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Introduction

What is a decision?

"If you have made a decision that was entirely based on factual information, you have not
made a decision; it was made for you by the facts.”
Elliott Jaques

Decisions are indispensable for animals and humans in situations of uncertainty. The
choice cannot be based on hard facts only when the available information is ambiguous
and noisy, or when rapid decisions are required and the information is incomplete or
overwhelming. People often refer to their "gut feeling” when they try to explain their
choice. Such subjective judgments arise from internal mechanisms in the brain.

Decision-making is defined as an evaluative process of selecting one particular option
from a set of alternatives (Gold and Shadlen, 2007). This cognitive process involves the
acquisition, processing, and storage of relevant information from the environment, as
well as the interpretation of this information in accordance with internal goals and
experiences. Cognitive control mechanisms override reflexive or habitual reactions to
allow for a flexible selection of behavioral responses depending on the context of a
situation. Thus, decision-making is a central element of human and animal life and
essential for what we consider as intelligent behavior (Miller, 2000; Gilbert and Burgess,
2008).

In summary, several characteristics determine a decision (Wang, 2008). First, the
choice alternatives have to involve an expected set of options. Second, a decision
process must involve the accumulation of relevant information and a deliberate
consideration of options. Finally, decisions are essentially risky, as they are made under
uncertainty conditions and the commitment to a choice has consequences.

Classes of decisions

Two main classes of decisions can be described based on the type of information that is
processed or on the type of choice outcome: value-based decisions and perceptual
decisions (Gold and Shadlen, 2007). The processing of rules and algorithms that are
used to map input information to particular actions (Miller et al., 2003) are considered
by some researchers as a third decision class (Freedman and Assad, 2011). In my view,
these tasks do not fulfill the criterion of uncertainty as the acquired information is
usually salient and the rules and algorithms are well trained.

Value-based decisions are often referred to as economical decisions and are preliminary
based on the value associated with each of the possible alternatives (Glimcher, 2005;
Sanfey et al., 2006; Padoa-Schioppa, 2011). Thus, economic decisions can be described
as behavior, observed when individuals make choices relying on subjective preferences



only, e.g., the choice of an ice cream flavor in a gelateria or a choice of a house for sale.
Value is the unit, which represents the common measure of the multiple dimensions of
the choice options. The study of value-based decisions addresses how the values are
computed and compared in the brain.

The class of the perceptual decisions is defined by the type of information that is
processed to make a choice. Perceptual decisions involve monitoring of sensory
information, combination of this information across different sensory modalities, and
accumulation in time. Internal brain processes evaluate this information and transform
it into categorical choices and appropriate behavioral responses (Gold and Shadlen,
2007; Deco and Romo, 2008). Typical examples are detections of stimuli (de Lafuente
and Romo, 2005; 2006), discriminations of stimuli (Newsome et al., 1989; Shadlen and
Newsome, 2001; Romo et al., 2004), or categorizations of percepts (Beale and Keil,
1995; Freedman et al., 2001; Nieder et al., 2002; Sigala and Logothetis, 2002; Nieder and
Merten, 2007). Perceptual tasks are markedly useful for the study of decision
processing. Here, the quantity and the quality of the sensory input can be controlled
precisely and the behavioral responses can be quantified easily. The decisions I
investigate in my thesis belong to the class of the perceptual decisions.

Detection decisions

The detection of a sensory stimulus is the most elemental perceptual experience and is a
prerequisite for any further sensory processing. Perception refers to a subjective
process of becoming aware of a physical stimulation (Pomerantz, 2006). Remarkably,
when an ambiguous or noisy sensory stimulus is presented, a percept may, or may not
be produced. Therefore, the initial stimulus effect on the senses requires further cortical
processing that determines whether a subjective experience of this sensory event will be
generated or not. From a theoretical point of view, the underlying neuronal substrate of
detection could be based on bistable dynamics with two stable states ('stimulus
detection' or 'no stimulus'). Both states should coexist for the same stimulus condition.
In the simplest case, if no biases for a particular stimulus condition exist, probabilistic
fluctuations would drive the system to one or another state (Faisal et al., 2008). In this
regime, the processing of percepts appears to be a striking resemblance of decision-
making mechanisms (Wang, 2002; Brody et al., 2003), meaning that perception might be
regarded as a result of a decision-making process (Deco and Romo, 2008).

The peculiarity of detection decisions is that only one choice alternative, the presence of
a stimulus, can arise from a physical sensory signal, whereas the alternative decision
about stimulus absence cannot be confirmed by an external sensory event. For this
reason, two hypotheses for the neuronal processing of detections can be proposed.
First, the choice of stimulus absence might be represented by a default, spontaneous
stable state, whereas the other stable state of stimulus-detection would correspond to
an active state generating a percept. This view is held by classical psychological and
neural models of detection (Green and Swets, 1966; Thompson and Schall, 1999;
Shulman et al, 2001; Ress and Heeger, 2003; de Lafuente and Romo, 2005). They
suggest that sensory evidence is accumulated for the “stimulus present” decision, but
the “stimulus absent” decision is represented by a default (baseline) neuronal response.



Alternatively, both choice options might be represented by two active stable states,
whereas the stimulus absence would be encoded as a discrete category and not merely
as "noise". The processing mechanism of detection decisions represents the central
question of my thesis.

Framework of the study of perceptual decisions

Our understanding of how and where in the brain perceptual decisions are processed
has benefited from a study of these processes in an action-based framework. From this
perspective, decisions are reduced to choices among motor actions associated with
particular stimuli (Schall, 2001; Gold and Shadlen, 2007; Shadlen et al., 2008; Wang,
2008). Because perceptual decisions were studied as intensions to select an appropriate
motor response, brain areas were targeted, which are involved in planning and
preparation of motor actions. Mainly the lateral intraparietal area (LIP), but also the
superior colliculus, and the frontal eye field were shown to participate in dot-motion
discrimination tasks and to convert motion evidence into a behavior plan (Horwitz and
Newsome, 1999; Platt and Glimcher, 1999; Shadlen and Newsome, 2001; Roitman and
Shadlen, 2002; Yang and Shadlen, 2007).

In particular, for detection decisions, Romo and colleagues (de Lafuente and Romo,
2005; 2006) reported that only one choice category (stimulus presence) was actively
represented. Neurons in the medial premotor cortex (MPC) were found to modulate
their responses categorically during stimulus presence decisions; the decision about
stimulus absence was represented as a default (baseline) neuronal response (de
Lafuente and Romo, 2005). The proportion of such neurons has been shown to
progressively increase from sensory towards higher cortical areas (de Lafuente and
Romo, 2006; Hernandez et al., 2010).

However, the implications of these findings remain unclear, as the decision about the
stimulus remains indistinguishable from the motor report or even might not be
represented as a discrete processing step (Cisek and Kalaska, 2010; Freedman and
Assad, 2011). In order to study the abstract perceptual decision, one would need to
disentangle the processing of the decision from the selection of the motor action in the
brain. In such report-independent framework, discrimination decisions have been
shown to be encoded by neurons in the LIP independently from how they signaled the
corresponding motor response (Bennur and Gold, 2011). Here, the processing of the
decision might be regarded as an abstract process. Detection decisions have not been
investigated in an abstract framework so far.

Frontal cortex as an ideal candidate area for abstract decisions

The substrate for the processing of abstract decisions should be a module that is able to
operate functionally separate from the motor effector systems. That means, the link
between interpretation of sensory information and action should be more flexible than
in brain areas encoding the intended movement purpose. The ideal structure for



abstract decisions should allow for the expression of information in a non-movement
related framework, to support independent neuronal processing before any external
actions are planned. The structures of the frontal lobe appear to fulfill this requirement.

A candidate frontal cortex region for the processing of abstract computations is the
prefrontal cortex (PFC), which is known to operate at the apex of cortical hierarchy
(Fuster, 2008). The PFC is interconnected with virtually all sensory neocortical and
motor systems and with a wide range of subcortical structures (Goldman-Rakic, 1987;
Pandya and Barnes, 1987; Barbas and Pandya, 1991; Fuster, 2008). This provides an
ideal infrastructure for integration of a wide range of information and exertion of 'top-
down' influences on various brain processes essential for complex intelligent behavior.
In particular, the dorsal portions of the lateral PFC are directly interconnected with
higher order sensory and motor cortex, so the neurons in this area show multimodal
responses (Vaadia et al,, 1986; Watanabe, 1992; Rao et al.,, 1997; Rainer et al., 1998).
They are critical for learning of associations between sensory cues (Fuster et al., 2000;
Diester and Nieder, 2007), rewards, and voluntary goal-directed actions (Petrides, 1985;
Gaffan and Harrison, 1988; Petrides, 1990; Parker and Gaffan, 1998).

Moreover, there are ample interconnections between different PFC areas and higher-
order association and premotor cortices (Bates and Goldman-Rakic, 1993; Lu et al,,
1994; Wang et al., 2005), which bring together results from a variety of brain processes
and allow for the extraction of regularities, general principles, or rules. The PFC
involvement has been demonstrated in highly abstract processes: e.g., processing of
abstract categories (Freedman et al., 2001; Nieder et al., 2002; 2006; Nieder and Merten,
2007), abstract rules (White and Wise, 1999; Wallis et al.,, 2001; Bongard and Nieder,
2010), or strategic planning (Genovesio et al., 2005; Mansouri et al,, 2007). Humans
with prefrontal damage retain their memories, speech, and motor skills, however, they
are impulsive and irresponsible so that they have trouble to organize their lives
(Damasio, 2008). The ability to override and change established impulses to more
appropriate knowledge-driven behavior is impaired as has been shown in the Wisconsin
Card Sorting task for humans (Milner, 1963) and in an analogue of this task for monkeys
(Dias et al,, 1996).

In addition, areas traditionally associated with motor preparatory activities might also
be involved in the processing of abstract perceptual decisions. For example, the MPC
has been shown to participate in complex cognitive processes such as sensory-motor
associations, recall of memories and timing of sequential motor actions (Tanji, 1994;
Picard and Strick, 1996; Geyer et al, 2000). Particularly interesting is the
presupplementary motor area (preSMA). It projects sparsely to the corticospinal
system and the primary motor cortex (Dum and Strick, 1991; Luppino et al.,, 1994), yet it
is extensively interconnected with non-primary motor structures (Luppino et al.,, 1993).
Therefore, preSMA appears to be responsible for more abstract, cognitive, high level
motor functions like the sequential organization of multiple movements (Shima and
Tanji, 2000; Nakajima et al., 2009). Updating of motor plans (Shima et al., 1996) and
switching from automatic to controlled actions (Isoda and Hikosaka, 2007) are further
tasks processed by this area. Accordingly, a patient with a lesion in the preSMA had
difficulties in a hand-movement change-of-plan task. Once commited to an action, he
was unable to switch to an alternative movement (Nachev et al., 2007).



In the cingulate sulcus, the rostral cingulate motor area (CMAr) is a candidate to be
involved in cognitive processing. The CMAr receives direct input from the PFC (Lu et al,,
1994), has prominent projections to the primary motor cortex (Bates and Goldman-
Rakic, 1993; He et al, 1995; Dum and Strick, 2002) and to the corticospinal system
(Hutchins et al., 1988; He et al., 1995). This structure has been shown to be involved in
the initiation and execution of arm movements (Shima et al., 1991; Procyk et al., 2000).
Further, the activity of the CMAr is influenced by emotional and motivational states as it
receives input from the limbic system (Amaral and Price, 1984; Morecraft and Van
Hoesen, 1998) and thalamic nuclei (Vogt et al,, 1987; Vogt and Gabriel, 1993). The
anterior cingulate cortex is the main target area of the mesocortical dopamine system
(Lewis, 1992; Vogt and Gabriel, 1993), this implicates CMAr in error detection (Gemba
et al, 1986; Ito et al,, 2003) and converting reward value into action (Shima and Tanjji,
1998). Most important, a recent study describes the involvement of this area in abstract
rule processing (Vallentin et al., 2012) and highlights the role of CMAr in cognition.

It is of great interest to investigate whether PFC, preSMA, and CMAr are capable of
processing a decision as an abstract category. Alternatively, preSMA and CMAr might
contribute to decision processing only when information about the motor activity is
available (e.g. in a report-dependent framework).

Approaches to study decision processing mechanisms

The question about the mechanisms through which a particular behavior is generated
can be ideally addressed at the systems level of neuroscience. Extracellular recordings
in behaving animals are typically used to investigate single-cell physiology and
anatomical characteristics of a brain function and provide indispensable insights into
the representation of these functions.

Additionally, computational modeling is an important tool for characterizing the
underlying neural circuits of a processing mechanism. Theoretical approaches help to
construct concepts and principles of processing, to build bridges between different
levels of neuroscientific descriptions (single cells, populations of neurons, and
psychophysics), to simulate particular situations and make predictions about the
behavior of the system. Therefore, computational modeling substantially amends
electrophysiology.

Computational approach to study decisions

Models of decision-making have been mainly proposed on two levels of description:
phenomenological and mechanistic level. Phenomenological models summarize
experimental results accurately characterizing the functions of neural circuits. These
models might only loosely relate to the biophysical, physiological substrates. The
primary goal of these models is to describe phenomena, not to explain them (Dayan and
Abbott, 2005). Representative examples of such decision models are diffusion and race
models, which are based on accumulation of sensory evidence for different alternatives
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until a decision criterion is reached (Gold and Shadlen, 2007). These models capture
very well the concepts like trade-offs between speed and accuracy of decision-making
(Smith and Ratcliff, 2004; Gold and Shadlen, 2007), but it is difficult to assign biological
meaning to the model parameters (Deco and Romo, 2008).

Mechanistic models, on the other hand, are tightly related to the anatomical and
physiological findings. These biologically plausible models are based on anatomically
plausible architecture. Spiking properties of neurons are described on a high level of
accuracy and also the synaptic connections are quantitatively calibrated (Machens et al.,
2005; Jazayeri and Movshon, 2006; Deco and Romo, 2008; Wang, 2008).

All decision-making models so far attempt to explain results, or originate from data of
decisions studied in an action-based framework. It would be of great importance to
construct a model for processing of abstract perceptual decisions on a biologically
plausible level, which would allow further insights into the processing mechanisms and
networks. Especially, modeling the elemental abstract detections might provide a
building block for the understanding of more complex abstract perceptual decisions.

In my PhD thesis, I investigated the processing mechanisms of abstract detection
decisions on the neurophysiological and computational levels. In the following, I will
summarize the experimental and methodological approaches and describe the main
findings of the studies. The final part of the work comprises the discussion of the results
of all studies and the conclusions I can draw from my work.

Chapter |

Active encoding of decisions about stimulus absence in primate prefrontal
cortex neurons

In the first study the implementation of abstract detection decisions, not linked to motor
actions, was investigated. For this purpose, a rule-based perceptual detection task was
designed, which allowed the separation of the decision process from the initiation of the
corresponding motor report. Non-human primates are outstanding model organisms
for the study of such highly cognitive tasks. I trained two rhesus monkeys to perform
the behavioral task. The monkeys were seated in a primate chair; they fixated a central
spot on a computer screen, and grasped a bar to indicate their readiness to perform the
task. Randomly, in 50 % of the trials a faint grey object appeared in the middle of the
screen; in other half of the trials the stimulus was absent. To introduce uncertainty to
the task, the intensity of the visual stimuli varied between nine grey values centered
around the perceptual threshold of the animals. During a following delay phase, on each
trial, the monkeys were required to make the decision about the presence or the
absence of the visual stimulus. Yet, only after the presentation of a rule-cue, a red or a
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blue square, the monkeys could start to prepare a motor action to report the decision
outcome, because the rule-cue informed the animals about the appropriate motor
response. If the stimulus was present, a red cue instructed the monkey to release the
bar; the blue cue to keep holding the bar to receive a fluid reward. In the stimulus
absent trials, the rule applied in the inverse way: the red cue required the holding of the
bar; the blue cue bar release. This task design clearly dissociated the processing of the
decision from motor preparation activity and allowed the testing of the hypotheses
proposed for the processing mechanisms of perceptual detections.

