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editors), College Publications, London 2012 (forthcoming).

I would like to thank Peter Schroeder-Heister. The ideas on which this
doctoral dissertation is based have been developed in collaboration with
him.

Thomas Piecha
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Chapter 1

INTRODUCTION

Dialogues have first been proposed by Lorenzen [1960], [1961]1 as an
alternative foundation for constructive or intuitionistic logic.2 The general
idea is that the logical constants are given an interpretation in certain game-
theoretical terms. Dialogues are two-player games between a proponent and
an opponent, where each of the two players can either attack claims made
by the other player or defend their own claims. For example, an implication
A→ B is attacked by claiming A and defended by claiming B . This means
that in order to have a winning strategy for A→ B , the proponent must
be able to generate an argument for B depending on what the opponent
can put forward in defense of A. The logical constant of implication has
thus been given a certain game-theoretical or argumentative interpretation,
and corresponding argumentative interpretations can be given for the other
logical constants.3 Different from standard constructive interpretations
of the logical constants like the Brouwer–Heyting–Kolmogorov (BHK)
interpretation4, the attacker need not necessarily produce a full proof of A
in the case of implications A→ B . Instead, the proponent may force the
opponent to produce certain fragments of a proof of A which are sufficient
to successfully defend B .5 Starting from argumentative interpretations,
formal dialogue semantics can be developed.

The two main goals of this dissertation are to provide dialogical foundations
in the sense of formal dialogue semantics for definitional reasoning and for
implications as rules.
In order to achieve the first main goal, we will first (in Chapter 2)

introduce a new kind of dialogues for intuitionistic logic as a variant

1See also Lorenzen and Schwemmer [1973], Lorenzen and Lorenz [1978] and Lorenzen
[1980], [1982], [1987].
2For a critical discussion of this approach see Hodges [2001] (cf. also Hodges [2009]) and

the reply by Krabbe [2001]; see also Marion [2009].
3Cf. Felscher [2002]. See also Remark 2.1.3 below.
4See Heyting [1971].
5See also Piecha and Schroeder-Heister [2012].
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2 1. Introduction

of (standard) Lorenzen dialogues (respectively as a variant of Lorenzen
dialogues as they have been presented by Felscher [1985], [2002]). The
distinguishing feature of these new dialogues is that dialogues won by the
proponent need not end with the assertion of an atomic formula (as it is
the case in the standard dialogues) but may end with the assertion of a
complex formula.6 We will show (in Chapter 3) that the formulas justifiable
or provable on the basis of these dialogues are exactly the formulas provable
in sequent calculus for intuitionistic logic. Based on this result, we will
then (in Chapter 4) extend these dialogues to definitional dialogues. They
provide a means for definitional reasoning, that is, for reasoning about given
definitions of atomic formulas whose defining conditions may be complex
formulas. Such definitions have the form of (generalized) logic programs,
anddefinitional reasoning is an extension of logic programming. Definitional
dialogues are a formal semantics for this extension. A paradoxical definition
is used as a test case for definitional reasoning, and the effects of the
structural operation of contraction are considered.
The second main goal—that is, to provide a dialogical foundation for

implications as rules—will be approached in Chapter 5. Different to BHK-
like interpretations or to the dialogues considered so far, implications will
be understood as being rules. Thus an implication A→ B is understood as
a rule which allows us to pass from A over to B . Such an understanding of
implications as rules can be motivated from logic programming or natural
deduction. In the latter, modus ponens

A A→ B
B

can be read as the application of A→ B as a rule, which is used to pass
from A to B , and where the introduction

[A]

..
.

B
A→ B

(where assumptions A can be discharged) of an implication A→ B can be
read as establishing a rule, namely by deriving its conclusion B from its
premiss A. For sequent calculus, Schroeder-Heister [2011a], [2011b] has
proposed an alternative left implication introduction rule

Γ`A
Γ, A→ B `B

6To prevent any misunderstandings, we point out that atomic formulas do not contain
any logical constant, whereas complex formulas contain at least one logical constant. That
is, complex formulas are non-atomic formulas and do not comprise atomic formulas as a
limit case.
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which is motivated by a reading of implications as rules, and which replaces
the standard left implication introduction rule

Γ`A ∆, B `C
Γ,∆, A→ B `C

We will carry the implications-as-rules approach over to dialogues. The
general idea will be that any implication A→ B claimed by the opponent
is considered to be a rule in a sort of ‘database’; this rule can later be
used by the proponent to reduce the justification of its conclusion B to
the justification of its premiss A. This is made possible by allowing the
proponent to defend an attack on B by asserting A whenever A→ B has
been claimed by the opponent before. If no such claim has been made
before, then the argument for B continues with an opponent attack on B ,
just as in the standard dialogues.7 Special consideration will be given to
the structural operation of cut in these new implications-as-rules dialogues,
and an equivalence result will be shown for the corresponding sequent
calculus. Finally, we will consider a combination of definitional dialogues
with implications-as-rules dialogues.

Dialogues do also feature certain similarities with tableaux. We will point
out these similarities—as well as the differences—at the end of Chapter 2 in
Section 2.9.

All definitions of dialogues and sequent calculi that we will make use of can
be looked up in Appendix A.

7See also Piecha and Schroeder-Heister [2012].





Chapter 2

DIALOGUES AND STRATEGIES FOR
PROPOSITIONAL LOGIC

We define the concepts of argumentation form, dialogue and strategy,
following the presentation of Felscher [1985], [2002] with slight deviations.
After that, certain variants of dialogues are introduced. Of these, the
newly introduced DI pc - and EI

p
c -dialogues will be of special importance: An

equivalence result will be proved for EI pc -dialogues and a sequent calculus
with complex initial sequents (see Chapter 3), and this result will be the basis
of certain extensions to what we call ‘definitional dialogues’, introduced and
analyzed in Chapter 4. We focus on dialogues for intuitionistic propositional
logic.8 Nonetheless, in order to highlight how dialogues for intuitionistic
propositional logic differ from dialogues for classical propositional logic we
will also consider the latter briefly. Finally, we will point out certain problems
that arise when hypotheses (or assumptions) are allowed in dialogues.

2.1. Dialogues

We define our language, argumentation forms for logical constants and
dialogues.

Definition 2.1.1. The language consists of propositional formulas
A,B,C, . . . that are constructed from atomic formulas (atoms) a, b, c, . . .
with the logical constants ¬ (negation), ∧ (conjunction), ∨ (disjunction) and
→ (implication). Furthermore, ∨, ∧1 and ∧2 are used as special symbols.
In addition, the letters P (‘proponent’) and O (‘opponent’) are used. An
expression e is either a formula or a special symbol. For each expression e
there is a P-signed expression P e and an O-signed expression O e. A signed
expression is called assertion if the expression is a formula; it is called
symbolic attack if the expression is a special symbol. X and Y , where
X 6= Y , are used as variables for P and O.

8Dialogues for intuitionistic first-order logic will be examined in Chapter 3.
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6 2. Dialogues and strategies for propositional logic

Definition 2.1.2. For each logical constant an argumentation form
determines how a complex formula (having the respective constant in
outermost position) that is asserted by X can be attacked by Y and how
this attack can be defended (if possible) by X . The argumentation forms
are as follows:

negation ¬: assertion: X ¬A
attack: Y A
defense: no defense

conjunction ∧: assertion: X A1 ∧ A2
attack: Y ∧i (Y chooses i = 1 or i = 2)
defense: X Ai

disjunction ∨: assertion: X A1 ∨ A2
attack: Y ∨
defense: X Ai (X chooses i = 1 or i = 2)

implication→: assertion: X A→ B
attack: Y A
defense: X B

Remark 2.1.3. By these argumentation forms the logical constants are
given an argumentative interpretation (as Felscher [2002, p. 127] calls it) in
the following sense:

(i) An argument on a conjunctive assertion made by X consists in Y
choosing one conjunct of the assertion, and X continuing the argu-
ment with that chosen conjunct. In other words, the argumentative
interpretation of conjunction is given by the reduction of the argument
on a conjunctive assertion made by X to the argument on one of the
conjuncts chosen by Y in the attack.

(ii) In an argument on a disjunctive assertion made by X , Y demands
the continuation of the argument with any of the disjuncts. In other
words, the argumentative interpretation of disjunction is given by the
reduction of the argument on a disjunctive assertion made by X to the
argument on one of the disjuncts chosen by X in the defense.

(iii) An argument on an implicative assertion made by X consists in Y
stating the antecedent of the implication (whereby the antecedent
functions as an assumption), and X continuing the argument with
the succedent. Alternatively, X could continue with an attack on the
assumed antecedent. In other words, the argumentative interpretation
of implication is given by the reduction of the argument on an implica-
tive assertion made by X to the argument on the succedent under the
assumption of the antecedent.
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(iv) An argument on a negative assertion ¬A made by X consists in Y
stating the assertion A, withoutX being able to continue the argument.
This argumentative interpretation of negation can be made clear

by introducing the falsum ⊥ as a constant which signifies absurdity
(which is taken as a primitive notion). We can then define negation
by implication and falsum: ¬A := A→⊥. An argument on ¬A is
thus an argument on A→⊥. However, X asserting ⊥ would mean
that Y could continue the argument with any assertion—assuming the
principle of ex falso quodlibet to be applicable here. To avoid this, ⊥
must not be asserted. Hence, an argument on ¬A (i.e. on A→⊥) can
only continue with an argument on the assumption A, and cannot be
reduced to an argument on ⊥.9

Definition 2.1.4. Let ä(n), for n ≥ 0, be a signed expression and ç(n)
a pair [m,Z], for 0 ≤ m < n, where Z is either A (for ‘attack’) or D (for
‘defense’), and where ç(0) is empty. Pairs 〈ä(n), ç(n)〉 are called moves.
A move 〈ä(n), ç(n) = [m,A]〉 is called attack move, and a move 〈ä(n),

ç(n) = [m,D]〉 is called defense move.

Remark 2.1.5. ä(n) is a function mapping natural numbers n ≥ 0 to
signed expressions X e, and ç(n) is a function mapping natural numbers
n ≥ 0 to pairs [m,Z]. The numbers in the domain of ä(n) (resp. in the
domain of ç(n)) are called positions.
When talking about a move 〈ä(n), ç(n)〉, we write 〈ä(n) = X e, ç(n) =

[m,Z]〉 to express that ä(n) has the value X e for position n, and that ç(n)
has the value [m,Z] for position n.10

For example, 〈ä(n) = P A, ç(n) = [m,D]〉 denotes a defense move
which is made by the proponent P at position n by asserting the formula A;
this defense move refers to a move made at position m. A concrete move
like 〈ä(4) = P ∧1, ç(4) = [3, A]〉 will also be written as

4. P ∧1 [3, A]

This is an attack move with symbolic attack P ∧1; it is made at position 4
and refers to a move made at position 3.

9This is similar to the treatment of negation in constructive semantics, respectively in the
Brouwer–Heyting–Kolmogorov (BHK) interpretation of logical constants, as for example
stated by Heyting [1971, p. 102]: “[. . .] ¬p can be asserted if and only if we possess a
construction which from the supposition that a construction p were carried out, leads to a
contradiction.” Where contradiction—or equivalently absurdity (here signified by ⊥)—is
usually considered to be a primitive notion.
10This deviates from the terminology in Felscher [1985], where the numbers n in the

domain of ä(n) are called moves, places or positions; we call the numbers n positions as
well, but what we call moves are not positions.
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The notation 〈ä(n) = X e, ç(n) = [m,Z]〉 has the advantage that we
can speak about a move 〈X e, [m,Z]〉 by including information about the
position n at which this move is made.
Althoughmoves are always pairs 〈ä(n), ç(n)〉, we will also refer to moves

by giving only their ä(n)-component, as long as it is clear from the context
which move is meant, or if it is irrelevant whether the move is an attack or
a defense, or if it is irrelevant to which position the move refers to. And
instead of 〈ä(n) = X e, ç(n)〉 we will also speak of the move X e made at
position n. We will also speak simply about attacks and defenses in order
to refer to attack moves and defense moves, respectively.

Definition 2.1.6. A dialogue is a finite or infinite sequence of moves
〈ä(n), ç(n)〉 (for n = 0, 1, 2, . . . ) satisfying the following conditions:
(D00) ä(n) is a P-signed expression if n is even and anO-signed expression

if n is odd. The expression in ä(0) is a complex formula.

(D01) If ç(n) = [m,A], then the expression in ä(m) is a complex formula
and ä(n) is an attack on this formula as determined by the relevant
argumentation form.

(D02) If ç(p) = [n,D], then ç(n) = [m,A] for m < n < p and ä(p)
is the defense of the attack ä(n) as determined by the relevant
argumentation form.

Definition 2.1.7. An attack 〈ä(n), ç(n) = [m,A]〉 at position n on an
assertion at position m is called open at position k for n < k if there is no
position n′ such that n < n′ ≤ k and 〈ä(n′), ç(n′) = [n,D]〉, that is, if there
is no defense at or before position k to an attack at position n.

Remark 2.1.8. Since there is no defense to an attack 〈ä(n) = Y A,
ç(n) = [m,A]〉 on ä(m) = X ¬A form < n, the attack at position n is open
at all positions k for n < k.

2.2. DI p-dialogues and strategies

We define DI p-dialogues and strategies. With regard to the literature
on dialogical logic, DI p-dialogues can be considered to be the standard
dialogues for intuitionistic propositional logic. The following definition of
DI p-dialogues is based on the definition of dialogues.

Definition 2.2.1. A DI p-dialogue is a dialogue satisfying the following
conditions (in addition to (D00), (D01) and (D02)):

(D10) If, for an atomic formula a, ä(n) = P a, then there is anm such that
m < n and ä(m) = O a. That is, P may assert an atomic formula
only if it has been asserted by O before.



2.2. DI p-dialogues and strategies 9

(D11) If ç(p) = [n,D], n < n′ < p, n′− n is even and ç(n′) = [m,A], then
there is a p′ such that n′ < p′ < p and ç(p′) = [n′, D]. That is, if at
a position p − 1 there are more than one open attacks, then only
the last of them may be defended at position p.

(D12) For every m there is at most one n such that ç(n) = [m,D]. That is,
an attack may be defended at most once.

(D13) If m is even, then there is at most one n such that ç(n) = [m,A].
That is, a P-signed formula may be attacked at most once.

A DI p-dialogue beginning with P A (i.e., ä(0) = P A, where A is a
complex formula) is called DI p-dialogue for the formula A.

Remark 2.2.2. The objects defined by the conditions (D00)–(D02)
alone are what Felscher [1985], [2002] calls ‘dialogues’, and the objects
defined by adding (D10)–(D13)—which we call ‘DI p-dialogues’—are called
‘D-dialogues’ by him.11 Since here we are concerned with the objects defined
by (D00)–(D02) plus (D10)–(D13), we simply speakof ‘dialogues’, omitting
the specifier ‘DI p’ as long as no confusion can arise.

Remark 2.2.3. The conditions (D00)–(D13) are also called ‘frame
rules’ (‘Rahmenregeln’), ‘structural rules’ or ‘special rules of the game’
(‘spezielle Spielregeln’) in the literature, and (D10) is sometimes called
‘formal rule’. The argumentation forms are also called ‘particle rules’
(‘Partikelregeln’), ‘logical rules’ or ‘general rules of the game’ (‘allgemeine
Spielregeln’).12

Wewill stick to the notions ‘dialogue condition(s)’ (or just ‘condition(s)’)
and ‘argumentation form(s)’.

Remark 2.2.4. Proponent P and opponent O are not interchangeable
due to the asymmetries between P and O introduced in (D10) and (D13).
For atomic formulas a, the proponent move 〈ä(n) = P a, ç(n) = [m,Z]〉
is possible only after an opponent move 〈ä(m) = O a, ç(m) = [k,Z]〉 for
k < m < n, and O can attack a P-signed formula only once, whereas P can
attack O-signed formulas repeatedly.
These asymmetries are introduced by dialogue conditions only. The

argumentation forms themselves (as given in Definition 2.1.2) are symmetric
with respect to the two players P and O. That is, they are independent of
whether the assertion is made by the proponent P or by the opponent O;
they are thus player-independent.13

11See Felscher [1985], [2002] for references on this kind of dialogues.
12For references cf. Krabbe [2006].
13Argumentation forms which are not player-independent in this sense will be considered

in Section 3.9 (see Definition 3.9.7) and in Chapter 5.
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Remark 2.2.5. Condition (D11) itself does not exclude the possibility
of defending an already defended attack again at a position where exactly
one attack is open (cf. Example 2.2.19).

Definition 2.2.6. P wins a dialogue for a formula A if the dialogue is
finite, begins with the move P A and ends with a move of P such that O
cannot make another move.

Remark 2.2.7. A dialogue won by P ends with a move 〈ä(n) = P a,
ç(n) = [m,Z]〉, where a is an atomic formula.

Example 2.2.8. A dialogue for the formula (a ∨ b)→¬¬(a ∨ b) is the
following:

0. P (a ∨ b)→¬¬(a ∨ b)
1. O a ∨ b [0, A]
2. P ∨ [1, A]
3. O a [2, D]
4. P ¬¬(a ∨ b) [1, D]
5. O ¬(a ∨ b) [4, A]
6. P a ∨ b [5, A]
7. O ∨ [6, A]
8. P a [7, D]

The dialogue starts with the assertion of the formula (a ∨ b)→¬¬(a ∨ b)
by the proponent P in the initial move at position 0. This initial move
is attacked (ç(1) = [0, A]) by the opponent O with the assertion of the
antecedent a ∨ b (ä(1) = O a ∨ b) of the implication asserted by P at
position 0. The attack is thus made according to the argumentation form
for implication.
At position 2, the proponent does not proceed according to the argu-

mentation form for implication by defending O’s attack move with the
assertion of the succedent ¬¬(a ∨ b) of the attacked implication. Instead,
the proponent makes the symbolic attack P ∨ on O’s assertion a ∨ b. This
move is thusmade according to the argumentation form for disjunction. The
attack is defended byO with the assertion of the left disjunct a (alternatively,
O could also have chosen the right disjunct b). The moves at positions 1–3
are an instance of the argumentation form for disjunction.
As a is an atomic formula, it cannot be attacked. At position 4, the

proponent defends O’s attack O a ∨ b by asserting the succedent ¬¬(a ∨ b)
of the attacked implication (a ∨ b)→¬¬(a ∨ b). The moves at positions 0,
1 and 4 are an instance of the argumentation form for implication.
The opponent now attacks P ¬¬(a ∨ b) at position 5 by asserting

O ¬(a ∨ b) according to the argumentation form for negation. By this
argumentation form there is no defense for the attack. But the proponent
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can attack O ¬(a ∨ b) with the assertion P a ∨ b. The moves at positions 4
and 5 are an instance of the argumentation form for negation, and the
moves at positions 5 and 6 are another instance of that argumentation form.
Next O attacks P a ∨ b with the symbolic attack O ∨ according to the

argumentation form for disjunction at position 7. Finally, this attack is
defended by P’s assertion of the left disjunct a. The moves at positions 6–8
are made according to the argumentation form for disjunction. Note that P
cannot defend here by asserting the right disjunct b: the opponent has not
asserted the atomic formula b before, hence such a move is prohibited by
condition (D10).
The proponent’s move at position 8 is the last one. The opponent cannot

attack a, since it is an atomic formula. Each other P-signed formula has
been attacked by O, thus no more attack moves can be made by O due
to condition (D13), as these would be repetitions of attacks already made.
And since each proponent attack that can be defended according to an
argumentation form has already been defended by O, no more defense
moves are possible either, due to condition (D12). The dialogue is finite,
begins with the move P (a ∨ b)→ ¬¬(a ∨ b) and ends with a move of
P such that O cannot make another move; the dialogue for the formula
(a ∨ b)→¬¬(a ∨ b) is thus won by P.
We next introduce dialogue trees and define strategies. We explain first

what we call a path.

Definition 2.2.9. A path in a branch of a tree with root node n0 is a
sequence n0, n1, . . . , nk of nodes for k ≥ 0 where ni and ni+1 are adjacent
for 0 ≤ i < k.

Definition 2.2.10. A dialogue tree is a tree whose branches contain as
paths all possible dialogues for a given formula.

Remark 2.2.11. For a given formula A there is exactly one dialogue
tree, if we consider trees to be equal modulo swapping of branches.

Definition 2.2.12. A strategy for a formula A is a subtree S of the
dialogue tree for A such that S does not branch at even positions, S has
as many nodes at odd positions as there are possible moves for O, and all
branches of S are dialogues for A won by P.

Remark 2.2.13. In more game-theoretic terms, the strategies defined
here could also be called winning strategies for the player P, and a corre-
sponding definition could be given of winning strategies for the player O.
For the dialogical treatment of logic undertaken here, only the first notion
is needed, however. We can thus simply speak of strategies.

Remark 2.2.14. Strategies are finite for propositional formulas. All the
branches in a strategy have finite length by definition, whereas dialogues that
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are not part of a strategy can be of infinite length (an example is given below
in Remark 2.2.23). Dialogue trees are therefore infinite objects in general
(cf. Example 2.2.18). As dialogue trees can be constructed breadth-first, of
course, an existing strategy can always be found.

Remark 2.2.15. Formulas can have no, exactly one or more than one
strategy.

Example 2.2.16. For the formula (a ∨ b)→ ¬¬(a ∨ b) there are the
following three strategies, among others:

(i) 0. P (a ∨ b)→¬¬(a ∨ b)
1. O a ∨ b [0, A]
2. P ¬¬(a ∨ b) [1, D]
3. O ¬(a ∨ b) [2, A]
4. P a ∨ b [3, A]
5. O ∨ [4, A]
6. P ∨ [1, A]
7. O a [6, D] O b [6, D]
8. P a [5, D] P b [5, D]

(ii) 0. P (a ∨ b)→¬¬(a ∨ b)
1. O a ∨ b [0, A]
2. P ¬¬(a ∨ b) [1, D]
3. O ¬(a ∨ b) [2, A]
4. P ∨ [1, A]
5. O a [4, D] O b [4, D]
6. P a ∨ b [3, A] P a ∨ b [3, A]
7. O ∨ [6, A] O ∨ [6, A]
8. P a [7, D] P b [7, D]

(iii) 0. P (a ∨ b)→¬¬(a ∨ b)
1. O a ∨ b [0, A]
2. P ∨ [1, A]
3. O a [2, D] O b [2, D]
4. P ¬¬(a ∨ b) [1, D] P ¬¬(a ∨ b) [1, D]
5. O ¬(a ∨ b) [4, A] O ¬(a ∨ b) [4, A]
6. P a ∨ b [5, A] P a ∨ b [5, A]
7. O ∨ [6, A] O ∨ [6, A]
8. P a [7, D] P b [7, D]

There are more strategies for this formula than the three shown here,
because the proponent can repeatedly attack formulas asserted by the
opponent. For example, in strategy (iii) the proponent could at position 4
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(in the left as well as in the right dialogue) repeat the attack P ∨ on O a ∨ b.
The subtrees below these attacks (in both dialogues) would have the same
form as the subtree below position 2 in strategy (iii).

Example 2.2.17. There is exactly one strategy for the formula a→¬¬a:
0. P a→¬¬a
1. O a [0, A]
2. P ¬¬a [1, D]
3. O ¬a [2, A]
4. P a [1, A]

Example 2.2.18. There is no strategy for the formula ((a→b)→a)→a,
an instance of Peirce’s law. The dialogue tree has the form

0. P ((a→ b)→ a)→ a
1. O (a→ b)→ a [0, A]
2. P a→ b [1, A]
3. O a [2, A] O a [2, D]
4. ..

.

P a [1, D] P a→ b [1, A]
5. O a [4, A]
6. ..

.

where at position 4 in the left dialogue and at position 6 in the right dialogue
the proponent can only repeat the attack P a→ b on O (a→ b)→ a. This
attack can in turn be either attacked with 〈ä(5) = O a, ç(5) = [4, A]〉 or
defended with 〈ä(5) = O a, ç(5) = [4, D]〉 (in the left branch), respectively
with 〈ä(7) = O a, ç(7) = [6, A]〉 or 〈ä(7) = O a, ç(7) = [6, D]〉 (in the right
branch). As the proponent can repeat the attack P a→ b indefinitely while
the opponent can always attack this attack with O a or defend with O a,
the dialogue tree for ((a→ b)→ a)→ a is infinite.
Not all dialogues beginning with the path 〈P ((a → b) → a) → a,

∅〉, 〈O (a → b) → a, [0, A]〉, 〈P a → b, [1, A]〉, 〈O a, [2, A]〉 are won by P.
There is thus no strategy.
There would be a strategy, if condition (D11) were dropped for P. Then

P could win the left, respectively the right dialogue by defending the attack
O (a→ b)→ a made at position 1 (which is not the last open attack in the
left and in the right dialogue) with the move P a [1, D] at position 4 in the
left dialogue and at position 6 in the right dialogue.

This example also shows that dialogue trees which do not contain a
strategy as a subtree can nevertheless contain dialogues which are won by
the proponent P.

Example 2.2.19. There is no strategy for the formula a∨¬a, an instance
of tertium non datur. The only possible dialogue is
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0. P a ∨ ¬a
1. O ∨ [0, A]
2. P ¬a [1, D]
3. O a [2, A]

and P does not win.
There would be a strategy, if condition (D12) were dropped for P. Then

P could defend the attack O ∨ a second time by stating a, thereby winning
the dialogue. Condition (D11) does not have to be dropped because there
are not more than one open attacks at position 3 (there is exactly one open
attack at position 3; the attack O ∨ is not open there since it has already
been defended at position 2).

Example 2.2.20. There is no strategy for the formula ¬¬a → a, an
instance of double negation elimination. The only possible dialogue is

0. P ¬¬a→ a
1. O ¬¬a [0, A]
2. P ¬a [1, A]
3. O a [2, A]

and P does not win.
There would be a strategy, if condition (D11) were dropped for P.

Then P could defend the attack O ¬¬a by stating a at position 4, thereby
winning the dialogue. Since the attackO ¬¬a has not been defended before,
condition (D12) would not be violated by P.

Definition 2.2.21. A formula A is called dialogue-provable (or DI p-
dialogue-provable) if there is a strategy for A. Notation: `DI p A.

Remark 2.2.22. We speak of dialogue-provable formulas here, in accor-
dance with Felscher [2002]. Contrasting Gentzen’s calculi14 with dialogues,
Felscher [2002, p. 127] remarks:

Gentzen’s calculi of proofs are easily explained in that they re-
present the weakest consequence relation for which the provability
interpretation is valid. The connection between dialogues and the
argumentative interpretation of logical operations is [. . .] located
on a different level: it is not the dialogues but the strategies for
dialogues which will correspond to proofs. I thus formulate the
basic purpose for the use of dialogues:

(A0) Logically provable assertions shall be those which, for purely
formal reasons, can be upheld by a strategy covering every
dialogue chosen by [O].

14Sequent calculi will be considered below; cf. Chapter 3.
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However, the fact that we speak of provability in the context of dialogues
(thus following Felscher) should not be misunderstood in a way that would
imply that dialogues cannot be seen as a (formal) semantics (as opposed to
considering dialogues only as a proof system or calculus).
Of course, such a misunderstanding could only arise if one’s notion of

semantics is limited to truth-conditional semantics, as opposed to proof-
theoretic semantics (like Brouwer–Heyting–Kolmogorov (BHK) seman-
tics15, or related justificationist, verificationist, pragmatist or falsificationist
approaches in the tradition of Dummett and Prawitz16) where the notion of
proof or closely related notions are of central importance.
As the meaning of the logical constants is in some sense given by the

argumentation forms in terms of how assertions containing the logical
constants can be used in an argumentation, dialogues might very well be
seen as a semantics under the heading “meaning is use”, and were indeed
introduced for that purpose.

Remark 2.2.23. (i) The dialogue tree for a dialogue-provable formula
can contain dialogues not won by P. For example, the dialogue tree for
the dialogue-provable formula (a ∨ b)→¬¬(a ∨ b) contains the following
dialogue which is infinite and thus not won by P:

0. P (a ∨ b)→¬¬(a ∨ b)
1. O a ∨ b [0, A]
2. P ∨ [1, A]
3. O a [2, D]
4. P ∨ [1, A]
5. O a [4, D]

..
.

(ii) The dialogue tree for a dialogue-provable formula can also contain
finite dialogues which are not won by P because they end in a move made
by O such that P cannot make another move. For example, the dialogue
tree for ¬a ∨ (a→ a) contains the dialogue

0. P ¬a ∨ (a→ a)
1. O ∨ [0, A]
2. P ¬a [1, D]
3. O a [2, A]

which is finite and not won by P. (The atomic formula a asserted by O in
the last move cannot be attacked, and the attack O ∨ cannot be defended
again due to condition (D12).)

15Cf. Heyting [1971].
16See e.g. Dummett [1991], Prawitz [1971], [2006], [2007] and Schroeder-Heister [2006].
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Remark 2.2.24. The dialogue-provable formulas are exactly the formu-
las provable in intuitionistic logic. This has been shown (also for intuitionistic
first-order logic) by Felscher [1985] by proving for Gentzen’s sequent calcu-
lus LJ17 (for intuitionistic first-order logic) that every (first-order) strategy
can be transformed into a proof in LJ, and vice versa.18

2.3. Classical dialogues

Although we will only be concerned with intuitionistic logic, we point
out here how dialogues for classical (propositional) logic relate to dialogues
for intuitionistic (propositional) logic.

Remark 2.3.1. If the conditions (D11) and (D12) are restricted to
apply only to O (and no more to P), then the formulas provable on the
basis of the thus modified dialogues are exactly the formulas provable in
classical logic.

Definition 2.3.2. A classical dialogue is a dialoguewhere the conditions
(D11) and (D12) do hold for O but not for P, that is, where conditions
(D11) and (D12) are replaced by the following conditions (D11+) and
(D12+), respectively:

(D11+) If ç(p) = [n,D] for even n, n < n′ < p, n′ − n is even and
ç(n′) = [m,A], then there is a p′ such that n′ < p′ < p and
ç(p′) = [n′, D]. That is, if at a position p − 1 there are more than
one open attacks by P, then only the last of them may be defended
by O at position p.

(D12+) For every even m there is at most one n such that ç(n) = [m,D].
That is, an attack by P may be defended by O at most once.

The notions ‘dialogue won byP’, ‘dialogue tree’ and ‘strategy’ as defined
for dialogues are directly carried over to the corresponding notions for
classical dialogues.

Definition 2.3.3. A formula A is called classically dialogue-provable if
there is a classical strategy for A. Notation: `DK p A. (Classical strategies
are called ‘C -strategies’ in Felscher [2002].)

Remark 2.3.4. Itwas shown byFelscher [1986, p. 367] (see also Felscher
[2002, p. 139]) that

`DK p A if and only if A is provable in classical propositional logic.

17See Gentzen [1935].
18Cf. also Barth and Krabbe [1982].
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(Felscher uses Glivenko’s theorem in order to show this. Since this theorem
only holds for propositional logic, the result for classical first-order logic
would have to be shown by other means.)

Remark 2.3.5. That not only one but both conditions (D11) and (D12)
have to be modified in order to get classical logic can be seen by considering
Example 2.2.18 and Example 2.2.19. Neither of the two formulas considered
there holds in intuitionistic logic, but both do hold in classical logic.
If only (D11) is modified, then ((a→b)→a)→a would be provable (cf.

Example 2.2.18), whereas a∨¬a would not be provable (cf. Example 2.2.19).
And if only (D12) ismodified, then a∨¬a but not ((a→b)→a)→a wouldbe
provable. This is not connected to the fact that (a∨¬a)→(((a→b)→a)→a)
is a theorem in intuitionistic logic, whereas (((a→ b)→a)→a)→ (a ∨¬a)
is not, although intuitionistic logic plus tertium non datur A ∨ ¬A (for any
formula A), respectively plus Peirce’s law ((A→ B)→ A)→ A (for any
formulas A,B), is equivalent to classical logic.
The formal systems resulting from modifying either only condition

(D11) or only condition (D12) may thus seem strange. However, the
difference between schematic formulas containing propositional variables
and formulas containing only specific propositions is essential here, since
dialogues are only defined for the latter, and it is only the argumentation
forms which are given for the former. The object

0. P A→ B
1. OA [0, A]
2. P B [1, D]

is therefore not a dialogue (or even a strategy), but can only be understood
as a class of dialogues whose properties depend on the form of A and B .
Note that the only possible dialogue for the (non-schematic) proposition
a→ b is

0. P a→ b
1. O a [0, A]

which is not won by P. The attack at position 1 cannot be defended with
the move P b due to (D10). In the object above, the moves 〈ä(2) = P B,
ç(2) = [1, D]〉 would only be allowed for complex formulas B or for atomic
formulas A,B where A ≡ B . This, however, is not what one would like to
express by the schematic use of propositional variables.
These observations concerning propositional variables versus specific

propositions do apply not only to classical dialogues but also to the other
kinds of dialogues treated here.

Example 2.3.6. There is a classical strategy for the formula a ∨ ¬a:
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0. P a ∨ ¬a
1. O ∨ [0, A]
2. P ¬a [1, D]
3. O a [2, A]
4. P a [1, D]

The last move is possible due to the replacement of condition (D12) by
condition (D12+). In the presence of (D12) this move is not possible, and
there is thus no DI p-strategy for (any instance of) tertium non datur (cf.
Example 2.2.19).

Example 2.3.7. There is a classical strategy for the formula ¬¬a→ a:

0. P ¬¬a→ a
1. O ¬¬a [0, A]
2. P ¬a [1, A]
3. O a [2, A]
4. P a [1, D]

The last move is possible due to the replacement of condition (D11) by
condition (D11+). In the presence of (D11) this move is not possible,
and there is thus no DI p-strategy for (any instance of) double negation
elimination (cf. Example 2.2.20).

In the following we will not consider classical dialogues again. We
consider only intuitionistic logic.19

2.4. Closure under substitution

We saw that dialogues cannot be used to prove (or validate) logical laws
directly. Strategies (as based on the dialogues defined here) can only be
presented for instances of logical laws. In order to show that a logical law
holds, one has thus to show that there is a strategy for each instance of the
law. That is, one has to prove closure under substitution—more precisely:
closure under uniform substitution of arbitrary formulas for the atomic
formulas in a formula—for strategies. This does not have to be done directly
if strategies can be shown to be equivalent to derivations in a calculus that
is known to be closed under substitution. Such an equivalence result will be
given in Chapter 3.

19Besides classical and intuitionistic logic, many other logics have been considered from a
dialogical perspective and have been given a dialogue semantics; cf. e.g. Blass [1992], [1997],
Fermüller [2003], [2008], [2010], Fermüller and Ciabattoni [2003], Rahman [2012], Rahman
and Rückert [2001] and Rückert [2007].
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2.5. DI pc -dialogues

We introduce DI pc -dialogues as a variant of DI p-dialogues. Their dis-
tinguishing feature with respect to strategies is that the DI pc -dialogues of
a strategy need not end with a proponent move P a asserting an atomic
formula a as in DI p-dialogues of a strategy. Instead, the DI pc -dialogues of
a strategy can also end with a proponent move P A asserting a complex
formula A.
Regarding the definition ofDI pc -dialogues, this is achieved by just adding

one further condition to the definition of DI p-dialogues.

Definition 2.5.1. ADI pc -dialogue is aDI p-dialogue with the additional
condition

(D14) O can attack a formula C if and only if (i) C has not yet been
asserted by O, or (ii) C has already been attacked by P.

The full definition of a DI pc -dialogue is thus given by the following argumen-
tation forms (as already given in Definition 2.1.2):

negation ¬: assertion: X ¬A
attack: Y A
defense: no defense

conjunction ∧: assertion: X A1 ∧ A2
attack: Y ∧i (Y chooses i = 1 or i = 2)
defense: X Ai

disjunction ∨: assertion: X A1 ∨ A2
attack: Y ∨
defense: X Ai (X chooses i = 1 or i = 2)

implication→: assertion: X A→ B
attack: Y A
defense: X B

together with the following conditions (where conditions (D00)–(D02) and
(D10)–(D13) are as already given in Definitions 2.1.6 and 2.2.1):

(D00) ä(n) is a P-signed expression if n is even and anO-signed expression
if n is odd. The expression in ä(0) is a complex formula.

(D01) If ç(n) = [m,A], then the expression in ä(m) is a complex formula
and ä(n) is an attack on this formula as determined by the relevant
argumentation form.

(D02) If ç(p) = [n,D], then ç(n) = [m,A] for m < n < p and ä(p)
is the defense of the attack ä(n) as determined by the relevant
argumentation form.
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(D10) If, for an atomic formula a, ä(n) = P a, then there is anm such that
m < n and ä(m) = O a. That is, P may assert an atomic formula
only if it has been asserted by O before.

(D11) If ç(p) = [n,D], n < n′ < p, n′− n is even and ç(n′) = [m,A], then
there is a p′ such that n′ < p′ < p and ç(p′) = [n′, D]. That is, if at
a position p − 1 there are more than one open attacks, then only
the last of them may be defended at position p.

(D12) For every m there is at most one n such that ç(n) = [m,D]. That is,
an attack may be defended at most once.

(D13) If m is even, then there is at most one n such that ç(n) = [m,A].
That is, a P-signed formula may be attacked at most once.

(D14) O can attack a formula C if and only if (i) C has not yet been
asserted by O, or (ii) C has already been attacked by P.

The notions ‘dialogue won byP’, ‘dialogue tree’ and ‘strategy’ as defined
for DI p-dialogues are directly carried over to the corresponding notions for
DI pc -dialogues.

Definition 2.5.2. A formula A is called DI pc -dialogue-provable if there
is a DI pc -strategy for A. Notation: `DI pc A.

Remark 2.5.3. A DI pc -dialogue won by P ends with the assertion of
a complex formula or with the assertion of an atomic formula. Whereas
a DI p-dialogue won by P can only end with the assertion of an atomic
formula.

Example 2.5.4. The following DI pc -dialogue is a DI
p
c -strategy for the

formula (a ∨ b)→¬¬(a ∨ b):
0. P (a ∨ b)→¬¬(a ∨ b)
1. O a ∨ b [0, A]
2. P ¬¬(a ∨ b) [1, D]
3. O ¬(a ∨ b) [2, A]
4. P a ∨ b [3, A]

The opponent O cannot attack a ∨ b, since neither of the two conditions
(i) and (ii) of (D14) is satisfied: a ∨ b has already been asserted by O, and
a ∨ b has not been attacked by P. The DI pc -dialogue is won by P, and it is a
DI pc -strategy for (a ∨ b)→¬¬(a ∨ b).
Clearly, this dialogue cannot be a DI p-strategy, since O could make

another move in this case (cf. the DI p-strategy (i) in Example 2.2.16).

Remark 2.5.5. A motivation for condition (D10) is given in Felscher
[2002, p. 129f.]. This condition is related to the use of the so-called Ipse
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dixisti!-remark as stipulated in Barth and Krabbe [1982]. The use of the Ipse
dixisti!-remark is, however, not restricted to atomic formulas as in condition
(D10) (cf. Krabbe [2001, p. 45]). If the Ipse dixisti!-remark can only be
made by the proponent P, then its effect is similar to what is obtained by
the addition of our condition (D14).

2.6. EI p-dialogues

We define EI p-dialogues as a restricted form of DI p-dialogues. They
differ from DI p-dialogues only in that each opponent move must now
refer to the immediately preceding proponent move. This restriction yields
certain technical advantages, without changing the extension of the set of
dialogue-provable formulas.

Definition 2.6.1. An EI p-dialogue is a DI p-dialogue with the addi-
tional condition

(E) Allmoves 〈ä(n), ç(n)〉 forn oddare of the form 〈ä(n), ç(n) = [n−1, Z]〉.
That is, an opponent move made at position n is either an attack or a
defense of the immediately preceding move made by the proponent at
position n − 1.
The notions ‘dialogue won byP’, ‘dialogue tree’ and ‘strategy’ as defined

for DI p-dialogues are directly carried over to the corresponding notions for
EI p-dialogues.

Remark 2.6.2. The EI p-dialogues as they are defined here are exactly
theE-dialogues of Felscher [1985], [1986], [2002] (references to their original
formulation are given therein).

Definition 2.6.3. A formula A is called EI p-dialogue-provable if there
is an EI p-strategy for A. Notation: `EI p A.

Example 2.6.4. The following EI p-dialogue tree is an EI p-strategy (see
Felscher [2002]):

0. P ((a→ b)→ (a→ c))→ (a→ (b→ c))
1. O (a→ b)→ (a→ c) [0, A]
2. P a→ (b→ c) [1, D]
3. O a [2, A]
4. P b→ c [3, D]
5. O b [4, A]
6. P a→ b [1, A]
7. O a [6, A] O a→ c [6, D]
8. P b [7, D] P a [7, A]

(cont’d on next page)
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9. O c [8, D]
10. P c [5, D]

For comparison, we show an embedding of this EI p-strategy into the
following DI p-strategy:

0. P ((a→ b)→ (a→ c))→ (a→ (b→ c))
1. O (a→ b)→ (a→ c) [0, A]
2. P a→ (b→ c) [1, D]
3. O a [2, A]
4. P b→ c [3, D]
5. O b [4, A]
6. P a→ b [1, A]
7. O a [6, A] O a→ c [6, D]
8. P b [7, D] P a [7, A]
9. O a→ c [6, D] O c [8, D]
10. P a [9, A] P c [5, D]
11. O c [10, D] O a [6, A]
12. P c [5, D] P b [11, D]

TheDI p-strategy differs from the EI p-strategy only in having additional
moves at positions 9–12 in the left dialogue and at positions 11 and 12 in
the right dialogue.

Remark 2.6.5. It has been shown by Felscher that there is a recursive
algorithm by which every EI p-strategy can be embedded into aDI p-strategy,
and that therefore the EI p-dialogue-provable formulas are exactly the
formulas provable in intuitionistic propositional logic (see Felscher [1985,
p. 221] and Felscher [2002, p. 119]; these results hold not only for the
propositional but also for the first-order case). As theDI p-dialogue-provable
formulas are also exactly the formulas provable in intuitionistic propositional
logic, the following holds: `EI p A if and only if `DI p A.

2.7. EI pc -dialogues

As in the case ofDI p-dialogues and their variant, the DI pc -dialogues, we
can introduce EI pc -dialogues as a variant of EI p-dialogues by adding the
condition (D14) to the definition of EI p-dialogues.

Definition 2.7.1. An EI pc -dialogue is an EI p-dialogue with the addi-
tional condition

(D14) O can attack a formula C if and only if (i) C has not yet been
asserted by O, or (ii) C has already been attacked by P.
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Again, the notions ‘dialogue won by P’, ‘dialogue tree’ and ‘strategy’
as defined for DI p-dialogues are directly carried over to the corresponding
notions for EI pc -dialogues.

Remark 2.7.2. Condition (E) implies condition (D13). Furthermore,
condition (E) implies condition (D11) for odd p and condition (D12) for
odd n (cf. Definition 2.2.1).
In the presence of condition (E), condition (D13) can therefore be

omitted, and conditions (D11) and (D12) can be restricted to conditions
(D11′) and (D12′), respectively, as follows:

(D11′) If ç(p) = [n,D] for odd n, n < n′ < p, n′ − n is even and
ç(n′) = [m,A], then there is a p′ such that n′ < p′ < p and
ç(p′) = [n′, D]. That is, if at a position p − 1 there are more than
one open attacks by O, then only the last of them may be defended
by P at position p.

(D12′) For every odd m there is at most one n such that ç(n) = [m,D].
That is, an attack by O may be defended by P at most once.

Remark 2.7.3. For EI pc -dialogues, we will use conditions (D11′) and
(D12′) instead of conditions (D11) and (D12), andwe omit condition (D13).
The full definition ofEI pc -dialogues is thus given by the argumentation forms
(as given in Definition 2.1.2)

negation ¬: assertion: X ¬A
attack: Y A
defense: no defense

conjunction ∧: assertion: X A1 ∧ A2
attack: Y ∧i (Y chooses i = 1 or i = 2)
defense: X Ai

disjunction ∨: assertion: X A1 ∨ A2
attack: Y ∨
defense: X Ai (X chooses i = 1 or i = 2)

implication→: assertion: X A→ B
attack: Y A
defense: X B

together with the following conditions:

(D00) ä(n) is a P-signed expression if n is even and anO-signed expression
if n is odd. The expression in ä(0) is a complex formula.

(D01) If ç(n) = [m,A], then the expression in ä(m) is a complex formula
and ä(n) is an attack on this formula as determined by the relevant
argumentation form.
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(D02) If ç(p) = [n,D], then ç(n) = [m,A] for m < n < p and ä(p)
is the defense of the attack ä(n) as determined by the relevant
argumentation form.

