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1. Summary 

The general aim of this thesis was to develop innovative methods to build and 

optimize empirical soil models based on soil sensing data. The combination of ef-

fective sampling schemes with geophysical sensing techniques is an active branch 

of soil scientific research. This approach aims to provide high resolution soil 

property data for flood forecasting and protection, agricultural management as 

well as for developing strategies to adapt to global climate change. 

This thesis comprises four manuscripts. The first two manuscripts are dedicated 

to calibration sampling strategies. Sampling design is crucial in predictive model-

ling, since all results and interpretation are based on the selected samples. 

Hence, the first manuscript investigates the effect of the calibration set size and 

the calibration sampling strategy on the generalization error of visible and near 

infrared (vis–NIR) models. Furthermore, a method useful for identifying the op-

timal sample set size necessary for calibrating vis–NIR models of soil attributes 

is developed. Within the context of digital soil mapping, the second manuscript 

focuses on a comparison of different calibration sampling strategies for building 

predictive models of soil properties based on soil sensing. An improved version of 

the well-known conditioned Latin hypercube sampling algorithm, which is pro-

posed in this manuscript, outperforms other approaches.  

The third and fourth manuscripts are devoted to the development of novel meth-

ods and algorithms for dealing with large, heterogeneous and therefore complex 

soil sensing datasets. Generally in vis–NIR spectroscopy, there is a lack of meth-

ods for assessing the reliability of distance metrics for soil similarity analysis, 

required for building predictive models. In addition, the relationship between soil 

spectral similarity and soil compositional similarity has not been explored yet. 

For the third manuscript several distance metric algorithms for assessing the 

vis–NIR spectral similarity between soil samples are developed. The results show 

that some of the proposed algorithms outperform the standard methods signifi-

cantly and adequately reflect the similarity in the compositional domain. The 

methods developed in the third manuscript are used in the fourth for developing 

an algorithm named spectrum based–learner (SBL). The SBL is inspired by 

memory–based learning (MBL). While a global target function may be very com-

plex, MBL methods describe the target function as a collection of less complex 

local (or locally stable) approximations. The results presented in this manuscript 

show that in terms of predictive accuracy the SBL outperforms several other ma-

chine learning algorithms, which are usually employed in soil sensing.  

 



2 
 

2. Zusammenfassung 

Ziel der vorliegenden Dissertation war die Entwicklung innovativer Ansätze zum 

Aufbau und zur Optimierung von Bodenprognosemodellen auf Basis 

geophysikalischer Naherkundungsdaten. Die Kombination effektiver 

Stichprobenverfahren mit geophysikalischen Naherkundungsverfahren stellt 

einen aktuellen Forschungszweig der Bodenkunde und der Geoinformatik dar, 

welcher kosteneffizient hochauflösende Bodeninformationen für die 

Anbauplanung, den Hochwasserschutz oder die Erarbeitung von notwendigen 

Anpassungen an den Klimawandel liefern kann. 

Die Arbeit umfasst vier Manuskripte. Die ersten beiden behandeln die 

Entwicklung und den Vergleich von Stichprobenverfahren zum Aufbau von 

Prognosemodellen. Stichprobenverfahren stellen ein zentrales Glied im Rahmen 

der Bodenlandschaftsmodellierung dar, da alle weiteren Ergebnisse und 

Interpretationen auf der Auswahl der Stichprobe basieren. Im ersten Manuskript 

werden daher die Auswirkungen des Stichprobenumfangs und des jeweiligen 

Stichprobenverfahrens im Hinblick auf die Generalisierungsleistung von 

Modellen auf Basis von vis–NIR Spektroskopiedaten untersucht. Des Weiteren 

wird eine neue Methode zur Identifizierung des optimalen Stichprobenumfangs 

vorgestellt. Das zweite Manuskript behandelt neben der Einführung einer 

verbesserten Version des Latin Hypercube Sampling-Algorithmus 

schwerpunktmäßig den Vergleich von Stichprobenverfahren zum Aufbau von 

Bodeneigenschaftsmodellen mit Hilfe quasi-kontinuierlicher geophysikalischer 

Feldmessungen. 

Das dritte und vierte Manuskript behandelt die Entwicklung neuer effizienter 

Modellierungsverfahren zur Bearbeitung großer, heterogener und komplexer vis–

NIR Datensätze. In der vis–NIR Spektroskopie fehlen generell Ansätze zur 

Bewertung von Ähnlichkeitsmaßen, die die Grundlage für Prognosen darstellen. 

Darüber hinaus wurde der Zusammenhang zwischen der spektralen Ähnlichkeit 

und der Ähnlichkeit in der mineralischen und organischen Zusammensetzung  

der Böden bisher noch nicht untersucht. Im dritten Manuskript werden daher 

verschiedene Maße zur Abschätzung der spektralen Ähnlichkeit entwickelt und 

untersucht, die die Zusammensetzung des Boden adäquat widerspiegeln und im 

Vergleich bessere Ergebnisse als die bisher eingesetzten Standardmethoden 

liefern. Die vorgestellten Methoden dienen in der vierten Publikation der 

Entwicklung des sogenannten Spectrum-Based-Learner-Algorithmus (SBL). 

Hierbei handelt es sich um einen neuen leistungsfähigen Prognose-Algorithmus. 

Der SBL beruht auf der memory-based learning-Methode (MBL) und 

berücksichtigt auch die Ähnlichkeit in der Zusammensetzung der Böden. Dabei 

werden im Vergleich zu globalen Regressionsmodellen, viele jedoch weniger 

komplexe, lokaler Modelle erstellt. Die Ergebnisse zeigen, dass der SBL-

Algorithmus anderen Regressionsverfahren überlegen ist.  
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3. General introduction 

3.1 The role of soil information in ecosystem services  

Soil is an essential source of ecosystem services such as food production and cli-

mate regulation (Sanchez et al., 2009). Soil information is of fundamental im-

portance for decision making on adequate land use planning and management 

and environmental protection which is in fact the motivation behind soil surveys 

(Rossiter, 2004).  

Due to the rising levels of greenhouse gases, there is a great interest on monitor-

ing the dynamics of gases such as CO2 and NO2 in the atmosphere. Soil is the 

most important global source of NO2 (Bellamy et al., 2005; Billings, 2008; 

Haygarth and Ritz, 2009) and also the largest terrestrial pool of C. Soil repre-

sents a key component in the global C cycle and has an important influence on 

the global CO2 fluxes between terrestrial biosphere and atmosphere. Soil can be a 

source or sink of atmospheric C, therefore soil organic C monitoring is not only of 

fundamental importance for understanding the atmospheric C dynamics, but also 

for developing environmental policies.  

Currently there is a growing demand for up-to-date soil information (Hartemink, 

2008; McBratney et al., 2006). This demand is especially critical for some vast 

areas of the globe (e.g. in the tropics) where the information about soils is very 

limited (Minasny and Hartemink, 2011). In general, these areas require massive 

information about soils for agricultural development and environmental sustain-

ability issues.  

One of the majors concerns in soil science relies on the fact that the conventional 

methods of soil analysis are too expensive and time-consuming, and soil legacy 

databases are often not adequate for assessing and mapping the soil condition 

(McBratney et al., 2006; Minasny and Hartemink, 2011). In this sense, producing 

relevant soil information for improving the current soil legacy databases is one of 

the big goals of soil sensing and digital soil mapping (DSM). They can be used in 

a cost- and time- effective way for describing and monitoring the soil variability 

at different scales with high spatial and temporal resolutions. Furthermore, 
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these methods are important for bridging the gap between the digital revolution 

and soil science. 

The GlobalSoilMap project (Sanchez et al., 2009) aims to digitally map the global 

soil resources at a high spatial resolution in order to create solid basis on which 

end-users (e.g. agricultural extension workers, policy-makers, farmer associa-

tions, environmental extension services, agribusinesses, and nongovernmental 

and civil society organizations) can make decisions. In this project, soil sensing 

and DSM methods are being intensively used. For example, Odgers et al., 2012, 

used DSM techniques and soil sensing products for creating maps of soil organic 

C, over the (contiguous) United States territory at a resolution of 100 m. However 

they acknowledge that there are still some methodological challenges which need 

to be addressed prior the full-scale production mapping. 

On the other hand, despite the potential of soil sensing techniques for DSM has 

been demonstrated at the field-scale level; at regional or continental scales most 

of these techniques are not yet operational. In this respect, research efforts need 

to be addressed in the development of pedometric methods which deal the intrisic 

complexity problems of large and heterogeneous soil sensing datasets. Further-

more, adequate strategies for identifiying relevant data for modeling purpouses 

are also necesseray in order to improve the efficiency of soil sensing techniques in 

DSM. 

 

3.2 Background of soil vis–NIR spectroscopy and sensing 

Soil visible and near infrared (vis–NIR) spectroscopy is the study of the interac-

tions between soil and electromagnetic radiation at wavelengths ranging from 

400 nm to 2500 nm (Figure 1). Usually these interactions are studied in order to 

infer soil characteristics valuable in the assessment of the soil condition and to 

save additional labor costs. 
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Figure 1. Regions of the electromagnetic spectrum. 

 

Soil absorbs and reflects electromagnetic radiation as a function of its compo-

nents, which in turn absorbs and reflects energy differently. For example, pedo-

genic oxides, silicates and carbonates usually exhibit contrasting spectral charac-

teristics in the vis–NIR region as shown in Figure 2. However, since soil is a very 

complex mixture of mineral and organic constituents its vis–NIR characteristics 

are largely non-specific.  

Soil visible and infrared spectra result from electronic and vibrational processes. 

In the visible region the spectral features are mainly due to electronic processes 

(which mostly occur in the ultraviolet region and rarely in the NIR region). Soil 

spectral features associated to electronic processes are related to minerals that 

contain iron (e.g. hematite, goethite). Despite fundamental vibration bands lie in 

the mid- and far-infrared regions, vibrational processes yield features in the NIR 

region due to the excitation of overtones and combination of tones of the funda-

mental modes of anion groups (e.g. OH, CO3 and SO4; Hunt and Salisbury, 1970). 

Therefore, soil constituents present weak, broad and in most of the cases over-

lapping and masking vis–NIR spectral responses. However, soil vis–NIR data 

contains important information regarding soil mineralogy. For instance, im-

portant diagnostic features of clay minerals due to the combination metal-OH 

bend plus OH stretch, can be found between 2200 nm and 2300 nm (Clark and 

Roush, 1984).  
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Figure 2. Spectra of samples of iron and aluminum oxides, silicates and sheet sil-

icates and carbonates commonly present in soils. Columns 1, 3: non-preprocessed 

reflectance spectra. Columns 2, 4: Continuum-removed reflectance or band-depth 

normalized reflectance spectra. 

 

On the other hand, despite the contrasting spectral characteristics between soil 

minerals, in most of the cases they present absorption features at the same spec-

tral regions (Figure 2). Therefore, overlapping and masking effects between spec-

tral features of minerals would be expected in a mixture of minerals. For exam-

ple, in a mixture between hematite and goethite, overlapping would occur along 

the whole vis–NIR region. However, in such a case just some small spectral fea-

tures of goethite and hematite (which are usually persistent in mineral mixtures) 
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would be determinant for their identification and quantification. On the other 

hand, in a mixture of olivine and quartz, the spectral features of olivine would 

not be affected since quartz is featureless (Figure 2).  

The first studies on soil sensing in the visible region date back to 1958, when 

Kojima (1958a, 1958b) used a photo colorimeter to study the relationships be-

tween soil color and both moisture content and soil particle size. Later on, during 

the 60s two important works on soil spectroscopy were published. In both cases, 

the variation patterns of soil reflectance spectra as a function of several soil 

chemical and physical attributes were investigated. The first one corresponds to 

Obukhov and Orlov (1964) who studied the spectral reflectance of some soils in 

Russia. They suggested that soil reflectance spectroscopy could be used as a tool 

for soil survey. The second one corresponds to Bowers and Hanks (1965) who con-

cluded that mineralogy, organic matter, particle size, moisture content are soil 

attributes that have a key influence on the absorption of radiated energy by the 

soil. After these seminal studies, several other important contributions to soil 

spectroscopy appeared during the 70s and 80s (e.g. Planet, 1970; Condit, 1970; 

Montgomery and Baumgardner, 1974; Stoner and Baumgardner, 1981; Coleman 

and Montgomery, 1987; Irons et al., 1989; King and Clark, 1989).  

During the 90s several researches began to address the problem of the quantifi-

cation of soil attributes from soil visible and infrared data. For example, Ben-Dor 

and Banin (1990) modeled carbonate concentration in soils as a function of NIR 

features. Sudduth and Hummel (1991) compared several multivariate regression 

methods for calibrating soil organic matter to soil vis–NIR spectra. Palmborg and 

Nordgren (1993) used NIR data to model basal respiration in soils. Fritze et al. 

(1994) developed NIR models to predict microbial biomass and soil respiration. 

Ben-Dor and Banin (1995) used NIR data for simultaneous predictions of several 

soil attributes used in soil classification. Palacios-Orueta and Ustin (1996) used 

discriminant analysis to classify soil types according to their main vis–NIR fea-

tures. Janik et al. (1998) discussed about the possibility to replace conventional 

routine analysis by using mid infrared reflectance analysis. Despite they did not 

included vis–NIR spectroscopy in their analyses, they stressed that soil spectros-
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copy is in general a very powerful tool for enhancing soil information, especially 

in cases where spatially intensive sampling for soil analysis is needed. All these 

studies reported the possibility to predict accurately a wide range of soil attrib-

utes based only on the soil spectral characteristics. They also indicated that for 

extracting useful information from vis–NIR data (which is often complex), it is 

often necessary to use multivariate statistical methods (Viscarra-Rossel and Beh-

rens, 2010). In addition, most of them pointed out some of the advantages that 

soil spectroscopy has over several conventional methods of soil analysis: it is 

time- and cost-efficient, non-invasive and non-destructive, requires minimal 

preparation of the sample, multiple soil attributes can be inferred from a single 

measurement of the spectral reflectance, etc. (McBratney et al., 2006). 

The promising results in terms of prediction performance and efficiency reported 

in soil spectroscopy studies triggered the development of soil vis–NIR spectral 

databases a.k.a soil spectral libraries. Nowadays, soil spectroscopy and soil spec-

tral libraries have become powerful tools in soil science helping to analyze and 

store large amounts of soil information efficiently. Hence, the size of these data-

bases has been increasing recently and some initiatives to create national and 

global spectral libraries emerged (e.g. Viscarra Rossel, 2009; Wetterlind and 

Stenberg, 2010; Terhoeven–Urselmans et al., 2010).  

 

3.3 Other soil sensing systems in the domains of the electromagnetic 

spectrum 

Apart from vis–NIR spectroscopy, soil sensing also comprises the study of the 

interactions between soil and radiated energy at wavelengths belonging to other 

regions of the electromagnetic spectrum such as the mid infrared (2500 – 25000 

nm), gamma-ray (<0.01 nm) and radio wave regions (1 mm – 100000 km).  

Numerous studies have shown that soil mid infrared data can be used for predict-

ing soil attributes accurately. Methods for soil mid infrared analysis have been 

developed in parallel to the development of vis–NIR spectroscopy. Moreover, in 

comparison to soil vis/NIR spectroscopy, models of soil attributes calibrated from 
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mid infrared data usually produce more accurate results (e.g. Viscarra Rossel et 

al., 2006; Reeves, 2009). This is mainly due to the strong vibrational processes 

occurring in the mid infrared region. However, for in-situ applications, mid infra-

red spectroscopy still presents some drawbacks related with the portability and 

sensibility to external conditions of the mid infrared sensors (Reeves, 2009). 

Soil gamma-ray spectroscopy is based on the natural radioactivity of the soil. It 

produces natural high frequency radiation in the gamma region of the electro-

magnetic spectrum. These soil gamma-rays present different energy levels and 

intensities. In the environment, K, U and Th are the only naturally occurring el-

ements that produce gamma-rays of sufficient energy and intensity to be meas-

ured by gamma-ray sensors (Minty et al., 1997). These radioisotopes produce 

well-defined peaks at specific areas of the gamma spectrum. They exhibit charac-

teristic radioactive decay patterns which can be used to quantify their concentra-

tions in the soil. These three radioisotopes have been present and continuously 

decaying (therefore their concentrations are continually decreasing) in rocks 

since their creation (Minty et al., 1997). The concentration of these radioisotopes 

in soils strongly depends on pedogenic processes (Dickson and Scott, 1997). 

Therefore, from soil gamma-ray data it is possible to extract important infor-

mation on quite specific soil/regolith properties (Wildford, 2012). Gamma-ray 

sensing has been used in soil science for soil-landscape formation and modeling 

(e.g. Stockmann et al., 2012; Triantafilis, et al., 2013), developing weathering in-

dexes (e.g. Wildford, 2012), clay content modeling (e.g. Van Der Klooster et al., 

2011), etc. Since soil gamma-radiation is attenuated by bulk density and water 

content, it has also been used for modeling these soil attributes (e.g. Pires, 2009, 

de Groot et al., 2009).   

Electromagnetic induction (EMI) is another technique which has been largely 

used in proximal soil sensing. It is based on the measurement of the apparent soil 

electrical conductivity and works at the radio wave region of the electromagnetic 

spectrum. Its basic principle of operation is very simple: the system uses a 

transmitter coil which induces a specific electromagnetic field into the soil which 

generates a secondary electromagnetic field. This secondary field varies in inten-
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sity depending on the soil. A receiver coil measures both the primary and second-

ary fields. The ratio between the primary and secondary fields is a linear function 

of the electrical conductivity (McNeill, 1992; Sudduth et al., 2001). It has been 

widely demonstrated that EMI can be used as an effective tool for assessing and 

mapping soil salinity (e.g. Cameron et al., 1981; McKenzie et al., 1989; Johnston 

et al., 1996; Job et al., 1999; Triantafilis et al., 2000; Amezketa, 2007; McLeod et 

al., 2010; Ganjegunte and Braun, 2011). Several researchers have also reported 

the use of EMI for predicting other soil attributes such as water content (e.g. 

Sheets et al., 1995; Job et al., 1999, Reedy and Scanlon, 2003) and soil texture 

(e.g. Hedley et al., 2004).  

Due to the efficiency benefits of soil sensing in the electromagnetic spectrum, this 

research area has been growing rapidly during the last years generating large 

and very complex volumes of data. However, pedometric techniques for dealing 

with such big and complex soil datasets have not been well explored yet. For ex-

ample, search for useful information, data processing and analysis in big and 

complex datasets are challenging tasks in research efforts should be intensified.  

 

3.4 Calibration sampling: size and predictor space coverage  

Most of the soil sensing techniques have great potential for high resolution digi-

tal soil mapping because they are faster and more cost-effective compared to con-

ventional methods (Bramley and Janik 2005; Kim et al., 2009). For example, soil 

vis–NIR spectroscopy can be used as a tool for increasing the number of analyses 

(increasing the sampling density) and consequently the accuracy of digital soil 

maps without considerable increase in costs (Wetterlind et al., 2010). In this re-

spect, for one given study area in which vis–NIR data is available at high spatial 

resolution, it is possible to calibrate vis–NIR models of soil attributes by using a 

small but well designed set of soil spectral samples. Those models can be used to 

predict soil attributes efficiently over a large number of soil samples belonging to 

the area under study using only the soil vis–NIR spectra. This applies also for 

other soil sensing techniques such as electromagnetic induction gamma-ray spec-
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troscopy. The question that frequently arises prior modeling soil sensing data is: 

how many observations (samples) should be included in a calibration set in order 

to efficiently produce relevant and generalizable (spatial) soil information from 

soil sensing models? In this context, selecting an adequate calibration set in 

terms of predictor space coverage and sample set size is important to ensure an 

accurate prediction performance. This is particularly fundamental when the 

number of samples that can be collected or analyzed is rather low, which in prac-

tice is often the case due to budget and/or time constraints. 

Generally, a calibration sample set drawn from a population should reflect or 

cover the variability of the population. In this sense, two different approaches can 

be chosen for selecting calibration samples: the coverage of the predictor space or 

the coverage of the geographical space. If existing information is available in 

terms of relevant environmental covariates, the predictor space approach should 

be preferred over the geographical space approach (McKenzie and Ryan, 1999).   

Concerning calibration sampling strategies for covering the predictor space, some 

methods such as fuzzy c–means–based sampling (de Gruijter et al., 2010), Latin 

hypercube sampling (McKay et al., 1979; Minasny and McBratney, 2006), Ken-

nard-Stone sampling (Kennard and Stone, 1969) and response surface sampling 

(Lesch et al., 1995; Lesch, 2005) have been used in pedometrics research. Despite 

this, several works have shown that the strategies employed for covering the 

multivariate space can lead to different levels of prediction accuracies (e.g. Siano 

and Goicoechea, 2007; Rodionova and Pomerantsev 2008; Fu et al., 2011).  

Since soil sensing is a crucial step in digital soil mapping, research on both sam-

pling strategies and strategies for identifying adequate calibration set sizes have 

not received enough attention (Grinand et al., 2012; Kuang and Mouazen, 2012). 

In principle, the optimal calibration set size may vary depending on the soil vari-

ability of the area under study (Kuang and Mouazen, 2012). Due to this, strate-

gies for identifying the optimal calibration set size based only on the predictive 

information, (i.e. without an explicit prior knowledge on the soil attributes) are of 

great importance for the practical application of soil sensing techniques at the 

field scale. On the other hand, Minasny and McBratney (2010) stress the im-
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portance to investigate the relation between the calibration sampling strategy 

and the prediction accuracy of soil models.  

