 

Solutions, flow rate 10 ml/min) or Polaris C8-Ether column (250x100 mm, 5 μm, 100 Å). The 

compounds were purified by HPLC using one of the following two methods. In Method 1: the 

linear gradient was used with the mobile phase starting from 90% of solvent A (0.1% 

TFA/water), 10% of solvent B (0.1 % TFA/acetonitile) isocratic for 5 min and increased to 60% 

B in 20 min, moving to 90% B in 3 min, and 90 % B isocratic up to 30 min. Alternatively, in 
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method 2, the linear gradient was used with the mobile phase starting from 80 % of solvent C 

(0.05% TFA/water), 10% of solvent B (0.05% TFA/acetonitile) isocratic for 5min and increased 

to 60% B in 20 min, moving to 90% B in 3 min, and 90% B isocratic up to 30 min. The flow rate 

generally used for analytical HPLC was 1ml/min and 10 ml/min or 4 ml/min for a preparative 

HPLC. All the injected solutions were filtered through a nylon-66 Milipore filter (0.45mm) prior 

to purification. 

LC-ESI-MS 

The analysis of samples was performed using an in house built system consisting of analytical 

RP-HPLC Beckmann System Gold LC 126 (Germany) and ESI-MS SL 1100 system (Agilent, 

Germany). The LC system was equipped with 508 Autosampler. UV absorbance was measured 

using UV 168 detector at 214 and 245 nm. RP-HPLC was performed using a Polaris C18-Ether 

column (4.6 × 250 mm, particle size 5 μm, particle pore diameter 100 Å, Varian, Advanced 

Chromatographic Solutions). 

 

NMR spectroscopy 

1
H, 

13
C, DEPT, HH-COSY and CH-COSY spectra were recorded on a Bruker 300 MHz or 400 

MHz spectrometer (
1
H; CDCl3 internal reference at 7.27 ppm, DMSO at 2.5 ppm TMS at 0 ppm 

or D2O at 4.5 ppm); 75 MHz (
13

C, internal reference CDCl3 at 77.0 ppm, DMSO at 39.51 or 

TMS at 0 ppm). All measurements were performed at room temperature.  

 

Mass Spectrometry 

Electrospray ionization-mass spectrometry (ESI-MS) spectra were measured on SL 1100 system 

(Agilent, Germany) with ion-trap detection in positive and negative modes. HR-FT-ICR mass 

spectra were performed on APEX 2 spectrometer (Bruker Daltonic) with ESI.  

 

Optical Rotation 

Optical rotations were measured at 20ºC with Perkin-Elmer Polarimeter 341using a 1dm quartz 

cell.  

Preparative Column Chromatography 

Column chromatography was performed using silica gel 60 (70-230 mesh, Merck). The used 

eleuent were given in each procedure. 
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6.2 Experimental procedures 

2,3,4,6-tetra-O-acetyl-α-D-galactopyranoside bromide (1) 

Penta-O-acetyl β-D-galactopyranoside (32 mmol, 12.6 g) was converted to 1 using previously 

decribed procedure
243

. The product was obtained as colorless oil (12.4 g, 95%), which 

crystallized upon storage in the fridge.  

All spectral data was consistent with that reported in the literature 
244

  

 

2- (3-tert-butoxycarbonyl)ethyl-2,3,4,6-tetra-O-acetyl-β-D-galactopyranoside (2)  

Method 1: 

To 1 (10 mmol, 4.11 g) in dry DCM (100 ml) tert-butyl 3-hydroxypropionate (14 mmol, 2.05 g) 

and pulverized molecular sieves were added. A reaction mixture was stirred under nitrogen 

atmosphere for 10 min and temperature was decreases to -20ºC. Silver triflate (12 mmol, 3.08 g) 

was added and reaction was stirred for 1.5 h at -20ºC and further it was allowed to warm up to 

0ºC with continuing the stirring for next 6 h. The progress of conversion was monitored by TLC 

(Rf=0.4, hexane/ethyl acetate 3:1). After completion, the reaction mixture was diluted with DCM 

(250 ml), filtered through Celite 545 and washed thoroughly with DCM. The collected filtrates 

were washed with saturated aqueous NaHCO3, brine and water. The organic layer was dried over 

Na2SO4, filtered and concentrated under reduced pressure. The residue was purified by column 

chromatography on silica gel (hexane/ethyl acetate) to give 2.24 g (47%) of 3 as colorless syrup. 

 

Method 2: 

To a solution of 2 (9.3 mmol, 4.1 g) in dry DCM (320 ml) tert-butyl 3-hydroxypropionate (18.6 

mmol, 2.71 g) and pulverized molecular sieves were added. After being stirred for 1 h at room 

temperature under nitrogen atmosphere, a reaction mixture was cooled to -50ºC and NBS (24.18 

mmol, 4.3 g) was added followed by Me3SiOTf (1.82 mmol, 0.4 g). The stirring was continued 

for next 1 h at -50ºC at which substrate 2 was consumed as detected by TLC (Rf=0.4, 

hexane/ethyl acetate 3:1). The reaction mixture was diluted with DCM (200 ml), filtered through 

Celite 545 and washed thoroughly with DCM. The collected filtrates were washed with saturated 

aqueous NaHCO3, aqueous Na2S2O3, brine and water. The organic layer was dried over Na2SO4, 
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filtered and concentrated in vacuo. The residue was purified by column chromatography on silica 

gel (hexane/ethyl acetate) to give 2.9 g (65%) of 3 as syrup. 

 

[αD]
20

= -6.2°(c=1.0, CHCl3) 

1
H-NMR (400 MHz, CDCl3): δ= 1.45 (s, 9H, C(CH3)3) 1.97 (s, 3H, CH3CO), 2.05 (bs, 6H, 

CH3CO), 2.14 (s, 3H, CH3CO), 2.4-2.6 (m, 2H,), 3.75-3.96 (m, 1H, OCH2), 3.92 (pt, 1H, H-5, 

J=6.61 Hz), 3.98-4.11 (m, 1H, 1H, OCH2 ), 4.11-4.23 (m, 2H, H-6), 4.53 (d, 1H, H-1, J1-2=7.93 

Hz), 5.01 (dd, 1H,H-3, J3-4=3.4 Hz, J3-2=10.3 Hz), 5.15 (odd, 1H, H-2, J2-1=7.9 Hz, J2-3=10.4 

Hz), 5.98 (d, 1H, H-4, J4-3=3.4 Hz). 

13
C-NMR (100 MHz, CDCl3): δ= 20.40, 20.48, 20.49, 20.58 (CH3CO), 27.93 (C(CH3)3), 35.74 

(CH2), 61.15 (C-6), 65.36 (OCH2CH2), 66.93 (C-4), 68.58 (C-2), 70.51 (C-3), 70.80 (C-5), 80.57 

(C(CH3)3),  101.18 (C-1), 169.23, 169.95, 170.07, 170.09, 170.19 (COO). 

HRMS(EI) (±) for C21H32O12: [M+Na]
+

(calcd)= 499.17860, [M+Na]
+

(found)= 499.1788. 

Phenyl 2,3,4,6-tetra-O-acetyl-β-D-galactopyranoside (3). 

Penta-O-acetyl β-D-galactopyranoside (257 mmol, 100 g) was converted to 3 using previously 

decribed procedure
154

. The product was obtained as yellowish oil (79 g, 70%). The spectral data 

were consistent with that reported in the literature
245

.  

 

2- (3-tert-butoxycarbonyl)ethyl-β-D-galactopyranoside (4) 

A compound 2 (5.8 mmol, 2.76 g) was dissolved in dry MeOH (30 ml) and sodium methoxide 

was added (pH~9-10). A reaction mixture was stirred for 2 h at room temperature with 

monitoring a progress of deprotection by TLC (Rf= 0.3, 1:9 MeOH/CHCl3). After completion 

Dowex® 50Wx8-100 ion-exchange resin was added to neutralize pH of reaction mixture (pH~6-

7), which was further filtered and concentrated to give 4 in quantitative yield (1.75 g, 98% ) as 

syrup. 

[αD]
20

= -5.4°(c=1.0, CHCl3) 

1
H-NMR (400 MHz, DMSO-d6): δ= 1.43 (s, 9H, C(CH3)3), 2.45-2.55 (m, 2H, CH2), 3.20 (ps, 

1H, H-4), 3.27 (pd, 1H, H-2), 3.43 (pt, 1H, H-5), 3.46-3.58 (m, 2H, H-6) 3.6-3.71 (m, 1H, 2H, 

H-3, OCH2), 3.89-3.99 (m, 1H, OCH2),4.08-4.13 (m, 1H, H-1), 4.5-5.05 (obs, 4H, OH).  
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13
C-NMR (75 MHz, CDCl3): δ= 27.84 (C(CH3)3), 35.95 (CH2), 60.41 (C-6), 64.42 (OCH2), 

68.07, 70.50, 73.53, 75.27, 79.99, 103.62 (C-1), 170.39 (COO). 

ESI-MS (+) for C13H24O8 [M+Na]
+

(calcd)= 331.1, [M+Na]
+

(found)= 331.0. 

2-(3-tert-butoxycarbonyl)ethyl-6-O-tert-butyldimethylsilyl-β-D-galactopyranoside (5)  

Procedure 1:  

A compound 4 (0.72 mmol, 0.22 g) was dissolved in dry DMF (4 ml) and imidazole (1.7 mmol, 

0.12 g) was added. A reaction mixture was cooled to 0ºC and TBDMSCl (1 mmol, 0.15 g) was 

added portionwise. After 0.5 h at 0ºC a stirring was continued overnight at room temperature. 

The reaction mixture was poured into ice-cold water and aqueous layer was extracted with ethyl 

acetate (3x100ml), DCM (1x100ml). The combine dorganic layer were dried over Na2SO4, 

filtered and concentrated. The organic residue was purified by column chromatography on silica 

gel to give 0.07 g (30%) of 5 as sticky oil.  

Procedure 2: 

A solution of 4 (2 mmol, 0.61 g) in pyridine (10.4 ml) was cooled to -10ºC and TBDMSCl (3 

mmol, 0.45 g) was added portionwise. Triethylamine (3.2 ml) was added dropwise over 10 min 

and reaction mixture was stirred for 2 h at 0ºC followed by further stirring overnight at room 

temperature (under nitrogen atmosphere). A progress of silylation was monitored by TLC 

(Rf=0.7, 1:9 MeOH/ethyl acetate). The reaction mixture was poured into ice-cold water (300ml) 

and aqueous layer was extracted with DCM (4x200ml). The combined organic layers were dried 

over Na2SO4 and concentrated under reduced pressure. The obtained residue was purified by 

column chromatography on silica gel (ethyl acetate/hexane) to give 0.42 g (50%) of 5 as sticky 

oil.  

1
H-NMR (400 MHz, CDCl3): δ= 0.06 (s, 6H, SiCH3), 0.88 (s, 9H, SiC(CH3)3), 1.41 (s, 9H, 

C(CH3)3), 2.47-2.42 (m, 2H, CH2), 3.28 (ps, 1H) 3.56-3.77 (m, 3H) 3.85-3.94 (m, 1H) 4.09-4.15 

(pd, 1H) 4.40 (pd, 1H), 4.77 (pd, 1H), 4.82 (pd, 1H). 

13
C-NMR (75 MHz, CDCl3): δ= -5.03 (SiCH3), 18.23, 26.03 (C(CH3)3), 28.0 (C(CH3)3), 36.22 

(CH2), 62.76 (C-6), 64.75 (OCH2), 68.37, 70.57, 73.57, 75.35 (C-4, C-2, C-3, C-5) 80.08 

(C(CH3)3), 103.88 (C-1), 170.39. 

ESI-MS (+) for C19H38O8Si [M+Na]
+

(calcd)= 445.2, [M+Na]
+

(found)= 445.1. 
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Phenyl-1thio-β-Phenyl-1-thio-β-D-galactopyranoside (7) 

O-acetyl deprotection of 2 (150 mmol, 66 g) was carried out in dry MeOH (500 ml) in the 

presence of sodium methoxide. The progress was monitored by TLC. After completion reaction 

mixture was neutralized with Dowex ®50Wx8-100 ion-exchange resin (pH~6), filtered and 

concentrated to give 7 (40 g, 98%) in the form of oil. The spectral data were consistent with that 

reported in the literature
154

. 

m.p. 115-116°C (lit. 105-107°C)
 154

 

Phenyl 6-(O-tert-butyldimethylsilyl)-1-thio-β-D-galactopyranoside (8) 

To a solution of 7 (78.96 mmol, 21.5 g) in dry pyrdine (310 ml) TBDMSCl (118.4 mmol, 17.84 

g) was added portionwise, followed by Et3N addition over 20 min at -10 ºC under nitrogen. The 

reaction mixture was stirred at -10 ºC for 1 h, slowly warmed up to room temperature and stirred 

for next 20 h until the starting material was consumed as monitored by TLC (Rf= 0.9, MeOH: 

EtOAc 9:1). The mixture was diluted with DCM (400 ml), poured into the ice-cold water and 

extracted with DCM (4x). The combined organic layers were washed with NaHCO3 saturated, 

brine, dried over Na2SO4, filtered and concentrated. The organic residue was purified by column 

chromatography (hexane: ethyl acetate) to yield 4 as a yellow viscous oil (80%, 24.42 g).  