(D10) If, for an atomic formula a, ä(n) = P a, then there is anm such that
m < n and ä(m) = O a. That is, P may assert an atomic formula
only if it has been asserted by O before.

(D11′) If ç(p) = [n,D] for odd n, n < n′ < p, n′ − n is even and
ç(n′) = [m,A], then there is a p′ such that n′ < p′ < p and
ç(p′) = [n′, D]. That is, if at a position p − 1 there are more than
one open attacks by O, then only the last of them may be defended
by P at position p.

(D12′) For every odd m there is at most one n such that ç(n) = [m,D].
That is, an attack by O may be defended by P at most once.

(D14) O can attack a formula C if and only if (i) C has not yet been
asserted by O, or (ii) C has already been attacked by P.

(E) All moves 〈ä(n), ç(n)〉 for n odd are of the form 〈ä(n), ç(n) =
[n − 1, Z]〉. That is, an opponent move made at position n is either
an attack or a defense of the immediately preceding move made by
the proponent at position n − 1.

Definition 2.7.4. A formula A is called EI pc -dialogue-provable if there
is an EI pc -strategy for A. Notation: `EI pc A.
We also speak of EI pc -provable formulas or of EI

p
c -provability. (Likewise

for the other kinds of dialogues.)

2.8. Hypothetical dialogues

The dialogues considered so far do not allow for the use of hypotheses
or assumptions. This could be changed by the following definition, which
leads to problems, however. These problems will be discussed below.20

Definition 2.8.1. Hypothetical dialogues are dialogues where at posi-
tions n < 0 there can be moves of the form 〈ä(n) = OA, ç(n) = ∅〉. The
formulas A stated in such moves are called assumptions or hypotheses. The
proponent P may attack these formulas A as permitted by the conditions
defining dialogues.

20Rahman and Tulenheimo [2009] have proposed what they call ‘intuitionistic dialogues
with hypotheses’. They consider only implication-free fragments, however. Although this
might be unproblematic in the case of classical logic, it is an undue restriction if intuitionistic
logic is to be obtained; and it is not clear, whether the proposed approach can be properly
generalized for the case including implication.
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Remark 2.8.2. This definition can be applied to any kind of dialogues
that we have defined above. In what follows, we consider hypothetical
DI pc -dialogues as an example.

Definition 2.8.3. A formulaA is called dialogue-provable under assump-
tions A1, . . . , An if there is a strategy for A when the formulas A1, . . . , An
are given as assumptions. Notation: A1, . . . , An `DI pc A (likewise for the
other kinds of dialogues defined above).

Example 2.8.4. The following is a strategy for a ∧ b under the assump-
tions a and b, given at positions −2 and −1, respectively:

−2. O a
−1. O b
0. P a ∧ b
1. O ∧1 [0, A] O ∧2 [0, A]
2. P a [1, D] P b [1, D]

The proponent P can assert the formulas a respectively b in the moves at
position 2 since O has already asserted them before at positions −2 and −1,
respectively. We have thus: a, b `DI pc a ∧ b.

Example 2.8.5. Under the assumption a, the dialogue

−1. O a
0. P a ∨ b
1. O ∨ [0, A]
2. P a [1, D]

is a strategy for a ∨ b. The proponent P can assert the formula a in the
move at position 2 without violating condition (D10) since O has already
asserted a before at position −1. We have thus: a `DI pc a ∨ b.

Remark 2.8.6. Whether the collection of assumptions is treated as mul-
tiset, set or list depends on the structural properties given by the conditions
that define the respective kind of dialogues. That is, this depends on whether
(and to what extent) structural operations like thinning, contraction and
exchange are embedded in the respective dialogues.
We do not elaborate further on this here. Structural properties will

be examined in Section 3.8 of Chapter 3 as well as in Chapter 4; see also
Chapter 5 for a dialogical treatment of the structural operation of cut.

Felscher [2002, p. 143] remarks that the assumptions should be given as
a list ofO-signed formulas, followed (or preceded) by the P-signed formula
which is the consequence in question. He then argues that “no general
rule on how to proceed from this initial list can be stated as long as we
want to keep the alternation between P and [O] during the progress of our
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dialogue” (ibid.), because the initial listO a,P a ∨ b in Example 2.8.5 “must
be followed by an attack of [O]”, whereas the initial list O a ∧ b, P a “must
be followed by an attack of P” (ibid.).
The latter could only be represented analogously to Example 2.8.5 if

the proponent P were also allowed to assert an atomic formula in the move
at position 0 (contrary to the dialogues considered by Felscher and to the
dialogues considered here so far):

−1. O a ∧ b
0. P a
1. P ∧1 [−1, A]
2. O a [1, D]

Note, however, that even for the thus modified dialogues there would
not be a strategy for the formula a under the assumption a∧b, although a∧
b `DI pc a should hold. Felscher remarks further that “[c]ertainly, regulations
circumventing these difficulties may be formulated, but apparently only at
the cost of a loss in intuitive appeal” (ibid.).
As we just saw, these difficulties do not disappear if we only allow as an

additional regulation that P can assert an atomic formula in the move at
position 0 (as it is done, for example, in the definitional dialogues treated in
Chapter 4 below). Furthermore—as atomic formulas cannot be attacked in
the dialogues considered so far—the dialogue

−1. O a ∧ b
0. P c

would be a strategy for c under the assumption a ∧ b, that is, a ∧ b `DI pc c
would hold, which should not be the case.
This problem could be avoided if the assumptions A1, . . . , An stated

at positions p < 0 were (re)stated by the opponent O at position 1 as a
conjunction A1 ∧ . . . ∧An (i.e., if such a (re)statement were allowed as an
additional move for O). For example, there would then be no strategy for
the atomic formula c under the assumption a ∧ b (i.e., for the initial move
P c at position 0 with move O a ∧ b at position −1 repeated at position 1),
the dialogue tree being

−1. O a ∧ b
0. P c
1. O a ∧ b
2. P ∧1 [1, A] P ∧2 [1, A]
3. O a [2, D] O b [2, D]

But there would then be no strategy for the formula a under the assumption
a ∧ b either:
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−1. O a ∧ b
0. P a
1. O a ∧ b
2. P ∧1 [1, A] P ∧2 [1, A]
3. O a [2, D] O b [2, D]

Whether the conjunction of assumptions is restated at position 1 is inessential
to the problem. The move made by O at position 1 could also be a vacuous
move. The collection of assumptions is then simply a multiset, a set or
a list of O-signed formulas which is not subject to the alternation of P-
and O-moves beginning at position 0. The assumptions can be attacked
by P according to the respective conditions defining dialogues, and the
alternation would be kept for all moves at positions n ≥ 0. In any case, the
assertion by the opponent O of the formula stated by the proponent P at
position 0 would have to be interpreted as a condition for P winning the
dialogue.
However, this would not solve the problem in general, since there would

be no strategy for a ∨ b under the assumption a ∧ b, for example. What
is needed in addition is that P is allowed to state the formula stated at
position 0 also in a defense move to the opponent’s move at position 1. But
this amounts to the reduction of hypothetical dialogues for formulasA under
assumptions A1, . . . , An to dialogues for formulas (A1 ∧ . . . ∧ An)→ A.
The notion of assumption would thus be dependent on the treatment
of conjunction and—more importantly—of implication. The resulting
dialogues are then not hypothetical anymore, since no formula would be
used as an assumption in the genuine sense.

2.9. Digression: dialogues and tableaux

In this digression, we want to put dialogues into a broader context. We
describe tableaux as well as Kripke semantics for intuitionistic propositional
logic, and we compare them with dialogues. Historically, tableaux have
been developed after sequent calculi (cf. Chapter 3) and before dialogues.
They are related to both, although with stronger similarities to dialogues.
For example, in Felscher’s [1985] proof of the equivalence result for sequent
calculus derivations and strategies, tableaux21 are used as an intermediate
step. There it is shown that sequent calculus derivations as well as strategies
can be transformed into these tableaux, and vice versa.

21These are special kinds of tableaux, which Felscher [1985] calls ‘IC-protableaux’,
‘IC-tableaux’ and ‘irreducible IC-protableaux’, respectively.
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We first present so-called analytic tableaux for classical propositional logic.
Tableaux for intuitionistic propositional logic are then given by imposing
certain restrictions on analytic tableaux. After that we will compare Kripke
semantics and tableaux for intuitionistic propositional logic. This will be
done by reformulating tableaux in terms of the forcing relation used in
Kripke semantics.

The purpose of this digression is to point out some similarities as well as
differences between dialogues, tableaux and Kripke semantics for intuition-
istic propositional logic.22 We will see that closed tableaux are quite similar
to strategies, although there are important differences between dialogues
and tableaux as such.

2.9.1. Analytic tableaux. Before we can give the definition of analytic
tableaux, we have to extend our language by two more signatures:

Definition 2.9.1. We introduce additional signatures t and f. For for-
mulasA, expressions of the form tA are called t-signed formulas, and expres-
sions of the form f A are called f-signed formulas. We use α, α1, α2, â, â1, â2
as variables for t- or f-signed formulas.

Definition 2.9.2. (i) An analytic tableau23 for classical propositional
logic is a tree of signed formulas which is generated by non-branching

α-rules of the form
α
α1
α2
or α

α1
and branching â-rules of the form

â
â1 â2

:

α-rules

 tA ∧ B
tA
tB

f A ∨ B
f A
f B

f A→ B
tA
f B

t¬A
f A

f ¬A
tA

â-rules

{
f A ∧ B
f A f B

tA ∨ B
tA tB

tA→ B
f A tB

(ii) An analytic tableau for A is an analytic tableau with root node f A.

(iii) A closed branch of an analytic tableau is a branch containing t a as
well as f a for any atomic formula a. In this case we also say that the
formula a occurs with contradicting signatures.

(iv) An open branch is a branch which is not closed, that is, a branch in
which no atomic formula occurs with contradicting signatures.

22For more details and results on semantical completeness for intuitionistic logic we refer
to Troelstra and van Dalen [1988b, chapter 13]. Cf. also Troelstra [1993].
23Cf. Smullyan [1995] or Smullyan [2009].
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(v) An analytic tableau is called closed if all its branches are closed, and it
is called open if it contains an open branch.

Definition 2.9.3. A formula A is called analytic tableau-provable if
there is a closed analytic tableau for A. Notation: `TA p A.

Remark 2.9.4. We consider tableaux where to each complex formula a
rule may be applied repeatedly in each branch.
For analytic tableaux for classical propositional logic we could impose

the restriction that to each complex formula a rule may be applied at most
once. For classical first-order logic this restriction would have to be dropped.
In tableaux for intuitionistic logic we will have to allow for repeated rule

applications to any complex formula already in the propositional case (cf.
Example 2.9.12 below).

Example 2.9.5. The following is a closed analytic tableau for (a ∨ b)→
¬¬(a ∨ b):

0. f (a ∨ b)→¬¬(a ∨ b)
1. t a ∨ b (0)
2. f ¬¬(a ∨ b) (0)
3. t a (1) t b (1)
4. t¬(a ∨ b) (2) t¬(a ∨ b) (2)
5. f a ∨ b (4) f a ∨ b (4)
6. f a (5) f a (5)
7. f b (5) f b (5)

3 x 6 3 x 7

Remark 2.9.6. For our convenience, we use the following decorations:

(i) We put line numbers to the left of tableaux, and we use numbers (n) to
the right of formulas to refer to the line number of the formula a rule
has been applied to.
For example, in the above Example 2.9.5 the two nodes t a and t b in

line 3 are marked with (1), since they were generated by an application
of the â-rule for disjunction to the t-signed formula t a ∨ b in line 1.

(ii) The expression n x m indicates a closed branch, where the numbers n
and m refer to the lines containing occurrences of an atomic formula
with contradicting signatures in this branch.

These decorations are not part of tableaux as such.

Remark 2.9.7. For the consequence relation� of classical propositional
logic, the following holds: � A⇐⇒ `TA p A.24

24See Smullyan [1995].
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2.9.2. Tableaux for intuitionistic logic. Tableaux for intuitionistic logic
were first conceived by Beth [1955], [1956]. Here we consider two kinds of
such tableaux which are similar to those presented in Fitting [1969], [1983].
Following Fitting [1983], we call the one kind of intuitionistic tableaux
Beth-tableaux and the other kind Gentzen-tableaux.

Beth-tableaux. For the definition of Beth-tableaux we first need the
following distinction concerning logical constants:

Definition 2.9.8. We distinguish the regular logical constants ∧ and
∨ from the special logical constants ¬ and →. A formula A is regular,
respectively special, if its outermost logical constant is regular, respectively
special.25

Definition 2.9.9. A Beth-tableau is an analytic tableau in which ap-
plications of α-rules for special formulas are possible only if all f-signed
formulas are deleted from the branch where the α-rule for a special formula
is applied. That is, all f-signed formulas (including α if f-signed) in the
branch above

α1
α2
in the case of implication, respectively above α1 in the

case of negation, have to be deleted. This includes the case where α is not
immediately above

α1
α2
, respectively α1. That is, if there are f-signed formulas

between α and
α1
α2
, respectively α1, then those formulas have to be deleted

as well.
This deletion is called intuitionistic branch modification, and the cor-

responding rule is called intuitionistic branch modification rule, short:
IBMR. Its application is indicated by an additional number db in a list
(n, d0, d1, . . . , dk) written to the right of the deleted formula. The number
d denotes the line and b the branch (numbered 1 to k from left to right),
respectively the path belonging to all branches (in which case b = 0), of the
special formula where the IBMR has been called. (As in analytic tableaux,
the number n in the list (n, d0, d1, . . . , dk) refers to the line number of the
formula a rule has been applied to.)
The deletion is restricted to the branch from which the IBMR has been

called, that is, the deleted formulas cannot be used further only in that
branch, whereas the deletion is irrelevant for all other branches. A deletion
in the path belonging to all branches (b = 0) is relevant for all branches.
Deletions noted in a branch will not be noted again at subsequent calls of
the IBMR in that branch.

Definition 2.9.10. A formula A is called Beth-tableau-provable if there
is a closed Beth-tableau for A. Notation: `TB p A.

25See Fitting [1983] for this distinction and its motivation.
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Example 2.9.11. We construct a Beth-tableau for the formula a ∨ ¬a.
Its development starts with the f-signed formula f a ∨ ¬a in line 0:

0. f a ∨ ¬a (–)

As this formula is not the result of a rule application to a formula in a
preceding line n, we note the placeholder ‘–’ for n in the comment list: (–).
In the next step, we apply the α-rule for disjunction to f a ∨ ¬a. This is a
regular formula, so the IBMR is not called. We get

0. f a ∨ ¬a (–)
1. f a (0)
2. f ¬a (0)

Now we apply the α-rule for negation to the special formula f ¬a in line 2
(= d ). This yields the formula t a in line 3 and calls the IBMR, deleting
all f-signed formulas in this branch 0 (= b). This deletion is noted by the
addition of 20 (= db) in the comments to the right of each deleted formula:

0. f a ∨ ¬a (–, 20)
1. f a (0, 20)
2. f ¬a (0, 20)
3. t a (2)

◦

The tableau is open (indicated by ◦), since the only remaining signed formula
is t a. All other signed formulas have been deleted, and there is thus no
contradicting signed formula f a.
Note that no further (repeated) rule applications are possible here, since

all complex formulas have been deleted in the last rule application when
the IBMR was called. Repeated applications of the α-rule for disjunction
to f a ∨ ¬a would have been possible only before that. However, no closed
tableaux could result in this case. We can therefore argue that any Beth-
tableau for the formula a ∨ ¬a is either open or infinite, but never closed.
The formula a ∨ ¬a is thus not Beth-tableau-provable.

Example 2.9.12. The following is a closed Beth-tableau for the formula
¬¬(a ∨ ¬a), showing thus `TB p ¬¬(a ∨ ¬a):

0. f ¬¬(a ∨ ¬a) (–, 00)
1. t¬(a ∨ ¬a) (0)
2. f a ∨ ¬a (1, 40)
3. f a (2, 40)
4. f ¬a (2, 40)
5. t a (4)

(cont’d on next page)
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6. f a ∨ ¬a (1)
7. f a (6)
8. f ¬a (6)

5 x 7

The formula in line 0 is a special formula. In the first step, the α-rule for
f-signed negation was applied to it, calling the IBMR, which deletes the
f-signed formula in line 0. Then the α-rule for t-signed negation was applied
to the special formula in line 1, also calling the IBMR (however, no further
modifications have to be done in this branch, since the only f-signed formula
above has already been deleted; we do not extend the list besides the formula
in line 0 to (–, 00, 10) but keep (–, 00)). This yields the formula in line 2,
and an application of the α-rule for disjunction to it yields f a and f ¬a.
The latter formula is special and the application of the α-rule for f-signed
negation to it yields t a and deletes the formulas in lines 2–4.
The only remaining formulas are t¬(a ∨ ¬a) (in line 1) and t a (in

line 5). The latter being atomic, only a (repeated) rule application to the
former is possible. This yields line 6, and finally lines 7 and 8 by an α-rule
application to the formula in line 6. The formulas t a (in line 5) and f a (in
line 7) have contradicting signatures, hence the tableau is closed.
Note that there would not be a closed Beth-tableau if repeated rule

applications were not allowed.

Example 2.9.13. The following are three closed Beth-tableaux for the
formula (a ∨ b)→¬¬(a ∨ b):
(i) 0. f (a ∨ b)→¬¬(a ∨ b) (–, 00)

1. t a ∨ b (0)
2. f ¬¬(a ∨ b) (0, 20)
3. t¬(a ∨ b) (2)
4. f a ∨ b (3)
5. t a (1) t b (1)
6. f a (4) f a (4)
7. f b (4) f b (4)
5 x 6 6 x 7

(ii) 0. f (a ∨ b)→¬¬(a ∨ b) (–, 00)
1. t a ∨ b (0)
2. f ¬¬(a ∨ b) (0, 20)
3. t¬(a ∨ b) (2)
4. t a (1) t b (1)
5. f a ∨ b (3) f a ∨ b (3)
6. f a (5) f a (5)

(cont’d on next page)
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7. f b (5) f b (5)
4 x 6 4 x 7

(iii) 0. f (a ∨ b)→¬¬(a ∨ b) (–, 00)
1. t a ∨ b (0)
2. f ¬¬(a ∨ b) (0, 21, 22)
3. t a (1) t b (1)
4. t¬(a ∨ b) (2) t¬(a ∨ b) (2)
5. f a ∨ b (4) f a ∨ b (4)
6. f a (5) f a (5)
7. f b (5) f b (5)

3 x 6 3 x 7

They correspond to the strategies (i), (ii) and (iii), respectively, given in
Example 2.2.16.

Remark 2.9.14. As we have to allow for more than one rule application
to any complex formula in a branch, branches can be infinite. Infinite
branches in a tableau correspond to infinite dialogues. For example,
consider the following Beth-tableau:

0. f (a ∨ b)→¬¬(a ∨ b) (–, 00)
1. t a ∨ b (0)
2. f ¬¬(a ∨ b) (0, 23, 24)
3. t a (1) t b (1)
4. t a (1) t b (1) t¬(a ∨ b) (2)
5. t a (1) t b (1) t¬(a ∨ b) (2) f a ∨ b (4)
6. ..

.

f a ∨ b (5) f a (5)
7. f a (6) f b (6)
8. f b (7) 3 x 7

3 x 7

The leftmost branch is infinite (and thus not closed) if repetitive rule
applications are made on the signed formula in line 1. It corresponds to the
infinite dialogue in Remark 2.2.23 (i).

Gentzen-tableaux. An alternative to Beth-tableaux areGentzen-tableaux
for intuitionistic logic. The latter are more similar to Gentzen’s sequent
calculus for intuitionistic logic than the former. For a detailed treatment
(also extending Gentzen-tableaux to intuitionistic first-order logic) we refer
to Fitting [1983].

Definition 2.9.15. A Gentzen-tableau is an analytic tableau where in
applications of α- and â-rules to f-signed formulas the IBMR has to be
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applied. To t-signed formulas theα- and â-rules can be applied as in analytic
tableaux, that is, without any application of the IBMR.

Definition 2.9.16. A formula A is called Gentzen-tableau-provable if
there is a closed Gentzen-tableau for A. Notation: `TG p A.

Example 2.9.17. For comparison with the closed Beth-tableau shown
in Example 2.9.12, we give a closed Gentzen-tableau for the same formula
¬¬(a ∨ ¬a):

0. f ¬¬(a ∨ ¬a) (–, 00)
1. t¬(a ∨ ¬a) (0)
2. f a ∨ ¬a (1, 20)
3. f a (2, 40)
4. f ¬a (2, 40)
5. t a (4)
6. f a ∨ ¬a (1, 60)
7. f a (6)
8. f ¬a (6)

5 x 7

The formula ¬¬(a ∨ ¬a) is thus Gentzen-tableau-provable.
Remark 2.9.18. Gentzen-tableaux are more closely related to sequent

calculi like LI p (see Definition 3.1.1 in the next chapter or Appendix A.8)
than Beth-tableaux are. With the exception of α-rule applications to
disjunctive f-signed formulas f A1 ∨ A2, each branch in a Gentzen-tableau
contains atmost one f-signed formula. This corresponds to the fact thatLI p-
sequents can have at most one formula in the succedent, where the f-signed
formulas in Gentzen-tableaux are exactly the formulas in the succedents of
LI p-sequents. The exception with disjunctive f-signed formulas f A1 ∨A2
corresponds to the fact that in LI p the right introduction rule for disjunction
(`∨) can have the sequent Γ`A1 or the sequent Γ`A2 as premiss.
For example, compare the following LI p-derivation (see also Remark

3.8.3) with the Gentzen-tableau shown in the above Example 2.9.17:

(Ida) a `LI p a (`∨)
a `LI p a ∨ ¬a(¬`)

a,¬(a ∨ ¬a)`LI p (`¬)
¬(a ∨ ¬a)`LI p ¬a (`∨)
¬(a ∨ ¬a)`LI p a ∨ ¬a(¬`)
¬(a ∨ ¬a),¬(a ∨ ¬a)`LI p(Contr)

¬(a ∨ ¬a)`LI p (`¬)
`LI p ¬¬(a ∨ ¬a)
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(The application of contraction (Contr) in this LI p-derivation corresponds
in the Gentzen-tableau to the twofold application of the α-rule for negation
to the t-signed formula t¬(a ∨ ¬a) in line 1. This yields f a ∨ ¬a in line 2
and again in line 6.)
Beth-tableaux are less closely related to the sequent calculus LI p (or

to similar sequent calculi with at most one formula in the succedent of
sequents), since Beth-tableaux allow for more than one usable f-signed
formula in general.

Example 2.9.19. For comparison with the three closed Beth-tableaux
given in Example 2.9.13, we show the following three corresponding closed
Gentzen-tableaux for the formula (a ∨ b)→¬¬(a ∨ b):
(i) 0. f (a ∨ b)→¬¬(a ∨ b) (–, 00)

1. t a ∨ b (0)
2. f ¬¬(a ∨ b) (0, 20)
3. t¬(a ∨ b) (2)
4. f a ∨ b (3, 40)
5. t a (1) t b (1)
6. f a (4) f a (4)
7. f b (4) f b (4)
5 x 6 5 x 7

(ii) 0. f (a ∨ b)→¬¬(a ∨ b) (–, 00)
1. t a ∨ b (0)
2. f ¬¬(a ∨ b) (0, 20)
3. t¬(a ∨ b) (2)
4. t a (1) t b (1)
5. f a ∨ b (3, 50) f a ∨ b (3, 50)
6. f a (5) f a (5)
7. f b (5) f b (5)

4 x 6 4 x 7

(iii) 0. f (a ∨ b)→¬¬(a ∨ b) (–, 00)
1. t a ∨ b (0)
2. f ¬¬(a ∨ b) (0, 21, 22)
3. t a (1) t b (1)
4. t¬(a ∨ b) (2) t¬(a ∨ b) (2)
5. f a ∨ b (4, 51) f a ∨ b (4, 52)
6. f a (5) f a (5)
7. f b (5) f b (5)

3 x 6 3 x 7

These three closed Gentzen-tableaux correspond to the strategies (i), (ii)
and (iii), respectively, as shown in Example 2.2.16.
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Remark 2.9.20. The Gentzen-tableaux in Examples 2.9.17 and 2.9.19
differ from the Beth-tableaux in Examples 2.9.12 and 2.9.13, respectively,
only with respect to the signed formulas deleted by applications of the
IBMR. The trees of signed formulas are the same, respectively.

Remark 2.9.21. For Gentzen-tableaux, the disjunction property

if `TG p A ∨ B , then `TG p A or `TG p B

can be easily established as follows (cf. Fitting [1983, proposition 5.1,
p. 463]): A closed Gentzen-tableaux for A ∨ B begins with

0. f A ∨ B (–, 00)
1. f A (0)
2. f B (0)
3. ..

.

leaving only f A and f B for the next rule application. In both cases, this
rule application calls the IBMR, which applies to all formulas above line 3.
Thus an application to f A will delete f B and an application to f B will
delete f A. Therefore there has to be either a closed tableau for f A or a
closed tableau for f B .

Remark 2.9.22. It can be seen that for the disjunction property the use
of the IBMR in Gentzen-tableaux has the same effect as condition (D12)
in dialogues.
If the proponent P has a strategy for a closed formula of the formA∨B ,

then P can defend the attackO ∨ on this formula only by asserting either A
or B . Because of condition (D12), the proponent P cannot later defend
again against this attack by asserting B , respectively A. There must thus be
a strategy for A or for B .26

2.9.3. Kripke semantics and intuitionistic tableaux. We now compare
Beth- and Gentzen-tableaux with Kripke semantics for intuitionistic propo-
sitional logic. Kripke semantics27 can be motivated by considering weak
counterexamples to classical logical laws.28

Weak counterexamples. Consider the following example of a classical,
non-constructive proof:

Example 2.9.23. The statement
“There exist two irrational numbers x and y such that xy is rational”

26Cf. Rückert [2007, p. 23f.].
27See Kripke [1963], [1965]. Cf. also Moschovakis [2010], van Dalen [2001], [2002],

[2008] or van Dalen and van Atten [2006], for example.
28Cf. Dummett [2000], Moschovakis [2010], Troelstra and van Dalen [1988a] or van

Dalen [2008], for example.



2.9. Digression: dialogues and tableaux 37

can be easily proved as follows:

Suppose
√
2
√
2
is rational. Then there exist two irrational numbers x

and y such that xy is rational. Suppose
√
2
√
2
is irrational. Then

(√
2
√
2
)√2

is rational. Using tertium non datur (
√
2
√
2
is rational or not, i.e. irrational)

the above statement can be inferred.

Remark 2.9.24. (i) The proof in Example 2.9.23 is not constructive,
since it does not produce two numbers x and y such that the number
xy is rational.

(ii) Example 2.9.23 is a weak counterexample for the tertium non datur.
From a constructivist perspective, the tertium non datur A ∨ ¬A says
that for any statement A we have a proof of A or a proof of ¬A (i.e., a
construction which transforms a hypothetical proof of A into a proof
of⊥). This would enable us to decide for any statement A whether this
statement holds or not. But an example like the still undecided validity
of the statement “There exist infinitely many twin primes” shows that
this is not the case.

(iii) The counterexample is weak because it does not refute the tertium non
datur, that is, from the assumption of the tertium non datur there has
not been derived a contradiction. It was merely shown that the tertium
non datur is not a constructively acceptable logical principle.

(iv) Furthermore, it is impossible (from a constructivist perspective) to
refute the tertium non datur by presenting a statement A for which
¬(A ∨ ¬A) holds, since ¬¬(A ∨ ¬A) holds constructively for all
statements A.

Kripke semantics. The principle of tertium non datur does not hold
in intuitionistic logic in general. A motivation for Kripke semantics for
intuitionistic logic can be given as follows:

Motivation 2.9.25. Weak counterexamples for the tertium non datur
proceed on the assumption of a yet undecided statement A. But it is not
precluded that a proof of A is found later. This situation can be depicted as
follows:

k1 • A

k0 •

OO

The state k0 represents our present knowledge about A: We do not know
whether A holds or ¬A holds. The state k1 represents a later point in time
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in which a proof of A has been found, that is, where we know that A holds.
Thus we cannot assertA in k0. But we cannot assert¬A in k0 either, because
a later state k1 in which A holds is not precluded. Therefore we also cannot
assert A ∨ ¬A in k0, since for this we would have to be able to either assert
A or ¬A in k0.29

Definition 2.9.26. A (propositional) Kripke-model K is a triple

〈K,≤,
〉
where the Kripke-frame 〈K,≤〉 is a non-empty partially ordered set, and 

(read: forces) is a binary relation (the forcing relation) of elements k of K
and (propositional) formulas, such that for atomic formulas a the following
monotonicity condition holds:

If k 
 a and k ≤ k′, then k′
 a.
The elements k of K are called states or possible worlds. (k 
 a is read “k
forces a” or “a holds in k”.)
The relation 
 is extended to complex formulas A,B by the following

clauses:

(i) k 
A ∧ B := k 
A and k 
B ,
(ii) k 
A ∨ B := k 
A or k 
B ,
(iii) k 
A→ B := For all k′ ≥ k: if k′
A, then k′
B ,
(iv) not k 
⊥ (resp. k 1⊥), that is, there is no element k of K such that

⊥ holds in k.

Remark 2.9.27. (i) It follows from the definition that k 
¬A if and
only if ∀k′ ≥ k (k′1A).

(ii) Furthermore, it holds that k 
¬¬A if and only if ∀k′ ≥ k ¬∀k′′ ≥
k′ (k′′1A), since then ∀k′ ≥ k (k′1¬A) and thus k 
¬¬A. (Classi-
cally this is equivalent to ∀k′ ≥ k ∃k′′ ≥ k′ (k′′
A).)

Lemma 2.9.28. Every formula A fulfills the monotonicity condition, that
is, for all k, k′ ∈ K : If k 
A and k ≤ k′, then k′
A.

Proof. By induction on formulas. Consider as an example the case
A ≡ B → C : Let k 
B → C and k ≤ k′. If k′ ≤ k′′ and k′′
B , then also
k ≤ k′′ and k′′
B . Since k 
B → C holds, k′′
C holds then as well.
Thus for all k′′ ≥ k′: If k′′
B , then k′′
C , that is, k′
B → C . a

Definition 2.9.29. (i) A formula A is valid in k in a Kripke-model
K if and only if k 
A.

29This common epistemic/temporal interpretation serves here only as a possible motiva-
tion for the mathematical structure to be defined next. We are here only interested in that
structure. Cf. Troelstra and van Dalen [1988a] for what follows.
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(ii) A formula A is valid inK if and only if k 
A for all k ∈ K (Notation:
K 
A).

(iii) For a set X of formulas, X 
A holds if and only if in each Kripke-
modelK in which all B ∈ X are valid, A is valid as well, that is, if for
all B ∈ X : IfK 
B , thenK 
A.

(iv) A formulaA isKripke-valid if and only ifX = ∅, that is, if ∅
A (short:

A).

Remark 2.9.30. If k0 is the smallest state in the partially ordered setK ,
then by monotonicity (Lemma 2.9.28) it holds that A is valid inK if and
only if A is valid in k0.

Remark 2.9.31. It can be shown that the Kripke-valid formulas are
exactly the formulas provable in sequent calculus for intuitionistic proposi-
tional logic.
Kripke-models can thus be used to show that a formula cannot be proved

in sequent calculus for intuitionistic propositional logic, by showing that the
formula is not Kripke-valid, that is, by presenting a Kripke-model which is
a counterexample for the formula in question.

Example 2.9.32. Using atomic formulas a and b, we give Kripke-
counterexamples in diagrammatic form.

(i) ¬¬a ∨ ¬a is not Kripke-valid. Let K = {k0, k1, k2}, k0 ≤ k1, k0 ≤ k2
and k1
 a. Then K = 〈K,≤,
〉 can be represented by the following
diagram, where to the right of every state k ∈ K only those atomic formulas
a are noted for which k 
 a holds, and where the arrows express the partial
order on K as given by ≤:

k1 • a k2 •

k0 •

__ ??

Due to k1
 a we have k01¬a, and since k2
¬a holds, k01¬¬a holds.
Therefore k01¬¬a ∨ ¬a holds, and the Kripke-model K is a Kripke-
counterexample for ¬¬a ∨ ¬a, that is, ¬¬a ∨ ¬a is not Kripke-valid.
(ii) ¬¬a→ a is not Kripke-valid. In the Kripke-model

k1 • a

k0 •

OO

k01 a holds, and due to k1
 a we have k0
¬¬a (cf. Remark 2.9.27 (ii)).
Therefore k01¬¬a→ a holds, that is, ¬¬a→ a is not Kripke-valid.
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(iii) (a→ b)→ (¬a ∨ b) is not Kripke-valid. In the Kripke-model

k3 • a, b

k1 • b

??

k2 • a, b

__

k0 •

__ ??

k3
 a→ b holds, and k1
 a→ b holds due to k1
 b and k3
 b. Therefore
with k01 a and k2
 b also k0
 a→ b holds. k01¬a holds due to k2
 a,
and since k01 b holds, k01¬a ∨ b holds. Hence k01(a→ b)→ (¬a ∨ b)
holds, that is, (a→ b)→ (¬a ∨ b) is not Kripke-valid.

Remark 2.9.33. In a certain sense, the construction of intuitionistic
tableaux for a formula A could be understood as the search for a coun-
termodel for A. However, from an open tableau for A alone we cannot
necessarily extract a countermodel in general, as we just might not have
found a closed tableau for A yet (this is different from analytic tableaux
for classical (propositional) logic, where an open tableau for a formula A
excludes the existence of a closed tableau for A, and is hence sufficient for
having a countermodel; see also Remark 2.9.37 below).

Comparison with Beth- and Gentzen-tableaux. A common feature of
intuitionistic tableaux andKripke semantics can be seen in the use of certain
ordered states. In Kripke-models, this is given directly by the frames 〈K,≤〉.
In intuitionistic tableaux, collections of signed formulas can be interpreted
as states, which are given an ordering by applications of the IBMR. For
example, in the Beth-tableau for ¬¬(a ∨ ¬a) (cf. Example 2.9.12) we can
distinguish the following three states as ordered by applications of the
IBMR:

k0 =
{
f ¬¬(a ∨ ¬a) k1 =


t¬(a ∨ ¬a)
f a ∨ ¬a
f a
f ¬a

k2 =


t a
f a ∨ ¬a
f a
f ¬a

(For Gentzen-tableaux a similar interpretation can be upheld, but the
condition for applying the IBMR leads to different states. In the following,
we concentrate on Beth-tableaux as point of departure.)
To make this connection between intuitionistic tableaux and Kripke

semantics clearer, we first reformulate the tableau rules by using the forcing
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relation 
, respectively the negated forcing relation 1, with unsigned
formulas:30

α-rules

 k 
A ∧ B
k 
A
k 
B

k 1A ∨ B
k 1A
k 1B

k 1A→ B
k′
A
k′1B

k 
¬A
k′1A

k 1¬A
k′
A

â-rules

{
k 1A ∧ B

k 1A k 1B
k 
A ∨ B

k 
A k 
B
k 
A→ B

k′1A k′
B

where k ≤ k′.
Instead of using t- or f-signed formulas, the formulas α, α1, α2, â, â1, â2

in the α- and â-rules are now of the form k 
A and k 1A.
We do not use any kind of intuitionistic branch modification like the one

effected by the IBMR. Instead, the following proviso has to be observed:

(∗) In the case of α-rule applications to k 1A→ B and k 1¬A, the state
k′ has to be new; that is, the k′ in

α1
α2
, respectively α1, of such an α-rule

application must not occur in any formula preceding α1. In the case of
k 
A→ B and k 
¬A, the state k′ can be any state such that k ≤ k′.

A branch is closed if it contains the formulas k 
A and k 1A.

Example 2.9.34. The following is such a reformulated closed tableau
for the formula ¬¬(a ∨ ¬a):

0. k01¬¬(a ∨ ¬a)
1. k1
¬(a ∨ ¬a) (0)
2. k11 a ∨ ¬a (1)
3. k11 a (2)
4. k11¬a (2)
5. k2
 a (4)
6. k21 a ∨ ¬a (1)
7. k21 a (6)
8. k21¬a (6)

5 x 7

(Note that k11 a (in line 3) does not contradict k2
 a (in line 5), since
k1 6= k2.)
The introduction of new states k′ in tableaux according to the proviso (∗)

ensures that the monotonicity condition for the corresponding Kripke-
models is only fulfilled for formulas A which are forced in k (i.e., where
k 
A), and that it cannot be fulfilled for formulas A which are not forced
in k (i.e., where k 1A).

30A similar formulation with signed formulas can be found in Nerode [1990].
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The same result is achieved by using instead a trivially reformulated
version of the IBMR which now deletes formulas of the form 1A. The
tableau rules can then be reformulated—without making any reference to
states—as follows:

α-rules

 
A ∧ B

A

B

1A ∨ B
1A
1B

1A→ B

A
1B


¬A
1A

1¬A

A

â-rules

{
1A ∧ B
1A 1B


A ∨ B

A 
B


A→ B
1A 
B

where the symbols
, respectively1, have now simply replaced the signatures
t, respectively f, in the rules for Beth- and Gentzen-tableaux.

Example 2.9.35. The following is a reformulated closed Beth-tableau
(with the trivially reformulated IBMR) for the formula ¬¬(a ∨ ¬a):

0. 1¬¬(a ∨ ¬a) (–, 00)
1. 
¬(a ∨ ¬a) (0)
2. 1 a ∨ ¬a (1, 40)
3. 1 a (2, 40)
4. 1¬a (2, 40)
5. 
 a (4)
6. 1 a ∨ ¬a (1)
7. 1 a (6)
8. 1¬a (6)

5 x 7

Remark 2.9.36. It can be shown that `TB p A⇐⇒ `TG p A⇐⇒ 
A.31

Remark 2.9.37. For open tableaux the following holds: Whereas in
the case of analytic tableaux (i.e., in the case of tableaux for classical
propositional logic) one can always conclude from an open tableau for A
that A is not valid, this is not so for intuitionistic tableaux. Here Kripke-
validity of a formula A corresponds to the existence of a closed tableau for
A, but the existence of an open tableau forA does in general not correspond
to A not being Kripke-valid.

2.9.4. Relations between tableaux and dialogues. We have presented
analytic tableaux for classical propositional logic to begin with.32 Based on
analytic tableaux we have then given two kinds of tableaux for intuitionistic
propositional logic: Beth-tableaux and Gentzen-tableaux.33 These in turn

31See Fitting [1983], Troelstra and van Dalen [1988b] and the references given therein.
32Cf. Smullyan [1995].
33Cf. Beth [1955], [1956] and Fitting [1969], [1983].
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have been compared with Kripke semantics for intuitionistic propositional
logic.
We conclude with some observations concerning the relations between

closed tableaux and strategies, respectively between dialogues and tableaux.
On the level of dialogues and tableaux, one can observe the following

similarities:

(i) Both argumentation forms and tableau rules operate with signed
formulas. In both cases there are two signatures.

(ii) Each ‘application’ of an argumentation form or application of a tableau
rule (i.e., of an α- or â-rule) yields a formula (or formulas) of less
complexity than the complexity of the formula the argumentation form
or tableau rule has been applied to.

(iii) Neither dialogues nor tableaux have explicit rules for structural opera-
tions like thinning, contraction or cut (for cut our EI◦-dialogues34 will
be an exception). The structural operations of thinning and contraction
are only implicitly given in both cases.

(iv) For both dialogues and tableaux there is given a condition to terminate
their development after finitelymanymoves or tableau rule applications,
respectively. Fordialogues this is the condition forP winning a dialogue;
for tableaux this is the condition for closing a branch (viz. by observing
that an atomic formula occurs with contradicting signatures in a
branch).

Differences between dialogues and tableaux are:

(i) Dialogues are linear, since they are given as sequences of moves;
whereas tableaux are binary trees due to the branching â-rules.

(ii) In tableaux all signed expressions are formulas, whereas dialogues have
also signed expressions which are not formulas but are special symbols
(like e.g. ∧1 and ∧2).

(iii) Excepting the case of negation, each application of an α- or â-rule
yields two signed formulas in tableaux, whereas dialogues are developed
one move at a time, such that defense moves to given attack moves
need not necessarily be made.

(iv) In dialogues the possible moves are regulated by conditions like (D10)–
(D13) etc. No such conditions are necessary in the case of analytic
tableaux, and in the case of Beth- and Gentzen-tableaux the only
additional condition is the IBMR. Note, however, that the IBMR
only operates on signed formulas which are already part of a tableau

34See Chapter 5.
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as a result of applications of α- or â-rules. In dialogues, on the other
hand, the conditions can prevent moves which would be in accordance
with the argumentation forms as such.

Despite the similarities between dialogues and tableaux, transformations of
dialogues into tableaux, and vice versa, are rendered quite complicated by
these differences (see Felscher [1985]).
Although there are important differences between dialogues and tableaux,

it can be observed that closed tableaux and strategies are quite similar in
structure.

2.10. Summary

We have introduced the basic notions needed for a dialogical treatment
of propositional intuitionistic (resp. classical) logic: argumentation forms,
dialogues and strategies. We have then introduced variants of dialogues,
namely DI p-dialogues, classical dialogues, DI pc -, EI p- and EI

p
c -dialogues as

well as hypothetical dialogues. The distinguishing feature of DI pc -dialogues
and of EI pc -dialogues is that these dialogues—when won by the proponent
P—need not end with the assertion of an atomic formula but can end with
the assertion of a complex formula; whereas DI p- and EI p-dialogues won
by the proponent P can only end with the assertion of an atomic formula.
The DI pc - and EI

p
c -dialogues will be of special importance in the following

investigations. In a final digression, dialogues have been put into a broader
context by considering relations between dialogues and tableaux.



Chapter 3

EQUIVALENCE RESULTS FOR STRATEGIES
AND DERIVATIONS

We consider the sequent calculus LI pc as a generalization of the sequent
calculus LI p for intuitionistic propositional logic. As a main result we then
prove the equivalence of LI pc -provability and EI

p
c -dialogue-provability by

showing that EI pc -strategies and LI
p
c -derivations can be transformed into

each other. This is done similarly to the proof for classical propositional
logic given by Sørensen and Urzyczyn [2006], [2007].
The consideration of the sequent calculus LI pc and the introduction of

EI pc -dialogues is motivated by our goal to extend dialogues to definitional
dialogues (see Chapter 4). Definitional dialogues will allow for reasoning
about definitions for atomic formulas. The defining conditions of these
atomic formulas do not necessarily have to be given by atomic formulas only,
but can be given by any complex formula. We therefore have to make sure
that it is possible that dialogues in a strategy can not only end with P-moves
asserting atomic formulas, but that they can also endwithP-moves asserting
complex formulas. In sequent calculus this corresponds to having initial
sequents not only for atomic but also for complex formulas. Definitional
extensions of sequent calculus have been developed and analyzed by Hallnäs
and Schroeder-Heister [1990], [1991].35

The equivalence result for EI pc -dialogues to be proved in this chapter
will thus serve two purposes. First, it establishes the fact that EI pc -dialogues
validate exactly intuitionistic propositional logic. Second, it shows that
dialogues can in principle be used as a basis for reasoning about definitions
of the kind described. We can therefore provide dialogical foundations for
definitional reasoning.
We will also explain how structural operations like thinning, contraction

and exchange are incorporated in dialogues, and how this corresponds to
the structural rules of sequent calculi. Contraction is particularly important
in definitional reasoning, and more will be said about it in Chapter 4.

35See also Hallnäs [1991] and Schroeder-Heister [1992], [1993], [1994a].
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Finally, we will introduce dialogues and sequent calculi for intuitionistic
first-order logic. Of special interest are the sequent calculus LIc and
EIc-dialogues. These extend the sequent calculus LI

p
c and EI

p
c -dialogues,

respectively, from intuitionistic propositional logic to intuitionistic first-
order logic. It will be shown that the equivalence result for LI pc -provability
andEI pc -dialogue-provability can be generalized for the sequent calculus LIc
and EIc-dialogues. As a consequence, dialogical foundations in the sense of
formal dialogue semantics can be provided for definitional reasoning about
definitions containing any first-order formulas as defining conditions of
atomic formulas; this will be done in Chapter 4.

