
Interpretable Machine Learning

Approaches in Computational Biology

Dissertation

der Mathematisch-Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen

zur Erlangung des Grades eines

Doktor der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von

Dipl.-Bioinf. Sebastian Briesemeister

aus Ilmenau

Tübingen

2011

Tag der mündlichen Qualifikation: 29.02.2012

Dekan: Prof. Dr. Wolfgang Rosenstiel

1. Berichterstatter: Prof. Dr.-Ing. Oliver Kohlbacher

2. Berichterstatter: Prof. Dr. Jörg Rahnenführer

Abstract

Machine learning has become an essential tool for analyzing, predicting, and under-

standing biological properties and processes. Machine learning models can substantially

support the work of biologists by reducing the number of expensive and time-consuming

experiments. They are able to uncover novel properties of biological systems and can

be used to guide experiments. Machine learning models have been successfully applied

to various tasks ranging from gene prediction to three-dimensional structure prediction

of proteins. However, due to their lack of interpretability, many biologists put only

little trust in the predictions made by computational models.

In this thesis, we show how to overcome the typical “black box” character of machine

learning algorithms by presenting two novel interpretable approaches for classification

and regression.

In the first part, we introduce YLoc, an interpretable classification approach for

predicting the subcellular localization of proteins. YLoc is able to explain why a pre-

diction was made by identifying the biological properties with the strongest influence

on the prediction. We show that interpretable predictions made by YLoc help to un-

derstand a protein’s localization and, moreover, can assist biologists in engineering the

location of proteins. Furthermore, YLoc returns confidence scores, making it possible

for biologists to define their level of trust in individual predictions.

In the second part, we show how our two novel confidence estimators, CONFINE

and CONFIVE, can improve the interpretability of MHC-I–peptide binding prediction.

In contrast to plain affinity values predicted by usual regression models, CONFINE

and CONFIVE estimate affinity intervals, which provide a very natural interpretation

of confidence. While low confidence predictions exhibit fairly large intervals, reliable

predictions yield a very small range of affinities. We show that distinguishing between

ii

reliable and unreliable predictions is important for discovering and engineering reliable

epitopes for vaccines.

The interpretable approaches presented in this thesis are a significant step forward

towards making machine learning methods more transparent to the users and, thus,

towards improving the acceptance of computational methods.

Zusammenfassung

Maschinelles Lernen ist zu einem unverzichtbaren Werkzeug für die Analyse, Vorhersage

und für das Verständnis biologischer Merkmale und Prozesse geworden. Als Alternative

zu Experimenten im Labor, die oft teuer und zeitintensiv sind, können maschinelle Lern-

modelle die Arbeit von Biologen erheblich erleichtern. So können beispielsweise neue

Merkmale biologischer Systeme sowie Ansatzpunkte für Experimente gefunden werden.

Maschinelles Lernen wurde erfolgreich für verschiedene Aufgaben, von der Genvorher-

sage bis hin zur Vorhersage der dreidimensionalen Struktur von Proteinen, eingesetzt.

Aufgrund der schlechten Interpretierbarkeit von Vorhersagen computergestützter Lern-

verfahren, haben Biologen jedoch oft nur wenig Vertrauen in diese. Im Rahmen dieser

Dissertation entwickeln wir daher neue Ansätze um die Klassifikation und die Regressi-

onsanalyse für biologische Problemstellungen interpretierbarer und damit nachvollzieh-

barer zu machen.

Im ersten Teil der Dissertation stellen wir YLoc vor, ein neues interpretierbares

Klassifikationsverfahren zur Vorhersage der subzellulären Lokalisation von Proteinen.

YLoc ist in der Lage Begründungen für eine gemachte Vorhersage zu geben, indem es

die biologischen Merkmale mit dem größten Einfluss auf die Vorhersage identifiziert.

Interpretierbare Vorhersagen von YLoc können helfen die Lokalisierung von Proteinen

besser nachzuvollziehen und ferner Biologen bei der Planung von Experimenten, die

Aufschluß über mögliche Änderung der Lokalisation von Proteinen geben sollen, zu

unterstützen. Darüber hinaus bewertet YLoc die Zuverlässigkeit einzelner Vorhersagen,

wodurch es Biologen möglich ist, das Maß an Vertrauen in Vorhersagen individuell

abzuwägen.

Im zweiten Teil dieser Arbeit stellen wir CONFINE und CONFIVE vor, zwei

neue Verfahren zur Konfidenzschätzung von Vorhersagen, welche die Interpretierbar-

keit von MHC-I-Bindungsvorhersagen entscheidend verbessern können. Im Gegensatz

iv

zu üblichen Regressionsmodellen, welche lediglich Affinitätswerte vorhersagen, können

CONFINE und CONFIVE Affinitätsintervalle schätzen. Diese stellen eine intuitive In-

terpretation von Verlässlichkeit dar. Während weniger verlässliche Vorhersagen durch

breite Affinitätsintervalle auffallen, weisen sichere Vorhersagen einen sehr kleinen Be-

reich möglicher Affinitäten auf. Wir können weiterhin zeigen, dass die Unterscheidung

zwischen verlässlichen und unsicheren Vorhersagen wichtig für das Identifizieren und

Verbessern von Epitopen in der Impfstoffgewinnung ist.

Die in dieser Arbeit vorgestellten interpretierbaren Vorhersagemethoden stellen

einen wichtigen Schritt in der Entwicklung transparenter maschineller Lernmethoden

dar und können die Akzeptanz von computergestützte Methoden maßgeblich verbes-

sern.

Acknowledgments

First of all, I want to thank my supervisor Prof. Dr. Oliver Kohlbacher for giving me

the opportunity to work on various exciting research topics. I very much appreciate his

ideas, support, guidance, and motivation during all phases of this thesis. Furthermore,

I would like to thank Prof. Dr. Jörg Rahnenführer for raising interesting questions,

participating in fruitful discussions, and supporting my work in the last years. I am

also very thankful to Prof. Dr. Klaus Harter for giving me the opportunity to work

for a couple of weeks in his lab. In addition, I gratefully acknowledge financial sup-

port from LGFG Promotionsverbund “Pflanzliche Sensorhistidinkinasen” and Deutsche

Forschungsgemeinschaft (SPP 1335).

I would also like to thank my other cooperation partners: Prof. Dr. Sebastian

Böcker, Prof. Dr. Gunnar Klau, Dr. Quang Bao Anh Bui, Anke Truss, Prof. Dr. Hagit

Shatkay, Dr. Torsten Blum, Dr. Scott Brady, Yin Lam, Dr. Christina Chaban, Dr.

Katharina Caesar, and Janika Witthöf.

I am very grateful to Johannes Junker, Peter Niermann, Nico Pfeifer, and Nora

Toussaint for their support and interesting discussions on machine learning. I also thank

Magdalena Feldhahn, Sven Nahnsen, Nora Toussaint, and Nico Weber for enjoyable

lunch times and Dr. Johannes Fischer, Peter Niermann, and Dr. Lars Nilse for relaxing

jogging trips. Many thanks to my room mates Dr. Marc Sturm and Nina Fischer

for providing a nice working atmosphere. Moreover, I thank all my colleagues in the

group Applied Bioinformatics as well as its former members for a motivating working

atmosphere and interesting conversations.

Finally, I want to thank my family for creating a firm foundation for me to stand

on. Thanks also to my friends for their patience and support. Last, but definitely

not least, I express my deep gratitude to Jule for her inspiration, her support, many

interesting discussions, and her enduring patience.

vi

In accordance with the standard scientific protocol, I will use the personal pronoun

“we” to indicate the reader and the writer, or my scientific collaborators and myself.

Contents

1 Introduction 1

2 Background 9

2.1 Machine Learning . 9

2.1.1 Classification . 10

2.1.2 Regression . 18

2.1.3 Model Evaluation and Selection 22

2.1.4 Interpretability of Machine Learning Models 25

2.2 Subcellular Localization of Proteins . 30

2.2.1 Protein Transport . 31

2.2.2 Sorting Signals . 32

2.2.3 Determining Subcellular Localization 36

2.3 The Immune System . 38

2.3.1 The Innate Immune System . 38

2.3.2 The Adaptive Immune System 39

2.3.3 Epitope-Based Vaccines . 42

3 YLoc – An Interpretable Classification Approach 45

3.1 Introduction . 45

3.2 Methods . 49

3.2.1 Features . 49

3.2.2 Feature Selection . 51

3.2.3 Näıve Bayes Classification . 52

3.2.4 Confidence Estimators . 54

3.2.5 Creating Interpretable Output 57

viii CONTENTS

3.2.6 Datasets . 58

3.2.7 Training and Evaluation . 59

3.3 Results and Discussion . 62

3.3.1 Cross-Validation Evaluation . 62

3.3.2 Benchmark Study on Two Independent Datasets 62

3.3.3 Multiple-Localization Prediction 64

3.3.4 Evaluation of Confidence Estimates 65

3.3.5 The YLoc Web Server . 68

3.3.6 Understanding and Predicting Localization Changes 72

3.4 Conclusion . 74

4 Interpretable Regression With CONFINE and CONFIVE 77

4.1 Introduction . 78

4.2 Methods . 82

4.2.1 Related Work on Confidence Estimation 82

4.2.2 Confidence Estimators CONFINE and CONFIVE 87

4.2.3 Confidence Intervals . 89

4.2.4 Evaluation . 90

4.2.5 Datasets . 92

4.3 Results and Discussion . 93

4.3.1 Influence of Dataset Size, Features, and Noise 93

4.3.2 Evaluation on IEDB Benchmark Datasets 95

4.3.3 Evaluation on 3D-QSAR Datasets 97

4.3.4 Confidence Estimation for Nonlinear Models 99

4.3.5 Evaluation of Confidence Intervals 101

4.3.6 Predicting the Estimation Performance 101

4.3.7 Confidence Estimation in Epitope-Based Vaccine Design 102

4.4 Conclusion . 106

5 Conclusions and Perspectives 109

Bibliography 132

A Abbreviations 133

CONTENTS ix

B Publications 135

C Contributions 137

D Tables 139

E Sequence Data 161

Chapter 1

Introduction

“You make experiments and I make theories. Do you know the difference? A theory is

something nobody believes, except the person who made it. An experiment is something

everybody believes, except the person who made it.”

– Albert Einstein (personal communication to Herman F. Mark, quoted by Holton [84])

There has always been a controversy between experimental and theoretical science.

While experimental scientists work under real world conditions and learn from observa-

tion, theoretical scientists study concepts and models based on assumptions that might

not have been proven by real world experiments, yet. Despite their differences, they are

by necessity closely connected: Experiments are often used to prove theories and ideas

that have been established by theoretical scientists. On the other hand, theories often

inspire new experiments or yield explanations for unexpected experimental findings.

Despite the importance of theoretical science, genius minds had always been strug-

gling to get their theories accepted in the scientific community. When Darwin first

published his theory on evolution in “On the Origin of Species” [46], he received a

lot of opposition. Although Darwin’s theories have become a central part of modern

biology, even today, more than 150 years later, his theories are still not fully accepted.

Although society has changed, theories unproven by real world experiments will always

lack credibility.

In the present information age, computational biology represents the theoretical

counterpart of modern biology. Instead of real word experiments performed in a lab-

oratory, computational biology is based on mathematical theories and algorithms. A

2 1. Introduction

prominent class of algorithms in computational biology are machine learning algo-

rithms. As the name suggests, machine learning aims at learning patterns and coher-

ences from empirical data. Thus, similar to a human, a learning algorithm tries to

generalize from its experiences. The learned knowledge serves as basis for a machine

learning model, which can be later used to theoretically predict properties of previously

unseen examples. A prominent application is stock market prediction, which aims to

predict the future behavior of a stock by learning from trading data from the past.

Depending on the learning task, we distinguish between classification and regression.

In classification, observations are categorized into groups based on distinct attributes.

In contrast, regression aims at finding a relationship between attributes that explains a

quantitative property. For example, classification algorithms can be applied to predict

whether a stock should be purchased or sold, whereas regression models predict the

stock value.

Machine learning has become an essential part of modern biology. Machine learning

algorithms have been applied to various problems, ranging from gene prediction to

three-dimensional structure prediction of proteins. Predictions made by computational

models offer an attractive alternative to time-consuming and expensive experiments.

Sometimes machine learning methods are even praised as a potential replacement of

wet lab experiments.

Unfortunately, the credibility of machine learning models in the biological commu-

nity is still rather low. Results obtained by real world experiments earn far more trust

than predictions made by theoretical models. One major reason is the “black box”

character of many state-of-the-art machine learning approaches. While recent work

has mainly concentrated on improving the prediction performance of classification and

regression models, their interpretability has been mostly neglected. Consequently, when

applying state-of-the-art prediction algorithms, two important questions remain unan-

swered: Why did the model predict this particular outcome? And, how reliable is this

individual prediction?

One major reason for non-interpretable predictions is the complexity of state-of-the-

art classification and regression algorithms. Kernel-based machine learning algorithms

such as support vector machines (SVMs) and support vector regression (SVR) are often

able to give high quality predictions although the underlying problem might be very

3

difficult. However, due to their complexity, users generally have no insight into the

prediction process. For an individual prediction, it is often not possible to understand

what attribute contributed most to the prediction outcome. Instead, users are left

with plain prediction values without any additional information that could support the

prediction. Since users are not provided with an understandable and intuitive reasoning,

it is not evident why an individual prediction was made. This lack of interpretability

prevents users from gaining a deeper understanding of the underlying problem. In

addition, users have less trust in predictions that are not interpretable.

To provide predictions that are interpretable for the user, it is often necessary to

employ more simple machine learning algorithms. As a consequence, learning methods

that provide interpretability yield often a reduced prediction quality. Furthermore,

explanations are often rather technical than understandable. Instead of offering under-

standable problem specific textual explanations, they provide only non-intuitive tables

consisting of plain numbers.

Another problem that is often not considered by state-of-the-art machine learning

models is the reliability of individual predictions. Machine learning models are often

trained on rather limited datasets. While they maintain good performance on closely

related datasets, the error may increase drastically when applied to data points far

from the training set. For example, a stock prediction model trained in the 1970s is

unlikely to give reliable predictions in the time of today’s financial crisis.

In classification, there have been some first attempts to estimate the confidence in

individual predictions [129]. However, there is often a misunderstanding between the

uncertainty between classes and the confidence in the correctness of the prediction. In

regression analysis, the concept of confidence estimation was introduced by estimating

the applicability of a model [164]. While in the experimental sciences, a measurement

is associated with an error, confidence estimators for regression often provide only a

non-interpretable qualitative score, which is difficult to relate to an actual error.

Despite the importance of confidence estimation, it has not been applied extensively

in the context of computational biology. Instead, most machine learning approaches

are totally non-transparent for the user and often lack the explicit underlying model

required for error propagation. Since confidence information is hardly ever reported,

users are often compelled to assume that the machine learning model performs equally

well for all examples, which is not the case. When selecting candidates for expensive

4 1. Introduction

experiments, it is especially desirable to mitigate the risk of accidentally relying on erro-

neous predictions. To overcome this problems, confidence estimation, which determines

the reliability of individual predictions, is desirable.

In this thesis, we aim at filling the gap between experimental sciences and com-

putational methods by developing interpretable machine learning approaches for both

classification and regression We are interested in models that elucidate why a partic-

ular prediction was made and how reliable the predicted outcome is. Therefore, we

study the interpretability of machine learning models on two biological problems. We

first introduce an interpretable classification approach for subcellular localization of

proteins. In the second part of this thesis, we introduce methods that make regression

approaches for immunoinformatics more interpretable. For both biological problems,

we show that user can greatly benefit from interpretable predictions made by our in-

troduced machine learning approaches. We demonstrate that interpretable predictions

can help biologists to gain deeper insights into the underlying biological problems and

can substantially support their experimental work.

The first goal of this thesis is to develop an interpretable classification approach for

protein subcellular localization, an important problem of systems biology. Subcellular

localization of proteins is a key process in many eukaryotic cells. Correct localization

of proteins within a cell is crucial for all organisms since errors in this sorting process

can lead to diseases. Hence, it is a major research topic in biology.

After being synthesized in the ribosomes, proteins are transported into the different

organelles of a cell depending on their function within the cell. Some proteins are even

transported to multiple compartments. Even though not all details of protein sorting

are fully understood, it is known that protein localization is often mediated by sorting

signals. These sorting signals are short and well-defined subsequences usually located

at the N-terminus or C-terminus of the protein. Since organelles of eukaryotic cells

are normally separated from each other by membranes, the transport of a protein is

often mediated by transmembrane proteins or protein complexes that recognize sorting

signals and facilitate transport across the membranes. It is known that the subcellular

localization of a protein is highly correlated with its function and is, thus, used to

5

draw conclusions about its cellular role, interaction partners, and function in biological

processes.

There exists various ways to experimentally determine the subcellular location of a

protein, for example by fluorescence microscopy, cell fractionation, or by immunolocal-

ization. However, all these techniques are expensive and time-consuming. In the last

years, experimental annotation could not keep up with the dramatic growth of sequence

data. Hence, many proteins are not yet annotated with their subcellular location. In

fact, to determine the locations of all protein sequences by experiments is an almost

infeasible task.

Computational prediction methods that predict the subcellular localization of a

protein from its amino acid sequence alone, thus, represent an attractive alternative

to experimental methods. Predicting the subcellular location of a protein is a typical

classification problem that can be solved by using machine learning algorithms. Based

on a set of proteins with known location site, a classification model is trained to predict

the locations of novel proteins. For this, proteins are usually encoded by a set of

informative attributes which, for example, indicate whether certain sorting signals are

present in the protein’s sequence or not. While early approaches were simply sequence

based [9, 62, 131], more recent methods use a wide range of derived attributes including

domain information and information on proteins with a similar sequence [8, 37, 71, 123,

158]. Furthermore, the prediction quality has significantly improved over the years, also

due to the application of more complex machine learning models [8, 45, 124, 139].

An unfortunate drawback of state-of-the-art subcellular localization predictors is

their “black box” character. It is not obvious whether, for example, the presence of

a sorting signal influenced the outcome. Hence, from their predictions biologists are

not able to gain a deeper understanding of the underlying sorting process nor can

predictions be used to guide further experiments. In addition, the lack of confidence

estimation makes it difficult for users determine their trust in individual predictions.

To overcome the shortcomings of current state-of-the-art methods, we present YLoc,

an interpretable prediction approach for protein subcellular localization. Users are

not only provided with the prediction itself, but also with an explanation why this

prediction was made. Since YLoc gives explanations in natural language, biologists

can derive knowledge why a protein is localized to a certain organelle. For example,

YLoc identifies relevant biological properties of a protein contributing to its subcellular

6 1. Introduction

localization, e.g. localization signals or motifs relevant to protein sorting. Hence,

YLoc can help to understand subcellular localization processes without conducting

expensive experiments. Furthermore, YLoc employs a confidence estimator, which

helps biologists to verify whether a prediction is reliable or not. Due to its ability to

produce interpretable predictions, YLoc can be used for supervised protein engineering.

We show several examples where YLoc is able to predict experimentally validated

changes of localization sites by detecting changes in the sorting signal.

The presented interpretable classification approach is an important step to overcome

the theoretical character of computational prediction approaches.

In the second part of this thesis, we illustrate how regression analysis can be made

more interpretable. A prominent application of regression algorithms can be found in

the field of immunoinformatics. In particular, we are interested in the interaction of

major histocompatibility complex class I (MHC-I) molecules with peptides, which plays

an important role in the adaptive immune system.

The adaptive immune system is a highly specialized system that recognizes, elimi-

nates, and remembers invading pathogens such as bacteria or viruses. MHC-I molecules,

as an important element of the adaptive immune system, present pathogenic peptides

on the surface of the cell to the immune system. Presented peptides that can trigger

an immune response and lead to the death of the infected cell are called epitopes.

The property of the immune system to remember pathogens provides the founda-

tion for vaccines. Traditional vaccines contain a weakened form of the pathogen to

stimulate the immunological memory. In contrast, epitope-based vaccines contain only

the peptides derived from pathogens that are able to induce an immune response. As a

prerequisite for an immune response, epitopes are required to bind to MHC-I molecules.

Hence, to design epitope-based vaccines, it is crucial to find a set of peptides with a

high binding affinity to MHC-I molecules.

Experimentally determining the binding affinity of peptides to MHC-I molecules

is a time-consuming and expensive process. Consequently, various machine learning

algorithms have been applied as an alternative to experimental approaches. Predicting

binding affinities is a typical regression problem. Based on peptides with known binding

affinities to MHC-I molecules, a regression model is trained to predict the affinities of

peptides for which no experiments have been conducted. While in the early years,

7

simple linear algorithms were used [136], current state-of-the-art prediction approaches

use more complex algorithms [116].

Unfortunately, predictions of state-of-the-art approaches are not interpretable. It

is not clear which amino acid in the peptide exhibits the strongest interaction with the

MHC-I molecules, nor which amino acid might prevent the peptide from binding. Most

importantly, the confidence of individual predictions is often neglected. In contrast

to experiments performed in a laboratory, computational prediction methods do not

produce likewise reliable affinity values for all peptides. In fact, if the given training

data does not allow to draw conclusions for a novel peptide, their predictions are

almost random. The absence of confidence estimation in most MHC-I–peptide binding

predictors is certainly a disadvantage for tasks like epitope-based vaccine design where

highly reliable predictions are invaluable.

To make MHC-I–peptide binding prediction more interpretable, we developed two

novel confidence estimators, CONFINE and CONFIVE, for regression prediction. They

estimate the error of individual predictions, while requiring only a small computational

overhead. In contrast to a plain predicted binding affinity, both estimators determine a

confidence interval which contains the correct affinity with a certain probability. This

makes predictions more transparent for users since low confidence predictions can be

identified by very broad confidence intervals. We prove that our confidence estimators

can identify highly reliable predictions, which yield a considerably lower prediction

error than average. In an example application, we illustrate how epitopes for vaccines

can be automatically engineered using a genetic algorithm. By combining binding

affinity prediction with confidence estimation based on our estimator CONFINE, we

optimize the MHC-I-binding affinity by considering only confident predictions. The

presented interpretable regression approach represents an important step from plain,

non-informative predictions towards transparent MHC-I–peptide binding prediction,

which represents a valuable alternative to experimental approaches.

This thesis is structured into five chapters. Following this introduction, we pro-

vide the relevant background on machine learning, protein subcellular localization, and

immunology in the second chapter. In Chapter 3, we present YLoc, our interpretable

classification approach for protein subcellular localization. Further, we show how confi-

dence estimation increases the interpretability of MHC-I–peptide binding prediction in

8 1. Introduction

the fourth chapter. In Chapter 5, we conclude and discuss our findings on interpretable

machine learning approaches and show perspectives for further work in this area.

Chapter 2

Background

2.1 Machine Learning

Similar to humans, machine learning algorithms can generalize from their experience

and are, thus, able to predict properties of novel data. In this work, we focus on

supervised learning algorithms, which aim at learning a prediction function from data

with given input and output, called training data. In particular, we are interested how

the attributes of the input influence the output. The training dataset is a set of learning

examples, also called instances, which contain information on previous observations.

Each instance i can be encoded by a vector of k attributes xi = (xi1, . . . , xik)T , called

input vector or feature vector. The matrix of all feature vectors X = (x1, . . . , xn)T

is often called feature matrix. The provided features describe distinct properties of

the corresponding real world objects in a qualitative or quantitative manner. A feature

representation that describes the individual aspects of the different instances is essential

for most learning algorithms. In addition, each instance is assigned with at least one

label yi, which is the output we aim to predict. Vector Y = (y1, . . . yn)T is called

output vector.

To predict the label ŷ of a novel instance, machine learning algorithms usually first

have to be trained on the training data D = {(xi, yi)}. However, since the provided

data often covers only a small part of the possible input space, the underlying distri-

bution of the data is unknown. Hence, machine learning can only approximate the real

distribution by generalizing from the provided training data.

Depending on the values of the labels, we distinguish between classification and

10 2. Background

regression. In classification, labels can take only a limited number of values, often called

class labels or classes. Classification algorithms aim at assigning unlabeled instances to

the most probable class. In contrast, regression algorithms predict continuous values,

also called response values. A regression algorithm tries to find a functional relationship

between the attributes and the response values.

In the following sections, we introduce the basics of classification and regression

together with some important algorithms. Finally, we discuss the interpretability and

reliability of predictions made by machine learning models.

2.1.1 Classification

Classification is the problem of assigning instances to a fixed number of m ≥ 2 cat-

egories, i.e. classes. Every instance in the training data is assigned a class label

yi ∈ C = {C1, . . . , Cm}. If exactly two classes are given, we refer to the problem

as binary classification. Otherwise, it is called a multi-class classification problem.

Based on the training data, a classification algorithm aims at partitioning the input

space in a way that each separate regions contains only instances from the same class.

The different partitions will be later used to classify novel instances by assigning the

class label of their corresponding region in the input space. The boundaries of these

regions are called decision boundaries. Linear classification models can only learn

decision boundaries that are linear in the features. Given a high dimensional input

space, this amounts to finding the optimally separating hyperplane. However, often

a linear decision boundary is not sufficient to separate the input space into regions of

distinct classes. This can be the case if the feature representation is not discriminative

enough but also if a nonlinear combination of several features has influence on the

category of the instances. Nonlinear models are able to learn more complex decision

boundaries and, thus, are often more powerful than simple linear models.

In many real word applications, it is very difficult to find the optimal decision

boundary. To obtain at least a good approximation, we require an optimality criterion

which helps us to choose the best parameters for our classifier. Usually, the expected

value of a loss function, called risk, is used to measure the quality of a classifier. A

typical loss function is the 0-1 loss. It equals one if the real class label yi equals the

predicted label ŷi and zero otherwise. Minimizing the loss on the training data results

2.1 Machine Learning 11

in the lowest risk and determines the classifier that is optimal with respect to our

criterion.

A plethora of different classification algorithms are in use today. Their formal

history probably starts in 1958, when Rosenblatt introduced the perceptron algo-

rithm [149]. It finds an optimal separating hyperplane in the training data, if one exists.

Later, other linear classification models such as logistic regression [109] and linear dis-

criminant analysis [67] were introduced. Prominent examples for nonlinear classifica-

tion models are k-nearest neighbors (kNN) [42], artificial neural networks (ANNs) [87],

support vector machines (SVMs) [41], and näıve Bayes classifier [119]. In cases where

the data cannot be separated by linear decision boundaries, nonlinear models often

perform better than linear classification models. However, their predictions are often

even harder to interpret than those of their linear counterparts, which is discussed in

Section 2.1.4.

Support Vector Machines

Due to their good generalization performance, SVMs have become popular classification

algorithms. An SVM is a binary classification algorithm that tries to find a separating

hyperplane between two classes such that the margin between both classes is maximized.

It is based on the assumption that the best separating hyperplanes is the one with the

largest distance to instances of the different classes (see Figure 2.1). Since an SVM

aims at maximizing the margin between two classes, it is also called maximum margin

classifier.

The separating hyperplane is defined by all possible vectors x that satisfy

f(x) = 〈w, x〉+ b = 0, (2.1)

where w ∈ Rk is a weight vector and b ∈ R is the offset of our hyperplane. The predicted

class label ŷ is assigned with the result of the following decision function

sgn(f(x)). (2.2)

The margin of the hyperplane is defined by the closest distance of an instance to

the hyperplane. To obtain a normalized form of the problem, we require

∀(xi, yi) ∈ D : min
i
|f(xi)| = 1. (2.3)

12 2. Background

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

x1

x 2

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

x1

x 2

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

margin

Figure 2.1: The two-dimensional input space of a binary classification prob-
lem with one class as white points and a second class as black points. The
left-hand plot shows a set of separating hyperplanes (solid lines) which all perfectly
separate the instances in the input space. Based on the assumption that the best sep-
arating hyperplane is the one which induces the largest margin between both classes,
an SVM chooses the optimal hyperplane displayed as solid line in the right-hand plot.
The encircled instances on the borders of the margin (dashed gray lines) are called
support vectors.

Instances with |f(xi)| = 1 are called support vectors since they support the borders

of the margin. The resulting hyperplane is a canonical hyperplane with a margin of

1/||w||, where ||w|| is the Euclidean norm of vector w. Finding the hyperplane with the

largest margin is equivalent to maximizing the margin of the canonical hyperplane by

minimizing ||w||. Since minimizing 1
2 ||w||

2 yields the same solution, we can define the

margin maximization as a quadratic programming optimization problem as follows:

min
w∈Rk,b∈R

1
2
||w||2,

subject to yi(〈w, xi〉+ b) ≥ 1 ∀(xi, yi) ∈ D.
(2.4)

The above optimization problem can be solved only if the training data is perfectly

separable by a linear hyperplane. However, in many real world applications, classes

overlap in the input space making a perfect separation impossible. To overcome this

shortcoming, Cortes and Vapnik [41] introduced a soft margin SVM. In contrast to the

2.1 Machine Learning 13

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

x1

x 2

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

1

||w||

<w,x>+b=1

<w,x>+b=−1

ξi

ξi

ξi

Figure 2.2: The canonical hyperplane (solid line) of a soft-margin SVM.
The encircled instances are the corresponding support vectors. For instances on the
margin of the hyperplane (dashed gray lines), |〈w, x〉+ b| = 1 holds. Instances on the
wrong side of the margin are penalized by a slack variable ξi.

hard margin SVM presented above, it allows for a certain degree of imperfect separation.

Every instance is assigned a slack variable ξi ≥ 0, which measures the distance of an

instance lying on the wrong side of the separating hyperplane to the borders of the

margin (see Figure 2.2). To find a good trade-off between a large margin and small

loss, we define the following optimization problem

min
w∈Rk, b∈R, ξ∈R+n

0

1
2
||w||2+C

n∑
i=1

ξi,

subject to yi(〈w, xi〉+ b) ≥ 1− ξi ∀(xi, yi) ∈ D,

(2.5)

where C is the trade-off factor, called cost parameter. In addition to instances on the

borders of the margin, instances with a slack variable ≥ 0 are now also called support

14 2. Background

vectors.

We can extend linear SVMs by introducing a dual representation of the classification

problem. The separating hyperplane of an SVM can also be described as a linear

combination of support vectors:

w =
n∑
i=1

αiyixi, (2.6)

where αi ≥ 0 are Lagrange multipliers. Using this representation, maximizing the

margin results in the dual optimization problem:

max
n∑
i=1

αi −
1
2

n∑
i,j=1

αiαjyiyj〈xi, xj〉

subject to
n∑
i=1

αiyi = 0, αi ≥ 0 ∀i = 1, . . . , n.

(2.7)

See the appendix of Cortes and Vapnik [41] for a detailed derivation of the dual opti-

mization problem and the corresponding optimization problem for a soft-margin SVM.

Using the dual representation of w, the predicted class label ŷ is determined by the

following decision function:

f(x) = sgn

(
n∑
i=1

αi〈x, xi〉

)
. (2.8)

The dual representation of an SVM has an important advantage. Since the hyper-

plane is only defined by inner products 〈xi, xj〉, we can replace them by a so-called

kernel function or kernel

k(xi, xj) = 〈φ(xi), φ(xj)〉, (2.9)

where function φ maps the input space into a higher dimensional inner product space.

An explicit mapping function φ is not even necessary as long as the kernel maps the

data into an inner product space. This mapping is often referred to as the kernel trick.

Hence, if the data is not linearly separable, we can implicitly map the data into a

higher-dimensional space where a linearly separating hyperplane exist without actually

transforming the data. Consequently, the decision boundary in the original space is no

longer linear in the input variables. Usually, the actual decision boundary cannot be

obtained since the explicit mapping function is often unknown.

2.1 Machine Learning 15

There exist various kernel functions with different properties. Very popular kernels

are the polynomial kernel and the Radial Basis Function (RBF). Furthermore, various

kernels based on strings, graphs, and other input types have been developed to tackle

problems in computational biology [4, 162].

Although basic SVMs can only perform binary classification, they can also be ap-

plied to multi-class classification problems by combining multiple SVMs. In the one-

vs-one approach, each SVM discriminates between a pair of classes, whereas in the

one-vs-all approach, each SVM discriminates between one class and all other classes.

The final prediction is obtained by combining the individual prediction results using

majority vote. In addition, recent progress has shown that multi-class classification can

also be formulated as a single optimization problem [43].

An SVM is a very powerful learning tool that can be adapted to various learning

tasks by the use of kernels. However, SVMs often provide no explanation that answers

why a prediction was made. Usually it remains unknown how features contribute to a

particular outcome. Consequently, predictions made by SVMs are often not considered

as interpretable. In the following section, we introduce another nonlinear classification

algorithm that, in contrast to an SVM, can create interpretable predictions.

Näıve Bayes

Näıve Bayes is a very simple and robust probabilistic classification model based on

Bayes’ Theorem. Given a set of k features F = {F1, . . . , Fk} and a set of m class labels

y ∈ C = {C1, . . . , Cm}, we can apply Bayes’ theorem to the classification problem and

obtain

P (Cj |F) =
P (Cj)P (F |Cj)

P (F)
. (2.10)

Since the distribution of the data in the input space is unknown, P (F) can often

not be determined. In addition, P (F) is independent of the actual class Cj and has the

same influence on the probability of all classes. As a consequence, it is not considered

in practice.

Furthermore, näıve Bayes assumes features to be conditionally independent of each

other, leading to P (F |Cj) =
∏k
h=1 P (Fh|Cj). This drastic assumption makes the model

“naive” since, in practice, conditional independence is often not the case. However,

16 2. Background

it has been shown that näıve Bayes is still surprisingly effective in cases where the

independency assumption is violated [147].

As a consequence of the above assumptions, the probability estimation of näıve

Bayes simplifies to

P (Cj |F) ∝ P (Cj)
k∏

h=1

P (Fh|Cj). (2.11)

The final probabilities are obtained by normalizing the posteriori probability P (Cj |F)

such that the sum of all posteriori probabilities is one. Obviously, the class with the

largest posteriori probability Cmax = arg maxCj P (Cj |F) will be predicted as class label

ŷ.

For training a näıve Bayes classifier, we are required to estimate the underlying

class and feature distributions. This is usually done in a very time-efficient manner.

The prior probability of a class P (Cj) is estimated via maximum likelihood estimation

by simply assigning the relative frequency of the class in the training data. Often a

Laplace estimate is applied, which adds a pseudo instance to every class:

P (y = Cj) =
n(Cj) + 1
n+m

, (2.12)

where n(Cj) is the number of training examples in class Cj .

Estimating P (Fh|Cj) from the training data is often performed by discretizing the

data. For this purpose, every feature is divided into a set of p intervals {(ai, bi] | i ∈
{1, . . . , p}, bi = ai+1}, also called bins. If a feature value matches an interval x ∈ (ai, bi],

we approximate P (Fh = x|Cj) by P (ai < x ≤ bi|Cj). The probabilities of an interval

are estimated by the relative frequency of instances from class Cj within the interval.

To avoid zero probabilities, we use a Laplace estimate and approximate

P (Fh = x|Cj) = P (ai < x ≤ bi|Cj) =
ni(Cj) + 1
n(Cj) + p

, (2.13)

where ni(Cj) is the number of instances from class Cj within the i-th interval.

There exist various methods for feature discretization. Very simple discretization

methods do not consider the actual class distributions. For example, equal-width dis-

cretization creates intervals of equal size bi−ai, whereas equal-frequency discretization

chooses interval borders such that each bin contains an equal amount of training ex-

amples [196]. More involved discretization methods consider the different class affilia-

tions, e.g., by adjusting interval borders to decrease the entropy of class labels in each

2.1 Machine Learning 17

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

x

P
(F

=
x)

(−∞,−2] (−2,−1] (−1,0] (0,1] (1,2] (2,3] (3,∞)

bins

P
(a

i<
x

≤
b i

|C
j)

0.
0

0.
1

0.
2

0.
3

0.
4

Figure 2.3: Example discretization and probability estimation of näıve
Bayes. In the left-hand plot, an example distribution of a feature for two classes
is displayed by a solid line and a dashed line. The right-hand plot shows the corre-
sponding discretized distributions obtained by equal-width discretization in black and
gray, respectively.

bin [65]. See Figure 2.3 for an example discretization and the corresponding estimated

probabilities. An important aspect of using näıve Bayes with discrete features is its

interpretability. It is easy to understand why and how an individual feature contributed

to a prediction outcome. If an instance exhibits a certain feature value, it is obvious

whether the feature is typical for a class or not. For example in Figure 2.3, a feature

value of −1.5 is ten times more likely for an instance of the first class than for the

second class and is, thus, very typical for the first class.

Although näıve Bayes does not consider feature combinations, it is not a linear

model. Different values of a feature can have different impact on the prediction out-

come, which is not the case for a linear model. For example, in linear SVMs, features

are multiplied by a constant coefficient of the weight vector of the model and, thus,

have a constant influence on the prediction outcome. Thus, although näıve Bayes is a

very simple model, it can learn nonlinear dependencies between features and output.

Furthermore, due to its simplicity, the contributions of features can be easily assessed

by users.

18 2. Background

0 1 2 3 4 5

0
1

2
3

4
5

x

y

●

● ●

●

●

●

●

●

●

●

●

●

●

Figure 2.4: Example of a one-dimensional linear regression function. A
regression function (solid line) is fitted to some data points with the corresponding
residuals indicated by dashed gray lines.

2.1.2 Regression

Regression analysis aims at finding a regression function f(x) that provides the best

explanation of the relationship between a set of independent input variables x1, . . . , xk

and an output variable y ∈ R. This process is also often called fitting since we try fit

a regression function to the data points.

Similar to classification models, regression models can only approximate the true

underlying function. In an optimization process, we try to find the regression function

that fits the training data best. To assess the quality of a fit, we require a formalized

quality measure. Typically, the difference between the predicted response and the real

response ε̂ = yi− ŷi, also referred to as residuals or prediction errors, are used by a loss

function (see Figure 2.4). A simple loss function is the sum of squared errors (SSE):

n∑
i=1

(yi − ŷi)2. (2.14)

Finding the regression function that minimizes the SSE is also called least squares.

Around 1800, Gauss and Legendre were the first to perform a least squares regres-

sion analysis. Their work laid the basis for modern regression algorithms. Today, we

distinguish between linear regression algorithms and nonlinear regression algorithms.

2.1 Machine Learning 19

Linear regression algorithms can model a linear function of the input variables. Often

used linear algorithms are least squares regression, ridge regression [181], and principal

component regression [89]. In contrast, nonlinear regression algorithms can model also

functions that are a nonlinear combination of the input variables. Commonly used non-

linear regression approaches are locally weighted regression [2], ANNs [174], Gaussian

processes [126], and support vector regression (SVR) [41].