 

[αD]
20

= -45.6°(c=0.8, MeOH) 

1
H-NMR (300 MHz, DMSO-d6): δ= 0.05, 0.07 (2s, 2x3H, SiCH3), 0.9 (s, 9H, C(CH3)3, 3.37-

3.50 (m, 2H, H-2, H-3), 3.52-3.64 (m, 1H, H-5), 3.68-3.77 (m, 3H, H-6, H-4), 4.54 (pd, 1H, 

OH), 4.64 (d, 1H, J1-2=9.1 Hz, H-1), 4.97 (pd, 1H, OH), 5.18 (pd, 1H, OH), 7.20-7.36 (m, 3H, 

Ar-H), 7.45-7.51 (m, 2H, Ar-H) 

13
C-NMR (75 MHz, DMSO-d6): δ=-5.28, -5.44 (SiCH3), 17.98 (C(CH3)3), 25.81(C(CH3)3), 

62.89 (C-6), 68.50, 69.16, 74.56 (C-4, C-2, C-3), 79.04 (C-5), 87.80 (C-1), 126.03  128.71, 

129.07, 135.72 (ArH). 

HRMS (EI) (±) for C18H30O5SSi: [M+Na]
+

(calcd)= 409.14754, [M+Na]
+

(found)= 409.14752 
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Phenyl 2,3,4-tri-O-(4-metoxybenzyl)-6-(O-tert-butyldimethylsiloxypropyl)-1-thio-β-D-

galactopyranoside (9) 

To a solution of 8 (32.8  mmol, 12.64 g ) and 4-methoxybenzyl bromide (115 mmol, 23 g, 16.6 

ml ) in anhydrous DMF (400 ml) at -10°C sodium hydride (115 mmol, 4.6 g, 60% dispersion in 

mineral oil) was added. The reaction mixture was stirred at -10°C for 30 min and next for 4 h at 

room temperature. The progress was monitored by TLC (hexane: ethyl acetate 1:1, Rf= 0.7). The 

reaction was cooled down to 0°C, diluted with cold water and extracted three times with diethyl 

ether, followed by ethyl acetate extraction. The combined organic layers were washed with water 

and brine, dried over Na2SO4, filter and concentrated under the vacuum. The residue was 

purified by column chromatography (ethyl acetate-hexane) to yield 9 as the yellowish, viscous 

oil (70%, 17.1 g). 

 

[αD]
20

= +1.6°(c=1.0, CHCl3) 

1
H-NMR (300 MHz, CDCl3): δ= 0.02, 0.03 (2s, 6H, SiCH3), 0.87 (s, 9H, C(CH3)3)), 3.40 (pt, 

1H, H-5, J=6.52), 3.54 (dd, 1H, H-3, J3-2= 11.9 Hz, J3-4= 2.64 Hz), 3.57-3.77 (m, 2H, H-6), 3.79, 

3.81 (os, 9H, CH3), 3.83-3.95 (m, 2H, H-4, H-2), 4.55 (d, 1H, J=11.4 Hz), 4.60 (d, 1H, H-1, J1-

2=9.63 Hz), 4.64-4.74 (m, 4H, OCH2), 4.90 (d,1H, J=10.95 Hz), 

13
C-NMR (75 MHz, CDCl3): δ= -5.51, -5.27 (SiCH3), 18.16 (C(CH3)3), 25.86 (C(CH3)3), 55.23 

(CH3), 61.72 (C-6), 72.44 (OCH2), 73.14 (C-4), 74.00 (OCH2), 75.18 (OCH2), 77.03 (C-2), 

78.96 (C-5), 83.92 (C-3), 87.79 (C-1), 113.51, 113.69, 113.77, 126.76, 128.69, 129.19, 129.30, 

129.36, 129.92, 130.42, 130.49, 130.63, 131.13, 134.51, 158.99, 159.17, 159.22 (ArH). 

HRMS (EI) (±) for C42H54O8SSi: [M+Na]
+

(calcd)= 769.32009, [M+Na]
+

(found)= 769.32018 

 

Phenyl 2,3,4-tri-O-(4-metoxybenzyl)-6-hydroxy-1-thio-β-D-galactopyranoside (10) 

1M solution of TBAF in THF (15.6 ml) was added dropwise at 0ºC under nitrogen to a 

suspension of compound 9 (22.35 mmol, 16.67 g) and pulverized molecular sieves (4Å) in 

freshly distilled THF (117 ml). The reaction mixture was allowed to warm up to the room 

temperature (~1 h) and stirred for 6 h. After the completion as monitored by TLC, the reaction 

mixture was filtered through Celite 545, which was washed sorely with ethyl acetate. The 

collected filtrate was concentrated under the vacuum and residue was re-dissolved in ethyl 
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acetate, washed with saturated aqueous NaHCO3 and water. The organic layer was dried over 

Na2SO4, filtered and concentrated in vacuo. The crude product was purified on silica gel by 

column chromatography using hexane/ethyl acetate as eluent (Rf =0.49, hexane: ethyl acetate 

1:1) to afforded 10 in 69% as a white foam. 

 

m.p. [120-121ºC]  

[αD]
20

= -2.4°(c= 0.8, CHCl3) 

1
H-NMR (300 MHz, CDCl3): δ= 3.35-3.3.52 (m, 1H, H-5, 1H, H-6), 3.55 (dd, 1H, H-3, J3-2= 9.3 

Hz, J3-4= 2.83Hz), 3.75-3.85 (m, 11H, H-6, CH3, H-4), 3.90 (pt, 1H, H-2, J=9.44 Hz), 4.56 (d, 

1H, OCH2, J=11.52 Hz), 4.62 (d, 1H, H-1, J1-2=9.63 Hz), 4.65-4.79 (m, 4H, OCH2), 4.88 (d, 1H, 

J=11.33 Hz), 6.82-6.94 (m, 6H, ArH), 7.14-7.37 (m, 9H, ArH), 7.48-7.57 (m, 2H, ArH). 

13
C-NMR (75 MHz, CDCl3): δ= 55.23 (CH3), 62.23 (C-6), 72.68 (OCH2), 72.74 (C-4), 73.64 

(OCH2), 75.26 (OCH2), 77.23 (C-2), 78.72 (C-5), 83.91(C-3), 87.75 (C-1), 113.71, 113.73, 

113.84, 127.06, 128.79, 129.21, 129.90, 130.27, 130.37, 130.45, 131.37, 134.08, 159.26 (ArH). 

HRMS (EI) (±) for C36H40O8S: [M+Na]
+

(calcd)= 655.23361, [M+Na]
+

(found)= 655.23398. 

Phenyl 2,3,4-tri-O-(4-metoxybenzyl)-6-((benzyloxycarbonyl)amino)propyl)-1-thio-β-D-

galactopyranoside (11) 

Sodium hydride (47.6 mmol, 1.9 g, 60 % dispersion in mineral oil) was added portionwise at -

10ºC to a solution of 10 ( 14.5 mmol, 9.16g) in DMF (95 ml) under nitrogen. The reaction 

mixture was stirred for 30 min. at -10ºC and N-benzyloxycarbonyl-3-bromopropylamine (58 

mmol, 15.8 g) dissolved in DMF (13 ml) was added. The stirring was continued at -10ºC for half 

an hour and then at room temperature. The progress of the reaction was monitored by TLC. After 

24 h the reaction mixture was cooled down to 0ºC, methanol (7 ml) was added slowly to destroy 

the excess of NaH, stirred for 10 min and diluted with ethyl acetate (250 ml). The reaction 

mixture was poured into ice-cold water, organic layer was separated and water layer was 

extracted with ethyl acetate (3x), DCM (1x). The combined organic extracts were dried over 

Na2SO4, filtered and concentrated in vacuo. The obtained residue was purified by silica gel 

column chromatography with hexane/ethyl acetate (5:1-3:1) as eluent (Rf= 0.6, hexane: ethyl 

acetate 1:1) to give 5.37 g (45%) of 11 after the purification as the white viscous oil. 
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 [αD]
20

= +6.8°(c= 0.9,CHCl3) 

1
H-NMR (300 MHz, CDCl3): δ=1.63-1.75 (m, 1H, CH2NH), 3.1-3.29 (m, 2H, CH2NH), 3.3-3.65 

(m, 5H, H-5, H-6, OCH2CH2, H-3, ), 3.7-3.95 (m, 12H, H-6, CH3, H-2, H-4), 4.54 (d, 1H, OCH2, 

J=11.33 Hz), 4.60 (d, 1H, H-1, J1-2=9.82 Hz)4.64-4.75 (m, 4H, OCH2), 4.88 (d, 1H, OCH2, 

J=11.33 Hz), 4.95-5.2 (2 os, 3H, PhCH2, NH)), 6.8-6.91 (m, 6H, ArH), 7.1-7.4 (m, 14 H, ArH), 

7.5-7.6 (m, 2H, ArH). 

13
C-NMR (75 MHz, CDCl3): δ= 22.60 (CH2), 38.86 (CH2NH), 55.22(CH3), 66.47 (C-6), 69.47, 

69.64 (OCH2CH2, OCH2Ph) 72.43 (OCH2),, 73.11 (C-4), 73.87, 75.20 (OCH2),  77.20 (C-2), 

77.30 (C-5), 83.92 (C-3), 87.77 (C-1), 113.55, 113.68, 113.78, 126.93, 128.0, 128.43, 128.69, 

129.16, 129.48, 129.89, 130.38, 130.53, 130.81, 131.34, 134.36, 136.61, 156.29, 159.07, 159.17, 

159.23 (ArH).  

HRMS (EI) (±) for C47H53NO10S: [M+K]
+

(calcd)= 862.30218, [M+Na]
+

(found)= 862.3021 

Phenyl 6-((benzyloxycarbonyl)amino)propyl-1-thio-β-D-galactopyranoside (12) 

Compound 11 (6.20 mmol, 5.2 g) was dissolved in DCM (90 ml) and water (3 ml) was added, 

followed by the DDQ (27.83 mmol, 6.32 g) addition. The reaction was stirred for 24 h at room 

temperature, diluted with DCM, filtered and washed with aqueous saturated NaHCO3, aqueous 

Na2S2O3 and brine. The organic layer was dried over Na2SO4, filtered and concentrated.  The 

residue was purified on silica gel by flush column chromatography (MeOH/DCM, Rf= 0.6 

MeOH: EtOAc 1:9) to yield 12 as white solid (1.7 g, 60%). 

 

[αD]
20

= -30.2°(c=0.9, MeOH) 

1
H-NMR (300 MHz, CDCl3): δ=1.51-1.7 (pm, 1H, CH2NH), 3.1-3.52 (m, 4H, CH2NH, 

OCH2CH2), 3.54-3.7 (m, 4H, H-3, H-5, OH), 3.72-3.41 (m, 5H, H-6, H-2, H-4, OH), 4.55 (d, 1H, 

H-1, J1-2=9.63 Hz), 5.04 (s, 2H, OCH2Ph), 5.25 (bs, NH), 7.2-7.38 (m, 8H, ArH), 7.45-7.55 (m, 

2H, ArH). 

13
C-NMR (75 MHz, CDCl3): δ= 29.72 (CH2), 38.15 (CH2NH), 66.64 (OCH2Ph)), 68.76 

(OCH2CH2), 68.94 (C-4), 69.54 (C-6), 69.97 (C-2), 74.78, 77.06 (C-5, C-3), 88.66 (C-1), 113.64, 

113.71, 127.53, 128.04, 128.46, 128.86, 131.74, 133.48, 136.48, 156.65 (ArH) 
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HRMS (EI) (±) for C23H29NO7S: [M+K]
+

(calcd)= 486.15569, [M+Na]
+

(found)= 486.15571 

Phenyl 2,3,4-tri-O-acetyl-6-((benzyloxycarbonyl)amino)propyl-1-thio-β-D-

galactopyranoside (13) 

Pyridine (13 ml) was placed in the flask (under nitrogen), cooled to -10ºC and acetic anhydride 

(10.7 ml) was added. Compound 12 (1.57 g, 3.4 mmol) was dissolved in 3 ml of pyridine and 

added dropwise to a solution of pyridine/acetic anhydride (6ml/6 ml 3:2 v/v). The reaction 

mixture was allowed to warm up to the room temperature and stirred overnight. The progress of 

reaction was monitored by TLC. After 24 h a reaction mixture was diluted with ethyl acetate 

(100ml) and poured into ice-cold water. The organic layer was separated and the water layer was 

extracted with ethyl acetate (3x 150 ml). Combined organic layers were dried over Na2SO4, 

filtered and concentrated. The organic residue was purified by column chromatography (silica 

gel, hexane/ethyl acetate 3:1-2:1) to give 13  (1.7 g, 85%) as a colorless syrup (Rf= 0.7, hexane: 

EtOAc 1:1 v/v). 