Both monkeys have reliably learned the complex task. The possible decision outcomes
were: hits - correct detections of stimuli; misses - erroneous rejections of a presented
stimulus; correct rejections - correct reports of an absent stimulus; and false alarms -
erroneous reports of the presence of a stimulus. For trials with a salient stimulus, the
monkeys reported in almost 100 % stimulus presence. If no stimulus was presented, in
about 90 % of trials stimulus absence was reported. For near-threshold stimuli about
half of the trials were hit trials, the other half misses.

While the monkeys performed the detection task, I recorded the activity of 708 neurons
from the PFC of both monkeys. To investigate the processing of the abstract decision, I
analyzed an early and a late period of the decision, still before motor preparation could
take place. During both analysis phases, the discharge rates of single PFC neurons
covaried with the monkeys' subjective judgments about the stimulus presence or
absence. The responses of the decision neurons were highly relevant for the behavior of
the animals. The firing rates of the neurons correlated not only with monkeys reports in
correct stimulus present and stimulus absent decisions, but also with erroneous
decisions (false alarms and misses). Only a small proportion of decision neurons were
additionally weakly modulated by the intensity of the physical stimulus.

During the early decision phase, the detection processing mechanism proposed by the
first hypothesis was confirmed: the abstract 'yes, stimulus present' decision was actively
encoded by PFC neurons; the 'no, stimulus absent' decision was represented by default,
spontaneous neuronal firing rates. However, during the late delay phase, the alternative
hypothesis was true: both choice options were represented by two active populations of
neurons, which modulated their discharge rates for 'yes' or 'no' decisions respectively,
predicting the monkey's subjective decision report. The active encoding of the stimulus
absent condition (the 'no' decision) is the main finding of this study. This class of active
'no' neurons represent an abstract category that is neither generated by a specific input
(no physical signal was present), nor linked to a preparation of a motor response (as the
activity is modulated before the rule-cue is presented). This work has been published in
the journal PNAS (Merten and Nieder, 2012).
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Chapter I

Comparison of abstract decision encoding in the monkey prefrontal cortex,
the presupplementary and cingulate motor areas

The second part of my work investigated the contributions of three different frontal
brain areas to the processing of abstract perceptual decisions. I recorded the activity of
single neurons in the preSMA and the CMAr using the same behavioral protocol as in the
first study and compared the processing to the mechanisms I found in the PFC (Merten
and Nieder, 2012). In total, I recorded 520 neurons in the preSMA and 149 single cells
in the CMAr, simultaneously with the recordings in the PFC, 708 neurons. To compare
the representation of abstract decisions in these more motor-related areas to the PFC
neurons, implicated in complex cognitive processing, neuronal activity was analyzed
during the abstract decision phase (stimulus and delay phase, similar to the first study)
and during the motor phase (period short after the presentation of the rule cue, which
instructed the motor response).

Interestingly, already during the abstract decision phases both, the preSMA and the
CMAr, encoded the subjective decision about the stimulus presence or absence. Just as
in the PFC, in the stimulus phase, only active 'yes' neurons encoded the decision; during
the delay phase both classes of neurons, active 'yes' and active 'no' decision neurons,
represented the subjective judgment of the monkeys. Surprisingly, a significantly higher
proportion of preSMA neurons (13 %) compared to 8 % in the PFC encoded the decision
during the stimulus phase. Around 11 % of the CMAr neurons covaried with the
monkey's decision in the stimulus phase (not significantly different from the PFC and
preSMA). During the delay phase, the proportions of the decision cells were comparable
18 %, 21 %, and 18 % for PFC, preSMA, and CMAr, respectively.

I analyzed the selectivity strength of the decision neurons in all three areas using two
types of measurements: the coefficients of the stepwise linear regression (SLR) analysis
and the choice probability indices derived from a receiver operating characteristic
(ROC) analysis. Both approaches identified the preSMA as a more reliable encoder of
the abstract decision compared to the PFC. Additionally, the choice probabilities of the
preSMA were also significantly larger compared to the CMAr.

During the motor phase all three areas continued to encode the decision in a comparable
manner. No differences were found regarding the proportions and selectivity strength
of decision cells. However, after the appearance of the rule cue, neurons in all three
areas represented (additionally) the required action for the motor response. The
proportions of neurons encoding the action were significantly higher in the preSMA and
CMAr compared to the PFC. Moreover, preSMA neurons had stronger selectivity for the
upcoming motor action than PFC neurons.

These findings demonstrated that the involvement of the investigated premotor areas,
in particular the preSMA, is of substantial importance for abstract decision processing,

13



although both the preSMA and the CMAr participated strongly in the encoding of motor
actions. These data allowed the exploration of the substrates of abstract decisions in the
parts of the frontal cortex that are traditionally associated with motor processing.
Additionally, a comparison of the representations of abstract detections to the
mechanisms of detections studied in the action-based framework in the MPC was
possible (de Lafuente and Romo, 2005).

Chapter il

A neuronal network model of abstract detections: modeling of active 'yes'
and 'no' neurons

The results of the two previous studies (Merten and Nieder, 2012; submitted) revealed
the substrates of abstract detection decisions in the frontal cortex. A finding of
particular interest was the population of 'no' decision neurons, which actively
modulated their discharge rates during 'no' decisions. Because there was no sensory
input in the 'stimulus absent' condition, there was no sensory signal, which might have
driven the active 'no' encoding. In the third part of my work, I addressed the processing
mechanisms of abstract detections at the computational level. This approach aimed for
the solution of the inverse problem of finding the connectivity structure from which the
measured activity of 'no’' neurons possibly emerged.

[ designed a simple feedforward network model, which used firing rates of artificial
neurons to describe the flow of information between different types of neurons within a
neuronal circuit. The underlying architecture allowed the modeling of all classes of
decision neurons identified electrophysiologically during both decision phases. All the
response properties of these classes of neurons were captured accurately by the model.

The computational results suggest that abstract decisions might be reached at two
consecutive processing steps. The activity of the early decision phase, the stimulus
phase, might further be processed during the late delay phase. Therefore, the firing
rates of the neurons during the stimulus phases might serve as input for the neurons
processing the abstract decision during the delay phase. The proposed network implies
that 'no’' neurons emerged during the delay phase from further processing of 'yes'
neurons, which decreased their firing rates actively during the 'yes' decision in the
stimulus phase.

Moreover, I used the computational model layout to address the biological plausibility of
the criterion, which was used to evaluate the computational unit activity to determine
the decision outcome. The discharges of real experimental decision neurons during the
stimulus phase were evaluated using firing rates of neurons, which encoded only the
stimulus intensity, but not the decision, during the same period. About 76 % of these
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evaluations resulted in appropriate classifications of the activity of the experimental
neurons recorded during the stimulus phase. The classification corresponded to the
decision reports of the monkeys. These calculations suggest that the activity of the
intensity coding cells is well suited to model the criterion for decision evaluations. The
results of this theoretical study provide additional insights into the mechanisms of the
processing of abstract perceptual detections.

Discussion

Deciding between alternatives is a critical element of flexible intelligent behavior. In my
PhD theses, I studied the processing of perceptual decisions on the level of single
neurons in the PFC, preSMA, and CMAr of rhesus monkeys. The behavioral protocol
used in this work dissociated the processing of the decision from any neuronal activity
related to motor planning, thus, ensuring the study of the mechanisms of abstract
decisions. My thesis focused on detections because the understanding of the encoding of
these most elemental perceptual decisions is requisite to unravel the principles of more
complex decisions.

Representation of abstract detections

[ investigated whether the representation of abstract detections may be based on
neurons encoding both the stimulus-present and stimulus-absent decisions
categorically, although by definition only one response category (stimulus present) can
rely on sensory input. During the early decision phase, I only found neurons
representing the abstract 'yes' decision category, just as it has been reported for action-
based detections (de Lafuente and Romo, 2005; 2006). However, during the late
processing of the abstract decision, the representation is fundamentally different from
action-based decisions. In addition to 'yes' neurons, I found an active encoding of the
'no’ decision category.

Comparison of abstract decision encoding in PFC, preSMA, and CMAr

This encoding mechanism was found in all three brain structures investigated in this
work. The areas preSMA and CMAr, which are traditionally identified with motor
planning, represented the abstract decision about the stimulus presence or absence in a
similar way as the PFC, even before any information about the motor action required for
the report of the decision became available. In fact, correlates of abstract decisions were
more prominent in the preSMA compared to the PFC. During the motor phase, after the
instruction of the action, preSMA and CMATr still continued to encode the decision with
similar expression strength as the PFC, in spite of their stronger representation of the
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upcoming motor action. This finding emphasizes that the encoding capacities of the
preSMA and CMAr involve far more abstract and cognitive processing than previously
thought.

Modeling of a network for the computation of abstract detections

The physiological results, which argue for the involvement of two discrete processing
steps during the abstract decision phase, motivate my computational model of abstract
detection decisions. The computation comprises a realistic modeling of 'yes' cells
encoding the decision during the stimulus phase. This first processing step might reflect
the subjective experience of the stimulus and is largely dependent on the sensory
evidence: stimulus presence leads to a modulation of the neuronal responses, whereas
stimulus absence results in the maintenance of the baseline firing rate. This early
decision activity is used in the model to generate the late decision representation by
'yves' and 'no’' cells. In an analogy to the stimulus phase, 'yes' neurons modulate their
responses for 'yes' decisions; in contrast, the newly emerging 'no' neurons, modulate
their activity during 'no' decisions and remain inactive during 'yes' reports. The second
decision processing step seems to be necessary to transform the subjective experience
to abstract categories in rule-based detection tasks.

The proposed model architecture provides a plausible connectivity structure using
excitatory and inhibitory connections of a local neuronal network, which might
constitute a substrate for the suggested two-step computation of abstract detections.
Further work is required to implement a biophysically plausible model using spiking
integrate-and-fire neurons organized in discrete populations of decision neurons found
in my study (active 'yes' and active 'no' neurons). Here, the decision might be modeled
as a bistable neurodynamical phenomenon (Deco et al., 2007), in which probabilistic
fluctuations cause the transition between the two decision options. Alternatively, to
model the decision, the activity of artificial neurons might be evaluated by a threshold
value in an analogy to diffusion models (Gold and Shadlen, 2007). This threshold value
could be derived analytically from the dynamics of a bistable neuronal model close to
the bifurcation point (Deco and Romo, 2008; Roxin and Ledberg, 2008). Another
possibility to model the threshold value is suggested by the computational results of my
model. The neurons encoding solely the stimulus intensity during the decision task
might be implemented as threshold values because 1 found that their response
properties were well suited for such evaluations.

Processing mechanism of abstract decisions

In general, the processing of perceptual decisions can be regarded as gathering of
sensory information in order to commit to a plan. Here, the plan can be either a
particular movement (action-based decisions) or an implementation of a particular rule,
which instructs a movement (abstract decisions). Investigators, who approach the
study of decision-making from a motor perspective, propose that the abstract decision is
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just a decision to implement a subsequent certain kind of plan and should underlay
similar processing principles as motion intention decisions (Shadlen et al., 2008).

The results of my thesis contradict this view. Although the abstract decision is
necessary to enact a rule by selecting an appropriate motor response, the
implementation of the abstract decision is essentially different from the motor-based
decision. I report the emergence of active 'no' neurons, which actively contribute to the
processing of abstract detections and have not been reported for motor-based
detections. This finding is true even in the preSMA, the same brain area, in which only
one population, the 'yes' neurons was found to represent the detection in an action-
based framework (de Lafuente and Romo, 2005; 2006); which further demonstrates the
flexibility of this brain structure to process the decision dependent on whether an
abstract decision is enforced or the decision can be expressed in terms of motor
preparation.

Overall, my work suggests that decisions are implemented by the most suitable
neuronal representation depending on the framework in which this decision has to be
processed (action-based or abstract). Decisions that can be formed as intensions to
pursue a particular action might rely on a predefined movement plan, which is modified
according to the incoming sensory information. When the sensory information is absent
or insufficient, the established movement plan is executed (Romo and Salinas, 2003).
The representation by only one population of neurons, actively encoding the 'yes'
decisions is adequate for such processing. If a stimulus is detected, 'yes' neurons
modulate their responses, so that the default motor plan is modified; otherwise, the
predefined motor plan applies.

However, in the abstract framework, in which the appropriate motor response is
instructed after the decision is made, the processing of the decision might benefit from a
representation by two active neuronal populations actively representing the 'yes' and
the 'no' decision. During the abstract decision, a default motor action cannot be defined
easily, so "buffering" of the decision in a nonmovement-related framework might
constitute a computational advantage. Therefore, when an abstract decision is enforced,
the brain seems to deploy a complementary mechanism of decision-making by
transforming the subjective experience of a stimulus to an abstract categorical
representation (Freedman and Assad, 2011) using active 'yes' and 'no' populations of
neurons. Even though sensory stimulation is absent during correct 'no' decisions, the
brain constructs a 'no'-signal to meet the computational demands in abstract decision
making. This processing mechanism allows the accomplishment of complex operations
between interpretation of sensory information and action. Therefore, it appears to be
very important for higher cognitive functions and intelligence.
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Judging the presence or absence of a stimulus is likely the most
basic perceptual decision. A fundamental difference of detection
tasks in contrast to discrimination tasks is that only the stimulus
presence decision can be inferred from sensory evidence, whereas
the alternative decision about stimulus absence lacks sensory
evidence by definition. Detection decisions have been studied in
an intentional, action-based framework, in which decisions were
regarded as intentions to pursue particular actions. These studies
have found that only stimulus-present decisions are actively
encoded by neurons, whereas the decision about the absence of
a stimulus does not affect default neuronal responses. We tested
whether this processing mechanism also holds for abstract de-
tection decisions that are dissociated from motor preparation. We
recorded single-neuron activity from the prefrontal cortex (PFC) of
monkeys performing a visual detection task that forced a report-
independent decision. We not only found neurons that actively
encoded the subjective decision of monkeys about the presence of
a stimulus, but also cells responding actively for the decision about
the absence of stimuli. These results suggest that abstract de-
tection decisions are processed in a different way compared with
the previously reported action-based decisions. In a report-in-
dependent framework, neuronal networks seem to generate a
second set of neurons actively encoding the absence of sensory
stimulation, thus translating decisions into abstract categories.
This mechanism may allow the brain to “buffer” a decision in
a nonmovement-related framework.

perceptual detection | abstract decision | single-cell recordings | rhesus monkey

Perceptual decisions are choices among alternatives based on
sensory information. To arrive at distinct choices, sensory
input has to be classified into behaviorally meaningful categories.
The detection of a stimulus (decision about its presence or ab-
sence) is the most basic form of a perceptual decision. The pe-
culiarity of detection decisions is that only one choice alternative
can be based on sensory evidence, whereas the alternative de-
cision about stimulus absence lacks sensory information. How
does the brain arrive at categorical stimulus-absent and stimulus-
present decisions when only one response category (stimulus-
present) can rely on sensory input?