Linear Least Squares Regression

Linear regression is often used as a synonym for linear least squares regression. It

assumes an approximately linear relationship between the input variables xi1, . . . , xik
and the output variable yi such that

yi = β0 + β1xi1 + . . .+ βkxik + εi, (2.15)

where β is the parameter vector containing the coefficients of our linear function and

ε is the corresponding vector of residuals. If we define x′ = (1, x1, . . . , xn)T to be the

feature vector with a leading constant and X ′ to be the corresponding feature matrix,

we receive

y = X ′β + ε. (2.16)

For simplicity, let X denote X ′ in the following.

Finding the linear regression model that explains the data best is achieved by per-

forming ordinary least squares on the training data. Hence, we aim at finding a vector

β that minimizes

SSE = (y −Xβ)T (y −Xβ). (2.17)

The above optimization function has a unique global optimum if the features are in-

dependent. The optimal parameters of the linear regression models could in theory be

calculated by

β̂ = (XTX)−1XT y. (2.18)

The regression function used to predict the response value ŷ of an instance x can

be summarized as

f(x) = xT β̂. (2.19)

A key assumption of linear regression – and regression analysis in general – is the

independence of the features. If two features are perfectly collinear, the feature matrix

20 2. Background

X does not have full column rank, which makes β not identifiable. Also, if features

are highly correlated, parameters can take meaningless large values. To penalize large

parameter estimates, we introduce a regularization term, for example a Tikhonov reg-

ularizer [181]. In the resulting optimization problem, we aim at minimizing

(y −Xβ)T (y −Xβ) + λ||β||, (2.20)

where λ is the ridge penalty. This regression approach is also called ridge regression.

Its parameters can be determined by

β̂ = (XTX + λI)−1XT y, (2.21)

where I denotes the identity matrix.

Linear regression models show optimal results regarding the SSE if the relationship

between input and output data is almost linear. However, a linear model fails if non-

linear relationships occur in the dataset. Nevertheless, a significant advantage of linear

models is that the influence of the different features on the prediction can be easily

assessed.

Support Vector Regression

SVR is a generalization of the SVM [41] introduced above. It aims at finding a regression

function with small error that is sparse at the same time. Following the principle of

Occam’s razor [52], a sparse model with the same explanatory power is preferred over

a more complex model.

A linear SVR uses the same regression function as linear least squares regression

f(x) = 〈w, x〉+ b, (2.22)

where w ∈ Rk corresponds to (β1, . . . , βk) and b ∈ R equals β0, the offset.

To find the optimal regression function, we place an ε-insensitive band around the

regression function. Thus, absolute errors smaller than ε are not penalized, whereas

instances i with an absolute error larger than ε are penalized by slack variables ξi ∈ R

and ξ∗i ∈ R, respectively (see Figure 2.5). Our regression function is sparse if it depends

on very few features, leading to a small norm of vector w. Hence, in SVR, we minimize

2.1 Machine Learning 21

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

x

y

ε

ξi
*

ξi
*

ξi
*

ξi

ξi

Figure 2.5: A one-dimensional linear SVR with an ε-insensitive band. The
circled instances are the corresponding support vectors outside the ε-insensitive band.
They have an absolute error larger than ε and are penalized by slack variables ξi and
ξ∗i .

||w|| and the error at the same time. We have to solve the following optimization

problem to train an ε-SVR:

min
w∈Rk, b∈R, ξ∈R+n

0 , ξ∗∈R+n
0

1
2
||w||2 + C

n∑
i=1

(ξi + ξ∗i),

subject to (〈w, xi〉+ b)− yi ≤ ε+ ξi ∀(xi, yi) ∈ D

yi − (〈w, xi〉+ b) ≤ ε+ ξ∗i ∀(xi, yi) ∈ D,

(2.23)

where C is the cost parameter determining the trade-off between minimizing ||w|| and

the error.

Note that the value of ε has to be given in advance. Using a ν-SVR, the optimal

22 2. Background

value of ε is automatically determined during the optimization. See Schölkopf et al.

[153] for details.

Similar to SVMs, a regression function can also be described by a linear combination

of support vectors. In case of SVR, support vectors are instances that yield an absolute

error larger than ε. Considering only instances outside of the ε-insensitive band gives

us a sparse definition of our regression function:

f(x) =
n∑
i=1

(αi − α∗i)〈xi, x〉+ b, (2.24)

where α and α∗ are Lagrange multipliers. See Smola and Schölkopf [172] for the cor-

responding dual optimization problem. The sparseness of the solution in terms of ||w||
can now be described by the number of support vectors required to describe f(x).

The linear SVR introduced above is only able to model a regression function that is

linear in the features. However, by replacing the inner product 〈xi, xj〉 by a kernel func-

tion, SVR can also model nonlinear responses, see also Section 2.1.1. As a drawback,

the actual nonlinear regression function can often not be determined explicitly. Conse-

quently, predictions are not interpretable since the contribution of individual features

to the outcome cannot be determined.

2.1.3 Model Evaluation and Selection

The performance of machine learning models depends strongly on parameter settings

and the used feature set. To select the model that yields the highest prediction quality,

a model has to be evaluated with different parameter settings and different feature sets.

Moreover, the evaluation of a model is very important to get an unbiased impression

of its predictive power.

The prediction quality of a machine learning model can be estimated on a test

dataset with known labels, i.e. T = {(xi, yi)}. It is required that T is independent

of the training dataset D, that is T ∩ D = ∅. If both sets are not independent, we

would test whether the model memorizes the training data but not whether the model

is able to generalize. Hence, we might overestimate the performance of the model.

The performance of a model is estimated by comparing the predicted labels with the

real labels of the test dataset. For this, various statistical performance measures for

classification and regression exist.

2.1 Machine Learning 23

Classification Measures

The most common quality measure for classification is the accuracy (ACC), which

calculates the proportion of correctly classified instances. Although the accuracy is a

widely used measure, it has a major drawback. Given a dataset where the instances

are not uniformly distributed among classes, also called a skewed dataset, the accuracy

is biased towards the majority class.

An alternative classification measure is based on the precision and the recall of a

class Cj defined as

PREj =
TPj

TPj + FPj
and

RECj =
TPj

TPj + FNj
,

(2.25)

respectively. TPj , FPj , and FNj are the number of true positives, false positives, and

false negatives of class Cj , respectively. Precision is a measures of exactness and equals

the fraction of instances that were correctly assigned to a class. Recall is a measure of

completeness and equals the fraction of instances of a class that were correctly classified.

Precision and recall are complementary measures and can be combined in the F1 score

(F1) of a class Cj by calculating their harmonic mean

F1j = 2 · PREj · RECj

PREj + RECj
. (2.26)

The F1 score is a balanced measure of the classification accuracy of one particular class.

To obtain an overall measure, the F1 score is usually averaged over all classes.

Regression Measures

As introduced in Section 2.1.2, the sum of squared error (SSE) is often used as a

performance measure for regression. Since the SSE is not comparable across datasets,

the coefficient of determination, also called R2, has been introduced. It normalizes the

SSE by the sample variance

R2 = 1− SSE∑
i(yi − ȳ)2

, (2.27)

where ȳ is the average response value in the test dataset. The R2 is close to one if the

prediction error is very small.

24 2. Background

Another often used performance measure is the Pearson product-moment correla-

tion coefficient, often referred to as correlation coefficient. It is defined as the covariance

of the response vector and the predicted response vector divided by the standard devi-

ations of both vectors:

ρ =
cov(y, ŷ)
σyσŷ

. (2.28)

The correlation coefficient equals one if the predicted responses are perfectly correlated

with the real responses. On the other hand, random predictions yield a correlation

coefficient around zero.

Cross-Validation

In many real world scenarios, an independent test dataset is not available. As an al-

ternative, an evaluation technique called cross-validation can be employed. In k-fold

cross-validation, the training dataset is partitioned into k subsets of equal size. One

subset is retained as test set, while k − 1 subsets are used as training data. This eval-

uation procedure is repeated k times, called folds, resulting in k independent training

and test datasets. The model’s performance is then estimated by averaging the model’s

performance over all folds (see Figure 2.6).

A cross-validation on a training dataset of another cross-validation is called in-

ner cross-validation (see Figure 2.6). Nesting cross-validations is often performed to

evaluate a model selection, as explained in the following.

Model Selection

The performance of most machine learning models depends on its parameters and the

chosen feature set. Different parameter values and different features can lead to different

prediction behavior. Finding the optimal parameter values and the optimal feature set

is done by a model selection prior to the actual training of the machine learning model.

Model selection is based on a search strategy that returns a candidate model defined

by its parameter values and used feature set. Such a search strategy could range

from greedy search to an exhaustive search. To assess the prediction performance of a

candidate model, we perform a cross-validation on the training dataset. The quality of

the parameter setting and the selected feature set is assessed by averaging the prediction

2.1 Machine Learning 25

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

Fold 1

Fold 2

Fold 3

Fold 4

Cross-validation

1 2 3 4 5Outer fold

1 2 3Inner fold

1 2 3 4 5Fold 5

Nested Cross-validation

x 5

x 3

Figure 2.6: The concept of a five-fold cross-validation and five-times nested
three-fold cross-validation. Each block represents the given dataset and its five
subsets. The subset with the gray background is the corresponding test set of each
fold. In nested cross-validation, we perform an additional inner cross-validation on the
training dataset of the outer fold (white background). For this, the dataset is again
divided into k subsets including one test set. In this example, we choose to set k to
three, resulting in 5× 3 = 15 train-test scenarios in the inner cross-validation.

quality over all folds. The settings yielding the highest prediction quality are then used

for future predictions.

To evaluate the selected model, we have to apply it to a test dataset. However,

independent test data is often not available. To circumvent the lack of test data, we

can perform a nested cross-validation. Therefore, we run the above described model

selection based on repeated cross-validations on the training data of each outer fold.

The selected model is then used to predict the test set of the outer fold (see Figure 2.6).

Using this procedure, we do not evaluate one distinct model, but evaluate the quality

of a model obtained from model selection. Depending on the number of parameters

and number of initial features, model selection and its evaluation can be a very time-

consuming process.

2.1.4 Interpretability of Machine Learning Models

In the context of this work, interpretability describes whether a prediction can be

explained in understandable terms. Experiments and their outcomes are often inter-

26 2. Background

pretable. In most cases, it is known how the experiment works and why a particular

outcome is obtained. In addition, by performing experimental replicates or estimating

error propagation, we know whether a result can be trusted or not. Unfortunately,

machine learning models and their outputs are often not interpretable. Usually, they

are presented to the user as a “black box”, making it impossible to understand how

they work and how predictions are obtained. To understand, in detail, how a machine

learning model prediction was obtained, it is often a prerequisite to understand how a

model works, which requires basic or even advanced knowledge in statistics. Further-

more, the output of a machine learning model is a plain value, i.e. a class label or a

response value. Additional error information is often not provided. As a consequence,

computational predictions are often not trusted by biologists. Furthermore, the “black

box” character of many machine learning models prevents biologists from gaining a

deeper insight into the modeled problem.

Nevertheless, providing interpretable predictions using machine learning models is

not impossible. We require an interpretable machine learning model to answer two

important questions in an understandable fashion: Why did the model predict this

particular outcome? How reliable is this prediction?

To understand why a particular prediction was made, it is necessary to realize

how the individual features contributed to the outcome. In most cases, only a few

features have a strong impact on the prediction, while all other features are almost

irrelevant [110]. Thus, an overview of the most important features might be already

sufficient to understand why a particular prediction was obtained. This obviously

also requires a set of interpretable features that can be associated to a real world

interpretation [175]. Discovering features that are relevant for a particular prediction

might help to gain knowledge on the modeled biological problem. Hence, using a

selected subset of important and interpretable features can support the interpretability

of predictions. Moreover, understanding how certain features influence the output can

help users to understand why a particular prediction was made, see Figure 2.7 for an

example. A common scenario where the influence of individual features is of central

importance is inverse engineering [75]. In inverse engineering, users are interested in

modifications of the input instance that result in changes of the prediction outcome

and, in turn, in an improved real world object.

2.1 Machine Learning 27

1

1.5

2

2.5

3

3.5

4
x

2

0

0.5

1

0 1 2 3 4

x
1

Figure 2.7: The two-dimensional input space of a binary classification prob-
lem solved by a linear classifier. Instances from the two classes of the training
dataset are displayed as points in white or black. Two novel instances that we aim to
classify are depicted as triangles. The first instance (white triangle) can be easily clas-
sified as a member of the white class since its features are very typical for that class.
In contrast, the second instance (black triangle) exhibits a typical features for both
classes, x1 is large whereas x2 is considerably low. Using an interpretable classification
model it is possible to understand the differences of both predictions and manually
reveal contradictions. In addition, the location in the input space of the second test
instance is very untypical for the training dataset. In this part of the input space
the classifier has to extrapolate the class distributions and, hence, gives less reliable
predictions. Although the distance to the separating decision boundary (solid line)
is almost the same for both test instances, they cannot be predicted with the same
confidence. A confidence estimation would alert the user for unreliable predictions as
in the second case.

While nonlinear machine learning algorithms perform usually better than linear

ones, their predictions are often not interpretable [176]. The major reason lies in the

complexity of nonlinear methods. Since the output is a nonlinear combination of the

input, there is often no simple and easily understandable explanation for a particular

28 2. Background

prediction. Hence, one has to employ heuristics to get a rough estimation of the influ-

ence of the individual features [76, 188]. If support vector algorithms such as SVMs

and SVRs are used with high-dimensional kernels, it is usually impossible to deter-

mine an explicit output function. Although some special kernel allows to determine

the exact contributions of individual features [173], this is not possible for most other

high-dimensional kernels. As a consequence, we are required to find a trade-off between

performance and interpretability. Using linear or simple nonlinear machine learning al-

gorithms might result in a slight performance decrease but will considerably improve

the interpretability of predictions [75].

Another important aspect of interpretability is the reliability of individual predic-

tions. Computational predictions are often prone to errors. Although we estimated the

model’s prediction quality in a performance evaluation, we cannot assume this predic-

tion quality for all predictions [13]. Machine learning models yield different errors for

different inputs and do not perform equally well for all instances [73]. Knowing how

much confidence we can put into individual predictions can increase the applicability

of machine learning models. For this, the level of confidence has to be formalized into

an intuitive measure.

In classification, most algorithms provide a measure of uncertainty, for example

the distance to the separating hyperplane [129] of an SVM and the posteriori of näıve

Bayes. While the output values indicate a preference for a class, they do not indicate

how good this estimation is, see Figure 2.7 for an example. Hence, we have to make a

clear distinction between the output value and a confidence score, which estimates the

error of the output [17].

In regression, the output is often only a plain response value without additional

confidence information [12]. A first step towards confidence estimation has been done

in quantitative structure-activity relationship (QSAR) prediction. For example, prop-

erties of the input instance have been used to give a qualitative estimate whether the

model can be applied to this particular instance or not [96]. However, most confidence

estimation algorithms provide no quantitative measure of confidence or only provide

non-interpretable confidence scores that cannot be related to an actual error [12]. A

confidence interval as an estimation of a possible error would be a powerful addition to

plain predicted values. Developing confidence estimation methods for individual pre-

2.1 Machine Learning 29

dictions is an important step to make computational predictions more transparent and

understandable for users with a biological background.

30 2. Background

2.2 Subcellular Localization of Proteins

Eukaryotic cells are organized into membrane-enclosed subcellular compartments, also

called organelles (see Figure 2.8). Each organelle is a functional subunit of the cell. Its

function and its structure is closely related to the set of molecules it contains. Prob-

ably the most important macromolecules of organelles are proteins. They participate

in virtually every process within a cell by fulfilling various important functions. For

example, enzymes catalyze chemical reactions. Integral membrane proteins can act

as pumps or channels for small molecules. Other proteins are involved in signal cas-

cades and cell cycle control. In Section 2.3, we discuss proteins important for immune

response. Moreover, proteins can have structural or mechanical functions to support

movement and the stability of the cytoskeleton.

Peroxisome

rough ER

smooth ER

Ribosome

Nucleolus Nucleus

Golgi
apparatus

Mitochondrion

Chloroplast
Vacuole

Plasma Membrane

Cytoplasm

Figure 2.8: A plant cell with its most important organelles. The Figure has
been adapted from Wikimedia Commons [193, 194].

On one hand, every organelle requires a distinct set of proteins to function. On the

other hand, each protein needs to be located within the correct organelle to fulfill its

function. In fact, an incorrectly localized protein can lead to diseases. Only in the cor-

rect subcellular compartment, proteins can find the required environmental conditions

and their interaction partners. However, the subcellular compartments of an eukary-

otic cell are surrounded by intracellular membranes, which are mostly impermeable to

proteins. To transport proteins to their place of function, each organelle has to employ

import and export mechanisms.

2.2 Subcellular Localization of Proteins 31

In the following sections, we discuss how proteins are localized to their cellular

compartments. Further, we show how this process is mediated by sorting signals in the

protein.

2.2.1 Protein Transport

The presence of a nucleus distinguishes a complex eukaryotic cell from simple prokary-

otic cells. The nucleus contains most of the genetic information of a eukaryotic cell

in form of deoxyribonucleic acid (DNA) and is responsible for synthesis of messenger

ribonucleic acid (mRNA). Transcribed mRNA is transported to the surrounding cyto-

plasm where it is translated by ribosomes into a specific amino acid chain that later

folds into a protein. Some proteins are even directly synthesized into the endoplas-

mic reticulum (ER). Each protein type has distinct properties defined by its unique

sequence of amino acids. Each of these amino acids exhibits different physicochemical

properties such as charge, hydrophobicity, and size. To fulfill their particular functions,

proteins are subsequently transported to their target organelle.

We distinguish three different forms of protein transport (see Figure 2.9). The

first form is the gated transport, which can be found between the nucleus and the

cytoplasm. Nuclear pore complexes are selective gates that allow specific proteins to

pass the nuclear envelope. Smaller molecules can enter the nucleus by free diffusion.

The second type of transport is transmembrane transport. It is based on membrane-

embedded transporter proteins, also called translocators. To be transported, proteins

usually have to unfold to fit through the translocator. This form of transport can be

found between the cytoplasm and mitochondrion, chloroplast, peroxisome, and the ER.

The mitochondrion and the chloroplast, which is present only in plants, are responsible

for energy production of the cell. The peroxisome is mainly responsible for the break-

down of long-chain fatty acids by oxidative reactions. The ER produces most of the

cells lipid and is a major storage of Ca2+. In addition, the ER is responsible for the

synthesis and modification of both soluble and transmembrane proteins of the secretory

pathway.

Finally, vesicular transport by membrane-enclosed vesicles is the major transport

form along the secretory pathway. Vesicles are loaded with cargo by pinching off from

the membrane of the starting compartment. Transmembrane proteins are inserted into

32 2. Background

Cytoplasm

Nucleus

Mitochondrium

Chloroplast

Peroxisome

ER

Gated Transport

Transmembrane Transport

Vesicular Transport

Golgi Apparatus

Vesicular Transport

Extracellular

Space

Lysosome /

Vacuole

Plasma

Membrane

Vesicular Transport

Figure 2.9: The three different forms of protein transport.

the membrane of the vesicle, whereas soluble proteins are transported inside. When fus-

ing with the target organelle’s membrane, the vesicle discharges its cargo molecules into

the lumen of the organelle. The secretory pathway consist of a series of compartments

that are used by the cell to secrete proteins. From the ER, proteins can be transported

via vesicles to the Golgi apparatus, where they undergo covalent modification. The

Golgi apparatus is then responsible for further transport until the proteins are even-

tually secreted, giving the pathway its name. For example, proteins for intracellular

digestion, such as hydrolases, are transported via the endosome to the lysosome. In

cases of plants, these proteins are transported to the vacuole, which also functions as

a major storage. Furthermore, proteins in the Golgi apparatus can be transported

to the plasma membrane, which separates the cytoplasm from the extracellular space.

Proteins in the plasma membrane are often involved in cell signaling, for example as

part of the immune system. Finally, vesicles can undergo exocytosis, in which proteins

are secreted into the extracellular space.

2.2.2 Sorting Signals

All three forms of transport share one important property: they are guided by so-

called sorting signals. Sorting signals are recognized by receptor proteins or directly by

2.2 Subcellular Localization of Proteins 33

translocator proteins. Each sorting signal directs the protein to a particular compart-

ment of the cell. We distinguish between two types of sorting signals: Signal sequences

are continuous subsequences of the protein’s amino acid sequence. They are typically

between 15 and 60 residues long. Often signal sequences are located at the ends of the

protein, the N-terminus or the C-terminus. Terminal sequences are frequently cleaved

from the protein once the transport has been accomplished. In contrast, signal patches

are distinct three-dimensional structures at the surface of a protein. The residues in-

volved are not necessarily adjacent to each other in the sequence of the protein. This

makes them difficult to identify if no structural information is available. In most cases,

the exact amino acid sequence of sorting signals is not relevant for recognition. Instead,

sorting signals are defined by physicochemical properties of the amino acids such as hy-

drophobicity, charge, or size. See Figure 2.10 for an overview of the most important

sorting signals.

Transport Between Nucleus and Cytosol

Macromolecules such as proteins and RNA are imported and exported from the nucleus

via nuclear pore complexes. Before they can pass through pores of the nuclear envelope,

their sorting signals need to be recognized by nuclear import receptors or nuclear export

receptors.

Proteins imported to the nucleus contain a nuclear localization signal (NLS) in their

amino acid sequences. One can distinguish monpartite NLSs, which are short continu-

ous signal sequences, and bipartite NLSs, which are two signal sequences separated by

a spacer of about 10 residues. Both types of NLSs are rich in positively charged lysines

and arginines and can be located almost anywhere in the protein sequence. Although

various NLSs have been observed, it is difficult to create a universal consensus sequence

for NLSs.

To be targeted for export to the cytosol, proteins are required to have a nuclear

export signal (NES). A typical NES consists of four hydrophobic residues, often leucines,

each separated by 1–3 other amino acids.

In addition, there exist sorting signals that target proteins to sub-nuclear locations

like the nucleolus, nuclear lamina, chromatin, and the nucleoplasm [49].

34 2. Background

+ + + hydrophobic small ···N C

··· K-K-X-R ···N C

··· K-R-X-K ··· R-K-R ···N C

~10 residue spacer

20-30 residues

25-45 residues in amphiphatic helix

Signal peptide

Mono NLS

Bipartite NLS

··· L-X-X-X-L-X-X-L-XN CNES

cleavage site

···N C

25-45 residues in amphiphatic helix

hydroxylated, few negativ ···N C

20-120 residues

··· S-K-LN C

··· K-D-E-LN C

mTP

cTP

SKL-motif

ER-retention

signal

+ + + + + + + +

hydrophobic

Figure 2.10: An overview of the most important sorting signals. Amino acids
are shown in one letter code, while an X can be any amino acid. For the monopartite
NLS and the bipartite NLS, an explicit example sequence is given [51]. The NES
shown is a consensus motif obtained by La Cour et al. [106].

Transport into Mitochondria and Chloroplasts

Protein localization into mitochondria and chloroplasts is mediated by multi-protein

complexes. These integral membrane proteins are responsible for translocating proteins

from the cytosol into the lumen, the outer membrane, and the inner membrane of the

organelle. Transport is initiated by recognition of a mitochondrial targeting peptide

(mTP) or a chloroplast targeting peptide (cTP) by a receptor on the organelle’s surface.

Proteins have to unfold to be transported by the corresponding transporter proteins.

After transport, the targeting peptide is removed and the protein folds into its mature

form.

The mTP is a 25 to 45 amino acid long N-terminal signal sequence. It often forms

an amphiphatic α-helix containing positively charged amino acids on one side and un-

2.2 Subcellular Localization of Proteins 35

charged, hydrophobic residues on the other side. Moreover, negatively charged residues

are rare (see Figure 2.10).

cTPs are also N-terminal signal sequences containing only very few negatively

charged residues. However, they show, with 20 to 120 residues, a wider variation in

length and are rich in hydroxylated amino acids, in particular serines (see Figure 2.10).

Transport to sub-locations such as different membranes in case of mitochondria or

the thylakoid lumen in case of chloroplasts have also been studied [152, 165, 167].

Transport into Peroxisomes

The import of proteins into the peroxisome is still poorly understood. It is known

that more than 20 proteins, called peroxins, are responsible for translocation [22]. In

contrast to mitochondrial and chloroplast import, proteins do not necessarily have to

unfold for transportation. The best studied peroxisomal signal sequence consists of

three amino acids, Ser-Lys-Leu, located at the very C-terminus, also known as SKL

motif (see Figure 2.10). However, various other potential signal sequences have been

observed, mostly located at the C-terminus or the N-terminus of proteins [20].

Intracellular Vesicular Transport in the Secretory Pathway

The transport of proteins along the secretory pathway is performed via vesicular trans-

port. Translocation into the ER is guided by an N-terminal sorting sequence called

signal peptide or secretory pathway signal [190]. It is a very hydrophobic N-terminal

segment consisting of 20 to 30 amino acids with slightly positively charged residues

at the very N-terminus and mostly small and polar residues at the C-terminal part of

the signal peptide (see Figure 2.10). Proteins containing a signal peptide are usually

synthesized by ribosomes attached to the membrane of the rough ER. The synthe-

sized polypeptide is directly translated into the ER lumen if it contains a cleavage site

or stays in the ER membrane if it contains a stop-transfer signal anchor. Imported

proteins are usually automatically transported to the Golgi apparatus via transport

vesicles unless they contain some ER-retention signal. This signal sequence is located

at the very C-terminus and usually consists of four amino acid, KDEL in case of soluble

proteins and KKXX in case of membrane proteins, where X stands for any amino acid.

From the Golgi apparatus, proteins are transported to their final destination. In the

different parts of the Golgi apparatus, most proteins are covalently modified. Some of

36 2. Background

these modifications are sorting signals for further transport, while proteins that reside

in the Golgi apparatus are not modified. Special signal patches of lysosomal proteins

are recognized in the cis Golgi-network leading to phosphorylation of an attached sugar

molecule. The phosphorylated sugar is a sorting signal responsible for vesicular trans-

port to the lysosome [105]. It is assumed that a similar signal patch is responsible for

secreting proteins via exocytosis into the extracellular space [142]. Another sorting sig-

nal are very long hydrophobic transmembrane regions, which trigger transport to the

plasma membrane. Vesicles intended for the plasma membrane are rich in cholesterol

resulting in thicker membranes. Since proteins have to included in the vesicular mem-

brane for transportation, only transmembrane proteins that span a membrane with

around 20–25 amino acids can be transported to the plasma membrane.

Transport to Multiple Locations

It is assumed that more than one-third of all eukaryotic proteins are transported to

multiple compartments [118, 197]. For some specialized proteins, such as messenger

proteins, moving between compartments is essential for their function. There are var-

ious reasons why proteins localize to more than one organelle. For example, for some

proteins, multiple isoforms exist caused by multiple transcriptional or translational ini-

tiation sites [170]. In addition, ambiguous sorting signals can guide proteins to multiple

organelles. This is often the case in plants, because the cTP and the mTP show a sim-

ilar overall amino acid composition [120]. Moreover, weak sorting signal that exhibit a

reduced binding affinity to the corresponding receptor may cause a certain fraction of

proteins to remain in the source organelle. Finally, also multiple sorting signals in the

protein sequence can lead to multiple targeting of proteins [99, 150].

2.2.3 Determining Subcellular Localization

There exist various experimental approaches to determine the subcellular location of a

protein. A key technique is fluorescence microscopy, where fusion proteins of the pro-

tein of interest and a fluorescent protein are constructed. An fluorescence microscope is

then able to detect light emitted by the fluorescent fusion protein after excitation of the

fluorophor, making it possible to determine the location of the protein within the cell.

Other prominent experimental approaches are cell fractionation [29], immunolocaliza-

tion [169], and western blot [86]. Usually, experimental approaches are very accurate

2.2 Subcellular Localization of Proteins 37

in determining the location of a protein. However, they are very time-consuming and

can be expensive.

Predicting the subcellular location of a protein from its primary sequence is an

attractive alternative to labor-intensive experiments. Since this is a typical classification

problem, many machine learning approaches have been developed for this task.

38 2. Background

2.3 The Immune System

Immunity, the resistance to an infection or a disease, was first observed in ancient

Greece. More than 2,000 years later, in 1796, Edward Jenner was the first to develop a

vaccine. In the 1880s, Louis Pasteur extended Jenner’s findings by successfully devel-

oping vaccines against cholera in chicken, rabies, and anthrax based on weakened forms

of the corresponding pathogens. His discoveries revolutionized medicine and led to a

new research discipline, called immunology. Since then, immunology has made numer-

ous important advances that uncovered the principles of the immune system leading to

novel approaches in immunotherapy.

The immune system is a biological system that protects and defends an organism

against pathogenic microorganisms and tumor cells. It is not only able to recognize

invading pathogens such as bacteria, fungi, and viruses, but also to fight possible in-

fections by an immune response. Due to its ability to adapt, the immune system can

provide better protection against future infections. Recognition and response involve a

variety of specialized cells that act together in a complex network.

The immune system can be divided into the innate immune system and the adaptive

immune system. The following sections introduce today’s knowledge of the immune

system and its relationship to modern immunotherapy.

2.3.1 The Innate Immune System

The innate immune system is the less specific part of the immune system. It provides

natural resistance that is present from birth, called innate immunity. It comprises cells

and mechanisms that are able to detect molecules not specific to a particular pathogen

but molecules common to many pathogens.

Anatomic and physiological barriers, such as skin and pH, are the first frontier for

invading microorganisms. When pathogens succeed in entering an organism, specialized

immune cells are able to provide a second barrier of defense. For example, in a process

called phagocytosis, macrophages are able to recognize, engulf, and digest pathogens.

Further, chemical mediators such as cytokines can trigger an inflammatory response in

which vascular fluid is released in the affected region and other cells involved in an im-

mune response, such as neutrophils, blood monocytes, and macrophages, are attracted.

2.3 The Immune System 39

In a later step of the inflammatory response, also lymphocytes of the adaptive immune

system can be summoned.

2.3.2 The Adaptive Immune System

The adaptive immune system is the more specific component of the immune system.

In contrast to the innate immune system, it is not uniform in all members of a species.

Its highly specialized immune cells yield no broad reactivity, but are able to recognize,

eliminate, and remember specific pathogens. Due to its ability to create a huge diversity

in its recognition molecules, the adaptive immune system is able to recognize a large

number of different structures. At the same time it does not recognize structures of

the host as foreign. The other important feature of the adaptive immune system is its

ability to memorize previously seen foreign substances. The immunological memory

enables a stronger and faster immune response if the pathogen is encountered a second

time. The ability to adapt to invading pathogens makes the adaptive immune system

so valuable and effective.

An adaptive immune response involves two types of lymphocytes, B lymphocytes

(B cells) and T lymphocytes (T cells), which are both a special type of white blood cells

produced in the bone marrow. Lymphocytes are able to recognize foreign substances

and molecules, often refered to as antigens, by expressing a diverse set of antigen-

binding receptors on their cell surface.

B cells can directly recognize antigens in their native form. An immune response

mediated by B cells is called humoral immune response since immunity is provided

by secreted antibodies in the body fluids (Latin: humor). After activation, B cells

differentiate into plasma cells and memory B cells (see Figure 2.11).

In contrast, T cells can recognize immunogenic peptides bound to major histo-

compatibility (MHC) molecules by a so-called T-cell receptor (TCR). Depending on

the expression of co-receptor CD4 or co-receptor CD8 on their surface, we distinguish

between T helper (Th) cells and T cytotoxic (Tc) cells, respectively. Th cells can recog-

nize peptides bound to MHC class II (MHC-II) molecules and release effector molecules,

called cytokines, which can activate other immune cells. In contrast, Tc cells recognize

peptides bound to MHC class I (MHC-I–peptide) and can induce apoptosis of the in-

fected cell. The corresponding immune response is also called cellular immune response

since immunization is associated with cells (see Figure 2.11). If T cells are activated by

40 2. Background

binding an MHC–peptide complex, they rapidly duplicate and differentiate into effector

cells. After the infection, a certain number of effector T cells persist as memory cells,

supporting an effective response to future infections.

Humoral Immune Response Cellular Immune Response

B cell Pathogens Phagocytic cell Infected host cell

MHC-II
MHC-I

Apoptosis

CD4
CD8

Memory B cells

Plasma cell

Cytokines

T helper cell
T cytotoxic cell

Effector cells

Memory T cell

Memory T cell

Figure 2.11: An overview of an adaptive immune response. On the left,
a humoral immune response mediated by B cells is shown. On the right, a cellular
immune response mediated by T helper cells and cytotoxic T cells is shown. Both types
of lymphocytes, B cells and T cells, can exhibit immunological memory by retaining
memory cells.

The Major Histocompatibility Complex

The major histocompatibility complex (MHC) is a highly polymorphic gene cluster

that encodes for MHC molecules. In human, MHC molecules are also called human

leukocyte antigens (HLAs).

Although they share many structural features, they fulfill different functions. MHC

class I (MHC-I) molecules present peptides on the surface of almost all nucleated cells,

including peptides from pathogenic proteins. Peptides from degraded proteins can bind

2.3 The Immune System 41

to MHC-I molecules in the ER. From there, bound peptides are transported to the cell

surface. By displaying selected peptides on the cell surface, MHC-I molecules present

a “fingerprint” of the cells proteome to the immune system. In contrast, MHC-II

molecules can be found only on antigen-presenting cells. They bind protein fragments

derived from previously endocytosed material. Bound peptides are then transported to

the cell surface and presented to the immune system.

MHC-I and MHC-II molecules exhibit one major structural difference in their bind-

ing cleft. While the binding cleft of MHC-I molecules is closed at its ends, it is open in

case of MHC-II molecules. Consequently, MHC-I molecules can bind only peptides of

a well-defined length, usually 8 to 12 amino acids, whereas MHC-II molecules can also

bind peptide consisting of more than twenty amino acids [30]. See Figure 2.12 for an

example binding pocket of an MHC-I molecule.

Every type of MHC-I and MHC-II molecule can bind only a certain set of peptides.

Thus, each MHC molecule is only able to present a limited spectrum of pathogenic

peptides to the immune system. However, since every human expresses up to six

different MHC-I types and up to 12 different types of MHC-II molecules, the adaptive

immune system is able to recognize an enormous range of pathogenic structures.

The binding of peptides to MHC molecules can be analyzed with various exper-

imental approaches such as competitive binding assays, mass spectrometry, Edman

degradation, and X-ray crystallography [143]. In competitive binding assays, it is mea-

sured which concentration of a radiolabeled or fluorescence-labeled peptides is necessary

to inhibit the binding of a reference peptide. The actual binding affinity is often given

as the half-maximal inhibitory concentration (IC50), i.e. the concentration of peptide

required to displace half of the reference peptide. Note that the log(IC50) of a peptide

is proportional to its binding free energy ∆G. Peptides that bind to an MHC molecule

yield an IC50 value lower than 500 nM. Peptides yielding an IC50 value even lower

than 50 nM are often called strong binders. Experiments in a laboratory can help to

understand how peptides bind to MHC and which peptides have the ability to bind.

Unfortunately, a large part of the binding spectrum of MHC molecules is still unknown

since experimental approaches are expensive and time-consuming. As an attractive

alternative to experimental approaches, computational MHC–peptide binding predic-

tion methods have been introduced [54, 74, 116, 132, 187]. Current state-of-the-art

approaches are based on multi-layer neural networks [128] or kernel-based SVMs [95].

42 2. Background

Figure 2.12: The binding pocket of MHC-I HLA-A*02:01 molecules bound
to two different peptides. In the upper image, the MHC-I molecule is bound
to peptide RMFPNAPYL of the Wilms Tumor 1 transcription factor. The lower
image shows a MHC-I molecule bound to the heteroclitic peptide YMFPNAPYL, a
variant of the above peptide that exhibits a stronger binding affinity than the wild
type peptide [10]. This figure has been created with BALLView [121] and structural
data from Protein Data Bank (PDB) [5] entries 3MYJ and 3HPJ.

While yielding a good prediction performance, their predictions are not interpretable.

It is not possible to understand why a certain affinity was predicted and, most impor-

tantly, how reliable the obtained affinity is.

2.3.3 Epitope-Based Vaccines

The ability of the immune system to memorize encountered antigens provides the foun-

dation for developing vaccines. A traditional vaccine often contains a weakened or killed

form of the pathogen. Although the patient is not getting sick, the invader is recognized

and “remembered” by the immune system. This form of vaccination has often been

2.3 The Immune System 43

applied in medicine even before the details of the underlying immune mechanisms were

known.

To develop effective vaccines, more rational approaches such as epitope-based vac-

cines have attracted attention [159]. Epitopes are peptides that can trigger an immune

response. Vaccines based on epitopes consist of peptides from pathogens that are rec-

ognized and, consequently, remembered by the immune system. Injecting only epitopes

instead of the whole pathogen makes epitope-based vaccines safe, easy to produce, and

cheap. However, discovering potential epitopes for a given pathogen is difficult since it

requires a lot of experimental effort. Moreover, since every human expresses different

types of MHC-I and MHC-II molecules, we are even required to find a set of epitopes

that covers large parts of a population [185]. See Figure 2.13 for an overview of the

design process of an epitope-based vaccine.

Epitope

discovery
Antigens Candidate

epitopes

Epitope

selection

Selected

epitopes

Vaccine

assembly

Epitope-based

vaccine

Figure 2.13: Design process of an epitope-based vaccine. Given a set of anti-
gens, candidate epitopes are determined based on a given target population. Suitable
epitopes candidates, e.g. epitopes with a strong T-cell reactivity approximated by
their MHC–peptide affinity, are selected. In a final step, the epitope-based vaccine is
assembled by combining the selected epitopes into a polypeptide. This figure and its
caption were adapted from Toussaint and Kohlbacher [184].

To discover potential epitopes, computational MHC–peptide binding predictions

are often used as an approximation of T-cell reactivity [184]. Furthermore, in silico

methods can be used to find peptides that are similar to known epitopes but induce

a strong or even stronger immune response than the wild type epitope [6, 90]. These

peptides are called heteroclitic peptides. The idea of epitope engineering results from

the fact that a stronger immune response usually leads to a better immunization. The

drawback of using computational models for epitope discovery and epitope engineering

lies in the “black box” character of most MHC–peptide binding predictors. Prediction

methods cannot guide epitope engineering since it is not evident, which amino acid has

the strongest impact on the binding affinity nor whether a specific amino acids prevents

44 2. Background

the peptide from binding. Most importantly, the reliability of individual predictions

cannot be obtained. Since in silico prediction methods are prone to errors, we might

rely on low confidence predictions. In particular for important tasks like vaccine design,

considering only reliable predictions is vital.

