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I. Abbreviations 

IM – Inner membrane 

OM – Outer membrane 

OMP – Outer membrane protein 

SCL – Subcellular localization 

SCF – Subcellular fractionation 

SP – Signal peptide 

HLA – Human leukocyte antigen 

MHC – Major histocompatibility complex 

PMN – Polymorphonuclear leukocyte 

PRR – Pattern recognition receptor 

CD – Cluster of differentiation   

BCR – B cell receptor 

TCR – T cell receptor  

APC – Antigen-presenting cell 

Ig – Immunoglobulin 

GBS – Group B Streptococcus 

BAM – β-barrel assembly machinery 

emPAI – Exponentially modified protein abundance index 

T2SS – Type two secretion system 

TMH – Transmembrane helix 

Tat – Twin arginine translocation 

PSSM – Position-specific scoring matrix 
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II Summary (German) 

  Impfungen haben die Welt verändert. In den letzten 200 Jahren konnten mit 
ihrer Hilfe eine Vielzahl von Krankheiten entweder unter Kontrolle gebracht oder 
ganz ausgerottet werden, darunter die Pocken, Masern, Diphterie, Polio und andere. 
Dennoch töten Infektionskrankheiten auch heute noch Millionen von Menschen jedes 
Jahr, und dies könnte mit Impfungen zumindest teilweise verhindert werden. Die 
Entwicklung neuer Impfstoffe mit klassischen Methoden ist Kosten- und 
zeitaufwendig, und nicht alle so entwickelten Impfungen erfüllen am Ende die 
Sicherheitsbestimmungen. Dank der Verfügbarkeit von kompletten Genomen vieler 
Krankheitserreger kann man heute auch alternative Wege beschreiten um 
Impfstoffkandidaten zu idnetifizieren, die sogenannte „reverse Impfstoffentwicklung“. 
Parallel dazu wurden immunoinformatische Methoden zur Identifizierung von 
Epitopen entwickelt, die für die Entwicklung von peptid-basierten Impfstoffkandidaten 
wichtig sind („epitope mapping“). In der vorliegenden Arbeit habe ich clustering-
basierte Techniken der „reversen Impfstoffentwicklung“ mit Epitop-
Identifizierungstechniken kombiniert, um konservierte und immunogene Bereiche in 
oberflächenexponierten Proteinen von Gram-negativen Bakterien zu finden, die für 
die Entwicklung neuer Impfstoffe geeignet sind. 

 Im Rahmen dieser Arbeit habe ich eine neue, präzise, Homologie-basierte 
Methode zur Vorhersage der Oberflächenlokalisation von Proteinen in Gram-
negativen Bakterien und Archeen entwickelt, die sowohl auf neu sequenzierte 
Genome als auch auf massenspektrometrische Daten angewendet werden kann. 
Darüber hinaus habe ich eine Vorgehensweise zur Vorhersage immunogener 
Peptid-Epitope etabliert, die es erlaubt, B- und T-Zell-Epitope vorherzusagen, die 
innerhalb definierter Gruppen Gram-negativer Krankheitserreger konserviert sind. In 
einem weiteren Teil des Projektes habe ich den Einfluß bestimmter Aminosäuren 
sowie deren Position im C-terminalen Insertionssignal von bakteriellen 
Außenmembranproteinen untersucht. Diese Analyse zeigt die Existenz von 
Sequenzmotiven, die sowohl für taxonomische Gruppen als auch für Untergruppen 
von Außenmembranproteinen spezifisch sind. Des Weiteren haben diese Arbeiten 
Implikationen für die heterologe Expression von solchen Proteinen in E. coli. 
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II Summary (English) 

Vaccination is a great success story. In the last 200 years it has controlled 
and eradicated a number of deadly diseases like small pox, measles, diphtheria, 
polio and others. But still, there are many infectious diseases which kill millions of 
people each year that could be controlled or extirpate with a vaccine. The discovery 
of vaccines by classical methods is costly, time-consuming and the results are not 
always completely safe to use. In the post-genomic era, the availability of complete 
genomes of pathogenic organisms has helped in indentifying surface-exposed 
proteins, which are potential vaccine candidates (‘reverse vaccinology’). In parallel, 
immunoinformatics techniques and tools have been developed to indentify 
immunogenic peptide epitopes from proteins of pathogenic organisms (‘epitope 
mapping’), which can be used to develop peptide-based vaccines. Here I have used 
a clustering-based reverse vaccinology method and combined it with epitope 
mapping techniques to indentify peptide epitope sequences that are conserved in 
surface-exposed proteins among Gram-negative bacterial pathogens, and that could 
be used in the development of new vaccines. 

In this work, I established a highly precise consensus subcellular localization 
prediction pipeline for gram negative bacteria and archaea, including prominent 
pathogens, based on a clustering approach. This can be used to indentify surface 
exposed proteins of the pathogens, and to annotate subcellular localization of newly 
sequenced genomes of Gram-negative bacteria and archaea and of proteins 
identified in mass spectrometry experiments. I have also established an ‘epitope 
mapping’ pipeline, which can be used to identify the B cell and helper T cell epitopes 
conserved in different pathogenic strains of a species. As part of this work, I 
analyzed the influence of amino acids and their position in the C-terminal insertion 
signal of bacterial outer membrane proteins, revealing the presence of patterns, 
which are specific for both taxonomy classes and protein classes. Additionally, these 
results have implications for the heterologous expression of such proteins in E. coli. 
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IV. Introduction 

IV.a. Bacterial Pathogenesis 

  We are frequently infected by innumerable pathogens, but there are various 

immune mechanisms to defend our body from these infections. Pathogenesis arises 

from the ability of these pathogens to disturb the immune system and thus, to cause 

diseases. Pathogens can be of four different types: bacteria, viruses, pathogenic 

fungi, and relatively large and complex eukaryotic organisms collectively called 

parasites [1]. Bacteria can cause many deadly diseases, and in the light of 

increasing antibiotic resistance world-wide, this is a re-emerging problem. Based on 

their degree of pathogenicity, bacterial species can be classified into three 

categories. Bacterial species that are primary cause of a disease in an individual with 

a healthy immune system are called primary or frank pathogens (e.g. Salmonella 

sp.,). Opportunistic pathogens (e.g. Escherichia coli) are species that are usually 

non-pathogenic, but can cause a disease in a favorable situation. Species that never 

or rarely cause disease are termed non-pathogens (e.g., Lactobacillus acidophilius) 

[2].  

 Pathogenic bacteria enter the human host mainly through the skin, the 

pulmonary tract, the digestive tract or the urinary tract. The squamous epithelial cells 

of skin and mucous epithelial cells of these tracts restricts the entry of pathogens into 

the host, and thus provide the initial defense mechanism against these pathogens. 

These membranes are coated with protective layers of lysozyme, e.g. lactoferrin and 

lactoperoxidase, which can kill microbes or restrict their growth [2]. These epithelial 

cells are also constantly replaced and shed along with the microbes attached to it. 

But many bacteria have developed specialized adhesins such as pili or fimbriae to 

attach strongly to the mucous membranes to start colonization [2].  

 Bacterial species secrete a variety of factors, which help them to adhere, 

colonize, and invade into host tissues, to obtain nutrients, and to protect them from 

host immune cells [2-4]. These factors, secreted or expressed by the bacteria for 

their survival, evoke a disease in the host; for this reason they are termed virulence 

factors. But, toxins are a subclass of virulence factors, which actively damage the 

host cells and/or tissues, these are toxins can be of two types, endotoxins (toxic 

substances released after the lysis of the bacteria, like lipid A moiety of outer 
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membrane LPS) and exotoxins (toxic substances that are secreted by the bacteria). 

The endotoxins are mostly structural elements in Gram-negative bacteria and induce 

a wide range of immune responses in the host, while the effects of exotoxins are 

very local and restricted to the cell type and their receptors [2]. 

IV.b. The host immune system 

  Generally speaking, the human immune system can be classified into an 

innate and an adaptive immune system. The innate immune system is non-specific 

and provides the initial defense against pathogens; it induces the more specific 

adaptive immune system via chemical signals and direct interactions. The main 

cellular components of the innate immune system are granulocytes 

(polymorphonuclear leukocytes (PMNs)) and macrophages [1]. If the pathogens 

manage to cross the barrier of the epithelial or mucosal membrane and start to infect 

tissues, they will encounter the first line of defense represented by innate immune 

cells such as macrophages, dendritic cells and neutrophils that reside there. These 

cells possess membrane receptors called pattern recognition receptors (PRR), which 

include the LPS receptor (CD14), Toll-like receptors, the mannose receptor and the 

scavenger receptor. These receptors are not very specific, but recognize common 

repeating patterns present in bacterial surface molecules, and engulf them into to a 

vesicle called the endosome which subsequently fuses with a lysosome to form the 

phagolysosome. The enzymes in the phagolysosome digest and kill the pathogens; 

this whole process is called phagocytosis, so these immune cells are also called 

phagocytes. During phagocytosis, these cells secrete cytokines which attract other 

immune cells to the site of infection and lead to an increased immune response 

called inflammation. Some bacterial species have developed resistance against the 

digestion by lysozyme by encapsulating themselves, which induces the immune cells 

to increase the inflammatory response to kill the bacteria. This increased 

inflammation can instead of destroying the microbes damage the host cells, leading 

to host-mediated pathogenesis [2-3]. The antigen-presenting cells (APCs, e.g. 

macrophages) of the innate immune system phagocytose the bacteria in the tissues, 

digest the pathogens and move to the lymph nodes, where they activate the more 

specific immune reaction against the pathogens. 
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 The innate immune mechanism is non-specific, but is important for activating 

more specific adaptive immune mechanisms against the pathogen. The lymphocytes 

are the main players in the adaptive immune mechanisms, which are responsible for 

humoral and cytotoxic immune responses. In these processes, soluble antibodies 

are secreted by B cell lymphocytes that are responsible for the humoral immune 

response, while cytotoxic T cells or CD8 T cells are responsible for the cytotoxic 

immune response. Both of these types of lymphocytes depend on helper T cells or 

CD4 T cells for activation [5]. Before encountering antigens, lymphocytes are naïve 

and circulate between the blood and lymph vessels, but once they encounter 

pathogens, they proliferate and mature into effector cells. The lymphocytes have 

surface receptors that are very specific in their binding to pathogenic antigens or 

epitopes. The B cells directly recognize the epitopes present on the surface of 

extracellular pathogens and other soluble foreign bodies with their membrane bound 

receptors (BCR). In contrast, T cells can only recognize peptide epitopes displayed 

on the cell surface as by the major histocompatibility complex (MHC) molecules after 

digestion as part of the innate immune response. The BCRs are membrane-bound 

immunoglobulins (class IgM) which have a very specific antigen-binding site. The 

binding of BCR to antigens triggers the first set of activation signals to B cells; for 

complete activation, a second set of activation from activated helper T cells is 

necessary. The digested peptides in the phagolysosomes of an APC are attached to 

the MHC class II molecules and are displayed on the surface of the APC. In lymph 

nodes, the naïve helper T cells recognize the peptide/MHC class II complex on 

professional APCs, and in the presence of co-stimulatory molecules, become 

activated. When an activated helper T cell recognizes the same peptide/MHC class II 

complex on a B cell surface, it confirms that the epitopes recognized by B cells are 

foreign and activates the B cells by the second set of activation signals (cytokines) 

[5]. The activated B cell then proliferates and matures into effector plasma and 

memory B cells. The plasma cells secrete the soluble immunoglobulins (IgG) with 

the same antigenic specificity as that of the BCR. These secreted antibodies either 

bind to the exotoxins and neutralize them or bind to the endotoxins and opsonize the 

pathogen for phagocytosis. The memory B cells will live for longer time periods and 

get activated quickly without the secondary activation from helper T cells when they 

encounter the same antigen again in the future. Not all of B cell activations are T 
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cell-dependent: when the B cell receptors are provided with enough antigens like 

LPS or other toxins, B cells are activated directly. 

 There are two types of MHC molecules: MHC class I molecules, which are 

present in all nucleated host cells and display proteasome-digested peptides from 

intracellular pathogens and tumor antigens, and MHC class II molecules which are 

present on the surface of APCs and B cells and display protease-digested peptides 

from extracellular pathogens engulfed in vesicles. The MHC class I molecule is 

made of two polypeptide chains, the α-chain and β-2 microgobulin, where the α-

chain consist of three domains. The α-1 and α-2 domains form the peptide-binding 

groove in MHC class I molecules, which is closed on both sides and can 

accommodate peptides of a length of 8-11 amino acids. The α-3 domain contains the 

transmembrane helix which anchors the molecules to the lipid membrane. The MHC 

class II molecules are heterodimers consisting of α and β chains, whose α-1 and β-1 

domains form the peptide-binding groove which is open, so that peptides of a length 

of 10-18 amino acids can bind. The α-2 and β-2 domains consist of transmembrane 

domains which anchor the molecule to the membrane [1, 6]. Even though the 

peptide groove is open and MHC class II molecules bind to longer peptides, the 

actual peptide binding ‘core’ is only nine amino acids (AAs) long, but the flanking 

residues also influence the peptide binding.  

 The peptide/MHC complex is recognized by the T cell receptor (TCR) on the 

surface of T cells. The cytotoxic T cells recognize peptide/MHC class I complexes 

and helper T cells recognize peptide/MHC class II complexes. The activated 

cytotoxic T cells secrete perforins and other proteases, which form pores in the 

membrane of the targeted cells and thus trigger the apotoposis process of the cell. 

On the other hand, activated helper T cells won’t kill any pathogens, but have an 

effector function of activating different immune cells for destroying the pathogen. The 

activated helper T cells are of two types: TH1 which activate macrophages to kill 

intravesicular pathogens and TH2 which recognize the peptide/MHC class II complex 

on B cells and activate the B cells. 

 The more specific adaptive immune system takes some days to weeks from 

the initial infection by microbes to produce antibodies, but the maturation of activated 

lymphocytes also produces memory B and T cells, which live for a long time period. 

When these memory cells encounter the same pathogen in the future, the secondary 

specific response against these pathogens will be much quicker compared to the 
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weeks in the primary response. Once the adaptive immune response is triggered 

against a pathogen, the resulted memory cells will provide lifelong immunity against 

the pathogen. This effect is the basis of all vaccines. 

IV.c. Antibacterial drugs and vaccines 

 The bacterial infectivity results from the disruption of balance between the 

bacterial virulence and host immune resistance [2].  When a highly virulent pathogen 

disrupts the balance, various therapeutic antimicrobial drugs administered to regain 

the balance and protect the host from these pathogens. These antimicrobial drugs 

protect the host either by killing the microbes or by reducing the virulence by 

restricting their growth. Generally these drugs block the function of a targeted protein 

(typically an enzyme), which may be an essential protein, or it may be a protein in 

the pathway of pathogenesis, whose absence or blockage will decrease the 

virulence of the bacterium. Within a few years of introduction of all clinically used 

antibiotic, resistant bacterial strains have been reported and the widespread use of 

broad-spectrum antibiotics has led to the emergence of multidrug-resistant bacteria 

[7], which are a major concern. Antibiotic resistance is acquired by the pathogen in 

different ways: by acquiring mutations and altering the drug targets, by preventing 

the antibiotics from reaching the drug targets, or by producing enzymes (e.g., β-

lactamase) that destroy or deactivate the antibiotics [3, 7]. Pathogens can also 

acquire antibiotic resistance genes present in the pathogenicity islands of other 

bacteria through horizontal gene transfer [3]. The recent emergence of multi-drug 

resistant Gram-negative pathogenic bacterial strains like E. coli, Pseudomonas 

aeruginosa, Acinetobacter sp., Klebsiella pneumoniae, or Mycobacterium 

tuberculosis poses a real threat to the treatment of infectious diseases globally [3]. 

We have to develop new therapeutic measures and strict clinical practices to control 

these multi-drug resistant strains. 

 Vaccination is a great success story. In the last century it helped to eradicate 

and control many deadly diseases including small pox, measles, polio and diphtheria 

[8]. Typical vaccines are dead pathogens, attenuated live pathogens, or parts of the 

pathogen which cannot cause the disease but induce an immune response that 

leads to adaptive immunity and production of memory B and T cells [9]. These 

memory cells protect the host from the subsequent infection by the pathogen. In the 
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conventional or first generation vaccines, pathogens were cultivated and various 

biochemical, immunological and microbiological methods were employed to find a 

suitable antigen from the pathogens [10]. There are many drawbacks in producing 

vaccines in the conventional way. Not all pathogens can be cultivated under 

laboratory conditions. Only highly produced proteins can be used in these studies, 

but most of the highly abundant proteins are not immunogenic. A high level of safety 

is required while cultivating the pathogens. Insufficient killing/attenuation in the 

vaccines may leak the pathogen into the healthy population. And finally finding a 

vaccine candidate is a very time-consuming procedure [11].  

 These disadvantages were reduced in the second generation of vaccines. 

With better understanding of the pathogenesis of different organisms, virulence 

genes were mutated or knocked out to generate attenuated vaccines. Recombinant 

DNA technologies were used to clone genes of pathogenicity factors and the 

products are used for subunit vaccine developments. Since these methods do not 

involve whole pathogenic organisms, these vaccines are safer than the previous 

generation of vaccines [11].   

 The availability of complete genome sequences of pathogens, combined with 

recombinant DNA technology, gave rise to the third vaccine generation, or reverse 

vaccinology methods [12]. In these methods, computational tools are used to identify 

surface-localized or secreted proteins from a proteome. These computationally 

predicted candidates are expressed and tested for immunogenicity and antibody 

production. The successful identification of a protective vaccine candidate against 

serogroup B N. meningitidis [13] using reverse vaccinology showed the power of 

genomic approaches in vaccine candidate identification [14]. This led to the broad 

use of this technology in identifying vaccine candidates for other human pathogens 

as well [14]. Applying reverse vaccinology to find a universal vaccine candidate 

against eight different strains of group B Streptococcus (GBS) [15], led to the finding 

that the genetic variability between strains of the same species is much larger than 

expected [16]. Only 80% of all genes found in the species are present in all the 

strains (termed as the “core” genome), and 20% of the genes were lacking in at least 

one of the strains (termed as the “variable” genome). The pan-genome (combining 

all the genes from all the strains) is much larger than the average genome of an 

individual strain, and mathematical extrapolation predicted that every time a new 

strain is sequenced, it adds 15 to 30 new genes to the pan-genome [8]. Such 
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species are said to have open pan-genomes. On the other hand, there are other 

species (e.g. B. anthracis) whose pan-genome can be described by a limited number 

of genomes (4 in the case of B. anthracis); these are termed as closed pan-genomes 

[16]. This demonstrates that genomes of multiple strains are necessary to 

understand the pan-genomic structure of a species. These led to the development of 

“pan-genome-based reverse vaccinology”, in which analysis and screening of the 

genomes of multiple strains of the species were used to discover conserved 

antigens, and this can be used to develop a universal vaccine for the species [15-

17]. This approach can be further expanded to find conserved antigens in a genus, 

family or in an even broader taxonomic classification of pathogens. Peptide vaccines 

are based on recently developed immunoinformatics methods which search for B 

and T cell epitopes in whole pathogen genomes [18]. These tools can predict 

peptides that bind to MHC class I and II molecules (which are usually referred to as 

T cell epitopes) and continuous and discontinuous B cell epitopes. Following ‘epitope 

fishing’, various criteria are applied to select a set of optimal epitopes to develop 

antigen-specific epitope-based peptide vaccines.  
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V. Aims of the study 

 The main aim of this thesis work was to predict broad-spectrum vaccines 

against Gram-negative bacterial pathogens. I used a combination of clustering-

based reverse-vaccinology and epitope-mapping methods to identify broad-spectrum 

vaccine candidates. To develop a broad-spectrum vaccine, a typical pan-genome 

based reverse-vaccinology method uses surface-localized proteins (outer membrane 

or extracellular proteins) conserved among different strains of a pathogenic species. 

However, we tried to apply a clustering-based reverse vaccinology approach to 

indentify clusters of surface-exposed sequences that are conserved in different 

pathogenic species. As an initial step, I set out to predict the surface-exposed 

proteins. Since individual predictors are not very precise, I wanted to combine 

different feature prediction and subcellular localization (SCL) prediction tools into a 

rule-based pipeline to get a highly precise consensus SCL prediction. Following this, 

I indented to cluster the sequences based on their sequence identity and select the 

surface-exposed proteins conserved in different pathogenic species for further 

analysis. In addition, I wanted to use the homology information derived from the 

clustering to improve the SCL predictions as well. We desire to develop a peptide-

based vaccine, so, from the conserved surface-exposed outer membrane protein 

(OMP) clusters, I wanted to indentify the B cell and helper T cell epitopes using 

different immunoinformatics tools. There are various important factors to be 

considered while selecting the candidates for a broad-spectrum epitope-based 

peptide vaccine against extracellular Gram-negative bacterial pathogens, which I 

have considered using different filters while selecting the potential vaccine 

candidates. 

 Not all genes in a genome are expressed at all times. The expression of a 

gene depends upon the required cellular function in the given environment. Thus, 

proteins produced during the onset of infection are ideal candidates for vaccine 

development. We intended to use mass spectrometry to analyze the production of 

OMPs. We tried to establish an efficient and easy-to-use subcellular fractionation 

(SCF) technique which can be used to obtain and analyze outer membrane (OM) 

fraction from different Gram-negative bacterial pathogens. For this, we investigated 

five different cellular fractionation methods and selected the best method which 

maximizes the OMPs discovery with few non-OMP contaminations in OM fractions.  
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 The β-barrel assembly machinery (BAM) in the OM of Gram-negative bacteria 

is responsible for folding and insertion of OMPs in to the OM. The BAM recognizes 

its substrate OMPs by their C-terminal β-strand. It has been reported [19] that this 

recognition is species-specific and there are also several reports that heterologous 

expression of OMPs in E. coli can be lethal. Since OMPs are important vaccine 

targets, their heterologous expression has much importance. Thus, I set out to find 

whether the proposed species specificity among the C-terminal insertion signals is 

true or not.  
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VI. Efficient subfractionation of Gram-negative bacteria for 
proteomics studies 

VI.a. Introduction 

The OMPs and extracellular proteins in the Gram-negative bacterial 

pathogens are the first to get in contact with host tissues and immune cells. The 

immune cells recognize these proteins and other toxins as foreign bodies and initiate 

an immune response to defend against infection by these pathogens. Since the 

OMPs include many virulence proteins, these proteins are potential vaccine 

candidates. But as not all the proteins in the genome of an organism are produced at 

the same time, gene expression is based on the required functionality at given 

environmental conditions [20]. So, identifying the complete set of proteins in 

pathogenic bacteria at an early stage of infection is very important for indentifying 

suitable vaccine candidates.  

Mass spectrometry is a widely used proteomic technique to characterise 

proteins from different cellular compartments. It has been used to indentify novel 

vaccine candidates from various human pathogens [9]. We wanted to use the 

technique to characterise the set of immunologically important OMPs from Gram-

negative bacteria. To perform a mass spectroscopy experiment, it is important and 

most crucial to purify and enrich the OMPs in OM fractions by avoiding or at least 

minimizing non-OMP contaminants [21].   

To establish an efficient and easy-to-use protocol for subcellular fractionation 

(SCF) separating the OM components from rest of the cellular components for 

proteomics analysis, my colleagues (Dr. Marcus Thein and Dr.Guido Sauer) 

compared different SCF techniques (methods 1 to 5) [21]. Among these, methods 1, 

2, and 3 focus on the fast enrichment of OMPs in the OM fractions, and methods 4 

and 5 focus on the fractionation of proteins into cytoplasmic, IM, periplasmic and OM 

fractions.  The detailed summary of these methods is given in the methods section of 

[21] under the subheading ‘Subfractionation methods’. Following fractionation by 

differential centrifugation, the proteins were solubilized and separated in one-

dimensional SDS-PAGE, mainly to remove lipids and other membrane components 

in the process. Then the proteins were digested in-gel by trypsin and mass 

spectrometric analysis was performed using an ion-trap electronspray ionization- 

15



mass spectrometry (ESI-MS) equipped with a nanoLC system for peptide separation. 

The data from the experiments were used in the Mascot software to identify proteins 

from the Swiss-Prot or non-redundant NCBI databases.   

The best SCF method was chosen based on its ability to find more OMPs with 

less non-OMPs (contamination from other cellular compartments) in the OM 

preparation. For comparing different SCF techniques, we used E. coli BL21 to select 

the best SCF method and used it to obtain OM fractions from pathogenic E. coli 536, 

E. coli 2348/69, Pseudomonas aeruginosa PAO1 and Yersinia pseudotubercolusis 

IP32953.  

VI.b. Prediction of outer membrane proteins from the E. coli BL21 genome  

We used SCL prediction tools PSORTb [22], BOMP [23] and HHomp [24] to 

get a theoretical estimate of OMPs from E. coli BL21. The tool PSORTb, which 

includes different analytical modules, classifies or assigns the protein to one of the 

five different SCL in Gram-negative bacteria. It predicted 83 proteins, but PSORTb 

does not distinguish between OMPs and lipoproteins in its OMP prediction. HHomp 

identifies OMPs by detecting homology to known OMPs using HMM-based 

sequence similarity detection. It predicted 69 OMPs. BOMP combines two different 

components – the presence of a C-terminal β-strand and amino acid composition - to 

classify proteins into OMP or not. It predicted 73 OMPs. In total, these methods 

identified 121 different OMPs, but only 38 were found by all the methods. The 

numbers of overlapping and uniquely predicted OMPs were shown in Figure 1 of 

[21]. 

VI.c. Prediction of outer membrane proteins among proteins characterised from 

mass spectrometry 

 Five different SCF methods were compared to select efficient SCF 

techniques. Each of the SCF methods was performed three times to check the 

reproducibility of the methods. Combining the proteins identified from the 3 different 

trials, methods 1 - 5 found 256, 278, 413, 431 and 334 proteins, respectively in the 

OM fractions. Since PSORTb predicts SCL much faster than HHomp and BOMP, I 

used it to annotate the SCL of the proteins identified from mass spectroscopic 

experiments and it annotated 28, 36, 32, 37 and 37 OMPs from methods 1 – 5, 
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respectively. This is only 21% (method 3) to 41% (method 4) to the total proteins 

identified by the theoretical predictions. The rest of the proteins are non-OMPs from 

different subcellular compartments and the majority of them are cytoplasmic 

proteins. When PSORTb prediction scores are not above a threshold value, it does 

not assign localization to a protein. Instead PSORTb annotates it as ‘unknown’ and 

some of the proteins in the dataset were annotated as ‘unknown’ as well. In total, 44 

unique OMPs were found from these five different methods to obtain OM fraction for 

mass spectrometric experiments. These unique proteins are only 53% of total OMPs 

predicted by PSORTb for the E. coli BL21 proteome. The list of identified OMPs from 

these experiments are listed in Table 2 of [21].  

VI.d. Selecting the best subcellular fractionation method   

 The aim was to select the best method which can enrich most OMPs with 

least non-OMP contamination in the OM fractions. We used the emPAI scores 

(exponentially modified protein abundance index) to quantitatively evaluate the 

identified proteins. Proteins with higher emPAI scores have high abundance and are 

also highly reproducible in different trials of the each method. We also noticed OMPs 

have significantly higher emPAI scores than non-OMPs; Figure 4 in [21] shows the 

comparison of different thresholds of emPAI scores and the number of proteins 

identified from different methods with the corresponding threshold. We selected 

emPAI 0.25 as the threshold, because most OMPs were indentified at this threshold 

but included the least non-OMP. At this threshold, method 2 identified 73% (65/89) of 

the total OMPs found without a threshold, and found only 46% (192/418) of non-

OMPs. This shows that the most of the non-OMPs are present only at a low 

abundance in the OM fractions. At this threshold, methods 2, 3 and 5 contained a 

higher percentage of OMPs to non-OMPs compared to method 1 and 4.  

VI.e. Discrepancies between bioinformatics and proteomics 

 The five different methods 1 – 5 found 28, 36, 32, 37 and 37 OMPs, 

respectively. Methods 4 and 5 found the maximum number of OMPs but this is only 

45% of the total OMPs predicted from the E. coli BL21 genome by PSORTb. This 

shows that at the given growth conditions, only few OMPs were produced by the 

bacteria, but it is possible that proteins with lower abundance were not detected by 

17



mass spectrometry. In addition, one has to notice that there is a set of proteins 

annotated as ‘unknown’ by PSORTb in both whole genome predictions and proteins 

identified by mass spectrometry, so it is likely that this set of ‘unknown’ proteins may 

contain some true OMPs as well.  