 

3.5 Complexity in soil vis–NIR datasets 

The suitability and reliability of soil spectroscopy at the field-scale level has been 

already demonstrated by several researchers. This is mainly due to the fact that 

often at the filed-scale level the soil variability in terms of mineralogical and or-

ganic matter compositions (which strongly affect the soil spectral features) is low. 

For instance, the soil particle size effect on the soil spectral features could be dif-

ferent in two areas with contrasting soil mineralogical composition. On the other 

hand if the mineralogical composition is rather similar, it is expected that the soil 

particle size effect on the spectral features will also be similar. This also explains 

why soil vis–NIR models calibrated from land-scape scale databases  usually pre-

sents lower predictive performance in comparison to vis–NIR models calibrated 

from field-scale databases. Furthermore, for continental- and global-scale da-

tasets the predictive performance of vis–NIR models usually do not reach an ac-

curacy level required for practical applications (e.g. Brown et al., 2006).  

Overall, the accuracy of vis–NIR models usually decreases when the dataset con-

tains very diverse samples in terms of geographical origin, mineralogy, parent 

material, environmental conditions, etc. Table 1 summarizes the results reported 

in several papers on vis–NIR modeling for clay content and soil organic carbon. 

The lowest predictive errors are reported for field-scale studies while for regional-

scale studies the results are diverse. Furthermore, the reported prediction error 

presents a positive correlation with the standard deviation of the soil attribute in 

the calibration set used in the studies (Figure 3). Stenberg et al. (2010) observed 

the same effect of the standard deviation on the error. This tendency, suggest 

that soil variability affects the complexity of soil vis–NIR datasets. 
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Table 1. Main results reported in different papers on vis–NIR modeling for clay 

content and soil organic carbon using partial least squares regression (the stand-

ard regression method in soil spectroscopy). Summary statistics correspond to the 

statistics of either, the calibration o set or the whole set used in each study. n in-

dicates the number of samples used for validating the models. The root mean 

square error (RMSE) and the R2 correspond to the results of the validation of the 

predictions. 

Source Scale N Mean S.D. Min. Max. R2 
RMSE 

(%) 

 – Soil organic carbon (%) – 

Kuang and Mouazen 

(2011) 
Field 62 1.48 0.20 1.06 2.16 0.12 0.19 

Sudduth et al. 

(2010) 
Field 74 1.22 0.20 - - 0.55 0.13 

Wetterlind and 

Stenberg (2010) 
Field 58 2.30 0.20 1.80 2.80 0.70 0.12 

Viscarra Rossel et 

al. (2006) 
Field 116 1.34 0.28 0.81 1.98 0.60 0.18 

Cañasveras et al. 

(2012) 
Regional 55 0.85 0.33 0.09 1.96 0.77 0.18 

This thesis (Manu-

script 4) 
Regional 1050 0.64 0.39 0.06 4.00 0.48 0.28 

Wetterlind and 

Stenberg (2010) 
Field 81 1.80 0.40 1.20 3.40 0.57 0.27 

Summers et al. 

(2011) 
Regional 228 1.50 0.53 0.31 2.90 0.57 0.35 

Cambule et al. 

(2012) 
Regional 137 0.90 0.60 0.00 2.70 0.65 0.37 

Wetterlind and 

Stenberg (2010) 
Field 112 2.30 0.60 1.30 4.50 0.85 0.22 

Kuang and Mouazen 

(2011) 
Field 38 1.38 0.70 0.70 3.51 0.75 0.30 

Sarkhot et al., 

(2011) 
Field 154 1.04 0.76 0.08 3.72 0.86 0.29 

Wetterlind and 

Stenberg (2010) 
Field 65 4.20 0.80 3.10 8.20 0.71 0.53 

Northup and Daniel 

(2012) 
Field 139 2.49 0.87 1.45 4.87 0.86 0.30 

McCarty et al. 

(2002) 
Regional 60 7.10 1.10 4.30 8.80 0.82 0.55 

Kuang and Mouazen 

(2011) 
Regional 122 1.50 1.20 0.70 14.43 0.83 0.54 

Nocita et al.  

(2012) 
Regional 36 1.35 1.25 0.18 6.03 0.87 0.33 

Leone et al.  

(2012) 
Regional 93 1.54 1.46 0.04 13.50 0.80 0.47 

Stenberg  

(2010) 
Regional 50 3.00 1.60 0.40 6.90 0.71 0.88 

This thesis 

(Manuskript 4) 
World 900 1.1 1.93 0.00 45.80 0.50 1.08 

Viscarra Rossel and 

Behrens (2010)  
Regional 1104 2.5 2.28 0.01 13.90 0.82 0.96 
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Kuang and Mouazen 

(2011) 
Field 21 1.74 2.50 0.74 14.43 0.96 0.62 

 – Clay content (%) – 

Sudduth et al. 

(2010) 
Field 13 17.50 2.40 - - 0.15 2.68 

Viscarra Rossel et 

al. (2006) 
Field 118 14.23 3.04 8.00 24.14 0.60 1.91 

Wetterlind and 

Stenberg (2010) 
Field 61 45.00 5.00 37.00 58.00 0.61 3.50 

Wetterlind and 

Stenberg (2010) 
Field 65 28.00 5.00 11.00 34.00 0.50 3.60 

Summers et al. 

(2011) 
Regional 237 16.32 5.42 4.97 35.98 0.66 3.13 

Wetterlind and 

Stenberg (2010) 
Field 112 46.00 8.00 25.00 66.00 0.82 3.70 

Wetterlind and 

Stenberg (2010) 
Field 81 24.00 9.00 12.00 52.00 0.81 4.30 

Genot et al.,  

(2010) 
Regional 150 21.2 9.65 1.50 70.60 0.71 6.74 

Cañasveras et al. 

(2012) 
Regional 55 27.50 9.70 5.00 72.00 0.80 4.07 

This thesis (Manu-

script 4) 
Regional 1050 23.51 12.48 1.00 81.10 0.78 6.10 

Leone et al.  

(2012) 
Regional 93 28.20 13.14 0.48 66.33 0.82 5.29 

Stenberg  

(2010)  
Regional 50 24.00 18.00 0.00 67.00 0.89 5.38 

Viscarra Rossel and 

Behrens (2010).  
Regional 1104 33.95 18.84 2.80 79.20 0.83 7.70 

This thesis (Manu-

script 4) 
World 900 33.08 22.49 0.00 96.80 0.71 12.95 

 

 
Figure 3. Reported root mean square error (RMSE) of vis–NIR based predictions 

against the standard deviation of the soil attribute in the calibration sets. Right: 

clay content. Left: soil organic carbon (SOC). Created from data presented in Ta-

ble 1. 
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One reasonable approach for reducing the complexity of a given soil vis–NIR da-

taset (X), which is very heterogeneous, is to split X into c partitions or clusters, so 

that samples in the same partition share similar soil characteristics. In this 

sense, the complexity in each partition must be lower than the global complexity 

contained in X. In general in soil science and specifically in soil spectroscopy, sev-

eral studies have demonstrated that models based on (either spectrally or geo-

graphically) local partitions perform better than single or global models. In many 

cases the use of geographical information for partitioning a spectral dataset re-

sults in reduction of the soil (spectral) variability within each partition in com-

parison to the global soil (spectral) variability. Stevens et al. (2010) observed that 

vis–NIR local models of soil organic carbon perform better than global models 

when the soil dataset is partitioned into different soil texture classes and agro–

pedological regions. They also showed that the organic carbon variability within 

each partition is lower than the organic carbon variability of the entire area. 

Guerrero et al. (2010) used different regional calibration sets for predicting soil 

attributes in each region. For modeling soil attributes in different agricultural 

fields, Wetterlind and Stenberg (2010) used models calibrated with a national soil 

vis–NIR library, and models calibrated only with local samples taken from the 

fields under study. They observed that the local models outperformed the nation-

al soil vis–NIR models. Janik et al. (2007) suggested that local calibrations of soil 

spectroscopic models based on the minimization of changes in soil type may be 

more accurate than global calibrations. Similar conclusions are reported on the 

analysis of soil data for digital soil mapping. When the variability patterns of a 

given soil attribute differs between geomorphological or pedological regions, they 

should be modeled separately (McBratney et al., 1991; Schmidt et al., 2010). 

In this respect memory–based learning (MBL, Mitchel, 1997) offers a plausible 

approach for solving such problems. In contrast to the commonly used approaches 

for modeling vis–NIR spectra such as partial least squares (PLS), principal com-

ponent regression (PCR), support vector machines (SVM), decision trees (DT), 

artificial neural networks (ANN), etc., the MBL approaches do not derive an ex-

plicit global function or model. In MBL for each new sample or spectrum from 

which a given attribute has to be predicted, a certain number of spectrally simi-
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lar samples are searched in a reference set (memory) and retrieved for calibrating 

one spectral model in order to predict the attribute specifically for the new sam-

ple. Put in another way, since it is possible to derive numerous soil characteris-

tics from the soil vis–NIR features, by using an adequate similarity/dissimilarity 

measure is possible to retrieve samples from a reference set (e.g. a soil vis–NIR 

library) which share similar vis–NIR features and therefore similar composition-

al characteristics (e.g. mineralogy, organic matter composition). If the new sam-

ple is actually similar to the retrieved samples, then inferences about the new 

sample can be done by using the retrieved samples. Apart from being a very co-

herent strategy for soil vis–NIR modeling, MBL can also be viewed as one strate-

gy for managing soil spectral libraries for soil inference tasks since eventually a 

small subset of the entire library is used i.e. library samples which are not simi-

lar to the new samples are ignored.  

Two typical examples of MBL are the k–nearest neighbor algorithm which has 

been widely used in several research fields and locally weighted regression (LWR, 

Naes et al., 1990) which has been applied specifically in vis–NIR spectroscopy. In 

the literature MBL is also referred to as local modeling, nevertheless local model-

ing comprises other approaches such as cluster–based modeling and geographical 

segmentation–based modeling, etc. Hence, MBL is one type of local modeling.  

In general, modeling soil attributes using large and diverse soil vis–NIR libraries 

still remains a challenging task, and methods for dealing with complexity prob-

lems in vis–NIR datasets are necessary. Such methods would be useful for turn-

ing large-scale vis–NIR libraries in operational tools. 

 

4. Objectives  

The objectives of the investigations carried out throughout this doctoral thesis 

are divided according to two main research topics which are: i. calibration sam-

pling in soil sensing datasets and ii. soil vis–NIR modeling in complex datasets 

using similarity/dissimilarity search methods.  
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For calibration sampling the main objectives were:  

 Investigate on the effect of both the calibration set size and the sampling 

algorithm on the predictive performance of soil vis–NIR models. 

 Analyze the sample predictor space coverage on the basis of different cali-

bration sampling algorithms. 

 Propose a straightforward method for identifying the optimal calibration 

set size for modeling soil sensing data in linear datasets.  

 Evaluate the interaction between different machine learning methods and 

sampling algorithms and its effect of the accuracy of soil models based on 

sensing technologies. 

 Evaluate and compare the effect of different calibration sampling strate-

gies on digital soil maps produced by using data predicted from soil sen-

sors. 

For soil vis–NIR modeling in complex datasets using similarity/dissimilarity 

search methods, the main objectives were: 

 Investigate the relationship between soil compositional similarity and soil 

vis–NIR similarity. 

 Explore and develop suitable approaches for performing similari-

ty/dissimilarity measurements between samples in soil vis–NIR datasets.  

 Provide a method to evaluate the reliability of soil vis–NIR distance meas-

urements.  

 Introduce new methods for measuring soil vis–NIR distances.  

 Develop a high-performance memory–based learning algorithm for model-

ing complex soil spectral data using reliable soil spectral similari-

ty/dissimilarity measures.  

 

5. Results and discussion  

The main results and conclusions presented in this section are subdivided accord-

ing to the four manuscripts that comprise this doctoral thesis. The first two man-
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uscripts are dedicated to calibration sampling. In the first one, the effect of the 

calibration set size and the calibration sampling strategy on the generalization 

error of laboratory vis–NIR models is investigated. One of the most relevant con-

tributions of this manuscript is the development of a straightforward method 

useful for identifying optimal calibration set sizes.  The second manuscript focus-

es (in the context of digital soil mapping) on calibration sampling strategies for 

proximal soil sensing (EMI and gamma-rays) data modeling at very low calibra-

tion set sizes. 

The third and fourth manuscripts are devoted to the development of novel meth-

ods and algorithms for dealing with complexity in vis–NIR datasets. The methods 

developed for the third manuscript are used in the fourth manuscript for develop-

ing a new high performance algorithm for modeling vis–NIR data. 

 

6.1 Calibration sampling 

6.1.1 Set size and methods 

(Manuscript 1, Geoderma, submitted on July 2012) 

This manuscript presents the results of the investigation on the effect of the cali-

bration set size and three different calibration sampling strategies on the error of 

vis–NIR models. Furthermore, analyses of representativeness for identifying op-

timal calibration set sizes were also carried out. The calibration sampling strate-

gies were based on the following sampling algorithms:  

 Kennard-Stone (KSS, Kennard and Stone, 1969). 

 Fuzzy c–means–based sampling  (FCMS, de Gruijter et al., 2010). 

 Conditioned Latin hypercube (cLHS, Minasny and McBratney 2006). 

For carrying out this study, two soil vis–NIR datasets from Brazil were used. The 

first one corresponds to a field-scale dataset which covers an area of 5 km2. This 

dataset comprises samples collected at two fixed depths in points distributed on a 

spatially dense grid with 459 nodes (Figure 4).  
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Figure 4. Spatial distribution of both the candidate profiles for calibration sam-

pling and the validation profiles in the field scale dataset (left) and regional scale 

dataset (right). 

 

The second dataset is a regional-scale dataset which comprises an area of approx-

imately 300 km2. It includes 318 profiles sampled at three fixed depths (Figure 

4). These datasets were selected for this study due to the high variability in 

terms of soil types. In both cases, the main driving factor of soil variability should 

be topography. The clay minerals found in these areas are relatively constant. 

Due to this, the datasets are not expected to be strongly affected by non-linear 

relationships between soil vis–NIR features and soil mineralogy.  

The soil attributes for which soil vis–NIR models were calibrated were clay con-

tent and exchangeable calcium (Ca++).  

The three sampling algorithms were used separately in each dataset to select a 

given number of samples which were then used to calibrate models of the studied 

soil attributes. This process was repeated several times varying the number of 

selected samples from 10 to 380. These models were used to predict the target 

soil attributes in an independent set of samples. Finally the prediction errors 

were compared at the different calibration set sizes. 
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The results found showed that the error of the soil vis–NIR models depends on 

the calibration set size. Particularly for low calibration set sizes the errors are 

higher. This is probably due to insufficient coverage of the predictor space. In this 

respect, when the number of calibration samples is relatively low the sampling 

algorithm plays a critical role on the accuracy of the vis–NIR models.  

The highest training errors were returned by the KSS. However this algorithm 

tends to select samples with a wider range of soil attribute values in comparison 

to the cLHS and the FCMS algorithms. This is due to the fact the KSS selects 

extreme samples. In this sense, it is possible that the inclusion of extreme sam-

ples in the calibration set can be beneficial when the dataset does not contain 

outlier samples. On the other hand, in the case of proximal soil sensing meas-

urements where many outlier samples can arise (due to uncontrolled conditions) 

the KSS would not be a good choice since outlier samples would be included in 

the calibration set. In this case, FCMS or cLHS should be preferred over the KSS 

algorithm. In order to illustrate the outlier sensitivity of the three algorithms, 

two synthetic grids comprising two variables (x1 and x2) were created (Figure 5). 

The first grid does not contain outliers while the second grid contains one. The 

sampling algorithms were used for selecting 9 samples. The KSS and FCMS show 

uniform coverage of the grid while the coverage of the cLHS points is irregular. 

However, the KSS selected the outlier present in the second grid. For the KSS 

Figure 5 shows that the inclusion of one outlier in the grid produces a displace-

ment of the sampling locations of three points. Despite the FCMS algorithm in-

cludes a random initialization (for the selection of the centers of the clusters), 

comparing the locations at which the FCMS points are placed in both datasets, 

the distribution patters are very similar. This means that the FCMS, is not af-

fected by the inclusion of the outlier. In the case of the cLHS, despite the distri-

butions of the points is different in both grids (which is due to the steps related 

with the random search of samples in the cLHS algorithm), the outlier sample is 

not selected.  
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Figure 5. Distribution of nine sampling points selected by the sampling algo-

rithms (KSS, FCMS and cLHS) on two synthetic grids formed by two variables 

(x1 and x2). The first grid does not contain outlier points (top) and the second 

grid contains one outlier point (bottom). 

 

On the other hand, the sample representativeness on the basis of the above sam-

pling strategies was also analyzed. In this respect, a straightforward method for 

identifying the optimal calibration set size based only on the analysis of the vis–

NIR data (i.e. without prior knowledge on the soil attributes) was proposed in 

this thesis. It consists in comparing the statistics of the sample set against the 

(original) statistics of the population at different calibration set sizes. This is car-

ried out in the standardized principal component (PC) space of the soil sensing 

data. The sample mean ( ) and the sample variance (  ) of the PC variables are 

compared to the original mean ( ) and the original variance (  ) of the PCs. Note 

that    and  , are equivalent to 1 and 0 respectively since the PC variables previ-

ously standardized to zero mean and unit variance. Both the absolute difference 

between variances (|     |) and the absolute difference between means (|   |) 

were computed as (eqs. 8 and 9): 

|     |    |    |   |
 

 
  ∑      

   
     |; (1) 

|   |   |
 

 
 ∑      

 
       |, (2) 
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where      
  and       are the sample variance and the sample mean of the jth PC, 

and k is the total number of PCs retained in the analysis. 

It was found for all the algorithms that the original distribution of the vis–NIR 

data in the principal component (PC) space can be better replicated by increasing 

the calibration set size (Figure 6). The results showed that the samples selected 

by the cLHS and the FCMS algorithms better replicate the original distribution 

of the PCs in comparison to those selected by the KSS algorithm. For low calibra-

tion set sizes the cLHS better replicated the original distribution of the PCs in 

comparison to the FCMS. However at calibration set sizes ≥ 130 the cLHS and 

the FCMS produced comparable results.  

 
Figure 6. Calibration set size against the absolute difference between the sample 

variance (s2) and the original variance (  ); and absolute difference between the 

sample mean ( ) and the original mean ( ).  

 

The reason why cLHS reproduces adequately the statistics of the population is 

because the selection of samples is based on the probability distribution of the 

variables and not on the distances between points. Figure 7 shows an example of 

the localization of the 9 points selected from the synthetic grid (without outliers) 

in Figure 5 in the cumulative probability of the variables (x1 and x2). The cLHS 

algorithm selects samples which cover well the cumulative probability of the var-
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iables, while the samples selected by KSS and FCMS are clustered at three loca-

tions in the cumulative probabilities. A good coverage of the probability distribu-

tion of the variables ensures a good representation of the original statistics of the 

population. 

 
Figure 7. Distribution of nine sampling points selected by the sampling algo-

rithms (KSS, FCMS and cLHS) on the cumulative probability of the variables x1 

(top) and x2 (bottom) of the synthetic grid in Figure 5 without outliers.  

Overall, the comparison between the distribution of the calibration set and the 

original distribution of the population of samples is an adequate strategy for 

identifying an optimal calibration set size based only on the predictive infor-

mation. Furthermore, for the calibration of models it can be beneficial to select a 

calibration sample set whose distribution is close or equal to the distribution of 

the population. 

 

6.1.2 Sampling for digital soil mapping at field scale 

(Manuscript 2, Geoderma, submitted on June 2011) 

This study was developed in the context of proximal soil sensing modeling for dig-

ital soil mapping. For this manuscript, the generalization error of predictive prox-

imal soil sensing models was studied on the basis of three different calibration 
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sampling algorithms: i. A weighted conditioned Latin hypercube sampling with 

extremes (wecLHS) which is a modified version of the original algorithm pro-

posed by Minasny and McBratney (2006); ii. Fuzzy c-means sampling (FCMS, 

Gruijter et al., 2010); and iii. Response surface sampling (RSS, Lesch, 2005).  

The interaction of these three sampling algorithms with other components of dig-

ital soil mapping was jointly analyzed in this study. These components are: i. 

Calibration set size; ii. Regression strategy; and iii. Estimation of the generaliza-

tion error of predictive models based on cross-validation strategies. These compo-

nents are summarized as follows: 

 Relative small calibration set sizes: 

o For wecLHS, n = 29. 

o For FCMS, n = 28. 

o For RSS, n = 20. 

 Two different regression approaches. 

o Multiple linear regression (MLR). 

o Random forest regression (RF) . 

 Four cross-validation strategies based on resampling: 

o 10-fold cross validation (10cv). 

o Leave-group-out cross-validation (lgocv). 

o Bootstrapping (boot). 

o Bootstrapping 632 (.632boot). 

The study area comprises 0.36 km2 and it is located in Dessau-Rosslau near to 

the Elbe River in Saxony-Anhalt, Germany. Despite the low topographical varia-

tion within the study area, there is a high variation in soil texture. 