Chapter 3

YLoc – An Interpretable

Classification Approach

Subcellular protein localization is a key process in most eukaryotic cells. The location

of a protein within the cell is highly correlated with its function and is, thus, often used

to draw conclusions about its cellular role, interaction partners, and function in biolog-

ical processes. During the last decade a huge number of novel proteins were discovered

in the context of large-scale sequencing projects. Unfortunately, for the majority of

these proteins their function and subcellular localization is unknown. Experimentally

determining the localization of a protein is expensive and time-consuming. Compu-

tational classification approaches that predict subcellular localization from the amino

acid sequence represent an attractive alternative to experimental methods. However,

their predictions are often not interpretable. This chapter shows how to overcome the

“black box” character of computational subcellular localization prediction. The clas-

sification approach we introduce, YLoc, is able to give interpretable predictions while

being as accurate as state-of-the-art methods. In addition, it rates the confidence of

individual predictions, making it a powerful tool for biologists. Parts of this chapter

have been previously published in Briesemeister et al. [17] and Briesemeister et al. [18].

3.1 Introduction

In 1992, Nakai and Kanehisa [125] laid the foundation for computational subcellular

localization prediction by introducing PSORT. It is a simple rule-based prediction ap-

46 3. YLoc – An Interpretable Classification Approach

proach that uses basic knowledge on protein sorting signals. At this time, the authors

could exploit only a small set of protein sequences annotated with their subcellular

location. Since then, more and more annotated sequence data has become available. In

addition, more complex classification models such as SVMs [8, 124, 139] and ANNs [62]

as well as combinations of multiple models [33, 37] have been applied.

Over the last few years, numerous prediction methods have been introduced. We

distinguish between sequence-based and annotation-based methods. Sequence-based

predictors make use of sequence-coded sorting signals [3, 9, 40, 62, 69, 138, 171], amino

acid composition information [28, 34, 45, 77, 91, 103, 124, 131, 139, 146, 195], or even

both type of information [72, 83, 88]. Annotation-based predictors use information

about functional domains and motifs [32, 157], protein-protein interaction [107, 166],

homologous proteins [71, 111], annotated Gene Ontology (GO) terms [80, 92, 108, 112],

Swiss-Prot keywords [113, 122], or textual information from PubMed abstracts [14, 70].

Since proteins with sufficiently similar protein sequences are usually located in the

same compartment [123], missing annotation information might also be transferred

from close homologues. Annotation-based predictors often show higher accuracies than

predictors based on sequence alone, however, they are less reliable for novel proteins

without known close homologues. Hybrid prediction approaches take advantage of

both types of information [8, 16, 33, 35, 37, 158]. Furthermore, there exist a range of

highly specialized prediction methods that can be applied only to a selected type of

protein [36, 140], expressed sequence tags [163], or predict only sub-locations of one

particular location [39]. See recent reviews for more details on subcellular localization

prediction [94, 145]. In Table 3.1, we give an overview of selected subcellular localization

predictors.

Although there is evidence that more than one third of all eukaryotic proteins are

transported to multiple compartments [197], multiple targeting of proteins has only

rarely been considered by prediction methods. As one of the first groups, Scott et al.

[157] introduced a method for multiple localization prediction based on about 500

multiple localized proteins. More recent predictors such as WoLF PSORT [88], Euk-

mPloc [37], Euk-mPloc2 [35], iLoc-Euk [38], ngLoc [103], and KnowPred [111] use

even up to 2,200 multiply targeted proteins as knowledge base for their predictions.

Prediction methods that are specialized on the dual targeting into particular organelles

3.1 Introduction 47

have been studied only sparsely [120]. Although there has been recent development on

multiple localization prediction, we believe that there is still room for improvement.

Method # locs model # features annot. homology multi.

MultiLoc2 11 > 10 SVMs > 1,000 yes yes no
WoLF PSORT 12 kNN ≈ 30 yes no yes
Euk-mPloc 22 > 300 kNNs > 1,000 no yes yes
KnowPred 10 PSI-BLAST > 1,000 no yes yes
BaCelLo 5 4 SVMs 280 no no no
LOCTREE 6 5 SVMs ≈ 100 no no no
PSORT 4 rules 80 yes no no
TargetP 4 ANN > 600 no no no

Table 3.1: Overview of selected subcellular localization prediction methods.
We show some basic properties of MultiLoc2 [8], WoLF PSORT [88], Euk-mPloc [37],
KnowPred [111], BaCelLo [139], LOCTREE [124], PSORT [125], and TargetP [62]. For
each subcellular localization predictor, we show the number of locations it predicts (#
locs), the classification model used, the number of features used (# features), whether
annotation information, such as domains or sorting signals, is used (annot.), whether
features contain information of possible homologous proteins (homology), and whether
multiple localization sites can be predicted (multi.). Note that for some predictors,
the exact number of features depends on the version of the predictor.

The prediction performance of subcellular localization predictors has significantly

improved over the years. Unfortunately, the machine learning models behind state-

of-the-art predictors are often very complex, making it difficult to understand why a

particular prediction was made. For example, MultiLoc2 consist of two layers, each

containing an ensemble of SVMs in combination with an RBF kernel [8]. It returns

a probability estimate for each location, but no additional information that could be

helpful to understand why this outcome was obtained. Another popular state-of-the-

art predictor is WoLF PSORT [88]. It uses a weighted kNN classification algorithm,

which predicts the subcellular location by transferring the location of proteins with a

similar feature encoding. Although this approach is not very complex, it is not obvious

how a biological property influenced the prediction. Instead of giving a biologically

meaningful explanation, predictions by WoLF PSORT are only supported by similar-

ity information. The widely used Euk-mPloc uses a complex combination of kNNs

48 3. YLoc – An Interpretable Classification Approach

and is, hence, only able to return a plain list of locations [37]. Another drawback of

current subcellular localization predictors is the absence of confidence estimates for in-

dividual predictions. Consequently, predictions cannot be verified with regard to their

significance and reliability.

The “black box” character of current state-of-the-art prediction methods has a

major impact on the credibility of in silico subcellular localization predictions. It is

not evident how a prediction was obtained, nor which biological property influenced the

algorithm towards this conclusion. Consequently, results are usually treated with great

caution. In addition, it is often not possible to gain a deeper knowledge of the actual

localization process. In particular when further experiments are planed, biologists could

greatly benefit from knowledge like the position of sorting signals within the protein.

Furthermore, a confidence estimation that helps to rate the reliability of individual

predictions is vital if users rely on a small error rate. If future experiments are very

expensive and time-consuming, biologists are interested in how much confidence they

can put in a prediction.

In this chapter, we present YLoc, an interpretable method for predicting the sub-

cellular localization of proteins. YLoc is based on the simple näıve Bayes classifier. It

combines various feature types for its predictions ranging from simple amino acid com-

position to annotation information like PROSITE domains and GO terms from close

homologues. Most importantly, it uses at most 30 of these features. The small num-

ber of features as well as the simple architecture guarantee interpretable predictions.

YLoc is able to elucidate why a prediction was made and what attributes of the protein

contributed most to this prediction. In addition, it returns confidence scores that rate

predictions as reliable or not. YLoc is available in three versions. The low-resolution

version, YLoc-LowRes, is specialized in distinguishing the localization of globular pro-

teins and predicts up to five locations. The high-resolution version, YLoc-HighRes,

covers 11 main eukaryotic subcellular locations. YLoc+ is the most general predictor.

It covers 11 main eukaryotic locations while integrating multiple localization sites. All

three predictors are available for animal, fungal, and plant proteins.

We compared YLoc against other state-of-the-art protein subcellular localization

predictors using two recently published independent datasets [8, 27]. The results con-

firm that YLoc, even though its architecture is very simple, performs comparable to

current state-of-the-art predictors. To show that YLoc can benefit from confidence

3.2 Methods 49

information, we tested it with five different confidence estimation approaches. Since

our newly introduced probabilistic confidence estimator performs best, we included it

into YLoc. We found that confidence estimation results in a considerable enrichment

of correct predictions. Hence, for instances predicted with high confidence, YLoc yields

an even better prediction performance than state-of-the-art predictors. For proteins

with multiple localizations, YLoc shows an outstanding accuracy compared to existing

methods. In an example study, we show that YLoc prediction outputs can be easily

interpreted making it possible to detect sorting signal relevant for protein localization.

Moreover, we illustrate that YLoc can be applied to explain localization changes of

proteins that are caused by mutations in the protein sequence.

3.2 Methods

3.2.1 Features

In the past, various types of feature encodings were studied in the context of subcellular

localization. They range from sequence information like annotated sorting signals to

knowledge inferred from homologous proteins. However, in many cases predictions

methods employ only one or two types of feature encodings. In our study, we included

numerous types of features and properties to benefit from their different characteristics

and information.

First, we make use of sequence-derived features. These include amino acid compo-

sition, normalized amino acid composition, and pseudo amino acid composition [31]. In

addition to counting simple amino acids, we use the compositions of certain amino acid

types such as hydrophobic, positively charged, negatively charged, aromatic, large, and

small. To encode for patterns in the protein sequence, we calculate sum and autocor-

relation of properties like hydrophobicity, charge, and volume of the amino acids based

on information from AAindex [101]. While the sum encodes for stretches of amino acids

with similar properties, the autocorrelation measures the correlation of a signal with

itself and can be used to identify periodic patterns. All features are calculated over the

whole sequence length, as well as for subsequences of various lengths in the N-terminus

(10 to 200), C-terminus (10 to 100), and middle part of the protein. In all cases, we

omit the first residue to avoid a bias caused by methionine. In addition, various known

50 3. YLoc – An Interpretable Classification Approach

sorting signals such as mono NLS, bipartite NLS, NES, peroxisomal targeting signal,

mTP, cTP, secretory pathways signal, and ER retention signal are considered.

Second, we make use of annotation-based features such as PROSITE patterns [93].

PROSITE patterns describe protein domains, families, as well as functional sites. A

PROSITE pattern feature is assigned a value of one if the pattern is found in the

protein sequence using PROSITE scan [47]. In addition, we create a feature for each

location that is described by PROSITE patterns that are typical for this location. For

example, DNA-binding domains are typical for nuclear proteins while certain receptors

can only be found in the plasma membrane. We define a PROSITE pattern to be

typical for a location if more than 80% of all proteins in the training dataset containing

this pattern are present in this particular location. By manual inspection we found

that a lower threshold results in false assignments while a larger threshold results in a

very small number of typical patterns. The resulting feature is assigned a value of one

if at least one typical PROSITE pattern of this location is present in the protein or

zero otherwise.

Finally, we use GO terms [80] from close homologues from Swiss-Prot release 42.0.

To find only proteins with well-conserved homologous regions, we require a homologous

proteins to align with the query sequence with a very low E-value (≤ 10−10) according

to BLAST [1]. To ensure an even better match quality, we require a sequence identity of

more than 30% for the aligned region. Using these alignment conditions, we are able to

find proteins that very likely share a domain with the query protein. Since homologous

proteins are often located within the same organelle, we can transfer the corresponding

GO term information [123]. A GO term feature equals one if at least one homologous

protein is annotated with that GO term. In addition, we grouped GO terms that are

typical for a particular location. In this context, we define a GO term to be typical

for a location if more than 95% of all proteins containing this GO term are located

there. We found this threshold by manual inspection. We observed that using lower

thresholds, GO terms are likely to be assigned as typical for a location even though they

are not. This misclassification is likely due to the fact that GO terms naturally contain

more noise since they were inferred from sequences which do not necessarily have to

be orthologues, or even homologues. An additional feature indicates the location for

which the most typical GO terms could be transferred.

3.2 Methods 51

The overall number of features considered for subsequent feature selection is about

30,000. Before selecting the features for our final YLoc predictor, we use the entropy-

based supervised discretization of Fayyad and Irani [65] to discretize our features.

3.2.2 Feature Selection

The created features encode for a whole range of different characteristics that are impor-

tant for subcellular protein localization. However, due to the large number of features,

some of that information is likely to be redundant. Because of the limited number of

learning examples available, learning with a small number of features often leads to a

better generalization of machine learning algorithms (Occam’s razor). Moreover, creat-

ing an understandable and manually readable prediction output based on all features is

only possible if the number of features is rather small. On the other hand, the number

of features should not be too small. If the selected features are not sufficient to cover

all aspects of the localization process, the resulting classification model might show a

reduced prediction performance. Hence, we aim at selecting as few features as possible

without loosing the generalization ability of our model.

To find the set of the most important features, we started a large-scale feature se-

lection using a correlation-based feature selection (CFS) approach [79]. This approach

favors a feature set that shows high correlation with the class variable but low redun-

dancy among the features in the set. In CFS, the quality of a feature subset I of size

k is defined by ∑
i∈I

ri√
k +

∑
i,j∈I

rij

, (3.1)

where ri is the correlation between feature i and the class variable, and rij is the

correlation between two features i, j in the subset. Since we discretized our features,

we cannot make use of Pearson’s correlation coefficient. Instead, we use the information

gain [141], defined by

gain = H(Y)−H(Y |X), (3.2)

where H(Y) equals the entropy of variable Y and H(Y |X) is the entropy of variable

Y after observing variable X. The information gain expresses how much additional

information about a variable Y is provided by variable X [78]. Since we require a

52 3. YLoc – An Interpretable Classification Approach

symmetric measure, we have to normalize the information gain by the entropy of both

features, giving us the symmetric uncertainty coefficient:

2× gain
H(Y) +H(X)

. (3.3)

The symmetric uncertainty coefficient is used to calculate the correlation of two discrete

features rij or a discrete feature and the class variable ri. Note that large feature subsets

can be avoided by defining the subset quality to be zero if the feature set size k exceeds

some threshold.

To select a feature subset, we use a backward best-first search strategy, which

starts with the full feature set and greedily deletes the feature that results in the best

subset quality according to CFS. Although a forward search is faster than our backward

approach, we found a backward search to result in a feature set of higher quality (data

not shown). The search continually caches the best 100 subsets and allows for 50

backtracking steps. CFS as well as the search algorithm are implemented in the Weka

machine learning library [192].

Since we could not observe a significant improvement in a nested cross-validation

of our method for more than 30 features (data not shown), we decided that 30 fea-

tures are sufficient for our predictors. Due to the reduced number of locations in the

low-resolution models, even 20 features are sufficient for YLoc-LowRes. The average

running time of a feature selection on datasets with about 6,000 data points and 30,000

initial features was about two hours.

3.2.3 Näıve Bayes Classification

YLoc uses näıve Bayes, a probabilistic classification algorithm, introduced in Sec-

tion 2.1.1. Since the näıve Bayes approach assumes features to be independent, it

allows a straightforward decomposition of a prediction into the individual contribu-

tions of each feature.

Given a set of features F = {F1, . . . , Fk}, a set of locations L = {L1, . . . , Lm}, and

a set of corresponding classes C = {CL1 , . . . , CLm}, näıve Bayes estimates the posterior

probability by:

P (CLj |F) ∝ P (CLj)
k∏

h=1

P (Fh|CLj). (3.4)

3.2 Methods 53

The class priors and the feature probability distributions are estimated using the

training data after discretization. The final probabilities are obtained by normalizing

the posterior probabilities such that the sum of all posterior probabilities is one.

Since features are treated independently, we can easily assess the influence of

a single feature Fh on the prediction. The probability of observing feature Fh

ranges from minj P (Fh|Cj) to maxj P (Fh|Cj) over the given classes Cj . Let Cmax =

arg maxCj P (Cj |F) be the predicted class. We define

log
P (Fh|Cmax)

minj P (Fh|Cj)
and log

P (Fh|Cmax)
maxj P (Fh|Cj)

(3.5)

to be the support and the opposition score, respectively. A large support score orig-

inates from a high probability for the observed feature value in the predicted class,

compared to the class where this feature value is least likely. Thus, a large support

score indicates that the observed feature value is very typical for the predicted class. In

contrast, the opposition score is always a negative value or zero. If the observed feature

value is more typical for some other class than the predicted one, the opposition score

is negative. Hence, a prediction based on the feature alone would lead to a different

decision than using all features. On the other hand, if a feature value is most likely to

be observed the predicted class, the opposition score is zero, while the support score is

positive. We merge both values in the discrimination score. If the support for Cmax

is stronger than the opposition, that is the sum of the scores is larger than zero, the

discrimination score equals the support score and vice versa. We use the absolute value

of the discrimination score to order the features according to their influence on the

prediction.

To predict multiple localizations with YLoc+, we transform our multi-label data

into single-label data. For proteins labeled with multiple locations L1 and L2, we

create a new class, CL1∧L2 . When inferring predictions, the probability output of the

näıve Bayes classifier is transformed as follows:

P (Lj |F) =
∑

{Cx|Cx∈C∧Lj∈α(Cx)}

P (Cx|F)
1

|α(Cx)|
, (3.6)

where α(Cx) is the set of labels of class Cx. This transformation is based on the as-

sumption that proteins present in multiple locations are equally distributed between

54 3. YLoc – An Interpretable Classification Approach

the compartments. Obviously, this does not hold for all proteins with multiple lo-

calizations. However, given only qualitative data, this is the best assumption we can

make. In order to report only relevant locations, YLoc employs a simple heuristic. Af-

ter sorting the locations by probability, YLoc reports the locations with a probability

better than chance, that is P (Lj |F) > 1/|L|, where L is the set of locations. To report

only relevant locations with reasonable probability, YLoc stops reporting locations if

a location is less than half as probable as the preceding location. Transforming the

probabilities as above yields the advantage that label combinations not present in the

training data can also be predicted.

3.2.4 Confidence Estimators

Providing users with an estimate of how reliable a prediction is can substantially im-

prove the interpretability of YLoc’s predictions. We tested YLoc with different confi-

dence estimators, which rate the confidence in a prediction by a numerical value, called

confidence score cs. Thus, predictions with a large confidence score are required to be

more likely to be correct than predictions with a low confidence score. To obtain an

interpretable score, we normalize scores to a range between zero and one. In the follow-

ing, we call such a score normalized confidence score ncs. Confidence estimators can be

distinguished between model-based confidence estimators and dataset-based confidence

estimators. The former use distinct properties of the classification model to estimate

the confidence in a prediction, whereas dataset-based estimators make use of the struc-

ture of the underlying training data. In the following, we present existing dataset-based

confidence estimators used in this work and, further, introduce two novel confidence

estimators.

Existing Dataset-based Estimation Approaches

Dataset-based confidence estimators do not rely on a particular model and, hence, are

more universal. As a drawback, model-independent estimators cannot profit from the

insights of a model and might be less effective for estimating confidences. In Chap-

ter 4, we show how dataset-based confidence estimators can be applied with differ-

ent kinds of regression models. Dataset-based confidence estimation approaches have

been previously introduced as applicability domain (AD) estimators in the context of

3.2 Methods 55

QSAR [50, 60, 164]. They usually assume that a model can give more reliable predic-

tions if a novel instances is located in a part of the input space that is also populated in

the training set. Hence, if many similar instances exist in the training data, we assume

that we can put more confidence in a particular prediction. In the following, we present

three often applied AD domain estimators.

A popular estimator is based on the number of nearest neighbors [164]:

csNoNN(x) =
1

nmax(α)
|{(xi, yi)|(xi, yi) ∈ D, d(xi, x) ≤ α}|, (3.7)

where α is a distance threshold and nmax(α) defines the maximum number of neighbors

within a distance of α in the training dataset. If x has many neighbors in the input

space, we assume a better generalization power of the model for this subspace resulting

in a larger confidence score.

Another previously introduced AD estimator is based on the average Euclidean

distance of a novel instance x to instances in the training dataset [60, 96]:

csAvgDist(x) = 1− 1
dmax

∑
(xi,yi)∈D d(xi, x)

|D|
, (3.8)

where d is the Euclidean distance function and dmax is the maximum distance of in-

stances within the training dataset. If a novel instance is so distant to the training set

that we obtain a negative score, we assign a confidence score of zero.

Dimitrov et al. [50] introduced a confidence estimator based on the number of

misclassified instances in the neighborhood of a novel instance. It assumes that a high

accuracy in the neighborhood of a novel instance results in a highly reliable prediction.

Hence, the accuracy confidence score csAcc is calculated as

csAcc(x) =
1
D′
|{(xi, yi)|(xi, yi) ∈ D′, ŷi = yi}|, (3.9)

where D′ is the set of the δ nearest neighbors of x and vector ŷ contains the corre-

sponding predicted labels. The latter can be obtained by performing a cross-validation

on the training data. Scores are normalized to [0, 1] by definition.

A Novel Dataset-based Estimation Approaches

We introduce a novel dataset-based confidence estimator based on the entropy of labels

in the neighborhood of a novel instance. We assume that ambiguous regions in the

56 3. YLoc – An Interpretable Classification Approach

input space exhibit a high label entropy and are harder to predict, resulting in a lower

prediction accuracy. The label entropy score csLE in the neighborhood of an instance

is calculated as

csLE(x) = 1 +
m∑
j

(pD′(Cj) + ε) logm (pD′(Cj) + ε) , (3.10)

where pD′(Cj) is the fraction of instances of class Cj in set D′, which contains the δ

nearest neighbors of x. By using a logarithm to base m, the number of classes, we

receive normalized confidence scores between zero and one. To avoid zero probabilities,

we add a small pseudo count of ε = 0.001.

In Chapter 4, we generalize confidence estimation based on label entropy and neigh-

borhood accuracy to regression problems, leading to confidence estimators CONFIVE

and CONFINE.

A Novel Probabilistic Confidence Estimator

To account for the characteristics of the näıve Bayes classifier, we introduce a novel

model-based confidence estimation approach. It uses the probability estimates of the

underlying näıve Bayes classifier to measure the reliability of an individual prediction.

The estimate is based on the fact that proteins can be predicted more reliably if the

corresponding feature vector is typical for the predicted classes and less typical for any

other class. Given the feature vector F of a novel protein, we calculate P (F |
⋃
Cj∈C Cj),

the probability of observing F given our training dataset, by

P (F |
⋃
Cj∈C

Cj) = P (
⋃
Cj∈C

Cj)
k∏

h=1

m∑
j=1

P (Cj)P (Fh|Cj), (3.11)

where P (
⋃
Cj∈C Cj) equals one. On the other hand, we calculate P (F |Cmax), the

probability of F given the most probable class Cmax. Since F should be more typical

for the predicted class Cmax than for the set of all proteins, P (F |Cmax) should be greater

than P (F |
⋃
Cj∈C Cj), the baseline probability of observing F . For our final confidence

score, we calculate the fraction of both probabilities and additionally weight classes

containing few training examples as less reliable by multiplying the class probability

P (Cmax). The final confidence score is calculated as follows:

csNBconf(F) =
P (Cmax)P (F |Cmax)

P (Cmax)P (F |Cmax) + P (F |
⋃
Cj∈C Cj)

. (3.12)

3.2 Methods 57

Since our probabilistic score lies between zero and one, we are not required to normalize

it. A confidence score close to one indicates a reliable prediction, whereas a score close

to zero indicates that we are less confident about the given prediction. Note that if we

assume P (F |
⋃
Cj∈C Cj) = P (F), the presented confidence score would be a monotone

transformation of P (Cmax|F), given by NBconf = 1/(1 + 1
P (Cmax|F)).

3.2.5 Creating Interpretable Output

To provide an interpretable output, YLoc creates a short reasoning in natural language

that explains why a prediction was made. For this purpose, we first have to create a

description for every YLoc feature and, secondly, have to assemble these descriptions

into natural language.

A prediction is only interpretable for a user, if the individual features are inter-

pretable too. A user should be able to relate a feature to a real world biological

property. However, for some features, a biological explanation is not always obvious.

For example, a high autocorrelation of hydrophobicity within the first 20 amino acids

is not obviously an important characteristic in subcellular localization. However, we

find that the sum of hydrophobicity within the first 20 amino acids, which encodes for

long hydrophobic stretches in the N-terminus, is highly correlated with this feature.

A long hydrophobic stretch in the N-terminus is in turn an important property of the

secretory pathway signal. In similar cases, where a biological explanation is not obvious

at first sight, we transfer the biological meaning from a strongly correlated feature. By

doing so, we can manually describe all selected YLoc features in biological terms using

natural language.

To be able to create a sentence that contains information about the actual feature

value, we manually describe every discretization interval of the feature with an adjec-

tive. These descriptions are then linked to the actual feature descriptions. For example,

a secretory pathway signal can be absent, weak, medium, or strong, depending on the

underlying hydrophobicity. Obviously such descriptions are always a little arbitrary

since individuals have different understandings of words like strong or weak. However,

they are a good indicator of the underlying property. Such descriptions might be less

detailed but are far easier to interpret by a user.

YLoc uses the manually provided description of the two most important features

to create a short reason for the users. In this context, the two most important features

58 3. YLoc – An Interpretable Classification Approach

are the two features with the largest absolute discrimination score. In addition, the

feature probability are used to underline the argumentation of YLoc. For example, it

not only provides the user with the fact that the protein contains a strong secretory

pathway signal, but also informs the user that 69% of the proteins from the secretory

pathway share this property while almost no protein from the nucleus and cytoplasm

show this attribute. Using this strategy YLoc can provide an interpretable reasoning

that helps a user to understand the prediction output.

3.2.6 Datasets

3.2.6.1 BaCelLo Dataset

For training the YLoc-LowRes predictor, we used the BaCelLo training dataset [139].

The homology reduced dataset extracted from Swiss-Prot release 48.0 contains 2,597

animal, 1,198 fungal, and 491 plant proteins, resulting in three versions of YLoc-LowRes

(see Table D.1 in the appendix for more details). Only globular proteins were considered

in the annotation. Animal and fungal proteins originate from four locations: nucleus

(nu), cytoplasm (cy), mitochondrion (mi), and the secretory pathway (SP). Plant pro-

teins originate from five locations: nu, cy, mi, SP, and chloroplast (ch). The BaCelLo

independent dataset [27] (IDS) contains proteins added to Swiss-Prot between release

49.0 and 54.0 with at most 30% sequence identity to proteins in the BaCelLo dataset.

Moreover, proteins from the same location that align with an E-value lower than 10−3

according to BLAST [1] are clustered, resulting in 432 animal, 418 fungi, and 132 plant

groups [27].

3.2.6.2 Höglund Dataset

For training YLoc-HighRes and YLoc+, we used the Höglund training dataset [83]. The

5,959 eukaryotic proteins extracted from Swiss-Prot release 42.0 cover 11 locations: nu,

cy, mi, ch, endoplasmic reticulum (er), Golgi apparatus (go), peroxisome (pe), plasma

membrane (pm), extracellular space (ex), lysosome (ly), and vacuole (va) (see Table D.2

in the appendix for more details). For the Höglund dataset, Blum et al. [8] created an

independent dataset (IDS) with proteins from Swiss-Prot release 55.3, which covers the

locations er, go, pe, pm, ex, ly, and va. Proteins that share more than 30% sequence

identity with proteins from the original Höglund dataset were excluded. In this study,

3.2 Methods 59

we only make use of the animal Höglund IDS, since it contains sufficient amount of

proteins (198). By clustering proteins from the same location with more than 40%

sequence identity, 158 groups of animal proteins were obtained.

3.2.6.3 DBMLoc Dataset

In addition to proteins from the Höglund dataset, YLoc+ was trained using proteins

from the DBMLoc database [197]. The DBMLoc database contains more than 10,000

proteins with multiple subcellular localization, which were experimentally determined

or extracted from the literature. We extracted proteins which share less than 80%

sequence similarity from DBMLoc. Most proteins in DBMLoc are present in two sub-

cellular locations. Still, there is a small portion of proteins with three or more local-

izations. However, for training we selected only multiple locations with more than 100

representative proteins: cy and nu (cy nu), ex and pm (ex pm), cy and pm (cy pm),

cy and mi (cy mi), nu and mit (nu mi), er and ex (er ex), and ex and nu (ex nu). Due

to the limited number of training examples for some localizations, we could not use a

lower sequence similarity threshold. More details concerning the 3,054 proteins with

multiple localization can be found in Table D.3 in the appendix.

3.2.7 Training and Evaluation

We implemented YLoc using Python, the machine learning library Weka [192],

BLAST [1], and PROSITE scan [47]. Each YLoc predictor is available as an animal,

fungal, and plant version.

To evaluate the prediction performance, we use the overall accuracy (ACC) and the

F1-score averaged over all classes (F1). See Section 2.1.3 for a detailed introduction

into both measures. Of the two measures, F1 is better suited than the ACC as an

evaluation measure. Especially for unbalanced datasets, the ACC biases towards an

overrepresented class. Thus, if all instances are predicted to belong to this class, the

ACC is still rather high.

The ACC and F1 can be easily generalized using measures from multi-label classi-

fication [186]. Let T = (xi, yi) denote a test dataset with yi being the set of correct

labels of an instance i. On the other hand, let ŷi denote the set of predicted labels.

60 3. YLoc – An Interpretable Classification Approach

Then we can define the multi-label ACC as

ACC =
∑
{i|i∈T}

|yi ∩ ŷi|
|yi ∪ ŷi|

(3.13)

and the REC and PRE for label j as follows:

RECj =
∑

{i|i∈T∧j∈yi}

|yi ∩ ŷi|
|yi|

(3.14)

PREj =
∑

{i|i∈T∧j∈yi}

|yi ∩ ŷi|
|ŷi|

. (3.15)

Using multi-label measures, we can rate predictions as partially correct if only a

portion of the correct labels were recovered or more labels than the correct ones were

predicted.

To visualize the estimation quality of a confidence estimator, we plot a so-called

confidence curve. It is based on the idea that we iteratively remove the prediction with

the lowest normalized confidence score from our set of test predictions. Consequently,

we would expect to observe better prediction qualities for the remaining set of high

confidence predictions. Let Q(i) be the quality value of the i predictions with the

highest normalized confidence score, where Q can be any of the above quality measures,

e.g. ACC, REC, PRE, or F1. Further, let ncs(i) be the minimum normalized confidence

score of the i predictions with the highest normalized confidence score. If we plot Q(i)

against ncs(i), we expect Q(i) to increase with increasing ncs(i). On the other hand,

if we plot Q(i) against i, we would expect that Q(i) is decreasing with increasing

i (see Figure 3.1 for an example). An increase and decrease of the former and latter

curve, respectively, implies an increasing prediction quality for predictions with a larger

confidence score, which is a desirable behavior for a confidence estimator.

We measure the quality of confidence estimates by calculating the normalized area

under the confidence curve (AUCC) as

AUCCinst,Q =
∑|T |

i=1Q(i)−Q(|T |)
Q(|T |) · |T |

,

AUCCncs,Q =
∑|T |

i=2(Q(i)−Q(|T |))/(ncs(i)− ncs(i− 1))
Q(|T |) · (ncs(1)− ncs(|T |))

,

(3.16)

where T is the corresponding test dataset and Q(|T |) is the baseline performance on

the whole test set. The AUCC yields a positive value if correctly classified instances are

3.2 Methods 61

0.0 0.2 0.4 0.6 0.8 1.0

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

AUC= 0.23

normalized confidence score ncs(i)

F1

100 200 300 400 500

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

AUC= 0.27

number of predictions i

F1

Figure 3.1: Example confidence curves. The left-hand confidence curve shows
the F1 for each subset of predictions with a minimum normalized confidence score
ncs(i). The right-hand confidence curve shows the F1 for the i predictions with the
highest confidence score. In this example, subsets of predictions with larger confidences
score yield an increased accuracy. Both curves exhibit an AUCC of around 0.25 since
the area under the curves covers approximately one fourth of the plot area.

enriched with high normalized confidence scores (see Figure 3.1). In contrast, an AUCC

around zero implies that confidence scores were randomly assigned to predictions.

To estimate the optimal parameters of the nearest neighbor, accuracy, and label

entropy confidence estimator, we performed a five-fold cross-validation on the training

dataset and chose the parameters resulting in the highest average AUCC. The AUCC

can be calculated for any prediction quality measure. However, calculating the AUCC

based on F1 can create artefacts in the confidence curve due to very small classes.

To reduce the influence of small classes, we exclude classes containing less than five

instances from the calculation of the F1. While the F1 is a good measure for comparison,

we found the AUCC to be more stable when used together with the ACC and, thus,

optimized the average AUCCinst,ACC in the above mentioned cross-validation.

62 3. YLoc – An Interpretable Classification Approach

3.3 Results and Discussion

3.3.1 Cross-Validation Evaluation

We evaluated all YLoc predictors in a five-fold nested cross-validation evaluation scheme

on the training datasets. Since MultiLoc2 was trained on the same datasets, we com-

pared both methods. Surprisingly, we did not observe a considerable difference between

the predictors regarding prediction performance (see Table 3.2). All predictors show a

very high ACC and F1. The major differences between the methods lie in their com-

plexity and interpretability. MultiLoc2 is based on a complex SVM-ensemble classifier

and uses more than 1,000 features, whereas YLoc is based on a very simple classification

model. Due to its complexity, predictions made by MultiLoc2 are not interpretable. In

contrast, using YLoc, it is obvious how biological features contributed to the outcome.

Version MultiLoc2-LowRes YLoc-LowRes

Animals 0.82 (0.84) 0.85 (0.87)
Fungi 0.79 (0.78) 0.77 (0.79)
Plants 0.79 (0.80) 0.78 (0.80)

Version MultiLoc2-HighRes YLoc-HighRes

Animals 0.84 (0.89) 0.85 (0.91)
Fungi 0.84 (0.89) 0.84 (0.91)
Plants 0.84 (0.89) 0.83 (0.90)

Table 3.2: Cross-validation performance comparison. Five-fold cross-
validation performance of MultiLoc2-LowRes and MultiLoc2-HighRes compared to
the five-fold nested cross-validation performance of YLoc-LowRes and YLoc-HighRes
concerning the F1 and ACC (in brackets).

3.3.2 Benchmark Study on Two Independent Datasets

To show that YLoc is well-suited to predict the localization of novel proteins, we car-

ried out a benchmark study using two recently published IDSs, the BaCelLo IDS [27]

and the Höglund IDS [8]. We compared YLoc against six other state-of-the-art sub-

cellular localization predictors, MultiLoc2 [8], BaCelLo [139], LOCTree [124], WoLF

PSORT [88], Euk-mPloc [37], and KnowPred [111]. These predictors were chosen be-

cause they are quite recent and are available as online or as stand-alone version. In the

3.3 Results and Discussion 63

case of the BaCelLo IDS, we grouped predicted locations from the secretory pathway

into the class SP to deal with predictors that distinguish between these locations. In

contrast, for the Höglund IDS, we excluded predictors that cannot distinguish between

the secretory pathway locations. To predict multiple locations with KnowPred, we

defined a threshold of 30 for the multi-localized confidence score. As mentioned be-

fore, very similar proteins from the same location in the IDS are clustered. Instead of

evaluating the performance based on one representative of each cluster, we re-weight

instances such that the weight of all instances within one cluster sums to one. The

results are summarized in Table 3.3.

Method B Animals B Fungi B Plants H Animals

YLoc-LowRes 0.75 (0.79) 0.61 (0.56) 0.58 (0.71) - (-)
YLoc-HighRes 0.69 (0.74) 0.51 (0.56) 0.54 (0.58) 0.34 (0.56)
YLoc+ 0.67 (0.58) 0.51 (0.48) 0.49 (0.53) 0.37 (0.53)
MultiLoc2-LowRes 0.76 (0.73) 0.61 (0.60) 0.64 (0.76) - (-)
MultiLoc2-HighRes 0.71 (0.68) 0.58 (0.53) 0.54 (0.62) 0.41 (0.57)
BaCelLo 0.66 (0.64) 0.60 (0.57) 0.56 (0.69) - (-)
LOCTree 0.58 (0.62) 0.43 (0.47) 0.58 (0.70) - (-)
WoLF PSORT 0.67 (0.70) 0.51 (0.50) 0.46 (0.57) 0.18 (0.36)
Euk-mPloc 0.54 (0.61) 0.56 (0.60) 0.37 (0.46) 0.24 (0.27)
KnowPred 0.69 (0.75) 0.56 (0.66) 0.23 (0.29) 0.37 (0.49)

Table 3.3: Performance comparison using two independent datasets. Perfor-
mance of the YLoc predictors and other state-of-the-art predictors using the BaCelLo
(B) IDS and the Höglund (H) IDS concerning F1 and ACC (in brackets). The per-
formance of YLoc+, WoLF PSORT, Euk-mPloc, and KnowPred was measured using
the generalized F1 and ACC. The highest-ranking method regarding each measure is
highlighted in bold. Note that the WoLF PSORT results differ slightly from those
obtained in Blum et al. [8] due to some changes in the underlying dataset. Also note
that KnowPred does not predict chloroplasts.

We observed that YLoc-LowRes and MultiLoc2-LowRes yield the best overall per-

formance on the BaCelLo IDS. This is due to the fact that both predictors are spe-

cialized on distinguishing globular proteins. Among the high-resolution predictors,

MultiLoc2-HighRes and KnowPred perform best, followed by YLoc-HighRes. Although

YLoc+ was designed to predict multiple localizations, it performs comparably to Euk-

64 3. YLoc – An Interpretable Classification Approach

mPloc and WoLF PSORT. Clearly, the prediction performance depends on the origin

of the proteins. In particular, the YLoc predictors are less accurate for fungal pro-

teins, but yield good performance for animal and plant proteins. In contrast, Euk-

mPloc performs well for fungal proteins but poorly for animal and plant proteins.

Note that KnowPred does not predict chloroplasts and, thus, performs poorly on plant

proteins. Most interestingly, the YLoc predictors perform comparable to the other

predictors in the benchmark study, even though they have a very simple architecture

and use at most 30 features. Similar results were observed for the animal Höglund

IDS. MultiLoc2-HighRes performs best among the high-resolution predictors, followed

by YLoc+, YLoc-HighRes, and KnowPred. Euk-mPloc and WoLF PSORT, the other

high-resolution predictors in this study, yield a poor F1 and ACC. In general, the per-

formance of all predictors is comparably low for this dataset. This is due to the limited

amount of available training data for the peroxisome and the secretory pathway loca-

tions. Since the number of protein sequences of the animal Höglund IDS is relatively

small, the performance results should be seen as a trend. In addition, see Tables D.7,

D.6, D.5, D.4, D.8, D.10,D.12, and D.14 in the appendix for more detailed results.

Using YLoc+ has an advantage: Predictions can be borderline due to weak and

noisy sorting signals. Hence, predicting all top-ranked locations leads to an increased

recall. Moreover, it can help users to identify real multiple localization of proteins.