VI.f. Outer membrane proteomics of pathogens 

These comparisons show that method 2 is more specific for isolating OMPs 

with less non-OMPs, so we selected this method for further experiments. Moreover, 

method 2 represents a fast and easy protocol and in addition it is also independent 

of lipid composition of membranes and vesicle density, which vary a lot among 

different Gram-negative bacteria. We tested the applicability of this method on 

different pathogenic bacteria by applying the method to obtain OM fractions from four 

γ-proteobacterial pathogens. The obtained OM fractions were applied to SDS-PAGE 

and the gel was digested with trypsin.  Following the digestion, the peptides were 

analyzed using a nano liquid chromatography-ESI ion trap mass spectrometer and 

the Mascot software was used to identify the proteins from the mass spectrometric 

data. I used PSORTb to indentify the OMPs from the protein identified from the OM 

separations of these pathogens. Similar to the E. coli BL21 runs, the OM fractions 

also contained non-OMPs. 32 OMPs from E. coli 536, 27 OMPs from E. coli 

2348/69, 27 OMPs from Pseudomonas aeruginosa and 20 OMPs from Yersinia 

pseudotuberculosis were indentified. The list of OMPs identified are listed in the 

Table 3 of [21]. 

VI.g. Conclusion 

 We compared five different SCF methods to find an efficient and easy-to-use 

method and we identified method 2 as the most specific method towards the 

enrichment of more OMPs with less contaminations (non-OMPs). We tested the 

practicability of this method to identify OMPs from different bacterial species by 

applying it to four γ-proteobacterial pathogens. Since proteins are produced based 

on the functionality required by the bacterium at the given environmental conditions, 

at maximum we identified only 45% of the OMPs from E. coli BL21. Some of the 

proteins annotated by PSORTb as ‘unknown’ might be OMPs as well. Since we 

cannot afford to miss potential vaccine targets, we need a better and more reliable 
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method to annotate the SCLs of proteins identified from mass spectrometric 

methods. 
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VII. ClubSub-P: cluster-based subcellular localization 
prediction for Gram-negative bacteria and archaea. 

VII.a. Introduction 

 In Gram-negative bacteria newly synthesized proteins in the cytoplasm need 

to be sorted to their native location/cellular compartment in order to perform their 

respective functions. These targeted proteins have distinct sequence as well as 

structural features like secondary structures, signal peptides and amino acid 

composition which are used by various protein sorting machineries to recognize their 

substrates. Such protein sorting machineries can be broadly divided into 3 groups, 1) 

machineries that translocates the protein across the IM or integrate the protein into 

the IM (e.g., Sec, Tat, SRP, YidC, Lol and Holin machineries), 2) machineries 

involved in the translocation of proteins across the OM or integration into the OM 

(e.g., Type II Secretion system (T2SS), T4SS, T5SS, T7SS and T8SS), and 3) 

machineries tat export proteins directly to extracellular space or into host cells from 

cytoplasm (e.g., T1SS, T3SS and T6SS) [25]. The SRP (signal recognition pathway) 

or YidC pathway integrates proteins with transmembrane helices (TMHs) into the IM 

[26]. The Sec and Tat machineries first recognize the proteins with general secretory 

system (Sec) SPs or twin-arginine translocation (Tat) SPs and then cleave the SP 

before translocating them across the IM [25, 27]. Proteins with lipoprotein SPs are 

recognized and their SPs are also cleaved and translocated across the inner 

membrane and subsequently their N-termini are modified and lipid anchored to the 

IM or OM by the Lol sorting system [28]. The OMPs have general or lipoprotein SPs 

and are hence translocated across the IM by the Sec or Lol translocation system. 

Following this, the BAM in the OM recognizes a C-terminal insertion signal in the 

OMPs and integrates them into the OM [29]. The T3SS, which injects proteins into 

the host cytoplasm, recognizes its substrate by an N-terminal signal peptide (called 

T3SS SP) [30-31].  

 Assigning the SCL to proteins in this post-genomic era via experimental 

methods is a time-consuming and expensive process. To deal with this challenge, 

various bioinformatics tools have been developed based on existing experimental 

data to predict the sequence features and annotate their SCL. These can be 

classified into two sets, 1) tools that predict only the features from the protein 
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sequences, and 2) tools that combine these feature predictions and annotate the 

SCL of the proteins. There are numerous tools currently available with varying 

prediction precisions, but it has been reported that the consensus prediction by 

combing different prediction tools decrease the false positive prediction rate and 

increases the overall confidence of the prediction [32-35]. During the work, I noticed 

the misannotation of start codons in proteins affects the N-terminal signal peptide 

prediction, further leading to wrong SCL prediction. At the single sequence level, 

misannotation of start codons are difficult to observe, but can be seen as very 

obvious gaps in the N-terminal region while performing a multiple sequence 

alignment of homologous sequences. This varied start codon annotation among 

orthologous sequences emerges from the use of different gene prediction programs 

on closely related organisms [36].  

 In this work, I developed a pipeline, Cluster-based subcellular localization 

prediction (ClubSub-P), to annotate the SCL of Gram-negative bacterial proteins, in 

which I used rule-based integration of consensus predictions from different sequence 

feature prediction tools. In addition, I have used SCL predictions from homologous 

proteins to further increase the confidence of the SCL predictions. To check the 

applicability, I have further used this strategy to predict SCLs of archaeal proteins. 

Moreover, I have shown that the use of consensus and homology information has 

increased the precision of ClubSub-P over the state-of-art SCL prediction tools. 

VII.b. Subcellular localization prediction at the protein level 

    We have used 18 different tools to predict consensus SCLs of proteins from 

607 Gram-negative bacterial and archaeal organisms. The various tools used are 

listed in the Table 1 of [37] and the genomes used in the study are listed in the Data 

Sheet S1 in Supplementary Material of [37]. For Gram-negative bacterial sequences 

I predicted features like SPs, TMHs and β-barrel domains, and applied protein 

sorting rules to predict the final SCL of the proteins. I used 10 different tools to 

predict five different SPs for Gram-negative bacterial sequences. LipoP [38] was 

used to predict the presence of lipoprotein SPs. Since the IM retention signals in 

lipoproteins are not properly established, classification of the proteins into inner or 

outer membrane lipoproteins was not possible. Consensus results from TatP [27] 

and TatFind [39] tools were used to predict the Tat SP. Predictions from SignalP 
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[40], Predisi [41], RPSP [42] and Phobius [43] were used to predict the general SP 

and the type III SPs were predicted from the consensus from the  recently introduced 

tools EffectiveT3 [30] and T3SS_prediction [31]. PilFind [44] was used to identify the 

type IV pilin-like SPs. When more than one SP was predicted, I combined the 

predictions in the above mentioned hierarchy of SPs to annotate the consensus SP 

of the sequence. Since SPs contains a small stretch of hydrophobic residues, in 

many occasions they are mispredicted as TMHs. Therefore, combining the 

consensus SP prediction with the TMH predictions should reduce these 

misannotations [43]. The results from HMMTOP [45], TMHMM [46] and Phobius [43] 

were combined to predict the consensus TMHs, and the consensus SP cleavage site 

predictions were used to remove the TMH when it overlaps with the SP predictions. 

HHomp [24] was used to predict the β-barrel proteins. Since HHomp runs are time-

consuming, one random sequence was selected from a cluster for HHomp runs 

when one of the sequences in the cluster had a positive OM prediction from CELLO 

[47] or PSORTb [22]. When HHomp predicted the sequence with more than 90% 

probability to be an OMP, then all the sequences in the cluster were annotated to 

have a β-barrel domain.  

 The consensus SCLs at the protein level were predicted by combining the 

consensus feature prediction based on protein sorting rules mentioned in Table 2 of 

[37]. The SCL of proteins are annotated as ‘inner membrane’, when they have at 

least one consensus TMH. The proteins are annotated as ‘periplasmic’, when they 

have a cleavable general or Tat SP without a TMH or a β-barrel prediction. The 

proteins with lipoprotein SP were annotated as ‘inner/outer membrane lipoproteins’. 

The ‘OMPs’ were identified by the presence of a cleavable SP and β-barrel 

predictions. The extracellular proteins were identified with the presence of a Type III 

or IV SP prediction or extracellular prediction from PSORTb. The proteins without 

any TMH or β-barrel or SP or extracellular prediction were annotated as 

‘cytoplasmic’. Lastly, the proteins contradicting these rules were annotated as 

‘unknown’. In addition to the classical SCL annotation in Gram-negative bacteria, I 

predicted extracellular proteins with TMHs and SP, and OMPs with lipoprotein SP. 
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VII.c. Subcellular localization prediction at the cluster level 

 In addition to the consensus SCL prediction at the protein level, I added SCL 

information from homologous proteins to overcome the misannotation of start codons 

and to further increase the confidence of the SCL prediction. To get the homology 

information, I clustered the sequences from 607 Gram-negative bacterial genomes 

based on their sequence identity. To determine the clustering parameters at which 

sequence identity the SCL information from homologous proteins can be transferred, 

I clustered proteins with experimentally verified SCL using CD-HIT [48] with various 

parameters. I used 8,227 proteins from experimental PSORTb database, and 

clustering at 40% sequence identity and 80% sequence coverage produced 1,023 

clusters, of which 94.2% had proteins with the same SCL, 4.6% clusters had proteins 

with overlapping SCL, and only 1.2% of clusters had proteins with contradictory 

SCLs. So I applied the same parameters to cluster 1,911,760 sequences from 607 

Gram-negative bacterial proteomes. As a result, 1,620,033 sequences were 

clustered into 174,028 clusters with two or more sequences (291,727 singletons 

were not used in this study). To annotate the SCL of the cluster, the SCL of the 

proteins in the cluster were averaged. Any SCL having more than 70% was 

annotated as the SCL of the cluster. However, if none of the SCLs were above 70%, 

the SCL of the cluster was annotated as ‘uncertain’. As a result I was able to 

annotate 1,500,778 sequences with a SCL, that is 78.5% of the sequences used in 

the clustering. A brief summary of the number of clusters and sequences belong to 

difference SCLs are given in the Table 4 of [37]. 

VII.d. Subcellular localization prediction for archaea 

 To test the applicability of the pipeline on a different group of organism, I 

applied the methods to 65 archaeal genomes. The membrane architecture of 

archaeal organisms is more similar to Gram-positive bacteria than Gram-negative 

bacteria, where the OM is replaced by a thick cell wall.  

As there are not many specialized feature prediction tools for archaeal proteins, I 

used tools developed for Gram-positive bacterial sequences. In addition, PRED-

SIGNAL [49], which was created to predict archaeal general SP prediction, and 

FlaFind [50], which predicts archaeal peripilin SPs, were used. The list of the tools 

used for feature prediction in archaea were listed in the Table 1 of [37]. Besides 
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replacing the type III and type IV SP predictions with archaeal prepilin SP prediction, 

a similar Gram-negative bacterial consensus SP pipeline was used to predict 

lipoprotein SPs or Tat SPs or general SPs. The consensus TMHs were assigned in a 

similar manner to that of Gram-negative bacteria.  

 The rules that are given in the Table 3 of [37] were used to predict the 

consensus SCL at the protein level. Proteins with Tat/general/prepilin 

SP/extracellular prediction from PSORTb were annotated as ‘secreted/extracellular’ 

and proteins with lipoproteins SPs were annotated as ‘lipoproteins’, and ‘cell wall’ 

proteins were indentified from the PSORTb predictions. Proteins with one or more 

consensus TMHs were annotated as membrane proteins and proteins without any 

SP or TMHs or β-barrel were annotated as cytoplasmic proteins. I used the same 

clustering parameters used in the clustering of Gram-negative bacterial sequences, 

to cluster 151,553 sequences from 65 archaeal genomes, which resulted in 22,184 

clusters that have two and more sequences. Of these sequences I annotated SCL 

for 104,896 sequences, which is 69.21% of the sequences from 65 archaeal 

genomes. Similar to Gram-negative bacterial cluster-based SCL annotation, the SCL 

that was assigned to more than 70% proteins in a cluster was annotated as the SCL 

of the cluster. A detailed summary of the number of archaeal clusters and proteins 

annotated to different SCLs are give in the Table 7 of [37]. 

VII.e. Clustering-based comparison of signal peptide and transmembrane helix 

prediction tools 

 Due to the fact that most sequences with experimentally verified SCL were 

used in the training of the tools, it was difficult to find a golden dataset to test and 

select the high precision tools for consensus predictions. Thus, tools were selected 

on the basis of their consistency in the predictions of features among homologous 

sequences. As the sequences in the clusters were more than 40% identical with 

each other, applying a highly precise feature prediction tool should then return 

consistent predictions for all the sequences. Moreover, tools showing inconsistency 

in their prediction among homologous sequences were considered to be low 

precision tools. If a tool gave a positive prediction for only less than 20% of the 

sequences in a cluster, it was presumed that the predictions were false positives. If a 

tool gave negative predictions for only 20% of the sequences in a cluster, it was 
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presumed that the 20% are false negatives. Figure 4 of [37] compares the 

consistency of feature prediction tools over the clustered Gram-negative bacterial 

sequence data set. The plots includes separate comparisons of Tat, T3SS, general 

SP and TMH prediction tools, along with the consensus prediction of each features. 

It is evident from the figure that Tat and T3SS prediction tools have more false-

positive predictions and the consensus prediction taken from these tools greatly 

reduces the false positives, but not completely. It could be inferred from the 

consensus prediction that most of the general SP predictions are not only consistent 

across the sequences in the clusters but also with each other’s predictions. Among 

the transmembrane prediction tools, HMMTOP shows slightly higher false positives 

than other tools, but consensus TMH prediction greatly reduces it. These 

comparisons show that combining consensus predictions greatly reduces false 

positives arising from individual predictors. Moreover, when the test data set are not 

available or very small, the cluster-based consistency test across the larger data set 

helps to test the precision of tools. 

VII.f. Database availability 

 We developed a MySQL database from the SCL predictions from Gram-

negative bacterial and archaea proteins. The database, ClubSub-P, is integrated into 

the classification section of MPI bioinformatics toolkit [51]. Users can easily explore 

through the precomputed SCL for more than 600 genomes and can search the 

database for GI accession number and sequence header information. In addition, 

users can also BLAST query sequences against the database from which sequences 

with more than 40% sequence identity over a length of 75% will be returned as a hit 

and their cluster’s SCL will be annotated as query sequence’s SCL. 

VII.g. Performance measure 

 We compared the performance of ClubSub-P against state-of-art SCL 

prediction tools PSORTb and CELLO. For the evaluation I obtained the sequences 

with experimentally verified SCL from Uniprot. However, to avoid biased 

performance measure I removed sequences that are more than 40% identical with 

PSORTb training data set. The resulting 171 sequences I then used to compare the 

performance of PSORTb, CELLO and the ClubSub-P Gram-negative bacterial 
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module. Since there are very few archaeal sequences with experimentally annotated 

SCL, I included the sequences from the PSORTb training data set, following which I 

used CD-HIT to reduce the sequence identity to below 40% among the sequences. 

Thus I obtained 252 sequences that were used to compare the performance of 

PSORTb and ClubSub-P over archaeal sequences. From the predictions, I 

calculated precision, recall, accuracy and MCC (Mathew’s correlation coefficient) as 

given and described in the methods section of [37], and the results are given the 

Table 5 (Gram-negative bacteria) and Table 8 (archaea) of [37]. In the Gram-

negative bacterial module, the performance measure shows that the overall 

precision and MCC of ClubSub-P (83.85%, 0.67) is slightly higher than PSORTb 

(80%, 0.59) and CELLO (66.67%, 0.6) with comparable accuracy between the tools. 

In the archaeal module as well ClubSub-P shows a slightly higher precision than 

PSORTb, but with slightly lower recall, accuracy and MCC. However, the presence 

of closely related sequences from the training dataset might bias the performance 

measures towards PSORTb, which cannot be avoided at this moment. But these 

results clearly show that the consensus SCL prediction and use of homology 

information have clearly increased the precision of ClubSub-P against the state-of-

art SCL prediction tools. 

VII.h. Incorrect start codons resulting in misannotated signal peptide 

 Along with the precision of the prediction tools, the quality of the input 

sequence is also an important factor influencing the quality of the output results;  for 

example, proper start codon annotation is important for accurate N-terminal SP 

prediction. In a sequence cluster, if the majority of the sequences have a SP, the 

remaining SP-less proteins could either result from false-negative prediction from the 

SP prediction tools or they could also have an erroneous N-terminus resulting from a 

misannotated start codon. I looked for the SP-less sequences among secretory 

clusters (‘periplasmic’, ‘lipoprotein’, ‘OMP’ and ‘extracellular with SP’) in Gram-

negative bacteria, and I found 3,558 SP-less sequences spread across 547 

organisms. Previous studies [52-53] have shown that the misannotation of start 

codon in bacteria emerge from biased usage of uncommon start codons (UUG, 

GUG) in gene prediction methods. I noticed a biased frequency of uncommon start 

codons in the nucleotide sequences of these proteins. Among the normal sequences 
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the frequency of start codons AUG, GUG and UUG were 80.7%, 12.6% and 6.5% 

respectively. But among the SP-less sequences, the frequency of start codons AUG, 

GUG and UUG were 62.7%, 21.6% and 12.45% respectively. This clearly showed 

that misannotation of SP was largely due to the start codon misannotation rather 

than false-negative predictions from SP prediction tools. To confirm this hypothesis, I 

re-annotated these sequences with results from latest gene prediction tools like 

GeneMark [54], Glimmer [55] and Prodigal [56] and predicted SPs using signalP-

HMM. From this analysis, I found 2,290 (64.4%) sequences with alternative start 

have a general SP prediction. It was clear that most of false-negative predictions of 

SP in the SP-dependent secretory clusters stem from start codon misannotation. 

Even though these protein sequences have a wrong open reading frame start, the 

homology information used for SCL annotation at the cluster level in ClubSub-P 

leads to annotating the proteins to the correct SCL without re-annotation of start 

codons.  

VII.i. Conclusion 

 We have shown that the use of consensus prediction from multiple predictors 

reduces the prediction of false positives. I have also shown the use of simple 

homology information can considerably increase the precision of the predictions over 

the start-of-the-art tools and also overcomes the misannotation of start codons. In 

addition to classical SCLs, I have made more specific annotations like ‘OMP with 

lipid anchor’, ‘extracellular proteins with SP’ and ‘extracellular proteins with 

membrane anchor’ in Gram-negative bacteria and ‘cell wall proteins with membrane 

anchor’ and ‘extracellular proteins with membrane anchor’ in archaea. From these 

annotations, I have created a database, ClubSub-P, which can be used for SCL 

annotation of newly sequenced genomes. Importantly, the OMP and extracellular 

clusters can be used potentially to search for highly conserved vaccine candidates. 

In future, new tools and genomes can be easily added to the database and adding 

more specific feature prediction tools for different secretion machineries will help in 

identifying surface-localized proteins more accurately. 
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VIII. Is the C-terminal insertion signal in Gram-negative 
bacterial outer membrane proteins species-specific or not? 

VIII.a. Introduction 

 The OMPs of Gram-negative bacteria are β-barrels composed of anti-parallel 

even-numbered β-hairpins arranged around a central pore. The precursors of these 

proteins are synthesized in the cytoplasm with an N-terminal signal peptide which is 

recognized and cleaved by the Sec machinery; the processed protein is 

subsequently translocated across the inner membrane also by the Sec machinery. 

Once the unfolded OMPs reach the periplasmic space, soluble chaperones like Skp, 

DegP and SurA bind to them, protecting them from aggregating and misfolding [57-

58]. These chaperones deliver the unfolded OMPs to the BAM complex in the OM, 

which folds and integrates them into the OM [29]. The OMPs are delivered to the 

BAM complex via two separate chaperone pathways: one involves the protein SurA 

and the other comprises the proteins Skp and DegP. While the former works under 

normal conditions, the latter is activated under stress conditions [29, 59]. The central 

component of the BAM complex is BamA, which is a multi-domain protein composed 

of a 16-stranded β-barrel and five POTRA (polypeptide transport associated) 

domains [57]. The BAM complex also comprises accessory lipoproteins, BamB, 

BamC, BamD, BamE and the recently characterized BamF [57, 60]. The BAM 

complex recognizes its substrates, unfolded OMPs, by their amphipathic C-terminal 

β-strand (C-terminal insertion signals), but the exact structural mechanism of the 

recognition is still under investigation [19].  

The expression of neisserial OMPs in E. coli was shown to have lethal effects 

[19] and it was hypothesized that inadequate recognition of neisserial OMPs by the 

E. coli BAM complex might be the reason for this lethality. The authors tested this 

hypothesis in in vitro by electrophysiological experiments; they checked whether the 

neisserial PorA and the synthetic C-terminal insertion peptide open the E. coli BamA 

channel in an artificial lipid bilayer. And indeed the neisserial PorA and its C-terminal 

insertion peptide did not open the BamA channel in the artificial lipid bilayer. The 

neisserial PorA, like E. coli PhoE, has a Phe at the C-terminal end; however, while 

the neisserial PorA has a Lys at the +2 position, the E. coli PhoE has a Gln. Further 

comparison between E. coli and neisserial OMPs revealed a strong preference for 

28



positively charged amino acids at +2 positions in Neisseria. When the authors 

replaced Gln with positively charged amino acids in the E. coli porin PhoE, it failed to 

open the BamA channel, and when they replaced Lys with Gln in neisserial PorA, it 

activated the BamA channel. This led to the conclusion that the C-terminal insertion 

signal in OMPs is species-specific and that the +2 residues are responsible for this 

specificity. But this conclusion was arrived at based on comparisons carried out 

between two organisms and very few sequences, so it remained unclear whether 

this hypothesis holds true for all the Gram-negative organisms. Since we are 

interested in finding vaccine candidates among OMPs, their heterologous expression 

in model organisms have important biotech applications. I therefore used 

computational tools to investigate the proposed species specificity of these C-

terminal insertion signals. 

VIII.b. Extraction of C-terminal β-strands from 607 Gram-negative bacteria 

 I extracted the C-terminal β-strands from OMPs predicted in ClubSub-P [37], 

and also from the OMPs predicted among the singletons (which were obtained 

during the clustering of the sequences in ClubSub-P). I used the β-barrel topology 

predictions from ProfTMB [61] and the secondary structures predictions from 

PSIPRED [62] in HHomp [24] results in extracting 25,454 C-terminal β-strands, 

which were 10 to 21 AAs long. I then used the gapped-motif discovery tool, GLAM2 

[63], to obtain statistically significant motifs 10 AAs long from these β-strands; all 

motif instances with gaps were eliminated. In this data set, 437 organisms had more 

than 20 OMPs which constituted 22,447 C-terminal β-strands. I used these motifs 

instances for further studies. These motif instances can be classified into different 

classes or groups based on the taxonomic classification of the organisms, and also 

based on the number of β-strands present in the original OMP.     

VIII.c. Sequence-based and PSSM-based clustering 

 To check whether these C-terminal insertion signals are species-specific or 

not, I clustered the motifs on an individual motif level and also at the organism level. 

If the motifs are species-specific, then these sequences should cluster according to 

taxonomic class and organisms should group together based on their taxonomy 

classifications.  
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 The sequence-based clustering in CLANS using the PAM30 scoring matrix 

did not separate the motifs into different taxonomic classes, but there was a very 

crude separation based on OMP classes.  

I then generated a PSSM matrix for each organism as described in the 

methods section of [64] and clustered them using hierarchical clustering. The 

resulting dendrogram showed a good separation of organisms based on their 

taxonomic classes. But, when I used the R package pvclust [65] to access the 

uncertainty in the hierarchical clustering, I found that the AU (Approximately 

Unbiased) p-value and BP (Bootstrap Probability) values, which are used to measure 

the certainty of the clustering, were not correlated. So, I could not confirm or deny 

the species specificity of the C-terminal insertion signal with this clustering data. 

VIII.d. Chemical descriptor-based clustering 

 These hierarchical clustering results suggest that there is a weak organism-

specific signal, but the sequence-based clustering results suggest a weak OMP 

class-based clustering. So I hypothesized that the C-terminal insertion signals from 

different organisms overlap. If there is a complete overlap of C-terminal insertion 

signals between two organisms, then the BAM complex of the host organism will 

recognize all the OMPs from the other organism and vice versa.  And if there is no 

overlap then none of the OMPs will be recognized for heterologous expression in the 

host organism.  

I tested this hypothesis by clustering the organisms based on the pairwise 

overlap of peptide sequence space calculated from C-terminal insertion signals. 

Initially, the peptide sequences were represented using a five-dimensional chemical 

descriptor, which are the first five principal components derived from 26 different 

chemical and physical properties of AAs [66]. This resulted in a 50-dimensional 

peptide vector. Since the dimensionality of the data should be less than the sample 

size (minimum 21 sequences per organism) for further statistical analysis, the 

peptide vector dimensions were reduced to 12 using principal component analysis 

(PCA).  As described in the method section of [64], all the 12-dimensional peptide 

vector for C-terminal β-strands from individual organisms were combined into a 

matrix. Then I calculated the mean and covariance for the matrices to fit a 

multivariate Gaussian distribution; this we call ‘peptide sequence space’. Then I used 

30



Hellinger distance, a statistical theory method, to calculate the pairwise overlap 

between the multivariate Gaussians distributions from different organisms. The 

pairwise measures were used in CLANS to cluster the organisms.  

 In the cluster map (Figure 1A, [64]), each node is an organism, and the 

darkness of the edges connecting the nodes is directly proportional to the overlap of 

peptide sequence spaces between the organisms. The organisms are colored based 

on their taxonomic classes and one can notice that the organisms were crudely 

clustered based on the taxonomic classes. In the cluster map, E. coli strains are 

clustered together among other γ-proteobacteria and Neisseria species are clustered 

along the periphery of β-proteobacterial cluster, and a few α-proteobacteria are 

clustered between the β- and γ-proteobacteria clusters. Interestingly, the 

Helicobacter pylori strains clustered separately from the rest of the organisms, 

suggesting that they have a very distinct motif from rest of the organism’s C-terminal 

insertion signals.  

 This clustering analysis agrees with the presence of an organism-specific 

signal, but a closer look at the cluster map shows that organisms with fewer OMPs 

are seen in the periphery of the cluster map and those with a larger number of OMPs 

are in the middle of the cluster map. A control experiment was carried out to check 

whether the observed organism-specific signal is true or if it is an artifact arising from 

the number of OMPs present in an organism. The positions of AAs in the motif were 

randomly shuffled and the clustering was done as described earlier. In the resulting 

cluster maps, organisms clustered as concentric circles when I colored them based 

on their taxonomic classes (Figure 2A of [64]). I noticed that the taxonomic clustering 

observed in Figure 1A was lost. And while I colored the organisms based on the 

number of OMPs present (Figure 2B of [64]), I noticed that the circles are formed by 

organisms with a similar number of OMPs, and it increases from periphery to the 

center. This confirms the presence of an organism-specific signal among C-terminal 

insertion signals from different organisms, which is lost when the AA positions are 

shuffled. Thus, the AA positions in the C-terminal insertion motifs are an important 

constituent of the signal.   
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VIII.e. High preference of residues at different positions 

 Previously, [19] suggested that the high preference for positively charged 

residues at the +2 position in neisserial C-terminal signals are responsible for the 

inadequate recognition of neisserial proteins by the E. coli BAM complex, but they 

compared only few sequences from these organisms. Therefore, I used more 

sequences from these organisms to check the frequency of residues at the +2 

position. And I also noticed the high preference of positively charged residues (Arg, 

Lys) at the +2 position in neisserial C-terminal insertion signals. To check whether 

there is any general pattern present among the proteobacteria, I compared the 

frequency of positively charged residues at the +2 position from 437 Gram-negative 

organisms. Figure 4 of [64] shows that more than 60% of the C-terminal insertion 

signals from Neisseria species have positively charged resides at the +2 position. 

The frequency of these organisms stands out from rest of the organisms and even 

from closely related β-proteobacteria. I also noticed that 25 to 40% of E. coli C-

terminal insertion signals have positively charged residues at the +2 position. Hence, 

the E. coli BAM complex should recognize C-terminal insertion signals with positively 

charged residues at the +2 position and in fact there is also experimental evidence 

for E. coli BAM complex recognizing OMPs with positively charged residues at the 

+2 position [67]. This suggests that the observed species specificity is not depending 

on positively charged residues at the +2 position. 