3.1. The sequent calculus LI p

We give the sequent calculus LI p for intuitionistic propositional logic.
Note that the axiom (Ida) is restricted to atomic formulas, that is, initial
sequents a ` a can only contain atomic formulas a. The sequent calculus
LI p is in this (and only in this) respect more closely related to the system
G3i of Troelstra and Schwichtenberg [2000], for example, than to Gentzen’s
original calculus LJ (see Gentzen [1935]). In the latter, initial sequents
are of the form A`A, where A can be an arbitrary formula. Such initial
sequents will be allowed in LI pc .

Definition 3.1.1. The sequent calculus LI p for intuitionistic proposi-
tional logic consists of the following rules, where Γ and ∆ are finite multisets
of formulas (the comma in antecedents of sequents stands for multiset
union, and singletons are written without braces):

Axiom

(Ida) (where a is atomic)
a ` a

Logical rules

Γ`A(¬`)
Γ,¬A`

Γ, A`
(`¬)

Γ`¬A

Γ, Ai `C(∧`) (i = 1, 2)
Γ, A1 ∧ A2 `C

Γ`A ∆`B (`∧)
Γ,∆`A ∧ B

Γ, A`C ∆, B `C
(∨`)

Γ,∆, A ∨ B `C
Γ`Ai (`∨) (i = 1, 2)

Γ`A1 ∨ A2

(cont’d on next page)
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Γ`A ∆, B `C
(→`)

Γ,∆, A→ B `C
Γ, A`B

(`→)
Γ`A→ B

Structural rules

Γ`C(Thin`)
Γ, A`C

Γ` (`Thin)
Γ`A

Γ, A,A`C
(Contr)

Γ, A`C

Γ`A ∆, A`B
(Cut)

Γ,∆`B
The rules (¬`), (∧`), (∨`) and (→`) are called left introduction rules,

and the rules (`¬), (`∧), (`∨) and (`→) are called right introduction
rules.

Remark 3.1.2. (Sequent calculus) derivations are defined as usual.

Example 3.1.3. Without using structural rules, there are the following
three derivations in LI p of the sequent `(a ∨ b)→¬¬(a ∨ b):
(i) (Ida) a ` a (`∨)

a ` a ∨ b

(Ida) b ` b (`∨)
b ` a ∨ b(∨`)

a ∨ b ` a ∨ b(¬`)
a ∨ b,¬(a ∨ b)`

(`¬)
a ∨ b `¬¬(a ∨ b)

(`→)
`(a ∨ b)→¬¬(a ∨ b)

(ii) (Ida) a ` a (`∨)
a ` a ∨ b(¬`)

a,¬(a ∨ b)`

(Ida) b ` b (`∨)
b ` a ∨ b(¬`)

b,¬(a ∨ b)`
(∨`)

a ∨ b,¬(a ∨ b)`
(`¬)

a ∨ b `¬¬(a ∨ b)
(`→)

`(a ∨ b)→¬¬(a ∨ b)

(iii) (Ida) a ` a (`∨)
a ` a ∨ b(¬`)

a,¬(a ∨ b)`
(`¬)

a `¬¬(a ∨ b)

(Ida) b ` b (`∨)
b ` a ∨ b(¬`)

b,¬(a ∨ b)`
(`¬)

b `¬¬(a ∨ b)
(∨`)

a ∨ b `¬¬(a ∨ b)
(`→)

`(a ∨ b)→¬¬(a ∨ b)
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These three derivations correspond to the strategies (i), (ii) and (iii),
respectively, that have been given in Example 2.2.16.

Remark 3.1.4. Except for the restriction of initial sequents a ` a to
atomic formulas a, the sequent calculus LI p is almost exactly like (the
propositional part of) Gentzen’s calculus LJ without the structural rule for
exchange (“Vertauschung”), that is, without the rule

∆, A, B,Γ`C
(Exch)

∆, B,A,Γ`C
In LI p, exchange is implicitly given by the fact that the antecedents of
sequents are multisets of formulas instead of lists of formulas. (This will
also be the case in all other sequent calculi to be introduced below.)

3.2. The sequent calculus LI pc

We introduce the sequent calculus LI pc for intuitionistic propositional
logic. This calculus differs from LI p only in that initial sequents given by the
axiom are not restricted to atomic formulas anymore, but can now contain
complex formulas as well.

Definition 3.2.1. We define LI pc to be LI p without the axiom being
restricted to atomic formulas, that is, instead of (Ida) we use the following
axiom:

(Id) (A atomic or complex)
A`A

The sequent calculus LI pc with atomic or complex initial sequents for intu-
itionistic propositional logic is thus given by the following rules:

Axiom

(Id) (A atomic or complex)
A`A

Logical rules

Γ`A(¬`)
Γ,¬A`

Γ, A`
(`¬)

Γ`¬A

Γ, Ai `C(∧`) (i = 1, 2)
Γ, A1 ∧ A2 `C

Γ`A ∆`B (`∧)
Γ,∆`A ∧ B

Γ, A`C ∆, B `C
(∨`)

Γ,∆, A ∨ B `C
Γ`Ai (`∨) (i = 1, 2)

Γ`A1 ∨ A2
(cont’d on next page)
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Γ`A ∆, B `C
(→`)

Γ,∆, A→ B `C
Γ, A`B

(`→)
Γ`A→ B

Structural rules

Γ`C(Thin`)
Γ, A`C

Γ` (`Thin)
Γ`A

Γ, A,A`C
(Contr)

Γ, A`C

Γ`A ∆, A`B
(Cut)

Γ,∆`B
As inLI p, Γ and∆ are finite multisets of formulas, the comma in antecedents
of sequents stands for multiset union, and singletons are written without
braces.

Example 3.2.2. The following LI pc -derivation corresponds to the EI
p
c -

strategy in Example 2.5.4:

(Id)
a ∨ b ` a ∨ b(¬`)

a ∨ b,¬(a ∨ b)`
(`¬)

a ∨ b `¬¬(a ∨ b)
(`→)

`(a ∨ b)→¬¬(a ∨ b)

Theorem 3.2.3. The calculi LI p and LI pc are equivalent.

Proof. The axiom (Ida) is a special case of (Id). Hence, every sequent
derivable in LI p is derivable in LI pc . And every sequent derivable in LI

p
c is

derivable in LI p because (Id) is derivable in LI p.
For example, consider the case of implication for atomic formulas a

and b:

(Ida) a ` a (Ida) b ` b(→`)
a, a→ b ` b

(`→)
a→ b ` a→ b

Similarly for the other connectives. Then one can show by induction that
every sequent of the form C `C for complex C is derivable in LI p. Thus
(Id) is derivable in LI p. a

Definition 3.2.4. A formula A is called LI pc -provable, if there is a
derivation of the sequent `A in LI pc . Notation: `LI pc A. (Likewise for LI

p

and all other sequent calculi to be introduced below.)
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3.3. Situations

In order to show that EI pc -strategies and LI
p
c -derivations can be trans-

formed into eachother, we introduce so-called situations. A situation codifies
certain information that is available at a given position in a dialogue as a
sequent. This sequent can then be used to give a corresponding LI pc -sequent.
Situations are also used in the opposite direction, that is, in constructing
an EI pc -strategy from an LI

p
c -derivation. In both cases, situations act as an

intermediate step.36

Definition 3.3.1. Let d be a (possibly empty) finiteEI pc -dialogue forA.
The empty EI pc -dialogue contains no moves and is called då . The situation
after d is written Γ`C and is defined as follows:
(i) The situation after the empty EI pc -dialogue då is `A.
(ii) If Γ`C is the situation after d , then the situation after d, 〈ä(n),

ç(n)〉 is
(a) Γ`C , if 〈ä(n), ç(n)〉 is a proponent move, that is, a proponent
move does not change the situation,

(b) Γ, B `C , if 〈ä(n), ç(n)〉 = 〈OB, [n − 1, D]〉, that is, if 〈ä(n),
ç(n)〉 is an opponent defense asserting B at position n,

(c) as follows, if 〈ä(n), ç(n)〉 = 〈O e, [n − 1, A]〉 where ä(m) = P D,
that is, if 〈ä(n), ç(n)〉 is an opponent attack stating e at position n
on an assertion D at position m:

Γ, A` if D = ¬A and e = A
Γ`A1 if D = A1 ∧ A2 and e = ∧1
Γ`A2 if D = A1 ∧ A2 and e = ∧2
Γ`Ai if D = A1 ∨ A2 and e = ∨
Γ, A`B if D = A→ B and e = A

Remark 3.3.2. In what follows, we will use ‘`LI pc ’ as the sequent symbol
in LI pc -sequents (now written: Γ`LI pc C ), in order to distinguish them from
situations (written: Γ`C ).

Remark 3.3.3. Γ is a set in the case of situations Γ`C , whereas in
sequents Γ`LI pc C it is a multiset.

Lemma 3.3.4. Let Γ`C be the situation after the EI pc -dialogue
d = 〈ä(0), ç(0)〉, 〈ä(1), ç(1)〉, 〈ä(2), ç(2)〉, . . . , 〈ä(m), ç(m)〉

36Cf. the definition of ‘position after’ in Sørensen and Urzyczyn [2006], respectively the
definition of ‘situation after’ in Sørensen and Urzyczyn [2007].
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for A. Then

(i) B ∈ Γ if and only if ä(i) = OB for 1 < i ≤ m, that is, if the opponent
move is not a symbolic attack but a move asserting B .

(ii) B = C if andonly if B = A, or if there is an opponent attack 〈ä(j) = O e,
ç(j) = [i, A]〉 on some formulaD for which the proponent move 〈ä(k) =
P B, ç(k) = [j,D]〉 is a defense.

(iii) ∅ = C if and only if there is an opponent attack 〈ä(j) = OA, ç(j) =
[i, A]〉 for which there is no proponent defense 〈ä(k) = P B, ç(k) =
[j,D]〉, that is, if and only if O has attacked ¬A.

Proof. By induction on the number ofmoves of theEI pc -dialogue d . a

Remark 3.3.5. If Γ`C is the situation after anEI pc -dialogue d 6= då for
A not ending in a proponent move, then in the move after d the proponent
can either attack any formula in Γ or assert C in a defense, if such a move
is not prohibited by the conditions (D10)–(D14).

3.4. If `EI pc A, then `LI pc A

It has to be shown that `EI pc A if and only if `LI pc A. We first prove the
implication from left to right.

Theorem 3.4.1. If `EI pc A, then `LI pc A.
Proof. Let S be a strategy37 for A and d = 〈ä(0), ç(0)〉, 〈ä(1), ç(1)〉,

〈ä(2), ç(2)〉, . . . , 〈ä(n), ç(n)〉 anEI pc -dialogue inS not ending in a proponent
move. We show by induction on the subtree below d in S that if Γ`C is
the situation after d , then Γ`LI pc C holds.
Since d is part of a strategy S, there is a proponentmove 〈ä(n+1) = P e,

ç(n + 1) = [j,Z]〉. This move is either an attack or a defense.

First, assume the proponentmove is an attack 〈ä(n+1) = P e, ç(n+1) =
[j,A]〉 on 〈ä(j) = OD, ç(j) = [i, Z]〉. Then D ∈ Γ by Lemma 3.3.4. Let
Γ′ = Γ r D, that is, the set Γ′ is Γ without D, and the corresponding
multiset has thus no occurrence of D either. We consider each form of D,
where D is a negation, conjunction, disjunction or implication:

(1) D = ¬A. Then the subtree below d depends on the form of A. We first
consider the cases where the conditions of (D14) are satisfied, that is, where
A either has not been asserted byO in d or where A has been asserted byO
but was attacked by P in d :

37In what follows, we consider EI pc -dialogues and EI
p
c -strategies. The prefix ‘EI

p
c ’ is

sometimes omitted for brevity.
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(a) If A is an atom a, then the subtree below d is

n + 1. P a [j,A]

and a ∈ Γ due to (D10) and Lemma 3.3.4. Then the situation is Γ′, a `C ,
and Γ`LI pc C is derivable by (Id), (Thin`), (¬`) and (`Thin):

38

(Id)
a `LI pc a

(Thin`)
Γ′, a `LI pc a(¬`)
Γ′, a,¬a `LI pc (`Thin)
Γ′, a,¬a `LI pc C

(b) For A = ¬E the subtree below d is

n + 1. P ¬E [j,A]
n + 2. OE [n + 1, A]

and the situation after position n+2 is Γ′, E `. Then Γ′, E `LI pc is derivable
by the induction hypothesis, and Γ`LI pc C is derivable by (`¬), (¬`) and
(`Thin):

Γ′, E `LI pc (`¬)
Γ′ `LI pc ¬E(¬`)
Γ′,¬¬E `LI pc (`Thin)
Γ′,¬¬E `LI pc C

(c) For A = E1 ∧ E2 the subtree below d is

n + 1. P E1 ∧ E2 [j,A]
n + 2. O ∧1 [n + 1, A] O ∧2 [n + 1, A]

and the situations after position n + 2 are Γ′ `E1 and Γ′ `E2. Then
Γ′ `LI pc E1 and Γ

′ `LI pc E2 are derivable by the induction hypothesis, and
Γ`LI pc C is derivable by (`∧), (Contr), (¬`) and (`Thin):

Γ′ `LI pc E1 Γ′ `LI pc E2 (`∧)
Γ′,Γ′ `LI pc E1 ∧ E2

(Contr)
Γ′ `LI pc E1 ∧ E2(¬`)
Γ′,¬(E1 ∧ E2)`LI pc (`Thin)
Γ′,¬(E1 ∧ E2)`LI pc C

38Where double lines indicate single or multiple applications of a rule.
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(d) For A = E1 ∨ E2 the subtree below d is

n + 1. P E1 ∨ E2 [j,A]
n + 2. O ∨ [n + 1, A]

and the situation after position n+2 is Γ′ `Ei . Then Γ′ `LI pc Ei is derivable
by the induction hypothesis, and Γ`LI pc C is derivable by (`∨), (¬`) and
(`Thin):

Γ′ `LI pc Ei (`∨)
Γ′ `LI pc E1 ∨ E2(¬`)
Γ′,¬(E1 ∨ E2)`LI pc (`Thin)
Γ′,¬(E1 ∨ E2)`LI pc C

(e) For A = E→ F the subtree below d is

n + 1. P E→ F [j,A]
n + 2. OE [n + 1, A]

and the situation after position n + 2 is Γ′, E `F . Then Γ′, E `LI pc F is
derivable by the induction hypothesis, and Γ`LI pc C is derivable by (`→),
(¬`) and (`Thin):

Γ′, E `LI pc F (`→)
Γ′ `LI pc E→ F

(¬`)
Γ′,¬(E→ F )`LI pc (`Thin)
Γ′,¬(E→ F )`LI pc C

Now we consider the cases where the conditions (i) and (ii) of (D14)
are not satisfied, that is, where A has been asserted by O in d without
having been attacked by P in d . If the conditions of (D14) are not
satisfied at position n + 1, then moves of the form 〈ä(n + 2) = O e,
ç(n+2) = [n+1, A]〉 are not possible. That is, for formulas ¬A the subtrees
below d all have the form

n + 1. P A [j,A]

where only the move of P at position n + 1 remains. We know at position
n + 1 that A ∈ Γ because the conditions of (D14) are not satisfied at
position n+1, andA therefore must be asserted in d byO. Let Γ′′ = Γ′rA.
Then Γ′′, A`LI pc C is derivable by the induction hypothesis, and Γ`LI pc C is
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derivable by (Id), (Thin`), (¬`) and (`Thin):

(Id)
A`LI pc A

(Thin`)
Γ′′, A`LI pc A(¬`)
Γ′′, A,¬A`LI pc (`Thin)
Γ′′, A,¬A`LI pc C

(2) D = A1 ∧ A2. Then the subtree below d is

n + 1. P ∧1 [j,A] respectively
n + 1. P ∧2 [j,A]

n + 2. OA1 [n + 1, D] n + 2. OA2 [n + 1, D]

and the situation after position n+2 is Γ′, A1 `C or Γ′, A2 `C , respectively.
Then Γ′, A1 `LI pc C respectively Γ

′, A2 `LI pc C is derivable by the induction
hypothesis, and Γ`LI pc C is derivable by (∧`):

Γ′, Ai `LI pc C(∧`)
Γ′, A1 ∧ A2 `LI pc C

(3) D = A1 ∨ A2. Then the subtree below d is

n + 1. P ∨ [j,A]
n + 2. OA1 [n + 1, D] OA2 [n + 1, D]

and the situations after position n + 2 are Γ′, A1 `C and Γ′, A2 `C . Then
Γ′, A1 `LI pc C and Γ

′, A2 `LI pc C are derivable by the induction hypothesis,
and Γ`LI pc C is derivable by (∨`) and (Contr):

Γ′, A1 `LI pc C Γ′, A2 `LI pc C(∨`)
Γ′,Γ′, A1 ∨ A2 `LI pc C

(Contr)
Γ′, A1 ∨ A2 `LI pc C

(4) D = A→ B . Then the subtree below d depends on the form of A. We
first consider the cases where the conditions of (D14) are satisfied, that is,
whereA either has not been asserted byO in d or whereA has been asserted
by O but was attacked by P in d :

(a) If A is an atom a, then the subtree below d is

n + 1. P a [j,A]
n + 2. OB [n + 1, D]

and a ∈ Γ by (D10) and Lemma 3.3.4. Let Γ′′ = Γ′r a. Then the situation
after position n + 2 is Γ′′, B `C . Then Γ′′, B `LI pc C is derivable by the
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induction hypothesis, and Γ`LI pc C is derivable by (Id) and (→`):

(Id)
a `LI pc a Γ′′, B `LI pc C(→`)
Γ′′, a, a→ B `LI pc C

(b) For A = ¬E the subtree below d is

n + 1. P ¬E [j,A]
n + 2. OE [n + 1, A] OB [n + 1, D]

and the situations after position n + 2 are Γ′, E ` and Γ′, B `C . Then
Γ′, E `LI pc and Γ

′, B `LI pc C are derivable by the induction hypothesis, and
Γ`LI pc C is derivable by (`¬), (→`) and (Contr):

Γ′, E `LI pc (`¬)
Γ′ `LI pc ¬E Γ′, B `LI pc C(→`)

Γ′,Γ′,¬E→ B `LI pc C
(Contr)

Γ′,¬E→ B `C
(c) For A = E1 ∧ E2 the subtree below d is

n + 1. P E1 ∧ E2 [j,A]
n + 2. O ∧1 [n + 1, A] O ∧2 [n + 1, A] OB [n + 1, D]

and the situations after position n + 2 are Γ′ `E1, Γ′ `E2 and Γ′, B `C .
Then Γ′ `LI pc E1, Γ

′ `LI pc E2 and Γ
′, B `LI pc C are derivable by the induction

hypothesis, and Γ`LI pc C is derivable by (`∧), (→`) and (Contr):

Γ′ `LI pc E1 Γ′ `LI pc E2 (`∧)
Γ′,Γ′ `LI pc E1 ∧ E2 Γ′, B `LI pc C(→`)

Γ′,Γ′,Γ′, (E1 ∧ E2)→ B `LI pc C
(Contr)

Γ′, (E1 ∧ E2)→ B `LI pc C

(d) For A = E1 ∨ E2 the subtree below d is

n + 1. P E1 ∨ E2 [j,A]
n + 2. O ∨ [n + 1, A] OB [n + 1, D]

and the situations after position n + 2 are Γ′ `Ei and Γ′, B `C . Then
Γ′ `LI pc Ei and Γ

′, B `LI pc C are derivable by the induction hypothesis, and
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Γ`LI pc C is derivable by (`∨), (→`) and (Contr):

Γ′ `LI pc Ei (`∨)
Γ′ `LI pc E1 ∨ E2 Γ′, B `LI pc C(→`)
Γ′,Γ′, (E1 ∨ E2)→ B `LI pc C

(Contr)
Γ′, (E1 ∨ E2)→ B `LI pc C

(e) For A = E→ F the subtree below d is

n + 1. P E→ F [j,A]
n + 2. OE [n + 1, A] OB [n + 1, D]

and the situations after position n + 2 are Γ′, E `F and Γ′, B `C . Then
Γ′, E `LI pc F and Γ

′, B `LI pc C are derivable by the induction hypothesis,
and Γ`LI pc C is derivable by (`→), (→`) and (Contr):

Γ′, E `LI pc F (`→)
Γ′ `LI pc E→ F Γ′, B `LI pc C(→`)
Γ′,Γ′, (E→ F )→ B `LI pc C

(Contr)
Γ′, (E→ F )→ B `LI pc C

Now we consider the cases where the conditions of (D14) are not satisfied,
that is, where A has been asserted by the opponent O in d without having
been attacked by the proponent P in d . If the conditions of (D14) are
not satisfied at position n + 1, then moves of the form 〈ä(n + 2) = O e,
ç(n + 2) = [n + 1, A]〉 are not possible. That is, for formulas A→ B the
subtrees below d all have the form

n + 1. P A [j,A]
n + 2. OB [n + 1, D]

where only the defense move ofO remains. Then B ∈ Γ′ after position n+2
by Lemma 3.3.4, and the situation is Γ′ `C . Furthermore, we know at
position n+1 thatA ∈ Γ because the conditions of (D14) are not satisfied at
position n+1, andA therefore must be asserted in d byO. Let Γ′′ = Γ′rB .
Then Γ′′, B `LI pc C is derivable by the induction hypothesis, and Γ`LI pc C is
derivable by (Id) and (→`):

(Id)
A`LI pc A Γ′′, B `LI pc C(→`)
Γ′′, A,A→ B `LI pc C

Second, assume the proponent move is a defense 〈ä(n + 1) = P E,
ç(n + 1) = [j,D]〉 to 〈ä(j) = OD, ç(j) = [i, Z]〉, or the initial move
〈ä(0) = P E, ç(0) = ∅〉. Then E = C by Lemma 3.3.4, where E is an atom,
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a negation, conjunction, disjunction or implication. We first consider the
cases where the conditions of (D14) are satisfied, that is, where E either has
not been asserted by O in d or where E has been asserted by O but was
attacked by P in d :

(1) E is an atom. Then E must be asserted by O in d due to (D10), and
E ∈ Γ by Lemma 3.3.4. Let Γ′ = ΓrE. Then Γ`LI pc C is derivable by (Id)
and (Thin`):

(Id)
E `LI pc E

(Thin`)
Γ′, E `LI pc E

(2) E = ¬F . Then the subtree below d is

n + 1. P ¬F [j,D]
n + 2. OF [n + 1, A]

and the situation after position n + 2 is Γ, F `. Then Γ, F `LI pc is derivable
by the induction hypothesis, and Γ`LI pc C is derivable by (`¬):

Γ, F `LI pc (`¬)
Γ`LI pc ¬F

(3) E = F1 ∧ F2. Then the subtree below d is

n + 1. P F1 ∧ F2 [j,D]
n + 2. O ∧1 [n + 1, A] O ∧2 [n + 1, A]

and the situations after position n+2 are Γ`F1 and Γ`F2. Then Γ`LI pc F1
and Γ`LI pc F2 are derivable by the induction hypothesis, and Γ`LI pc C is
derivable by (`∧) and (Contr):

Γ`LI pc F1 Γ`LI pc F2 (`∧)
Γ,Γ`LI pc F1 ∧ F2

(Contr)
Γ`LI pc F1 ∧ F2

(4) For E = F1 ∨ F2 the subtree below d is

n + 1. P F1 ∨ F2 [j,D]
n + 2. O ∨ [n + 1, A]

and the situation after position n + 2 is Γ`Fi . Then Γ`LI pc Fi is derivable
by the induction hypothesis, and Γ`LI pc C is derivable by (`∨).

Γ`LI pc Fi (`∨)
Γ`LI pc F1 ∨ F2
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(5) E = F →G . Then the subtree below d is

n + 1. P F →G [j,D]
n + 2. OF [n + 1, A]

and the situation after position n + 2 is Γ, F `G . Then Γ, F `LI pc G is
derivable by the induction hypothesis, and Γ`LI pc C is derivable by (`→):

Γ, F `LI pc G (`→)
Γ`LI pc F →G

Now we consider the cases where the conditions of (D14) are not
satisfied, that is, where E has been asserted by O in d without having been
attacked by P in d . If the conditions of (D14) are not satisfied at position
n + 1, then moves of the form 〈ä(n + 2) = O e, ç(n + 2) = [n + 1, A]〉 are
not possible. That is, for formulas E the subtrees below d all have the form

n + 1. P E [j,D]

where only the move of P at position n + 1 remains. We know at position
n+1 thatE ∈ Γ because the conditions of (D14) are not satisfied at position
n + 1, and E therefore must be asserted in d by O. In addition, E = C
by Lemma 3.3.4. Let Γ′′ = Γ′ r E. Then Γ′′, E `LI pc E is derivable by the
induction hypothesis, and Γ`LI pc C is derivable by (Id) and (Thin`):

(Id)
E `LI pc E

(Thin`)
Γ′′, E `LI pc E

Thus for every situation Γ`C in anEI pc -strategy there is a corresponding
sequent Γ`LI pc C in an LI

p
c -derivation. a

3.5. Possible situations

We define the notions of possible situation and substrategy. These will
be used in the proof of the converse direction of the equivalence result, that
is, for proving the implication from right (derivations) to left (strategies).

Definition 3.5.1. Let Γ`C be the situation after d . Then a possible
situation after d is a situation Γ′ `C ′, where Γ′ ⊆ Γ and C ′ = C or C ′ = ∅.
Furthermore, if Γ, b,¬b ` for atomic b is the situation after d , then Γ, b ` b
is a possible situation after d .

Remark 3.5.2. Instead of defining Γ, b ` b to be a possible situation
after d if Γ, b,¬b ` is the situation after d for atomic b, we could add the
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axiom

(Id′) (b atomic)
b,¬b `LI pc

to LI pc . (Id′) being derivable in LI
p
c , this would yield an equivalent calculus.

Definition 3.5.3. A substrategy for a possible situation Γ`C is a
subtree s of a dialogue tree t comprising as root node a node at an even
position in t with possible situation Γ`C and all descendents in t such that
s does not branch at even positions, s has as many nodes at odd positions
as there are possible moves for O, and all leaves are proponent moves such
that O cannot make another move.

Remark 3.5.4. Substrategies are different from strategies in that the
root node of a substrategy does not have to be the root node of the dialogue
tree as in strategies. Every substrategy is a subtree of a strategy.

3.6. If `LI pc A, then `EI pc A

We conclude the proof of `EI pc A if and only if `LI pc A by proving the
implication from right to left.

Theorem 3.6.1. If `LI pc A, then `EI pc A.
Proof. Let d be an EI pc -dialogue forA not ending in a proponent move.

We show by induction on the number of LI pc -inferences that if Γ`LI pc C ,
and Γ`C is a possible situation after d , then there is a subtree t below d
such that d

t
is a strategy for A.

The derivation can consist of the axiom, end with a logical rule or end
with a structural rule.

First, assume the derivation consists of the axiom

(Id)
B `LI pc B

Then B `B is a possible situation after the EI pc -dialogue d for A. Then by
Lemma 3.3.4 the formula B must have been asserted in an opponent move
because B = Γ. The formula B can be atomic or complex.

(1) B is atomic. Since the formula A (for which ä(0) = P A) cannot be
atomic, there is a proponent defense asserting B by Lemma 3.3.4. Then

d
n + 1. P B [j,D]

is a strategy since atoms cannot be attacked.
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(2) B is complex. Since B = Γ and B = C , the conditions of (D14)
cannot be satisfied. That is, B has been asserted by O in d but cannot
have been attacked by P in d . Otherwise, there would be a possible
attack 〈ä(n + 2) = O e, ç(n + 2) = [n + 1, A]〉 after the proponent move
〈ä(n + 1) = P B, ç(n + 1) = [j,Z]〉, yielding only possible situations where
B 6= C or B 6= Γ and Γ 6= ∅ or C 6= ∅ because all formulas B ′ resulting
from the opponent attack are of lower complexity than B . By Lemma 3.3.4
we know that B has been asserted by O in d since B = Γ; and if B has not
been attacked by P in d , then

d
n + 1. P B [j,D]

is a strategy since (D14) prohibits an opponent attack on B .

Second, assume the derivation ends with a logical rule. We consider first
the cases where the derivation ends with a right introduction rule. If C is
the formula introduced in the succedent of an LI pc -sequent, then Γ`C is
a possible situation after the EI pc -dialogue d for A, and by Lemma 3.3.4
either (a) C 6= A and there is some proponent defense 〈ä(n + 1) = P C,
ç(n + 1) = [j,D]〉, or (b) C = A. In the latter case, d must be the empty
dialogue då because A can only occur once and at position 0. We consider
both cases for each right introduction rule:

(1) The derivation ends with

Γ, B `LI pc (`¬)
Γ`LI pc ¬B

Then Γ`¬B is a possible situation after the EI pc -dialogue d for A.
(a) If ¬B 6= A, then there is some proponent defense 〈ä(n + 1) = P ¬B,
ç(n + 1) = [j,D]〉, and the subtree t below d is

n + 1. P ¬B [j,D]
n + 2. OB [n + 1, A]

and Γ, B ` is a possible situation after position n + 2 corresponding to
the premiss of (`¬). By the induction hypothesis there is a substrategy s
below t. Then

n + 1. P ¬B [j,D]
n + 2. OB [n + 1, A]

s

is a substrategy for Γ`¬B .
(b) If ¬B = A, then Γ = ∅, and the root of the subtree t below då is
now the move 〈ä(0) = P ¬B, ç(0) = ∅〉. This is followed by the move
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〈ä(1) = OB, ç(1) = [1, A]〉 at position 1, after which there is a substrategy
s by the induction hypothesis. Then 〈ä(0) = P ¬B, ç(0) = ∅〉, 〈ä(1) = OB,
ç(1) = [1, A]〉, s is a strategy for `¬B .
(2) The derivation ends with

Γ`LI pc A1 ∆`LI pc A2 (`∧)
Γ,∆`LI pc A1 ∧ A2

Then Γ,∆`A1 ∧ A2 is a possible situation after the EI pc -dialogue d for A.
(a) If A1 ∧ A2 6= A, then there is some proponent defense 〈ä(n + 1) =
P A1 ∧ A2, ç(n + 1) = [j,D]〉, and the subtree t below d is

n + 1. P A1 ∧ A2 [j,D]
n + 2. O ∧1 [n + 1, A] O ∧2 [n + 1, A]

and Γ`A1 and ∆`A2 are possible situations after positions n + 2 corre-
sponding to the premisses of (`∧). By the induction hypothesis there are
substrategies s and s ′ below t. Then

n + 1. P A1 ∧ A2 [j,D]
n + 2. O ∧1 [n + 1, A] O ∧2 [n + 1, A]

s s ′

is a substrategy for Γ,∆`A1 ∧ A2.
(b) If A1 ∧A2 = A, then Γ,∆ = ∅, and the root of the subtree t below då is
now the move 〈ä(0) = P A1 ∧ A2, ç(0) = ∅〉. This is followed by the moves
〈ä(1) = O ∧1, ç(1) = [1, A]〉 and 〈ä(1) = O ∧2, ç(1) = [1, A]〉 at position 1,
after which there are substrategies s and s ′ by the induction hypothesis.
Then

0. P A1 ∧ A2
1. O ∧1 [0, A] O ∧2 [0, A]

s s ′

is a strategy for `A1 ∧ A2.
(3) The derivation ends with

Γ`LI pc Ai (`∨)
Γ`LI pc A1 ∨ A2

Then Γ`A1 ∨ A2 is a possible situation after the EI pc -dialogue d for A.
(a) If A1 ∨ A2 6= A, then the subtree t below d is

n + 1. P A1 ∨ A2 [j,D]
n + 2. O ∨ [n + 1, A]
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and Γ`Ai is a possible situation after position n + 2 corresponding to
the premiss of (`∨). By the induction hypothesis there is a substrategy s
below t. Then

n + 1. P A1 ∨ A2 [j,D]
n + 2. O ∨ [n + 1, A]

s

is a substrategy for Γ`A1 ∨ A2.
(b) If A1 ∨ A2 = A, then Γ,∆ = ∅, and the root of the subtree t below
då is now the move 〈ä(0) = P A1 ∨ A2, ç(0) = ∅〉. This is followed by
the move 〈ä(1) = O ∨, ç(1) = [1, A]〉 at position 1, after which there is
a substrategy s by the induction hypothesis. Then 〈ä(0) = P A1 ∨ A2,
ç(0) = ∅〉, 〈ä(1) = O ∨, ç(1) = [1, A]〉, s is a strategy for `A1 ∨ A2.
(4) The derivation ends with

Γ, B `LI pc C (`→)
Γ`LI pc B → C

Then Γ`B → C is a possible situation after the EI pc -dialogue d for A.

(a) If B → C 6= A, then the subtree t below d is
n + 1. P B → C [j,D]
n + 2. OB [n + 1, A]

and Γ, B `C is a possible situation after position n + 2 corresponding to
the premiss of (`→). By the induction hypothesis there is a substrategy s
below t. Then

n + 1. P B → C [j,D]
n + 2. OB [n + 1, A]

s

is a substrategy for Γ`B → C .

(b) If B → C = A, then Γ,∆ = ∅, and the root of the subtree t below
då is now the move 〈ä(0) = P B → C, ç(0) = ∅〉. This is followed by
the move 〈ä(1) = OB, ç(1) = [1, A]〉 at position 1, after which there is
a substrategy s by the induction hypothesis. Then 〈ä(0) = P B → C,
ç(0) = ∅〉, 〈ä(1) = OB, ç(1) = [1, A]〉, s is a strategy for `B → C .

Now we consider the cases where the derivation ends with a left intro-
duction rule.

(1) The derivation ends with

Γ`LI pc B(¬`)
Γ,¬B `LI pc
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Then Γ,¬B ` is a possible situation after d , and by Lemma 3.3.4 the
dialogue d must contain an opponent move 〈ä(j) = O ¬B, ç(j) = [i, Z]〉.
Then for complex B not introduced by (Id)

n + 1. P B [j,A]
n + 2. O e [n + 1, A]

is a subtree t below d . The possible situation after position n + 2 depends
on the form of B , where B can be a negation, conjunction, disjunction or
implication. Then B was introduced by a right introduction rule (i.e., by
(`¬), (`∧), (`∨) or (`→)). We first consider these cases for complex B .39
After that we consider the case where the complex formula B has been
introduced by (Id); in this case the move 〈ä(n + 2) = O e, ç(n + 2) =
[n + 1, A]〉 is impossible. Finally, the remaining case where B is atomic is
treated.

(a) For B = ¬E the derivation ends with
Γ, E `LI pc (`¬)
Γ`LI pc ¬E(¬`)
Γ,¬¬E `LI pc

The subtree t below d is then
n + 1. P ¬E [j,A]
n + 2. OE [n + 1, A]

and Γ, E ` is a possible situation after position n + 2 corresponding to
the premiss of (`¬). By the induction hypothesis there is a substrategy s
below t. Then

n + 1. P ¬E [j,A]
n + 2. OE [n + 1, A]

s

is a substrategy for Γ,¬¬E `.
(b) For B = E1 ∧ E2 the derivation ends with

Γ`LI pc E1 ∆`LI pc E2 (`∧)
Γ,∆`LI pc E1 ∧ E2(¬`)
Γ,∆,¬(E1 ∧ E2)`LI pc

The subtree t below d is then
n + 1. P E1 ∧ E2 [j,A]
n + 2. O ∧1 [n + 1, A] O ∧2 [n + 1, A]

39Without loss of generality we assume that the respective right introduction rules are
applied in the last step of the derivation of the premiss of (¬`).
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andΓ`E1, respectively∆`E2, are possible situations in the left, respectively
right branch after position n+2 corresponding to the premisses of (`∧). By
the induction hypothesis there are substrategies s and s ′ below the branches
of t. Then

n + 1. P E1 ∧ E2 [j,A]
n + 2. O ∧1 [n + 1, A] O ∧2 [n + 1, A]

s s ′

is a substrategy for Γ,∆,¬(E1 ∧ E2)`.
(c) For B = E1 ∨ E2 the derivation ends with

Γ`LI pc Ei (`∨)
Γ`LI pc E1 ∨ E2(¬`)
Γ,¬(E1 ∨ E2)`LI pc

The subtree t below d is then
n + 1. P E1 ∨ E2 [j,A]
n + 2. O ∨ [n + 1, A]

and Γ`Ei is a possible situation after position n + 2 corresponding to
the premiss of (`∨). By the induction hypothesis there is a substrategy s
below t. Then

n + 1. P E1 ∨ E2 [j,A]
n + 2. O ∨ [n + 1, A]

s

is a substrategy for Γ,¬(E1 ∨ E2)`.
(d) For B = E→ F the derivation ends with

Γ, E `LI pc F (`→)
Γ`LI pc E→ F

(¬`)
Γ,¬(E→ F )`LI pc

The subtree t below d is then
n + 1. P E→ F [j,A]
n + 2. OE [n + 1, A]

and Γ, E `F is a possible situation after position n + 2 corresponding to
the premiss of (`→). By the induction hypothesis there is a substrategy s
below t. Then

n + 1. P E→ F [j,A]
n + 2. OE [n + 1, A]

s

is a substrategy for Γ,¬(E→ F )`.
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(e) If B is complex and was introduced by (Id), then the derivation ends
with

(Id)
B `LI pc B

(Thin`)
Γ, B `LI pc B(¬`)
Γ, B,¬B `LI pc

Then Γ, B,¬B ` is a possible situation after d , and by Lemma 3.3.4 the
dialogue d must contain the opponent moves 〈ä(j) = OB, ç(j) = [i, Z]〉
and 〈ä(l) = O ¬B, ç(l) = [k,Z]〉. Since B is complex, the conditions of
(D14) cannot be satisfied, as was shown in the treatment of (Id), case (2) on
page 60. That is, d contains the opponent move 〈ä(j) = OB, ç(j) = [i, Z]〉,
but no proponent attack 〈ä(m) = P e, ç(m) = [j,A]〉. Then the move
〈ä(n + 2) = O e, ç(n + 2) = [n + 1, A]〉 is impossible, and

d
n + 1. P B [j,A]

is a strategy for Γ, B,¬B `.
(f) Finally, we consider the case where B is atomic. Then B must have been
introduced by (Id), and the derivation ends with

(Id)
B `LI pc B

(Thin`)
Γ, B `LI pc B(¬`)
Γ, B,¬B `LI pc

Then Γ, B,¬B ` is a possible situation after d , and by Lemma 3.3.4 the
dialogue d must contain the opponent moves 〈ä(j) = O ¬B, ç(j) = [i, Z]〉
and 〈ä(l) = OB, ç(l) = [k,Z]〉. SinceB is atomic, themove 〈ä(n+2) = O e,
ç(n + 2) = [n + 1, A]〉 is impossible, and

d
n + 1. P B [j,A]

is a strategy for Γ, B,¬B `.
(2) The derivation ends with

Γ, Ai `LI pc C(∧`)
Γ, A1 ∧ A2 `LI pc C

Then Γ, A1 ∧ A2 `C is a possible situation after d , and by Lemma 3.3.4
the dialogue d must contain an opponent move 〈ä(j) = OA1 ∧ A2,
ç(j) = [i, Z]〉. Then

n + 1. P ∧1 [j,A] respectively
n + 1. P ∧2 [j,A]

n + 2. OA1 [n + 1, D] n + 2. OA2 [n + 1, D]
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is a subtree t1, respectively t2, below d with possible situations Γ, A1 `C
respectively Γ, A2 `C after positions n + 2 corresponding to the premiss of
(∧`). By the induction hypothesis there are substrategies s1 and s2 below
the subtrees t1, respectively t2, of t. Then

n + 1. P ∧1 [j,A] respectively
n + 1. P ∧2 [j,A]

n + 2. OA1 [n + 1, D] n + 2. OA2 [n + 1, D]
s1 s2

are substrategies for Γ, A1 ∧ A2 `C .
(3) The derivation ends with

Γ, B `LI pc D ∆, C `LI pc D(∨`)
Γ,∆, B ∨ C `LI pc D

Then Γ,∆, B ∨C `D is a possible situation after d , and by Lemma 3.3.4 the
dialogue d must contain an opponent move 〈ä(j) = OB ∨C, ç(j) = [i, Z]〉.
Then

n + 1. P ∨ [j,A]
n + 2. OB [n + 1, D] OC [n + 1, D]

is a subtree t below d with possible situations Γ, B `D (left branch) and
∆, C `D (right branch) after positions n + 2 corresponding to the left
respectively right premiss of (∨`). By the induction hypothesis there are
substrategies s and s ′ below the left, respectively right branch of t. Then

n + 1. P ∨ [j,A]
n + 2. OB [n + 1, D] OC [n + 1, D]

s s ′

is a substrategy for Γ,∆, B ∨ C `D.
(4) The derivation ends with

Γ`LI pc B ∆, C `LI pc D(→`)
Γ,∆, B → C `LI pc D

Then Γ,∆, B→C `D is a possible situation after d , and by Lemma 3.3.4 the
dialogue d must contain an opponentmove 〈ä(j) = OB→C, ç(j) = [i, Z]〉.
Then for complex B not introduced by (Id)

n + 1. P B [j,A]
n + 2. O e [n + 1, A] OC [n + 1, D]

is a subtree t below d with possible situation ∆, C `D in the right branch
after position n + 2 corresponding to the right premiss of (→`). The
possible situation in the left branch after position n+2 depends on the form
of B , where B can be a negation, conjunction, disjunction or implication,
and where B was introduced by a right introduction rule (i.e., by (`¬),
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(`∧), (`∨) or (`→)). We first consider these cases for complex B .40 After
that we consider the case where the complex formula B has been introduced
by (Id); in this case the move 〈ä(n + 2) = O e, ç(n + 2) = [n + 1, A]〉 in the
left branch of t is impossible. Finally, the remaining case where B is atomic
is treated.

(a) For B = ¬E the derivation ends with
Γ, E `LI pc (`¬)
Γ`LI pc ¬E ∆, C `LI pc D(→`)

Γ,∆,¬E→ C `LI pc D
The subtree t below d is then

n + 1. P ¬E [j,A]
n + 2. OE [n + 1, A] OC [n + 1, D]

and Γ, E ` is a possible situation in the left branch after position n + 2
corresponding to the premiss of (`¬). By the induction hypothesis there
are substrategies s and s ′ below the left, respectively right branch of t. Then

n + 1. P ¬E [j,A]
n + 2. OE [n + 1, A] OC [n + 1, D]

s s ′

is a substrategy for Γ,∆,¬E→ C `D.
(b) For B = E1 ∧ E2 the derivation ends with

Γ`LI pc E1 Γ`LI pc E2 (`∧)
Γ`LI pc E1 ∧ E2 ∆, C `LI pc D(→`)

Γ,∆, (E1 ∧ E2)→ C `LI pc D
The subtree t below d is then

n + 1. P E1 ∧ E2 [j,A]
n + 2. O ∧1 [n + 1, A] O ∧2 [n + 1, A] OC [n + 1, D]

and Γ`E1 respectively Γ`E2 are possible situations in the left, respectively
middle branch after position n + 2 corresponding to the premisses of (`∧).
By the induction hypothesis there are substrategies s , s ′ and s ′′ below the
branches of t. Then

n + 1. P E1 ∧ E2 [j,A]
n + 2. O ∧1 [n + 1, A] O ∧2 [n + 1, A] OC [n + 1, D]

s s ′ s ′′

is a substrategy for Γ,∆, (E1 ∧ E2)→ C `D.