We also tested YLoc without transferring information from homologous proteins by

excluding GO-term features from the feature selection. The resulting predictors show

only slightly reduced prediction performance on the IDSs (see Tables D.9, D.11,D.13,

and D.15). Additional versions of YLoc not using homology information can be helpful

to analyze whether a prediction outcome would change if we were restricted to sequence

information only.

3.3.3 Multiple-Localization Prediction

We compared YLoc+, WoLF PSORT, Euk-mPloc, and KnowPred regarding their abil-

ity to predict multiple localization sites. The locations for all proteins in the DBMLoc

dataset were predicted by WoLF PSORT, Euk-mPloc, and KnowPred by considering

this dataset as an IDS. Since KnowPred returns only scores for each location but no

location prediction, we predict all locations with a score above 30 if the multi-localized

confidence score is larger than 30. For YLoc+, we evaluated the predictions of the

3.3 Results and Discussion 65

DBMLoc proteins using the five-fold nested cross-validation results. We compared all

predictors using single-label as well as multi-label measures.

Measures YLoc+ Euk-mPloc WoLF PSORT KnowPred

Single-label 0.31 (0.35) 0.04 (0.05) 0.03 (0.05) 0.28 (0.36)
Multi-label 0.68 (0.64) 0.44 (0.41) 0.52 (0.43) 0.66 (0.63)

Table 3.4: Performance comparison using the DBMLoc dataset. The
performance was measured using F1 and ACC (in brackets). For YLoc+ and WoLF
PSORT, only the best performing version is shown. The highest-ranking method
regarding each measure is highlighted in bold.

The results are shown in Table 3.4. YLoc+ is superior to WoLF PSORT and Euk-

mPloc in this study in terms of ACC as well as F1. While predicting at least one

location correctly for many proteins, Euk-mPloc and WoLF PSORT are only able to

predict 5% of the correct multiple locations. In contrast, YLoc+ and KnowPred are able

to recover more than one third of the multiple locations correctly. When excluding GO-

term features from the feature selection, we observe only a slight performance decrease.

For more details see Tables D.16 and D.17 in the appendix. In a similar study, we are

able to show that the performance of all predictors remains almost unchanged if we

use a cutoff of 40% in the homology reduction of the DBMLoc dataset, see Tables D.18

and D.19 in the appendix for performance details on the resulting DBMLoc40 dataset.

3.3.4 Evaluation of Confidence Estimates

To find a confidence estimator that is suitable to rate the confidence of individual YLoc

predictions, we compared the estimation performance of the five presented estimators.

For this purpose, we estimated the confidences of YLoc-LowRes predictions on the

BaCelLo IDSs using the different presented confidence estimators. To show that the

posterior probability is less suitable for confidence estimation, we additionally included

it into the study. For all estimates, we plotted confidence curves and calculated the

corresponding AUCCs. The obtained AUCCF1 values for the BaCelLo IDSs are shown

in Table 3.5.

We observed that estimator NBconf performs superior to the four dataset-based

estimators. Although estimators Acc and LE yield sometimes larger AUCCs, their es-

66 3. YLoc – An Interpretable Classification Approach

Measure IDS NBconf Post AvgDist NoNN Acc LE

AUCCinst,F1 Animals 0.27 0.13 -0.31 -0.25 0.27 0.18
Fungi 0.19 0.09 -0.20 -0.17 -0.02 -0.09
Plants 0.34 0.23 0.24 0.22 0.45 0.59

AUCCncs,F1 Animals 0.23 0.06 -0.07 -0.20 0.16 0.37
Fungi 0.21 0.03 -0.06 -0.18 0.03 -0.02
Plants 0.33 0.12 0.10 0.23 0.13 0.55

Table 3.5: AUCCF1 of different confidence estimators for YLoc-LowRes
predictions on the BaCelLo IDSs. We calculated AUCCinst,F1 and AUCCncs,F1

based on confidence estimates for predictions of the BaCelLo IDSs using different
confidence estimators. In addition, we show the AUCCs for the case of using the
posterior probability as confidence estimate (Post).

timates are less robust. In particular on the BaCelLo fungi dataset, both estimators

perform close to random. Estimators AvgDist and NoNN show the worst performance.

On two of the three datasets they even yield a negative AUCC. In contrast, for confi-

dence estimator NBconf, we observe an enrichment of correctly predicted instances for

large normalized confidence scores on all BaCelLo IDSs. Moreover, NBconf is better

suited for giving confidence estimates than the posteriori alone, see also Figure 3.2.

Note that although an AUCC around 0.2 seems like a low value, it is already a very

good result. As we can see from the confidence curves in Figure 3.1, confidence esti-

mates yielding an AUCC around 0.2 show already a considerable enrichment of correct

predictions. As a consequence, the prediction quality is increased by up to 20% given

a normalized confidence scores of more than 0.5. The confidence curves and AUCCs

based on the ACC look very similar, see Table D.20 in the appendix.

Our results suggest that our model-based confidence estimator NBconf performs

superior to dataset-based estimators. This is no surprise since a model-based approach

can use additional properties of the classification model for its estimation. As a conse-

quence of our results, we integrated this confidence estimator into YLoc and use it to

return confidence scores for every individual prediction.

To prove that YLoc highly benefits from confidence scores made by NBconf, we

show the performance of YLoc on the animal BaCelLo IDS for different minimum

normalized confidence scores in Table 3.6. The ACC and F1 of all predictors increase

3.3 Results and Discussion 67

0.0 0.2 0.4 0.6 0.8 1.0

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

AUCC= 0.23

normalized confidence score by NBconf

F1

0.0 0.2 0.4 0.6 0.8 1.0
0.

75
0.

80
0.

85
0.

90
0.

95
1.

00

AUCC= 0.06

normalized confidence score by posteriori

F1

0.0 0.2 0.4 0.6 0.8 1.0

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

AUCC= 0.16

normalized confidence score by Acc

F1

0.0 0.2 0.4 0.6 0.8 1.0

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

AUCC= 0.37

normalized confidence score by LE

F1

Figure 3.2: Confidence curves of different estimators on the BaCeLo an-
imals IDS. We plotted score-based confidence curves resulting from estimates of
NBconf, Acc, and LE as well as the posterior probability using predictions of the
BaCelLo animals IDS made by YLoc-LowRes. Note that although the AUCC of es-
timator NBconf is smaller that the one of LE, the corresponding confidence curve is
quite smooth.

with an increasing minimum normalized confidence score. The F1 and ACC of YLoc-

HighRes increase by at least 4% given a minimum score of 0.2 and by at least 8% given a

confidence threshold of 0.9. YLoc-LowRes and YLoc+ show an even higher enrichment

68 3. YLoc – An Interpretable Classification Approach

for high confidence scores. For example, YLoc-LowRes achieves an F1 of 0.84 and an

ACC of 0.91 for a minimum normalized confidence score of 0.8. Thus, YLoc-LowRes

could correctly predict the location for 91% of the 189 proteins that have a normalized

confidence score of at least 0.8. We got similar results for fungal and plant proteins

(see Table D.21 in the appendix). Although only a certain portion of proteins can be

predicted with high confidence, their predicted locations are much more likely to be

correct.

Method Measure Minimum confidence score
0.00 0.20 0.40 0.60 0.80 0.90

YLoc-LowRes F1 0.75 0.76 0.78 0.80 0.84 0.95
ACC 0.79 0.79 0.81 0.86 0.91 0.93
% of n 100 81 69 52 33 20

YLoc-HighRes F1 0.69 0.74 0.76 0.76 0.77 0.77
ACC 0.74 0.78 0.80 0.82 0.83 0.84
% of n 100 88 82 74 68 61

YLoc+ F1 0.67 0.69 0.72 0.77 0.76 0.81
ACC 0.58 0.60 0.62 0.65 0.65 0.69
% of n 100 86 73 56 38 25

Table 3.6: Performance of YLoc using the BaCelLo animal IDS for differ-
ent minimum confidence levels. For each minimum normalized confidence score
the prediction performance is given using F1 and ACC as well as the percentage of
instances n that can be predicted with as least this score. The performance of YLoc+

was measured using the generalized F1 and ACC.

3.3.5 The YLoc Web Server

The YLoc web server requires protein sequences in FASTA format as input. It allows

users to predict the location of up to 20 proteins. For large-scale predictions, users

can access YLoc via SOAP or HTTP using the Python-based client scripts provided

on the YLoc web site. Users can choose between three YLoc predictors, YLoc-LowRes,

YLoc-HighRes, and YLoc+, and three protein origins (animals, fungi, and plants). In

addition, they can switch off the use of GO term-based features. In this case, YLoc

uses models in which the GO terms from close homologues are replaced by sequence-

3.3 Results and Discussion 69

based features. Consequently, these YLoc models rely less on the presence of close

homologous proteins. Every prediction will be assigned a prediction ID which can be

used to retrieve results later on. Alternatively, users can simply bookmark the waiting

page or the result page to obtain results later. Currently, predictions are kept for

two weeks. The location prediction of a single protein takes 10-20 s, depending on

the protein length. Note that about 95% of the runtime origins from BLAST and

PROSITE scan. The actual prediction using näıve Bayes is very fast and requires only

a few milliseconds.

Prediction results are displayed at three different levels of details. The prediction

summary presents the predicted location(s), the probability of those, and the normal-

ized confidence score for every query protein. The probability of a location is simply

how likely the protein is located in this compartment. In contrast, the confidence score

is a measure of reliability. A low confidence score implies the possibility that the real

probability can differ considerably from the predicted probability. However, a high

confidence score signifies that the predicted probability is close to the real probability

for being located in the predicted location. Consequently, higher confidence scores im-

ply a higher reliability of the prediction for the individual sequence. In addition, an

explanation in natural language clarifies why the prediction has been made. This ex-

planation includes the two most likely reasons for this localization, for example: “The

most important reason for making this prediction is the strong secretory pathway sort-

ing signal” or “Moreover, it is a barely charged protein.” This information can be very

important since it might already give a hint of the underlying mechanism of this sorting

process responsible for the localization.

The detailed prediction page provides more information on a particular protein

prediction. For example, the probability distribution of locations is provided. It is

important to know the runner-up locations, especially for low confidence predictions,

since rather ambiguous predictions should be inspected manually. YLoc also provides

the most similar protein from Swiss-Prot 42.0 and associated GO terms. More details of

how protein attributes influence the prediction are given in a large attribute table (see

Figure 3.3). The attributes are expressed in biological terms and ordered according

to their absolute discrimination score, which corresponds to their influence on the

prediction. A positive discrimination score implies that the attribute value is very

typical for the predicted location but atypical for some other location. In contrast,

70 3. YLoc – An Interpretable Classification Approach

a negative discrimination score implies that the attribute value is more typical for

some other location than the predicted one. A simple +/- encoding shows whether an

attribute is typical for a location or not. By inspecting only the first lines of the table,

it is sometimes already obvious which biological property led to the prediction outcome

and is likely to be responsible for the real localization of the protein. In addition, it

gives hints which parts of the protein should be considered for mutations that result in

an altered subcellular localization.

Figure 3.3: The attribute table of the YLoc web service. All attributes
are listed in order of their influence on the prediction outcome and are expressed
in biological terms. The +(+) or -(-) indicates whether an attribute value is (very)
typical or (very) untypical for a location.

How a particular biological attribute is calculated can be found on a detailed at-

tribute page (see Figure 3.4). For example, YLoc-LowRes (animal version) calculates

the strength of the secretory pathway sorting signal using the “autocorrelation of ev-

ery third hydrophobic amino acid within the first 20 amino acids in the N-terminus”.

Knowing how the attribute value is calculated is essential to understand which partic-

ular amino acids and properties encode for a possible sorting signal. Furthermore, the

attribute is visualized. Embedded JavaScript code displays the distribution of proteins

from the different locations regarding this feature. The provided protein distributions

are very helpful for understanding how proteins from different locations behave with

respect to a biological property or sorting signal.

3.3 Results and Discussion 71

Figure 3.4: Detailed attribute page of the feature “secretory pathway sort-
ing signal” in YLoc-LowRes (animal version). The distribution of proteins from
the cy, mi, nu, and SP over the different attribute intervals is shown.

To show how YLoc elucidates a subcellular localization prediction, we provide an

interpretable example prediction output. The example protein Neurotoxin magi-12

(U13-HXTX) with Swiss-Prot AC Q75WG7, obtained from the animal BaCelLo IDS,

was predicted to be located in the SP by YLoc-LowRes with a probability of 99.99%

and a normalized confidence score of 0.99. Hence, users can be very confident that

the prediction is correct. U13-HXTX is known to be secreted into the extracellular

space. YLoc found that U13-HXTX contains a strong secretory pathway signal, which

is known to mediate the transport into the SP. Moreover, YLoc identified this feature to

be the most discriminating, since 69% of all proteins in the SP have a similar secretory

pathway signal, whereas only 0%, 2%, and 1% of all proteins present in the cy, mi, and

nu, respectively, have the same kind of feature. Figure 3.4 shows the distribution of

proteins from different locations concerning this particular feature. In addition, YLoc

72 3. YLoc – An Interpretable Classification Approach

identified other features that highly influenced the prediction, such as the low charge of

the protein and the lack of a mono NLS. Table 3.7 shows an example output of YLoc

for the six most discriminating attributes. Given this output, it is easy to understand

why this prediction was made and what features were responsible for it.

Sequence Feature DS Nu Cy Mi SP
Strong secretory pathway sorting signal 5.72 0.01 0.00 0.02 0.69
(High hydrophobic autocorrelation within
first 20 amino acids)
Barely charged 2.89 0.10 0.16 0.02 0.28
(Low overall charge autocorrelation)
No mono NLS sorting signal 2.89 0.04 0.12 0.02 0.26
Strong putative mitochondrial or secretory 1.68 0.58 0.62 0.16 0.84
pathway sorting signal (Large weighted
sum of amino acids, typical for mi and SP)
Very hydrophobic protein (High pseudo 2.32 0.08 0.13 0.04 0.36
amino acid count of hydrophobic
amino acids [CITVWY])
Very hydrophobic N-terminus (High pseudo 2.06 0.09 0.05 0.08 0.41
amino acid count of very hydrophobic
residues within the first 90 amino acids)

Table 3.7: YLoc output of an example prediction. The six most discriminating
protein features are displayed in order of their absolute discrimination score (DS).
The features are manually annotated with a biological property. A more detailed
description of each feature is given in italics. For each location, the ratio of proteins
having this particular feature is shown. A detailed description of the fourth features
is given in Nakai and Kanehisa [125].

The YLoc web service is available at www.multiloc.org/YLoc. For large-scale pre-

dictions, YLoc can be accessed via SOAP. The corresponding WSDL can be downloaded

from the YLoc web site. In addition, we provide a Python-based client script. Alter-

natively, YLoc can be accessed via an HTTP-based client that is also available for

download.

3.3.6 Understanding and Predicting Localization Changes

A key step in understanding the localization process of proteins is to elucidate why

proteins localize to different compartments when undergoing mutation. Furthermore,

3.3 Results and Discussion 73

knowledge obtained from YLoc’s prediction output can be used for supervised protein

engineering. Due to its ability to identify biological properties that might be respon-

sible for the localization (e.g. sorting signals) YLoc can be valuable for experimental

biologists. In the following, we show examples of localization engineering taken from

the literature, where YLoc could have been helpful to understand the underlying local-

ization processes.

Human fumerate hydratase (FH, SwissProt AC P07954) is primarily located in the

mitochondrion. The three YLoc predictors (animal version) detect the correct location

and identify an mTP. After truncating the leading 43 residues, FH lacks an mTP

and shows a negatively charged N-terminus, which is unfavourable for mitochondrial

localization. Consequently, YLoc predicts FH to be cytoplasmic. In fact, the truncated

FH protein is a known cytoplasmic isoform of FH encoded by the same gene [182].

Takada et al. [178] showed that human glyoxylate aminotransferase 1 (AGT1), lo-

cated in the peroxisome, is likely to have lost its mTP by point mutation. In fact,

the mTP of AGT1 of rat, located in the mitochondrion, shares 74% sequence identity

with the upstream region of human AGT1. If we correct the single point mutation, we

extend human AGT1 by 22 residues. YLoc-HighRes (animal version) is then able to

predict a localization shift from the peroxisome to the mitochondrion. In addition, it

recognizes the appearance of an weak mTP. According to YLoc+, the extended AGT1

is very likely localized in the mitochondrion.

In 1982, Carlson and Botstein [26] found two isoforms of glycosylated invertase in

yeast, which is encoded by the SUC2 gene. The extracellular isoform is regulated by

glucose repression, whereas the N-terminal truncated cytosolic isoform is constitutively

expressed. YLoc-LowRes (fungal version) is able to predict the localization change

of this truncation, although it still recognizes associated GO terms that indicate a

secreted localization. In addition, the truncation of the signal peptide was recognized

by YLoc. Four years later, Kaiser and Botstein [98] examined the signal peptide of the

same protein by inducing multiple mutations in the signal peptide region ranging from

short deletions up to long substitutions. Five of the the ten functional mutants lack

extracellular invertase activity and show only cytoplasmic activity. Three of these cases

could be validated by YLoc-LowRes. In one case, YLoc predicts a localization change,

but not to the cytoplasm. In all five cases, YLoc confirms the loss of a signal peptide.

In addition, YLoc reproduces that five mutants remain in the secretory pathway.

74 3. YLoc – An Interpretable Classification Approach

The GLR1 gene of yeast encodes two different isoforms of glutathione reductase:

a longer, mitochondrial isoform and a shorter, cytoplasmic isoform [130]. The two

different isoforms very likely arise from leaky ribosomal scanning. YLoc-LowRes (fungal

version) predicts GLR1 as mitochondrial and identified an mTP within the first 20

amino acids. The truncated isoform is still predicted to be located in the mitochondrion

but with a decreased probability. Moreover, YLoc identified the loss of the mTP. Both

YLoc-HighRes and YLoc+ reproduce the location shift and state a change in the mTP.

A detailed overview of predicted locations of all discussed isoforms and mutated

proteins can be found in Table D.22 in the appendix.

3.4 Conclusion

Understanding protein subcellular localization is crucial for the functional annotation

of proteins. In contrast to many prediction methods, predictions made by YLoc are

interpretable. The YLoc web server explains why a prediction was made and shows

which particular attributes contributed most and in which direction. Explaining why

a subcellular localization prediction was made does clearly influences the trust in the

results. A user might find a prediction reasonable but might also find attributes in-

dicating a different localization that are more convincing to him. In addition, users

can use the YLoc web server to identify properties of their proteins that are typical

or atypical for a certain cell organelle. YLoc can thus be helpful to understand the

localization of novel proteins that have not been annotated before.

We show that YLoc performs comparable to or even better than state-of-the-art

subcellular localization predictors. Our benchmark results suggest that using complex

computational models is less important than using a well defined set of highly discrim-

inating features. When predicting proteins from multiple locations, YLoc yields often

better prediction quality than current state-of-the-art predictors. Moreover, YLoc’s

flexible probability transformation allows predicting novel location combinations, which

are not part of the training data.

We could show that confidence estimation is helpful to rate the reliability of pre-

dictions. In particular, a probabilistic confidence estimator based on näıve Bayes is

well suited to detect erroneous predictions. When considering only proteins that can

be predicted with a certain normalized confidence score, the prediction performance

3.4 Conclusion 75

increases considerably. We believe that a confidence estimate is of great interest since

it increases the trust in prediction results.

YLoc provides textual explanations in natural language, which allows every user

to understand and interpret its output. The provided reasoning takes away some of

the “black box” character of the prediction. YLoc’s interpretability lays the founda-

tion for using YLoc for protein localization engineering. For several examples, we can

demonstrate that YLoc predicts experimentally validated changes of localization sites

and known sorting signals caused by mutations. Since we applied YLoc successfully

to proteins with alternative isoforms that differ in localization, it seems promising to

include alternative transcription and translation sites as features for YLoc+.

We are convinced that both performance and interpretability of YLoc can be im-

proved by integrating further biologically relevant features. Improvement will rely on

traditional biology and computational biology proceeding hand in hand. Discovering

novel protein sorting signals can improve the performance of YLoc, whereas an im-

proved predictor can help biologists to elucidate the localization of novel proteins.

Chapter 4

Interpretable Regression With

CONFINE and CONFIVE

MHC-I–peptide binding represents an important step of the adaptive immune response.

By binding peptides of proteins within the cell, MHC-I molecules are able to present a

“fingerprint” of a cell’s proteome on its surface. This includes peptides from pathogens.

A subsequent binding of a T cell to an MHC-I–peptide complex can trigger apoptosis

of the infected cell and induces immunological memory against future infections of the

respective pathogen.

The identification of MHC-I binding peptides is an important step in identifying

immunogenic peptides, i.e. epitopes. Since binding data is only available for a small

number of peptides [116], computational MHC-I–peptide binding prediction has become

an attractive alternative. However, the “black box” character of current state-of-the-art

prediction approaches is often a drawback when predicting potential T-cell epitopes.

Predictions are often not interpretable and provide no confidence information for in-

dividual predictions, which is of essential interest in critical tasks like epitope-based

vaccine design. In this chapter, we show how to overcome the drawbacks of state-of-

the-art prediction methods by introducing two novel confidence estimators, CONFINE

and CONFIVE. In analogy to experimental measurements, they associate each affinity

prediction with a confidence interval, which allows users to estimate the potential error

of an individual prediction. Parts of this chapter will be published in Briesemeister

et al. [19].

78 4. Interpretable Regression With CONFINE and CONFIVE

4.1 Introduction

The first steps towards MHC-I–peptide binding prediction were taken in the 1980s by

identifying binding motifs [160]. It was found that certain positions of binding peptides

show a strong preference to a small set of amino acids [143]. These positions are called

anchor positions [64]. Motifs became very popular and were widely used to distinguish

between binders and non-binders. However, binding motifs are a very simplified rep-

resentation of binding since they ignore the fact that the whole peptide contributes

to the binding affinity to the MHC molecule. To overcome this shortcoming, matrix-

based methods and other classification algorithms have been applied. Matrix-based

approaches such as BIMAS [132], SYFPEITHI [144], and TEPITOPE [7] calculate a

sequence profile of validated binders. The binding score of a peptide is then obtained

by combining the profile scores of the amino acids at each position in the peptide.

In addition, various classification algorithms such as ANNs [85], hidden Markov mod-

els (HMMs) [23, 117], and SVMs [44, 53, 54, 95, 187] have been applied. However,

classification approaches can only help to categorize peptides and ignore the fact that

peptides exhibit different binding affinities to different MHC molecules. In particular,

for epitope-based vaccine design, we rely on quantitative binding predictions [184].

Over the last years, various prediction methods have been introduced to model this

quantitative structure-activity relationship (QSAR) [57]. In particular, linear QSAR

approaches that aim at predicting the binding affinity from the peptide sequence with-

out using structural information have been the center of attention. The simplest quan-

titative prediction approaches are either based on score matrices [24, 114, 135, 136] or

on simple linear regression algorithms [58, 74, 81]. They assume that the amino acids

of the peptide contribute independently to the overall binding affinity. More advanced

approaches that consider interactions of peptide side chains are usually based on nonlin-

ear regression algorithms [115]. Most state-of-the-art methods like NetMHC-3.0 [116]

are based on ANNs [25, 116, 127]. But also SVR has been used for binding affinity

prediction [191]. In addition to linear QSAR methods, structure-based prediction ap-

proaches have been investigated. They range from 3D-QSAR [56, 155] over docking

and threading [97, 148] to molecular dynamics simulations [63]. However, structural

approaches usually require large computational resources. Moreover, their prediction

4.1 Introduction 79

quality is not yet comparable with sequence-based approaches, also due to the limited

amount of structural MHC-I–peptide complex data.

The in silico prediction methods introduced above are an attractive alternative to

costly and time-consuming experiments. In the past, they could support the identifi-

cation of MHC-I binding peptides [21, 151, 168]. Moreover, the knowledge of MHC-I

binding affinities can also support the design process of epitope-based vaccines. Only

peptides bound to MHC molecules can induce T-cell reactivity and are, hence, able

to induce immunity. It was also found that T-cell reactivity is correlated with MHC-I

binding affinity [161]. As a consequence, predicted MHC-I binding affinities are often

used as an approximation of T-cell reactivities. These are an important prerequisite to

discover potential epitopes for vaccines. Note that epitope-based vaccine design does

not only require detection of potential epitopes, but also to select an optimal subset

of epitopes for a given antigen and target population [48, 183, 185, 189]. Furthermore,

the selected epitopes have to be assembled in a poly-peptide such that peptides are

likely to be presented to MHC molecules. See Toussaint and Kohlbacher [184] for more

details on epitope-based vaccines.

As an alternative to naturally processed and presented peptides, vaccines can also

benefit from engineered peptides with an enhanced T-cell reactivity, called heteroclitic

peptides. Sometimes it is distinguished between fixed anchor epitopes, which are mod-

ified at the anchor residues leading to an increased MHC-I binding affinity, and hetero-

clitic peptides, which exhibit an increased TCR binding affinity [159]. After all, both

types of epitope analogs aim at inducing a stronger immune response than the original

peptide. There have been rational approaches to design epitopes by considering struc-

tural information [55, 180]. In addition, computational prediction approaches have been

used to find peptides with maximum affinity to a particular MHC molecule [59, 104].

Other in silico approaches aim at increasing the affinity of a wildtype epitope by intro-

ducing mutations [6, 90]. Interestingly, state-of-the-art predictors like NetMHC-3.0 are

often not considered for epitope engineering. Due to the “black box” character of com-

plex regression approaches, their explicit regression function remains unknown. Hence,

it is unknown how strongly an amino acid affects the binding affinity. Replacing amino

acids that are unfavourable for binding, as performed in previous studies [59, 90, 180],

cannot be guided by predictions that are not interpretable.

80 4. Interpretable Regression With CONFINE and CONFIVE

Using computational predictions methods for epitope-based vaccine design is

fraught with high risk. It is often assumed that in silico prediction methods per-

form equally well for all peptides. But this is not the case. In particular, if they are

applied to peptides that are very dissimilar to the corresponding training peptides,

predictors perform usually poor. Thus, when MHC-I–peptide binding predictors are

used for discovering or engineering epitopes, they might provide unreliable binders.

In the experimental sciences, the concept of a measurement and its associated error

is a cornerstone in understanding the reliability of a data point. In contrast, statis-

tical measures that capture the prediction error are not a direct replacement for the

measurement error. In most cases, it is not even clear what the reliability of a predic-

tion method means. For example, specifying the correlation coefficient for a training

dataset is not sufficient to really give the user an idea of the error of an individual

prediction. To overcome these problems, confidence estimation, which determines the

reliability of individual predictions, is desirable. In cases where highly accurate predic-

tions are required, e.g. for choosing candidates for expensive experiments, confidence

intervals would be especially valuable. Despite their importance, confidence estimation

for regression models has not been applied extensively in the context of computational

biology.

In the area of QSAR, where regression methods are applied to predict the biolog-

ical activity of small molecules, the concept of confidence estimation was introduced

through so-called applicability domains (AD) [164]. The AD defines the input space on

which the model is expected to give reliable predictions [50]. However, AD estimators

were designed to detect possible extrapolation errors but not to measure the error of

instances within the AD. Consequently, some estimators cannot express the confidence

in a prediction in a quantitative manner. Although some estimators can provide quan-

titative scores, it is usually difficult to relate a score to an actual error. One way to

overcome these problems are confidence estimators that express the reliability of an

individual MHC-I–peptide binding prediction in a quantitative and intuitive manner.

In this chapter, we introduce a novel concept to confidence estimation. In analogy

to experimental measurements, we associate each individual affinity prediction with

an estimate of its error. We propose two novel confidence estimators, CONFINE and

CONFIVE, which return confidence intervals with only a small computational over-

head. These intervals contain the real affinity value with a certain probability, while

4.1 Introduction 81

being very small for confident predictions and fairly broad if the prediction is likely to

be erroneous. Hence, in contrast to other estimation approaches, their error estimates

are very intuitive and easy to interpret. CONFINE and CONFIVE estimate the con-

fidence of a prediction by inspecting local properties of the input space. CONFINE

determines the error rate of the nearest neighbors of a test instance in the training data.

CONFIVE examines the variance in the surrounding local environment and assumes

that large variances result in higher error rates. Since both estimators are strictly

model-independent, they can be applied with any linear and nonlinear regression algo-

rithm.

After introducing our regression approach, we present related work on confidence

estimation. We then introduce the methods underlying CONFINE and CONFIVE and

discuss their applicability by analyzing the influence of noise, the number of features,

and the dataset size on the quality of the estimated confidence intervals. We then com-

pare our confidence estimators with other existing confidence and AD estimators on

the well-studied IEDB benchmark datasets [137]. In addition, we apply our estimators

to a set of 3D-QSAR datasets. Our results suggest that CONFINE and CONFIVE

are able to interpolate the prediction error better than or comparable to other meth-

ods, given a sufficient amount of training data. We also show that confidence intervals

are a very intuitive and informative way to express the reliability of individual pre-

dictions. To illustrate the universal character of CONFINE and CONFIVE, we apply

them not only to linear regression but also to nonlinear SVR. In an example study, we

show that considering confidence estimates does increase the probability of detecting

suitable candidates for epitope-based vaccines. Furthermore, we show how confidence

estimators can be used for automatic epitope engineering. By considering the reliability

of predictions, our genetic algorithm approach returns only strong binders that origi-

nate from high-quality predictions. Our results confirm that the confidence estimators

presented here can improve the user’s confidence in MHC–peptide binding predictions

and support epitope discovery and epitope engineering.

An open-source implementation of both methods is available in the R package

confReg (http://cran.r-project.org/web/packages/confReg/index.html). Due to its de-

sign and object-oriented implementation using S4 classes, it can be easily extended and

adapted to various regression tasks.

82 4. Interpretable Regression With CONFINE and CONFIVE

4.2 Methods

To estimate affinity values and the corresponding confidences, we first have to train a

regression model for this particular task. To be able to provide interpretable binding

affinity predictions in terms of IC50 values, we employ linear least squares regression,

which is described in detail in Section 2.1.2. Before training the model, we perform

a model selection step in which we try to find the optimal set of features. First, the

quality of every feature is assessed by performing three five-fold cross-validations using

only this feature. The features are then sorted in ascending order of their mean squared

error (MSE). Starting with the feature with the lowest MSE, the features are iteratively

added to the feature set. If the new feature set shows a higher average MSE in three

five-fold cross-validations than the previous feature set, the newly added feature is

removed. Since predictions are only interpretable in a manual fashion if the feature

number is relatively low, we set the maximum number of features to 50. The resulting

feature set is used to train our linear regression model.

Although we focus on predicting binding affinities of peptides to MHC-I molecules,

we will use the term response instead of affinity in the following. This also enhances

the fact that the described methods are universal and can be applied to any regression

task.

4.2.1 Related Work on Confidence Estimation

There are various methods related to the estimation of individual confidences. It can

be distinguished between methods that use certain properties of a regression model,

e.g. the predictive variance of a Gaussian process, and methods that are independent

from a particular regression model. In this work, we concentrate on the latter, since

model-independent confidence estimators are more universal.

When the response of a novel instance x∗ has been predicted using a trained re-

gression model, confidence estimators try to determine the reliability of this particular

prediction. A confidence estimator is a function f : Rk → R, where the input is a

test instance x∗ and the output is a confidence score cs(x∗). Note that confidence es-

timators and AD estimators do not try to predict the exact error of a prediction itself.

Instead, they require predictions with a low error to have a small confidence score and

predictions with a high error to have a large confidence score. Scores determined by

4.2 Methods 83

different estimators are not necessarily comparable, nor interpretable. Determining a

threshold for the applicability domain of a model is, hence, often very vague. Instead

of relying on non-interpretable scores that cannot be interpreted by a user, we propose

an approach of translating confidence scores into interpretable confidence intervals, a

more intuitive measure of confidence.

In the following, we will discuss related work before introducing our novel concepts

for confidence estimation the following section.

Number of Nearest Neighbors

A traditional approach to estimate confidences utilizes the number of neighbors

(NoNN) [164]. For this purpose, we define the local environment E(x∗, dE) as the

set of instances from the training data with a maximum distance dE to x∗. The opti-

mal value of dE can be found using a cross-validation scheme. The confidence value is

calculated as follows:

csNoNN(x∗) = |E|. (4.1)

Instead of using the number of neighbors, we can transform estimator NoNN into

a density-based estimator using a Gaussian kernel [12]:

csNoNN∗(x∗) =
1
n

n∑
i=1

e−0.5d(xi,x
∗)2 . (4.2)

Distance-based Estimators

Distance-based estimators, which are often used for AD estimation, try to distinguish

between outliers and instances within the domain. The mistrust in a prediction grows

with its distance to the training data. The following two estimators express the distance

to the training dataset as the minimum distance or average distance:

csMinDist(x∗) = 1−min
i
d(xi, x∗) and (4.3)

csAvgDist(x∗) = 1− 1
n

n∑
i

d(xi, x∗). (4.4)

84 4. Interpretable Regression With CONFINE and CONFIVE

A slightly more involved estimator puts a bias on closer instances [164]:

csAvgBiasedDist(x∗) = 1−
∑n

i e
−3d(xi,x

∗)d(xi, x∗)∑n
i e
−3d(xi,x∗)

. (4.5)

Since the training dataset itself might already contain some outliers that are rather

hard to predict, one can exclude such outliers from the confidence estimation. This

is done by considering only instances that can be predicted with a maximum predic-

tion error of ε̂m [60]. Let MinDistOF, AvgDistOF, and AvgBiasedDistOF denote these

“outlier-free” versions of the previously introduced distance-based estimators. An op-

timal threshold for the prediction error ε̂m can be estimated via cross-validation.

A generalization of the above distance-based AD estimators based on a one-class

SVM [154] was introduced by Fechner et al. [66], here denoted as 1-SVM. It uses the

decision value of a one-class SVM with an RBF kernel trained on the training dataset.

The parameters of the SVM and the RBF kernel can be optimized via cross-validation.

However, the optimization of all parameters via grid search comes with an increase in

runtime.

Difference to Nearest Neighbor Prediction

A very intuitive approach of confidence estimation is based on the nearest neighbor

prediction, which refers to the average response value of the nearest neighbors [12]. It

assumes that the response value of a new instance x∗ should be similar to the average

response of its m nearest neighbors:

csDiffNN(x∗) = 1−
∣∣∣∣∑m

i=1 yi
m

− ŷ∗
∣∣∣∣ . (4.6)

An appropriate value for m can be obtained via cross-validation. We also tested

a modified version of DiffNN where m is set to five, called Diff5NN in the following.

Diff5NN requires no optimization but shows a slightly reduced performance.

Sensitivity Analysis of Local Variance and Local Bias

Bosnić and Kononenko [13] introduced confidence estimation based on the local sen-

sitivity of a regression model. Sensitivity analysis determines how much the model is

affected if we modify the training dataset. By introducing a local change into the learn-

ing data, we can explore the sensitivity of the regression model in this very local area

4.2 Methods 85

of the data. For this, we extend the training data by the predicted instance x∗. The

response value of our new learning example is set to ŷ∗+δ(ymax−ymin), where ŷ∗ is the

predicted response value of x∗, δ is a sensitivity parameter, and ymax and ymin are the

maximum and minimum response values of the training data, respectively. To measure

the effects of this change, we predict the response value ŷ∗δ of x∗ using a regression

model trained on the updated dataset. This approach is not strictly model-dependent

since it does not rely on certain properties of a model but treats the model as a black

box.

For predicting confidence values, several updated datasets with different sensitivity

parameters δ ∈ ∆ = {0.01, 0.1, 0.5, 1.0, 2.0} are used. The local variance approach

estimates how strong the predicted response value is changed by local changes in the

training data:

csLocalVar(x∗) = 1− 1
|∆|

∑
δ∈∆

(ŷ∗δ − ŷ∗−δ). (4.7)

The bias estimator measures how unstable the prediction is by expressing the

amount of local bias:

csLocalBias(x∗) = 1−

∣∣∣∣∣ 1
2|∆|

∑
δ∈∆

(ŷ∗δ − ŷ∗) + (ŷ∗−δ − ŷ∗)

∣∣∣∣∣ . (4.8)

We use the absolute value of the local bias since we are not interested in which

direction the predictor is more unstable.

Local Cross-Validation

Local regression models, such as locally weighted regression, are often able to increase

the prediction accuracy by adapting to local properties of the input space [2]. This

idea has been adapted as a confidence estimator [12]. The estimator calculates the

errors made by a locally trained model on the m nearest neighbors of the test instance.

However, it does not consider errors made by one particular model. Instead, it tests

whether a local part of the input space can in general be modeled with the given

regression model. The errors of the local model are calculated by a leave-one-out cross-

validation. The local environment E(x∗,m) of x∗ in training dataset D is defined as a

set of the m nearest neighbors, the m instances {(x1, y1), . . . , (xm, ym)} ⊆ D with the

86 4. Interpretable Regression With CONFINE and CONFIVE

smallest Euclidean distance d(xi, x∗) to x∗. For every neighbor (xi, yi) ∈ E, a regression

model is trained on E \ (xi, yi). Then, the response ŷi of xi is predicted with this model

and the absolute prediction error ε̂i = |ŷi−yi| is calculated. By weighting the instances

according to their distance to x∗, we receive the following confidence estimator:

csLocalCV(x∗) = 1−
∑m

i=1 e
−0.5d(xi,x

∗)2 ε̂i∑m
i=1 e

−0.5d(xi,x∗)2
. (4.9)

Obviously, estimation with LocalCV requires long runtimes, since the leave-one-out

cross-validation has to be repeated for every single instances x∗. To reduce the runtime,

we set m to min{ n20 , 50}.

Bagging

Another confidence estimation that treats the regression model as a black box is boot-

strap aggregation of multiple predictions models, also known as bagging. It has been

observed that bagged aggregates can increase the prediction performance [15], but it

has been also used to estimate the reliability of predictions [60, 82]. Given our training

dataset D, we create m = 50 new datasets Di of the same size as D by uniformly sam-

pling with replacement instances from D. Every dataset Di is used to train a regression

model and to predict our novel instance x∗, resulting in m predicted response values

ŷ∗i . Since we expect agreement among the predictors in case of a reliable prediction,

the final confidence estimator is based on the variance of the predicted responses:

csbagging(x∗) = 1− 1
m− 1

m∑
i=1

(ȳ∗ − ŷ∗i)2, (4.10)

where ȳ∗ denotes the mean of all predicted response values ŷ∗i .