A mobile geophysical platform equipped with both a frequency-domain electro-

magnetic-induction sensor and a portable gamma-ray spectrometer was used to 

perform on-the-go (proximal) soil sensing measurements within the study area. 

The use of this platform resulted in a (spatially) very dense set of soil sensing 

data. In order map the measured soil sensing variables (predictive data), they 

were spatially interpolated using kriging. A total of three different electrical con-
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ductivity maps were produced as well as maps of K, Th and U derived from the 

gamma-ray measurements.  

The maps of predictive variables were used to identify the sampling points ac-

cording to each calibration sampling algorithm. Soil samples were collected from 

the identified sampling locations at two depths (0-10 cm and 10-30 cm). They 

were submitted to soil organic carbon (OC), pH and particle size (sand, silt and 

clay contents) analyses. The predictive data at these sampling points was ex-

tracted from the maps and used as input data for the two regression algorithms 

tested. Predictive models of OC, pH and particle size at each sampling depth ac-

cording to each sampling algorithm were developed.  

In order to estimate the generalization error of predictive models, the four cross-

validation strategies were used. Furthermore, each model calibrated with the 

sample set selected by each calibration sampling algorithm, was used to predict 

the selected soil attributes in the calibration sets selected with the two remaining 

calibration sampling algorithms (i.e. they were used as independent validation 

sets). Figure 8 summarizes the methodology followed in this study. 

 

Figure 8. Methodological framework employed in the study.  
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In general, the wecLHS sampling algorithm proposed in this study in combina-

tion with Random Forests produced the best results in terms of soil predictive 

accuracy. Furthermore, in terms of accuracy, the difference between the results 

produced by the calibration sampling algorithms is larger than the difference be-

tween the results produced by the regression algorithms. In other words, the cal-

ibration sampling strategy presented a higher impact on the predictive perfor-

mance of the soil models than the regression algorithms.  

The results also showed that high predictive accuracy can be obtained with a 

small calibration set size as long as a reliable sampling strategy is employed. For 

example, in this study, only 20 samples are enough for explaining 70 % of vari-

ance of pH, SOC, and soil texture. 

The best estimates of the generalization error of predictive models were produced 

by the LGOCV and the .632boot strategies. Nonetheless, the use of independent 

validation sets for further estimations of the uncertainty is recommended since 

resampling validation can result in either under- or over estimation of the accu-

racy. 

 

6.2 Soil similarity and complexity in vis–NIR datasets 

6.2.1 Distances and similarity search 

(Manuscript 3, Geoderma, accepted on August 2012, doi: 

10.1016/j.geoderma.2012.08.035) 

In spectroscopy in general, there is a lack of methods for assessing the reliability 

of distance metrics. For this manuscript nine distance metric algorithms for as-

sessing the vis–NIR spectral similarity/dissimilarity between soil samples were 

evaluated. They are as follows: 

 Euclidean distance (ED). 

 Mahalanobis distance (MD). 

 Spectral angle mapper (SAM). 

 Spectral information divergence (SID). 
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 Spectral difference surface (SDS) distance. 

 Principal component Mahalanobis (PC–M) distance 

 Optimized principal component Mahalanobis (oPC–M) distance. 

 Locally linear embedding Mahalanobis (LLE–M) distance. 

 Sigma locally linear embedding Mahalanobis (σLLE–M) distance. 

The SDS, oPC–M and σLLE–M correspond to novel methods. The ED, MD, SAM, 

SID and SDS operate directly in the spectral vis–NIR space, while PC–M, oPC–

M, LLE–M and σLLE–M use the Mahalanobis distance in a low dimensional 

space with uncorrelated variables derived from the original (and highly correlat-

ed) vis–NIR data. The PC–M corresponds to the standard method in soil spec-

troscopy for computing distances between vis–NIR spectra.  

For this manuscript, a novel method for evaluating the reliability of the similari-

ty/dissimilarity measures was also proposed. It is based on a nearest neighbor 

search. Apart from the vis–NIR data, this method also uses side or compositional 

information, i.e. information about one soil compositional variable which is avail-

able for a group of samples. It is assumed that there is a correlation (or at least 

an indirect or secondary correlation) between this side information and soil spec-

tra. In other words, this approach is based on the assumption that the similarity 

measures between the spectra of a given group of soil samples should be able to 

reflect their similarity also in terms of the side information (e.g. compositional 

similarity). The side information approach works as follows: 

1. A distance matrix is derived from the spectral matrix X. This spectral ma-

trix has a side information Y. 

2. By using the distance matrix, for each sample in X select its closet (most 

spectrally similar) sample. 

3. A comparison between the side information of each sample in X and the 

side information of its corresponding closest sample is performed. The sta-

tistics of these comparisons is evaluated in order to assess the reliability of 

the distance metric algorithm. 
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Figure 9 summarizes the side information approach for evaluating the distances 

computed between samples in a spectral matrix Xu and samples in a spectral 

matrix Xr. 

  
Figure 9. Methodological framework of the side information approach for soil 

compositional similarity search using soil vis–NIR distances. In the side infor-

mation comparison step, the root mean square of differences (RMSD) is used if 

the side variables are continuous. Optionally, if the side variables are discrete the 

kappa index is used. For this manuscript clay content and pH were used as side 

information. Therefore the RMSD was used as measure of similarity. 

In order to test the distance metric algorithms, they were used in a global soil 

spectral library (GSSL) developed by the World Agroforestry Centre (ICRAF) and 

the ISRIC - World Soil Information (2010). From the GSSL a total of 3643 sam-

ples were used in this study. The GSSL was split into two groups: a group of 700 

“unknown” samples (Xu,Yu), and a group of 2943 samples which was used as ref-

erence set (Xr,Yr). Note that Xr and Yr represent the spectra and their corre-
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spondent soil attribute (side information) in the reference set and Xu and Yu rep-

resent the spectra and their correspondent soil attribute (side information) in the 

“unknown” set. The soil attributes used in this study were clay content and pH. 

The distance algorithms were used to find in Xr the most spectrally similar sam-

ples of Xu (Figure 9). In order to evaluate the compositional similarity, the clay 

content and pH values of the Xu were compared to the clay content and pH val-

ues of the samples found in Xr by each algorithm.  

It was found that information on the compositional similarity is useful for obtain-

ing reliable distance measurements. The best distance metric approaches are 

those that better reflect the soil compositional similarity. In general, the results 

indicate that the distances computed in the spectral vis–NIR space have a lower 

performance in comparison to the ones computed in the low dimensional project-

ed spaces.  

The conventional methods (ED, MD, SAM and SID) commonly used in remote 

sensing did not present satisfactory performance when used in soil vis–NIR spec-

troscopy. One probable reason for that relies on the fact that in high dimensional 

spaces such the notion of similarity becomes less accurate (Abou–Moustafa and 

Ferrie, 2008).  

The worst results were obtained by using the MD method. This is attributed to 

the fact that in this method the covariance matrix is computed in the vis–NIR 

spectral space which does not reflect well the relationships in the spectral varia-

bles. For this reason the classical estimates of the covariance matrix in the origi-

nal vis–NIR space should be avoided. 

In comparison to the standard method used in soil spectroscopy (i.e. the PC–M) 

for computing distances between vis–NIR spectra, its improved version (i.e. the 

oPC–M) proposed in this manuscript returned much better results. The oPC–M 

distance method only differs from the standard PC–M distance in the way in 

which the adequate number of PC variables to retain is calculated. The number 

of PCs retained in the PC–M method is based on the explained variance of the 

components while in the oPC–M the number of PCs is selected based on the max-

imization of the compositional similarity between most similar samples. The PC–
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M tends to select a lower number of PC variables than the oPC–M. This indicates 

that the conventional selection of the number of PC variables may lead to a loss 

of information which is important for soil similarity analysis. However in the 

oPC–M method this important information is captured and used for computing 

more reliable distances. For example, when principal component analysis is used 

for regression, usually a larger number of PC variables are required in compari-

son to the (“adequate”) number of PC variables that is indicated by the explained 

variance of the components. For regression of soil infrared data several works 

report that the number of components usually varies between 10 and 25 (e.g. Vis-

carra Rossel et al., 2006; Viscarra Rossel et al., 2008; Vasques et al., 2009; 

Terhoeven-Urselmans et al., 2010). However when principal component analysis 

is used only for projecting the soil infrared spectra into a lower dimensional space 

(i.e. compression) usually less than 6 PC variables are retained since they tend to 

explain a large part of the variance (e.g. Savvides et al., 2010; Viscarra Rossel et 

al., 2011). This also indicates that there is information about the soil composition 

in some of the PCs that are usually ignored when the conventional method of se-

lection of PCs for dimensionality reduction purposes is employed.  

Overall, it was found that the oPC–M, the LLE–M and the σLLE–M methods 

outperformed largely the current approaches used for soil vis–NIR distance 

measurements and they can be used for computing reliable vis–NIR similarity 

measurements.  

These reliable methods would be very useful for integrating soil spectral libraries 

into proximal soil sensing for in the field soil predictions. For instance, given a 

soil spectral library (Xr) and a set of soil vis–NIR spectra measured in the field 

(Xu), it is possible to use a distance metric algorithm for searching the samples in 

Xr which are most similar to the Xu samples. Once the most similar samples 

have been found, specific soil models representing the field data can be calibrat-

ed. By using this procedure, redundant information as well as noisy or non–

informative samples (regarding the field spectral variability) in the soil spectral 

library can be removed in order to infer the target soil attribute in the field.  
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6.2.2 Memory–based learning 

(Manuscript 4, Geoderma, 2013, vol. 195–196, p. 268–279  

doi: 10.1016/j.geoderma.2012.12.014) 

 

In contrast to pure component systems, soil is a very complex mixture of mineral 

and organic constituents. Soil vis–NIR datasets are particularly complex and 

therefore the prediction performance of soil vis–NIR models calibrated from re-

gional spectral libraries is usually low. In this respect, the main goal in this 

manuscript was to develop a suitable memory–based learning algorithm for cali-

brating soil vis–NIR models of soil attributes in large and heterogeneous da-

tasets.  

In this this manuscript, the spectrum–based learner (SBL) is introduced. It is a 

new algorithm which exploits both the vis–NIR features and the information of 

local distance matrices. As any other memory–based learning (MBL) method, the 

SBL does not yield a global function; instead it performs local interpolations 

which are based on a reference set or spectral library. The SBL is a three step 

approach which comprises: 1.Nearest neighbor search (recovering), 2. Training 

and testing, and 3. Fitting and predicting. These steps are described as follows: 

1. Nearest neighbor search (recovering): The main goal of this step is to discover 

which samples in a reference set “resemble” the samples to be predicted. Re-

covering similar samples from a set of samples stored in a “memory” (refer-

ence set) implies that similarity or dissimilarity measurements must be car-

ried out. For these measurements a distance matrix can be used. In the SBL 

the nearest neighbor search process is carried out by using an optimized prin-

cipal component distance method. The distances computed with this method 

are used to evaluate how similar or dissimilar the vis–NIR spectra are to the 

samples to be predicted.  

2. Training and testing: Training and testing are carried out in the spectral 

space. For each sample to be predicted a model must be fitted by using its 

most similar samples i.e. its k-nearest neighbors. However prior to the fitting 

process, an adequate number of neighbors (k) (to be used in each calibration) 

must be identified. In this respect, k must be optimized since it can affect the 

fitting process. In this step k is optimized based on the minimization of the 
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prediction error of the set of closest samples (first nearest neighbors) to the 

prediction set which are found in the reference set.  

This subset of closest samples can be viewed as the subset in the reference set 

that better reproduces the soil variability of the prediction samples therefore 

it can be exploited for optimizing k. Local predictions are carried out by using 

a linear Gaussian process (GP) regression algorithm which does not present 

internal parameters to be optimized. The SBL does not use (distance-based) 

weigthting functions for local regressions. The predictors at each local regres-

sion are a combination of local distance matrices and the vis–NIR features. 

3. Fitting and predicting: Once the optimal k is found, a new local GP regression 

model is fitted for each sample in the prediction set with its corresponding k-

nearest neighbors found in the reference set. As explained previously, the 

predictors in this step are also a combination of local distance matrices and 

vis–NIR features. 

The above steps carried out by the SBL algorithm are summarized in Figure 10.  

 
Figure 10. Description of the recovering, training and testing, and fitting and 

predicting steps in the SBL algorithm. 
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In order to test the SBL algorithm, two vis–NIR soil libraries were used: a re-

gional soil spectral library (R–SSL, n = 4200) of the State of São Paulo (Brazil) 

and a soil spectral library of the world (G–SSL, n = 3643). As validation sets, 350 

soil profiles (1050 samples) from the R–SSL and 125 soil profiles (900 samples) 

from the G–SSL were randomly sampled. The remaining samples were used as 

training sets in each spectral library. 

The analyses were carried out separately for each soil spectral library. The SBL 

algorithm was used to calibrate vis–NIR local models and perform vis–NIR–

based predictions of clay content (CC), soil organic carbon (OC) and exchangeable 

Ca++ in the validation samples. The SBL performance was evaluated on the basis 

of the accuracy of these predictions.  

In addition, the following machine learning algorithms were used for predicting 

CC and OC: partial least squares regression (PLS), support vector regression ma-

chines (SVM), locally weighted PLS (LWR) and LOCAL. The PLS and SVM are 

global approaches (i.e produce a global function) while (like SBL) LWR and LO-

CAL are memory–based learners. The results obtained with these algorithms 

were compared with those obtained with the SBL algorithm.  

Overall, SBL outperformed the global calibration models (PLS and SVM) and the 

other memory–based learning approaches (LWR and LOCAL) in both spectral 

libraries. In all cases, the SBL produced the lowest training and prediction errors 

as well as the highest prediction R2. It was observed a trend in which the varia-

bility of the errors produced by the algorithms increases with the variability of 

the soil attribute. Comparing the prediction errors of CC in both libraries, it was 

found that the differences between algorithms are much higher in the R–SSL 

than in the G–SSL. 

For the results obtained in the G–SLL, it was found that the SBL can produce 

competitive results in comparison with other approaches applied in global soil 

spectral libraries reported in the literature. 
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The good prediction performance of the SBL results from the combination of two 

important characteristics: i. an appropriate neighbor selection is carried out by 

using the distance matrix computed with the optimized principal components 

distance method, and ii. the inclusion in each local model of a k × k distance ma-

trix as a source of additional predictor variables. 

In contrast to other memory–based learning methods, in the SBL algorithm the 

distances between the target sample and its neighbor samples are not used for 

assigning weights to the neighbors. The distance information is used differently.  

The SBL uses the distance matrix as a source of additional predictor variables. 

At each (local) neighborhood, the local distance matrix between the all the neigh-

bors (which is squared and symmetric) is used as source of additional predictors. 

For example, for the SBL predictions of CC in the R–SSL 360 neighbors at each 

local model were used. This means that each local model of CC was calibrated 

with 360 new predictor variables in addition to the spectral features.  

The reason why the neighbor weighting approach is not used in the SBL algo-

rithm is twofold. First, weighting implies the modification of all the spectral vari-

ables. Therefore if a distance score does not represent properly the similari-

ty/dissimilarity between the samples, then it will affect the entire set of predic-

tors of the sample which was weighted with the “noisy” distance score. Secondly, 

in that approach the information about the position of the samples within the 

neighborhood is missing since only the information about the distance to the tar-

get sample is employed.  

It is assumed that the more similar two samples are in terms of their vis–NIR 

spectra, the more similar they are in terms of soil compositional characteristics.  

This means that in a given set of samples, the variability of a soil attribute could 

be explained in part by the variability of the spectral similarity/dissimilarity 

scores with respect to a reference point (spectrum).  

Each sample in the neighborhood is used as a reference point within the same 

neighborhood. The similarity/dissimilarity between the reference point and all 

the samples is estimated. Each new similarity/dissimilarity variable (or column 
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of the distance matrix) represents new information about the position of the 

samples in the multivariate space. The exact position of the target sample within 

the neighborhood is known since the number of reference points is equal to the 

number of neighbor samples.   

 

Figure 11, is used to illustrate the information (on the position of samples in a 

neighborhood) contained in distance matrices. It shows a one-dimensional exam-

ple of distances between a target sample (red point) and two neighbors (trian-

gles). In the example, two situations are presented: in the first one the target 

sample is located at one of the extremes and the distance between its neighbor 

samples is represented by the letters “a” and “b”, while in the second situation 

the sample is located between its neighbors and the distance to them are also “a” 

and “b”. The example 2 also presents two situations: in the first one, the target 

sample (located at the left extreme) is separated by two identical neighbors by a 

distance “b”. In the second situation the neighbors are different; however target 

sample is located in the middle of them by a distance “b”. When only the distance 

information between the target sample and its neighbor samples is used (as in 

the neighbor weighting approach) the information on the position of the samples 

is lost.  

 

 

Figure 11. One-dimensional examples of sample position within neighborhoods. 

 

Probably the information about the position of the target sample within the 

neighborhood could capture information about the variability of the samples 

which cannot be easily captured by the regression algorithm when it is applied 
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only to the vis–NIR variables. In spectroscopy, Zerzucha et al. (2012) showed that 

non-linear modeling problems can be resolved by simply applying partial least 

square regression on distance matrices.  

In general, some of the concluding remarks drawn from this study are: 

 The SBL is a new and reliable algorithm which produces more accurate 

predictions than global calibration models and the other memory–based 

learning approaches.  

 The optimized principal component distances used in the SBL algorithm 

probably represent better the compositional similarity between samples 

than the conventional distance matrices used in the LWR and LOCAL al-

gorithms.  

 The use of local distance matrices as source of additional predictor do not 

degrade the prediction performance, instead it can result in an increment 

of it.  

 The application potential of the SBL algorithm is not restricted to soil 

spectroscopy; its use could be extended to other research areas in which 

complex spectral libraries are being used. 

 

Finally, this manuscript points out that soil spectroscopy research should be fo-

cused on bridging the gap between modeling algorithms and theories of the inter-

actions between soil components and electromagnetic radiation. With the devel-

opment of the SBL algorithm, this manuscript attempts to stimulate the use of 

memory–based learning which represents a straightforward strategy for integrat-

ing theory and algorithms. 
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Abstract 

By using a small and representative number of soil samples from a given area it 

is possible to calibrate vis–NIR models of soil attributes. Those models can be 

used to predict soil attributes over a large number of soil samples of the area by 

only using the spectral information. Despite the well-known potential of vis–NIR 

spectroscopy for obtaining high resolution soil information, research on the ade-

quate size of the calibration set has not received enough attention. In this re-

spect, we investigated the effect of both the calibration set size and the calibra-

tion sampling strategy on the predictive performance of vis–NIR models of clay 

content and exchangeable Ca (Ca++). We evaluated the following calibration sam-

pling algorithms: Kenard–Stone (KSS), conditioned Latin hypercube (cLHS) and 

fuzzy c-means (FCMS). These algorithms were tested separately in a field–scale 

dataset and in a regional scale dataset. For each dataset we randomly selected a 

validation subset and the remaining samples were used as candidate samples for 
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calibration. The accuracy of vis–NIR models of clay content and Ca++ were com-

pared on the basis of the sampling algorithms used for selecting the calibration 

samples. We also tested different calibration set sizes varying from 10 to 380 

samples in steps of 10 samples. The models were calibrated by using the support 

vector regression machines (SVM) algorithm. The training root mean square er-

ror (RMSE), the normalized RMSE and the prediction RMSE were used to evalu-

ate the sensibility of the models to both the sampling algorithm and the calibra-

tion set size. In addition, we investigate on the sample representativeness of each 

algorithm. The results show that the sampling strategy is critical at low calibra-

tion set sizes. Furthermore, based on the sample representativeness analysis we 

suggest a method to identify an adequate calibration set size. 

Keywords: soil spectroscopy; sampling strategy; calibration set size; Kennard–

Stone sampling; Latin hypercube sampling; fuzzy c–means.  

 

1. Introduction 

During the last two decades a growing interest on the quantification of soil at-

tributes by means of soil sensing techniques has emerged. Most of these tech-

niques such as soil infrared soil spectroscopy have great potential for high resolu-

tion soil sampling and mapping because they are faster and cost-effective com-

pared to conventional methods (Bramley and Janik 2005; Kim et al., 2009). For 

example, soil visible and near infrared spectroscopy (vis–NIR, 400-2500 nm) can 

be used as a tool for increasing the number of analyses (increasing the sampling 

density) and consequently the accuracy of soil maps without considerable in-

crease in costs (Wetterlind et al., 2010). In this respect, for one given area in 

which vis–NIR data is available at high spatial resolution, it is possible to cali-

brate vis–NIR models of soil attributes by using a small but representative num-

ber of soil spectral samples. Those models can be used to predict soil attributes 

efficiently over a large number of soil samples belonging to that area by only us-

ing the soil vis–NIR spectra. In this context, the strategy for selecting an ade-

quate calibration set in terms of representativeness and size (number of samples) 

is of fundamental importance to ensure accurate prediction performances. 
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Despite the well-known potential of vis–NIR spectroscopy for obtaining high spa-

tial resolution soil information, research on both the sampling strategy and the 

adequate calibration set size have not received enough attention (Grinand et al., 

2012; Kuang and Mouazen, 2012). In principle, the optimal calibration set size 

could vary depending on the soil variability of the area under study (Kuang and 

Mouazen, 2012). Due to this, strategies for identifying the optimal calibration set 

size without an explicit prior knowledge of the soil attributes to be predicted are 

of great importance for the practical application of soil spectroscopy at the field 

scale. On the other hand, Brown et al, (2005) indicate that the calibration sam-

pling strategy is crucial when only few samples can be included in the calibration 

set. Furthermore, Minasny and McBratney (2010) stress the importance to inves-

tigate the relation between the calibration sampling strategy and the prediction 

accuracy of soil models.  