40Without loss of generality we assume that the respective right introduction rules are
applied in the last step of the derivation of the left premiss of (→`).
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(c) For B = E1 ∨ E2 the derivation ends with
Γ`LI pc Ei (`∨)

Γ`LI pc E1 ∨ E2 ∆, C `LI pc D(→`)
Γ,∆, (E1 ∨ E2)→ C `LI pc D

The subtree t below d is then
n + 1. P E1 ∨ E2 [j,A]
n + 2. O ∨ [n + 1, A] OC [n + 1, D]

and Γ`Ei is a possible situation in the left branch after position n + 2
corresponding to the premiss of (`∨). By the induction hypothesis there
are substrategies s and s ′ below the branches of t. Then

n + 1. P E1 ∨ E2 [j,A]
n + 2. O ∨ [n + 1, A] OC [n + 1, D]

s s ′

is a substrategy for Γ,∆, (E1 ∨ E2)→ C `D.
(d) For B = E→ F the derivation ends with

Γ, E `LI pc F (`→)
Γ`LI pc E→ F ∆, C `LI pc D(→`)
Γ,∆, (E→ F )→ C `LI pc D

The subtree t below d is then
n + 1. P E→ F [j,A]
n + 2. OE [n + 1, A] OC [n + 1, D]

and Γ, E `F is a possible situation in the left branch after position n + 2
corresponding to the premiss of (`→). By the induction hypothesis there
are substrategies s and s ′ below the branches of t. Then

n + 1. P E→ F [j,A]
n + 2. OE [n + 1, A] OC [n + 1, D]

s s ′

is a substrategy for Γ,∆, (E→ F )→ C `D.
(e) If B is complex and was introduced by (Id), then the derivation ends
with

(Id)
B `LI pc B

(Thin`)
Γ, B `LI pc B ∆, C `LI pc D(→`)
Γ,∆, B, B → C `LI pc D

Then Γ,∆, B, B→C `D is a possible situation after d , and by Lemma 3.3.4
the dialogue d must contain the opponentmoves 〈ä(j) = OB, ç(j) = [i, Z]〉
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and 〈ä(l) = OB→C, ç(l) = [k,Z]〉. Since B is complex, the conditions of
(D14) cannot be satisfied, as was shown in the treatment of (Id), case (2) on
page 60. That is, d contains the opponent move 〈ä(j) = OB, ç(j) = [i, Z]〉,
but no proponent attack 〈ä(m) = P e, ç(m) = [j,A]〉. Then the move
〈ä(n + 2) = O e, ç(n + 2) = [n + 1, A]〉 is impossible, and

n + 1. P B [j,A]
n + 2. OC [n + 1, D]

is a subtree t below d for complex B introduced by (Id), with possible
situation ∆, C `D after position n+2 corresponding to the right premiss of
(→`). By the induction hypothesis there is a substrategy s below t. Then

n + 1. P B [j,A]
n + 2. OC [n + 1, D]

s

is a substrategy for Γ,∆, B, B → C `D.
(f) Finally, we consider the case where B is atomic. Then B must have been
introduced by (Id), and the derivation ends with

(Id)
B `LI pc B

(Thin`)
Γ, B `LI pc B ∆, C `LI pc D(→`)
Γ,∆, B, B → C `LI pc D

Then Γ,∆, B, B→C `D is a possible situation after d , and by Lemma 3.3.4
the dialogue d must contain the opponent moves 〈ä(j) = OB → C,
ç(j) = [i, Z]〉 and 〈ä(l) = OB, ç(l) = [k,Z]〉. Since B is atomic, the move
〈ä(n + 2) = O e, ç(n + 2) = [n + 1, A]〉 is impossible, and

n + 1. P B [j,A]
n + 2. OC [n + 1, D]

is a subtree t below d for atomic B with possible situation ∆, C `D after
position n+2 corresponding to the right premiss of (→`). By the induction
hypothesis there is a substrategy s below t. Then

n + 1. P B [j,A]
n + 2. OC [n + 1, D]

s

is a substrategy for Γ,∆, B, B → C `D.

Third, assume the derivation ends with a structural rule. Since (Cut) is
eliminable in LI pc , we consider only (Thin`), (`Thin) and (Contr):
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(1) The derivation ends with
Γ`LI pc C(Thin`)
Γ, B `LI pc C

Then Γ, B `C is a possible situation afterd , andΓ`C is a possible situation
after d as well, since Γ ⊆ Γ ∪ B .
(2) The derivation ends with

Γ`LI pc (`Thin)
Γ`LI pc B

Then Γ`B is a possible situation after d , and Γ` is a possible situation
after d as well, since Γ ⊆ Γ and the succedent is empty.
(3) The derivation ends with

Γ, B, B `LI pc C(Contr)
Γ, B `LI pc C

Then Γ, B `C is a possible situation after d , and Γ, B, B `C is a possible
situation after d as well, since Γ ∪ B ∪ B = Γ ∪ B in the case of situations
(cf. Remark 3.3.3).

Thus for every sequent Γ`LI pc C in an LI
p
c -derivation there is a corre-

sponding situation Γ`C in an EI pc -strategy. a

3.7. EI pc -provability is equivalent to LI pc -provability

We collect the results of the preceding sections into the following
corollaries:

Corollary 3.7.1. By Theorem 3.4.1 and Theorem 3.6.1 each EI pc -
strategy can be transformed into an LI pc -derivation and vice versa.

Corollary 3.7.2. By Theorem 3.2.3 and Corollary 3.7.1 the EI pc -dia-
logue-provable formulas are exactly the formulas provable in LI p. That is,
`EI pc A if and only if `LI p A.

Corollary 3.7.3. By Remark 2.2.24 the dialogue-provable formulas are
exactly the formulas provable in LI p. That is, `DI p A if and only if `LI p A.
Hence by Corollary 3.7.2 also `EI pc A if and only if `DI p A.

Remark 3.7.4. We have thus:

`EI p A
2.6.5⇐⇒ `DI p A

2.2.24⇐⇒ `LI p A
3.2.3⇐⇒ `LI pc A

3.7.1⇐⇒ `EI pc A.

Remark 3.7.5. Equivalence for DI pc -provability and LI
p
c -provability

can be proved similarly to the proofs of Theorem 3.4.1 and Theorem 3.6.1
for EI pc -provability.
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Compared with DI pc -dialogues, EI
p
c -dialogues have the technical advan-

tage that the O-move made at position n + 2 must be an attack on or a
defense to the immediately preceding P-move made at position n + 1 (due
to condition (E)). For DI pc -dialogues this does not have to be the case.
Situations would have to be defined a bit more general for O-moves 〈ä(n),
ç(n)〉 = 〈O e, [m,Z]〉, where m < n instead of m = n − 1 (cf. Defini-
tion 3.3.1). Consequently, the induction steps would have to be formulated
in a slightly more general way, too.

3.8. Structural reasoning in EI pc -dialogues

We have used sequent calculi where structural operations like thinning,
contraction and cut are explicitly given by the structural rules. This is not
the case for the dialogues considered so far. Here the structural operations
of thinning and contraction are only implicitly given by the conditions
defining the dialogues. The structural operation of exchange is implicit both
in the dialogues and sequent calculi considered so far. In the latter this is
due to the fact that the antecedents of sequents are conceived as multisets
(cf. Remark 3.1.4).41

We will now explain how structural reasoning in dialogues corresponds
to applications of structural rules in sequent calculi. Since the dialogues
that have as yet been dealt with do not contain an operation of cut, we will
consider only thinning, contraction and exchange here. The operation of
cut will be dealt with in detail in Chapter 5.

Remark 3.8.1. In EI pc -dialogues the case where the proponent P does
not use a formula B asserted in an opponent move 〈ä(j) = OB, ç(j) =
[i, Z]〉—either by attacking it with a move 〈ä(k) = P e, ç(k) = [j,A]〉
or by asserting it in a move—corresponds to an application of (Thin`)
introducing B in LI pc -derivations.
Consider the following example, where a → (b → a) is not provable

without such an assertion of b byO orwithout the corresponding application
of (Thin`), respectively:

0. P a→ (b→ a)
1. O a [0, A]
2. P b→ a [1, D]
3. O b [2, A]
4. P a [3, D]

(Id)
a `LI pc a(Thin`)
a, b `LI pc a (`→)
a `LI pc b→ a

(`→)
`LI pc a→ (b→ a)

41Instead of using the structural rules (Thin`), (`Thin) and (Contr), sequent calculi
with implicit thinning and contraction can be formulated as well.
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The formula b asserted by O at position 3 cannot be attacked by P; it
corresponds to the formula introduced by (Thin`).

Remark 3.8.2. In EI pc -dialogues the case where the proponent P does
not use a formula B by asserting it in a defense 〈ä(k) = P B, ç(k) = [j,D]〉
to an opponent attack 〈ä(j) = O e, ç(j) = [i, A]〉 corresponds to an
application of (`Thin) introducing B in LI pc -derivations.
Consider the following example, where a→ (¬a→¬b) is not provable

if P would assert ¬b in a defense or without the corresponding application
of (`Thin), respectively:

0. P a→ (¬a→¬b)
1. O a [0, A]
2. P ¬a→¬b [1, D]
3. O ¬a [2, A]
4. P a [3, A]

(Id)
a `LI pc a(¬`)
a,¬a `LI pc (`Thin)

a,¬a `LI pc ¬b (`→)
a `LI pc ¬a→¬b (`→)

`LI pc a→ (¬a→¬b)

To win the dialogue, the formula ¬b must not be asserted by the proponent
in a defense to the opponent attack at position 3; it corresponds to the
formula introduced by (`Thin). Similarly for a → (¬a → b), where P
cannot make the defense move 〈ä(4) = P b, ç(4) = [3, D]〉 because b has
not been asserted by O before.

Remark 3.8.3. InEI pc -dialogues the twofold usemade by the proponent
P of a formula asserted by the opponentO corresponds to an application of
the structural rule (Contr) in LI pc -derivations. The twofold use can consist
either

(1) in the twofold attack of a formula by the proponent P,

(2) in the twofold assertion by the proponent P of a formula asserted by
the opponent O before,

or

(3) in an attack of a formula A by the proponent P together with the
assertion of A by P.

That is, the twofold use can be of the following forms:

(1) k. OA [k − 1, Z] (2) k. OA [k − 1, Z]

..
.

..
.

l . P e [k,A] l . P A [i < l, Z]

..
.

..
.

m. P e [k,A] m. P A [j < m,Z]
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(3) k. OA [k − 1, Z] k. OA [k − 1, Z]

..
.

..
.

l . P e [k,A] respectively l . P A [i < l, Z]
..
.

..
.

m. P A [i < m,Z] m. P e [k,A]

Consider the following two examples in which the twofold use made by
P of an assertion made by O is of the form (1). The formulas ¬(a ∧ ¬a)
respectively¬¬(a∨¬a) are not provable without a twofold attack on a∧¬a
respectively ¬(a ∨ ¬a) by P, or without the corresponding application of
(Contr) in the LI pc -derivations, respectively:

(i) 0. P ¬(a ∧ ¬a) (Id)
a `LI pc a(¬`)
a,¬a `LI pc(∧`)

a, a ∧ ¬a `LI pc(∧`)
a ∧ ¬a, a ∧ ¬a `LI pc(Contr)

a ∧ ¬a `LI pc (`¬)
`LI pc ¬(a ∧ ¬a)

1. O a ∧ ¬a [0, A]
2. P ∧1 [1, A]
3. O a [2, D]
4. P ∧2 [1, A]
5. O ¬a [4, D]
6. P a [5, A]

The twofold attack at positions 2 and 4 corresponds to the contraction
of a ∧ ¬a, a ∧ ¬a to a ∧ ¬a.

(ii) 0. P ¬¬(a ∨ ¬a) (Id)
a `LI pc a (`∨)

a `LI pc a ∨ ¬a(¬`)
a,¬(a ∨ ¬a)`LI pc (`¬)
¬(a ∨ ¬a)`LI pc ¬a (`∨)
¬(a ∨ ¬a)`LI pc a ∨ ¬a(¬`)
¬(a ∨ ¬a),¬(a ∨ ¬a)`LI pc(Contr)

¬(a ∨ ¬a)`LI pc (`¬)
`LI pc ¬¬(a ∨ ¬a)

1. O ¬(a ∨ ¬a) [0, A]
2. P a ∨ ¬a [1, A]
3. O ∨ [2, A]
4. P ¬a [3, D]
5. O a [4, A]
6. P a ∨ ¬a [1, A]
7. O ∨ [6, A]
8. P a [7, D]

The twofold attack at positions 2 and 6 corresponds to the contraction
of ¬(a ∨ ¬a),¬(a ∨ ¬a) to ¬(a ∨ ¬a).
An example where the twofold use of a formula is of the form (2) is in

the following EI pc -strategy:42

0. P (a→ (a→ b))→ (a→ b)
1. O a→ (a→ b) [0, A]

(cont’d on next page)

42Cf. Keiff [2011].
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2. P a→ b [1, D]
3. O a [2, A]
4. P a [1, A]
5. O a→ b [4, D]
6. P a [5, A]
7. O b [6, D]
8. P b [3, D]

The proponentP uses the formula a asserted byO at position 3 twice: once at
position 4, and then again at position 6. The corresponding LI pc -derivation
with the corresponding application of (Contr) is:

(Id)
a `LI pc a

(Id)
a `LI pc a

(Id)
b `LI pc b(→`)

a, a→ b `LI pc b(→`)
a, a, a→ (a→ b)`LI pc b(Contr)
a, a→ (a→ b)`LI pc b(→`)
a→ (a→ b)`LI pc a→ b

(→`)
`LI pc (a→ (a→ b))→ (a→ b)

Two examples of strategies in which contraction is applied according to
form (3) can be found in Example 4.3.5; see also Remark 4.3.7.

Theorem 3.8.4. There are eliminable applications of the structural rules
(Thin`), (Contr) or (Cut) in LI pc that cannot be reflected in EI pc -dialogues.

Proof. There is exactly one EI pc -strategy S for a→ a, which by Corol-
lary 3.7.1 has exactly one correspondingLI pc -derivation without applications
of structural rules:

0. P a→ a
1. O a [0, A]
2. P a [1, D]

(Id)
a `LI pc a (`→)`LI pc a→ a

However, there are infinitely many LI pc -derivations of `LI pc a → a using
(eliminable applications of) the structural rules (Thin`) and (Contr), or
(Cut), but there is only the one strategy S which corresponds to all of
them. a

Theorem 3.8.5. There are eliminable applications of the structural rules
(Thin`) and (Contr) in LI pc that can be reflected in EI pc -dialogues.

Proof. Consider the following LI pc -derivation of `LI pc ¬(a ∧ ¬a) con-
taining eliminable applications of (Thin`) and (Contr) together with its
corresponding EI pc -strategy:
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(Id)
a `LI pc a(¬`)
a,¬a `LI pc(Thin`)
a,¬a, a `LI pc(∧`)

a, a ∧ ¬a, a `LI pc(∧`)
a, a ∧ ¬a, a ∧ ¬a `LI pc(∧`)

a ∧ ¬a, a ∧ ¬a, a ∧ ¬a `LI pc(Contr)
a ∧ ¬a, a ∧ ¬a `LI pc(Contr)

a ∧ ¬a `LI pc (`¬)
`LI pc ¬(a ∧ ¬a)

0. P ¬(a ∧ ¬a)
1. O a ∧ ¬a [0, A]
2. P ∧1 [1, A]
3. O a [2, D]
4. P ∧1 [1, A]
5. O a [4, D]
6. P ∧2 [1, A]
7. O ¬a [6, D]
8. P a [7, A]

The (eliminable) application of (Thin`) is reflected in an additional assertion
of a by O which is not attacked by P (the use of a by P in the move at
position 8 demands only one assertion of a by O), and the (eliminable)
application of (Contr) is reflected in the two twofold attacks at positions 2
and 6, respectively at positions 4 and 6. a

Remark 3.8.6. Exchange is implicit in LI pc because the antecedents in
LI pc -sequents are multisets. In EI

p
c -dialogues exchange is incorporated due

to the fact that for any two given assertions made by O for which there are
possible attacks by P, the proponent P can attack either of them, that is,
irrespective of their order in the dialogue.
As a consequence of the presence of exchange in EI pc -dialogues, multiple

assertions of the same formula made by the opponent O cannot in general
be distinguished with respect to their role in the dialogue. For example,
in the dialogue for ¬(a ∧ ¬a) presented in the proof of Theorem 3.8.5
there are two assertions of a made by the opponent O. Only one of them
is necessary for the move at position 8, while the other one is the result
of thinning. Which assertion corresponds to what cannot be determined
because of implicit exchange.

Definition 3.8.7. Contraction-free EI pc -dialogues are obtained from
EI pc -dialogues by adding the following condition:

(D13∗) For any move 〈ä(k) = OA, ç(k) = [j,Z]〉 there is at most one
move of the form 〈ä(l) = P e, ç(l) = [k,A]〉 or 〈ä(l) = P A,
ç(l) = [i, Z]〉, where j < k < l and i < l . That is, each assertion
of an O-signed formula may be used by P at most once.

Contraction-free EI pc -dialogues are thus defined by the conditions (D00),
(D01), (D02), (D10), (D11′), (D12′), (D13∗), (D14) and (E), with the
argumentation forms as given for dialogues.



76 3. Equivalence results for strategies and derivations

The results and observations just made on structural reasoning in EI pc -
dialogues apply directly to DI pc -dialogues. The only exception concerns
contraction-free DI pc -dialogues, which have to be defined as follows:

Definition 3.8.8. Contraction-free DI pc -dialogues are DI
p
c -dialogues

with the additional dialogue condition (D13∗). They are thus defined by
the conditions (D00), (D01), (D02), (D10), (D11), (D12), (D13), (D13∗)
and (D14), with the argumentation forms as given for dialogues.

3.9. Dialogues for first-order logic

So far, only propositional logic has been treated. We point out that
the results generalize to first-order logic, if the quantifiers are just seen
as generalizations of disjunction (in the case of the existential quantifier
∃) and of conjunction (in the case of the universal quantifier ∀) to the
infinite case. The interesting notions are then already given by considering
the propositional case.43 Nonetheless, we here compare some different
treatments of the first-order quantifiers ∀ and ∃ in a dialogue setting.
We first extend our language to first-order:

Definition 3.9.1. We extend our language to a first-order language
by adding variables x, y, . . . , terms t (where variables are terms), and the
logical constants ∀ (universal quantifier) and ∃ (existential quantifier). The
expression ∃ and terms t are also used as special symbols.
In addition to the usual definitions of bound variables and free occur-

rences of variables, we consider an occurrence of a variable in a symbolic
attack to be free.

Now we extend the concepts of argumentation form, dialogue and
strategy to first-order logic, following again the presentation of Felscher
[1985], [2002] with slight deviations.

Definition 3.9.2. We add argumentation forms for ∀ and ∃:
universal quantifier ∀: assertion: X ∀xA(x)

attack: Y t (Y chooses the term t)
defense: X A(x)[t/x]

existential quantifier ∃: assertion: X ∃xA(x)
attack: Y ∃
defense: X A(x)[t/x] (X chooses the term t)

43Itmight be observed that due to the constructive treatment of implication in intuitionistic
logic, quantification enters the picture already on the propositional level.
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where [t/x] is the substitution of the term t for the variable x, andA(x)[t/x]
is the result of substituting t for all occurrences of x in A. This substitution
instance is also written A(t).

Definition 3.9.3. Dialogues and strategies for first-order logic are de-
fined as propositional dialogues and strategies extended by the argumenta-
tion forms for ∀ and ∃.

Example 3.9.4. The first-order formula ¬¬∀xa(x)→∀x¬¬a(x) has
the following strategy:

0. P ¬¬∀xa(x)→∀x¬¬a(x)
1. O ¬¬∀xa(x) [0, A]
2. P ∀x¬¬a(x) [1, D]
3. O t1 [2, A] O t2 [2, A] O t3 [2, A] . . .
4. P ¬¬a(t1) [3, D] P ¬¬a(t2) [3, D] P ¬¬a(t3) [3, D] . . .
5. O ¬a(t1) [4, A] O ¬a(t2) [4, A] O ¬a(t3) [4, A] . . .
6. P ¬∀xa(x) [1, A] P ¬∀xa(x) [1, A] P ¬∀xa(x) [1, A] . . .
7. O ∀xa(x) [6, A] O ∀xa(x) [6, A] O ∀xa(x) [6, A] . . .
8. P t1 [7, A] P t2 [7, A] P t3 [7, A] . . .
9. O a(t1) [8, A] O a(t2) [8, A] O a(t3) [8, A] . . .
10. P a(t1) [5, A] P a(t2) [5, A] P a(t3) [5, A] . . .

As the domain of terms is denumerably infinite, the strategy consists of
denumerably infinitely many dialogues (indicated by ‘. . .’).

Remark 3.9.5. Infinite strategies can be avoided by replacing them by
their so-called skeletons (cf. Felscher [1985], [2002]).
A skeleton for a formula A is a subtree S of the dialogue tree for A such

that S does not branch at even positions, all branches of S are dialogues for
A won by P, and S has as many nodes at odd positions as there are possible
moves forO, with the following exceptions: Only one node at odd positions
n has to be considered if

(i) 〈ä(n) = O y, ç(n) = [m,A]〉 for 〈ä(m) = P ∀xA(x), ç(m) = [l, Z]〉
where the variable y is not occurring free in any expression ä(k)
with k < n. That is, O is attacking P ∀xA(x) according to the
argumentation form for ∀ (choosing t = y).

(ii) 〈ä(n) = OA(x)[y/x], ç(n) = [m,D]〉 for 〈ä(m) = P ∃, ç(m) = [l, A]〉
where the variable y is not occurring free in any expression ä(k) with
k < n. That is,O is defending an attack P ∃ on an assertionO ∃xA(x)
according to the argumentation form for ∃ (choosing t = y).

Remark 3.9.6. Skeletons are an improvement compared to strategies if
finite objects are preferred to infinite ones. However, from a technical point
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of view one might want to improve on skeletons by avoiding the following
property (cf. Felscher [1985], [2002]). Consider the two skeletons:

0. P ∃xa(x)→∃xa(x) 0. P ∃xa(x)→∃xa(x)
1. O ∃xa(x) [0, A] 1. O ∃xa(x) [0, A]
2. P ∃ [1, A] 2. P ∃xa(x) [1, D]
3. O a(y) [2, D] 3. O ∃ [2, A]
4. P ∃xa(x) [1, D] 4. P ∃ [1, A]
5. O ∃ [4, A] 5. O a(y) [4, D]
6. P a(y) [5, D] 6. P a(y) [3, D]

The skeleton on the left corresponds to a sequent calculus derivation of
∃xa(x) → ∃xa(x) where the right introduction rule for the existential
quantifier has to be applied before the left introduction rule due to the
eigenvariable condition in the latter.44

In the left skeleton the move O ∃ (at position 5) comes after the move
P ∃ (at position 3). In the skeleton on the right this order is reversed, and the
attack O ∃ at position 3 can be defended by P a(y) only at position 6 after
the assertion of a(y) in the defense move O a(y) at position 5. Felscher
observes that “[t]here are no phenomena of an analogous type in, say, the
sequent calculus”.45

Skeletons of the type on the right can be avoided by using the following
formal argumentation forms for ∀ and ∃ instead of the ones used so far. The
set of dialogue-provable formulas is not changed by that.

Definition 3.9.7. We define formal argumentation forms for the quan-
tifiers ∀ and ∃ as follows:46

(P ∀-form): assertion: P ∀xA(x)
attack: O y (with eigenvariable condition)
defense: P A(x)[y/x]

(O ∀-form): assertion: O ∀xA(x)
attack: P t
defense: OA(x)[t/x]

(P ∃-form): assertion: P ∃xA(x)
attack: O t
defense: P A(x)[t/x]

44Cf. Definition 3.10.1 below.
45See Felscher [1985, p. 223], Felscher [2002, p. 141].
46Cf. Felscher [1985], [2002]. As Felscher [2002, p. 142] explains (where the opponent is

denoted by ‘Q’), “[t]he adjective formal [. . .] refers to the fact that, contrary to the intuitive
understanding, in the attack Q t the term t is stated already by Q; eigenvariables chosen at a
later position then must respect these expressions Q t”.
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(O ∃-form): assertion: O ∃xA(x)
attack: P ∃
defense: OA(x)[y/x] (with eigenvariable condition)

where the eigenvariable condition is thaty does not occur free in an expression
(i.e., in an assertion or in a symbolic attack) before. That is, the move
〈ä(n) = O y, ç(n) = [m,A]〉, respectively the move 〈ä(n) = OA(x)[y/x],
ç(n) = [m,D]〉, in a dialogue is only possible if y does not occur free at
positions k < n in that dialogue.

Definition 3.9.8. A dialogue constructed in accordance with the for-
mal argumentation forms is called formal dialogue.
A formal dialogue tree is a tree whose branches contain as paths all

possible formal dialogues for a given formula.
P wins a formal dialogue for a formula A if the formal dialogue is finite,

begins with the move P A and ends with a move of P such that O cannot
make another move.

Definition 3.9.9. A formal dialogue is called DI-dialogue if it satisfies
the conditions (D00)–(D02) and (D10)–(D13) as given in Definitions 2.1.6
and 2.2.1.

Definition 3.9.10. A DIc-dialogue is a DI-dialogue that satisfies the
additional condition (D14) as given in Definition 2.5.1.

Definition 3.9.11. A formal dialogue is called EI-dialogue if it satisfies
the conditions (D00)–(D02), (D10)–(D13) and (E) as given in Defini-
tions 2.1.6, 2.2.1 and 2.6.1.

Definition 3.9.12. A formal dialogue is calledEIc-dialogue if it satisfies
the following conditions:

(D00) ä(n) is a P-signed expression if n is even and anO-signed expression
if n is odd. The expression in ä(0) is a complex formula.

(D01) If ç(n) = [m,A], then the expression in ä(m) is a complex formula
and ä(n) is an attack on this formula as determined by the relevant
argumentation form.

(D02) If ç(p) = [n,D], then ç(n) = [m,A] for m < n < p and ä(p)
is the defense of the attack ä(n) as determined by the relevant
argumentation form.

(D10) If, for an atomic formula a, ä(n) = P a, then there is anm such that
m < n and ä(m) = O a. That is, P may assert an atomic formula
only if it has been asserted by O before.

(D11′) If ç(p) = [n,D] for odd n, n < n′ < p, n′ − n is even and
ç(n′) = [m,A], then there is a p′ such that n′ < p′ < p and
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ç(p′) = [n′, D]. That is, if at a position p − 1 there are more than
one open attacks by O, then only the last of them may be defended
by P at position p.

(D12′) For every odd n there is at most one m such that ç(m) = [n,D].
That is, an attack by O may be defended by P at most once.

(D14) O can attack a formula C if and only if (i) C has not yet been
asserted by O, or (ii) C has already been attacked by P.

(E) All moves 〈ä(n), ç(n)〉 for n odd are of the form 〈ä(n), ç(n) =
[n − 1, Z]〉. That is, an opponent move made at position n is either
an attack or a defense of the immediately preceding move made by
the proponent at position n − 1.

Definition 3.9.13. A formal strategy for a formula A is a subtree S of
the formal dialogue tree forA such that S does not branch at even positions,
all branches of S are formal dialogues for A won by P, and S has as many
nodes at odd positions as there are possible moves forO, with the following
exceptions: Only one node at odd positions n has to be considered if

(i) 〈ä(n) = OA(x)[y/x], ç(n) = [m,D]〉 for 〈ä(m) = P ∃, ç(m) = [l, A]〉.
That is, the opponent is defending an attack P ∃ according to the
formal argumentation form (O ∃-form).

(ii) 〈ä(n) = O y, ç(n) = [m,A]〉. That is, the opponent makes an attack
move O y according to the formal argumentation form (P ∀-form).

(iii) 〈ä(n) = O t, ç(n) = [m,A]〉. That is, the opponent makes an attack
move O t according to the formal argumentation form (P ∃-form).

Formal strategies will also be called DI-strategies, DIc-strategies, EI-
strategies or EIc-strategies, depending on the respective underlying dia-
logues.

Example 3.9.14. The first-order formula ¬¬∀xa(x)→∀x¬¬a(x) has
the following formal strategy:

0. P ¬¬∀xa(x)→∀x¬¬a(x)
1. O ¬¬∀xa(x) [0, A]
2. P ∀x¬¬a(x) [1, D]
3. O y [2, A]
4. P ¬¬a(y) [3, D]
5. O ¬a(y) [4, A]
6. P ¬∀xa(x) [1, A]
7. O ∀xa(x) [6, A]
8. P y [7, A]

(cont’d on next page)
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9. O a(y) [8, D]
10. P a(y) [5, A]

Contrary to the infinite strategy of Example 3.9.4, this formal strategy
is finite.

Remark 3.9.15. Formal strategies are finite objects. Whereas formal
dialogue trees are infinite in general: the formal dialogues can be infinite
branches, and there can be infinitely many formal dialogues as branches in
a formal dialogue tree.
Dialogue trees for propositional formulas could also be represented by

objects containing infinitely many branches, since an infinite dialogue47

can be represented as a tree with infinitely many branches of unbounded
length. In our definition of dialogue trees (see Definition 2.2.10) an infinite
dialogue is always represented by a branch containing infinitely many paths.
However, in the case of first-order formulas there must be infinitely many
branches if a formal argumentation form for a quantifier is applied. These
branches cannot be represented as one infinite dialogue.

Remark 3.9.16. Every formal strategy can be transformed into a skele-
ton by replacing all attack movesO t in applications of the formal argumen-
tation form (P ∃-form) by moves O ∃.
For example, the formal strategy

0. P ∃xa(x)→∃xa(x)
1. O ∃xa(x) [0, A]
2. P ∃ [1, A]
3. O a(y) [2, D]
4. P ∃xa(x) [1, D]
5. O y [4, A]
6. P a(y) [5, D]

is transformed into the skeleton

0. P ∃xa(x)→∃xa(x)
1. O ∃xa(x) [0, A]
2. P ∃ [1, A]
3. O a(y) [2, D]
4. P ∃xa(x) [1, D]
5. O ∃ [4, A]
6. P a(y) [5, D]

Eigenvariable conditions for a term t in a formal strategy will not be
violated if t is removed in the transformation to a skeleton.

47See Remark 2.2.23 (i) for an example of an infinite dialogue for a propositional formula.
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Furthermore, it can be shown that every skeleton can be transformed
into a formal strategy. A transformation is presented in Felscher [1985],
where this is proved for E-strategies and E-skeletons. Since these concepts
are closely related to the concepts of formal strategy and skeleton as they
are used here, the result can be carried over directly.

We have thus the following notions of first-order intuitionistic dialogue-
provability:

Definition 3.9.17. A formula A is called DI-dialogue-provable if there
is a DI-strategy for A. Notation: `DIA.

Definition 3.9.18. A formula A is calledDIc-dialogue-provable if there
is a DIc-strategy for A. Notation: `DIc A.

Definition 3.9.19. A formula A is called EI-dialogue-provable if there
is an EI-strategy for A. Notation: `EIA.

Definition 3.9.20. A formula A is called EIc-dialogue-provable if there
is an EIc-strategy for A. Notation: `EIc A.

3.10. Sequent calculi for first-order logic

We define the sequent calculi LI and LIc for intuitionistic first-order
logic by adding logical rules for the quantifiers ∀ and ∃ to the propositional
calculi LI p and LI pc , respectively.

Definition 3.10.1. The sequent calculus LI for intuitionistic first-order
logic is the propositional calculus LI p with additional left and right intro-
duction rules for the quantifiers ∀ and ∃.48We give the whole calculus LI,
repeating the rules of LI p:

Axiom

(Ida) (where a is atomic)
a ` a

Propositional logical rules

Γ`A(¬`)
Γ,¬A`

Γ, A`
(`¬)

Γ`¬A

Γ, Ai `C(∧`) (i = 1, 2)
Γ, A1 ∧ A2 `C

Γ`A ∆`B (`∧)
Γ,∆`A ∧ B

(cont’d on next page)

48Again, Γ and ∆ are finite multisets of formulas. The comma in antecedents of sequents
stands for multiset union, and singletons are written without braces.
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Γ, A`C ∆, B `C
(∨`)

Γ,∆, A ∨ B `C
Γ`Ai (`∨) (i = 1, 2)

Γ`A1 ∨ A2

Γ`A ∆, B `C
(→`)

Γ,∆, A→ B `C
Γ, A`B

(`→)
Γ`A→ B

First-order logical rules

Γ, A(t)`B
(∀`)

Γ,∀xA(x)`B
Γ`A(y)

(`∀)
Γ`∀xA(x)

(y does not occur free in Γ)

Γ, A(y)`C
(∃`)

Γ,∃xA(x)`C
(y does not occur free in Γ, C )

Γ`A(t)
(`∃)

Γ`∃xA(x)

Structural rules

Γ`C(Thin`)
Γ, A`C

Γ` (`Thin)
Γ`A

Γ, A,A`C
(Contr)

Γ, A`C

Γ`A ∆, A`B
(Cut)

Γ,∆`B
Example 3.10.2. A derivation of the sequent `∃xa(x)→∃xa(x) in LI

is the following:

(Id)
a(y)` a(y)

(`∃)
a(y)`∃xa(x)

(∃`)
∃xa(x)`∃xa(x)

(`→)
`∃xa(x)→∃xa(x)

The derivation corresponds to the skeleton in Remark 3.9.16.

Definition 3.10.3. We define LIc to be LI without the axiom being
restricted to atomic formulas, that is, instead of (Ida) we use the following
axiom

(Id) (A atomic or complex)
A`A

The sequent calculus LIc with atomic or complex initial sequents for intuition-
istic first-order logic is thus given by the following rules:
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Axiom

(Id) (A atomic or complex)
A`A

Propositional logical rules

Γ`A(¬`)
Γ,¬A`

Γ, A`
(`¬)

Γ`¬A

Γ, Ai `C(∧`) (i = 1, 2)
Γ, A1 ∧ A2 `C

Γ`A ∆`B (`∧)
Γ,∆`A ∧ B

Γ, A`C ∆, B `C
(∨`)

Γ,∆, A ∨ B `C
Γ`Ai (`∨) (i = 1, 2)

Γ`A1 ∨ A2

Γ`A ∆, B `C
(→`)

Γ,∆, A→ B `C
Γ, A`B

(`→)
Γ`A→ B

First-order logical rules

Γ, A(t)`B
(∀`)

Γ,∀xA(x)`B
Γ`A(y)

(`∀)
Γ`∀xA(x)

(y does not occur free in Γ)

Γ, A(y)`C
(∃`)

Γ,∃xA(x)`C
(y does not occur free in Γ, C )

Γ`A(t)
(`∃)

Γ`∃xA(x)

Structural rules

Γ`C(Thin`)
Γ, A`C

Γ` (`Thin)
Γ`A

Γ, A,A`C
(Contr)

Γ, A`C

Γ`A ∆, A`B
(Cut)

Γ,∆`B
As in LI, Γ and ∆ are finite multisets of formulas, the comma in antecedents
of sequents stands for multiset union, and singletons are written without
braces.

Remark 3.10.4. The sequent calculus LIc for intuitionistic first-order
logic is almost exactly like Gentzen’s sequent calculus LJ (see Gentzen
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[1935]). As in the propositional case (cf. Remark 3.1.4), we do not need a
structural rule for exchange, since we treat the antecedents of sequents not
as lists of formulas (as in LJ) but as multisets of formulas.

Theorem 3.10.5. The calculi LI and LIc are equivalent.

Proof. See Theorem 3.2.3. (Ida) is a special case of (Id), and (Id) is
derivable in LI. a

3.11. First-order equivalence results

In what follows, we assume without proof that the set of EIc-provable
formulas is a conservative extension of the set ofEI pc -provable formulas. Un-
der this assumption we can extend the equivalence result for EI pc -provability
and LI pc -provability by just adding the cases for the first-order fragment to
the proofs of Theorem 3.4.1 and Theorem 3.6.1, without having to modify
the proofs for the propositional fragment. Furthermore, we have to consider
only formal dialogues and formal strategies. This has the advantage that
no infinite strategies have to be considered.49 Moreover, for each formal
argumentation form there is then a corresponding sequent calculus rule and
vice versa (where the formal argumentation forms (P ∀-form), (O ∀-form),
(P ∃-form) and (O ∃-form) correspond to the sequent calculus rules (`∀),
(∀`), (`∃) and (∃`), respectively).
We extend the definition of situations to first-order formulas (cf. Defini-

tion 3.3.1):

Definition 3.11.1. Let d be a (possibly empty) finite EIc-dialogue
for A. The empty EIc-dialogue contains no moves and is called då . The
(first-order) situation after d is written Γ`C and is defined as follows:

(i) The situation after the empty EIc-dialogue då is `A.

(ii) If Γ`C is the situation after d , then the situation after d, 〈ä(n),
ç(n)〉 is
(a) Γ`C , if 〈ä(n), ç(n)〉 is a proponent move, that is, a proponent
move does not change the situation,

(b) Γ, B `C , if 〈ä(n), ç(n)〉 = 〈OB, [n − 1, D]〉, that is, if 〈ä(n),
ç(n)〉 is an opponent defense asserting B at position n,

49This could also be achieved by considering skeletons. However, the step to formal
argumentation forms has the additional advantage that no dialogues like the skeleton on
the right in Remark 3.9.6 can occur; these would not have a corresponding sequent calculus
derivation.
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(c) as follows, if 〈ä(n), ç(n)〉 = 〈O e, [n − 1, A]〉 where ä(m) = P D,
that is, if 〈ä(n), ç(n)〉 is an opponent attack stating e at position n
on an assertion D at position m:

Γ, A` if D = ¬A and e = A
Γ`A1 if D = A1 ∧ A2 and e = ∧1
Γ`A2 if D = A1 ∧ A2 and e = ∧2
Γ`Ai if D = A1 ∨ A2 and e = ∨
Γ, A`B if D = A→ B and e = A
Γ`A(x)[y/x] if D = ∀xA(x) and e = y
Γ`A(x)[t/x] if D = ∃xA(x) and e = t

(This definition differs from the one for the propositional case only in the
addition of the last two (types of) situations for the first-order formulas.
The definition of possible situation after d (see Definition 3.5.1) remains the
same for first-order situations.)

Remark 3.11.2. (i) We use the sequent symbol ‘`LIc ’ in LIc-sequents
(i.e. Γ`LIc C instead of Γ`C ) in what follows, in order to distinguish
them from situations (written Γ`C ).

(ii) Γ is a set in situations Γ`C , whereas in LIc-sequents Γ`LIc C it is a
multiset.

(iii) Lemma 3.3.4 holds without change also for first-order situations.

Theorem 3.11.3. There is an EIc-strategy for a formula A if and only if
there is a derivation of the sequent `A (resp. `LIc A) in LIc, that is, `EIc A if
and only if `LIc A.

Proof. We first show the direction from left to right, that is, we show
that if `EIc A, then `LIc A.
Let S be an EIc-strategy for A and let

d = 〈ä(0), ç(0)〉, 〈ä(1), ç(1)〉, 〈ä(2), ç(2)〉, . . . , 〈ä(n), ç(n)〉

be an EIc-dialogue in S not ending in a proponent move. We show by
induction on the subtree below d in S that if Γ`C is the situation after d ,
then there is a derivation of the sequent Γ`LIc C .
Since d is part of anEIc-strategyS, there is a proponentmove 〈ä(n+1) =

P e, ç(n + 1) = [j,Z]〉. This move is either an attack or a defense.

First, assume the proponentmove is an attack 〈ä(n+1) = P e, ç(n+1) =
[j,A]〉 on 〈ä(j) = OD, ç(j) = [i, Z]〉. Then D ∈ Γ by Lemma 3.3.4 (cf.
Remark 3.11.2 (iii)). Let Γ′ = ΓrD, that is, the set Γ′ is Γ withoutD, and
the corresponding multiset has thus no occurrence of D either.
We consider the two first-order cases D = ∀xA(x) and D = ∃xA(x):
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(1) D = ∀xA(x). Then the subtree below d is
n + 1. P t [j,A]
n + 2. OA(x)[t/x] [n + 1, D]

and the situation after position n+2 is Γ′, A(x)[t/x]`C . Then the sequent
Γ′, A(t)`LIc C is derivable by the induction hypothesis, and Γ`LIc C is
derivable by (∀`):

Γ′, A(t)`LIc C(∀`)
Γ′,∀xA(x)`LIc C

(2) D = ∃xA(x). Then the subtree below d is
n + 1. P ∃ [j,A]
n + 2. OA(x)[y/x] [n + 1, D]

if the eigenvariable condition is satisfied, and the situation after position n+2
is Γ′, A(x)[y/x]`C . Then Γ′, A(y)`LIc C is derivable by the induction
hypothesis, and Γ`LIc C is derivable by (∃`):

Γ′, A(y)`LIc C(∃`)
Γ′,∃xA(x)`LIc C

Second, assume the proponent move is a defense 〈ä(n + 1) = P E,
ç(n+1) = [j,D]〉 to 〈ä(j) = OD, ç(j) = [i, Z]〉 or the initial move 〈ä(0) =
P E, ç(0) = ∅〉. Then E = C by Lemma 3.3.4 (cf. Remark 3.11.2 (iii)).
We first consider the cases where the conditions (i) and (ii) of (D14) are
satisfied, that is, where E either has not been asserted by O in d or where E
has been asserted by O but was attacked by P in d .
Again, we consider only the two first-order cases E = ∀xA(x) and

E = ∃xA(x):
(1) E = ∀xA(x). Then the subtree below d is

n + 1. P ∀xA(x) [j,D]
n + 2. O y [n + 1, A]

if the eigenvariable condition is satisfied, and the situation after position
n + 2 is Γ`A(x)[y/x]. Then Γ`LIc A(y) is derivable by the induction
hypothesis, and Γ`LIc C is derivable by (`∀):

Γ`LIc A(y) (`∀)
Γ`LIc ∀xA(x)

(2) For E = ∃xA(x) the subtree below d is
n + 1. P ∃xA(x) [j,D]
n + 2. O t [n + 1, A]
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and the situation after position n + 2 is Γ`A(x)[t/x]. Then Γ`LIc A(t) is
derivable by the induction hypothesis, and Γ`LIc C is derivable by (`∃).

Γ`LIc A(t) (`∃)
Γ`LIc ∃xA(x)

If the conditions (i) and (ii) of (D14) are not satisfied, that is, if E has
been asserted byO in d without having been attacked by P in d , then moves
of the form 〈ä(n + 2) = O e, ç(n + 2) = [n + 1, A]〉 are not possible. Hence
for formulas E the subtrees below d all have the form

n + 1. P E [j,D]

where only the move of P at position n + 1 remains. At position n + 1
we know that E ∈ Γ because the conditions of (D14) are not satisfied at
position n+1; thereforeE must have been asserted byO in d . Furthermore,
E = C by Lemma 3.3.4 (cf. Remark 3.11.2 (iii)). Let Γ′′ = Γ′ r E.
Then Γ′′, E `LIc E is derivable by the induction hypothesis, and Γ`LIc C is
derivable by (Id) and (Thin`):

(Id)
E `LIc E

(Thin`)
Γ′′, E `LIc E

Therefore, for every situation Γ`C in an EIc-strategy there is a corre-
sponding sequent Γ`LIc C in an LIc-derivation.

Now we show the remaining direction from right to left, that is, we show
that if `LIc A, then `EIc A.
Let d be an EIc-dialogue for A not ending in a proponent move. We

show by induction on the length of the LIc-derivation that if Γ`LIc C , and
Γ`C is a possible situation after d , then there is a subtree t below d such
that d

t
is an EIc-strategy for A.

The derivation can consist of the axiom, end with a logical rule or end
with a structural rule. Here we only have to consider the four cases of the
first-order logical rules, that is, where the derivation ends with an application
of (∀`), (`∀), (∃`) or (`∃).
We consider first the cases where the derivation ends with a right

introduction rule. If C is the formula introduced in the succedent of an
LI pc -sequent, then Γ`C is a possible situation after the EI pc -dialogue d
for A, and by Lemma 3.3.4 (cf. Remark 3.11.2 (iii)) either (a) C 6= A and
there is some proponent defense 〈ä(n + 1) = P C, ç(n + 1) = [j,D]〉, or (b)
C = A. In the latter case, d must be the empty dialogue då because A can
only occur once and at position 0. We consider both cases for each of the
two right introduction rules:
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(1) The derivation ends with

Γ`LIc B(y) (`∀)
Γ`LIc ∀xB(x)

Then the eigenvariable condition is satisfied, and Γ`∀xB(x) is a possible
situation after the EIc-dialogue d for A.

(a) If ∀xB(x) 6= A, then there is some proponent defense 〈ä(n + 1) =
P ∀xB(x), ç(n + 1) = [j,D]〉, and the subtree t below d is

n + 1. P ∀xB(x) [j,D]
n + 2. O y [n + 1, A]

and Γ`B(x)[y/x] is a possible situation after position n+2 corresponding
to the premiss of (`∀). By the induction hypothesis there is a substrategy s
below t. Then

n + 1. P ∀xB(x) [j,D]
n + 2. O y [n + 1, A]

s

is a substrategy for Γ`∀xB(x).
(b) If ∀xB(x) = A, then Γ = ∅, and the root of the subtree t below då
is now the move 〈ä(0) = P ∀xB(x), ç(0) = ∅〉. This is followed by the
move 〈ä(1) = O y, ç(1) = [1, A]〉, after which there is a substrategy s by the
induction hypothesis. Then

0. P ∀xB(x)
1. O y [0, A]

s

is a strategy for `∀xB(x).
(2) The derivation ends with

Γ`LIc B(t) (`∃)
Γ`LIc ∃xB(x)

Then Γ`∃xB(x) is a possible situation after the EIc-dialogue d for A.
(a) If ∃xB(x) 6= A, then the subtree t below d is

n + 1. P ∃xB(x) [j,D]
n + 2. O t [n + 1, A]

and Γ`B(x)[t/x] is a possible situation after position n + 2 corresponding
to the premiss of (`∃). By the induction hypothesis there is a substrategy s
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below t. Then
n + 1. P ∃xB(x) [j,D]
n + 2. O t [n + 1, A]

s

is a substrategy for Γ`∃xB(x).
(b) If ∃xB(x) = A, then Γ = ∅, and the root of the subtree t below då
is now the move 〈ä(0) = P ∃xB(x), ç(0) = ∅〉. This is followed by the
move 〈ä(1) = O t, ç(1) = [1, A]〉, after which there is a substrategy s by
the induction hypothesis. Then 〈ä(0) = P ∃xB(x), ç(0) = ∅〉, 〈ä(1) = O ∨,
ç(1) = [1, A]〉, s is a strategy for `∃xB(x).