Predictive Variance

A classic approach of confidence estimation is the use of the predictive variance of

Bayesian models. In particular, Gaussian processes have been successfully applied for

AD estimation [156]. However, in contrast to the presented confidence estimators above,

this way of estimation is strictly model-based and can only be applied if it is possible

to estimate the models predictive variance. If the predictive variance is very small,

we would assume the model to be very confident about this prediction. In contrast, if

4.2 Methods 87

the variance is rather high, the confidence is low. For a linear least squares regression

model, the predictive variance is defined as x∗(XTX)−1x∗T , where X is the feature

matrix of our linear regression.

We did not consider the predictive variance in this work for two reasons: First,

confidence estimation using the predictive variance is only possible for certain models

and, hence, not independent of the model as the other presented estimators. Second,

although the confidence values estimated by LocalVar do not equal the predictive vari-

ances of the linear regression, it is safe to assume that LocalVar approximates the

behavior of the predictive variance. In our experiments, we observed that LocalVar

and the predictive variance represented the same order of the instances, regarding their

error. Thus, both estimation approaches yield the same estimation quality.

4.2.2 Confidence Estimators CONFINE and CONFIVE

In the following, we introduce our two novel confidence estimators, CONFINE and

CONFIVE. Both confidence estimators are model-independent and can be applied with

any regression model. This has two advantages: First, both estimators do not impose

a specific regression model. Second, the runtimes are independent of the model. Even

if applied with computationally expensive models, CONFINE and CONFIVE estimate

the confidence of an individual prediction with only a small runtime overhead.

CONFINE – Errors of Nearest Neighbors

Our first confidence estimator, CONFINE, is based on the squared error (SE) of the

surrounding training instances. It has been adapted from an estimation approach of

Dimitrov et al. [50], which has been introduced in the previous chapter as estimator

Acc. If the SE of the m nearest neighbors is already very high, we do not expect

the model to be very good on novel instances either. Thus, a large error in the local

environment results in a low confidence score, whereas a low error results in a large

score:

csCONFINE(x∗) = 1− 1
m

m∑
i=1

ε̂2i .

88 4. Interpretable Regression With CONFINE and CONFIVE

The prediction errors ε̂i can be obtained by predicting the response values of the

training dataset using a model trained on the same data or by performing a cross-

validation on the training data. The optimal value of m is obtained using five nested

two-fold cross-validations on the training dataset by averaging the values of m resulting

in the highest estimation quality of each fold.

CONFIVE – Variance of Nearest Neighbors

Our second confidence estimator, CONFIVE, is based on the variance of the response

values of the m nearest neighbors of x∗. CONFIVE is a generalization of estimator

LE from Chapter 3. It assumes that a large variance of the responses in a local region

cannot necessarily be modeled with a regression approach. This is especially true if a

linear model is applied. Thus, large variances result in a low confidence score, whereas

small variances result in a large score:

csCONFIVE(x∗) = 1− 1
m− 1

m∑
i=1

(ȳ − yi)2.

The optimal value of m is also obtained using five nested two-fold cross-validations.

Kernel-based Approaches of CONFINE and CONFIVE

As an alternative to the confidence estimators presented above, we propose two al-

ternative estimators CONFINE∗ and CONFIVE∗. Instead of relying on a fixed local

environment, they use a Gaussian kernel to re-weight instances in the environment

according to their distance to the test instance x∗. Hence, we put more weight on

instances that are close to x∗ and less weight on instances that are very distant to x∗:

csCONFINE∗(x∗) = 1−
∑n

i=1 e
−0.5d(xi,x

∗)2 ε̂2i∑n
i=1 e

−0.5d(xi,x∗)2
(4.11)

csCONFIVE∗(x∗) = 1−
∑n

i=1 e
−0.5d(xi,x

∗)2(ȳ − yi)2∑n
i=1 e

−0.5d(xi,x∗)2
. (4.12)

To save runtime, both estimators are defined with a fixed kernel-width. Using this

approach might result in a slightly reduced estimation quality. However, both estima-

tors require no optimization and are computationally very cheap. Due to their reduced

estimation quality, we show respective performance details only in the appendix.

4.2 Methods 89

4.2.3 Confidence Intervals

When the response of a novel instance x∗ has been predicted using the trained regres-

sion model, we apply our confidence estimators for this particular prediction. Since

obtained confidence scores cs(x∗) determined by different estimators are not necessar-

ily comparable nor interpretable, we calculate normalized confidence scores ncs(x∗) as

described below. We first predict the responses of the training data and then apply the

confidence estimator for each prediction. The normalized confidence score ncs(x∗) of a

novel instance x∗ is then calculated by determining the fraction of predictions from the

training dataset with a smaller confidence value than x∗. Thus, an ncs of 0.8 implies

that 80% of the instances in the training dataset have been predicted with a smaller

confidence value. Using this approach, we obtain meaningful and interpretable scores

which lie between zero and one.

Normalized confidence scores are useful indicators of the prediction error. We as-

sume that the higher the score of a predicted instance, the more likely this instance

was predicted with a small error. Still, it is not obvious how such a score relates to an

actual error. For example, given an ncs of 0.9, it is not obvious how large the actual

prediction error is.

Confidence intervals are a more intuitive concept than arbitrary scores. Instead of

predicting only the response ŷ and the corresponding normalized confidence score ncs,

we predict an interval based on ncs which includes the correct response value y with

a probability of 0.8. Since reliable predictions with a large ncs have, on average, a

smaller SE, we expect them to have smaller confidence intervals. We can relate an ncs

to confidence intervals (e.g., 80% confidence intervals) as follows.

The borders of confidence intervals are estimated on the training dataset. For

this, we first predict the responses of the training instances using a model trained

on the training dataset. Subsequently, the normalized confidence scores of all train-

ing instances are first estimated using a confidence estimator based on the train-

ing data and then sorted in ascending order {ncs1, . . . , ncsn}. For every possible

normalized confidence score nsci, we collect the errors of instances with an ncs of

{ncsi−50, . . . , ncsi, . . . , ncsi+50} where possible. Otherwise, we use a reduced set of er-

rors. Based on this set of errors E, we calculate the 0.1 quantile qncsi(0.1) and the

0.9 quantile qncsi(0.9) as interval borders for each ncsi. By using empirical quantiles,

90 4. Interpretable Regression With CONFINE and CONFIVE

we do not assume a normal distribution and, hence, are independent of the underlying

error distribution.

When predicting the response ŷ∗ and the confidence score ncs∗ of a novel instance

x∗, we calculate the 80% confidence interval as [ŷ∗+ qncs∗(0.1), ŷ∗+ qncs∗(0.9)]. In case

of MHC-I–peptide binding prediction, we thus obtain a range of affinities instead of a

plain affinity value. If the upper bound of the 80% confidence interval is below 500 nM,

we can assume a probability of 90% that the peptide is going to be a real binder.

Note, in case of CONFINE, we could also simply use only the errors of the nearest

neighbors of an instance to estimate intervals. However, we found this naive estimate to

perform worse than the above described approach. One possible reason is the fact that

such a naive approach considers only errors of instances in the nearest neighborhood.

Whereas the more advanced confidence interval estimation applied to CONFINE con-

siders the errors of instances with a similar error landscape regardless of their position.

4.2.4 Evaluation

The width of the predicted confidence interval is an indicator of the prediction error.

Predictions with a large SE should yield a broad confidence interval, while predictions

with a low SE are assumed to have a small confidence interval. Consequently, we can

assess the quality of estimates by calculating the correlation ρ between the absolute

prediction errors |ε̂| and the corresponding confidence interval widths ciw = q(0.9) −
q(0.1). The resulting correlation is then normalized by the correlation obtained from a

perfect confidence estimator. We define the confidence–error correlation (CEC) as

CEC =
ρ(ciw, |ε̂|)

ρ(sort(ciw), sort(|ε̂|))
,

where sort is a sorting function. Since we wish to calculate an 80% confidence interval,

we obviously also require about 80% of the test errors to lie within the confidence

interval.

In the left-hand plot of Figure 4.1, we show absolute prediction errors of 200 ex-

ample instances and the width of their corresponding confidence intervals estimated by

CONFINE. We can observe that a considerable number of instances with a small error

exhibit a small confidence interval, as we would have expected. The corresponding

estimation quality in terms of the CEC equals 0.3. At a first glance, the resulting CEC

does not seem all that impressive. It should be noted, however, that we do not expect

4.2 Methods 91

a perfect correlation between the error and the confidence interval width. It is only

required that the error is smaller than the confidence interval. The right-hand plot of

Figure 4.1 shows that a CEC of 0.3 already leads to a considerably reduced confidence

interval for confident predictions. For larger confidence scores, we not only observe

smaller absolute errors, but also smaller confidence intervals. While correlation is thus

obviously not the perfect measure, we used it because of its rather intuitive nature.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.
5

1.
0

1.
5

2.
0

2.
5

confidence interval width

ab
so

lu
te

 e
rr

or

−
1

0
1

2

normalized confidence score

pr
ed

ic
tio

n
er

ro
r

●

●

●
●

●●

●

● ●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

0 0.2 0.4 0.6 0.8 1

score−based confidence interval
overall confidence interval
zero error

Figure 4.1: Example of estimating confidence intervals. In this example, we
estimated the confidence intervals of 200 instances. The left-hand plot shows the confi-
dence interval widths and the corresponding absolute errors. The corresponding CEC
equals 0.3. Although the CEC is not very large, it is possible to see an increased num-
ber of small confidence intervals for predictions with a low error. In the right-hand
plot, the estimated confidence interval borders are displayed. In addition, every pre-
diction defined by its prediction error and its normalized confidence score is depicted
by a red circle. On average, the absolute error is smaller for predictions with a high
ncs and a small confidence interval.

In applications like epitope-based vaccine design, we are only interested in highly

reliable predictions. To account for that, we also measure the confidence-associated

prediction improvement (CAPI). Therefore, we calculate by what percentage the MSE

is reduced if we consider only the top 20% predictions, i.e. the 20% predictions with

the smallest confidence intervals.

92 4. Interpretable Regression With CONFINE and CONFIVE

4.2.5 Datasets

We benchmarked our methods on three different types of datasets: a synthetic dataset,

an MHC–peptide binding dataset, and several 3D-QSAR datasets. The synthetic

dataset was created using the Friedman function [68]. This test function has five rele-

vant features where two are linear and three are nonlinear. All other features have no

influence on the function value. We created datasets of different sizes {100, 500, 1000}

by sampling 10, 50, 100, or 500 features from [0, 1] uniformly. The response values were

calculated by applying the Friedman function to the first five features and introducing

different levels of Gaussian noise N(µ = 0, σ ∈ {0.1, 0.5, 1.0, 2.0}) into the response

value.

For our second study, we extracted peptides of length nine with known binding

affinities to molecules from 12 different MHC class I alleles from the IEDB bench-

mark dataset [137]. We chose the 12 HLA alleles for which more than 1,000 exam-

ples are available: HLA-A*01:01, HLA-A*02:01, HLA-A*02:02, HLA-A*02:03, HLA-

A*02:06, HLA-A*03:01, HLA-A*11:01, HLA-A*31:01, HLA-A*33:01, HLA-A*68:01,

HLA-A*68:02, and HLA-B*07:02. We encoded the peptides using sparse binary encod-

ing in which each peptide sequence is encoded by a 180-dimensional bit vector, where

9 times 20 bits represent each of the 20 amino acids at all nine positions [54]. For the

response, we use the logarithm of the given IC50 values. The resulting datasets contain

between 1,157 and 3,089 instances, each encoded by 180 features.

To show that CONFINE and CONFIVE can also be applied to other regression

problems, we used eight well-studied benchmark datasets from 3D-QSAR [177], which

consist of 66 to 397 chemical compounds. We calculated up to 1, 872 features using

DragonX 1.4.0 [179]. Note that the QSAR datasets exhibit quite different properties

with respect to the number of data points, the size of the input feature space, and

the coverage of that input space. Due to the large number of features some instances

can take values that might be unique within the whole dataset. In contrast, it is very

unlikely that there is no peptide with the same amino acid at one particular position in

a dataset of more than 1,000 peptides. More importantly, the QSAR datasets contain

a lot less data points than the IEDB benchmark datasets.

4.3 Results and Discussion 93

4.3 Results and Discussion

Since some estimators perform very similar, we restricted our evaluation to CONFINE

and CONFIVE, NoNN, AvgDist, LocalVar, LocalCV, and bagging. For details on the

performance of the other predictors, we refer to the appendix.

4.3.1 Influence of Dataset Size, Features, and Noise

In an initial experiment, we analyzed how the introduced confidence estimators are

influenced by the dataset size, the number of features, and noise in the data. The

experiment was performed on the synthetic dataset, which gives us full control over

these parameters. We performed five five-fold cross-validations on randomly generated

artificial datasets, each with a different number of instances, features, and noise levels

in the response variable, resulting in 48 combinations. The estimation quality of the

confidence estimators in terms of the average CEC (avgCEC) are shown for different

parameter combinations in Figure 4.2 and Table 4.1. See Tables D.23 and D.24 in the

appendix for performance details of all estimators and details on qualities regarding

the confidence-associated prediction improvement (CAPI).

n ≤ 100 n > 100 m ≤ 10 m > 10 σ < 1 σ ≥ 1

property constraint

av
er

ag
e

C
E

C

0.
00

0.
04

0.
08

0.
12

Figure 4.2: Influence of dataset size, features, and noise. The barplot shows
the average CEC of the confidence estimators on artificial data with different property
constraints: the dataset size n, number of selected features m, and the noise level σ.

94 4. Interpretable Regression With CONFINE and CONFIVE

We found that the dataset size has the strongest influence on the estimation perfor-

mance. On very small datasets with only 100 instances, the estimators yield an avgCEC

of 0.05. When considering datasets with more than 100 instances, the avgCEC of all es-

timators increases to 0.13. In addition, we observe a CAPI of 9% on small datasets and

a CAPI of 21% if more than 100 training instances are given. Still, not all estimators

are equally sensitive to the dataset size. While the avgCEC of estimator CONFIVE

is only slightly influenced by the dataset size, the avgCEC of CONFINE increases by

0.17 when considering sufficiently large datasets. For large datasets, CONFINE shows

a CAPI of 35%. Moreover, note that when the dataset size is increased from 100 to

1,000 instances, the standard deviation of the CECs decreased from 0.27 to 0.11.

We also observe that noisy features and noise in the responses have an influence on

the quality of confidence estimates. Particularly when the initial number of features

is high or the dataset size is low, noisy, non-predictive features were included in the

feature set. When more than 10 features were selected, the avgCEC of all estimators

decreases by 0.09. Similar results are obtained regarding the noise in the data. When

random values with a low standard deviation (σ < 1.0) were added to the data, the

avgCEC is up to 0.06 larger compared to avgCECs obtained on data with a higher

noise level.

As expected, when we consider only datasets with 1,000 instances, ≤ 10 selected

features, and a noise level of σ = 0.1, all estimators yield their best performance. In

particular, CONFINE performs well, yielding an avgCEC of 0.30 and a CAPI of 0.48,

i.e. the 20% of predictions that have the smallest confidence intervals exhibited a 48%

lower MSE than an average prediction.

From our results, we can conclude that – not surprisingly – a larger amount of

training data results in more robust estimates and higher confidence estimation quality.

In addition, a good feature representation and a low noise level simplify confidence

estimation. Clearly, these properties are not independent of each other. Distinguishing

between informative and non-informative features is easier for large datasets, since the

difference between noise and information becomes more evident. The same holds for

datasets with a low level of noise, resulting in less noisy features. Since most confidence

estimators discussed here inspect local properties of the input space, they rely on good

feature representation. If noisy features are part of the feature set, instances in the

local environment are not necessarily similar to the test instance and, thus, provide no

4.3 Results and Discussion 95

Table 4.1: Performance of confidence estimators on artificial data with
different properties

n ≤ 100 n > 100 m ≤ 10 m > 10 σ < 1.0 σ ≥ 1.0 best

CONFINE 0.05 0.22 0.19 0.05 0.21 0.15 0.30
CONFIVE -0.02 0.05 0.03 -0.01 0.04 0.02 0.07

AvgDist 0.02 0.12 0.10 0.03 0.11 0.08 0.16
Bagging 0.11 0.20 0.18 0.11 0.19 0.16 0.25
Diff5NN 0.01 0.17 0.14 0.02 0.14 0.11 0.29
LocalCV 0.01 0.05 0.04 0.02 0.04 0.03 0.05
LocalVar 0.00 0.12 0.10 0.00 0.09 0.08 0.16
NoNN 0.05 0.12 0.12 0.03 0.11 0.09 0.16

For every confidence estimator, we calculated the average CEC by considering
datasets with a different number of instances n, a different number of selected
features m, and a different noise level σ. In the last column, we show the average
CEC for the best parameter combination (n = 1,000, m ≤ 10, σ = 0.1).

reliable confidence information. Furthermore, given more instances in the dataset, we

can define a local environment with a smaller diameter since the density of instances is

higher. Consequently, the nearest neighbors are more similar to the test instance and

contain more relevant confidence information.

4.3.2 Evaluation on IEDB Benchmark Datasets

To compare CONFINE and CONFIVE with existing confidence estimators, we per-

formed five five-fold cross-validations on the IEDB benchmark datasets.

Our estimators CONFINE and CONFIVE, as well as DiffNN, with an avgCEC of

around 0.25, perform better than other estimators, which yield an avgCEC around

0.12 (see Table 4.2). In addition, the best three confidence estimators show a CAPI

of up to 39%, while the other estimators yield an average improvement of only 19%.

In Figure 4.3, a boxplot shows the performance of the different confidence estimators.

The boxplot confirms that CONFINE, CONFIVE, and DiffNN perform superior. In-

terestingly, on allele A*01:01, all confidence estimators yield a very high CEC (> 0.7).

See Table D.25 in the appendix for performance details of all presented estimators.

96 4. Interpretable Regression With CONFINE and CONFIVE

Table 4.2: Performance of confidence estimators on biological datasets us-
ing linear regression

confidence MHC QSAR
estimator CEC CAPI runtime [ms] CEC CAPI runtime [ms]

CONFINE 0.27 0.39 2 0.08 0.09 1
CONFIVE 0.24 0.35 2 0.09 0.13 1
AvgDist 0.11 0.18 2 -0.02 -0.10 1
Bagging 0.13 0.18 1 0.20 0.35 1
DiffNN 0.24 0.32 2 0.00 -0.14 1
LocalCV 0.16 0.27 214 0.08 0.10 353
LocalVar 0.10 0.17 482 -0.08 -0.22 430
NoNN 0.10 0.17 2 -0.03 -0.09 1

For every confidence estimator, the avgCEC, the confidence-associated prediction
improvement (CAPI), and the time for an individual estimation in milliseconds on the
MHC datasets and on the QSAR datasets is shown.

●

●

●

●
●

●
●

●

●

●

0.
0

0.
2

0.
4

0.
6

0.
8

M
ea

n
C

E
C

A
vg

D
is

t

B
ag

gi
ng

D
iff

N
N

Lo
ca

lC
V

Lo
ca

lV
ar

C
O

N
F

IN
E

C
O

N
F

IV
E

N
oN

N

Figure 4.3: Boxplot of CECs of CONFINE, CONFIVE, and other estima-
tors on the IEDB benchmark datasets.

In Figure 4.4, we plotted the avgCECs of CONFINE on the different IEDB bench-

mark datasets. Note that CONFIVE performs very similar to CONFINE. We observe

4.3 Results and Discussion 97

that the performance differs greatly from dataset to dataset. In particular, for allele

A*02:02, A*02:03, and A*68:01, CONFINE performs poorly. In contrast, the avgCEC

for allele A*01:01 and B*07:02 is even larger than 0.8. For most other dataset, CON-

FINE can provide good confidence estimates, yielding an avgCEC between 0.2 and

0.5.

Estimating confidences with CONFINE and CONFIVE is possible with only a mi-

nor computational overhead. Estimating the confidence intervals of one individual

prediction requires about 2 ms on a 2GHz dual-core AMD Opteron with 4 GB of RAM

using our R implementation. But also most other estimators need about 2 ms for an

estimation. Only estimators LocalCV and LocalVar require more than 200 ms for an

individual estimation. For each estimation, both estimators train multiple regression

models, which results in a huge computational overhead. Bagging also uses multiple

regression models for its estimations. However, these models are trained only once,

making bagging faster than LocalCV and LocalVar. Note that confidence estimation

with bagging can, however, require long runtime if it is applied with non-linear models

(see Section 4.3.4).

Our results suggest that CONFINE and CONFIVE often perform better than most

other confidence estimators while being comparable to DiffNN. They perform particu-

larly well due to the large amount of training data contained in the IEDB benchmark

datasets. Interestingly, CONFIVE performs well on the IEDB benchmark datasets,

while yielding a poor performance on artificial data. The superior estimation quality

of CONFINE and CONFIVE is of special interest for tasks that rely on high-quality

predictions. If we would consider only peptides as epitopes candidates that could be

predicted with a very small confidence interval, we would expect a considerably lower

error rate for these predictions and, thus, more reliable epitope candidates. In addition,

CONFINE and CONFIVE require only a small computational overhead.

4.3.3 Evaluation on 3D-QSAR Datasets

To show that our confidence estimators can also be applied to other regression problems

than MHC-I–peptide binding prediction, we repeated the above study on the QSAR

benchmark datasets.

The results differ slightly from the results obtained on the IEDB benchmark datasets

(see Table 4.2). Bagging performs best, yielding an avgCEC of 0.20, while estimators

98 4. Interpretable Regression With CONFINE and CONFIVE
M

ea
n

C
E

C

0.
0

0.
2

0.
4

0.
6

0.
8

A
_0

10
1−

9

A
_0

20
1−

9

A
_0

20
2−

9

A
_0

20
3−

9

A
_0

20
6−

9

A
_0

30
1−

9

A
_1

10
1−

9

A
_3

10
1−

9

A
_3

30
1−

9

A
_6

80
1−

9

A
_6

80
2−

9

B
_0

70
2−

9

Figure 4.4: Barplot of the avgCEC of CONFINE on the different IEDB
benchmark datasets.

CONFINE, CONFIVE, and LocalCV perform second-best, with avgCECs around 0.08.

Since most estimators have been shown to be very sensitive to the dataset size, we also

calculate the avgCEC considering only QSAR datasets with more than 100 learning

examples. On large QSAR datasets, the avgCEC of most estimators is considerably

improved. In the case of CONFINE and CONFIVE, the avgCEC improves to 0.13

and 0.15, respectively. A similar trend can be observed when considering prediction

improvement. The estimation time of all estimators but LocalCV and LocalVar is only

about 1 ms for an individual prediction. Again, see Table D.25 in the appendix for

performance details of all estimators.

Our findings support the results obtained in Section 4.3.2. CONFINE and CON-

FIVE perform comparable to bagging and LocalCV on datasets of medium size with

more than 100 training instances. Interestingly, commonly used AD estimators such as

AvgDist, DiffNN, and NoNN often fail to give reasonable error estimates. On very small

datasets our estimators exhibit also problems giving good confidence estimates. How-

ever, if sufficient training data is available, users can benefit from confidence estimates

made by CONFINE and CONFIVE.

4.3 Results and Discussion 99

4.3.4 Confidence Estimation for Nonlinear Models

To show that CONFINE and CONFIVE can be also applied to nonlinear regression

models, we repeated the evaluation on the MHC and QSAR datasets using SVR with an

RBF kernel and the full set of features. Details on SVR can be found in Section 2.1.2.

Since estimators LocalCV and LocalVar require too much runtime, we excluded them

from this study. The parameters of the SVR and the estimators were optimized by

performing cross-validations on the training dataset. Since optimizing SVRs requires

more runtime, we restricted the evaluation to only one five-fold cross-validation. The

results are shown in Figure 4.5 and Table 4.3.

av
er

ag
e

C
E

C

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

C
O

N
F

IN
E

C
O

N
F

IV
E

A
vg

D
is

t

B
ag

gi
ng

D
iff

N
N

N
oN

N

av
er

ag
e

C
E

C

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

C
O

N
F

IN
E

C
O

N
F

IV
E

A
vg

D
is

t

B
ag

gi
ng

D
iff

N
N

N
oN

N

Figure 4.5: The average CEC of confidence estimators applied to SVR
models on the IEDB benchmark datasets (left-hand barplot) and QSAR
datasets (right-hand barplot). Due to the large runtimes of LocalCV and Local-
Var, we excluded both estimators from this study.

Confidence estimators CONFINE, CONFIVE, and bagging perform best (see Fig-

ure 4.5). In particular, CONFINE yields the largest avgCEC and also a very large

CAPI (see Table 4.3). The avgCEC on the MHC datasets is comparable to our pre-

vious results, whereas the avgCEC on the QSAR data is higher. In particular, the

avgCEC of CONFINE and CONFIVE is considerable increased if being applied with

nonlinear SVR. Again, we observe that CONFINE and CONFIVE perform better on

100 4. Interpretable Regression With CONFINE and CONFIVE

larger QSAR datasets.

Normalized confidence scores and confidence intervals can be predicted with only

a small computational overhead using estimators CONFINE, CONFIVE, AvgDist,

DiffNN, and NoNN. On the MHC and QSAR datasets they require between 9 to 44 ms

for an individual prediction. The different estimation times between estimators and

the differences compared to our previous results using linear regression originate from

the different number of features. Confidence estimation based on bagging requires

the largest runtime of up to 3 s for an individual prediction. The performance of all

confidence estimators is shown in Table D.26 in the appendix.

Table 4.3: Performance of confidence estimators on biological datasets us-
ing SVR

confidence MHC QSAR
estimator CEC CAPI runtime [ms] CEC CAPI runtime [ms]

CONFINE 0.23 0.41 9 0.23 0.32 9
CONFIVE 0.21 0.34 10 0.16 0.21 10
AvgDist 0.12 0.23 9 0.02 0.03 12
Bagging 0.21 0.50 374 0.15 0.17 3,064
DiffNN 0.24 0.35 9 0.10 0.20 10
NoNN 0.22 0.18 9 0.12 0.14 44

For every confidence estimator, the average CEC, the average confidence-associated
prediction improvement (CAPI), and the time for an individual estimation in ms on
the MHC datasets and on the QSAR datasets is shown.

Our findings support the assumption that CONFINE and CONFIVE show similar

behavior when being applied in combination with nonlinear regression models. In par-

ticular, CONFINE shows again a very good and very robust performance, while being

fast at the same time. Although confidence estimation based on bagging shows also

good performance, bagging is less practical for real-world applications. If bagging is ap-

plied with a time-consuming regression model, runtimes can be quite high. In contrast,

CONFINE and CONFIVE perform independent of the actual regression model, mak-

ing them even more interesting for real-world applications like epitope-based vaccine

design.

4.3 Results and Discussion 101

4.3.5 Evaluation of Confidence Intervals

To show that a score-based 80% confidence interval contains as many instances as an

interval estimated independently from a confidence score, we compared it with a general

80% confidence interval. Therefore, we calculate the 0.1 quantile and the 0.9 quantile

of the SEs of all training instances without considering the confidence scores. While the

score-based confidence intervals are expected to be smaller for large ncs, the general

interval is always of the same size. However, in both cases, we expect that about 80%

of the test instances are within the confidence interval.

On the artificial dataset, we observe an almost equal fraction of 0.72 and 0.73 of the

instances in the score-based interval and the general interval, respectively. If we consider

only datasets with more than 100 instances, we find about 77% of the instances within

both confidence intervals. Among the different confidence estimators, we could not find

considerable differences. We obtain similar results for the IEDB benchmark datasets.

A fraction of 0.74 and 0.77 of the instances are within the score-based interval and

general interval, respectively. In contrast, only 54% and 55% of the instances from the

QSAR datasets fall into the respective confidence intervals. However, when considering

only QSAR datasets with more than 100 training examples, about 67% of the instances

are within both confidence intervals.

Our results suggest that score-based confidence intervals contain nearly the same

fraction of instances as general confidence intervals. In particular, on the large IEDB

benchmark datasets, the fraction of instances within the confidence interval converges

to 0.8. Furthermore, since the widths of score-based confidence intervals are correlated

with the absolute prediction error, they are a very intuitive measure of confidence.

4.3.6 Predicting the Estimation Performance

Although confidence estimation can give valuable information in addition to plain re-

sponse values, the quality of estimates differs from dataset to dataset (see Figure 4.4).

To answer the question to what extend we can predict the quality of confidence esti-

mates, we compared the CECs obtained from the training data (CECtrain) with the

CECs obtained from the corresponding test data (CECtest) for all estimators.

On the artificial dataset, we observe an average correlation coefficient ρ between

CECtrain and CECtest of 0.16. When considering only datasets with more than 100

102 4. Interpretable Regression With CONFINE and CONFIVE

training examples, the average ρ increases to 0.38. The same trend can be observed

in the biological datasets. For the considerably larger MHC datasets, we receive an

average ρ between CECtrain and CECtest of 0.91, while no correlation is observed for

the fairly small QSAR datasets. In particular, the training CECs of CONFINE and

bagging show a comparably good correlation with their corresponding CECstest for all

datasets. See Table D.27 in the appendix for a detailed overview.

If a sufficient amount of training data is available, the performance of confidence

estimators correlates well with their performance on the training data.

4.3.7 Confidence Estimation in Epitope-Based Vaccine Design

Confidence estimation of individual regression predictions is of special interest in criti-

cal tasks which rely on high-quality predictions. MHC–peptide binding prediction, as

an important step in the design process of epitope-based vaccines, is such a critical

task. Only if we discover reliable epitope candidates, an immune response is triggered

and the immune system can “remember” the corresponding antigen. Estimating the

confidence in affinity predictions can help to distinguish between reliable epitope can-

didates and candidates that are likely to be false positives. In the following, we show

that confidence estimation using CONFINE can help to improve epitope discovery and

epitope engineering.

Parkhurst et al. [133] studied how mutations in known epitopes can improve MHC–

peptide binding and T-cell response. They analyzed two epitopes of gp100, which is a

melanocyte lineage-specific membrane glycoprotein expressed in melanoma. Peptides

G9209 and G9280 show weak binding to HLA-A*02:01 and are able to induce an immune

response [100]. The authors manually engineered both epitopes by designing 21 and

17 analogous peptides for G9209 and G9280, respectively. Therefore, they introduced

one or two mutations at positions 1, 2, 3, and 9. They experimentally determined

the binding affinity of all analogs of G9209 and G9280 and found an improved binding

affinity in 19 and 16 cases, respectively. In 2003, Bhasin and Raghava [6] performed an

in silico study on the same data. Using a matrix-based classification approach, they

predicted 16 and 11 peptides to bind stronger than G9209 and G9280, respectively. The

remaining eight epitopes could not be found by the method.

We repeated this study using the previously described linear regression approach.

For training our model, we use available binding data for allele HLA-A*02:01 from the

4.3 Results and Discussion 103

IEDB benchmark dataset [137]. Peptides were sparsely encoded and the given IC50

values were log-transformed. In addition, we estimate confidence intervals for each

prediction using CONFINE. In contrast to the matrix-based approach of Bhasin and

Raghava [6], we predict that all of the 35 experimentally verified heteroclitic peptides

yield a lower IC50 value than the wildtype peptide. In case of the G9209 analogs, we

predict two non-binders to bind to the MHC molecule (see Table 4.4). Interestingly,

both non-binders yield the two largest confidence intervals among the predictions, which

means that we can put only little confidence into the predicted affinities. If we were

required to select an epitope candidate for a vaccine, we would not have chosen these

peptides due to the low confidence scores. Furthermore, we can show that confidence

estimates can also be beneficial to determine the quality of the predicted affinities

among the binders. For the G9209 and G9280 analogs, our models show an MSE of

0.13 and 0.22, respectively. If we consider only the five predictions with the smallest

confidence interval, the MSE decreases to 0.09 and 0.07, respectively. Hence, high-

confidence predictions yield a 35% to 68% lower error than an average prediction.

Considering only reliable binders as epitope candidates does decrease the chance of

being misled by erroneous predictions. This can be beneficial for epitope discovery,

which requires to select reliable epitope candidates. See Table D.29 for an overview of

all 21 predictions of the G9209 analogs.

The study of Parkhurst et al. [133] required a lot of experimental effort since for more

than 30 peptides the MHC-I–peptide binding affinity had to be determined. To avoid

these costly and time-consuming experiments, we suggest an alternative, computational

approach based on a genetic algorithm to engineer epitopes. A similar approach that

aims at finding the peptide with the strongest affinity to an MHC molecule has been

recently published [104]. However, we are not interested in finding the best binder but

in engineering a given epitope. Most importantly, our engineering approach aims at

optimizing the predicted affinity and the confidence of the corresponding prediction at

the same time. The peptide predicted with the highest binding affinity might be a low

confidence prediction that exhibits a higher error than other predictions. To exclude

low-confidence predictions, we aim at minimizing the upper bound of the predicted 80%

confidence interval. The upper bound of this confidence interval corresponds to the

maximum IC50 value the peptide is going to have with a probability of 90% (IC90%
50).

104 4. Interpretable Regression With CONFINE and CONFIVE

Table 4.4: Binding affinities and confidence intervals of G9209 and selected
analogs

peptide exp IC50 pred IC50 lower bound IC50 upper bound IC50

ITDQVPFSV 172 156.2 50.9 759.9

WTDQVPFSV 716.7 158.7 28.3 1052.1
ITSQVPFSV 637.0 138.8 45.5 639.1
ILWQVPFSV 1.7 5.5 1.4 25.5
ILFQVPFSV 2.0 7.7 2.4 36.2
FLDQVPFSV 2.2 2.2 0.3 16.4
YLDQVPFSV 2.3 2.8 1.0 12.5

For each peptide, the experimentally determined IC50 value (exp IC50), the predicted
IC50 (pred IC50), and the lower and upper bound of the 80% confidence interval are
given (as IC50). The first peptide is G9209, followed by a selected set of analogs. The
mutated positions are printed in bold. Note that we calculate the confidence interval
width based on the log IC50 values.

In this way, we minimize the predicted IC50 value and maximize the corresponding

confidence at the same time.

In addition, we have to consider two important constraints for our optimization:

1. The resulting peptide has to show a certain similarity to the wildtype peptide.

Otherwise, the immunological memory might remember only the heteroclitic pep-

tide but not the peptide of the pathogen. To avoid this problem, we restrict a

candidate epitope to differ in at most two positions from the wildtype peptide.

2. Positions in the middle of the peptide are known to be important for TCR binding

and, hence, should not be mutated. In case of allele HLA-A*02:01, it is known

that residues 4 to 8 are less important for MHC-I–peptide binding but vital for

the interaction of the MHC–peptide complex with the TCR [102]. Mutating

one of these residues might result in a lower T-cell reactivity that could reduce

the efficacy of the vaccine. Consequently, we fix these positions in the genetic

algorithm.

For our optimization task, we use genetic algorithms implemented in the Python

framework Pyevolve [134]. A genetic algorithm is a heuristic optimization technique

4.3 Results and Discussion 105

based on natural evolution. In every iteration, individuals of a population, peptides in

our case, are mutated, combined, and selected according to their fitness. In our case,

the fitness of a peptide is expressed as the IC90%
50 . Peptides with a small IC90%

50 are more

likely to be selected for the next iteration. Our approach uses a population consisting

of 10 peptides and uses a mutation rate and crossover rate of 0.6 and 0.8, respectively.

The peptides for the next generation are selected via rank selection. The optimization

process terminates if the smallest IC90%
50 of a population remains unchanged for 50

iterations or if an upper bound of 200 iterations is reached. Note that due to the

considerably small search space of 2,242 peptides, exhaustive enumeration would have

been feasible for this particular optimization problem. Nevertheless, applying genetic

algorithms results in a large speed-up. Our genetic algorithm approach requires less

than 300 predictions to find the peptide with the smallest IC90%
50 .

We applied our genetic algorithm approach to engineer epitopes G9209 and G9280

using the above described constraints. For epitopes G9209 and G9280, our approach

returns peptides YLDQVPFSV and FLEPGPVTV with predicted IC50 values of 2.8 nM

and 46.1 nM, respectively. Since there exists no experimental data that could prove

the proposed binding affinity of the latter peptide, we concentrated our analysis on

the engineered peptide of G9209. Interestingly, Parkhurst et al. [133] found our epitope

candidate to be the fourth strongest binder among their 21 analogous peptides with

an IC50 value of 2.3 nM (see Table 4.4). We had a closer look at the three peptides

exhibiting a stronger affinity than our epitope candidate. For two of the peptides, our

linear regression approach predicts an IC50 larger than 2.3 nM. In accordance with the

larger prediction error, the two corresponding confidence intervals are also larger than

for our engineered peptide, showing the uncertainty of our prediction model. The third

peptide with a stronger binding affinity than our epitope candidate is FLDQVPFSV

with an IC50 value of 2.2 nM. Our regression approach confirms the peptide to be a

stronger binder than the one obtained by the genetic algorithm. However, CONFINE

seems to be unsure about this prediction, resulting in a fairly broad confidence interval

and higher IC90%
50 . After mining the literature, we found that Du et al. [61] assigned this

peptide with an IC50 value of 17.7 nM. Hence, the correct affinity value might indeed be

larger than 2.2 nM which makes it a less reliable candidate for an epitope. Although our

epitope engineering strategy does not result in the peptide with the highest binding

affinity, the obtained peptide is likely to be a reliable binder. By considering the

106 4. Interpretable Regression With CONFINE and CONFIVE

confidence of predictions, we are able exclude erroneous predictions and can select a

suitable candidate for an epitope-based vaccine.

4.4 Conclusion

Epitope-based vaccines are a promising alternative to traditional vaccines. In the design

process of epitope-based vaccines, biologists often rely on in silico MHC-I–peptide bind-

ing prediction as an approximation of T-cell reactivity. However, since computational

prediction methods are prone to errors, epitope candidates suggested by prediction

methods might be false positives. Due to the “black box” character of many state-of-

the-art MHC-I–peptide binding prediction methods, it is usually not possible to detect

a low quality prediction.

To overcome this “black box” character, we proposed two novel confidence estima-

tors for regression, CONFINE and CONFIVE. They determine normalized confidence

scores and confidence intervals that help biologists to rate the reliability of an indi-

vidual affinity prediction. Both estimators are model-independent and can be applied

with any regression model. In contrast to other methods, CONFINE and CONFIVE

are computationally very efficient and can, thus, be added easily to existing predictors

without a significant performance loss. By applying CONFINE and CONFIVE to an

MHC-I–peptide binding prediction model, biologists do no longer rely on plain affinity

values. Instead, they can benefit from the advantages of obtaining a range of affinities.

In an initial study on artificial data, we observe that CONFINE and CONFIVE,

as well as other estimators, yield a better estimation performance on large datasets.