Concerning calibration sampling algorithms, the most common ones applied in 

pedometrics are the fuzzy c–means based sampling (de Gruijter et al., 2010) and 

the Latin hypercube sampling (McKay et al., 1979; Minasny and McBratney, 

2006). Another calibration sampling algorithm widely employed in chemometrics 

(Daszykowski et al., 2002) and often used in soil spectroscopy is the Kennard-

Stone sampling (Kennard and Stone, 1969). All these algorithms attempt to cover 

adequately the multivariate space of a set of predictors. Despite this, several 

works have shown that the strategies employed for covering the multivariate 

space can lead to different levels of prediction accuracies (eg. Siano and Goicoe-

chea, 2007; Rodionova and Pomerantsev 2008; Fu et al., 2011).  

In this context the main objectives of this paper were: i. Investigate on the effect 

of both the calibration set size and the sampling algorithm on the predictive per-

formance of soil vis–NIR models for predicting clay content and exchangeable 

calcium (Ca++) and ii. Analyze the sample representativeness on the basis of three 

different calibration sampling algorithms. 
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2. Theory 

2.1 Kennard–Stone sampling (KSS) 

The KSS (Kennard and Stone, 1969) has been widely used in quantitative spec-

troscopy showing good performance in terms of calibration sampling (eg. Wu et 

al., 1996; Daszykowski et al., 2002; Zhu et al., 2009; Gogé et al., 2012). The KSS 

is a deterministic sequential approach which was initially called uniform map-

ping algorithm since it attempts to select samples uniformly distributed in the 

predictor space. In KSS, the procedure to select a training or calibration subset of 

n samples (Xtr           
 ) from a given set of N samples (X =        

   note that 

n<N) consists in:  

1. Find in X the sample      which is closest to the mean (μ), allocate it in Xtr 

and remove it from X. 

2. Find in X the sample      which is the most dissimilar to     , and allocate 

      in Xtr and remove it from X. 

3. Find in X the sample      which is the most dissimilar to the ones already 

allocated in Xtr. Allocate       in Xtr and then remove it from X. Note that 

the dissimilarity between Xtr and each xi is given by the minimum distance 

of any sample allocated in Xtr to each xi. 

4. Repeat the step 3, n–4 times in order to select the remaining samples 

(             . 

For distance computations in the KSS algorithm, the Euclidean distance is com-

monly used, however the Mahalanobis distance (MD) is also an adequate alterna-

tive.  

 

2. 2 Conditioned Latin hypercube sampling (cLHS) 

In soil spectroscopy, the cLHS (Minasny and McBratney 2006) has been used for 

calibration sampling and uncertainty analyisis (e.g. Viscarra Rossel et al., 2008; 

McBratney et al., 2006). Basically, the cLHS attempts to cover the multivariate 

space of the predictor variables by using a stratified random sampling scheme 
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based on the cumulative distributions of those variables. In a one–dimensional 

space, the cumulative distribution of the variables of X is divided into n (number 

of sampling points) strata and the idea is to select one sample per stratum. How-

ever in a multivariate space this task becomes more complex. In cLHS the train-

ing subset Xtr with n samples taken from a set X with N samples (where n<N) 

must form a Latin hypercube. In the case of continuous variables, the objective 

function (O) of the cLHS integrates two objective functions O1 and O2, so that (eq. 

1): 

         (1) 

In this respect O1 is given by eq. 2: 

    ∑∑|    
          

      |

 

   

 

 

 (2) 

where m is the number of variables,     
          

     is the number of samples 

in Xtr  whose cumulative distribution values at the jth variable fall in the stratum 

that comprises   
  and   

   . On the other hand, O2 is based on the differences be-

tween C and A which are the correlation matrix for X and the correlation matrix 

for Xtr respectively. The O2 is calculates as follows (eq. 3): 

    ∑∑|       |

 

   

 

   

 (3) 

A simulated annealing scheme is carried out in order to find a subset Xtr that 

returns an O as close as possible to zero where the cumulative distribution of Xtr 

is representative for the original cumulative distribution of X.  The reader is re-

ferred to Minasny and McBratney (2006) for additional details on the cLHS algo-

rithm. 

 

2.3 Fuzzy c–means based sampling  

In soil science, the fuzzy c–means based sampling (FCMS) has been proposed as a 

calibration sampling method (de Gruijter et al., 2010). The FCMS works on the 

basis of the fuzzy c–means clustering algorithm (Dunn, 1973; Bezdek, 1981) and 
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a nearest neighbor search. The cluster algorithm basically creates sample parti-

tions of a given dataset. Each sample in the dataset is assigned to one cluster; 

however each sample also has a degree of membership to each cluster. It is ex-

pected that samples belonging to each cluster will share similar characteristics 

while the dissimilarity between samples in different clusters will be maximized. 

For each cluster construction a centroid is calculated. The optimal fuzzy c-

partitions and centroids are found by using the following objective function (eq. 

4):  

          ∑∑   
  

 

   

 

   

        
  (4) 

where V=        
 , is a matrix of prototypes of cluster centroids,         

  is the 

squared distance between each sample and each prototype, m is a fuzzy expo-

nent, c is the number of clusters and uij is given by eq. 5: 

     
 (     )

        

∑                  
   

 (5) 

Although different metrics for similarity measurements can be used the most 

common ones are the Euclidean distance and the Mahalanobis distance.  In fuzzy 

c–means clustering the only two parameters that need to be set are m (which 

controls the fuzziness of the cluster model) and c. Values of m may vary between 

1 (which corresponds to a hard clustering) and infinity (soft clustering) and a typ-

ical choice is m=2 (Odeh et al., 1999). 

In fuzzy c–means clustering for calibration sampling purposes a nearest neighbor 

search is applied to select the nearest sample to each cluster centroid. The set of 

nearest samples is then the final calibration set. In this sense the number of clus-

ters determines the number of calibration samples to be selected.  
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3. Material and Methods 

3.1 Field scale dataset  

3.1.1 Field sampling 

The field scale dataset covers an area of 5 km2 and it is located in the State of São 

Paulo (Brazil, 22°24'30"S and 48°29'58"W) at altitudes ranging from 500 to 710 

m. This area has been historically cultivated with sugarcane. A set of basaltic 

flows alternated with sandstones of the Serra Geral Formation underlies the ar-

ea. The predominant soils are: Arenosols, Ferralsols, Acrisols, Cambisols and 

Nitisols (IUSS Working Group WRB, 2006).  

The field sampling scheme was based on a dense regular grid of 100 × 100 m 

where soil samples were collected at depth intervals of 0–0.20 m (459 samples) 

and 0.80–1.00 m (452 samples). 

 

3.1.2 Soil vis–NIR scanning 

Soil samples were oven–dried for 24 hours at 45°C, and sieved (2 mm mesh) prior 

to the spectral scanning. In order to obtain their bidirectional reflectance vis–NIR 

spectra, an Infrared Intelligent Spectroradiometer (Geophysical and Environ-

mental Research Corporation, Buffalo, Ney York) was used. Each spectrum re-

sulted from an average of 100 scans of the same sample. The spectra were ob-

tained in the form of absorbance (log 1/Reflectance) with spectral resolution of 2 

nm in the range from 400 to 1000 nm and 4 nm for the range from 1004 to 2500 

nm. The final spectra comprised 830 spectral bands. 

 

3.2 Regional scale dataset  

3.2.1 Area and samples 

For this dataset the study are covers an area of approximately 464 km2 and it is 

located in the central–eastern portion of the state of São Paulo (Brazil, 

22°51'51"S and 47°36'08"W). This area has been used for sugarcane production. 



54 
 

Sandstone, siltstone, and shale dominate with inclusions of limestone, basalt, 

and colluvial deposits. Elevations range from 489 to 709 m. The soils are classi-

fied as Arenosols, Ferralsols, Acrisols, Alisols, Nitisols, Cambisols and Lixisols 

(IUSS Working Group WRB, 2006). 

In this dataset, soil samples correspond to 318 soil profiles collected over the past 

10 years in different soil surveys. These profiles were sampled at three depth in-

tervals:  0-0.2 m (318 samples), 0.4-0.6 m (317 samples), and 0.8-1.0 m (291 sam-

ples).  

 

3.2.2 Soil vis–NIR scanning 

Samples were air-dried and sieved (2 mm). Their soil vis–NIR (400-2500 nm) re-

flectance spectra were scanned using a FieldSpec Pro sensor (Analytical Spectral 

Devices Inc., Boulder, CO) which is characterized by a full width half maximum 

of 3 nm for the 350-1000 nm region and 10 nm for the 1000-2500 nm region. The 

final spectrum of each sample was an average of 100 scans. The reflectance spec-

tra were resampled to a spectral resolution of 4 nm obtaining a total of 526 spec-

tral features.  

 

3.3 Soil analyses 

The soil attributes evaluated in this study were clay content and exchangeable 

calcium (Ca++). For samples of both the field and the regional datasets the ion 

exchange resin method (Raij et al., 1987) was used for Ca++ analysis. The densim-

eter method (Camargo et al., 1986) was used to measure the clay content.  

 

3.4 Calibration: sampling, set size and SVM modeling 

Here we describe the general framework followed for analyzing both datasets 

separately. All the algorithms were implemented in R 2.14.1 (R Development 

Core Team, 2011). 

In order to avoid multi-colinearity and high dimensionality problems inherent to 

the vis–NIR spectra, all the sampling procedures were carried out on the princi-
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pal component (PC) space of the vis–NIR spectra. The number of PCs retained in 

the analysis was based on the cumulative amount of spectral variance explained. 

The PCs that accounted for less than 0.1% of the total spectral variance were ig-

nored. Each retained PC variable was standardized dividing it by its standard 

deviation.  

We used KSS, FCMS and cLHS for selecting the calibration samples. In the case 

of FCMS we used a fuzzy exponent of 2. For KSS and FCMS the Euclidean dis-

tance was used. As we standardized the PCs, in this case the Euclidean distance 

is equivalent to the Mahalanobis distance (De Maesschalck et al., 2000). 

As validation sets, we randomly sampled 138 profiles (275 samples) from the field 

dataset and 83 profiles (249 samples) from the regional dataset. The remaining 

samples were used as candidate samples for the calibration sampling algorithms. 

We sampled entire profiles as a validation sets instead individual samples in or-

der to avoid pseudo-replication of samples (Terhoeven-Urselmans et al., 2010). 

Figure 1 shows the spatial distribution of the candidate profiles for calibration 

sampling and also the validation profiles for both datasets. For each calibration 

sampling approach (KSS, cLHS and FCMS) we selected different calibration sets 

with sizes varying from 10 to 380 samples in steps of 10 samples.  

 
Figure 1. Spatial distribution of both the candidate profiles for calibration sam-

pling and the validation profiles in the field scale dataset (left) and regional scale 

dataset (right). 
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In each calibration set selected with each sampling approach, the support vector 

regression machines (SVM) algorithm (Drucker, 1996) was used for calibrating 

models of clay content and Ca++. The reason for using SVM instead the classical 

partial least squares (PLS) regression was to ensure good prediction perfor-

mance. Viscarra Rossel and Behrens (2010) showed that SVM outperforms sever-

al machine learning algorithms including PLS. Briefly, the SVM uses the kernel 

trick (Aizerman et al., 1964) to perform a non–linear transformation of the origi-

nal predictor space into a high dimensional space (without computing it explicit-

ly) with a linear or nearly linear structure. In this work, we used the linear basis 

function (LBF) kernel in order to keep the models as simple as possible. The LBF 

does not require any parameter (or hyper–parameter for the SVM models) to be 

optimized. Therefore, in this case the only parameter to be optimized in the SVM 

algorithm was the penalty factor (C).  

Training the SVM models consisted in tuning the C parameter. In this respect, 

we tested six possible values (0.1, 0.25, 0.5, 1, 2 and 4) of C. A total of 50 boot-

strap resampling iterations were used for both tuning C and assessing the predic-

tive accuracy of the SVM models. The optimal C parameter was chosen as the one 

that minimized the training root mean square error (RMSE) which was calculat-

ed as follows (eq. 6):  

      √
 

 
 ∑     ̂  

 

 

   

 (6) 

where yi is the ith observed value,  ̂  is the ith predicted value, and n is the num-

ber of samples. The normalized RMSE (nRMSE) was also calculated for the cali-

brations. The nRMSE is computed as follows (eq. 7): 

       
     

           
 (7) 

where ymax. and ymin. are the maximum and the minimum values of the observed 

soil attribute in the calibration samples selected by each sampling algorithm.  

The models obtained were applied on the validation sets and the RMSEs of these 

predictions were also computed.  
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As both FCMS and cLHS are stochastic methods, to reduce noisy effects in the 

results, we repeated the calibration sampling procedure 10 times for each cali-

bration set size with its correspondent SVM. The averages of the RMSEs as well 

as the averages of the nRMSEs of the 10 repetitions are the final RMSEs and 

nRMSEs reported here. 

 

3.5 Assessment of the sampling representativeness in the PC space 

In order to further evaluate the performance of the sampling algorithms we per-

formed an analysis of the representativeness of the selected samples in the PC 

space. As explained in the section 2.2 the cLHS algorithm ensures a good repre-

sentation of the original variability. In this respect, we also wanted to investigate 

whether the KSS and FCMS (in addition to covering the predictor space) can also 

guarantee a good representation of the original statistical distribution of the vis–

NIR data in the PC space. 

For each sampling algorithm and for each calibration set size, the sample mean 

( ) and the sample variance (  ) of the PC variables were compared to the origi-

nal mean ( ) and the original variance (  ) of the PCs. Note that    and  , are 

equivalent to 1 and 0 respectively since the PC variables are standardized to zero 

mean and unit variance. Both the absolute difference between variances (|   

  |) and the absolute difference between means (|   |) were computed as follows 

(eqs. 8 and 9): 

|     |   |    |   |
 

 
  ∑      

   
     |; (8) 

|   |   |
 

 
 ∑      

 
      |, (9) 

where      
  and       are the sample variance and the sample mean of the jth PC, 

and k is the total number of PCs retained. 
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4. Results and discussion  

4.1 Soil attributes and vis–NIR characteristics 

Soil attributes varied widely in both datasets (Table 1). Both, clay content and 

Ca++ showed a positive skewness, which indicates that the mass of the distribu-

tion is concentrated below the median value.  

Table 1. Descriptive statistics of the soil attributes of samples in both datasets. 
Soil 

attribute 
Units S.d.a Mean Min.a 1st Qu.b Median 3rd Qu b. Max.a Skewness 

 
 Field scale dataset 

Clay % 16.6 24.8 2.0 14.0 18.0 27.0 81.0 1.56 

Ca++ cmolc kg−1 14.0 14.4 0.0 5.4 10.1 18.7 99.7 2.08 

 
 Regional scale dataset 

Clay % 16.3 35.7 6.0 21.5 35.0 48.6 81.1 0.18 

Ca++ cmolc kg−1 16.2 25.9 2.0 14.0 22.0 32.0 98.1 1.50 
a Min., Max. and S.d. correspond to the minimum, maximum and standard devia-

tion respectively;  
b 1st Qu, 3rd Qu. Correspond to the first and third quartiles respectively. 

 

The vis–NIR reflectance spectra of the field dataset (Figure 2a) showed well de-

fined absorption features near to 1455 and 1915 nm bands. These are assigned to 

hygroscopic water in clay minerals (Ben-Dor et al., 2008). The spectra of all sam-

ples showed the influence of iron oxides with central absorption bands at 435, 

550 and 850 nm, which is characteristic of the presence of goethite and hematite 

(Demattê and Garcia, 1999; Fernandes et al., 2004). In most of the samples we 

observed absorption features in the 2207 nm and 2160 nm which are related to 

the kaolinite content (Demattê et al., 2004; Viscarra Rossel and Behrens, 2010). 

Mean values of soil vis–NIR reflectance showed a significant inverse correlation 

with clay content (r = -0 .72, p< 0.05) and with Ca++(r = -0 .61, p< 0.05). This is 

probably related to the fact that soils with high clay content present high energy 

absorption, while soils with high sand content present higher albedo due to high-

er amounts of quartz (White et al., 1997). Concerning the inverse correlation ob-

served between Ca++ and mean reflectance, it is possible that this is a conse-

quence of a secondary correlation between Ca++ and clay content (r = 0 .62, p< 

0.05) and not to a direct influence of the Ca++ on the albedo. In general, the vis–

NIR reflectance spectra of soil samples showed similar characteristics in the 
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shapes of the absorption features. This means that mineralogical differences 

among samples are relatively small taking into account that soil mineralogy has 

strong influence on the shape and position of absorption features (Ben-Dor and 

Banin, 1995). In this sense, the main differences between samples are associated 

to textural variations.  

 
Figure 2. Reflectance spectra corresponding to the samples with: the lowest mean 

reflectance, the highest mean reflectance and the closest sample to the median of 

the mean reflectance values. a. Filed scale dataset; b. Regional scale dataset. 

The vis–NIR spectra of the regional dataset (Figure 2b) presented larger varia-

tion in comparison to the field dataset (Figure 2a). In the regional dataset we also 

observed that most of the samples showed an absorption feature in the 2207 nm 

related to the presence of kaolinite. Furthermore most of the samples presented 

typical characteristics of energy absorption at 1455 nm and 1915 nm assigned to 

soil hygroscopic water. Other features attributed to soil attributes such as pedo-

genic oxides showed contrasting influence on the soil spectra. A significant in-

verse correlation (r = -0 .64, p< 0.05) between mean reflectance and clay content 

was observed, however in this case the correlations between Ca++ and mean re-

flectance (r = -0 .05, p> 0.05)  and Ca++  and clay content (r = 0 .09, p> 0.05) were 

not significant.  

In the PC analysis, 7 and 8 PCs were retained for the field dataset and for the 

regional dataset respectively. In both cases, these PCs accounted for 99.9% of the 

total vis–NIR variation. The descriptive statistics corresponding to the retained 

PCs are presented in the Table 2. As the PCs were standardized the standard 
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deviation of all them was 1. The mean of all PCs were 0 and the skeweness indi-

cated that the mass of the distributions is concentrated around the mean. 

Table 2. Descriptive statistics of the retained PCs in both datasets. 

Variable S.d.a Mean Min.a 1st Qu.b Median 3rd Qu b. Max.a Skewness 

 
Field scale dataset 

PC 1 1.00 0.00 -3.18 -0.49 0.25 0.69 2.80 -0.76 

PC 2 1.00 0.00 -5.95 -0.65 0.10 0.65 3.08 -0.61 

PC 3 1.00 0.00 -2.11 -0.81 -0.01 0.71 4.23  0.46 

PC 4 1.00 0.00 -8.85 -0.60 0.01 0.61 3.03 -1.46 

PC 5 1.00 0.00 -5.75 -0.61 0.00 0.63 4.35 -0.09 

PC 6 1.00 0.00 -4.55 -0.57 0.09 0.65 6.59 -0.06 

PC 7 1.00 0.00 -4.06 -0.64 0.00 0.56 6.55  0.44 

 
Regional scale dataset 

PC 1 1.00 0.00 -2.02 -0.83 -0.08 0.76 2.28  0.26 

PC 2 1.00 0.00 -3.37 -0.68 0.08 0.69 3.73 -0.16 

PC 3 1.00 0.00 -2.93 -0.72 0.07 0.73 2.51 -0.21 

PC 4 1.00 0.00 -2.87 -0.67 -0.09 0.53 3.35  0.59 

PC 5 1.00 0.00 -4.85 -0.55 0.10 0.63 4.79 -0.49 

PC 6 1.00 0.00 -4.35 -0.56 -0.03 0.63 3.79 -0.34 

PC 7 1.00 0.00 -4.74 -0.52 0.06 0.59 3.92 -0.41 

PC 8 1.00 0.00 -3.04 -0.70 -0.09 0.66 4.38  0.41 
a Min., Max. and S.d. correspond to the minimum, maximum and standard devia-

tion respectively;  
b 1st Qu, 3rd Qu. Correspond to the first and third quartiles respectively. 

 

4.2 Sampling algorithms and the effect of the calibration set size  

The results of the effects of the calibration set size as well as the sampling algo-

rithm on the accuracy of the models are presented in the Figure 3. For all the 

sampling algorithms in both datasets and for calibration set sizes < 200 samples, 

we observed a general trend in which the training RMSE, the nRMSE and the 

prediction RMSE decreased considerably as the calibration set size increased. In 

most of the cases at calibration set sizes ≥ 200 samples, the errors remained rela-

tively stable, however in the case of the KSS in the field dataset, the training 

RMSEs of clay content and Ca++ showed a slightly decreasing tendency. Similar 

trends have been reported in other works in which the effect of the calibration set 

size is critical when small calibration set sizes are used (eg. Shepherd and Walsh, 

2002; Brown et al., 2005; Grinand et al., 2012; Kuang and Mouazen, 2012). 
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Figure 3. Training RMSE, nRMSE and prediction RMSE of CC and Ca++ against 

calibration set size in both datasets.  