Finally, we consider the cases where the derivation ends with a left
introduction rule.

(1) The derivation ends with

Γ, B(t)`LIc C(∀`)
Γ, ∀xB(x)`LIc C

Then Γ, ∀xB(x)`C is a possible situation after the EIc-dialogue d for A,
and by Lemma 3.3.4 (cf. Remark 3.11.2 (iii)) this dialogue d must contain
an opponent move 〈ä(j) = O ∀xB(x), ç(j) = [i, Z]〉. Then

n + 1. P t [j,A]
n + 2. OB(t) [n + 1, D]

is a subtree t below d with possible situation Γ, B(t)`C after position
n + 2 corresponding to the premiss of (∀`). By the induction hypothesis
there is a substrategy s below the subtree t. Then

n + 1. P t [j,A]
n + 2. OB(t) [n + 1, D]

s

is a substrategy for Γ,∀xB(x)`C .
(2) The derivation ends with

Γ, B(y)`LIc C(∃`)
Γ, ∃xB(x)`LIc C

Then the eigenvariable condition is satisfied, and Γ,∃xB(x)`C is a
possible situation after the EIc-dialogue d for A. By Lemma 3.3.4 (cf.
Remark 3.11.2 (iii)) this dialogue d must contain an opponent move
〈ä(j) = O ∃xB(x), ç(j) = [i, Z]〉. Then

n + 1. P ∃ [j,A]
n + 2. OB(y) [n + 1, D]
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is a subtree t below d with possible situation Γ, B(y)`C after position
n + 2 corresponding to the premiss of (∃`). By the induction hypothesis
there is a substrategy s below the subtree t. Then

n + 1. P ∃ [j,A]
n + 2. OB(y) [n + 1, D]

s

is a substrategy for Γ, ∃xB(x)`C .
Hence, for every first-order sequent Γ`LIc C in an LIc-derivation there

is a corresponding situation Γ`C in an EIc-strategy.
For each given LIc-derivation proving a formulaAwe can thus construct

an EIc-strategy for A and vice versa. a

Remark 3.11.4. We have thus:

`EIc A
3.11.3⇐⇒ `LIc A

3.10.5⇐⇒ `LIA
2.2.24⇐⇒ `DIA

2.6.5⇐⇒ `EIA.
Here we have only made use of formal EIc-, DI- and EI-dialogues,

respectively -strategies. Corresponding equivalence results can also be
established for skeletons and for strategies based on dialogues using the
following argumentation forms for the quantifiers ∀ and ∃ (as given in
Definition 3.9.2)

universal quantifier ∀: assertion: X ∀xA(x)
attack: Y t (Y chooses the term t)
defense: X A(x)[t/x]

existential quantifier ∃: assertion: X ∃xA(x)
attack: Y ∃
defense: X A(x)[t/x] (X chooses the term t)

insteadof the formal argumentation forms, byusing results ofFelscher [1985]
which he summarizes as follows (see Felscher [1985, p. 238]):

For each of the following types of objects

(1) D-dialogues
(2) D-skeletons,
(3) E-skeletons,
(4) formal E-strategies,

we have defined algorithms, transforming the objects of the one
type into those of the adjoining types and vice versa.

(Where formal E-strategies are exactly our EI-strategies, D-dialogues are
our DI p-dialogues when extended to first-order formulas by adding the
above two argumentation forms for ∀ and ∃; D- and E-skeletons are like
our DI- and EI-strategies when replaced by skeletons.)
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Compared with formal dialogues, dialogues using the above two argu-
mentation forms for ∀ and ∃ have the advantage that all argumentation
forms are independent of whether the assertion is made by the proponent P
or by the opponent O. These argumentation forms are player-independent,
or P/O-symmetric, in this sense.

3.12. Summary

We have introduced the sequent calculus LI pc and EI
p
c -dialogues. Com-

pared with the sequent calculus LI p and EI p-dialogues, their distinguishing
feature is that initial sequents for complex formulas are allowed and that
dialogues in EI pc -strategies can end with assertions of complex formulas,
respectively. We have then proved as a main result that LI pc -provability is
equivalent toEI pc -dialogue-provability, by showing that everyLI

p
c -derivation

can be transformed into an EI pc -strategy and vice versa. Together with
further results this establishes the equivalence of EI p-, DI p-, LI p-, LI pc -
and EI pc -provability. We have then considered structural reasoning in EI

p
c -

dialogues and have introduced contraction-free EI pc -dialogues. Finally, the
equivalence results have been generalized to first-order logic: EIc-, LIc-,
LI-, DI- and EI-provability are equivalent. The main result is of special
importance for the extension of dialogues to definitional dialogues; this will
be the subject of the next chapter.



Chapter 4

DIALOGUES FOR DEFINITIONAL REASONING

The principles of definitional reflection and definitional closure have been
introduced as sequent-style inferences by Hallnäs and Schroeder-Heister
[1990], [1991] (see also Hallnäs [1991] and Schroeder-Heister [1993]).
We introduce dialogues containing definitional reflection and definitional
closure as an additional argumentation form of definitional reasoning. The
resulting definitional dialogues will enable us to reason about definitions
for atomic formulas. The considered definitions are clausal definitions,
where the defining conditions are not restricted to atomic formulas but
can be given by arbitrary (first-order) formulas. These definitions are
thus a generalization of monotone inductive definitions50 or, equivalently,
of (implication-free) definite Horn clause programs as they are used in
standard logic programming based on the resolution principle.51

For definite Horn clause programs the principle of definitional closure
corresponds to the resolution principle. The principle of definitional
reflection can be seen as the dual to the principle of definitional closure. It
yields an extension of standard logic programming already for definite Horn
clause programs. A further extension results from the use of generalized
Horn clause programs, that is, from the use of clausal definitions for atomic
formulas whose defining conditions can be arbitrary formulas. The principle
of definitional closure allows us to infer an atomic formula from any of
its defining conditions. The principle of definitional reflection says that
whatever follows from each of the defining conditions of an atomic formula
follows from that atomic formula alone. With the argumentation form of
definitional reasoning, definitional dialogues will provide the corresponding
dialogical means for these extensions.
The clausal definitions need not be wellfounded. This leads to para-

doxes like Russell’s, whose dialogical treatment will be considered as an
example of definitional reasoning. The example shows that the structural

50Cf. Aczel [1977], Moschovakis [1974].
51For logic programming we refer to Lloyd [1993], Doets [1994], Apt [1997], Nienhuys-

Cheng and de Wolf [1997] and Jäger and Stärk [1998].
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operation of contraction can be critical in the presence of non-wellfounded
clausal definitions: without further restrictions, there are then strategies
for contradictory assertions. Certain restrictions concerning contraction
in definitional dialogues are considered. Finally, an alternative approach
(due to Kreuger [1994]) that does not restrict contraction is carried over to
definitional dialogues.

Definitional dialogues will be introduced in two steps: We first give a pre-
liminary definition (see Definition 4.2.1) of definitional dialogues, which is
based on the definition of EIc-dialogues. These (preliminary) definitional
dialogues are then examined for a non-wellfounded definition in a setting
with contraction. A comparison with derivations in the sequent calculus
LIc(D)—that is LIc (which has contraction) extended by definitional clo-
sure and definitional reflection—shows that provability by strategies of
preliminary definitional dialogues is not equivalent to provability in that
sequent calculus. A slight modification has to be made to the preliminary
definition to render the two notions of definitional dialogue provability and
sequent calculus provability coextensive. This modification yields the final
definition of definitional dialogues (see Definition 4.3.3).

4.1. Definitional reasoning

We introduce the argumentation form of definitional reasoning for
clausal definitions. Clausal definitions are collections of definitional clauses,
which are formulated over a first-order language.

Definition 4.1.1. The first-order language is as given inDefinition 3.9.1,
where for variables x, y, . . . , (individual) constants k, l,m, . . . and function
symbols f, g, . . . we define terms as follows:

(i) Every variable is a term.

(ii) Every individual constant is a term.

(iii) If f is an n-ary function symbol and t1, . . . , tn are terms, then
f(t1, . . . , tn) is also a term.

As before, we use a, b, c, . . . as relation symbols (or predicate symbols).
If a is an n-ary relation symbol and if t1, . . . , tn are terms, then a(t1, . . . , tn)
is an atomic formula (atom). Complex formulas are defined as usual.

Definition 4.1.2. A definitional clause is an expression of the form

a⇐ B1 ∧ . . . ∧ Bn
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for n ≥ 0, where a is atomic and the Bi in the body B1 ∧ . . . ∧ Bn of the
clause are the defining conditions for the head a.52 The defining conditions
Bi need not be atomic but can be any complex formula. Clauses with empty
body are called facts; we indicate empty bodies with the symbol ‘>’ (verum).

Example 4.1.3. (i) a⇐ (b→ c) ∧ d is a (propositional) definitional
clause with head a and body (b→ c) ∧ d , containing the two defining
conditions b→ c and d . (This clause can also be read as a first-order
clause in which all relation symbols have arity 0.)

(ii) a(x, y)⇐¬b(k, l, x) is a (quantifier-free) first-order definitional clause
with the binary relation a(x, y) in the head and having as defining
condition the complex formula ¬b(k, l, x).

(iii) a(x, y)⇐∃xb(k, l, f(x)) is a first-order definitional clause, where the
variable x in the functional term f(x) occurring as the third argument
of the ternary relation symbol b is bound by the existential quantifier.

Definition 4.1.4. A finite set D of definitional clauses

D


a⇐ Γ1

..
.

a⇐ Γk

is a (clausal) definition of the atom a, where Γi = B i
1 ∧ . . . ∧ B i

ni is the body
of the i-th clause (for 1 ≤ i ≤ k). These clauses are the defining clauses of a
with respect to definition D.
The set of defining conditions of a will be represented by D(a), that is,

D(a) = {Γ1, . . . ,Γk}.

Remark 4.1.5. We write the bodies Γi of definitional clauses as con-
junctions

B i
1 ∧ . . . ∧ B i

ni

of the defining conditions B i
li
.

They could also be written as a list or set B i
1, . . . , B

i
ni , where the comma

functions as a ‘structural conjunction’. The latter notation is more con-
venient in a sequent calculus setting. However, for dialogues we would
first have to introduce a means to handle such lists or sets, whereas we can
handle conjunctions directly via the argumentation form for ∧. We will
therefore use the former notation throughout.

52The symbol ‘⇐’ is used exclusively to write definitional clauses and should not be
confused with implication ‘→’.
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Definition 4.1.6. A definition is any finite set of definitional clauses.
Definitions D have thus the general form

D



a1⇐ Γ11

..
.

a1⇐ Γ1k1

..
.

an⇐ Γn1

..
.

an⇐ Γnkn
(In logic programming terms, definitions D are (a generalization of) logic
programs where the bodies of program clauses can be arbitrary formulas.)

We can now define an argumentation form that will allow us to reason
about such definitions.

Definition 4.1.7. For each atom a defined by definitional clauses

a⇐ B i
1 ∧ . . . ∧ B i

ni

with defining conditions

Γi = B i
1 ∧ . . . ∧ B i

ni (where 1 ≤ i ≤ k)
the following argumentation form of definitional reasoning determines how
an atom a that is stated by X can be attacked by Y and how this attack can
be defended by X . We use ‘D ’ as a special symbol to indicate the attack.

definitional reasoning: assertion: X a
attack: Y D (only if a 6= >)
defense: X Γi (X chooses i = 1, . . . , k)

For the verum> we impose the following restriction: The move X > cannot
be attacked with Y D .

Remark 4.1.8. We have defined the argumentation form of definitional
reasoning in such a way that atoms—with the exception of the verum>—can
be attacked independently of whether there are definitional clauses having
these atoms in their head or not. In other words, whenever a player asserts
an atom, the other player may ask for its definition, regardless of whether
one has been given or not. And we will not give any dialogue conditions
which would prohibit attacks on undefined atoms just because they are
undefined.
The restriction with respect to the verum > is necessary if > is treated as

an atomic formula. Otherwise it would be attackable as well. This would be
in conflict with its intended meaning, suggested by its use as an indicator
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of empty bodies of definitional clauses, that is, by standing for the empty
conjunction. The meaning of the verum > is stipulated by the imposed
restriction.

Remark 4.1.9. The argumentation form of definitional reasoning is
formulated for atoms a defined by definitional clauses

a⇐ B11 ∧ . . . ∧ B1n1

..
.

a⇐ Bk
1 ∧ . . . ∧ Bk

nk

That is, in definitional reasoning the Γi chosen by X in a defense to an
attack Y D on X a must be the body of a clause with head a in the case of
propositional clauses; bodies of definitional clauses not defining a cannot
be chosen.

Remark 4.1.10. In the case of first-order clauses one has to consider
substitution instances of heads and bodies of clauses.
Let the substitution ó be a most general unifier53 for the atom a and the

head a ′ of at least one first-order clause. Then the body Γi of such a clause
with head a ′ can be chosen in a defense X Γió to an attack Y D on X a
since aó ≡ a ′ó.54 That is, in order to defend such an attack, we first have to
look for a most general unifier ó which unifies a with the head of a clause
a ′⇐ Γi . If it exists,55 we apply it to Γi , and the defense move is X Γió.
For example, if the first-order clause a(t)⇐ b(x) is given by definition,

then an attack Y D on a move X a(x) can be defended with the move b(t).
That is, the definitional reasoning for the given clause is of the form

X a(x)
Y D
X b(t)

where the substitution ó = [t/x] is here the most general unifier for the
atom a(x) and the head a(t) of the definitional clause. Applying ó to the
body b(x) of the clause yields b(t), which is asserted in the defense move.
Although the unification step is made only implicitly in the definitional

reasoning, and substitutions are not extra marked down in dialogues, we
are in general interested in the substitutions computed in the construction
of strategies (see Example 4.2.9 below).

53A substitution ó is a unifier of two atoms a and b if aó ≡ bó, that is, if aó and bó are
syntactically identical. A substitution ó is a most general unifier of two atoms a and b if for
all unifiers ô of a and b it holds that ô = óñ for a substitution ñ.
54We write Aó to denote the result of the application of a substitution ó to a formula A.
55This is decidable by the unification algorithm; see e.g. Lloyd [1993, p. 24f.].
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Remark 4.1.11. The argumentation form of definitional reasoning is
the dialogical equivalent to the principles of definitional closure and defini-
tional reflection. Both principles are incorporated in the one argumentation
form of definitional reasoning.

Remark 4.1.12. As sequent-style inferences the principles of defini-
tional closure and reflection are formulated as follows. We consider the
set

D


a⇐ Γ1

..
.

a⇐ Γk
of definitional clauses defining the atom a, where Γi = B i

1 ∧ . . . ∧ B i
ni is the

body of the i-th clause defining a. The principle of definitional closure has
the form of a right introduction rule for atoms a defined by D:56

∆`Γi (`D)
∆` a

(definitional closure)

The principle of definitional reflection57 has the form of a left introduction
rule for atoms a defined by D:

∆,Γ1 `C . . . ∆,Γk `C(D`)
∆, a `C

(definitional reflection)

Fordefinitional clauses in a first-order language and substitutionsó replacing
variables by terms the principle of definitional closure is

∆`Γió (`D)
∆` aó

(definitional closure)

and the principle of definitional reflection is

{∆,Γió `C | b⇐ Γi ∈ D and a = bó}
(D`)

∆, a `C
(definitional reflection)

where for the correct handling of variables by means of substitution the
following proviso has to be observed:

For any substitution ó replacing variables by terms, the appli-
cation of definitional reflection is restricted to the cases where
D(aó) ⊆ (D(a))ó.

56The defining conditions Γi need not be written as a conjunction B i
1 ∧ . . .∧B i

ni but could
be given as a list or set B i

1, . . . , B
i
ni (cf. Remark 4.1.5). The principle of definitional closure

would then have to be given in the form

∆`B i
1 . . . ∆`B i

ni (`D)
∆` a

(to stay within our context of intuitionistic logic).
57See Hallnäs [1991] and Hallnäs and Schroeder-Heister [1990], [1991].
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That is, the set D(aó) of defining conditions of aó has to be a subset of the
set (D(a))ó of defining conditions obtained by applying the substitution ó
to the defining conditions of a.58

Formulated as sequent-style inferences, the principles of definitional
closure (`D) and definitional reflection (D`) can be added to the sequent
calculus LIc for intuitionistic first-order logic. For any given definition D
we then get a logic LIc(D) over the definition D.

Definition 4.1.13. For any given definition D, the sequent calculus
LIc(D) for intuitionistic first-order logic over D is:

Axiom

(Id) (A atomic or complex)
A`A

Propositional logical rules

Γ`A(¬`)
Γ,¬A`

Γ, A`
(`¬)

Γ`¬A

Γ, Ai `C(∧`) (i = 1, 2)
Γ, A1 ∧ A2 `C

Γ`A ∆`B (`∧)
Γ,∆`A ∧ B

Γ, A`C ∆, B `C
(∨`)

Γ,∆, A ∨ B `C
Γ`Ai (`∨) (i = 1, 2)

Γ`A1 ∨ A2

Γ`A ∆, B `C
(→`)

Γ,∆, A→ B `C
Γ, A`B

(`→)
Γ`A→ B

First-order logical rules

Γ, A(t)`B
(∀`)

Γ,∀xA(x)`B
Γ`A(y)

(`∀)
Γ`∀xA(x)

(y does not occur free in Γ)

Γ, A(y)`C
(∃`)

Γ, ∃xA(x)`C
(y does not occur free in Γ, C )

Γ`A(t)
(`∃)

Γ`∃xA(x)

(cont’d on next page)

58This proviso is part of the formulation of definitional reflection proposed in Hallnäs
and Schroeder-Heister [1990], [1991]. For other variants of definitional reflection see
Schroeder-Heister [2007a].
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Structural rules

Γ`C(Thin`)
Γ, A`C

Γ` (`Thin)
Γ`A

Γ, A,A`C
(Contr)

Γ, A`C

Γ`A ∆, A`B
(Cut)

Γ,∆`B

Definitional rules

∆`B i
1ó . . . ∆`B i

nió (`D)
∆` aó

{∆,Γió `C | b⇐ Γi ∈ D and a = bó}
(D`)

∆, a `C
(where D(aó) ⊆ (D(a))ó)

4.2. Definitional dialogues

The argumentation form of definitional reasoning combines the principle
of definitional closure and the principle of definitional reflection into one.
This corresponds to the fact that only one argumentation form is needed
for each logical constant, whereas in sequent calculi two rules—one left and
one right introduction rule—would be needed for each logical constant.
Fordialogues, the difference between definitional closure anddefinitional

reflection appears on the level of strategies. Here only one defense move
P Γi has to be given for an attack OD , whereas all possible defense moves
OΓi have to be given for an attack PD . In other words, in the first case
only the defining conditions Γi of one clause defining the attacked atom
have to be given, whereas in the second case the defining conditions Γi of
each clause defining the attacked atom have to be given.
Thus definitional reasoning in dialogues corresponds to the principles of

definitional closure and definitional reflection in sequent calculus as follows:

(i) Instances of the argumentation form of definitional reasoning in which
the attack move is OD correspond to applications of definitional
closure, and

(ii) instances of the argumentation form of definitional reasoning in which
the attack move is PD correspond to applications of definitional
reflection.
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Next we will formulate a preliminary definition of definitional dialogues
based on EIc-dialogues. A comparison with certain derivations in LIc(D)
will indicate that something is lacking in this preliminary definition, if a
full correspondence of definitional strategies with LIc(D)-derivations is to
be achieved. A final definition of definitional dialogues will be given in
Definition 4.3.3 after a discussion of a paradoxical definitional clause.

Definition 4.2.1. (Preliminary) definitional dialogues areEIc-dialogues
where the following changes are made.
Conditions (D00) and (D01) are replaced by the following conditions

(D00′) and (D01′), respectively, where the restriction of the expressions in
ä(0) and ä(m) to complex formulas is discarded; that is, a (preliminary)
definitional dialogue can start with the assertion of an atomic formula, and
atomic formulas can be attacked:

(D00′) ä(n) is a P-signed expression if n is even and anO-signed expression
if n is odd. The expression in ä(0) is a (complex or atomic) formula.

(D01′) If ç(n) = [m,A], then the expression in ä(m) is a formula and
ä(n) is an attack on this formula as determined by the relevant
argumentation form.

Condition (D02) remains without change:

(D02) If ç(p) = [n,D], then ç(n) = [m,A] for m < n < p and ä(p)
is the defense of the attack ä(n) as determined by the relevant
argumentation form.

Condition (D10) is omitted altogether, so that P can now assert atomic
formulas withoutO having asserted them before. Conditions (D11′), (D12′),
(D14) and (E) remain without change:

(D11′) If ç(p) = [n,D] for odd n, n < n′ < p, n′ − n is even and
ç(n′) = [m,A], then there is a p′ such that n′ < p′ < p and
ç(p′) = [n′, D]. That is, if at a position p − 1 there are more than
one open attacks by O, then only the last of them may be defended
by P at position p.

(D12′) For every odd n there is at most one m such that ç(m) = [n,D].
That is, an attack by O may be defended by P at most once.

(D14) O can attack a formula C if and only if (i) C has not yet been
asserted by O, or (ii) C has already been attacked by P.

(E) All moves 〈ä(n), ç(n)〉 for n odd are of the form 〈ä(n), ç(n) =
[n − 1, Z]〉. That is, an opponent move made at position n is either
an attack or a defense of the immediately preceding move made by
the proponent at position n − 1.
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The following proviso for applications of definitional reasoning in the
presence of variables is added:

(S) For any substitution ó replacing variables x, y, . . . by terms t, the
application of definitional reasoning with attack move PD is restricted
to the cases where D(aó) ⊆ (D(a))ó.

(This is the same proviso as in the principle of definitional reflection as
given above in Remark 4.1.12.)

Thus (preliminary) definitional dialogues are defined by the conditions
(D00′), (D01′), (D02), (D11′), (D12′), (D14), (S) and (E), with the
additional argumentation form of definitional reasoning.

Given en bloc, the definition of (preliminary) definitional dialogues is
as follows:

Argumentation forms for (preliminary) definitional dialogues:

negation ¬: assertion: X ¬A
attack: Y A
defense: no defense

conjunction ∧: assertion: X A1 ∧ A2
attack: Y ∧i (Y chooses i = 1 or 2)
defense: X Ai

disjunction ∨: assertion: X A1 ∨ A2
attack: Y ∨
defense: X Ai (X chooses i = 1 or 2)

implication→: assertion: X A→ B
attack: Y A
defense: X B

(P ∀-form): assertion: P ∀xA(x)
attack: O y (y not free before)
defense: P A(x)[y/x]

(O ∀-form): assertion: O ∀xA(x)
attack: P t
defense: OA(x)[t/x]

(P ∃-form): assertion: P ∃xA(x)
attack: O t
defense: P A(x)[t/x]

(O ∃-form): assertion: O ∃xA(x)
attack: P ∃
defense: OA(x)[y/x] (y not free before)
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definitional reasoning: assertion: X a
attack: Y D (only if a 6= >)
defense: X Γi (X chooses i = 1, . . . , k)

Conditions for (preliminary) definitional dialogues:

(D00′) ä(n) is a P-signed expression if n is even and anO-signed expression
if n is odd. The expression in ä(0) is a (complex or atomic) formula.

(D01′) If ç(n) = [m,A], then the expression in ä(m) is a formula and
ä(n) is an attack on this formula as determined by the relevant
argumentation form.

(D02) If ç(p) = [n,D], then ç(n) = [m,A] for m < n < p and ä(p)
is the defense of the attack ä(n) as determined by the relevant
argumentation form.

(D11′) If ç(p) = [n,D] for odd n, n < n′ < p, n′ − n is even and
ç(n′) = [m,A], then there is a p′ such that n′ < p′ < p and
ç(p′) = [n′, D]. That is, if at a position p − 1 there are more than
one open attacks by O, then only the last of them may be defended
by P at position p.

(D12′) For every odd n there is at most one m such that ç(m) = [n,D].
That is, an attack by O may be defended by P at most once.

(D14) O can attack a formula C if and only if (i) C has not yet been
asserted by O, or (ii) C has already been attacked by P.

(S) For any substitution ó replacing variables x, y, . . . by terms t,
the application of definitional reasoning with attack move PD is
restricted to the cases where D(aó) ⊆ (D(a))ó.

(E) All moves 〈ä(n), ç(n)〉 for n odd are of the form 〈ä(n), ç(n) =
[n − 1, Z]〉. That is, an opponent move made at position n is either
an attack or a defense of the immediately preceding move made by
the proponent at position n − 1.

The notions ‘(formal) dialogue won by P’, ‘(formal) dialogue tree’ and
‘(formal) strategy’ as defined for EIc-dialogues are directly carried over to
the corresponding notions for (preliminary) definitional dialogues.

Remark 4.2.2. Instead of the formal argumentation forms for the
quantifiers (as used in EIc-dialogues), one could use the following player-
independent argumentation forms (as given in Definition 3.9.7):

universal quantifier ∀: assertion: X ∀xA(x)
attack: Y t (Y chooses the term t)
defense: X A(x)[t/x]
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existential quantifier ∃: assertion: X ∃xA(x)
attack: Y ∃
defense: X A(x)[t/x] (X chooses the term t)

Remark 4.2.3. The omission of condition (D10) is compensated by the
fact that O can attack any atom asserted by P with a move OD , if allowed
by condition (D14).

Remark 4.2.4. The proviso (S) is not a restriction on definitions, but
only a condition for the applicability of definitional reasoning in the case of
proponent attacks.
In order to explain why the proviso has to be installed, we point out two

important consequences of it:59

(i) The proponentP cannot attack an atom a with amovePD if definitional
clauses with defining conditions Γi would have to be taken into account
in the opponent’s defense move(s) OΓi that are not relevant for a. For
example, for the definition

D

{
a(t)⇐>
a(x)⇐ b

(where a is unary and b has arity 0) there would be a strategy for a(x)→ b
if the proviso is not respected:

0. P a(x)→ b
1. O a(x) [0, A]
2. PD [1, A]
3. O b [2, D]
4. P b [1, D]

The move at position 2 violates the proviso, since for the substitution ó =
[t/x] we have D(a(x)ó) = D(a(t)) = {bó,>} = {b,>} and (D(a(x)))ó =
{bó} = {b}; thus D(a(x)ó) 6⊆ (D(a(x)))ó. As a(t) can be obtained by
the definition D while b cannot, there should not be a strategy for the
implication a(x)→ b for the given definition D. This is effected by the
proviso. The second clause of D is irrelevant for having a strategy for the
substitution instance a(t) of a(x):

0. P a(t)
1. OD [0, A]
2. P> [1, D]

59For a more detailed discussion of the proviso in the context of definitional reflection see
Hallnäs and Schroeder-Heister [1991], Schroeder-Heister [2007a] and de Campos Sanz and
Piecha [2009b].
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(ii) Another consequence of the proviso is that P cannot attack an atom
a with a move PD if the defining conditions of a contain variables not
occurring in a, that is, if the body of a clause contains variables which are
not occurring in the head a. For example, for the definition

D

{
c(t)⇐>
a(t′)⇐ c(x)

(where a and c are both unary) there would be a strategy for a(t′)→ c(t′)
if the proviso is not respected:

0. P a(t′)→ c(t′)
1. O a(t′) [0, A]
2. PD [1, A]
3. O c(t′) [2, D]
4. P c(t′) [1, D]

The move at position 2 violates the proviso, since for the substitution
ó = [t′/x] we have D(a(t′)ó) = D(a(t′)) = {c(x)} and (D(a(t′)))ó =
{c(x)ó} = {c(t′)}); thus D(a(t′)ó) 6⊆ (D(a(t′)))ó. As a(t′) can be
obtained by the definition D while c(t′) cannot, there should be no strategy
in this case, too. This is achieved by respecting the proviso.

Example 4.2.5. We consider the definition

De


a⇐>
d ⇐>
d ⇐ a

c⇐ a ∧ d
With respect to De , the following is a strategy for the atom c:

0. P c
1. OD [0, A]
2. P a ∧ d [1, D]
3. O ∧1 [2, A] O ∧2 [2, A]
4. P a [3, D] P d [3, D]
5. OD [4, A] OD [4, A]
6. P> [5, D] P a [5, D]
7. OD [6, A]
8. P> [7, D]

At position 0 the proponent P asserts the atom c. In definitional dialogues
this is allowed by condition (D00′), whereas in standard dialogues with
condition (D00) only complex formulas can be asserted in initial moves at
position 0. At position 1 this assertion is attacked by O according to the
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argumentation form of definitional reasoning. The proponent P defends
this attack by asserting the defining conditions a ∧ d of the attacked atom
c, as given by the last clause of definition De . The opponent O attacks
a ∧ d at position 3, and P defends at position 4 by asserting the atoms a
and d , respectively. The proponent P can assert the atomic formulas a and
d—without O having asserted them before—as there is no condition (D10)
in definitional dialogues, which would prohibit these moves. However,
the opponent O can attack any atoms asserted by P (if not prohibited by
condition (D14)), and does so with the move OD at position 5 in each of
the two dialogues.
In the left dialogue, the proponent defends the opponent’s attack on a

by asserting> at position 6 (there are no defining conditions for the atom a;
it is given as a fact by the first clause in De). In the right dialogue, the
proponent chooses to defend by asserting the defining condition a of d ,
as given in the third clause of De . The right dialogue then proceeds as the
left one. Alternatively, the proponent could have defended the opponent’s
attack by choosing to use the second clause of De . This clause gives d as a
fact, and the proponent’s defense would thus be the verum >. That is, the
right dialogue would end with the move P> already at position 6.
Both dialogues in the above strategy end with the assertion of the

verum >. As there is no attack possible on >, both dialogues are won by P.
The strategy contains only such applications of definitional reasoning in
which the opponent attacks atomic formulas with moves OD ; that is, only
the principle of definitional closure is employed here.

Example 4.2.6. An example where the principle of definitional reflec-
tion is used with respect to the definition De (just given in Example 4.2.5) is
the following strategy for the formula d → a:

0. P d → a
1. O d [0, A]
2. PD [1, A]
3. O> [2, D] O a [2, D]
4. P a [1, D] P a [1, D]
5. OD [4, A]
6. P> [5, D]

The first application of definitional reasoning (comprising positions 1–3)
is according to the principle of definitional reflection. Here the defining
conditions of each of the definitional clauses for the attacked atom d have to
be considered. AsDe contains two clauses for d , there are two defensemoves
(made at position 3) to be considered. In the left dialogue, the proponent
can only defend the opponent’s attack made at position 1 by asserting the
atom a. The following attack by O, asking for defining conditions of a,
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is defended by P with > (using the first clause of De , which is the only
definitional clause for a). Here the principle of definitional closure has been
employed. In the right dialogue, the proponent makes the same defense
move at position 4 as in the right dialogue. Due to condition (D14) the
opponent cannot attack the atom a: O has asserted a before (at position 3)
without P having attacked a.
The proponent could also make the move PD at position 4 in the right

dialogue instead. The dialogue would then end thus:

..
.

3. O a [2, D]
4. PD [3, A]
5. O> [4, D]
6. P a [1, D]

This yields a strategy in which the principle of definitional reflection has
been employed twice.

Example 4.2.7. For the definition De (see Example 4.2.5) there is no
strategy for the formula ¬d . The dialogue tree is

0. P ¬d
1. O d [0, A]
2. PD [1, A]
3. O> [2, D] O a [2, D]
4. ..

.

PD [3, A]
5. O> [4, D]

..
.

and contains only infinite dialogues.
In the left branch, the proponent can repeat the attack PD on O d . In

the right branch, the proponent can repeat the attacks on O d and O a. In
any case, the opponent can always defend these attacks. No other moves
are possible, since the verum > cannot be attacked.

Example 4.2.8. We now consider the following (first-order) definition
D, in which the atoms even(x) and odd(x) are two predicates, and s is a
unary function symbol (interpreted as the successor function on natural
numbers):60

D


even(0)⇐>

even(s(x))⇐ odd(x)
odd(x)⇐¬ even(x)

60See Hallnäs and Schroeder-Heister [1991, p. 657].
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Then for the given definition D the following definitional dialogue is a
strategy for ¬ even(s(0)):

0. P ¬ even(s(0))
1. O even(s(0)) [0, A]
2. PD [1, A]
3. O odd(0) [2, D]
4. PD [3, A]
5. O ¬ even(0) [4, D]
6. P even(0) [5, A]
7. OD [6, A]
8. P> [7, D]

The applications of definitional reasoning comprising the moves at po-
sitions 1–3 and 3–5, respectively, are according to the principle of def-
initional reflection. The opponent’s first defense move depends on the
substitution [0/x], which unifies the attacked atom even(s(0)) with the
head even(s(x)) of clause 2 and yields the corresponding defining condition
odd(x)[0/x] = odd(0), asserted by O at position 3. The opponent’s second
defense move depends on the same substitution [0/x]; it unifies odd(0) with
the head odd(x) of the third clause, allowing the opponent to defend with
the defining condition ¬ even(x)[0/x] = ¬ even(0) in the move at position 5.
The moves at positions 6–8 are definitional reasoning by the principle of
definitional closure. As > cannot be attacked, the dialogue ends with the
proponent’s move at position 8. By reasoning about the definition D we
have thus shown ¬ even(s(0)).
From a logic programming perspective this can be described as follows:

The initial move expresses in a formal way a query61 about the given
definition (or program) D like “Does ¬ even(s(0)) hold with respect to D?”.
We then try to answer that query by searching for a strategy with respect to
D, that is, by employing definitional reasoning (in addition to purely logical
reasoning). Finding a strategy means that the query has a positive answer.

Example 4.2.9. It is notonly of interestwhethera query can be answered
positively or not. We are also interested in the substitutionsmade if a positive
answer is obtained, that is, if a strategy is found.
We consider the following definition62

D

{
disease(k)⇐ symptom(l)
symptom(l)⇐ symptom(m) ∧ disease(n)

61For a precise exposition of (generalized) queries in a sequent calculus setting of logic
programming see Hallnäs and Schroeder-Heister [1990].
62See Hallnäs and Schroeder-Heister [1991, p. 657].
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where k, l,m, n are constants, and disease(x) and symptom(x) are two unary
predicates (whose intended meaning is indicated by their names).

(i) To find out what could be a possible disease if a certain symptom l is
observed, we can pose a query like symptom(l)→ disease(x). Here impli-
cation ‘→’ is used to express a query for disease(x) under the assumption
(or hypothesis) symptom(l). In a sequent calculus setting this can be made
explicit by writing symptom(l)` disease(x). In our dialogue setting this
would require an extension to hypothetical dialogues (cf. Section 2.8 and
the problems indicated there). However, for the intuitionistic interpretation
of implication used here, the representation of such queries as implications
is adequate. We obtain the following strategy:

0. P symptom(l)→ disease(x)
1. O symptom(l) [0, A]
2. P disease(x) [1, D]
3. OD [2, A]
4. P symptom(l) [3, D]

The atom symptom(l) asserted byP in the last move cannot be attacked with
a moveOD due to condition (D14): The opponent has already asserted the
atom symptom(l) at position 2, andP has not attacked it. In the definitional
reasoning the substitution [k/x] has been applied, where the first clause of
D was used to defend the opponent’s attack OD by asserting the defining
condition symptom(l) for disease(k). The answer to our query is therefore
that k is a possible disease for the observed symptom l .

(ii) To find out which symptom is an indicator for the disease n, we can
pose the query symptom(x)→ disease(n). The following is a strategy for
this query:

0. P symptom(x)→ disease(n)
1. O symptom(x) [0, A]
2. PD [1, A]
3. O symptom(m) ∧ disease(n) [2, D]
4. P ∧2 [3, A]
5. O disease(n) [4, D]
6. P disease(n) [1, D]

The last move cannot be further attacked with OD due to condition
(D14). At position 2 the proponent attacks the opponent’s assertion of
the atom symptom(x) by definitional reasoning with the move PD . The
opponentdefends this attackbygiving the defining conditions symptom(m)∧
disease(n) for symptom(l) according to the second clause in D. This move
depends on the application of the substitution [l/x] to symptom(x), which
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yields the head of the second clause. In other words, the atom symptom(x)
asserted at position 1 has first been unified with the head symptom(l) of
the second clause, the unifier being the substitution [l/x]. This substitution
[l/x]—which has been produced in the construction of the strategy—is what
we are interested in here: it tells us that we have to test for symptom l in
order to find disease n.

In (i) the query was answered by using definitional reasoning with attack
move OD , that is, by an application of the principle of definitional closure.
In (ii) there is no such possibility; only definitional reasoning with attack
move PD can be employed to answer the query, that is, only an application
of the principle of definitional reflection allows us to extract the desired
information from definition D.

Remark 4.2.10. Queries under atomic assumptions were represented
as implications having these assumptions as antecedents. We note that
this is in general not the same as putting the assumptions as additional
definitional clauses (in the form of facts) into the given definition.
For the query in Example 4.2.9 (i) this wouldmake no difference. Instead

of the query symptom(l)→ disease(x) we would use the query disease(x)
and add the antecedent symptom(l) as a fact to the given definition D,
yielding the following definition D′:

D′


symptom(l)⇐>
disease(k)⇐ symptom(l)
symptom(l)⇐ symptom(m) ∧ disease(n)

We then obtain the strategy

0. P disease(x)
1. OD [0, A]
2. P symptom(l) [1, D]
3. OD [2, A]
4. P> [3, D]

where in the first application of definitional reasoning (positions 1–3) the
substitution [k/x] has been applied. That is, we get the same answer to our
query as in Example 4.2.9 (i).
However, when we do likewise for the query symptom(x)→ disease(n)

of Example 4.2.9 (ii), we do not even obtain a strategy for the new query
disease(n) with respect to the extended definition

D′′


symptom(x)⇐>
disease(k)⇐ symptom(l)
symptom(l)⇐ symptom(m) ∧ disease(n)
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where the clause symptom(x)⇐> has now been added to D (instead of the
clause symptom(l)⇐> as in D′).
The dialogue tree for disease(n) with respect to D′′ is

0. P disease(n)
1. OD [0, A]

The proponent cannot answer the attack because disease(n) is not unifiable
withdisease(k) (i.e. the headof the secondclause inD′′), and the substitution
[l/x] can therefore not be obtained.

Remark 4.2.11. The argumentation form of definitional reasoning
allows for any attacks on atoms independently of whether they are defined
by a given definition or not. The only exception is the verum>, which cannot
be attacked at all (cf. Remark 4.1.8). And we have imposed no dialogue
conditions that would disallow attacks on undefined atoms just because they
are undefined. This has consequences concerning the notion of falsity and
its relation to negation (see Hallnäs and Schroeder-Heister [1991, section 4],
where it is also pointed out how this relates to the conception of negation as
finite failure63).
Let the falsum ⊥ stand for any atom which is not defined by a given

definition D, that is, which is not the head of any definitional clause in D.64
Then there exists a strategy for ⊥→ A, for any formula A:

0. P⊥→ A
1. O⊥ [0, A]
2. PD [1, A]

This means that definitional reasoning65 provides a principle of ex falso
quodlibet, as long as some atom is undefined66.
We also observe that for any undefined atom a there is a strategy for its

negation ¬a:
0. P ¬a
1. O a [0, A]
2. PD [1, A]

There is no strategy for a itself in this case (i.e., when a is undefined), the
dialogue tree being

63See Clark [1978].
64Any undefined nullary predicate will do. In case of predicates of arbitrary arity all

possible substitution instances have to be undefined as well.
65More precisely: the principle of definitional reflection, whose application obtains when

the proponent attacks an atom with the move PD , as it is the case here.
66Definitions being finite sets of definitional clauses, this is always the case for any given

definition if no restriction is made on the language.



112 4. Dialogues for definitional reasoning

0. P a
1. OD [0, A]

Note, however, that a given definition need not decide for a defined
atom a whether there is either a strategy for a or a strategy for ¬a. The
definitional clause a⇐ a is a definition of the atom a. The dialogue trees
for the formulas a and ¬a are

0. P a 0. P ¬a
1. OD [0, A] 1. O a [0, A]
2. P a [1, D] and 2. PD [1, A]
3. OD [2, A] 3. O a [2, D]

..
.

4. PD [3, A]

..
.

respectively. There is thus neither a strategy for a nor for ¬a, although a is
defined.

So far, only preliminary definitional dialogues have been dealt with. We
will next discuss a certain paradoxical definitional clause and will then arrive
at a final definition of definitional dialogues. The observations made for
preliminary definitional dialogues remain valid for definitional dialogues in
the sense of this final definition.

4.3. Definitional dialogues and contraction

In the following, we consider the definitional clause

a⇐¬a

(using ¬A := A→⊥ for all formulas A, this is just an abbreviation for
a⇐ a→⊥ here). It is related to Curry’s Paradox67—respectively to one of
its special cases, namely Russell’s Paradox—where for t ∈ {x | A}⇐A[t/x]
and t = {x | ¬(x ∈ x)} with A = ¬(x ∈ x) we have t ∈ t⇐¬(t ∈ t). The
latter clause is of the form a⇐¬a.
Anotherversion ofCurry’s Paradox can be formulated inmodel-theoretic

terms for languages containing a truth predicate ‘True’.68 Consider the
sentence C defined by True(pCq)→⊥, where pCq is a representation of C
(e.g. its Gödel-number). Assume True(pCq); then C by True(pAq) � A;69

and by definition of C also True(pCq)→⊥. Then (using the assumption

67See Curry [1942].
68Cf. Field [2008], for example.
69Where ‘�’ signifies the usual model-theoretic relation of logical consequence.
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True(pCq)) by modus ponens ⊥. That is, True(pCq) � ⊥. By using the
import theorem

If A � B, then � A→ B

one gets

� True(pCq)→⊥(1)

and by the definition of C we have � C . Using A � True(pAq) gives

� True(pCq)(2)

and an application of modus ponens to (1) and (2) yields � ⊥. That is,
absurdity (i.e., the falsum ⊥) is valid for the given definition of C .
On the one hand, Field [2008, p. 282] considers the import theorem

(“If A � B, then � A→B”)70 to be problematic, since conditional assertion
(A � B) and assertion of a conditional (� A→ B) have to be kept apart
according to him.
Weir [2005], on the other hand, sees a problem in the use of transi-

tivity for the logical consequence relation �. The argument concluding
True(pCq) � ⊥ uses the assumptionTrue(pCq) actually twice. Thus instead
of True(pCq) � ⊥ one can only conclude

True(pCq),True(pCq) � ⊥(3)

from the two premisses

True(pCq) � True(pCq)→⊥
and

True(pCq),True(pCq)→⊥ � ⊥.
This step makes use of transitivity for the relation �, which is problematized
in Weir [2005].71

Another problem can be seen in the fact that the assumption True(pCq)
has to be used twice. Thus to infer True(pCq) � ⊥ from (3) requires the
contraction of True(pCq),True(pCq) to True(pCq). In the following, we
will concentrate on the role of contraction in Curry’s Paradox (in the form
of a⇐¬a).

Example 4.3.1. For the given definitional clause a⇐¬a there is neither
a strategy for a nor for ¬a. The dialogue tree for a has the form

70This is called ‘→-Introduction’ by Field.
71Proof-theoretically, this step corresponds to the use of cut in corresponding derivations

of ⊥. It can be shown that cut is not eliminable from such derivations. By demanding the
eliminability of cut in general, one can thus exclude these derivations. This has already been
pointed out by Prawitz [1965, appendix B, §1] for Russell’s Paradox in the context of natural
deduction. Cf. also Ekman [1994].
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0. P a
1. OD [0, A]
2. P ¬a [1, D]
3. O a [2, A]
4. PD [3, A]
5. O ¬a [4, D]
6. P a [5, A] PD [3, A]
7. ..