 

[αD]
20

= +2.0°(c=0.9, CHCl3) 

1
H-NMR (300 MHz, CDCl3): δ= 1.63-1.76 (m, 2H, CH2), 1.97, 2.09, 2.11 (3s, 3x3H, CH3CO), 

3.14-3.30 (m, 2H, CH2NH), 3.32-3.61 (m, 2H, H-6, 2H, OCH2CH2), 3.76-3.87 (m, 1H, H-5), 

4.72 (d, 1H, H-1, J1-2= 10 Hz), 4.99-5.18 (m, 4H, H-3, PhCH2, NH), 5.24 (dd, 1H, H-2, J2-1= 10 

Hz, J2-3= 10 Hz), 5.44 (pd, 1H, H-4, J3-4= 3Hz), 7.24-7.39 (m, 8H, ArH), 7.45-7.53 (m, 2H, 

ArH). 

13
C-NMR (75 MHz, CDCl3): δ= 20.55, 20.62, 20.81 (COCH3), 29.44 (CH2CH2NH), 38.30 

(CH2NH), 66.41 (PhCH2), 67.49, 67.73 (C-2, C-4), 68.60 (OCH2), 69.22 (C-6), 72.05 (C-3), 

77.75 (C-5), 86.59 (C-1), 127.97, 128.86, 132.74, 136.74 (Ar), 156.45 (NHCOO), 169.45, 

169.94, 170.34 (CH3CO). 

HRMS (EI) (±) for C29H35NO10S: [M+K]
+

(calcd)= 628.16133, [M+K]
+

(found)= 628.16124 

3-(2,3,4-tri-O-acetyl-6-((benzyloxycarbonyl)amino)propyl))-β-D-galactopyranos-1-yl)-

propionate (14) 

To a solution of 13 (2.6 mmol 1.53 g,) in dry DCM (90 ml) under nitrogen tert-butyl 3-

hydroxypropionate (5.2 mmol, 0.76 g,) in DCM (1 ml) and pulverized molecular sieves (4Å) 
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were added. The reaction mixture was stirred for 1 h at room temperature and then cooled down 

to -50ºC. NBS (6.72 mmol, 1.2 g) was added followed by Me3SiOTf (0.5 mmol, 0.11g) addition 

and stirring was continued for next 45 min at which time the substrate 13 was fully consumed as 

detected by TLC. The reaction mixture was diluted with DCM (150 ml), filtered through Celite 

545 and washed thoroughly with DCM. The collected filtrate was washed with saturated aqueous 

NaHCO3, aqueous Na2S2O3, brine and water. The organic layer was dried over Na2SO4, filtered 

and concentrated in vacuo. The residue was purified by column chromatography (silica gel, 

hexane/ethyl acetate 3:1, Rf= 0.45) to give 14 (0.81 g, 50%) as a colorless syrup. 

 

[αD]
20

= -6.9°(c=0.9, CHCl3) 

1
H-NMR (300 MHz, CDCl3): δ= 1.44 (s, 9H, C(CH3)3), 1.61-1.84 (m, 2H, CH2CH2), 1.97, 2.04, 

2.13 (3s, 3x3H, CH3CO), 2.28-2.62 (m, 2H, CH2COO), 3.08-3.63 (m, 6H, CH2O, CH2NH), 3.67-

3.87 (m, 2H, H-5, H-6), 3.93-4.10 (m, 1H, H-6), 4.48 (d, 1H, J1,2=7.7 Hz, H-1), 5.0 (dd, 1H, H-3, 

J3-2=10.4 Hz, J3-4=3.4 Hz), 5.09 (os, 2H, PhCH2O)5.11-5.27 (m, 2H, H-2, NH), 5.41 (d, 1H, H-4, 

J3,4=3.1 Hz), 7.24-7.43 (m, 5H, ArH) 

13
C-NMR (75 MHz, CDCl3): δ= 20.56, 20.65, 20.74 (COCH3), 28.04 (C(CH3)3), 29.43 (CH2), 

35. 83 (CH2) 38.41 (CHNH), 65.45 (CH2OC-6), 66.40 (CH2OC-1), 67.63 (C-4), 68.47 (C-6), 68.96 

(C-2), 69.35 (PhCH2O), 71.01 (C-3), 71.89 (C-5), 80.69 (C(CH3)3), 101.30 (C-1), 127.98, 

128.01, 128.44 (Ph), 136.77 (Ph), 156.46 (NHCO), 169.45, 170.05, 170.27 (CH3CO), 170.44 

(CH2COO) 

HRMS (EI) (±) for C30H43NO13: [M+NH4]
+

(calcd)= 643.30736, [M+NH4]
+

(found)= 643.30736 

3-((2,3,4-tri-O-acetyl-6-((N-9-fluoroenylmethoxycarbonyl)amino)propyl))-β-D-

galactopyranos-1-yl)-propanoic acid (16) 

To a solution of 14 (1.27 mmol, 0.56 g) in DCM (24 ml) a neat TFA (24 ml) was added  at 0ºC 

and the mixture was stirred at room temperature for 15 h, then evaporated and co-evaporated 

with toluene to give a mixture of crude 15 and partially deprotected intermediate  with remaining 

Cbz group. The organic residue was dissolved in ethanol (50 ml), 10% Pd/C (0.2 g) and few 

drops of formic acid (pH~4) were added. The reaction mixture was flushed with N2, then with H2 

and stirred for 8 h under a hydrogen atmosphere (2 bars). After flushing with nitrogen, the 

solution was filtered by Celite 545, sorely washed with ethanol and concentrated to give crude 
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15. This material was dissolved in the mixture of dioxane and water (90 ml, 1:1v/v) and solid 

Na2CO3 (3.0 mmol, 0.32 g) was added. The reaction mixture was ultrasonicated for 15 min, 

cooled down to 0ºC, Fmoc-OSu (1.9 mmol, 0.64 g) was added and stirring was continued for 

next 6 h. The reaction mixture was acidified with aqueous HCl to pH ~ 5, diluted with water and 

water layer was extracted three times with DCM. The collected organic layers were dried over 

Na2SO4, filtered and concentrated in vacuo. The organic residue was purified on silica by column 

chromatography (starting with DCM and slowly increased to 5% MeOH/DCM) to yield 0.5 g 

(64%) of 16 as greenish oil after three steps.  

 

[αD]
20

= +2.8°(c=1.0, CHCl3) 

1
H-NMR (300 MHz, CDCl3): δ= 1.65- 1.8 (m, 2H, CH2CH2NH), 1.97, 2.04, 2.14 (3s, 3x3H, 

COCH3,  2.53-2.69 (m, 2H, CH2COOH), 3.1-3.6 (m, 6H, CH2NH, CH2OCH2, Ha-6, Hb-6), 3.75-

3.94 (m, 2H, H-5, OCH2CH2COOH), 4.0-4.15 (m, 1H, OCH2CH2COOH), 4.17-4.29 (pt, 1H, 

CHFmoc), 4.32-4.57 (m, 3H, OCH2Fmoc, H-1), 4.95-5.09 (dd, 1H, J3-4= 3.2 Hz, J3-2= 10.4 Hz, 

H-3), 5.12-5.22 (dd, 1H, H-2, J2-1= 8.0 Hz, J2-3= 10.4 Hz), 5.3 (s, 1H, NH), 5.42 (pd, 1H, H-4), 

7.27-7.35 (t, 2H, Fmoc), 7.36-7.45 (t, 2H, Fmoc), 7.60 (d, 1H, Fmoc), 7.76 (d, 1H, Fmoc). 

13
C-NMR (75 MHz, CDCl3): δ= 20.53, 20.64 (COCH3), 29.36 (CH2CH2NH), 34.68 

(CH2COOH), 38.19 (CH2NH), 47.25 (CHFmoc), 65.37 (OCH2CH2COOH), 66.36 

(NHCOOCH2), 67.64 (C-4), 68.37 (C-6), 68.92 (C-2), 69.09 (CH2OCH2), 70.90 (C-3), 71.90 (C-

5), 101.57 (C-1), 119.91, 124.99, 126.98, 127.62, 143.91 (Fmoc), 156.62 (NHCO), 169.61, 

170.08, 170.52 (COCH3), 175.19 (COOH) 

HRMS (EI) (±) for C33H39NO13: [M+K]
+

(calcd)= 696.20530, [M+K]
+

(found)= 696.20540 

 

Synthesis of CA-1 and CA-2  

Solid phase synthesis of peptides 17 and 18 

Peptides were synthesized manualy using Heidolph Synthesis 1 synthesizer by the Fmoc SPPS 

method on the pre-loaded polysterene-based Wang resin containing Fmoc/Pbf protected arginine 

(loading 0.4 mmol/g). The resin (0.08 mmol, 200 mg) was initially washed with DCM (2x) and 

swollen for 30 min in DCM, followed by a further washing with DMF (6x). The Fmoc group 
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was removed by treatment with 20% piperidine/DMF (2x10 min). The resin was drained and 

washed with DMF (4x) after each deprotection and coupling step. The amino acids were coupled 

to the resin by adding a pre-activated mixture of an appropriate Fmoc-protected amino acid (4 

eq)[Fmoc/Boc-lysine, Fmoc/Pbf-arginine, Fmoc/Trt-glutamine, HBTU (3.6 eq)/HOBt (3.6 eq) in 

DMF (2 ml) and DIPEA (8 eq) and allowing the mixture to stir for 1 h under nitrogen.  All 

coupling steps were followed by a Kaiser test on the resin to indicate presence (deprotection) or 

absence (coupling) free amino group. The Fmoc-protected peptides D-Tat47-59 

(FmocR(Pbf)K(Boc)K(Boc)R(Pbf)R(Pbf)Q(Trt)R(Pbf)R(Pbf)R(Pbf)) and D-Tat59-47 (FmocR(Pbf)R(Pbf) R(Pbf) Q(Trt) 

R(Pbf) R(Pbf) K(Boc) K(Boc) R(Pbf)) bound to the Wang resin were obtained.  The aliquots of resin 

bound Fmoc protected D-Tat-peptides were cleaved with TFA/water/TIPS/m-cresol 

(90:5:2.5:2.5) and analyzed by ESI-MS. The observed masses were consistent with the 

calculated molecular weight (1560.9) of the D-Tat peptides.  

ESI-MS (+): m/z= 781.6 ((M+2H)
2+

) , 521.6 ((M+3H)
3+

) 

Conjugation of “sugar core” 16, 28 and FITC with D-Tat peptides 

The resin bound peptide was deprotected with 20% piperidine/DMF and washed thoroughly with 

DMF (6x). Coupling of sugar building block 16 was performed by adding of pre-activated 

solution of Fmoc protected compound 16 (3eq), HATU (3 eq) in DMF (3 ml) and DIPEA (6 eq) 

to the resin. After 3 h of coupling under nitrogen atmosphere, the resin was washed with DMF 

(4x). After Fmoc group deprotection of intermediate 19, Fmoc-Lys(Dde)-OH residue was 

coupled to the free amino group of sugar. The Fmoc-Lys(Dde)-OH (4eq) and HATU (4 eq) were 

dissolved in DMF (3 ml), DIPEA (8 eq) was added and resulting solution was added to the 

reaction mixture and was allowed to react for 3 h under nitrogen to afford 20. The Fmoc group 

was removed by treatment with piperidine and resin was washed with DMF (4x). Coupling of 

DOTA tris(tert-butyl) ester to the α-NH2 group of Lys was carried out by adding a pre-activated 

solution of HATU (4eq), DOTA tris(tert-butyl) ester (4 eq) in DMF (3 ml) and DIPEA to the 

resin and reacted for 24 h under nitrogen. The Dde group of intermediate 21 was removed by 

treatment with 2% hydrazine hydrate in DMF (2x4min) and FITC was reacted with ε-NH2 group 

of Lys (FITC (4 eq): DIPEA (8 eq), DMF (3ml)) within 12 h. All coupling steps were followed 

by a Kaiser test on the resin. 
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Cleavage of conjugates 24a, 24b from the resin   

The resin was washed with DMF (4x), DCM (4x) and MeOH (6x) and dried under vaccum. The 

resin attached conjugates 22 were cleaved off the resin with TFA/water/TIPS/m-cresol 

(90:5:2.5:2.5 v/v/v/v) cocktail for 4 h and washed with TFA. The crude product was precipitated 

with cold (-20ºC) tert-butyl methyl ether (MTBE). The obtained precipitant was washed with 

additional amount of MTBE (2x), centrifuged and re-suspended in neat TFA. After precipitation 

with cold MTBE and centrifugation, the crude product was dissolved in H2O/t-BuOH (2:1v/v) 

and lyophilized to afford crude 24a and 24b as the orange powder. These conjugates were 

purified by semi-preparative reversed phase HPLC column using a method A (flow rate 10 

ml/min). The obtained products were characterized by ESI-MS. The detected molecular ions 

were consistent with the calculated mass of 24a and 24b (2659.34). 