 The Neisseria porin PorA used by [19] for the investigation has a His at the +3 

position, which is unusual for this position. The +3 position is usually occupied by a 

hydrophobic residue. Therefore I checked for the frequency of His at the +3 position 

in the C-terminal peptides of all the organisms. Figure 5 in [64] shows the high 

preference of His at the +3 position among β-proteobacteria, and the frequency in E. 

coli is almost zero. Further investigation revealed that the high preference of His at 

the +3 position in β-proteobacteria is mostly limited to 16-stranded porins, and 

structural investigation shows the His residues are present in the trimerization 

interface. The complete absence of His at the +3 position in E. coli C-terminal 

insertion signals might be the reason for the E. coli BAM complex not recognizing the 

neisserial PorA with His at the +3 position.  

 In the cluster map, Figure 1A of [64], the H. pylori strains are clustered 

separately from rest of the organisms, which suggests that H. pylori strains have a 
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distinct C-terminal insertion signal. I did not notice a high preference for any residue 

at the +2 position in the C-terminal insertion signals of H. pylori, but there was a high 

preference for Tyr at the +3 position, which is common among C-terminal insertion 

signals. In addition, I noticed a high preference of Tyr at the +5 position. Hydrophobic 

AAs are common at this position, but aromatic hydrophobic AAs are not. Therefore, I 

checked the frequency of aromatic hydrophobic residues at the +5 position in the C-

terminal insertion signal from all proteobacteria. From the resulting percentage plot 

(Figure 8A and 8B of Paramasivam et al. (2012)), I noticed that the high frequency of 

Tyr is only seen among H. pylori insertion signals and it is uncommon among other 

proteobacteria, which includes E. coli. It has been reported earlier [68] that the 

expression of H. pylori OMPs in E. coli is lethal to the host. The expression of H. 

pylori OMPs were normal until they were translocated across the IM to the 

periplasm, where they started to aggregate. But the expression of H. pylori OMPs 

without a C-terminal is tolerated and there was no aggregation in the periplasm. The 

authors [68] concluded that the mis-targeting of H. pylori OMPs is lethal in E. coli. I 

hypothesize that the C-terminal insertion signals from H. pylori OMPs are not 

recognized by the E. coli BAM complex; therefore the OMPs are not inserted into the 

OM and start aggregating in the periplasm. Since the Tyr at +5 in H. pylori C-terminal 

insertion signals is uncommon in other proteobacteria, this might be the major 

reason for the inadequate recognition of H. pylori OMPs by the E.coli BAM complex. 

VIII.f. Outer membrane protein class-specific and taxonomy class-specific signals 

 During these analyses I noticed a high prevalence of 16-stranded OMPs in 

some β-proteobacteria organisms and 22-stranded OMPs in some α-proteobacteria 

organisms. Since, 33.8% of OMPs are not classified under any OMP class, it not 

feasible to reduce the over-representation based on the OMP class alone. I therefore 

did a control experiment to demonstrate the influence of the over-representation of 

OMP classes in the clustering of organisms. I removed C-terminal insertion signals 

from one of each of the OMP classes (8-, 12-, 16- and 22-stranded) from organisms 

and clustered the data set. In the resulting cluster maps, Figure 9A and 9B of [64], 

the 8- and 12-stranded OMP classes were removed respectively. Since these 

classes do not have a high prevalence in any organisms, their absence did not affect 

the clustering. However, the OMP classes 16-stranded (Figure 9C, [64]) and 22-
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stranded (Figure 9D, [64]) are over-represented in β- and α-proteobacteria, 

respectively, and their removal affected the clustering and the organisms were not 

clustered based on their taxonomy. This demonstrates the influence of the high-

prevalence of OMPs in the clustering. I did not remove the over-represented OMPs 

from the data set, because all the over-represented C-terminal insertion signals still 

represent the true peptide sequence space of the organisms.  

 I also examined whether there is any signal arising from OMP classes that 

influences the clustering. To perform this test, I created two data sets, one containing 

organisms from all the taxonomy classes but with C-terminal insertion signal only 

from 22-stranded OMP class, and the other data set containing multiple 

representatives of organisms from γ-proteobacteria class, each representative 

containing C-terminal insertion signals from one particular OMP class. The clustering 

was done as described before and the cluster map obtained from these data sets are 

shown in Figure 10 of [64]. In the Figure 10A of [64], data set created from 22-

stranded OMP class were clustered. In this cluster map the peptide space of the 

organisms were calculated only from C-terminal insertion signals of 22-stranded 

OMPs, and they clustered based on taxonomic classes. And in the Figure 10B of 

[64], data set from γ-proteobacteia alone was used to cluster. And organisms with 

more than one OMP class have multiple representative in the cluster map.  But they 

clustered based on different OMP classes not on taxonomic class as the first data 

set. This demonstrates the presence of an OMP class-based signal along with the 

organism-specific signal in the C-terminal insertion signals.     

VIII.g. Conclusion 

 I have showed that the prevalence of positively charged amino acids at the +2 

position in neisserial OMPs is higher compared to other Gram-negative bacteria. 

Since there is experimental evidence about the functional expression of OMPs with 

positively charged residues at the +2 position in E. coli, the observed species 

specificity of the C-terminal insertion signal may not be due to the presence of a 

positively charged residue at the +2 position. However, the presence of His at the +3 

position in the neisserial porin PorA and its complete absence in E. coli C-terminal 

insertion signals may be the reason for the inability of the E. coli BAM complex to 

recognize Neisseria OMPs. The chemical descriptor-based CLANS clustering 
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demonstrated the presence of organism-specific signals and I have also 

demonstrated that the proportion of OMP class present in an organism influences 

the average motif from an organism. These results confirm the presence of two 

overlapping signals, one based on OMP class and another based taxonomy class. 

Since most of the C-terminal insertion signals are very similar, the heterologous 

expression of proteins should be possible in most cases. While performing 

heterologous expression, it is better to check for the presence of individual insertion 

signals in the host proteins, rather than comparing the frequency plots from the two 

organisms. Since the clustering is based on entire sequence spaces, I could not 

confirm which residues or positions are important for the observed signals. However, 

once the C-terminal insertion signal binding site is known, one could study the co-

evolution of the interacting residues. This will demonstrate the relative importance of 

residues and positions in the C-terminal insertion signal. 
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IX. Broad-spectrum epitope-based peptide vaccine 
candidates 

IX.a. Introduction 

The aim of vaccination is to provide lifelong immunity against pathogenic organisms; 

thus vaccines are aimed to induce specific adaptive immunity which comprises both 

humoral and cell-mediated immune responses. Since both B cell and helper T cell-

based immune responses are needed to protect against an extracellular bacterial 

infection, a protective peptide vaccine should contain B cell epitopes and helper T 

cell epitopes (peptides binding to MHC class II molecules).  Currently, our aim is to 

develop a broad-spectrum vaccine against extracellular Gram-negative bacterial 

pathogens, so we need to identify the peptide epitopes that are conserved in 

different strains of a species, genus or a family.     

Typically, B cells epitopes are the discrete surface exposed regions of 

antigenic proteins to which the variable region of an antibody binds [18]. Most of 

these B cell epitopes are discontinuous at the sequence level, but are brought 

together by protein folding.  B cell epitopes can, however, also be continuous, where 

an antibody binds to a surface-exposed, linear stretch of sequence of the antigen. 

The most important factor to consider when designing a peptide-based vaccine is the 

‘cross reactive immunogenicity’ of the peptides, that is, the ability of the anti-peptide 

antibody to specifically bind to the antigen protein from which the peptide or epitope 

is derived [69-70]. The difficulty in characterizing non-linear epitopes of the 

complementary antigen surface and poor understanding of the recognition properties 

of cross-reactive antibodies are among the important reasons why B cell epitope 

prediction has lagged behind the T cell predictors in accuracy and reliability [18, 71]. 

The B cell epitopes should be surface-exposed for antibodies to bind, and the 

antigenic proteins should have a high expression level and should ideally be 

concentrated on certain patches of the cell surface for opsonization [72]. The 

precision of currently available discontinuous B cell epitope prediction tools is low 

and delivery of discontinuous epitopes in a native-like confirmation in vaccines is a 

challenging task [73]. Thus, in this study I have predicted only continuous B cell 

epitopes that are surface-exposed. I have used the programs BCPREDS [74] and 

BepiPred [75] to predict continuous B cell epitopes.   
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T cell epitopes are linear peptides displayed on MHC molecules that are 

derived from pathogens or tumor cells. The MHC loci are highly polymorphic, 

resulting in thousands of alleles with different peptide binding abilities, and the set of 

alleles present differs between individuals and also between different populations 

[76]. This makes individuals and populations react differently to the same pathogen. 

Thus, vaccines which include T cell epitopes should consider the MHC allele 

distribution in the target population. Peptides that bind to multiple alleles and cover a 

major percentage of the targeted population are better vaccine candidates. There 

are various allele-specific prediction tools available, but most of these predictors 

cover a limited set of HLA alleles for which more quantitative peptide binding data 

are available [77]. Since MHC molecules can be clustered into supertypes based on 

their binding specificities [78], various pan-specific HLA binding methods have been 

developed which indentify peptide binding to hundreds of alleles. These methods 

use experimental peptide binding data from multiple ‘source alleles’ to predict 

peptide binding to ‘target alleles’ in the same supertype for which no peptide binding 

data is available [77]. Compared to allele-specific methods, pan-specific methods 

have more allele coverage and reasonable prediction accuracy. MHC class I 

molecules have a closed peptide-binding groove with a defined binding site, but the 

peptide-binding groove of MHC class II molecules is open, so that the length of the 

peptides binding varies between 10 and 18 [6]. Even though the peptide binding 

‘core’ is usually nine AAs long, the open ends of MHC class II molecules makes it 

difficult to predict the optimal binding core in peptides with high accuracy [77]. In this 

study, I have used the pan-specific method NetMHCIIpan-2.0 [79] to predict peptides 

binding for 639  HLA DR alleles and allele-specific method NetMHCII [80] to predict 

peptide binding for six HLA DQ and six HLA DP alleles. 

IX.b. Epitope prediction pipeline 

Using the ClubSub-P database that contains 607 Gram-negative bacterial 

proteomes, I identified 22,548 OMPs in 3,315 clusters. 1,290 of these clusters have 

more than five sequences, and I selected 119 clusters from these which have more 

than 70% of their sequences from pathogenic organisms and which are conserved 

across different pathogenic organisms from a broad range of taxonomic 

classification. These clusters were used to search for peptide epitopes that are 
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conserved among the different sequences in the cluster, so that these epitopes can 

induce a broad spectrum of immune responses against all organisms in the cluster. 

The prediction of epitopes was done using a random sequence from each of these 

clusters and conservation of the predicted epitopes was examined later at the cluster 

level.  

I used BCPREDS [74] and BepiPred [75] to find continuous B cell epitopes 

and NetSurfP [81] to predict the surface exposure of the residues in the sequences. 

PSIPRED [62] was used to predict the secondary structure of the proteins and 

PROFtmb [61] was used to predict the β-barrel topology of the representative 

sequences. I used multiple sequence alignment (MSA) of the clusters to calculate 

the AA conservation in each column and the columns that had more than 80% 

identity were annotated as conserved.  

All the predicted features were combined for each sequence and represented 

as a MSA and a sliding window of 10 AAs length was used across the MSA to find 

continuous B cell epitopes. If the sequence within the sliding window should be 

considered as B cell epitopes, it should pass some filtering criteria, which include, 1) 

80% of the residues should have positive predictions from both continuous B cell 

epitope predictor programs, 2) 70% of the residues should have surface-exposed 

residue prediction by NetSurfP [81], 3) 70% of the residues should have loop 

structure predicted by PSIPRED [62] and 4) 70% of the residues should have outer 

surface coils annotation from PROFtmb [61]. These above criteria ensure that the B 

cell epitopes are present on the extracellular side of the membrane, so that the anti-

peptide antibodies will have access to the epitopes on the surface of the proteins. If 

80% of the AAs in the sliding window are conserved in the cluster along with above 

criteria, I annotated the residues in the sliding window as a potential B cell epitope. 

Then the sliding window was moved to find the next B cell epitope, and if overlapping 

windows were positively predicted, they were merged into one. Thus I obtained 

highly-conserved surface-exposed continuous B cell epitopes.  

From the above analysis, I found 90 continuous B cell epitopes from 41 

clusters, which are conserved among different taxonomy levels, in Acinetobacter, 

Neisseria, Brucellaceae and Enterobacteriaceae. To demonstrate our vaccine 

prediction pipeline, I selected the seven OMP clusters conserved among Neisseria 

for further analysis. These seven neisserial clusters contains 17 continuous B cell 

epitopes. I used the seven representative sequences from these clusters to predict 
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pan-specific MHC class II binding peptides using NetMHCIIpan-2.0 [79] and 

NetMHCII tools [80]. I selected helper T cell epitopes from the same protein to 

ensure that both B cell and T cell epitopes in the vaccine are also expressed in the 

pathogen at the same time. From the NetMHCIIpan-2.0 [79] and NetMHCII [80] 

results I selected ‘strong binders’, i.e., peptides with a high affinity (KD < 50 nM) to 

MHC molecules. Since single mutations in the ‘binding core’ of the peptide alter the 

binding affinity greatly, only peptide ‘binding cores’ that are completely conserved in 

the cluster were selected. Since I do not currently have a target population, I ranked 

these completely-conserved peptides based on their ability to strongly bind to 

multiple HLA alleles, and the top 20 peptides that bind to more than 50 alleles were 

selected for each cluster. These peptides were then searched using BLAST (PAM30 

matrix, e-value 100) against the human protein database for matches. The peptides 

that had matches were discarded from the data set because of possible cross-

reactivity with human proteins. The top five MHC class II molecule binding peptides 

are reported in Table 1 along with the conserved continuous B cell epitopes.     

 IX.c. Conclusion 

 In this work I have applied the clustering-based reverse vaccinology to select 

OMP clusters from pathogenic Gram-negative bacterial organisms and used ‘epitope 

mapping’ techniques to select B cell and helper T cell epitopes from these OMP 

clusters. I have demonstrated our computational vaccine prediction strategy by 

predicting peptide epitope vaccine candidates from Neisseria. As a result, I have 

predicted 17 continuous surface exposed B cell epitopes from seven neisserial OMP 

clusters. Since we do not have any target population at this stage, peptides binding 

to maximum number of HLA alleles were selected as helper T cell epitopes from 

these clusters. As only the core of the helper T cell epitopes are reported here, 

flanking residues can be added to these peptides which may produce overlapping 

helper T cell epitopes. Further experiments have to be done to test both the 

production of these proteins in the pathogens, and the immunogenicity of the 

epitopes. The peptide epitopes identified from this analysis can be linked together 

using linker regions to develop multi-subunit vaccines.  
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Table 1: List of conserved surface-exposed B cell epitopes and MHC class II binding 
peptides from Neisseria OMP clusters 

ClubSub-P 
cluster 

Representa
tive 

sequence 
(GI number) 

Protein names 
Gene 

Ontology 
(Molecular 
function) 

 
B cell epitopes 

Helper T cell epitopes 

MHC class II 
binding 
peptide 
‘core’ 

# of 
HLA 

alleles it 
strongly 

binds 

41572 194100067 
Putative 

uncharacterized 
protein 

None VGGAVNNAA 
 

YGRARALLA 
VSLALSHDK 

337 
91 

47843 121634304 Putative hemolysin 
activator None AGGKTTGKY 

 

LSRLQKAAQ 
ILIVRGYLT 
YQSSLAAER 
FYVSYGRGL 
FNNKFPLYR 

246 
217 
174 
160 
135 

46994 59802406 Putative adhesin 
penetration protein 

serine-type 
endopeptida
se activity 

AGTNGHPYGGDY 
DEDEPNNRES 
GEKDATKTNG 
TRNATQNGN 

IRFSPAYLA 
IRRRVLHYG 
YGIQARYRA 
FSVVSRNGV 
GLAFNRYRA 

429 
299 
235 
190 
176 

41006 121634057 Outer membrane 
protein OMP85 None DPRKASTSIKQYK 

 

MKFSYAYPL 
IQITPKVTK 
YYSATHNQT 
IIKSLYATG 
LRASRSKTT 

322 
218 
217 
189 
163 

47148 254804571 Lactoferrin binding 
protein A 

Transporter 
activity 

QPLSAEEEA 
GGGRILPDPMDYR 
YGTDEADKF 
NEAYSDNWA 
KPKSVSNRP 

LKYSRTKFI 
YNRIKPKSV 
YLNLKKRLT 
VRAAKVGRR 
YRYVTWESL 

386 
328 
271 
135 
128 

41069 121634766 
Putative outer-

membrane receptor 
protein 

Transporter 
activity NYYNHPLPD 

YRVFAQNKL 
FKPTPRYRI 
IRGQTGRRI 
WQKSLINKR 
IIWQKSLIN 

328 
324 
292 
252 
229 

47449 121634205 
Putative ferric 
siderophore 

receptor protein 

Siderophore 
transmembr

ane 
transporter 

activity 

YDSQGYATAFGPKD 
QPASFAQTI 

TGSYDSRTQGMT 
TLRIPNPAAKARA 

 

LNASAAVYR 
LRTVNAAFT 
YRARKNNLA 
YLATRFRAA 
VYRARKNNL 

225 
213 
198 
180 
159 
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X. Conclusion and Outlook 

 In this work I have used 18 different secondary structure and SCL prediction 

tools to develop a pipeline for consensus SCL prediction of protein sequences from 

Gram-negative bacteria and archaea. On top of this I used homology information to 

overcome the misannotation of start codon and to further improve the confidence of 

the predictions. I was able to show that the use of consensus methods increases the 

consistency of the predictions in a cluster by cluster-based comparison of tools. In 

addition, I demonstrated that by using the consensus from different prediction tools 

and by use of homology information, the precision of the predictions is increased. I 

have applied this pipeline on a large scale and predicted the SCL for 607 Gram-

negative bacterial proteomes and 65 archaeal proteomes. The precomputed 

database, ClubSub-P [37], created using the pipeline is available online in the MPI 

bioinformatics toolkit [51]. The database can be searched to annotate the SCL of 

proteins identified e.g. by mass spectrometry or genome sequencing. Additionally, 

the OMP clusters conserved in different pathogenic strains can be used to indentify 

vaccine candidates. The established clustering parameters can be used to cluster 

proteins from selected groups of pathogenic organisms and the SCL of the clusters 

can be annotated by querying a representative sequence against ClubSub-P. It is 

also possible to predict more specific SCL by adding more specialized feature 

prediction tools, e.g. when new tools are available for the different secretion 

machineries. Similarly, when new strains of Gram-negative bacteria and archaea are 

sequenced, they can be integrated in the clustering process, which may decrease 

the number of singletons and increase the percentage and quality of SCL 

annotations in all the sequences further.  

 I have used the OMP clusters from ClubSub-P from pathogenic organisms to 

identify new vaccine candidates. I created a pipeline to identify continuous B cell 

epitopes and MHC class II binding peptides (helper T cell epitopes) and 

demonstrated its functionality using OMP clusters conserved in Neisseria. We intend 

to indentify such highly conserved peptide epitope candidates from ClubSub-P OMP 

clusters conserved in different pathogenic organisms. In the context of ‘epitope 

mapping’, new tools will be employed to discover discontinuous and discontinuous B 

cell epitopes from clusters. In cases where vaccine discovery is targeted against a 

disease which is prevalent in a particular population, HLA allele distribution in that 
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population can be used to select relevant peptides that bind to HLA alleles prevalent 

in the population. Experimental microarray data sets of gene expression from 

pathogenic Gram-negative bacterial organisms available in public databases will be 

used along with the mass spectrometric data sets to identify vaccine candidates from 

the computational pipeline in the future.      

 Since we are interested to discovery peptide epitope vaccine candidates from 

the OMPs, the heterologous expression of these proteins in E. coli are important. 

However, it has been reported that the recognition of OMPs by the E. coli BAM is via 

a species-specific motif, but the comparison was performed with less than 25 

peptides from two organisms. Therefore, I tested whether this holds true or not 

among all the Gram-negative bacterial species. We have used the OMPs predicted 

from ClubSub-P (including singletons) to obtain 22,447 C-terminal β-strands from 

437 Gram-negative bacterial species. I have used chemical descriptors to define the 

peptide sequence space for each organism and used a statistical theory method (the 

Hellinger distance) to calculate the overlap of peptide sequence spaces between 

organisms and used this pairwise distance to cluster all organisms. From this 

analysis I have concluded the presence of two different signals relevant for proper 

OMP recognition by the BAM machinery: one is based on taxonomic class and the 

other on the OMP class. Thus, evolutionary distance between organisms plays a role 

for heterologous recognition, but also the proportion of proteins from different OMP 

classes present in an organism determines the average signal from an organism. I 

have also demonstrated that the proposed species specificity is not only determined 

by residues present in the +2 position, but instead varies among different organisms. 

I have also predicted that the high preference for Tyr at the +5 position in H. pylori C-

terminal insertion signals is responsible for the inadequate recognition of these 

peptides by the E. coli BAM machinery. Furthermore, wet lab experiments have to be 

done, e.g. by mutating these residues and subsequent functional expression of H. 

pylori OMPs in E. coli, to prove the importance of these residues.      

 In a much broader sense, in this work I have created ClubSub-P, a database 

of precomputed SCL predictions which will be used to identify potential vaccine 

candidates from the outer membrane and extracellular protein clusters from the 

pathogenic organisms. Since the precision of SCL predictions of ClubSub-P are 

better than the state-of-art tools, it can be used in the functional annotation pipeline 

of newly sequenced bacterial and archaeal genomes. The concept of comparison of 
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performance of different tools based on the consistency across the sequences in a 

cluster, which was first used in ClubSub-P, can be adapted to many feature 

prediction programs. In this work we have used a clustering-based reverse-

vaccinology approach to find potential broad-spectrum peptide vaccine candidates 

against Neisseria, and this approach can be used to design a universal vaccine 

against a wide range of pathogens. The epitope mapping pipeline we developed, 

which identifies B cell and helper T cell epitopes, can be used to discover peptide 

epitopes from the surface-exposed ClubSub-P clusters of other organisms as well. 

The C-terminal insertion motifs we obtained in the study will help the experimental 

scientists to ensure that the C-terminal insertion signals of the OMPs will be 

recognized by the BAMs of different organisms before they start their laborious 

experiments.              
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Efficient Subfractionation of Gram-Negative Bacteria for Proteomics

Studies
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Proteomics studies of pathogenic bacteria are an important basis for biomarker discovery and for the
development of antimicrobial drugs and vaccines. Especially where vaccines are concerned, it is of
great interest to explore which bacterial factors are exposed on the bacterial cell surface and thus can
be directly accessed by the immune system. One crucial step in proteomics studies of bacteria is an
efficient subfractionation of their cellular compartments. We set out to compare and improve different
protocols for the fractionation of proteins from Gram-negative bacteria into outer membrane,
cytoplasmic membrane, periplasmic, and cytosolic fractions, with a focus on the outer membrane.
Overall, five methods were compared, three methods for the fast isolation of outer membrane proteins
and two methods for the fractionation of each cellular compartment, using Escherichia coli BL21 as a
model organism. Proteins from the different fractions were prepared for further mass spectrometric
analysis by SDS gel electrophoresis and consecutive in-gel tryptic digestion. Most published subfrac-
tionation protocols were not explicitly developed for proteomics applications. Thus, we evaluated not
only the separation quality of the five methods but also the suitability of the samples for mass
spectrometric analysis. We could obtain high quality mass spectrometry data from one-dimensional
SDS-PAGE, which greatly reduces experimental time and sample amount compared to two-dimensional
electrophoresis methods. We then applied the most specific fractionation technique to different Gram-
negative pathogens, showing that it is efficient in separating the subcellular proteomes independent
of the species and that it is capable of producing high-quality proteomics data in electrospray ionization
mass spectrometry.

Keywords: membrane proteins • cell fractionation • bacterial pathogen • outer membrane

Introduction

Gram-negative bacteria all contain a complex cell envelope
composed of the outer membrane (OM), the periplasm with
the peptidoglycan layer, and the cytoplasmic membrane.
Together with the cytoplasm, each of those subcellular com-
partments contains a unique set of proteins. It is possible today
to predict proteomes and protein localization in silico based
on genomic information, but the available computational
methods are usually based on experimentally determined
training sets, which are incomplete. Experimental verification
of localization prediction is usually necessary; moreover,
whether proteins are expressed under given growth conditions
cannot be determined by bioinformatics (yet).

Proteomics studies aim at a large-scale characterization of
in vivo localization, abundance, and post-translational modi-
fications of proteins under varying growth conditions, and at

identifying molecular interactions.1 One major aim of pro-
teomics research on pathogenic bacteria is the investigation
of the bacterial cell envelope, and especially the OM, as this is
the contact point of the bacterial cell to its environment, to
host cells, and to the immune system. In fact, most virulence
factors in pathogenic bacteria are localized on their cell
surface.2-4 To date, mass spectrometry-based proteomic da-
tabases of a number of Gram-negative bacteria are available,
including pathogenic species such as Escherichia coli, Vibrio
cholerae, Pseudomonas aeruginosa, Haemophilus influenzae or
Borrelia burgdorferi.4

To undertake comprehensive proteomic studies of bacterial
OMs, three main experimental steps have to be considered: (i)
enrichment and purification of the OM; (ii) solubilization of
outer membrane proteins (OMPs); and (iii) identification and
characterization. Each of these three steps provides experi-
mental challenges, often based on the intractable behavior of
hydrophobic membrane proteins in the isolation of inner or
outer membrane, in isoelectric focusing and in mass spec-
trometry experiments.5-7 The first and most critical step is the
enrichment and purification of OMs, where contaminations,
for example, with highly abundant cytoplasmic proteins, must
be avoided, or at least minimized.
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Cellular subfractions can be prepared based on the specific
properties of proteins from different compartments. Isolation
of the periplasm can be either achieved by the cold osmotic
shock method8 or by cell spheroblasting followed by differential
centrifugation.9 The cytoplasm can be isolated by cell lysis after
separation of the periplasmic proteins and spinning down of
the crude membranes. Inner and outer membranes of Gram-
negative bacteria are usually prepared by lysozyme/EDTA
lysis,10 by French Press lysis11 or by the use of commercially
available lysis reagents.12 These processes all yield membrane
vesicles, which can be separated by density centrifugation using
a sucrose gradient, as OM vesicles have a higher density than
inner membrane (IM) vesicles.13 Alternatively, inner and outer
membranes can be separated by selective detergent treatment,
using detergents which only dissolve the cytoplasmic mem-
brane, such as Triton X-100,9,11,14 or by washing of the vesicles
with chaotropic agents such as sodium carbonate,15,16 each
followed by differential centrifugation.17

In this study, we examined the “somewhat confusing avail-
able literature”17 of membrane proteome analysis and related
literature of subcellular proteomics of Gram-negative bacteria
and selected five different protocols for subcellular fractionation
which we evaluated in detail. The main criteria apart from the
specificity were the ease of use, the ability to yield samples that
can directly be used in mass spectrometry experiments, and
the applicability to different Gram-negative species. We evalu-
ated the quality of the subfractions by immunoblotting, using
antibodies raised against marker proteins of all cellular com-
partments. The efficiency of OM fractionation was then ana-
lyzed by liquid chromatography-coupled ESI-MS for all meth-
ods, comparing the results to the expected OM proteome
predicted in silico. Finally, we show that the most efficient
protocol can be adapted to other Gram-negative bacteria,
namely to uropathogenic Escherichia coli 536, enteropathogenic
E. coli 2348/69, the opportunistic pathogen Pseudomonas
aeruginosa, and diarrhea-causing Yersinia pseudotuberculosis.