.
O ¬a [6, D]

..
.

which contains only infinite branches consisting of iterations of the moves
at positions 1–6 in the left branch and of iterations of the moves starting at
position 6 in the right branch, with corresponding ç(n). And the dialogue
tree for ¬a has the form

0. P ¬a
1. O a [0, A]
2. PD [1, A]
3. O ¬a [2, D]
4. P a [3, A] PD [1, A]
5. OD [4, A] O ¬a [4, D]
6. PD [1, A] P a [3, A] P ¬a [5, D] ..

.

..
.

..
.

..
.

which also contains only infinite branches. They consist of iterations of the
moves at positions 3–5, 5, 1–5 and 4–5 in the first, second, third and fourth
branch, respectively, with corresponding ç(n).

Remark 4.3.2. However, a as well as ¬a are provable for the given
definitional clause a⇐¬a (= D) in LIc(D):72

(Id)
a ` a(¬`)
a,¬a `

(D`)
a, a `

(Contr)
a ` (`¬)`¬a (`D)` a

In order to establish an equivalence also between strategies of definitional
dialogues and sequent calculus derivations using definitional closure and
definitional reflection with contraction, the opponent O must not attack
any atom asserted by O before, even if there has been an attack on that
atom by the proponent P.

72Cf. Hallnäs and Schroeder-Heister [1991, p. 638], where contraction is used implicitly,
and Schroeder-Heister [1992]; see also Schroeder-Heister [2003].
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Definition 4.3.3. The following condition is added to the preliminary
Definition 4.2.1 of definitional dialogues in order to prohibit attacks by O
on atoms asserted by O before:

(D15) If for an atom a there is a move 〈ä(l) = O a, ç(l) = [k,Z]〉, then
there is no attack 〈ä(n) = OD , ç(n) = [m,A]〉 for ä(m) = P a with
k < l < m < n. That is, O may attack an atom a by definitional
reasoning only if it has not been asserted by O before.

And condition (D14) has to be replaced by the following condition (D14∗)
which is (D14) restricted to complex formulas:

(D14∗) O can attack a complex formula C if and only if (i) C has not yet
been asserted by O, or (ii) C has already been attacked by P.

Definitional dialogues are thus defined by the conditions (D00′), (D01′),
(D02), (D11′), (D12′), (D14∗), (D15), (S) and (E), with the argumentation
forms as given in Definition 4.2.1. That is, the final definition of definitional
dialogues is given by the following argumentation forms and dialogue
conditions:

Argumentation forms for definitional dialogues:

negation ¬: assertion: X ¬A
attack: Y A
defense: no defense

conjunction ∧: assertion: X A1 ∧ A2
attack: Y ∧i (Y chooses i = 1 or 2)
defense: X Ai

disjunction ∨: assertion: X A1 ∨ A2
attack: Y ∨
defense: X Ai (X chooses i = 1 or 2)

implication→: assertion: X A→ B
attack: Y A
defense: X B

(P ∀-form): assertion: P ∀xA(x)
attack: O y (y not free before)
defense: P A(x)[y/x]

(O ∀-form): assertion: O ∀xA(x)
attack: P t
defense: OA(x)[t/x]

(P ∃-form): assertion: P ∃xA(x)
attack: O t
defense: P A(x)[t/x]



116 4. Dialogues for definitional reasoning

(O ∃-form): assertion: O ∃xA(x)
attack: P ∃
defense: OA(x)[y/x] (y not free before)

definitional reasoning: assertion: X a
attack: Y D (only if a 6= >)
defense: X Γi (X chooses i = 1, . . . , k)

Conditions for definitional dialogues:

(D00′) ä(n) is a P-signed expression if n is even and anO-signed expression
if n is odd. The expression in ä(0) is a (complex or atomic) formula.

(D01′) If ç(n) = [m,A], then the expression in ä(m) is a formula and
ä(n) is an attack on this formula as determined by the relevant
argumentation form.

(D02) If ç(p) = [n,D], then ç(n) = [m,A] for m < n < p and ä(p)
is the defense of the attack ä(n) as determined by the relevant
argumentation form.

(D11′) If ç(p) = [n,D] for odd n, n < n′ < p, n′ − n is even and
ç(n′) = [m,A], then there is a p′ such that n′ < p′ < p and
ç(p′) = [n′, D]. That is, if at a position p − 1 there are more than
one open attacks by O, then only the last of them may be defended
by P at position p.

(D12′) For every odd n there is at most one m such that ç(m) = [n,D].
That is, an attack by O may be defended by P at most once.

(D14∗) O can attack a complex formula C if and only if (i) C has not yet
been asserted by O, or (ii) C has already been attacked by P.

(D15) If for an atom a there is a move 〈ä(l) = O a, ç(l) = [k,Z]〉, then
there is no attack 〈ä(n) = OD , ç(n) = [m,A]〉 for ä(m) = P a with
k < l < m < n. That is, O may attack an atom a by definitional
reasoning only if it has not been asserted by O before.

(S) For any substitution ó replacing variables x, y, . . . by terms t,
the application of definitional reasoning with attack move PD is
restricted to the cases where D(aó) ⊆ (D(a))ó.

(E) All moves 〈ä(n), ç(n)〉 for n odd are of the form 〈ä(n), ç(n) =
[n − 1, Z]〉. That is, an opponent move made at position n is either
an attack or a defense of the immediately preceding move made by
the proponent at position n − 1.

Remark 4.3.4. The restriction of condition (D14) to complex formulas
was not necessary in the treatment of EIc-dialogues because attacks on
atomic formulas are not possible there.
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Example 4.3.5. For the given definitional clause a ⇐ ¬a there is a
strategy for a as well as for ¬a if condition (D15) is respected:

0. P a
1. OD [0, A]
2. P ¬a [1, D]
3. O a [2, A]
4. PD [3, A]
5. O ¬a [4, D]
6. P a [5, A]

0. P ¬a
1. O a [0, A]
2. PD [1, A]
3. O ¬a [2, D]
4. P a [3, A]

Remark 4.3.6. These two strategies correspond to the following two
LIc(D)-derivations for the given definitional clause a⇐¬a, respectively:

(Id)
a ` a(¬`)
a,¬a `

(D`)
a, a `

(Contr)
a ` (`¬)`¬a (`D)` a

(Id)
a ` a(¬`)
a,¬a `

(D`)
a, a `

(Contr)
a ` (`¬)`¬a

(Cf. also Remark 4.3.2.)

Remark 4.3.7. The existence of a strategy for a as well as for ¬a in
Example 4.3.5 depends on the fact that in the last move the proponent
P can state the formula a (in the moves 〈ä(6) = P a, ç(6) = [5, A]〉 and
〈ä(4) = P a, ç(4) = [3, A]〉, respectively), which has been attacked by P
with definitional reasoning before (in the moves 〈ä(4) = PD , ç(4) = [3, A]〉
and 〈ä(2) = PD , ç(2) = [1, A]〉, respectively).
That a is stated in the last move of a dialogue in a strategy means that a

is used without reference to its definition, like an assumption introduced by
the initial sequent a ` a in the corresponding sequent calculus derivation.
However, here this move is possible only after having reflected on the

definition ofa by definitional reasoning; this corresponds to the introduction
of the assumption a by definitional reflection in the sequent calculus
derivation. Hence, the formula a has been used both with and without
referring to its definition. This means that the differently used occurrences of
the formula a have been contracted implicitly, corresponding to the explicit
contraction by the application of (Contr) in the corresponding sequent
calculus derivations shown above in Remark 4.3.6 (cf. also Remark 4.3.2).
In other words, the proponent P has not only made twofold use of

the formula a (asserted by O at position 3) in the moves at positions 4
and 6 of the left dialogue, respectively in the moves at positions 2 and 4
of the right dialogue—that is, contractions of the form (3) as given in
Remark 3.8.3—but the formula a has also been used in two different senses:
once as an arbitrary assumption and once according to its given definition.
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4.4. Definitional dialogues without contraction

Alternatively, we can consider definitional dialogues without contraction.
Whereas in all our sequent calculi contraction is explicitly given by the
rule (Contr),73 this is not the case in dialogues; here contraction is only
implicitly given as the twofold use by the proponent P of an assertion made
by the opponent O (see Remark 3.8.3).

Definition 4.4.1. Contraction-free definitional dialogues are definitional
dialogues where the following condition is added:

(D13∗) For any move 〈ä(k) = OA, ç(k) = [j,Z]〉 there is at most one
move of the form 〈ä(l) = P e, ç(l) = [k,A]〉 or 〈ä(l) = P A,
ç(l) = [i, Z]〉, where j < k < l and i < l . That is, each assertion
of an O-signed formula may be used by P at most once.

That is, contraction-free definitional dialogues are defined by the conditions
(D00′), (D01′), (D02), (D11′), (D12′), (D13∗), (D14∗), (D15), (S) and
(E), with the argumentation forms as given in Definition 4.2.1.

Example 4.4.2. For the given definitional clause a⇐¬a the contraction-
free dialogue trees for a and ¬a consist of the dialogues

0. P a
1. OD [0, A]
2. P ¬a [1, D]
3. O a [2, A]
4. PD [3, A]
5. O ¬a [4, D]

respectively

0. P ¬a
1. O a [0, A]
2. PD [1, A]
3. O ¬a [2, D]

There is thus neither a strategy for a nor for ¬a. This corresponds to the
fact that neither the sequent ` a nor the sequent `¬a is derivable without
(Contr) in the sequent calculus LIc(D) for the given definitional clause.

4.5. Definitional dialogues with restricted contraction

A comparison of contraction-free definitional dialogues with defini-
tional dialogues that have contraction shows that contraction is critical in
reasoning about paradoxical clauses like a⇐¬a.74 However, not having
any contraction at all yields a logic which might be considered too weak;75

73Equivalent sequent calculi with implicit contraction can be given too, of course; cf.
Hudelmaier [1992], [1993] or Dyckhoff [1992].
74That contraction can lead to Russell’s Paradox has been pointed out by Fitch [1936].

Cf. also Fitch [1952] and Ackermann [1950].
75Cf. Ono and Komori [1985] for examples of logics without contraction. Cf. also Došen

and Schroeder-Heister [1993].
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for example, there would be no strategy for ¬(a ∧ ¬a) in such a logic (cf.
Remark 3.8.3). Instead of abandoning contraction completely, it would
therefore be desirable to introduce a restricted version of contraction.76

In sequent calculus, one such restriction could be to disallow contraction
of two occurrences of a formula where one occurrence contains a subformula
that has been introduced by definitional reasoning (i.e., by an application
of definitional reflection (D`) or by an application of definitional closure
(`D)). This restriction can be implemented by restricting the antecedents of
sequents to lists. Formula occurrences introduced by definitional reflection
or by definitional closure can then be labeled in order to distinguish them
from formulas introduced by other left or right introduction rules, and
the restriction on contraction can be given by saying that only formula
occurrences containing no labeled subformulas can be contracted. The
resulting logic without definitional reflection or definitional closure is then
the same as the one with the non-restricted contraction. A less restrictive
version of contraction could still allow for contractions of two formula
occurrences that have the same labeled subformula occurrences in common;
for example, the list a ∧ ¬a, a ∧ ¬a (where the atoms in the respective
right conjuncts have been labeled) in the antecedent of a sequent could be
contracted in this case. It might also be worthwhile to study more fine-
grained restrictions on contraction, for example by differentiating between
the form of formulas a labeled formula is subformula of.
It should be possible to implement all such restrictions also for defini-

tional dialogues. However, this is more difficult than in sequent calculus,
since in dialogues contraction is not given explicitly by an argumentation
form that would correspond to a rule like (Contr), but is only implicitly
given as a twofold use of a formula by the proponent P according to one of
the three forms given in Remark 3.8.3.

4.6. Definitional dialogues and Kreuger’s rule

So far, we have only considered restrictions on contraction in order
to prevent strategies for contradictory assertions in the presence of non-
wellfounded clausal definitions like a⇐¬a. An alternative approach which
keeps contraction unrestricted has been proposed by Kreuger [1994] for
a sequent calculus setting with the principles of definitional closure (`D)
and definitional reflection (D`). He gave a condition which restricts initial
sequents a ` a to such atomic formulas a whose only definitional clause in

76See Schroeder-Heister [2004].
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a given definition D is the clause a⇐ a. In other words, the axiom

(Ida) (where a is atomic)
a ` a

may only be used if the given definition contains the definitional clause
a⇐ a and no other clause defining a, that is, no other clause with head a.
Equivalently (see Schroeder-Heister [1994a]), one can make use of a set

U of atoms not defined by D, that is, for a given definition D we use the set
U := {a | (a⇐ Γ) /∈ D for any atoms a and defining conditions Γ}.

Instead of the axiom (Ida) we then use an axiom (Ida)U which is restricted
to the atoms in U :

(Ida)U (where a ∈ U for atomic a)
a ` a

That is, a sequent a ` a can only be introduced by (Ida)U if a is undefined. In
addition, we restrict the principle of definitional reflection to the introduction
of atoms which are not elements of U . That is, instead of (D`) we use the
following rule (D`)U :

{∆,Γió `C | b⇐ Γi ∈ D and a = bó}
(D`)U (where a /∈ U)

∆, a `C
(with the same proviso that D(aó) ⊆ (D(a))ó). No restrictions on contrac-
tion are made.
In other words, the introduction of an assumption a by (Ida)U is only

possible if a has not been specified by being defined in a given definition D;
and the introduction of an assumption a by (D`)U is only possible if a has
been specified in the sense of being defined in D.77
In such a system neither the sequent` a nor the sequent`¬a is derivable

for the given definitional clause a⇐¬a: As a /∈ U , the derivation cannot
start with an application of (Ida)U introducing a ` a as initial sequent.
Neither can the derivation start with an application of (D`)U : all atoms
except a are in U and can thus not be introduced by (D`)U ; and an
introduction of a by (D`)U depends on a derivation of the sequent ¬a `,
which is not derivable.
This shows that the effects of a paradoxical clause like a⇐¬a can also

be precluded without making any restrictions on contraction. However,
this is only achieved by imposing strong restrictions78 on the introduction
of (atomic) formulas as assumptions (i.e., restrictions on the introduction
of atomic formulas in the antecedents of sequents) by restricting the axiom

77As a consequence, definitional reflection in the form of (D`)U cannot provide a
principle of ex falso quodlibet anymore (cf. Remark 4.2.11).
78These restrictions might be considered to be too strong (cf. Schroeder-Heister [1994a],

[2004]).
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to (Ida)U and the principle of definitional reflection to (D`)U . Note that
we cannot use (Id) restricted to U , that is,

(Id)U (where a ∈ U for A ≡ a)
A`A

here instead of (Ida)U , since the sequent a ` a would then be derivable by
(Id)U ¬a `¬a (`D)¬a ` a(D`)U a ` a

and consequently—since no restrictions on contraction have been made—
the sequents ` a and `¬a would become derivable as well.
One cannot argue against the use of the axiom (Id)U (instead of using

(Ida)U ) on the basis of a distinction between assumptions which are specified
or not specified by a given definition, as a non-atomic formula cannot be
specified by the definitions considered here anyway. One could argue,79

however, that the axiom is used in the context of a sequent calculus which
has a left introduction rule for each logical constant. Although a complex
assumption cannot be specified by a definition, it can thus be viewed as being
specified by the left introduction rule for its outermost logical constant. On
the principle that only formulas (be they atomic or complex) which are not
specified in any way—that is, neither by definition nor by left introduction
rules—should be allowed to be introduced by the axiom, no application of
(Id)U for complex formulas A will be possible.
For example, considering again the definition given by the single defini-

tional clause a⇐¬a, the application
(Id)U ¬a `¬a

is then not possible, since the antecedent in ¬a `¬a would have to be
introduced by the left introduction rule (¬`) for negation from a sequent
with succedent a, presupposing either ` a (which we want to derive) or
a ` a (which cannot be the conclusion of (Id)U since a /∈ U).
The use of (Ida)U (instead of (Id)U ) embodies the principle that only

completely unspecified formulas should be introduced as assumptions by the
axiom. And the use of (D`)U (instead of (D`)) strengthens this principle
in that it ensures that such unspecified formulas can only be introduced by
applications of (Ida)U .

If we adhere to these principles also for definitional dialogues, then the
following changes have to be made in their definition:

(i) We have to revert from (D14∗) to a condition like (D10); this corre-
sponds to using (Ida) instead of (Id).

79Cf. Schroeder-Heister [2004].
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(ii) On this condition we have to impose the restriction to atomic formulas
a ∈ U ; this then corresponds to using (Ida)U instead of (Ida).

(iii) And we have to restrict applications of definitional reasoning in such a
way that proponent attacks PD on atoms a are only possible if a /∈ U ;
this corresponds to using (D`)U instead of (D`).

Changes (i) and (ii) are achieved by replacing condition (D14∗) in
Definition 4.3.3 by the following condition:

(D10∗) If, for an atomic formula a ∈ U , ä(n) = P a for n 6= 0, then there
is an m such that m < n and ä(m) = O a. That is, P may assert
an atomic formula a, which has been asserted by O before, only if
a ∈ U .

Remark 4.6.1. Condition (D10∗) does not affect initial moves. Defini-
tional dialogues can still start with the assertion of any atomic (or complex)
formula made by the proponent. But once the opponent has asserted
an atomic formula, this formula can afterwards only be asserted by the
proponent if the formula is undefined.

Change (iii) is achieved by adding the following condition to Defini-
tion 4.3.3:

(K) For 〈ä(m) = O a, ç(m) = [l, Z]〉 and a ∈ U there is no attack 〈ä(n) =
PD , ç(n) = [m,A]〉 for l < m < n. That is, P may attack an atom a
by definitional reasoning only if a /∈ U .

Definition 4.6.2. Kreuger-restricted definitional dialogues are defined
by the conditions (D00′), (D01′), (D02), (D10∗), (D11′), (D12′), (D15),
(S), (K) and (E), with the argumentation forms as given in Defini-
tion 4.3.3.80

Example 4.6.3. For Kreuger-restricted definitional dialogues there is
neither a strategy for a nor for ¬a for the definition given by the single
definitional clause a⇐¬a. The dialogue trees for a and ¬a consist of the
dialogues

0. P a
1. OD [0, A]
2. P ¬a [1, D]
3. O a [2, A]
4. PD [3, A]
5. O ¬a [4, D]

respectively

0. P ¬a
1. O a [0, A]
2. PD [1, A]
3. O ¬a [2, D]

80The complete definition of Kreuger-restricted definitional dialogues is shown in Sec-
tion A.21 of Appendix A.
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As a is defined, we have a /∈ U . The moves PD attacking O a are not
prohibited by condition (K). But the proponent cannot attack the moves
O ¬a by asserting a, since this would violate condition (D10∗). (Note that
condition (D10∗) does not restrict initial moves; hence P can assert the
defined atom a in the initial move of the left dialogue.)
The use of Kreuger-restricted definitional dialogues has here therefore

the same effect as the use of contraction-free definitional dialogues (cf.
Example 4.4.2), although this effect is achieved by very different means.

4.7. Summary

We have introduced the argumentation form of definitional reasoning as
a dialogical formulation of the principles of definitional closure and defini-
tional reflection (first introduced as sequent-style inferences by Hallnäs and
Schroeder-Heister [1990], [1991]81). Our dialogical formulation combines
both principles in the one (player-independent) argumentation form of
definitional reasoning. We have then introduced definitional dialogues as
an extension of EIc-dialogues. Definitional dialogues enable us to reason
about clausal definitions of atomic formulas whose defining conditions can
be given not only by atoms but also by complex formulas. As an example
of such a clausal definition we studied a paradoxical clause and the effects
of contraction within a preliminary framework of definitional dialogues.
A comparison with the handling of this clause in a sequent calculus setting
allowed us to arrive at a final version of definitional dialogues. These
definitional dialogues are a generalization of standard dialogues also with
respect to the formulas assertable in the initial move: standard dialogues
like DI- or EI-dialogues can only begin with the assertion of a complex
formula, whereas definitional dialogues can also begin with the assertion of
an atomic formula. Atomic formulas can be given a meaning by providing
a definition for them. As the defining conditions in such a definition can be
given by atomic or complex formulas, definitional reasoning can in general
lead from assertions of atomic formulas to assertions of complex formulas.
By introducing definitional dialogues on the basis of EIc-dialogues—that is,
on the basis of dialogues which in an EIc-strategy can end with assertions of
complex formulas—we have provided an adequate dialogical foundation in
the sense of formal dialogue semantics for definitional reasoning. Finally, as
an elaboration on the effects of contraction in the presence of a paradoxical
clause, certain possible restrictions on contraction were suggested, and an
alternative approach due to Kreuger was considered.

81See also Hallnäs [1991] and Schroeder-Heister [1993].





Chapter 5

DIALOGUES FOR IMPLICATIONS AS RULES

In Schroeder-Heister [2011a], [2011b]82 an alternative left introduction rule
for implication in sequent calculus is introduced. It is motivated by the
interpretation of implications as rules.
In this chapter, we develop a dialogical framework for implications as

rules; we analyze this framework and compare it with its sequent calculus
counterpart. We will also combine the dialogical approach to implications
as rules with definitional reasoning, and we will indicate an extension to
hypothetical reasoning with implications as hypotheses.

5.1. Implications as rules

Usually, constructive interpretations of implication are more or less
directly given by the Brouwer–Heyting–Kolmogorov (BHK) interpreta-
tion83, according to which a proof of an implication A→ B consists of a
construction transforming any given proof of A into a proof of B . The
standard dialogical interpretation of implication is based on the same idea:
An implication A→ B is attacked by claiming A and defended by claim-
ing B . In order to have a (winning) strategy for A→ B , the proponent
must be able to produce a substrategy84 for B from what the opponent
uses in defending A. A difference to standard constructive interpretations
is that the opponent need not necessarily give a full proof of A which is
then transformed into a proof of B . Instead, the proponent may force the
opponent to produce certain fragments of a proof of A that are sufficient to
produce a substrategy for B .
A more elementary view of implication is based on the conception that

an implication A→ B is a rule which allows one to pass over from A to B .
This view is particularly supported by the treatment of implication in natural

82Cf. also Schroeder-Heister [1984].
83Cf. Heyting [1971].
84See Definition 5.4.2.
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deduction. There modus ponens
A A→ B

B
can be read as the application of A→ B as a rule, which is used to infer B
from A, that is, modus ponens can be read as a schema of rule application.
The introduction of an implication A→ B by

[A]

..
.

B
A→ B

(where assumptions A can be discharged) can be read as establishing a
rule, namely by deriving its conclusion B from its premiss A. Applications
of logic such as logic programming or deductive databases support this
perspective. Reading implications as rules motivates an alternative left
implication introduction rule

Γ`A(→`)◦
Γ, A→ B `B

in sequent calculus.85This schema expresses thatbyassuming the implication-
as-rule A→ B we are entitled to infer B from A. It replaces the standard
left implication introduction rule

Γ`A ∆, B `C
(→`)

Γ,∆, A→ B `C
while the right implication introduction rule remains the standard one:

Γ, A`B
(`→)

Γ`A→ B
When implications are read as rules, an elementary meaning is given to
implication which is conceptually prior to the meaning of the other logical
constants.
In the following, we carry the implications-as-rules approach over to

dialogues.86 Once an implication A→B has been claimed by the opponent,
it is considered to be a rule in a sort of ‘database’, which later on can be used
by the proponent in order to reduce the justification of its conclusion B to
that of A. This is achieved by allowing the proponent to defend an attack
on B by asserting A whenever A→ B has been claimed by the opponent
before. In case no such claim has been made before (i.e., if no applicable
rule is available in the database), the argument for B continues as usual
with an opponent attack on B (which must eventually be defended by the
proponent), depending on the respective form of B .

85See Schroeder-Heister [2011a], [2011b].
86See also Piecha and Schroeder-Heister [2012].
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For brevity, only the propositional case will be considered in what follows;
the results can be generalized to the first-order case.

5.2. The sequent calculus LI◦

We give the sequent calculus LI◦ for intuitionistic propositional logic,
which contains the alternative left implication introduction rule

Γ`A(→`)◦
Γ, A→ B `B

as a replacement for the standard left implication introduction rule
Γ`A ∆, B `C

(→`)
Γ,∆, A→ B `C

of LI pc . This is the only difference to LI
p
c .

Remark 5.2.1. The standard left implication introduction rule (→`)
satisfies the following properties:

(i) It contains only one logical constant.87

(ii) The logical constant occurs only in the conclusion of the rule, and
there exactly once.

(iii) Each formula which is an argument of the logical constant occurs
exactly once in the conclusion of the rule.88

The alternative rule (→`)◦ does only satisfy the properties (i) and (ii),
but not (iii).

Definition 5.2.2. The sequent calculus LI◦ for intuitionistic proposi-
tional logic consists of the following rules:89

Axiom

(Id) (A atomic or complex)
A`A

Logical rules

Γ`A(¬`)
Γ,¬A`

Γ, A`
(`¬)

Γ`¬A
(cont’d on next page)

87The rule is considered as a schema. Thus, although Γ,∆ can contain complex formulas
and A,B,C can be complex formulas, the rule as a schema contains only the one logical
constant→.
88Here these formulas are A and B .
89Again, Γ and ∆ are finite multisets of formulas (the comma in antecedents of sequents

stands for multiset union, and singletons are written without braces).
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Γ, Ai `C(∧`) (i = 1, 2)
Γ, A1 ∧ A2 `C

Γ`A ∆`B (`∧)
Γ,∆`A ∧ B

Γ, A`C ∆, B `C
(∨`)

Γ,∆, A ∨ B `C
Γ`Ai (`∨) (i = 1, 2)

Γ`A1 ∨ A2

Γ`A(→`)◦
Γ, A→ B `B

Γ, A`B
(`→)

Γ`A→ B

Structural rules

Γ`C(Thin`)
Γ, A`C

Γ` (`Thin)
Γ`A

Γ, A,A`C
(Contr)

Γ, A`C

Γ`A ∆, A`B
(Cut)

Γ,∆`B

Remark 5.2.3. The sequent calculus LI◦ does not have the cut elimi-
nation property. The sequent a, a → (b ∧ c)` b (for atomic and distinct
formulas a, b, c) can only be derived by using (Cut):

(Id)
a ` a(→`)◦

a, a→ (b ∧ c)` b ∧ c

(Id)
b ` b(∧`)

b ∧ c ` b
(Cut)

a, a→ (b ∧ c)` b
This is the only kind of derivation where (Cut) cannot be eliminated (see
Schroeder-Heister [2011b]).

Remark 5.2.4. AlthoughLI◦ does not have the cut elimination property,
it does have the weak cut elimination property. That is, every LI◦-derivation
containing an application of (Cut) can be transformed into anLI◦-derivation
of the form

..
.

(→`)◦
Γ`A

..
.

∆, A`C
(Cut)

Γ,∆`C
where the left premiss of (Cut) is the conclusion of an application of (→`)◦.
Furthermore, the right premiss of (Cut) can be assumed to be either the
conclusion of a derivation of the above form, or it is the endsequent in a
derivation such that the cut formula A is the result of an application of a
left introduction rule in the last step. As a consequence of the weak cut
elimination property, LI◦ has the subformula property. (See Schroeder-
Heister [2011b] for these results.)
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Remark 5.2.5. Since (→`) is a derivable rule in LI◦:
Γ`A(→`)◦

Γ, A→ B `B ∆, B `C
(Cut)

Γ,∆, A→ B `C
and (→`)◦ is a derivable rule in LI pc :

Γ`A (Id)
B `B(→`)

Γ, A→ B `B
(cf. Schroeder-Heister [2011b]), we have `LI◦ A if and only if `LI pc A.

5.3. EI◦-dialogues

We now introduce dialogues for the implications-as-rules approach. The
guiding idea is the following: When making an assertionA, the proponentP
must be prepared to either defend A in the ‘standard’ way against an attack
of the opponent O, or else make the assertion C for some C , for which
O has already claimed C → A, that is, for which the implication-as-rule
C → A is sufficient to generate A. This is modeled by saying that every
assertion made by P is symbolically questioned by O, following which P
chooses which of the two ways described P is prepared to take. Contrary
to the proponent P, the opponent O is not given a choice. The opponent’s
non-implicational assertions are attacked and defended as usual, whereas
the opponent’s implicational assertions are considered as providing rules
which the proponent can use, but not question; so there are no attacks and
defenses defined for them.

Definition 5.3.1. For each logical constant we first define argumenta-
tion forms which determine how a complex formula (having the respective
constant in outermost position) that has been asserted by the opponent
O can be attacked (if possible) and how this attack can be defended (if
possible):90

AF(¬`): assertion: O ¬A
attack: P A
defense: no defense

AF(∧`): assertion: OA1 ∧ A2
attack: P ∧i (P chooses i = 1 or i = 2)
defense: OAi

90In Definition 2.1.2 argumentation forms were defined independently of whether the
assertion is made by the proponent P or by the opponentO. This symmetry is not preserved
here.
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AF(∨`): assertion: OA1 ∨ A2
attack: P ∨
defense: OAi (O chooses i = 1 or i = 2)

AF(→`)◦: assertion: OA→ B
attack: no attack
defense: no defense

Except forAF(→`)◦, these argumentation forms coincide with the standard
ones (cf. Definition 2.1.2) in case of assertions made by the opponent O.91

We now extend our language by the two special symbols ? and | · |. For
assertions made by the proponent P there is a pair of argumentation forms
for each logical constant (depicted below as trees having two branches
which are separated by ). An assertion A made by the proponent P can be
questioned by the opponent with the moveO ? (such a move is only possible
if the expression stated in the P-move is an assertion, that is, a formula; if it
is not an assertion but a symbolic attack, then it cannot be questioned with
the move O ?).
The proponent P can then answer this question either by allowing an

attack on the assertion (this is indicated by the special symbol | · |; see the
argumentation forms on the left side of below), or by asserting any formula
C for which O has asserted the implication C → A at an earlier position.
We call this the rule condition (R):

(R) P may answer a question O ? on a formula A by choosing C provided
O has asserted the formula C → A before.

The argumentation forms for assertions made by the proponent P are then
defined as follows:

AF(`¬): assertion: P ¬A
question: O ?
choice: P |¬A| P C (R)
attack: OA
defense: no defense

AF(`∧): assertion: P A1 ∧ A2
question: O ?
choice: P |A1 ∧ A2| P C (R)
attack: O ∧i (i = 1 or 2)
defense: P Ai

91The argumentation form AF(→`)◦ could also be omitted, to the same effect. However,
we prefer to give the argumentation form AF(→`)◦ in order to make it explicit that
implications A→B asserted byO cannot be attacked. Being able to refer to AF(→`)◦ will
also help to state some results more clearly.
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AF(`∨): assertion: P A1 ∨ A2
question: O ?
choice: P |A1 ∨ A2| P C (R)
attack: O ∨
defense: P Ai (i = 1 or 2)

AF(`→): assertion: P A→ B
question: O ?
choice: P |A→ B | P C (R)
attack: OA
defense: P B

In the case of an attackO ∧i according to the argumentation form AF(`∧)
for conjunctive formulas asserted by P, the opponent O chooses i = 1 or
i = 2, and in the case of a defense P Ai to an attack O ∨ according to
the argumentation form AF(`∨) for disjunctive formulas asserted by P,
the proponent P chooses i = 1 or i = 2. The argumentation forms on
the left (i.e., the respective left branches) correspond to the argumentation
forms given in Definition 2.1.2 for ‘standard’ dialogues (where the device of
question and choice moves is not needed). The argumentation forms on
the right (i.e., the respective right branches) reflect the implications-as-rules
view.
For assertions of atomic formulas a made by the proponent P an

argumentation form is given by the rule condition (R) itself:

AF(R): assertion: P a
question: O ?
choice: P C only if O has asserted C → a before

In addition, we define an argumentation form AF(Cut) such that any
expression e (i.e., question, symbolic attack or formula) stated by O can
be followed by a move P A, and this move can then be followed by the
opponent move OA:

AF(Cut): statement: O e
cut: P A
cut: OA

The formula A is called cut formula in this argumentation form.

Remark 5.3.2. The argumentation formAF(Cut) differs from the other
argumentation forms in that the move O e need not be an assertion (i.e.,
the statement of a formula) but can be the statement of any expression e
(i.e., question, symbolic attack or formula).
Another difference is that the cut formula is completely independent of

the expression e. Calling the P-move an attack and the subsequentO-move
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a defense as in the other argumentation forms would thus be inadequate.
We therefore simply speak of cut moves in both cases.
The idea behind AF(Cut) is that at any (even) position the proponent P

can introduce an arbitrary formula A as a lemma. The proponent P must
then later be prepared both to defend this lemma A as an assertion and
to defend the original claim (i.e., the assertion made in the initial move at
position 0) given this lemma, that is, given the opponent’s claim of A.

Definition 5.3.3. We extend the definition of moves (see Definition
2.1.4) as follows:
As before, pairs 〈ä(n), ç(n)〉 are called moves, where ä(n), for n ≥ 0, is

again a signed expression, and ç(n) is again a pair [m,Z], for 0 ≤ m < n,
where Z is now either A (for ‘attack’), D (for ‘defense’), Q (for ‘question’),
C (for ‘choice’) or Cut. As before, ç(n) = [m,Z] is empty for n = 0, that is,
ç(0) = ∅. In addition, m in ç(n) = [m,Z] is empty for Z = Cut.
We have thus the following types of moves:

attack move 〈ä(n) = X e, ç(n) = [m,A]〉,
defense move 〈ä(n) = X A, ç(n) = [m,D]〉,
question move 〈ä(n) = O ?, ç(n) = [m,Q]〉,
choice move 〈ä(n) = P |A|, ç(n) = [m,C ]〉,

〈ä(n) = P A, ç(n) = [m,C ]〉,
cut move 〈ä(n) = X A, ç(n) = [Cut]〉.

Remark 5.3.4. A question move can only be made by O, and a choice
move can only be made by P. The other types of moves are available for
both the proponent P and the opponent O.
In a choice move, ä(n) can have the form P |A| or P A. In the first

case, P allows an attack on the formula A. In the second case, P asserts
the formula A in accordance with the rule condition (R), that is, A is the
antecedent of an implication asserted by O before.

Dialogues for the implications-as-rules approach can now be defined as
follows.

Definition 5.3.5. An EI◦-dialogue is a sequence of moves 〈ä(n), ç(n)〉
(n = 0, 1, 2, . . . ) satisfying the following conditions:

(D00′) ä(n) is aP-signed expression if n is even and anO-signed expression
if n is odd. The expression in ä(0) is a (complex or atomic) formula.

(D01◦) If ç(n) = [m,A] for even n, then the expression in ä(m) is a complex
formula. If ç(n) = [n − 1, A] for odd n, then the expression in
ä(n − 1) is of the form |B | for a complex formula B . In both cases
ä(n) is an attack on this formula as determined by the relevant
argumentation form.
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(D02) If ç(p) = [n,D], then ç(n) = [m,A] for m < n < p and ä(p)
is the defense of the attack ä(n) as determined by the relevant
argumentation form.

(D03◦) If ç(n) = [m,Q] (for odd n), then form < n the expression in ä(m)
is a (complex or atomic) formula, ç(m) = [l, Z] for l < m, Z = A,
D, C or Cut (where l is empty if Z = Cut), and the expression in
ä(n) is the question mark ‘?’.

(D04◦) If ç(n) = [m,C ] (for even n), then ç(m) = [l, Q] for l < m < n
and ä(n) is the choice answering the question ä(m) as determined
by the relevant argumentation form.

(D05◦) If ç(n) = [Cut] for even n, then ç(m) = [l, Z] (where l is empty if
Z = Cut) for l < m < n and ä(n) is a formula (i.e., the cut formula).
If ç(n) = [Cut] for odd n, then ç(m) = [Cut] and ä(n) = OA for
ä(m) = P A (where m < n).

(D11′) If ç(p) = [n,D] for odd n, n < n′ < p, n′ − n is even and
ç(n′) = [m,A], then there is a p′ such that n′ < p′ < p and
ç(p′) = [n′, D]. That is, if at a position p − 1 there are more than
one open attacks by O, then only the last of them may be defended
by P at position p.

(D12′) For every odd n there is at most one m such that ç(m) = [n,D].
That is, an attack by O may be defended by P at most once.

(D14′) O can question a formula C if and only if (i) C has not yet been
asserted by O, or (ii) C has already been attacked by P.

(E) All moves 〈ä(n), ç(n)〉 for n odd are of the form 〈ä(n), ç(n) =
[n − 1, Z]〉. That is, an opponent move made at position n is either
a question, an attack or a defense of the immediately preceding
move made by the proponent at position n − 1, or it is a cut move
with ä(n) = OA for ä(n − 1) = P A.

The notions ‘dialogue won byP’, ‘dialogue tree’ and ‘strategy’ as defined
for DI p-dialogues are directly carried over to the corresponding notions for
EI◦-dialogues.

Remark 5.3.6. EI◦-dialogues are similar to EI pc -dialogues without con-
dition (D10) for the argumentation forms given in Definition 5.3.1 and
satisfying the condition (D14′) instead of (D14), where (D14′) differs from
(D14) only in that the latter is a condition for O attacking a formula C ,
whereas the former is a condition for O questioning a formula C .
Condition (D00′) is the same as for definitional dialogues (cf. Def-

inition 4.3.3). It allows EI◦-dialogues to start with the assertion of an
atomic formula, contrary to the restriction to complex formulas as, for
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example, in EI pc -dialogues (cf. Definition 2.7.1). Condition (D01◦) differs
from condition (D01) in EI pc -dialogues in that it allows for attacks by O on
expressions of the form |A| for complex formulas A. Condition (D02) is as
given in Definition 2.1.6 for dialogues. Conditions (D03◦) and (D04◦) have
been added for the question and choice moves, respectively, and condition
(D05◦) has been added for the cut moves.
We recall that condition (E) implies condition (D13). In addition,

condition (E) implies condition (D11) for odd p and condition (D12) for
odd n (cf. Definition 2.2.1 and Remark 2.7.2). The conditions (D11) and
(D12) have thus been weakened here to the conditions (D11′) and (D12′),
respectively. In the presence of (E), this weakening does not make any
difference regarding the extension (i.e., the set specified by the concept)
of EI◦-dialogues because (D11′) + (D12′) + (E) is neither more nor less
restrictive than (D11) + (D12) + (E).

Remark 5.3.7. Dialogues for the implications-as-rules approach can
also be defined on the basis of DI p- or DI pc -dialogues (instead of EI

p
c -

dialogues). This has been done in Piecha and Schroeder-Heister [2012],
where the D-dialogues used there correspond to the DI p-dialogues given
here in Definition 2.2.1.

Definition 5.3.8. A formula A is called EI◦-dialogue-provable (short:
EI◦-provable) if there is an EI◦-strategy for A. Notation: `EI◦ A.

Example 5.3.9. AnEI◦-strategy for the formula a→((a→(b∧c))→b)
is the following:

0. P a→ ((a→ (b ∧ c))→ b)
1. O ? [0, Q]
2. P |a→ ((a→ (b ∧ c))→ b)| [1, C ]
3. O a [2, A]
4. P (a→ (b ∧ c))→ b [3, D]
5. O ? [4, Q]
6. P |(a→ (b ∧ c))→ b| [5, C ]
7. O a→ (b ∧ c) [6, A]
8. P b ∧ c [Cut]
9. O ? [8, Q] O b ∧ c [Cut]
10. P a [9, C ] P ∧1 [9, A]
11. O b [10, D]
12. P b [7, D]

The moves at positions 0–4 and at positions 4–7 + 12 (in the right
dialogue) are made according to the argumentation form AF(`→). In
the choice moves at positions 2 and 6 the proponent P can only choose
|a → ((a → (b ∧ c))→ b)| and |(a → (b ∧ c))→ b|, respectively, since
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O has not asserted any implications before which could be used as rules
by choosing their antecedents. At position 7 the opponent asserts the
implication a→ (b ∧ c). The succedent b ∧ c of this implication is asserted
by P in the cut move at position 8; it is questioned at position 9 (in the left
dialogue). In accordance with the rule condition (R), the proponent can
now answer this question move by asserting in the choice move at position 10
(in the left dialogue) the antecedent a of the implication whose succedent
has been questioned. The implication a→ (b ∧ c) has thus been used as
a rule. The opponent cannot question the formula a due to condition
(D14′): O has already asserted a (in the attack move at position 3), and P
has not attacked a (such an attack is not even possible, since a is atomic).
At position 8 the proponent P could defend the attack O a → (b ∧ c) by
asserting b, since assertions by P of atomic formulas not asserted by O
before are not prohibited in EI◦-dialogues (they would be prohibited by
condition (D10), for example in EI pc -dialogues). However, this could be
questioned by O at position 9, and P would lose this dialogue as P can
neither choose |b| norC (since there is no moveOC→b for such a formula
C ) in the next move, so that only a cut move is possible (there is no attack
forO a→ (b ∧ c) (by definition of AF(→`)◦), and for a being atomic there
is no attack for the move O a at position 3):

0. P a→ ((a→ (b ∧ c))→ b)
1. O ? [0, Q]
2. P |a→ ((a→ (b ∧ c))→ b)| [1, C ]
3. O a [2, A]
4. P (a→ (b ∧ c))→ b [3, D]
5. O ? [4, Q]
6. P |(a→ (b ∧ c))→ b| [5, C ]
7. O a→ (b ∧ c) [6, A]
8. P b [7, D]
9. O ? [8, Q]
10. P b ∧ c [Cut]
11. O ? [10, Q] O b ∧ c [Cut]
12. P a [9, C ] P ∧1 [9, A]
13. O b [10, D]

..
.

In the right dialogue, the proponent P could continue by attacking O b ∧ c
again (withP ∧1 orP ∧2) or by making another cut move, but neither would
lead to a strategy.

Remark 5.3.10. For comparison with the EI◦-strategy for the formula
a → ((a → (b ∧ c))→ b) just given above in Example 5.3.9, we give an
EI pc -strategy for the same formula:
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0. P a→ ((a→ (b ∧ c))→ b)
1. O a [0, A]
2. P (a→ (b ∧ c))→ b [1, D]
3. O a→ (b ∧ c) [2, A]
4. P a [3, A]
5. O b ∧ c [4, D]
6. P ∧1 [5, A]
7. O b [6, D]
8. P b [3, D]

Except for the attack move P a made at position 4, each attack or defense
move in this EI pc -strategy also occurs as an attack or defense move in the
EI◦-strategy.
Proponent attacks on implications asserted by the opponent—like the

attack move P a made at position 4—are not possible in EI◦-dialogues. In
the corresponding EI◦-strategy, the proponent asserts the antecedent a of
the implication a→ (b ∧ c) (asserted by the opponent at position 7) in the
choice move at position 10 (in the left dialogue) in accordance with the rule
condition (R).

Remark 5.3.11. The absence of condition (D10) in the definition of
EI◦-dialogues is compensated for by allowing the opponent O to question
assertions of atomic formulas made by the proponent P. In dialogues with
(D10) there is, for example, no strategy for the formula a → b, since the
dialogue

0. P a→ b
1. O a [0, A]

cannot be continued with the move 〈ä(2) = P b, ç(2) = [1, D]〉; this would
only be possible if b were asserted by O before.
In EI◦-dialogues (where (D10) is absent) there is no strategy for a→ b

either. The EI◦-dialogue begins with the moves

0. P a→ b
1. O ? [0, Q]
2. P |a→ b| [1, C ]
3. O a [2, A]
4. P b [3, D]
5. O ? [4, Q]

where P can now assert b at position 4 without O having asserted it before.
However, the opponent O can make a question move at position 5—in
accordance with the argumentation form AF(R)—, and the proponent P
can now continue only with a cut move; this leads to an infinite dialogue.
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The proponentP cannotmake the choice move 〈ä(6) = P |b|, ç(6) = [5, C ]〉
here, since there is no such argumentation form for atomic formulas. The
only possible choice move would be one according to the argumentation
form AF(R), that is, a move of the form 〈ä(6) = P C, ç(6) = [5, C ]〉 for a
formula C → a asserted by the opponent O before. But such a formula has
not been asserted by O here.

Remark 5.3.12. Due to condition (D14′), EI◦-dialogues won by P
need not end with the assertion of an atomic formula but can end with the
assertion of a complex formula.
For example, the following dialogue is an EI◦-strategy for the formula

(a ∨ b)→¬¬(a ∨ b) (cf. Example 2.5.4):
0. P (a ∨ b)→¬¬(a ∨ b)
1. O ? [0, Q]
2. P |(a ∨ b)→¬¬(a ∨ b)| [1, C ]
3. O a ∨ b [2, A]
4. P ¬¬(a ∨ b) [3, D]
5. O ? [4, Q]
6. P |¬¬(a ∨ b)| [5, C ]
7. O ¬(a ∨ b) [6, A]
8. P a ∨ b [7, A]

The opponent O cannot question a ∨ b, since neither of the two conditions
(i) and (ii) of (D14′) is satisfied: a ∨ b has already been asserted by O at
position 3, and a ∨ b has not been attacked by P.