The neuronal underpinnings of perceptual decisions have
been studied extensively in an intentional, action-based frame-
work (1-3). Here, decisions are regarded as intensions to choose
among actions associated with the stimuli (1, 4). Decision-related
neurons showed activity encoding the process of converting
sensory information (5-7) or cognitive cues (8-10) into choices.
In agreement with the view that detections are discriminations of
a stimulus from noise (11), elegant studies by Romo and cow-
orkers (12, 13) reported neurons actively encoding the decision
about the stimulus presence. The decision about stimulus ab-
sence, however, was represented as a default (baseline) neuronal
response (12-16) for action-based detection decisions.

When dissociated from action preparation or studied in a re-
port-independent framework, decisions can be seen as distinct
processes that are encoded as abstract categories (17-19). In a dot-
motion discrimination task, neurons in the lateral intraparietal

www.pnas.org/cgi/doi/10.1073/pnas.1121084109

area were shown to encode the abstract decision about motion
directions independently from how they signaled the associated
motor response (20). In such discrimination and categorization
tasks, subjects decide based on sensory stimuli represented for
both alternatives. Thus, two separate neuronal populations en-
code the respective choice categories.

We investigated how abstract detection decisions, not linked
to motor actions, are implemented by single neurons in the pre-
frontal cortex (PFC) of rhesus monkeys. To ensure report-in-
dependent decisions, we designed a rule-based visual detection
task that allowed a clear dissociation of a decision about the
stimulus from motor preparation. In such a protocol, also the
stimulus absent decision is not just “noise” but a discrete category.

Results

We trained two rhesus monkeys to report the presence or ab-
sence of a visual stimulus in a rule-based delayed detection
task that allowed a clear dissociation of the decision about the
stimulus from motor preparation (Fig. 14). The visual stimulus
was presented at different intensity values centered around
perceptual threshold. For stimuli of identical intensities, the in-
ternal status of the monkey determined whether it had (“yes”
decision) or had not (“no” decision) seen the stimulus. Three
different visual objects were used to ensure that the monkeys
relied on the mere presence of the stimuli, whereas ignoring low-
level object properties. Because a rule cue informed the animal
about the appropriate motor action of how to report the de-
cision, the monkey could not prepare any motor response during
the delay period. The possible decision outcomes were classified
according to signal detection theory (Fig. 1B). The proportion of
“yes” decisions for each stimulus intensity was used to create
psychometric detection curves for both monkeys (Fig. 1 C and
D). The monkeys were only rewarded in correct trials (hits and
correct rejections). No reinforcement was given in trials in which
the monkeys failed to detect stimuli (misses), even if they were
presented below the perceptual threshold. This reward contin-
gency leads to a small bias of the monkeys to erroneously report
the presence of a stimulus in some of the stimulus absent trials
(false alarms) (Fig. 1 C and D).

While the monkeys performed the detection task, we recorded
the activity of 708 randomly selected neurons from the PFC (Fig.
2A4). We analyzed neuronal activity during the stimulus phase
(immediately after stimulus presentation) to investigate the very
early stage of decision formation, and the late-delay phase during
which motor preparation was still excluded. We applied stepwise
linear regression (SLR) analysis to study the conjoint con-
tributions of stimulus intensity and the subjective “yes” and “no”
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Fig. 1. Visual detection protocol and behavioral performance. (A) The
monkeys initiated each experimental trial by grasping a lever and fixating
a central fixation target. After 500 ms, a stimulus was displayed for 100 ms in
50% of the trials (intensity varied in nine levels, centered around the per-
ceptual threshold). In the other 50% of the trials, no stimulus was shown.
Both types of trials appeared randomly. After the delay period (2,700 ms),
a color cue appeared to indicate the rule of how to respond to a particular
decision. If a stimulus was presented, a red square cue required the monkey
to release the lever within 1,000 ms to receive a fluid reward, whereas a blue
cue demanded the monkey to keep holding the lever for another 1,200 ms.
The rule applied in the inverse way if no stimulus was presented. Thus,
movement preparation was excluded during the delay period. (B) Signal
detection theory classifies an observer’s behavioral options (hit, miss, correct
rejection, and false alarms) at detection threshold, given two stimulus con-
ditions (stimulus present or absent) and two possible decisions (“yes, stim-
ulus present” and “no, stimulus absent”). (C and D) Psychometric detection
curve for monkey H (C) and monkey M (D). Stimulus intensity is represented
as % visual contrast; visual contrast of 0 indicates absence of stimulus. [Error
bars (SEM) are so small that they are hidden behind the markers].

decisions on the discharge rates of the neurons. During both
analysis phases, we found a proportion of neurons significantly
coding the subjective judgments of monkeys about the stimulus
presence or absence [Fig. 2B; 8% (58/708) during the stimulus
phase and 18% (128/708) during the delay phase, P < 0.05, SLR
analysis]. A proportion of 14% of the cells (96/708) during the
stimulus phase and 15% of the neurons (106/708) during the
delay phase only coded the intensity of the stimulus (P < 0.05,
SLR analysis). Only 1% and 3% of the recorded neurons were
modulated by both the factors stimulus intensity and the sub-
jective decision during the stimulus and delay phase, respectively
(Fig. 2B). Neurons significantly covarying with the monkey’s
choices were termed “decision neurons.” Overall, we found
a significantly higher proportion of decision neurons in the delay
phase compared with the stimulus phase, (P < 0.01; % test).

Receiver operating characteristics (ROC) analysis was used to
quantify the probability with which the decision of the monkey
could be predicted from the neuronal responses. Choice proba-
bility indices were calculated for “yes” decisions in clearly visible,
salient stimulus trials (hits) versus “no” decisions in stimulus-
absent trials (correct rejections), as well as for “yes” (hits) versus
“no” (misses) decisions in threshold trials when stimuli were
presented close to the perceptual threshold.

Neuronal selectivity of a given neuron is usually determined
by the experimental condition that elicits the highest discharge
rate. This approach ignores that suppressive effects (decreases in
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Fig. 2. Recording sites and proportion of selective cells. (A) Right shows
a top view of a monkey brain. The gray area marks the chamber location.
The circular panels on Left show the precise recording sites inside each re-
cording chamber in the lateral PFC for both monkeys. The proportion of
decision neurons at individual recording sites is color-coded. iar, inferior
arcuate sulcus; ps, principal sulcus; sar, superior arcuate sulcus. (B) Pro-
portions of neurons coding stimulus intensity and decision in both phases.

firing rates relative to baseline discharge) are sometimes the
dominant influences of a particular stimulus. Thus, we sub-
divided and classified decision neurons according to their active
modulation of neuronal activity (modulation strength) during
“yes” or “no” decisions rather than highest discharge rate.
Neurons modulating (increasing or decreasing) their firing rates
more strongly for “yes” decisions were termed “yes” neurons,
cells modulating their discharges more strongly to “no” decision
were called “no” neurons.

“Yes"” Neurons Actively Encode Decisions During the Stimulus Phase.
During the stimulus phase, virtually all decision neurons (98%)
modulated their discharge rates only for “yes” judgments (merely
one neuron was classified as a “no” cell; summary in Table S1).
Fig. 34 shows an exemplary “yes” cell that increased its discharge
rates for hits in salient stimulus trials, whereas the firing rates for
correct rejections in stimulus-absent trials remained at baseline
level. Neuronal responses for threshold trials correlated signifi-
cantly with the judgment of the monkey: for “yes” decisions,
neurons increased their activity, mirroring the firing rate in salient
stimulus trials. For erroneous “no” decisions (misses), activity
remained at baseline level, just as in stimulus absent trials. The
choice probability indices for salient and threshold trials are
depicted as a function of time in Fig. 34, Lower. Indices signifi-
cantly above chance level indicate that these discharges of neu-
rons reliably predict the decision of the monkey (P < 0.05; ROC
analysis, bootstrapping). This effect was also present on the
neuronal population level (34 cells; Fig. 3B). Several cells showed
transient suppression of the firing rate for “yes” decisions (Fig.
3C); the neuronal population data (23 units) are depicted in Fig.
3D. The population analysis includes the neuronal responses
during false alarms. Interestingly, decision neurons increased
(Fig. 3B) or decreased (Fig. 3D) the firing rates for this erroneous
“yes” decisions in a similar way as during hit trials, already during
this early decision phase. The average peak latencies of the neu-
ronal responses for false alarms and hits were comparable (neu-
rons increasing the firing rate: hit latency = 242 ms, false alarms
latency = 289 ms; neurons decreasing firing rates: hit latency =
346 ms, false alarms latency = 341 ms). Overall, during the
stimulus phase, PFC neurons represented “yes” decisions by ei-
ther increasing or decreasing their responses, whereas “no”
decisions were represented by default discharge rates.
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Fig. 3. Decision coding by “yes” neurons during the stimulus phase. (A and
C) Responses of two example neurons coding the “yes” decision by in-
creasing (A) or decreasing (C) their firing rates during the stimulus phase
(analysis window highlighted by the gray shaded area). Top depict dot raster
plots; Middle represent the corresponding spike density histograms aver-
aged and smoothed with a Gaussian kernel for illustration. The vertical black
lines indicate the presentation of the stimulus (at 500 ms) and the rule cue
(at 3,300 ms). Stimulus duration is marked by a small horizontal bar un-
derneath the x axis of each plot. Bottom show the choice probability indices
as a function of time. Dotted lines mark significance levels. (B and D) Av-
eraged and normalized responses (S/ Materials and Methods) and choice
probability indices of decision neurons grouped by response type. Shaded
regions indicate SEM; n, number of neurons.

“Yes" and “No” Neurons Actively Encode Decisions During the Delay
Phase. In striking contrast to the findings in the sample phase, the
processing of decisions in the delay phase was based on “yes”
(Fig. 4 A and B) as well as active “no” responses (Fig. 4 C and D)
(summary in Table S1). Just as in the stimulus phase, we found
neurons increasing (79 neurons; Fig. 4B) or decreasing (25 units)
their firing rates for “yes” decisions (hits and false alarms). In
addition, however, a new class of decision cells, “no” neurons,
exhibited significantly increased discharge rates whenever the
monkey decided to report the absence of a stimulus (correct
rejections and misses) (Fig. 4C; average responses of 21 neurons
in Fig. 4D). Three cells were classified as decreasing their firing
rate for “no” responses. These active “no” neurons represent an
abstract category that is neither generated by a specific input nor
linked to a preparation of a motor response.

Finally, we also investigated the neuronal selectivity of delay
phase decision neurons to the rule cue and the instructed motor
action during the rule cue phase. For both “yes” and “no” decision
neurons, decision activity remained the dominant factor well into
the rule cue phase (Fig. 5 4 and B). To identify the proportions of
decision neurons responding to decision, stimulus intensity, rule
cue, and motor action during the cue presentation, we next per-
formed a sliding SLR analysis by using these factors (Fig. 5C).
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Fig. 4. Decision coding by “yes” and “no” neurons during the delay phase.
(A and C) Raster plots, spike density functions, and choice probability indices
for neurons increasing their activity for “yes” decisions (A) or for “no” deci-
sions (C) during the delay phase. (B and D) Normalized averaged responses (S/
Materials and Methods) of the corresponding groups. Active “no” decision
neurons newly emerged during the delay phase. Same layout as in Fig. 3.

Selectivity for the color cue or the motor action was absent during
the delay analysis period. Only after a latency of ~100 ms after
rule cue onset, decision cells started to encode the color of the
rule cue and, most dominantly, the instructed motor action.

Discussion

We found single neurons in the PFC that encode abstract “yes”
and “no” decisions during a visual detection task. In this percep-
tual decision task that dissociated the decision both from low-level
sensory processing and preparatory motor activity, the neuronal
activity covaried with the subjective reports of monkeys about the
percepts. A very small proportion of decision neurons showed an
additional significant effect of the intensity of the visual stimulus;
thus, we report a predominantly categorical, binary activation
pattern of “yes” or “no” decision coding. During the stimulus
phase, decision neurons exclusively either increased or decreased
their firing rates for “yes” decisions, whereas “no” responses were
represented by baseline discharge rates. During the delay period,
however, neurons also actively encoded “no” decisions. We pro-
pose that the coding of abstract, report-independent decisions is
fundamentally similar to the representation of abstract categories
(21), even if one choice alternative is devoid of sensory evidence.
Our data thus extend previous findings about the representation of
perceptual decisions in detection tasks (12).

Behavioral Relevance of the Perceptual Decision Encoding. Decision
neurons modulated their firing rates according to the sensory
percept of monkeys: Activity signaling categorical “yes” decisions
(hits and false alarms) was different from neuronal responses to
correct rejections and misses (as shown by SLR analysis). The
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Fig. 5. Selectivity of decision cells during rule cue presentation. (A and B)
Averaged neuronal activity of “yes” (A) and “no” delay phase decision neurons
(B) is shown throughout the trial during “yes” and “no” decisions separated
according to the rule cue (requiring a particular motor action). The figure has
the same layout as in Fig. 3. (C) Proportion of all “yes” and “no” delay phase
decision neurons significantly selective for the factors decision, stimulus in-
tensity, motor action, and rule cue during the cue phase. The vertical black line
at 3,300 ms depicts the onset of the rule cue. On average, the monkeys per-
formed a motor action 300 ms after the rule cue onset in release trials. The gray
area highlights the analysis window of the delay phase. No selectivity for the
rule cue or the motor action is present during the delay phase analysis window.

behavioral relevance of these responses becomes clear in the
analysis of error trials. Miss trials clearly mimicked the responses
to correct rejections during stimulus and delay phase. Similarly,
a population analysis revealed that false alarm responses re-
sembled the neuronal representations of hit trials. (The small
number of false alarm trials precluded an analysis for individual
cells). The slightly lower response amplitude of average false
alarm responses compared with hit activity most likely reflects
the different causes for such erroneous “yes” decisions that can
appear during the course of a trial.

“No” Neurons. The presence of active “no” neurons—in addition
to active “yes” neurons—is an important finding of our study.
During the delayed decision process, “no” cells encoded the de-
cision actively by modulating their activity more strongly for “no”
decisions, even in the absence of sensory evidence. One possible
explanation for our finding is that decisions irrespective of motor
preparation require additional neuronal representations com-
pared with decisions in previous task designs (12, 13, 22, 23). Deco
and coworkers used the term “type ‘no’ neurons” for cells that
showed a transient peak activity during stimulus presentation and
suppressed activity during the delay period whenever the monkey
reported stimulus presence (24). Importantly, these neurons were
reported to maintain baseline activity if no stimulus was presented.
According to the definition we use in our study, these neurons
would most likely correspond to “yes” neurons increasing their
firing rate in the stimulus phase and decreasing the firing rate
during the delay phase for “stimulus present” decisions.

Two Processing Steps of Abstract Decisions. Our physiological
results argue for two discrete processing steps involved in ab-
stract decisions in detection tasks, implemented by “yes” cells in
the stimulus phase and by “yes” and “no” cells during the delay
phase. During the stimulus phase, the responses might reflect the
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subjective experience of the stimulus, based on the accumulation
of sensory information (12). The emergence of “no” neurons in
the delay phase likely constitutes a second active decision-pro-
cessing step transforming the subjective experience to abstract
categories in rule-based detection tasks.

