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1 Introduction 

Magnetic resonance imaging (MRI) is an imaging technique which is applied in clinical 

diagnostics since the 1980s. MRI generates sectional images of the human body by means of 

magnetic fields and radio waves. It is particularly suitable to image soft tissues like the brain 

and internal organs and has revolutionised the diagnosis of tumors. MRI is based on the 

principles of nuclear magnetic resonance (NMR) spectroscopy and detects the 1H NMR signal 

of the water protons, which are ubiquitous in the human body (the human body consists of 

more than 55% of water). However, the development of MRI towards one of the most 

powerful techniques in clinical diagnosis was only enabled by the development and use of 

paramagnetic contrast agents (CAs) to enhance imaging sensitivity. The effects of CAs are 

based on the change of relaxation times of the water protons in the presence of paramagnetic 

compounds with unpaired electrons. There are T1 and T2 CAs which generate contrast via 

longitudinal and transverse relaxation processes, respectively. The major advantage of T1 CAs 

is a positive signal enhancement, which leads to brighter regions in MR images. Most of the 

currently applied CAs for enhanced T1-contrast are based on gadolinium(III) chelate 

complexes and are mainly extracellular agents, which only distribute non-specifically 

throughout the circulatory system and interstitial spaces.1-5 Since those agents are excreted 

easily and quite fast from the body, they are suitable for routine examinations, but not for 

long-term tracking applications,6 which are currently developed to not only diagnose but also 

treat deseases on a molecular level (theranostics). Therefore, nano-sized materials with longer 

blood circulation half-life times were developed and they are gaining increasing importance in 

medical diagnosis and treatments. By tailoring hybrid nanomaterials, consisting of an 

inorganic matrix and functional organic moieties, materials with special properties can be 

made for various purposes, such as carriers of drugs or for imaging techniques.7-12 CA-loaded 

materials combined with smart or targeting units, which respond to physiological changes 

(e.g. in pH or ion concentrations) and track special kinds of tissues or cells, promise to 

identify diseases on a molecular level and thus, in an early stage.13-17 

Silica nanoparticles (NPs) can serve as such an inorganic matrix and bring several advantages. 

They are promising carriers with a great surface modification capability and good 

biocompatibility. By coupling Gd(III) complexes to the particle surface, large payloads of CA 

molecules can be obtained in a minimum of space. Thus, because of the high local 

concentration of CA molecules nano-sized materials can act as contrast amplifiers and result 
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in an improved resolution and sensitivity. Furthermore, due to various functionalisation 

opportunities, silicas can serve as matrices not only for CA molecules, but also for targeting 

or smart units, as well as biocompatible moieties, such as polyethylene glycol (PEG), and 

biomolecules, such as peptides and antibodies. This makes them ideal candidates to serve as 

matrix in the synthesis of multimodal CAs.13,14,17-21 
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2 Aim of this Work 

The aim of the present work is the preparation of multifunctional CAs for MRI and optical 

imaging (OI), based on non porous silica NPs with diameters of 50-100 nm. Gadolinium(III) 

ions embedded in a macrocyclic ligand system will be covalently attached to the surface of 

the NPs with different spacers and by different ways of functionalisation of the matrix. 

Therefore, the DOTA ligand of the established contrast agent DotaremTM (Figure 2.1) has to 

be modified with further functional groups to allow coupling of the Gd(III) complex to the 

surface of the matrix. 

 

Figure 2.1 The clinical CA DotaremTM 

(Guerbet GmbH). 

The silica particles serve as carrier to 

maximise the concentration of CA 

molecules in a minimum of space. Besides 

Gd(III) functionalised NPs for MRI, 

multimodal materials will be synthesised 

by additionally coupling fluorophores for 

OI applications.  

 

 

Figure 2.2 Multimodal silica nanoparticle. 

 

Coupling of peptides, and antibodies to the NP surface allows molecular imaging (Figure 2.2). 

The materials will be fully characterised after each synthetic step to carefully determine the 

extent of surface modification and to examine the properties of the nanoparticles. The stability 

of the new CAs will be tested under physiological conditions with respect to leaching of the 

complexes from the surface as well as to the release of gadolinium from the macrocyclic 

ligands. Finally, the suitability of Gd(III) containing materials as CAs will be investigated 

with a 3T MRI human whole body scanner. Additionally the cellular uptake in vitro and the 

biodistribution in vivo of the particles will be examined by fluorescence microscopy. 
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3 General Basics 

3.1 Stöber Particles 

3.1.1 Sol-Gel Processing of Aqueous Silicates 
22-24

 

Sol-Gel processing provides a pathway to making solids not by crystallisation or precipitating 

like in conventional reactions, but by gelation. In polycondensation reactions of precursor 

molecules, oxidic networks are formed in solution. Typical precursors are the alkoxides of 

silicon, aluminium, titanium, and zirconium. A sol is a colloidal suspension of solid particles 

or polymers in a liquid phase, in which the particles may be amorphous or crystalline, but do 

not precipitate. A gel consists of a porous, three-dimensional, continuous, solid network, 

which encloses a liquid. In most of the sol-gel processes gelation is caused by the formation 

of covalent bonds. Starting from a sol, various kinds of materials can be made, such as fibres, 

powders, thin films, non porous glasses and ceramics, porous solids, as well as non porous 

nanoparticles. Sol-Gel derived materials are widely applicable, e.g., as coatings, matrices for 

catalysts, ceramic fibres and powders, heat insulations, glasses, etc.  

Below, principle basics of silicon-based sol-gel processing are defined. The process can be 

divided into five main sub-steps. 

1. Hydrolysis 

2. Condensation 

3. Gelation 

4. Ageing 

5. Drying 

 

Hydrolysis and Condensation 

Hydrolysis and condensation reactions can basically be described by the following three 

reaction equations (Scheme 3.1): 

 

Scheme 3.1 Hydrolysis and condensation. 

Si OR H2O Si OH ROH hydrolysis

Si OH

Si OH Si OH

Si OR Si O Si ROH

H2OSi O Si

condensation

+

+

+

+

+

+
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Hydrolysis and condensation run simultaneously as competitive reactions. Sol-particles with 

diameters of 1-1000 nm are formed. 

In the “top-down-synthesis”, aqueous solutions of sodium-silicates (“Na2SiO3”, waterglass) 

are used as precursors. In contrast, the “bottom-up-synthesis” starts from monomeric tetra-

alkyl silicates, like Si(OMe)4 or Si(OEt)4 and works in organic solvents. There are various 

parameters, which influence the hydrolysis- and condensation reactions in the bottom-up-

synthesis. These parameters provide the opportunity to influence and even control the 

reactions and therefore, the materials formed in a process. Below, these parameters are 

described. 

• The Nature of the Precursor 

The reaction rate decreases with increasing size of the substituents of the precursor, 

because of sterical hindrance: 

Si(OMe)4   >   Si(OEt)4   >   Si(OPr)4   >   Si(OiPr)4 

Inductive effects of the substituents of the precursor also play a decisive role, as they 

can stabilise or destabilise transition states. The electron density at the silicon atom 

decreases in the following order: 

(RO)3Si-R   >   (RO)3Si-OR   >   (RO)3Si-OH   >   (RO)3Si-O-Si 

 

• The pH Value 

Under acidic conditions, a proton attacks an oxygen atom of one of the alkoxy 

moieties, followed by water attacking the silicon atom, yielding a five-coordinated 

positively charged transition state, which is stabilised by the inductive effects of the 

residual alkoxy moieties (Scheme 3.2). At the beginning, there are three alkoxy 

moieties left, so the first step is the most rapid, and following attacks of protons run 

more slowly, allowing condensation reactions to follow directly. Thus, under acidic 

conditions, a high electron density at the silicon atom and therefore, the reaction at a 

terminal silicon, are favourable at the beginning, preferentially leading to chain-like 

networks and non porous materials with high densities. 
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Scheme 3.2 Acidic catalysis of the hydrolysis in sol-gel processes. 

 

Under alkaline conditions, a hydroxide anion attacks the silicon atom, yielding a five-

coordinated negatively charged transition state, which is destabilised by the residual 

alkoxy moieties (Scheme 3.3). Thus, here the first attack runs more slowly than the 

following ones. In contrast to the acidic catalysis, condensation reactions run more 

slowly. So, at the beginning, a low electron density at the silicon atom is favourable, 

central silicon atoms are preferably attacked, leading to branched networks and big 

particles with big pores. 

 

 

Scheme 3.3 Alkaline catalysis of the hydrolysis in sol-gel processes. 

 

• The Water Value Rw and the Relative Concentrations 

The Water Value Rw is defined as the relation of the amount of alkoxy groups to the 

amount of water.  

w
2

RO
R

H O

−

=

 
 

Eq. 3.1 

For Rw >> 2 (little amount of water) condensation reactions dominate hydrolysis 

reactions. 

For Rw << 2 (big amount of water) hydrolysis reactions dominate condensation 

reactions. 

 

OR

Si

OR

RO
RO

H+
+

O

Si

OR

RO
RO

R

H

+ H2O

OR

Si

RO OR

OH2O

R

H

OR

Si

HO OR
OR

ROH+ H+
+

OR

Si

OR

RO
RO

OH-
+

OR

Si

RO OR

ORHO

OR

Si

HO OR
OR
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• The Solvent 

The nature of the solvent can influence the state of the equilibrium. When using 

Si(OEt)4 and ethanol, for example, the equilibrium state is shifted to the left side of 

Eq. 3.1. Besides, polarity, dipole moment, viscosity, and the fact if the solvent is protic 

or not have a strong influence on the development of the materials, as different solvent 

properties can stabilise different transition states in the system. Thus, the solvent 

influences the reaction rate. 

• The Temperature 

Temperature mainly affects the reaction rate. 

 

Gelation 

The sol-particles condense, giving macroscopic structures, and a gel is formed. The volume of 

the system does not change in this step, but viscosity increases, and the liquid present is 

entrapped. 

 

Ageing 

After gelation, there are sol-particles left in the solvent, which is entrapped in the pores of the 

gel. Thus, inside the pores the sol-particles can further condense and decrease the size of the 

pores. As a result, the solvent is pressed out of the pores, and the volume of the gel decreases. 

So, in this sub-step, the volume of the material as well as the volume of the pores, are 

reduced. 

 

Drying 

By removing the solvent without damaging the pores of the material, an aerogel is formed. 

This can be achieved by extraction with supercritical carbon dioxide, or lyophilising. By 

simply heating the material, most often the pores are destroyed, yielding a dense xerogel. 

 

Nomenclature 

According to which moieties are bound to the silicon atom, a classification is made into Q-, 

T-, D-, and M-groups (Figure 3.1). Q-groups allow the formation of four siloxane bonds (Si-

O-Si) and therefore, of three-dimensional network structures. With T-groups three siloxane 

bonds can be formed, and two-dimensional layer structures are built. D-groups lead to the 

formation of chains and rings, as only two siloxane bonds can be formed, whereas M-groups 
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only allow the formation of one siloxane bond and thus, of dimers. Superscript numbers give 

the number of siloxane bonds (Figure 3.1). 29Si solid state NMR spectroscopy can 

differentiate between the groups. Reference values for the chemical shifts are -100 ppm for Q-

groups, -60 ppm for T-groups, and -20 ppm for D-groups.25  

 

 

Figure 3.1 Nomenclature of siloxane species. 

 

3.1.2 The Stöber Process 

The Stöber Process enables the controlled synthesis of spherical, monodisperse silica 

nanoparticles with diameters of 50-2000 nm.26 Tetraalkyl siloxanes (methyl-, ethyl-, n-propyl, 
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n-butyl, n-pentyl-) as precursors are hydrolysed and condensed in alcohols (methanol, 

ethanol, n-propanol, n-butanol) as solvent in the presence of water and ammonia as catalyst. 

The size of the particles can be controlled by the following parameters.27,28 

 

• The Concentration of Ammonia and Water 

With increasing concentrations of ammonia and water, the reaction rate and therefore, 

the diameter d of the particles are increased as well. Yet, a too big amount of water 

leads to a stagnation of particle growth. 

• The Concentration of the Silicate 

If the concentration of the precursor silicate exceeds a critical value of about 0.2 mol 

L-1, the particle diameter d decreases, and silica gels are formed. 

• The Chain Length of the Solvent and the Alkoxy Moieties at the Silicon 

With increasing chain length and degree of branching, d is increasing as well. 

• The Temperature 

The diameter d of the particles decreases with increasing temperature. 

 

The silicates do not completely hydrolyse during the Stöber Process, so there are ≡Si-OR 

moieties left inside and at the surface of the particles, which can be shown by IR and NMR 

spectroscopy. These alkoxy moieties can be removed by tempering the materials at 600 °C, at 

which the density of the particles is increased simultaneously. 

The spectra of the Stöber particles show an amount of Q4-groups of about 60-65 % and an 

amount of Q3-groups of about 30-35 %.  

 

3.2 Functionalisation of Silicas 

3.2.1 Silanisation 

The functionalisation of silica gels or silica (nano)particles is well investigated, and various 

functional groups can be attached to the surface of the silicas. The most common surface 

modification involves condensation of surface silanol groups with functionalised alkoxy 

silanes (silanisation).25,29-32 In this reaction, one or two siloxane bonds are formed, which are 

linked to the particle surface, and possibly crosslinking with other coupled silanes occurs. The 

disadvantage of this method is that these siloxane bonds are prone to hydrolysis in aqueous 
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medium due to incomplete condensation reactions, and thus, leaching of the coupled silanes 

can take place.  

3.2.2 Hydrosilylation 

An alternative approach of surface functionalisation of silica is the formation of Si-C bonds. 

In contrast to siloxane bonds, Si-C bonds are non polar, stable, and chemically inert.31 

Hydrosilylation is an important method for the formation of Si-C bonds. In general, organic or 

inorganic silicon hydrides are added to multiple bonds, in particular to C=C or C=X double 

bonds (where X = O, N), as well as to heteroatom-heteroatom double bonds (N=N, N=O). 

Here, the addition of a Si-H bond of a silane on the particle surface to the C=C double bond of 

an olefin, are considered. Substituted olefins preferentially yield the anti-Markovnikov 

product, and terminal silyl groups are formed. Hydrosilylation reactions do not run 

spontaneously, they require activation by catalysts, or by radical initiators. Commonly used Pt 

based catalysts, like Speier’s and Karstedt’s catalysts (chloroplatinic acid H2PtCl6 and divinyl 

disiloxanes) lead to metal contaminations on the silica surface. The use of radical initiators, 

like benzoyl peroxide, or 2,2’-azobis(2-methylpropionitrile) can also lead to impurities on the 

silica surface, when the organic compounds react with the surface.33-35 Alternative ways to 

catalyse hydrosilylation reactions are provided by thermal and photochemical initiation, 

respectively. As there is no need for the use of reagents, impurities on the particle surface can 

be completely avoided, which is an advantage of those methods. Thus, in the present work, 

hydrosilylations reactions were photochemically induced.  

3.2.3 Photochemical Hydrosilylation 

UV radiation enables the formation of Si-C bonds in photochemical hydrosilylation reactions 

at room temperature, and without the use of further reagents. This method is widely 

investigated for the functionalisation of Si-H modified silicon surfaces while mechanistic 

aspects of the reaction are still controversially discussed.36-40 
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3.3 Characterisation 

3.3.1 Physisorption Isotherms 

3.3.1.1 Specific Surface Area 

The specific surface area A of (porous) materials can be determined from adsorption 

isotherms. The measuring principles are based on the adsorption, that is, the adhesion of gases 

to a solid surface.  

If a solid (with the mass m) and a gas (with the pressure p) are enclosed in a vessel (with a 

known volume V) the gas molecules will be adsorbed to the surface of the solid, which leads 

to an increase of the mass m and a decrease of the gas pressure p. The amount of gas, 

adsorbed to the surface, can be determined from the increase in mass or the decrease in gas 

pressure, respectively. The adsorbed gas is called adsorbate, the solid is the adsorbent in such 

a system. The adsorbate can be bound to the surface either chemically (chemisorption) or 

physically (physisorption). In the case of chemisorption, molecules are bound to the surface 

by a chemical bond (e.g., H2 to palladium), so they can decompose. Adsorption enthalpies lie 

within the range of reaction enthalpies (about 200 kJ mol-1). In the case of physisorption (e.g., 

inert gases at low temperatures), there are van der Waals forces between solid and gas 

molecules, and adsorption enthalpies lie in the range of about 20 kJ mol-1.  

There is a dynamic equilibrium between free and adsorbed gas molecules, and the distribution 

of the molecules on the material surface depends on the partial pressure of the free gas.  

Adsorption is described through isotherms, that is, the amount of adsorbate on the adsorbent 

as a function of its pressure at a constant temperature. The shape of the isotherm is defined by 

the characteristics of the adsorbent.41,42 

 

Langmuir Isotherm
43

 

The simplest shape of an adsorption isotherm is obtained under the assumption, that only a 

monolayer of adsorbate molecules is formed, and that the adsorption enthalpy is independent 

of the extent of coverage. The Langmuir equation relates the adsorption of gas molecules on a 

solid surface to the gas pressure of the medium above the solid surface at a constant 

temperature. At the beginning, surface coverage increases proportional to the pressure and 

then converges asymptotical on the value of the monomolecular coverage Nm (Figure 3.2). 
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BET Isotherm
44

 

Frequently, particularly in the case of physisorption, adsorption in multiple layers is observed. 

Due to the formation of multiple layers, the adsorption isotherms show a different shape. At 

the beginning, the extent of coverage increases proportional to the gas pressure and converges 

on a limiting value, but then coverage further increases. So there is a point of inflexion in the 

isotherm (Figure 3.3). Brunauer, Emmett und Teller first developed a model to describe this 

behavior, so the BET theory was named after their initials. 

  

Figure 3.2 Langmuir adsorption isotherm. 
 

Figure 3.3 BET isotherm for the system 

N2/Stöber particles at 77.35 K. 

3.3.1.2 Porosity 

Beside the specific surface area, the porosity of materials can also be determined from 

sorption isotherms, as the pores and the pore size, respectively, influence the shape of the 

isotherms. Pores of widths < 2 nm are defined as micropores, between 2 - 50 nm as 

mesopores and > 50 nm as macropores. Six different types of BET-isotherms can be 

classified. The ideal shape, as depicted in Figure 3.3 (type II), occurs for nonporous solids. If 

mesopores are present, a hysteresis loop is generated by capillary condensation inside the 

pores (type IV).45 

The specific surface area of the particles and pore sizes of the materials in this work were 

determined by means of BET-measurements. Nitrogen was used as adsorbate on the particle 

surface and the relative pressure was plotted against the adsorbed volume of nitrogen. In the 

present system N2/Stöber particles physisorption takes place, so van der Waals forces occur 

between surface and adsorbate. 
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3.3.2 Dynamic Light Scattering (DLS) 

The hydrodynamic diameters of particles in suspension can be determined by measuring their 

diffusion rate by means of dynamic light scattering (DLS). The diffusion rate depends on the 

temperature and the viscosity of the liquid and on the size of the particles. With known 

temperature and viscosity of the liquid, the diffusion rate, and thus the hydrodynamic 

diameter, of the particles can be determined. The measuring principles are based on Brownian 

motion and photon correlation spectroscopy (PCS).46,47 

 

Brownian Motion 

The random drifting of particles suspended in a liquid is called Brownian motion. The 

diffusion coefficient of the particles at given temperature and viscosity of the fluid is 

inversely proportional to the hydrodynamic diameter dDLS. This relation is given by the 

Stokes-Einstein equation: 

 

B

DLS

k T
D

3 d
=

πη
 Eq. 3.2 

 kB: Boltzmann constant 

 T: temperature 

 η: viskosity of the fluid 

 dDLS: hydrodynamic diameter 

 

Photon Correlation Spectroscopy (PCS) 

The particles suspended are irradiated with a laser, and the scattered light is measured in a 

photomultiplier tube. The light scattered by the particles generates an interference pattern at 

any point of time. The detected intensity of light scattered depends on the interference pattern, 

which itself depends on the particles in the laser beam. As the particles randomly move in the 

fluid and change their relative positions, the interference pattern persistently changes, and 

thus, the intensity detected also changes persistently. These fluctuations occur on a time scale 

of micro- to milliseconds. Big particles move slowly and cause slow fluctuations at the 

detector, whereas smaller particles move faster and cause quick fluctuations. PCS determines 

the exact time unit of the fluctuations of the scattered light and hence the particle size. 
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Autocorrelation Function 

To calculate the diffusion coefficient D, the signal has to be transformed mathematically. The 

result of that transformation is an autocorrelation function (Eq. 3.3), which is related to D by 

Eq. 3.4: 

 G( ) I(t) I(t )τ = < × + τ >  Eq. 3.3 

 G(τ): autocorrelation function 

 I(t): detected intensity at the time t 

 I(t+ τ): detected intensity at the time t+ τ 

 τ: delay 

 

 
22DKG( ) e− ττ ∝  Eq. 3.4 

 D: diffusion coefficient 

 K: scattering vector (Eq. 3.5) 

 

 
4 n

K sin
2

π θ 
=  

λ  
  Eq. 3.5 

 n: refraction index of the fluid 

 λ: wave length of the laser 

 Θ: scattering angle 

 

Size Distribution Processor (SDP) Analysis 

The SDP analysis provides the size distribution of the particles and its standard deviation 

from the autocorrelation function. 

3.3.3 Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS)
48

 

Infrared spectroscopy is mostly measured in transmission, but surfaces or strongly scattering 

samples can only be measured in reflection with a special setup.  

In diffuse reflectance experiments, powdery samples can be directly measured, which 

simplifies the sample preparation. Absorption, refraction and reflexion take place 

simultaneously at the sample’s surface. In the present work, samples were mixed with KBr to 

reduce absorption by the silica particles. This method is particularly suitable for the 

characterisation of surfaces. 
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3.3.4 Scanning Electron Microscopy (SEM)  

The topography of surfaces can be depicted by means of scanning electron microscopy 

(SEM). Therefore, an electron beam is generated by an electron-optical system of 

electromagnetic and electrostatic refractors, and the surface of an object is examined by line-

by-line scanning with the electron beam. Acceleration voltages of 5 - 30 kV are applied. 