 

24a  

ESI-MS (+): m/z= 1331.2 ((M+2H)
2+

), 1136.1 ((M-FITC)+2H)
2+

), 887.8 ((M+3H)
3+

), 758.2 

((M-FITC)+3H)
2+

) 666.1 ((M+4H)
4+

), 390 (FITC) 

24b  

ESI-MS (+): m/z =1331.2 ((M+2H)
2+

), 887.8 ((M+3H)
3+

), 757.9 ((M-FITC)+3H)
2+

) 666.1 

((M+4H)
4+

), 390 (FITC) 

 

O-acetyl deprotection of 24a or 24b (23a and 23b) 

The acetyl protected compound (24a or 24b) was dissolved in dry MeOH, cooled to 0ºC and 

hydrazine hydrate (in the ratio 1:6 v/v with MeOH) was added slowly. The resulting reaction 

mixture was stirred at 0ºC for 30 min and then stirring was carried out at room temperature. The 

progress of the reaction was monitored by LC-MS system. After 12 h the reaction mixture was 

cooled to 0ºC and acetone was added slowly until resulting pH~5. The organic solvents were 

removed in vacuo. The obtained crude product 23a and 23b were re-dissolved in water, 

lyophilized and purified by semi-preparative RP-HPLC column using a method 1 (flow rate 10 

ml/min). The obtained fractions were collected and solvents removed under vacuum, followed by 

dissolving the sample in ultra pure water and lyophilisation. The obtained ligands 23a and 23b 

were characterized by ESI-MS. The detected molecular ions were consistent with the calculated 

mass of 23a and 23b products (2533.31). 



Experimental Part 

   110 

 

 

23a  

ESI-MS (+): m/z =1268.5 ((M+2H)
2+

), 1073.4((M-FITC)+2H)
2+

), 845.9 ((M+3H)
3+

), 716.2 ((M-

FITC)+3H)
2+

) 634.7 ((M+4H)
4+

), 390 (FITC) 

23b  

ESI-MS (+): m/z = 1268.5 ((M+2H)
2+

), 1074.4 ((M-FITC)+2H)
2+

) 845.9 ((M+3H)
3+

), 716.1 

((M-FITC)+3H)
2+

) 634.6 ((M+4H)
4+

), 390 (FITC) 

 

Preparation of Gd
3+

 complexes of ligands 23a and 23b (CA-1 and CA-2) 

The real concentration of ligand 23a, 23b was determined based on the absorbance of FITC. 

Ligand 23a or 23b (1eq) was dissolved in ultrapure water. The titrated solution of GdCl3x6H2O 

(0.9 eq) in water was added dropwise (pH was kept above 5.5 for the duration of the gadolinium 

addition). The pH was adjusted to 6-6.5 with 0.1M NaOH. The solution was stirred at 40 ºC for 

12 h and then stirring was continued at room temperature for 3 days. The pH was checked 

periodically and adjusted to 6.5. The reaction mixture was freeze dried and further purified by 

semi-preparative reversed phase HPLC column using a method 2 and 0.05% TFA in 

water/acetonitrile gradient as mobile phase (flow rate 4 ml/min).  The obtained product after 

lyophilization was characterized by ESI-MS with observed appropriate isotopes pattern. The 

detected molecular ions were consistent with the calculated mass of CA-1 and CA-2 

(2688.21g/mol). 

 

CA-1 

ESI-MS (-): m/z= 2687.0 ((M-H)
1-

), 1343.5 ((M-2H)
2-

). 

ESI-MS (+): m/z= 1345.6 ((M+2H)
2+

), 897.0 ((M+3H)
3+

), 767.6 ((M-FITC)+3H)
2+

), 673.0 

((M+4H)
4+

), 538.7 ((M+5H)
5+

), 390 (FITC) 

CA-2  

ESI-MS (+): m/z =1345.8 ((M+2H)
 2+

), 897.8 ((M+3H)
3+

), 768.6 ((M-FITC)+3H)
2+

) 390 (FITC) 
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Chemical structure of CA-1 
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Chemical structure of CA-2 

Synthesis of conjugate 34 

Peptide 17 was synthesized as described for 24a on pre-loaded Wang resin (0.08 mmol, 200 mg). 

Fmoc group was removed by treatment with 20 % piperidine/DMF (2x) and resin was washed 

with DMF. Next Fmoc-Lys (Dde)-OH pre-activated with HBTU (3.6 eq)/HOBt (3.6 eq) in DMF 
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(2 ml) and DIPEA (8 eq) was added and reaction was allowed to stir for 1 h under nitrogen 

atmosphere to give 18. The Fmoc group was further deprotected and Fmoc group of resin bound 

peptide 18 was deprotected with 20% piperidine/DMF and washed thoroughly with DMF (6x). 

Coupling of sugar building block 16 was performed by adding of pre-activated solution of Fmoc 

protected compound 16 (3eq), HATU (3eq) in DMF (3 ml) and DIPEA (6eq) to the resin. After 3 

h of coupling under nitrogen atmosphere, the resin was washed with DMF (4x). After Fmoc 

group deprotection of intermediate 30, DOTA tris(tert-butyl) ester was coupled to the α-NH2 

group of Lys by adding a pre-activated solution of HATU (4eq), DOTA tris(tert-butyl) ester(4eq) 

in DMF (3 ml) and DIPEA to the resin and reacted for 24 h under nitrogen. The Dde group of 

intermediate 31 was removed by treatment with 2% hydrazine hydrate in DMF (2x4min) and 

FITC was reacted with ε-NH2 group of Lys (FITC (4eq): DIPEA (8 eq), DMF (3ml)) within 12 h 

to give 32. All coupling steps were followed by a Kaiser test on the resin. The resin bound 32 

was cleaved off the resin by applying procedure described for 24a and 24b. The obtained crude 

33 was analyzed by ESI-MS and afterwards acetyl groups were deprotected accordingly to 

procedure described for 23a and 23b. The obtained 34 was purified by semi-preparative RP-

HPLC using a method 1 (flow rate 10 ml/min). The obtained fractions were collected and 

solvents removed under vacuum, followed by dissolving the sample in ultra pure water and 

lyophilisation. The ligand 34 was further characterized by ESI-MS. The detected molecular ions 

were consistent with the calculated mass of 34 (2533.31g/mol). 

 

ESI-MS (+): m/z = 1268.2 ((M+2H)
2+

), 1137.1((M-FITC)+2H)
2+

), 845.9 ((M+3H)
3+

), 716.0 

((M-FITC)+3H)
2+

) 634.6 ((M+4H)
4+

), 537.3 ((M-FITC)+4H)
4+

), 390 (FITC) 

Preparation of Gd
3+

 complexes of ligands 34 (CA-3) 

The complexation of 34 with titrated solution of GdCl3 was performed as described for CA-1 

and CA-2. After complexation was completed a reaction mixture was freeze dried and further 

purified by semi-preparative RP-HPLC column using a method 2 (flow rate 4 ml/min).  The 

obtained product after lyophilization was characterized by ESI-MS with observed appropriate 

isotopes pattern. The detected molecular ions were consistent with the calculated mass of CA-3 

(2688.21). 
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ESI-MS (+): m/z = 1346.2 ((M+2H)
2+

), 897.6 ((M+3H)
3+

), 767.4 ((M-FITC)+3H)
2+

), 672.7 

((M+4H)
4+

), 390 (FITC) 
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Chemical structure of CA-3  

1,4,7-tris-(tert-butoxycarbonylmethyl)-1,4,7,10-tetraazacyclododecane-10 acetic acid (28). 

To a solution of 26
165

 (20 mmol, 10.4 g) in dry acetonitrile (160 ml) under nitrogen potassium 

carbonate (31 mmol, 4.38 g) was added and reaction mixture was stirred for 30 min at room 

temperature. Next benzyl bromide (31 mmol, 7.1 g) was added dropwise with further stirring for 

15 h at room temperature. The reaction mixture was filtered and concentrated under reduced 

pressure. The obtained residue was purified by column chromatography on silica gel using 10% 

MeOH/DCM eluent to give 11.5 g (87%) of 27 as beige foam. To a solution of 27 (17 mmol, 

11.3 g) in MeOH (100ml) 10% Pd/C (1 g) was added and reaction mixture was vigorously 

shaked under hydrogen atmosphere (2 bar) for 5 h at room temperature. The reaction mixture 

was filtered by Celite 545, concentrated and obtained residue was purified by column 

chromatography using 10% MeOH/DCM eluent to give 6.8 g (70%) of 28 as slightly yellowish 

foam. The spectral data were in the agreement with that literature reported
165

. 
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p-nitrophenyl 2,3,4,6-tetra-O-acetyl-β-D-galactopyranoside (35) 

Potassium carbonate (50 mmol, 6.91 g) and benzyltrimethylammonium chloride (2 mmol, 0.37 

g) were added to dry chloroform (15 ml). After being stirred for 10 min at room temperature, p-

nitrophenyl (10 mmol, 1.39 g) was added and stirring was continued for next 30 min. Next, a 

solution of 1 (20 mmol, 8.22g) in chloroform (5 ml) was added and reaction mixture was stirred 

overnight at room temperature (under nitrogen atmosphere). The reaction mixture was diluted 

with chloroform (250 ml), neutralized with 1M HCl aq. and poured into ice-cold water. The 

layers were separated and organic layer was washed with water (1x), saturated NaHCO3 (3x) and 

brine (2x). The combined organic layers were dried over Na2SO4, filtered, concentrated and an 

obtained residue was crystallized from ethanol to give 3.0 g (65%) of 35 as yellowish fine 

powder.  

The obtained 
1
H-NMR and 

13
C-NMR were in the agreement with literature reported data

246
  

 

p-nitrophenyl β-D-galactopyranoside (36) 

To a solution of 35 (50 mmol, in dry MeOH (300 ml) sodium methoxide was added (pH~9-10) 

and reaction mixture was stirred for 2 h at room temperature with monitoring a progress of 

deprotection by TLC (Rf= 0.2, 1:9 MeOH:EtOH). After completion Dowex
®
50x8-100 ion 

exchange resin was added portionwise with stirring until pH was adjusted to ~6. The reaction 

mixture was filtered, resin washed sorely with MeOH and concentrated to give 36 with 

quantitative yield.  

The obtained 
1
H-NMR and 

13
C-NMR were in the agreement with literature reported data 

246
 . 

p -nitrophenyl 2,3,4-Tri-O-benzoyl-6-O-trityl-β-D-galactopyranoside (38) 

A 36 (26.56 mmol, 8 g) was tritylated and subsequently benzolyted accordingly to previously 

method described
209

. The crude product was crystallized from ethanol to give 20.4 g (90 %) of 

38 as slightly yellowish fine powder. The obtained spectral data were in the agreement with that 

literature described
209

. 

 

p-nitrophenyl 2,3,4-Tri-O-benzoyl-β-D-galactopyranoside (39) 

A 38 (12 mmol, 10.2 g) was dissolved in 90% acetic acid in water (200ml). After being stirred 

for 1.5 h at 60 ºC more of solution 90% acetic acid in water (200 ml) was added and stirring was 
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continued for the next 1 h. A progress of deprotection was monitored by TLC (Rf= 0.3, 1:4 ethyl 

acetate/toluene). The reaction mixture was cooled and solvents were removed by co-evaporation 

with toluene under reduced pressure. The obtained residue was purified by column 

chromatography on silica gel (ethyl acetate/toluene) to give 8.71 g of 39 (85%) as white foam. 

The obtained 
1
H-NMR and 

13
C-NMR were in the agreement with literature reported data

209
. 

m.p. 197-198°C. 

p-nitrophenyl ((2,3,4-Tri-O-benzyol)-6-O-(5-bromopentyl))-β-D-galactopyranoside (40)  

A solution of 39 (3 mmol, 1.83 g) in dry DMF under nitrogen (50 ml) cooled to -30ºC fresh 

sodium hydride (9 mmol, 0.36 g) was added. After reaction was stirred for 5min 1,5-

dibromopentane (62.55 mmol, 8.4 ml) was added to the solution and stirring was continued at -

30ºC for the next 5 min. At this point, a reaction flask was taken out of the cooling mixture and 

reaction was stirred for 15 min at room temperature with monitoring a progress of conversion  by 

TLC (Rf = 0.7 ethyl acetate/hexane 1:3). After that, a reaction was diluted with diethyl ether (200 

ml) and saturated NH4Cl (100 ml) was carefully added. The ether layer was washed with water 

(200 ml), after their separation, the aqueous lazer was further extracted with ethyl acetate 

(3x200ml). The combined organic layers were dried over Na2SO4, filtered and concentrated 

under reduced pressure. The residual syrup was purified by silica gel column chromatography 

(ethyl acetate/hexane) to give 0.8 g (35%) of 40 as syrup.  