 

The highest training RMSEs for the field dataset were returned by the KSS algo-

rithm (Figure 3a,e). In terms of the training RMSE the differences between KSS 

and both cLHS and FCMS were markedly high. In the case of clay content, for 
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calibration set sizes ≤ 90 samples the cLHS returned better results than the 

FCMS (Figure 3a). For example, the models of clay content calibrated with 50 

samples produced training RMSEs of 10.8 % with the KSS, 7.0 % with the cLHS 

and 7.6 % with the FCMS. Similarly for the Ca++ models calibrated with 50 sam-

ples, the KSS produced the highest training RMSEs of 19.3 cmolc kg−1, while with 

the cLHS the training RMSE was 10.2 cmolc kg−1 and 12.0 cmolc kg−1 for the 

FCMS. For calibration set sizes > 90 samples the FCMS produced lower training 

RMSEs in comparison to the cLHS.  

The highest training RMSEs in the regional dataset were also produced by the 

samples selected with the KSS algorithm (Figure 3h,k). In the case of clay con-

tent the differences between the KSS and both the cLHS and the FCMS in terms 

of the RMSEtr were markedly wider for calibration set sizes < 200 samples. In 

this case the cLHS presented lower performance than the FCMS. However, for 

the models of Ca++ the cLHS presented the lowest training RMSEs for calibration 

set sizes < 100 samples.  

Concerning the nRMSEs in the field scale dataset, the FCMS and the cLHS re-

turned very similar results, while the models corresponding to the KSS produced 

higher nRMSEs (Figure 3b,f), especially for calibration set sizes < 200 samples in 

the case of clay content. For the models of Ca++, at calibration set size ≤ 30 the 

nRMSEs produced by the KSS samples were dramatically higher than those pro-

duced by the cLHS and the FCMS samples. For example, for the Ca++ models cal-

ibrated with 10 samples, the KSS returned a nRMSE of 2.09 while the cLHS pro-

duced an nRMSEs of 0.73 and the FCMS  a value of 0.78. For calibration set sizes 

> 100 samples, the nRMSE of the models of Ca++ were very similar for the three 

sampling algorithms. 

In the regional dataset for clay content the three sampling algorithms produced 

very similar nRMSEs for calibration set sizes > 230 (Figure 3i). Nevertheless, for 

calibration set sizes ≤ 20 the KSS samples produced much higher nRMSEs in 

comparison to the cLHS and the FCMS samples. On the other hand, in the case 

of the models of Ca++, the three sampling algorithms produced comparable results 

in terms of nRMSE (Figure 3l). 
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The reason why the differences between the sampling algorithms were much 

wider for the RMSEstr than for the nRMSEs, relies on the range of the soil attrib-

ute values of the samples selected by the algorithms. For example the ranges of 

the clay content values for a calibration set size = 150 samples selected with the 

KSS, cLHS and FCMS were 6–81%, 7–75% and 7–74 % respectively. Similarly for 

rest of the attributes and the rest of the calibration set sizes we observed that the 

KSS tends to select a wider range of values in comparison to the FCMS and the 

cLHS. This is due to the fact that the KSS algorithm selects extreme samples 

while the FCMS and the cLHS algorithms do not. Extreme samples can be ad-

vantageous for calibration in some cases, especially when the relationship be-

tween the predictors and the soil attribute is known (Minasny and McBratney, 

2010). However these relationships are usually unknown. On the other hand, in 

the case of field vis–NIR measurements where many outlier samples can arise 

(due to uncontrolled conditions) the KSS would probably not be a good option 

since the outlier samples are included in the calibration set. 

Based on the prediction RMSEs we found mixed results for the three sampling 

algorithms. At calibration set sizes ≤ 40, the cLHS returned the lowest prediction 

RMSE for clay content in the field dataset. However at calibration set sizes > 40 

the KSS presented slightly lower results than both cLHS and FCMS. For Ca++ 

the three sampling algorithms produced comparable results, nevertheless at cali-

bration set sizes ≤ 20 the KSS produced slightly lower results in comparison to 

the other algorithms. For the predictions of clay content in the regional dataset, 

the KSS was outperformed by both the cLHS and the FCMS. For calibration set 

sizes ≤ 90 the cLHS produced slightly lower prediction RMSEs than the FCMS, 

and for calibration set sizes >90 these algorithms produced comparable results. 

For the Ca++ predictions in the regional dataset we can divide the calibration set 

sizes in the three following regions: 10–30, 40–120, 130–380 samples. In the first 

calibration set size the KSS and the FCMS returned very similar results while 

the cLHS produced the lowest prediction RMSEs; in the second calibration set 

size region the KSS produced lower results than the other algorithms; and in the 

third calibration set size region the three algorithms produced comparable re-

sults.  
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Overall, the results obtained for both datasets are similar. The differences be-

tween the errors produced by samples selected by the different algorithms are 

larger at low calibration set sizes. Apparently a large calibration set size ensures 

a good coverage of the PC space and therefore the differences between sampling 

strategies in terms of the uncertainty of the models error should be lower.  

 

4.3 Sample representativeness in the PC space  

For all the three algorithms the absolute difference between the sample variance 

and the original variance (|     |) as well as the difference between the sample 

mean and the original mean (|   |) decreased as the calibration set size in-

creased. In other words, the original distribution of the PCs can be better repli-

cated by increasing the calibration set size.  

The s2 and the   of the calibration sets selected by the cLHS showed the highest 

similarity to their population equivalents (   and    (Figure 4). These results 

were expected since the cLHS algorithm is a stratified sampling based on the dis-

tribution of the variables, while the KSS and the FCMS are distance–based algo-

rithms. Nevertheless, we consider that a good sampling strategy must ensure 

both: a good coverage of the predictor space and a good replication of the original 

distribution which can result advantageous for models calibration.   

In general, for calibration set sizes ≥ 130 samples the cLHS and the FCMS pro-

duced comparable results; however at calibration set sizes < 130 samples the 

cLHS returned much lower differences. Comparing the KSS to both the cLHS 

and the FCMS in terms of the differences between s2 and    and also between   

and  , the KSS was largely outperformed by the other algorithms. 

Based on these results our expectation is that the analyses between the sample 

distribution and the original distribution at different calibration set sizes can be 

very useful for identifying an adequate calibration set size. For example, we 

found that the |   | of the cLHS in the field dataset becomes relatively stable at 

a calibration set size of 120 samples (Figure 4b). In this sense this information 

could be used as criteria to set 120 as the adequate calibration set size taking in-
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to account also that no considerable variations in |     | were observed. Simi-

larly this kind of analysis can be used for both FCMS and the KSS. 

 
Figure 4. Calibration set size against the absolute difference between the sample 

variance (s2) and the original variance (  ); and absolute difference between the 

sample mean ( ) and the original mean ( ).  

 

5. Conclusions 

In this work we investigated the effect of the calibration set size and three differ-

ent calibration sampling strategies (Kennard-Stone, KSS; fuzzy c-means, FCMS; 

and conditioned Latin hypercube, cLHS) on the error of vis–NIR models calibrat-

ed for clay content and Ca++. We also analyzed the sample representativeness on 

the basis of the sampling strategies and we proposed a method for identifying the 

optimal calibration set size based only on the analysis of the vis–NIR data (i.e. 

without prior knowledge of the soil attributes to be predicted).  

We found that the error of the soil vis–NIR models depends on the calibration set 

size. Particularly for low calibration set sizes the errors are higher probably due 

to insufficient coverage of the predictor space. In this respect, when the number 
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of calibration samples is relatively low the sampling algorithm plays a critical 

role on the accuracy of the vis–NIR models.  

The highest training errors were returned by the KSS. However this algorithm 

tends to select samples with a wider range of soil attribute values in comparison 

to the cLHS and the FCMS algorithms. This is due to the fact the KSS selects 

extreme samples. In this sense we believe that the inclusion of extreme samples 

in the calibration set can be beneficial when the dataset does not contain outlier 

samples. In terms of the prediction errors, the three sampling algorithms re-

turned comparable results.  

Concerning the sample representativeness in the PC space, for all the algorithms 

we found that the original distribution of the vis–NIR data in the principal com-

ponent (PC) space can be better replicated by increasing the calibration set size. 

Our results showed that the samples selected by the cLHS and the FCMS algo-

rithms better replicate the original distribution of the PCs in comparison to those 

selected by the KSS algorithm. For low calibration set sizes the cLHS better rep-

licated the original distribution of the PCs in comparison to the FCMS. However 

at calibration set sizes ≥ 130 the cLHS and the FCMS produced comparable re-

sults. We consider that the comparison between the distribution of the calibration 

set and the original distribution of the population of samples is an adequate 

strategy for identifying an optimal calibration set size without any explicit 

knowledge of the soil attributes to be predicted. Furthermore, for the calibration 

of models it can be beneficial to select a calibration sample set whose distribution 

is close or equal to the distribution of the population. 
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Abstract 

High-resolution digital soil sensing and mapping is an important and emerging 

field to meet the strong and growing global demand for high-resolution soil prop-

erty data. Yet, the combination of geophysical sensing and pedometrical tech-

niques to produce soil property maps is complex and requires a well structured 

design from data collection to model validation. We compare different sampling 

design strategies – an extension of conditioned Latin Hypercube Sampling, Fuzzy 

k-means Sampling and Response Surface Sampling – as a basis for predicting soil 

texture, soil organic carbon and soil pH-value at two soil depth intervals using 

electromagnetic induction (EM38DD and EM31) and gamma spectroscopy (U, K, 

Th) data. Two different sample set sizes, two different regression approaches 

(Multiple Linear Least Squares and Random Forests), as well as several 

resampling and independent validation approaches are compared. The results 

show that a combination of Latin Hypercube Sampling and Random Forests re-
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gression should be recommended, since Latin Hypercube Sampling shows the 

best spread within the state space of the sensors and the best independent vali-

dation results for both sample set sizes. The comparison between the validation 

approaches reveals a complex picture and points to the necessity of adequate in-

dependent validation approaches. Yet, leave-group-out cross-validation and .632 

bootstrapping can be recommended as the best estimate in this study. Future 

work should focus on detailed analysis of Latin Hypercube Sampling and why it 

outperformed the other approaches. Therefore, comparisons with other sampling 

approaches should be conducted as well as specific sampling-for-validation ap-

proaches. Concluding, this study shows that there are complex interactions be-

tween sampling design, regression approaches and validation approaches, which 

can have a high influence on the final soil property maps and their accuracy es-

timates. 

Keywords: weighted Latin Hypercube sampling, fuzzy k-means sampling, re-

sponse surface sampling, regression, validation, soil sensing, iSOIL. 

 

1. Introduction 

High resolution digital soil sensing and mapping is an emerging research topic in 

soil science and environmental research (Viscarra-Rossel et al., 2010). The aim is 

to use on-the-go geophysical measurements from different sensors to get detailed 

information about soil spatial distribution, which then can be used for example to 

optimize fertilization. This additional financial and technical expenditure re-

quires a careful planning of the whole process, from sampling to producing digital 

soil maps, to make it efficient and feasible. As in any scientific discipline data 

collection is most crucial since all subsequent analysis steps rely on the calibra-

tion samples selected. Generally, a sample set drawn from a population should 

reflect the entire population as well as possible. And, again with regard to effi-

ciency, it should be small.  

Concerning the location of samples two different concepts can be chosen for digi-

tal soil mapping studies on the field scale: the coverage of the feature space or the 



73 
 

coverage of the geographical space. If existing information is available in terms of 

relevant environmental covariates, as is the case in high resolution digital soil 

sensing and mapping studies, a coverage of the feature space should be chosen 

and regression approaches should be applied to spatially map measured soil 

properties.  

Several approaches are documented to select samples based on available covari-

ates and to cover the feature space (Brus and Heuvelink, 2007; de Gruijter et al., 

2010; Lesch, 2005; Minasny and McBratney, 2006). Yet, comparisons of different 

sampling approaches are largely missing most probably to the restricted budged 

for field work and lab analysis. Comparisons on sample size in relation to the cal-

ibration sampling strategy are required especially for small sample sizes (Brown 

et al., 2005). Additionally, Minasny and McBratney (2010) point out to the im-

portance to investigate the connection between the calibration sampling method 

and the prediction accuracy of models. 

Within this study we compare three different sampling schemes, two different 

sampling sizes and two different regression approaches against several cross-

validation and independent validation approaches to select calibration samples 

for a test site and to build soil property models. The Rosslau field site (0.36 km2) 

is located close to the Elbe River in Saxony-Anhalt, Germany. It is a grassland 

site with a high variation in soil texture and is therefore a good test bed for this 

study. The variation stems from different sediments of the Elbe river. 

We compare (i) a weighted version of conditioned Latin hypercube sampling 

(cLHS; Minasny and McBratney, 2006) which also samples the extremes, (ii) 

fuzzy k-means sampling (FKMS; de Gruijter et al., 2010; Minasny and McBrat-

ney, 2002) and response surface sampling (RSS; Lesch et al., 1995; Lesch, 2005).  

This setup allows for various comparisons and analysis to answer questions such 

as: 

 Are there differences in prediction accuracy between the sampling 

schemes? 

 Are there differences in prediction accuracies between the regression ap-

proaches? 
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 Is the influence of the sampling schemes higher (or lower) compared to the 

regression approaches? 

 Is there an optimum combination of sampling scheme and regression ap-

proach? 

 Are the predictions of the different sampling and regression approaches 

comparable? 

 

2. Material and methods 

2.1 Sampling design 

2.1.1 Weighted conditioned Latin hypercube sampling with extremes  

The idea behind conditioned Latin hypercube sampling (cLHS; Minasny and 

McBratney, 2006) is to cover the state space of all covariates by maximally strati-

fying the marginal distribution while also preserving the correlation between the 

covariates in the sample set. The Latin hypercube is constructed by random sam-

pling from the cumulative distributions of the covariate data using a simulated 

annealing optimization approach, which additionally focuses on preserving the 

correlation between the covariates in the selected sample set. 

Based on the implementation of Minasny (2004) we extended cLHS in two ways. 

First we applied a weighting scheme to account for the fact that different sensors 

provide signals of different accuracy and noise. The assumption is that the higher 

the Kriging (cf. section 2.4) cross-validation accuracy, in terms of the correlation 

coefficient, the lower the noise of the signal and the higher the likelihood for 

providing a stable and reliable indicator for calibration. Hence, we used the 10-

fold cross-validation correlation coefficients as weights. The higher the weight the 

higher the priority in the simulated annealing optimization approach, i.e. to op-

timize towards an equal sampling of n = 1 across the strata of the quantile distri-

bution of the corresponding covariate. Second, to ensure a full coverage of the 

sensor state space we set the extremes (min and max) of all sensors as fixed sam-

pling locations (wecLHS).  
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2.1.2 Fuzzy k-means sampling 

Fuzzy k–means sampling (FKMS) has been proposed as a calibration sampling method 

by de Gruijter et al. (2010) and was conducted using the FuzME package (version 3.5c; 

Minasny and McBratney, 2002). It is based on the well known k-means clustering algo-

rithm extended by a fuzzy membership function (Bezdek, 1981; Dunn, 1973). It is ex-

pected that samples belonging to each cluster share similar characteristics while the 

dissimilarity between samples in different clusters is maximized. Hence, FKMS should 

show similar characteristics in terms of state space coverage as expected from cLHS. 

The sampling locations are the centroids of fuzzy k-means clusters of discretization cells 

of the sensor data. The number of clusters determines the number of calibration samples 

to be selected.  

 

2.1.3 Response surface sampling 

Following a principle components analysis (PCA) of the sensor data, RSS applies 

a response surface design aiming to optimize the estimation of the regression 

model parameters when using ordinary least squares estimation as well as to 

minimize the effects of the spatially dependent autocorrelations (Lesch et al., 

1995; Lesch, 2005). We used the ESAP software package (Lesch et al., 2000) in 

this study. The major restriction of ESAP is the limited influence the user has on 

the number of samples, since only 6, 12, or 20 samples can be selected (Lesch et 

al., 2000). 

 

2.2 Sample set sizes 

Generally, the required sample set size depends on the soil spatial variability. 

Yet, the biggest constrain is the expense of data collection and lab analysis. With-

in the frame of the EU FP7 iSOIL project we agreed to collect 30 samples for each 

sampling scheme and each testing site. This was conducted for wecLHS and 

FKMS in this study. RSS was considered as an additional reasonable sampling 

scheme but due to the restriction described above only 20 samples were collected 

in this study. To make the different sample set sizes comparable and also to ana-
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lyze the effect of different sample set sizes, we produced subsets of 20 samples for 

wecLHS and FKMS. For both approaches we tested repeated (10 times) random 

subsets and averaged the validation accuracies (wecLHSrand and FKMSrand). For 

wecLHS we also sampled a wecLHS subset (wecLHSsub), which thus should show 

the same effects as the original wecLHS sample set in terms of state space cover-

age, correlation between the sensor signals and the coverage of the extreme val-

ues of the sensors in a reduced set of 20 samples. As a result we compare 6 differ-

ent approaches with two different sample set sizes in this study. A further reduc-

tion of sample sizes via sampling or subsampling was not considered, since the 

differences in the validation accuracies between the sampling designs were al-

ready large for some soil properties.  

 

2.3 Field sampling  

Samples were taken as composite samples of 5 subsamples (Figure 1) within an 

area of 1 by 1 m according to the iSOIL Sampling protocol (Behrens et al., 2009). 

For each location soil pH, soil organic carbon (SOC) and soil texture (sand silt 

and clay) was analysed for the depth intervals of 0-10 cm and 10-30 cm. These 

depth intervals had been chosen in the broader context of the iSOIL project aim-

ing in analysing the effect and importance of different sensors in predicting soil 

properties at different depth across different field sites. Therefore, the results 

might also be an indicator for choosing a soil depth in comparable studies. 

 
Figure 1. Relative location of the sub-samples for the composite sample collection. 
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2.4 Soil sensing 

Mobile geophysical platforms have been equipped with frequency-domain elec-

tromagnetic-induction instruments and a portable gamma-ray spectrometer. The 

devices were placed on a sledge including Differential Global Positioning System 

(DGPS) dragged by a tractor.  

Measurements of electrical conductivity (ECa in mS/m) were made using an 

EM38DD and an EM31 (Geonics Ltd.). Both are widely spread instruments for 

near surface applications that measure the vertical and horizontal dipole orienta-

tion, respectively, resulting in different effective depths of exploration of 0.75 m 

and 1.5 m for the EM38DD signals and 6 m for EM31, respectively (Callegary, 

2007).  

A portable gamma-ray spectrometer (4l NaI(Tl) – crystal, automatic peak-

stabilization, GF instruments) with 512 channels at an energy range between 

100 keV and 3 MeV was used for the field measurements in Roßlau. We use a 5s 

sampling interval for gamma-ray measurements. The measured counts per sec-

ond were converted into the concentration of K (in %), U and Th (in ppm) and the 

dose rate (in nGy/h). Investigation depth of the sensor is limited to about 30cm 

soil depth. 

Even though the selection of the sensors might have been chosen according to the 

soil depth sampled and analysed, we extended the range of the sensors to deeper 

depth or larger volumes to account for the influence of potentially relevant con-

textual information and thus the potential interaction of the sensor signals in the 

regression models. In addition larger volumes might have an averaging effect in 

terms of filtering out noise, which might also have a positive effect in guiding the 

selection of samples. 

Ordinary Kriging interpolation of the sensor data was conducted using the gstat 

package (Pebesma, 2004) in R (R Development Core Team, 2012). Finally, all 

sensor datasets were transformed linearly to the range of [0,1] for regression 

analysis. 
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2.5 Calibration 

To calibrate the soil properties we compared multiple linear regression (MLR), 

and random forest regression (RF) using R (R Development Core Team, 2012) 

and the corresponding lm model (R Development Core Team, 2012) based on 

Wilkinson and Rogers (1973) and the randomForest package (Liaw and Wiener, 

2009). RF is a machine learning method consisting of an ensemble of randomized 

classification and regression trees (Breiman et al., 1984; Breiman, 2001) where 

numerous trees are generated and finally aggregated to give one single predic-

tion. In regression problems the prediction is the average of the individual tree 

outputs. Each tree of a forest is based on a bootstrap sample of the original train-

ing data. In addition to this bagging function (Breiman, 1996), the best split at 

each node of the tree is searched only among a randomly selected subset of pre-

dictors. All trees are grown to maximum size without pruning.  

In contrast to RF, which is a non-parametric and non-linear approach, the multi-

ple linear regression is used for examining linear correlations between multiple 

independent variables and the dependent variable. We apply the least square 

criterion for calibrating the model (Rao et al., 1999). 

 

2.6 Validation 

2.6.1 Resampling 

Resampling (Good, 2006) can be used to estimate the generalization error of a 

calibration model when no independent validation set is available. Therefore, the 

dataset is repeatedly splitted into a calibration set and a validation set (Molinaro 

et al., 2005). The validation accuracies are then averaged over all validation re-

sults. 

Within this study we compare several resampling approaches to relate the esti-

mated generalization error to the generalization error of an independent sample 

set (section 2.6.2).  

We tested: 

i. 10-fold cross validation (10cv) 
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ii. Leave-group-out cross-validation (lgocv) 

iii. bootstrapping (boot) 

iv. .632 bootstrapping (.632boot) 

In 10cv 10 randomly non-overlapping subsets are generated. A model is build on 

9 subsets and is validated against the remaining subset. This process is repeated 

10 times until every subset was once used for validation.  