Images can be generated by detecting the secondary electrons emitted by the object (SE 

image) or by detecting backscattered electrons (BSE image). Secondary electrons possess 

kinetic energies of < 50 eV, backscattered electrons of > 50 eV. A combination of a 

scintillator and a photomultiplier serves as detector and is positioned angular above the 

sample, which lets the object appear three-dimensional. Samples should be conducting, if they 

are not, they can be made conducting by thin-film deposition (sputtering) of a metal (e.g., Au, 

Pd, Pt). For SE images, as taken in this work, a resolution limit of 2 - 20 nm can be 

reached.49,50 
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3.4 Magnetic Resonance Imaging (MRI) 

Magnetic resonance imaging (MRI) is an imaging technique widely used in clinical diagnosis 

to image the soft tissues inside the human body. The measuring principles are based on 

nuclear magnetic resonance (NMR) spectroscopy and the 1H NMR signals of the water 

protons in the body are detected. To obtain images from the NMR measurements, the 1H 

NMR signals have to be depicted location-dependent. This is enabled by the application of 

time-dependent, linear magnetic field gradients along the three directions in space, which 

change the magnetic field strength G at a location (x|y|z) linearly with the time t (Eq. 3.6; 

given only for x-direction): 

 
0 XB(x, t) B G (t)x= +

 

Eq. 3.6 

 B0: external magnetic field 

 x: spatial coordinate in x-direction 

 Gx(t): gradient strength 

 

Thus, the resulting Larmor frequency ω depends on the location r and the time t (Eq. 3.7): 

 

(r, t) B(r, t)ω = −γ

 

Eq. 3.7 

 r: location in space r = (x|y|z) 

 γ: gyromagnetic ratio 

 

As the resonance frequency of the water protons depends on the magnetic field strength, the 

frequency also is location-dependent and it is possible to excite only protons at a certain 

location in the body. The application of the field strength gradients enables the assignment of 

the signal intensity to a definite spatial volume element (voxel). 

The signal intensity mainly depends on three factors, which depend on their chemical 

environment: the spin density ρ, the longitudinal relaxation time T1, and the transverse 

relaxation time T2. By the application of different pulse sequences, it is possible to create a 

dependency of the signal intensities on ρ, T1, or T2. The final MR image is created by 

converting the signal intensity of each voxel into the brightness of a grey-level value.1 
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3.4.1 MRI Contrast Agents 

Contrast agents influence the signal intensity of the protons in the surrounding tissue by 

shortening the longitudinal and/or the transverse relaxation time, T1 and T2, respectively. 

Paramagnetic compounds with unpaired electron spins can shorten the relaxation times 

significantly and therefore, are used as contrast agents for MRI. In T1-weighted images, a 

shorter T1 leads to a signal enhancement in terms of an increase in brightness. Shortening of 

T2 in T2-weighted images leads to a decrease in brightness, which is not as well detectable. 

Therefore, T1 agents are mostly preferable. An effective contrast agent should possess as 

many unpaired electrons as possible, and its electron spin relaxation time must correlate well 

with the Larmor frequency of the influenced protons. Fe3+, Mn2+, and Gd3+ ions fulfill these 

conditions at best.1,3 

Currently applied T2 agents typically are iron oxide (Fe3O4) nanoparticles, whereas most T1 

agents are based on gadolinium complexes. Gd(III) possesses seven unpaired electrons and a 

good electron spin relaxation rate, so it has a strong influence on the longitudinal relaxation 

time of the water protons. Besides, the exchange rate of water molecules in the gadolinium 

aqua complex is quite high, which leads to a strong influence of the surrounding bulk water 

molecules. The major drawback of gadolinium based CAs is the toxicity of the free Gd(III) 

ion to the human body. Due to its ionic radius, which is close to that of Ca(II), calcium 

regulated processes within the body are disturbed. Thus, chelating ligands are used to form 

stable and inert complexes, which can be applied as CAs.51-53 

To diminish the dissociation of the Gd(III) complexes in the body, multidentate ligands are 

used, where not all coordination sites may be occupied, to allow interactions of the Gd(III) ion 

with water molecules. The relaxation rate observed under the influence of paramagnetic 

compounds (1/T1,2o) consists of a diamagnetic (1/T1,2d) and a paramagnetic (1/T1,2p) term (Eq. 

3.8):  

 
1,2o 1,2d 1,2p

1 1 1

T T T
= +  Eq. 3.8 

 

The paramagnetic term is proportional to the concentration of the paramagnetic compound, 

for example Gd3+ ([Gd]) and is given in mmol L-1: 

 1,2
1,2o 1,2d

1 1
r [Gd]

T T
= + ⋅  Eq. 3.9 
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The relaxivity r1,2 [mM-1 s-1] is a direct measure for the efficiency of a complex as contrast 

agent. The origin for the enhancement of the relaxation rates by paramagnetic compounds can 

be classified into three different contributions: relaxation in the inner sphere (water molecules 

coordinated to the metal), the second sphere (water molecules bound to the ligand) and the 

outer sphere (bulk water molecules) (Figure 3.4). The contribution of the inner sphere is based 

on the interactions of the electron spins of the Gd3+ ion with the protons of the coordinated 

water molecules. By the exchange of the inner sphere water molecules with bulk water 

molecules this contribution is transferred into the bulk volume. Water molecules diffusing 

around the complex also are influenced by the paramagnetism resulting in the relaxation in 

the outer sphere. These contributions are additive and the share of the inner sphere effect is 

about 60%, the share of the second and outer sphere effect about 40%.1-4 

 

 

Figure 3.4 Interactions of water molecules with Gd(III) based contrast agents. 
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3.5 Nanoparticulate Contrast Agents 

Since molecular agents are released easily and quite fast from the body, they are not suitable 

for long-term tracking applications.6 

Therefore, nano-sized materials are developed and are gaining increased importance in 

medical diagnosis and treatments. By tailoring hybrid nanomaterials, consisting of an 

inorganic matrix and functional organic moieties, materials with special properties can be 

made for various purposes, such as carriers of drugs or for imaging techniques.7-12 Combined 

with targeting units, they promise to identify diseases on a molecular level and thus, in an 

early stage.13-17 Most of the currently used nanoparticulate CAs are T2 agents based on iron 

oxide NPs.54 In spite of many applications, T2 agents have several disadvantages. They are 

negative imaging agents, which result in signal decreases. Moreover, their high susceptibility 

induces distortions of the magnetic field on nearby tissues. This leads to a loss of contrast 

between lesions and background.55-57 Nanoparticulate silica based matrices, functionalised 

with gadolinium chelates, which serve as T1 agents are rare.13,14,17-20 Silica particles bring 

several advantages. In a minimum of space, large payloads of CA molecules can be obtained. 

Thus, because of the high local concentration of CA molecules, nano-sized materials can act 

as contrast amplifiers and result in an overall high relaxivity, as well as improved resolution 

and sensitivity. Furthermore, they can serve as matrices not only for CA molecules, but also 

for targeting or ‘smart’ units, which respond to physiological changes (e.g. in pH or ion 

concentrations), as well as fluorophores and biocompatible moieties, such as polyethylene 

glycol (PEG).13,14,17,21 Nonporous nanoparticles ensure that the molecules are only bound to 

the surface. In the case of gadolinium chelate based CAs, this allows unhindered interactions 

of water with all gadolinium sites, which is mandatory for a good contrast. Another advantage 

of immobilising CA molecules on NPs is a decreased rotational tumbling. According to the 

Solomon-Bloembergen-Morgan theory of paramagnetic relaxivity a higher rotational 

correlation time τR leads to an enhancement in relaxivity.3,58 
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4 Results and Discussion 

4.1 Syntheses of LnDOTA- and LnDO3A-Derivatives 

To couple DOTA- and DO3A-like gadolinium chelate complexes to a matrix, an additional 

functional group is required, which allows coupling of the Gd(III) complex to the surface of 

the matrix. In this work, this is realised by the introduction of carboxylic acid and amino 

groups, respectively, thus allowing to build peptide bonds between complexes and matrix. 

Next to Gd3+ derivatives, which serve as CAs, the Y3+ analogues were synthesised to enable 

NMR spectroscopic investigations. In the following, the expression ‘lanthanides’ and the 

abbreviation ‘Ln’ are used with respect to Gd and Y.  

To couple Ln(III) complexes to carboxylic acid functionalised matrices, the amino-terminated 

DO3A-hexylamine ligand 159 was used and loaded with Y3+ and Gd3+, to give complex 2 and 

3, respectively (Scheme 4.1). 

 

Scheme 4.1 Syntheses of Ln[DO3A-hexylamine] derivatives. 

 

For coupling Ln(III) complexes to amino-terminated matrices, the carboxylic acid 

functionalised DOTA-derivatives DOTA-BA 4 and DOTA-GA 7 were synthesised according 

to ref. 60 and loaded with Y3+ and Gd3+, respectively, to give the Ln[DOTA-BA] complexes 5 

and 6 (Scheme 4.2) as well as the Ln[DOTA-GA] complexes 8 and 9 (Scheme 4.3). As the 

DOTA derivatives are charged complexes, the tetrabutyl ammonium ion (n-Bu4N
+) was 

introduced as counterion to improve the solubility of the complexes in DMSO. 
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Scheme 4.2 Syntheses of Ln[DOTA-BA] derivatives. 

 

 

Scheme 4.3 Syntheses of Ln[DOTA-GA] derivatives. 

 

Finally another amino-terminated DOTA-compound, DOTA-ButAm61 10 was synthesised to 

allow coupling of the Ln(III) complexes 11 and 12 to carboxylic acid groups. Therefore, a 

new route for the synthesis of 10 was developed (Scheme 4.4). In the first step Nω-Z-L-lysine 

(13) was brominated with hydrobromic acid and sodium nitrite. The carboxylic acid group of 

the resulting bromolysine (14) was protected with a methyl group under acidic conditions. 

The resulting lysine derivative 15 was reacted with DO3A(tBu)3 (17) in a nucleophilic 

substitution reaction in acetonitrile with potassium carbonate to give the protected DOTA like 

ligand 18. The Z protecting group was removed by hydrogenolysis under Pd/C catalysis. 

Finally, the acid protecting groups were removed by refluxing compound 19 in 6 N 

hydrochloric acid to give DOTA-ButAm 10 (Scheme 4.4). The complex 11 was synthesised 

with Na+ as counterion. The compounds were characterised by 1H and 13C{1H} NMR 

spectroscopy and mass spectrometry. 
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Scheme 4.4 Synthesis of Ln[DOTA-ButAm]. 
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4.2 Syntheses and Characterisation of Stöber Particles 

Stöber silica particles are generally described as nonporous and monodisperse spheres with 

diameters in the colloidal range.26 In previous work,62-64 the synthesis of Stöber silica particles 

was optimised to obtain materials as close as possible to ideality with respect to nonporosity, 

monodispersity and spherical shape, while controlling the particle diameter. Furthermore, as 

an additional criterion, the particles have to be isolated from their suspensions without 

structural degradation, such as aggregation, since chemical modifications are performed after 

the synthesis. The materials are thoroughly characterised to precisely define any deviation 

from ideality and to carefully determine the extent of surface modifications. The 

characterisation includes surface chemical properties, which are important for reactions to 

immobilise molecules on the surface. 

4.2.1 Synthesis of Stöber Particles 

The formation of Stöber particles relies on a balance between the relative rates of the 

condensation and hydrolysis reactions. The experimental parameters (concentrations, 

temperature, chemical identity of the precursor, catalyst, and solvent) define the extent and 

rate of each step, and therefore, the final particle properties, like shape, size, size distribution 

and porosity. As there are various parameters controlling the final particle size (temperature, 

type of solvent, concentrations of TEOS, water and ammonia), and as some parameters 

influence both, the reaction kinetics and the colloidal stability (thermodynamic effects), it is 

difficult to predict the final particle size that will result from a given set of experimental 

conditions.  

 

Scheme 4.5 Synthesis of bare Stöber particles M0. 
 

The aim of this work was the synthesis of nonporous particles with a diameter of 100 and 50 

nm, respectively. Therefore, based on previous work,62-64 different concentrations of the 

starting compounds and a variation of the reaction temperature were used in this work. The 

reaction conditions are listed in Table 4.1. A mixture of ethanol and water was heated to the 

desired reaction temperature. After the temperature of the mixture was equilibrated for at least 

15 min, aqueous ammonia and TEOS were quickly added under strong stirring. After 2 h 
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under continued strong stirring, the resulting particles M0 were separated by centrifugation 

and washed with water and ethanol using ultrasonication and centrifugation after each step. 

The materials were dried in vacuo at 100 °C for at least 15 h (Scheme 4.5). 

Independent of the degree of hydrolysis, mesopores are absent in materials resulting from the 

Stöber process. However, the silica particles are not fully condensed and contain 

micropores.27 Therefore, the materials (except M050 and M0b100) were calcinated at 600 °C in 

vacuo for at least 15 h in order to further reduce the microporosity. M050 was not calcinated to 

avoid aggregation, which is likely for particles with small diameters. Calcination is expected 

to condense the internal silanol groups into siloxane bonds yielding a more condensed matrix 

(Scheme 4.5, 2nd reaction step). The thermal treatment also induces the loss of surface silanol 

groups and is expected to eliminate any remaining solvent and ammonia molecules from the 

silica matrix.65,66 

 

Table 4.1 Reaction conditions for the syntheses of M0 materials. 

material reaction conditions 

 
V(EtOH) / 

mL 
V(TEOS) / 

mL 
V(NH4OH) / 

mL 
V(H2O)  

/ mL 
T  

/ °C 
M0130 400 30 20 72 75 

M0a100 400 30 20 72 75 

M0b100 100 7.50 5 18 75 

M050 300 11.00 7.57 - 35 

subscript numbers are average diameters 
(M0b only dried at 100 °C, M0a calcinated at 600 °C) 
 

4.2.2 Characterisation of Stöber Particles 

4.2.2.1 Size and Shape 

Size. The size of the Stöber particles was determined by evaluation of images, 

obtained by scanning electron microscopy (SEM) and by dynamic light scattering (DLS) 

measurements. The results are given in Table 4.2. Silica nanoparticles with diameters of about 

50, 100 and 130 nm were obtained.  

The average diameters dSEM from SEM were determined by sizing a number n of particles 

from each batch in the scanning electron micrographs. Beside diameters and standard 

deviations σ of the particles, the statistical analysis also provides information about the size 
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distribution. The size distributions of the M0 materials closely follow Gaussian distributions. 

The evaluation of the Gaussian curves, fitted to the size distributions, results similar values 

for dSEM ± σ. Differences lie within the range of the standard deviations. 

The hydrodynamic diameters dDLS of the particles in dilute suspensions were determined from 

measurements of their diffusion coefficients by DLS in water. The diameters and the 

polydispersity indices (PDI) of the DLS measurements are listed in Table 4.2. The diameters 

correlate well with those obtained from the scanning electron micrographs. This demonstrates 

that the particles exist as single units suspended in water. The diameter of M050 could not be 

determined by DLS owing to strong agglomeration phenomena. As DLS determines the 

hydrodynamic diameter dDLS of suspended particles, diameters measured by this technique are 

bigger than those determined from SEM images. 

In previous work62-64 it was shown, that the Stöber process yields reproducible diameters, if 

the reaction conditions are controlled carefully. However, small changes in the experimental 

conditions, including unintentional variations, can have dramatic effects on the particle 

diameter. The conditions for M0100 and for M0130 were the same, but the particles were 

synthesised from a different batch of TEOS, which might be the reason for the difference in 

the particle diameter.  

 

Table 4.2 Size characterisation of the M0 materials. 

material dDLS / nm PDI dSEM / nm 

M0130 164 ± 64 0.441 131 ± 11 

M0a100 118 ± 66 0.247 103 ± 10 

M0b100 127 ± 37 0.143 110 ± 9 

M050 - - 51 ± 5 

subscript numbers are average diameters 
(M0b only dried at 100 °C, M0a calcinated at 600 °C) 
 

 

 Shape. Beside the size of the particles, SEM-images show the shape and behaviour of 

the particles. Bigger particles form perfect spheres, whereas the smaller 50 nm particles show 

deviations from a perfect spherical shape (Figure 4.1). Bare particles M0 do not agglomerate 

and arrange in close-packing of spheres. 
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Figure 4.1 Scanning electron micrographs of M0130, M0100, and M050. 

 

4.2.2.2 Spectroscopic Investigations 

On the surface of silica particles, there are different species of OH groups. Next to free 

isolated silanol groups ≡ Si-OH (Figure 4.2 a), hydrogen bonded silanol groups (Figure 4.2 b) 

and surface siloxane groups ≡ Si-O-Si ≡  (Figure 4.2 c) are present. Subject to the temperature 

pretreatment of the material, different amounts of adsorbed water can be observed on the 

surface (Figure 4.2 d, grey).65 Depending on the synthesis based on TEOS, there are also a 

few ≡ Si-O-Et groups left on the surface. 
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Figure 4.2 Model of the silica surface: a) isolated silanol groups, b) hydrogen bonded silanol 
groups, c) siloxane groups, d) adsorbed water molecules. 

 

Surface chemical properties of the Stöber particles were examined by diffuse reflectance 

(DRIFT) IR-FT spectroscopy and 29Si HPDEC/MAS NMR spectroscopy. 

 

DRIFT Spectroscopy. The DRIFT spectra of the bare particles M0 (Figure 4.3) show 

the vibrations of free, isolated silanol groups (νSiOH) at 3746 cm-1, different hydrogen  bonded 

-OH groups (νOH) from 3732 to 3012 cm-1 and surface bound water at 1630 cm-1, as well as 

vibrations of the interior siloxane bonds (νSi-O-Si) at 1980, 1866, and 1362 to 1003 cm-1. 

Vibrations of CHx groups (νCHx) are very week at 2985 and 2904 cm-1 and belong to residual 

Si-OEt moieties.  After  calcination  of  the  particles at 600 °C, the vibrations of the CHx and 

-OH groups disappear. Another indication of the change in the particle structure by 

calcination is the disappearance of the stretching vibration of Si-OH groups at 945 cm-1.23 
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Figure 4.3 DRIFT spectra of M0100. a) dried at 100 °C and b) calcinated at 600 °C. 

 

Table 4.3 Assignments of IR vibrations of M0100. 

wave number / cm-1 

M0b 

 

M0a 

assignment 

3746  isolated ν(Si-OH) 

3732 - 3012  different ν (OH) 

2985, 2904  ν (CHx) 

1980, 1866 1980, 1866 ν (Si-O-Si) 

1630  H2O 

1362 - 1003 1380 - 908 νas (Si-O-Si) (skeleton) 

945  ν (Si-OH) 

798 818 δ (O-Si-OH),  

νs (Si-O-Si),  

δ (O-Si-O)  

555  

478 478 

(M0b only dried at 100 °C, M0a calcinated at 600 °C) 
 

 Solid state NMR spectroscopy. By 29Si solid state NMR spectroscopy the nature of 

the silicon nuclei of the particles can be investigated. Corresponding to the DRIFT data, the 
29Si HPDEC/MAS NMR spectrum of M0, dried at 100 °C, shows signals of Q3 groups at -103 

ppm (33%) and Q4 groups at -110 ppm (67%). After tempering M0 at 600 °C, in the 29Si 



4 Results and Discussion 

 
 

 
~ 29 ~ 

 

NMR spectrum only a broad signal for Q4 groups is left at -109 ppm, as residual Si-OEt and 

Si-OH groups condense, due to the high temperature treatment. 

 

Figure 4.4 
29Si HPDEC/MAS NMR spectra of M0100. a) dried at 100 °C and b) calcinated at 

600 °C. 
 

4.2.2.3 Specific Surface Area and Porosity of the Stöber Particles 

Specific surface areas ABET and pore sizes dP of the particles were determined from nitrogen 

sorption isotherms by means of the Brunauer-Emmett-Teller (BET) model, which applies to 

type II and type IV isotherms and determines the specific surface area including the surface 

area of micropores.44,66 The values are given in Table 4.4. The BET isotherms of the Stöber 

particles (Figure 4.5) show hysteresis loops, which is an indication for mesoporous materials. 

The extent of the hysteresis increases with decreasing particle diameter. Besides, pores with 

diameters of 13.4 to 27.2 nm are detected by the BET method. In fact, the mesopores 

determined, are the interstices between the single particles. When the particles get smaller, the 

interstices between single particles decrease as well, while the specific surface area ABET 

increases significantly. 

 

Table 4.4 Specific surface area and porosity of the Stöber particles. 

material ABET / m2.g-1 dP / nm 

M0130 30 27.2 

M0a100 43 25.2 

M0b100 49 24.5 

M050 104 13.4 
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Figure 4.5 Nitrogen Sorption isotherms for M0130, M0100, and M050. 

 

4.2.2.4 Specific Surface Concentration of ≡ Si-OH Groups 

According to the Zhuravlev model, which describes the surface chemistry of amorphous silica 

and determines the number of silanol groups αOH on the surface, an average value of αOH = 4.9 

OH nm-2 (8.14 µmol m-2) has been reported.65 As the specific surface area of the particles is 

known, the number of silanol groups ΓSi-OH on the surface of the NPs can be estimated.  

 

Table 4.5 Specific surface concentration of silanol groups. 

material ABET / m2 g-1 ΓSi-OH / µmol g-1 

M0130 30 242 

M0a100 43 352 

M0b100 49 397 

M050 104 849 

 

M0130 M0100 

M050 
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Correlating with ABET, the amount of Si-OH groups per gram on the particles’ surface 

increases with decreasing particle diameter. While M0130 contains 242 µmol silanol groups 

per gram, M050 already contains 849 µmol (Table 4.5.). These findings correlate well with 

geometrical considerations regarding volume and surface of a sphere. 