Materials and Methods

Bioinformatics. The whole proteome of Escherichia coli BL21
(NC_012947) was analyzed by PSORTb v.3.0.2,18 HHOMP,19 and
BOMP20 for outer membrane �-barrel proteins. The subcellular
localization of the proteins identified in the mass spectrometry
experiments was annotated by PSORTb v.3.0.2.18

Bacterial Strains and Growth Conditions. The strains used
in this study were Escherichia coli BL21 harboring the plasmid
pASK-IBA2, Escherichia coli 536, Escherichia coli 2348/69,
Pseudomonas aeruginosa PAO1, and Yersinia pseudotubercolusis
IP32953. Bacteria were grown in LB medium at 37 °C until cells
were in the logarithmic growth phase at an OD600 of ap-
proximately 0.8. Cells were harvested by centrifugation.

Subfractionation Methods. Cellular subfractionation was
performed according to five different methods, with methods
1, 2, and 3 focusing on the fast enrichment of OMs, and thus,
of outer membrane proteins, and methods 4 and 5 focusing
on the fractionation of proteins from cytoplasm, cytoplasmic
membrane, periplasm and OM from one origin cell culture.
Method 3 was developed in our laboratory in the course of this
study.

Method 1 for OM separation is based on previously pub-
lished protocols and uses lysozyme/EDTA lysis followed by
selective detergent treatment.9,14 In detail, 25 mL of cells were
pelleted and resuspended in 500 µL 0.2 M Tris-HCl pH 8, 1 M
sucrose, 1 mM EDTA. 100 µL of lysozyme (Sigma-Aldrich) (5

mg/mL in dH2O) were added, vortexed and incubated for 5
min at RT. Two ml of dH20 were added and incubated for 20
min at RT until spheroblast formation is observed under the
microscope. Then 3 mL 50 mM Tris-HCl pH 8, 2% (w/v) Triton
X-100, 10 mM MgCl2 and 50 µL DNase I (Applichem) (1 mg/
mL in dH2O) were added and mixed until the suspension was
clear. The mixture was ultracentrifuged at 85 000× g for 30 min
at 4 °C. The pellet containing the OM was washed in 750 µL 50
mM Tris-HCl pH 8, 2% (w/v) Triton X-100, 10 mM MgCl2,
centrifuged at g85 000× g for 20 min at 4 °C, and was finally
washed in 500 µL dH2O three times and stored at -20 °C.

Method 2 for OM preparation is based on French press cell
lysis followed by treatment with chaotropic reagents.16 In detail,
50 mL of cells were pelleted and resuspended in 6 mL 0.1 M
Tris-HCl pH 7.3 supplemented with 7 mg of DNase I. The cells
were ruptured in a French Press with two passes at 108 Pa.
Incompletely lysed cells were removed by centrifugation at 4000
rpm for 15 min (Eppendorf 5810 R centrifuge). The supernatant
was diluted with ice-cold 0.1 M sodium carbonate pH 11 to a
final volume of 60 mL and stirred 1 h at 4 °C. Then the
suspension was ultracentrifuged at 120 000× g for 1 h at 4 °C.
The pellet containing the OM was washed in 2 mL 0.1 M Tris-
HCl pH 7.3, centrifuged at g85 000× g for 20 min at 4 °C, and
was finally washed in 500 µL dH2O three times and stored at
-20 °C.

Method 3 combines outer membrane separation by selective
detergent use (as used in method 1) with treatment with
chaotropic reagents (as used in method 2). In detail, 25 mL of
cells were pelleted and resuspended in 500 µL 0.2 M Tris-HCl
pH 8, 1 M sucrose, 1 mM EDTA. One-hundred microliters of
lysozyme (5 mg/mL in dH2O) were added, vortexed and
incubated for 5 min at RT. Two ml of dH20 were added and
incubated for 20 min at RT until spheroblast formation was
observable under the microscope. Then 3 mL 50 mM Tris-HCl
pH 8, 2% (w/v) Triton X-100, 10 mM MgCl2 and 50 µL DNase
I (1 mg/mL in dH2O) were added and mixed until suspension
became clear. The mixture was ultracentrifuged at 85 000× g
for 30 min at 4 °C. The pellet containing the OM was washed
in 750 µL 50 mM Tris-HCl pH 8, 2% (w/v) Triton X-100, 10 mM
MgCl2, centrifuged at g85 000× g for 20 min at 4 °C. The pellet
containing the outer membrane was then resuspended in ice-
cold 0.1 M sodium carbonate pH 11 to a final volume of 60
mL and stirred 1 h at 4 °C. Then the suspension was ultracen-
trifuged at 120 000× g for 1 h at 4 °C. The pellet containing the
OM was washed in 2 mL 0.1 M Tris-HCl pH 7.3, centrifuged at
g85 000× g for 20 min at 4 °C, and was finally washed in 500
µL dH2O three times and stored at -20 °C.

Methods 4 and 5 are partly overlapping and are based on
previously published protocols for subcellular fractiona-
tion.9,13,14,21 1 L of cells was pelleted and resuspended in 10
mL 0.2 M Tris-HCl pH 8, 1 M sucrose, 1 mM EDTA and
lysozyme was added to a final concentration of 1 mg/mL. The
suspension was mixed and incubated for 5 min at RT. 40 mL
dH2O were added to the swirling mixture before placing on ice
(spheroblasting can be checked under microscope). Then cells
were centrifuged at 200 000× g for 45 min at 4 °C. The
supernatant contained the periplasmic fraction. The pellet was
resuspended in 7.5 mL ice-cold 10 mM Tris-HCl pH 7.5, 5 mM
EDTA, 0.2 mM DTT supplemented with 50 µL DNase (1 mg/
mL). The cells were ruptured in a French Press with two passes
at 108 Pa. Unbroken cells were spun down by centrifugation at
4000 rpm for 10 min at 4 °C (Eppendorf 5810 R centrifuge).
Then the supernatant was centrifuged at 280 000-300 000× g
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for 2-4 h at 4 °C. The supernatant contained the cytoplasmic
fraction and the pellet contained the crude membranes.

The difference between method 4 and 5 lies in the process
how inner and outer membranes are separated: in method 4,
inner and outer membrane was separated by selected detergent
treatment in a similar manner as used in method 1. In detail,
the crude membrane pellet was resuspended in 9 mL 50 mM
Tris-HCl pH 8, 2% (w/v) Triton X-100, 10 mM MgCl2 and
centrifuged at 85 000× g for 30 min at 4 °C. The supernatant
contained the cytoplasmic membrane fraction. The pellet was
washed in 1 mL 50 mM Tris-HCl pH 8, 2% (w/v) Triton X-100,
10 mM MgCl2, centrifuged at g85 000× g for 20 min at 4 °C,
and was finally washed in 500 µL dH2O three times and stored
at -20 °C.

Method 5 is based on the separation of inner and outer
membrane vesicles according to their different densities.13,21

In particular the crude membrane pellet was resuspended in
1 mL 10 mM Tris pH 7.5, 15% sucrose (w/w), 5 mM EDTA,
and 0.2 mM DTT. The sucrose gradient was prepared by
layering 2.25 mL each of 50, 45, 35 and 30% sucrose solutions
(w/w) over a cushion of 1 mL 55% sucrose, all sucrose solutions
contained 10 mM Tris-HCl pH 7.5, 5 mM EDTA. The membrane
suspension was layered on the top of the gradient and
centrifuged at 250 000× g in a swinging bucket rotor for 12-16
h at 4 °C. The visible bands were carefully collected with a
coarse syringe needle. The lower density band (upper band)
contained the cytoplasmic membrane and the higher density
band (lower band) contained the outer membrane fraction; a
third, mixed band between them was discarded. The mem-
brane fractions were diluted 1:1 with dH2O, centrifuged at
g85 000× g for 20 min at 4 °C, and was finally washed in 500
µL dH2O three times and stored at -20 °C.

SDS-PAGE and Immunoblotting. Sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) was performed
using the Laemmli gel system.22 In detail, proteins were boiled
for 5 min in 4× SDS sample buffer before loading the gel and
then separated by 8-18% SDS-PAGE under denaturing condi-
tions. The gels were usually silver-stained,23 only gels used for
mass spectrometric analysis were stained with colloidal Coo-
massie.24 After solubilization of the inner and outer membrane
fractions in SDS sample buffer and separation by electrophore-
sis, inner and outer membrane proteins are mostly free from
lipids and other membrane components and can easily be
extracted from the gels for further mass spectrometric analysis
as described below.

Immunoblotting was performed with a standard semi dry
protocol25 using 0.45 µm nitrocellulose membranes for protein
immobilization.26 Bound antibodies were visualized using
alkaline phosphatase conjugated antirabbit or antimouse an-
tibodies (Jackson ImmunoResearch) and 5-bromo-4-chloro-3-
indolylphosphate/nitroblue tetrazolium.

Mass Spectrometric Analysis. After staining with colloidal
Coomassie whole lanes from one-dimensional SDS gels were
cut into 12 bands which were subsequently in-gel digested with
trypsin (Promega) in principle as published by Shevchenko et
al.27 The doubly extracted peptides were desalted with self-
made microcolumns28 and separated by reversed-phase HPLC
(nanoLC2D, Eksigent) using a fused silica column of 14 cm
length, 75 µm in diameter and 8 µm tip opening (PicoTip, New
Objective) packed in-house with ReproSil-Pur C18-AQ, 3 µm
(Dr. Maisch GmbH). A stepwise gradient from 3% to 80% buffer
B with buffer A (0.1% formic acid in water) and buffer B (0.1%
formic acid in acetonitrile) was applied over a run time of 40

min at a flow rate of 160 nL/min. Mass spectrometric analysis
was performed using an ion trap (HCTultra PTM Discovery,
Bruker Daltonics) equipped with a nanoESI source (Proxeon
Biosystems).

Data-dependent acquisition was performed in positive-ion
mode where 3-6 scans were added for each precursor ion scan
in Standard Enhanced scan mode with a scan range from 300
to 1200 m/z. Up to 5 precursors were isolated and fragmented
in UltraScan mode following each parent ion scan with active
exclusion of 20 s. Mascot generic data files were created using
DataAnalysis V4.0 SP1 (Bruker Daltonics) with the following
settings: signal was considered as peaks when showing a signal-
to-noise ratio better than 5 and exceeded both 10% area and
intensity thresholds. Peak detection algorithm V2.0 was used,
while no background subtraction was applied. Intensity thresh-
old for AutoMS(n) detection was set to 5000 and up to 3000
fragmentation spectra were allowed. Deconvolution parameters
were set to auto for MS and MS/MS data. Resulting peak lists
of each sample were combined using Mascot Daemon and
searched against the Swiss-Prot (V57.11) or NCBI_nr (as on 12/
13/2009) protein database using Mascot Server (V2.2). The
following settings were used: digestion with trypsin allowing 1
miss cleavage, carbamylation of cysteines as fixed modification,
oxidation of methionine as variable, 0.3 Da peptide mass
accuracy and 0.3 Da for fragmentation masses. MudPiT scoring
was used. The threshold score for identified peptides was set
to 10. Mascot protein hits matching to identical entries of other
organisms/strains than the used ones were assigned to find
the respective gene identifier of the correct organism/strain
using the BLASTp algorithm against the predicted proteome
of the respective organism.29 Hits resulting in e-values greater
than 10-3 were rejected.

Results and Discussion

Predicted Outer Membrane Proteome. Integral membrane
proteins from the cytoplasmic and outer membrane differ in
secondary structure content and amino acid composition.
Cytoplasmic membrane proteins are mainly composed of
hydrophobic R-helices, whereas outer membrane proteins
(OMPs) are mainly comprised of �-barrel motifs.30-33 In
addition, many lipoproteins are found on the cytoplasmic and
outer membrane.17,34,35 To obtain an estimate of the theoretical
number of OMPs, we used different algorithms to predict OMPs
of E. coli BL21 (Table 1). (a) PSORTb v.3.0.2 predicts 5 different
subcellular localizations for Gram-negative bacteria, but does
not distinguish between �-barrel proteins and lipoproteins in
its OMP prediction;18 83 OMPs were identified using this
algorithm. (b) HHOMP identifies �-barrel OMPs by detecting
their homologous relationships to known OMPs;19 69 OMPs
were found using this software. (c) BOMP was developed to
predict integral �-barrel OMPs and uses C-terminal patterns
and amino acid compositional information of OMPs with
known structure;20 it predicts 73 OMPs. Altogether, 121 different
OM proteins were predicted, 38 of them were consistently
predicted by all three tools. The Venn diagram in Figure 1
shows the overlap and the uniquely predicted OMPs, and

Table 1. Predicted Outer Membrane Proteome of E. coli BL21

prediction �-barrels �-barrels and lipoproteins reference

PSORTb v.3.0.2 N/A 83 18

HHOMP 69 N/A 19

BOMP 73 N/A 20

Subfractionation of Gram-Negative Bacteria research articles

Journal of Proteome Research • Vol. 9, No. 12, 2010 613754



clearly displays the need for experimental validation of in silico
localization predictions.

Outer Membrane Isolation from E. coli BL21 Cells. We
established five different subfractionation methods based on
literature,9,13,14,16,21,36 with the aim of evaluating their ease and
speed of use, their quality, and their usefulness for mass
spectrometry experiments. A flow-chart representation of the
five methods is shown in Figure 2. Methods 1, 2, and 3
represent fast and easy protocols for OM isolation; method 1
is based on lysozyme/EDTA lysis followed by selective detergent
treatment and method 2 is based on French Press lysis followed
by chaotropic reagents treatment, respectively. In method 3,
we combined the techniques used in method 1 and 2. Methods
4 and 5 are more extensive and facilitate the isolation of all
subcellular compartments from one bacterial cell culture. They
are based on the techniques of lysozyme/EDTA lysis followed
by selective detergent treatment or sucrose density centrifuga-
tion, respectively. To compare the effectiveness of the five
different subfractionation protocols, outer membrane fractions
(OMFs) of the laboratory strain E. coli BL21 were prepared. The
obtained OMFs contained numerous proteins with molecular
weights ranging from approximately 10 kDa to above 130 kDa
as shown in an 8-18% SDS-PAGE (Figure 3). The most
prominent protein bands within all obtained OMFs display
molecular weights between approximately 15 and 36 kDa.
Those molecular weights correspond to well-known predomi-
nant E. coli OMPs, including among others OmpA, OmpF and
OmpX.16,37 The presence of OmpX is also shown by immuno-
blotting in Figure 5B. Apart from these eminent protein bands,
there are also obvious variations in the band pattern of fractions
prepared with different methods, e.g. at a molecular weight
above approximately 50 kDa. The band pattern similarity
between method 1 and 4 OMFs is remarkably high, which is
not a surprise considering that both methods are based on
selective detergent use.

Challenges of Outer Membrane Isolation with Regard to
Proteomics Studies. One major challenge is the minimization
of contaminating proteins from other cellular compartments.
Even though such contaminations can be reduced by OM
enrichment, a certain number of non-OM proteins in OMFs is

unavoidable. This is partly due to the distinct protein properties
on which the fractionation is based (mostly density and
hydrophobicity). For example, several studies show that abun-
dant, hydrophobic ribosomal proteins represent a major
contaminant in OMFs.36,38,39 When OMFs have been success-
fully enriched, one still faces the challenge of effectively
solubilizing OMPs in order to perform further proteomic
analysis. Many groups tried to overcome those limitations by
using a large variety of solubilizing agents and variations in
the electrophoresis technology.40-43 In contrast to most pub-
lished OM proteomics studies that rely on two-dimensional gel
techniques, we decided to separate the obtained OMFs in one-
dimensional (1D) SDS-PAGE as it is a fast, robust, and cheap
way for a crude separation of proteins. Both techniques have
limitations in their utility for fractionation of membrane
proteins, but by using 1D SDS-PAGE we were able to use the
strong ionic detergent SDS for efficient solubilization of
hydrophobic proteins, which would be detrimental to isoelec-
tric focusing.44 Protein separation with 1D SDS-PAGE does not
allow us to precisely attribute an identified protein to a spot
in the gel, but this procedure minimizes the risk of overlooking
low abundance OMPs and requires a much lower amount of
sample compared to typical 2D gel approaches. In most 2D
gel approaches, only a limited number of strongly hydrophobic
membrane proteins have been detected.7,16,45 2D gels poorly
resolve basic proteins and hydrophobic proteins, especially
those with more than three transmembrane-spanning re-
gions,46 which generally have alkaline pIs and are poorly soluble
in the aqueous media used for isoelectric focusing.

Mass Spectrometric Analysis of Outer Membrane
Fractions. To evaluate the five different fractionation methods
in terms of specificity and compatibility with electrospray
ionization (ESI) mass spectrometry SDS-PAGE was performed
as described, and the resulting gel lanes were cut into 12 slices
each. The bands were subjected to in-gel tryptic digestion, and
extracted peptides were then analyzed in liquid chromatogra-
phy-coupled tandem mass spectrometry. To increase the
significance of the comparative method analysis we run each
experiment three times and then assessed the reproducibility.
For method 1 we found 103 proteins identified in all three
replicates, 67 in two and 86 to be present only in one of 256
proteins identified overall. For method 2, we found 71, 94,
and 113 of 278 proteins, respectively. Method 3 yielded 59,
81, and 273 of 413 proteins, method 4 in 229, 109, and 94 of
432, and method 5 resulted in 64, 75, and 195 of 334 proteins.
All proteins identified are listed in Table S1 (Supporting
Information) including scores, sequence coverage and emPAI
value. We want to emphasize that the identification of
proteins with a high score was highly reproducible. For
example, 49 of the top 50 scoring proteins of method 1 were
found in all three replicates. In contrast, many low-scoring
(i.e., low abundance) proteins were identified in one or two
experiments only.

The localization of the identified proteins was annotated
using PSORTb v.3.0.2 predictions. On the basis of these
predictions, we evaluated the efficiency of OM separation
(given by the number of non-OMPs in the sample) and the
ability of the methods to identify as many OMPs as possible in
a single experiment.

Similar to previous E. coli OM proteome studies47,48 we
found a variety of proteins with other cellular localization than
OM in all OMFs, mostly cytoplasmic proteins. Depending on
the method, we identified 256 (for method 1) to 432 (for method

Figure 1. Venn diagram depicting the overlapping and uniquely
predicted OM proteins in E. coli BL21. Altogether, 121 different
OM proteins were predicted, 83 of those by PSORTb v.3.0.2,18

69 by HHOMP19 and 73 by BOMP.20
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4) proteins in the OMFs. From this number approximately one-
fourth (method 1) to one-half (method 2 and 5) were mem-
brane proteins. Approximately 21% (method 3) to 41% (method
1) of those membrane proteins were annotated as OMPs by
PSORTb v.3.0.2. These distributions are comparable to those
of other OM proteomic studies.39,47-49 63% of all identified
proteins were cytoplasmic in method 1 OMFs, 37% in method
2 OMFs, 55% in method 3 OMFs, 57% in method 4 OMFs and
43% in method 5 OMFs. Up to 42% of the cytoplasmic proteins
were ribosomal proteins (method 2). This finding agrees with

other E. coli OM proteome studies which similarly detected
ribosomal and other highly abundant soluble cytoplasmic
compounds as major contaminants in OMFs.17,39,48 Contami-
nation of OMFs with periplasmic proteins was low, representing
maximally 3% of the total number of identified proteins in
method 2 and 5 OMFs, and in method 1, 3, and 4 OMFs
periplasmic proteins were only 2% of all proteins. Cytoplasmic
membrane protein contaminants ranged from 16% (in method
1 OMFs) to 37% (in method 2 OMFs). In addition, in all OMFs
one or 2 proteins were predicted to be extracellular. Last but
not least, a number of proteins with unknown cellular location
(according to PSORTb v.3.0.2 predictions) were identified in
all OMFs. These proteins were 8% of all identified proteins in
method 1 OMFs, 10% in method 2 OMFs, 6% in method 3
OMFs, 8% in method 4 OMFs and 10% in method 5 OMFs.
Note that the protein identification by mass spectrometry does
not include any precise quantitation; from the band pattern
and the intensity of some well-known OMP bands in Figure 3,
one can assume that a high percentage of the total protein in
the OMFs are OMPs, but that only a few OMPs are present in
high quantity.

Comparative Outer Membrane Proteomics of the Five
Fractionation Methods. Altogether, 44 different OMPs have
been unambiguously identified using the five separation meth-
ods (Table 2). The number of identified OMPs is comparable
to the number of identified proteins in previous E. coli OM
proteome studies.16,39,48 In detail, 28 OMPs have been identified
using method 1, 36 OMPs using method 2, 32 OMPs using
method 3, 37 OMPs using method 4 and 37 OMPs using
method 5. Twenty-one of all identified OMPs were identically
found with all five OM separation methods. One outer mem-
brane protein was exclusively found in method 1 OMFs, two

Figure 2. Flow-chart of the different subfractionation methods. Methods 1, 2, and 3 can be used for the fast enrichment of outer membrane
proteins, and methods 4 and 5 facilitate the separation of all subcellular fractions from one origin cell culture.

Figure 3. SDS-PAGE analysis of outer membrane fractions of E.
coli BL21 prepared with methods 1-5. Approximately 10 µg of
total protein (TP) and outer membrane (OM) fractions were
separated by 8-18% SDS-PAGE. The positions of molecular mass
standards (in kDa) are shown on the left of the silver-stained gel.
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proteins were exclusively found in method 2 OMFs, one protein
was exclusively found in method 3 OMF, and three proteins
were exclusively identified using method 4.

To obtain more quantitative information, we evaluated the
emPAI scores (exponentially modified protein abundance
index) of the identified proteins. The emPAI offers an ap-
proximate, relative quantitation of proteins in a mixture, where
high emPAI scores denote a high abundance of the protein in
the sample.50 The number of identified OMPs and non-OMPs
at defined emPAI cut-offs derived from all three replicates are
displayed in Figure 4. In general, OMPs show significantly
higher emPAI scores than proteins not localized in the OM.
The histograms in figure 4A show that most of the OMPs were
identified with an emPAI >0.25 independent of the method
used for OM fractionation. Many contaminating non-OMPs
were only detected at emPAI cutoff levels below 0.25. For

example, using an emPAI threshold of 0.25, in method 2
fractions 73% (65/89) of all OMP emPAIs, but only 46% (192/
418) of all non-OMP emPAIs were obtained. This indicates that
most non-OMPs were only present in low abundance and are
only minor contaminants of the OMFs. This finding is in
agreement with SDS-PAGE analysis, which similarly showed
that known outer membrane protein bands were prominent
(Figure 3). And strikingly, method 2, 3, and 5 OMFs contained
significantly less non-OMPs than OMFs prepared with method
1 and 4 (Figure 4B), suggesting that these procedures signifi-
cantly improved sample quality.

Taken together, all methods yielded a considerable number
of identified OMPs, with method 2 being the most specific outer
membrane fractionation method as it yields a slightly higher
number of identified OMPs than the other methods and results
in the lowest amount of contaminating proteins from other
cellular compartments. Method 3 is comparably specific but
is much more tedious to perform.

Discrepancies between Bioinformatics and Proteomics. We
found several discrepancies between numbers of predicted
OMPs and experimentally identified ones. Maximally 45% of
the PSORTb v.3.0.2 predicted OMPs could be identified (method
4 and 5). One reason for this finding could be that only a small
part of predicted OMPs is expressed under the growth condi-
tions we used in our studies. Furthermore, some bacterial
membrane proteins are known to have intramolecular amide
bonds.51 Such intramolecular bonds make the identification
in mass spectrometric analysis difficult and increase the risk
of overlooking those proteins. And finally, one cannot exclude
to miss very low abundance OMPs during any one of the steps
in OM proteome analysis. Moreover, one has to consider the
limitations of the PSORTb v.3.0.2 predictions. A number of
identified proteins were annotated as “unknown location” by
PSORTb v.3.0.2. Probably, some of those proteins are situated
in the OM in vivo, and mass spectrometry can help to identify
these cases and, in the long run, to improve the predictions.

Subfractionation of All Cellular Compartments using
Methods 4 and 5. While method 1, 2, and 3 were established
to enrich the OM of Gram-negative bacteria in a fast and
uncomplicated manner only, methods 4 and 5 were created to
separate all cellular compartments from one origin culture.
Figure 5A shows a SDS-PAGE analysis of all cellular subfractions
isolated using method 4 and 5. All fractions contained a variety
of protein bands with corresponding molecular weights ranging
from approximately 10 to 100 kDa, with all subcellular fractions
showing remarkable differences in their band pattern.

The quality of the isolated cellular compartments was
checked by immunoblotting using different antibodies against
marker proteins (Figure 5B). We used anti-GroEL antibodies
to identify a cytoplasmic marker protein, anti-TonB antibodies
to detect a cytoplasmic membrane marker, anti-Mbp antibod-
ies for the detection of a periplasmic protein marker, and anti-
OmpX antibodies to detect an OMP marker in OMFs. The
fractions obtained with method 5 showed a higher grade of
purity when compared to fractions obtained with method 4.
But in most fractions, there were also marker proteins of other
cellular compartments detectable, which indicated an incom-
plete separation of the compartments. Due to the reasons
mentioned above and supported by previous OM separation
studies with Gram-negative bacteria,36 we assume that a more
effective separation of proteins from different compartments
is not possible. The cytoplasmic marker protein GroEL was
detectable in all method 4 cellular subfractions and surprisingly

Figure 4. Number of identified proteins at defined emPAI cutoff
levels (A). Outer membrane proteins and (B) nonouter membrane
proteins according to PSORTb v.3.0.2 predictions were identified
in ESI-MS experiments using OMFs prepared with methods 1-5.
The abundance of OMPs and non-OMPs in all three replicates
was compared at different cutoff levels of the emPAI (exponen-
tially modified protein abundance index) of the single identified
protein matches. The emPAI offers an approximate, relative
quantitation of proteins in a mixture, where high emPAI scores
denote a high abundance of the protein in the sample.50 Note
that above emPAI scores of 0.25, the number of non-OMPs
continues to increase exponentially, while the number of found
OMPs stagnates, suggesting that many non-OMP impurities are
present only in low amounts.
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strongest in the cytoplasmic membrane fraction and the
periplasmic fraction. In method 5 subfractions, GroEL was
detectable in cytoplasmic and periplasmic fractions. The
marker protein for the cytoplasmic membrane, TonB, displayed
a stronger signal in method 4 OMFs than in cytoplasmic
membrane fractions. In method 5 fractions, TonB was similarly
detectable in both cytoplasmic and outer membrane fractions.
The periplasmic marker Mbp was detected in none but the
periplasmic fractions for both methods 4 and 5. This indicated
that periplasmic contaminations in the other fractions were
rather low. The OM marker OmpX yielded strongest signals in
OMFs for both methods 4 and 5, but there were also slight
signals detectable in cytoplasmic membrane fractions and
periplasmic fractions derived with both methods.

Obviously, cellular subfractions represent rather an enrich-
ment of proteins of the respective compartment than a sharp
separation. This is partly due to the protein properties on which
subcellular fractionation is based, such as the solubility in
defined detergents, or their integration into or association with
membrane vesicles of a certain density. These properties often
are blurred between proteins from different compartments.
Furthermore, during cell lysis membranes of Gram-negative
bacteria appear to aggregate, also based on the fact that many
bacterial proteins span or at least are in contact with both
membranes. In addition, protein aggregates and large com-
plexes, such as ribosomes and GroEL, can coprecipitate with

membrane fractions during ultracentrifugation (e.g., see GroEL
protein in inner and outer membrane fractions, Figure 5B).

In spite of the incomplete separation, subfractionation of
bacterial cells is often indispensible, for example to evaluate
the localization of native or recombinant proteins whose
localization prediction is unclear. For such purposes, the
subfractionation methods in our study (method 4 and 5)
represent feasible techniques. But, for a precise result, the
enrichment of a protein in a certain subcellular fraction needs
to be taken into account, rather than its mere presence therein.

Outer Membrane Isolation from Pathogens. To obtain
information on the applicability of OM fractionation procedures
to other Gram-negative bacteria, we selected four pathogenic
species from the γ-proteobacteria for our studies. We chose to
include the uropathogenic strain E. coli 536 (UPEC), the
enteropathogenic strain E. coli 2348/69 (EPEC), the opportu-
nistic pathogenic strain Pseudomonas aeruginosa PA01 (P.a.)
and Yersinia pseudotuberculosis IP32953 (Y.p.). We decided to
prepare OMFs of those species using method 2, because this
method is the most specific one (see above). Furthermore, this
method represents a fast and easy protocol that is mostly
independent of membrane properties such as lipid composition
and vesicle density, which could vary between different species
and could lead to further difficulties in OM separation methods,
such as selective detergent treatment (as used in methods 1
and 4) and density gradient centrifugation (as used in method
5). An SDS-PAGE analysis of approximately 10 µg of OMFs from
the four pathogens is shown in figure 6. The band patterns of
the OMs of all four pathogens show clear differences. OMFs of
all four species have dominant protein bands at a molecular
weight of around 35 kDa. The OMFs of the UPEC and the EPEC
strain match in most of the protein bands, which is not a
surprise as these strains are closely related. Note, though, that
the small differences between these strains probably relate to
their different lifestyle.