 

[αD]
20

= +38.7°(c=1.0, CHCl3) 

1
H-NMR (300 MHz, CDCl3): δ=  1.2-1-1.75 (m, 6H, alkyl), 3.05-3.17 (m, 2H, CH2Br), 3.62-

3.73 (m, 1H, OCH2), 3.85-3.96 (m, 1H, OCH2) ,4.05 (dd, 1H, H-2, J2-1= 7.8 Hz, J2-3= 10 Hz), 

4.4-4.51(m, 1H, H-5, 1H, H-6a) 4.58-4.71 (m, 1H, H-6b), 5.26 (d, 1H, H-1, J1-2= 7.6 Hz), 5.24 

(dd, 1H, H-3, J3-2= 10 Hz, J3-4= 3.4 Hz), 5.94 (d, 1H, H-4, J4-3= 3.4 Hz) 7.1-7.2 (m, 2H, ArH), 

7.31-7.4 (m, 2H, ArH), 7.42-7.57 (m, 5H, ArH), 7.59-7.69 (m, 2H, ArH), 7.85-7.93 (m, 2H, 

ArH), 7.96-8.04 (m, 2H, ArH),8.06-8.15 (m, 4H, ArH) 

13
C-NMR (75 MHz, CDCl3): δ= 24.64 (CH2), 29.17 (CH2), 32.29 (CH2), 33.27 (CH2Br), 62.26 

(C-6), 68.03 (C-4), 71.90 (C-5), 72.71 (C-3), 73.33(OCH2), 77.05 (C-2),100.81(C-1), 116.56, 

125.72, 128.43, 128.54, 128.65 128.99, 129.12, 129.24, 129.61, 129.64, 129.91, 133.42, 133.58, 

133.69, 142.97, 161.42, 165.36, 165.39, 165.87 (ArH) 
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HRMS (EI) (±) for C38H36BrNO11: [M+Na]
+

(calcd)= 784.1364, [M+Na]
+

(found)= 784.1360 

p-nitrophenyl ((2,3,4-Tri-O-benzyol)-6-O-(9-bromononyl))-β-D-galactopyranoside (41)  

A solution of 39 (3 mmol, 1.83 g) in dry DMF under nitrogen (50 ml) cooled to -30ºC and fresh 

sodium hydride (9 mmol, 0.36 g) was added. After reaction was stirred for 7 min 1,5-

dibromopentane (62.55 mmol, 8.4 ml) was added to the solution and stirring was continued at -

30ºC for the next 5 min. At this point, a reaction flask was taken out of the cooling mixture and 

reaction was stirred for 15 min at room temperature with monitoring a progress of conversion  by 

TLC (Rf = 0.7 ethyl acetate/hexane 1:3). After that, a reaction was diluted with diethyl ether (200 

ml) and saturated NH4Cl (100 ml) was carefully added. The ether layer was washed with water 

(200 ml), after their separation, the aqueous layer was further extracted with ethyl acetate 

(3x200ml). The combined organic layers were dried over Na2SO4, filtered and concentrated 

under reduced pressure. The residual syrup was purified by silica gel column chromatography 

(ethyl acetate/hexane) to give 0.34 g (14%) of 41 as yellowish syrup.  

 

[αD]
20

= +43.6°(c=1.0, CHCl3) 

1
H-NMR (400 MHz, CDCl3): δ=  0.98-1.35 (m, 12H, alkyl), 1.37-1.52 (m, 2H, alkyl), 1.7-1.8 

(m, 2H, alkyl), 3.35-3.17 (t, 2H, CH2Br, J=6.82 Hz), 3.62-3.72 (m, 1H, OCH2), 3.85-3.95 (m, 

1H, OCH2) ,4.05 (dd, 1H, J2-1= 7.8, Hz, J2-3= 9.9 Hz), 4.42-4.57(m, 1H, H-5, 1H, H-6a) 4.63 

(odd, 1H, H-6b), 5.28 (d, 1H, H-1, J1-2= 7.6 Hz), 5.51 (dd, 1H, H-3, J3-2= 9.8 Hz, J3-4= 3.28 Hz), 

5.95 (d, 1H, H-4, J4-3= 3.28 Hz) 7.15 (d, 2H, ArH, J=9.09 Hz ), 7.36 (t, 2H, ArH, J=7.83 Hz), 

7.44-7.58 (m, 5H, ArH), 7.6-7.68 (m, 2H, ArH), 7.9 (d, 2H, ArH, J=7.33 Hz), 8.01-8.04 (m, 2H, 

ArH),8.06-8.12 (m, 4H, ArH) 

13
C-NMR (100 MHz, CDCl3): δ= 25.82, 27.93, 28.44, 29.04, 29.08 , 29.93, 32.60 (CH2),  33.95 

(CH2Br), 62.21 (C-6), 67.97 (C-4), 71.79 (C-5), 72.68 (C-3), 73.71 (OCH2), 76.86 (C-2),100.74 

(C-1), 116.49, 125.64, 128.31, 128.48, 128.59, 128.94, 129.12, 129.19, 129.59, 129.85, 133.28, 

133.53, 133.63, 142.82, 161.46, 162.45,  165.32, 165.81 (ArH). 

HRMS (EI) (±) for C42H44BrNO11: [M+Na]
+

(calcd)= 840.1999, [M+Na]
+

(found)= 840.1997 
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1,4,7-tris(carboethoxymethyl)-1,4,7,10-tetraazacyclododecane (43) 

Cyclen (10 mmol, 1.72 g) was added in dry chloroform (50 ml) containing sodium bicarbonate 

(10 mmol, 0.84 g). A mixture was stirred for 30 min and afterwards cooled to -20ºC. Ethyl 

bromoacetate (30 mmol, 5.01 g) was diluted with chloroform (5 ml) and added gradually 

dropwise to solution of cyclen. Afterwards a reaction mixture was allowed to warm up to room 

temperature and stirring was continued for 2 days at room temperature. Then, the reaction 

mixture was filtered and solvent was removed under reduced pressure. The obtained residue was 

purified on silica gel by column chromatography using MeOH/DCM as eluent (Rf= 0.45 1:9 

MeOH/DCM) yielding 2.6 g of 43 (60%) of as oil. 

The obtained 
1
H-NMR and 

13
C-NMR were in the agreement with literature reported data

247
. 

 

ESI-MS (+) for C20H38N4O6 [M+H]
+

(calcd)= 431.27, [M+H]
+

(found)= 431.3 

2,3,4-tribenzyol-6-O-(5-(1-(4,7,10-trismethylcarboxymethyl-(1,4,7,10-

tetraazacyclododecyl)))pentyl)-1-(p-nitrophenyl)-β-galactopyranoside (44) 

To a solution of cyclen (6.8 mmol, 1.17 g) in dry chloroform (160 ml) 40 (0.85 mmol, 0.73 g) 

dissolved in CHCl3 (10 ml) was added slowly dropwise at 0ºC. The reaction mixture was allowed 

to warm up to room temperature and stirring was continued for 8 h. After that, a temperature was 

increased and reaction was stirred overnight at 50ºC (12 h). The progress was monitored by ESI-

MS. Next, the reaction mixture was filtered through G-4 sintered funnel and collected filtrate 

was evaporated under reduced pressure. The obtained residue was dissolved in DCM, water was 

added (200 ml) and aqueous layer was extracted with DCM (4x150 ml). The organic layers were 

combined and dried over Na2SO4, filtered and concentrated under vacuum to give 0. 47 g of 42 

as yellow syrup that was used in the next step without purification. The derivative 42 was 

dissolved in dry acetonitrile (60 ml), sodium carbonate (2.28 mmol, 0.26 g) was added and the 

mixture was stirred for 20 min at room temperature under nitrogen atmosphere. Next, methyl 

bromoacetate (2.48 mmol, 0.26 g) was added dropwise and the reaction mixture was stirred for 1 

h at room temperature. After that temperature was increased and stirring was continued at 55ºC 

overnight. The progress of reaction was monitored by TLC (Rf= 0.5 10% MeOH/CH2Cl2) and 

ESI-MS. After completion, the reaction mixture was filtered and concentrated under reduced 
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pressure. The organic residue was purified by column chromatography on silica gel (eluent 

MeOH/CH2Cl2) to give 0.36 g (40%) of 44 as brownish syrup.  

 

1
H-NMR (300 MHz, CDCl3): δ= 1.1-1.6 (m, 6H, alkyl), 2.0-3.09 (m, 18H, CH2), 3.1-3.43 (m, 

6H, CH2), 3.55-3.8 (m, 9H, CH3, 1H OCH2), 3.87-3.98 (m, 1H, OCH2), 4.04 (pt, 1H, H-2), 4.42-

4.56 (m, 1H, H-5, 1H, H-6a) 4.58-4.67 (m, 1H, H-6b), 5.32 (d, 1H, H-1, J1-2= 8.7 Hz), 5.24 (dd, 

1H, H-3, J3-2= 9.8 Hz, J3-4= 3.02 Hz), 5.93 (d, 1H, H-4, J4-3= 3.02 Hz) 7.19 (d, 2H, J= 9.06 Hz, 

ArH), 7.33-7.41 (m, 2H, ArH), 7.42-7.58 (m, 5H, ArH), 7.59-7.68 (m, 2H, ArH), 7.89 (d, 2H, J= 

7.93 Hz, ArH), 8.02 (m, 2H J= 7.93 Hz, ArH),8.05-8.13 (m, 4H, ArH) 

13
C-NMR (75 MHz, CDCl3): δ= 24.03, 25.30, 29.52, 29.87 (CH2), 52.34, 52.53 (CH3COO), 

53.35, 53.78, 55.24, 55.77 (CH2), 62.14 (C-6), 67.89 (C-4), 71.70 (C-5), 72.58 (C-3), 73.65 

(OCH2), 77.09 (C-2), 100.51(C-1), 116.49, 125.61, 128.35, 128.41, 128.57, 129.49, 129.54, 

129.75, 133.36, 133.45, 133.65, 142.77, 161.36, 165.18, 165.27, 165.79 (ArH), 173.94, 174.62 

(COOCH3) 

ESI-MS (+) for C55H67N5O17: [M+H]
+

(calcd)= 1070.45, [M+H]
+

(found)= 1070.5 

2,3,4-tribenzoyl-6-O-(5-(1-(4,7,10-trisethylcarboxymethyl-(1,4,7,10-

tetraazacyclododecyl)))pentyl)-1-(p-nitrophenyl)-β-galactopyranoside (45) 

To solution of DO3A-(tris-ethyl) ester (0.6 mmol, 0.26 g) in dry DMF (40 ml) potassium 

carbonate (1.2 mmol, 0.17 g) was added. After the mixture was stirred for 20 min at room 

temperature, a solution of 40 (0.8 mmol mmol, 0. 62 g) in DMF was added and reaction mixture 

was stirred for 1h at room temperature, followed by stirring at 55ºC for 24 h. The progress of 

conversion was monitored by TLC (Rf= 0.4, 10% MeOH/CH2Cl2) and ESI-MS. After 

completion, the reaction mixture was filtered and concentrated under reduced pressure. The 

organic residue was purified by column chromatography on silica gel (eluent MeOH/DCM) to 

give 0.57 g (85%) of 45 as yellow gum.  

 

1
H-NMR (300 MHz, CDCl3): δ= 1.15-1.7 (m, 18H, alkyl, CH3), 2.0-3.75 (m, 25H, CH2, CH2O), 

3.85-3.98 (m, 1H, OCH2), 4.0-4.32 (m, H-2, CH2CH3), 4.43-4.55 (m, 2H, H-6, H-5), 4.57-4.75 

(m, 1H, H-6), 5.31 (d, 1H, H-1, J1-2= 7.55 Hz), 5.51 (dd, 1H, H-3, J3-2= 9.8 Hz, J3-4= 3.4 Hz), 
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5.92 (pd, 1H, H-4, J4-3= 3.2 Hz), 7.17 (d, 2H, J= 9.08 Hz, ArH), 7.30-7.7 (m, 9H, ArH), 7.89 (d, 

2H, J= 7.74 Hz, ArH), 7.99-8.23 (m, 6H, ArH). 

13
C-NMR (75 MHz, CDCl3): δ= 13.99 (CH3), 24.13, 25.38, 29.57, 29.92 (alkyl) 53.91, 55.36, 

55.93, 55.98 (CH2), 61.47, 61.66 (CH2), 62.18 (C-6), 67.91 (C-4), 71.80 (C-5), 72.62 (C-3), 

73.72 (OCH2), 77.15 (C-2), 100.65 (C-1), 116.54, 125.65, 128.40, 128.46, 128.62, 128.91, 

129.13, 129.20, 129.55, 129.59, 129.81, 133.39, 133.51, 133.70, 142.86, 161.41, 165.30, 165.82 

(ArH) 173.51, 174.23 (COO). 

HRMS (EI) (±) for C58H73N5O17: [M+H]
+

(calcd)= 1112.5074, [M+H]
+

(found)= 1112.5082 

 

2,3,4-tribenzoyl-6-O-(9-(1-(4,7,10-trisethylcarboxymethyl-(1,4,7,10-

tetraazacyclododecyl)))nonanyl)-1-(p-nitrophenyl)-β-galactopyranoside (46) 

A 41 (0.41 mmol, 0.33 g) was reacted with 43 (0.36 mmol, 0.15 g) using procedure described for 

45. The obtained residue was purified by column chromatography on silica gel (eluent 

MeOH/DCM) to give 0.29 g (70%) of 46 as yellow gum.  

 

1
H-NMR (300 MHz, CDCl3): δ= 1.14-1.87 (m, 23H, alkyl, CH3), 2.25-3.95 (m, 26H, CH2, 

OCH2), 3.97-4.35 (m, 7H, H-2, CH2CH3), 4.40-4.55 (m, 2H, H-6, H-5), 4.57-4.72 (m, 1H, H-6), 

5.30 (d, 1H, H-1, J1-2= 7.55 Hz), 5.51 (dd, 1H, H-3, J3-2= 10.1 Hz, J3-4= 3.4 Hz), 5.94 (pd, 1H, H-

4, J4-3= 3.4 Hz), 7.10-7.21 (m, 2H, ArH), 7.28-7.69 (m, 9H, ArH), 7.89 (d, 2H, J= 7.93 Hz, 

ArH), 8.15-8.78 (m, 6H, ArH). 