Example 5.3.13. The following dialogue is an EI◦-strategy for the for-
mula (a→ b)→ ((b→ c)→ (a→ c)):

0. P (a→ b)→ ((b→ c)→ (a→ c))
1. O ? [0, Q]
2. P |(a→ b)→ ((b→ c)→ (a→ c))| [1, C ]
3. O a→ b [2, A]
4. P (b→ c)→ (a→ c) [3, D]
5. O ? [4, Q]
6. P |(b→ c)→ (a→ c)| [5, C ]
7. O b→ c [6, A]
8. P a→ c [7, D]
9. O ? [8, Q]
10. P |a→ c| [9, C ]
11. O a [10, A]
12. P c [11, D]
13. O ? [12, Q]

(cont’d on next page)
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14. P b [13, C ]
15. O ? [14, Q]
16. P a [15, C ]

At position 3, the opponent asserts the implication a → b. The formula
b—which occurs also as the succedent of this implication—is questioned
at position 15. In accordance with the rule condition (R), the proponent
asserts a—the antecedent of the implication—in the lastmove; the opponent
cannot question this move due to condition (D14′). The implication b→ c
is asserted by O in the move at position 7. The opponent questions c at
position 13, which enables P to answer according to the rule condition (R)
with the choice move P b at position 14. The implications a→ b and b→ c
have thus been used as rules: the latter implication-as-rule allowed P to
answer the question on c with b, and the former allowed P to answer the
question on b with a.
For comparison, we consider the corresponding LI◦-derivation:

(Id)
a ` a(→`)◦

a, a→ b ` b
(→`)◦

a, a→ b, b→ c ` c
(`→)

a→ b, b→ c ` a→ c
(`→)

a→ b `(b→ c)→ (a→ c)
(`→)

`(a→ b)→ ((b→ c)→ (a→ c))

The moves at positions 0–4, 4–8 and 8–12 correspond to the last, second
to last and first application of (`→), respectively. The moves at positions
12–14 and 14–16 correspond to the second and first application of (→`)◦,
respectively.

Remark 5.3.14. In Example 5.3.13 no cut moves where necessary for
having a strategy for (a→b)→((b→c)→(a→c)), whereas in Example 5.3.9
it was shown that there is no strategy for a→ ((a→ (b ∧ c))→ b) without
cut moves.
The implications-as-rules approachas such is independentof the presence

of cut. However, cut moves have to be allowed if not only a fragment of
intuitionistic (propositional) logic is to be captured. We will have a closer
look on cut in the next section.

5.4. LI◦-provability is equivalent to EI◦-dialogue-provability

In order to show thatEI◦-dialogue-provability is equivalent to provability
for the sequent calculus LI◦—in the sense that there is an EI◦-strategy for a
formula A if and only if A is provable in LI◦—we prove first that there is



5.4. LI◦-provability is equivalent to EI◦-provability 139

an EI◦-strategy for a formula A if and only if there is an EI pc -strategy for
A (see Theorem 5.4.6 below). The equivalence result (see Corollary 5.4.10
below) follows then with Corollary 3.7.3, Remark 2.2.24, Theorem 3.2.3
and Remark 5.2.5.

Remark 5.4.1. The equivalence of the sequent calculi LI◦ and LI pc
(and thus also of LI p) could be established by just showing that (→`)
is a derivable rule in LI◦ and that (→`)◦ is a derivable rule in LI pc (see
Remark 5.2.5). This cannot be done as easily for EI◦- and EI pc -dialogues.
Whereas the sequent calculi LI◦ and LI pc differ only with respect to the left
implication introduction rule, the EI◦- and EI pc -dialogues differ not only in
the argumentation form for implication. Their difference is rather spread
across all argumentation forms, and they differ in the conditions defining the
dialogues as well: In EI pc -dialogues there is only one argumentation form
for each logical constant, whereas in EI◦-dialogues there are always two
(although the left branches in AF(`¬), AF(`∧), AF(`∨) and AF(`→)
correspond to the respective argumentation forms of EI pc -dialogues, of
course). The argumentation form AF(→`)◦ does not correspond to the
argumentation form for implication of EI pc -dialogues. Contrary to EI

p
c -

dialogues, EI◦-dialogues can begin with the assertion of an atomic formula;
and condition (D10) is absent in EI◦-dialogues.

Definition 5.4.2. A substrategy is a subtree s of a dialogue tree t
comprising as root node a node at an even position in t and all descendents
in t such that s does not branch at even positions, s has as many nodes at
odd positions as there are possible moves forO, and all leaves are proponent
moves such that O cannot make another move.92

Lemma 5.4.3. (i) The weak cut elimination property holds for EI◦-strat-
egies. That is, every EI◦-strategy containing cut moves made according to the
argumentation form AF(Cut) can be transformed into an EI◦-strategy of the
form

..
.

m. OA→ B [m − 1, Z]

..
.

n. P B [Cut]
n + 1. O ? [n,Q] OB [Cut]
n + 2. P A [n + 1, C ] s2
n + 3. O ? [n + 2, Q]

s1

92Substrategies have been defined for possible situations in Definition 3.5.3. Here we
make use of substrategies as such.
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where the O-move at position m is either an attack or a defense (i.e., either
Z = A or Z = D), and the move 〈ä(n + 1) = OB, ç(n + 1) = [Cut]〉 is
the uppermost cut move made by O (i.e., there is no cut move at positions
k < n− 1). TheO-move at position n+3might not be possible due to (D14′).
In this case the left dialogue ends with the P-move at position n + 2.

(ii) Furthermore, the substrategy s2 is either of the same form as the above
EI◦-strategy, or it depends on a sequence of moves made according toAF(¬`),
AF(∧`), AF(∨`) or AF(→`)◦.

Proof. By induction on the complexity of cut formulas inEI◦-strategies.
a

Corollary 5.4.4. As a consequence of the weak cut elimination property,
EI◦-strategies have the subformula property.93

Lemma 5.4.5. (i) EI◦-strategies for formulas of the form

A→ ((A→ (B ∧ C ))→ B)

containing a cut move where the cut formula is of the form B ∧ C cannot
be transformed into EI◦-strategies ( for the respective formula) containing
no cut move. However, they can be transformed into EI pc -strategies ( for the
respective formula).

(ii) Every other EI◦-strategy ( for a given formula) containing a cut move can
be transformed into an EI pc -strategy ( for the given formula) as well.

Proof. (i) By Lemma 5.4.3 an EI◦-strategy (for a given formula) con-
taining a cut move with cut formula B ∧ C can be transformed into an
EI◦-strategy (for the given formula) of the form

0. P A→ ((A→ (B ∧ C ))→ B)

..
.

m. OA→ (B ∧ C ) [m − 1, A]

..
.

n. P B ∧ C [Cut]
n + 1. O ? [n,Q] OB ∧ C [Cut]
n + 2. P A [n + 1, C ] s2
n + 3. O ? [n + 2, Q]

s1

where the uppermost cut move made by O is at position n + 1. (If the
O-move at position n+3 is not possible due to (D14′), then the left dialogue
ends with the P-move at position n + 2.)

93This is in full analogy to the results on the weak cut elimination property and the
subformula property for LI◦-derivations; see Remark 5.2.4.
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By the argumentation given in Example 5.3.9 there can then be no EI◦-
strategy (for the given formula) that does not contain a cut move. However,
for every EI◦-strategy of the above form, the following is an EI pc -strategy:

0. P A→ ((A→ (B ∧ C ))→ B)

..
.

m. OA→ (B ∧ C ) [m − 1, A]

..
.

n. P A [m,A]
n + 1. O e [n,A] OB ∧ C [n,D]
n + 2. s ′1 s ′2

(ii) Let S be an EI◦-strategy containing a cut move with a cut formula
D = b, ¬B , B ∨C or B→C . By Lemma 5.4.3 and Corollary 5.4.4 we can
assume that S has the following form as shown in Lemma 5.4.3:

..
.

m. OA→D [m − 1, Z]

..
.

n. P D [Cut]
n + 1. O ? [n,Q] OD [Cut]
n + 2. P A [n + 1, C ] s2
n + 3. O ? [n + 2, Q]

s1

where in the O-move at position m either Z = A or Z = D. If s2 is of the
same form as S, then the cut formula in s2 has to be of lower complexity
than the cut formula in the uppermost pair of cut moves. Otherwise, s2
must depend on a sequence of moves which are made according to AF(R),
AF(¬`), AF(∧`), AF(∨`) or AF(→`)◦, and S can be transformed into
the following EI pc -strategy S ′:

..
.

m. OA→D [m − 1, Z]

..
.

n. P A [m,A]
n + 1. O e [n,A] OD [n,D]
n + 2. s ′1 s ′2

In case D = b (i.e., when the cut formula D is atomic) the substrategy s2
can only depend on moves made above position n, since P cannot attack
atomic formulas. The same holds for s ′2.
It follows by induction on the complexity of the respective cut formulas

that every EI◦-strategy containing one or more cut moves can be trans-
formed into an EI pc -strategy. (Since EI

p
c -dialogues are defined without an
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argumentation form like AF(Cut), these EI pc -strategies are necessarily free
of cut moves.) a

Theorem 5.4.6. There is an EI◦-strategy for a formula A if and only if
there is an EI pc -strategy for A, that is, `EI◦ A if and only if `EI pc A.

Proof. We first show the direction from right to left, that is, we show
that if there is an EI pc -strategy for A, then there is an EI◦-strategy for A.
Let S be an EI pc -strategy for A, and let d = 〈ä(0), ç(0)〉, 〈ä(1), ç(1)〉,

〈ä(2), ç(2)〉, . . . , 〈ä(n), ç(n)〉 be an EI pc -dialogue in S not ending in a pro-
ponent move. We show by induction on the subtree below d in S that there
is then also an EI◦-strategy S ′ for A.
Sinced is part of anEI pc -strategyS, there is a proponentmove 〈ä(n+1) =

P e, ç(n + 1) = [j,Z]〉. This move is either an attack or a defense.
First, assume the proponentmove is an attack 〈ä(n+1) = P e, ç(n+1) =

[j,A]〉 on a move 〈ä(j) = OD, ç(j) = [j − 1, Z]〉. We consider all possible
cases:

(1) e = A, where A is a formula such that condition (i) or (ii) in (D14) is
satisfied. Since the proponent move is an attack, the formulaD is either ¬A
or A→ B , where A can be atomic or complex. The following subcases have
to be considered:

(a) D = ¬A and A is an atomic formula a. In this case, a cannot be a
formula such that condition (i) or (ii) in (D14) is satisfied. The subtree
below d in S would consist in the single move

n + 1. P a [j,A]

But this move is only possible if O has asserted a before, due to condition
(D10); condition (i) in (D14) would not be satisfied. And P cannot have
attacked a, since there is no attack for atomic formulas; condition (ii) in
(D14) would not be satisfied. See case (4) below.

(b) D = ¬A for complex A. Again, there is no defense move for O. Thus
the O-move has to be an attack according to the argumentation forms for
EI pc -dialogues. That is, the subtree below d in S has the form

n + 1. P A [j,A]
n + 2. O e [n + 1, A]

s

where e depends on the form of A. Then the subtree below d ′ in S ′ has the
form

n + 1. P A [j,A]
n + 2. O ? [n + 1, Q]
n + 3. P |A| [n + 2, C ]

(cont’d on next page)
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n + 4. O e [n + 3, A]
s ′

(c) D = A→ B and A is an atomic formula a. Conditions (i) and (ii) in
(D14) cannot be satisfied. See case (4) below.

(d) D = A→ B for complex A. The subtree below d in S has the following
form

n + 1. P A [j,A]
n + 2. O e [n + 1, A] OB [n + 1, D]

s1 s2

and the subtree below d ′ in S ′ has the form

n + 1. P B [Cut]
n + 2. O ? [n + 1, Q] OB [Cut]
n + 3. P A [n + 2, C ] s ′2
n + 4. O ? [n + 3, Q]
n + 5. P |A| [n + 4, C ]
n + 6. O e [n + 5, A]

s ′1

The last move in d ′ is the assertion of A→ B by O. Since there is no attack
move according to AF(→`)◦, the only possible move forP at position n+1
is a cut move according to AF(Cut). This move can be either followed by
the move 〈ä(n+2) = OB, ç(n+2) = [Cut]〉 (right dialogue) or questioned
(left dialogue).
The right dialogue continues with the substrategy s ′2 which corresponds

to s2 and exists by the induction hypothesis. Note that s2 is a substrategy
independently of the first move 〈ä(n + 1) = P A, ç(n + 1) = [j,A]〉 in the
subtree below d in S, because—due to condition (E)—the substrategy s2
cannot contain a move 〈ä(k) = O e, ç(k) = [n + 1, A]〉 for k > n + 2; that
is, the proponent move 〈ä(n + 1) = P A, ç(n + 1) = [j,A]〉 is irrelevant
in s2.
In the left dialogue, P chooses to assert A in accordance with the rule

condition (R), that is, P chooses to assert the antecedent of the implication
A→ B asserted by O in the last move of d ′. This is then questioned by
O in the move at position n + 4, and is answered at position n + 5 by P
choosing to allow an attack on A. This attack is made at position n + 6,
and the dialogue continues with the substrategy s ′1 which corresponds to s1
and exists by the induction hypothesis.

This corresponds to the fact that the left implication introduction rule
(→`) of LI pc is a derivable rule in LI◦, by an application of (→`)◦ and
(Cut); compare Remark 5.2.5.
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(2) e = ∧i . Then D has the form A1 ∧ A2 and O can only make a defense
move. The subtree below d in S has thus the form

n + 1. P ∧i [j,A]
n + 2. OAi [n + 1, D]

s

and the subtree below d ′ in S ′ is

n + 1. P ∧i [j,A]
n + 2. OAi [n + 1, D]

s ′

(3) e = ∨. Then D has the form A1 ∨ A2 and O can only make a defense
move. The subtree below d in S has thus the form

n + 1. P ∨ [j,A]
n + 2. OA1 [n + 1, D] OA2 [n + 1, D]

s1 s2

and the subtree below d ′ in S ′ is

n + 1. P ∨ [j,A]
n + 2. OA1 [n + 1, D] OA2 [n + 1, D]

s ′1 s ′2

(4) e = A, where A is a formula such that the conditions (i) and (ii) in
(D14) are not satisfied, that is, where A has been asserted byO in d without
having been attacked by P in d .
In this case, moves of the form 〈ä(n + 2) = O e, ç(n + 2) = [n + 1, A]〉

are not possible. That is, the subtree below d consists in a single move of
the form

n + 1. P A [j,A]

The conditions (i) and (ii) in (D14′) are then not satisfied too (they are
the same as in (D14)), hence opponent moves of the form 〈ä(n + 2) =
O ?, ç(n + 2) = [n + 1, Q]〉 are not possible, and the subtree below the
corresponding dialogue d ′ in S ′ consists in a single move 〈ä(n + 1) = P A,
ç(n + 1) = [k,A]〉 (where k > j).

Second, assume the proponent move is a defense 〈ä(n + 1) = P A,
ç(n + 1) = [j,D]〉 to 〈ä(j) = O e, ç(j) = [j − 1, A]〉. The following cases
have to be considered:

(1) A is a formula such that condition (i) or (ii) in (D14) is satisfied, where
A can be atomic or complex.
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(a) A is an atomic formula a. The subtree below d in S would have to be
given by the single move

n + 1. P a [j,D]

Due to (D10), this move would only be possible if O had asserted a before.
But then condition (i) in (D14) cannot be satisfied. Furthermore, P could
not have attacked this assertion, since there is no attack on atomic formulas;
thus condition (ii) in (D14) cannot be satisfied either. Hence there is no
strategy in this case.

(b) A is a complex formula. The O-move has to be an attack according to
the argumentation forms for EI pc -dialogues. The subtree below d in S then
has the form

n + 1. P A [j,D]
n + 2. O e [n + 1, A]

s

where e depends on the form of A. Then the subtree below d ′ in S ′ has the
form

n + 1. P A [j,D]
n + 2. O ? [n + 1, Q]
n + 3. P |A| [n + 2, C ]
n + 4. O e [n + 3, A]

s ′

(2) A is a formula such that the conditions (i) and (ii) in (D14) are not
satisfied, that is, where A has been asserted by O in d without having been
attacked by P in d . As in case (4) above, moves of the form 〈ä(n+2) = O e,
ç(n + 2) = [n + 1, A]〉 are not possible, and the subtree below d consists in
a single move of the form

n + 1. P A [j,D]

The conditions (i) and (ii) in (D14′) are then not satisfied too, hence moves
of the form 〈ä(n + 2) = O ?, ç(n + 2) = [n + 1, Q]〉 are not possible, and
the subtree below the corresponding dialogue d ′ in S ′ consists in a single
move 〈ä(n + 1) = P A, ç(n + 1) = [k,D]〉 (where k > j).

This concludes the proof that if `EI pc A, then `EI◦ A.

It remains to show the direction from left to right, that is, we show that
if there is an EI◦-strategy for A, then there is an EI pc -strategy for A.

First, assume the proponentmove is an attack 〈ä(n+1) = P e, ç(n+1) =
[j,A]〉 on an opponent move 〈ä(j) = OD, ç(j) = [i, Z]〉. We consider all
possible cases:
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(1) e = A. Then D = ¬A, where A is atomic or complex. (This is the only
possibility if e = A, since there is no attack in case D = A→ B , that is,
according to the argumentation form AF(→`)◦.)
(a) A is an atomic formula a. If condition (i) or (ii) in (D14′) is satisfied, then
O can question a, and this is the only move possible. Note that due to the
absence of condition (D10) from the definition of EI◦-dialogues—contrary
to EI pc -dialogues—P can assert a without O having asserted a before; thus
the move 〈ä(n + 1) = P a, ç(n + 1) = [j,A]〉 is possible in any case. The
subtree below the EI◦-dialogue d ′ in the EI◦-strategy S ′ is

n + 1. P a [j,A]
n + 2. O ? [n + 1, Q]

s ′

If O has asserted a in d ′, then the subtree below the EI pc -dialogue d in the
EI pc -strategy S is the single move

n + 1. P a [j,A]

because atomic formulas cannot be attacked, and there is no defense to an
attack on D = ¬a.
In case O has not asserted a in d ′, we have to consider the possible

P-moves in s ′ answering the question move at position n + 2. The P-move
can be made according to AF(R) or according to AF(Cut). We consider
both cases:
The P-move is made according to AF(R). Then O must have asserted a

formula C → a in d ′, and S ′ has the form

..
. d ′m. OC → a [m − 1, Z]

..
.

n − 1. P a [j,A]
n. O ? [n − 1, Q]

n + 1. P C [n,C ]
n + 2. O ? [n + 1, Q]

s ′1

If the O-move at position m is not a cut move, and if C is complex, then
the EI pc -strategy S has the form

..
. dm. OC → a [m − 1, Z]

..
.

n + 1. P C [m,A]
(cont’d on next page)
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n + 2. Of [n + 1, A] O a [n + 1, D]
n + 3. s1 P a [j,A]

where the expressionf is either of a symbolic attack or a formula, depending
on the formofC . The opponentmove 〈ä(n+2) = Of, ç(n+2) = [n+1, A]〉
is only possible in S if the formula C is complex. In case C is atomic, S has
the form

..
. dm. OC → a [m − 1, Z]

..
.

n + 1. P C [m,A]
n + 2. O a [n + 1, D]
n + 3. P a [j,A]

in accordance with condition (D10).
If the O-move at position m is a cut move, then a corresponding EI pc -

strategy S can be given by Lemma 5.4.5.

The P-move is made according to AF(Cut). S ′ has the form

n + 1. P a [j,A]
n + 2. O ? [n + 1, Q]
n + 3. P B [Cut]
n + 4. OB [Cut]

s ′2

with cut formula B . By Lemma 5.4.3 there must then be a move 〈ä(m) =
OC → B, ç(m) = [m − 1, Z]〉 (where m < n − 2) for Z = A or D in S ′,
that is, S ′ has the form

..
.

m. OC → B [m − 1, Z]

..
.

n − 2. P a [j,A]
n − 1. O ? [n + 1, Q]

n. P B [Cut]
n + 1. O ? [n,Q] OB [Cut]
n + 2. P C [n + 1, C ] s ′2
n + 3. O ? [n + 2, Q]

s ′1

By Lemma 5.4.5 there is then an EI pc -strategy S.

(b) A is a complex formula. This case is like the case in which the proponent
move is a defense move; see page 149 (subcase (2)).
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(2) e = ∧i . Then D has the form A1 ∧ A2 and O can only make a defense
move. The subtree below d ′ in S ′ has thus the form

n + 1. P ∧i [j,A]
n + 2. OAi [n + 1, D]

s ′

and the subtree below d in S is

n + 1. P ∧i [j,A]
n + 2. OAi [n + 1, D]

s

(3) e = ∨. Then D has the form A1 ∨ A2 and O can only make a defense
move. The subtree below d ′ in S ′ has thus the form

n + 1. P ∨ [j,A]
n + 2. OA1 [n + 1, D] OA2 [n + 1, D]

s ′1 s ′2

and the subtree below d in S is

n + 1. P ∨ [j,A]
n + 2. OA1 [n + 1, D] OA2 [n + 1, D]

s1 s2

Second, assume the proponent move is a defense 〈ä(n + 1) = P A,
ç(n + 1) = [j,D]〉 to 〈ä(j) = O e, ç(j) = [i, Z]〉. The O-move at position
n + 2 can only be a question move 〈ä(n + 2) = O ?, ç(n + 2) = [n + 1, Q]〉.
The EI◦-strategy S ′ either depends on a choice move 〈ä(n + 3) = P e,
ç(n + 3) = [n + 1, C ]〉 answering this question move or it does not. If it
does not depend on such a choice move, then the subtree below d ′ in S ′ has
the form

n + 1. P A [j,D]
n + 2. O ? [n + 1, Q]

s ′

and the subtree below the corresponding dialogue d in S is

n + 1. P A [j,D]
s

If the EI◦-strategy S ′ depends on a choice move, then the subtree below d ′

in S ′ has the form

n + 1. P A [j,D]
n + 2. O ? [n + 1, Q]

(cont’d on next page)
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n + 3. P e [n + 2, C ]
s ′

where e is either |A| (according to the left option in the respective argu-
mentation forms AF(`¬), AF(`∧), AF(`∨) and AF(`→)) or e is C for
an implication C → A asserted by O before (according to the right option
in the respective argumentation forms AF(`¬), AF(`∧), AF(`∨) and
AF(`→), respectively AF(R) for atomic A).

(1) e = |A|. Then the subtree below d ′ in S ′ has the form

n + 1. P A [j,D]
n + 2. O ? [n + 1, Q]
n + 3. P |A| [n + 2, C ]
n + 4. Of [n + 3, A]

s ′

where the expression f in the attack move is either of a symbolic attack or
a formula, depending on the form of A in each case. The subtree d in S has
then the form

n + 1. P A [j,D]
n + 2. Of [n + 2, A]

s

(2) e = C for an implication C → A asserted by O before. The dialogue d ′

contains a move 〈ä(m) = OC → A, ç(m) = [m − 1, Z]〉 (where Z = A or
D, m < n − 1) and S ′ has the form

..
. d ′m. OC → A [m − 1, Z]

..
.

n + 1. P A [j,D]
n + 2. O ? [n + 1, Q]
n + 3. P C [n + 2, C ]
n + 4. O ? [n + 3, Q]

s ′

Then S has the form

..
. dm. OC → A [m − 1, Z]

..
.

n + 1. P C [m,A]

(cont’d on next page)
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n + 2. Of [n + 1, A] OA [n + 1, D]
n + 3. s P A [j,D]

where the expressionf is either of a symbolic attack or a formula, depending
on the form of C .94 In the right dialogue, the opponent O cannot attack
the last P-move at position n + 3 due to condition (D14): O has already
asserted A in the move at position n + 2, and P has not attacked A.
This corresponds to the fact that the rule (→`)◦ of LI◦ is a derivable

rule in LI pc , by an application of (→`) and (Id); compare Remark 5.2.5.
Consider the following derivation DS :

ds
Γ`C (Id)

A`A(→`)
Γ, C → A`A

where ds shall be a subderivation corresponding to the substrategy s in S.
The left dialogue in S then corresponds to the left branch in this derivation
DS , and the right dialogue corresponds to the right branch in DS .

Third, assume the proponentmove is a choice 〈ä(n+1) = P e, ç(n+1) =
[n,C ]〉 with respect to 〈ä(n) = O ?, ç(n) = [n − 1, Q]〉. The expression e in
the choice move can either be |A| for a formula A questioned by O or it can
be C for an implication C → A asserted by O before.

(1) e = |A|. Condition (i) or (ii) in (D14′) is satisfied or not.
(a) If condition (i) or (ii) in (D14′) is satisfied, then O can make an attack
move 〈ä(n + 2) = Of, ç(n) = [n + 1, A]〉, where the expression f is either
of a symbolic attack or a formula, depending on the form of A in each case.
The subtree below d ′ in S ′ has then the form

n + 1. P |A| [n,C ]
n + 2. Of [n + 1, A]

s ′

Condition (i) or (ii) in (D14) is then also satisfied, and the subtree below d
in S has the form

n + 1. P A [j,D]
n + 2. Of [n + 2, A]

s

(b) If conditions (i) and (ii) in (D14′) are not satisfied, then O has asserted
A before, without having been attacked by P. Hence O cannot question A.

94We do not have to distinguish between atomic and complex formulas A in this case,
since A is asserted by O before it is asserted by P. Hence the P-move at position n + 3
cannot be in violation of (D10).
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The subtree below d ′ in S ′ then ends with the move at position n + 1 as
follows:

n + 1. P |A| [n,C ]

Condition (i) or (ii) in (D14) is then also satisfied, O cannot attack A, and
the subtree below d in S ends with

n + 1. P A [j,D]

(2) e = C . The dialogue d ′ must contain a move 〈ä(m) = OC → A,
ç(m) = [m − 1, Z]〉 (where Z = A or D, m < n − 1) and also a move
〈ä(n − 1) = P A, ç(n − 1) = [j,Z]〉 to which the question move made byO
at position n refers. Thus S ′ has the form95

..
. d ′m. OC → A [m − 1, Z]

..
.

n − 1. P A [j,Z]
n. O ? [n − 1, Q]

n + 1. P C [n,C ]
n + 2. O ? [n + 1, Q]

s ′

and for complex C the EI pc -strategy S has the form

..
. dm. OC → A [m − 1, Z]

..
.

n + 1. P C [m,A]
n + 2. Of [n + 1, A] OA [n + 1, D]
n + 3. s P A [j,D]

where the expressionf is either of a symbolic attack or a formula, depending
on the form of C . The formula A can be atomic; since A is asserted by O
already at position n + 2 in the right dialogue in S, condition (D10) is not
violated by the P-move at position n + 4.
The move 〈ä(n + 2) = Of, ç(n + 2) = [n + 1, A]〉 is only possible in S

if C is complex. In case C is atomic, S has the form

..
. dm. OC → A [m − 1, Z]

..
.

(cont’d on next page)

95Cf. the case where the proponentmove is a defensemove (i.e., the second case, subcase(2)
on page 149).
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n + 1. P C [m,A]
n + 2. OA [n + 1, D]
n + 3. P A [j,D]

Fourth, assume the proponent move is a cut 〈ä(n+1) = P A, ç(n+1) =
[Cut]〉. By Lemma 5.4.5 there is then an EI pc -strategy for each such EI◦-
strategy. a

We collect the equivalence results for EI◦-dialogues:
Corollary 5.4.7. `EI◦ A if and only if `DI p A, by Corollary 3.7.3 and

the just proved Theorem 5.4.6.

Corollary 5.4.8. `LI p A if and only if `EI◦ A, by Corollary 5.4.7 and
Remark 2.2.24.

Corollary 5.4.9. `LI pc A if and only if `EI◦ A, by Corollary 5.4.8 and
Theorem 3.2.3.

Corollary 5.4.10. `LI◦ A if and only if `EI◦ A, by Corollary 5.4.9 and
Remark 5.2.5.

Remark 5.4.11. We therefore have

`EI◦ A
5.4.10⇐⇒ `LI◦ A

5.2.5⇐⇒ `LI pc A
3.7.1⇐⇒ `EI pc A,

and by using Remark 3.7.5 we also have `EI◦ A ⇐⇒ `DI pc A.

Remark 5.4.12. A detailed discussion comparing the proof-theoretic
approach toward implications-as-rules (using sequent calculus) with the
dialogical approach developed here can be found in Piecha and Schroeder-
Heister [2012]; see also the concluding Chapter 6 below.

5.5. Definitional dialogues for implications as rules

EI◦-dialogues can be extended to definitional dialogues. We consider
here only a possible extension by definitional dialogues with contraction,
for the quantifier-free fragment. An important difference is the presence
of cut moves in EI◦-dialogues, given by the argumentation form AF(Cut)
together with condition (D05◦). For EI◦-dialogues extended to definitional
dialogues with contraction it can be shown that the addition of AF(Cut),
together with (D05◦), yields strategies for formulas that have no strategy
otherwise. In other words, there are instances of AF(Cut) which are
eliminable in EI◦-dialogues but are not eliminable in EI◦-dialogues extended
to definitional dialogues with contraction. This is due to the fact that for
definitional dialogues with contraction and the given definitional clause
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a⇐ a→⊥96 there is a strategy for ⊥ if cut moves can be made according
to the argumentation form AF(Cut), while this is not the case without
AF(Cut).97 Furthermore, the following properties hold:

(i) For any given formula A, letDtriv be the (special) definition containing
for each atomic subformula a of A the trivial definitional clause
a⇐ a.98 Then the formula A is EI◦-dialogue-provable if and only if A
is provable with (propositional) definitional dialogues for Dtriv as the
given (special) definition.

(ii) Definitional dialogues with contraction are defined with condition
(D14∗). This condition is effectively the same as condition (D14′) in
EI◦-dialogueswhen considered for the respectively given argumentation
forms (cf. Remark 5.3.6). They can thus be used together without
causing any unwanted interferences.

(iii) Definitional dialogues as well asEI◦-dialogues have been defined on the
basis of EI pc -dialogues. Both kinds of dialogues incorporate conditions
(D11′), (D12′) and (E) from EI pc -dialogues.

(iv) Both EI◦-dialogues and definitional dialogues can begin with the
assertion of an atomic formula at position 0 due to condition (D00′).

(v) Two (unproblematic) differences are given by condition (D01′) in
definitional dialogues (instead of (D01) in EI◦-dialogues) and by the
additional conditions (D03◦), (D04◦) and (D05◦) in EI◦-dialogues.
These differences are due to the different kinds of moves available for
the respectively given argumentation forms.

(vi) Finally, conditions (D15) and (S) in definitional dialogues are only
relevant in applications of the argumentation form of definitional
reasoning. They have no effect on applications of the argumentation
forms of EI◦-dialogues.

The following definition extends EI◦-dialogues to definitional dialogues
with contraction. We consider only the quantifier-free fragment here, and
do therefore not give corresponding argumentation forms for the quantifiers

96Cf. Section 4.3, where we wrote a⇐¬a as an abbreviation for the definitional clause
a⇐ a→⊥.
97It has been shown in Schroeder-Heister [1992] for the corresponding sequent calculus

with definitional reflection that cut-elimination fails if implication can be used in the bodies
of definitional clauses and contraction is present. Without one or the other, cut-elimination
holds. That is, for implication-free definitions with or without contraction cut-elimination
holds as well as for the contraction-free calculus for definitions that are implication-free or
not.
98This special definition Dtriv is not a definition in the sense of Definition 4.1.6, since it is

not a finite set of definitional clauses.
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∀ and ∃. Note, however, that definitional clauses may contain formulas with
free variables nonetheless.

Definition 5.5.1. The extension of EI◦-dialogues to definitional dia-
logues with contraction can be given as follows:
Argumentation forms:

AF(¬`): assertion: O ¬A
attack: P A
defense: no defense

AF(∧`): assertion: OA1 ∧ A2
attack: P ∧i (P chooses i = 1 or i = 2)
defense: OAi

AF(∨`): assertion: OA1 ∨ A2
attack: P ∨
defense: OAi (O chooses i = 1 or i = 2)

AF(→`)◦: assertion: OA→ B
attack: no attack
defense: no defense

AF(`¬): assertion: P ¬A
question: O ?
choice: P |¬A| P C (R)
attack: OA
defense: no defense

AF(`∧): assertion: P A1 ∧ A2
question: O ?
choice: P |A1 ∧ A2| P C (R)
attack: O ∧i (i = 1 or 2)
defense: P Ai

AF(`∨): assertion: P A1 ∨ A2
question: O ?
choice: P |A1 ∨ A2| P C (R)
attack: O ∨
defense: P Ai (i = 1 or 2)

AF(`→): assertion: P A→ B
question: O ?
choice: P |A→ B | P C (R)
attack: OA
defense: P B
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AF(R): assertion: P a
question: O ?
choice: P C only if O has asserted C → a before

AF(Cut): statement: O e
cut: P A
cut: OA

definitional reasoning: assertion: X a
attack: Y D (only if a 6= >)
defense: X Γi (X chooses i = 1, . . . , k)

Conditions:

(D00′) ä(n) is a P-signed expression if n is even and anO-signed expression
if n is odd. The expression in ä(0) is a (complex or atomic) formula.

(D01◦) If ç(n) = [m,A] for even n, then the expression in ä(m) is a complex
formula. If ç(n) = [n − 1, A] for odd n, then the expression in
ä(n − 1) is of the form |B | for a complex formula B . In both cases
ä(n) is an attack on this formula as determined by the relevant
argumentation form.

(D02) If ç(p) = [n,D], then ç(n) = [m,A] for m < n < p and ä(p)
is the defense of the attack ä(n) as determined by the relevant
argumentation form.

(D03◦) If ç(n) = [m,Q] (for odd n), then for m < n the expression in ä(m)
is a (complex or atomic) formula, ç(m) = [l, Z] for l < m, Z = A,
D, C or Cut (where l is empty if Z = Cut), and the expression in
ä(n) is the question mark ‘?’.

(D04◦) If ç(n) = [m,C ] (for even n), then ç(m) = [l, Q] for l < m < n and
ä(n) is the choice answering the question ä(m) as determined by
the relevant argumentation form.

(D05◦) If ç(n) = [Cut] for even n, then ç(m) = [l, Z] (where l is empty if
Z = Cut) for l < m < n and ä(n) is a formula (i.e., the cut formula).
If ç(n) = [Cut] for odd n, then ç(m) = [Cut] and ä(n) = OA for
ä(m) = P A (where m < n).

(D11′) If ç(p) = [n,D] for odd n, n < n′ < p, n′ − n is even and
ç(n′) = [m,A], then there is a p′ such that n′ < p′ < p and
ç(p′) = [n′, D]. That is, if at a position p − 1 there are more than
one open attacks by O, then only the last of them may be defended
by P at position p.
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(D12′) For every odd n there is at most one m such that ç(m) = [n,D].
That is, an attack by O may be defended by P at most once.

(D14′) O can question a formula C if and only if (i) C has not yet been
asserted by O, or (ii) C has already been attacked by P.

(D14∗) O can attack a complex formula C if and only if (i) C has not yet
been asserted by O, or (ii) C has already been attacked by P.

(D15) If for an atom a there is a move 〈ä(l) = O a, ç(l) = [k,Z]〉, then
there is no attack 〈ä(n) = OD , ç(n) = [m,A]〉 for ä(m) = P a with
k < l < m < n. That is, O may attack an atom a by definitional
reasoning only if it has not been asserted by O before.

(S) For any substitution ó of variables x, y, . . . by terms t, the ap-
plication of definitional reasoning is restricted to the cases where
D(aó) ⊆ (D(a))ó.

(E) All moves 〈ä(n), ç(n)〉 for n odd are of the form 〈ä(n), ç(n) =
[n − 1, Z]〉. That is, an opponent move made at position n is either
a question, an attack or a defense of the immediately preceding
move made by the proponent at position n − 1, or it is a cut move
with ä(n) = OA for ä(n − 1) = P A.

Remark 5.5.2. By adding argumentation forms for the quantifiers ∀
and ∃ following the schema of the argumentation forms given above for
the propositional case, EI◦-dialogues (and their extension to definitional
dialogues just given) can be extended to first-order logic.

5.6. Hypothetical EI◦-dialogues

One further step would be to extend EI◦-dialogues to hypothetical
EI◦-dialogues, that is, to EI◦-dialogues which allow for a ‘database’ of
implications assumed to be asserted by the opponent before any initial move
is made at position 0.
Allowing forhypotheses can lead to problems; they have been pointedout

in Section 2.8 about hypothetical dialogues. The situation would be different,
however, for hypothetical EI◦-dialogues. Whereas in the hypothetical
dialogues considered in Section 2.8 the proponent can attack hypotheses,
this is not possible in hypothetical EI◦-dialogues. Here the proponent
cannot attack any implications asserted by the opponent (regardless of
whether they are asserted hypothetically or not), and the hypothetically
asserted implications can only be used as rules by the proponent in choice
moves which are made according to the rule condition (R). The problems
concerning hypothetical dialogues that we have described in Section 2.8
would thus be avoided.
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5.7. Summary

The proof-theoretic approach to implications as rules has been carried
over to the dialogical setting in the form of EI◦-dialogues. These dialogues
differ in several respects from the dialogues consideredbefore. One of the new
features is the addition of an argumentation form for cut. It could be shown
that EI◦-provability is equivalent to LI◦-provability. An adequate treatment
of implications as rules is thus not only possible in the proof-theoretic
approach, but can also be realized in the dialogical approach. Moreover, we
have proposed an extension of EI◦-dialogues to definitional EI◦-dialogues
with contraction, and we have finally sketched how EI◦-dialogues could be
used for hypothetical reasoning when implications are given as hypotheses.
Implications as rules and their dialogical frameworkwill be discussed further
in the concluding Chapter 6.





Chapter 6

CONCLUSION

We have developed dialogical foundations in the sense of formal dialogue
semantics for definitional reasoning and for implications as rules.

In comparison with the corresponding proof-theoretic approaches, certain
complications can be observed in the dialogical approaches.
For example, modifications concerning structural operations like thin-

ning or contraction can be implemented more easily in a proof-theoretic
environment using sequent calculus. This is due to the fact that the structural
operations are in sequent calculus explicitly given by structural rules like
(Thin`) and (Contr), whereas they are only implicitly given in dialogues.
Of course, this need not be seen as a defect of dialogues but can rather be
described as their strong point: argumentation forms are given only for the
logical constants, and everything else is—in part implicitly—dealt with by
the dialogue conditions.
It can also be observed that the EI◦-dialogues for the interpretation

of implications as rules is not as straightforward as the corresponding
sequent calculus LI◦, which can be read as the proof-theoretic semantics
for implications as rules. The definitions of LI◦ and LI pc differ only in the
left implication introduction rule, whereas the definition of EI◦-dialogues
differs quite a lot from the one for EI pc -dialogues.99

One of the main differences between standard dialogues (like e.g. EI p-
dialogues) and EI◦-dialogues is that the argumentation forms in the latter
are no longer symmetric with respect to proponent and opponent; that is,
the player independence of the argumentation forms that obtains in the
standard dialogues is given up in EI◦-dialogues. Although proponent and
opponent are not interchangeable in standard dialogues due to the dialogue
conditions (cf. Remark 2.2.4), there is a perfect symmetry with respect to
the argumentation forms. Just attacks and defenses are defined, not different
ways of attacking and defending for proponent or opponent. If the idea of
having player independent argumentation forms is considered to be essential

99See also Piecha and Schroeder-Heister [2012] for what follows.
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in the dialogical paradigm, then giving it up may seem to amount to giving
up the dialogical setting itself as a foundational approach. However, from
the implications-as-rules point of view it could be argued that implication is
different from the other logical constants, and that this difference requires
an asymmetric treatment with respect to the argumentation forms.
As a consequence of this asymmetry in the treatment of implication

there is another asymmetry: In EI◦-dialogues the proponent can defend an
assertion by means of the rule condition (R) independently of its logical
form. This is not possible in standard dialogues where a defense of an
assertion always depends on its logical form, and where formulas are always
decomposed into subformulas according to their logical form.
But certain tenets within the dialogical tradition—such as the player

independence of argumentation forms or the decomposition of formulas
according to their logical form—do not have to be taken as being essential
in dialogical approaches. Particularly not for implications as rules: Rules
are not logical constants but belong to the general structural framework that
underlies definitions of logical constants.100Given that the proponent has the
dialogical role of claiming something to hold, and the opponent the role of
providing the assumptions under which something is supposed to hold, the
implication-as-ruleA→B means for the proponent thatB must be defended
on the background A, whereas the opponent only grants with A→ B the
right to use this implication as a rule, without any propositional claim. This
is exactly what is captured in our EI◦-dialogues for implications-as-rules.
A crucial aspect here is the significance which is given to modus ponens

A A→ B
B

in general, and in natural deduction in particular. For the implications-
as-rules view, modus ponens is essential for the meaning of implication
as it expresses the idea of application, which is the characteristic feature
of a rule. As already mentioned in the introduction (see Chapter 1), in
natural deduction modus ponens can be understood as the application of
the implication A→ B as a rule which allows us to infer B from A.
The sequent calculus LI◦ can be viewed as a system representing the

idea of modus ponens at the sequent-calculus level via the left implication
introduction rule

Γ`A(→`)◦
Γ, A→ B `B

The standard interpretation of implication in the dialogical setting corre-
sponds instead to the symmetric sequent calculus LJ (as well as to our

100Cf. Schroeder-Heister [2007a], de Campos Sanz and Piecha [2009a], [2009b] and Piecha
and de Campos Sanz [2010].
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related sequent calculi LI p, LI pc , LIc) with the left implication introduction
rule

Γ`A B,∆`C
(→`)

Γ, A→ B,∆`C
It is based on the ‘implications-as-links’ view, according to which an
implication A→ B introduced by means of (→`) on the left side of the
sequent symbol, links an occurrence ofA on the right side of the left premiss
with an occurrence ofB on the left side of the right premiss of (→`).101 The
standard dialogical approach favors sequent-style reasoning in the sense of
(→`). The idea of implications-as-rules fits very well into natural-deduction
style reasoning with modus ponens. We have shown that the sequent-style
rendering of this kind of reasoning via the sequent calculus LI◦ can be fully
represented in the dialogical setting. That implications-as-rules received an
asymmetric treatment in our dialogical representation is not a defect of the
dialogical setting or of the modeled sequent calculus LI◦; it are rather the
differences between natural deduction and the symmetric sequent calculus
which are reflected therein.
Another complication is introduced by the need of (a restricted version

of) cut in order to achieve full intuitionistic logic. This need is present in
both the proof-theoretic and the dialogical setting for implications-as-rules.
In the dialogical setting, however, the handling of cut is difficult and by far
not as plausible as in the proof-theoretic setting. For dialogues one has
to model the claim of the cut formula—made by both the proponent and
the opponent—according to the pattern of attack and defense as employed
in the other argumentation forms, although with slight deviations. The
addition of an argumentation form for cut might also be conceived as being
alien to the dialogical approach as such, as it has always been considered as
being cut-free per se (this is a legacy which dialogues share with tableaux;
cf. Section 2.9). But such a view proves to be too narrow from the perspective
of implications-as-rules if full intuitionistic logic is to be achieved.

Overall, this dissertation demonstrates that the dialogical framework is
versatile enough to cope with approaches like definitional reasoning and
implications-as-rules that have originally been developed in the realm of
proof-theoretic semantics. Certain complications on the dialogical side
have already been pointed out; one example were the structural operations,
whose dialogical representation renders investigations of substructural logics
more difficult than in a proof-theoretic setting. Leaving such questions of
practicality aside, more general arguments are needed if one wants to give
preference either to proofs or to dialogues as the appropriate foundational
approach.

101See Schroeder-Heister [2011b].





Appendix A

DEFINITIONS OF DIALOGUES AND SEQUENT
CALCULI

This appendix collects all definitions of dialogues and sequent calculi we
have made use of.