In an abstract, report-independent decision protocol, in which
the appropriate motor response is instructed later, a default motor
action cannot easily be defined. From the computational per-
spective, “buffering” of the decision in a nonmovement-related
framework (21) and applying two sets of active decision neurons
(“yes” and “no” cells) would constitute an advantage. The prin-
ciple of using two sets of active neurons is also implemented in
(delayed) report-dependent (6, 7, 25-27) and report-independent
(20) coding and models of decisions in discrimination tasks. In
such comparison tasks, decision can be based on the evaluation of
sensory evidence (e.g., “rightward” versus “leftward” motion), so
the information of two sets of neurons actively coding the two
alternative categories can be “translated” into a movement-related
framework. With the applied detection task, we show that this
coding scheme is a fundamental principle in representing abstract
decisions. Our data show that, if sensory evidence is not available
in the absence of sensory stimulation, the second set of active
coding neurons is purposefully generated in neuronal networks.

The question of how the second active decision-processing step
and the emergence of “no” neurons in abstract decisions is gener-
ated requires further investigation. One speculation might be that
information during the stimulus phase is transferred and further
processed throughout the delay phase. Another possibility might be
that this late decision processing is triggered by midbrain dopamine
(DA) neurons. A recent study reports high levels of DA activity for
high uncertainty, which arises internally because of the evaluation
of a sensory stimulus (28). Because stimulus-absent events carry
a high level of uncertainty, this DA activity might account for the
active “no” decision responses we measured in the PFC.

To guide behavior, the accuracy of neuronal decision signals
should improve if information is combined across neurons. Sen-
sory-related decisions have been found to rely on neurons with
increasing and decreasing response profiles (13, 25). We find that
both “yes” and “no” decision categories are encoded by facilita-
tion and suppression. However, combining both apparently op-
posing information streams by a simple linear summation or
averaging pooling rule would diminish/cancel out the information.
A mechanistically similar situation occurs during the discrimina-
tion of opposite directions. Here, computational models suggest
pooling profiles that specify how each neuron (tuned to its pre-
ferred direction) contributes to the decision (29). These pooling
profiles result in opposite weighting of the contribution of neurons
tuned to opposite directions. The difference of the weighted
responses is used to determine the decision. Cells found in our
study that encode the same decision category based on increasing
and decreasing activity (but not opposing decisions) could exploit
the same pooling principle within a decision category. To take full
advantage of both information streams, pooling might rely on the
difference between averaged subpopulations of neurons increasing
and neurons decreasing their responses. This pooling-rule might
be achieved if a subpopulation of increased-discharge decision
neurons excites a downstream neuron, whereas a subpopulation of
suppressed neurons inhibits this neuron.

Intentional and Report-Independent Frameworks. Our data suggest
that the best-suited neuronal representations of decision may
be implemented depending on the nature of the behavioral
task (intentional or report-independent). Decisions that can be
formed as intensions to pursue a particular action may not re-
quire an abstract decision; thus, a direct link between stimulus
activity (sensory input) and premotor activity (motor output)
might be established. Therefore, the abstract decision may not
even be represented as a discrete processing step at all (21, 30).
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Our data indicate a complementary mechanism of decision
processing, one that is deployed by the monkey brain when an
abstract decision is forced. According to this hypothesis, deciding
does not inevitably mean to plan a motor response (31). Rather,
if required, decisions can be represented in an abstract pro-
cessing step separated from motor effector systems, thus per-
mitting complex operations between decision and action. Our
results suggest that, if a rule cue were to be introduced in action-
based detection tasks, the same kind of mechanism as observed
in the current detection study would presumably emerge.

Brain Areas Encoding Abstract Decisions. Although early sensory
brain areas reflect the physical properties of a stimulus (12, 32), the
correlation between neuronal discharges and interpretation (sub-
jective experience) of a stimulus progressively increase across higher
cortical hirarchy and result in a choice of an appropriate behavior
(13, 33). We selected the PFC, a classical association area known to
operate at the apex of the cortical hierarchy, as a candidate struc-
ture. PFC neurons have been shown to be engaged in highly abstract
processes (34) including evaluation of sensory information (19, 35),
decision-related processes (25, 36, 37), and abstract behavioral
planning (38-40). Moreover, human fMRI suggested this area as an
abstract decision-making module that is functionally separate from
the motor systems (31, 41). We show that neurons in the PFC are
strongly involved in the processing of abstract decisions.

However, other highly associative brain areas might also be
strong candidates for the processing of abstract decision in-
formation. The medial premotor cortex (MPC) has been reported
to be crucial for linking sensory information to action investigated
from a motor perspective (37, 42, 43). The anterior cingulate
cortex (ACC) has also been shown to reflect the intention for
a particular action based on sensory (44) or reward information
(45). It would be interesting to investigate whether and how these
areas encode abstract decisions.

Materials and Methods

Behavioral Protocol. Two rhesus monkeys (Macaca mulatta) were trained to
report the presence or absence of a visual stimulus (Fig. 1A). The stimulus
consisted of a gray object (4° of visual angle) presented at nine levels of
contrast close to the perception threshold (monkey H: 4.1%, 3.2%, 2.4%,
2.0%, 1.7%, 1.4%, 1.1%, 0.7%, 0.4%; monkey M: 4.1%, 3.2%, 2.4%, 2.8%,
2.0%, 1.7%, 1.4%, 1.1%, 0.7%), measured with a J16 Digital Photometer
(Tektronix). The shape of the object was chosen randomly from a set of
three objects: square, circle, and hexagon for monkey H; cross, triangle, and
rhomboid for monkey M. The area of the object was kept constant to
maintain the same visual contrast of the stimulus across different shapes.
Monkeys kept their gaze within 1.75° of visual angle of the fixation target
during stimulus and delay period. Eye movements were monitored with an
infrared eye-tracking system (ISCAN). CORTEX program (National Institute of
Mental Health) was used for experimental control and behavioral data ac-
quisition. For the behavioral analysis, we gathered the proportion of “yes”
decisions for stimulus present (hits) and stimulus absent (false alarms) trials
(15021 and 14830 trials for monkey H; 14207 and 14326 trials for monkey M).
For each stimulus intensity and type of decision, we pooled trials requiring
lever release and holding trials from all recording sessions (Fig. 1 B and C).

Neurophysiological Recordings. Extracellular single-cell activity was recorded by
using arrays of four to eight glass-coated tungsten microelectrodes of 1 MQ
impedance (Alpha Omega) (S/ Materials and Methods). All of the surgery
procedures were carried out under aseptic conditions and under general an-
esthesia in accordance with the guidelines for animal experimentation ap-
proved by the local authorities, the Regierungsprasidium Tubingen, Germany.
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Data Analysis. Data analysis was performed by using MATLAB (MathWorks).
We studied all well-isolated neurons and focused our analysis on two decision
periods: a 300-ms interval after stimulus onset shifted by the individual re-
sponse latency of the cell (stimulus phase) and a 1,000-ms window starting
1,900 ms after stimulus onset (delay phase).

Excluding Nonabstract, Object Feature-Selective Neurons. To ensure that the
studied neurons encoded abstract object properties irrespective of low-level
visual features, we only analyzed cells, whose responses generalized over all
three presented objects. We performed a Kruskal-Wallis test to analyze the
selectivity of neurons for the three types of objects. For this test, hit trials of all
intensities were grouped by object type. Only few neurons showed significantly
different discharge rates for at least one of the three object types: (5% during
the stimulus and delay phase). These cells were excluded from further analysis.

SLR Analysis. The SLR analysis (46) was used to investigate the relationship
of firing rate with stimulus intensity and firing rate with monkey’s choice
(43, 46, 47). We fitted the neuronal activity during stimulus and delay
analysis phases to an arbitrary linear function of both factors: intensity (all
tested values) and decision (“yes” decision: hits and false alarms vs. “no
decision: misses and correct rejections). The firing rate (FR) can be formu-
lated as FR = ag + aint X INT + a4 X D, where aj,; and aq are the coefficients
that quantify the firing rate dependence on intensity (INT) and decision (D),
respectively. For the analysis of the rule cue phase (Fig. 5C), a sliding SLR
analysis was calculated. Here, the dependence of firing rates on intensity
(INT), decision (D), action (A), and rule cue (R) was assessed according to the
equation FR = ag + ajnt X INT + ag X D + a, X A + a, x R (S| Materials and
Methods). We chose a significance level of 5% to determine which factors
had a significant effect on the firing rates. Coefficients were included in the
model if the P value for a predictor was below this level. Mulicollinearity did
not affect the calculations (S/ Materials and Methods).

"

Classification of Decision Cells into “Yes” and “No” Neurons. Neurons showing
a significant effect of decision (SLR analysis) were classified according to the
modulation strength of their firing rates during “yes” and “no” decisions. As
a measure of the modulation strength (M), we used the mean absolute
change of the firing rate (FR) in intervals of t = 100 ms, which were shifted in
10-ms steps M =1 3°7; [4TR|. The starting point of the modulation analysis
(i = 1) for both phases was advanced from the defined phase onset to a time
point at which the firing rates for the “yes” and “no" decisions started to
diverge significantly (see ROC analysis); the analysis ended (i = n) at the
defined offset of the respective phase. The firing rate was convolved with
a Gaussian kernel (bin width 150 ms; step 1 ms). If the modulation strength
(M) was larger during “yes” decisions compared with the modulation
strength during “no” decisions, the neuron was classified as a “yes” neuron.
For stronger modulation during “no” decisions, the neuron was assigned to
the “no” neuron class.

ROC Analysis. To analyze the representation of the abstract decision across
time, we compared the discharge rates of salient hit trials to correct rejections
and activity in hit trials to misses of threshold trials. Sliding ROC analysis was
used to calculate choice probability indices, which estimated the strength of
decision coding (S/ Materials and Methods).

Response Latency. Latency calculations of neuronal responses were based on
the sliding ROC analysis. No significant latency difference was found between
cells coding only stimulus intensity (239 ms) and neurons coding the decision
(194 ms) (P > 0.05, Wilcoxon test).
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S| Materials and Methods

Neurophysiological Recordings. We recorded single-cell activity
from the lateral prefrontal cortex (PFC) (left hemisphere, around
the principal sulcus) of both monkeys. The location of the re-
cording sites and the placement of the recording chambers were
reconstructed in stereotactic coordinates by using magnetic res-
onance images of individual monkey brains (Fig. 24). Electrodes
were inserted each recording day by using a grid with 1-mm
spacing. Neurons were selected at random in every recording
session; no attempt was made to preselect neurons according to
response properties. Signal acquisition, amplification, filtering,
digitalization, and spike sorting (offline) were accomplished by
using the Plexon system (Plexon).

Stepwise Linear Regression (SLR) Analysis. Neuronal responses
during the rule cue were analyzed in the period starting 200 ms
before the rule cue onset and ending 300 ms after the rule cue
onset. Sliding SLR analysis was calculated for analysis windows of
100-ms duration, slid in steps of 10 ms for the factors intensity
(INT), decision (D), action (4), and rule cue (R). The number of
neurons significantly encoding each factor in each analysis win-
dow was convolved with a Gaussian kernel (bin width 10 ms; step
1 ms) for the plot (Fig. 5C).

To test for the presence of multicollinearity, we calculated the
variance inflation factor (VIF) VIF = 1/(1 — R?), where R is the
coefficient of the correlation of both explanatory variables de-
cision and intensity. As a common rule of thumb VIF > 5 are
used as cut off values for too high multicollinearity (1, 2). None
of the VIF values calculated for every neuron exceeded the
cutoff value.

Receiver Operating Characteristic (ROC) Analysis. To characterize
how neurons represent the abstract decision across time, we
applied sliding ROC analysis (3) to consecutive overlapping time
windows of 300 ms moved in 50 ms steps across the trial. We
compared the discharge rates of salient (>2.4% visual contrast)
hit trials to discharge rates of correct rejections. Further, hit
trials of threshold stimuli (2.0%, 1.7%, 1.4%, and 1.1% of visual
contrast) were compared to miss threshold trials. To exclude

1. Kutner MH, Nachtsheim C, Neter J (2004) Applied Linear Regression Models (McGraw-
Hill/rwin, New York).

2. O'Brien RM (2007) A caution regarding rules of thumb for variance inflation factors.
Qual Quant 41:673-690.

"Yes"” neurons

possible stimulus intensity biases in the analysis of four different
intensities of hit or miss trials, equal numbers of trials of each
stimulus intensity were included in the comparison for each cell.

To estimate the extent to which neuronal activity in both
phases was influenced by the decision, we calculated the choice
probability index (4) (area under the ROC curve). Values of 0.5
indicated chance-level discrimination; values >0.5 denoted
neurons with higher firing rates for hits compared with misses or
correct rejections; choice probability indices <0.5 signified cells
with higher discharge rates for misses and correct rejections. We
used bootstrapping to assess whether the indices were signifi-
cantly different from 0.5. For this analysis, we constructed 1,000
resamples of the observed discharge rates, each of which was
obtained by random sampling with replacement keeping the
original number of trials for each condition. Then, we calculated
the choice probability index for each resample, and compared
the resulting distribution of the indices to the value of the
original dataset. If 95% of the bootstrapped values were higher/
lower than the original value, it was considered statistically
significant (P < 0.05). Confidence intervals, depicted in Figs. 3
and 4, were calculated by using the bootstrap technique for
each interval.

To calculate the response latency of the neurons, sliding ROC
analysis with time windows of 50 ms slid by 1 ms was used. We
defined the latency for each cell as the time after stimulus onset,
but no later than 500 ms, for which the choice probability index
exceeded for 50 consecutive windows the 95% threshold of the
bootstrapped data. If no value could be determined, a default
latency corresponding to the 75th percentile of the response
latency distribution of a given recording was used (179 ms).

Population Analysis and Normalization. For the group analysis of
each cell class, we normalized and averaged responses of all
significantly selective cells. Normalized activity was calculated by
subtracting the mean baseline activity and dividing by the SD of
the baseline activity (300 ms period before stimulus onset). Spike
density histograms for single neurons were averaged over trials
and convolved with a Gaussian kernel (bin width 150 ms; step size
1 ms) for illustrative purposes only.

3. Green DM, Swets JA (1966) Signal Detection Theory and Psychophysics (Wiley, New York).

4. Britten KH, Newsome WT, Shadlen MN, Celebrini S, Movshon JA (1996) A relationship
between behavioral choice and the visual responses of neurons in macaque MT. Vis
Neurosci 13:87-100.