 

4.3 Surface Modification of Stöber Particles 

The characteristics of Stöber particles make them advantageous as solid and inert matrices for 

the immobilisation of molecules. Immobilisation of molecules on Stöber particles provides a 

unique core/shell system: all active centers (shell) are located within an almost identical 

environment owing to the high symmetry of the particle matrix (core). Although the possible 

loading of the surface is inferior to that of highly porous materials, such as used for example 

in chromatographic applications,67 the binding sites are expected to be much more 

homogeneously distributed. This ensures homogenous interactions of water molecules with 

coupled CA complexes. Moreover, the absence of pores facilitates the diffusion of substrate 

(water) molecules to the active centers (CAs). Improved accessibility of active centers is 

expected, especially for large molecules.  

To couple Gd(III) complexes and further moieties to the particles’ surface, the introduction of 

functional groups on the surface is mandatory. Functionalisation of silica materials is well 

investigated and various functional organic groups can be attached to the surface of the 

silicas.25,29,30 By conventional organic coupling reactions, gadolinium complexes – or any 

desired moiety – can then be coupled to the surface functionalised silica matrices.68-70 The 

most common surface modification involves condensation of surface silanol groups with 

functionalised alkoxy silanes (silanisation). The disadvantage of this method is, that the 

siloxane bonds, formed that way, are prone to hydrolysis in aqueous medium due to 

incomplete condensation reactions. An alternative approach of surface functionalisation of 

silica is via chlorination-reduction. Here the surface silanol groups are converted into Si-H 

functions prior to further functionalisation.67 A hydrosilylation reaction with carbon-carbon 

double bonds then produces Si-C linkage with good stability under a wide range of 

conditions. 

The bare silica NPs M0 were functionalised with amino groups, epoxy groups, and Si-H 

groups, respectively, to allow further functionalisation. The materials were fully characterised 

to precisely determine the extent of surface modifications. 
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4.3.1 Silanisation 

Prior to silanisation, the surface of the calcinated silica particles was rehyroxylated to 

regenerate surface silanol groups, which can condense with functionalised alkoxysilanes to 

get a monolayer of coverage.65,71 The Stöber particles M0130 were coated with (3-

aminopropyl)triethoxysilane (APTES) and (3-glycidyloxypropyl)trimethoxysilane (GOPTS), 

giving the materials M1C3NH2 and M2GOPTS, respectively. M0100 and M050 were coated 

with triethoxysilane (TES), yielding M3100SiH and M350SiH (Scheme 4.6).  

 

Scheme 4.6 Silanisation of Stöber Particles with APTES, GOPTS, and TES. 

 

4.3.2 Chlorination-Reduction 

In silanisation reactions, functionalised alkoxysilanes react with surface silanol groups, 

forming mainly one or two siloxane (Si-O-Si) bonds, while the binding of the silane via three 

siloxane bonds is rare. Under certain conditions (high or low pH), these siloxane bonds can be 

easily broken, which leads to leaching of the silanes from the surface.31 Therefore, another 

approach, a chlorination-reduction sequence, giving M4SiH, was used to generate Si-H 

functionalised materials from M0a100 (Scheme 4.7).67 This reaction requires high 

temperatures, but the advantage of the chlorination-reduction sequence is the formation of Si-

H bonds with silicon atoms, which are embedded in the SiO2 matrix by two to three siloxane 

bonds. Leaching processes are strongly reduced in this case.  

After drying the particles for 6 h at 800 °C in vacuo, they were first reacted with 

thionylchloride at 800 °C to form Si-Cl bonds on the surface. Then the Si-Cl bonds were 

converted into Si-H bonds by treating the material with hydrogen at 1000 °C.67 
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Scheme 4.7 Chlorination Reduction of Stöber Particles. 

 

Comparable to the calcination step at 600 °C, after this reaction the mass of the particles as 

well as average diameters (compare 4.3.3.3 and 4.3.3.4) and the specific surface area 

(compare 4.3.3.5) are reduced due to the high temperature treatment.62  

4.3.3 Characterisation of Surface Modified Stöber Particles 

4.3.3.1 Size and Shape 

The diameters dSEM of the surface functionalised materials determined from scanning electron 

micrographs do not differ significantly from those of the starting materials (compare Table 

4.2 and Table 4.6). The shape of all surface modified materials does not differ from that of the 

starting material, either (Figure 4.6). Thus, it is assumed that only monolayers of coverage 

have been achieved by silanisation and that the high temperature treatment of the 

chlorination-reduction sequence did not disintegrate the spherical particles. 

 

Table 4.6 Size characterisation of surface modified materials. 

material dDLS / nm PDI dSEM / nm 

M1C3NH2 258 ± 98 0.362 131 ± 13 

M2GOPTS 140 ± 46 0.195 137 ± 20 

M3a100SiH 131 ± 33 0.312 104 ± 10 

M3b100SiH 132 ± 20 0.071 116 ± 14 

M350SiH - - 54 ± 5 

M4SiH 125 ± 35 0.186 111 ± 10 

subscript numbers are average diameters 
(M3a100SiH made of M0a, M3b100SiH made of M0b) 
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Figure 4.6 Scanning electron micrographs of M1C3NH2, M2GOPTS, M4SiH, and M350SiH. 

 

4.3.3.2 Particle-Particle Interactions 

Interactions between the particles were investigated by DLS, SEM and measurements of the 

zeta potential of the particles. Agglomeration of particles in solution can be observed by DLS 

and results in bigger average diameters as well as higher standard deviations and PDI values. 

The formation of three-dimensional agglomerates as well as repulsive interactions can also be 

seen in the SEM images (Figure 4.6). While bare particles M0 and M2GOPTS do not 

agglomerate and arrange in close-packing of spheres (Figure 4.1, Figure 4.6), Si-H and amino 

functionalised particles behave differently. M3SiH and M4SiH do not agglomerate, either, 
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but additionally, electrostatic repulsion between single particles can be observed in the SEM 

pictures of both materials, silanised and hydrogenated particles (Figure 4.6). The average 

diameters dDLS obtained by DLS in solution do not differ significantly from those of the 

starting materials (compare Table 4.2 and Table 4.6). The material M350SiH could not be 

resuspended to give stable suspensions, thus no reliable DLS values were obtained. SEM 

images of M1C3NH2 show that the particles do not arrange in perfect sphere packing any 

more and DLS measurements result in significantly bigger average diameters than for the 

starting material (dDLS = 258 ± 98 for M1C3NH2 and dDLS = 164 ± 64 M0130), indicating that 

the particles of M1C3NH2 agglomerate (see Table 4.6 and Figure 4.6). 

 

Zetapotential. The zetapotential (ζ-potential) is one of the main forces which 

mediate interactions between particles in suspension. Particles with a high zeta potential 

(of positive or negative charge), repel each other (< -30 mV and > +30 mV are considered 

as high zeta potentials). For particles that are small enough, and whose density is low 

enough to remain in suspension, a high zeta potential confers stability, i.e. the particles in 

suspension resist aggregation.72-74  

As the particles should be applied in vitro – or later on even in vivo, zetapotentials were 

determined in a phosphate buffered saline (PBS) and cell culture medium with 10% of 

serum, both at a physiological pH of 7.4. Serum containing cell culture medium 

(Dulbecco’s Modified Eagle Medium (DMEM)) is used to mimic physiological 

conditions. The ζ-values of the unfunctionalised and surface modified materials (except 

M1C3NH2 in PBS) (Table 4.7) are higher than -30 mV, i.e. the materials form stable 

suspensions and particles do not agglomerate under the conditions of the experiment 

(except M350SiH). Smaller ζ-values of about -30 to -10 mV were reported for 

unfunctionalised and Gd(III) chelate functionalised silica particles with smaller diameters 

of about 20 nm at pH 7.4.18  

The ζ-values of the unfunctionalised particles in PBS decrease with the particle diameter and 

indicate that suspensions of M0130 and M0100 are more stable than suspensions of M050 which 

is in accordance with the agglomeration behaviour observed during DLS measurements and 

with results reported in ref. 18. The highest ζ-potential of -56.3 mV in PBS was obtained for 

material M4SiH. The Si-H-bonds on the surface convert into Si-OH groups under the applied 

conditions, so a homogeneous hydrophilic surface is obtained which results in the ability to 

form stable suspensions and therefore a high ζ-potential. The value for M3100SiH (-53.6 mV) 
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is lower because of additional -SiOEt moieties on the surface which have remained because of 

incomplete hydrolysis and condensation of TES. The ζ-potential of the smaller particles 

M350SiH (-45.4 mV) is smaller than the ζ-potential of the 100 nm particles. This coincides 

with the fact that no stable suspensions are obtained. The zetapotential of M2GOPTS in PBS 

is only slightly decreased in comparison to the starting material, here stable suspensions are 

obtained. The material M1C3NH2 in PBS shows the only positive and the smallest ζ-value 

(23.9 mV). As already seen in SEM images and DLS measurements, particles of M1C3NH2 

agglomerate, which can be justified by their small zetapotential.  

The ζ-potentials obtained in cell culture medium are all lower than those in PBS and do not 

differ significantly. Interestingly, interactions with proteins and other components of the 

medium seem to compensate differences between the materials. Values of the small 50 nm 

particles are comparable with those of the bigger NPs. Here the only exceptions are 

M2GOPTS with a remarkably high ζ-value of -48.5 mV and M1C3NH2 with a very small, 

but negative ζ-value of -32.2 mV. So the components of the medium reverse the polarity of 

the positively charged amino modified surface of M1C3NH2.  

 

Table 4.7 Zetapotentials of unfunctionalised and surface modified materials. 

material ζ-potential / mV 
 PBS medium + 10% serum 
M050 -46.3 ± 1.1 -39.0 ± 0.3 

M0100 -52.8 ± 1.0 -41.3 ± 1.5 

M0130 -55.7 ± 1.5 -45.3 ± 0.6 

M1C3NH2 23.9 ± 0.8 -32.2 ± 0.4 

M2GOPTS -52.2 ± 0.6 -48.5 ± 0.9 

M350SiH -45.4 ± 1.0 -41.4 ± 0.9 

M3100SiH -53.6 ± 0.5 -40.6 ± 0.8 

M4SiH -56.3 ± 0.8 -40.4 ± 0.5 

Values represent mean ± SD. 

 

4.3.3.3 Spectroscopic Investigations  

Functionalisation of the particles was verified by DRIFT spectroscopy, 29Si CP/MAS 

spectroscopy, and 13C CP/MAS NMR spectroscopy.  
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DRIFT Spectroscopy. In the DRIFT spectra of M1C3NH2 (Figure 4.7 b) and 

M2GOPTS (Figure 4.7 c) it is difficult to demonstrate surface modification, as no additional 

significant vibrations in comparison to the starting material M0reh (Figure 4.7 a) occur. Only 

additional vibrations of CHx groups (νCHx) can be observed at 2942 and 2877 cm-1. 

 

Figure 4.7 DRIFT spectra of a) M0reh, b) M1C3NH2, and c) M2GOPTS. 

 

 

Figure 4.8 DRIFT spectra of a) M4SiH, b) M3100SiH, and c) M350SiH. 

 

DRIFT spectra of the Si-H modified NPs (Figure 4.8) show the characteristic Si-H vibrations 

(νSiH) for the materials M3SiH at 2256 cm-1 and for M4SiH at 2287 cm-1. Owing to the high 

temperature treatment, the vibrations of hydrogen bonded -OH groups disappear for M4SiH, 
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here only isolated silanol groups can be observed at 3748 cm-1. For the smaller 50 nm 

particles, the ratio of surface groups to bulk is larger than for the 100 nm particles, thus in the 

spectrum of M350SiH the vibrations of -OH as well as Si-H groups are more intense than in 

the spectrum of M3100SiH. The relatively intense vibrations of CHx groups in the spectrum of 

M350SiH indicate that there are more -OEt moieties left on the surface. Signals of -OEt 

groups are also observed in the 13C CP/MAS NMR spectra of M350SiH (not shown). 

 

Table 4.8 Assignments of IR vibrations of M1C3NH2, M2GOPTS, M3SiH, and M4SiH. 

wave number / cm-1 assignment 

M1C3NH2 M2GOPTS M3SiH M4SiH  

   3748 isolated ν(Si-OH) 

3758 - 2970 3758 - 2970 3760 - 3006  different ν (OH) 

2935, 2877 2957, 2889 2985, 2904  ν (CHx) 

  2256 2287 ν (Si-H) 

1969, 1868 1969, 1868 1991, 1866 1991, 1866 ν (Si-O-Si) 

1619 1619 1620  H2O 

1306 - 891 1306 - 891 1350 - 907 

1350 - 993a) 

1350 - 907 νas (Si-O-Si) 

(skeleton) 
a)

 M350SiH 

 

 Solid State NMR Spectroscopy. By 29Si HPDEC/MAS NMR spectroscopy it should 

be possible to get a quantitative estimation of all 29Si signals of the nanoparticles. Thus, after 

functionalisation of the surface, signals of Q and T groups should be detectable. After Si-H 

functionalisation, the signal of the T3
H groups in the region of -60 to -90 ppm could not be 

detected within a reasonable period of time for neither M3SiH nor M4SiH, due to the low 

ratio of the surface T3
H to Q4 groups in the bulk material. Therefore, 29Si CP/MAS NMR 

spectra of the materials were recorded to get the qualitative information of the chemical shifts 

of the different Si species. Note, that with CP/MAS NMR measurements it is not possible to 

get a quantitative estimation of the Si signals. As cross polarisation of the protons to silicon 

nuclei will affect only those silicon nuclei which are within the distance of four bonds, only a 

small amount of silicon nuclei will produce an NMR signal. Therefore, the ratio of the 

intensities of Q3 and Q4 groups is reversed in comparison to the ratio of the signals in the 

HPDEC spectra of the M0 materials. 
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Figure 4.9 
29Si CP/MAS NMR spectrum of 

M1C3NH2. 
Figure 4.10 

29Si CP/MAS NMR spectrum 
of M2GOPTS. 

 

  

Figure 4.11 
29Si CP/MAS NMR spectrum 

of M350SiH. 
Figure 4.12 

29Si CP/MAS NMR spectrum 
of M3100SiH. 

 

In the 29Si CP/MAS NMR spectrum of M1C3NH2 signals of T2 and T3 groups are observed at 

-43 to -72 ppm and peaks of Q3 and Q4 groups at -82 to -124 ppm (Figure 4.9). In the 

spectrum of M2GOPTS the resonances of T2 and T3 groups are observed at -43 to -62 ppm 

and the signals of Q3 and Q4 groups at -82 to -124 ppm (Figure 4.10). The resonances of T2
H 

and T3
H groups of the M3SiH materials are weak, but observable at -67 and -75 ppm for 
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M350SiH and at -73 and -83 ppm for M3100SiH. Q3 and Q4 groups are observed at -87 to -130 

ppm (Figure 4.11, Figure 4.12). The 29Si CP/MAS NMR spectrum of M4SiH (not depicted) 

only shows a broad signal from -80 to -120 ppm. 

The 13C CP/MAS NMR spectra of M1C3NH2 and M2GOPTS give evidence for the 

successful surface modification by silanisation. The spectrum of M1C3NH2 (Figure 4.13) 

shows the signals of the propyl chain and -OEt moieties (indicated with *) and in the 

spectrum of M2GOPTS (Figure 4.14) the signals of the glycidyloxypropyl chain can be 

observed.  

  

Figure 4.13 
13C CP/MAS NMR spectrum of 

M1C3NH2. 
Figure 4.14 

13C CP/MAS NMR spectrum of 
M2GOPTS. 

 

4.3.3.4 Specific Surface Area of the surface modified Stöber Particles 

The specific surface areas ABET of the surface modified materials (Table 4.9) are all decreased 

in comparison to ABET of the respective starting materials. The clearest decrease of ABET by 

29% is observed in the case of M4SiH and can be explained by the high temperature 

treatment. Micropores in the material coalesce due to the formation of new siloxane bonds 

and water. Thus, the surface accessible for N2 decreases. For the silanised materials ABET is 

reduced by 13-16%. Due to the sol-gel process on the surface of the starting material M0, 

micropores get inaccessible for nitrogen and a smaller surface area is measured (compare 

Table 4.4). 
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Table 4.9 Specific surface areas of the surface modified materials. 

material ABET / m2 g-1 

M1C3NH2 26 

M2GOPTS 26 

M3a100SiH 38 

M3b100SiH 40 

M350SiH 91 

M4SiH 31 

 

4.3.3.5 Specific Surface Concentration of Functional Groups 

The extent of surface functionalisation was quantified by means of elemental analysis (EA) 

for the materials M1C3NH2 and M2GOPTS.  

To determine the extent of surface modification, the number of silanol groups αOH on the 

surface of the particles, to be functionalised, has to be known. An average value of αOH = 4.9 

OH nm-2 has been reported.65 The specific surface area ABET of the starting materials M0 was 

determined by nitrogen adsorption experiments, and evaluated according to the multipoint 

Brunauer-Emmet-Teller (BET) method (Table 4.4). The surface concentration Γ(ligand) of any 

ligand, coupled to the surface, is calculated from the corrected percentage of carbon (%C), 

obtained from EA, by Eq. 4.1, where nc is the number of carbon atoms in the ligand, and Mc is 

the molecular weight of carbon. 

 
1

(ligand) C C

mol
%C (100 n M )

g
−  

Γ = ⋅ ⋅ ⋅  
 

 Eq. 4.1 

The number of coupled ligands per area α(ligand) is calculated by Eq. 4.2, where NA is the 

Avogadro constant and ABET the specific surface area of the particles. 

 
1 21

(ligand) (ligand) A BET 2

ligand
N A 10

nm
− −  

α = Γ ⋅ ⋅ ×   
 Eq. 4.2 

For M1C3NH2 and M2GOPTS the ratio of α(ligand)/αOH is 0.53 and 0.30, respectively, which 

means that 53% and 30% of the silanol groups have reacted with a functionalised silane, 

assuming that each alkoxy silane only forms one siloxane bond with the particle surface 

(Table 4.10). In fact there can be formed one, most likely two or rarely even up to three 

siloxane bonds. If surface concentrations Γ are compared, it can be assumed that in the case of 

M1C3NH2 130 µmol g-1 and in the case of M2GOPTS 70 µmol g-1 of ligand were coupled to 
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the 242 µmol g-1 silanol groups of M0130. For M1C3NH2 this is an overestimation, as the 13C 

CP/MAS NMR spectrum shows, that ethanol moieties are left on the surface. Thus, the values 

given should be regarded as estimations rather than as precise numbers. 

 

Table 4.10 Evaluation of elemental analyses based on % of carbon (%C). 

 ABET /     
m2 g-1 

%C 
(EA) 

corr %C 
(EA) 

Γ(ligand) / 
mmol g-1 

αligand / 
nm-2 

α(ligand) / 
αOH 

M0130 30 0.08     

M1C3NH2  0.54 0.46 0.13 2.59 0.53 

M2GOPTS  0.61 0.53 0.07 1.49 0.30 

 

To get an estimate of the surface concentration ΓSi-H of Si-H groups, it was assumed that 

every silanol group on the surface of the particles was converted into one Si-H group. The 

numbers given in Table 4.11 were calculated from the specific surface area ABET of the Si-H 

modified materials, not from ABET of the starting materials like in the case of M1C3NH2 and 

M2GOPTS. These values should be regarded as the maximum numbers of Si-H groups on 

the particles’ surface which are theoretically possible. 

 

Table 4.11 Specific surface concentration of Si-H groups. 

material ABET / m2 g-1 ΓSi-H / µmol g-1 a) 

M3a100SiH 38 310 

M3b100SiH 40 326 

M350SiH 91 739 

M4SiH 31 251 
a) calculated from ABET and αOH = 4.9 OH nm-2 

 

4.4 Coupling of Ln[DOTA] and Ln[DO3A] Derivatives to M1C3NH2 and M2GOPTS 

4.4.1 Syntheses 

For all coupling reactions of amines with carboxylic acids in this work the classical peptide 

coupling agent O-(benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium tetrafluoroborate (TBTU) 

and diisopropylethylamine (DIPEA) as base were applied.75 
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The amino functionalised NPs M1C3NH2 were reacted with the carboxylic acid terminated 

DOTA derivatives Ln[DOTA-BA] (5, 6) and Ln[DOTA-GA] (8, 9). Therefore, the DOTA 

derivatives were activated with TBTU and DIPEA and added to a suspension of M1C3NH2 in 

DMSO, giving the new materials M1C3[Ln-BA] and M1C3[Ln-GA]. As counterion n-Bu4N
+ 

was used. In the case of M1C3[Ln-BA] one batch was synthesised with sodium as counterion. 

The behaviour of the two different M1C3[Ln-BA] materials was not changed to an observable 

extent and thus, is not further discussed. 

 

Scheme 4.8 Syntheses of M1C3[Ln-BA] and M1C3[Ln-GA]. Ln = Gd or Y. 

To the epoxy functionalised NPs M2GOPTS, Ln[DO3A-HA] (2, 3) was coupled by stirring 

the reactants in DMSO with DIPEA, yielding M2[Ln-HA]. 

 

Scheme 4.9 Synthesis of M2[Ln-HA]. Ln = Gd or Y. 

 

NN

N N

O

O-

O
O-

O

O-

O-O

NN

N N

O
O-

O

O-

O
O-O O-

Ln3+

Ln3+

SiO2

M1C3[Ln-BA]

O SiSi N
H

SiO2

M1C3[Ln-GA]

O SiSi N
H

O

O

M1C3NH2

TBTU, DIPEA

2h, RT

5 or 6

8 or 9

SiO2 O Si

M2[Ln-HA]

Si O

OH

M2GOPTS
NN

N N

O

O-

O
O-

O

O-

N
H

Ln3+

2 or 3

DIPEA, 2h, RT



4 Results and Discussion 

 
 

 
~ 44 ~ 

 

4.4.2 Characterisation 

4.4.2.1 Size and Shape 

The size dSEM and the shape of single particles of M2[Gd-HA] has not changed in comparison 

to the starting material M2GOPTS, which can be seen in Figure 4.15 and Table 4.12. There 

were no SEM investigations made for the Gd(III) modified M1 materials. 