A sufficient amount of training data helps to identify irrelevant features and increases

the prospect of having adequate neighbors in the training dataset. We then compared

CONFINE and CONFIVE with other existing confidence and AD estimators on a

selected set of IEDB benchmark datasets. Our results suggest that CONFINE and

CONFIVE give high-quality confidence estimates and perform better than existing

estimators. The estimation quality is not equal on all tested alleles. However, users can

predict the quality of estimates on novel data by considering the estimation quality on

the training data. Similar results obtained using nonlinear support vector regression

demonstrate that CONFINE and CONFIVE can be applied to nonlinear regression

models as well. Only confidence estimation based on bagging performs comparably on

4.4 Conclusion 107

the tested datasets. However, depending on the regression method used, bagging can

require a huge computational overhead. We also have seen that confidence intervals

estimated by our two methods are comparable to fixed confidence intervals, while having

the advantage of giving a very intuitive measure of confidence.

It is still a long way towards highly accurate confidence estimators that work equally

well on all kind of data. A combination of multiple confidence estimators as well as

an automated selection of the most appropriate estimator [11] could improve both the

quality and the robustness of the estimation. Further, predicting not only the size

of errors but also their sign will increase the amount of information gained from a

confidence estimator. As an alternative, signed error estimates can be used to correct

the prediction results and might increase the prediction performance of the regression

model.

In an example study, we show that confidence estimates of CONFINE can be very

beneficial for epitope discovery and epitope engineering. Considering only peptides

from confident predictions results in epitope candidates that origin from less erroneous

predictions. We also introduce a computational epitope engineering approach based

on a genetic algorithm. Although, our approach does not reveal the strongest binder,

the obtained peptide is a reliable binder of HLA-A*02:01 and, thus, a suitable epitope

candidate. Our example study is a first step towards epitope engineering that benefits

from confidence estimation. We believe that more effort in experimental validation

will help to prove that the reliability of individual predictions is essential for designing

epitope-based vaccines.

Estimating normalized confidence scores and confidence intervals is in general a step

forward, moving away from plain affinity values and discrete applicability information.

In particular, confidence intervals provide a very intuitive representation of reliability,

which can be easily interpreted by biologists. Distinguishing between confident and

almost random predictions will also help biologists to choose suitable candidates for

experiments. We are convinced that confidence estimators can improve prediction

methods with a “black box” character by making their predictions more transparent

and usable for biologists.

Chapter 5

Conclusions and Perspectives

“In theory there is no difference between theory and practice. In practice there is.”

– Yogi Berra also attributed to Chuck Reid, Jan L. A. van de Snepscheut, Manfred

Eigen, et al.

Machine learning provides powerful tools for analyzing, predicting, and understand-

ing biological processes. Nevertheless, computational models can only approximate the

real world. In contrast to experiments in the laboratory, most theoretical models exhibit

a “black box” character, making it difficult to understand why a particular outcome

was obtained. Furthermore, it is often not evident how much confidence one can put

into individual predictions. In this work, we focus on filling the gap between theoret-

ical models and real-world experiments by making machine learning approaches more

interpretable. In particular, we require our methods to answer two important ques-

tions: Why did the model predict this particular outcome? And, how reliable is this

prediction? We consider two biological problems that can be modeled either by classi-

fication or regression methods and show how interpretability can be provided and how

biologists can benefit from interpretable predictions.

In Chapter 3, we introduce YLoc, an interpretable classification approach for pre-

dicting the subcellular localization of proteins. YLoc uses a naive Bayes classifier and

a small number of biological meaningful features to make predictions. In addition, it

helps biologists to rate the reliability of individual predictions by returning a normal-

ized confidence score. Due to discrimination scores that weight the influence of the

different biological properties, YLoc is able to answer why a particular location has

110 5. Conclusions and Perspectives

been predicted. It creates a textual explanation that describes what feature had the

strongest impact on the prediction. However, these explanations should always be in-

spected with caution. Since we transfer the biological meaning of correlated features,

we might accidentally included a wrong interpretation. For the future, we suggest an

alternative feature selection approach that also considers the interpretability of fea-

tures. In this way, the selected feature set might already yield only highly interpretable

features making a transfer of meanings obsolete.

Interpretable predictions made by YLoc can considerably support the work of biolo-

gists. We have shown that YLoc is able to detect properties of the protein sequence that

are responsible for protein localization. This is of particular interest for experimental

biologists since it can support the detection of sorting signal by guiding experiments

in promising directions. Moreover, we have shown that YLoc can be used to predict

localization changes caused by mutations or alternative isoforms. YLoc is even able

to detect the site in the protein most likely to be responsible for the localization shift.

However, YLoc has not been designed for this particular tasks. It uses biological prop-

erties to make predictions. Hence, minor changes in the protein sequence such as single

point mutations might not be detected if the overall properties do not change signifi-

cantly. It should be also considered that YLoc has been trained on a set of “natural”

proteins. Applying it to proteins that exhibit properties that are not consistent with the

training data might result in erroneous predictions. This issue shows the importance

of confidence estimates for detecting unreliable predictions. In particular, if expensive

and time-consuming experiments built on predictions, low confidence predictions that

are likely to waste a lot of experimental effort should be excluded. In the future, it

would be very interesting to create a prediction system tailored to automatic engineer-

ing of a protein’s subcellular location. Such a system should include only sequence

information to be able to recognize single point mutations. Most importantly, confi-

dence scores should be considered in the engineering process. An objective function

that considers the confidence in individual predictions can guarantee that only reliable

candidates make their way into an experimental testing phase. We believe that YLoc as

an interpretable classification approach is a key step towards understanding subcellular

localization processes without conducting unnecessary experiments.

The second part of this thesis is dedicated to the interpretable prediction of pep-

tide affinities to MHC-I molecules. In Chapter 4, we introduce two novel confidence

111

estimators, CONFINE and CONFIVE, that are able to rate the reliability of predicted

MHC binding affinities. Biologists are provided with an interval of affinities instead

of a plain affinity value. Hence, they are no longer compelled to assume that affinity

prediction works equally well on all peptides but can use the size of the affinity interval

as an indicator of reliability. This substantially improves the interpretability of current

prediction methods. Confidence intervals are of special interest in critical tasks like

epitope discovery for vaccines where only reliable predictions should be considered. We

think that estimating confidence intervals is also vital for many other tasks where er-

roneous predictions can have fatal consequences. In the future, it would be interesting

to analyze whether confidence estimation can be used to correct regression predictions.

Instead of only warning for an error, a prediction could be automatically improved

leading to lower error rates and a higher overall reliability of the model.

We have also shown that confidence estimation by CONFINE can be used for engi-

neering the binding affinity of peptides to MHC class I, which is of special interest for

critical tasks like epitope-based vaccine design. Although an engineered peptide can

yield the highest predicted binding affinity, its real binding affinity might be far lower

making it unfavorable for a vaccine. We propose a computational epitope engineering

approach based on a genetic algorithm that optimizes the predicted binding affinity to

MHC class I while maximizing the confidence of the prediction at the same time. Our

approach provides reliable epitope candidates by ignoring low confidence predictions.

In future work, it would be challenging to include T-cell reactivity in our epitope engi-

neering approach. If we consider only MHC–peptide binding, we ignore the fact that an

immune response is only possible if a TCR binds the MHC–peptide complex. Further,

instead of using a search heuristic, one could think of using optimization approaches

that guarantee finding the optimal epitope, such as integer linear programming. In any

case, it would be necessary to invest more time in experimentally verifying the poten-

tial epitope candidates suggested by our engineering approach. Experimental biology

could go hand in hand with confidence-based predictions to minimize the time and

effort invested in experiments.

Beyond the two biological problems studied in this thesis, there exists a whole range

of other applications where interpretable machine learning can substantially support

the work of experimental biologists. We are convinced that interpretable predictions

112 5. Conclusions and Perspectives

and reliability information will encourage the trust of biologists in machine learning

models and will contribute to interesting and important research in the future.

Bibliography

[1] Altschul, S., Gish, W., Miller, W., Myers, E., and Lipman, D. (1990). Basic local

alignment search tool. J Mol Biol , 215(3), 403–410. 50, 58, 59

[2] Atkeson, C., Moore, A., and Schaal, S. (1997). Locally weighted learning. Artif

Intell Rev , 11(1–5), 11–73. 19, 85

[3] Bannai, H., Tamada, Y., Maruyama, O., Nakai, K., and Miyano, S. (2002). Exten-

sive feature detection of N-terminal protein sorting signals. Bioinformatics, 18(2),

298–305. 46

[4] Ben-Hur, A., Ong, C., Sonnenburg, S., Schölkopf, B., and Rätsch, G. (2008). Sup-

port vector machines and kernels for computational biology. PLoS Comput Biol ,

4(10), e1000173. 15

[5] Berman, H., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T., Weissig, H.,

Shindyalov, I., and Bourne, P. (2000). The protein data bank. Nucleic Acids Res,

28(1), 235–242. 42

[6] Bhasin, M. and Raghava, G. (2003). Prediction of promiscuous and high-affinity

mutated MHC binders. Hybrid Hybridomics, 22(4), 229–234. 43, 79, 102, 103

[7] Bian, H., Reidhaar-Olson, J., and Hammer, J. (2003). The use of bioinformatics

for identifying class II-restricted T-cell epitopes. Methods, 29(3), 299–309. 78

[8] Blum, T., Briesemeister, S., and Kohlbacher, O. (2009). MultiLoc2: integrating

phylogeny and Gene Ontology terms improves subcellular protein localization pre-

diction. BMC Bioinformatics, 10, 274. 5, 46, 47, 48, 58, 62, 63

114 BIBLIOGRAPHY

[9] Boden, M. and Hawkins, J. (2005). Prediction of subcellular localization using

sequence-biased recurrent networks. Bioinformatics, 21(10), 2279–2286. 5, 46

[10] Borbulevych, O., Do, P., and Baker, B. (2010). Structures of native and affinity-

enhanced WT1 epitopes bound to HLA-A* 0201: Implications for WT1-based cancer

therapeutics. Mol Immunol , 47, 2519–2524. 42

[11] Bosnić, Z. and Kononenko, I. (2008a). Automatic selection of reliability esti-

mates for individual regression predictions using meta-learning and internal cross-

validation. Knowl Eng Rev , 25(1), 27–47. 107

[12] Bosnić, Z. and Kononenko, I. (2008b). Comparison of approaches for estimating

reliability of individual regression predictions. Data Knowl Eng , 67(3), 504–516. 28,

83, 84, 85

[13] Bosnić, Z. and Kononenko, I. (2008c). Estimation of individual prediction relia-

bility using the local sensitivity analysis. Appl Intell , 29(3), 187–203. 28, 84

[14] Brady, S. and Shatkay, H. (2008). EpiLoc: a (working) text-based system for

predicting protein subcellular location. In Pacific Symposium on Biocomputing.,

pages 604–615. World Scientific. 46

[15] Breiman, L. (1996). Bagging predictors. Mach Learn, 24(2), 123–140. 86

[16] Briesemeister, S., Blum, T., Brady, S., Lam, Y., Kohlbacher, O., and Shatkay, H.

(2009). SherLoc2: a high-accuracy hybrid method for predicting protein subcellular

localization. J Proteome Res, 8(11), 5363–5366. 46

[17] Briesemeister, S., Rahnenführer, J., and Kohlbacher, O. (2010a). Going from where

to why – interpretable prediction of protein subcellular localization. Bioinformatics,

26(9), 1232–1238. 28, 45, 137

[18] Briesemeister, S., Rahnenführer, J., and Kohlbacher, O. (2010b). YLoc – an

interpretable web server for predicting subcellular localization. Nucleic Acids Res,

38(suppl 2), W497–W502. 45, 137

[19] Briesemeister, S., Rahnenführer, J., and Kohlbacher, O. (2012). No longer confi-

dential: estimating the confidence of individual regression predictions. PLoS One,

(to be submitted). 77, 137

BIBLIOGRAPHY 115

[20] Brocard, C. and Hartig, A. (2006). Peroxisome targeting signal 1: Is it really a

simple tripeptide? Biochim Biophys Acta, 1763(12), 1565–1573. 35

[21] Brockman, A., Orlando, R., and Tarleton, R. (1999). A new liquid chromatog-

raphy/tandem mass spectrometric approach for the identification of class I major

histocompatibility complex associated peptides that eliminates the need for bioas-

says. Rapid Commun Mass Spectrom, 13(11), 1024–1030. 79

[22] Brown, L. and Baker, A. (2008). Shuttles and cycles: transport of proteins into

the peroxisome matrix (review). Mol Membr Biol , 25(5), 363–375. 35

[23] Brusic, V., Petrovsky, N., Zhang, G., and Bajic, V. (2002). Prediction of promis-

cuous peptides that bind HLA class I molecules. Immunol Cell Biol , 80(3), 280–285.

78

[24] Bui, H., Sidney, J., Peters, B., Sathiamurthy, M., Sinichi, A., Purton, K., Mothé,

B., Chisari, F., Watkins, D., and Sette, A. (2005). Automated generation and evalu-

ation of specific MHC binding predictive tools: ARB matrix applications. Immuno-

genetics, 57(5), 304–314. 78

[25] Buus, S., Lauemøller, S., Worning, P., Kesmir, C., Frimurer, T., Corbet, S., Foms-

gaard, A., Hilden, J., Holm, A., and Brunak, S. (2003). Sensitive quantitative predic-

tions of peptide-MHC binding by a ’Query by Committee’ artificial neural network

approach. Tissue Antigens, 62(5), 378–384. 78

[26] Carlson, M. and Botstein, D. (1982). Two differentially regulated mRNAs with

different 5’ends encode secreted with intracellular forms of yeast invertase. Cell ,

28(1), 145–154. 73, 163

[27] Casadio, R., Martelli, P., and Pierleoni, A. (2008). The prediction of protein

subcellular localization from sequence: a shortcut to functional genome annotation.

Brief Funct Genomic Proteomic, 7(1), 63–67. 48, 58, 62

[28] Cedano, J., Aloy, P., Perez-Pons, J., and Querol, E. (1997). Relation between

amino acid composition and cellular location of proteins. J Mol Biol , 266(3), 594–

600. 46

116 BIBLIOGRAPHY

[29] Chen, Y., Gao, Z., Kerris III, R., Wang, W., Binder, B., and Schaller, G. (2010).

Ethylene receptors function as components of high-molecular-mass protein complexes

in Arabidopsis. PLoS One, 5(1), e8640. 36

[30] Chicz, R., Urban, R., Lane, W., Gorga, J., Stern, L., Vignali, D., and Strominger,

J. (1992). Predominant naturally processed peptides bound to HLA-DR1 are derived

from MHC-related molecules and are heterogeneous in size. Nature, 358(6389), 764–

768. 41

[31] Chou, K. (2001). Prediction of protein cellular attributes using pseudo-amino acid

composition. Proteins Struct Funct Genet , 43(3), 246–255. 49

[32] Chou, K. and Cai, Y. (2002). Using functional domain composition and support

vector machines for prediction of protein subcellular location. J Biol Chem, 277(48),

45765–45769. 46

[33] Chou, K. and Cai, Y. (2003a). A new hybrid approach to predict subcellular local-

ization of proteins by incorporating Gene Ontology. Biochem Biophys Res Commun,

311(3), 743–747. 46

[34] Chou, K. and Cai, Y. (2003b). Prediction and classification of protein subcellular

location-sequence-order effect and pseudo amino acid composition. J Cell Biochem,

90(6), 1250–1260. 46

[35] Chou, K. and Shen, H. (2010a). A new method for predicting the subcellular

localization of eukaryotic proteins with both single and multiple sites: Euk-mPLoc

2.0. PLoS One, 5(4), e9931. 46

[36] Chou, K. and Shen, H. (2010b). Plant-mPLoc: a top-down strategy to augment

the power for predicting plant protein subcellular localization. PLoS One, 5(6),

e11335. 46

[37] Chou, K., Shen, H., et al. (2007). Euk-mPLoc: a fusion classifier for large-scale

eukaryotic protein subcellular location prediction by incorporating multiple sites. J

Proteome Res, 6(5), 1728–1734. 5, 46, 47, 48, 62

BIBLIOGRAPHY 117

[38] Chou, K., Wu, Z., and Xiao, X. (2011). iLoc-Euk: A multi-label classifier for

predicting the subcellular localization of singleplex and multiplex eukaryotic proteins.

PLoS One, 6(3), e18258. 46

[39] Chou, W., Yin, Y., and Xu, Y. (2010). GolgiP: prediction of Golgi-resident proteins

in plants. Bioinformatics, 26(19), 2464–2465. 46

[40] Cokol, M., Nair, R., and Rost, B. (2000). Finding nuclear localization signals.

EMBO Reports, 1(5), 411–415. 46

[41] Cortes, C. and Vapnik, V. (1995). Support-vector networks. Mach Learn, 20(3),

273–297. 11, 12, 14, 19, 20

[42] Cover, T. and Hart, P. (1967). Nearest neighbor pattern classification. IEEE Trans

Inf Theory , 13(1), 21–27. 11

[43] Crammer, K. and Singer, Y. (2002). On the algorithmic implementation of multi-

class kernel-based vector machines. J Mach Learn Res, 2, 265–292. 15

[44] Cui, J., Han, L., Lin, H., Zhang, H., Tang, Z., Zheng, C., Cao, Z., and Chen, Y.

(2007). Prediction of MHC-binding peptides of flexible lengths from sequence-derived

structural and physicochemical properties. Mol Immunol , 44(5), 866–877. 78

[45] Cui, Q., Jiang, T., Liu, B., and Ma, S. (2004). Esub8: A novel tool to predict

protein subcellular localizations in eukaryotic organisms. BMC Bioinformatics, 5,

66. 5, 46

[46] Darwin, C. (1859). On the origin of species by means of natural selection, or the

preservation of favoured races in the struggle for life. John Murry, London, UK, 1st

ed. edition. 1

[47] de Castro, E., Sigrist, C., Gattiker, A., Bulliard, V., Langendijk-Genevaux, P.,

Gasteiger, E., Bairoch, A., and Hulo, N. (2006). ScanProsite: detection of PROSITE

signature matches and prorule-associated functional and structural residues in pro-

teins. Nucleic Acids Res, 34(Web Server issue), W362–W365. 50, 59

[48] De Groot, A., Marcon, L., Bishop, E., Rivera, D., Kutzler, M., Weiner, D., and

Martin, W. (2005). HIV vaccine development by computer assisted design: the GAIA

vaccine. Vaccine, 23(17-18), 2136–2148. 79

118 BIBLIOGRAPHY

[49] Dellaire, G., Farrall, R., and Bickmore, W. (2003). The nuclear protein database

(NPD): sub-nuclear localisation and functional annotation of the nuclear proteome.

Nucleic Acids Res, 31(1), 328–30. 33

[50] Dimitrov, S., Dimitrova, G., Pavlov, T., Dimitrova, N., Patlewicz, G., Niemela, J.,

and Mekenyan, O. (2005). A stepwise approach for defining the applicability domain

of SAR and QSAR models. J Chem Inf Model , 45(4), 839–849. 55, 80, 87

[51] Dingwall, C., Robbins, J., Dilworth, S., Roberts, B., and Richardson, W. (1988).

The nucleoplasmin nuclear location sequence is larger and more complex than that

of SV-40 large T antigen. J Cell Biol , 107(3), 841–849. 34

[52] Domingos, P. (1999). The role of Occam’s razor in knowledge discovery. Data Min

Knowl Disc, 3(4), 409–425. 20

[53] Dönnes, P. and Elofsson, A. (2002). Prediction of MHC class I binding peptides,

using SVMHC. BMC Bioinformatics, 3, 25. 78

[54] Dönnes, P. and Kohlbacher, O. (2006). SVMHC: a server for prediction of MHC-

binding peptides. Nucleic Acids Res, 34(Web Server issue), W194–W197. 41, 78,

92

[55] Douat-Casassus, C., Marchand-Geneste, N., Diez, E., Gervois, N., Jotereau, F.,

and Quideau, S. (2007). Synthetic anticancer vaccine candidates: rational design of

antigenic peptide mimetics that activate tumor-specific T-cells. J Med Chem, 50(7),

1598–1609. 79

[56] Doytchinova, I. and Flower, D. (2002). Physicochemical explanation of peptide

binding to HLA-A* 0201 major histocompatibility complex: A three-dimensional

quantitative structure-activity relationship study. Proteins, 48(3), 505–518. 78

[57] Doytchinova, I. and Flower, D. (2008). QSAR and the prediction of T-cell epitopes.

Curr Proteomics, 5(2), 73–95. 78

[58] Doytchinova, I., Blythe, M., and Flower, D. (2002). Additive method for the

prediction of protein-peptide binding affinity. application to the MHC class I molecule

HLA-A* 0201. J Proteome Res, 1(3), 263–272. 78

BIBLIOGRAPHY 119

[59] Doytchinova, I., Walshe, V., Jones, N., Gloster, S., Borrow, P., and Flower, D.

(2004). Coupling in silico and in vitro analysis of peptide-MHC binding: a bioinfor-

matic approach enabling prediction of superbinding peptides and anchorless epitopes.

J Immunol , 172(12), 7495–7502. 79

[60] Dragos, H., Gilles, M., and Alexandre, V. (2009). Predicting the predictability: a

unified approach to the applicability domain problem of QSAR models. J Chem Inf

Model , 49(7), 1762–1776. 55, 84, 86

[61] Du, Q., Wei, Y., Pang, Z., Chou, K., and Huang, R. (2007). Predicting the affinity

of epitope-peptides with class I MHC molecule HLA-A* 0201: an application of

amino acid-based peptide prediction. Protein Eng Des Sel , 20(9), 417–423. 105

[62] Emanuelsson, O., Brunak, S., von Heijne, G., and Nielsen, H. (2007). Locating

proteins in the cell using TargetP, SignalP and related tools. Nat Protoc, 2(4),

953–971. 5, 46, 47

[63] Fagerberg, T., Cerottini, J., and Michielin, O. (2006). Structural prediction of

peptides bound to MHC class I. J Mol Biol , 356(2), 521–546. 78

[64] Falk, K., Rötzschke, O., and Rammensee, H. (1990). Cellular peptide composition

governed by major histocompatibility complex class I molecules. Nature, 348(6298),

248–251. 78

[65] Fayyad, U. M. and Irani, K. (1993). Multi-interval discretization of continuous-

valued attributes for classification learning. In Proceedings of the 13th International

Joint Conference on Artificial Intelligence, pages 1022–1027. San Fransisco, Morgan

Kaufman Publishers. 17, 51

[66] Fechner, N., Jahn, A., Hinselmann, G., and Zell, A. (2010). Estimation of the

applicability domain of kernel-based machine learning models for virtual screening.

J Cheminform, 2(1), 2. 84

[67] Fisher, R. (1936). The use of multiple measurements in taxonomic problems. Ann

Hum Genet , 7(2), 179–188. 11

[68] Friedman, J. (1991). Multivariate adaptive regression splines. Ann Stat , 19(1),

1–141. 92

120 BIBLIOGRAPHY

[69] Fujiwara, Y. and Asogawa, M. (2001). Prediction of subcellular localizations using

amino acid composition and order. Genome Inform, 12, 103–112. 46

[70] Fyshe, A., Liu, Y., Szafron, D., Greiner, R., and Lu, P. (2008). Improving subcel-

lular localization prediction using text classification and the Gene Ontology. Bioin-

formatics, 24(21), 2512–2517. 46

[71] Garg, A. and Raghava, G. (2008). ESLpred2: improved method for predicting

subcellular localization of eukaryotic proteins. BMC Bioinformatics, 9, 503. 5, 46

[72] Garg, P., Sharma, V., Chaudhari, P., and Roy, N. (2009). SubCellProt: Predicting

protein subcellular localization using machine learning approaches. In Silico Biol ,

9(1), 35–44. 46

[73] Gramatica, P. (2007). Principles of qsar models validation: internal and external.

QSAR Comb Sci , 26(5), 694–701. 28

[74] Guan, P., Doytchinova, I., Zygouri, C., and Flower, D. (2003). MHCPred: a server

for quantitative prediction of peptide–MHC binding. Nucleic Acids Res, 31(13),

3621–3624. 41, 78

[75] Guha, R. (2008). On the interpretation and interpretability of quantitative

structure–activity relationship models. J Comput Aided Mol Des, 22(12), 857–871.

26, 28

[76] Guha, R. and Jurs, P. (2005). Interpreting computational neural network QSAR

models: a measure of descriptor importance. J Chem Inf Model , 45(3), 800–806. 28

[77] Guo, J. and Lin, Y. (2006). TSSub: eukaryotic protein subcellular localization by

extracting features from profiles. Bioinformatics, 22(14), 1784–1785. 46

[78] Hall, M. (1999). Correlation-based feature selection for machine learning . Ph.D.

thesis, The University of Waikato. 51

[79] Hall, M. (2000). Correlation-based feature selection for discrete and numeric class

machine learning. In Proceedings of the Seventeenth International Conference on

Machine Learning , pages 359–366. 51

BIBLIOGRAPHY 121

[80] Harris, M., Clark, J., Ireland, A., Lomax, J., Ashburner, M., Foulger, R., Eilbeck,

K., Lewis, S., Marshall, B., Mungall, C., et al. (2004). The Gene Ontology (GO)

database and informatics resource. Nucleic Acids Res, 32(Database issue), D258–

D261. 46, 50

[81] Hertz, T. and Yanover, C. (2006). PepDist: a new framework for protein-peptide

binding prediction based on learning peptide distance functions. BMC Bioinformat-

ics, 7(Suppl 1), S3. 78

[82] Heskes, T. (1997). Practical confidence and prediction intervals. In M. Mozer,

M. Jordan, and T. Petsche, editors, Adv Neural Inform Proc Sys, NIPS Vol. 9 ,

pages 176–182. MIT Press. 86

[83] Höglund, A., Dönnes, P., Blum, T., Adolph, H., and Kohlbacher, O. (2006). Mul-

tiLoc: prediction of protein subcellular localization using N-terminal targeting se-

quences, sequence motifs and amino acid composition. Bioinformatics, 22(10), 1158–

1165. 46, 58

[84] Holton, G. (1986). The advancement of science, and its burdens: the Jefferson

lecture and other essays, chapter 1. Cambridge University Press. 1

[85] Honeyman, M., Brusic, V., Stone, N., and Harrison, L. (1998). Neural network-

based prediction of candidate T-cell epitopes. Nat Biotechnol , 16(10), 966–969. 78

[86] Hong, Z., Jin, H., Tzfira, T., and Li, J. (2008). Multiple mechanism–mediated

retention of a defective brassinosteroid receptor in the endoplasmic reticulum of

Arabidopsis. Plant Cell , 20(12), 3418–3429. 36

[87] Hopfield, J. (1982). Neural networks and physical systems with emergent collective

computational abilities. Proc Natl Acad Sci USA, 79(8), 2554–2558. 11

[88] Horton, P., Park, K., Obayashi, T., Fujita, N., Harada, H., Adams-Collier, C., and

Nakai, K. (2007). WoLF PSORT: protein localization predictor. Nucleic Acids Res,

35(Web Server issue), W585–W587. 46, 47, 62

[89] Hotelling, H. (1957). The relations of the newer multivariate statistical methods

to factor analysis. Brit J Stat Psych, 10, 69–79. 19

122 BIBLIOGRAPHY

[90] Houghton, C., Engelhorn, M., Liu, C., Song, D., Gregor, P., Livingston, P., Or-

landi, F., Wolchok, J., McCracken, J., Houghton, A., et al. (2007). Immunological

validation of the EpitOptimizer program for streamlined design of heteroclitic epi-

topes. Vaccine, 25(29), 5330–5342. 43, 79

[91] Hua, S. and Sun, Z. (2001). Support vector machine approach for protein subcel-

lular localization prediction. Bioinformatics, 17(8), 721–728. 46

[92] Huang, W., Tung, C., Ho, S., Hwang, S., and Ho, S. (2008). ProLoc-GO: Utilizing

informative Gene Ontology terms for sequence-based prediction of protein subcellular

localization. BMC Bioinformatics, 9, 80. 46

[93] Hulo, N., Bairoch, A., Bulliard, V., Cerutti, L., Cuche, B., de Castro, E., Lachaize,

C., Langendijk-Genevaux, P., and Sigrist, C. (2008). The 20 years of PROSITE.

Nucleic Acids Res, 36(Database issue), D245–D249. 50

[94] Imai, K. and Nakai, K. (2010). Prediction of subcellular locations of proteins:

Where to proceed? Proteomics, 10(22), 3970–3983. 46

[95] Jacob, L. and Vert, J. (2008). Efficient peptide–MHC-I binding prediction for

alleles with few known binders. Bioinformatics, 24(3), 358. 41, 78

[96] Jaworska, J., Nikolova-Jeliazkova, N., and Aldenberg, T. (2005). QSAR applica-

bility domain estimation by projection of the training set descriptor space: a review.

Altern Lab Anim, 33(5), 445–459. 28, 55

[97] Jojic, N., Reyes-Gomez, M., Heckerman, D., Kadie, C., and Schueler-Furman, O.

(2006). Learning MHC I-peptide binding. Bioinformatics, 22(14), e227–e235. 78

[98] Kaiser, C. and Botstein, D. (1986). Secretion-defective mutations in the signal

sequence for Saccharomyces cerevisiae invertase. Mol Cell Biol , 6(7), 2382–2391. 73,

163, 164, 165, 166

[99] Karniely, S. and Pines, O. (2005). Single translation–dual destination: mechanisms

of dual protein targeting in eukaryotes. EMBO Rep, 6(5), 420–425. 36

[100] Kawakami, Y., Eliyahu, S., Jennings, C., Sakaguchi, K., Kang, X., Southwood, S.,

Robbins, P., Sette, A., Appella, E., and Rosenberg, S. (1995). Recognition of multiple

BIBLIOGRAPHY 123

epitopes in the human melanoma antigen gp100 by tumor-infiltrating T lymphocytes

associated with in vivo tumor regression. J Immunol , 154(8), 3961–3968. 102

[101] Kawashima, S., Pokarowski, P., Pokarowska, M., Kolinski, A., Katayama, T., and

Kanehisa, M. (2008). AAindex: amino acid index database, progress report 2008.

Nucleic Acids Res, 36(suppl 1), D202–D205. 49

[102] Khan, A., Baker, B., Ghosh, P., Biddison, W., and Wiley, D. (2000). The struc-

ture and stability of an HLA-A* 0201/octameric tax peptide complex with an empty

conserved peptide-N-terminal binding site. J Immunol , 164(12), 6398–6405. 104

[103] King, B. and Guda, C. (2007). ngLOC: an n-gram-based Bayesian method for

estimating the subcellular proteomes of eukaryotes. Genome Biol , 8(5), R68. 46

[104] Knapp, B., Giczi, V., Ribarics, R., and Schreiner, W. (2011). PeptX: Using

genetic algorithms to optimize peptides for MHC binding. BMC Bioinformatics, 12,

241. 79, 103

[105] Kornfeld, S. (1987). Trafficking of lysosomal enzymes. FASEB J , 1(6), 462–468.

36

[106] La Cour, T., Kiemer, L., Mølgaard, A., Gupta, R., Skriver, K., and Brunak, S.

(2004). Analysis and prediction of leucine-rich nuclear export signals. Protein Eng

Des Sel , 17(6), 527–536. 34

[107] Lee, K., Chuang, H. Y., Beyer, A., Sung, M. K., Huh, W. K., Lee, B., and Ideker,

T. (2009). Protein networks markedly improve prediction of subcellular localization

in multiple eukaryotic species. Nucleic Acids Res, 36(20), e136. 46

[108] Lei, Z. and Dai, Y. (2006). Assessing protein similarity with Gene Ontology and

its use in subnuclear localization prediction. BMC Bioinformatics, 7, 491. 46

[109] Lemeshow, S. and Hosmer, D. (1982). A review of goodness of fit statistics for use

in the development of logistic regression models. Am J Epidemiol , 115(1), 92–106.

11

[110] Levi, K. and Weiss, Y. (2004). Learning object detection from a small number

of examples: The importance of good features. In S. Guler, A. Hauptmann, and

124 BIBLIOGRAPHY

A. Henrich, editors, Conference on Computer Vision and Pattern Recognition, CVPR

Vol.2 , pages 53–60. IEEE Computer Society. 26

[111] Lin, H., Chen, C., Sung, T., Ho, S., and Hsu, W. (2009). Protein subcellu-

lar localization prediction of eukaryotes using a knowledge-based approach. BMC

Bioinformatics, 10, S8. 46, 47, 62

[112] Lu, Z. and Hunter, L. (2005). GO molecular function terms are predictive of

subcellular localization. In Pacific Symposium on Biocomputing , pages 151–161.

World Scientific. 46

[113] Lu, Z., Szafron, D., Greiner, R., Lu, P., Wishart, D., Poulin, B., Anvik, J.,

Macdonell, C., and Eisner, R. (2004). Predicting subcellular localization of proteins

using machine-learned classifiers. Bioinformatics, 20(4), 547–556. 46

[114] Lundegaard, C., Nielsen, M., Lamberth, K., Worning, P., Sylvester-Hvid, C.,

Buus, S., Brunak, S., and Lund, O. (2004). MHC class I epitope binding prediction

trained on small data sets. In Artif Immune Sys, pages 217–225. Springer. 78

[115] Lundegaard, C., Lund, O., Keşmir, C., Brunak, S., and Nielsen, M. (2007). Mod-

eling the adaptive immune system: predictions and simulations. Bioinformatics,

23(24), 3265–3275. 78

[116] Lundegaard, C., Lamberth, K., Harndahl, M., Buus, S., Lund, O., and Nielsen,

M. (2008). NetMHC-3.0: accurate web accessible predictions of human, mouse

and monkey MHC class I affinities for peptides of length 8–11. Nucleic Acids Res,

36(suppl 2), W509–W512. 7, 41, 77, 78

[117] Mamitsuka, H. (1998). Predicting peptides that bind to MHC molecules using

supervised learning of hidden Markov models. Protein Struct Funct Genet , 33(4),

460–474. 78

[118] Menachem, R., Tal, M., and Pines, O. (2011). A third of the yeast mitochondrial

proteome is dual localized: a question of evolution. Proteomics, 11(19), 446–455. 36

[119] Minsky, M. (1961). Steps toward artificial intelligence. In Proc IRE , volume 49,

pages 8–30. IEEE. 11

BIBLIOGRAPHY 125

[120] Mitschke, J., Fuss, J., Blum, T., Höglund, A., Reski, R., Kohlbacher, O., and A.,

R. S. (2009). Prediction of dual protein targeting to plant organelles. New Phytol ,

183(1), 224–236. 36, 47

[121] Moll, A., Hildebrandt, A., Lenhof, H., and Kohlbacher, O. (2006). BALLView:

a tool for research and education in molecular modeling. Bioinformatics, 22(3),

365–366. 42

[122] Nair, R. and Rost, B. (2002a). Inferring sub-cellular localization through auto-

mated lexical analysis. Bioinformatics, 18(Suppl 1), S78–S86. 46

[123] Nair, R. and Rost, B. (2002b). Sequence conserved for subcellular localization.

Protein Sci , 11(12), 2836–2847. 5, 46, 50

[124] Nair, R. and Rost, B. (2005). Mimicking cellular sorting improves prediction of

subcellular localization. J Mol Biol , 348(1), 85–100. 5, 46, 47, 62

[125] Nakai, K. and Kanehisa, M. (1992). A knowledge base for predicting protein

localization sites in eukaryotic cells. Genomics, 14(4), 897–911. 45, 47, 72

[126] Neural, C., Williams, C., and Rasmussen, C. (1996). Gaussian processes for

regression. In Adv Neural Inform Proc Sys, NIPS vol. 8 , pages 514–520, Cambridge,

MA, USA. The MIT Press. 19

[127] Nielsen, M., Lundegaard, C., Worning, P., Lauemøller, S., Lamberth, K., Buus,

S., Brunak, S., and Lund, O. (2003). Reliable prediction of T-cell epitopes using

neural networks with novel sequence representations. Protein Sci , 12(5), 1007–1017.

78

[128] Nielsen, M., Lundegaard, C., Blicher, T., Lamberth, K., Harndahl, M., Justesen,

S., Røder, G., Peters, B., Sette, A., Lund, O., et al. (2007). NetMHCpan, a method

for quantitative predictions of peptide binding to any HLA-A and-B locus protein of

known sequence. PLoS One, 2(8), e796. 41

[129] Obozinski, G., Lanckriet, G., Grant, C., Jordan, M., and Noble, W. (2008). Con-

sistent probabilistic outputs for protein function prediction. Genome Biol , 9(Suppl

1), S6. 3, 28

126 BIBLIOGRAPHY

[130] Outten, C. and Culotta, V. (2004). Alternative start sites in the Saccharomyces

cerevisiae GLR1 gene are responsible for mitochondrial and cytosolic isoforms of

glutathione reductase. J Biol Chem, 279(9), 7785–7791. 74, 162, 163

[131] Park, K. and Kanehisa, M. (2003). Prediction of protein subcellular locations by

support vector machines using compositions of amino acids and amino acid pairs.

Bioinformatics, 19(13), 1656–1663. 5, 46

[132] Parker, K., Bednarek, M., and Coligan, J. (1994). Scheme for ranking potential

HLA-A2 binding peptides based on independent binding of individual peptide side-

chains. J Immunol , 152(1), 163–175. 41, 78

[133] Parkhurst, M., Salgaller, M., Southwood, S., Robbins, P., Sette, A., Rosen-

berg, S., and Kawakami, Y. (1996). Improved induction of melanoma-reactive CTL

with peptides from the melanoma antigen gp100 modified at HLA-A* 0201-binding

residues. J Immunol , 157(6), 2539–2548. 102, 103, 105

[134] Perone, C. (2009). Pyevolve: a Python open-source framework for genetic algo-

rithms. ACM SIGEVOlution, 4(1), 12–20. 104

[135] Peters, B. and Sette, A. (2005). Generating quantitative models describing the

sequence specificity of biological processes with the stabilized matrix method. BMC

Bioinformatics, 6, 132. 78

[136] Peters, B., Tong, W., Sidney, J., Sette, A., and Weng, Z. (2003). Examining the

independent binding assumption for binding of peptide epitopes to MHC-I molecules.