Number of neurons classified as “yes” and “no” decision

“No” neurons

Table S1.
neurons

1
Stimulus phase 34
Delay phase 79

l 1 N\
23 1 0
25 21 3

1, increasing firing rate; |, decreasing firing rate.
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Deciding between alternatives is a critical element of flexible behavior. Perceptual
decisions are based on the evaluation of sensory information and have been studied
extensively in an action-based framework. The processing of such intentional judgments
involved the representation of sensory, cognitive, and motor variables simultaneously in
the same neurons in various frontal and parietal brain regions. However, the processing of
more complex decisions, which require abstract calculations and cannot be expressed in
terms of motor actions, might be coordinated by an area operating at the top of the
processing hierarchy, the prefrontal cortex (PFC). The involvement and interaction of
various frontal cortex areas have not been studied for abstract decisions. We trained two
monkeys to perform a visual detection task and applied a rule-cue to disentangle the
processing of the abstract perceptual decision from motor preparation. We recorded the
single-neuron activity during the formation of abstract decisions in the monkey pre-
supplementary (preSMA) and the rostral part of the cingulate motor area (CMAr) and
compared it to the mechanism previously found in the dorsolateral PFC neurons. We
found that these areas, traditionally identified with motor planning, process the abstract
decision independently of any motor preparatory activity by similar mechanisms as the
PFC. Remarkably, the reliability of abstract decision coding in the preSMA was even
significantly higher compared to PFC neurons. The processing mechanism of abstract
decisions in the preSMA was different from how this area was shown to encode report-
dependent decisions. Our findings emphasize that both preSMA and CMAr have abstract
and cognitive encoding capacities for processes distinct from motor actions. The
deployment of different encoding mechanisms for different task requirements in the
preSMA demonstrates the high processing flexibility of this brain structure.

Introduction

Decisions are deliberative processes that allow for a choice between alternatives in a
situation of uncertainty. Perceptual decisions are often studied in simple sensory-motor
tasks; they evaluate ambiguous or noisy sensory information and transform it into
categorical judgments to influence behavior. Such judgments cannot be explained alone
by properties of early sensory areas neurons that reflect the physical properties of the
stimulus (Mountcastle et al, 1969; de Lafuente and Romo, 2005). To determine the
subjective judgment, processes that integrate the sensory information with internal
goals, experiences, and expectations are required. Flexible and nuanced decisions are
thus regarded as a hallmark of higher cognition.



Perceptual decision implementation has been addressed neurophysiologicaly in various
cortical and subcortical structures and does not seem to be restricted to particular
cognitive centers such as the prefrontal cortex (PFC) (Kim and Shadlen, 1999; Romo et
al, 2004; Lemus et al., 2009; Hernandez et al., 2010). Likewise, regions as the frontal
eye field (Gold and Shadlen, 2003), the medial and ventral premotor cortices
(Hernandez et al,, 2002; de Lafuente and Romo, 2005; 2006), the superior colliculus
(Horwitz and Newsome, 1999; Gold and Shadlen, 2000), and the lateral intraparietal
area (LIP) (Shadlen and Newsome, 2001; Roitman and Shadlen, 2002) have been
implicated in decision formation. These studies thought of the perceptual decision as an
intension to pursue a particular action associated with a percept (Gold and Shadlen,
2007; Shadlen et al., 2008). This might possibly be the reason why the decision related
processing has been found in these brain areas involved in planning, preparation, and
execution of motor actions.

However, if perceptual decisions are dissociated from action preparation the
contributions of different brain areas to their formation are largely unclear. The region
of paramount importance for the processing of such highly abstract computations is the
PFC. In a recent study, we investigated the representation of abstract perceptual
decisions in the PFC of rhesus monkeys (Merten and Nieder, 2012). In a rule-based
visual detection task that allowed a clear dissociation of a decision about the presence or
absence of a stimulus from motor preparation, we found a different way of detection
decision processing as compared to previously reported action-based detection
decisions (de Lafuente and Romo, 2005). In addition to the neurons actively modulating
their discharges for ‘yes, stimulus present’ decisions, found for action-based detections,
we found a second set of neurons actively modulating their responses for ‘no’ decisions.
The appearance of ‘no’-neurons is a hallmark of highly abstract calculations, because
these responses are generated although this decision category lacks sensory input and is
not triggered by motor preparations.

Our present work explores the encoding of abstract detection decisions in areas of the
frontal cortex, which are traditionally identified with motor planning. Of particular
interest is the presupplementary motor area (preSMA), because this area appears to be
responsible for more abstract, cognitive, high-level motor functions (Tanji, 1994; Picard
and Strick, 1996; Shima et al., 1996). Moreover, the rostral part of the cingulate motor
area (CMATr) is a candidate to be involved in cognitive processing. Just as the preSMA,
CMAr receives direct input from the PFC (Bates and Goldman-Rakic, 1993; Lu et al,,
1994; Wang et al., 2005). Moreover, a recent study describes the involvement of this
area in abstract rule processing (Vallentin et al.,, 2012). We apply the same detection
protocol in the same rhesus monkeys to explore whether these structures translate
decisions into abstract categories, similar to the PFC neurons. An alternative might be
that these regions contribute to decision processing only on a stage when information
about the motor action becomes available and the intension for an action is calculated.
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Methods

Behavioral protocol

Two rhesus monkeys (Macaca mulatta) were trained on a rule based visual detection
task (Figure1). In each randomly selected experimental trial the monkeys were
required to report the presence or the absence of a stimulus dependent on a color cue,
which instructed a particular motor response. The monkeys initiated a trial by grasping
a lever and fixating a central fixation target for 500 ms. A brief stimulus (100 ms)
appeared for in 50% of the trials. In the other half of the trials, the stimulus was absent.
After the delay period (2700 ms), a color cue was presented. If the monkey correctly
detected the presence of the stimulus a red square cue required the monkey to release
the lever within 1000 ms to receive a fluid reward. A blue square instructed the monkey
to keep holding the lever for 1200 ms. The rule applied in the inverse way if the absence
of the stimulus was detected. During stimulus and delay periods, monkeys were
required to keep their gaze within 1.75° of visual angle of the fixation target. Eye
movements were monitored with an infrared eye-tracking system (ISCAN, Woburn, MA,
USA). CORTEX program (NIMH) was used for experimental control and behavioral data
acquisition.

Stimuli

The stimulus consisted of a grey object (4° of visual angle), whose shape was selected
randomly from a set of three shapes: square, circle, hexagon for monkey H; cross,
triangle, and rhomboid for monkey M. The area of the object was kept constant to
maintain the visual contrast of the stimulus across different shapes. The stimulus was
presented at nine levels of contrast close to the perception threshold (monkey H: 4.1 %,
3.2%, 2.4%, 2.0 %, 1.7 %, 1.4 %, 1.1 %, 0.7 %, 0.4 %; monkey M: 4.1 %, 3.2 %, 2.8 %,
24%, 2.0%, 1.7%, 1.4 %, 1.1 %, 0.7 %), measured with a J16 Digital Photometer
(Tektronix, Beaverton, OR, USA).

Neurophysiological recordings

All procedures involving animals were fulfilled the guidelines for animal
experimentation approved by the local authorities, the Regierungsprasidium Tiibingen,
Germany. All the surgery procedures were carried out under aseptic conditions and
under general anesthesia. = We performed extracellular single-cell recordings
simultaneously in the lateral prefrontal cortex (PFC), the presupplementary motor area
(preSMA), and the rostral part of the cingulate motor area (CMAr). We used glass-
coated tungsten microelectrodes of 1 MQ impedance (Alpha Omega, Nazareth, Israel).
Arrays of four to eight electrodes with 1 mm spacing were inserted during each
recording session into the recording chambers. Neurons were selected at random in
every recording session; no attempt was made to pre-select neurons according to
response properties. Signal acquisition, amplification, filtering, digitalization, and were
accomplished using the Plexon system (Plexon, Dallas, TX, USA). The placement of the
recording chambers and the location of the recording sites were reconstructed in
stereotactic coordinates using magnetic resonance images of individual monkey brains
(Figure 2).
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Data analysis

We sorted the spikes offline and studied the responses of all well-isolated neurons. We
focused our analysis on two intervals during the decision period: the stimulus phase: a
300 ms period after stimulus onset shifted by the individual response latency of the cell
and the (late) delay phase: a 1000 ms window starting 1900 ms after stimulus onset.
Moreover, we analyzed the neuronal responses also during the motor phase: a 200 ms
interval, which started 100 ms and ended 300 ms after rule-cue onset. Data analysis
was performed using MATLAB (MathWorks, Natick, MA, USA).

Excluding non-abstract, object feature-selective neurons

A Kruskal-Wallis-test was used to analyze the selectivity of every neuron for the three
different types of the presented objects, to ensure that the studied neuronsencoded
abstract object properties irrespective of low-level visual features. For this test, hit
trials of all intensities were grouped by object type. We found that only few neurons
showed significantly different discharge rates for the object types: (PFC: 5 % during the
stimulus and delay phase; preSMA: 4 % in both intervals of analysis; CMAr: 6 % during
the stimulus phase and 5 % during the delay phase). These cells were excluded from the
analysis.

Stepwise Linear Regression (SLR) analysis

To investigate the relationship of firing rate, monkey’s choice, and stimulus intensity
during the decision period, we used SLR (Draper and Smith, 1966). We fitted the
neuronal activity measured for each single cell during the stimulus and delay phases to a
linear function of both factors: intensity (all tested stimulus intensities) and decision
(‘ves’ decision: hits and false alarms vs. ‘no’ decision: misses and correct rejections). The
following equation describes this relationship: FR = aop + @inexINT + aqxD. The coefficients
ain: and aq quantify the dependence of the firing rate (FR) on intensity (INT) and decision

(D).

For the analysis of the motor phase (Figure 9), the dependence of the firing rates was
calculated using the factors intensity (INT), decision (D), motor action (4), and rule-cue
(R) using the following equation: FR = ap + @ineXINT + aaxD + aqxA + axR. We also carried
out a sliding SLR analysis during the time of the rule-cue appearance and the motor
phase. Analysis windows of 100 ms were slid in steps of 10 ms for all the four factors.
The number of neurons and the SLR coefficients of neurons significantly encoding these
factors in each analysis window were convolved with a Gaussian kernel (bin width
10 ms; step 1 ms) for the plot (Figure 9).

Coefficients were included in the model if the p-value for the predictor (decision
outcome or the stimulus intensity) was below the significance level of 5 %. To test for
the presence of multicollinearity we determined the correlation coefficient the
explanatory variables decision and intensity (R) and calculated the variance inflation
factor (VIF): VIF=1/(1-R?). VIF>5were used as cut off values to detect too high
multicollinearity (Kutner et al., 2004; O’Brien, 2007). The concern of multicollinearity
did not apply to any of the calculated fits.

For the comparison of the SLR coefficients among each other and between areas, the
coefficients were normalized. Normalized firing rates were used to determine the
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coefficients (see Population analysis and normalization). The absolute coefficient values
(a) were transformed to normalized values by anorm = tan-t (a) / (n/2).

Classification of decision cells into ‘yes’ and ‘no’ neurons

Decision neurons were classified according to the modulation strength of their firing
rates during ‘yes’ and ‘no’ decisions. We used the absolute mean change of the firing
rate as a measure of the modulation strength (Merten and Nieder, 2012).

Receiver operating characteristic (ROC) analysis

ROC analysis was performed over both abstract decision analysis intervals (stimulus
and delay phase). Sliding ROC analysis was applied to consecutive overlapping time-
windows of 300 ms moved in 50 ms steps across the trial to characterize the temporal
evolution of the abstract decision across time. We calculated the choice probability
indices (area under the ROC curve) comparing the discharge rates of salient (= 2.4 %
visual contrast) hit trials with discharge rates of correct rejections; and hit trials of
threshold stimuli (2.0 %, 1.7 %, 1.4 %, 1.1 % of visual contrast) with miss threshold
trials. To exclude stimulus intensity biases in the analysis of threshold trials, equal
numbers of trials for each stimulus intensity were included in the comparison of hit and
miss trials for each cell. Choice probability values of 0.5 indicated chance-level
discrimination; values > 0.5 denoted neurons with higher firing rates for hits compared
to misses or correct rejections; choice probability indices < 0.5 signified cells with
higher discharge rates for misses and correct rejections. To calculate significance levels
and confidence intervals we used the bootstrapping technique. We constructed 1000
resamples of the discharge distributions, each of which was obtained by random
sampling of firing rates of both compared conditions with replacement keeping the
original number of trials for each condition. We calculated the choice probability index
for each resample and evaluated value of the original dataset compared to the
distribution of the indices calculated for the resamples. If 95 % of the randomly
generated distributions showed higher/lower choice probabilities than the original
value; it was considered statistically significant (p < 0.05).

Response latency

Sliding ROC analysis (50 ms windows moved by 1 ms steps in a 500 ms window after
stimulus onset) was used to calculate the response latency of the neurons. The latency
was defined as the time for which the choice probability index exceeded for
50 consecutive windows the 95 % threshold of the bootstrapped data. If no value could
be determined, a default latency corresponding to the 75t percentile of the response
latency distribution of a given recording site was used (PFC: 179 ms; preSMA: 180 ms;
CMAr: 225 ms).

Population analysis and normalization

Spike density histograms of significantly selective neurons assigned to a particular
response class were normalized and averaged. Averaged firing rates of each cell were
normalized by subtracting the mean baseline activity and dividing by the standard
deviation of the baseline activity. Baseline activity was derived from a 300 ms period
prior to stimulus onset. For illustrative purposes spike density histograms were
convolved with a Gaussian kernel (bin width 150 ms, step size 1 ms).
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Results

We recorded the activity of single neurons in the PFC, preSMA, and CMAr in two
monkeys performing the rule-based detection task (Figure 1). The monkeys were
presented with a visual stimulus at nine different stimulus intensity values; in half of the
trials no stimulus was shown. Our experimental design assured that the monkeys could
not prepare any motor response during the delay period, which followed the
presentation of the visual stimulus. Only after the presentation of a rule cue the
monkeys could prepare a particular motor action to report the presence or absence of
the stimulus. The intensities of the stimuli were chosen close to the perceptual
threshold to introduce uncertainty to the task. Thus the internal status of the animals
determined whether the presented stimulus was detected (hit) or not (miss) or whether
the absence of the stimulus was correctly reported (correct rejection) or erroneously
indicated as a stimulus present trial (false alarm). Both monkeys reported in almost
100 % of the trials the presence of salient stimuli. In about 90 % of stimulus absent
trials, the monkeys correctly rejected the presence of any stimulus; for stimuli close to
the perceptual threshold animals were able to correctly detect the stimulus in a
proportion of trials dependent on the intensity. The details of behavioral performance
are presented in Merten and Nieder (2012).

Figure 1. Rule-based detection task. To
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demanded the monkey to keep holding the lever for another 1200 ms. The rule applied in the inverse way in
stimulus absent trials. The protocol ensures, that no motor response preparation could take place during the
delay period. The grey areas mark the periods of data analysis: stimulus and delay phase during the decision
period and the motor phase, after the rule-cue onset.