Table 4.12 Size characterisation of [Gd] modified materials. 

material dDLS / nm PDI dSEM / nm 

M1C3[Gd-GA] 157 ± 50 0.166 - 

M1C3[Gd-BA] 151 ± 38 0.089 - 

M2[Gd-HA] 149 ± 44 0.132 137 ± 11 

 

 

 

Figure 4.15 Scanning electron micrographs of M2[Gd-HA]. 

 

4.4.2.2 Particle-Particle Interactions 

After coupling Gd[DOTA-BA] or Gd[DOTA-GA] to M1C3NH2, dDLS of the resulting 

materials M1C3[Gd-BA] and M1C3[Gd-GA] is significantly decreased from 258 ± 98 nm to 

151 ± 38 nm and 157 ± 50 nm, respectively. This indicates, that the particles of M1C3[Gd-

BA] and M1C3[Gd-GA] do not agglomerate in solution.  

The hydrodynamic diameter and the SEM images of M2[Gd-HA] do not differ from dDLS and 

the pictures of the starting material M2GOPTS, so coupling of Gd[DO3A-HA] did not 

change the surface properties of the particles to an observable extent. 

In the case of the M1 materials negatively charged complexes were coupled to the particles’ 

surface. As desired, this prevents the agglomeration of the particles. However, coupling of 
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uncharged complexes to the M2 material does not cause agglomeration. Thus, no significant 

role can be ascribed to the charge of the coupled complex regarding agglomeration of 

particles. 

 

Zetapotential. After coupling the DOTA derivatives to M1C3NH2, the ζ-values of the 

resulting materials in PBS (Table 4.13) are negative and significantly higher, so the improved 

agglomeration behaviour correlates well with the zetapotential. According to previous 

observations, the zetapotential of M2[Gd-HA] does not differ significantly from the potential 

of the starting material M2GOPTS. In medium the obtained ζ-values are comparable with 

those of M0130 and M2GOPTS and higher than the values of 100 nm materials, so here the 

influence on the potential seems to be dominated by the particle size. 

 

Table 4.13 Zetapotentials of [Ln] modified materials M1 and M2. 

material ζ-potential / mV 
 PBS medium + 10% serum 
M1C3[Gd-BA] -51.3 ± 1.9 -45.7 ± 0.4 

M1C3[Gd-GA] -55.0 ± 0.9 -48.6 ± 1.4 

M2[Gd-HA] -54.7 ± 0.5 -47.9 ± 0.3 

Values represent mean ± SD. 
 

4.4.2.3 Spectroscopic Investigations 

In the DRIFT spectra of M1C3[Gd-GA] and M1C3[Y-BA] (Figure 4.16) coupling of the 

Ln[DOTA] derivatives can be verified by CHx vibrations at 2960, 2926 and 2867 cm-1 as well 

as intense carbonyl and amide vibrations at 1620 cm-1. The higher intensity of the CHx and 

amide vibrations in the spectrum of M1C3[Y-BA] indicates, that the coupling efficacy is 

higher for Ln[DOTA-BA] as for Ln[DOTA-GA]. 
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Figure 4.16 DRIFT spectra of a) M1C3NH2, b) M1C3[Gd-GA], and c) M1C3[Y-BA]. 

 

Coupling of Ln[DO3A-HA] to M2GOPTS cannot clearly be verified by DRIFT 

spectroscopy, as the spectrum of M2[Gd-HA] does not differ significantly from the spectrum 

of M2GOPTS (Figure 4.17). The intensity of the vibration at 1619 cm-1, which can be 

assigned to H2O in the spectrum of M2GOPTS, is only slightly increased. This indicates a 

less effective functionalisation of M2GOPTS with Gd(III) complexes. 

 

 

Figure 4.17 DRIFT spectra of a) M2GOPTS and b) M2[Gd-HA]. 
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Table 4.14 Assignments of IR vibrations of M1C3[Gd-GA], M1C3[Y-BA], and M2[Gd-

HA]. 

wave number / cm-1 assignment 

M1C3[Gd-GA] M1C3[Y-BA] M2[Gd-HA]  

3758 - 3000 3758 - 3000 3758 - 2970 different ν (OH) 

2969, 2851 2960, 2926, 2867 2957, 2889 ν (CHx) 

1969, 1868 1969, 1868 1969, 1868 ν (Si-O-Si) 

1610 1620  ν (NHC=O) 

  1619 H2O 

1290 - 880 1290 - 880 1306 - 891 νas (Si-O-Si) (skeleton) 

 

4.4.2.4 Specific Surface Concentration of Gadolinium 

Surface concentration ΓGd(III) of Gd(III) was determined by measurements of the longitudinal 

relaxation time T1 by inversion recovery experiments.  

Gd(III) concentrations of M1C3[Gd-GA] and M1C3[Gd-BA] verify the higher coupling 

efficacy for Ln[DOTA-BA], already seen in the DRIFT spectra (Figure 4.16). Relating to the 

total amount of silanol groups available on the surface of M0130 a coverage of Gd(III) of 14% 

has been achieved for M1C3[Gd-BA], whereas the coverage for M1C3[Gd-GA] and M2[Gd-

HA] is only 5% (Table 4.15). A maximum coverage of 53% for the M1 materials and of 30% 

for M2 could have been achieved related to the extent of surface modification (compare Table 

4.10). 

 

Table 4.15 Gadolinium content ΓGd(III) of [Gd] functionalised materials M1 and M2. 

material ΓGd(III) / µmol g-1 αGd/αOH / % nGd per NP nGd/nGd,geo / % 

M1C3[Gd-BA] 34 14 46.434 62 

M1C3[Gd-GA] 11 5 15.023 20 

M2[Gd-HA] 12 5 16.452 22 

 

Geometrical considerations assuming ideal conditions show that the space available on the 

particles’ surface is well exploited for the higher loaded material. The geometrical surface 

area Ageo of a particle of the M1 and the M2 materials (calculated from dSEM = 137 nm) is 

5.9×10-14 m2. The hydrodynamic radius of the Gd(III) complexes is about 0.5 nm60, so they 
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need an area of 7.9×10-19 m2 each. Thus, a maximum number nGd,geo of 75.076 Gd(III) 

complexes has room around a single particle. In Table 4.15 the numbers nGd of Gd(III) per NP 

and their percentage of the possible number nGd,geo are given. For M1C3[Gd-BA] 62% of the 

maximum number are achieved, for M1C3[Gd-GA] and M2[Gd-HA] only 20 and 22%. 

 

4.5 Further Functionalisation of Si-H modified Materials M3SiH and M4SiH 

4.5.1 Syntheses 

4.5.1.1 Photochemical Hydrosilylation 

The Si-H modified materials were functionalised with carboxylic acid groups prior to 

coupling of amino terminated Ln(III) complexes. The carboxylic acid groups were introduced 

by a photochemically induced hydrosilylation reaction of terminal unsaturated carboxylic 

acids of different chain lengths. M4SiH was reacted with acrylic acid, 3-butenoic acid, 6-

heptenoic acid, and 10-undecylenic acid to determine the ideal chain length for an optimal 

degree of functionalisation. Acrylic acid could not be added to the Si-H bonds on the surface 

of the particles, as polymerisation of the molecules in solution takes place too fast. The most 

effective coupling could be reached with 3-butenoic acid and the most cost-effective reactant 

is 10-undecylenic acid. Therefore, 3-butenoic acid and 10-undecylenic acid were used to 

modify M3SiH and M4SiH and the properties of the resulting materials M3C4(11)COOH and 

M4C4(11)COOH (Scheme 4.10) were compared. The smaller particles M350SiH were only 

modified with 3-butenoic acid, yielding M350C4COOH. The photochemical hydrosilylation 

reaction was carried out under argon in carefully degassed n-hexane under irradiation with a 

700 W medium pressure mercury lamp for 5 days. 
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Scheme 4.10 Carboxylic acid functionalisation of M3SiH and M4SiH. 

 

4.5.1.2 Coupling of Ln[DO3A-HA] 

The acid functionalised NPs M3C4(11)COOH and M4C4(11)COOH were reacted with the 

amino terminated DO3A derivative Ln[DO3A-HA] (2, 3). Therefore, the particles were 

suspended in DMSO, activated with TBTU and DIPEA and a solution of the Ln(III) complex 

in DMSO was added, yielding the new materials M3C4(11)[Ln-HA] and M4C4(11)[Ln-HA]. 

 

 

Scheme 4.11 Coupling of Ln[DO3A-HA] to the acid modified materials. 
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4.5.1.3 Coupling of Y[DOTA-ButAm] 

 

Scheme 4.12 Coupling of Ln[DOTA-ButAm] to M4C11COOH. 

 

To compare the agglomeration behaviour of the particles subject to the charge of the coupled 

complex, the charged Ln(III) complex Y[DOTA-ButAm] 11 with sodium as counterion was 

coupled to the surface of M4C11COOH. 

4.5.2 Characterisation and Examination 

4.5.2.1 Size and Shape 

The size dSEM and the shape of single particles of the acid modified as well as the Ln(III) 

complex modified particles is not changed in comparison to their respective starting materials 

(dSEM Table 4.16, Figure 4.18). 

Table 4.16 Size characterisation of acid and [Ln] modified materials. 

material dDLS / nm PDI dSEM / nm 

M4bC11COOH 230 ± 88 0.353 104 ± 5 

M3bC11COOH 228 ± 84 0.296 117 ± 11 

M4aC4COOH 182 ± 64 0.243 112 ± 11 

M3aC4COOH 173 ± 71 0.496 106 ± 9 

M350C4COOH - - 55 ± 5 

M4bC11[Y-HA] 290 ± 113 0.397 119 ± 12 

M4bC11[Gd-HA] 259 ± 162 0.504 120 ± 14 

M3bC11[Gd-HA] 140 ± 65 0.167 116 ± 11 

M4aC4[Gd-HA] 144 ± 56 0.537 107 ± 10 

M3aC4[Gd-HA] 168 ± 59 0.393 105 ± 9 

M350C4[Gd-HA] - - 54 ± 4 

M4bC11[Y-ButAm] - - - 
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4.5.2.2 Particle-Particle Interactions 

In Table 4.16 the materials are arranged according to the spacer length, as this factor 

influences the agglomeration behaviour the most.  

The Stöber particles formed large agglomerates when they were functionalised with 10-

undecylenic acid (M3C11COOH, M4C11COOH), and even larger agglomerates, when the 

Ln(III) complexes were coupled to the C11 spacer (M3C11[Ln-HA], M4C11[Ln-HA]). In 

contrast, 3-butenoic acid functionalised particles (M3C4COOH and M4C4COOH) and their 

corresponding materials with Ln(III) complexes (M3C4[Ln-HA] and M4C4[Ln-HA]) form 

only small agglomerates in solution, which can be shown by DLS as well as SEM (Table 

4.16, Figure 4.18). The 50 nm materials M350C4COOH and M350C4[Ln-HA] do not give 

stable suspensions upon resuspending them in water and thus, DLS measurements give no 

reliable values. 

Interestingly, Y[DOTA-ButAm] coupled particles M4bC11[Y-ButAm] formed huge 

agglomerates and were hardly resuspendable in water after drying the material. SEM images 

(not depicted) show huge agglomerates and DLS measurements were not possible due to 

strong agglomeration phenomena. 
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Figure 4.18 Scanning electron micrographs of M3bC11COOH, M4bC11[Y-HA], 
M4aC4COOH, M4aC4[Gd-HA], M350C4COOH, and M350C4[Gd-HA]. 

 

Zetapotential. According to the observations above, the lowest zetaptotential of the 

bigger particles in PBS is obtained for M4C11[Y-ButAm] (-43.1 mV). The ζ-potentials of the 

acid and [Gd] modified materials in PBS are lower than those of the Si-H modified materials 

and do not differ significantly within the series M3 and M4. ζ-potentials are higher for [Gd] 

modified materials with the C4 spacer than with the C11 spacer, which is coincident with the 

observation of agglomeration of the C11 materials (compare DLS results, Table 4.16 and 

Figure 4.18). The ζ-values do not drastically change after coupling the Ln(III) complexes, as 

the chemical environment does not change very much. The chelating ligand contains three 
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carboxyl groups and not all of the carboxylic acid groups react with the Gd(III) complexes, so 

free carboxylic acid groups are left after coupling of the chelates. 

The unreacted Si-OH groups on the surface of the M4 materials are responsible that the ζ-

potentials of the series M4 are higher than those of the series M3.  

The ζ-potential in PBS of the smaller particles M350C4COOH is very low (-36.4 mV), 

whereas the potential of M350C4[Ln-HA] is increased (-48.5 mV) and comparable with 

the potentials of the C11 materials. 

 

Table 4.17 Zetapotentials of acid and [Ln] modified materials M3 and M4. 

material ζ-potential / mV 
 PBS medium + 10% serum 
M350C4COOH -36.4 ± 0.3 -39.0 ± 1.4 

M3aC4COOH -52.5 ± 0.7 -41.4 ± 0.5 

M3bC11COOH -51.0 ± 0.8 -46.0 ± 0.7 

M4aC4COOH -54.0 ± 0.7 -41.9 ± 0.1 

M4bC11COOH -55.2 ± 0.6 -43.2 ± 0.5 

M350C4[Gd-HA] -48.5 ± 0.9 -44.2 ± 1.2 

M3bC11[Gd-HA] -46.6 ± 0.4 -42.9 ± 0.9 

M3aC4[Gd-HA] -50.7 ± 0.9 -43.7 ± 0.2 

M4aC4[Gd-HA] -50.7 ± 0.9 -45.0 ± 0.4 

M4bC11[Gd-HA] -49.9 ± 0.6 -42.9 ± 0.4 

M4bC11[Y-HA] -50.5 ± 0.6 -40.5 ± 0.6 

M4bC11[Y-ButAm] -43.1 ± 0.3 -42.9 ± 0.8 

Values represent mean ± SD. 

 

The ζ-potentials obtained in cell culture medium are again lower than those in PBS (except 

for M350C4COOH) and do not differ significantly due to the interactions with proteins and 

other components of the medium, which compensate differences. However, the highest ζ-

values in medium were obtained for the [Gd] functionalised particles, i.e. in medium they 

form the most stable suspensions, which can be important for their application. 
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4.5.2.3 Spectroscopic Investigations 

DRIFT Spectroscopy. After hydrosilylation, the vibration of the carbonyl group 

(νC=O) is found at 1714 and 1709 cm-1, respectively, for M4C4(11)COOH and 

M3C4(11)COOH. Besides, the intensity of νCHx has grown significantly. The addition of the 

C=C double bond of the spacer to the Si-H bonds on the surface is indicated by the absence of 

=C-H2 vibrations above 3000 cm-1. A remaining weak νSiH demonstrates, that this step of 

functionalisation does not run completely. The DRIFT spectra of M4bC11COOH and 

M4aC4COOH also show the different extent of surface modification. The carbonyl vibration 

νC=O at 1714 cm-1 is more intense for M4aC4COOH than for M4bC11COOH (Figure 4.19).  

Coupling of the Ln(III) complexes is verified by the amide vibrations (νNHC=O and δNH) 

observed at 1700 to 1560 cm-1 and a further increase of the intensity of νCHx (Figure 4.20). As 

the Ln(III) complex contains C=O groups as well, DRIFT spectra do not provide the 

information, if the coupling reaction runs to completion. 

 

Table 4.18 Assignments of IR vibrations of M3/4C4(11)COOH and M3/4C4(11)[Ln-HA]. 

wave number / cm-1 assignment 

M4C4(11)COOH M3C4(11)COOH M4C4(11) 

[Y-HA] 

M3C4(11) 

[Gd-HA] 

 

3740 - 3032 3760 - 3006 3745 - 3041 3753 - 3012 different ν (OH) 

2939, 2871 2963, 2936, 

2872 

2928, 2857 2964, 2934, 

2863 

ν (CHx) 

2287 (w) 2256 (w) 2287 (w) 2256 (w) ν (Si-H) 

1991, 1866 1991, 1866 1991, 1866 1991, 1866 ν (Si-O-Si) 

1714 

 

1709 

 

 

1680 - 1573 

1728 

1682 - 1573 

ν (C=O) 

ν (NHC=O) 

1350 - 907 1350 - 907 

(1350 - 993)a) 

1350 - 907 1350 - 907 

(1350 - 993) b) 

νas (Si-O-Si) 

(skeleton) 
a)

 M350C4COOH, b)
 M350C4[Gd-HA] 
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Figure 4.19 DRIFT spectra of a) M4bC11COOH and b) M4aC4COOH. 

 

 

Figure 4.20 DRIFT spectra of a) M4bC11[Y-HA] and b) M3aC4[Gd-HA]. 

 

Solid State NMR Spectroscopy. The 13C CP/MAS NMR spectra verify that the 

coupling of the spacer to the surface and the Ln(III) complex to the spacer has been successful 

(Figure 4.21, Figure 4.22). Signals due to the alkyl chain and the carbonyl group of the spacer 

can be observed from 7 to 60 ppm and at 181 ppm, respectively, in the 13C NMR spectra of 

M4C4(11)COOH (Figure 4.21). As expected, the ratio of the signal intensities of the carbonyl 

resonance to the alkyl resonance is bigger for the C4 acid than for the C11 acid modified 

material. The 13C NMR spectra of M3C4[Y-HA] and M4C11[Y-HA] (Figure 4.22) give 
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evidence for the successful coupling by additional signals of the alkyl groups of the ligand at 

57 and 69 ppm, respectively, as well as the carbonyl groups at 182 and the amide carbon at 

191 ppm.  

 

  

Figure 4.21 
13C CP/MAS spectra of 

M4aC4COOH and M4bC11COOH. 
Figure 4.22 

13C CP/MAS spectra of 
M3aC4[Y-HA] and M4bC11[Y-HA]. 

 

4.5.2.4 Specific Surface Concentration of Functional Groups 

The extent of surface functionalisation of the acid and Gd(III) complex modified materials 

was quantified by means of elemental analysis (EA) and thermogravimetry (TG) experiments. 

TG experiments. TG curves of M0a (Figure 4.23, light grey) and the M3 materials 

(Figure 4.23, grey) indicate, that desorption of physically adsorbed water is completed at 

about 130 °C. For M0a the following broad region of weight loss is due to dehydroxylation 

processes, where water and ethanol are removed, and siloxane bonds are formed on the 

surface. The weight loss of the M4 materials (Figure 4.23, black) in the low temperature 

region (up to 130 °C) is negligible, as M4SiH already has been treated at 1000 °C. From 130 

°C to about 550-600 °C curves of all further functionalised materials show a significant 

weight loss, due to desorption of the organic moieties, which were coupled to the surface. 

While the weight loss of the M4 materials is completed at 600 °C, the broad regions of weight 

loss from 600 to 1000 °C indicate the desorption of chemically adsorbed water for the M3 

materials. 
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Figure 4.23 Thermogravimetric analyses of the materials: unfunctionalised (M0a, light grey), 
Si-H functionalised (dotted lines), COOH functionalised (dashed lines), and [Gd] 
functionalised (continuous lines), M4 series black, M3 series grey. 

 

Table 4.19 Weight loss of the materials determined by TG measurements from 35 to 1000 °C. 

 
weight loss /  

mass-% 
corrected weight loss /  

mass-% 
M0a 1.3  

M4aSiH 0  

M4aC4COOH 4.8  

M4aC4[Gd-HA] 4.5  

M3aSiH 2.1 0.8a) 

M3aC4COOH 6.9 4.8b) 

M3aC4[Gd-HA] 7.6 5.5b) 
a) Measured weight loss of M3 materials corrected by the value of M0. 
b) Ratio of Si-H modification subtracted as well. 
 

The values of weight loss, given in Table 4.19, directly correlate with the amount of surface 

modification for the M4 materials. For the Gd(III) complex functionalised particles 

M4aC4[Gd-HA], the weight loss is lower than for the acid modified particles M4aC4COOH, 

as gadolinium forms oxides and carbonates during the heating of the materials under air, 

which remain on the surface of the particles, and distort the measure of weight loss. The M3 

materials did not go through the high temperature process for Si-H functionalisation. 

Therefore, there are still water and ethanol moieties left on the surface, which originate from 
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M0. Thus, for the M3 series the weight loss of M0 has to be subtracted, to achieve the content 

of surface modification. To get the pure quantity of the spacer and the Gd(III)-complexes, the 

ratio of Si-H modification was also subtracted from the values, obtained for M3aC4COOH 

and M3aC4[Gd] (Table 4.19). For the above-mentioned reason, the weight loss for 

M3aC4[Gd-HA] is only slightly higher than for M3aC4COOH. 

 

Elemental analyses. For the interpretation of the surface concentrations Γ(ligand) of the 

acid modified materials, all values are referred to the surface concentrations ΓSi-H obtained 

from ABET of the Si-H modified starting materials and given in Table 4.9. 

For M4aC4COOH, M3aC4COOH, and M350C4COOH the ratios of α(ligand)/αOH are with 

2.54, 2.02, and 1.30, respectively, all bigger than 1 (Table 4.20), which means that there are 

more ligands coupled to the surface than Si-H bonds are available. This can be explained by 

looking at the possible mechanism of the photochemical hydrosilylation reaction (Scheme 

4.13). In the first step, a C=C bond is added to the Si-H bond and yields a free radical center 

on the β-carbon of the addition product. This radical is expected to recombine with a 

hydrogen radical, generated from another Si-H bond (Scheme 4.13 a), but also can react with 

a second C=C bond of a free acid, to yield polymers of the acid molecules on the silica 

surface (telomerisation, Scheme 4.13 b).76 However, in this way stable covalent Si-C and C-C 

bonds are formed which resist hydrolysis. For M3bC11COOH the ratio of α(ligand)/αOH = 0.47 

confirms a lower extent of surface modification with the C11 spacer. This is also seen in the 

DRIFT spectrum for M4bC11COOH (Figure 4.19), so the telomerisation reaction is more in 

favor for the C4 acid. As this reaction leads to a larger amount of functional groups on the 

particle surface, which can be further functionalised, the use of this shorter linker allows to 

increase the Gd(III) concentration per particle.  