Bioinformatics, 19(14), 1765–1772. 7, 78

[137] Peters, B., Bui, H., Frankild, S., Nielson, M., Lundegaard, C., Kostem, E., Basch,

D., Lamberth, K., Harndahl, M., Fleri, W., et al. (2006). A community resource

benchmarking predictions of peptide binding to MHC-I molecules. PLoS Comput

Biol , 2(6), e65. 81, 92, 103

[138] Petsalaki, E., Bagos, P., Litou, Z., and Hamodrakas, S. (2006). PredSL: a tool

for the N-terminal sequence-based prediction of protein subcellular localization. Ge-

nomics Proteomics Bioinformatics, 4(1), 48–55. 46

BIBLIOGRAPHY 127

[139] Pierleoni, A., Martelli, P., Fariselli, P., and Casadio, R. (2006). BaCelLo: a

balanced subcellular localization predictor. Bioinformatics, 22(14), e408–e416. 5,

46, 47, 58, 62

[140] Pierleoni, A., Martelli, P., and Casadio, R. (2011). MemLoci: predicting sub-

cellular localization of membrane proteins in eukaryotes. Bioinformatics, 27(9),

1224–1230. 46

[141] Quinlan, J. (1986). Induction of decision trees. Mach Learn, 1(1), 81–106. 51

[142] Raiborg, C., Rusten, T., and Stenmark, H. (2003). Protein sorting into multi-

vesicular endosomes. Curr Opin Cell Biol , 15(4), 446–455. 36

[143] Rammensee, H., Friede, T., and Stevanović, S. (1995). MHC ligands and peptide

motifs: first listing. Immunogenetics, 41(4), 178–228. 41, 78

[144] Rammensee, H., Bachmann, J., Emmerich, N., Bachor, O., and Stevanović, S.

(1999). SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenet-

ics, 50(3), 213–219. 78

[145] Rastogi, S. and Rost, B. (2010). Bioinformatics predictions of localization and

targeting. Methods Mol Biol , 619, 285–305. 46

[146] Reinhardt, A. and Hubbard, T. (1998). Using neural networks for prediction of

the subcellular location of proteins. Nucleic Acids Res, 26(9), 2230–2236. 46

[147] Rish, I. (2001). An empirical study of the naive Bayes classifier. In IJCAI

2001 Workshop on Empirical Methods in Artificial Intelligence, pages 41–46. Morgan

Kaufmann. 16

[148] Rognan, D., Lauemøller, S., Holm, A., Buus, S., and Tschinke, V. (1999). Predict-

ing binding affinities of protein ligands from three-dimensional models: application

to peptide binding to class I major histocompatibility proteins. J Med Chem, 42(22),

4650–4658. 78

[149] Rosenblatt, F. (1958). The perceptron: A probabilistic model for information

storage and organization in the brain. Psychol Rev , 65(6), 386–408. 11

128 BIBLIOGRAPHY

[150] Rothman, J. and Wieland, F. (1996). Protein sorting by transport vesicles. Sci-

ence, 272(5259), 227–234. 36

[151] Schirle, M., Keilholz, W., Weber, B., Gouttefangeas, C., Dumrese, T., Becker,

H., Stevanović, S., and Rammensee, H. (2000). Identification of tumor-associated

MHC class I ligands by a novel T cell-independent approach. Eur J Immunol , 30(8),

2216–2225. 79

[152] Schnaitman, C., Erwin, V., and Greenawalt, J. (1967). The submitochondrial

localization of monoamine oxidase. J Cell Biol , 32(3), 719–735. 35

[153] Schölkopf, B., Bartlett, P., Smola, A., and Williamson, R. (1998). Support vector

regression with automatic accuracy control. In Proceedings of the 8th International

Conference on Artificial Neural Networks (ICANN’98), pages 111–116. 22

[154] Schölkopf, B., Smola, A., Williamson, R., and Bartlett, P. (2000). New support

vector algorithms. Neural Comput , 12(5), 1207–1245. 84

[155] Schueler-Furman, O., Altuvia, Y., Sette, A., and Margalit, H. (2000). Structure-

based prediction of binding peptides to MHC class I molecules: application to a

broad range of MHC alleles. Protein Science, 9(9), 1838–1846. 78

[156] Schwaighofer, A., Schroeter, T., Mika, S., Laub, J., Ter Laak, A., Sülzle, D.,

Ganzer, U., Heinrich, N., and Müller, K. (2007). Accurate solubility prediction with

error bars for electrolytes: A machine learning approach. J Chem Inf Model , 47(2),

407–424. 86

[157] Scott, M., Thomas, D., and Hallett, M. (2004). Predicting subcellular localization

via protein motif co-occurrence. Genome Res, 14(10 a), 1957–1966. 46

[158] Scott, M., Calafell, S., Thomas, D., and Hallett, M. (2005). Refining protein

subcellular localization. PLoS Comput Biol , 1(6), e66. 5, 46

[159] Sette, A. and Fikes, J. (2003). Epitope-based vaccines: an update on epitope

identification, vaccine design and delivery. Curr Opin Immunol , 15(4), 461–470. 43,

79

BIBLIOGRAPHY 129

[160] Sette, A., Buus, S., Appella, E., Smith, J., Chesnut, R., Miles, C., Colon, S., and

Grey, H. (1989). Prediction of major histocompatibility complex binding regions

of protein antigens by sequence pattern analysis. Proc Natl Acad Sci USA, 86(9),

3296–3300. 78

[161] Sette, A., Vitiello, A., Reherman, B., Fowler, P., Nayersina, R., Kast, W., Melief,

C., Oseroff, C., Yuan, L., and Ruppert, J. (1994). The relationship between class

I binding affinity and immunogenicity of potential cytotoxic T cell epitopes. J Im-

munol , 153(12), 5586–5592. 79

[162] Shawe-Taylor, J. and Cristianini, N. (2004). Kernel methods for pattern analysis.

Cambridge University Press, New York, NY, USA. 15

[163] Shen, Y. and Burger, G. (2010). TESTLoc: protein subcellular localization pre-

diction from EST data. BMC Bioinformatics, 11(1), 563. 46

[164] Sheridan, R., Feuston, B., Maiorov, V., and Kearsley, S. (2004). Similarity to

molecules in the training set is a good discriminator for prediction accuracy in QSAR.

J Chem Inf Comput Sci , 44(6), 1912–1928. 3, 55, 80, 83, 84

[165] Shi, S., Qiu, J., Sun, X., Huang, J., Huang, S., Suo, S., Liang, R., and Zhang, L.

(2011). Identify submitochondria and subchloroplast locations with pseudo amino

acid composition: Approach from the strategy of discrete wavelet transform feature

extraction. Biochim Biophys Acta, 1813, 424–430. 35

[166] Shin, C. J., S., W., Davis, M. J., and Ragan, M. A. (2009). Protein-protein

interaction as a predictor of subcellular location. BMC Syst Biol , 3, 28. 46

[167] Simon, P., Bonzon, M., Greppin, H., and Marme, D. (1984). Subchloroplastic

localization of NAD kinase activity: evidence for a Ca2+, calmodulin-dependent

activity at the envelope and for a Ca2+, calmodulin-independent activity in the

stroma of pea chloroplasts. FEBS Lett , 167(2), 332–338. 35

[168] Singh-Jasuja, H., Emmerich, N., and Rammensee, H. (2004). The Tübingen

approach: identification, selection, and validation of tumor-associated HLA peptides

for cancer therapy. Cancer Immunol Immunother , 53(3), 187–195. 79

130 BIBLIOGRAPHY

[169] Slot, J., Geuze, H., Gigengack, S., Lienhard, G., and James, D. (1991). Immuno-

localization of the insulin regulatable glucose transporter in brown adipose tissue of

the rat. J Cell Biol , 113(1), 123–135. 36

[170] Small, I., Wintz, H., Akashi, K., and Mireau, H. (1998). Two birds with one

stone: genes that encode products targeted to two or more compartments. Plant

Mol Biol , 38(1), 265–277. 36

[171] Small, I., Peeters, N., Legeai, F., and Lurin, C. (2004). Predotar: a tool for

rapidly screening proteomes for N-terminal targeting sequences. Proteomics, 4(6),

1581–1590. 46

[172] Smola, A. and Schölkopf, B. (2004). A tutorial on support vector regression. Stat

Comput , 14(3), 199–222. 22

[173] Sonnenburg, S., Zien, A., Philips, P., and Rätsch, G. (2008). POIMs: positional

oligomer importance matricesunderstanding support vector machine-based signal de-

tectors. Bioinformatics, 24(13), i6. 28

[174] Specht, D. (1991). A general regression neural network. IEEE Trans Neural

Netw , 2(6), 568–576. 19

[175] Spowage, B., Bruce, C., and Hirst, J. (2009). Interpretable correlation descriptors

for quantitative structure-activity relationship. J Cheminform, 1, 22. 26

[176] Stanton, D. (2003). On the physical interpretation of QSAR models. J Chem Inf

Comput Sci , 43(5), 1423–1433. 27

[177] Sutherland, J., Lee, A., and Weaver, D. (2004). A comparison of methods for

modeling quantitative structure-activity relationships. J Med Chem, 47(22), 5541–

5554. 92

[178] Takada, Y., Kaneko, N., Esumi, H., Purdue, P., and Danpure, C. (1990). Human

peroxisomal L-alanine: glyoxylate aminotransferase. Biochem J , 268(2), 517–520.

73, 162

[179] Talete srl (2007). DragonX 1.4 (molecular descriptor calculation software). 92

BIBLIOGRAPHY 131

[180] Tangri, S., Ishioka, G., Huang, X., Sidney, J., Southwood, S., Fikes, J., and

Sette, A. (2001). Structural features of peptide analogs of human histocompatibility

leukocyte antigen class I epitopes that are more potent and immunogenic than wild-

type peptide. J Exp Med , 194(6), 833–846. 79

[181] Tikhonov, A. (1943). On the stability of inverse problems. In Doklady Akademii

Nauk SSSR, volume 39, pages 195–198. 19, 20

[182] Tolley, E. and Craig, I. (1975). Presence of two forms of fumarase (fumarate hy-

dratase EC 4.2.1.2) in mammalian cells: immunological characterization and genetic

analysis in somatic cell hybrids. Confirmation of the assignment of a gene neces-

sary for the enzyme expression to human chromosome 1. Biochem Genet , 13(11),

867–883. 73, 161

[183] Toussaint, N. and Kohlbacher, O. (2009a). OptiTope–a web server for the se-

lection of an optimal set of peptides for epitope-based vaccines. Nucleic Acids Res,

37(suppl 2), W617–W622. 79

[184] Toussaint, N. and Kohlbacher, O. (2009b). Towards in silico design of epitope-

based vaccines. Expert Opin Drug Discov , 4(10), 1047–1060. 43, 78, 79

[185] Toussaint, N., Dönnes, P., and Kohlbacher, O. (2008). A mathematical framework

for the selection of an optimal set of peptides for epitope-based vaccines. PLoS

Comput Biol , 4(12), e1000246. 43, 79

[186] Tsoumakas, G. and Katakis, I. (2007). Multi-label classification: An overview.

Int J Data Warehousing Min, 3(3), 1–13. 59

[187] Tung, C. and Ho, S. (2007). POPI: predicting immunogenicity of MHC class I

binding peptides by mining informative physicochemical properties. Bioinformatics,

23(8), 942–949. 41, 78

[188] Ustun, B., Melssen, W., and Buydens, L. (2007). Visualisation and interpretation

of support vector regression models. Anal Chim Acta, 595(1-2), 299–309. 28

[189] Vider-Shalit, T., Raffaeli, S., and Louzoun, Y. (2007). Virus-epitope vaccine

design: informatic matching the HLA-I polymorphism to the virus genome. Mol

Immunol , 44(6), 1253–1261. 79

132 BIBLIOGRAPHY

[190] von Heijne, G. (1990). The signal peptide. J Membr Biol , 115(3), 195–201. 35

[191] Wan, J., Liu, W., Xu, Q., Ren, Y., Flower, D., and Li, T. (2006). SVRMHC

prediction server for MHC-binding peptides. BMC Bioinformatics, 7, 463. 78

[192] Whitten, I. and Frank, E. (2005). Data mining: practical machine learning tools

and techniques. San Fransisco, Morgan Kaufman Publishers. 52, 59

[193] Wikimedia Commons (2006). File:biological cell.svg.

http://commons.wikimedia.org/wiki/File:Biological cell.svg. [Online; accessed

20-June-2011], published under GNU Free Documentation License, Version 1.2. 30

[194] Wikimedia Commons (2008). File:scheme chloroplast-es.svg.

http://commons.wikimedia.org/wiki/File:Scheme Chloroplast-es.svg. [Online;

accessed 20-June-2011], published under GNU Free Documentation License, Version

1.2. 30

[195] Xie, D., Li, A., Wang, M., Fan, Z., and Feng, H. (2005). LOCSVMPSI: a web

server for subcellular localization of eukaryotic proteins using SVM and profile of

PSI-BLAST. Nucleic Acids Res, 33(Web Server issue), W105–W110. 46

[196] Yang, Y. and Webb, G. I. (2002). A comparative study of discretization meth-

ods for naive-Bayes classifiers. In T. Yamaguchi, A. Hoffmann, H. Motoda, and

P. Compton, editors, Proc of the 2002 Pacific Rim Knowledge Acquisition Workshop

(PKAW’02), pages 159–173, Tokyo. Japanese Society for Artificial Intelligence. 16

[197] Zhang, S., Xia, X., Shen, J., Zhou, Y., and Sun, Z. (2008). DBMLoc: a database

of proteins with multiple subcellular localizations. BMC Bioinformatics, 9, 127. 36,

46, 59

Appendix A

Abbreviations

ACC Overall accuracy
AD Applicability domain
AGT1 Human glyoxylate aminotransferase 1
ANN Artificial neural network
AUCC Area under the confidence curve
DNA Deoxyribonucleic acid
ch Chloroplast
CEC Confidence–error correlation
CFS Correlation-based feature selection
cTP Chloroplast targeting peptide
cy Cytoplasm
ER Endoplasmic reticulum
ex Extracellular space
F1 F1-score
FH Human fumerate hydratase
FN False negative
FP False positive
GLR1 Glutathione reductase
GO Gene Ontology
go Golgi apparatus
HLA Human leukocyte antigen
HMM Hidden Markov model
IDS Independent dataset
kNN K-nearest neighbor
ly Lysosome
MHC Major histocompatibility complex
mi Mitochondrion
mRNA Messenger ribonucleic acid
mTP Mitochondrial targeting peptide

134 A. Abbreviations

MSE Mean squared error
NES Nuclear export signal
NLS Nuclear localization signal
nu Nucleus
pe Peroxisome
pm Plasma membrane
PRE Precision
QSAR Quantitative structure-activity relationship
R2 Coefficient of determination
RBF Radial basis function
REC Recall
RNA Ribonucleic acid
SE Squared error
SOAP Simple object access protocol
SSE Sum of squared errors
SP Secretory pathway
SUC2 Glycosylated invertase
SVM Support vector machine
SVR Support vector regression
Tc T helper
TCR T-cell receptor
Th T cytotoxic
TN True negative
TP True positive
va Vacuole

Appendix B

Publications

1. Briesemeister, S, Rahnenführer, J, and Kohlbacher, O. No Longer Confiden-

tial: Estimating the Confidence of Individual Regression Predictions.

PLoS One, to be submitted.

2. Böcker, S, Briesemeister, S, and Klau, GW. Exact Algorithms for Cluster

Editing: Evaluation and Experiments. Algorithmica, 2011, 60(2):316-334.

3. Briesemeister, S, Rahnenführer, J, and Kohlbacher, O. YLoc an interpretable

web server for predicting subcellular localization. Nucl Acids Res, 2010,

38:W497-W502.

4. Briesemeister, S, Rahnenführer, J, and Kohlbacher, O. Going from where to

why - interpretable prediction of protein subcellular localization. Bioin-

formatics, 2010, 26(9):1232-1238.

5. Kirchler, T, Briesemeister, S, Singer, M, Schütze, K, Keinath, M, Kohlbacher,

O, Vicente-Carbajosa, J, Teige, M, Harter, K, and Chaban, C. The role of

phosphorylatable serine residues in the DNA-binding domain of Ara-

bidopsis bZIP transcription factors. Eur J Cell Biol, 2010,89(2-3):175-183.

6. Briesemeister, S, Blum, T, Brady, S, Lam, Y, Kohlbacher, O, and Shatkay, H.

SherLoc2: a high-accuracy hybrid method for predicting subcellular

localization of proteins. J Proteome Res, 2009, 8(11):53635366.

136 B. Publications

7. Blum, T, Briesemeister, S, and Kohlbacher, O. MultiLoc2: integrating phy-

logeny and Gene Ontology terms improves subcellular protein local-

ization prediction. BMC Bioinformatics, 2009, 10:274.

8. Böcker, S, Briesemeister, S, Bui, QB, and Truss, A. Going Weighted: Pa-

rameterized Algorithms for Cluster Editing. Theor Comput Sci, 2009,

410(52):5467-5480.

9. Böcker, S, Briesemeister, S, and Klau, GW. On Optimal Comparability Edit-

ing with Applications to Molecular Diagnostics. BMC Bioinformatics,

2009, 10(Suppl 1):S61.

10. Böcker, S, Briesemeister, S, Bui, QB, and Truss, A. Going Weighted: Pa-

rameterized Algorithms for Cluster Editing. In: Proc of Conference on

Combinatorial Optimization and Applications (COCOA), 2008, Volume 5165,

pp. 1–12, Lect Notes Comput Sc, Springer.

11. Böcker, S, Briesemeister, S, and Klau, GW. Exact Algorithms for Cluster

Editing: Evaluation and Experiments. In: Proc of Workshop on Experi-

mental Algorithms (WEA), 2008, pp. 289-302, Springer.

12. Böcker, S, Briesemeister, S, Bui, QB, and Truss, A. A fixed-parameter ap-

proach for Weighted Cluster Editing. In: Proc of Asia-Pacific Bioinformat-

ics Conference (APBC), 2008, Volume 5, pp. 211–220, Imperial College Press.

Appendix C

Contributions

All presented approaches and algorithms were discussed with my supervisor Prof. Dr.

Oliver Kohlbacher as well as Prof. Dr. Jörg Rahnenführer, leading to new ideas and

research directions.

Chapter 3 — YLoc – An Interpretable Classification Approach

The main methodology of YLoc was presented in the journal Bioinformatics [17]

in 2010. Oliver Kohlbacher and myself designed YLoc and the evaluation study.

The probabilistic confidence estimation approach has been developed by Jörg

Rahnenführer and myself. The dataset-based confidence estimators were designed

together with Johannes Junker as part of his master thesis, which I supervised.

Johannes Junker also implemented the dataset-based confidence estimators. The

YLoc web server was presented in the journal Nucleic Acids Research [18]. The

YLoc software and the YLoc web server was designed and implemented by myself.

Chapter 4 — Interpretable Regression With CONFINE and CONFIVE

Major parts of this work are part of a manuscript in preperation [19]. Oliver

Kohlbacher and myself designed the different confidence estimation strategies. All

authors discussed and designed the evaluation study. The approach to estimate

confidence intervals has been developed by Jörg Rahnenführer and myself. The

R CRAN package confReg was designed and implemented by myself. Parts of

the genetic algorithm approach were developed together with Leonie Martens as

part of her bachelor thesis, which I supervised. The epitope engineering study

has not been published elsewhere.

Appendix D

Tables

origin class name number of proteins

Animals Cytoplasm 437
Nucleus 1166

Mitochondrion 188
Secretory Pathway 804

Fungi Cytoplasm 211
Nucleus 711

Mitochondrion 188
Secretory Pathway 88

Plants Cytoplasm 58
Nucleus 121

Mitochondrion 67
Secretory Pathway 41

Chloroplast 204

Table D.1: BaCelLo dataset: Class names and number of proteins of the three
BaCelLo training datasets.

140 D. Tables

class name number of proteins

Nucleus 837
Cytoplasm 1411
Mitochondrion 510
Chloroplast 449
Extracellular space 843
Plasma membrane 1238
Peroxisome 157
Endoplasmic Reticulum 198
Golgi apparatus 150
Lysosome 103
Vacuole 63

Table D.2: Höglund dataset: Class names and number of proteins of the Höglund
training datasets. For training the animal, fungal, and plant versions of YLoc, the
locations vacuole and chloroplast, lysosome and chloroplast, lysosome are not used,
respectively.

class name # kind of proteins example proteins
cy nu 1882 various receptors insulin receptor substrate,

and substrates ionotropic glutamate receptor
ex pm 334 proteins from signal path- autolysin , Fc receptor , kit ligand

ways and immune pathways
cy pm 252 structural proteins and calmodulin, microtubule-associated

messenger proteins protein tau
cy mi 240 mostly enzymes hemoglobin beta-1, homoaconitase
nu mi 120 enzymes and DNA uracil-DNA glycosylase, estrogen

binding proteins receptor beta, DNA-glycosylase
er ex 115 mostly enzymes cholesterol 24-hydroxylase,

calsequestrin
nu ex 113 enzymes and viral puromycin-sensitive aminopeptidase,

proteins epstein-barr nuclear antigen

Table D.3: DBMLoc dataset: Class names and number of proteins (#) of the
DBMLoc training datasets. Furthermore, the kind of proteins present in these multiple
locations, including some example proteins, are shown. See Section 3.2.6 for the
translation of the abbreviated class names.

141

Method Location REC PRE F1

YLoc-LowRes mi 0.77 0.78 0.78
SP 0.95 0.83 0.89
cy 0.43 0.61 0.51
nu 0.87 0.82 0.85

YLoc-LowRes* mi 0.70 0.76 0.73
SP 0.93 0.80 0.86
cy 0.36 0.55 0.44
nu 0.86 0.79 0.82

YLoc-HighRes mi 0.71 0.77 0.74
SP 0.91 0.77 0.84
cy 0.32 0.50 0.39
nu 0.86 0.78 0.82

YLoc-HighRes* mi 0.73 0.74 0.70
SP 0.88 0.74 0.81
cy 0.45 0.43 0.44
nu 0.75 0.82 0.78

YLoc+ mi 0.68 0.66 0.67
SP 0.86 0.69 0.77
cy 0.89 0.46 0.61
nu 0.85 0.52 0.65

YLoc+* mi 0.75 0.60 0.67
SP 0.91 0.67 0.77
cy 0.89 0.45 0.60
nu 0.81 0.52 0.64

Table D.4: Detailed performance comparison on the animal BaCelLo IDS:
Detailed performance of YLoc-LowRes, YLoc-HighRes, YLoc+ on the animal BaCelLo
IDS regarding overall accuracy (ACC), average recall (REC), average precision (PRE),
and average F1-score (F1). For predictors marked with *, GO-term features were
excluded from the feature selection. The performance of YLoc+ was measured using
the generalized measures for multi-label classification.

142 D. Tables

Method Location REC PRE F1

YLoc-LowRes mi 0.56 0.66 0.61
SP 0.89 0.80 0.84
cy 0.24 0.63 0.35
nu 0.91 0.49 0.65

YLoc-LowRes* mi 0.62 0.59 0.60
SP 0.89 0.76 0.82
cy 0.18 0.57 0.27
nu 0.87 0.49 0.63

YLoc-HighRes mi 0.42 0.83 0.56
SP 1.00 0.22 0.36
cy 0.46 0.66 0.54
nu 0.71 0.51 0.60

YLoc-HighRes* mi 0.45 0.83 0.58
SP 1.00 0.20 0.33
cy 0.51 0.64 0.57
nu 0.65 0.53 0.58

YLoc+ mi 0.44 0.49 0.46
SP 0.67 0.29 0.40
cy 0.89 0.46 0.61
nu 0.82 0.45 0.58

YLoc+* mi 0.47 0.53 0.50
SP 0.78 0.21 0.33
cy 0.79 0.47 0.59
nu 0.82 0.44 0.57

Table D.5: Detailed performance comparison on the fungi BaCelLo IDS:
Detailed performance of YLoc-LowRes, YLoc-HighRes, YLoc+ on the fungi BaCelLo
IDS regarding overall accuracy (ACC), average recall (REC), average precision (PRE),
and average F1-score (F1). For predictors marked with *, GO-term features were
excluded from the feature selection. The performance of YLoc+ was measured using
the generalized measures for multi-label classification.

143

Method Location REC PRE F1

YLoc-LowRes mi 0.50 0.31 0.38
ch 0.72 0.85 0.78
SP 0.67 0.33 0.44
cy 0.43 0.55 0.48
nu 0.85 0.76 0.80

YLoc-LowRes* mi 0.17 0.06 0.09
ch 0.62 0.76 0.68
SP 0.33 0.13 0.19
cy 0.36 0.47 0.41
nu 0.72 0.76 0.74

YLoc-HighRes mi 0.83 0.35 0.49
ch 0.42 0.95 0.59
SP 1.00 0.29 0.46
cy 0.57 0.28 0.38
nu 0.78 0.77 0.77

YLoc-HighRes* mi 0.67 0.26 0.38
ch 0.46 0.90 0.61
SP 0.83 0.22 0.35
cy 0.53 0.34 0.42
nu 0.80 0.79 0.80

YLoc+ mi 0.83 0.25 0.39
ch 0.40 0.91 0.56
SP 0.83 0.24 0.38
cy 0.82 0.31 0.45
nu 0.88 0.53 0.66

YLoc+* mi 0.83 0.28 0.42
ch 0.45 0.87 0.59
SP 0.83 0.26 0.39
cy 0.82 0.32 0.46
nu 0.83 0.48 0.61

Table D.6: Detailed performance comparison on the plant BaCelLo IDS:
Detailed performance of YLoc-LowRes, YLoc-HighRes, YLoc+ on the plant BaCelLo
IDS regarding overall accuracy (ACC), average recall (REC), average precision (PRE),
and average F1-score (F1). For predictors marked with *, GO-term features were
excluded from the feature selection. The performance of YLoc+ was measured using
the generalized measures for multi-label classification.

144 D. Tables

Method Location REC PRE F1

YLoc-HighRes er 0.10 0.45 0.16
ex 0.81 0.86 0.84
go 0.14 0.33 0.20
ly 0.25 0.50 0.33
pe 0.00 0.00 0.00
pm 0.56 0.44 0.49

YLoc-HighRes* er 0.10 0.29 0.15
ex 0.87 0.87 0.87
go 0.07 0.25 0.11
ly 0.25 0.23 0.24
pe 0.33 0.13 0.18
pm 0.62 0.60 0.61

YLoc+ er 0.12 0.42 0.19
ex 0.80 0.77 0.79
go 0.07 0.21 0.11
ly 0.25 0.12 0.16
pe 0.67 0.35 0.46
pm 0.74 0.43 0.54

YLoc+* er 0.32 0.41 0.36
ex 0.84 0.76 0.80
go 0.07 0.21 0.17
ly 0.00 0.00 0.00
pe 0.67 0.44 0.53
pm 0.68 0.46 0.55

Table D.7: Detailed performance comparison on the animal Höglund IDS:
Detailed performance of YLoc-HighRes and YLoc+ on the animal Höglund IDS re-
garding overall accuracy (ACC), average recall (REC), average precision (PRE), and
average F1-score (F1). For predictors marked with *, GO-term features were excluded
from the feature selection. The performance of YLoc+ was measured using the gener-
alized measures for multi-label classification.

145

Method ACC REC PRE F1

YLoc-LowRes 0.79 0.76 0.76 0.75
YLoc-HighRes 0.74 0.70 0.70 0.79
YLoc+ 0.58 0.82 0.58 0.67
MultiLoc2-LowRes 0.73 0.80 0.75 0.76
MultiLoc2-HighRes 0.68 0.75 0.71 0.71
BaCelLo 0.64 0.69 0.66 0.66
LOCTree 0.62 0.61 0.56 0.58
WoLF PSORT 0.70 0.70 0.64 0.67
Euk-mPloc 0.61 0.56 0.56 0.54
KnowPred 0.75 0.75 0.67 0.69

Table D.8: Performance comparison on the animal BaCelLo IDS: Per-
formance of YLoc-LowRes, YLoc-HighRes, YLoc+, MultiLoc2-LowRes, MultiLoc2-
HighRes, BaCelLo, LOCTree, WoLF PSORT, Euk-mPloc, and KnowPred on the
animal BaCelLo IDS regarding overall accuracy (ACC), average recall (REC), av-
erage precision (PRE), and average F1-score (F1). The performance of YLoc+, WoLF
PSORT, Euk-mPloc, KnowPred were measured using the generalized measures for
multi-label classification.

Method ACC REC PRE F1

YLoc-LowRes* 0.76 0.71 0.73 0.71
YLoc-HighRes* 0.71 0.70 0.68 0.69
YLoc+* 0.58 0.84 0.56 0.67

Table D.9: Performance of YLoc without GO terms on the animal BaCelLo
IDS: Performance of YLoc-LowRes*, YLoc-HighRes*, and YLoc+* on the animal Ba-
CelLo IDS regarding overall accuracy (ACC), average recall (REC), average precision
(PRE), and average F1-score (F1). The performance of YLoc+ was measured using
the generalized measures for multi-label classification.

146 D. Tables

Method ACC REC PRE F1

YLoc-LowRes 0.56 0.65 0.66 0.61
YLoc-HighRes 0.56 0.65 0.55 0.51
YLoc+ 0.48 0.70 0.42 0.51
MultiLoc2-LowRes 0.60 0.66 0.59 0.61
MultiLoc2-HighRes 0.53 0.59 0.59 0.58
BaCelLo 0.57 0.71 0.56 0.60
LOCTree 0.47 0.55 0.43 0.43
WoLF PSORT 0.50 0.62 0.54 0.51
Euk-mPloc 0.60 0.67 0.53 0.56
KnowPred 0.66 0.69 0.53 0.56

Table D.10: Performance comparison on the fungi BaCelLo IDS: Per-
formance of YLoc-LowRes, YLoc-HighRes, YLoc+, MultiLoc2-LowRes, MultiLoc2-
HighRes, BaCelLo, LOCTree, WoLF PSORT, Euk-mPloc, and KnowPred on the
fungi BaCelLo IDS regarding overall accuracy (ACC), average recall (REC), aver-
age precision (PRE), and average F1-score (F1). The performance of YLoc+, WoLF
PSORT, Euk-mPloc, and KnowPred were measured using the generalized measures
for multi-label classification.

Method ACC REC PRE F1

YLoc-LowRes* 0.53 0.64 0.60 0.58
YLoc-HighRes* 0.56 0.65 0.55 0.52
YLoc+* 0.48 0.71 0.41 0.50

Table D.11: Performance of YLoc without GO terms on the fungi BaCelLo
IDS: Performance of YLoc-LowRes*, YLoc-HighRes*, and YLoc+* on the fungi Ba-
CelLo IDS regarding overall accuracy (ACC), average recall (REC), average precision
(PRE), and average F1-score (F1). The performance of YLoc+ was measured using
the generalized measures for multi-label classification.

147

Method ACC REC PRE F1

YLoc-LowRes 0.71 0.63 0.56 0.58
YLoc-HighRes 0.58 0.72 0.53 0.54
YLoc+ 0.53 0.75 0.45 0.49
MultiLoc2-LowRes 0.76 0.72 0.61 0.64
MultiLoc2-HighRes 0.62 0.65 0.52 0.54
BaCelLo 0.69 0.61 0.71 0.56
LOCTree 0.70 0.65 0.58 0.58
WoLF PSORT 0.57 0.46 0.48 0.46
Euk-mPloc 0.46 0.54 0.35 0.37
KnowPred 0.29 0.52 0.15 0.23

Table D.12: Performance comparison on the plant BaCelLo IDS: Per-
formance of YLoc-LowRes, YLoc-HighRes, YLoc+, MultiLoc2-LowRes, MultiLoc2-
HighRes, BaCelLo, LOCTree, WoLF PSORT, Euk-mPloc, and KnowPred on the
plants BaCelLo IDS regarding overall accuracy (ACC), average recall (REC), aver-
age precision (PRE), and average F1-score (F1). The performance of YLoc+, WoLF
PSORT, Euk-mPloc, and KnowPred were measured using the generalized measures
for multi-label classification.

Method ACC REC PRE F1

YLoc-LowRes* 0.58 0.44 0.44 0.42
YLoc-HighRes* 0.58 0.66 0.50 0.51
YLoc+* 0.53 0.75 0.44 0.50

Table D.13: Performance of YLoc without GO terms on the plant BaCelLo
IDS: Performance of YLoc-LowRes*, YLoc-HighRes*, and YLoc+* on the plants Ba-
CelLo IDS regarding overall accuracy (ACC), average recall (REC), average precision
(PRE), and average F1-score (F1). The performance of YLoc+ was measured using
the generalized measures for multi-label classification.

148 D. Tables

Method ACC REC PRE F1

YLoc-HighRes 0.56 0.31 0.43 0.33
YLoc+ 0.53 0.44 0.38 0.37
MultiLoc2-HighRes 0.57 0.38 0.46 0.41
WoLF PSORT 0.36 0.15 0.28 0.18
Euk-mPloc 0.27 0.23 0.29 0.24
KnowPred 0.49 0.34 0.50 0.37

Table D.14: Performance comparison on the animal Höglund IDS: Per-
formance of YLoc-HighRes, YLoc+, MultiLoc2-HighRes, WoLF PSORT, Euk-mPloc,
and KnowPred on the animals Höglund IDS regarding overall accuracy (ACC), average
recall (REC), average precision (PRE), and average F1-score (F1). The performance
of YLoc+, WoLF PSORT, Euk-mPloc, and KnowPred were measured using the gen-
eralized measures for multi-label classification.

Method ACC REC PRE F1

YLoc-HighRes* 0.60 0.37 0.39 0.36
YLoc+* 0.56 0.44 0.42 0.40

Table D.15: Performance of YLoc without GO terms on the animal
Höglund IDS: Performance of YLoc-HighRes*, and YLoc+* on the animal Höglund
IDS regarding overall accuracy (ACC), average recall (REC), average precision (PRE),
and average F1-score (F1). The performance of YLoc+ was measured using the gen-
eralized measures for multi-label classification.

149

Method ACC REC PRE F1

YLoc+ Animals 0.63 0.58 0.85 0.69
YLoc+ Animals 0.34 0.23 0.46 0.29
YLoc+ Fungi 0.65 0.58 0.85 0.68
YLoc+ Fungi 0.35 0.23 0.45 0.29
YLoc+ Plants 0.64 0.58 0.84 0.68
YLoc+ Plants 0.35 0.24 0.47 0.31
WoLF PSORT Animals 0.43 0.38 0.81 0.52
WoLF PSORT Animals 0.05 0.02 0.25 0.03
WoLF PSORT Fungi 0.42 0.36 0.81 0.49
WoLF PSORT Fungi 0.04 0.01 0.14 0.02
WoLF PSORT Plants 0.33 0.24 0.79 0.36
WoLF PSORT Plants 0.00 0.00 0.08 0.00
Euk-mPloc 0.41 0.32 0.76 0.44
Euk-mPloc 0.05 0.02 0.49 0.04
KnowPred 0.63 0.54 0.88 0.66
KnowPred 0.36 0.19 0.67 0.28

Table D.16: Performance comparison on the DBMLoc dataset: The pre-
diction performance of the different versions of YLoc+, WoLF PSORT, Euk-mPloc,
and KnowPred on the DBMLoc dataset is shown. The prediction performance was
measured using multi-label measures and singles label measures (in italic).

Method ACC REC PRE F1

YLoc+* Animals 0.61 0.55 0.79 0.65
YLoc+* Animals 0.31 0.19 0.36 0.24
YLoc+* Fungi 0.62 0.56 0.79 0.65
YLoc+* Fungi 0.33 0.20 0.36 0.24
YLoc+* Plants 0.60 0.54 0.78 0.63
YLoc+* Plants 0.30 0.18 0.32 0.22

Table D.17: Performance of YLoc without GO terms on the DBMLoc
dataset: The prediction performance of the different versions of YLoc+ without the
inclusion of GO terms on the DBMLoc dataset is shown. The prediction performance
was measured using multi-label measures and singles label measures (in italic).

150 D. Tables

Method ACC REC PRE F1

YLoc40+ Animals 0.65 0.58 0.84 0.68
YLoc40+ Animals 0.38 0.23 0.51 0.31
YLoc40+ Fungi 0.66 0.57 0.85 0.68
YLoc40+ Fungi 0.37 0.22 0.42 0.28
YLoc40+ Plants 0.65 0.56 0.84 0.67
YLoc40+ Plants 0.35 0.20 0.43 0.26
WoLF PSORT Animals 0.43 0.38 0.81 0.52
WoLF PSORT Animals 0.05 0.02 0.25 0.03
WoLF PSORT Fungi 0.42 0.35 0.81 0.49
WoLF PSORT Fungi 0.04 0.01 0.14 0.02
WoLF PSORT Plants 0.33 0.24 0.79 0.36
WoLF PSORT Plants 0.00 0.00 0.08 0.00
Euk-mPloc 0.41 0.32 0.76 0.44
Euk-mPloc 0.05 0.02 0.49 0.04
KnowPred 0.64 0.54 0.88 0.67
KnowPred 0.36 0.19 0.67 0.28

Table D.18: Performance comparison on the DBMLoc40 dataset: The pre-
diction performance of the different versions of YLoc+, WoLF PSORT, Euk-mPloc,
and KnowPred on the DBMLoc40 dataset is shown. The prediction performance was
measured using multi-label measures and singles label measures (in italic).

Method ACC REC PRE F1

YLoc40+* Animals 0.63 0.56 0.77 0.64
YLoc40+* Animals 0.35 0.19 0.38 0.24
YLoc40+* Fungi 0.62 0.55 0.77 0.64
YLoc40+* Fungi 0.34 0.18 0.32 0.22
YLoc40+* Plants 0.61 0.54 0.77 0.63
YLoc40+* Plants 0.33 0.17 0.32 0.22

Table D.19: Performance of YLoc without GO terms on the DBMLoc40
dataset: The prediction performance of the different versions of YLoc+ without the
inclusion of GO terms on the DBMLoc40 dataset is shown. The prediction perfor-
mance was measured using multi-label measures and singles label measures (in italic).

151

Measure IDS NBconf Post AvgDist NoNN Acc LE

AUCCinst Animals 0.35 0.29 -0.42 -0.17 0.42 0.14
Fungi 0.25 0.17 -0.06 -0.02 0.22 0.17
Plants 0.16 0.20 0.12 0.09 0.29 0.37

AUCCscore B Animals 0.31 0.17 -0.10 -0.13 0.19 0.37
Fungi 0.25 0.07 -0.02 -0.04 0.12 0.20
Plants 0.18 0.11 0.05 0.09 0.07 0.29

Table D.20: AUCCACC of different confidence estimators for YLoc-
LowRes predictions on the BaCelLo IDSs. We calculated AUCCinst,ACC and
AUCCscore,ACC based on confidence estimates for predictions of the BaCelLo IDSs
using different confidence estimators. In addition, we show the AUCCs for the case of
using the posterior probability as estimate (Post).