A.1. Dialogues

Dialogues are defined by the following argumentation forms and condi-
tions:

Argumentation forms:

negation ¬: assertion: X ¬A
attack: Y A
defense: no defense

conjunction ∧: assertion: X A1 ∧ A2
attack: Y ∧i (Y chooses i = 1 or i = 2)
defense: X Ai

disjunction ∨: assertion: X A1 ∨ A2
attack: Y ∨
defense: X Ai (X chooses i = 1 or i = 2)

implication→: assertion: X A→ B
attack: Y A
defense: X B

Conditions:

(D00) ä(n) is a P-signed expression if n is even and anO-signed expression
if n is odd. The expression in ä(0) is a complex formula.

(D01) If ç(n) = [m,A], then the expression in ä(m) is a complex formula
and ä(n) is an attack on this formula as determined by the relevant
argumentation form.
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(D02) If ç(p) = [n,D], then ç(n) = [m,A] for m < n < p and ä(p)
is the defense of the attack ä(n) as determined by the relevant
argumentation form.

A.2. DI p-dialogues

We add the following conditions to the definition of dialogues:

(D10) If, for an atomic formula a, ä(n) = P a, then there is anm such that
m < n and ä(m) = O a. That is, P may assert an atomic formula
only if it has been asserted by O before.

(D11) If ç(p) = [n,D], n < n′ < p, n′− n is even and ç(n′) = [m,A], then
there is a p′ such that n′ < p′ < p and ç(p′) = [n′, D]. That is, if at
a position p − 1 there are more than one open attacks, then only
the last of them may be defended at position p.

(D12) For every m there is at most one n such that ç(n) = [m,D]. That is,
an attack may be defended at most once.

(D13) If m is even, then there is at most one n such that ç(n) = [m,A].
That is, a P-signed formula may be attacked at most once.

A.3. Classical dialogues

We add the following conditions to the definition of dialogues:

(D10) If, for an atomic formula a, ä(n) = P a, then there is an m such
that m < n and ä(m) = O a. That is, P may assert an atomic
formula only if it has been asserted by O before.

(D11+) If ç(p) = [n,D] for even n, n < n′ < p, n′ − n is even and
ç(n′) = [m,A], then there is a p′ such that n′ < p′ < p and
ç(p′) = [n′, D]. That is, if at a position p − 1 there are more than
one open attacks by P, then only the last of them may be defended
by O at position p.

(D12+) For every even m there is at most one n such that ç(n) = [m,D].
That is, an attack by P may be defended by O at most once.

(D13) If m is even, then there is at most one n such that ç(n) = [m,A].
That is, a P-signed formula may be attacked at most once.

A.4. DI pc -dialogues

We add the following conditions to the definition of dialogues:
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(D10) If, for an atomic formula a, ä(n) = P a, then there is anm such that
m < n and ä(m) = O a. That is, P may assert an atomic formula
only if it has been asserted by O before.

(D11) If ç(p) = [n,D], n < n′ < p, n′− n is even and ç(n′) = [m,A], then
there is a p′ such that n′ < p′ < p and ç(p′) = [n′, D]. That is, if at
a position p − 1 there are more than one open attacks, then only
the last of them may be defended at position p.

(D12) For every m there is at most one n such that ç(n) = [m,D]. That is,
an attack may be defended at most once.

(D13) If m is even, then there is at most one n such that ç(n) = [m,A].
That is, a P-signed formula may be attacked at most once.

(D14) O can attack a formula C if and only if (i) C has not yet been
asserted by O, or (ii) C has already been attacked by P.

A.5. EI p-dialogues

We add the following conditions to the definition of dialogues:

(D10) If, for an atomic formula a, ä(n) = P a, then there is anm such that
m < n and ä(m) = O a. That is, P may assert an atomic formula
only if it has been asserted by O before.

(D11) If ç(p) = [n,D], n < n′ < p, n′− n is even and ç(n′) = [m,A], then
there is a p′ such that n′ < p′ < p and ç(p′) = [n′, D]. That is, if at
a position p − 1 there are more than one open attacks, then only
the last of them may be defended at position p.

(D12) For every m there is at most one n such that ç(n) = [m,D]. That is,
an attack may be defended at most once.

(D13) If m is even, then there is at most one n such that ç(n) = [m,A].
That is, a P-signed formula may be attacked at most once.

(E) All moves 〈ä(n), ç(n)〉 for n odd are of the form 〈ä(n), ç(n) =
[n − 1, Z]〉. That is, an opponent move made at position n is either
an attack or a defense of the immediately preceding move made by
the proponent at position n − 1.

Since condition (E) implies condition (D13), and (E) furthermore
implies (D11) respectively (D12) for odd p respectively for odd n, EI p-
dialogues can also be defined as follows:

(D10) If, for an atomic formula a, ä(n) = P a, then there is anm such that
m < n and ä(m) = O a. That is, P may assert an atomic formula
only if it has been asserted by O before.
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(D11′) If ç(p) = [n,D] for odd n, n < n′ < p, n′ − n is even and
ç(n′) = [m,A], then there is a p′ such that n′ < p′ < p and
ç(p′) = [n′, D]. That is, if at a position p − 1 there are more than
one open attacks by O, then only the last of them may be defended
by P at position p.

(D12′) For every odd m there is at most one n such that ç(n) = [m,D].
That is, an attack by O may be defended by P at most once.

(E) All moves 〈ä(n), ç(n)〉 for n odd are of the form 〈ä(n), ç(n) =
[n − 1, Z]〉. That is, an opponent move made at position n is either
an attack or a defense of the immediately preceding move made by
the proponent at position n − 1.

A.6. EI pc -dialogues

We add the following conditions to the definition of dialogues:

(D10) If, for an atomic formula a, ä(n) = P a, then there is anm such that
m < n and ä(m) = O a. That is, P may assert an atomic formula
only if it has been asserted by O before.

(D11′) If ç(p) = [n,D] for odd n, n < n′ < p, n′ − n is even and
ç(n′) = [m,A], then there is a p′ such that n′ < p′ < p and
ç(p′) = [n′, D]. That is, if at a position p − 1 there are more than
one open attacks by O, then only the last of them may be defended
by P at position p.

(D12′) For every odd m there is at most one n such that ç(n) = [m,D].
That is, an attack by O may be defended by P at most once.

(D14) O can attack a formula C if and only if (i) C has not yet been
asserted by O, or (ii) C has already been attacked by P.

(E) All moves 〈ä(n), ç(n)〉 for n odd are of the form 〈ä(n), ç(n) =
[n − 1, Z]〉. That is, an opponent move made at position n is either
an attack or a defense of the immediately preceding move made by
the proponent at position n − 1.

A.7. Hypothetical dialogues

See Section 2.8.
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A.8. The sequent calculus LI p

The sequent calculus LI p for intuitionistic propositional logic consists
of the following rules, where Γ and ∆ are finite multisets of formulas (the
comma in antecedents of sequents stands for multiset union, and singletons
are written without braces):

Axiom

(Ida) (where a is atomic)
a ` a

Logical rules

Γ`A(¬`)
Γ,¬A`

Γ, A`
(`¬)

Γ`¬A

Γ, Ai `C(∧`) (i = 1, 2)
Γ, A1 ∧ A2 `C

Γ`A ∆`B (`∧)
Γ,∆`A ∧ B

Γ, A`C ∆, B `C
(∨`)

Γ,∆, A ∨ B `C
Γ`Ai (`∨) (i = 1, 2)

Γ`A1 ∨ A2

Γ`A ∆, B `C
(→`)

Γ,∆, A→ B `C
Γ, A`B

(`→)
Γ`A→ B

Structural rules

Γ`C(Thin`)
Γ, A`C

Γ` (`Thin)
Γ`A

Γ, A,A`C
(Contr)

Γ, A`C

Γ`A ∆, A`B
(Cut)

Γ,∆`B

A.9. The sequent calculus LI pc

The sequent calculus LI pc with atomic or complex initial sequents for
intuitionistic propositional logic is defined as LI p but without the axiom
being restricted to atomic formulas (as in LI p, Γ and ∆ are finite multisets of
formulas, the comma in antecedents of sequents stands for multiset union,
and singletons are written without braces):
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Axiom

(Id) (A atomic or complex)
A`A

Logical rules

Γ`A(¬`)
Γ,¬A`

Γ, A`
(`¬)

Γ`¬A

Γ, Ai `C(∧`) (i = 1, 2)
Γ, A1 ∧ A2 `C

Γ`A ∆`B (`∧)
Γ,∆`A ∧ B

Γ, A`C ∆, B `C
(∨`)

Γ,∆, A ∨ B `C
Γ`Ai (`∨) (i = 1, 2)

Γ`A1 ∨ A2

Γ`A ∆, B `C
(→`)

Γ,∆, A→ B `C
Γ, A`B

(`→)
Γ`A→ B

Structural rules

Γ`C(Thin`)
Γ, A`C

Γ` (`Thin)
Γ`A

Γ, A,A`C
(Contr)

Γ, A`C

Γ`A ∆, A`B
(Cut)

Γ,∆`B

A.10. Contraction-free EI pc -dialogues

Contraction-free EI pc -dialogues are obtained by adding the following
condition to the definition of EI pc -dialogues:

(D13∗) For any move 〈ä(k) = OA, ç(k) = [j,Z]〉 there is at most one
move of the form 〈ä(l) = P e, ç(l) = [k,A]〉 or 〈ä(l) = P A,
ç(l) = [i, Z]〉, where j < k < l and i < l . That is, each assertion
of an O-signed formula may be used by P at most once.

Contraction-free EI pc -dialogues are thus defined by the conditions (D00),
(D01), (D02), (D10), (D11′), (D12′), (D13∗), (D14) and (E), with the
argumentation forms as given for dialogues.
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A.11. Contraction-free DI pc -dialogues

Contraction-free DI pc -dialogues are obtained by adding the following
condition to the definition of DI pc -dialogues:

(D13∗) For any move 〈ä(k) = OA, ç(k) = [j,Z]〉 there is at most one
move of the form 〈ä(l) = P e, ç(l) = [k,A]〉 or 〈ä(l) = P A,
ç(l) = [i, Z]〉, where j < k < l and i < l . That is, each assertion
of an O-signed formula may be used by P at most once.

Contraction-free DI pc -dialogues are thus defined by the conditions (D00),
(D01), (D02), (D10), (D11), (D12), (D13), (D13∗) and (D14), with the
argumentation forms as given for dialogues.

A.12. Dialogues for first-order logic

We add argumentation forms for the quantifiers ∀ and ∃:
universal quantifier ∀: assertion: X ∀xA(x)

attack: Y t (Y chooses the term t)
defense: X A(x)[t/x]

existential quantifier ∃: assertion: X ∃xA(x)
attack: Y ∃
defense: X A(x)[t/x] (X chooses the term t)

where [t/x] is the substitution of the term t for the variable x, andA(x)[t/x]
is the result of substituting t for all occurrences of x in A. This substitution
instance is also written A(t).
Dialogues and strategies for first-order logic are defined as propositional

dialogues and strategies extended by the argumentation forms for ∀ and ∃.

A.13. Formal dialogues (for first-order logic)

We define formal argumentation forms for the quantifiers ∀ and ∃ as
follows:

(P ∀-form): assertion: P ∀xA(x)
attack: O y (with eigenvariable condition)
defense: P A(x)[y/x]

(O ∀-form): assertion: O ∀xA(x)
attack: P t
defense: OA(x)[t/x]
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(P ∃-form): assertion: P ∃xA(x)
attack: O t
defense: P A(x)[t/x]

(O ∃-form): assertion: O ∃xA(x)
attack: P ∃
defense: OA(x)[y/x] (with eigenvariable condition)

where the eigenvariable condition is thaty does not occur free in an expression
(i.e. in an assertion or in a symbolic attack) before. That is, the move
〈ä(n) = O y, ç(n) = [m,A]〉, respectively the move 〈ä(n) = OA(x)[y/x],
ç(n) = [m,D]〉, is only possible if y does not occur free at positions k < n.
A dialogue constructed in accordance with the formal argumentation

forms is called formal dialogue. A formal dialogue tree is a tree whose
branches contain as paths all possible formal dialogues for a given formula.
P wins a formal dialogue for a formula A if the formal dialogue is finite,
begins with the move P A and ends with a move of P such that O cannot
make another move.

A formal dialogue is called DI-dialogue if it satisfies the conditions
(D00)–(D02) and (D10)–(D13) as given in Definitions 2.1.6 (see also
Section A.1) and 2.2.1 (see also Section A.2).

A DIc-dialogue is a DI-dialogue that satisfies the additional condition
(D14) as given in Definition 2.5.1 (see also Section A.4).

A formal dialogue is called EI-dialogue if it satisfies the conditions
(D00)–(D02), (D10)–(D13) and (E) as given in Definitions 2.1.6, 2.2.1
(see also Sections A.1 and A.2) and 2.6.1 (see also Section A.5).

A formal dialogue is called EIc-dialogue if it satisfies the following
conditions:

(D00) ä(n) is a P-signed expression if n is even and anO-signed expression
if n is odd. The expression in ä(0) is a complex formula.

(D01) If ç(n) = [m,A], then the expression in ä(m) is a complex formula
and ä(n) is an attack on this formula as determined by the relevant
argumentation form.

(D02) If ç(p) = [n,D], then ç(n) = [m,A] for m < n < p and ä(p)
is the defense of the attack ä(n) as determined by the relevant
argumentation form.

(D10) If, for an atomic formula a, ä(n) = P a, then there is anm such that
m < n and ä(m) = O a. That is, P may assert an atomic formula
only if it has been asserted by O before.
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(D11′) If ç(p) = [n,D] for odd n, n < n′ < p, n′ − n is even and
ç(n′) = [m,A], then there is a p′ such that n′ < p′ < p and
ç(p′) = [n′, D]. That is, if at a position p − 1 there are more than
one open attacks by O, then only the last of them may be defended
by P at position p.

(D12′) For every odd m there is at most one n such that ç(n) = [m,D].
That is, an attack by O may be defended by P at most once.

(D14) O can attack a formula C if and only if (i) C has not yet been
asserted by O, or (ii) C has already been attacked by P.

(E) All moves 〈ä(n), ç(n)〉 for n odd are of the form 〈ä(n), ç(n) =
[n − 1, Z]〉. That is, an opponent move made at position n is either
an attack or a defense of the immediately preceding move made by
the proponent at position n − 1.

A formal strategy for a formula A is a subtree S of the formal dialogue
tree for A such that S does not branch at even positions, all branches of
S are formal dialogues for A won by P, and S has as many nodes at odd
positions as there are possible moves for O, with the following exceptions:
Only one node at odd positions n has to be considered if

(i) 〈ä(n) = OA(x)[y/x], ç(n) = [m,D]〉 for 〈ä(m) = P ∃, ç(m) = [l, A]〉.
That is,O is defending an attack P ∃ according to the formal argumen-
tation form (O ∃-form).

(ii) 〈ä(n) = O y, ç(n) = [m,A]〉. That is, O makes an attack move O y
according to the formal argumentation form (P ∀).

(iii) 〈ä(n) = O t, ç(n) = [m,A]〉. That is, O makes an attack move O t
according to the formal argumentation form (P ∃-form).

A.14. The sequent calculus LI

The sequent calculus LI for intuitionistic first-order logic is the proposi-
tional calculus LI p with additional left and right introduction rules for the
quantifiers ∀ and ∃. Γ and ∆ are finite multisets of formulas. The comma
in antecedents of sequents stands for multiset union, and singletons are
written without braces. We give the whole calculus LI, repeating the rules
of LI p:

Axiom

(Ida) (where a is atomic)
a ` a

(cont’d on next page)
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Propositional logical rules

Γ`A(¬`)
Γ,¬A`

Γ, A`
(`¬)

Γ`¬A

Γ, Ai `C(∧`) (i = 1, 2)
Γ, A1 ∧ A2 `C

Γ`A ∆`B (`∧)
Γ,∆`A ∧ B

Γ, A`C ∆, B `C
(∨`)

Γ,∆, A ∨ B `C
Γ`Ai (`∨) (i = 1, 2)

Γ`A1 ∨ A2

Γ`A ∆, B `C
(→`)

Γ,∆, A→ B `C
Γ, A`B

(`→)
Γ`A→ B

First-order logical rules

Γ, A(t)`B
(∀`)

Γ,∀xA(x)`B
Γ`A(y)

(`∀)
Γ`∀xA(x)

(y does not occur free in Γ)

Γ, A(y)`C
(∃`)

Γ,∃xA(x)`C
(y does not occur free in Γ, C )

Γ`A(t)
(`∃)

Γ`∃xA(x)

Structural rules

Γ`C(Thin`)
Γ, A`C

Γ` (`Thin)
Γ`A

Γ, A,A`C
(Contr)

Γ, A`C

Γ`A ∆, A`B
(Cut)

Γ,∆`B

A.15. The sequent calculus LIc

The sequent calculus LIc with atomic or complex initial sequents for
intuitionistic first-order logic is defined as LI but without the axiom being
restricted to atomic formulas (as in LI, Γ and ∆ are finite multisets of
formulas, the comma in antecedents of sequents stands for multiset union,
and singletons are written without braces):
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Axiom

(Id) (A atomic or complex)
A`A

Propositional logical rules

Γ`A(¬`)
Γ,¬A`

Γ, A`
(`¬)

Γ`¬A

Γ, Ai `C(∧`) (i = 1, 2)
Γ, A1 ∧ A2 `C

Γ`A ∆`B (`∧)
Γ,∆`A ∧ B

Γ, A`C ∆, B `C
(∨`)

Γ,∆, A ∨ B `C
Γ`Ai (`∨) (i = 1, 2)

Γ`A1 ∨ A2

Γ`A ∆, B `C
(→`)

Γ,∆, A→ B `C
Γ, A`B

(`→)
Γ`A→ B

First-order logical rules

Γ, A(t)`B
(∀`)

Γ,∀xA(x)`B
Γ`A(y)

(`∀)
Γ`∀xA(x)

(y does not occur free in Γ)

Γ, A(y)`C
(∃`)

Γ,∃xA(x)`C
(y does not occur free in Γ, C )

Γ`A(t)
(`∃)

Γ`∃xA(x)

Structural rules

Γ`C(Thin`)
Γ, A`C

Γ` (`Thin)
Γ`A

Γ, A,A`C
(Contr)

Γ, A`C

Γ`A ∆, A`B
(Cut)

Γ,∆`B

A.16. The sequent calculus LIc(D)

For any given definition D, the sequent calculus LIc(D) for intuitionistic
first-order logic over D is:
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Axiom

(Id) (A atomic or complex)
A`A

Propositional logical rules

Γ`A(¬`)
Γ,¬A`

Γ, A`
(`¬)

Γ`¬A

Γ, Ai `C(∧`) (i = 1, 2)
Γ, A1 ∧ A2 `C

Γ`A ∆`B (`∧)
Γ,∆`A ∧ B

Γ, A`C ∆, B `C
(∨`)

Γ,∆, A ∨ B `C
Γ`Ai (`∨) (i = 1, 2)

Γ`A1 ∨ A2

Γ`A ∆, B `C
(→`)

Γ,∆, A→ B `C
Γ, A`B

(`→)
Γ`A→ B

First-order logical rules

Γ, A(t)`B
(∀`)

Γ,∀xA(x)`B
Γ`A(y)

(`∀)
Γ`∀xA(x)

(y does not occur free in Γ)

Γ, A(y)`C
(∃`)

Γ, ∃xA(x)`C
(y does not occur free in Γ, C )

Γ`A(t)
(`∃)

Γ`∃xA(x)

Structural rules

Γ`C(Thin`)
Γ, A`C

Γ` (`Thin)
Γ`A

Γ, A,A`C
(Contr)

Γ, A`C

Γ`A ∆, A`B
(Cut)

Γ,∆`B

(cont’d on next page)
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Definitional rules

∆`B i
1ó . . . ∆`B i

nió (`D)
∆` aó

{∆,Γió `C | b⇐ Γi ∈ D and a = bó}
(D`)

∆, a `C
(where D(aó) ⊆ (D(a))ó)

A.17. Preliminary definitional dialogues

Preliminary definitional dialogues are EIc-dialogues where the following
changes are made.
Conditions (D00) and (D01) are replaced by the following conditions

(D00′) and (D01′), respectively, where the restriction of the expressions
in ä(0) and ä(m) to complex formulas is discarded; that is, a definitional
dialogue can start with the assertion of an atomic formula, and atomic
formulas can be attacked:

(D00′) ä(n) is a P-signed expression if n is even and anO-signed expression
if n is odd. The expression in ä(0) is a (complex or atomic) formula.

(D01′) If ç(n) = [m,A], then the expression in ä(m) is a formula and
ä(n) is an attack on this formula as determined by the relevant
argumentation form.

Condition (D02) remains without change:

(D02) If ç(p) = [n,D], then ç(n) = [m,A] for m < n < p and ä(p)
is the defense of the attack ä(n) as determined by the relevant
argumentation form.

Condition (D10) is omitted altogether, so that P can now assert atomic
formulas withoutO having asserted them before. Conditions (D11′), (D12′),
(D14) and (E) remain without change:

(D11′) If ç(p) = [n,D] for odd n, n < n′ < p, n′ − n is even and
ç(n′) = [m,A], then there is a p′ such that n′ < p′ < p and
ç(p′) = [n′, D]. That is, if at a position p − 1 there are more than
one open attacks by O, then only the last of them may be defended
by P at position p.

(D12′) For every odd m there is at most one n such that ç(n) = [m,D].
That is, an attack by O may be defended by P at most once.

(D14) O can attack a formula C if and only if (i) C has not yet been
asserted by O, or (ii) C has already been attacked by P.



176 A. Definitions of dialogues and sequent calculi

(E) All moves 〈ä(n), ç(n)〉 for n odd are of the form 〈ä(n), ç(n) =
[n − 1, Z]〉. That is, an opponent move made at position n is either
an attack or a defense of the immediately preceding move made by
the proponent at position n − 1.

The following proviso for applications of definitional reasoning in the
presence of variables is added:

(S) For any substitution ó replacing variables x, y, . . . by terms t, the
application of definitional reasoning with attack move PD is restricted
to the cases where D(aó) ⊆ (D(a))ó.

Thus (preliminary) definitional dialogues are defined by the conditions
(D00′), (D01′), (D02), (D11′), (D12′), (D14), (S) and (E), with the
additional argumentation form of definitional reasoning. Given en bloc:

Argumentation forms:

negation ¬: assertion: X ¬A
attack: Y A
defense: no defense

conjunction ∧: assertion: X A1 ∧ A2
attack: Y ∧i (Y chooses i = 1 or 2)
defense: X Ai

disjunction ∨: assertion: X A1 ∨ A2
attack: Y ∨
defense: X Ai (X chooses i = 1 or 2)

implication→: assertion: X A→ B
attack: Y A
defense: X B

(P ∀-form): assertion: P ∀xA(x)
attack: O y (y not free before)
defense: P A(x)[y/x]

(O ∀-form): assertion: O ∀xA(x)
attack: P t
defense: OA(x)[t/x]

(P ∃-form): assertion: P ∃xA(x)
attack: O t
defense: P A(x)[t/x]

(O ∃-form): assertion: O ∃xA(x)
attack: P ∃
defense: OA(x)[y/x] (y not free before)
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definitional reasoning: assertion: X a
attack: Y D (only if a 6= >)
defense: X Γi (X chooses i = 1, . . . , k)

Conditions:

(D00′) ä(n) is a P-signed expression if n is even and anO-signed expression
if n is odd. The expression in ä(0) is a (complex or atomic) formula.

(D01′) If ç(n) = [m,A], then the expression in ä(m) is a formula and
ä(n) is an attack on this formula as determined by the relevant
argumentation form.

(D02) If ç(p) = [n,D], then ç(n) = [m,A] for m < n < p and ä(p)
is the defense of the attack ä(n) as determined by the relevant
argumentation form.

(D11) If ç(p) = [n,D], n < n′ < p, n′ − n is even and ç(n′) = [m,A],
then there is a p′ such that n′ < p′ < p and ç(p′) = [n′, D]. That
is, if at a position p − 1 there are more than one open attacks, then
only the last of them may be defended at position p.

(D12) For every m there is at most one n such that ç(n) = [m,D]. That is,
an attack may be defended at most once.

(D13) If m is even, then there is at most one n such that ç(n) = [m,A].
That is, a P-signed formula may be attacked at most once.

(D14) O can attack a formula C if and only if (i) C has not yet been
asserted by O, or (ii) C has already been attacked by P.

(S) For any substitution ó replacing variables x, y, . . . by terms t,
the application of definitional reasoning with attack move PD is
restricted to the cases where D(aó) ⊆ (D(a))ó.

A.18. Definitional dialogues

Definitional dialogues are defined by adding to the preliminary definition
of definitional dialogues the following condition:

(D15) If for an atom a there is a move 〈ä(l) = O a, ç(l) = [k,Z]〉, then
there is no attack 〈ä(n) = OD , ç(n) = [m,A]〉 for ä(m) = P a with
k < l < m < n. That is, O may attack an atom a by definitional
reasoning only if it has not been asserted by O before.

Furthermore, condition (D14) is replaced by the following condition (D14∗)
which is (D14) restricted to complex formulas:
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(D14∗) O can attack a complex formula C if and only if (i) C has not yet
been asserted by O, or (ii) C has already been attacked by P.

Definitional dialogues are thus defined as follows:

Argumentation forms:

negation ¬: assertion: X ¬A
attack: Y A
defense: no defense

conjunction ∧: assertion: X A1 ∧ A2
attack: Y ∧i (Y chooses i = 1 or 2)
defense: X Ai

disjunction ∨: assertion: X A1 ∨ A2
attack: Y ∨
defense: X Ai (X chooses i = 1 or 2)

implication→: assertion: X A→ B
attack: Y A
defense: X B

(P ∀-form): assertion: P ∀xA(x)
attack: O y (y not free before)
defense: P A(x)[y/x]

(O ∀-form): assertion: O ∀xA(x)
attack: P t
defense: OA(x)[t/x]

(P ∃-form): assertion: P ∃xA(x)
attack: O t
defense: P A(x)[t/x]

(O ∃-form): assertion: O ∃xA(x)
attack: P ∃
defense: OA(x)[y/x] (y not free before)

definitional reasoning: assertion: X a
attack: Y D (only if a 6= >)
defense: X Γi (X chooses i = 1, . . . , k)

Conditions:

(D00′) ä(n) is a P-signed expression if n is even and anO-signed expression
if n is odd. The expression in ä(0) is a (complex or atomic) formula.

(D01′) If ç(n) = [m,A], then the expression in ä(m) is a formula and
ä(n) is an attack on this formula as determined by the relevant
argumentation form.
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(D02) If ç(p) = [n,D], then ç(n) = [m,A] for m < n < p and ä(p)
is the defense of the attack ä(n) as determined by the relevant
argumentation form.

(D11′) If ç(p) = [n,D] for odd n, n < n′ < p, n′ − n is even and
ç(n′) = [m,A], then there is a p′ such that n′ < p′ < p and
ç(p′) = [n′, D]. That is, if at a position p − 1 there are more than
one open attacks by O, then only the last of them may be defended
by P at position p.

(D12′) For every odd m there is at most one n such that ç(n) = [m,D].
That is, an attack by O may be defended by P at most once.

(D14∗) O can attack a complex formula C if and only if (i) C has not yet
been asserted by O, or (ii) C has already been attacked by P.

(D15) If for an atom a there is a move 〈ä(l) = O a, ç(l) = [k,Z]〉, then
there is no attack 〈ä(n) = OD , ç(n) = [m,A]〉 for ä(m) = P a with
k < l < m < n. That is, O may attack an atom a by definitional
reasoning only if it has not been asserted by O before.

(S) For any substitution ó replacing variables x, y, . . . by terms t,
the application of definitional reasoning with attack move PD is
restricted to the cases where D(aó) ⊆ (D(a))ó.

(E) All moves 〈ä(n), ç(n)〉 for n odd are of the form 〈ä(n), ç(n) =
[n − 1, Z]〉. That is, an opponent move made at position n is either
an attack or a defense of the immediately preceding move made by
the proponent at position n − 1.

A.19. Definitional dialogues without contraction

Contraction-free definitional dialogues are definitional dialogues where
the following condition (D13∗) is added:

(D13∗) For any move 〈ä(k) = OA, ç(k) = [j,Z]〉 there is at most one
move of the form 〈ä(l) = P e, ç(l) = [k,A]〉 or 〈ä(l) = P A,
ç(l) = [i, Z]〉, where j < k < l and i < l . That is, each assertion
of an O-signed formula may be used by P at most once.

Contraction-free definitional dialogues are thus defined by the conditions
(D00′), (D01′), (D02), (D11′), (D12′), (D13∗), (D14∗), (D15), (S) and
(E), with the argumentation forms as given for definitional dialogues.

A.20. Definitional dialogues with restricted contraction

See Section 4.5.
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A.21. Kreuger-restricted definitional dialogues

For a set U of atoms a which are not defined by a given definitionD, that
is, for U := {a | (a⇐ Γ) /∈ D for any atoms a and defining conditions Γ},
the Kreuger-restricted definitional dialogues are defined by the following
argumentation forms and conditions:

Argumentation forms:

negation ¬: assertion: X ¬A
attack: Y A
defense: no defense

conjunction ∧: assertion: X A1 ∧ A2
attack: Y ∧i (Y chooses i = 1 or 2)
defense: X Ai

disjunction ∨: assertion: X A1 ∨ A2
attack: Y ∨
defense: X Ai (X chooses i = 1 or 2)

implication→: assertion: X A→ B
attack: Y A
defense: X B

(P ∀-form): assertion: P ∀xA(x)
attack: O y (y not free before)
defense: P A(x)[y/x]

(O ∀-form): assertion: O ∀xA(x)
attack: P t
defense: OA(x)[t/x]

(P ∃-form): assertion: P ∃xA(x)
attack: O t
defense: P A(x)[t/x]

(O ∃-form): assertion: O ∃xA(x)
attack: P ∃
defense: OA(x)[y/x] (y not free before)

definitional reasoning: assertion: X a
attack: Y D (only if a 6= >)
defense: X Γi (X chooses i = 1, . . . , k)

Conditions:

(D00′) ä(n) is a P-signed expression if n is even and anO-signed expression
if n is odd. The expression in ä(0) is a (complex or atomic) formula.
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(D01′) If ç(n) = [m,A], then the expression in ä(m) is a formula and
ä(n) is an attack on this formula as determined by the relevant
argumentation form.

(D02) If ç(p) = [n,D], then ç(n) = [m,A] for m < n < p and ä(p)
is the defense of the attack ä(n) as determined by the relevant
argumentation form.

(D10∗) If, for an atomic formula a ∈ U , ä(n) = P a for n 6= 0, then there
is an m such that m < n and ä(m) = O a. That is, P may assert
an atomic formula a, which has been asserted by O before, only if
a ∈ U .

(D11′) If ç(p) = [n,D] for odd n, n < n′ < p, n′ − n is even and
ç(n′) = [m,A], then there is a p′ such that n′ < p′ < p and
ç(p′) = [n′, D]. That is, if at a position p − 1 there are more than
one open attacks by O, then only the last of them may be defended
by P at position p.

(D12′) For every odd m there is at most one n such that ç(n) = [m,D].
That is, an attack by O may be defended by P at most once.

(D15) If for an atom a there is a move 〈ä(l) = O a, ç(l) = [k,Z]〉, then
there is no attack 〈ä(n) = OD , ç(n) = [m,A]〉 for ä(m) = P a with
k < l < m < n. That is, O may attack an atom a by definitional
reasoning only if it has not been asserted by O before.

(S) For any substitution ó replacing variables x, y, . . . by terms t,
the application of definitional reasoning with attack move PD is
restricted to the cases where D(aó) ⊆ (D(a))ó.

(K) For 〈ä(m) = O a, ç(m) = [l, Z]〉 and a ∈ U there is no attack
〈ä(n) = PD , ç(n) = [m,A]〉 for l < m < n. That is, P may attack
an atom a by definitional reasoning only if a /∈ U .

(E) All moves 〈ä(n), ç(n)〉 for n odd are of the form 〈ä(n), ç(n) =
[n − 1, Z]〉. That is, an opponent move made at position n is either
an attack or a defense of the immediately preceding move made by
the proponent at position n − 1.

A.22. The sequent calculus LI◦

The sequent calculus LI◦ for intuitionistic propositional logic consists
of the following rules (where Γ and ∆ are finite multisets of formulas; the
comma in antecedents of sequents stands for multiset union, and singletons
are written without braces):
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Axiom

(Id) (A atomic or complex)
A`A

Logical rules

Γ`A(¬`)
Γ,¬A`

Γ, A`
(`¬)

Γ`¬A

Γ, Ai `C(∧`) (i = 1, 2)
Γ, A1 ∧ A2 `C

Γ`A ∆`B (`∧)
Γ,∆`A ∧ B

Γ, A`C ∆, B `C
(∨`)

Γ,∆, A ∨ B `C
Γ`Ai (`∨) (i = 1, 2)

Γ`A1 ∨ A2

Γ`A(→`)◦
Γ, A→ B `B

Γ, A`B
(`→)

Γ`A→ B

Structural rules

Γ`C(Thin`)
Γ, A`C

Γ` (`Thin)
Γ`A

Γ, A,A`C
(Contr)

Γ, A`C

Γ`A ∆, A`B
(Cut)

Γ,∆`B

A.23. EI◦-dialogues

EI◦-dialogues are defined by the following argumentation forms and
conditions:

Argumentation forms for assertions made by O:

AF(¬`): assertion: O ¬A
attack: P A
defense: no defense

AF(∧`): assertion: OA1 ∧ A2
attack: P ∧i (P chooses i = 1 or i = 2)
defense: OAi
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AF(∨`): assertion: OA1 ∨ A2
attack: P ∨
defense: OAi (O chooses i = 1 or i = 2)

AF(→`)◦: assertion: OA→ B
attack: no attack
defense: no defense

The argumentation forms for assertions made by the proponent P are
formulated with the following rule condition

(R) P may answer a question O ? on a formula D by choosing C only if O
has asserted the formula C →D before.

AF(`¬): assertion: P ¬A
question: O ?
choice: P |¬A| P C (R)
attack: OA
defense: no defense

AF(`∧): assertion: P A1 ∧ A2
question: O ?
choice: P |A1 ∧ A2| P C (R)
attack: O ∧i (i = 1 or 2)
defense: P Ai

AF(`∨): assertion: P A1 ∨ A2
question: O ?
choice: P |A1 ∨ A2| P C (R)
attack: O ∨
defense: P Ai (i = 1 or 2)

AF(`→): assertion: P A→ B
question: O ?
choice: P |A→ B | P C (R)
attack: OA
defense: P B

For assertions of atomic formulas a made by the proponent P an argumen-
tation form is given by the rule condition (R) itself:

AF(R): assertion: P a
question: O ?
choice: P C only if O has asserted C → a before
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By the following argumentation form AF(Cut) any expression e (i.e.,
question, symbolic attack or formula) stated by O can be attacked with the
move P A, and this attack can then be defended with the move OA:

AF(Cut): assertion: O e
attack: P A
defense: OA

The conditions for EI◦-dialogues are the following:

(D00′) ä(n) is aP-signed expression if n is even and anO-signed expression
if n is odd. The expression in ä(0) is a (complex or atomic) formula.

(D01◦) If ç(n) = [m,A] for even n, then the expression in ä(m) is a complex
formula. If ç(n) = [n − 1, A] for odd n, then the expression in
ä(n − 1) is of the form |B | for a complex formula B . In both cases
ä(n) is an attack on this formula as determined by the relevant
argumentation form.

(D02) If ç(p) = [n,D], then ç(n) = [m,A] for m < n < p and ä(p)
is the defense of the attack ä(n) as determined by the relevant
argumentation form.

(D03◦) If ç(n) = [m,Q] (for odd n), then form < n the expression in ä(m)
is a (complex or atomic) formula, ç(m) = [l, Z] for l < m, Z = A,
D, C or Cut (where l is empty if Z = Cut), and the expression in
ä(n) is the question mark ‘?’.

(D04◦) If ç(n) = [m,C ] (for even n), then ç(m) = [l, Q] for l < m < n
and ä(n) is the choice answering the question ä(m) as determined
by the relevant argumentation form.

(D05◦) If ç(n) = [Cut] for even n, then ç(m) = [l, Z] (where l is empty if
Z = Cut) for l < m < n and ä(n) is a formula (i.e., the cut formula).
If ç(n) = [Cut] for odd n, then ç(m) = [Cut] and ä(n) = OA for
ä(m) = P A (where m < n).

(D11′) If ç(p) = [n,D] for odd n, n < n′ < p, n′ − n is even and
ç(n′) = [m,A], then there is a p′ such that n′ < p′ < p and
ç(p′) = [n′, D]. That is, if at a position p − 1 there are more than
one open attacks by O, then only the last of them may be defended
by P at position p.

(D12′) For every odd m there is at most one n such that ç(n) = [m,D].
That is, an attack by O may be defended by P at most once.

(D14′) O can question a formula C if and only if (i) C has not yet been
asserted by O, or (ii) C has already been attacked by P.
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(E) All moves 〈ä(n), ç(n)〉 for n odd are of the form 〈ä(n), ç(n) =
[n − 1, Z]〉. That is, an opponent move made at position n is either
a question, an attack or a defense of the immediately preceding
move made by the proponent at position n − 1, or it is a cut move
with ä(n) = OA for ä(n − 1) = P A.

A.24. EI◦-dialogues extended to definitional dialogues
with contraction

The extension of EI◦-dialogues to definitional dialogues with contraction
is given as follows:

Argumentation forms:

AF(¬`): assertion: O ¬A
attack: P A
defense: no defense

AF(∧`): assertion: OA1 ∧ A2
attack: P ∧i (P chooses i = 1 or i = 2)
defense: OAi

AF(∨`): assertion: OA1 ∨ A2
attack: P ∨
defense: OAi (O chooses i = 1 or i = 2)

AF(→`)◦: assertion: OA→ B
attack: no attack
defense: no defense

AF(`¬): assertion: P ¬A
question: O ?
choice: P |¬A| P C (R)
attack: OA
defense: no defense

AF(`∧): assertion: P A1 ∧ A2
question: O ?
choice: P |A1 ∧ A2| P C (R)
attack: O ∧i (i = 1 or 2)
defense: P Ai
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AF(`∨): assertion: P A1 ∨ A2
question: O ?
choice: P |A1 ∨ A2| P C (R)
attack: O ∨
defense: P Ai (i = 1 or 2)

AF(`→): assertion: P A→ B
question: O ?
choice: P |A→ B | P C (R)
attack: OA
defense: P B

AF(R): assertion: P a
question: O ?
choice: P C only if O has asserted C → a before

AF(Cut): statement: O e
cut: P A
cut: OA

definitional reasoning: assertion: X a
attack: Y D (only if a 6= >)
defense: X Γi (X chooses i = 1, . . . , k)

Conditions:

(D00′) ä(n) is a P-signed expression if n is even and anO-signed expression
if n is odd. The expression in ä(0) is a (complex or atomic) formula.

(D01◦) If ç(n) = [m,A] for even n, then the expression in ä(m) is a complex
formula. If ç(n) = [n − 1, A] for odd n, then the expression in
ä(n − 1) is of the form |B | for a complex formula B . In both cases
ä(n) is an attack on this formula as determined by the relevant
argumentation form.

(D02) If ç(p) = [n,D], then ç(n) = [m,A] for m < n < p and ä(p)
is the defense of the attack ä(n) as determined by the relevant
argumentation form.

(D03◦) If ç(n) = [m,Q] (for odd n), then for m < n the expression in ä(m)
is a (complex or atomic) formula, ç(m) = [l, Z] for l < m, Z = A,
D, C or Cut (where l is empty if Z = Cut), and the expression in
ä(n) is the question mark ‘?’.
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(D04◦) If ç(n) = [m,C ] (for even n), then ç(m) = [l, Q] for l < m < n and
ä(n) is the choice answering the question ä(m) as determined by
the relevant argumentation form.

(D05◦) If ç(n) = [Cut] for even n, then ç(m) = [l, Z] (where l is empty if
Z = Cut) for l < m < n and ä(n) is a formula (i.e., the cut formula).
If ç(n) = [Cut] for odd n, then ç(m) = [Cut] and ä(n) = OA for
ä(m) = P A (where m < n).

(D11′) If ç(p) = [n,D] for odd n, n < n′ < p, n′ − n is even and
ç(n′) = [m,A], then there is a p′ such that n′ < p′ < p and
ç(p′) = [n′, D]. That is, if at a position p − 1 there are more than
one open attacks by O, then only the last of them may be defended
by P at position p.

(D12′) For every odd m there is at most one n such that ç(n) = [m,D].
That is, an attack by O may be defended by P at most once.

(D14′) O can question a formula C if and only if (i) C has not yet been
asserted by O, or (ii) C has already been attacked by P.

(D14∗) O can attack a complex formula C if and only if (i) C has not yet
been asserted by O, or (ii) C has already been attacked by P.

(D15) If for an atom a there is a move 〈ä(l) = O a, ç(l) = [k,Z]〉, then
there is no attack 〈ä(n) = OD , ç(n) = [m,A]〉 for ä(m) = P a with
k < l < m < n. That is, O may attack an atom a by definitional
reasoning only if it has not been asserted by O before.

(S) For any substitution ó replacing variables x, y, . . . by terms t,
the application of definitional reasoning with attack move PD is
restricted to the cases where D(aó) ⊆ (D(a))ó.

(E) All moves 〈ä(n), ç(n)〉 for n odd are of the form 〈ä(n), ç(n) =
[n − 1, Z]〉. That is, an opponent move made at position n is either
a question, an attack or a defense of the immediately preceding
move made by the proponent at position n − 1, or it is a cut move
with ä(n) = OA for ä(n − 1) = P A.

A.25. Hypothetical EI◦-dialogues

See Section 5.6.
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book 2011 (M. Peliš and V. Punčochář, editors), College Publications,
London, (forthcoming).

Dag Prawitz
[1965] Natural Deduction: A Proof-Theoretical Study, Almqvist & Wik-

sell, Stockholm, reprinted by Dover Publications, Mineola, N.Y. 2006.
[1971] Ideas and Results in Proof Theory, Proceedings of the Second

Scandinavian Logic Symposium (J. E. Fenstad, editor), Studies in Logic
and the Foundations of Mathematics, vol. 63, North-Holland, Amsterdam,
pp. 235–307.
[2006]Meaning Approached Via Proofs, Proof-Theoretic Semantics

(R. Kahle and P. Schroeder-Heister, editors), special issue of Synthese, vol.
148, Springer, Berlin, pp. 507–524.
[2007] Pragmatist and Verificationist Theories of Meaning, The Philos-

ophy of Michael Dummett (R. E. Auxier and L. E. Hahn, editors), The



196 Bibliography

Library of Living Philosophers, vol. XXXI, Open Court, Chicago and La
Salle, Illinois, pp. 455–481.

Shahid Rahman
[2012] Negation in the Logic of First Degree Entailment and Tonk: A

Dialogical Study, The Realism-Antirealism Debate in the Age of Alterna-
tive Logics (S. Rahman, G. Primiero, and M. Marion, editors), Logic,
Epistemology, and the Unity of Science, vol. 23, Springer Netherlands,
pp. 213–250.

Shahid Rahman and Helge Rückert
[2001] Dialogical connexive logic, New Perspectives in Dialogical Logic

(S. Rahman and H. Rückert, editors), special issue of Synthese, vol. 127,
Springer, Berlin, pp. 105–139.

Shahid Rahman and Tero Tulenheimo
[2009] From Games to Dialogues and Back: Towards a General Frame

for Validity, Games: Unifying Logic, Language, and Philosophy (O. Majer,
A.-V. Pietarinen, and T. Tulenheimo, editors), Logic, Epistemology, and
the Unity of Science, vol. 15, Springer Netherlands, pp. 153–208.

Helge Rückert
[2001]Why Dialogical Logic?, Essays on Non-Classical Logic (H. Wans-

ing, editor), Advances in Logic, vol. 1, World Scientific Publishing, New
Jersey, London, Singapore, Hong Kong, pp. 165–185.
[2007] Dialogues as a Dynamic Framework for Logic, Ph.D. thesis, De-

partment of Philosophy, Leiden University, Leiden, available online at
https://openaccess.leidenuniv.nl/handle/1887/12099. Also contains Rah-
man and Rückert [2001] and Rückert [2001].

Peter Schroeder-Heister
[1984] A natural extension of natural deduction, The Journal of Symbolic

Logic, vol. 49, pp. 1284–1300.
[1991a] Hypothetical reasoning anddefinitional reflection in logic program-

ming, Extensions of Logic Programming. InternationalWorkshop, Tübingen,
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