Outer Membrane Proteomics of Pathogens. In Gram-
negative pathogens most pathogenicity factors are located in

Figure 5. Analyis of subcellular fractions prepared with methods
4 and 5. (A) Approximately 10 µg of E. coli BL21 total protein
(TP), cytoplasm (CM), cytoplasmic membrane (IM), periplasm
(PM) and outer membrane (OM) were separated by 8-18% SDS-
PAGE. The positions of molecular mass standards in kDa are
shown on the left of the silver-stained gel. (B) Immunoblots of
the subcellular fractions using antibodies against marker proteins
of the single cell compartments. R-GroEL antibodies was used
to detect cytoplasmic (CM) marker protein, R-TonB antibodies
to detect cytoplasmic membrane (IM) marker protein, R-Mbp to
detect periplasmic (PM) marker proteins, and R-OmpX to detect
outer membrane (OM) marker protein.

Figure 6. SDS-PAGE analysis of outer membrane fractions of
different pathogenic Gram-negative bacteria. Outer membranes
of uropathogenic E. coli 536 (UPEC), enteropathogenic E. coli
2348/69 (EPEC), Yersinia pseudotuberculosis (Y.p.), and Pseudomo-
nas aeruginosa PAO1 (P.a.) were separated using method 2.
Approximately 10 µg of outer membranes were separated by 15%
SDS-PAGE and stained with colloidal Coomassie. The positions
of molecular mass standards in kDa are shown in the left.
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Table 3. Outer Membrane Proteome of Pathogens Using Method 2a

E. coli 536 E. coli 2348/69 P. aeruginosa PA01 Y. pseudotuberculosis IP32953

gi number gene description gi number gene description gi number gene description gi number gene description

gi|110641798 major outer
membrane
lipoprotein
precursor

gi|215486852 murein lipoprotein gi|15596974 major porin and
structural outer
membrane porin
OprF precursor

gi|51595793 outer membrane
protein A

gi|110641146 outer membrane
protein A

gi|215486075 outer membrane
protein A

gi|15598049 Outer membrane
lipoprotein OprI
precursor

gi|51596631 major outer
membrane
lipoprotein

gi|110642425 outer membrane
porin protein C

gi|215487434 outer membrane porin
protein C

gi|15596155 basic amino acid,
basic peptide and
imipenem outer
membrane porin
OprD precursor

gi|51597183 attachment invasion
locus protein

gi|110642039 outer membrane
porin protein LC
precursor

gi|215485218 organic solvent
tolerance protein

gi|15598995 hypothetical protein
PA3800

gi|51596958 long-chain fatty acid
outer membrane
transporter

gi|110640396 outer membrane
protein assembly
factor YaeT

gi|215485389 outer membrane
phosphoporin
protein E

gi|15595488 anaerobically
induced outer
membrane porin
OprE precursor

gi|51597310 outer membrane
protein assembly
factor YaeT

gi|110642547 long-chain fatty acid
outer membrane
transporter

gi|215488368 outer membrane
channel protein

gi|15597956 outer membrane
protein precursor

gi|51596611 putative lipoprotein

gi|110641126 outer membrane
protein F

gi|215488970 intimin EaeA gi|15595608 twitching motility
protein PilJ

gi|51594987 organic solvent
tolerance protein

gi|110643281 outer membrane
channel protein

gi|215489374 maltoporin gi|15600305 esterase EstA gi|51597698 outer membrane
channel protein

gi|110640537 putative
autotransporter

gi|215485338 outer membrane protein
assembly factor YaeT

gi|15599096 Fe(III) dicitrate
transport protein
FecA

gi|51597154 outer membrane
protein assembly
complex subunit
YfgL

gi|110640975 putative
pectinesterase

gi|215487862 outer membrane protein
assembly complex
subunit YfgL

gi|15596250 hypothetical protein
PA1053

gi|51595605 outer membrane
porin protein C

gi|110644375 maltoporin gi|215485787 putative pectinesterase gi|15600167 outer membrane
protein precursor

gi|51596755 putative lipoprotein

gi|110641339 outer membrane
porin protein LC
precursor

gi|215276226 conjugal transfer surface
exclusion protein TraT

gi|15596485 outer membrane
protein precursor

gi|51597098 lipoprotein

gi|110642677 outer membrane
protein assembly
complex subunit
YfgL

gi|215485763 peptidoglycan-associated
outer membrane
lipoprotein

gi|15599870 putative
TonB-dependent
receptor

gi|51595449 LPS-assembly
lipoprotein RplB

gi|110640949 peptidoglycan-
associated outer
membrane
lipoprotein

gi|215488837 putative outer
membrane lipoprotein

gi|15599262 outer membrane
protein OprG
precursor

gi|51594804 hypothetical protein
YPTB0452

gi|110643800 putative outer
membrane
lipoprotein

gi|215486054 outer membrane
protein F

gi|15598888 outer membrane
protein precursor

gi|51596861 outer membrane
protein X

gi|110640371 ferrichrome outer
membrane
transporter

gi|215485492 nucleoside channel,
receptor of phage T6
and colicin K

gi|15599566 metalloproteinase
outer membrane
protein precursor

gi|51597875 outer membrane
lipoprotein

gi|110642883 lipoprotein NlpD gi|215486101 hypothetical protein
E2348C_0969

gi|15595238 hypothetical protein
PA0040

gi|51595504 peptidoglycan-
associated outer
membrane
lipoprotein

gi|110644585 putative outer
membrane protein

gi|215485313 ferrichrome outer
membrane transporter

gi|15598301 general secretion
pathway protein D

gi|51595775 porin

gi|110640268 organic solvent
tolerance protein

gi|215489635 N-acetylnuraminic acid
outer membrane
channel protein

gi|15597594 ferripyoverdine
receptor

gi|51595195 outer membrane
protein assembly
complex subunit
YfiO

gi|110641582 outer membrane
protein N
precursor

gi|215487781 lipoprotein gi|15596170 peptidoglycan
associated
lipoprotein OprL
precursor

gi|51596382 putative lipoprotein

gi|110640477 outer membrane
phosphoporin
protein E

gi|215488062 lipoprotein NlpD gi|15598278 glycine betaine
transmethylase

gi|110640672 nucleoside-specific
channel-forming
protein tsx
precursor

gi|215487557 predicted lipoprotein gi|15596168 TolA protein

gi|110641763 outer membrane
lipoprotein

gi|215487934 outer membrane protein
assembly complex
subunit YfiO

gi|15597487 glucose-sensitive
porin

gi|110640417 outer membrane
lipoprotein

gi|215486100 predicted
exopolysaccharide
export protein

gi|15595624 major intrinsic
multiple antibiotic
resistance efflux
outer membrane
protein OprM
precursor
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the OM, and thus, make OM proteomics indispensible for the
identification of therapeutic and diagnostic targets. OM pro-
teomics studies of Gram-negative pathogens, for example, for
Pseudomonas aeruginosa, have been performed before, using
fractionation methods similar to method 2, followed by 2D gel
electrophoresis.16,52 The total number of identified OMPs in
published outer membrane proteomics studies of pathogens
is often unsatisfactory compared to studies of E. coli strains,
e.g. in the case of Yersinia and Pseudomonas.53-56 To investi-
gate whether the OM proteomics approach using method 2
followed by 1D SDS-PAGE is generally applicable to different
Gram-negative pathogens, we analyzed the OMFs of four
pathogens in the same manner as described above. Ten µg of
OMF was applied to an SDS-PAGE and sliced gel pieces were
digested with trypsin. Peptides were analyzed using a nanoLC-
ESI ion trap mass spectrometer and proteins were identified
using the Mascot search engine as described above. The
identified proteins are listed in table S2 (supplemental data).
We identified 133 proteins in the OMFs of E. coli 536, 83
proteins in the OMFs of E. coli 2348/69, 101 proteins in the
OMFs of P. aeruginosa, and 96 proteins in the OMFs of Y.
pseudotuberculosis. The subcellular localization of these pro-
teins was predicted by PSORTb v.3.0.2 We identified 32 OMPs
from E. coli 536, 27 OMPs from E. coli 2348/69, 27 OMPs from
P. aeruginosa and 20 OMPs from Y. pseudotuberculosis (Table
3). Interestingly, the numbers of identified OMPs from the
uropathogenic E. coli strain 536 and of P. aeruginosa PA01 were
slightly higher than the number of OMPs identified from E. coli
BL21. As many pathogenicity factors are surface-localized, it
is tempting to assume that these additional proteins are
interesting targets for future experiments.

Conclusions

In this study we investigated the practicability of 5 different
subfractionation methods for bacterial cells. Subfractionation
methods can be varied according to the requirements of the
experiment, ranging from a fast and easy OM preparation
(method 1, 2 and 3) to an extensive cellular subfractionation
of Gram-negative bacteria (method 4 and 5), with methods 2

and 5 showing best results in OM preparation and cellular
subfractionation, respectively.

We demonstrated that the OM samples obtained with these
methods can be used in mass spectrometry experiments after
simple, one-dimensional SDS-PAGE separation. The methods
allow the identification of a high number of OMPs, although
contaminations by proteins of other cell compartments in the
preparations are inevitable. The quality of the data (i.e., the
amount of OMPs identified) after tryptic digestion of gel
segments is comparable to results obtained by “classical” two-
dimensional separation.

Fractionation method 2 yielded the highest amount of
identified OMPs, and yielded significantly fewer contaminating
proteins than OMFs obtained by the other methods. Method
2 includes a washing step with chaotropic reagents, which
seems to significantly increase the purity of the OM fractions.
Effective OM enrichment is indispensible for proteomic studies
e.g. under varying growth conditions, and in principle allows
the comparison of expression levels of certain proteins.

Finally, we show the applicability of method 2 to different
Gram-negative, pathogenic species, which is an important
prerequisite for extensive proteomics studies aiming at bio-
marker discovery, and at the development of antimicrobial
drugs and vaccines.3
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Table 3. Continued

E. coli 536 E. coli 2348/69 P. aeruginosa PA01 Y. pseudotuberculosis IP32953

gi number gene description gi number gene description gi number gene description gi number gene description

gi|110642758 outer membrane
protein assembly
complex subunit
YfiO

gi|215486818 outer membrane
lipoprotein

gi|15598985 putative copper
transport outer
membrane porin
OprC precursor

gi|110642070 putative outer
membrane pore
protein

gi|215486640 outer membrane pore
protein N, nonspecific

gi|15595360 histidine porin OpdC

gi|110642651 lipoprotein gi|215487556 long-chain fatty acid
outer membrane
transporter

gi|15597718 outer membrane
protein precursor
CzcC

gi|229560204 vitamin B12/
cobalamin outer
membrane
transporter

gi|110642548 VacJ lipoprotein
precursor

gi|110643163 putative
autotransporter

gi|162138277 murein
transglycosylase A

gi|110643251 putative outer
membrane
lipoprotein

a This table includes all proteins identified with nanoLC-MS/MS which were annotated as outer membrane proteins by PSORTb v.3.0.2.
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Germany. J. Med. Microbiol. 2009, 58 (Pt 7), 912–22.

(38) Lee, E. Y.; Bang, J. Y.; Park, G. W.; Choi, D. S.; Kang, J. S.; Kim,
H. J.; Park, K. S.; Lee, J. O.; Kim, Y. K.; Kwon, K. H.; Kim, K. P.;
Gho, Y. S. Global proteomic profiling of native outer membrane
vesicles derived from Escherichia coli. Proteomics 2007, 7 (17),
3143–53.

(39) Fountoulakis, M.; Gasser, R. Proteomic analysis of the cell envelope
fraction of Escherichia coli. Amino Acids 2003, 24 (1-2), 19–41.

(40) Hartinger, J.; Stenius, K.; Hogemann, D.; Jahn, R. 16-BAC/SDS-
PAGE: a two-dimensional gel electrophoresis system suitable for
the separation of integral membrane proteins. Anal. Biochem.
1996, 240 (1), 126–33.

(41) Chevallet, M.; Santoni, V.; Poinas, A.; Rouquie, D.; Fuchs, A.; Kieffer,
S.; Rossignol, M.; Lunardi, J.; Garin, J.; Rabilloud, T. New zwitte-
rionic detergents improve the analysis of membrane proteins by
two-dimensional electrophoresis. Electrophoresis 1998, 19 (11),
1901–9.

(42) Molloy, M. P.; Herbert, B. R.; Walsh, B. J.; Tyler, M. I.; Traini, M.;
Sanchez, J. C.; Hochstrasser, D. F.; Williams, K. L.; Gooley, A. A.
Extraction of membrane proteins by differential solubilization for
separation using two-dimensional gel electrophoresis. Electro-
phoresis 1998, 19 (5), 837–44.

(43) Fountoulakis, M.; Takacs, B. Effect of strong detergents and
chaotropes on the detection of proteins in two-dimensional gels.
Electrophoresis 2001, 22 (9), 1593–602.

(44) Cordwell, S. J.; Thingholm, T. E. Technologies for plasma mem-
brane proteomics. Proteomics 2009.

(45) Herbert, B. Advances in protein solubilisation for two-dimensional
electrophoresis. Electrophoresis 1999, 20 (4-5), 660–3.

(46) McDonough, J.; Marban, E. Optimization of IPG strip equilibration
for the basic membrane protein mABC1. Proteomics 2005, 5 (11),
2892–5.

(47) Lopez-Campistrous, A.; Semchuk, P.; Burke, L.; Palmer-Stone, T.;
Brokx, S. J.; Broderick, G.; Bottorff, D.; Bolch, S.; Weiner, J. H.;
Ellison, M. J. Localization, annotation, and comparison of the
Escherichia coli K-12 proteome under two states of growth. Mol.
Cell. Proteomics 2005, 4 (8), 1205–9.

research articles Thein et al.

6146 Journal of Proteome Research • Vol. 9, No. 12, 2010 63



(48) Walters, M. S.; Mobley, H. L. Identification of uropathogenic
Escherichia coli surface proteins by shotgun proteomics. J. Micro-
biol. Methods 2009.

(49) Cirulli, C.; Marino, G.; Amoresano, A. Membrane proteome in
Escherichia coli probed by MS3 mass spectrometry: a preliminary
report. Rapid Commun. Mass Spectrom. 2007, 21 (14), 2389–97.

(50) Ishihama, Y.; Oda, Y.; Tabata, T.; Sato, T.; Nagasu, T.; Rappsilber,
J.; Mann, M. Exponentially modified protein abundance index
(emPAI) for estimation of absolute protein amount in proteomics
by the number of sequenced peptides per protein. Mol. Cell.
Proteomics 2005, 4 (9), 1265–72.

(51) Budzik, J. M.; Poor, C. B.; Faull, K. F.; Whitelegge, J. P.; He, C.;
Schneewind, O. Intramolecular amide bonds stabilize pili on the
surface of bacilli. Proc. Natl. Acad. Sci. U.S.A. 2009, 106 (47), 19992–
7.

(52) Nouwens, A. S.; Cordwell, S. J.; Larsen, M. R.; Molloy, M. P.; Gillings,
M.; Willcox, M. D.; Walsh, B. J. Complementing genomics with
proteomics: the membrane subproteome of Pseudomonas aerugi-
nosa PAO1. Electrophoresis 2000, 21 (17), 3797–809.

(53) Nouwens, A. S.; Willcox, M. D.; Walsh, B. J.; Cordwell, S. J.
Proteomic comparison of membrane and extracellular proteins
from invasive (PAO1) and cytotoxic (6206) strains of Pseudomonas
aeruginosa. Proteomics 2002, 2 (9), 1325–46.

(54) Pieper, R.; Huang, S. T.; Robinson, J. M.; Clark, D. J.; Alami, H.;
Parmar, P. P.; Perry, R. D.; Fleischmann, R. D.; Peterson, S. N.
Temperature and growth phase influence the outer-membrane
proteome and the expression of a type VI secretion system in
Yersinia pestis. Microbiology 2009, 155 (Pt 2), 498–512.

(55) Peng, X.; Xu, C.; Ren, H.; Lin, X.; Wu, L.; Wang, S. Proteomic
analysis of the sarcosine-insoluble outer membrane fraction of
Pseudomonas aeruginosa responding to ampicilin, kanamycin, and
tetracycline resistance. J. Proteome Res. 2005, 4 (6), 2257–65.

(56) Blonder, J.; Goshe, M. B.; Xiao, W.; Camp, D. G., 2nd; Wingerd,
M.; Davis, R. W.; Smith, R. D. Global analysis of the membrane
subproteome of Pseudomonas aeruginosa using liquid chroma-
tography-tandem mass spectrometry. J. Proteome Res. 2004, 3 (3),
434–44.

PR1002438

Subfractionation of Gram-Negative Bacteria research articles

Journal of Proteome Research • Vol. 9, No. 12, 2010 614764



METHODS ARTICLE
published: 08 November 2011
doi: 10.3389/fmicb.2011.00218

ClubSub-P: cluster-based subcellular localization
prediction for Gram-negative bacteria and archaea
Nagarajan Paramasivam and Dirk Linke*

Department I Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany

Edited by:

Martin G. Klotz, University of North
Carolina at Charlotte, USA

Reviewed by:

Loren Hauser, Oak Ridge National
Laboratory, USA
Uli Stingl, King Abdullah University of
Science and Technology, Saudi Arabia

*Correspondence:

Dirk Linke, Department I Protein
Evolution, Max Planck Institute for
Developmental Biology, Spemannstr.
35, D-72076 Tübingen, Germany.
e-mail: dirk.linke@tuebingen.mpg.de

The subcellular localization (SCL) of proteins provides important clues to their function
in a cell. In our efforts to predict useful vaccine targets against Gram-negative bac-
teria, we noticed that misannotated start codons frequently lead to wrongly assigned
SCLs. This and other problems in SCL prediction, such as the relatively high false-positive
and false-negative rates of some tools, can be avoided by applying multiple prediction
tools to groups of homologous proteins. Here we present ClubSub-P, an online database
that combines existing SCL prediction tools into a consensus pipeline from more than
600 proteomes of fully sequenced microorganisms. On top of the consensus prediction
at the level of single sequences, the tool uses clusters of homologous proteins from
Gram-negative bacteria and from Archaea to eliminate false-positive and false-negative
predictions. ClubSub-P can assign the SCL of proteins from Gram-negative bacteria and
Archaea with high precision. The database is searchable, and can easily be expanded
using either new bacterial genomes or new prediction tools as they become available.
This will further improve the performance of the SCL prediction, as well as the detection
of misannotated start codons and other annotation errors. ClubSub-P is available online at
http://toolkit.tuebingen.mpg.de/clubsubp/

Keywords: subcellular localization prediction, signal peptide, clustering, protein homology, start codon prediction

INTRODUCTION
Gram-negative bacteria have a multi-layered cell envelope, which
consists of a symmetrical phospholipid bilayer (the cytoplasmic
or inner membrane, IM) and an asymmetrical bilayer comprised
of phospholipids and lipopolysaccharides (the outer membrane,
OM). These membranes are separated by the periplasmic space,
which contains a thin peptidoglycan layer as a cell wall (Gardy
and Brinkman, 2006; Bos et al., 2007). The IM is the bound-
ary for the cytosol; thus the Gram-negative cell consists of four
compartments (cytosol, IM, periplasm, OM). Each subcellular
compartment contains a defined set of proteins to fulfill distinct
tasks.

To perform their functions at their native subcellular local-
ization (SCL), newly synthesized proteins must be sorted and
transported to their respective subcellular compartments. While
most of the newly synthesized proteins remain in the cytoplasm,
other proteins are inserted into the cytoplasmic membrane via the
signal recognition particle (SRP) and YidC pathways. Proteins are
targeted to the cytoplasmic membrane via the SRP pathway. YidC
acts like an additional insertase to fold and assemble a defined
subset of these proteins in the cytoplasmic membrane (Luirink
et al., 2005). Proteins with native functions in the periplasmic
space and in the OM are secreted across the cytoplasmic mem-
brane into the periplasmic space by the Sec, TAT, or Holin (which
secretes autolytic enzymes during cell death; Saier et al., 2008)
secretory pathways. From the periplasm some proteins are further
translocated to the OM or across the OM via Type II secretion
systems (T2SS), T5SS, T7SS, and T8SS. Secretion systems such as
T1SS, T3SS, T4SS, and T6SS span both membranes and can secrete

proteins from the cytoplasm directly into the extracellular space
or even into the host cytoplasm (Desvaux et al., 2009).

The general secretion system (Sec; Desvaux et al., 2009) is the
most common pathway; it is conserved in all living organisms. In
Gram-negative bacteria, it translocates unfolded proteins across
the cytoplasmic membrane into the periplasmic space. The Sec
translocon recognizes signal sequences present at the N-terminus
of its substrate proteins. These general Sec signals are highly
conserved and consist of a positively charged N-terminal region
(n-region), a hydrophobic central region (h-region), and a polar
C-terminal region (c-region; Nielsen et al., 1997). Alternatively,
some folded proteins use the twin-arginine translocation (TAT)
pathway for secretion across the cytoplasmic membrane, which
recognizes its substrates through a modified general signal pep-
tide with an additional RRXFL motif found between the n-region
and h-region (Bendtsen et al., 2005). Typically, TAT signal peptides
are longer than general signal peptides. The secretion of lipopro-
teins is accomplished by another modification of the general Sec
signal peptide pathway. Here a cysteine residue follows immedi-
ately after the signal peptide cleavage site; this signal peptide is
recognized and cleaved by lipoprotein signal peptidase (SPaseII or
Lsp) after the N-terminal cysteine is modified with a lipid moiety,
which anchors the protein to the membrane. Finally, an additional
fatty acid is attached to the new N-terminus (Juncker et al., 2003).
These proteins are then either retained at the cytoplasmic mem-
brane or translocated to the OM by the Lol lipoprotein-sorting
pathway (Lewenza et al., 2008). Although this sorting is assumed
to be based on the residue at the +2 position after the cleavage
site (Seydel et al., 1999), it has been shown that residues at +3 and
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+4 also play important roles in the sorting of these proteins in
Pseudomonas aeruginosa (Lewenza et al., 2008). So far, the detailed
patterns of lipoprotein-sorting remain unclear. A number of spe-
cialized secretion systems exist, each one typically translocating
only a small subset of proteins.

The SCL of proteins provides important clues to their func-
tion in the cell. Determining the SCL of proteins by experimental
means is accurate but time-consuming and expensive. As a result
of new and more efficient sequencing technologies, the number of
newly deposited sequences is increasing exponentially, while the
number of proteins annotated with experimentally verified SCL
stagnates. Thus, computational SCL prediction is important and
has become indispensible in protein research, e.g., for genome-
wide SCL studies. There are two types of SCL prediction tools.
One type is predicting only the features specific to localizations,
such as signal peptides (Nielsen et al., 1997; Rose et al., 2002;
Juncker et al., 2003; Bendtsen et al., 2004, 2005; Hiller et al., 2004;
Käll et al., 2004; Bos et al., 2007; Szabó et al., 2007; Arnold et al.,
2009; Bagos et al., 2009; Löwer and Schneider, 2009), transmem-
brane helices (TMHs; Krogh et al., 2001; Tusnady and Simon,
2001; Käll et al., 2004), or transmembrane β-barrels (TMBBs;
Berven et al., 2004; Remmert et al., 2009). The other type is pre-
dicting the exact localization of a protein by combining various
localization-specific features (Su et al., 2007; Yu et al., 2010) or
general features like amino acid composition (Yu et al., 2006),
evolutionary information (Rashid et al., 2007), structure conser-
vation information (Su et al., 2007), and gene ontology (Chou and
Shen, 2006b).

It has been shown that the combination of different SCL pre-
diction tools increases the quality of the overall prediction signifi-
cantly (Shen and Burger, 2007; Horler et al., 2009; Giombini et al.,
2010; Goudenège et al., 2010). Moreover, Imai and Nakai (2010)
recently reported that homology-based methods perform better
even on datasets with a low overall sequence identity cutoff, when
compared to state-of-the-art single-sequence SCL predictors. Mah
et al. (2010) used clustering information to optimize OM β-barrel
protein predictions in seven proteomes of Mycobacteria.

Our interest is predominantly in surface-localized proteins of
Gram-negative bacteria that could be exploited for vaccine devel-
opment. We found most single SCL prediction methods to be
either not useful or not sensitive enough for our bioinformat-
ics pipeline. Moreover, we found many proteins with misanno-
tated start codons. These are easily identified from the multiple
sequence alignments of homologous proteins but are hard to find
on the level of individual sequences. The differences in start codon
predictions between orthologous sequences from closely related
organisms are typically a result of using different automated
gene prediction methods while annotating the sequenced genome
(Overbeek et al., 2007). These misannotations are a common
source of error in SCL prediction, especially since feature predic-
tion tools based on N-terminal signal peptides depend essentially
on accurate annotations of the translation start. Conversely, the
TMBB prediction tool BOMP uses a C-terminal β-barrel motif for
its predictions and thus relies on correctly sequenced stop codons
(Berven et al., 2004).

In this work, we developed a method called cluster-
based SCL prediction, or ClubSub-P, which combines different

localization-specific features and SCL prediction tools, using rules
based on the biology of protein sorting to annotate the SCL for
Gram-negative bacterial proteins. In contrast to other general SCL
prediction tools, it uses homology information taken from clusters
of orthologous proteins from different species to further increase
the confidence of the prediction. Since we use information from
the whole cluster to increase the confidence, we overcome the
problem of misannotation of start codons and thus increase the
specificity of the method further. Performance measurements with
ClubSub-P show that the additional use of homology informa-
tion from simple clustering increases the precision of our tool
over other state-of-the-art SCL prediction tools. Our tool relies
on an expandable database. The constantly increasing number
of sequenced genomes will, over time, allow us to cluster more
sequences, which will further increase the quality of homology
detection and thus, the precision of our predictions. To show how
easily the tool can be expanded to whole new organism groups,
we have included an additional module for the SCL prediction of
archaeal proteins.

MATERIALS AND METHODS
DATASETS
To create the ClubSub-P database (see Database, below), 607
Gram-negative bacterial proteomes (2,331,935 sequences) were
downloaded from the NCBI RefSeq genome database1 in July
2011. A non-redundant dataset was created using CD-HIT (Li and
Godzik, 2006) from the above sequences at 40% local sequence
identity, and at 80% sequence alignment coverage to the longest
sequence in the cluster. The “accurate and slow” mode was used to
ensure clustering of proteins into the most similar cluster, which
is not given when using the fast mode. Shorter sequences (<40
amino acids) were removed from the dataset for two reasons.
First, such short proteins are only annotated in very few bacte-
rial genomes and frequently do not show significant homology to
proteins with experimentally verified SCL (Warren et al., 2010).
Second, even when there is available experimental data, small pro-
teins are frequently considered fragments and are removed from
datasets of many SCL prediction tools (Chou and Shen, 2006a),
making a consensus prediction impossible. The final dataset,
which we named DB_ClubSub-P, contained 1,911,760 proteins.
The list of the downloaded proteomes and the accession num-
bers of the replicons are given in Data Sheet S1 in Supplementary
Material.

We used the Gram-negative bacterial protein sequences from
the training dataset of PSORTb v3.0.22 (Yu et al., 2010) to test
the clustering parameters. This dataset contains 8,227 protein
sequences with experimentally determined SCLs and we named
it DB_ePSORT.

To obtain a test set for the evaluation of the performance
of ClubSub-P, Gram-negative bacterial protein sequences with
experimentally verified SCL annotation were extracted from
UniProt Release 2011_07 (UniProt-Consortium, 2010). We wrote
a parser to extract Gram-negative bacterial protein sequences
with literature reference to their SCL annotations, but ignoring

1ftp://ftp.ncbi.nih.gov/genomes/Bacteria/
2http://www.psort.org/dataset/datasetv3.html
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sequences with “potential,” “by similarity,” or “probable” anno-
tations, sequences labeled as “Fragment,” or sequences with
“chromatophore” localization.