152 D. Tables

Predictor Version Measure Minimum confidence score
0.00 0.20 0.40 0.60 0.80 0.90

YLoc-LowRes Animals F1 0.75 0.76 0.78 0.80 0.84 0.95
ACC 0.79 0.79 0.81 0.86 0.91 0.93
% of n 100 81 69 52 33 20

Fungi F1 0.61 0.64 0.68 0.69 0.71 0.94
ACC 0.56 0.58 0.62 0.68 0.73 0.86
% of n 100 92 70 40 17 5

Plants F1 0.58 0.64 0.74 0.75 0.74 0.71
ACC 0.71 0.75 0.76 0.78 0.78 0.75
% of n 100 87 56 39 27 17

YLoc-HighRes Animals F1 0.69 0.74 0.76 0.76 0.77 0.77
ACC 0.74 0.78 0.80 0.82 0.83 0.84
% of n 100 88 82 74 68 61

Fungi F1 0.51 0.56 0.59 0.61 0.59 0.63
ACC 0.56 0.58 0.59 0.62 0.61 0.65
% of n 10 88 80 73 62 53

Plants F1 0.54 0.61 0.64 0.63 0.67 0.67
ACC 0.58 0.65 0.68 0.67 0.71 0.71
% of n 399 79 74 66 54 47

YLoc+ Animals F1 0.67 0.69 0.72 0.77 0.76 0.81
ACC 0.58 0.60 0.62 0.65 0.65 0.69
% of n 100 86 73 56 38 25

Fungi F1 0.51 0.56 0.58 0.58 0.64 0.68
ACC 0.48 0.49 0.51 0.53 0.55 0.58
% of n 100 89 79 64 40 22

Plants F1 0.49 0.60 0.66 0.69 0.77 0.84
ACC 0.53 0.62 0.64 0.66 0.78 0.79
% of n 100 82 69 58 44 34

Table D.21: Performance of YLoc for different minimum confidence levels
using estimator NBconf: Performance of the YLoc predictors on the BaCelLo
IDSs concerning F1 and ACC for different minimum normalized confidence scores of
NBconf. Moreover, the percentage of instances n that can be predicted with the given
minimum confidence level is given. The performance of YLoc+ was measured using
the generalized F1 and ACC. Values obtained from a very small set of proteins with
less than 50 proteins are grayed out.

153

Protein Origin Swiss-Prot AC Isoform Change Predicted

FH Animal P07954 delta43 mi→cy mit→cy (YLoc-LowRes)
AGT1 Animal P21549 extended pe→mi pe→mi (YLoc-HighRes)

pe/mi/cy→mi (YLoc+)
GLR1 Fungi P41921 delta16 mi→cy mi (YLoc-LowRes)

mi→cy (YLow-HighRes)
mi→cy/mit (YLoc+)

SUC2 Fungi P00724 delta20 ex→cy ex→cy (YLoc-LowRes)
SUC2 Fungi P00724 Mut113 ex→cy ex→nu (YLoc-LowRes)
SUC2 Fungi P00724 Mut210 ex SP (YLoc-LowRes)
SUC2 Fungi P00724 Mut236 ex SP (YLoc-LowRes)
SUC2 Fungi P00724 Mut211 ex SP (YLoc-LowRes)
SUC2 Fungi P00724 Mut437 ex→cy SP (YLoc-LowRes)
SUC2 Fungi P00724 Mut438 ex→cy ex→cy (YLoc-LowRes)
SUC2 Fungi P00724 Mut331 ex SP (YLoc-LowRes)
SUC2 Fungi P00724 Mut301 ex SP (YLoc-LowRes)
SUC2 Fungi P00724 Mut506 ex→cy ex→cy (YLoc-LowRes)
SUC2 Fungi P00724 Mut321 ex→cy ex→cy (YLoc-LowRes)

Table D.22: Example of predicted localization changes: Isoforms and mutated
proteins used in the localization change experiment from Section 3.3.6 are presented.
In addition, the expected and predicted localization change is compared. See Ap-
pendix E for the used protein sequence data.

154 D. Tables

Table D.23: CEC of confidence estimators on artificial data with different
properties

n ≤ 100 n > 100 m ≤ 10 m > 10 σ < 1.0 σ ≥ 1.0 best

CONFINE 0.05 0.22 0.19 0.05 0.21 0.15 0.30
CONFINE∗ 0.07 0.23 0.20 0.06 0.21 0.16 0.28
CONFIVE -0.02 0.05 0.03 -0.01 0.04 0.02 0.07
CONFIVE∗ -0.03 0.01 0.00 -0.02 0.01 -0.01 0.02

1-SVM 0.00 0.12 0.11 -0.02 0.10 0.08 0.17
AvgBiasedDist 0.01 0.03 0.03 0.01 0.04 0.02 0.05
AvgBiasedDistOF 0.02 0.08 0.07 0.01 0.09 0.05 0.13
AvgDist 0.02 0.12 0.10 0.03 0.11 0.08 0.16
AvgDistOF 0.05 0.11 0.11 0.03 0.11 0.09 0.14
Bagging 0.11 0.20 0.18 0.11 0.19 0.16 0.25
Diff5NN 0.01 0.17 0.14 0.02 0.14 0.11 0.29
DiffNN -0.01 0.14 0.12 -0.04 0.11 0.08 0.27
LocalBias 0.01 0.02 0.01 0.02 0.03 0.01 0.03
LocalCV 0.01 0.05 0.04 0.02 0.04 0.03 0.05
LocalVar 0.00 0.12 0.10 0.00 0.09 0.08 0.16
MinDist -0.01 0.04 0.03 0.00 0.03 0.02 0.04
MinDistOF 0.01 0.08 0.07 0.01 0.09 0.04 0.13
NoNN∗ 0.01 0.12 0.11 0.00 0.12 0.07 0.16
NoNN 0.05 0.12 0.12 0.03 0.11 0.09 0.16
PredVar 0.00 0.12 0.10 0.00 0.09 0.08 0.16

For every confidence estimator, we calculated the average CEC by considering
datasets with a different number of instances n, a different number of selected
features m, and a different noise level σ. In the last column, we show the average
CEC for the best parameter combination (n = 1, 000, m ≤ 10, σ = 0.1).

155

Table D.24: Confidence associated prediction improvement of confidence
estimators on artificial data with different properties

n ≤ 100 n > 100 m ≤ 10 m > 10 σ < 1.0 σ ≥ 1.0 best

CONFINE 0.11 0.35 0.31 0.14 0.37 0.24 0.48
CONFINE∗ 0.13 0.38 0.32 0.17 0.37 0.27 0.48
CONFIVE 0.02 0.09 0.08 0.02 0.12 0.05 0.12
CONFIVE∗ 0.03 0.01 0.03 -0.02 0.08 0.00 0.04

1-SVM 0.08 0.22 0.21 0.02 0.21 0.16 0.25
AvgBiasedDist 0.13 0.06 0.09 0.06 0.11 0.07 0.07
AvgBiasedDistOF 0.07 0.16 0.14 0.06 0.21 0.10 0.21
AvgDist 0.07 0.22 0.19 0.08 0.21 0.16 0.25
AvgDistOF 0.12 0.22 0.21 0.07 0.22 0.17 0.25
Bagging 0.23 0.26 0.25 0.23 0.32 0.23 0.29
Diff5NN 0.04 0.22 0.18 0.06 0.20 0.15 0.35
DiffNN 0.04 0.20 0.18 -0.01 0.17 0.14 0.34
LocalBias 0.04 0.05 0.06 -0.01 0.09 0.03 0.05
LocalCV 0.06 0.12 0.11 0.07 0.12 0.10 0.11
LocalVar 0.06 0.21 0.19 0.01 0.17 0.15 0.25
MinDist 0.11 0.08 0.09 0.08 0.09 0.09 0.05
MinDistOF 0.05 0.15 0.13 0.04 0.21 0.08 0.23
NoNN∗ 0.10 0.22 0.21 0.06 0.21 0.17 0.24
NoNN 0.16 0.22 0.22 0.10 0.24 0.18 0.26
PredVar 0.06 0.21 0.19 0.01 0.17 0.15 0.25

For every confidence estimator, we calculated the confidence associated prediction
improvement (CAPI) by considering datasets with a different number of instances n,
a different number of selected features m, and a different noise level σ. In the last
column, we show the average CAPI for the best parameter combination (n = 1, 000,
m ≤ 10, σ = 0.1).

156 D. Tables

Table D.25: Performance of confidence estimators on biological datasets
using linear regression

confidence MHC QSAR
estimator CEC CAPI runtime [ms] CEC CAPI runtime [ms]

CONFINE 0.27 0.39 2 0.08 0.09 1
CONFINE∗ 0.23 0.33 2 0.07 -0.08 1
CONFIVE 0.24 0.35 2 0.09 0.13 1
CONFIVE∗ 0.17 0.22 2 0.08 0.11 1

1-SVM 0.02 -0.02 1 -0.08 -0.23 1
AvgBiasedDist 0.03 0.00 3 -0.04 -0.17 1
AvgBiasedDistOF 0.00 0.01 3 0.02 0.00 1
AvgDist 0.11 0.18 2 -0.02 -0.10 1
AvgDistOF 0.02 0.00 2 -0.03 -0.02 1
Bagging 0.13 0.18 1 0.20 0.35 1
Diff5NN 0.16 0.17 2 0.05 0.13 1
DiffNN 0.24 0.32 2 0.00 -0.14 1
LocalBias 0.08 0.11 481 0.01 -0.05 429
LocalCV 0.16 0.27 214 0.08 0.10 353
LocalVar 0.10 0.17 482 -0.08 -0.22 430
MinDist 0.04 0.05 2 -0.04 -0.24 1
MinDistOF 0.01 0.02 2 0.03 0.05 1
NoNN∗ 0.07 0.09 2 -0.02 -0.06 1
NoNN 0.10 0.17 2 -0.03 -0.09 1
PredVar 0.10 0.17 1 -0.08 -0.22 1

For every confidence estimator, the avgCEC, the confidence associated prediction
improvement (CAPI), and the time for an individual estimation in miliseconds on the
MHC datasets and on the QSAR datasets is shown.

157

Table D.26: Performance of confidence estimators on biological datasets
using support vector regression

confidence MHC QSAR
estimator CEC CAPI runtime [ms] CEC CAPI runtime [ms]

CONFINE 0.23 0.41 9 0.23 0.32 9
CONFINE∗ 0.11 0.18 9 0.15 0.09 9
CONFIVE 0.21 0.34 10 0.16 0.21 10
CONFIVE∗ 0.08 0.28 9 0.11 0.07 10

AvgDist 0.12 0.23 9 0.02 0.03 12
Bagging 0.21 0.50 374 0.15 0.17 364
DiffNN 0.24 0.35 9 0.10 0.20 10
NoNN 0.22 0.18 9 0.12 0.14 44

For every confidence estimator, the average CEC, the average confidence associated
prediction improvement (CAPI), and the time for an individual estimation in
milliseconds on the MHC datasets and on the QSAR datasets is shown.

158 D. Tables

Table D.27: Correlation of estimated performance and real performance
using linear regression

artificial data artificial data n > 100 MHC data QSAR data

CONFINE 0.13 0.43 0.88 0.06
CONFINE∗ -0.38 -0.35 -0.53 0.15
CONFIVE 0.06 0.25 0.96 0.32
CONFIVE∗ 0.01 -0.05 0.92 0.12

1-SVM 0.21 0.33 0.52 -0.02
AvgBiasedDist 0.02 0.17 0.56 -0.15
AvgBiasedDistOF 0.19 0.25 -0.05 0.02
AvgDist 0.27 0.36 0.90 -0.21
AvgDistOF 0.31 0.42 0.10 0.17
Bagging 0.03 0.39 0.95 0.13
Diff5NN 0.46 0.65 0.90 0.12
DiffNN 0.51 0.74 0.95 -0.12
LocalBias -0.02 0.08 0.88 0.17
LocalCV 0.04 0.13 0.90 0.10
LocalVar 0.24 0.35 0.88 -0.04
NoNN∗ 0.26 0.37 0.79 -0.15
NoNN 0.00 0.41 0.89 -0.12
PredVar 0.24 0.35 0.88 -0.04

For every confidence estimator, we calculated the correlation ρ between the CEC on
test data (CECtest) and the CEC on the training data using an estimator trained on
the same data (CECtrain). In case of MinDist, CECtest is obtained by averaging the
CECs of a cross-validation on the training data.

159

Table D.28: Correlation of estimated performance and real performance
using support vector regression

artificial data artificial data n > 100 MHC data QSAR data

CONFINE 0.22 0.44 0.84 0.12
CONFINE∗ -0.33 -0.59 -0.56 0.04
CONFIVE -0.11 0.21 0.94 0.39
CONFIVE∗ -0.13 -0.30 0.60 -0.17

AvgDist 0.44 0.74 0.80 -0.10
Bagging -0.33 -0.54 -0.47 0.05
DiffNN 0.03 0.27 0.90 0.17
NoNN 0.49 0.59 0.32 0.34

For the given confidence estimator, we calculated the correlation ρ between the CEC
on test data (CECtest) and the CEC on the training data using an estimator trained
on the same data (CECtrain).

160 D. Tables

Table D.29: Binding affinities and confidence intervals of G9209 and analogs

peptide Exp IC50 Pred IC50 lower bound IC50 upper bound IC50

ITDQVPFSV 172 156.2 50.9 759.9

ILDQVPFSV 3.3 12.5 3.2 60.9
IMDQVPFSV 19.1 12.7 3.3 60.1
ILDQVPFSV 40.0 12.5 3.2 60.9
FTDQVPFSV 61.4 28.0 7.1 128.3
WTDQVPFSV 716.7 158.7 28.3 1052.1
YTDQVPFSV 86.0 35.5 11.8 146.6
ITWQVPFSV 34.4 68.1 17.7 327.0
ITFQVPFSV 66.2 96.0 26.6 450.6
ITYQVPFSV 33.1 95.9 32.2 426.0
ITAQVPFSV 95.6 135.2 44.6 572.2
ITMQVPFSV 40.0 41.0 13.7 183.6
ITSQVPFSV 637.0 138.8 45.5 639.1
ILWQVPFSV 1.7 5.5 1.4 25.5
ILFQVPFSV 2.0 7.7 2.4 36.2
ILYQVPFSV 4.9 7.7 2.6 35.7
ILAQVPFSV 11.5 10.8 3.6 45.9
ILMQVPFSV 7.5 3.3 1.1 16.4
ILSQVPFSV 20.0 11.1 3.5 49.8
WLDQVPFSV 11.5 12.7 1.6 94.3
FLDQVPFSV 2.2 2.2 0.3 16.4
YLDQVPFSV 2.3 2.8 1.0 12.5

For each peptide, the experimentally determined IC50 value (Exp IC50), the predicted
IC50 (Pred IC50), and the lower and upper bound of the 80% confidence interval are
given (as IC50). The first peptide is G9209, followed by a set of analogs. The mutated
positions are printed in bold. Note that we calculate the confidence interval based on
the log IC50 values.

Appendix E

Sequence Data

In the following, we list the proteins used in the localization change experiments

from Section 3.3.6 including their Swiss-Prot AC, name, possible isoform, and the

experimentally observed location and, if possible, references to the original paper.

Q75WG7 U13-HTXT (secreted)

MKLSALVFVASVMLVAASPVKDVEEPVETHLAADLKTIEELAKYEEAAVQKRSCIVGSKN

IGETCVASCQCCGATVRCIGEGTKGICNNYQTNNILGQILLYAKDTVVNTAGLLVCAQDL

SEYE

P07954 FH (mitochondrion) [182]

MYRALRLLARSRPLVRAPAAALASAPGLGGAAVPSFWPPNAARMASQNSFRIEYDTFGEL

KVPNDKYYGAQTVRSTMNFKIGGVTERMPTPVIKAFGILKRAAAEVNQDYGLDPKIANAI

MKAADEVAEGKLNDHFPLVVWQTGSGTQTNMNVNEVISNRAIEMLGGELGSKIPVHPNDH

VNKSQSSNDTFPTAMHIAAAIEVHEVLLPGLQKLHDALDAKSKEFAQIIKIGRTHTQDAV

PLTLGQEFSGYVQQVKYAMTRIKAAMPRIYELAAGGTAVGTGLNTRIGFAEKVAAKVAAL

TGLPFVTAPNKFEALAAHDALVELSGAMNTTACSLMKIANDIRFLGSGPRSGLGELILPE

NEPGSSIMPGKVNPTQCEAMTMVAAQVMGNHVAVTVGGSNGHFELNVFKPMMIKNVLHSA

RLLGDASVSFTENCVVGIQANTERINKLMNESLMLVTALNPHIGYDKAAKIAKTAHKNGS

TLKETAIELGYLTAEQFDEWVKPKDMLGPK

P07954 FH delta 43 (cytoplasm) [182]

MASQNSFRIEYDTFGEL

KVPNDKYYGAQTVRSTMNFKIGGVTERMPTPVIKAFGILKRAAAEVNQDYGLDPKIANAI

162 E. Sequence Data

MKAADEVAEGKLNDHFPLVVWQTGSGTQTNMNVNEVISNRAIEMLGGELGSKIPVHPNDH

VNKSQSSNDTFPTAMHIAAAIEVHEVLLPGLQKLHDALDAKSKEFAQIIKIGRTHTQDAV

PLTLGQEFSGYVQQVKYAMTRIKAAMPRIYELAAGGTAVGTGLNTRIGFAEKVAAKVAAL

TGLPFVTAPNKFEALAAHDALVELSGAMNTTACSLMKIANDIRFLGSGPRSGLGELILPE

NEPGSSIMPGKVNPTQCEAMTMVAAQVMGNHVAVTVGGSNGHFELNVFKPMMIKNVLHSA

RLLGDASVSFTENCVVGIQANTERINKLMNESLMLVTALNPHIGYDKAAKIAKTAHKNGS

TLKETAIELGYLTAEQFDEWVKPKDMLGPK

P21549 AGT1 (peroxisome) [178]

MASHKLLVTPPKALLKPLSIPNQLLLGPGPSNLPPRIMAAGGLQMIGSMSKDMYQIMDEI

KEGIQYVFQTRNPLTLVISGSGHCALEAALVNVLEPGDSFLVGANGIWGQRAVDIGERIG

ARVHPMTKDPGGHYTLQEVEEGLAQHKPVLLFLTHGESSTGVLQPLDGFGELCHRYKCLL

LVDSVASLGGTPLYMDRQGIDILYSGSQKALNAPPGTSLISFSDKAKKKMYSRKTKPFSF

YLDIKWLANFWGCDDQPRMYHHTIPVISLYSLRESLALIAEQGLENSWRQHREAAAYLHG

RLQALGLQLFVKDPALRLPTVTTVAVPAGYDWRDIVSYVIDHFDIEIMGGLGPSTGKVLR

IGLLGCNATRENVDRVTEALRAALQHCPKKKL

P21549 AGT1 extendedisoform (mitochondrion) [178]

MFQALAKASAAPGSRAAGWVRTMASHKLLVTPPKALLKPLSIPNQLLLGPGPSNLPPRIM

AAGGLQMIGSMSKDMYQIMDEI

KEGIQYVFQTRNPLTLVISGSGHCALEAALVNVLEPGDSFLVGANGIWGQRAVDIGERIG

ARVHPMTKDPGGHYTLQEVEEGLAQHKPVLLFLTHGESSTGVLQPLDGFGELCHRYKCLL

LVDSVASLGGTPLYMDRQGIDILYSGSQKALNAPPGTSLISFSDKAKKKMYSRKTKPFSF

YLDIKWLANFWGCDDQPRMYHHTIPVISLYSLRESLALIAEQGLENSWRQHREAAAYLHG

RLQALGLQLFVKDPALRLPTVTTVAVPAGYDWRDIVSYVIDHFDIEIMGGLGPSTGKVLR

IGLLGCNATRENVDRVTEALRAALQHCPKKKL

P41921 GLR1 (mitochondrion) [130]

MLSATKQTFRSLQIRTMSTNTKHYDYLVIGGGSGGVASARRAASYGAKTLLVEAKALGGT

CVNVGCVPKKVMWYASDLATRVSHANEYGLYQNLPLDKEHLTFNWPEFKQKRDAYVHRLN

GIYQKNLEKEKVDVVFGWARFNKDGNVEVQKRDNTTEVYSANHILVATGGKAIFPENIPG

FELGTDSDGFFRLEEQPKKVVVVGAGYIGIELAGVFHGLGSETHLVIRGETVLRKFDECI

QNTITDHYVKEGINVHKLSKIVKVEKNVETDKLKIHMNDSKSIDDVDELIWTIGRKSHLG

MGSENVGIKLNSHDQIIADEYQNTNVPNIYSLGDVVGKVELTPVAIAAGRKLSNRLFGPE

KFRNDKLDYENVPSVIFSHPEAGSIGISEKEAIEKYGKENIKVYNSKFTAMYYAMLSEKS

PTRYKIVCAGPNEKVVGLHIVGDSSAEILQGFGVAIKMGATKADFDNCVAIHPTSAEELV

TMR

163

P41921 GLR1 delta16 (cytoplasm) [130]

MSTNTKHYDYLVIGGGSGGVASARRAASYGAKTLLVEAKALGGT

CVNVGCVPKKVMWYASDLATRVSHANEYGLYQNLPLDKEHLTFNWPEFKQKRDAYVHRLN

GIYQKNLEKEKVDVVFGWARFNKDGNVEVQKRDNTTEVYSANHILVATGGKAIFPENIPG

FELGTDSDGFFRLEEQPKKVVVVGAGYIGIELAGVFHGLGSETHLVIRGETVLRKFDECI

QNTITDHYVKEGINVHKLSKIVKVEKNVETDKLKIHMNDSKSIDDVDELIWTIGRKSHLG

MGSENVGIKLNSHDQIIADEYQNTNVPNIYSLGDVVGKVELTPVAIAAGRKLSNRLFGPE

KFRNDKLDYENVPSVIFSHPEAGSIGISEKEAIEKYGKENIKVYNSKFTAMYYAMLSEKS

PTRYKIVCAGPNEKVVGLHIVGDSSAEILQGFGVAIKMGATKADFDNCVAIHPTSAEELV

TMR

P00724 SUC2 (extracellular space) [26]

MLLQAFLFLLAGFAAKISASMTNETSDRPLVHFTPNKGWMNDPNGLWYDEKDAKWHLYFQ

YNPNDTVWGTPLFWGHATSDDLTNWEDQPIAIAPKRNDSGAFSGSMVVDYNNTSGFFNDT

IDPRQRCVAIWTYNTPESEEQYISYSLDGGYTFTEYQKNPVLAANSTQFRDPKVFWYEPS

QKWIMTAAKSQDYKIEIYSSDDLKSWKLESAFANEGFLGYQYECPGLIEVPTEQDPSKSY

WVMFISINPGAPAGGSFNQYFVGSFNGTHFEAFDNQSRVVDFGKDYYALQTFFNTDPTYG

SALGIAWASNWEYSAFVPTNPWRSSMSLVRKFSLNTEYQANPETELINLKAEPILNISNA

GPWSRFATNTTLTKANSYNVDLSNSTGTLEFELVYAVNTTQTISKSVFADLSLWFKGLED

PEEYLRMGFEVSASSFFLDRGNSKVKFVKENPYFTNRMSVNNQPFKSENDLSYYKVYGLL

DQNILELYFNDGDVVSTNTYFMTTGNALGSVNMTTGVDNLFYIDKFQVREVK

P00724 SUC2 delta20 (cytoplasma) [26]

MTNETSDRPLVHFTPNKGWMNDPNGLWYDEKDAKWHLYFQ

YNPNDTVWGTPLFWGHATSDDLTNWEDQPIAIAPKRNDSGAFSGSMVVDYNNTSGFFNDT

IDPRQRCVAIWTYNTPESEEQYISYSLDGGYTFTEYQKNPVLAANSTQFRDPKVFWYEPS

QKWIMTAAKSQDYKIEIYSSDDLKSWKLESAFANEGFLGYQYECPGLIEVPTEQDPSKSY

WVMFISINPGAPAGGSFNQYFVGSFNGTHFEAFDNQSRVVDFGKDYYALQTFFNTDPTYG

SALGIAWASNWEYSAFVPTNPWRSSMSLVRKFSLNTEYQANPETELINLKAEPILNISNA

GPWSRFATNTTLTKANSYNVDLSNSTGTLEFELVYAVNTTQTISKSVFADLSLWFKGLED

PEEYLRMGFEVSASSFFLDRGNSKVKFVKENPYFTNRMSVNNQPFKSENDLSYYKVYGLL

DQNILELYFNDGDVVSTNTYFMTTGNALGSVNMTTGVDNLFYIDKFQVREVK

P00724 SUC2 Mut113 (cytoplasm) [98]

MLLQASFPFPFGWFCDQNICINDKRN

164 E. Sequence Data

P00724 SUC2 Mut210 (extracellular space) [98]

MLPLFLLAGFAAKISASMTNETSDRPLVHFTPNKGWMNDPNGLWYDEKDAKWHLYFQ

YNPNDTVWGTPLFWGHATSDDLTNWEDQPIAIAPKRNDSGAFSGSMVVDYNNTSGFFNDT

IDPRQRCVAIWTYNTPESEEQYISYSLDGGYTFTEYQKNPVLAANSTQFRDPKVFWYEPS

QKWIMTAAKSQDYKIEIYSSDDLKSWKLESAFANEGFLGYQYECPGLIEVPTEQDPSKSY

WVMFISINPGAPAGGSFNQYFVGSFNGTHFEAFDNQSRVVDFGKDYYALQTFFNTDPTYG

SALGIAWASNWEYSAFVPTNPWRSSMSLVRKFSLNTEYQANPETELINLKAEPILNISNA

GPWSRFATNTTLTKANSYNVDLSNSTGTLEFELVYAVNTTQTISKSVFADLSLWFKGLED

PEEYLRMGFEVSASSFFLDRGNSKVKFVKENPYFTNRMSVNNQPFKSENDLSYYKVYGLL

DQNILELYFNDGDVVSTNTYFMTTGNALGSVNMTTGVDNLFYIDKFQVREVK

P00724 SUC2 Mut236 (extracellular space) [98]

MLLRLFLLAGFAAKISASMTNETSDRPLVHFTPNKGWMNDPNGLWYDEKDAKWHLYFQ

YNPNDTVWGTPLFWGHATSDDLTNWEDQPIAIAPKRNDSGAFSGSMVVDYNNTSGFFNDT

IDPRQRCVAIWTYNTPESEEQYISYSLDGGYTFTEYQKNPVLAANSTQFRDPKVFWYEPS

QKWIMTAAKSQDYKIEIYSSDDLKSWKLESAFANEGFLGYQYECPGLIEVPTEQDPSKSY

WVMFISINPGAPAGGSFNQYFVGSFNGTHFEAFDNQSRVVDFGKDYYALQTFFNTDPTYG

SALGIAWASNWEYSAFVPTNPWRSSMSLVRKFSLNTEYQANPETELINLKAEPILNISNA

GPWSRFATNTTLTKANSYNVDLSNSTGTLEFELVYAVNTTQTISKSVFADLSLWFKGLED

PEEYLRMGFEVSASSFFLDRGNSKVKFVKENPYFTNRMSVNNQPFKSENDLSYYKVYGLL

DQNILELYFNDGDVVSTNTYFMTTGNALGSVNMTTGVDNLFYIDKFQVREVK

P00724 SUC2 Mut211 (extracellular space) [98]

MLLRLLAGFAAKISASMTNETSDRPLVHFTPNKGWMNDPNGLWYDEKDAKWHLYFQ

YNPNDTVWGTPLFWGHATSDDLTNWEDQPIAIAPKRNDSGAFSGSMVVDYNNTSGFFNDT

IDPRQRCVAIWTYNTPESEEQYISYSLDGGYTFTEYQKNPVLAANSTQFRDPKVFWYEPS

QKWIMTAAKSQDYKIEIYSSDDLKSWKLESAFANEGFLGYQYECPGLIEVPTEQDPSKSY

WVMFISINPGAPAGGSFNQYFVGSFNGTHFEAFDNQSRVVDFGKDYYALQTFFNTDPTYG

SALGIAWASNWEYSAFVPTNPWRSSMSLVRKFSLNTEYQANPETELINLKAEPILNISNA

GPWSRFATNTTLTKANSYNVDLSNSTGTLEFELVYAVNTTQTISKSVFADLSLWFKGLED

PEEYLRMGFEVSASSFFLDRGNSKVKFVKENPYFTNRMSVNNQPFKSENDLSYYKVYGLL

DQNILELYFNDGDVVSTNTYFMTTGNALGSVNMTTGVDNLFYIDKFQVREVK

P00724 SUC2 Mut437 (cytoplasm) [98]

MLLAKISASMTNETSDRPLVHFTPNKGWMNDPNGLWYDEKDAKWHLYFQ

YNPNDTVWGTPLFWGHATSDDLTNWEDQPIAIAPKRNDSGAFSGSMVVDYNNTSGFFNDT

165

IDPRQRCVAIWTYNTPESEEQYISYSLDGGYTFTEYQKNPVLAANSTQFRDPKVFWYEPS

QKWIMTAAKSQDYKIEIYSSDDLKSWKLESAFANEGFLGYQYECPGLIEVPTEQDPSKSY

WVMFISINPGAPAGGSFNQYFVGSFNGTHFEAFDNQSRVVDFGKDYYALQTFFNTDPTYG

SALGIAWASNWEYSAFVPTNPWRSSMSLVRKFSLNTEYQANPETELINLKAEPILNISNA

GPWSRFATNTTLTKANSYNVDLSNSTGTLEFELVYAVNTTQTISKSVFADLSLWFKGLED

PEEYLRMGFEVSASSFFLDRGNSKVKFVKENPYFTNRMSVNNQPFKSENDLSYYKVYGLL

DQNILELYFNDGDVVSTNTYFMTTGNALGSVNMTTGVDNLFYIDKFQVREVK

P00724 SUC2 Mut438 (cytoplasm) [98]

MLLSMTNETSDRPLVHFTPNKGWMNDPNGLWYDEKDAKWHLYFQ

YNPNDTVWGTPLFWGHATSDDLTNWEDQPIAIAPKRNDSGAFSGSMVVDYNNTSGFFNDT

IDPRQRCVAIWTYNTPESEEQYISYSLDGGYTFTEYQKNPVLAANSTQFRDPKVFWYEPS

QKWIMTAAKSQDYKIEIYSSDDLKSWKLESAFANEGFLGYQYECPGLIEVPTEQDPSKSY

WVMFISINPGAPAGGSFNQYFVGSFNGTHFEAFDNQSRVVDFGKDYYALQTFFNTDPTYG

SALGIAWASNWEYSAFVPTNPWRSSMSLVRKFSLNTEYQANPETELINLKAEPILNISNA

GPWSRFATNTTLTKANSYNVDLSNSTGTLEFELVYAVNTTQTISKSVFADLSLWFKGLED

PEEYLRMGFEVSASSFFLDRGNSKVKFVKENPYFTNRMSVNNQPFKSENDLSYYKVYGLL

DQNILELYFNDGDVVSTNTYFMTTGNALGSVNMTTGVDNLFYIDKFQVREVK

P00724 SUC2 Mut331 (extracellular space) [98]

MLLRSTLFLLAGFAAKISASMTNETSDRPLVHFTPNKGWMNDPNGLWYDEKDAKWHLYFQ

YNPNDTVWGTPLFWGHATSDDLTNWEDQPIAIAPKRNDSGAFSGSMVVDYNNTSGFFNDT

IDPRQRCVAIWTYNTPESEEQYISYSLDGGYTFTEYQKNPVLAANSTQFRDPKVFWYEPS

QKWIMTAAKSQDYKIEIYSSDDLKSWKLESAFANEGFLGYQYECPGLIEVPTEQDPSKSY

WVMFISINPGAPAGGSFNQYFVGSFNGTHFEAFDNQSRVVDFGKDYYALQTFFNTDPTYG

SALGIAWASNWEYSAFVPTNPWRSSMSLVRKFSLNTEYQANPETELINLKAEPILNISNA

GPWSRFATNTTLTKANSYNVDLSNSTGTLEFELVYAVNTTQTISKSVFADLSLWFKGLED

PEEYLRMGFEVSASSFFLDRGNSKVKFVKENPYFTNRMSVNNQPFKSENDLSYYKVYGLL

DQNILELYFNDGDVVSTNTYFMTTGNALGSVNMTTGVDNLFYIDKFQVREVK

P00724 SUC2 Mut301 (extracellular space) [98]

MLLRSTFLLAGFAAKISASMTNETSDRPLVHFTPNKGWMNDPNGLWYDEKDAKWHLYFQ

YNPNDTVWGTPLFWGHATSDDLTNWEDQPIAIAPKRNDSGAFSGSMVVDYNNTSGFFNDT

IDPRQRCVAIWTYNTPESEEQYISYSLDGGYTFTEYQKNPVLAANSTQFRDPKVFWYEPS

QKWIMTAAKSQDYKIEIYSSDDLKSWKLESAFANEGFLGYQYECPGLIEVPTEQDPSKSY

WVMFISINPGAPAGGSFNQYFVGSFNGTHFEAFDNQSRVVDFGKDYYALQTFFNTDPTYG

166 E. Sequence Data

SALGIAWASNWEYSAFVPTNPWRSSMSLVRKFSLNTEYQANPETELINLKAEPILNISNA

GPWSRFATNTTLTKANSYNVDLSNSTGTLEFELVYAVNTTQTISKSVFADLSLWFKGLED

PEEYLRMGFEVSASSFFLDRGNSKVKFVKENPYFTNRMSVNNQPFKSENDLSYYKVYGLL

DQNILELYFNDGDVVSTNTYFMTTGNALGSVNMTTGVDNLFYIDKFQVREVK

P00724 SUC2 Mut506 (cytoplasm) [98]

MLLVDRPLLAGFAAKISASMTNETSDRPLVHFTPNKGWMNDPNGLWYDEKDAKWHLYFQ

YNPNDTVWGTPLFWGHATSDDLTNWEDQPIAIAPKRNDSGAFSGSMVVDYNNTSGFFNDT

IDPRQRCVAIWTYNTPESEEQYISYSLDGGYTFTEYQKNPVLAANSTQFRDPKVFWYEPS

QKWIMTAAKSQDYKIEIYSSDDLKSWKLESAFANEGFLGYQYECPGLIEVPTEQDPSKSY

WVMFISINPGAPAGGSFNQYFVGSFNGTHFEAFDNQSRVVDFGKDYYALQTFFNTDPTYG

SALGIAWASNWEYSAFVPTNPWRSSMSLVRKFSLNTEYQANPETELINLKAEPILNISNA

GPWSRFATNTTLTKANSYNVDLSNSTGTLEFELVYAVNTTQTISKSVFADLSLWFKGLED

PEEYLRMGFEVSASSFFLDRGNSKVKFVKENPYFTNRMSVNNQPFKSENDLSYYKVYGLL

DQNILELYFNDGDVVSTNTYFMTTGNALGSVNMTTGVDNLFYIDKFQVREVK

P00724 SUC2 Mut321 (cytoplasm) [98]

MLLVDRSTGRPLLAGFAAKISASMTNETSDRPLVHFTPNKGWMNDPNGLWYDEKDAKWHLYFQ

YNPNDTVWGTPLFWGHATSDDLTNWEDQPIAIAPKRNDSGAFSGSMVVDYNNTSGFFNDT

IDPRQRCVAIWTYNTPESEEQYISYSLDGGYTFTEYQKNPVLAANSTQFRDPKVFWYEPS

QKWIMTAAKSQDYKIEIYSSDDLKSWKLESAFANEGFLGYQYECPGLIEVPTEQDPSKSY

WVMFISINPGAPAGGSFNQYFVGSFNGTHFEAFDNQSRVVDFGKDYYALQTFFNTDPTYG

SALGIAWASNWEYSAFVPTNPWRSSMSLVRKFSLNTEYQANPETELINLKAEPILNISNA

GPWSRFATNTTLTKANSYNVDLSNSTGTLEFELVYAVNTTQTISKSVFADLSLWFKGLED

PEEYLRMGFEVSASSFFLDRGNSKVKFVKENPYFTNRMSVNNQPFKSENDLSYYKVYGLL

DQNILELYFNDGDVVSTNTYFMTTGNALGSVNMTTGVDNLFYIDKFQVREVK

	1 Introduction
	2 Background
	2.1 Machine Learning
	2.1.1 Classification
	2.1.2 Regression
	2.1.3 Model Evaluation and Selection
	2.1.4 Interpretability of Machine Learning Models

	2.2 Subcellular Localization of Proteins
	2.2.1 Protein Transport
	2.2.2 Sorting Signals
	2.2.3 Determining Subcellular Localization

	2.3 The Immune System
	2.3.1 The Innate Immune System
	2.3.2 The Adaptive Immune System
	2.3.3 Epitope-Based Vaccines

	3 YLoc – An Interpretable Classification Approach
	3.1 Introduction
	3.2 Methods
	3.2.1 Features
	3.2.2 Feature Selection
	3.2.3 Naïve Bayes Classification
	3.2.4 Confidence Estimators
	3.2.5 Creating Interpretable Output
	3.2.6 Datasets
	3.2.7 Training and Evaluation

	3.3 Results and Discussion
	3.3.1 Cross-Validation Evaluation
	3.3.2 Benchmark Study on Two Independent Datasets
	3.3.3 Multiple-Localization Prediction
	3.3.4 Evaluation of Confidence Estimates
	3.3.5 The YLoc Web Server
	3.3.6 Understanding and Predicting Localization Changes

	3.4 Conclusion

	4 Interpretable Regression With CONFINE and CONFIVE
	4.1 Introduction
	4.2 Methods
	4.2.1 Related Work on Confidence Estimation
	4.2.2 Confidence Estimators CONFINE and CONFIVE
	4.2.3 Confidence Intervals
	4.2.4 Evaluation
	4.2.5 Datasets

	4.3 Results and Discussion
	4.3.1 Influence of Dataset Size, Features, and Noise
	4.3.2 Evaluation on IEDB Benchmark Datasets
	4.3.3 Evaluation on 3D-QSAR Datasets
	4.3.4 Confidence Estimation for Nonlinear Models
	4.3.5 Evaluation of Confidence Intervals
	4.3.6 Predicting the Estimation Performance
	4.3.7 Confidence Estimation in Epitope-Based Vaccine Design

	4.4 Conclusion

	5 Conclusions and Perspectives
	Bibliography
	A Abbreviations
	B Publications
	C Contributions
	D Tables
	E Sequence Data