As the combustion of the Gd(III) complex functionalised materials is not complete, because 

of the formation of carbonates, the content of carbon could not be determined correctly by 

EA. Therefore, the data of the measurements of those materials cannot be further evaluated 

reasonably. 



4 Results and Discussion 

 
 

 
~ 59 ~ 

 

 

Scheme 4.13 Possible mechanism for radical based hydrosilylation on the silica surface, a) 
common reaction channel, b) side reaction (telomerisation). 

 

Table 4.20 Evaluation of elemental analyses based on % of carbon (%C). 

material ABET / m2 
g-1 

%C 
(EA) 

corr %C 
(EA) 

Γ(ligand) / 
mmol g-1 

αligand / 
nm-2 

α(ligand) / 
αOH 

M0a 43 0.18     

M4aSiH 31 0.06     

M4aC4COOH  3.12 3.06 0.64 12.45 2.54 

M3aSiH 38 0.30 0.12    

M3aC4COOH  3.31 3.01 0.63 9.9 2.02 

M050 104 2.05 a)     

M350SiH 91 2.10 0.05    

M350C4COOH  6.71 4.61 0.96 6.36 1.30 

M0b 49 1.48 a)     

M3bSiH 40 2.14 0.66    

M3bC11COOH  4.15 2.01 0.15 2.28 0.47 
a) higher percentage of carbon as M0b and M050 were not dried at 600 °C. 

 

4.5.2.5 Specific Surface Concentration of Gadolinium 

Surface concentrations ΓGd(III) of Gd(III) were determined by measurements of the 

longitudinal relaxation time T1 by inversion recovery experiments, and confirmed by 

measurements with an ICP-atomic emission spectrometer (ICP-AES). The Obtained results 

from the two different methods do not differ significantly (Table 4.21). The highest total 
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amount of Gd(III) was achieved with the 50 nm particles M350C4[Gd-HA] (83 µmol g-1), 

followed by the C4 spacer modified materials (45 and 50 µmol g-1 for M4aC4[Gd-HA] and 

M3aC4[Gd-HA], respectively). The C11 acid modified material M3bC11[Gd-HA] could be 

loaded with only 16 µmol g-1 Gd(III). Related to the total amount of silanol groups available 

on the surface of M0a the highest extents of Gd(III) coverage of 13 and 14% have been 

achieved for M4aC4[Gd-HA] and M3aC4[Gd-HA], where 254 and 202%, respectively, 

would have been possible due to surface coverage with acid groups. In comparison, for the 

C11 modified NPs M3bC11[Gd-HA] only 4% of Gd(III) modification have been achieved, but 

here just 47% would have been possible due to the acid groups available. For M350C4[Gd-

HA] 10% Gd(III) coverage have been obtained, where 130% could have been possible 

(compare Table 4.20).  

 

Table 4.21 Gadolinium content ΓGd(III) of [Gd] functionalised materials M3 and M4. 

material ΓGd(III) / µmol g-1 αGd/αOH / % a) 
 from ICP from T1-measurements  
M4aC4[Gd-HA] 43 45 13 

M3aC4[Gd-HA] 48 50 14 

M350C4[Gd-HA] - 83 10 

M3bC11[Gd-HA] 15 16 4 
a) αGd derived from T1-measurements. 

 

Steric considerations for the M3 and M4 materials show that the space available on the 

particles’ surface is very well exploited for the C4 modified materials (69 and 59%), followed 

by the small particles (43%), while only 20% of the room available is taken in the case of the 

poorly loaded C11 material (Table 4.22).  

 

Table 4.22 Number of gadolinum complexes per NP of M3 and M4 materials. 

material Ageo / m
2 a) nGd,geo per NP nGd per NP nGd/nGd,geo / % 

M4aC4[Gd-HA] 3.6×10-14 44.100 31.646 69 

M3aC4[Gd-HA] 3.5×10-14 53.824 26.007 59 

M350C4[Gd-HA] 9.2×10-15 11.664 5.043 43 

M3bC11[Gd-HA] 4.2×10-14 45.796 10.691 20 
a) Calculated from dSEM of the materials (Table 4.16). 
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4.5.2.6 Stability under Physiological Conditions 

To test the stability of the [Gd] functionalised materials under physiological conditions, 

materials M4aC4[Gd-HA], M3aC4[Gd-HA], and M3bC11[Gd-HA] were stirred in PBS at 37 

°C for 12 days. Every 48 (144) hours samples were taken and tested for free Gd(III) by means 

of the xylenol-test77 and the Gd(III) content of the materials was determined by T1-

measurements and ICP-AES. For all samples the xylenol-test was negative, i.e. no Gd(III) is 

released from the macrocyclic ligand under the applied conditions. For M3bC11[Gd-HA] 

ΓGd(III) is not decreasing to an observable extent, so the amide bonds between spacer and 

Gd(III)-complexes as well as the Si-C bonds and the siloxane bonds of the M3 series on the 

particle surface are stable under the applied conditions for at least twelve days (Table 4.23). 

ΓGd(III) of the higher loaded materials is decreasing by 16% for M3aC4[Gd-HA] and 20% for 

M4aC4[Gd-HA]. DRIFT spectra of those materials (not depicted) show that the intensity of 

the amide vibrations decreases as well after 144 h. However, no conclusion can be drawn 

which chemical bond is cleaved. These results indicate that a certain amount of the Gd(III) 

complexes is cleaved, but no Gd(III) is released from the macrocycle. Thus, these higher 

loaded materials can be used without any concerns about Gd-toxicity even in vivo, as small, 

cleaved off Gd(III) complexes would quickly undergo renal clearance. The C4 materials still 

contain higher payloads of Gd(III), even after 12 days, and therefore are preferable to the C11 

materials. 

Table 4.23 Gadolinium content ΓGd(III) during the stability tests. 

 ΓGd(III) / µmol g-1 

time of exposure / h 0 48 96 144 288 

M4aC4[Gd-HA] 45 40 39 36 36 

M3aC4[Gd-HA] 50 47 47 46 42 

M3bC11[Gd-HA] 16 - - 17 17 

Values given are obtained from T1-measurements and were confirmed by ICP-AES. 

 

4.6 Magnetic Resonance Imaging of Gd(III) modified NP Containing Agar Phantoms 

MRI experiments were performed in 1.5% agar to stabilise the dispersion of the material 

throughout the overnight measurement. For this purpose, various dilutions were prepared 

from a well dispersed stock of 10 mg mL-1 in water and medium +10% serum, respectively. 

Serum containing cell culture medium (Dulbecco’s Modified Eagle Medium (DMEM)) is 
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used to mimic physiological conditions. Samples were immediately mixed with 1.5% agar 

(1:1, v/v), gelled in ice, and afterwards pellets were overlaid with water or medium. These 

samples were measured in a clinical MR scanner at 123 MHz (3 T) and room temperature. 

Longitudinal and transverse relaxation rates were determined in axial slices of 1 mm thickness 

through the sample containing agar layer, as well as the supernatant. In addition, sagittal as 

well as axial T1-weighted MR images were made with a spatial resolution typical for in vivo 

experiments at 3 T.  

Figure 4.24 displays the concentration-dependent increase of the longitudinal relaxation rate 

R1 for M4aC4[Gd-HA] and M3aC4[Gd-HA] in the agar pellet (representative curves of a 

single experiment). The Gd concentration in the samples was calculated according to the 

values, given in Table 4.21 (T1 measurements). The slopes of these curves (determined by 

linear regression) correspond to the longitudinal relaxivity r1 (Table 4.24). The transverse 

relaxivity r2 can be similarly calculated by fitting the relaxation rates R2. No significant 

change in relaxation rates could be observed in the supernatant slice, which confirms the 

stability of the materials. 

 

 

Figure 4.24 Representative curve of the longitudinal relaxation rate R1 in agar phantoms with 
various concentrations of M4aC4[Gd-HA] and M3aC4[Gd-HA]. 

 

The concentration-dependent increase of R1 is also reflected in the T1-weighted images, 

obtained with a common Inversion Recovery-Rapid Acquisition with Relaxation 

Enhancement (IR-RARE) sequence.78 For samples with more than 25 µg of NPs (dispersed in 
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100 µL agar containing water) a clear contrast enhancement in the agar layer was detectable 

(Figure 4.25). 

 

 

Figure 4.25 Sagittal and axial T1-weighted MR 
images of M4aC4[Gd-HA] and M3aC4[Gd-HA] in 
aqueous agar phantoms. Given concentrations are 
µg NPs per 100 µL agar solution corresponding to 
2.2 - 220 µmol L-1 for M4aC4[Gd-HA] and 2.5 - 
250 µmol L-1 Gd for M3aC4[Gd-HA]. 

 

 

At a field strength of 3 T, the longitudinal relaxivities in water and medium of the materials 

M4aC4[Gd-HA] (r1 = 8.8 mM-1s-1 and r1 = 6.4 mM-1s-1) and M3aC4[Gd-HA] (r1 = 8.4 mM-1 

s-1 and r1 = 6.0 mM-1s-1) are increased by 47-54% and 100-113% in comparison to r1 of the 

single complex Gd[DO3A-HA] (r1 = 5.7 mM-1s-1 and r1 = 3.0 mM-1s-1). Yet, in medium the 

values of r1 of the particles, as well as of the single complex are 27-47% lower than in water. 

This effect is caused by interactions of CO3
2- and PO4

3- ions with the Gd(III) chelates of 

DO3A-like structure, which lead to reduced interactions between water and Gd(III).79,80 

By increasing the rotational correlation time τR of Gd(III) based CAs, their relaxivity can be 

improved.3,58 This is realised by immobilisation of the Gd(III) complexes on the silica 

surface. However, there are still high local rotational dynamics of the DO3A ligand possible, 

most likely due to the flexible hexylamine linker. Despite the slow global rotational dynamics 

of the particle, this leads to a less effective influence on the relaxivity. The longitudinal 

relaxivity might be increased by making the linker to the macrocycle more rigid e.g. by using 

an aromatic linker.60 Moreover the τR effect strongly depends on the field strength, as can be 

seen in NMRD profiles of Gd chelates anchored to silica NPs.19,20 At 123 MHz the influence 

of τR on r1 and thus, the difference between surface-bound and free Gd chelates is already 

strongly reduced compared to e.g. 20 MHz.  
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Table 4.24 Longitudinal and transverse relaxivity r1 and r2 of Gd(III) modified materials at 3T  
and room temperature. 

  Relaxivity per mM Gd 

material fluid r1 / mM-1s-1 ∆r1 / % b) r2 / mM-1s-1 

M1C3[Gd-BA] water 13.3 ± 0.4 75 51.6 ± 24.6 

M1C3[Gd-GA] water 13.1 ± 2.1 236 46.1 ± 0.8 

M2[Gd-HA] water 30.6 ± 1.9 437 74.7 ± 17.4 

M3aC4[Gd-HA] water 8.4 ± 1.1 47 44.1 ± 3.4 

M3bC11[Gd-HA] water 6.3 ± 1.1 11 51.0 ± 10.8 

M350C4[Gd-HA] water 15.4 ± 1.5 170 52.7 ± 18.6 

M4aC4[Gd-HA] water 8.8 ± 1.3 54 47.8 ± 6.7 

Gd[DOTA-BA] water 7.6 ± 0.3  10.5 ± 0.3 

Gd[DOTA-GA] water 3.9 ± 0.1  4.2 ± 0.0 

Gd[DO3A-HA] water 5.7 ± 1.2  12.0 ± 1.3 

M1C3[Gd-BA] medium a) 8.5 ± 1.7 85 51.4 

M1C3[Gd-GA] medium a) 11.7 ± 0.6 290 27.0 ± 2.8 

M2[Gd-HA] medium a) 5.2 ± 1.1 73 51.3 ± 33.4 

M3aC4[Gd-HA] medium a) 6.0 ± 1.9 100 38.2 ± 8.8 

M3bC11[Gd-HA] medium a) 6.3 ± 0.1 110 29.8 ± 0.2 

M350C4[Gd-HA] medium a) 5.5 ± 1.1 83 34.6 ± 11.6 

M4aC4[Gd-HA] medium a) 6.4 ± 0.7 113 50.2 ± 4.9 

Gd[DOTA-BA] medium a) 4.6 ± 0.7  7.1 ± 1.4 

Gd[DOTA-GA] medium a) 3.0 ± 0.1  3.9 ± 0.5 

Gd[DO3A-HA] medium a) 3.0 ± 0.3  5.1 ± 1.5 

Values represent mean ± SD, n=2-7.  
a) Cell culture medium + 10% serum. 
b) ∆r1 is the increase of the longitudinal relaxivity compared to the respective single complex. 
 

The longitudinal relaxivities of the C11 modified material M3bC11[Gd-HA] (r1 = 6.3 mM-1s-1 

and r1 = 6.3 mM-1s-1 in water and medium, respectively) are increased by 11% and 110% in 

comparison to r1 of Gd[DO3A-HA]. As discussed above, the little increase of r1 in water 

indicates a less effective influence on the relaxivity because of the longer linker. Another 

reason for the decreased r1 value in comparison to the C4 materials is the agglomeration 

behaviour of the C11 material. As M3bC11[Gd-HA] forms larger agglomerates, access to the 

Gd sites might be hindered more than in the case of the C4 materials.  
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The r1 value of M350C4[Gd-HA] in water (r1 = 15.4 mM-1s-1) is increased by 170% and thus 

stronger influenced as r1 of the bigger particles, while in medium r1 is only increased by 83% 

(r1 = 5.5 mM-1s-1), which is less than for the bigger particles.  

The strongest influence on both, r1 and r2, is observed for M2[Gd-HA] in water. The 

longitudinal relaxivity is increased by more than 400% (r1 = 30.6 mM-1s-1). Origins for the 

large increase of r1 might be an improved water exchange rate or a decreased flexibility, due 

to the nature of the linker (compare Scheme 4.9). Yet, in medium the observed increase of r1 

by 73% is poor. 

For all Gd[DO3A-HA] modified materials, the longitudinal relaxivities in medium are very 

similar (5.2 - 6.4 mM-1s-1), so as already observed by the zetapotential measurements 

(compare 4.5.2.2), differences between the materials are compensated in medium. 

The longitudinal relaxivity r1 of the DOTA derivative Gd[DOTA-GA] in water (r1 = 3.9 mM-

1s-1) is lower than r1 of Gd[DO3A-HA]. Due to the additional carboxylic acid function of the 

ligand there is one coordination site less for water molecules, which leads to a decrease in 

relaxivity. The advantage of this DOTA derivative is that its r1 is only decreased by 18% in 

medium. 

The r1 value of Gd[DOTA-BA] in water (r1 = 7.6 mM-1s-1) is increased in comparison to r1 of 

Gd[DOTA-GA] and even higher than for Gd[DO3A-HA]. This might be up to an increased 

rotational correlation time τR due to the aromatic linker or to an increased amount of water 

bound to the Gd3+. The interactions of the carboxylate next to the benzyl might be hindered 

due to the rigidity of the system. This would also explain the stronger decrease of r1 in 

medium.  

The longitudinal relaxivity values of the materials M1C3[Gd-BA] and M1C3[Gd-GA] in 

water (r1 = 13.3 and 13.1 mM-1s-1, respectively) are comparable and increased in comparison 

to the single complexes. In medium r1 of M1C3[Gd-BA] is clearly decreased, whereas r1 of 

M1C3[Gd-GA] is only slightly decreased. Both materials show higher longitudinal 

relaxivities in medium than the materials with the DO3A derivative, which makes them more 

suitable as CA for in vivo applications.  

The transverse relaxivities r2 of all materials is significantly increased in comparison to r2 of 

the respective single complexes in water, as well as in medium. So immobilisation of the 

Gd(III) complexes on the particles’ surface causes a strong increase of r2. However, the 

increase is not too big and does not disturb measurements of T1-weighted images due to a too 

strong shortening of T2. In medium r2 values are not as much decreased as r1 values. All r2 
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values are in the same range of magnitude and no dependency on the particle size is 

observable. 

 

Although the longitudinal relaxivity per Gd of the materials is not significantly increased, the 

high number of Gd(III) per particle leads to remarkably high relaxivities per particle (up to r1 

= 6.18×105 mM-1s-1 and r2 = 2.40×106 mM-1s-1 for M1C3[Gd-BA] e.g.; compare Table 4.25). 

These relaxivity values are comparable with those obtained for luminescent hybrid 

nanoparticles14 and mesoporous silica particles.13,19,20 Thus, CA functionalised silica NPs with 

high local relaxivities were successfully synthesised. 

 

Table 4.25 Longitudinal and transverse relaxivity r1 and r2 per NP. 

  number of Gd  

per NP 

relaxivity per mM NP 

material fluid r1 / mM-1s-1 r2 / mM-1s-1 

M1C3[Gd-BA] water 46434 6.18×105 2.40×106 

M1C3[Gd-GA] water 15023 1.97×105 6.93×105 

M2[Gd-HA] water 16452 5.03×105 1.23×106 

M3aC4[Gd-HA] water 26007 2.18×105 1.15×106 

M3bC11[Gd-HA] water 10691 6.74×104 5.45×105 

M350C4[Gd-HA] water 5043 7.77×104 2.66×105 

M4aC4[Gd-HA] water 31646 2.78×105 1.51×106 

M1C3[Gd-BA] medium a) 46434 3.95×105 2.39×106 

M1C3[Gd-GA] medium a) 15023 1.76×105 4.06×105 

M2[Gd-HA] medium a) 16452 8.55×104 8.44×105 

M3aC4[Gd-HA] medium a) 26007 1.56×105 9.93×105 

M3bC11[Gd-HA] medium a) 10691 6.74×104 3.19×105 

M350C4[Gd-HA] medium a) 5043 2.77×104 1.74×105 

M4aC4[Gd-HA] medium a) 31646 2.03×105 1.59×106 
a) Cell culture medium + 10% serum. 
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4.7 Multifunctionality 

The interactions of NPs with cells play key roles in executing their biomedical functions and 

their toxicity. Thus, the design of new biomedical functions and the prediction of the 

toxicological properties of NPs in vivo require knowledge of the interactions of the NPs with 

the target cells. Issues to consider are the cellular uptake, location and biological 

consequences, such as cytotoxicity of the NPs. There are many parameters influencing these 

interactions, like the size and shape, composition, charge, and surface chemistry of the NPs.81 

The use of imaging tools to probe NP-cell interactions is crucial to elucidating the 

mechanisms of NP induced toxicity. Of particular interest are mechanisms associated with 

cell penetration, translocation and subsequent accumulation inside the cell, or in cellular 

compartments.82 Fluorescence microscopy is currently one of the most powerful and versatile 

techniques available for biological studies. The technique uses fluorophores which have large 

absorption cross-sections at a specific wavelength and emit light at a longer wavelength. With 

fluorophore labeled NPs it is possible to image localisation of the NPs in living cells.83 To 

study the biological properties of the CA modified NPs, fluorophores were additionally 

coupled to the surface of the NPs. 

4.7.1 Syntheses of Bimodal Silica Particles 

Bimodal NPs were synthesised starting from M4C4COOH and M4C11COOH. The 

biprotected lysine derivative Nα-Fmoc-Nω-Dde-D-lysine was used as a bifunctional linker. 

First the Fmoc protecting group was cleaved and the lysine derivative was coupled to the 

particle surface with its α-amino group by means of the coupling agent TBTU and DIPEA. 

After binding of Gd[DO3A-HA] 3 to the carboxylic acid group of the lysine, the ω-amino 

group was deprotected to allow further functionalisation. The fluorescent dyes FITC and 

Cy.5.5, respectively, were finally coupled to allow optical imaging (OI) in in vitro cell studies 

(Scheme 4.14). 
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Scheme 4.14 Synthesis of bimodal NPs. 

 

4.7.2 Characterisation and Examination of Bimodal NPs 

4.7.2.1 Specific Surface Concentration of Gadolinium 

The Gd(III) content of the bimodal NPs was determined after coupling of the Gd(III) 

complexes, but before coupling of the fluorophores. The fluorophores are very expensive and 

too big amounts of material are needed for the determination of Gd(III).  
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Table 4.26 Gadolinium content ΓGd(III) of M4C4(11)Lys[Gd-HA]. 

material ΓGd(III) / µmol g-1 αGd/αOH / % 

M4aC4Lys[Gd-HA] 21 6 

M4bC11Lys[Gd-HA] 11 3 

 

The gadolinium content of the bimodal materials M4aC4Lys[Gd-HA] and M4bC11Lys[Gd-

HA] (21 and 11 µmol g-1, respectively) is lower than ΓGd(III) of the directly [Gd] modified 

materials M4aC4[Gd-HA] and M3bC11[Gd-HA] (45 and 16 µmol g-1, respectively). In the 

case of M4aC4Lys[Gd-HA] the amount of Gd(III) is strongly decreased, which can be 

ascribed to sterical hindrance when coupling the lysine spacer to the particle surface. Relating 

to the total amount of silanol groups available on the unfunctionalised particles’ surface a 

coverage of Gd(III) of 6 and 3%, respectively, has been achieved for the bimodal NPs. 

Sterical considerations for the bifunctional materials are more complex than in the previous 

cases, as they should include the lysine spacer. Therefore, no explicit numbers are given. 

4.7.2.2 in vitro Cell Studies 

FITC functionalised NPs M4C4(11)Lys[Gd-HA]FITC were examined by fluorescence 

microscopy concerning localisation and cellular uptake (Figure 4.26). Green spots are NP 

agglomerates, blue spots in the left image are cell nuclei. Yellow arrows point to larger 

extracellular agglomerates, blue arrows point to smaller predominantly intracellular vesicles 

filled with NPs and located around the cell nuclei.  