For lgocv, boot and .632boot random subsamples are chosen as validation sets. 

For lgocv (or repeated random sub-sampling validation or Monte Carlo cross-

validation; Molinaro et al., 2005) we randomly splitted the sample set into 75 % 

of the samples for calibration and 25 % without replacement for validation for 25 

times.  

A bootstrap sample is a randomly chosen (with replacement) set of n samples 

from a data set of n instances (Efron and Tibshirani, 1993). The probability of a 

given sample to appear in the validation set is 0.632n. The boot validation accu-

racy is obtained from the samples that were not selected for the bootstrap (ap-

parently 0.368n).  

The .632boot approach merges the overestimated prediction error and the under-

estimated resubstitution error (Efron, 1983; Efron and Tibshirani, 1993; Efron 

and Tibshirani, 1995; Molinaro et al., 2005). It is defined as (Kohavi, 1995): 

    (1) 

where: 

- accboot = estimated .632 bootstrap accuracy 

- b  = number of bootstrap sample sets 

- ε0i  = accuracy estimate of bootstrap sample set i 

- accs  = resubstitution accuracy estimate on the full dataset 

Compared to the boot approach, the .632boot method is expected to return higher 

accuracies, since the resubstitution accuracy is included in the estimates. The 
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lgocv estimates are expected to be higher compared to boot because the model 

building is based on more samples in average. 

We repeated all resampling validation approaches 10 times and report the aver-

ages for each method. 

 

2.6.2 Independent validation  

Based on the three different sampling approaches and thus sample sets com-

pared in this study two of these sample sets can be used as independent valida-

tion sets for estimating the generalization error; e.g. the sample sets for FKMS 

and wecLHS can be used to validate the RSS calibration model. 

To provide a comparable measure regarding the differences between the boot and 

the .632 boot methods we tested the following two approaches: 

(i) fully independent, i.e. validation against the sample sets of the other two 

sampling approaches and 

(ii) partially independent, i.e. validation against all sample points from all 

three sampling approaches. 

This offers the option to analyse over- and underfitting effects of single sampling 

scheme vs. calibration model settings, when there are unexpected differences be-

tween the fully independent and partially independent as well as the boot and 

the .632boot validation approaches compared to the other sampling schemes and 

regression models. 

 

3 Results and Discussion 

3.1 Sampling 

To avoid negative effects of multicollinearity only sensor data with cross-

correlation values below 0.8 were selected for wecLHS and FKMS. Table 1 shows 

the results of the cross-correlation analysis. The selection between two sensors 

was based on the Kriging cross-validation results. The sensor with the highest R2 

cross-validation value of two highly correlated signals was selected while the oth-
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er sensor was removed. Hence, the EM 31, K and Th sensor signals were used as 

input data to derive the sampling locations. Due to the principal component 

analysis in RSS this approach is not required here. 

Table 1: Cross-correlation table of the geophysical datasets.  

 EM 

31 

EM  

38v 

EM 

38h 

K Th U 

EM 31   [Eca mS * m-1] 1 0.91 0.85 -0.47 0.09 0.16 

EM 38v [Eca mS * m-1]  1 0.92 -0.58 0.05 0.18 

EM 38h [Eca mS * m-1]   1 -0.72 -0.11 -0.09 

K [%]    1 0.50 0.48 

Th [ppm]     1 0.86 

U [ppm]      1 

 

According to the Kriging cross-validation results the weights applied for the sen-

sor data in the wecLHS approach are: 1 for EM31, 0.81 for Th, and 0.5 for K, 

which showed the lowest signal-to-noise ratio (Table 2). 

Table 2: Kriging 10-fold cross-validation results of the geophysical measure-

ments. 
 R2  RMSE Range 

EM 31   [Eca mS * m-1] 0.9991 0.49 1.3 – 123.8 

EM 38v [Eca mS * m-1] 0.9972 0.78 2.2 – 102.4 

EM 38h [Eca mS * m-1] 0.9985 0.66 0 – 87.94 

K [%] 0.50 0.13 0.18 – 1.06 

Th [ppm] 0.81 1.13 1.78 – 10.1 

U [ppm] 0.57 0.66 1.17 – 3.98 

 

The location of the sampling sites is shown in Figure 2 for all initial sampling 

schemes. 
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Figure 2. Location of the sampling sites draped over an areal image (ESRI, 2012). 

wecLHS: Weighted conditioned Latin Hypercube Sampling, FKMS: Fuzzy k-

means Sampling, RSS: Response Surface Sampling.  

 

Not all samples could have been collected due to partially flooded sites. Hence, 

instead of the 30 sample locations for both wecLHS and FKMS only 29, and 28 

respectively, were finally sampled and analysed.  

The location of the samples in the state space is shown in Figure 3. All approach-

es almost cover the entire state space and thus should be well suited for calibrat-

ing a soil property model on the sensor data. Yet, there are slight differences: 

RSS and wecLHS show the widest range in covering the sensor data. wecLHS 

shows a distribution, which is less clustered compared to FKMS and RSS. The 

fact that wecLHS as applied in this study does not cover the full range of EM31 is 

due to the one location which was not sampled.  
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Figure 3. Location of the sampling sites in the state space shown for EM31 and 

Thorium signals. wecLHS: Weighted  conditioned Latin Hypercube sampling, 

FKMS: Fuzzy k-means Sampling, RSS: Response Surface Sampling. Minimum, 

Median and Maximum are shown with vertical lines. 



84 
 

3.2 Soil properties 

The lab analysis results are given in Table 3. SOC as well as the soil texture clas-

ses show a relatively wide range in the distribution, which is comparable between 

the two different soil depth layers. 

Table 3. Lab analysis data for all sampling schemes. 

Property 
0-10 cm 10-30 cm 

Min. Median Mean Max. Min. Median Mean Max. 

 All 

SOC 0.9 2.3 2.5 6.4 0.7 1.7 1.7 3.7 

pH 4.5 5.3 5.4 7.4 4.9 5.9 5.9 7.6 

Sand 5 18 32 87 4 18 31 87 

Silt 8 34 32 49 8 34 32 75 

Clay 4 40 36 60 1 40 36 59 

 wecLHS 

SOC 1.4 2.3 2.6 6.4 0.7 1.6 1.7 3.7 

pH 4.8 5.4 5.5 7.4 4.9 6.1 6.0 7.6 

Sand 5 17 33 86 4 18 31 76 

Silt 9 34 32 49 15 35 34 75 

Clay 5 40 35 60 1 39 35 59 

 FKMS 

SOC 1.0 2.3 2.5 6.4 0.8 1.7 1.7 3.5 

pH 4.5 5.3 5.3 5.8 4.9 5.9 5.9 6.6 

Sand 5 17 28 85 4 16 28 84 

Silt 8 35 33 46 9 34 32 46 

Clay 7 46 39 58 7 45 39 58 

 RSS 

SOC 0.9 2.2 2.3 3.5 0.7 1.8 1.8 2.5 

pH 4.6 5.3 5.4 7.0 5.0 5.9 5.8 7.4 

Sand 10 27 37 87 11 25 36 87 

Silt 8 30 30 48 8 31 31 48 

Clay 4 38 32 53 4 39 33 52 

Considering the sampling schemes separately, it can be seen that single soil 

properties of single sampling schemes show a reduced range in properties. This is 

for example the case for the combination of SOC0-10cm/FKMS, Silt10-30cm/wecLHS, 

and Clay10-30cm/FKMS. Hence, no general assessment of the sampling schemes 

can be conduced based on the lab data. 

 

3.3 Validation results 

3.3.1 Independent validation 

Table 4 summarizes the validation results as averages over all soil properties to 

reveal the general performance of the sampling schemes as well as the two cali-
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bration approaches. The independent validation result is most important. The 

best combination for the initial sample set sizes (wecLHS = 29, FKMS = 28, and 

RSS = 20) is wecLHS and RF outperforming RSS/RF as well as FKMS/RF with 

about 10 % in variance explained. Fully and partially independent validation 

show comparable results, where the partially independent results suggest a per-

formance that is in average about 4 % higher in terms of variance explained. This 

is as expected since the calibration data of the models were included. In the fol-

lowing we are focusing on the fully independent validation. 

The comparison of the reduced FKMSrand and wecLHSrand/sub sampling sizes with 

RSS shows that LHS, with a decrease of about 4 % of variance explained com-

pared to wecLHS with all samples, still outperforms the other approaches. The 

wecLHSsub approach outperforms FKMS and RSS with the original samples sizes 

in most cases.  

Table 4. Average validation accuracies (R2) based on cross-validation (leave-one-

out bootstrapping [boot], leave-group-out cross-validation [lgocv],  .632 bootstrap-

ping [632boot], and 10-fold cross validation [10cv]), fully independent [f.ind] and 

partially independent [p.int] validation for different soil depth and for Random 

Forests [RF] and multiple linear regression models [MLR]. 
 wecLHS FKMS  RSS wecLHSrand wecLHSsub FKMSrand 

 [obs. 29] [obs. 28]  [obs. 20] [obs. 20] [obs. 20] [obs. 20] 

 MLR RF MLR RF  MLR RF MLR RF MLR RF MLR RF 

 0-10 cm 

Boot 0.63 0.64 0.66 0.71  0.55 0.63 0.60 0.61 0.57 0.62 0.62 0.66 

Lgocv 0.74 0.76 0.78 0.81  0.70 0.75 0.73 0.73 0.70 0.76 0.76 0.79 

632boot 0.71 0.76 0.74 0.8  0.66 0.76 0.70 0.73 0.68 0.74 0.72 0.77 

10cv 0.78 0.78 0.78 0.78          

f.ind 0.75 0.80 0.63 0.68  0.67 0.66 0.70 0.74 0.68 0.78 0.62 0.65 

p.ind 0.78 0.86 0.68 0.75  0.71 0.72 0.71 0.78 0.72 0.82 0.66 0.70 

 10-30 cm 

Boot 0.52 0.60 0.61 0.59  0.64 0.64 0.52 0.60 0.42 0.54 0.58 0.56 

Lgocv 0.65 0.74 0.73 0.72  0.75 0.75 0.70 0.72 0.61 0.68 0.71 0.69 

632boot 0.60 0.72 0.69 0.72  0.75 0.76 0.64 0.72 0.53 0.67 0.69 0.69 

10cv 0.77 0.75 0.78 0.76          

f.ind 0.70 0.71 0.56 0.63  0.56 0.59 0.63 0.65 0.67 0.65 0.54 0.59 

p.ind 0.73 0.80 0.63 0.74  0.66 0.69 0.67 0.71 0.66 0.69 0.59 0.69 

 0-30 cm 

Boot 0.57 0.62 0.64 0.65  0.59 0.63 0.56 0.60 0.49 0.58 0.56 0.61 

Lgocv 0.69 0.75 0.75 0.77  0.72 0.75 0.71 0.73 0.66 0.72 0.71 0.74 

632boot 0.66 0.74 0.71 0.76  0.71 0.76 0.67 0.73 0.61 0.71 0.67 0.73 

10cv 0.78 0.76 0.78 0.77          

f.ind 0.73 0.75 0.59 0.66  0.61 0.62 0.66 0.70 0.68 0.72 0.66 0.62 

p.ind 0.75 0.83 0.65 0.75  0.69 0.70 0.68 0.74 0.70 0.76 0.68 0.69 
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In average RF performs 5 % better in variance explained compared to MLR. Yet, 

in terms of the variance explained the variation between the sampling schemes is 

higher compared to the regression approaches.  

A closer look at specific soil properties reveals a more detailed picture. It can be 

seen that FKMS is only slightly outperformed by wecLHS, regarding the full 

sample sizes. Based on the reduced set however, wecLHSsub is the clear winner. 

RSS performs worst. wecLHSrand also outperforms RSS and FKMSrand. Yet, com-

pared to wecLHSsub it performs significantly worse in numbers of best perfor-

mances across all soil properties (Table 5). 

For the large sample sets MLR and RF are comparable. For the reduced set RF 

seems to have an advantage. 

Table 5. Fully independent prediction accuracies (R2) of all soil properties meas-

ured based on predictions by Random Forests (RF) and multiple linear regres-

sions (MLR). Bold and italic figures indicate the best and the worst prediction 

accuracy achieved by each sampling design (wecLHS, FKMS). In terms of a rank-

ing we finally summed up all best and worst performances.  

 Property 

  

wecLHS FKMS  RSS wecLHSrand wecLHSsub FKMSrand 

[obs. 29] [obs. 28]  [obs. 20] [obs. 20] [obs. 20] [obs. 20] 

MLR RF MLR RF  MLR RF MLR RF MLR RF MLR RF 

 0-10 cm 

SOC 0.58 0.65 0.57 0.64  0.55 0.60 0.49 0.62 0.52 0.67 0.46 0.58 

pH 0.52 0.70 0.15 0.13  0.27 0.30 0.45 0.55 0.41 0.66 0.16 0.11 

Sand 0.92 0.91 0.88 0.91  0.89 0.80 0.89 0.87 0.86 0.89 0.89 0.88 

Silt 0.87 0.87 0.64 0.88  0.75 0.75 0.80 0.84 0.76 0.85 0.70 0.82 

Clay 0.88 0.87 0.89 0.86  0.90 0.82 0.85 0.83 0.86 0.84 0.87 0.83 

 10-30 cm 

SOC 0.54 0.63 0.44 0.58  0.48 0.48 0.45 0.49 0.53 0.47 0.40 0.52 

pH 0.44 0.38 0.09 0.04  0.23 0.23 0.36 0.32 0.44 0.33 0.11 0.04 

Sand 0.85 0.83 0.75 0.79  0.70 0.70 0.78 0.83 0.77 0.82 0.74 0.72 

Silt 0.82 0.83 0.62 0.88  0.57 0.74 0.70 0.81 0.78 0.83 0.61 0.82 

Clay 0.86 0.85 0.88 0.88  0.80 0.80 0.84 0.81 0.85 0.81 0.84 0.86 

 0-30 cm 

SOC 0.56 0.64 0.50 0.61  0.52 0.54 0.47 0.56 0.53 0.56 0.43 0.55 

pH 0.48 0.54 0.12 0.09  0.25 0.27 0.40 0.43 0.43 0.43 0.14 0.08 

Sand 0.88 0.87 0.81 0.85  0.79 0.75 0.83 0.85 0.81 0.85 0.81 0.80 

Silt 0.84 0.85 0.63 0.88  0.66 0.75 0.75 0.83 0.77 0.83 0.66 0.82 

Clay 0.87 0.86 0.89 0.87  0.85 0.81 0.85 0.82 0.86 0.82 0.85 0.85 

Count 

best/worst 

performance 

4/0 5/2 3/6 4/4  2/4 0/5 1/0 2/0 4/0 10/0 1/5 1/3 
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The calibration works best for soil texture followed by SOC and pH. RSS and es-

pecially FKMS fail to reasonably calibrate pH models. Generally, the upper layer 

returns slightly better prediction results (Figure 4). 

 

Figure 4. Average prediction accuracies (R2) of all sampling approaches for all soil 

properties measured and fully independent validation based on predictions by 

Random Forests (RF) and multiple linear regression (MLR)  

 

3.3.2 Cross-validation 

In general it can be expected that cross-validation approaches suggest better per-

formances compared to independent validation. This is the case for RSS and the 

FKMS approaches. Here, cross-validation in average performs about 3 % better 

with respect to the variance explained for MLR and RF respectively, compared to 

the fully independent validation. In contrast for wecLHS and wecLHSsub (Table 

4) the fully independent validation approach returns better results (6 % in aver-

age) compared to the resampling validation approaches.  
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The order of the cross-validation approaches in terms of decreasing estimated 

variance explained is cv > lgocv > .632boot > boot. This is basically related to the 

number of samples left out for validation for each subset: 10% < 20 % < 36,8 % 

(including weighted average of the samples used for calibrating the model), and < 

36.8 % respectively. Hence, the more samples excluded from the model the more 

complicated to calibrate the model. For small sample sizes this effect becomes 

more important since all samples are required to calibrate the model. 

The .632boot approach is intended to account for this fact. In average it is the 

best estimate for the independent validation set. Yet in some cases it over- or un-

derestimates up to 19 %. In average it is an underestimation of 5 %. Compared to 

the partially independent validation the .632boot approach shows the highest 

similarity in terms of calibration accuracy.  

Ten times 10cv does not seen to be an appropriate estimator for small sample 

sets since the validation results are too optimistic and at least 3 samples in a 

subset are required for reasonable results and interpretation. 

 

3.4 Digital soil maps 

To analyse the difference between the sampling and the regression approaches in 

terms of the final digital soil maps, we use the sand content (0-10 cm), since this 

soil property returned the highest independent validation accuracies (R2 = 0.80 to 

0.92). For this specific case over all three initial sampling schemes, MLR provid-

ed slightly better results (2.3 %) in average. For the two larger sample sets 

(wecLHS and FKMS) RF produced slightly better results of about 1 %. 

The digital soil maps of sand content [%] for 0-10 cm are shown in Figure 5 for 

RSS, FKMS, wecLHS and wecLHSsub. It can be seen that the maps for FKMS, 

wecLHS and wecLHSsub are very similar for each regression approach, whereas 

there are differences between the maps produced by RF and MLR. For both re-

gression approaches the RSS maps show comparable differences to the other 

sampling approaches, especially in the leftmost site. This area is frequently 

flooded so the water regime is different at this site and thus the relation between 

soil properties and sensor signals. Since this effect is visible across all sampling 
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schemes it is also very likely that the differences result from non-linearity in the 

spatial soil property – sensor signal relation, which should be accounted for bet-

ter in RF, and which is confirmed by the results (cf. section 3.3).  

 

Fig. 5: Digital soil maps of sand content (%; 0-10 cm) produced with Random For-

ests (RF) and multiple linear regression (MLR) for the sampling approaches RSS, 

FKMS, wecLHS and wecLHSsub. 
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Interestingly the linear model (MLR) shows more details and a wider range of 

sand content compared to the non-linear RF model. The wider range is a fact of 

the underlying computational approach – binary partition tree vs. a regression 

formula – where the predicted output of the tree is restricted to the range of the 

calibration data. Since the accuracy of both approaches is the same the finer de-

tails shown in the MLR maps compared to the RF maps must be interpreted as 

spurious accuracy.  

Table 6 shows the correlations between the maps produced. For sand content (0-

10cm) the differences between the regression approaches are higher compared to 

the sampling approaches. 

Table 6. Correlation between the digital soil maps of sand content (%; 0-10 cm) 

produced with Random Forests (RF) and Multiple Linear Regression (MLR) for 

the sampling approaches RSS, FKMS, wecLHS and wecLHSsub. 

Sand 0-10 cm 
RF MLR 

FKMS wecLHS RSS wecLHSSub FKMS wecLHS RSS wecLHSSub 

RF 

FKMS 1 0.99 0.92 0.98 0.82 0.81 0.89 0.78 

wecLHS  1 0.92 0.98 0.84 0.83 0.90 0.80 

RSS   1 0.89 0.80 0.78 0.91 0.74 

wecLHSSub    1 0.77 0.77 0.85 0.74 

MLR 

  

FKMS     1 0.99 0.92 0.98 

wecLHS      1 0.92 0.99 

RSS       1 0.89 

wecLHSSub        1 

 

3.5 Discussion 

The most interesting results of this comparison are that: 

 validation accuracy strongly depends on the sampling scheme 

 20 samples produce comparable results to ~30 samples 

 wecLHS outperforms the other sampling approaches 

 even with high validation accuracies the resulting digital soil maps show 

pronounced differences between the regression approaches 

 independent validation should be recommended 

 the .632boot resampling-validation approach seems to be the best estima-

tor of the independent validation 
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Concerning sampling the advantages of the proposed wecLHS approach com-

pared to FKMS and RSS are (i) the evenly covered state spaces of the sensor da-

ta, (ii) the preservation of the correlation between the sensor signals in the sam-

ple set, (iii) the inclusion of the extreme sensor values and (iv) the weighing 

scheme, which helps to focus on the strongest soil response. However, based on 

the results of this study it is relatively hard to differentiate between the effects of 

these three components. Even the result that the wecLHSsub approach with only 

20 samples performs nearly as good as the original wecLHS based on 29 samples 

does not help to reveal the influence of a single factor.  

The effect of the extremes might apparently be of major influence. However, since 

it is the extremes of the sensor data which are covered and not the extremes of 

the soil properties (Table 3) there is no influence of the range of the soil property 

distribution. The fact that wecLHS estimates the RSS and FKMS samples best 

indicates that the coverage of the feature space is a key element. Here, compari-

sons with other approaches such as FKMS with extragrades (deGuijter et al., 

2010) and other promising approaches (e.g., Brus and Heuvelink, 2007; Kennard 

and Stone, 1969) should be conducted in future works. The fact that the fully and 

partially independent validations show comparable ranges between the sampling 

approaches ensures that there is no overfitting in the independent validation da-

ta. 

Since, at least one of the advantages of wecLHS must be a key component a de-

tailed study based on different wecLHS settings is recommended to reveal this 

component. This might help to design a new optimized sampling approach. It is 

also recommended (but expensive) to apply validation strategies, which are spe-

cifically designed for calibration sampling (e.g., Brus et al., 2011) to minimize all 

possible effects of sampling bias or autocorrelation. 