Sequences with ≤40 aa length were removed from this dataset;
we also removed sequences which have more than 40% sequence
identity to the PSORTb v.3 training dataset to allow an objective
comparison between the tools. Likewise, since the SCL tools used
in performance measure do not separately annotate lipoproteins,
we removed sequences with “lipid anchor” SCL annotation which
leaves 171 sequences for our DB_Experimental dataset.

SUBCELLULAR LOCALIZATION PREDICTION
Subcellular localization prediction using the DB_ClubSub-P
dataset was done on two levels. First, we combined different

prediction tools as listed in Table 1 for localization-specific
features, and SCL prediction tools based on known biological rules
as shown in Table 2, to annotate the SCL of each single protein
in the DB_ClubSub-P dataset. Figure 1 displays the procedure in
form of flow chart. Second, we clustered all protein sequences and
combined their SCL annotations into a consensus SCL prediction
for each protein cluster.

Consensus subcellular localization at the protein level
Consensus signal peptide prediction. Signal peptide predictions
for Lipoprotein signals, TAT pathway signal peptides, general
secretory signal peptides, T3SS signal peptides and T4SS sig-
nal peptides were done on all proteins in the DB_ClubSub-P
dataset. A lipoprotein prediction was considered positive when

Table 1 | List of SCL and feature specific tools used in the prediction pipeline.

Tools Features

of SCL**

Used for‡ Signal peptide

prediction modes

Prediction threshold (default

threshold from the predictors)

References

LipoP1.0 SPII Archaea and Gram− Gram-negative

bacteria

Best prediction: SpII Juncker et al. (2003)

Tatp 1.0 TAT Archaea and Gram− Bacteria Twin-arginine motif and MaxDscore

>0.36

Bendtsen et al. (2005)

TaTFind 1.4 TAT Archaea and Gram− Prokaryote Rules 3a, 3b, or 4* Rose et al. (2002)

SignalP 3.0-NN GSP Archaea and Gram− Gram-positive and

Gram-negative

bacteria

MaxDscore >0.44 Bendtsen et al. (2004)

SignalP 3.0-HMM GSP Archaea and Gram− Gram-positive and

Gram-negative

bacteria

SP probability >0.5 Bendtsen et al. (2004)

Predisi GSP Gram− Gram-negative

bacteria

Prediction score >0.5 Hiller et al. (2004)

RPSP GSP Gram− Prokaryote Positive SP prediction Plewczynskia et al. (2007)

Phobius GSP, IMP Archaea and Gram− – Positive SP prediction and TMH

prediction

Käll et al. (2004)

TMHMM 2.0.0 IMP Archaea and Gram− – Positive TMH prediction Krogh et al. (2001)

HMMTOP 2.0 IMP Archaea and Gram− – Positive TMH prediction Tusnady and Simon (2001)

EffectiveT3 T3SS Gram− Gram-negative

bacteria

Prediction score ≥0.8$ Arnold et al. (2009)

T3SS_prediction T3SS Gram− Gram-negative

bacteria

Prediction score ≥0.8$ Löwer and Schneider

(2009)

PSORTb v3.0.2 OMP, LPP, EXT,

CW

Archaea and Gram− – Final prediction – outer membrane or

extracellular or cell wall***

Yu et al. (2010)

CELLO v.2.5 OMP, LPP Gram− – Final prediction – outer membrane*** Yu et al. (2006)

BOMP OMBB Gram− – Positive prediction (category 1–5) Berven et al. (2004)

HHomp OMBB Gram− – OMP probability ≥90$ Remmert et al. (2009)

PRED-SIGNAL GSP Archaea Archaea Positive “signal” prediction Bagos et al. (2009)

FlaFind Prepilin SP Archaea Archaea Positive prepilin signal detection Szabó et al. (2007)

PilFind Type IV pilin SP Gram− – Positive pilin signal peptide Imam et al. (submitted)

*Twin-arginine motif followed by a single charged residue (Rule: 3a, 3b) or basic residue following the twin-arginine and hydrophobic stretch (Rule 4).

**SPII, lipoprotein signal peptide; TAT, TAT signal peptide; GSP, general signal peptide; CMP, cytoplasmic membrane protein; T3SS, type 3 secretory signal peptide;

OMP, outer membrane protein; EXT, extracellular protein; LPP, leaderless periplasmic protein; OMBB, outer membrane β-barrel; Prepilin SP, prepilin signal peptide.
‡Gram −, Gram-negative bacteria.

***Periplasmic prediction used only when there is no consensus signal peptide prediction.
$User defined the cutoffs.
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Table 2 | Logic for SCL prediction at the protein level.

Features Lipoprotein

SP

Consensus

TAT SP

Consensus

general SP

Consensus

TMH

Consensus

TMBB

ConsensusT3SS SP or

T4SS SP or extracellular

LOCALIZATION

Cytoplasm No No No No No No

Cytoplasmic membrane No No No 1 or more No No

Periplasm No Any one of the SP No No No

Lipoprotein Yes No No No No No

Outer membrane Any one of the SP No Yes No

Extracellular No Yes or no 0 or more No Yes

the best prediction of LipoP 1.0 (Juncker et al., 2003) was for a
signal peptidase II cleavage site. For TAT pathway signal peptide
prediction in ClubSub-P, both TatP 1.0 (Bendtsen et al., 2005) and
the rule-based predictor TatFind 1.4 (Rose et al., 2002) had to be
positive; the cutoff for a positive TatP 1.0 prediction was a MaxD
score above 0.36, while TatFind 1.4 requires the presence of the
twin-arginine motif and additional sequence features.

Five tools were combined for the consensus prediction of
general signal peptides: SignalP-HMM (with a default cutoff of
p = 0.5), SignalP-NN (with MaxD value above 0.44), Predisi (with
a default cutoff of p = 0.5), RPSP (with positive signal peptide), or
Phobius (with positive signal peptide prediction; Bendtsen et al.,
2004; Hiller et al., 2004; Käll et al., 2004). For a positive prediction,
three out of five tools were required to be positive; in this case,
a consensus SP cleavage site was predicted from the individual
cleavage site predictions. Here, Phobius was also used to differ-
entiate between the SP and TMH predictions (see below). If only
two tools predict the presence of a signal peptide with zero or one
consensus TMHs, the protein’s SCL is annotated as “Unknown” to
avoid false-positive predictions.

To reduce the false-positive prediction rate of type III signal
peptide prediction, positive predictions from both EffectiveT3
(Arnold et al., 2009) and T3SS_prediction (Löwer and Schneider,
2009) were required; predictions with scores ≥0.8 were considered
as positive type III signal peptides (Burstein et al., 2009). We used
a new, unpublished tool named PilFind (Imam et al., submitted)
to predict type IV secretion system (T4SS) signals.

If one or more SP were predicted for a protein, it was classified
based on the hierarchy described above (Figure 1), since there are
cases where Lipoprotein or TAT SPs are also predicted as general
SPs by general SP prediction tools, and taking into consideration
that the accuracy of T3SS and T4SS SP prediction tools is still
insufficient.

Consensus transmembrane helix prediction. TMHMM (Krogh
et al., 2001), HMMTOP (Tusnady and Simon, 2001), and Phobius
(Käll et al., 2004) were used for the prediction of TMHs. For the
consensus TMH prediction, we ruled that a helix must be pre-
dicted independently by at least 2 of the tools used, over a length
of at least 10 residues. Consensus TMH prediction was avoided
over the length of previously predicted cleavable signal peptides,
because signal peptides are known to be frequently misinterpreted
as TMHs by TM prediction tools. The consensus TMH prediction
is displayed in Figure 2.

Consensus transmembrane β-barrel prediction. We used BOMP
(Berven et al., 2004), CELLO (Yu et al., 2006), PSORTb (Yu
et al., 2010), and HHomp (Remmert et al., 2009) to predict outer
membrane proteins (OMPs). Since classifier-based predictions are
faster than sensitive search methods such as HHomp, only BOMP,
CELLO, and PSORTb were ran on all the sequences. If any one of
BOMP, PSORTb, or CELLO had a positive prediction for OMPs
in a cluster (see Subcellular Localization on the Level of Sequence
Clusters for details on clustering), we selected a random sequence
from the cluster and ran HHomp. When the sequence was pre-
dicted as OMP with probability above 90%, we annotated all the
sequences in the cluster as OM-localized TMBBs.

Consensus subcellular localization prediction. For the consen-
sus SCL prediction we applied rules based on the biology of
protein sorting along with the previously predicted protein fea-
tures as mentioned in the Table 2. The lipoprotein-sorting signal
is based on the amino acids after the SPII cleavage site and species-
specific (Juncker et al., 2003). Currently there is not sufficient
experimental data to postulate a common sorting pattern for
all species. Thus, we annotated proteins with lipoprotein sig-
nal peptides and without TMHs as “IM/OM lipoprotein.” Also,
as there is insufficient experimental data available to annotate
the extracellular presence of lipoproteins, we didn’t analyze the
further destination of lipoproteins (Pugsley et al., 1990). Pro-
teins featuring general Sec or TAT signal peptides and without
TMHs and TMBBs were annotated as “periplasmic.” Proteins pre-
dicted to be periplasmic by PSORTb v3.0.2 (Yu et al., 2010) and
CELLO v.2.5 (Yu et al., 2006) but without any signal peptide,
TMHs and TMBBs were also predicted as periplasmic. Addi-
tionally, they were tagged with a note stating that they could
be secreted via signal peptide-independent pathways (leaderless
pathways). Proteins with one or more consensus TMHs were
annotated as “cytoplasmic membrane.” Proteins with consen-
sus TMBB prediction containing one of the previously predicted
cleaved general, TAT, or lipoprotein signal peptides were anno-
tated as “outer membrane protein,” as OMPs are typically secreted
by SP-dependent pathways. The SCL of proteins with positive
TMBB predictions, but without any signal peptide predictions
were annotated as “Unknown”. Proteins predicted to be extra-
cellular by PSORTb or predicted to have a T3SS or T4SS signal
peptide were annotated as“extracellular.” Proteins without TMHs,
TMBBs, signal peptide, or extracellular prediction were annotated
as “cytoplasmic.”
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FIGURE 1 | Flowchart for SCL prediction at the level of single proteins.

Subcellular localization on the level of sequence clusters
To add homology information to single-sequence results in order
to improve the overall prediction quality, all protein sequences
from the DB_ClubSub-P dataset were clustered using CD-HIT

(Li and Godzik, 2006); the clustering parameters are given in the
Section “Datasets,” above.

Since we cannot infer homology from singletons, we skipped
291,727 singletons and used the remaining 1,620,033 sequences,
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which resulted in 174,028 clusters with sequence numbers ranging
from 2 to 1,667. If a fraction of 0.7 or above of all proteins in the
cluster have the same given SCL (i.e., 70% or more), this SCL is
considered the SCL of the respective cluster. Clusters where no sin-
gle SCL amounts to a protein fraction ≥0.7 (including“unknown”)
were annotated as “uncertain,” and details of the predictions are
kept available in the database for expert users to study further. Note
that “uncertain” clusters are different from “unknown” clusters, as
in the “unknown” ones most of the sequences show contradictory
predictions to the rules described in the above section. Dual local-
ization annotations were allowed only when two SCLs amounted
to a fraction ≥0.7. The cutoff of 0.7 was chosen because any higher
cutoff value leads to a steep increase in the number of “uncertain”
clusters (see Figure 3).

SUBCELLULAR LOCALIZATION PREDICTION FOR ARCHAEA
We created a similar protocol to expand ClubSub-P to archaeal
proteins. To this end, we used proteins from 65 archaeal proteomes
(shown in Data Sheet S1 in Supplementary Material). After remov-
ing 779 small proteins with length 40 and below, we obtained
151,553 proteins for clustering using CD-HIT (Li and Godzik,
2006) with the same parameters as above. This resulted in 22,184

FIGURE 2 | Consensus transmembrane helix prediction module. A
consensus TMH should be predicted by at least two tools. Signal peptides
frequently result in false-positive TMH predictions and are removed with
consensus TMH predictions.

clusters with cluster size two and above. We named this dataset as
DB_ClubSub-P_Archaea.

We used a similar parser to obtain a test dataset for Archaea.
We obtained all the reviewed archaeal sequences without any
“potential,” “by similarity,” or “probable” annotations in their
SCL. We thus obtained 744 archaeal sequences with SCL annota-
tion from UniProt Release 2011_07 (UniProt-Consortium, 2010).
Sequences with ≤40 aa length were removed from the dataset
and a non-redundant dataset with 40% sequence identity was
created using CD-HIT (Li and Godzik, 2006), resulting in 252
sequences for the performance test. We named this dataset
DB_experimental_Archaea.

For archaeal proteins, Lipoprotein, and TAT signal peptides
were predicted using the same tools (LipoP, TatP, TatFind) as for
Gram-negative bacterial proteins. For general signal peptide pre-
diction, SignalP in Gram-positive mode was used, and Predisi was
replaced by the tool PRED-SIGNAL (Bagos et al., 2009), which is
an archaeal signal peptide prediction program. Phobius was used
in default mode for the predictions. FlaFind (Szabó et al., 2007)
was used to predict archaeal prepilin signal peptides; here, a TMH
follows the signal peptide, and Prepilin peptidase cleaves the signal
peptide before the TMH (Szabó et al., 2007). Thus, the protein is
anchored to the membrane.

When two or more SPs were predicted, a consensus SP was
annotated using a similar hierarchy as described in Figure 1, with
the exception that there is no T3SS SP prediction for Archaea.
Consensus TMH prediction was performed the same way as for
Gram-negative bacteria. Archaeal proteins with TAT, general, or
prepilin signal peptides or with PSORTb extracellular predictions
(Yu et al., 2010) were annotated as “secreted/extracellular.” Pro-
teins with lipoprotein SP were annotated as “lipoproteins.” “Cell
wall” binding proteins were predicted using PSORTb’s cell wall
predictions (Yu et al., 2010). Proteins with one or more consen-
sus TMH prediction were annotated as “cytoplasmic membrane”
proteins. Proteins without any membrane domains or signal
peptides or cell wall annotations were annotated as “cytoplasmic”

FIGURE 3 |Threshold determination for the assignment of

subcellular localizations to whole clusters. (A) For Gram-negative
bacteria; (B) for Archaea. In both cases, the number of clusters
annotated as “uncertain” (i.e., with no SCL prediction above the

threshold) increases at 0.7 – to minimize the number of “uncertain”
clusters, cluster SCLs were assigned when a fraction of 0.7 or
above (=70%) of the proteins in a cluster are predicted to have a
given SCL.
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Table 3 | Logical rules used for archaeal SCL predictions.

Features Lipoprotein SP TAT SP General SP Prepilin SP ConsensusTMH PSORTb cell wall PSORTb extracellular

LOCALIZATION

Cytoplasm No No No No No No No

Cytoplasmic membrane Yes or no One or more Yes or no Yes or no

Cell Wall No Yes or no 0 or more Yes No

Secreted/extracellular No Any one of the SP 0 or more No Yes or no

proteins. Table 3 explains the rules for SCL prediction for
Archaea.

DATABASE
We built a database from the above SCL annotations, which we
named ClubSub-P, for“Cluster-based Subcellular localization Pre-
diction.” Results and input features are stored in SQL tables. The
database is integrated into the classification section of the MPI
Bioinformatics Toolkit (Biegert et al., 2006). The database is fully
searchable using keywords or GI identifiers; moreover, FASTA
sequences can be entered and will be assigned to the appropri-
ate cluster through an internal BLAST search at >75% sequence
coverage and >40% identity cutoff.

EVALUATION
We used the previously described DB_Experimental datasets to
compare the performance of ClubSub-P with state-of-the-art SCL
prediction tools. We calculated the precision, recall, accuracy, and
the Mathew’s correlation coefficient (MCC) for performance mea-
sure. In the following equations TP stands for true positives, TN
for true negatives, FP for false positives, and FN for false negatives.

Precision is a measure of the ability of the system to predict
only the relevant data and it was calculated as the ratio between the
number of predicted true positives against all positively predicted
values, TP/(TP + FP).

Recall is a measure of the ability of the system to predict all the
relevant data and was calculated as the ratio between the number
of predicted true positives against all true values, TP/(TP + FN).

The accuracy of the system is defined by the closeness of
its prediction toward the true values and was calculated by
(TP + TN)/(TP + TN + FP + FN).

The MCC calculates the correlation between the prediction
and the observation and was calculated by (TP ∗ TN) − (FP ∗
FN)/

√
((TP + FN) ∗ (TP ∗ FP) ∗ (TN + FP) ∗ (TN + FN)).

RESULTS
CLUSTERING USING THE PSORTb v3 GRAM-NEGATIVE BACTERIAL
TRAINING DATASET
As a first step,we had to make sure that the transfer of SCL informa-
tion between homologous proteins is legitimate, and at which cut-
offs for clustering (sequence identity and sequence coverage) this
is still a valid procedure. To this end, we tested various clustering
parameters using the 8,227 sequences in the DB_ePSORT dataset
at decreasing cutoffs. To avoid problems with multi-domain pro-
teins that might have different functions, and thus SCL, we decided
to keep high sequence coverage. At 40% sequence identity and 80%
sequence coverage, 6,136 sequences of the test set were clustered

into 1,023 clusters with at least two sequences. 964 (94.2%) of
these clusters had one common SCL for all of the proteins in the
cluster. 47 (4.6%) of the clusters contained proteins with mul-
tiple SCL annotations which partially overlapped, and only 12
(1.2%) of the clusters had proteins with contradictory SCLs in
them. Consequently, clustering done with the same parameters on
the DB_ClubSub-P dataset can be expected to a have high num-
ber of clusters with homologous sequences that have a common
SCL.

There are reports of orthologous proteins that have different
SCLs in different organisms as a result of different evolutionary
requirements. One prominent example is the glycerophosphoryl
diester phosphodiesterase GlpQ, which is a periplasmic enzyme
in E. coli, but is a surface-exposed lipoprotein in Haemophilus
influenzae (Protein D; Janson et al., 1992). Such cases are rare,
but they are easily missed when inferring their SCL from homol-
ogy alone. In the case of Protein D/GlpQ, the two proteins are
correctly predicted to have their respective – and different – SCL.
Thus, one should always have a close look at the single-protein
SCLs in cases where clustering leads to unclear or contradictory
localization information. The ClubSub-P database allows for such
manual inspection.

CLUSTER-BASED COMPARISON OF SIGNAL PEPTIDE AND
TRANSMEMBRANE PREDICTION TOOLS
Applying a feature prediction tool such as a signal peptide predic-
tor to sequences in a cluster of orthologous proteins should return
similar results for all the proteins in the cluster (with very few but
notable exceptions, see above). Inconsistency in such predictions
will most probably be due to a lack of precision of the respective
tool. Since different tools already use most of the proteins with
experimentally verified SCL in their training sets, examining the
performance of a tool at the cluster level is better suited to measure
its sensitivity in a larger dataset, and to compare different tools.

Figure 4 shows the performance of different signal peptide pre-
diction tools on our clusters produced from the DB_ClubSub-P
dataset. We used only clusters with more than four sequences in
this analysis; in detail, 66,716 clusters were included containing
1,341,180 sequences. If only <20% of the sequences in a cluster
were positively predicted to contain a signal peptide, these predic-
tions were assumed to be false positives; in a cluster with >80%
of the sequences positively predicted, the remaining differing
sequences were assumed to be false negatives.

Using these assumptions, we compared the TAT, type III, gen-
eral signal peptide, and IM helix prediction tools along with
their consensus predictions. Positive predictions from both TatP
(Bendtsen et al., 2005) and TaTFind (Rose et al., 2002) tools
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FIGURE 4 | Cluster-based comparison of signal peptide prediction

tools. Shown are the comparisons for TAT (A), T3SS (B), General signal
peptide (C) and transmembrane (D) prediction tools. The x -axis
describes how many sequences (in %) in a cluster are predicted to have

a signal peptide, where 10% means 0.1–10%, 20 means 10.1–20% etc.
The majority of clusters contains only sequences where no signal
sequence is predicted (0% positive results) – for clarity, these are
ignored in the graph.

were considered as a consensus TAT signal peptide. False-positive
predictions were largely reduced by these consensus predictions
(Figure 4A). This shows that most of the positive predictions in
clusters with <20% positives are in fact false-positive predictions
from the tools. A similar result can be seen with the consensus
prediction for type III signal peptides (Figure 4B), where we con-
sidered positive predictions from both T3SS_prediction (Löwer
and Schneider, 2009) and EffectiveT3 (Arnold et al., 2009) tools as
a consensus type III signal peptide. For consensus general signal
peptide prediction, we required at least three positive predictions
from highly precise general signal peptide tools (Choo et al., 2009)
like SignalP-HMM, SignalP-NN (Bendtsen et al., 2004), Predisi
(Hiller et al., 2004), RPSP (Plewczynskia et al., 2007), and Phobius
(Käll et al., 2004). Figure 4C shows the cluster-based comparison
for general signal peptide tools and the consensus made from their
prediction.

Similarly, we compared the performance of TMH prediction
by CELLO v.2.5 (Yu et al., 2006), PSORTb v3.0.2 (Yu et al., 2010),
Phobius (Käll et al., 2004), TMHMM 2.0 (Krogh et al., 2001), and
HMMTOP v2.0 (Tusnady and Simon, 2001; Figure 4D), assuming
that prediction of at least one TMH indicates that the protein is
a transmembrane protein. The result clearly shows the high false-
positive rate of HMMTOP predictions (Figure 4D), compared to

the predictions of the other tools. However, the consensus TMH
prediction of Phobius, TMHMM 2.0, and HMMTOP v2.0 (see
Materials and Methods) eliminated most of these false-positive
predictions.

Such comparisons of different prediction tools help in selecting
the best tools for consensus predictions; alternatively, one could
use this performance measure to weigh different tools, giving more
importance to tools that performed better.

CLUBSUB-P DATABASE STATISTICS
The core of the cluster-based SCL prediction is the ClubSub-
P database. Of 2,331,935 retrieved sequences, 404,542 identical
sequences and 15,633 sequences with less than 40 residues and
were removed. The remaining 1,911,760 sequences were clus-
tered using CD-HIT (Li and Godzik, 2006). We used 40% local
sequence identity at 80% sequence coverage for clustering, When
these settings were applied, 1,620,033 sequences (84.74%) were
clustered into 174,028 clusters with size range from 2 to 1,677 and
291,727 proteins (15.26%) appeared to be singletons, meaning
these sequences do not have any homolog among the sequences
in the database at these settings. These singletons were not ana-
lyzed in detail, since no homology information can be inferred
for them. Note though that with expansion of the database, these
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proteins might fall into newly formed clusters at a later time point
as discussed below.

We were able to annotate the SCL of 1,500,778 of 1,620,033
sequences that are grouped in clusters of at least two sequences,
which is 78.50% of the sequences used in clustering (1,911,760
sequences – note again that singletons, i.e., sequences that do not
fall into clusters, are excluded from our predictions). For compar-
ison, PSORTb v3.0.2 annotates 71.25% of all sequences used in
our clustering approach (1,362,110 of 1,911,760 sequences). The
details of the ClubSub-P prediction statistics for Gram-negative
bacteria are shown in Table 4.

MULTIPLE SUBCELLULAR LOCALIZATION PREDICTIONS
In addition to the common SCL classifications in Gram-negative
bacteria, we found clusters of proteins with features that corre-
spond to two different SCLs, e.g., “extracellular” proteins that
have signal peptides for secretion to the “periplasm,” “extracel-
lular” proteins with “TMHs” to get inserted into host membranes,
and “OM β-barrel” proteins with a “lipoprotein” signal peptide.
In many cases, experimental evidence for these double localiza-
tions exists, demonstrating that they are not artifacts of our SCL
prediction pipeline. As an example, the “Pertussis toxin subunit
1” (UniProt ID – TOX1_BORPE/gi|33594638) is predicted by
ClubSub-P to have an “extracellular” and a “periplasmic” local-
ization; by experimental evidence (Farizo et al., 2002) it is an
extracellular protein that is first secreted to the periplasm using the
general signal peptide pathway, and only subsequently is secreted
to the extracellular space. Moreover, the “Outer membrane pro-
tein oprM”(UniProt ID – OPRM_PSEAE/gi|116054158; Nakajima
et al., 2000) has been shown experimentally to be attached to the
OM via a lipid anchor, while it also spans the OM with a TMBB
domain. ClubSub-P predicts OprM to be an OM β-barrel protein
as well as a lipoprotein. A prominent example for “extracellu-
lar” and “transmembrane” localization are proteins secreted by
pathogens to insert in to the host membrane, such as the needle

Table 4 | Statistics of the ClubSub-P database.

ClubSub-P subcellular localizations No. of

clusters

No. of

proteins

Cytoplasmic 95,191 1,023,339

Cytoplasmic membrane 33,814 304,996

Periplasmic 15,261 107,602

Inner/outer membrane lipoprotein 4,471 27,711

Outer membrane beta-barrel 3,011 20,976

Extracellular 1,319 8,250

Extracellular AND transmembrane helix 733 3,582

Extracellular AND signal peptide 540 2,930

Outer membrane beta-barrel AND lipid anchor 124 1,572

Uncertain1 18,388 113,286

Unknown2 1,356 5,969

1Uncertain are the clusters where none of the SCLs, including “unknown,” are

above the 70% threshold.
2Unknown are the clusters where “unknown” SCL was above the threshold of

70%. This is usually due to contradictory SCL predictions.

tip components of the Type III secretion apparatus (Marlovits
and Stebbins, 2010); and indeed, we find SipB from Salmonella
(UniProt ID – SIPB_SALTY/gi|62181387) among the proteins with
both extracellular and transmembrane localization. Thus, double
localizations in our database, while sometimes counterintuitive,
can reflect important information on complex secretion pathways.

PERFORMANCE MEASURE
The performance of ClubSub-P was compared to PSORTb v.3.0.2
(Yu et al., 2010) and CELLO v.2.5 (Yu et al., 2006). We calculated
the precision, recall, accuracy, and MCC.

Unfortunately, the Proteome Analyst prediction server (Lu
et al., 2004) is not active any more, thus we could not compare
ClubSub-P against it. A recently published database for SCL pre-
diction of Gram-negative bacteria, CobaltDB v1 (Goudenège et al.,
2010), provides meta predictions for different signal peptide and
secondary structural features; however, it does not combine these
results to annotate a final SCL for the proteins. For this reason we
could not use CobaltDB in our performance measure.

Dual localization predictions were considered for all the tools
compared in the performance measure, but only CELLO and
the UniProt original annotations had proteins with dual anno-
tations in our test dataset. However, proteins with more than two
localization predictions in CELLO v.2.5 were not considered and
annotated as unknown. In cases where two different SCLs for a
single protein are either predicted by a tool or given from UniProt
data in the test set, a hit is considered as “true positive” if at least
one of the localizations matches. All the “Unknown” predictions
were considered as false negatives in our performance measure-
ments. Sequences from test datasets were used to search against
the ClubSub-P database, in order to assign their SCL. Only hits
with sequence identities above 40% and pairwise alignment cov-
erage above 75% were annotated to the corresponding cluster
and sequences with no hits or below this cutoff were assigned
as “Unknown”. The hits with “Uncertain” localization (see Mate-
rials and Methods) were also considered as “Unknown” for the
performance measurements.

The results of the performance measurement are shown in
Table 5. With the DB_Experimental test dataset, ClubSub-P
(83.85%) shows a higher precision than PSORTb v3.0.2 (80%)
and CELLO v2.5 (66.67%). Since the recall value for periplasmic
proteins (15.79%) is very low for PSORTb v3.0.2, the overall recall
value of PSORTbv3.0.2 (54.55%) is lower than that of CELLO
(70.18%) and ClubSub-P (62.64%). Overall, the accuracy of all
tools is comparable. Since we considered any one of correct dual
localization predictions as “true positive,” CELLO’s overall perfor-
mance (0.6) in terms of MCC is comparable to PSORTb (0.59).
ClubSub-P has a superior overall performance (MCC 0.67). In
summary, ClubSub-P has a higher precision than PSORTb and
CELLO, showing that its strength is a reduced false-positive rate
through the use of homology information.

INCORRECT START CODONS RESULTING IN MISANNOTATED SIGNAL
PEPTIDES
A known problem in SCL prediction is the quality of the
input sequences; especially the exact start position for proteins
with N-terminal signal peptides is essential. In the course of
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our analysis, we noted that in clusters where the majority of
sequences are predicted to contain an N-terminal signal peptide,
the false-negative results typically stem from misannotated start

Table 5 | Performance measurement for different Gram-negative

bacterial subcellular localization prediction tools.