 

  

Figure 4.26 Fluorescence images of 3T3 mouse fibroblast cells incubated for 18 h with 
NPs in cell culture medium (25 µg NP mL-1). Cell nuclei were counterstained with the 
DNA dye Bisbenzimid Hoechst 33342, extracellular fluorescence was quenched by Trypan 
Blue, and cells were thoroughly washed with HBSS prior to fluorescence microscopy. The 
bars represent 21 µm. 

M4C
4
Lys[Gd-HA]FITC M4C

4
Lys[Gd-HA]FITC 
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4.7.2.3 in vivo Studies 

 

Figure 4.27 A) In vivo imaging of anesthetised mice was performed 1 h after injection. B) Ex 

vivo imaging of different organs was performed 20 sec and 24 h after injection. C) Mice 
received silica NPs i.v. and were sacrificed after 10 min or 24 h. Frozen sections of liver, gut, 
and kidney were analysed by fluorescence microscopy. The left image depicts a 10-fold 
magnification of a liver section. A red pseudocolor was used for Cy5.5 NPs, a blue 
pseudocolor was used for liver autofluorescence. Bar graph (middle) depicts silica NPs 
accumulation within different organs. NP aggregates were counted manually. The box plot 
(right) displays the size of NP aggregates within liver and kidney (determined from a 40-fold 
magnification). 

 

To assess biodistribution within different organs Cy5.5 modified NPs M4aC4Lys[Gd-

HA]Cy5.5 were injected intravenously into BALB/c recipients (0.3 mg / 200 µL / 20 g) and 

near-infrared fluorescence (NIRF) imaging was performed. After injection, a signal in the 

upper abdominal quadrants was detected in vivo (Figure 4.27 A). Ex vivo analysis of different 

organs revealed rapid accumulation of NPs in lung and liver directly after intravenous 

injection (Figure 4.27 B). Furthermore, NPs were detected in spleen, kidney, heart, and brain, 

but not in the intestine. After 24 h, the signal intensity was reduced in lung and liver and no 

signal was observed in any other organs. To investigate the distribution of the NPs on a 
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cellular level different organs were analysed by fluorescence microscopy (Figure 4.27 C, left). 

Quantification of histological sections confirmed the results obtained with NIRF imaging 

(Figure 4.27 C, middle). Furthermore, histological evaluation revealed aggregate formation 

within liver and kidney with mean sizes of about 1000 nm (Figure 4.27 C, right). Aggregate 

formation could be a result of intracellular particle accumulation in cells of the 

reticuloendothelial system (RES). However, none of the mice that received NPs presented 

with clinical signs of illness such as breathing problems and none of the mice died (n=5, data 

not shown). 

 

4.8 Antibody modified Stöber Particles 

The endothelium is the thin layer of cells that lines the interior surface of blood vessels. 

Endothelial cells (ECs) are excellent targets for molecular imaging because they are directly 

accessible for systemically administered agents. Therefore, targets on ECs can be used for 

molecular imaging. During the cause of inflammatory diseases, such as graft versus host 

desease (GVHD), endothelial cells become activated and several molecular markers show up-

regulated expression within GVHD target organs.84 Some of these markers are involved in the 

multistep process of leucocyte recruitment. Initially, selectins expressed on activated 

endothelial cells tether leucocytes from the blood stream and induce rolling of leucocytes 

along the wall. In a next step, leucocytes adhere via integrins expressed on leucocytes and 

CAMs, such as α-VCAM-1 or α-ICAM-1, expressed on activated endothelial cells.85,86 The 

low baseline expression level of α-VCAM-1 or α-ICAM-1 on healthy ECs and its rapid 

upregulation upon inflammatory stimuli makes it a very attractive target for molecular 

imaging.85 Thus, silica NPs should serve as a matrix to couple the antibodies (ABs) α-

VCAM-1 or α-ICAM-1 next to Gd(III) complexes as MR imaging probes for molecular 

imaging. To develop a stategy for AB coupling and examination of AB coupled NPs, in 

preliminary experiments only ABs were coupled to the silica NPs M4aC4COOH. 

4.8.1 Synthesis 

Biomolecules, such as ABs, contain a variety of functional groups, which can be used for 

coupling to another functional group. A common strategy for coupling ABs to another 

molecule or matrix is a reaction of amino-groups of the AB with appropriate functional 

groups of the other molecule or matrix. The primary coupling chemical reactions for 

modification of amines proceed by acylation and most of these reactions are rapid and occur 
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in high yield to give stable amide bonds. The most common activation chemistry for creating 

reactive acylating agents is an N-hydroxysuccinimide (NHS) ester. An NHS ester is formed 

by the reaction of a carboxylate with NHS in the presence of a carbodiimide. A number of 

standard protocols are well-established in the literature.87 

The ABs VCAM-1, ICAM-1 and an unspecific isotype control AB were coupled to 

M4aC4COOH. Different activation strategies and different AB concentrations were 

examined.  

In a first approach, the acid groups were activated with EDC and sulfo-NHS in PBS. The 

particles were centrifuged and resuspended in PBS (pH 7.4). However, after addition of the 

AB solutions (ABs in PBS, different AB concentrations (50, 100, 150 µg AB/mL), pH 7.4), 

flocculation occurred and the precipitate did not dissolve after adjusting pH from 6.5 to 7.1.  

In the second approach, the acid groups were activated with DIC and NHS in DMF. The 

activated NPs were suspended in dry DMF (10 µL) and the ABs, dissolved in PBS were 

added. Concentrations of 50, 100, and 150 µg AB/mL were examined (Scheme 4.15). With 

this approach coupling was successful. The resulting materials M4C4ABVCAM, M4C4ABICAM 

and M4C4ABISO were resuspended and stored in PBS (pH 7.4) at 4°C. 

 

Scheme 4.15 Coupling of antibodies to acid modified NPs. 

 

4.8.2 Examination of AB modified NPs 

4.8.2.1 Western Blot 

The western blot (immunoblot) is a widely used analytical technique to detect proteins in a 

sample. It applies gel electrophoresis to separate native or denatured proteins by the length of 

the polypeptide or by the 3-D structure of the protein, respectively. The proteins are then 

transferred to a membrane (typically nitrocellulose or polyvinylidene fluoride), where they are 

detected using antibodies specific to the target protein.88,89 

The coupling efficacy of the ABs to the NPs was investigated by means of an immunoblot 

assay to detect the immunoglobulin heavy chain (IgH) of the NP bound antibody. From band 

M4C4COOH

SiO2

OH

O

Si
1. NHS/DIC in DMF

2. antibody AB in PBS
    (AB = VCAM-1, ICAM-1, 
               isotype)
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intensities of IgH and respective controls, coupling efficacy and the amount of antibodies 

bound to the NPs were determined (Figure 4.28 A, B). For the coupling of α-VCAM-1, 

isotype control, and α-ICAM-1 coupling efficacies of 0.4, 2.4, and 2.8% were determined. 

(Figure 4.28 A).  

 

 

Figure 4.28 A) Left blot: western blot detection of α-VCAM-1 coupled silica NPs. Right blot: 
western blot detection of isotype and α-ICAM-1 coupled silica NPs. B) Different antibody 
concentrations used for the coupling reaction. C) ELISA results for quantification of α-
ICAM-1 and isotype coupled silica NPs. 

 

4.8.2.2 ELISA 

An enzyme-linked immunosorbent assay (ELISA) is a biochemical technique used to detect 

the presence of an antibody or an antigen in a sample.90 

To test for antigen-specific binding, an ELISA-based assay that mimics turbulent flow 

conditions was established. Recombinant VCAM-1 or ICAM-1 proteins were immobilised on 

ELISA plates and the coated plates were incubated with α-VCAM-1, α-ICAM-1, or isotype 

coupled NPs in serial dilutions. After washing (using a vortexer), isotype coupled NPs were 

removed from the plate surface whereas α-ICAM-1 or α-VCAM-1 coupled NPs remained 

attached. To quantify particle binding a horseradish peroxidase (HRP) conjugated secondary 
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antibody was used for detection (Figure 4.28 C). As expected, for the isotype coupled NPs, no 

signals could be observed, whereas the signals detected for the α-ICAM-1 coupled NPs 

correlate nicely with the coupling efficacy determined in the western blot (Figure 4.28 B). 

The particles reacted with an AB solution of 100 µg/mL give the brightest spot in the western 

blot and the curve with the highest slope in the ELISA detection. As the coupling efficacy of 

α-VCAM-1 was quite poor, ELISA results are not depicted. These results demonstrate, that 

ABs were coupled successfully to the silica NPs and that their antigen-specific binding 

properties are maintained. Thus, silica NPs pose an adequate platform for the synthesis of 

antibody modified particulate contrast agents. In combination with the results of Gd(III) 

complex and fluorophore coupling to the NPs, a way to synthesise multimodal contrast agents 

was established. 
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5 Conclusion 

Nonporous spherical silica NPs with desired diameters in the colloidal range (50-2000nm) can 

be synthesised by means of the Stöber process. If the critical experimental parameters 

(concentrations, temperature, chemical identity of the precursor, catalyst, and solvent) are 

carefully controlled, the diameters of the resulting materials are reproducible within their 

standard deviations. The surface of the silica particles can be easily modified with functional 

groups to allow further functionalisation. Silanisation reactions with functional alkoxy silanes 

and a chlorination reduction reaction were successfully used to introduce amino, epoxy, and 

Si-H groups, respectively. Si-H groups can be converted into carboxylic acid groups by the 

addition of terminal unsaturated carboxylic acids. The introduction of Ln(III) complexes by 

forming peptide bonds with surface modified silica NPs works out fine.  

Two different ways of Si-H functionalisation were compared. Interestingly, surface 

concentrations of Gd(III) chelate complexes and imaging properties of the resulting materials 

do not differ significantly between the materials, obtained by different ways of Si-H 

functionalisation. This makes the less complex silanisation with TES the preparation method 

of choice.  

The agglomeration behaviour can be investigated by SEM, DLS and zetapotential 

measurements. Zeta values of the materials correlate well with their tendency to form 

agglomerations. Amino functionalised NPs have a positive zetapotential in PBS, all other 

materials show negative zetapotentials. In cell culture medium + 10% serum, differences in 

the potentials of the materials are compensated due to interactions with the components of the 

medium.  

The agglomeration behaviour of the particles can be influenced by surface modification. The 

length of the spacer molecules play an important role and agglomeration can be prevented by 

introducing short spacers. Here the introduction of a C4 spacer to M3SiH and M4SiH 

improved agglomeration in comparison to a C11 spacer. Another possible reason for the 

improved agglomeration behaviour is the increased number of carboxylates on the particle 

surface in the case of the C4 spacer. Interestingly, the charge of the complexes coupled to the 

surface plays a minor role and its influence is unpredictable. In the case of M1C3[Ln-BA] and 

M1C3[Ln-GA], charged complexes improve agglomeration behaviour of the particles, 

whereas in the case of M4C11[Y-ButAm] agglomeration was worse with the charged 

complex than in the case of M4C11[Ln-HA] with its uncharged complex. 
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With the C4 spacer higher Gd(III) surface concentrations were obtained, whereas the C11 

spacer leads to more stable materials under physiological conditions. Stability tests for all 

materials show that no Gd(III) ions are released from the chelates. 

Gadolinium surface concentrations of up to 83 µmol g-1 were reached, and the materials show 

the typical concentration-dependent increase of the longitudinal relaxation rate R1 in a clinical 

3 T MR scanner at room temperature. The longitudinal relaxivity values per Gd of the 

materials are increased in comparison to the uncoupled Gd(III) complex, and the high number 

of Gd(III) complexes per particle leads to remarkably high relaxivity values of up to 6.18×105 

mM-1s-1 per particle. This is comparable to previous published, mesoporous silica materials. 

Bimodal NPs for magnetic resonance and optical imaging were successfully synthesised by 

the introduction of lysine as a bifunctional linker and coupling of fluorophores (FITC or 

Cy5.5) next to Gd(III) chelates. Finally, antibodies were successfully coupled to the NPs, 

while their specific interactions with an antigen were maintained. 

In conclusion, CA functionalised nonporous silica NPs with a high local relaxivity, bimodal 

CA and fluorophore modified NPs, and antibody coupled NPs were obtained. These results 

indicate that this type of silica nanoparticles can pose a platform for the development of 

highly effective probes for MRI. Further functionalisation allows the synthesis of multimodal 

and/or targeted contrast agents for molecular imaging applications. 
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6 Experimental Part 

6.1 Syntheses of the Lanthanide Complexes 

6.1.1 Solvents and Reagents 

All reagents were used without further purification, unless otherwise mentioned. 

1,4,7,10-tetraazacyclododecane (cyclen, 98%) was purchased from CheMatech. Acetonitrile 

(extra dry, over molecular sieves, water <50 ppm) and tert-butyl bromoacetate (99%) were 

bought from Acros Organics. Nω-Z-L-lysine (≥99.0%), YCl3×6H2O, Chelex 100, and xylenol 

orange were purchased from Sigma-Aldrich, HBr (48%) from Fluka, GdCl3 hydrate (99,99%) 

from Chempur, palladium on charcoal (Pd/C, 10% Pa) from Merck. H2 5.0 and Ar 5.0 were 

used. Methanol was dried over magnesium. DO3A-hexylamine (DO3A-HA) was kindly 

provided by Dr. I. Mamedov, Max-Planck-Institute for Biological Cybernetics, Tübingen. All 

reagents not mentioned were obtained from the chemicals store at the University of 

Tuebingen. 

The lanthanide(III) chloride stock solutions were prepared by dissolving the chloride salt in 

distilled water. The exact concentration was determined via complexometric titration with the 

disodium salt of EDTA in an acetic acid / sodium acetate buffer (pH 5.8) using xylenol orange 

as indicator. 

6.1.2 Analytical methods  

Mass Spectrometry. ESI mass spectra were recorded on a Bruker Daltonics 

esquire3000plus mass spectrometer (quadrupolar ion-trap) with an ESI interface. FAB spectra 

were recorded on a Finnigan Triple-Stage-Quadrupol Spectrometer (TSQ-70) from Finnigan-

Mat. 

Solution NMR Spectroscopy. 1H and 13C{1H} NMR spectra were recorded on a Bruker 

Avance II 400 MHz or a Bruker Avance II+ 500 MHz spectrometer at 26 °C, unless otherwise 

mentioned. 1H and 13C resonances were assigned using standard 2D techniques (1H-1H 

COSY, 1H-13C HSQC, 1H-13C HMBC). The NMR spectra were recorded at the following 

frequencies: 1H NMR: 400.13 and 500.13 MHz; 13C NMR: 100.61 and 125.76 MHz. 

IR Spectroscopy. IR experiments were performed on a Bruker Vertex 70 FTIR 

Spectrometer. The spectra were recorded with a resolution of 4 cm-1 and 16 scans from 4000 

to 500 cm-1 versus pure KBr as blank. 
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pH Electrode. pH values of the aqueous solutions were measured using a Schott 

handylab pH12 pH-meter equipped with a Mettler-Toledo Inlab® Micro glass electrode. 

 

6.1.3 Syntheses 

6.1.3.1 Synthesis of Gd[DO3A-HA] (3) 

DO3A-HA (134 mg, 3.0×10-4 mol, 1 eq.) was diluted in water (2 mL) and the pH of the 

solution was adjusted to 6.7 by the addition of aqueous NaOH. Aqueous GdCl3-solution (664 

µL, 3.3×10-4 mol, 1.1 eq.) was added and again the pH of the solution was adjusted to 6.9. 

Under stirring the solution was heated to 60 °C for 3 h. To remove excess of Gd(III), Chelex 

100 was added and stirred for 1 h. The solution was decanted from the cation exchange resin 

and the water removed under vacuum at 40 °C. The raw product was used without further 

purification. Absence of free Gd(III) ions was confirmed by the xylenol-test.77
 

MS (ESI) m/z: 601.1 ([M+H]+), 623.0 ([M+Na]+), mol. wt. calculated for C20H36GdN5O6: 

600.19; IR (KBr): νɶ  = 3662 - 3251 (br, ν (NH)), 2938, 2872 (s, ν (CH2)), 1694 (m, ν (C=O)), 

1621 (m, δ (NH)). 

6.1.3.2 Synthesis of Y[DO3A-HA] (2) 

The complex was synthesised according to the procedure described for 3, replacing the 

GdCl3-solution with an aqueous YCl3-solution.  
1
H-NMR (500 MHz, D2O): δH = 1.19 - 1.37 (m, 4H, CH2), 1.37 - 1.61 (m, 4H, CH2), 2.09 - 

3.99 (m, 26H, N(CH2)2N, NCH2C=O, NCH2CH2, H2NCH2); MS (ESI) m/z: 532.1 ([M+H]+), 

554.0 ([M+Na]+), mol. wt. calculated for C20H36N5O6Y: 531.17; IR (KBr): νɶ = 3646 - 3210 

(br, ν (NH)), 2947, 2864 (s, ν (CH2)), 1694 (m, ν (C=O)), 1621 (m, δ (NH)). 

6.1.3.3 Synthesis of DOTA-ButAm (10) 

Synthesis of 1,4,7-Tris(tert-butoxycarbonylmethyl)-1,4,7,10-tetraazacyclododecane (17) 

Compound 17 was prepared from 1,4,7,10-tetraazacyclododecane and tert-butyl bromoacetate 

according to ref. 91 in 74% yield. 
1
H NMR (400 MHz, CDCl3): δH = 1.42, 1.43 (s, 27H, C(CH3)3), 2.76 - 2.98 (m, 12H, 

N(CH2)2N, 3.07 (m, 4H, HN(CH2)2), 3.26, 3.35 (s, 6H, NCH2C=O), 9.98 (br s 1H, NH); MS 

(ESI) m/z: 515.2 ([M+H]+), mol. wt. calculated for C26H50N4O6: 514.37. 
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Synthesis of Nω-Z-2-bromolysine methyl ester (15) 

To a stirred solution of Nω-Z-L-lysine (13) (5.00 g, 18 mmol, 1 eq.) in aqueous 2 N 

hydrobromic acid (50 mL) cooled to 0°C sodium nitrite (1.35 g, 20 mmol, 1.1 eq.) was added 

gradually over 45 min. 30 min after the last addition, the solution was extracted four times 

with ethyl acetate (200 mL). The combined organic layers were dried over sodium sulfate. 

Removal of the solvent under reduced pressure resulted in a yellow oil (5.79 g, 94% yield, 

about 60% pure due to 1H NMR). 
1
H NMR (400 MHz, CDCl3): δH = 1.42 (m, 2H, BrCHCH2CH2), 1.53 (m, 2H, HNCH2CH2), 

1.99 (m, 2H, BrCHCH2), 3.19 (m, 2H, NHCH2), 4.22 (m, 1H, BrCH), 5.09 (s, 2H, 

O=COCH2), 7.27 - 7.39 (m, 5H, HAr), 9.46 (br s, 1H, O=COH). 

The crude product 14 was solved in methanol (17 mL), conc. sulfuric acid (0.45 mL, 8.4 

mmol, 0.5 eq.) was added and the solution refluxed for 1.5 h. After cooling to rt, the solvent 

was removed under reduced pressure. The remaining yellow oil was taken up in diethyl ether 

and washed with an aqueous 5% NaHCO3 solution and with brine. After drying the organic 

solution with magnesium sulfate, the solvent was removed under reduced pressure and the 

crude product was purified on a silica gel column (chloroform / methanol 95:5) resulting in a 

yellowish oil (3.37 g, 53% yield). 
1
H NMR (400 MHz, CDCl3): δH = 1.32 (m, 2H, BrCHCH2CH2), 1.45 (m, 2H, HNCH2CH2), 

1.97 (m, 2H, BrCHCH2), 3.11 (m, 2H, NHCH2), 3.69 (s, 3H, O=COCH3), 4.16 (t, 3
JHH=7.1 

Hz, 1H, BrCH), 5.04 (s, 2H, CH2Ph), 5.22 (br s, 1H, NH), 7.24 - 7.31 (m, 5H, HAr); 
13

C{1H} 

NMR (100.61 MHz, CDCl3): δC = 24.4 (BrCHCH2CH2), 29.2 (HNCH2CH2), 34.4 

(BrCHCH2), 40.7 (NHCH2), 45.6 (BrCH), 52.6 (O=COCH3), 66.6 (CH2Ph), 128.0, 128.1, 

128.5 (CAr), 136.8 (CH2CAr), 156.7 (NHC=O), 170.4 (O=COCH3); MS (FAB) m/z: 357.9 

([M+H]+), 314.0 ([M+H-CO2]
+), mol. wt. calculated for C15H20BrNO4: 357.06. 

 

Synthesis of DOTA-ButAmZ(
t
Bu)3Me (18) 

Under an argon atmosphere DO3A(tBu)3 (17) (1.00 g, 1.9 mmol, 1 eq.) was dissolved in dry 

acetonitrile (20 mL). K2CO3 (788 mg, 5.7 mmol, 3 eq.) and a solution of 15 (766 mg, 2.1 

mmol, 1.1 eq.) in dry acetonitrile (10 mL) were added and the mixture was refluxed for 24 h. 

After cooling to rt, the solid was filtered off and the solvent removed under reduced pressure. 

The crude product was purified on a silica gel column (pure CHCl3, gradually increasing the 

ratio of MeOH to 20%) resulting in a colourless solid (1.01 g, 67% yield). 
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1
H NMR (400 MHz, CDCl3): δH = 0.95 - 1.59 (br, 33H, C(CH3)3,CH(CH2)3), 1.61 - 3.19 (br, 

25H, N(CH2)2N, NCH2C=O, CH, CH2NH), 3.33 (s, 3H, O=COCH3), 4.72 (s, 2H, CH2Ph), 

5.54 (br s, 1H, NH), 6.84 - 7.07 (m, 5H, HAr); 
13

C{1H} NMR (100.61 MHz, CDCl3): δC = 

23.9, 25.2, 29.1 (CH(CH2)3), 27.1 (br, C(CH3)3), 39.6 (HNCH2), 51.7 (O=COCH3), 44.3, 

46.3, 47.3, 47.7 (2C), 51.3, 51.9 (2C), 54.7, 54.9 (2C) (N(CH2)2N, NCH2C=O), 59.8 (CH), 

65.1 (CH2Ph), 81.1, 81.4 (C(CH3)3), 126.9, 127.6, 136.3 (CAr), 155.9 (HNC=O), 171.9, 172.2 

(2C) (O=COC(CH3)3), 175.7 (O=COCH3); MS (FAB) m/z: 814.3 ([M+Na]+), mol. wt. 

calculated for C41H69N5O10: 791,50. 