13
C-NMR (75 MHz, CDCl3): δ= 14.0 (CH3), 25.56, 25.71, 29.15, 29.49, 29.85, 31.24, 32.58 

(alkyl), 50.10, 52.98, 55.83, 56.0 (CH2), 62.61 (C-6), 67.92 (C-4), 71.63 (C-5), 72.63 (C-3), 73.6 

(OCH2), 76.78 (C-2), 100.62 (C-1), 116.42, 125.53, 128.22, 128.37, 128.50, 129.49, 129.74, 

129.47, 133.19, 133.41, 133.54, 142.71, 161.41, 165.25, 165.72, 173.40, 174.09. 

ESI-MS (+):C55H67N5O17: [M+H]
+

(calcd)= 1168.56, [M+H]
+

(found)= 1168.6 
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6-O-(5-(1-(4,7,10-triscarboxymethyl-(1,4,7,10-tetraazacyclododecyl)))pentyl)-1-(4-

nitrophenyl)-β-galactopyranoside (47) 

To a solution of 45 (0.45 mmol, 0.5 g) in dry MeOH (20 ml) was added 30 % sodium 

methoxide/methanol solution dropwise until pH~11 was reached and reaction mixture was 

stirred for next 5 h at room temperature. A progress of deprotection was monitored by TLC (Rf = 

0.3 1:9 MeOH/DCM) and ESI-MS. After completion Dowex
®
50x8-100 ion exchange resin was 

added portionwise with stirring until pH of solution was adjusted roughly to 6. The reaction 

mixture was filtered, resin washed sorely with MeOH and concentrated under vacuum. The 

obtained residue was dissolved in ultra pure water (10 ml), a solution was cooled to ~8ºC and 1N 

NaOH was added (~2.1 ml) until pH of mixture was adjusted to roughly 10-11. A progress of 

deprotection was monitored by ESI-MS. After being stirred for 2 h at room temperature 

deprotection was completed and reaction mixture was neutralized with 0.1N HCl (pH~6.5) and 

lyophilized. The obtained solid residue was purified by RP-HPLC using MeOH/water to give 

0.18 g (55%) of 47 after lyophilization as white fluffy powder.  

 

1
H-NMR (400 MHz, D2O): δ= 1.25-1.33 (m, 2H, alkyl), 1.54-1.68 (m, 4H, alkyl), 2.86-3.53 (m, 

21H ), 3.61-3.94 (m, 10 H), 3.98 (pd, 1H, H-4, J4-3=3.03 Hz), 5.23 (d, 1H, H-1, J1-2=7.83 Hz), 

7.22 (d, 2H, J=9.35 Hz, ArH), 8.22 (d, 2H, J=9.35 Hz, ArH). 

13
C-NMR (100 MHz, D2O): 22.74, 23.16, 29.13 (CH2, alkyl), 49.28, 51.54, 54.02, 56.0, 56.43 

(CH2), 61.02 (C-6), 68.82 (C-4), 72.40 (C-2), 73.30 (OCH2), 75.88 (C-3), 79.20 (C-5), 100.23 

(C-1), 116.81, 126.57, 142.84, 162.08 (ArH), 173.28 (COOH). 

ESI-MS (+) for C31H49N5O14: [M+H]
+

(calcd)= 716. 3, [M+H]
+

(found)= 716.4 

6-O-(5-(1-(4,7,10-triscarboxymethyl-(1,4,7,10-tetraazacyclododecyl)))nonyl)-1-(p –

nitrophenyl)-β-galactopyranoside (48) 

A 46 (0.24 mmol, 0.28g) was deprotected using method described for 47. The obtained solid 

residue was purified by RP-HPLC using MeOH/water to give 0.08 g (40 %) of 48 after 

lyophilization as white fluffy powder.  
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1
H-NMR (400 MHz, D2O): δ= 0.95-1.3 (m, 10H, alkyl), 1.40-1.65 (m, 4H, alkyl), 2.85-3.53 (m, 

(m, 22 H), 3.61 (pt, 1H), 3.68-3.87 (m, 8H), 3.97 (pd, 1H, H-4, J4-3=3.03 Hz), 5.16 (d, 1H, H-1, 

J1-2=7.58 Hz), 7.15 (d, 2H, J=9.09 Hz, ArH), 8.13 (d, 2H, J=9.09 Hz, ArH). 

13
C-NMR (100 MHz, D2O): 22.77, 25.80, 26.37, 28.63, 28.77, 29.10, 29.63 (CH2, alkyl), 49.13, 

50.09, 51.58, 54.29, 55.32, 56.14,(CH2), 60.99 (C-6), 68.66 (C-4), 72.44 (C-2), 73.57(OCH2), 

75.82 (C-3), 79.03 (C-5), 100.33 (C-1), 116.72, 126.44, 142.59, 162.23 (ArH), 173.33 (COOH). 

ESI-MS (+) for C35H57N5O14: [M+H]
+

(calcd)= 772. 4, [M+H]
+

(found)= 772.4 

Preparation of Gd
3+

 complexes of ligands 47 and 48 (CA-5 and CA-6) 

To a solution of ligand 47 or 48 (1 eq) in ultra pure water (pH~6.5) a titrated aqueous solution of 

GdCl3 (0.9 eq) was added dropwise and pH was kept in the range 6.5-7 by addition of 0. 1 M 

NaOH aq if required. The reaction mixture was stirred for 3 days at room temperature with pH 

periodically checked and adjusted with 0. 1 M NaOH aq. After this time pH was not changed and 

compexation was considered to be completed. The absence of free Gd
3+

 was checked with 

xylenol orange indicator. Afterwards water was removed by evaporation under reduced pressure 

and product was purified by preparative RP-HPLC using acetonitrile/water and lyophilized to 

give Gd
3+

 complexes as white powder with detected Gd
3+

 isotope pattern.  

 

CA-5 ESI-MS (-): C31H46GdN5O14 [M-H]
1-

(calcd)= 869.2 [M-H]
1-

(found)= 869.1 

CA-6 ESI-MS (-): C35H54GdN5O14 [M-H]
1-

 (calcd)= 925.2,  [M-H]
1-

(found)= 925.1 

3-((2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl)oxy)-propanoic acid (49) 

To a solution of 3 (2.4 mmol, 1.14 g) in dry DCM (20 ml) neat TFA (20 ml) was added at 0ºC. 

After being stirred for 1 h at 0ºC, a reaction mixture was allowed to warm up to room 

temperature and stirring was continued for next 24 h. A progress of deprotection was moniored 

by TLC (Rf=0.3, 10% MeOH/DCM). Next, the solvent were removed by co-evaporation with 

toluene and obtained residue was purified by column chromatography on silica gel (eluent 

MeOH/DCM) to give 0.61g (60%) of 49 as colorless syrup.  

 

[αD]
20

= +3.7°(c=1.0, CHCl3) 
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1
H-NMR (300 MHz, CDCl3): δ= 1.99 , 2.04, 2.06, 2.14 (4s, 12H, CH3CO), 2.57-2.75 (m, 2H, 

CH2), 3.8-3.97 (m, 1H, H-5, 1H, OCH2), 4.04-4.27 (m, 1H, OCH2, 2H, H-6), 4.52 (d, 1H, H-1, 

J1-2=7.93 Hz), 5.02 (dd, 1H,H-3, J3-4=3.4 Hz, J3-2=10.3 Hz), 5.18 (odd, 1H, H-2, J2-1=8 Hz, J2-

3=10.6 Hz), 5.98 (d, 1H, H-4, J4-3=3.4 Hz), 7.57 (bs, 1H, OH). 

13
C-NMR (75 MHz, CDCl3): δ= 20.54, 20.59, 20.60, 20.64 (CH3CO), 34.58 (CH2), 61.23 (C-6), 

65.15 (OCH2CH2), 66.99 (C-4), 68.65 (C-2), 70.67 (C-3), 70.79 (C-5), 101.48 (C-1), 169.64, 

169.95, 170.20, 170.30, 170.52 (CH3CO), 176.04 (COO). 

HRMS(EI) (±) for C17H24O12: [M+Na]
+

(calcd)= 443.1160, [M+Na]
+

(found)= 443.1157 

Synthesis of O-acetyl protected 52 

Fmoc protected D-Tat 49-57 peptide was synthesized manually as described in the chapter on pre-

loaded Wang (scale 0.08 mmol), followed by Fmoc group deprotection with 20% 

piperidine/DMF and  washing of resin with DMF (6x). Subsequently, a mixture of carbohydrate 

(3 eq)/ HATU (3 eq) in DMF (3 ml) stirred for 5min and DIPEA (6 eq) were added to the resin. 

After being stirred for 3h under nitrogen atmosphere, coupling was completed as confirmed by 

Kaiser test and resin was washed with DMF (DMF (4x), DCM (4x) and MeOH (6x) and dried 

under vaccum. The cleavage cocktail TFA/water/TIPS/m-cresol (90: 2.5:2.5:5 v/v/v/v) cocktail 

(5 ml) was added and stirring was continued for 4 h. Afterwards filtrate was collected and resin 

was additionally washed with TFA (0.5 ml) followed by precipitation with cold (-20ºC) tert-

butyl methyl ether (MTBE). The obtained precipitant was washed with additional amount of 

MTBE (2x), centrifuged and re-suspended in neat TFA. After precipitation with cold MTBE and 

centrifugation, the obtained residue was dissolved in ultra pure water and lyophilized and further 

purified by RP-HPLC using a method A (flow rate 10 ml/min). The collected fractions were 

combined and solvents were evaporated under reduced pressure. The obtained product was 

dissolved in ultra pure water with adjusting pH to ~7 and lyophilized to give 60 mg (43%) of 52 

as white light powder. The obtained product was characterized by characterized by ESI-MS and 

detected molecular ions were consistent with the calculated mass of 52 (1741.95 g/mol). 

 

ESI-MS (+): m/z = 871.5 ((M+2H)
2+

), 581.5 ((M+3H)
3+

), 436.5 ((M+4H)
4+

). 
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O-acetyl deprotection of 52 (54) 

O-acetyl protected 52 (25 mg) was dissolved in 7N NH3/MeOH (15 ml) at 0ºC and after 30 min 

at 0ºC a stirring was continued at room temperature. After 8.5 h deprotection was completed as 

detected by ESI-MS and solvent was evaporated under reduced pressure. The obtained residue 

was purified by RP-HPLC using a method A (flow rate 10 ml/min) and the collected fractions 

were combined and solvents were evaporated under reduced pressure. The obtained product was 

dissolved in ultra pure water with adjusting pH to ~7 using 0.01 M NaOH and lyophilized to give 

18 mg (80%) of 54 as white hygroscopic powder. The obtained product was characterized by 

ESI-MS and detected molecular ions (m/z) were consistent with the calculated mass of the 

product (1573.81 g/mol).  

 

ESI-MS (+): m/z = 1575.2 ((M+1H)
1+

), 787.6 ((M+2H)
2+

), 525.4 ((M+3H)
3+

).  

Synthesis of conjugate 55 

Fmoc protected Lys-Tat 49-57 was synthesized (scale 0.08 mmol) and Fmoc group was removed 

with 20% piperidine/DMF followed by washing with DMF (6x). Subsequently 49 (3eq) activated 

with HATU (3 eq)/DIPEA (6 eq) in DMF (3ml) was added to the resin. After shaking for 3h, 

resin was washed with DMF (4x) and coupling was completed as confirmed by Kaiser test. Next, 

resin was treated with 2% hydrazine hydrate/DMF (2x) and washed with DMF (8x). A mixture 

of FITC (3 eq) dissolved in DMF (2 ml) and DIPEA (8 eq) was added to the resin with shaking 

continued for 12h at room temperature in the dark. After coupling completion, a resin was 

washed with DMF (4x), DCM (4x) and MeOH (6x) and dried under vaccum. The resin attached 

conjugate was cleaved off the resin accordingly to the same procedure as describe for 52 and 

purified by RP-HPLC using method A to give 64 mg (35%) of 55 after lyophilization as light 

orange powder. The detected molecular ions were consistent with the calculated mass of 55 

(2258.51 g/mol). 

 

ESI-MS (+): m/z = 1130.5 ((M+2H)
2+

), 935.6 ((M-FITC+2H)
2+

), 754.0, ((M+3H)
3+

), 624.3((M-

FITC+3H)
3+

), 565.8 ((M+4H)
4+

),  452.7 ((M+5H)
5+

), 390 (FITC). 
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O-acetyl deprotection of 55 (56) 

O-acetylated 55 (30 mg) was dissolved in 7N NH3/MeOH at 0ºC (20 ml) and stirred for 12 h at 

room temperature. A progress of deprotection was monitored by ESI-MS. The solvent was 

evaporated under reduced pressure and the obtained residue was dissolved in ultra pure water 

followed by lyophilization. A crude product was purified by RP-HPLC using method A to give 

8.5 mg (31%) of 56 after lyophilization as light orange powder. The product was characterized 

by ESI-MS and detect molecular ions measured in positive and negative modus were consistent 

with the calculated mass of 56 (2090.07 g/mol). 