Location Precision Recall Accuracy MCC

PSORTbv3

Cytoplasm 66.67 74.42 83.93 0.6

Inner membrane 90 58.06 90.68 0.68

Periplasm 60 15.79 89.41 0.27

Outer membrane 55.56 62.5 95.88 0.57

Extracellular 100 50.67 78.24 0.6

Total 80 54.55 87.6 0.59

CELLO

Cytoplasm 62.32 100 84.34 0.7

Inner membrane 94.12 61.54 92.95 0.73

Periplasm 58.62 89.47 91.3 0.68

Outer membrane 28.57 75 89.7 0.42

Extracellular 86.36 50.67 74.25 0.5

Total 66.67 70.18 86.38 0.6

CLUBSUB-P

Cytoplasm 72.22 88.64 88.17 0.72

Inner membrane 100 53.57 91.77 0.7

Periplasm 73.68 73.68 94.12 0.7

Outer membrane 87.5 87.5 98.82 0.87

Extracellular 100 45.33 75.88 0.56

Total 83.85 62.64 89.73 0.67

codons. When we corrected such gene annotation errors in the
sequence, the signal peptides were correctly predicted in most
cases. We found examples for both possible cases, where the
misannotated start codons either extended or shortened the
sequence N-terminally. Examples for these cases are shown in
Figure 5; the sequences in this cluster that contained misanno-
tated start codons were not predicted to contain a signal pep-
tide, but had a OM beta-barrel annotation and thus were anno-
tated as unknown, while the correctly annotated sequences in
the cluster were predicted to be OM beta-barrel protein with a
lipid anchor. The SCL annotation of the cluster reassigns them
to OMP proteins with lipid anchor via the cluster consensus
annotation, which shows one strength of ClubSub-P, the addi-
tional use of homology information on top of single-sequence
predictions.

Overall, we found 3,558 proteins with false-negative predictions
in different clusters of proteins with signal peptides (annotated as
periplasmic, OMP, OMP with lipid anchor, lipoproteins, or extra-
cellular with signal peptide). These 3,558 proteins were spread
across 547 of the 607 genomes that we used in this study, and
were present in 2,222 different clusters (Data Sheet S2 in Supple-
mentary Material). These errors were significantly accumulated
in certain genomes compared with the rest of the genomes in
the database (Table 6). This could be due to differences in the
gene prediction and ORF finder methods used in the gene anno-
tation process. But as we can easily find these mistakes only in the
signal peptide-containing clusters, we cannot provide good statis-
tical data on the performance of the different gene prediction
pipelines – there might be additional misannotations in other
proteins that do not have an N-terminal signal peptide.

FIGURE 5 | Cluster alignment and start codon mispredictions

(sequences are labeled with gene identifiers). The alignment shows
extended and shortened ends of orthologous sequences at the DNA
level. Wrong extensions are colored in red, and shortened sequences

are highlighted in yellow. Corrected sequences with alternative start
codons are shown in bold. These corrections in most cases lead to
corrected predictions of signal peptides. For clearer view, sequences
are chopped.
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Random manual checking revealed that most of the 3,558 pro-
tein sequences with false-negative signal peptide predictions have
a mispredicted start codon on the DNA level. Studies have shown
that the biased use of the uncommon start codons GUG and UUG
over AUG is common among mispredicted start codons (Starmer
et al., 2006; Pallejà et al., 2008). Confirming these findings, we also
found a biased use of uncommon start codons among the above
mentioned 3,558 proteins. The frequency of start codon usage
in all bacterial coding sequences (3,690,458 sequences) used for
this analysis is AUG (80.7%), GUG (12.6%), UUG (6.5%), and
other start codons (0.2%). But the gene start codon frequencies
of the 3,558 falsely predicted proteins are AUG (62.73%), GUG
(21.61%), UUG (12.45%), and other start codons (3.2%), again
showing that these gene predictions need revision.

We wanted to check if we could detect signal peptides from
the genes with alternative start codons after re-annotation. Pro-
TISA (Hu et al., 2008) is a database which combines transla-
tion initiation site (TIS) information from different sources, e.g.,
from experimental Swiss-Prot annotations, conserved domain hits
and from alignments of orthologous sequences, to refine the
RefSeq TIS annotations. Unfortunately, it doesn’t cover all the
proteomes we used in our database; thus, we used the alterna-
tive start codons predicted by gene prediction programs instead
(see above). The NCBI RefSeq FTP site provides updated gene
predictions for all sequenced bacterial genomes, based on the
latest version of four gene prediction programs [GeneMark-
2.5m (Borodovsky and Mcininch, 1993), GeneMarkHMM-2.6r
(Borodovsky and Lukashin, 1998), Glimmer3 (Delcher et al.,
2007), and Prodigal-2.50 (Hyatt et al., 2010)]. To obtain more
quantitative information on the phenomenon, we used this
precomputed data to find an alternative start codon for the
3,558 proteins with false-negative signal peptide predictions
(see methods), which translates into a protein with a signal

Table 6 | Genomes with multiple signal peptide/start codon errors in

secretory clusters.

Replicon name Number of alternative

start codons*

Replicon

ID

Acinetobacter baumannii ATCC

17978

104 NC_009085

Cronobacter turicensis z3032 62 NC_013282

Pseudomonas putida S16

chromosome

27 NC_015733

Shewanella violacea DSS12

chromosome

27 NC_014012

Caulobacter crescentus CB15

chromosome

25 NC_002696

Klebsiella pneumoniae subsp.

pneumoniae MGH 78578

chromosome

21 NC_009648

Shewanella piezotolerans WP3

chromosome

20 NC_011566

*Found in protein clusters with signal peptide annotation where single-sequences

lacked the signal peptide. Only genomes with more than 20 erroneous proteins

are shown.

peptide according to SignalP-HMM. Together, 2,290 sequences
with an alternative start leading to a positive signal peptide
prediction were found by one or several gene prediction pro-
grams. Of these 2,290 positive predictions, GeneMark-2.5m
predicts 69.91% (1,601), GeneMarkHMM-2.6r predicts 72.79%
(1,667), Glimmer3 predicts 66.86% (1,531), and Prodigal-2.50
predicts 84.93% (1,945). The numbers do not significantly
change by using LipoP or Phobius instead of SignalP-HMM. The
details of the alternative start codons with positive signal pep-
tide predictions are given in Data Sheet S2 in Supplementary
Material.

SUBCELLULAR LOCALIZATION IN ARCHAEA
Archaea have a comparable cellular architecture to Gram-positive
bacteria, except that instead of a peptidoglycan layer, different
types of surface layers made from proteins, glycoproteins, or
pseudo-murein are observed (Ellen et al., 2010). As there are no
specialized SCL prediction programs available for Archaea other
than the recently published PSORTb v3.0.2 program (Yu et al.,
2010), we combined different feature prediction tools along with
homology information in the same way as described above for
Gram-negative bacteria.

As a result we were able to assign unambiguous SCLs to 69.21%
of all proteins obtained from the 65 archaeal proteomes (104,896
of 151,553), where PSORTbV3.0.2 annotates 86.99% (131,839 of
151,553). When exclusively looking at proteins found in clusters
with size two and above, i.e., where homology information is avail-
able, ClubSub-P can annotate 96.35% (104,896 out of 108,872) of
proteins with an unambiguous SCL, where PSORTbv3.0.2 predicts
only 89.42% (97,349 of 108,872).

ClubSub-P archaeal SCL annotation statistics are found in
the Table 7. Just like in the Gram-negative SCL predictions, we
also found clusters of archaeal proteins with multiple localiza-
tions, such as “Secreted/extracellular AND membrane anchor”
and “Cell wall AND membrane anchor.” We annotated these
combinations separately as we assume that, again as for Gram-
negative bacteria, these double localizations have a biological
significance. In detail, proteins with a predicted signal peptide
and one consensus membrane helix prediction were annotated
as “Secreted/extracellular AND membrane anchor.” This also
includes the proteins with prepilin signal peptide. Proteins with
a cell wall prediction and one or two consensus membrane

Table 7 | ClubSub-P archaeal SCL prediction statistics.

Cluster’s subcellular localizations No. of

clusters

No. of

sequences

Cytoplasmic 15,592 84,978

Cytoplasmic membrane 4,535 17,158

Secreted/extracellular 399 1,157

Secreted/extracellular with membrane anchor 244 804

Lipoprotein 181 572

Cell wall 57 189

Cell wall with membrane anchor 14 38

Uncertain 1,139 3,921

Unknown 23 55

www.frontiersin.org November 2011 | Volume 2 | Article 218 | 1175

http://www.frontiersin.org
http://www.frontiersin.org/Evolutionary_and_Genomic_Microbiology/archive


Paramasivam and Linke Cluster-based subcellular localization prediction

helix predictions were annotated as “Cell wall AND membrane
anchor.” Note that membrane anchor in this context means a
single N-terminal transmembrane helix that anchors proteins to
the cytoplasmic membrane.

Since there are very few archaeal proteins with experimentally
annotated SCLs, most of these proteins are already included in
the training sets of the tools we used in the consensus predic-
tion, which makes the calculation of benchmarks very difficult.
But, using the experimentally verified 252 archaeal sequences from
UniProt, we were able to show that ClubSub-P has a slightly higher
precision than PSORTbV3.0, but with a lower recall value. Overall,
both tools are comparable in performance. Details on the perfor-
mance of ClubSub-P with archaeal proteins are found in Table 8.
With the addition of more archaeal proteomes from genomic
data, and with the inclusion of further tools specialized on SCL
prediction of archaeal proteins, ClubSub-P will be able to predict
the archaeal SCLs more precisely in the future.

CLUBSUB-P AVAILABILITY
We introduced the ClubSub-P database into the classifica-
tion section of the MPI Bioinformatics Toolkit, a platform
that integrates a great variety of tools for protein sequence
analysis (Biegert et al., 2006). ClubSub-P can be found at
http://toolkit.tuebingen.mpg.de/clubsubp. Users can browse the
database to view the precomputed results, or they can annotate
their query sequences by searching the database using BLAST.

Table 8 | Performance measurement of ClubSub-P archaeal

predictions.

Precision Recall Accuracy MCC

PSORTb v3.0.2 98.8 98.02 99.2 0.98

ClubSub-P 99.55 86.77 96.46 0.91

FIGURE 6 | ClubSub-P database screenshots.
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ClubSub-P is interconnected with other tools in the toolkit, so
users can easily forward their results to other tools for further
analysis. Screenshots of the ClubSub-P database are shown in
Figure 6.

DISCUSSION
Annotating the SCL of a protein is an important step in char-
acterizing the native function of a protein. Thus, computational
SCL predictions have gained importance in the post-genomic era,
and various tools exist for this purpose. When combing different
SCL predictors to create a meta-SCL predictor, it is important to
select the best available individual predictors. We have developed
a cluster-based meta-SCL prediction method for archaeal and
Gram-negative bacterial proteins, by combining different pub-
lished tools through consensus voting and protein sorting rules. In
addition to the consensus SCL prediction for each single sequence,
sequences are clustered according to their similarity. This homol-
ogy information is exploited to eliminate false-positive and false-
negative results. The performance of our tool is comparable with
state-of-the-art SCL prediction methods, but with more precision
(where precision is a measure of the ability of the system to predict
only the relevant data, see Materials and Methods). In addition to
the general SCLs, we were able to annotate more specific localiza-
tions, such as “OMP with lipid anchor,”“extracellular protein with
transmembrane helix,” and “transmembrane with TAT or general
signal peptide” for certain protein clusters, by combining differ-
ent feature prediction tools. When more of such specific feature
prediction tools become available we can include them into our
prediction pipeline easily, and can annotate more specific local-
izations in a very precise way. In the cluster-based comparison
of predictions for orthologous proteins, we have shown that there
are inconsistencies between different prediction methods. We have
demonstrated that by obtaining a consensus prediction from dif-
ferent tools, we can greatly reduce the number of false-positive pre-
dictions for single sequences. Furthermore, combining the single
SCL predictions on the level of clusters further increases the preci-
sion of the predictions. The incorporation of additional proteomes
from new sequencing projects will further decrease the number
of singletons and will significantly increase the coverage and the
precision of the SCL predictions of ClubSub-P in the future.

The pipeline can be expanded to other organism groups eas-
ily, as we show with the example of Archaea. Archaea are espe-
cially interesting in this context as comparably little experimental
information is available for them. As only few reliable SCL pre-
diction tools trained specifically on archaeal datasets are available,
ClubSub-P is at an advantage as it combines different tools into
a (more reliable) consensus prediction, and uses homology infor-
mation where available to exclude most false-positive and false-
negative predictions. Though the recall value is lower than that
of PSORTb, the overall performance will increase dramatically
by adding more sequenced archaeal genomes for clustering, and
with new and Archaea-specific SCL prediction tools which can be
incorporated into ClubSub-P easily.

The database can be used for a variety of applications. One
obvious application is in genome annotation, where we show
how misinterpreted start codons can be detected through SCL
predictions and the use of homology information. We originally
produced the database to screen for conserved immunogenic epi-
topes localized on the bacterial cell surface, in order to identify new
vaccine candidates which would protect from diseases caused by
Gram-negative human pathogens. Using the protein clusters with
OM or extracellular localization, one can find conserved proteins
which could be useful vaccine candidates or diagnosis markers
specific to the bacterial species present in these clusters.
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ABSTRACT 

 

Background 

 

In Gram-negative bacteria, the outer membrane is composed of an asymmetric lipid bilayer of 

phopspholipids and lipopolysaccharides, and the transmembrane proteins that reside in this 

membrane are almost exclusively β-barrel proteins. These proteins are inserted into the 

membrane by a highly conserved and essential machinery, the BAM complex. It recognizes 

its substrates, unfolded outer membrane proteins (OMPs), through a C-terminal motif that has 

been speculated to be species-specific, based on theoretical and experimental results from 

only two species, Escherichia coli and Neisseria meningitidis, where it was shown on the 

basis of individual sequences and motifs that OMPs from the one cannot easily be over 

expressed in the other, unless the C-terminal motif was adapted. In order to determine 

whether this species specificity is a general phenomenon, we undertook a large-scale 

bioinformatics study on all predicted OMPs from 437 fully sequenced proteobacterial strains. 

 

Results 

 

We were able to verify the incompatibility reported between Escherichia coli and Neisseria 

meningitidis, using clustering techniques based on the pairwise Hellinger distance between 

sequence spaces for the C-terminal motifs of individual organisms. We noticed that the amino 

acid position reported to be responsible for this incompatibility between Escherichia coli and 

Neisseria meningitidis does not play a major role for determining species specificity of OMP 

recognition by the BAM complex. Instead, we found that the signal is more diffuse, and that 

for most organism pairs, the difference between the signals is hard to detect. Notable 

exceptions are the Neisseriales, and Helicobacter spp. For both of these organism groups, we 

describe the specific sequence requirements that are at the basis of the observed difference. 

 

Conclusions 

 

Based on the finding that the differences between the recognition motifs of almost all 

organisms are small, we assume that heterologous overexpression of almost all OMPs should 

be feasible in E. coli and other Gram-negative model organisms. This is relevant especially 

for biotechnolgoy applications, where recombinant OMPs are used e.g. for the development 
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of vaccines. For the species in which the motif is significantly different, we identify the 

residues mainly responsible for this difference that can now be changed in heterologous 

expression experiments to yield functional proteins.  

 

 

KEYWORDS 

 

Outer membrane β-barrel protein biogenesis, clustering, Hellinger distance, CLANS, species 

specificity, short linear motifs, GLAM2, C-terminal β-strand, BamA, β-barrel assembly 

machinery, Gram-negative bacteria, Outer membrane, Principal component analysis, 

Frequency plots   

 

BACKGROUND 

 

In Gram-negative bacteria, the cytoplasm is surrounded by inner membrane (IM) and 

outer membrane (OM), which are separated by an inter-membrane space, called the 

periplasm. Most of the newly synthesized proteome remains in the cytoplasm, but in addition, 

different machineries are involved in the translocation of non-cytoplasmic proteins to 

different subcellular localizations, including the inner or outer membrane, the periplasmic 

space, or the extracellular space. Some of these machineries recognize their substrate proteins 

by an N-terminal signal peptide (SP) for the translocation process, while other machineries 

are SP-independent. The IM, which is a phospholipid lipid bilayer, is mostly occupied by 

transmembrane α-helical proteins, by inner membrane lipoproteins on its periplasmic side, 

and by other membrane associated proteins on both sides of the membrane. In contrast, the 

asymmetric OM, which consists of phospholipids only in the inner leaflet of the membrane 

and lipopolysaccharides in the outer leaflet, is mostly occupied by transmembrane (outer 

membrane) β-barrel proteins, and by outer membrane lipoproteins on its periplasmic side [1]. 

The biogenesis of an outer membrane β-barrel protein (OMP) begins with the 

translocation of the newly synthesized, unfolded protein across the IM into the periplasm via 

the Sec translocation machinery, which requires a cleavable general SP. Once the unfolded 

OMP reaches the periplasm, it uses the SurA or Skp-DegP pathway to reach the OM. SurA, 

Skp and DegP are periplasmic chaperones, which interact with unfolded OMPs by protecting 

them from aggregation and thus help them to reach the OM [2-3]. It has been shown that the 

SurA pathway and the Skp/DegP pathway can work in parallel, but that the SurA pathway 
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plays an important role when the cell is under normal growth conditions, while under stress 

conditions, the Skp-DegP pathway plays the major role [4-5].   

 Once periplasmic chaperones deliver the OMPs to the OM, the folding and insertion 

of the protein into the membrane is mediated by the β-barrel assembly machinery (BAM), 

without an external energy source [6] such as ATP or ion gradients. This machinery involves 

an essential multi-domain protein, BamA (Omp85), which consists of a 16-stranded 

transmembrane β-barrel domain, and of a large periplasmic part that consists of five POTRA 

(polypeptide transport-associated) domains. BamA is highly conserved in Gram-negative 

bacteria and also has homologues in mitochondria (Sam50) and chloroplasts (Toc75-V) [2]. 

In addition, the BAM complex, at least in E. coli, consists of four lipoproteins, BamB, BamC, 

BamD and BamE, among which only BamD is essential and conserved in most Gram-

negative bacteria [2]. Recent HMM-based sequence analysis by Anwari et al [7] showed that 

BamB and BamE are mainly present in α-, β- and γ-proteobacteria, while BamC is present 

only in β- and γ-proteobacteria. They also found a new lipoprotein subunit in the BAM 

complex, named BamF, which is present exclusively in α-proteobacteria. 

 The BAM complex recognizes OMPs as its substrates via binding to an amphipathic 

C-terminal β-strand of the unfolded β-barrel [8], but the exact binding mode is still not clear. 

It was suggested that C-terminal β-strand binds to BamD [9], once the unfolded OMPs are 

delivered to the BAM complex by periplasmic chaperones. But a recent BamC and BamD 

subcomplex crystal structure shows that the unstructured N-terminus of BamC binds to the 

proposed substrate binding site of BamD [4]. The C-terminal β-strand of an OMP β-barrel 

domain typically contains an aromatic residue at its C-terminus. It has been reported that 

deletion or substitution of this C-terminal residue negatively affects the biogenesis of OMPs 

[10-11]. Also, in vitro studies showed that the E. coli OM porin PhoE, when lacking its C-

terminal Phe residue, fails to open the Omp85/BamA channel [8]. In both studies, 

overexpression of the mutant OMP was lethal to the cells. At lower concentration, the mutant 

protein was tolerated and got inserted into the membrane. This leads to the suggestion that a 

weak insertion signal other than the C-terminal residue or β-strand is present [8]. 

Robert et al [8] observed that the N. meningitidis OM porin PorA or its C-terminal β-

strand did not open the E. coli Omp85/BamA channel, and the comparison of the C-terminal 

β-strands from N. meningitidis and E. coli OMPs showed a high preference of positive amino 

acids at the penultimate (+2) position in neisserial OMPs. When they mutated E. coli PhoE or 

its C-terminal β-strand, changing Gln for Lys at the +2 position, it did not open the channel 

any more; in contrast, a Neisseria PorA peptide with Gln instead of Lys increased the channel 
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activity considerably. These studies and the fact that high concentrations of neisserial OMPs 

were lethal in E. coli cells, lead to the conclusion that the C-terminal insertion signal is 

species-specific and that the residues at the +2 position were important for this phenomenon. 

The number of peptides/proteins used in the comparison in the study [8] was very low, 

compared to the total number of OMPs present in the E. coli or N. meningitidis genomes; 

moreover, the phenomenon was only compared between two organisms, one β- and one γ-

proteobacterial species. Since neisserial OMPs could be expressed in E. coli at low 

expression rates, either the neisserial C-terminal insertion signal is weakly recognized by E. 

coli BAM complex, or other β-strands in the full length protein might act as a weak insertion 

signal.  

Thus, there seems to be at least some overlap in the peptide recognition. The intention 

of this study was to use computational methods to quantify this overlap, and to find out 

whether the observed (partial) species specificity of the insertion signal is exhibited by all 

Gram-negative bacterial organisms.  
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RESULTS AND DISCUSSION 

 

We identified 22,447 OMPs from 437 Gram-negative bacteria using PSORTb [12], 

CELLO [13] and HHomp [14] as described in the methods section. These OMPs can be 

classified into different outer membrane protein (OMP) classes/families based on their 

function and the number of β-strands present in them, as these two features are usually 

coupled [14-17]. We used HHomp [14] to classify the proteins into different OMP families. A 

brief summary of the OMP classification obtained from HHomp [14] for our data set is 

shown in Table 1. We then used ProfTMB [18] and PSIPRED [19] annotations to identify and 

extract the C-terminal β-strands from the OMPs. To evaluate the phenomenon of species 

specificity, we initially tried to cluster the C-terminal β-strands using different methods, such 

as sequence based clustering in CLANS [20] and organism-specific PSSM profile-based 

hierarchical clustering. Since the sequences were highly similar and very short, the results 

obtained from these methods were not helpful to our analysis. We then used chemical 

descriptors and represented each amino acid in the peptides by five-dimensional vectors, thus 

representing each 10-residue peptide as a 50-dimensional vector. Next, we used 

dimensionality reduction techniques (principal component analysis) to reduce the dimensions 

to 12 (the lowest number of dimensions that still contains most of the difference information, 

see Methods). We then used all peptide vectors from an organism to derive a multivariate 

Gaussian distribution, which we describe as the ‘peptide sequence space’ of the organism. 

The overlap between these multidimensional peptide sequence spaces (multivariate Gaussian 

distributions) was calculated using a statistical theory method, the Hellinger distance. As 

described in the methods section, the pairwise overlaps between organism sequence spaces 

were used to cluster them in CLANS [20].  

 

Clustering of organisms based on C-terminal β-strands: 

 The pairwise comparison of the overlap between sequence spaces should help us to 

predict the similarity between the C-terminal insertion signal peptides, and how high the 

probability is that the protein of one organism can be recognized by the insertion machinery 

of another organism. When there is a complete overlap of sequence space between two 

organisms, we assume that all C-terminal insertion signals from one organism will be 

recognized and functionally expressed by another organism’s BAM complex and vice-versa. 

When there is only little overlap between the sequence spaces of two organisms, we assume 

that only a small number of C-terminal insertion signals from one organism will be 
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recognized by another organism’s BAM complex. When there is no overlap, we assume that 

there is a general incompatibility. 

As described in the methods section, we examined the overlap of peptide sequence 

spaces between 437 Gram-negative bacterial organisms and used the pairwise overlap 

measurement to cluster the organisms. Since the C-terminal β-strands are highly conserved 

between all OMPs [21], it was very difficult to select a particular cut-off for the distance 

measure. Thus, the clustering was carried out using all the distance measures obtained from 

the calculations. In the resulting 2D cluster map (figure 1A), each node is one out of the 437 

organisms, and they are colored based on the taxonomic classes (see the figure legend). 

During clustering with default clustering parameters in CLANS [20], the organisms tended to 

collapse into a single point, which illustrates that there is large overlap between the peptide 

sequence spaces. Thus, we introduced very high repulsion values and minimum attraction 

values in CLANS [20] during clustering. With these settings the organisms formed a central 

big cluster, but separated crudely according to their taxonomic classes. We repeated the 

clustering multiple times to ensure that this separation is reproducible. In the cluster map 

(figure 1A), β- and γ-Proteobacteria form two sub-clusters, separated by the α-Proteobacteria. 

The very few δ-Proteobacteria in our data set cluster in the periphery of the γ-proteobacterial 

cluster. In the cluster map, E. coli strains cluster along with other γ-Proteobacteria. Even 

though Neisseria species cluster along with other β-Proteobacteria, they form a sub-cluster 

and are found in the periphery of the β-proteobacterial cluster. Note also that in this map, 

Helicobacter species form a distinct cluster well separated from the rest of the organisms. 

This core cluster includes H. pylori strains, H. acinonychis and H. felis, but not H. hepaticus 

and H. mustelae species. The remaining ε-proteobacteria species are scattered in the 

periphery of the cluster map. The distinct cluster formed by most Helicobacter species 

demonstrates that the sequence spaces of Helicobacter species are significantly different from 

rest of the organisms. The neisserial cluster had only very few strong connections even with 

other β-proteobacterial organisms, which means the overlap or similarity of peptide sequence 

space between Neisseriales with rest of the β-Proteobacteria is comparatively low. When we 

used stringent thresholds for the distance measure, we noticed that the Neisseria and 

Helicobacter clusters started to move even further away from the center of the cluster map. 

 

Control experiments for clustering: randomly shuffled peptide sequences lose the signal 

for clustering. 

We noticed that the organisms seen at the periphery of the cluster map had a lower 
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overall number of peptides, while organisms with more peptides are typically seen at the 

center of the circle. The cluster map in figure 1B is colored based on the number of extracted 

peptides per organism. In figure 1B, there are 99 organisms which have  30 peptides 

(colored in pink), 77 organisms with 31 to 40 peptides (colored in blue), 136 organisms with 

41 to 60 peptides (colored in green), 66 organisms with 61 to 80 peptides (colored in red), 

and 59 organisms with more than 80 peptides (colored in brown). Even though H. pylori 

strains have a comparably high number of peptides (43 to 51 peptides), they still form a 

separate cluster in the periphery of the cluster map; therefore there must be an underlying 

organism-specific signal from the contributing peptides at least in this case. 

To confirm the presence of the organism-specific signal, we took peptides from all the 

organisms and shuffled the positions of their amino acids randomly, and derived a new 

similarity matrix as mentioned in the method section which we clustered in CLANS [20]. 

Figure 2A shows the results from this test, where one can notice the taxonomic specific 

separations were completely lost. The cluster map in figure 2B, colored based on the 

abundance of OMPs in an organism, shows that organisms with more peptides are in the 

center, and organisms with fewer peptides move to the outer rim of the cluster map. This test 

confirms that the there is a species-specific signal for which the position of the individual 

amino acids is important; this is lost when the residues in the peptides are shuffled randomly. 

 

High preference of positively charged residues at the +2 position in Neisseria species: 

 The comparison of the C-terminal peptide sequences in the β-barrel of selected OMPs 

of E. coli and N. meningitidis peptides by Robert el al [8] showed a strong preference for 

positively charged amino acids (Arg and Lys) at the +2 position in neisserial OMPs, which 

led to the suggestion of a distinct species specificity of the C-terminal β-strand recognition. 

Since the comparison was made from 11 and 9 OMPs from E. coli and N.meningitidis, 

respectively, we wanted to confirm this with a larger set of OMPs from the same bacterial 

species. The frequency plots in figure 3A and 3B were created from 171 (E. coli) and 50 

(N.meningitidis) unique C-terminal β-strands. Comparison between these plots demonstrates 

the high preference of Arg and Lys at the +2 position in neisserial OMPs. When we checked 

the frequency of amino acids at the +2 position for 22,447 peptides from all 437 organisms, 

we noticed that in the complete dataset, Arg and Lys are the top two preferred residues at the 

+2 position, and that they are present in 31.62% (3996 + 3102) of the peptides. A similar 

frequency of Arg and Lys (31.32% (2262 + 1794 out of 12,949 unique peptides)) is observed 
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when only taking unique peptides into account (i.e. when duplicates are removed from the 

database). Figure 4 shows the percentage of Arg and Lys at the +2 position in 437 organisms; 

in this plot, Neisseria strains stand apart even from other β-proteobacterial organisms, and 

also from all other proteobacterial organisms. Neisseria strains (and a few α-proteobacterial 

organisms) have more than 60% of peptides with positively charged residues at the +2 

position. Note, though, that also in all other organisms, positive charges are abundant there; 

for example, different Escherichia strains also have 25-40% of peptides with Arg and Lys at 

the +2 position. Thus, when these proteins are expressed, the Escherichia BAM complex 

should be able to recognize proteins with positively charged residues at +2 positions. As a 

matter of fact, there is experimental evidence for the functional expression of OMPs with 

positively charged residues at the +2 position in E. coli [22]. 