 

Synthesis of DOTA-ButAm(
t
Bu)3Me (19) 

Under argon atmosphere 18 (1.01 g, 1.3 mmol) was dissolved in dry methanol (50 mL) and 

Pd/C (10% Pd, 200 mg) was added. The mixture was vigorously stirred under a hydrogen 

atmosphere (balloon) for 3 h. The catalyst was filtered off and the solvent removed under 

reduced pressure, yielding a colourless solid (727 mg, 85 % yield). 
1
H NMR (400 MHz, CDCl3): δH = 0.98 (s, br, 27 H, C(CH3)3), 3.21 (s, 3H, O=COCH3), 0.48 

- 4.04 (br, 61H, C(CH3)3,CH(CH2)3, N(CH2)2N, NCH2C=O, CH, CH2NH2), 7.97 (s, br, 2H, 

NH2); 
13

C{1H} NMR (100.61 MHz, CDCl3): δC = 24.1, 25.2, 26.4 (CH(CH2)3), 26.9 (br, 

C(CH3)3), 38.6 (H2NCH2), 51.1 (O=COCH3), 44.1, 46.1, 47.1, 47.5 (2C), 51.5, 51.9 (2C), 

54.5, 54.7 (2C) (N(CH2)2N, NCH2C=O), 59.7 (CH), 80.8, 81.1 (C(CH3)3), 171.8, 172.0 (2C) 

(O=COC(CH3)3), 175.5 (O=COCH3). 

 

Synthesis of DOTA-ButAm (10) 

Compound 19 was refluxed in 6 N HCl (30 mL) for 18 h. After cooling to rt, the aqueous 

phase was washed with diethyl ether (mL), and the solvent was removed under reduced 

pressure, resulting in a colourless solid 10 × nHCl (677 mg, 30% purity due to reaction with 

LnCl3). 
1
H NMR (400 MHz, CDCl3): δH = 0.98 - 1.89 (br, 6H, CH2), 2.23 - 4.39 (br, 25H, N(CH2)2N, 

NCH2C=O, NCHC=O, CH2NH2); MS (ESI) m/z: 476.20 ([M+H]+), mol. wt. calculated for 

C20H37N5O8: 475.26. 

6.1.3.4 Synthesis of Y[DOTA-ButAm]Na (11) 

DOTA-ButAm (50 mg, 3.1×10-5 mol, 1 eq.) was solved in water (500 µL) and the pH was 

adjusted to 6.6 with NaOH. Then, aqueous YCl3-solution (58 µL, 3.1×10-5 mol, 1 eq.) was 
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added and the pH of the solution was adjusted to 7.5 with NaOH. Under stirring the solution 

was heated to 60 °C for 3 h. To remove excess of Y(III), Chelex 100 was added and stirred 

for 1 h. The solution was decanted from the cation exchange resin and the water removed 

under vacuum at 40 °C. The raw product was used without further purification.  
1
H NMR (400 MHz, D2O): δH = 1.32 - 2.12 (br, 8H, CH2), 2.32 - 3.51 (br, 23H, N(CH2)2N, 

NCH2C=O, NCHC=O); MS (ESI) m/z: -560.2 ([M]-), mol. wt. calculated for C20H33N5O8Y
-: 

560.41. 

6.1.3.5 Synthesis of DOTA-BA (4) 

Compound 4 was prepared according to ref. 60. 

MS (ESI) m/z: 525.2 ([M+H]+), mol. wt. calculated for C23H32N4O10: 524.52. 

6.1.3.6 Synthesis of Ln[DOTA-BA][n-Bu4N] (5, 6) 

Compound 5 and 6 were prepared according to ref. 60. 

5: MS (ESI) m/z: -609.2 ([M]-), mol. wt. calculated for C23H28N4O10Y
-: 609.4. 

6.1.3.7 Synthesis of DOTA-GA (7) 

Compound 7 was prepared according to ref. 60. 

MS (ESI) m/z: 477.1 ([M+H]+), mol. wt. calculated for C19H32N4O10: 476.48. 

6.1.3.8 Synthesis of Ln[DOTA-GA][n-Bu4N] (8, 9) 

Compound 8 and 9 were prepared according to ref. 60. 

8: MS (ESI) m/z: -561.6 ([M]-), mol. wt. calculated for C19H28N4O10Y
-: 561.35. 

 

6.2 Syntheses and Modification of Silica Nanoparticles 

6.2.1 Solvents, Reagents and Equipment 

All reagents were used without further purification, unless otherwise mentioned. 

Triethoxysilane (TES) (puriss, 99%), N,N′-diisopropylcarbodiimide (DIC) (99%), Nα-Fmoc-

Nω-Dde-D-lysine, benzene-1,3,5-tricarboxylic acid (98%), and 3-butenoic acid (97%) were 

purchased from Sigma-Aldrich, (3-aminopropyl)triethoxysilane (APTES) (99%) from Acros 

Organics, hydrazine monohydrate (99+%) from Alfa Aesar, tetraethyl orthosilicate (TEOS) 

(puriss., ≥99.0% (GC)), (3-glycidyloxypropyl)trimethoxysilane (GOPTS) (purum, 97.0%), 

DMSO, (puriss., absolute, over molecular sieve (H2O ≤0.005%), ≥99.5% (GC)), piperidine 
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(puriss. plus, ≥99.5% (GC)), and NH4OH (25% NH3 in H2O) from Fluka, thionyl chloride, O-

(benzotriazol-1-yl)-N,N,N’,N’-tetramethyluronium tetrafluoroborate (TBTU), N-

hydroxysuccinimide (NHS), and diisopropylethylamine (DIPEA) from Merck, and 10-

undecylenic acid from Riedel de Haen. Cy5.5 NHS-ester was bought from Lumiprobe and 

fluorescein-5-isothiocyanate (FITC) from Merck. H2 5.0 and Ar 5.0 were used. Toluene and 

n-hexane were dried by distillation from sodium and benzophenone, followed by storage over 

molecular sieve (4 Å). 

 Ultraviolet Lamp. For the photochemical hydrosilylation a 700 W medium pressure 

Hg Lamp (Heraeus) was used.  

 Oven. A tube furnace RO 4/50 with thermicon P® control unit (Heraeus) was used for 

tempering of the NPs and for the chlorination-reduction sequence. 

 Centrifugation. Materials were separated, using a Sorvall RC 5C Plus centrifuge with 

a Sorvall SS-34 rotor, a Beckman L80 ultracentrifuge with a 70Ti rotor or an Eppendorf 5430 

R centrifuge with a FA-45-24-11-HS rotor. Appropriate tubes were used at 15,000 - 20,000 

rpm for 5-10 min. 

6.2.2 Characterisation Methods 

 Nitrogen Isotherm Measurements (BET). Adsorption and desorption isotherms 

were measured at 77.35 K with nitrogen, using an ASAP 2010 V 4.01 G or an ASAP 2020 V 

1.04 H instrument from Micromeritics. The samples were degassed 150 min at 100 °C and 1 

mPa. The specific surface area was calculated according to the Brunauer, Emmet and Teller 

(BET) multipoint method.  

 Dynamic Light Scattering. DLS-measurements were performed on a Coulter n4plus 

submicron particle sizer with He-Ne laser (632.8 nm) at 20 °C. The samples were suspended 

in water by ultrasonication (30 min), the concentration was adjusted to get 5×104 - 1×106 

counts s-1. After 5 min of calibration five measurements were performed with a detection 

angle of 90°, and evaluated by means of SDP analysis. 

 Scanning Electron Microscopy. Scanning electron micrographs were recorded on a 

Zeiss DSM 962 (tungsten filament; M0b and derived materials), a Philips XL 30-FEG (field 

emission; M0a and M0130 and derived materials), or a FEI ESEM Dual Beam Quanta 3D 

FEG (field emission; M050 and derived materials). Particles were suspended in ethanol by 30 

min of ultrasonication (1 mg mL-1), and 20 µL of the suspension were dropped on a silicon 

wafer (10 × 5 mm) or Al sample holders. Ethanol was removed by spinning the wafer on a 
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spincoater (4000 rpm for 30 s) and heating for 30 s or by spinning the Al holders per hand. 

The samples for the Philips XL 30-FEG were sputter coated with Au-Pd for 20 s in a Agar 

Sputter Coater B7340 prior to measuring. To evaluate the size of the particles statistically, 

100-200 particles were measured in gimp 2.6 or CorelDraw. 

 Zetapotential Measurements. Zetapotential was measured on a Zetasizer Nano ZS 

from Malvern Instruments. The samples were suspended in a PBS solution or a solution of 

cell culture medium with 10% of serum, respectively. As the conductivity of suspensions for 

zetapotential measurements should be between 0.1 and 0.5 mS cm-1, a PBS solution of 12 mM 

of PO4
3- was diluted 1:100 with bidest. water to reach a conductivity of 0.2 mS cm-1. The 

medium with 10% of serum also was diluted 1:100 with bidest. water to get a conductivity of 

0.17 mS cm-1. The pH of the solutions was adjusted to 7.4 and the samples suspended by 1 h 

of ultrasonication (0.15 mg mL-1). For the measurements disposable capillary cells were used, 

and the suspensions injected through a 0.45 µm Millipore filter. After 3 min of temperature 

calibration, four measurements were performed at 25 °C, whereat the first of each sample was 

discarded. Particle size was determined from a scattering angle of 173°. 

 Elemental Analysis. Elemental analyses were performed on a vario MICRO cube, 

Elementaranalysensysteme GmbH, in the CHNS mode. 

 TG Measurements. TG measurements were performed on a STA 499 F3 Jupiter from 

Netzsch. The samples were heated under air from 30 - 1000 °C in Al2O3-crucibles with a rate 

of 10 °C min-1 and gas flow rate of 20 mL min-1. 

 Gd Content from T1-Measurements. Gd functionalised particles were suspended in 

concentrated HNO3, and heated to 120 °C for 24 h. By that treatment Gd(III) is released from 

the chelate. The T1 of the water protons in those solutions was measured at 400 MHz and 26 

°C, and the Gd(III)-concentrations were determined from a standard curve. Standard solutions 

were GdCl3-solutions (0.01 - 2 mM) and a comparable amount of unfunctionalised silica NPs 

was added and treated with HNO3, like the samples. Gd(III)-concentrations were calculated 

from Equations 1 and 2.  

 1,o 1,d 1,p

1 1 1
T T T

= +  Eq. 6.1 

 

[ ]1
1,o 1,d

1 1
r Gd

T T
= + ⋅  Eq. 6.2 
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Calculation method for the Gd(III) number per particle. The number of Gd(III) 

per NP (nGd/NP) is calculated from Equations 6.3 - 6.5, where nGd/g is the number of Gd(III) 

ions per gram of NPs, nNP/g the number of NPs per gram, ΓGd(III) the surface concentration of 

Gd(III) in mol g-1, NA the Avogadro constant, ABET the specific surface area of the particles 

and Ageo the surface area of the NPs, derived from dSEM. 

 nGd/NP = nGd/g / nNP/g  Eq. 6.3 

 nGd/g = ΓGd(III) 
. NA  Eq. 6.4 

 nNP/g = ABET / Ageo  Eq. 6.5 

 ICP Atomic Emission Spectrometry. ICP-AES measurements were performed by 

Mikroanalytisches Labor Pascher. Samples were dried at 30 °C in vacuo and treated with 

HNO3/HCl at 180 °C. Gd was detected with a Thermo ICAP 6500, using Co as internal 

standard. 

 DRIFT Spectroscopy. DRIFT experiments were performed on a Bruker Vertex 70 

FTIR Spectrometer. The spectra were recorded with a resolution of 4 cm-1 and 16 scans from 

4000 to 500 cm-1 versus pure KBr as blank. DRIFT samples were mixed with dry KBr at a 

ratio of 1:5. 

 Solid State NMR Spectroscopy. 
13C CP/MAS NMR experiments were performed in 

4 mm ZrO2 rotors at a spinning speed of 10 kHz on a Bruker DSX 200 spectrometer, 

operating at 50.3 MHz for 13C nuclei. Adamantane was used as external standard. 29Si 

HPDEC/MAS NMR experiments were performed in 7 mm ZrO2 rotors at a spinning speed of 

4 kHz on a Bruker ASX 300 spectrometer, operating at 59.6 MHz for 29Si nuclei. Q8M8 was 

used as external standard. 

 MR Imaging of M1C4[Gd] and M2C4[Gd] in Agar Phantoms. MRI experiments 

were performed in 1.5% agar to stabilise the dispersion of the material throughout the 

measurement. For this purpose, a stock of 10 mg mL-1 in water was well dispersed by 

sonication and dilutions between 100 and 10,000 µg mL-1 were prepared. 50 µL of these 

dilutions were immediately mixed with 50 µL 1.5% agar, transferred into 0.6 mL tubes and 

gelled in ice. Afterwards, the agar gel was covered by 300 µL water or complete cell culture 

medium. Thus, samples containing 5 to 500 µg per 100 µL M1C4[Gd] (Gd content 45 µmol 

g-1) and M2C4[Gd] (Gd content 50 µmol g-1), corresponding to 2.2-220 µmol L-1 Gd and 2.5-

250 µmol L-1, respectively, were prepared. These samples were measured at 123 MHz (3 T) 
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and room temperature. Longitudinal and transverse relaxation rates were determined in axial 

slices of 1 mm thickness through the sample containing agar layer and the supernatant.  

T1 was measured, using an inversion-recovery sequence, with an adiabatic inversion pulse, 

followed by a turbo-spin-echo readout. Between 10 and 15 images were taken, with the time 

between inversion and readout varying from 23 ms to 3000 ms. With a repetition time of 10 s, 

15 echoes were acquired per scan and averaged six times. For T2, a spin-echo sequence was 

used with echo times varying from 18 ms to 1000 ms in about 10 steps and a repetition time 

of 8 s. Diffusion sensitivity was reduced by minimizing the crusher gradients, surrounding the 

refocusing pulse. All experiments scanned 2562 voxels in a field-of-view of 110 mm in both 

directions, resulting in a voxel volume of 0.43 × 0.43 × 1 mm3. 

Data analysis was performed by fitting to relaxation curves with self-written routines under 

MATLAB 7.1 R14 (The Mathworks Inc., United States). The series of T1 and T2 relaxation 

data were fitted to the following equations:, 

a) T1 series with varying t = TI: S = S0 (1 - exp(-t / T1) + S(TI = 0) exp(-t / T1). 

b) T2 series with varying t = TE: S = S0 exp(-t / T2). 

Nonlinear least-squares fitting of three parameters S0, S(TI = 0), and T1/T2 was done for 

manually selected regions-of-interest with the Trust-Region Reflective Newton algorithm 

implemented in MATLAB. The quality of the fit was controlled by visual inspection and by 

calculating the mean errors and residuals.  

In addition, sagittal as well as axial T1-weighted MR images were made with imaging 

sequences (IR-RARE and FLASH) and a spatial resolution typical for in vivo experiments 

(0.6 × 0.6 × 1 mm3). 

Image intensities were evaluated in the axial images using ImageJ 1.44c 

(http://rsb.info.nih.gov/ij). A circular Region Of Interest (ROI) of 82 voxels was used. 

Biodistribution studies. BALB/c recipients were injected intravenously with 

M4C4[Gd]Cy5.5 and biodistribution was analysed using a Maestrix 2 optical imaging system 

(CRI). 200 µL of 1.5 mg mL-1 silica NPs were injected. Background fluorescence was 

subtracted by the implemented software of the Maestro 2 device (unmixing function). 

 Western Blot of M4C4AB. α-ICAM, α-VCAM or isotype control coupled silica NPs 

were boiled in SDS buffer to detach antibodies from nanoparticles and subsequently analyzed 

by 10% SDS-PAGE electrophoresis. Western blot detection was performed using a 

horseradish peroxidase (HRP) coupled secondary antibody. Band intensities were quantified 
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using imageJ software and coupling efficacy and the numbers of antibodies bound per 

particles were calculated.  

 ELISA of M4C4AB. Antigen-specific binding of antibody coupled silica NPs was 

determined by enzyme-linked immunosorbent assay (ELISA). 96-well plates (Thermo Fischer 

Scientific) were coated with recombinant ICAM-1-Fc protein (R&A) (4µg/ml in PBS) and 

incubated with different amounts of AB coupled silica NPs as indicated. Different 

concentrations of antibodies were used during the coupling reaction as indicated. Plates were 

washed extensively to remove non-specifically bound particles. Particle binding was 

quantified using a HRP-coupled secondary antibody (Dianova) for detection. 

6.2.3 Syntheses 

Analytical data of the materials is given and discussed in chapter 4 (Results and Discussion) 

and is therefore not described here. Estimated amounts of functional groups to calculate the 

amounts of reactants are based on ΓSi-OH (Table 4.5, M1 and M2) or Γligand (Table 4.19, 

M3bC11COOH and M3/4aC4COOH (amount halved as sterical hindrance is assumed)). 

 

 Synthesis of silica nanoparticles (M0130, M0100). A solution of ethanol and water was 

heated to 75 °C. After 15 min of temperature equilibration, 12.46 M aqueous ammonia and 

TEOS were quickly added under strong stirring. After 2 h of vigorous stirring at 75 °C, the 

resulting particles were separated by centrifugation and washed with water, ethanol/water 

(3:1) and water again. For washing, the particles were treated by ultrasonication for 30 min 

and centrifuged after each step. The particles were dried at 100 °C (M0b100) and then at 600 

°C (M0a100) under vacuum for at least 15 h each. Reaction conditions and yields are listed in 

Table 6.1. 

 Synthesis of silica nanoparticles (M050). Ethanol was heated to 35 °C. After 30 min, 

an aqueous NH4OH solution and TEOS were added under strong stirring. The mixture was 

kept at 35 °C for 20 h and was then allowed to cool down to RT. The material was separated 

by centrifugation, dispersed in water/ethanol (3:1) by ultrasonication (50 ml) and separated by 

centrifugation again. The purification step was repeated with water/ethanol (1:3) and then 

with ethanol. The particles were dried over night at 100 °C in vacuo.  

 

 



6 Experimental Part 

 
 

 
~ 87 ~ 

 

Table 6.1 Reaction conditions for the syntheses of M0 materials. 

material reaction conditions  

 
V(EtOH) 

/ mL 
V(TEOS)  

/ mL 
V(NH4OH) 

/ mL 
V(H2O)  

/ mL 
T  

/ °C 
yield 
/ g 

M0130 400 30 20 72 75 5.4 

M0a100 400 30 20 72 75 6.2 

M0b100 100 7.50 5 18 75 1.6 

M050 300 11.00 7.57 - 35 2.3 

subscript numbers are average diameters 
M0a dried at 600 °C, M0b only dried at 100 °C 
 

 Synthesis of rehydroxylated nanoparticles M0reh. 5 g of M0130 (M0100, 2.5 g) were 

suspended in 3.7% aqueous HCl (50 mL) and refluxed for 1 h to rehydroxylate the surface of 

the particles. The particles were separated by centrifugation and washed with water (two 

times) and ethanol. The particles were dried under vacuum at 100 °C for 16 h. 

 Synthesis of amino terminated nanoparticles M1C3NH2. The reaction was carried 

out under argon. M0130reh (2 g) was suspended in dry toluene (15 mL) and APTES (233 µL) 

was added. The suspension was refluxed under argon for 24 h, then the particles were 

separated by centrifugation and washed with toluene and hexane (two times, each). The 

particles were dried under vacuum at 100 °C for 15 h. Yield: 1.8 g of a white powder. 

 Synthesis of GOPTS modified nanoparticles M2GOPTS. The reaction was carried 

out under argon. M0130reh (2 g) was suspended in dry toluene (15 mL) and GOPTS (221 µL) 

was added. The suspension was refluxed under argon for 24 h. The particles were separated 

by centrifugation and washed with toluene and hexane (two times, each). The particles were 

dried under vacuum at 100 °C for 15 h. Yield: 1.9 g of a white powder. 

 Silanisation of silica nanoparticles (M3SiH). 2 g of M0100reh (M050, 1g) were 

suspended in 30 (15) mL of dry toluene under argon, and 0.5 (0.25) mL of TES were added. 

The suspension was refluxed under argon for 24 h, then the particles were separated by 

centrifugation and washed with toluene and twice with ethanol. The particles were dried 

under vacuum at 100 °C for 15 h. Yield: 1.9 g of a white powder. 

Chlorination-reduction of silica NPs (M4SiH). M0100 (2 g) was reacted according to 

a procedure reported.67 Under vacuum the silica NPs were heated to 200 °C for at least 6 h, 

then the temperature was raised to 800 °C over a period of 4 h and held for at least 6 h. Under 

argon 30 mL of thionyl chloride were heated to 60 °C under stirring and fluxed through the 

NPs for 4 h. Then the temperature was raised to 1000 °C and for another 4 h hydrogen was 
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fluxed through the NPs. Finally the NPs were cooled to RT under H2-atmosphere. Yield: 1.8 g 

of a white powder. 

 Gd(III)-chelate modified silica nanoparticles (M1C3[Gd-BA] and M1C3[Gd-GA]). 

M1C3NH2 (100 mg, estimated 2.5×10-5 mol of -NH2, 1 eq.) was suspended in DMSO (2 mL). 