 

ESI-MS (+): m/z = 1046.7 ((M+2H)
2+

), 851.6 ((M-FITC)+2H)
2+

), 698.0 ((M+3H)
3+

), 568.6 ((M-

FITC)+3H)
3+

) 523.9 ((M+4H)
4+

), 390 (FITC). 

ESI-MS (-): m/z = 2089.5 ((M-H)
1-

), 1044.7 ((M-2H)
2-

). 

2,3,4,6-tetra-O-acetyl-1-(4-aminophenyl)-β-D-galactopyranoside (57) 

To a solution of 35 (5 mmol, 2.35 g) dissolved in a mixture of ethyl acetate/ethanol (30 ml 1:1 

v/v) 10 % Pd/C (0.2 g) was added and a reaction mixture was stirred in Parr-apparatus for 5 h 

under hydrogen atmosphere (3 bar). After completion, a solution was filtered through Celite 545 

and concentrated to give 2.08 g (95%) of expected 57 as dark brown oil.  

The obtained 
1
H-NMR and 

13
C-NMR data were in the agreement with literature reported

246
  

 

4-oxo-4-((4-((2,3,4,6-tetra-O-acetyl-β-D-galactopyranos-1-yl)oxy)phenyl)amino)-butanoic 

acid (58) 

To a pre-cooled solution of 57 (2 mmol, 0.89 g) in pyridine (26 ml) succinic anhydride (2.5 

mmol, 0.25 g) was added portionwise and stirred for 1 h at 0ºC. After this time, stirring was 

continued at room temperature for next 2 h. The progress of reaction was monitored by TLC 

(Rf= 0.25, 10% MeOH/CH2Cl2). After completion reaction mixture was diluted with ethyl 

acetate (200ml) and poured into ice-cold water. The layers were separated and aqueous layer was 

extracted with ethyl acetate (1x200ml) and DCM (2x200ml). The combined organic layers were 

dried over Na2SO4, filtered and concentrated under reduced pressure. The residue was purified 

by column chromatography on silica gel to give 0.7g (65%) of 58 as brownish syrup.  
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[αD]
20

= +2.6°(c= 0.75, CHCl3) 

1
H-NMR (300 MHz, CDCl3): δ= 2.01, 2.03, 2.06, 2.17 (4s, 12H, CH3CO), 2.4-3.1 (m, 4H, CH2), 

3.91-4.29 (m,2H, H-6, 1H, H-5), 4.98 (d, 1H, H-1, J1-2=7.74 Hz), 5.12 (dd, 1H, H-3, J3-4=2.93 

Hz, J3-2=10.4 Hz), 5.4-5.7 (m, 2H, C-2, C-4 6.85-7.0 (m, 2H, ArH), 7.39-7.55 (m, 2H, ArH) 

13
C-NMR (75 MHz, CDCl3): δ= 20.47, 20.52, 20.54, 20.63 (CH3CO), 45.23 (CH2), 61.26 (C-6), 

66.89, 68.65(C-2, C-4), 70.73(C-3), 70.89(C-5), 100.06 (C-1), 117.42, 121.28, 133.89, 153.22 

(ArH), 169.39, 170.01 (CH3CO), 170.17 (NHCO), 170.34 (COOH).  

ESI-MS (-) for C23H27NO13: [M-H]
1-

(calcd)= 538.1, [M-H]
1-

(found)= 538.0. 

Synthesis of conjugate 61 

A conjugate 61 was synthesized using the same procedure like described for 52 on the pre-

loaded Wang resin (scale 0.04 mmol, 100 mg of resin). The obtained crude O-acetylated 60 was 

dissolved in 7N NH3/MeOH (30 ml) at 0ºC (20 ml) and stirred for 12 h at room temperature. A 

progress of deprotection was monitored by ESI-MS. The solvent was evaporated under reduced 

pressure and the obtained residue was dissolved in ultra pure water followed by lyophilization. 

The residue was purified by RP-HPLC using method B and collected fractions were concentrated 

under reduced pressure. The obtained product was dissolved in ultra pure water with adjusting 

pH using 0.01 M NaOH and after lyophilization 20 mg (29%) of 61 was obtained as white 

hygroscopic powder. The obtained product was characterized by ESI-MS and detect molecular 

ions were consistent with the calculated mass of 61 (1692.93 g/mol). 

 

ESI-MS (+): m/z = 1690.9 ((M+1H)
1+

), 844.9 ((M+2H)
2+

), 1437.8 ((M-frag+ H)
1+)

, 718.4 ((M-

frag+2H)
2-

). 

1-(2-(6-(benzyloxycarbonylamino)-1-metoxy-1-oxohexane-2-ylamino)-2-oxoethyl)-4,7,10-

(tris-tertbutoxycarbonyl)-1,4,7,10-tetracyclododecane (62) 

28 (2.7 mmol, 1.54g) was dissolved in DMF (25 ml) cooled to 0ºC and N-ε-Cbz-D-lysine methyl 

ester (3.24 mmol, 1.07 g), NMM (5.4 mmol, 546 mg), HOBt (3.24 mmol, 437 mg) were added. 

The reaction mixture was stirred for 15 min and EDC (3.24 mmol, 0.5 g) was added followed by 

stirring continued at 0º C for 30 min and then at room temperature overnight (17 h). The progress 

of reaction was monitored by TLC (Rf= 0.4, 10% MeOH/DCM). After completion, the reaction 
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mixture was diluted with DCM (200 ml) and poured into ice-cold water. The layers were 

separated on aqueous layer was extracted with DCM (3x 100 ml). The collected organic layers 

were dried over Na2SO4, filtered and evaporated under reduced pressure. The residue was 

purified by column chromatography on silica gel (eluent MeOH/DCM) to give 1.36 g (59%) of 

62 as white foam.   

 

1
H-NMR (300 MHz, CDCl3): δ= 1.3-1.95 (m, 6H, CH2, 27H (CH3)3C)), 1.9-3.4 (m, 24H, 

CH2CH2 macrocycle, CH2COO) 3.45-3.7 (m, 2H, CH2), 3.66 (s, 3H, CH3OOC), 4.22-4.35(m, 

1H, CH), 5.09 (s, 2H, CH2OPh), 6.33 (bs, 1H, NH) 7.22-7.5 (m, 5H, Ph), 9.08 (bs, 1H, NH) 

13
C-NMR (75 MHz, CDCl3): δ= 22.9 (CH2), 27.68, 27.75, 27.85 (C(CH3)3), 29.48 

(CH2CH2NHCO), 29.65 (CH2CH), 39.60 (CH2NH), 51.79 (CHNHCO), 53.23 (COOCH3), 55.19, 

55.54 (CH2CH2,macrocycle), 55.90 (CH2COO), 65.77 (NHCOOCH2), 81.61, 81.65, 81,71 

(C(CH3)3), 127.39 (Ph), 127.58 (Ph), 128.13 (Ph), 137.12 (Ph), 156.68 (NHCOCH2), 171.71 

(NHCO), 172.19 (COOC(CH3)3), 172.47 (COOC(CH3)3) , 172.84 (COOCH3) 

HRMS (EI) (±) for C43H72N6O11: [M+Na]
+

(calcd)= 871.5151 [M+Na]
+

(found)= 871.5155 

1-(2-(6-amino-1-metoxy-1-oxohexane-2-ylamino)-2-oxoethyl)-4,7,10-(tris-

tertbutoxycarbonyl)-1,4,7,10-tetracyclododecane (63) 

A solution of 62 (1.6 mmol, 1.36 g), 10% Pd/C (0.3 g) in EtOH (50 ml) was vigorously stirred at 

room temperature under H2 pressure (2 bar) in Parr-apparatus for 6 h. After completion, a 

reaction mixture was filtered by Celite 545, sorely washed with ethanol and filtrate was 

concentrated to give syrup residue. After flash column chromatography on silica gel 

(MeOH/DCM) 0.68g (60%) of 63 was obtained as yellowish foam. 

 

1
H-NMR (300 MHz, CDCl3): δ= 1.27-1.89 (m, 31 H, CH2, (CH3)3C)), 1.91-3.57 (m, 24H, CH2), 

3.68 (os, 3H, CH3OOC), 3.82 (ps, 4H, CH2), 4.22-4.35 (m, 1H, CH), 8.92 (bs, 1H, NH). 

13
C-NMR (75 MHz, CDCl3): δ= 22.69 (CH2), 27.68, 27.74, 27.85 (C(CH3)3), 29.79 

(CH2CH2NHCO), 30.26 (CH2CH), 40.01 (CH2NH), 51.87 (CHNHCO), 52.97 (COOCH3), 55.23, 

55.53 (CH2CH2,macrocycle), 55.92 (CH2COO), 81.58, 81.61, 81.66 (C(CH3)3), 171.78 (NHCO), 

172.22 (COOC(CH3)3), 172.49 (COOC(CH3)3), 172.86 (COOCH3). 
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ESI-MS (+) for C35H66N6O9: [M+Na]
+

(calcd)= 737.49, [M+Na]
+

(found)= 737.5 

1-(2-(6-(fluoresceinthiourea)-1-metoxy-1-oxohexane-2-ylamino)-2-oxoethyl))-1,4,7,10-

tetraazacyclododecyl-4,7,10-triacetic acid (66) 

A compound 63 (0.81 mmol, 0.58 g) was dissolved in DMF (35 ml) under nitrogen and FITC 

was added (1.21 mmol, 0.48 g), followed by addition of DIPEA (1.62 mmol, 0.81 ml). The 

reaction mixture was stirred at dark for 12 h and progress of the reaction was monitored by TLC 

(Rf= 0.3, 10% MeOH/DCM). After completion, the solvent was evaporated under a reduced 

pressure and the crude 65 was dissolved in DCM (17 ml). The reaction mixture was further 

cooled down to 0ºC and neat TFA (25 ml) was added. After 30 min at 0ºC, the stirring was 

continued at room temperature for 12 h with monitoring the progress of reaction by ESI-MS. The 

reaction mixture was evaporated with toluene and the residue was purified by preparative RP-

HPLC using acetonitrile/ water and lyophilized to give 66 (0.47 g, 62%) as dark orange downy 

powder. 

 

1
H-NMR (300 MHz, CDCl3): δ= 1.3-1.83 (m, 6H, CH2), 2.5-3.95 (m, 29H, CH2CH2 CH2COO, 

CH2, CH3( overlapped s 3.74)) , 4.30-4.51 (m, 1H, CH), 6.58 (overlapped ps, 4H, ArH), 7.09 

(overlapped ps, 3H, ArH) 7.49  (bs, 1H, ArH), 7.82 (bs, 1H, ArH). 

ESI-MS (-) for C44H53N7O14S: [M-H]
1-

(calcd)= 934.3, [M-H]
1-

(found)= 934.3. 

 

Preparation of Gd
3+

 complex of 66 (CA-4) 

A compound 66 (0.064 mmol, 70 mg) was dissolved in ultrapure water (10 ml) and titrated 

GdCl3 solution (0.9 eq) in water (2 ml) was slowly added with maintaining pH in the range 6.2-7 

(at lower pH observed precipitation). The reaction mixture was stirred at dark for 12 h at 50ºC 

and followed by 24 h at room temperature with periodical pH adjustment using 0.1 M NaOH. 

Next, the reaction mixture was cooled down and stirred with Chelex-100 for 3 h to trap 

eventually free Gd
3+

. The water was removed under reduced pressure and remaining residue was 

purified by RP-HPLC using acetonitrile/water. After lyophilization CA-4 was obtained in the 

form of dark orange powder. 

 

ESI-MS (-) for C44H50GdN7O14S: [M-H]
1-

 (calcd)= 1089.2 [M-H]
1-

 (found)= 1089.1  
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HRMS (EI) (±) for C44H50GdN7O14S: [M-2H]
2-

(calcd)= 544.1123 [M-2H]
2-

(found)= 544.1117. 

Synthesis of CA-7 

To a solution of CA-4 in ultra pure water 1M NaOH was added dropwise until pH~10 and 

reaction mixture was stirred for 2 h at room temperature at the dark. The progress of reaction was 

monitored by ESI-MS. After completion pH was brought back to 7 and solvent was removed 

under reduced pressure. The obtained residue was purified by RP-HPLC (method) using 

acetonitrile/water as eluents, lyophilized and gave CA-7 in 70% yield as dark orange powder. 

 

ESI-MS (-) for C43H48GdN7O14S: [M-H]
1-

 (calcd)= 1075.2, [M-H]
1-

 (found)= 1075.0  

Synthesis of CA-8 

A concentration of pre-loaded was first determined by absorbance measurements of FITC. Next, 

the solution of CA-7 (3.7mg, 3.43 µmol) in ultra pure water (3 ml) was diluted 1:1 with 0.1M 

MES buffer (pH~5.5). Poly-L-glutamic acid (34 mg, 2.29 µM with assumption 

MW~15000g/mol) was dissolved in 1ml of 0.1M MES buffer and pH was adjusted to roughly 

6.5. After that, N-hydroxysuccinimide (NHS) (5.15 µmol, 0.6 mg) and EDC (5.15 µmol, 

0.65mg) each dissolved in 1 ml of 0.1M MES (pH~5.5) were mixed together and added to the 

solution of CA-7 with stirring continued for 20 min at room temperature. This mixture 

containing NHS-ester 67 was added to the solution of PGA and reacted for 3 h at the room 

temperature in dark. Subsequently the solution of crude product (MW~16075g/mol) was 

continuously dialyzed for 48 h in the dark using Float-A-Lyser and then lyophilized to give 27 

mg (72%) of CA-8 as dark orange powder.  