Types of neurons processing the abstract deciosion

We recorded randomly selected neurons in the lateral PFC around the principal sulcus;
in the preSMA, largly rostral to the arcuate genu; and in the CMAr, which is buried in the
cingulate sulcus spanning both banks of the sulcus rostral to the arcuate genu (PFC:
708 neurons; preSMA: 520 neurons; CMAr: 149 neurons). The placement of electrodes,
depicted in Figure 2, was reconstructed using MR images and depth estimation (PFC:
monkey H: 2-4.8 mm, monkey M: 2-5.8 mm; preSMA: monkey H: 2-5.6 mm, monkey M:
2-5 mm; CMAr: monkey H: 10-11 mm, monkey M: 7-13 mm).
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Figure 2. Recording sites. (A) Medial
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arcuate sulcus; Icf, longitudinal cerebral

fissure; CgG, cingulate gyrus; CgSv, ven-
tral bank of the cingulate sulcus; CgSd,
dorsal bank of the cingulate sulcus;
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For all three areas we compared the coding of the abstract perceptual detection during
the early decision phase (stimulus phase) and during the late decision processing, when
any motor preparation was still excluded (delay phase, compare Figure 1). We were
interested to investigate how the activity of the neurons was influenced by the
subjective decision about the stimulus presence (‘yves’ decision) or absence (‘no’
decision) and whether and how strongly the activity was modulated by the physical
properties of the presented stimulus. We applied stepwise linear regression analysis
(SLR) to access the impact of both factors on the firing rates of hit and false alarm trials
(‘yes’ decision) compared for all stimulus intensities to correct rejections and miss trials
(‘no’ decision). We found that the abstract decision was processed by all three recorded
areas: 58/708 (8 %) of the neurons in the PFC, 69/520 (13 %) in the preSMA, and
16/149 (11 %) in the CMAr significantly encoded the monkey’s judgment about the
stimulus presence or absence during the stimulus phase (p <0.05, SLR analysis,
Figure 3A). Significantly more cells represented the decision in the preSMA compared
to the PFC (p < 0.05, Fisher's exact test, Bonferroni corrected).

34



During the delay phase, we recorded 128/708 (18 %) abstract decision selective
neurons in the PFC, 113/520 (21 %) in the preSMA, and 27/149 (18 %) in the CMAr
(p < 0.05, SLR analysis, Figure 3B). The proportions were not significantly different for
the three areas (p > 0.05, Fisher's exact test). These neurons were termed ‘decision
neurons’.

Stimulus intensity was encoded by 96/708 (14 %) of the cells in the PFC, 58/520 (11 %)
in the preSMA, and 24/149 (16 %) in the CMAr during the stimulus phase; and by
106/708 (15 %) in the PFC, 73/520 (14 %) in the preSMA, and 24/149 (16 %) in the
CMAr during the delay phase (p < 0.05, SLR analysis, Figure 3). No differences of the
proportions of intensity coding cells were found between the three areas during the
stimulus and delay phase (p > 0.05, Fisher's exact test). Few cells were modulated by
both factors stimulus intensity and decision during both decision analysis phases in all
areas (1 - 3 %, compare Figure 3).

A preSMA CMAr Figure 3. Proportions of selective cells
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Classes of neurons encoding the abstract decision

We identified different types of decision neurons according to the active modulation of
their discharge rates during ‘yes’ and ‘no’ decisions. This approach assured that exciting
as well as suppressive effects could be detected as the dominant influence of a particular
stimulus. The selectivity of a neuron was defined by the condition, which elicited the
stronger modulation of the neuron’s firing rate. Neurons modulating (increasing or
decreasing) their activity more strongly for ‘yves’ decisions were termed ‘yes’ neurons,
cells modulating their activity more strongly to ‘no’ decisions were called ‘no’ neurons.

During the stimulus phase, virtually all decision neurons in all three areas PFC, preSMA,
and CMAr were classified as ‘yes’ neurons. Figure 4A depicts single cells that increased
their firing rates for ‘yes’ decisions (during hit trials, when a salient stimulus was
present), whereas the activity for ‘no’ decisions (correct rejections in stimulus absent
trials) remained at baseline level. This activity is compared to the discharges in trials
when a near-threshold stimulus was presented, and the animal decided that the
stimulus was present in about half of the trials, but missed the stimulus in other half of
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trials. Neuronal responses for threshold trials closely resembled the responses for the
decisions in salient trials and, therefore, correlated significantly with the monkey’s
judgment.

Some cells encoded the decision for a short period after stimulus presentation (e.g.
Figure 4A, the PFC neuron), other cells maintained high levels of activity for ‘yes’
decisions throughout the delay period (e.g. Figure 4A, the preSMA neuron). Neurons in
Figure 4B show a transient suppression of their firing rates for ‘yes’ decisions. Few cells
(see Table 1) were erroneously classified as ‘no’ neurons during the stimulus phase. The
averaged responses of such cells recorded in the preSMA are displayed in Figure 6; they
clearly show a stronger decrease of activity for ‘yes’ decisions compared to the increase
of activity for ‘no’ decisions. These cells were excluded from further analysis. Overall,
decisions in the stimulus phase were processed by active ‘yes’ neurons in the PFC,
preSMA, and CMAr.

Interestingly, in all three areas additionally to the population of ‘yes’ cells (Figure 5C), a
population of ‘no’ cells emerged during the delay phase (Figure 5D). 'Yes' neurons, just
as in the stimulus phase, increased (Figure 4C) or decreased (not shown) their discharge
rates more strongly for ‘yes’ decisions in salient and threshold trials. However, the
newly emerging category of 'no' neurons modulated their firing rates more strongly for
‘no’ decisions (Figure 5D), i.e., during correct rejections, when no stimulus appeared and
during miss trials whenever a physical stimulus remained undetected.

The identified cell classes and the respective numbers of cells are summarized in
Table 1. Averaged responses of decision neurons averaged for each cell class and each
frontal cortex area are depicted in Figure 5. The population analysis includes the
activity of the decision neurons during false alarm trials. In a similar way as during hit
trials, the false alarm firing rates were increased (Figure 5A) or decreased (Figure 5B)
during the stimulus phase; and increased (Figure 5C) or remained at baseline level
(Figure 5D) in the delay phase during this erroneous 'yes' decisions.

Table 1: Classification of 'yes' and 'no’ decision cells

Stimulus Phase Delay Phase
'ves' neurons 'no' neurons 'ves' neurons 'no' neurons
T J T J T J T J
PFC 34 23 1 0 79 25 21 3
preSMA 32 29 8 0 65 18 25 5
CMAr 4 11 1 0 13 7 7 0

/N increasing firing rate; { decreasing firing rate
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Figure 4. Example decision neurons in the PFC, preSMA, and CMAr. Decision neurons correlated with the
subjective decision of the monkey about the presence or absence of the stimulus. During the stimulus phase
(analysis window highlighted by the grey shaded area), ‘yes’ neurons encoded the decision by increasing (A) or
decreasing (B) their firing rates for ‘stimulus present’ reports of the monkey. During the delay phase, decision is
encoded by active ‘yes’ (C) and ‘no’ (D) neurons increasing their firing rates for ‘yes’ (stimulus present) or ‘no’
(stimulus absent) decisions, respectively. Top panels of each plot depict dot raster plots; middle panels represent
the corresponding spike density histograms averaged and smoothed with a Gaussian kernel for illustration. The
vertical black lines indicate the presentation of the stimulus (at 500 ms) and the rule cue (3300 ms). Stimulus
duration is marked by a small horizontal bar underneath the x-axis of each plot. Bottom panels show the
individual neurons’ choice probability indices as a function of time. Dotted lines mark significance levels.

Temporal response characteristics

For all decision cells, we calculated the choice probability indices (ROC analysis, (Green
and Swets, 1966; Britten et al., 1996)) to quantify the predictability of the monkey’s
decision throughout the trial. The bottom panels of Figure 4 represent the comparison
of choice probabilities calculated for ‘yes’ decisions in salient hit trials versus ‘no’
decisions in stimulus-absent trials (correct rejections) as well as for 'yes' (hits) versus
'no' (misses) decisions in threshold trials. Indices derived from threshold trials closely
mirrored indices of salient trials; values above chance level indicated the intervals
during which these neurons' discharges reliably predicted the monkey's decision
(p < 0.05, ROC analysis, bootstrapping). This effect was also present on the neuronal
population level (Figure 5).

Response latencies

To further analyze the response characteristics of the neurons actively participating in
the task, we computed the latency of the neuronal response selectivity after the onset of
the stimulus. There was no difference in the response latency between neurons
encoding the intensity of the stimulus (250 ms) and neurons encoding the monkey’s
subjective decision (231 ms) (p > 0.05 Mann-Whitney U test). We found comparable
response latencies (intensity and decision coding neurons together) in all thee recorded
areas: 234 ms in the PFC, 255 ms in the preSMA, and 280 ms in the CMAr (p > 0.05,
Kruskal-Wallis test).

Strength of decision encoding

We compared the PFC, preSMA, and CMAr areas in their selectivity strength for the
abstract decision. Two types of measurements were used for this evaluation. First, we
compared the decision SLR coefficients of decision neurons across the three areas (aq,
Figure 7A). Moreover, we related the strength of the decision processing of these brain
areas to the encoding strength of stimulus intensity, by intensity selective neurons (@i,
Figure 7B). We calculated a three-way ANOVA for these SLR coefficients with the
following factors: neurons coding intensity or decision only, stimulus or delay analysis
phase, and recording area. This analysis showed a significant effect of recording area
(PFC: aq4=0.22; preSMA aqs=0.27; CMAr aq=0.24; p<0.05, ANOVA). Post-hoc tests
revealed that preSMA showed significantly higher decision encoding strength than PFC
(p < 0.01, Wilcoxon test, Bonferroni corrected). No differences of decision encoding
strength were found between the analysis phases (p > 0.05, ANOVA). In all three areas
the encoding strength of the abstract decision (aq=0.24) was significantly larger
compared to the encoding strength of stimulus intensity (ai.: = 0.04; p < 0.05, ANOVA).
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Figure 5. Decision neurons averaged across different response classes and recording areas. (A, B) Normalized,
averaged responses and choice probability indices of neurons in the PFC, preSMA, and CMAr coding the ‘yes’
decision during the sample phase. (C, D) Averages of neuron classes increasing their activity for ‘yes’ decisions
(C) or for ‘no’ decisions (D) during the delay phase. Shaded regions indicate s.e.m, n, number of neurons. Same
layout as in Figure 4.
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As a second measurement of the encoding strength, we used the choice probability
indices derived from salient and threshold trials for all recording areas during the
stimulus and delay phase, respectively. A three-way ANOVA with factors
(salient/threshold scaled choice probability, sc) x (stimulus/delay phase) x (recording
area) showed a significant effect of the recording area PFC: sc = 0.11; preSMA sc = 0.14;
CMAr sc=0.14; p<0.05). Post-hoc tests revealed that preSMA showed significantly
higher decision encoding strength than PFC (p <0.01, Wilcoxon test, Bonferroni
corrected) and significantly higher choice probabilities than CMAr (p < 0.05, Wilcoxon
test, Bonferroni corrected).

Figure 6. Averaged responses of misclassified decision cells. Normalized

2.0
% 15 and averaged responses of eight preSMA neurons coding the decision during
é 10 the stimulus phase, which erroneously were classified as ‘no’ cells. The
! o5 response characteristics of the average (as well as single cells, not shown) are
g equivalent to cells decreasing their firing rates during ‘yes’ responses (see
o O
c

N Figure 5B, same layout as in Figure 5).

5
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time (ms)

To access the strength of the influence of stimulus intensity on the encoding of abstract
decisions, we plotted the mean choice probability indices of the salient hit trials and
correct rejections trials against the indices of the threshold hit trials and miss trials
(Figure 8). Regression lines provided a good fit to the indices. The fitted slopes slightly
deviated from 1, indicating lower choice probability values for threshold trials and,
therefore, a weak impact of stimulus intensity on decision coding. Yet, no significant
effect of the factor salient/threshold choice probability was found (p > 0.05, ANOVA).
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Figure 8. Comparison of choice probability indices for salient and threshold trials. Choice probability indices of
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delay phase (B)) for all recorded brain areas. Grey points depict values of ‘yes’ neurons; black points mark ‘no’
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encode. Neurons decreasing the firing rate to encode the decision have choice probability indices < 0.5. The
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regression line. Inserts show goodness of fit estimation (Radjz) and the associated p-values for Hq: R adjz=0; m,
slope of the linear fit.

Encoding during the motor phase

To access the encoding properties of PFC, preSMA, and CMAr during the motor phase
(compare Figure 1), we analyzed the selectivity of these areas for the factors decision,
stimulus intensity, rule cue, and the instructed motor action using SLR analysis. The
proportions of neurons selective for these factors are summarized in Table 2. Even
during the motor phase after the motor action was instructed, neurons in all three areas
maintain the representation of the decision. Comparable proportions of neurons
encoding the decision (p > 0.05, Fisher's exact test) and their SLR coefficients (p > 0.05,
Wilcoxon test) were found for all three areas. The representation of the motor action
showed significant differences. The fractions of neurons encoding the motor action
significantly exceeded the fraction of PFC motor coding cells in the preSMA (p < 0.01,
Fisher's exact test, Bonferroni corrected) and the CMAr (p < 0.05, Fisher's exact test,
Bonferroni corrected). Additionally, the SLR coefficients were significantly higher in
preSMA compared to PFC neurons (p < 0.05, Wilcoxon test, Bonferroni corrected).
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Table 2: Proportions of neurons encoding task factors during the motor phase

Decision Intensity Action Rule-cue
PFC 17 % 13 % 16 % 11%
preSMA 15% 16 % 31% 15%
CMAr 13 % 11% 30 % 11%

A sliding SLR analysis illustrates the time course of the encoding of the different factors
(proportions of selective neurons, Figure 9A; SLR coefficients, Figure 9B). Only after a
latency of 100 ms after the rule-cue onset, the neurons started to encode the color of the
rule-cue and most dominantly the motor response. Although comparably high
proportion of neurons represents the intensity of the stimulus during the motor phase
in all three areas (see Table 2), their SLR coefficients are negligibly small (Figure 9B).
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Figure 9. Neuronal responses during the motor phase. (A) Proportions of neurons in each recorded area
significantly selective for the factors decision, stimulus intensity, motor response, and rule cue and (B) encoding
strength of these factors across time during the motor phase. The vertical black line at 3,300 ms depicts the
onset of the rule cue that instructs the action. The grey area highlights the analysis window of the motor phase,
which starts 100 ms after the onset of the rule cue and lasts for 200 ms, which is the average time, after when
monkeys performed an action in instructed release trials. No selectivity for the rule cue or motor action was
present during the previous delay phase (until 100 ms after rule onset).

Differences between the PFC, preSMA, and CMAr

A summary of the differences between the studied brain structures is presented in
Figure 10. A higher proportion of decision encoding neurons was identified during the
early decision phase in the preSMA than in the PFC; the fraction of action encoding cells
during the motor phase is higher in the preSMA and the CMAr compared to the PFC
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(Figure 10A). The encoding strength for the motor action was also significantly larger in
the preSMA than in the PFC (Figure 10B). Both SLR and ROC analyses identified the
preSMA as a more reliable encoder of the abstract decision compared to the PFC
(Figure 10B,C). Additionally, the choice probabilities of the preSMA were also
significantly larger compared to the CMAr (Figure 10C).
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Figure 10. Differences between PFC, preSMA, and CMAr. Comparisons of quantity and quality of decision and
action encoding during the decision and motor phases, respectively, for all three studied brain structures. (A)
Proportions of neurons significantly encoding the decision during the early decision phase compared to the
proportions of neurons encoding the motor report during the motor phase. (B) Comparison of normalized
stepwise linear regression (SLR) coefficients for the factors decision during the decision phase and motor action
during the motor phase. (C) Scaled choice probability indices for decision derived during the decision phase.
Asterisks indicate significant differences (* p < 0.05; ** p < 0.01, Bonferroni corrected).