 

High preference of Histidine at the +3 position in porins (16-stranded OMPs) from β-

proteobacteria: 

In the frequency plots (figure 5) generated for each taxonomic class of Proteobacteria, 

we observed that the frequency of amino acids in the +2 positions were comparable, with the 

possible exception of the Neisseriae. In contrast to that, we observed a prevalence (up to 57% 

frequency) of His at the +3 position for β-proteobacteria, while the other taxonomic classes 

shared  a similar, low (<15%) frequency of His in that position (Figure 6). 80% of the 

peptides with His at the +3 position belong to the β-proteobacteria and more than 92% of 

these peptides stem from 16-stranded β-barrel proteins (Porins, denoted as the OMP.16 class 

by HHOmp). None of the Escherichia C-terminal β-strands in our database have His at the 

+3 position, and experiments by Robert et al. were done with a Neisseria PorA peptide with a 

His at the +3 position. This might be the true reason why E. coli BamA didn’t recognize 

neisserial peptides. When we further examined the available structures of porins from 

Neisseria, and we found the His at the +3 position to be present in the trimerization interface 

of the porins. Since the vast majority of the His residues at the +3 position of the C-terminal 

motifs were from 16-stranded porins that typically trimerize, this position might be relevant 

for trimerization in neisserial porins. 

 

High preference of Tyrosine at the +5 position in Helicobacter species: 

The separate cluster formed by Helicobacter species was an interesting observation 

for us, because it forms a more distinct cluster than Neisseria. This means that the peptide 

sequence space of Helicobacter species is more different from the rest of the organisms than 
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even the one of Neisseriales. But the frequency plots (figure 7A and 7B), generated from 

unique peptides of all Helicobacter species and H. pylori strains respectively, did not show a 

strong preference for any amino acid at either the +2 position and  the strong preference of 

Tyr at +3 position is common among the c-terminal insertion signals. But, we noticed an 

uncommon strong preference of Tyr at the +5 position. The presence of a hydrophobic 

residue is common at +5 positions, but the presence of aromatic hydrophobic amino acids 

(especially Tyr) at the +5 position are highly preferred in H. pylori strains compared to other 

organisms (figure 8A and 8B). Since the peptide sequence space depends upon the entire 

sequence, we cannot confirm that the separate cluster formed by the H. pylori is exclusively 

due to the residues at this one particular position. There is experimental evidence that the 

expression of various H. pylori OMPs in E. coli is problematic [23]. Fisher et al. noticed that 

as long as the expressed H. pylori OMP remains in the cytoplasm of E. coli, it is not lethal, 

but that once it is secreted to the periplasm by the Sec machinery, it becomes lethal to E. coli. 

They also mentioned - without showing data - that removal of the C-terminal β-barrel region 

resulted in toleration of the proteins in the periplasmic space. This probably means that the E. 

coli BAM complex didn’t recognize the C-terminal β-strands of the H. pylori OMPs, and the 

subsequent aggregation of the OMPs in the periplasm and the blockage of the BAM complex 

lead to the lethality. The authors concluded that the difference in OM lipid composition of 

Helicobacter, which contains cholesteryl glycosides [24], might have imposed some 

structural constraints on the OMP structure, and that this structural change is not tolerated by 

other organisms resulting in the observed lethality of such constructs. 

 

OMP class-specific and taxonomy class-specific signals: 

We noticed that in some organisms, certain OMP classes of proteins are over-

represented (see figure in additional file 2). Examples are the prevalence of 16-stranded β-

barrels in the genomes of some β-proteobacteria and 22-stranded β-barrels in the genomes of 

some α-proteobacteria (see supplementary material S1). Moreover, of the 22,447 sequences 

in the data set, 33.82% (7591) sequences were annotated as OMP.nn by HHomp [14], which 

means there was no closely related homolog of known structure found for these proteins and 

thus, the number of β-strands in them is unknown.  Thus, it is not possible to filter the dataset 

based on OMP class alone. But, as a control, we removed one OMP class at a time from the 

dataset and checked for differences in the clustering. When removing OMP.8 (figure 9A) and 

OMP.12 (figure 9B), two OMP classes that are not overrepresented in any of the taxonomy 

classes; this did not visibly affect the clustering. But when we removed the OMP.16 (figure 
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9C) or the OMP.22 (figure 9D) class, which have a high prevalence in β-proteobacteria and α-

proteobacteria, respectively, this changed the clustering behavior of the respective taxonomic 

classes significantly; the organisms got scattered away from their position in the cluster 

compared to the situation in figure 1A. This shows that the over-representation of certain 

OMP classes can influence the peptide sequence space, but since the proteins from over-

represented OMP classes still contribute to the real sequence space of the organisms, we 

decided not to correct for this effect and used all peptides from the organisms in our 

experiments. 

We also examined whether there is a more general signal from OMP classes, other 

than the signal from the over-representation of an individual OMP class that would influence 

the observed organism-specific signal. For this, we separated the peptides from an organism 

based on the OMP classification and selected the entities which had more than five unique 

peptides for further analysis. From this, we created two data sets of entities; one data set 

containing organisms from all taxonomic classes, but with C-terminal insertion signals only 

from 22-stranded OMPs, and a second data set containing organisms only from γ-

proteobacteria, but in which individual organisms were split into multiple entities, each 

representing an OMP class that contained more than five unique C-terminal insertion signals. 

We clustered these data sets separately and the resulting cluster maps are shown in figure 10A 

and 10B. In the cluster map in figure 10A, each node is an organism, but only the C-terminal 

insertion signals from 22-stranded OMP class were considered for the clustering. In this 

cluster map, all the organisms clustered based on their taxonomic classes. In the cluster map 

in figure 10B, all organisms are from γ-proteobacteria, but organisms with multiple OMP 

classes with more than five unique C-terminal insertion signals per class will result in 

multiple representative nodes. These nodes which belong to different OMP classes clustered 

based on the OMP classes. This confirms that there are independent contributions to the 

overall signal, from both the OMP classes and from taxonomy. Within one OMP class, there 

still is divergence in accordance with different taxonomic classes; but overrepresentation of a 

single OMP class in an organism influences the average motif of an organism. 
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CONCLUSION 

In our study, we were able to reproduce the difference between E. coli and Neisseria 

C-terminal β-strands as found by Robert et al., which suggests a species-specific insertion 

signal for OMPs. But in contrast to the earlier report, we show that positively charged amino 

acids at the +2 position can not be the reason for the experimentally observed species 

specificity between these organisms, as Escherichia also contains C-terminal β-strands with 

positively charged amino acids at the +2 position. Moreover, there is experimental evidence 

which shows the functional expression of a heterologous OMP, YadA of Yersinia 

enterocolitica, with a positively charged amino acids at the +2 position, in E. coli [22]. The 

neisserial PorA protein and the neisserial C-terminal β-strands used by Robert et al. contained 

His at the +3 position, which is common for many OMP.16 proteins from β-proteobacteria 

and is not found in Escherichia OMPs; this might be the true difference in the recognition of 

C-terminal β-strands by the Escherichia BAM complex. Furthermore we found that 

Helicobacter strains form a distinct cluster in the cluster map, which is due to their very 

different composition of C-terminal β-strands. There is experimental evidence showing that 

expression of H. pylori OMPs in E. coli is lethal, and that this lethality can be suppressed by 

removing the C-terminal strand. When we looked at the frequency motifs from Helicobacter 

strains we did not notice a strong preference of any amino acid at the +2 or the +3 position, 

however we observed a strong preference of Tyr at the +5 position, which is not common in 

Escherichia or other Proteobacteria. We assume that this position may play an important role 

in the rejection of these C-terminal β-strands by the E. coli BAM complex. The examples of 

Neisseria and Helicobacter show that different positions in the C-terminal recognition motif 

can be relevant for heterologous expression of OMPs. We predict that in certain group of 

species the highly preferred residues in certain positions of the C-terminal insertion signals 

are responsible for the inadequate recognition of the C-terminal insertion signals by the E. 

coli BAM complex. In the future, mutation studies will have to be performed to prove the 

importance of these residues in the recognition step in the OMPs biogenesis. 

As a result of our study, we have shown that there is a large overlap between the 

signals from C-terminal insertion peptides of different organisms, which suggests that in most 

cases, heterologous expression should be possible. OMPs can fold in vitro even without the 

help of any other proteins [25]. The BAM complex is an enzyme that makes the folding of 

OMPs into the outer membrane more efficient by increasing the reaction rate of a natural 

process. Enzymes modify reaction rates by changing the reaction route to lower the activation 

energy, and binding/recognition is part of this changed route. Thus, it is also important to 
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consider expression rates: poor recognition might still lead to properly folded OMPs in the 

outer membrane of a heterologous host at low expression rates. But under overexpression 

conditions, the BAM machinery can probably not cope with poorly recognized signals that 

would lead to lower overall folding rates (considering that recognition is the first and 

probably in some cases rate-limiting step of the folding process). Different classes of OMPs 

have different folding rates, where small OMPs fold faster and more efficiently (again in 

vitro) than larger ones, which might explain why large OMPs seem to depend more heavily 

on an intact BAM machinery than small ones [26-27]. 

Since there are two different signals that contribute to the observed average motifs, 

from OMP class and from taxonomy, it is problematic to use averaged motifs or sequence 

logos to determine the compatibility of a given protein-organism pair. The main problem here 

is the overrepresentation of certain OMP classes in some organism groups; this 

overrepresentation shifts the average signals. It is more useful to determine for an individual 

C-terminal motif form a protein to be expressed, whether it is also present in any of the 

OMPs of the host organism. 

The taxonomy-based specificity we observed here based on sequence space depends 

upon the entire peptide sequence, but at the functional level, these peptides are recognized 

based on the interacting residue positions in the C-terminal insertion signal peptide. The PDZ 

domain of the bacterial periplasmic stress sensor, DegS, also recognizes the C-terminal YxF 

motif in the last β strand of misfolded OMPs. This leads to the activation of the proteolytic 

pathway and the expression of DegP, which degrades misfolded OMPs [28-29].  Since the C-

terminal β-strand is recognized by both the PDZ domain of the DegS protein and by the BAM 

complex, studying the co-evolution of interacting residues in both cases would help in 

understanding the divergence of the C-terminal β-strands between different Gram-negative 

bacterial organisms. Unfortunately, co-crystal structures of the BAM complex with its 

substrates are not available yet. With more experimental evidence about the substrate 

recognition sites for the C-terminal insertion signal peptide in the BAM complex, the co-

evolution of the interacting amino acids can hopefully be studied in the future, which may 

shed more light on into the evolution of the BAM machinery in different Proteobacteria, and 

on its ability to recognize heterologous substrates for biotechnology applications.  
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METHODS 

 

Predicting Outer membrane β-barrel proteins: 

 In a previous study [30] to annotate the subcellular localizations (SCLs) for the 

proteomes of 607 Gram-negative bacteria, we developed the program/database ClubSub-P, in 

which we used programs like CELLO [13], PSORTb [12] and HHomp [14] to annotate 

OMPs. CELLO [13] and PSORTb [12] use support vector classifiers to annotate different 

SCLs of query sequences and are much faster than HHomp [14] which uses HMM-HMM-

based search algorithms to predict and classify OMPs. Thus we used CELLO and PSORTb to 

scan all the sequences in the clusters of the ClubSub-P database. A random protein was 

selected from a cluster where CELLO or PSORTb had a positive hit for an outer membrane 

protein, and the sequence was analyzed with HHomp. When HHomp predicted a protein with 

more than 90% probability to be an OMP, we considered all the proteins in the cluster to be 

OMPs. We in addition selected all singleton sequences with positive prediction from CELLO 

or PSORTb and analyzed them with HHomp. 

 

Finding the C-terminal β-strands: 

 HHomp annotates/classifies OMPs based on the number of β-stands present in them. 

HHomp calculates/predicts this from homologous structures of OMPs. We transferred this 

annotation from the best hit in HHomp runs to the query sequences. HHomp also annotates 

secondary structure and β-barrel strand predictions using PSIPRED [19] and ProfTMB [18], 

which was used to extract the C-terminal (last) β-strand/motif for each OMP. The last β-

strand predicted by ProfTMB [18] was extracted as the C-terminal motif from representative 

sequences and singletons, and further filters were applied to reduce the false positive rate; 1) 

70% of the amino acids in the motif should have a β-strand prediction from PSIPRED [19], 

2) If the C-terminal of the protein is more than 4 residues away from the C-terminus of the 

motif, we extended the predicted motif by up to 4 amino acids to find an aromatic 

hydrophobic residue [F,Y,W], else we extended the C-terminus of the motif to the end of the 

protein itself. 3) Additionally, if the motif length was less than 10 residues, we extended the 

motif towards its N-terminus. 4) Furthermore with the regular expression 

[^C][YFWKLHVITMADGRE][^C][YFWKLHVITMADGRE][^C][YFWKLHVITMADGR

E][^C].[^C][YFWHILM] (an updated version of BOMP[31] C-terminal pattern), we searched 

for the existence of the alternating hydrophobic pattern in the motif which is typical for 

transmembrane β-strands. 
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 Using the information from this representative C-terminal motif, we extracted C-

terminal motifs from the rest of the sequences in the clusters. We used MAFFT [32] to align 

the sequences from the cluster, and used the start and end coordinates of the C-terminal motif 

discovered above in the representative sequences randomly selected from the clusters. Motifs 

were extended on the both sides, in cases where we encountered gaps in the alignment. The 

gaps were removed and then resulting motifs were subjected to alternating hydrophobic 

pattern matching.  

 The peptides we collected vary in length from 10 to 21 residues (only six of the 

peptides were longer than 21). We then applied GLAM2 [33], a gapped motif discovery 

algorithm, to find the strongest motif with a length of 10 from this dataset. We found 24,626 

motif instances in 25,454 sequences, and only 232 motifs in this alignment had gaps. The 

gapped motifs were removed before further analysis. 20,135 of the motif instances were C-

terminal to the protein itself (which means there were no additional domains at the C-terminal 

end of the β-barrel proteins). 437 organisms had more than 20 unique C-terminal β-strands, 

ranging from 21 to 171 peptides in different organisms. In total, the 437 organisms yielded 

22,447 peptides, of which 12,949 are unique peptides.   

 

Sequence based clustering: 

 Since all of the peptides are 10 amino acids in length by default, we used the PAM30 

substitution matrix for an all-against-all BLAST, with an E-value cut-off of 1000 and used the 

pairwise P-values to cluster the sequences in CLANS [20]. 

 

PSSM profile-based hierarchical clustering: 

 The relative frequencies of the 20 amino acids were calculated for all 10 positions in 

the peptides from an organism. To obtain odds scores, the relative frequencies were simply 

divided by each residue’s background frequency, which was calculated by shuffling the 

amino acid sequence in all the peptides from all organisms, and log base 2 was applied to 

obtain a PSSM matrix. The 20 x 10 PSSM matrices obtained for each organism were stored 

in a single 437x200 PSSM matrix, and correlation distances were calculated between each 

organism and  agglomerative hierarchical clustering (average method) was performed via the 

pvclust [34], which calculates two types of p-values, AU (Approximately Unbiased) p-value 

and BP (Bootstrap Probability) value to indicate the likelihood of the cluster formation. 
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Peptide sequence space-based clustering: 

Chemical descriptors: 

 To generate a peptide sequence space, each amino acid in the peptide sequences was 

represented by five chemical descriptors that are the first five principal components derived 

from 26 physiochemical descriptor variables using dimensionality reduction techniques [35]. 

The initial 26 physiochemical descriptor variables include the molecular weight, 

experimentally determined retention values from seven thin-layer chromatography runs, van 

der Waals volume of the side chain, three nuclear magnetic resonance shift variables, log P, 

six variables for semiempirical molecular orbitals, three variables for total, polar and 

nonpolar surface area, two variables for side chain charge and two variables for hydrogen 

bond donor and acceptor [35]. The five principal components derived from these 26 variables 

contain the maximal variations in the data set and they can be interpreted as the size, 

polarizability, and the lipophilic, steric, and electronic properties of all the amino acids [35]. 

The amino acid descriptors were originally derived for use as design variables in peptide 

design, and in the construction of combinatorial libraries to effectively search chemical 

property space [35]. Here we used them to describe the space occupied by the C-terminal β-

strands and to measure how strongly peptide sequences of different organisms overlap. Using 

the chemical descriptors, each amino acid in the peptide was converted into a 5-dimensional 

vector; thereby, each 10aa peptide was represented as a 50-dimensional vector. Thus, the 

whole set of 22,447 peptides were converted to a 22,447 x 50 matrix.    

 

Principal component analysis: 

 Since the dimensionality of the data set (50) is larger than the sample size (minimum 

21 peptides per organism), the dimensionality of the peptide vectors had to be reduced below 

the sample size (i.e., below 21 in our dataset) for further statistical analysis [36]. Principal 

component analysis (PCA) is a mathematical technique to reduce the dimensionality of data 

sets, while retaining most of the variation in the data set. This is achieved by projecting the 

original data vectors along the directions of maximal variation, called principal components 

(PCs). The first PC captures the maximum variation; the variation associated with 

consecutive PCs decreases rapidly. Thus, the original data set can be mapped into a lower 

dimensional space by projecting the original data on those PCs representing most of the 

variation [36-37]. We used PCA to reduce the dimensionality of our peptide sequences 

(22,447 x 50 matrix) by projecting the 50 dimensional chemical descriptor vectors onto the 

first 12 principal components, which represent 69.05% of the total variation in the data. We 
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thereby obtained a 22,447 x 12 matrix that did not suffer from any problems in sample size.  

 

Multivariate Gaussian fitting and Hellinger distance: 

Next, we fit a multivariate Gaussian distribution for each individual organism by 

calculating a 12-dimensional mean vector and covariance matrix, (e.g., for E. coli 536 which 

has 66 unique peptides, the Gaussian will be fitted based on a 66 x 12 matrix). 

The Euclidean distance between means of peptide sequence spaces is not suitable for 

measuring the similarity between the C-terminal β-strands of different organisms. Instead, the 

similarity measure should also represent how strongly their associated sequence spaces 

overlap. To achieve this we used the Hellinger distance between the fitted Gaussian 

distributions [38]. In statistical theory, the Hellinger distance measures the similarity between 

two probability distribution functions, by calculating the overlap between the distributions. 

For a better understanding, figure 11 illustrates the difference between the Euclidean distance 

and the Hellinger distance for one-dimensional Gaussian distributions. The Hellinger 

distance, DH(Org1,Org2), between two distributions Org1(x) and Org2(x) is symmetric and 

falls between 0 and 1. DH(Org1, Org2) is 0 when both distributions are identical; it is 1 if the 

distributions do not overlap [39]. Therefore we have for the squared Hellinger distance 

DH
2
(Org1, Org2) = 1 – overlap(Org1,Org2). The following equation (1) was derived to 

calculate the pairwise Hellinger distance between the multivariate Gaussian distributions, 

Org1 and Org2, where μ1 and μ2 are the mean vectors and Σ1 and Σ2 are the covariance 

matrices of Org1 and Org2, and d is the dimension of the sequence space, i.e. d=12. 

 

(1) 

 

CLANS: 

 Next, the Hellinger distance was used to define a dissimilarity matrix for all pairs of 

organisms. The dissimilarity matrix was converted to P-values, which were then used as input 

in CLANS [20] to compute a cluster map showing all organisms. CLANS is a graph-based 

clustering method that represents sequences as nodes. All nodes are connected by weighted 

edges where the pairwise similarity between the sequences determines the strength of the 

weight [20]. In our study, individual organisms were considered as nodes and the weight of 
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the edges connecting the nodes was based on the pairwise Hellinger distance (pairwise 

overlap of sequence space) between the organisms. Hence stronger connections represent a 

larger overlap/similarity between the peptide sequence spaces, while organisms with high 

divergence in their C-terminal motifs are only weakly connected or completely disconnected 

in the cluster map. Initially the nodes are randomly placed in a 2D space and experience 

attraction forces according to how strongly they are connected with the other nodes. In an 

iterative refinement scheme, nodes move towards similar nodes with an attractive force 

proportional to the similarity between them. A small, overall repulsive force is applied to all 

pairs of nodes to keep them from collapsing into a single node. Since CLANS [20] uses non-

deterministic dynamics, each run performed with the same dataset will result in a similar but 

not necessarily identical clustering. Thus, multiple clustering runs were performed to check 

the reproducibility of the final clustering. Because initial tests showed that with the default 

attraction and repulsion values nodes (organisms) were collapsing, we used very small 

attraction values (up to 0.1) and high repulsion values (up to 500) to avoid collapse of nodes 

and to obtain visually better clusters. 

 

Frequency plot: 

 The WebLogo [40] online tool was used to create the frequency plots, using custom 

colors. Only unique peptide sequences were used to generate all the frequency plots. The 

amino acid percentage plots were created using R version 2.13.1 [41]. 
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FIGURE LEGENDS 

 

Figure 1: Cluster map based on 437 sequenced Gram-negative organisms. In the cluster map 

each node represents one organism. The Hellinger distance was used to calculate the pairwise 

overlap between the multi-dimensional peptide sequence spaces of organisms. The calculated 

similarity or overlap was used to cluster the organism in CLANS. Figure 1A is colored by 

taxonomic class and figure 1B is colored by the number of peptides in each organism.  

 

Figure 2: CLANS cluster map of randomly shuffled peptides from 437 organisms. Figure 2A 

is colored by taxonomic class and figure 2B is colored by the number of peptides in an 

organism. Colors are similar to figure 1. 

 

Figure 3: Frequency plots derived from unique C-terminal insertion signal peptides for 

Escherichia (figure 3A) and Neisseria (figure 3B) strains. Frequency plots were made from 

188 unique peptides of 31 Escherichia strains and 50 unique peptides of 7 Neisseria strains. 

The +2 position is indicated by the arrow in the figure. Escherichia strains (figure 3A) have 

no strong preference for any amino acid at the +2 position, whereas Neisseria strains (figure 

3B) have a strong preference for positively charged amino acids (Arg and Lys) at the +2 

position. Hydrophobic residues are colored in blue and polar residues are colored in red. 
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Figure 4: Percentage of Arg and Lys at +2 positions. We calculated the percentage of Arg and 

Lys residues at the +2 position from all unique peptides from the 437 organisms; color is 

based on taxonomic class.  The Neisseria strains show a high preference for positively 

charged amino acids at the +2 position compared to other organisms.  

 

Figure 5: Frequency plots of C-terminal β-strands from Proteobacteria. Frequency plots 

generated from unique peptides of α-proteobacteria are shown in figure 5A, of β-

Proteobacteria in figure 5B, of γ-Proteobacteria in figure 5C, of δ-Proteobacteria in figure 5D 

and of ε-Proteobacteria in figure 5E. The frequency plots are overall very similar; an eception 

is the high frequency of His at the +3 position in β-Proteobacteria and of Tyr at the +5 

position in ε-Proteobacteria. 

 

Figure 6: Frequency of His at the +3 position. The percentage of His at +3 was calculated 

from all unique peptides from 437 organisms. A high preference for His at +3 is observed for 

16-stranded OMPs of β-Proteobacteria. Since there is a high number of 16-stranded OMPs in 

Burkholderia strains (see additional file 1 and additional file 2), they were also annotated in 

the plot. 

 

Figure 7: Frequency plot of unique C-terminal β-strands from Helicobacter species. 163 

unique C-terminal insertion signals from 14 Helicobacter strains were used to generate this 

plot. The +5 position which has the strong preference of Tyr is marked with the arrow. 

 

Figure 8: The percentage of Tyr (figure 8A) and aromatic hydrophobic amino acids (figure 

8B) at the +5 position. For figure 8A, we calculated the percentage of Tyr at the +5 position 

from all unique peptides from 437 organisms amd  for figure 8B, we calculated the frequency 

of Tyr, Phe and Trp at the +5 position from all unique peptides from 437 organisms. In both 

plots Helicobacter strains shows a high preference of Tyr and aromatic amino acids at the +5 

position. 

 

Figure 9: Control experiments to show the influence of overrepresented OMP classes. OMP 

classes OMP.8 (figure 9A), OMP.12 (figure 9B), OMP.16 (figure 9C) and OMP.22 (figure 

9D) were removed and only organisms with more than 20 unique peptides were used in the 

clustering. Peptides belonging to OMP.nn and OMP.hypo (OMPs with unknown strand 
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number and function) were not removed from the data set during the control experiments. 

Color legends are similar to the figure 1A. 

 

Figure 10: CLANS cluster map of OMP-Organism class based entities. In figure 10A and 

figure 10B, each node is a representative of OMP-Organism entities that have more than five 

unique peptides of a single OMP class from an individual organism. In figure 10A, entities 

are only from the OMP.22 class, which includes entities from all proteobacterial taxonomic 

classes. In figure 10B, entities are only from γ-Proteobacteria and include different OMP 

classes. 

 

Figure 11: Illustration of the difference between the Euclidean distance and the Hellinger 

distance for one-dimensional Gaussian distributions. Two Gaussian distributions are shown as 

black lines for different choices of µ and σ. The grey area indicates the overlap between both 

distributions. |µ1−µ2| is the Euclidean distance between the centers of the Gaussians, DH is 

the Hellinger distance (equation 1). Both values are indicated in the title of panels A-D. A: 

For µ1 = µ2 = 0, σ1 = σ2 = 1, the Euclidean distance and the Hellinger distance are both zero. 

B: For µ1 = µ2 = 0, σ1 =1, σ2 = 5 the Euclidean distance is zero, whereas the Hellinger 

distance is larger than zero because the distributions do not overlap perfectly (the second 

Gaussian is wider than the first). C: For µ1 =0, µ2 = 5, σ1 = σ2 = 1, the Euclidean distance is 

five, whereas the Hellinger distance almost attains its maximum because the distributions 

only overlap little. D: For µ1 =0, µ2 = 5, σ1 =1, σ2 =5, the Euclidean distance is still five as 

in C because the means did not change. However, the Hellinger distance is larger than in C 

because the second Gaussian is wider, which leads to a larger overlap between the 

distributions. 
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TABLES 

Table 1: Dataset classified based on OMP class. The OMP class of a protein is determined by 

the number of β-strands present in the them, which was predicted by HHomp [14] based on 

the homologous relation to an OMP structure, when HHomp couldn’t find a homologous 

structure, it classifies the proteins in OMP.nn. OMP.hypo proteins belong to the class of 

hypothetical proteins [14]. 

Table 1Dataset classified based on OMP class 

OMP class # of β-

strands 

Total # of 

peptides 

OMP class found in # of 

organisms in different 

proteobacteria class 

Function/Protein family 

α β γ δ ε 

OMP.8 8 2300 71 77 227 24 10 Membrane anchors [15] 

OMP.10 10 95 5 2 66 2 2 Bacterial proteases [16] 

OMP.12 12 1550 60 75 212 18 10 Integral membrane enzymes [15] 

OMP.14 14 572 47 38 221 20 22 Long chain fatty acid transporter [17] 

OMP.16 16 2477 41 86 210 23 8 General porins [15] 

OMP.18 18 327 2 14 134 7 1 Substrate specific porins [15] 

OMP.22 22 7462 71 86 231 25 23 TonB-dependent receptors [15] 

OMP.nn Not known 7591 71 86 231 26 23 - 

OMP.hypo Not known 73 2 18 33 9 1 - 

 

 

ADDITIONAL FILES 

Additional file 1 

The table in the additional file 1 lists the number of OMPs in an organism present in different 

OMP classes.  

 

Additional file 2 

The figure in the additional file 2 shows the number the over representation of OMP.16 

proteins among β-proteobacteria and OMP.22 among α-proteobacteria. 
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