Gd[DOTA-BA](n-Bu)4N (Gd[DOTA-GA](n-Bu)4N) (3.0×10-5 mol, 1.5 eq.) was dissolved in 

DMSO (1 mL) and TBTU (14 mg, 4.5×10-5 mol, 1.8 eq.) and DIPEA (51 µL, 3.0×10-4 mol, 

12 eq.) were added under stirring. After 5 min the nanoparticle suspension was added. The 

suspension was stirred for 3 h. The resulting material was separated by centrifugation and 

washed with DMF, water, ethanol, and n-hexane. The particles were dried at 60 °C under 

vacuum for 3 d. Yield: 91 (90) mg of slightly yellowish powder. Absence of free Gd(III) ions 

in the final materials was confirmed by the xylenol-test77 of suspended materials in water. 

 Gd(III)-chelate modified silica nanoparticles (M2[Gd-HA]). M2GOPTS (200 mg, 

estimated 5×10-5 mol of -CHOCH2, 1 eq.) was suspended in DMSO (3 mL) and a solution of 

Gd[DO3A-HA] 3 (5.5×10-5, 1 eq.) in 1 mL of DMSO was added. TBTU (24 mg, 7.5×10-5 

mol, 1.5 eq.) and DIPEA (65 µL, 5.0×10-4 mol, 10 eq.) were added under stirring. The 

suspension was left under ultrasonication for 1 h and was then stirred for 1 h. The resulting 

material was separated by centrifugation and washed with DMF, water, ethanol, and n-

hexane. Yield: 181 mg of slightly yellowish powder. Absence of free Gd(III) ions in the final 

materials was confirmed by the xylenol-test77 of suspended materials in water. 

 4-Butenoic acid modified silica nanoparticles (M3C4COOH and M4C4COOH) 

and 10-Undecylenic acid modified silica nanoparticles (M3C11COOH and M4C11COOH) 

by photochemically induced hydrosilylation. The reaction was carried out under argon. Si-

H functionalised particles were dried under vacuum at 100 °C for 1 h and suspended in dry n-

hexane under ultrasonication for 30 min in a quartz Schlenk tube. Then 3-butenoic acid or 10-

undecylenic acid was added and the suspension was degassed by 3-6 freeze-pump-thaw 

cycles. Under vigorous stirring the suspension was irradiated by a 700 W medium pressure 

mercury lamp for 5 days. Every day the suspension was treated with ultrasound for a few 

minutes. The resulting particles were separated by centrifugation and washed three times with 

n-hexane. The particles were dried under vacuum at 100 °C for 15 h and obtained as a white 

powder.  
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Table 6.2 Reaction conditions for the syntheses of acid modified materials. 

material reaction conditions  

 
m (starting 

material) / g 
V(acid)  

/ µL 
V(n-hexane)  

/ mL 
yield  
/ g 

M3aC4COOH 1.6 122 20 1.5 

M350C4COOH 0.8 130 10 0.5 

M4aC4COOH 2.0 153 20 2.0 

M3bC11COOH 1.1 224 25 0.9 

M4bC11COOH 1.5 273 35 1.3 

 

 Gd(III)-chelate modified silica nanoparticles (M3C4[Gd-HA] and M4C4[Gd-

HA]). The acid modified material (estimated ΓCOOH in mol g-1, 1 eq.) was suspended in 

DMSO, and TBTU (1.5 eq.) and DIPEA (10 eq.) were added under stirring. After 5 min a 

solution of Ln[DO3A-HA] (2 or 3, 1 eq.) in DMSO was added. The suspension was left under 

ultrasonication for 2 h. The resulting material was separated by centrifugation and washed 

with DMF, water, ethanol, DCM and n-hexane. The particles were dried under vacuum at 40 

°C for 16 h yielding a slightly yellowish powder. Absence of free Gd(III) ions in the final 

materials was confirmed by the xylenol-test of suspended materials in water. 

 

Table 6.3 Reaction conditions for the syntheses of [Gd] modified materials. 

material reaction conditions  

 
m (starting 

material) / g 
n (Ln[DO3A-HA]) 

/ mol 
V (DMSO)  

/ mL 
yield  
/ mg 

M3aC4[Gd-HA] 1 3×10-4 30 903 

M350C4[Gd-HA] 0.1 2×10-4 2 82 

M4aC4[Gd-HA] 1 3×10-4 30 918 

M4aC4[Y-HA] 0.3 9×10-5 6 156 

M3bC11[Gd-HA] 0.78 3.6×10-4 8 771 

M4bC11[Gd-HA] 0.1 5.6×10-5 6 89 

M4bC11[Y-HA] 0.27 1.9×10-4 8 192 

 

 Gd(III)-chelate modified silica nanoparticles (M4C11[Y-ButAm]). 100 mg of 

M4C11COOH (estimated 1.5×10-5 mol of -COOH, 1 eq.) were suspended in DMF (5 mL) 

and TBTU (7.2 mg, 2.3×10-5 mol, 1.5 eq.) and DIPEA (255 µL, 1.5×10-4 mol, 10 eq.) were 
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added under stirring. After 5 min a solution of Y[DOTA-ButAm]-Na+ 11 (1.5×10-5 mol, 1 eq.) 

in 1 mL of DMF was added and rinsed with 1 mL of DMF. The suspension was left under 

ultrasonication for 2 h. The resulting material was separated by centrifugation and washed 

with DMF, water, ethanol, DCM and n-hexane. Yield: 91 mg of slightly yellowish powder. 

 Antibody functionalised nanoparticles (M4C4AB). The antibodies (ABs) VCAM-1 

(1.96 mg/mL), ICAM-1 (3.06 mg/mL) and an isotype (4.77 mg/mL) were coupled to 

M4C4COOH (2.5 mg NPs + 50, 100 and 150 µg AB per mg NPs each). 

The carboxylic acid groups were activated with NHS and DIC in dry DMF under an argon 

atmosphere. Therefore, 2.5 mg NPs were suspended in DMF (800 µL), a solution of NHS in 

DMF (110 µL, 6 M) and DIC (111 µL, 3 M) were added, and the suspensions stirred at RT for 

2 h. The activated NPs were centrifuged and washed three times with dry DMF (2 mL, each). 

Then the activated NPs were suspended in dry DMF (10 µL) and the ABs, dissolved in PBS 

were added. PBS was added to get a total volume of 1 mL. The suspensions were gently 

stirred 1 day at RT and 2 days at 4°C, then the NPs were carefully centrifuged and washed 

with PBS. The NPs M4C4ABVCAM, M4C4ABICAM and M4C4ABISO were resuspended and 

stored in 500 µL PBS. 

 Syntheses of bifunctional nanoparticles (M4C11(4)Lys). Nα-Fmoc-Nω-Dde-D-lysine 

was used as a bifunctional linker. First the Fmoc protecting group was cleaved by stirring a 

solution of Nα-Fmoc-Nω-Dde-D-lysine (39.95 mg / 160 mg) in DMF (5 mL) with piperidine 

(1 mL) for 15 min. The piperidine was removed on a rotary evaporator and M4C11COOH / 

M4C4COOH (500 mg) was added and suspended by ultrasonication. TBTU (36.12 mg / 145 

mg) and DIPEA (127.55 µL / 510 µL) were added and the suspension was left under 

ultrasonication for 2.5 h. The resulting material was separated by centrifugation, washed with 

DMF and ethanol and dried under vacuum at RT for 15 h.  

 Coupling of Gd(III)-chelates to M4C11(4)Lys. Ln[DO3A-HA] was coupled according 

to above procedure. Resulting materials are M4C11(4)Lys[Gd-HA]. 

 Coupling of FITC to M4C11(4)Lys[Gd-HA]. The Dde protecting group was cleaved 

by treating the NPs M4C11(4)Lys[Gd-HA] with hydrazine. The NPs (M4C11Lys[Gd-HA], 

400 mg) were suspended in DMF (5 mL) and ultrasonicated for three min after adding 

hydrazine monohydrate (100 µL, 99%). Then the particles were centrifuged and washed with 

DMF and ethanol. The particles were resuspended in dry DMF (5 mL) and DIPEA (128 µL) 

and FITC (29.2 mg) were added. The suspension was stirred at RT in the dark for 24 h, then 
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the resulting material was centrifuged and washed with DMF and ethanol. M4C11Lys[Gd-

HA]FITC was dried under vacuum at rt for 15 h. Yield: 328 mg of an orange powder.  

 Coupling of Cy5.5 to M4C11(4)Lys[Gd-HA]. Cy5.5 was coupled according to the 

procedure given in ref. 92. M4C11Lys[Gd-HA] (25 mg) was suspended in an aqueous 

NaHCO3 solution (900 µL, 0.1 M) and Cy5.5 dissolved in dry DMF (100 µL) was added. The 

suspension was stirred in the dark for 24 h. The resulting material was centrifuged and 

washed with DMF, water and ethanol until the supernatant was clear. The particles were dried 

under vacuum at RT for two days and M4C11Lys[Gd-HA]Cy5.5 was obtained as a blue 

powder. 
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8 Summary 

The development of magnetic resonance imaging (MRI) towards one of the most powerful 

techniques in clinical diagnosis is accompanied by the progress in the design of paramagnetic 

contrast agents (CAs) to enhance imaging sensitivity. Most of the currently applied CAs for 

enhanced T1-contrast are based on gadolinium(III) chelate complexes and are mainly 

extracellular agents which only distribute non-specifically throughout the circulatory system 

and interstitial spaces. Since those agents are excreted easily and quite fast from the body, 

they are not suitable for long-term tracking applications. Therefore, nanoparticulate systems 

were developed and they are currently gaining increased importance in medical diagnosis and 

treatments. By tailoring hybrid nanomaterials, consisting of an inorganic matrix and 

functional organic moieties, materials with special properties can be made for various 

purposes, such as carriers of drugs or for imaging techniques. 

In this work, silica nanoparticles (NPs) with a diameter of about 50, 100 and 130 nm were 

synthesised as matrix to couple Gd(III) chelate complexes as CAs for MRI, fluorophores as 

probes for optical imaging (OI), and biomolecules for molecular and targeted imaging 

applications (see Scheme 8.1). The starting materials M0 were obtained by means of the 

Stöber process and particles were isolated from their suspensions prior to functionalisation. 

To covalently couple the functional molecules, the surface of the 130 nm NPs was modified 

with amino and epoxy groups, respectively, by coating the NPs with functionalised alkoxy 

silanes. The materials M1C3NH2 and M2GOPTS were obtained. The 100 nm NPs were 

surface modified by two different ways of Si-H functionalisation. The first approach was a 

silanisation with triethoxy silane (TES), the second one a chlorination reduction sequence 

with thionyl chloride followed by hydrogen, yielding the materials M3SiH and M4SiH, 

respectively. The 50 nm particles were coated with TES to give M350SiH. Subsequently, the 

Si-H functionalised materials were reacted with terminated unsaturated carboxylic acids of 

different chain lengths (C4 and C11) in a photochemically induced hydrosilylation reaction 

(M3CnCOOH, M4CnCOOH, M350C4COOH). The carboxylates on the particles’ surface 

allow coupling of functional molecules by forming peptide bonds with amino groups. 

The M0 materials and the surface modified materials were carefully characterised regarding 

size and shape, surface area and porosity, surface chemical properties, extent of modification 

and functional groups, and particle-particle interactions. 
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Scheme 8.1 Syntheses and functionalisation of silica nanoparticles. 
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Then, different Ln(III) complexes of DO3A (1, 2) and DOTA (3 and 4, 5 and 6, 7) derivatives 

were synthesised and coupled to the surface modified materials by means of peptide coupling 

agents. The materials M1C3[Ln], M2[Ln], M3Cn[Ln], M4Cn[Ln], and M350C4[Ln] were 

obtained and characterised with regard to the extent of surface modification, agglomeration 

behaviour of the particles and the viability as contrast agents.  

M1 and M2 materials could be loaded less effective with Gd(III) complexes than M3 and M4 

materials. Surface concentrations of Gd(III) chelate complexes and imaging properties of the 

materials, obtained by different ways of Si-H functionalisation do not differ significantly. 

This makes the less complex silanisation with TES the preparation method of choice. With 

the C4 spacer higher Gd(III) surface concentrations were obtained, whereas the C11 spacer 

leads to more stable materials under physiological conditions. Stability tests for all materials 

show that no Gd(III) ions are released from the chelates. The C4 materials contain more 

Gd(III) and therefore are the more effective CAs. Moreover, problems with the agglomeration 

of the particles could be overcome by introducing the C4 spacer instead of the C11 spacer. 

Simultaneously the number of functional groups on the silica surface could be increased, as a 

telomerisation reaction enables an overstoichiometric coupling of the C4 spacer. Interestingly, 

the charge of the complexes coupled to the surface plays a minor role with regard to 

agglomeration effects. 

Gadolinium surface concentrations of up to 83 µmol g-1 were reached, and the materials show 

the typical concentration-dependent increase of the longitudinal relaxation rate R1 in a clinical 

3 T MR scanner at room temperature. The longitudinal relaxivity values per Gd of the 

materials are increased in comparison to the uncoupled Gd(III) complex, and the high number 

of Gd(III) complexes per particle leads to remarkably high relaxivity values of up to 6.18×105 

mM-1s-1 per particle. This is comparable to previously published, mesoporous silica materials. 

Bimodal NPs for MRI and OI were successfully synthesised by the introduction of lysine as a 

bifunctional linker and coupling of fluorophores (Fl = FITC or Cy5.5) next to Gd(III) 

chelates, yielding M4C4(11)Lys[Ln]Fl. The bimodal materials were examined in in vitro cell 

studies regarding localisation and cellular uptake. Biodistribution of the NPs in mice was 

examined in in vivo studies and ex vivo derived organs. Finally, antibodies were successfully 

coupled to the 100 nm acid modified NPs, while their specific interactions with an antigen 

were maintained. 

In conclusion, CA functionalised nonporous silica NPs with a high local relaxivity, bimodal 

CA and fluorophore modified NPs, and antibody coupled NPs were obtained. These results 
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indicate that this type of silica nanoparticles can pose a platform for the development of 

highly effective probes for MRI. Further functionalisation allows the synthesis of multimodal 

and/or targeted contrast agents for molecular imaging applications. 
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9 Zusammenfassung 

Die Entwicklung der Magnetresonanztomographie (MRT) zu einer der wichtigsten Methoden 

in der medizinischen Diagnostik geht mit der Entwicklung paramagnetischer Kontrastmittel 

(CAs) zur Empfindlichkeitssteigerung einher. Die meisten der derzeit eingesetzten CAs zur 

Erhöhung des T1-Kontrasts basieren auf Gadolinium(III)-Chelatkomplexen. Diese dienen 

hauptsächlich als extrazelluläre Agenzien, die sich unspezifisch im Blutkreislauf und im 

Interstitium verteilen. Da diese Substanzen schnell und leicht aus dem Körper ausgeschieden 

werden, sind sie nicht für Langzeitanwendungen geeignet. Dazu wurden nanopartikuläre 

Systeme entwickelt, die in der klinischen Diagnostik zunehmend an Bedeutung gewinnen. 

Durch gezielte Synthesen von Hybrid-Materialien, die aus einer anorganischen Matrix und 

funktionellen organischen Molekülen aufgebaut werden, können Materialien mit ganz 

bestimmten Eigenschaften für diverse Anwendungen hergestellt werden (z.B. Drug-Carrier-

Systeme oder Sonden für bildgebende Verfahren). 

In dieser Arbeit wurden Silica-Nanopartikel (NPs) mit Durchmessern von 50, 100 und 130 

nm hergestellt. Diese dienen als Matrix für die Anbindung von Gd(III)-Chelatkomplexen als 

CAs für die MRT, von Fluorophoren als Sonden für die optische Bildgebung und von 

Biomolekülen für molekulare und zielgerichtete bildgebende Verfahren (siehe Schema 9.1).  

Die Ausgangsmaterialien M0 wurden im Stöber Prozess hergestellt und die Partikel wurden 

vor der Funktionalisierung aus ihren Suspensionen isoliert. Um funktionelle Moleküle 

kovalent anbinden zu können, wurden die 130 nm NPs mit Amino- bzw. Epoxygruppen 

modifiziert. Die Materialien M1C3NH2 und M2GOPTS wurden durch Beschichten der NPs 

mit funktionalisierten Alkoxysilanen erhalten. Die 100 nm NPs wurden auf zwei verschiedene 

Arten Si-H funktionalisiert. Der erste Weg war eine Silanisierung mit Triethoxysilan (TES) 

(M3SiH), der zweite eine Sequenz aus Chlorierung mit Thionylchlorid, gefolgt von der 

Umsetzung mit elemtarem Wasserstoff (M4SiH). Die 50 nm NPs wurden mit TES 

beschichtet (M350SiH). Anschließend wurden endständig ungesättigte Carbonsäuren 

verschiedener Kettenlängen (C4 und C11) in einer photochemisch induzierten 

Hydrosilylierungsreaktion an die Si-H Bindungen addiert (M3CnCOOH, M4CnCOOH, 

M350C4COOH). An die Carbonsäuregruppen auf der Partikeloberfläche können durch die 

Bildung von Peptidbindungen aminofunktionalisierte Moleküle angebunden werden. Die M0 

Materialien und die oberflächen-modifizierten Materialien wurden sorgfältig charakterisiert in 

Bezug auf ihre Größe und Form, spezifische Oberfläche und Porosität, chemische 
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Eigenschaften der Partikeloberflächen, Grad der Funktionalisierung und Anzahl funktioneller 

Gruppen an der Oberfläche, sowie interpartikuläre Wechselwirkungen. 

Anschließend wurden verschiedene Lanthanoid Komplexe von DO3A- (1, 2) und DOTA- (3 

und 4, 5 und 6, 7) Derivaten synthetisiert und mit Hilfe von Peptidkupplungsreagenzien an die 

oberflächen-funktionalisierten NPs angebunden. Die Materialien M1C3[Ln], M2[Ln], 

M3Cn[Ln], M4Cn[Ln] und M350C4[Ln] wurden erhalten und in Bezug auf Grad der 

Funktionalisierung, Agglomerationsverhalten und ihre Anwendbarkeit als Kontrastmittel 

charakterisiert.  

Die Beladung an Gd(III)-Komplexen verlief für die M1- und M2-Materialien weniger 

effektiv als für die M3- und M4-Materialien. Die Oberflächenkonzentrationen an Gd(III) und 

die bildgebenden Eigenschaften der Materialien, die durch verschiedene Arten der Si-H- 

Funktionalisierung erhalten wurden, unterscheiden sich nicht deutlich, daher ist die weniger 

aufwendige Silanisierung mit TES die Methode der Wahl. Durch die Anbindung des C4-

Spacers wurden höhere Gd(III)-Konzentrationen erreicht, wohingegen die Anbindung des 

C11-Spacers zu stabileren Materialien unter physiologischen Bedingungen führt. 

Stabilitätstests für alle Materialien zeigen, dass keine toxischen Gd(III)-Ionen aus den 

Chelaten freigesetzt werden. Die C4-Materialien enthalten mehr Gd(III) und sind daher die 

effektiveren Kontrastmittel. Außerdem konnten Agglomerationsprobleme durch die 

Einführung des C4- statt des C11-Spacers überwunden werden. Gleichzeitig konnte die Anzahl 

an funktionellen Gruppen an der Silica-Oberfläche erhöht werden, da eine 

Telomerisierungsreaktion eine überstöchiometrische Anbindung der C4-Säure ermöglicht. 

Interessanterweise spielt die Ladung der Komplexe eine geringe Rolle für das 

Agglomerationsverhalten. 

Oberflächenkonzentrationen an Gd(III) von bis zu 83 µmol g-1 wurden erreicht und die 

Materialien zeigen den typischen konzentrationsabhängigen Anstieg der longitudinalen 

Relaxationsrate R1 in einem klinischen 3 T Magnetresonanztomographen bei 

Raumtemperatur. Die longitudinalen Relaxivitätswerte pro Gd der Materialien sind im 

Vergleich zu den ungebundenen Gd(III)-Komplexen erhöht und die hohe Anzahl an 

angebundenen Komplexen pro Partikel führt zu bemerkenswert hohen Relaxivitätswerten von 

bis zu 6.18×105 mM-1s-1 pro Partikel. Diese Werte sind vergleichbar mit denen bereits 

publizierter mesoporöser Materialien.  
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Schema 9.1 Synthese und Funktionalisierung von Silica Nanopartikeln. 
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7 (8): R1 = COO-, L = (CH2)4, R2 = NH2

M3C4(11)[Ln]
M4C4(11)[Ln]
M350C4[Ln]

M4C4(11)Lys[Ln]Fl

1. SOCl2
2. H2
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Durch die Einführung von Lysin als bifunktionellen Linker und die Anbindung von 

Fluorophoren (Fl = FITC oder Cy5.5) neben Gd(III)-Chelaten, wurden bimodale NPs als CA 

für die MRT und für optische Bildgebung erfolgreich sythetisiert (M4C4(11)Lys[Ln]Fl). Die 

bimodalen Materialien wurden in in vitro Zellstudien bezüglich ihrer Lokalisierung und 

Zellgängigkeit untersucht. Außerdem wurde die Bioverteilung der NPs in Mäusen in in vivo 

Studien und an entnommenen Organen ex vivo untersucht. Schließlich wurden Antikörper 

erfolgreich an die säure-funktionalisierten 100 nm Partikel angebunden, wobei ihre 

spezifischen Wechselwirkungen mit einem Antigen erhalten blieben.  

Es wurden CA-funktionalisierte unporöse Silica NPs mit hohen lokalen Relaxivitäten, 

bimodale, mit CAs und Fluorophoren modifizierte NPs und Antikörper-funktionalisierte NPs 

hergestellt. Diese Ergebnisse zeigen, dass diese Art von Silica-Nanopartikeln eine geeignete 

Plattform für die Entwicklung hocheffizienter Kontrastmittel für die MRT darstellt. Durch 

weitere Funktionalisierung können multimodale und/oder zielgerichtete Kontrastmittel für die 

molekulare Bildgebung synthetisiert werden. 
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