Discussion

In the present study, we investigated the representation of abstract detection decisions
in the areas preSMA and CMAr and compared it to the encoding of such decisions in the
PFC. Both areas, traditionally associated with the planning of motor activities,
represented the abstract decision about the stimulus presence or absence by a similar
mechanism as the PFC (Merten and Nieder, 2012), even before any motor action
instruction became available. Notably, the overall strength of abstract decision encoding
was even stronger in the preSMA than in the PFC. During the motor phase, after the
instruction of the motor action, preSMA and CMAr still continued to encode the decision
with similar selectivity as the PFC, in spite of the more pronounced representation of the
upcoming motor action.

Functional connectivity of the PFC, preSMA, and CMAr

The PFC has been identified as the most important cortical structure for the
representation of cognitive control and highly abstract processes (Miller, 2000; Miller
and Cohen, 2001; Fuster, 2008). The PFC is thought to interpret the sensory data and
recruit brain areas and circuits which generate motor commands to execute a response
(Heekeren et al., 2008; Shadlen et al., 2008). Both areas, preSMA and CMAr, are
reciprocally interconnected with the PFC (Bates and Goldman-Rakic, 1993; Lu et al,,
1994; Wang et al,, 2005). This extensive cortico-cortical connectivity provides great
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possibilities for communication between cognitive and motor systems. The preSMA and
CMAr have been shown to play important roles in the convergence of sensory
information and linking it to action (Hernandez et al,, 2002; Romo and Salinas, 2003;
Hoshi et al, 2005; Hoshi and Tanji, 2006). However, the capacity of these brain
structures to encode abstract processes, not linked to action, has not been investigated
so far.

In more detail, the CMAr has prominent projections to the primary motor cortex (Bates
and Goldman-Rakic, 1993; He et al, 1995; Dum and Strick, 2002) and to the
corticospinal system (Hutchins et al, 1988; He et al, 1995). Stimulation studies
underpin the involvement of this area in the initiation and execution of arm movements
(Shima et al,, 1991; Procyk et al,, 2000). Further, the activity of the CMAr is influenced
by emotional and motivational states as it receives projections from the limbic system
(Amaral and Price, 1984; Morecraft and Van Hoesen, 1998) and thalamic nuclei (Vogt et
al., 1987; Vogt and Gabriel, 1993). The anterior cingulate cortex is the main target area
of the mesocortical dopamine system (Lewis, 1992; Vogt and Gabriel, 1993), this
implicates CMAr in error detection (Gemba et al,, 1986; Ito et al., 2003) and converting
reward value into action (Shima and Tanji, 1998).

The area preSMA has sparse projections to the corticospinal system (Dum and Strick,
1991; Luppino et al, 1994), no projections to the primary motor cortex, yet it has
extensive connections to the non-primary motor structures, as the CMAr (Luppino et al,,
1993). This connectivity is responsible for more abstract, the so-called high level motor
functions like the sequential organization of multiple movements (Shima and Tanji,
2000; Nakajima et al., 2009), updating of motor plans (Shima et al., 1996), or switching
from automatic to controlled action (Isoda and Hikosaka, 2007).

Our study demonstrates the involvement of both areas also in the processing of abstract
decisions, which could not be formulated as motor intensions. This emphasizes the
strong role of premotor areas in cognitive control; and seems inconsistent with the
proposed function of PFC to process abstract calculations exclusively.

Processing of abstract decisions in the PFC, preSMA, and CMAr

Using a rule-cue to separate the motor action from the processing of sensory
information, we addressed the decision process as an abstract process. Similar to the
previously reported abstract decision processing mechanism in the PFC (Merten and
Nieder, 2012), we found single neurons in the preSMA and CMAr encoding the
perceptual report of the animal, before the motor action was specified. Same classes of
decision neurons were involved: during the stimulus phase, neurons modulated their
firing rates for ‘yes’ decisions only; however, during the late delay phase, additionally,
the abstract category of ‘no’ decisions was represented actively by a group of neurons.

The fraction of the neurons in the preSMA and the strength of encoding of abstract
decisions were even stronger compared to the PFC. A stronger selectivity of this area
has also been proposed for the processing of abstract numerical rules (Vallentin et al.,
2012) compared to the selectivity of PFC neurons. After the presentation of the rule-
cue, preSMA and CMAr continued to encode the decision to the same extent as the PFC.
During the motor phase, proportionally more neurons represented the instructed
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motor-action in the two areas than the PFC. Moreover, the neurons in the preSMA
showed stronger selectivity for motor actions than PCC neurons. Overall, our finding of
abstract perceptual decisions representation in the preSMA and CMAr expands the
previously reported competence of these areas in intentional decisions to more abstract
processes, which must be calculated independent of motor aspects and are only relevant
for motor actions in later task phases.

Detections in the abstract and report dependent frameworks

The involvement of preSMA in detection decisions has been previously studied in the
intentional framework on the single-cell level (de Lafuente and Romo, 2005; 2006). In
this framework, only one decision category, stimulus present, was encoded actively by
'yes' neurons; no active encoding of stimulus absent decisions was found. This finding
demonstrates the flexibility of the preSMA to deploy a particular processing mechanism
for decisions dependent on whether an abstract decision is enforced or whether the
decision can be expressed in terms of motor preparation.

Information processing in the brain

We did not find differences in the latencies of decision encoding for PFC, preSMA, and
CMAr. One might argue that the abstract decision could also be computed in parallel in
different brain areas, similar to decisions studied in action-based framework (Cisek and
Kalaska, 2010). Alternatively, the failure to identify differences in the latencies of the
responses might constitute a resolution problem, given a limited number of neurons and
notoriously difficult latency estimates in association cortices, because the projections
between PFC and preSMA are direct involving only one synapse (Wang et al., 2005). A
serial processing mechanism of information would be required for the accomplishment
of complex operations. First, the brain would construct an internal representation of the
stimuli, then use this information for cognitive, context-dependent computations in a
nonmovement-related framework; and finally construct and execute an action plan.
Serial processing is prerequisite for solving of situations, which require several steps of
cognitive computation before any motor action can be carried out.
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Detections of sensory stimuli belong to the most elemental perceptual experiences.
Recently, we explored the representation of abstract visual detections, which are
independent of the motor report about the decision, in electrophysiological experiments
in rhesus monkeys. We found that single frontal cortex neurons encoded the subjective
judgment of the monkeys about the stimulus. In addition to neurons found previously in a
motor-based framework, which actively encoded the 'yes-stimulus present' decision, we
identified a second type of neurons that actively encoded the 'no-stimulus absent'
decision. Here, we propose a computational neuronal network model for the processing
of abstract detection decisions that specifically seeks to explain the emergence and
function of active 'no' neurons. Our model output corresponds well with the behavioral
and the neuronal single-cell data of real experiments; it generates all experimentally
observed classes of decision neurons and captures the characteristics of their responses.
Moreover, we address the question of the origin of threshold values that are typically used
to evaluate neuronal responses to produce a decision. We suggest that the activity of real
neurons encoding stimulus intensity might be well suited to provide such threshold values.
Our computational results provide new insights into the mechanism of decision-making
supporting the idea that abstract perceptual 'yes'/'no' decisions are translated into
categorical judgments and extend our physiological findings.

Introduction

Detections of sensory stimuli belong to the simplest perceptual experiences and are
prerequisite for further cognitive processing; yet they present great challenges to
scientists studying the underlying decision process. Signal Detection Theory (SDT)
provides a successful formalism to address the detection mechanisms in the presence of
uncertainty. It determines how a single observation of noisy evidence can be converted
into a choice (Green and Swets, 1966). When the sensory evidence includes a signal, the
magnitude of the evidence is different from a state in which the stimulus was absent.
SDT helps to decide which of the states (stimulus present or stimulus absent) gave rise
to the observation of this evidence. Similarly, in the framework of a diffusion model
(Gold and Shadlen, 2002), sensory evidence is accumulated over time and if a signal
were present, the decision variable, which is based on sensory evidence, would be
biased in favor of the 'stimulus present’ and against the 'stimulus absent' state. If the
decision variable exceeds a criterion, the decision outcome is 'yes', otherwise 'no’ (Gold
and Shadlen, 2007). These models describe accurately the phenomenon, but it is
difficult to assign biophysical and physiological meaning to the model parameters (Deco
and Romo, 2008).



A biologically plausible model was suggested by Deco and colleagues (Deco et al., 2007)
who simulated the detection decision as a dynamical bistability phenomenon. This
model was based on the neurophysiological findings of de Lafuente and Romo (2005),
who found neurons in the monkey medial premotor cortex that reflected the subjective
experience of the stimulus presence during a mechanical vibration detection
experiment. The neurons actively encoded the 'yes' decision; the 'no' decision was
represented as a default decision in a report-dependent protocol. The proposed model
is based on an excitatory population, which is selective to the stimulus and yields a 'yes'
decision in a high activation state; additionally a second population encodes the default
'no’ response as a constant bias. Both populations inhibit each other recurrently. The
fluctuation-driven computation causes a probabilistic transition between the two
bistable states, corresponding to the 'yes' or 'no' decision.

However, this processing mechanism appears to be best suited when the decision is
made in a movement-related framework. In a recent study, we have excluded motor
preparatory activity from the processing of detection decisions. We found that the
representation of such abstract decisions, involves active 'mo' neurons in in the
prefrontal cortex (PFC), the pre-supplementary motor areas (preSMA), and the rostral
part of the cingulate motor area (CMAr) of rhesus monkeys (Merten and Nieder, 2012;
submitted).

The emergence of active 'no' neurons is of particular interest because the sensory
evidence leading to the 'stimulus absent' decision involves only noise and lacks any
presence of a signal. In this work, we propose a computational network model that
describes possible connectivity and information flow during abstract decision-making
that leads to active 'no' neurons.

Methods

Analysis of the neuronal responses and normalization

Firing rate-intensity functions were calculated for decision neurons classified according
to their response type (see Merten and Nieder, 2012). Firig rates were averaged during
the stimulus phase, a 300 ms interval after stimulus onset shifted by the individual
response latency of the cell, and the delay phase, a 1000 ms window starting 1900 ms
after stimulus onset. For the population analysis decision neurons recorded in PFC,
preSMA, and CMAr were pooled. Activity of each cell was normalized by subtracting the
cell's mean activity and dividing by the standard deviation of the baseline activity
(300 ms prior to the stimulus onset).

Network model architecture
We developed a feedforward network model with two processing layers (stimulus phase
and delay phase) that uses firing rates as in- and output values (Figure 2). The firing
rate of the sensory evidence, the input to the network r, is linearly dependent on the
stimulus intensity ¢ and additional noise ro € N (0,0):

rs=Cc+ry.
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All computational units of the two processing layers (N1-N6) have the same
characteristics. They sum up their input and generate an output by a linear transition
function. The input to the computational units is dependent on the firing rate of the
driving unit in the previous layer ri,. For the stimulus phase computational units (N1,
N2) input comes from the sensory evidence (rs); the delay phase computational units
(N3-N6) use the output of the stimulus phase as input firing rates: routex OT TFoutinh
respectively. Every computational unit is modulated in two ways. First, to model the
decision, the input firing rate is processed via a threshold neuron (T1-T3) that uses a
step function as a transition function to provide an output ru,_ou only if the input firing
rate reaches a threshold criterion re-

_ _ rth ’ r;'np > rcr
r;h_out - f(r;'np) - .
0 , otherwise

Second, to model the influence of stimulus intensity, the firing rate of every
computational unit is modulated proportionally to the input firing rate independently of
the threshold. It is necessary to use both modulation paths because the responses of the
real data neurons to the decisions, which are not actively encoded by these neurons ('no’
response of a 'yes' coding neuron or the 'yes' response of the 'no' neuron) are still
modulated by stimulus intensity. Dependent on whether the connections of the
modulation between units are excitatory or inhibitory, units either increase roucexc (rnz,
rnz, I'ns) or decrease rousinh (nz s, Fns) their activity. The input firing rates are added to a
baseline noise of the unit ry and weighted according to the type of the connection by:
Wex for excitatory or wis, for inhibitory connections:
Foutexc = (Fo+ I'th_out + Tinp) * Wexe,

Tout inh = (ro +Fth_out + rinp) * Winh.

Modeling of the threshold criterion (r.,) and the psychometric function

The value of the threshold criterion r. is drawn from a distribution, which covers the
range of the input firing rates (rs or rnz, rnz) evaluated by this criterion. On each trial, the
input firing rate is compared to the randomly selected criterion (Figure 3A). This
comparison determines the decision outcome and thus whether the threshold neuron
will increase its firing rate on that particular trial or not. The decision rule is to choose
'yves' if the input firing rate exceeds the criterion, otherwise the 'no' decision applies.
Dependent on the stimulus condition (¢ = 0, stimulus absent; or ¢ > 0, stimulus present)
'yes' decisions were classified in false alarms or hits; 'no' decisions in correct rejections
or misses. The probability density function of the criterion firing rates determines the
shape of the resulting psychometric curve (proportion of 'yes' responses for different
stimulus intensities).

To model the exact psychometric curve acquired in the real experiments (Merten and
Nieder, 2012; submitted), the real psychometric function can serve as the cumulative
distribution function that determines the probability density function of the criterion
values. The real performance data were fitted by a sigmoidal function and revealed the
small bias the animals developed towards 'yes' responses whenever the stimulus was
not visible. To illustrate the shape of the resulting threshold distribution, we fitted two
sigmoidal functions to the real data y(c): the ideal sigmoid performance curve and the
curve accounting for the 'yes' decisions in trials when the stimulus was not visible to the
monkeys (Figure 3B):
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whereas the values m = 1.8 and s = 0.3 were estimated. The resulting probability density
functions of the criterion are depicted in Figure 3C. The area under the bias-curve
represents the probability of the criterion being zero. The criterion r. is randomly
selected for T1, T2, and T3 from the resulting distribution (black curve) and is weighted
by ti, tz, or t3 to adapt to the range of the firing rates generated by the model (rs or ryz,

T'Nz).

The performance of the model is shown in Figure 3D. The psychometric function is
based on the averaged proportion of the network's 'yes' decisions of the delay phase
processing layer (N3-6). That is the proportion of trials in which the firing rate of the
stimulus layer units N1 exceeded the criterion T2; and proportion of trials in which N2
remained below T3.

Modeling parameter

To generate the model data, we ran the simulation 3.000 times, for all stimulus intensity
values. Following equations were applied to calculate the responses of the model
neurons:

er=( th out+rs) wexc ’
_( t]’l _ rth’ r:v>(rcr't1)
rN2 - th out + rs) W wi ’;‘h_out - .
0, otherwise
rN3=( rh 0ul+rN1) Wexc ’
3 h e rN1>(rcr't2)
Ty = (r Fn_ou +er) Winh wi Fon_ow = ) .
0, otherwise
rN5=(r th 0ur+rN2) wexc >
_( i e rN2>(rcr.t3)
Tve = Fn_out +rN2) Winn wi Fh_owr =

0, otherwise

We estimated this model with the following parameters:

o=0.2 t;= 4.0 Wexc = 0.15
rem=2.4 t= 1.2 Winh = -0.05
t3=-0.3

Testing the model with recorded neuronal data

The stimulus phase was used as input layer, in which real recorded neurons encoding
the decision during the stimulus phase (Figure 1E) were applied to the model (N1:
normalized firing rates of decision neurons increasing their firing rates for 'yes'
decisions in randomly selected trials; N2: discharge rates of neurons decreasing their
activity for 'yes' decisions). The threshold criterion values (T2, T3) used to evaluate the
stimulus phase responses were derived from neurons that were significantly modulated
by stimulus intensity, but not by decision outcome during the stimulus phase. Firing
rates of cells increasing their responses with stimulus intensity were used as criterion
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values in T2 (Figure 5A) and discharge rates of neurons decreasing their responses with
increasing stimulus intensity in T3 (Figure 5B). Dependent on the stimulus intensity of
a particular trial, a threshold criterion r, was chosen from normalized firing rates
during the stimulus phase of randomly selected trials of the corresponding neurons.
Furthermore, to exclude extreme neuronal responses, we only used discharges within
+ four standard errors of the mean of the respective stimulus intensities.