 

6.3 Cell experiments  

Cell culture 

C6 rat glioma cells were a kind gift of Prof. Bernd Hamprecht (University of Tuebingen, 

Germany). LacZ cells (C6/lacZ7, ATCC
®

 No.: CRL-2303™) expressing β-galactosidase were 

obtained from ATCC, USA. Cells were cultured as a monolayer at 37°C with 5% CO2 in DMEM 

supplemented with 10% fetal bovine serum (FBS), 4 mM L-glutamine, 100 µg/mL streptomycin 

and 100 U/mL penicillin (all purchased from Biochrom AG, Germany) for C6. The culture 

medium of LacZ cells was additionally supplemented with 0.1 mM non-essential amino acids. 
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All cells were passaged by trypsinization with trypsin/EDTA 0.05/0.02% (w/v) in phosphate-

buffered saline (PBS; Biochrom AG, Germany) every second to third day. 

 

Concentration estimation of FITC-labeled compounds 

Compounds were dissolved in MilliQ water to obtain a 10 mM solution by weight (if possible). 

The pH was adjusted to about 6.5 by the use 0.1 M NaOH or 0.1M HCl. Especially for peptide 

conjugates this has to be done carefully since pH values >7 should be avoided due to (poorly 

reversible) precipitation.  

(In more detail: Compounds were solved in about 40-50 µl less than calculated, pH was adjusted 

by dropwise (5 µl) addition of base or acid, volume was filled up to the required one with water.) 

For the determination of the real concentration, these stock solutions were diluted 1:100 in 

Dulbecco’s Modified Eagle's Medium (DMEM; Biochrom AG, Germany). The absorbance of 

the solutions was measured in a multiplate reader (BMG Labtech, Germany) at 485 nm with 

ratiometric correction of turbidity at 690 nm. The concentrations of the stock solutions were 

calculated assuming εfluorescein 485 nm=81,000 l/(mol·cm) and all further dilutions were done 

according to this calculated concentration. 

 

Internalization 

Internalization experiments on cells were performed in 96well microplates. At 70-80 % 

confluency (after 24 h), cells were incubated with different concentrations of CAs in complete 

culture medium for indicated time points (2 – 18 h) at routine culture conditions. After 

incubation, the labeling CA were removed and cells were incubated with Bisbenzimid 33342 

(Hoechst 33342), a nuclear stain, in complete medium for 30 min (100µl/well) in order to 

estimate the cell number. The supernatant was removed and extracellular fluorescence was 

quenched by incubation with cold Trypan Blue (0.05 % (w/v) in PBS, 100µl/well) for 3 min  

followed by two washes with 200 µl cold HBSS (Biochrom AG, Germany) and the addition of 

200µl pre-warmed HBSS. Cell-related FITC fluorescence (Ex 485 nm/Em 530 nm) and cell 

number (Ex 346 nm/ Em 460 nm) was evaluated in the multiplate reader.  

 

Cell number corrected internalized fluorescence was calculated by the following equation: 
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fluorescence(FITC)/fluorescence(Hoechst) ×1000 

and was expressed as corr. fluorescence units (corr. f.u.). 

Cells incubated in the absence of CA were used as control and wells without cells but treated 

with Hoechst, Trypan Blue and washed as described above were used as blank. 

Hoechst fluorescence could also be used for the evaluation of cytotoxicity of compounds. 

Experiments were run at least two times for each CA with six replicates. 

The cells in plates processed for fluorescence spectroscopic measurement, as mentioned above, 

were used for complementary fluorescence microscopy. Microscopy was performed without 

fixation using a Zeiss Axiovert 200 M microscope (Germany) with an LD Plan NeoFluor 40X 

objective. The imaging conditions were kept constant for the observation of all the different 

samples. Cellular localization and distribution of the peptide was observed by irradiating with 

blue light (Ex 470/40 nm) and observing at Em 525/50 nm. Apart from FITC fluorescence, the 

nuclear labeling by Hoechst was observed by Ex 365/15nm and Em 460/50 nm and Trypan Blue 

fluorescence viewed by Ex 535/50 and Em 645/75 nm. Also phase contrast images with 

differential interference contrast (DIC) microscopy of the same area were made to observe if the 

cells maintain their normal morphology in the presence of CAs. Volocity Acquisition and 

Visualization software (Improvision, England) was used for high speed image capture and high 

resolution rendering of data sets as images. 

6.4 Relaxation rates in cells 

For MR imaging of cells, exponentially growing cells were labeled with different concentrations 

of CAs in 175 cm
2
 tissue culture flasks for 18 h. After two times washing with HBSS and once 

with PBS, cells were trypsinized, centrifuged and re-suspended in 1.5 mL Eppendorf tubes at a 

density of 2 × 10
7
 cells in 500 µl complete medium. Cells were allowed to settle before MR 

measurements. Tubes with medium only and cells without CA were used as controls. 

MR imaging of the cell pellets at room temperature (~21 ˚C) was performed in a 3 T (123 MHz) 

human MR scanner (MAGNETOM Tim Trio, Siemens Healthcare, Germany), using a 12-

channel RF Head coil and slice selective measurements from a slice with a thickness of 1 mm 

positioned through the cell pellet. 

T1 was measured using an inversion-recovery sequence, with an adiabatic inversion pulse 

followed by a turbo-spin-echo readout. Between 10 and 15 images were taken, with the time 
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between inversion and readout varying from 23 ms to 3000 ms. With a repetition time of 10 s, 15 

echoes were acquired per scan and averaged six times. For T2, a homewritten spin-echo sequence 

was used with echo times varying from 19 ms to 1000 ms in about 10 steps and a repetition time 

of 8 s. Diffusion sensitivity was reduced by minimizing the crusher gradients surrounding the 

refocusing pulse. All experiments scanned 256
2
 voxels in a field-of-view of 110 mm in both 

directions resulting in a voxel volume of 0.43 × 0.43 × 1 mm
3
. 

Data analysis was performed by fitting to relaxation curves with self-written routines under 

MATLAB 7.1 R14 (The Mathworks Inc., United States). The series of T1 and T2 relaxation data 

were fitted to the following equations: 

a) T1 series with varying t = TI: S = S0 (1 - exp(-t / T1) + S(TI = 0) exp(-t / T1) 

b) T2 series with varying t = TE: S = S0 exp(-t / T2) 

Nonlinear least-squares fitting of three parameters S0, S(TI = 0), and T1/T2 was done for manually 

selected regions-of-interest with the Trust-Region Reflective Newton algorithm implemented in 

MATLAB. The quality of the fit was controlled by visual inspection and by calculating the mean 

errors and residuals. 

The obtained T1 and T2 values of the pellet were converted to R1,cell (= 1/T1) and R2,cell (=1/T2). 

These were expressed in % of control (R1,cell and R2,cell of cells incubated similar in absence of 

CA).  

6.5 Relaxivity in solution 

800 µl of 3 – 5 concentrations in the range of 5 – 40 µM were prepared in MilliQ water. Pure 

water was used as blank. Two times 200 µl of each sample were transferred to a 96well plate and 

the absorbance was measured at 485nm to check the exact concentration again. Afterwards, 

samples for each concentration were combined again and 380µl aliquots were transferred to 

Eppendorf cups for MR measurement (two replicates per concentration). Parameters and 

evaluation were the same as for cell measurements. 

Relaxation rate values were plotted on the exact concentration (in mM) and linear regression was 

done. The slope of the obtained curve is the corresponding relaxivity. 

Alternatively, relaxivity can also be calculated from each concentration by following equation: 
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(R1,conc. – R1,blank)/c  

R1,conc, relaxation rate for sample with CA at concentration c (in mM) 

R1,blank, relaxation rate for blank 

c, concentration of CA in mM 

6.6 Enyzmatic assays 

Enzymatic assay β-galactosidase (nitrophenol-galactopyranose) 

The activity of β-galactosidase was determined by monitoring the formation of the p-nitrophenyl 

anion for reaction at 37°C, pH 7.3 (0.1 Phosphate buffer: 7.7 eq. 0.1 M Na2HPO4 + 2.3 eq. 0.1 M 

KH2PO). The standard enzyme diluent was made by mixing 10 mM Tris/HCl, MgCl2, pH=7.3 in 

ratio 1:1, 2M mercaptoethanol in water (freshly prepared, 140 µl/ml), 6U/ml β-Galactosidase 

(dilution in enzyme diluent according to enzyme activity in stock). The 10 mM substrate stock 

solution was prepared and further diluted as required. The substrate premix was prepared by 

mixing 15eq. Phosphate buffer, 1 eq 20 mM MgCl2, 1eq. 2 M mercaptoethanol and 1eq. 

substrate (end concentration in premix: 555 µM). The enzyme solution (20 µl/well) was added to 

90 µl/well of substrate premix (substrate end concentration in well: 454 µM or 50nmol) in a 

96well plate and was immediately read in a plate reader by measuring absorbance in kinetic 

mode for 15 min (1 point per min). PNPG were measured as standard. The obtained reaction rate 

(slope ΔE/min) of the kinetic curves for the synthesized substrates was compared to the one of 

PNPG (100%).  

Enzymatic assay β-galactosidase (via evaluation of formed galactose) 

The substrate solution was prepared by mixing 0.2 M Phosphate buffer (pH=7.3) and 20 mM 

MgCl2 (pH=7.3) to obtain an end concentration of 0.5 mM. The β-galactosidase (75.48U/ml) was 

diluted 1:1000 with enzyme diluent. Afterwards, 20 µl of β-galactosidase were added to 100µl 

aliquots of substrate solution. After indicated time points the reaction was stopped by 

centrifugation through PALL Nanosep 10K omega filters (MWCO 10000; VWR, Germany). The 

galactose content was determined in a two step reaction. Galactose-dehydrogenase (GADH, 

1.1mg/ml with 94U/mg corresponds to 103U/ml), diaphorase (solved in 6 ml water to give 

1.3U/ml) and Iodonitrotetrazolium violet (INT, stock solution 2.2 mM) were used. First a NAD 

premix was prepared by mixing 150 µl NAD
+
 (stock solution: 29.8 mg/ml), 47 µl water, 166 µl 
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0.2 M Tris, and 1.5µl GADH (corresponds to 0.155U). The dye premix containing INT and the 

enzyme Diaphorase was prepared by mixing 1:1 both stocks solution. A galactose standard curve 

was obtained by adding 20 µl of enzyme diluent to 100 µl of standard galactose solutions (0.031, 

0.0625, 0.125, 0.25, 0.5 mM). The reaction was started by adding to 120 µl of samples after 

reaction with β-galactosidase or standards 40 µl Tris, 40 µl water, 50 µl NAD premix. After 

incubation for 1 h at 37 °C, 20µl INT/Diaphorase premix was added. Absorbance of the formed 

formazan dye has to be measured at 495 nm after 10 min in the dark and is directly correlated to 

the galactose content in the samples. The calculated amount of galactose in the samples (from the 

standard curve) is plotted vs. the incubation time with β-galactosidase and the curve was fitted to 

obtain the initial reaction rate (initial slope) and the real concentration in the stock solution of 

substrates (corresponding concentration at plateau of the fitted curve). 

 

6.7 Preparation of CA-1 sample for ESI-MS and gel shift analysis 

The standard enzyme diluent was made by mixing 10 mM Tris/HCl, MgCl2, pH=7.3 in ratio 1:1, 

3U/ml β-Galactosidase (dilution in enzyme diluent according to enzyme activity in stock). The 

substrate solution contained 0.0835M Phosphate buffer (pH 7.3), 1.1 mM MgCl2, and 0.138 mM 

of CA-1. The enzyme solution (20 µl/well) was added to 100 µl/well of substrate solution (end 

concentration per well 13.8 nmol). The samples were incubated for 0, 0.5, 3, 6 and 18 h at 37°C 

with shaking. After indicated time points the reaction was stopped by centrifugation through 

PALL Nanosep 10K omega filters (MWCO 10000; VWR, Germany). The obtained samples 

were analysed by ESI-MS and gel shift assay. 

 

ESI-MS analysis of CA-1 samples after enzymatic reaction 

Each sample 10 µl was diluted 1:10 with 0.1% HCOOH/water and analyzed by ESI-MS (HCT 

Ultra, Bruker Daltonics, Bremen) with direct infusion altering in negative and positive modus.  

 

Gel shift assay analysis of CA-1 samples after enzymatic reaction 

Electrophoresis was performed according to procedure described by Fling and Gregerson
220

.The 

samples after incubation with β-galactosidase were electrophoresed in a gel containing 16,5% 

Tris-Glycine SDS PAGE gel without urea using Pharmacia Fine Chemicals system. Gel fixation 
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was done with methanol, followed by washing with ethanol and silver staining according to a 

previously described protocol
221

.  
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