The most remarkable fact in terms of validation is that the independent valida-

tion of the wecLHS approach provided better estimates compared to the 

resampling validation approaches, which was not the case for RSS and FKMS. 

This again shows that wecLHS provided a more evenly distribution in the state 

space. As a consequence the independent validation was better for wecLHS but 
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worse – as commonly expected – for the other sampling approaches. This is pro-

nounced by the fact that the wecLHSsub approach outperformed the FKMS ap-

proach with 28 samples. 

The fact that cross-validation can sometimes lead to much too optimistic assump-

tions (Brus et al., 2011) can be seen at several cases where the best resampling 

validations results correspond to the worst independent validation results. Boot-

strapping turned out as the most conservative estimate. Yet it is too pessimistic 

for wecLHS, whereas the .boot632 estimates is too optimistic in general. lgocv is 

the best estimate for the independent validation for wecLHS. Hence, there is not 

“the” best resampling validation measure. 

The comparison between the regression approaches shows that in terms of the 

number of best performances RF must be recommended over MLR. However, the 

both approaches are comparable in most cases and there are no differences in the 

interpretation of the validation results of the different sampling schemes.  

The analysis of the digital soil maps reveals that the LHS approaches and FKMS 

produce more similar results compared to RSS, which shows distinct differences. 

WecLHSsub results in almost the same map as the ones produced by wecLHS and 

FKMS indicating that 20 samples are sufficient for soil property calibrations in 

this study. In contrast to the average validation results the differences between 

the maps are higher between the regression approaches compared to the sam-

pling approaches. Since, the MLR results show finer spatial variations, which do 

not seem to be relevant, RF must also be recommended from this point of view. 

 

4. Conclusion 

Three interacting methodological components of Digital Soil Mapping were joint-

ly analyzed in this study on field scale sensor integration for soil property cali-

bration: 3 sampling, 6 validation, and 2 regression approaches. Since the sam-

pling approaches comprised different sample set sizes we sub-sampled two of 

them in different ways so that in total 6 sampling approaches were compared. 
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Beyond the general recommendation to apply the proposed wecLHS sampling 

approach in combination with Random Forests several remarkable results were 

found. Most interesting is that in average the difference in validation accuracy is 

largest between the sampling schemes followed by the differences between re-

gression models. Even though, the regression models are based on totally differ-

ent concepts the influence of the sampling schemes is higher. This indicates rela-

tively linear relationships between the sensor and the soil data in this study. 

The results show that based on a good sampling strategy only 20 samples are re-

quired for integrating multiple sensor data and to provide high prediction accu-

racies – in average over 70 % of variance explained for pH, SOC, and soil texture 

in two depth.  

A final recommendation concerning the resampling validation approach cannot 

really be given. The .632boot and the lgocv approach (for wecLHS) provided best 

estimates for the independent validation. Yet, independent validation is recom-

mended since resampling validation can result in either under- or over estima-

tion of the independent accuracy as shown in this study. 

Following studies should focus on wecLHS and determine which component 

makes it superior compared to the other approaches tested. In this respect other 

approaches such as FKMS or LHS with extragrades should be compared. There-

fore independent validation is required as well as detailed analysis of feature im-

portance (Behrens et al., 2010a,b). 
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Abstract 

Many techniques used in visible and near infrared (vis–NIR) soil sensing are 

based on the measurement of the similarity or distance between samples. The 

question that frequently arises when two samples are very close in the vis–NIR 

space is whether they are also close (or similar) in terms of soil compositional 

characteristics. A good soil vis–NIR similarity metric must be also able to reflect 

the soil compositional similarity. In this respect, the main aims of this work were 

as follows: i. investigate the relationship between soil vis–NIR similarity and soil 

compositional similarity and ii. evaluate different distance metric algorithms for 

soil vis–NIR similarity search. 

We evaluated the following distance metrics: Euclidean (ED), Mahalanobis (MD), 

spectral angle mapper (SAM), surface difference spectrum (SDS), spectral infor-
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mation divergence (SID), principal component distance (PC‐M), optimized PC 

distance (oPC‐M), locally linear embedding distance (LLE‐M) and σ‐locally linear 

embedding (σLLE‐M). The first five methods mentioned previously correspond to 

methods that operate in the spectral space while the remaining ones work by pro-

jecting the vis–NIR data onto a low dimensional space. 

We used a global soil vis–NIR spectral library (GSSL) to test the different dis-

tance metric algorithms. The GSSL was divided into a reference set (Xr) and an 

unknown set (Xu). The distance algorithms were used to find in Xr the most spec-

trally similar samples of Xu. In order to evaluate the compositional similarity, 

the clay content and pH values of the Xu were compared to the clay content and 

pH values of the samples found in Xr by each algorithm. 

The experimental results showed that the vis–NIR similarity measures that bet-

ter reflect the soil compositional similarity are those corresponding to the oPC‐M, 

LLE‐M and σLLE‐M methods. We also show that the SDS approach is a suitable 

method for computing distances in the spectral space. Finally, in this paper we 

discuss how these methods can also be used in proximal soil vis–NIR sensing ap-

plications. 

Keywords: soil spectroscopy, locally linear embedding, vis–NIR similarity, com-

positional similarity, proximal soil sensing, global soil spectral library.  

 

1. Introduction 

Soil infrared spectroscopy and soil spectral libraries (SSL) have become powerful 

tools in soil science helping to analyze and store large amounts of soil information 

efficiently. Hence, the size of these libraries has been increasing and some initia-

tives to create regional, national and global SSL have emerged (e.g. Viscarra Ros-

sel, 2009; Wetterlind and Stenberg, 2010; Terhoeven–Urselmans et al., 2010). 

Several authors have suggested that regional and/or global SSL can be used for 

improving field scale vis–NIR models of soil attributes (e.g. Brown, 2007; Sankey 

et al., 2008; Wetterling and Stenerg, 2010). This improvement would be reached 

by using the samples in the SSL that share similar soil characteristics to the 
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samples in the target field. Ge et al. (2011) indicates that poor performance of soil 

models would result from discrepancies between library samples and field sam-

ples not only in terms of vis–NIR characteristics but in terms of compositional 

characteristics. In this respect, the similarity metric used is of fundamental im-

portance for selecting from the SSL the most suitable samples for within field soil 

modeling. 

The measurement of the similarity between samples in soil vis–NIR datasets is a 

very complex task since the vis–NIR variation is highly multivariate and influ-

enced by several soil compositional attributes. The vis–NIR features result from a 

high and variable mixture of several clay minerals and organic compounds pre-

sent in the soil which are expressed as highly overlapped and non–specific vis–

NIR absorptions. Currently, there is lack of research about quantitative ap-

proaches for soil vis–NIR similarity analysis. In addition, there are no strategies 

to evaluate the accuracy of these similarity measures. In most of the current ap-

proaches, distance metric algorithms are used for measuring the vis–NIR similar-

ity between soil samples. The question that frequently arises when two samples 

are very close in the vis–NIR spectral space is whether they are also close (or 

similar) in terms of soil composition. In this respect, good soil vis–NIR similarity 

metric must also be able to reflect the soil compositional similarity. If the vis–

NIR distance metric does not fulfill this requirement, then it is highly probable 

that the tasks in which the distance measures are involved will present poor per-

formance.  

The most commonly used distances in soil spectroscopy (and soil sensing in gen-

eral) are the Euclidean distance (ED), the Mahalanobis distance (MD) and the 

spectral angle mapper (SAM) distance. The ED and MD distances can be meas-

ured directly on the spectral space or in a projected space such as the principal 

component (PC) space. The computation of the MD in the PC space has become 

the standard procedure for vis–NIR distance measurements. Recently, another 

spectral similarity measure called spectral information divergence (SID) (Chang, 

2000) has been successfully used in remote sensing and imaging spectroscopy 

(e.g. van der Meer, 2006; He et al., 2011).  
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Reliable distance estimations based on projection methods (such as PC analysis) 

depend on a good representation of the high–dimensional data in a low dimen-

sional space. In this sense, there are still some questions that need to be an-

swered regarding this method. For instance, the number of PC features to retain 

is based on the percentage of explained variance, so that the PC features with 

low significance are ignored. In some cases, using PC analysis, it is possible to 

retain the 99% of the total variance in the first two PC features but it does not 

necessarily mean that those features are enough for representing well the soil 

compositional variability.  

In this context, the objectives of this work were as follows: i. investigate the rela-

tionship between soil compositional similarity and soil vis–NIR similarity ii. ex-

plore and develop suitable approaches for measuring similarities among samples 

in soil vis–NIR datasets, iii. provide a method to evaluate soil vis–NIR distance 

measurements  and iv. introduce new methods for measuring the soil vis–NIR 

distances. For this latter objective we present the spectral difference surface 

(SDS) distance, optimized principal component Mahalanobis (oPC–M) distance, 

the locally linear embedding Mahalanobis (LLE–M) distance and the sigma local-

ly linear embedding Mahalanobis (σLLE–M) distance.  

 

2. Materials and methods 

2.1 Algorithms 

The algorithms and methodologies in this study focus on the analysis of the soil 

similarity between a reference data set of n reference samples         

            
  and an unknown set of m samples                     

  where the Yu 

values are “unknown”. Here Xr and Xu represent the spectra of each set and Yr 

and Yu represent a given soil attribute. In other words, distance metric algo-

rithms are used to find in the reference set the subset                         
  

of m samples which are the most similar ones to the unknown samples. 
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2.1.1 Distance metrics for similarity search in the vis–NIR space 

2.1.1.1 Euclidean and Mahalanobis distances  

Both, the Euclidean and the Mahalanobis distances (ED and MD respectively) 

are widely used in many research fields for measuring similarities among sam-

ples. In the computation of the ED, each feature has equal significance. Hence, 

correlated variables, which may represent irrelevant features, can have a dispro-

portional influence on the analysis (Brereton, 2003). 

For computing the distance (d) between samples in Xr and samples in Xu the fol-

lowing equation is used: 

 (       )   √(       )   (       )
 
 (1) 

where M is the identity matrix in the case of the ED while for MD M is the covar-

iance matrix of Xr ∪ Xu. In contrast to the ED, the MD accounts for the correla-

tion between features by using the covariance matrix. Another characteristic of 

the MD is that it is scale–invariant which means that the result will not change 

if all the dimensions are scaled equally (Laskar et al., 2011). 

The MD can also be viewed as the ED of the feature space after applying a linear 

transformation. Such linear transformation is done by using a factorization of the 

inverse covariance matrix as M –1 = WTW, where W is merely the square root of M 

–1. Therefore, the MD between     and     is equivalent to the ED between      

and      which is calculated as follows: 

 (       )   √(         )(         )
 
 (2) 

The computation of the MD in the original vis–NIR space can involve some prob-

lems. For instance, M can result in a singular matrix which cannot be inverted. 

The reason for this is that the spectral features are usually highly correlated (De 

Maesschalck et al., 2000).  In addition, for MD computations the number of sam-

ples in the dataset must be larger than the number of spectral features.  
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2.1.1.2 Spectral Angle Mapper (SAM) 

The SAM or dot–product cosine was introduced by Yuhas et al. (1992). It has 

been extensively used in remote sensing for unsupervised classification of multi–

spectral and hyper–spectral images. In soil spectroscopy SAM has been used for 

soil similarity analysis (e.g. Farifteh et al., 2007; Lugassi et al., 2010). It is also 

used as scale invariant similarity measure. The similarity is measured by calcu-

Lating the angle between samples in the spectral space. The SAM is calculated 

as: 

   (       ) =       
∑            

  
   

(∑            
   )

   
(∑            

   )
   

 (3) 

where nb is the number of spectral bands or features corresponding to both     

and    . 

The SAM is insensitive to illumination and albedo magnitude effects because the 

angle between two spectrums is invariant with respect to the lengths of them 

(Park et al., 2007).  It is also easy to implement and its computational cost is low.  

 

2.1.1.3 Spectral Information Divergence (SID) 

The SID was introduced by Chang (2000), it uses the Kullback–Leibler diver-

gence (KL) or relative entropy (Kullback and Leibler, 1951) to account for the vis–

NIR information provided by each spectrum. The KL measures the difference be-

tween two probability distributions. However, it cannot be considered as one dis-

tance metric, since   (   ‖   ) is not equal to   (   ‖   ). Nevertheless, a dis-

tance metric can be obtained by using the SID approach. The SID similarity is 

given by the sum of the estimated divergence between xri and xuj and the esti-

mated divergence between xuj and xri. The SID is computed as follows: 

    (       )     (   ‖   )    (   ‖   ) (4) 
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∑     (
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 (5) 

where b represents the number of variables or spectral features, p and q are the 

probability vectors of  xri and xuj respectively which are calculated as: 

   
   

∑      
 
   

 (6) 

    
   

∑      
 
   

 (7) 

2.1.1.4 Surface Difference Spectrum (SDS) 

The SDS is a new distance metric approach. This method involves a multi-scale 

analysis of the differences (e) between two soil spectra xri and xuj. A derivative 

function (a) is applied on e as a function of the frequency (or wavelength) delay 

returning a 3D spectrum of differences. The SDS is calculated in the spectral 

space as:  

         {
 (       )   (       )                            

       
 

 
                                      

 (8) 

from this spectral surface the distance (d) between xri and xuj is formulated as: 

 (       )   
 

 
      (       )  (9) 

where 

   √∑ ∑     

    

   

 

 

   

 (10) 

and   

 σ is the frequency delay which can vary from 0 to nb - 1,  

 nb is the number of bands or features of the spectra. 

 nb–σ represents the number of features of generated at each frequency de-

lay computation.  

 s is the optimum value of σ.  
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 w(xri,xuj) is given by the inverse of the squared correlation coefficient be-

tween xri and xuj. This weight is obtained from a robust correlation analy-

sis (Chu et al., 2011). This correlation coefficient is calculated on the basis 

of a window that moves over the whole spectral region. The final correla-

tion coefficient is the average of the correlations found with this moving 

window. In this case we use a window width of 11 bands (110 nm) as sug-

gested in Chu et al. (2011).  This correlation coefficient is used to further 

improve the performance of the SDS method.  

After performing the computation of d, the values of e and a must be normalized. 

In SDS the parameter σ needs to be optimized. Each spectrum generated at each 

frequency delay iteration can be interpreted as the derivative energy spectrum of 

the spectral difference between xri and xuj.  

Figure 1a provides an example of the SDS between two very similar vis–NIR 

spectra. Because the shapes of both spectral samples are similar the e between 

them is almost constant, therefore its corresponding surface (Figure 1b) is nearly 

flat. Figure 1c shows two slightly different spectra, their main differences are 

found in the absorption bands around 2200 nm which indicate the presence of 

kaolinite (Demattê et al., 2004) and the energy absorption to the Al–OH in gen-

eral (Viscarra Rossel and Behrens, 2010). These differences are reflected in the 

Euclidean distance spectrum and in the derived surface (Figure 1d) where some 

irregular patterns can be found. Figures 1e and 1f show the SDS analysis for two 

spectrums with very different vis–NIR patterns where e and its correspondent 

surface are very irregular.  
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Figure 1.  Example of the SDS computation. Dash lines in a, c and e represent 

the Euclidean distance spectrums (E) or SDS at frequency delay of 0 (σ=0). The 

3–D representations of the SDSs (with σ= 1,.., 15) of a, c, and e are showed in b, d 

and f respectively. 

In this approach additional information about the difference between xri and xuj 

is generated at each frequency delay iteration. Note that when e(xri, xuj) is con-

stant, then its a(e,e) spectrum and w will be 0.  

The optimization framework to identify the adequate number of frequency delays 

is described as follows: first, the SDS distance is computed for the frequency de-

lays corresponding to a sequence from 0 to a predefined threshold (t). In this 

sense a set of t SDS distance matrices is obtained. Then, by using these matrices 

the spectral nearest neighbor (NN) of each xri is selected from Xr. Each xri sam-

ple and its NN are compared in terms of soil compositional attributes (e.g. clay 

content and pH) i.e. a comparison between     and the corresponding soil attrib-

ute of its spectral NN ( ̈  ) is carried out. For compositional comparison the root 

mean square of compositional differences (RMSDc) is used. The RMSDc is calcu-

lated as: 
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         √
 

 
∑       ̈   

  
   , (11) 

Note that  ̈    ∈ Yr. Finally, the adequate number of frequency delays (s) to be 

used is the one corresponding to the SDS distance matrix that minimizes the 

RMSDc.  

 

2.1.2 Distance metrics for similarity search in projected spaces 

2.1.2.1 The principal components–Mahalanobis (PC–M) distance  

The principal component (PC) analysis is a projection method which is the stand-

ard approach used to reduce the dimensionality of soil vis–NIR spectra. An eigen-

decomposition of covariance matrix or a singular value decomposition (SVD) of 

the data matrix can be used for the projection. Other PC methods such the non-

linear iterative partial least squares (NIPALS, Wold, 1966) can also be used for 

PC projections. Here we used the SVD for the PC analysis. This method frequent-

ly requires preprocessing of the spectral data (usually centering and scaling) pri-

or the PC projection, nevertheless, this depends on the data to be used and the 

purpose of the analysis. 

For computing the distances between reference and unknown samples, first a PC 

analysis of Xr ∪ Xu is carried out, then a set of PC features are retained based on 

the cumulative amount of variance explained and the rest of them are ignored 

assuming they do not contain useful information. Finally, the Mahalanobis dis-

tance is computed on the retained PC features.  

 

2.1.2.2 The optimized PC Mahalanobis (oPC–M) distance  

Here we propose the oPC–M distance method which only differs from the stand-

ard PC distance in the way in which the number of PC features to retain is calcu-

lated. The goal in the oPC–M approach is to identify the optimal number of PC 

features (or level of compression) representing the soil compositional variability. 

The rationale behind this approach is based on the assumption that soil vis–NIR 
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variability should also reflect the soil compositional variability, at least in terms 

of those attributes that have strong influence on the vis–NIR spectra.  

In order to find the optimal number of PC features to retain we propose a very 

simple framework which is similar to the one used in the SDS method and it is 

based on the minimization of the RMSDc. A PC analysis of Xr ∪ Xu is carried out, 

then the PC features are retained one at a time (according to its explained vari-

ance), in each iteration a Mahalanobis distance matrix is computed. By using 

each MD matrix, the nearest neighbor (NN) of each xri is also selected from Xr as 

a function of the number of PC retained. The Xr samples and their spectral NNs 

are compared in terms of soil compositional attributes. The optimal number of 

PCs is the one corresponding to the distance matrix that minimizes RMSDc.  

 

2.1.2.3 Locally Linear Embedding–Mahalanobis (LLE–M) distance 

The Locally Linear Embedding (LLE) algorithm was introduced by Roweis and 

Saul (2000) and extended in Saul and Roweis (2003). This approach has not been 

applied in soil vis–NIR spectroscopy so far. However it has been successfully used 

for dimensionality reduction of hyperspectral remote sensing images (e.g. Chen 

and Qian, 2007; Ma et al., 2010) 

The LLE is basically a non–linear dimensionality reduction method. It can be 

viewed as an unsupervised metric learning algorithm which learns the global 

manifold structure from local neighborhoods. In other words, LLE is able to re-

construct complex structures from locally Euclidean structures. The locally linear 

embedding of X (where X = Xr ∪ Xu) is carried out in three main steps (Figure 2): 

1. Select neighbors: In this step the Euclidean distance is used to find the k–

nearest neighbors of each data point xo. These samples are used as descrip-

tion of local patches of the manifold.  

2. Compute a weight matrix: Here a weight matrix (W) is computed in order 

to optimally reconstruct xo from its neighbors. A weight is assigned to each 

neighbor of xo. The neighbors must be able to represent or reconstruct xo. 

The more similar the neighborhood samples are to xo the more accurate the 
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reconstruction of each xo will be. High weight values are assigned to those 

neighbors which contribute more to the reconstruction of xo, and low 

weight values to those neighbors that have a small contribution. A weight 

of 0 is assigned for the cases in the data set which do not belong to the set 

of neighbors of each xo.  

The reconstruction weights of each xo are calculated as follows: i. create a 

G matrix by subtracting xo from the matrix of its neighbors, ii. compute the 

local covariance (C) as C=GTG and iii. solve the linear system C w = 1, 

where w are the weights of each neighbor.  

3. Compute the low–dimensional coordinates. Finally xo is embedded onto a 

low dimensional space (V) by using the reconstruction weights. This step is 

performed by choosing the low dimensional coordinates of each vo which 

minimizes the following cost function: 

        ∑(   ∑      

 

   

)

 

   

 

 (12) 

The goal here is to find low dimensional outputs vo that are reconstructed 

by the same weights wok as the high dimensional inputs xo (Saul and 

Roweis, 2003).  

 
Figure 2. Summary of the LLE algorithm, mapping high dimensional inputs xo to 

low dimensional outputs vo (adapted from Roweis and Saul, 2000). 
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The maximum dimensions LLE projection is determined by the number of near-

est neighbors (k). The maximum number of dimensions (d) that LLE can be ex-

pected to recover is strictly less than the number of neighbors used (Roweis and 

Saul, 2000). Here we fixed the number of dimensions to d = k-1. This means that 

we used all the dimensions that can be recovered with the k nearest neighbors 

retained, in order to capture all the information extracted by the LLE algorithm. 

The only free parameter which needs to be optimized is k.  