To estimate the suitability of the intensity modulated cells for providing threshold
values, we calculated the proportion of correct classifications of stimulus phase decision
cells' responses into 'yes' or 'no’' responses by the criterion. We considered a trial as a
correct classification if the randomly selected criterion T2 was below the N1 firing rate
of a randomly selected hit/false alarm trial, or above a correct rejection/miss trial.
Similarly, the criterion selected for T3 had to be below the N2 firing rate of correct
rejections/miss trials and had to exceed the discharges of hits/ false alarms to count as a
correct classification. We found that 76 % of the criteria values derived from stimulus
intensity modulated cells led to correct classifications of stimulus phase firing rates as
'yes' or 'no".

Results

Physiological findings

In a rule-based detection task, the animals decided about the presence or the absence of
a visual stimulus (Figure 1A). To introduce uncertainty, the stimuli were presented at
nine grey levels close to the perceptual threshold of the animals. A rule-cue determined
the appropriate motor response for the particular decision and assured that no motor
action could be prepared during the decision period. Decision outcomes were classified
into hits or false alarms, for 'yes' decisions when the stimulus was present or absent,
respectively; and as misses or correct rejections for erroneous or correct 'no' decisions
(Figure 1B).

We found single neurons in the PFC, preSMA, and CMAr whose spiking activity co-varied
with the monkeys' subjective judgment about the stimulus presence or absence (Merten
and Nieder, 2012; submitted). Here, we plot the firing rates of the different classes of
decision neurons as functions of stimulus intensity. During the early decision phase
(stimulus phase, immediately after stimulus presentation, Figure 1A), we found two
classes of decision neurons (Figure 1C, example neurons; Figure 1E, averaged
responses). One class of neurons actively increased the firing rates for 'yes' decisions
(hits and false alarms, N1). The other class decreased the discharge rates for 'yes'
decisions (N2). During the late decision phase (delay phase, before the rule-cue is
presented, Figure 1A) both the 'yes' decision as well as the 'no' decision were encoded
actively (Figure 1D, example neurons; Figure 1F averaged responses). Four classes of
neurons were identified: 'yes' neurons increasing (N3) or decreasing (N4) their
discharges during 'yes' decisions; and 'no' neurons increasing (N5) or decreasing (N6)
their discharges actively during 'nmo' decisions (correct rejections and misses).
Moreover, the firing rate-intensity functions revealed a weak additional modulation of
all decision neurons by the intensity of the stimulus.
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The emergence of 'no' neurons indicates that activity during the delay phase is not a
pure reflection of memory of the decision made during the stimulus phase. This activity
might rather result from a transformation and further processing of stimulus phase
information. The unexpected finding that 'no' decision neurons were also modulated by
stimulus intensity further supports this assumption.
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Figure 1. Visual detection protocol and response classes of decision neurons. (A) Trials began when the
monkeys grasped a lever and fixated on the central fixation target for 500 ms. In 50 % of the trials a stimulus was
presented for 100 ms (intensity varied in nine levels, centered around the perceptual threshold). In the other
50% of the trials, no stimulus was shown. Decision about the presence or absence of the stimulus was made
during a 2700 ms decision time; gray shades highlight the two analysis periods for the decision neurons: the
stimulus and the delay phase. After the decision phase, a rule cue informed the monkeys about the appropriate
motor response to report the decision and, thus, separated the processing of the abstract decision from motor
preparation. (B) Decision outcomes according to signal detection theory. Two stimulus conditions (stimulus
present or absent) and two possible decisions ('yes, stimulus present' and 'no, stimulus absent') classify the
behavioral outcomes. (C,D) Firing rate-intensity functions of example decision neurons. Two classes of decision
neurons encode the 'yes' decision during the stimulus phase (C); two classes of 'yes' and two classes of 'no'
neurons represent the decision during the delay phase (D). Stimulus intensity is presented as % visual contrast.
For the stimulus intensity 0, no stimulus was presented; this condition contains about 50 % of the all trials. (E,F)
Mean normalized population responses of each class of decision cells during stimulus (E) and delay (F) phases. n,
number of neurons. Bars represent s.e.m.

Network model

To test the hypothesis that the coding mechanism of abstract detection decisions implies
two processing steps, which give rise to active 'no' neurons during the delay phase, we
constructed a feedforward network model consisting of two processing layers
(Figure 2). As network input layer we used sensory evidence modeled by firing rates
linearly increasing with stimulus intensity. The decision outcome for units in the
stimulus phase (N1, N2) was calculated based on the comparison of the input firing rate
rs and a criterion r¢ (Figure 3A) (Kim and Shadlen, 1999; Kepecs et al, 2008).
Additionally, the response of these units was linearly influenced by the input (to account
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for the weak modulation of decision neurons by stimulus intensity). The connections
between the computational units were either excitatory or inhibitory. The output of the
stimulus phase units was subsequently used both linearly and nonlinearly (via a
threshold neuron) as input for the delay phase computations (N3-N6). The proportion
of the network's 'yes' decisions in the delay phase was used to generate the
psychometric function (see Methods). The resulting performance of the model
(Figure 3D) closely resembled the behavioral function of the monkeys (Figure 3B).

Figure 2. Schematic network model architecture. The sensory

sensory —> excitatory . . . .
ewdence o inhibitory evidence constitutes the input to the network and is processed
in two layers: stimulus phase and delay phase. The connections
between computational units (N1-N6) are either excitatory or
@ inhibitory. The projections are realized either directly,

ol influencing the following layer linearly, or via a threshold neuron
stimulus
phase @ (T1-T3) providing a constant output only if a threshold criterion

N1 <:}:>N2
is reached. The computational units in each layer sum up the
input and provide linear output.
Tz\ TB\

N3 N4 N5 N6

delay
phase

The architecture of the model implies two possible classes of decision coding responses
during the stimulus phase (Figure 4A): units increasing (N1) or decreasing (N2) their
activity relative to the baseline for 'yes' decisions. During the delay phase, four types of
possible response profiles arise (Figure 4B): units coding the 'yes' decision by elevating
(N3) or decreasing their responses (N4) and units coding the 'no' decision by increasing
(N5) or reducing their firing for the 'no' decision (N6). The characteristics of the
modeling results for the rate-intensity functions closely resembled the experimental
data in terms of decision representation and the corresponding modulation by stimulus
intensity.

Verification of the model with recorded data

Our model critically depends on appropriate threshold criterion values that classify the
input, leading to 'yes' and 'no' decisions. During the stimulus phase, we found neurons
varying their responses linearly dependent on the intensity of the stimulus, but not
encoding the decision: one population increasing (Figure 5A), another decreasing
(Figure 5B) their discharges. These neurons could possibly provide the important
function of generation of criterion values. We tested this idea by feeding experimental
data into our neuronal network. The computational units N1 and N2 in the model
architecture were replaced by firing rates of decision neurons recorded during the
stimulus phase (Figure 1E). The threshold values T2 and T3 were obtained from the
responses of neurons coding the stimulus intensity during the stimulus phase (Figure 5).
The evaluation of the experimental responses of decision neurons by stimulus intensity
coding neurons resulted in responses profiles of the output layer (N3-N6, Figure 4C).
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model. (A) In each trial, the strength of
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ponent is the ideal sigmoidal perfor-
mance curve of an unbiased perfor-
mance (green line). The orange func-
tion represents the proportion of addi-

tionnal 'yes' responses the monkeys give in trials when the stimulus was not visible. (C) The green line depicts
the shape of the probability density function, which would result from the ideal psychometric curve. The orange
distribution is the probability of 'yes' responses given when the stimulus was not visible. The black distribution is

the criterion probability density function resulting from the sum of the green and the orange functions that is
used to model the threshold criterion r.,. The probability of the criterion being zero corresponds to the area

enclosed by the orange curve. (D) Psychometric function of model computations.

These firing rate-intensity response profiles mirrored the recorded rate-intensity
functions of real decision neurons in the delay phase (Figure 1D,F). In fact, 76 % of the
generated responses were correctly classified by the threshold criterion as 'yes' or 'no'
responses, in agreement with the monkeys' decisions given in stimulus phase trials (see

Methods for details).
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Figure 4. Stimulus intensity modulated neurons used as criterion values. Discharge rates of neurons varying
with stimulus intensity normalized and pooled for PFC, preSMA, and CMAr. (A) Neurons increasing firing rates;
(B) decreasing firing rates during the stimulus phase. Bars represent s.e.m. Dotted like represents the baseline.
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Figure 5. Abstract decision coding in a network
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Discussion

We implemented a computational network that generates the experimentally observed
classes of decision neurons and captures the characteristics of decision and stimulus
intensity coding by frontal cortex neurons. The proposed network implies a two-stage
processing mechanism of abstract detection decisions. Activity of an early decision
stage, the stimulus phase, is further processed in a second active processing step, the
late delay phase. In our network, neurons coding the 'yes' decision during the delay
phase result from activity of neurons encoding the 'yes' decision by increasing their
firing rates during the stimulus phase; active delay phase 'no' neurons are driven by
neurons decreasing their activity for 'yes' decisions during the stimulus phase. To
model the decision, neuronal responses of the stimulus phase were evaluated by a
criterion. If the criterion was reached, a subsequent delay phase computational unit
increased its firing rate. We implemented the responses of real recorded stimulus phase
decision neurons as responses of the stimulus phase model layer and evaluated these
responses by criterion values obtained from real recorded neurons, which encoded the
intensity of the stimulus only. These calculations suggest that the activity of intensity
coding neurons is well suited to provide criterion values to deduce decisions.

Models of perceptual decisions

A remarkably successful modeling of the decision-making process is achieved in a
sequential analysis framework, which relies on the accumulation of sensory evidence.
Here, the decision is based on a sequence of observations, which are converted into a
decision variable until a predefined decision boundary is reached. Two important
representatives are the diffusion model (Gold and Shadlen, 2002), according to which
evidence is accumulated to support either the one alternative or another; and the race
model (Logan and Cowan, 1984; Reddi et al.,, 2003), in which the evidence supporting
the various alternatives is accumulated for each alternative independently to fixed
boundaries. The advantage of the sequential analysis approach is that it assumes that
the decision has two parts: the actual decision about the alternatives and another about
when to stop the decision process (Gold and Shadlen, 2007; Deco and Romo, 2008).
Therefore, these models explain very well the behavioral data: the generation of correct
and error responses, the reaction times and the trade-off between speed and accuracy of
a response (Smith and Ratcliff, 2004). Neurons in the monkey parietal areas have been
shown to accumulate sensory evidence during perceptual decisions with a positive
relationship between activation strength and the amount of accumulated evidence (Platt
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and Glimcher, 1999; Shadlen and Newsome, 2001; Yang and Shadlen, 2007). On the
other hand, a magnetoencephalography study of sequential decision making of humans
revealed an inverse relationship of the amount of activity in the parietal areas to the
amount of the previously accumulated evidence, meaning that when a large amount of
evidence was accumulated, new sensory evidence had a lower impact on brain activity
(de Lange et al., 2010).

Our simple network model did not involve accumulation of evidence and treated the
detection decision analogous to a categorization problem. The main concern of our task
design was to separate the decision from its motor report. Therefore, we cannot access
the reaction times corresponding to the decisions for different stimulus intensities. The
neuronal responses during the stimulus phase appear to be categorically dependent on
the decision and stereotype for all stimulus intensities (Merten and Nieder, 2012). We
also did not find differences between latencies of neuronal response onset after salient
stimulus presentations and stimuli with lower intensity presented close to the
perceptual threshold. One possible explanation might be the nature of the stimulus in
our experiment. A flash of an object is a momentary, single event, which does not
provide a plausible foundation for the accumulation of sensory evidence. Another
explanation might be that the recorded frontal cortex neurons represent the decision
outcome of an abstract decision and not the decision variable developing in time.

Another class of computational models, the biophysical microscopic models, which seek
to satisfy biological plausibility of the modeling parameters, has also been developed to
model decision processes (Wang, 2002; Machens et al.,, 2005; Wong and Wang, 2006).
Such models construct and simulate neuronal computations relying on large numbers of
neurons and synapses carefully connected to a neuronal network attempting to find the
connectivity structure from which the measured neuronal correlates emerged.
Nevertheless, the dynamics can be reduced to a one-dimensional diffusion model (Roxin
and Ledberg, 2008) and, thus, establish a solid foundation for diffusion models.
Biophysical microscopic models typically involve two coupled groups of neurons. Each
group is driven by an input proportional to the sensory evidence for the respective
decision alternative. The mutually inhibiting connections lead to a competition between
the groups, with one group winning this competition at the expense of the other.
Because of the lack of the signal in the stimulus absent condition, the 'no' neurons
population encodes the default 'no' response as a constant bias in biologically related
detection models (Deco et al., 2007).

In our abstract detection decision protocol (Merten and Nieder, 2012), we found this
way of decision representation during the early decision phase, the stimulus phase.
However, during the late delay phase, decision was represented by active 'yes' and
active 'no' decision neurons, very similar to discrimination decisions. Our network
model is the first attempt to explain the origin of the 'no' neurons. Of course, it would be
of great interest to expand our simple network to populations of neurons and construct
a biophysical microscopic model to investigate the biological plausibility of our
suggested connections and interactions between neurons.

In this work, we explored the possibility of generation of active 'no' responses in the

local circuits of the frontal cortex. Alternatively, it is possible that much more distant
brain areas are involved in this process. A recent study reports high activity of midbrain
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dopamine (DA) neurons in high uncertainty conditions (de Lafuente and Romo, 2011).
This uncertainty arises internally during the evaluation of sensory stimuli presented
close to the perceptual threshold, because these stimuli remain often undetected. For
the subject performing the task, there is no chance to distinguish between true absence
of a stimulus from a presence of an undetected stimulus. Thus, stimulus-absent events
carry high levels of uncertainty. The high levels of DA activity during these stimulus-
absent events might possibly serve as a trigger for the active 'no’ decision responses we
measured in the frontal cortex.

Threshold used in decision models

Little is known about the threshold mechanism used in decision models applied to
classify the neuronal choices. There is even no consensus about the origin of the
nonlinearity: in the standard view this computation is done by a neuron receiving linear
weighted inputs from other neurons, and the sum is then passed through a static
nonlinearity; alternatively, it has been proposed that synaptic computations might
provide this nonlinearity (Zador, 2000). The neurons we recorded in frontal cortex that
were only modulated by stimulus intensity provided a good estimate of the threshold
values. This finding is in agreement with the idea that the threshold is an intrinsic
property of a single neuronal circuit converting the decision variable into a final choice
(Wang, 2002; Machens et al., 2005; Wong and Wang, 2006). It remains to be determined
whether this processing of abstract decisions is generated locally in the subnetworks of
a particular brain area, or through a reciprocal loop between different connected areas.
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