The LLE–M distance corresponds to the Mahalanobis distance measured in the 

projected LLE space of X. Prior the computation of the LLE–M distances between 

samples of Xr and Xu, is necessary to identify the optimal number of neighbors 

(k) to use in the LLE projection. The procedure for optimizing the number of LLE 

dimensions is basically the same as in the oPC–M method for optimizing the 

number of PCs, i.e. it is based on the minimization of the RMSDc. We tested from 

3 to 55 neighbors in steps of 1.  

 

2.1.2.4 The surface difference spectrum for locally linear embedding–Mahalanobis 

distance (σLLE–M) 

Taking into account that the neighborhood selection, which is the only non–linear 

step of the LLE, plays a key role in the performance of LLE algorithm (Chen and 

Liu, 2011), we propose an extension of the LLE–M called σLLE–M. The only dif-

ference between LLE–M and σLLE–M lies on the neighbor selection (step 1). 

While LLE–M uses the Euclidean distance for neighbor search, σLLE–M uses the 

distance metric function derived from SDS. The SDS algorithm is used to find 

appropriate neighbors better to represent and reconstruct the query point. Some 

works have demonstrated that by improving the neighbor search by using differ-

ent distance metrics, the performance of locally linear embedding algorithm can 

be improved (e.g. Varini et al., 2006; Pan et al., 2009).  

As in the standard LLE–M , the calculation of the optimal number of nearest 

neighbors is carried out in the same way as in the oPC–M method.  
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2.2 The vis–NIR soil spectral library 

We used a global soil spectral library (GSSL) developed by the World Agroforest-

ry Centre (ICRAF) and the ISRIC - World Soil Information (2010). The GSSL 

comprises 4438 soil samples of which 3643 have both, soil chemical attribute and 

texture information. These 3643 samples originate from 55 countries spanning 

America (27%), Africa (24%), Asia (23%), Europe (23%) and Oceania (3%). These 

soils have large texture variability and are represented by all 32 soil groups in 

the world reference base for soil resources (IUSS Working Group WRB, 2006)  

Briefly, the reflectance spectra were recorded using a FieldSpec® FR vis–NIR 

spectrometer (Analytical Spectral Devices, Bolder, Colorado, USA) which collects 

the spectral measurements in a range of 350 to 2500 nm and is characterized by 

a Full Width Half Maximum of 3 nm for the 350-1000 nm region and 10 nm for 

the 1000-2500 nm region. The GSSL was resampled to 10 nm spectral resolution, 

with a total of 216 spectral features. Further details of the GSSL such as optical 

setup and sample preparation for spectral measurements are given in Shepherd 

et al. (2003). Chemical and texture analysis of soil samples were performed by 

ISRIC according to the procedures for soil analysis given in Van Reeuwijk (2002). 

 

2.3 Transformation of the vis–NIR reflectance spectra and pre–processing 

The spectra were transformed to absorbance units (log 1/Reflectance) and then 

the first derivative was computed. By using this procedure the centers of the 

peaks are converted to zero and it is a good way of accurately pinpointing the po-

sition of a broad peak. In addition the first derivative can remove the effect of 

baseline offsets. We applied this pre–processing technique since it reveals rele-

vant spectral variability and it is useful for finding differences between samples 

(Gemperline and Kalivas, 2006). 
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2.4 Soil compositional similarity search based on the vis–NIR spectra 

The algorithms described in section 2.1 were implemented in R (R Development 

Core Team, 2011).  

For each sample in the unknown set xuj, we searched for its most spectrally simi-

lar (closest) sample (xruj) in Xr. Assuming that soils with similar vis–NIR spectra 

share similar compositional characteristics we evaluated the performance of the 

distance metrics presented in this study by their ability to identify samples with 

similar clay content and pH values. We used these two soil attributes because 

they have very different effects on the soil vis–NIR spectra. Clay content has a 

strong effect on the vis–NIR reflectance intensity (Demattê et al., 2004) affecting 

the whole spectrum. On the other hand, pH has localized and weak effects on the 

spectra. Soil pH does not have a direct spectral response (Stenberg et al., 2010). 

This is probably due to the fact that the hydrogen ions (measured in pH) are held 

by the exchange complex of soil. So that spectral responses associated with pH 

should occur at some specific parts of the wavelengths of clay minerals and or-

ganic compounds responsible for cation exchange capacity.     

The distance metric algorithms were tested on the GSSL. We randomly selected 

700 samples as unknown set (Xu,Yu) and the remaining samples (2943) were 

used as reference set (Xr,Yr). 

The root mean square of differences (RMSD) between Yu and Yru was used as 

parameter to evaluate the performance of the algorithms. In this case the RMSD 

was calculated as follows: 

        √
 

 
∑             

   , (13) 

where yuj is the soil attribute value of each sample in the unknown set and      

is the soil attribute value of its corresponding most similar sample found in Xr. 

We also compared the results using the coefficient of determination (R2). 

The methodological framework of the compositional similarity search is summa-

rized in the Figure 3.  
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Figure 3. Methodological framework for soil compositional similarity search using 

soil vis–NIR distances. 
 

 

3. Results 

3.1 Soil attributes and vis–NIR spectral characteristics 

As expected, a large variation of clay content and pH was observed among the 

samples in the library (Figure 4). Clay content ranged between 0 and 96.8% with 
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a mean of 33.1 %. Soil acidity ranged between 3.0 and 10.5 pH units with a mean 

of 6.1. No significant correlation (r=0.01, p> 0.05) between clay content and pH 

was observed. For both attributes the mass of the distribution is concentrated 

below the median (30.5% for clay content and 5.9 for pH).  

 
Figure 4. Histograms and outlier box-plots of clay content and pH values. 

In order to illustrate the variability of the GSSL we selected 10 soil spectra (Fig-

ure 5a) using a conditioned Latin hypercube sampling (Minasny and McBratney, 

2006) on a projected principal component space. To facilitate the analysis of ab-

sorption features we also used the continuum removed spectra (Clark and Roush, 

1984) of these selected samples (Figure 5b). The large variation of soil attributes 

is also reflected in the soil spectral variation. The continuum removed spectra of 

soil samples indicates a large soil mineralogical variation in the GSSL as conse-

quence of the diversity of soil formation environments where samples were col-

lected. In the NIR region, the main spectral variations among samples were ob-

served at wavelengths from 2160 nm to 2230 nm which seem due to the energy 

absorption of soil minerals such as kaolinite and smectite (Demattê and Garcia, 

1999; Demattê et al., 2004; Viscarra Rossel and Behrens, 2010). In a lesser ex-

tent, the spectra showed considerable variability at 1395 nm which is related to 

the presence of kaolinite (Viscarra Rossel and Behrens, 2010). Bands associated 

with the hygroscopic moisture content corresponding to 1380 nm and 1455 nm 

(Ben–Dor et al., 2008) presented also high variation among samples. In the vis 

region, large spectral variations were observed at wavelengths of 435, 550 and 

850 nm which are associated to the content of iron oxides (Demattê and Garcia, 

1999). Some samples with weak absorption features show also typical spectral 

characteristics of soils with high organic matter content (Stoner and Baumgard-
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ner, 1981; Ben–Dor et al., 1999) and/or low levels of crystalline iron and amor-

phous iron (Ben–Dor  et al., 2008). 

 

Figure 5. Reflectance (a) and continuum removed spectrums (b) of ten soil sam-

ples selected to illustrate the vis–NIR variation in the GSSL. 

 

3.2 Optimizations 

4.2.1 Frequency delays for surface difference spectrum (SDS) 

Using the SDS method we found that the distance metric can be improved grad-

ually by increasing the number of wavelengths delays (σ) involved in the distance 

computation. In the case of pH this gradual improvement is followed by the stabi-

lization of the RMSDc in which no significant improvement is observed. For clay 

content, the sensibility of the RMSDc to frequency delay variations is low. Despite 

this, there is a clear tendency of the reduction of the RMSDc in the first 11 fre-

quency delays, and after this point the RMSDc increases (Figure 6). 

Figure 6 shows that around 9 and 5 frequency delays were necessary to reduce 

the RMSDc for clay content and pH respectively. This also suggests that new in-

formation about the spectral similarity between samples emerges when the 

neighborhood wavelengths are taken into account. For computing the final SDS 

distance matrix we used 5 frequency delays (σ=5) taking into account that the 

RMSDc for pH comparisons is more affected by σ than the RMSDc for clay content 

comparisons.  
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Figure 6. Number of frequency delays (σ) against the root mean square of compo-

sitional differences in the reference set (RMSDc) of the SDS distance.   

 

3.2.2 Number of PC features for the standard PC–M method  

In the standard PC–M distance, the selection of the number of PC features to re-

tain does not take into account the compositional similarity between samples, 

instead it is based only in the proportion of the explained variance of each com-

ponent. Here, the first 9 PC features accounted for 43.9, 20.9, 12.3, 10.1, 3.9, 1.8, 

and 0.9 % respectively (Figure 7). This means that by using these features the 

95.9% of the soil vis–NIR variation can be retained. For this reason, only the first 

9 PC features were used for computing the PC–M distances. The rest of the PC 

features were excluded from the analysis since their individual explained vari-

ances were lower than 0.5%.  

 

Figure 7. Percentage of explained variance by each PC feature.  

 

3.2.3 PC features for oPC–M  

Under the conventional assumption 9 PCs would be enough to represent the soil 

spectral variation. However, by using more than 9 PCs better results were ob-
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tained in terms of soil compositional similarity search. Figure 8 shows that the 

RMSDc decreased steeply as function of the number of PC features used to com-

pute the distances between samples, and then a gradual increasing of the RMSDc 

was observed.  

 
Figure 8. Number of PC features against the RMSDc of similarity search of clay 

content and pH. 

 

Our results show the necessity of parameter optimization in PC analysis. By us-

ing the conventional selection of PC features, important soil compositional infor-

mation contained in the vis–NIR spectra can be lost. In both cases 26 PC features 

returned the minimums RMSDc for clay content and pH, so that for the computa-

tion of the final oPC–M distance matrix we use these 26 PCs.  

 

3.2.4 Euclidean nearest neighbors for LLE–M distances 

The LLE–M method applies the k nearest neighbors search based on Euclidean 

distances to reconstruct each sample (xo) form local patches. We found that by 

increasing the number of neighbors used in the reconstruction of each xo the 

RMSDc can be reduced steeply until reaching a stability point (Figure 9). The 

lowest RMSDcs for clay content and pH comparisons were returned by using 48 

and 49 nearest neighbors respectively. These number of neighbors returned very 

similar results in both cases. For the final LLE–M distance matrix computation 

we used 49 nearest neighbors. 
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Figure 9. Number of nearest neighbors (k) used in the LLE–M method against 

the RMSDc of similarity search of clay content and pH. Note that the number of 

locally linear embedding dimensions (d) is d = k–1. 

 

3.2.5 SDS nearest neighbors for σLLE–M 

By using the σLLE–M method we observed that the RMSDc can be reduced steep-

ly by increasing the number of nearest neighbors selected by using the SDS dis-

tance matrix. The lowest RMSDcs for clay and pH comparisons were obtained by 

using 50 and 52 nearest neighbors in the LLE–M algorithm. For the final σLLE–

M distance matrix computation we used 52 nearest neighbors. 

In this optimization step, similar results between LLE–M and σLLE–M in terms 

of the RMSDcs obtained for clay content and pH were found (Figure 9; Figure 10). 

For example, by using the selected distance matrices, the LLE–M and the σLLE–

M methods returned the same RMSDcs which was of 10.25% while for pH the 

RMSDcs were 0.73 and 0.72 for the LLE–M and σLLE–M methods respectively.  

 
Figure 10. Number of SDS–nearest neighbors (k) used in the σLLE–M method 

against the RMSDc of similarity search of clay content and pH. As in LLE–M the 

number of locally linear embedding dimensions (d) is d = k–1. 
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3.3 Comparison of the different distance metric algorithms for composi-

tional similarity search 

Once the parameters of the SDS, oPC–M, LLE–M and σLLE–M algorithms were 

optimized we searched for the most similar samples to the unknown set (Xu) in 

the reference set (Xr). 

In the spectral space the MD returned the poorest results (Table 1). The samples 

found in Xr by using the MD showed a low degree of compositional similarity to 

the samples in unknown set in terms of clay content and pH. However the use of 

the Mahalanobis distance in the PC spaces and in the LLE spaces (PC–M, oPC–

M, LLE–M and σLLE–M methods) returned good results (Table 1). The best re-

sults in the spectral space were obtained by the SDS method with RMSD values 

of 12.34% and 0.74 for clay content and pH, respectively. The SDS and the SAM 

methods returned better results than those obtained with the standard PC–M 

method. 

Table 1. Results of the comparisons of clay content and pH between the samples 

in the unknown set and their correspondent most similar samples found in the 

reference set for each vis–NIR similarity search method.  

Method 
Parameter 

value* 

Clay content pH 

R2 RMSD R2 RMSD 

 

Similarity search in the spectral space 

ED –   0.70 12.67 0.67 0.85 

MD – 0.30 21.37 0.32 1.30 

SAM – 0.72 12.42   0.70 0.80 

SID – 0.68 13.40   0.71 0.79 

SDS 5 0.72 12.34 0.75 0.74 

 

Similarity search in the projected spaces 

PC–M 9 0.72 12.59 0.68 0.83 

oPC–M  26 0.76 11.39 0.80 0.64 

LLE–M 49 0.80 10.42 0.75 0.74 

σLLE–M 52 0.80 10.49 0.80 0.65 

*Parameters for each method are: σ for SDS, PC features for 

PC–M and oPC–M, and number of nearest neighbors (k) for 

LLE–M and σLLE–M.  
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In the projected PC space the standard PC–M distance method can be improved 

by using our proposed parameter optimization (Table 1). For both attributes, the 

oPC–M returned lower RMSDs in comparison to the standard PC method. This 

confirms that important soil information useful for distance measurements and 

compositional similarity search is also contained in PC features with explained 

variance lower than 0.5%.  

For the locally linear embedding approaches (LLE–M and σLLE–M), we found 

that they are reliable methods for similarity search. The samples found in Xr by 

the LLE–M and the σLLE–M methods showed similar degrees of compositional 

similarity to the samples of Xu set in terms of clay content with RMSDs of 

10.42% and 10.49% respectively. Although this, for pH the σLLE–M method 

(RMSD=0.65) outperformed the LLE–M method (RMSD=0.74). A probable expla-

nation for this relies on the distance used for neighbor selection step carried out 

in both methods. While the LLE–M uses the ED the σLLE–M uses the SDS dis-

tance. In this sense, the SDS distance seem to be better than ED for neighbor 

selection since it returned better similarity results for pH and in a lower extend 

for clay content.  

Comparing the σLLE–M and the oPC–M methods the samples found by these 

methods returned similar results for pH being the RMSD of the oPC–M method 

slightly lower than the one presented by the σLLE–M method (Table 1). However 

the samples found in Xr by the σLLE–M method retuned a lower RMSD for clay 

content than those found by the oPC–M method.  

 

4. Discussion 

Concerning the poor performance of the MD, we can deduce that it was caused by 

the  use of the covariance matrix computed in the original spectral space. As we 

mentioned in section 2.1.1.1 the MD is equivalent to the ED after a linear trans-

formation of the data by using the square root of the inverse covariance matrix. 

This means that after that transformation the vis–NIR distances or similarities 

no longer represent the soil compositional similarity. For this reasons the classi-
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cal estimates of the covariance matrix in the original high dimensional space of 

vis–NIR data sets should be avoided.  

We showed that the conventional methods (ED, MD, SAM and SID) used in re-

mote sensing do not have a satisfactory performance when used in soil vis–NIR 

spectroscopy. One probable reason for that relies on the fact that in high dimen-

sional spaces the notion of similarity becomes less accurate (Abou–Moustafa and 

Ferrie, 2008).  

The SDS method mitigates very well the complexity problem by extracting addi-

tional features from the Euclidean distance spectra computed in the original vis–

NIR space. Unlike the ED, MD, and SAM, the SDS method takes into account the 

sequence of the spectra. This characteristic seems to be very useful for soil spec-

tral similarity analysis. Nevertheless, the SDS method is computationally expen-

sive. 

One important characteristic of the SDS, oPC–M, LLE–M and σLLE–M methods 

is that they take into account the soil compositional similarity for the optimiza-

tion of their parameters. In this sense, one can choose several soil attributes to 

check if the vis–NIR similarity reflects the compositional similarity properly. Our 

results showed that in each method the optimal parameters to maximize the sim-

ilarity of clay content and pH between the unknown samples and the samples 

found in the reference set do not differ very much. In order to solve this problem, 

we suggest using only those soil attributes that have strong influence on the soil 

vis–NIR spectra.  

For the projection approaches, we demonstrate that both, the LLE–M and the 

σLLE–M can improve the distance metrics that they use for the projection. In the 

case of σLLE–M, it returns similar results of clay content comparisons and better 

results for pH than LLE–M. This demonstrates the fact that reliable distance 

metrics in the original predictor space (such as the SDS distance) are very im-

portant for distance metric learning approaches. On the other hand, we observed 

that LLE–M returns similar results to the oPC–M, however the LLE–M has a 

higher computational cost. In this sense, the computational cost of the σLLE–M 
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approach is much higher than the LLE–M since it involves the computation of 

SDS distances.  

 

5. Proximal soil vis–NIR sensing applications 

Similarity search methods would be very useful for integrating soil spectral li-

braries into proximal soil sensing for field predictions of soil attributes.. For in-

stance, given a soil spectral library (Xr) and a set of soil vis–NIR spectra meas-

ured in the field (Xu), it is possible to use a distance metric algorithm for search-

ing the samples in Xr which are most similar to the Xu samples. Once the most 

similar samples have been found, specific soil models representing the field data 

can be calibrated. By using this procedure, redundant information as well as 

noisy or non–informative samples (regarding the field spectral variability) in the 

soil spectral library can be removed in order to infer the target soil attribute in 

the field. In this sense, reliable distance metrics such as oPC–M, LLE–M and 

σLLE–M are necessary to select from the soil spectral library samples which are 

actually similar to the samples collected in the field in terms of both soil vis–NIR 

spectra and soil composition. Furthermore, this could have implications on the 

generalization capacity of the calibrated models. 

For calibration of soil models based on proximal soil sensing data collected at 

high spatial resolution is of fundamental importance to select adequately the 

subset of calibration samples to be used and analyzed (Christy, 2008). This im-

plies that the data space must be efficiently covered by the calibration samples in 

order to ensure good prediction results. In this respect, the oPC–M, LLE–M and 

σLLE–M distances are potentially useful for selecting the subset of representa-

tive calibration samples. We consider that calibration sampling algorithms based 

on distances such as Kennard Stone (Kennard and Stone, 1969) and fuzzy c–

means sampling (de Gruijter et al., 2010) could be improved by using either by 

using oPC–M or LLE–M or σLLE–M distances.  

Furthermore, in the case of proximal vis–NIR sensing where many outlier sam-

ples can arise (due to uncontrolled field conditions) a correct identification of such 

outliers is required since they can degrade the prediction performance of soil vis–
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NIR models. The standard approach for outlier identification in proximal vis–

NIR sensing is to calculate the Mahalanobis distance on the principal compo-

nents retained by using the explained variance criteria (e.g. Stevens et al., 2010; 

Knadel et al., 2011). However, here we showed that the distances estimated by 

using this strategy are not accurate enough for describing the compositional simi-

larity between samples. Therefore the implementation of oPC–M, LLE–M and 

σLLE–M for outlier detection in proximal vis–NIR sensing data might result bet-

ter than the conventional approach. 

 

6. Conclusions 

In this work we showed that the soil vis–NIR similarity is directly related to the 

soil compositional similarity. In order to assess the similarity between soil vis–

NIR spectra we used the following distance metrics: ED, MD, SAM, SID, SDS, 

PC–M, oPC–M, LLE–M and σLLE–M. Given a set of soil vis–NIR samples (un-

known set) we searched in a reference set the most similar vis–NIR spectrum of 

each unknown sample. We compared the resulting subset of most similar sam-

ples against the unknown set in terms of clay content and pH values (composi-

tional similarity).  

We found that the information about the compositional similarity is useful for 

obtaining reliable distance measurements. The best distance metric approaches 

are those that better reflect the soil compositional similarity. In general, our re-

sults indicate that the distances computed in the spectral space have a lower per-

formance in comparison to the ones computed in low dimensional spaces. Despite 

this, we found that in the projected PC space the conventional selection of the 

number of PC features can lead to a loss of information which is important for 

soil similarity analysis. In this sense, other optimization methods such the one 

used in the oPC–M that take into account the soil compositional similarity should 

be considered.  

The worst results were obtained by using the MD method. This is attributed to 

the fact that in this method the covariance matrix is computed in the vis–NIR 

spectral space which does not reflect well the relationships in the spectral fea-
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tures. For this reason the classical estimates of the covariance matrix in the orig-

inal vis–NIR space should be avoided. 

Finally we showed that the oPC–M, the LLE–M and the σLLE–M methods out-

performed the current approaches used for soil vis–NIR distance measurements 

and they can be safely used for soil vis–NIR similarity measurements.  
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Abstract   

This paper shows that memory–based learning (MBL) is a very promising ap-

proach to deal with complex soil visible and near infrared (vis–NIR) datasets. The 

main goal of this work was to develop a suitable MBL approach for soil spectros-

copy. Here we introduce the spectrum–based learner (SBL) which basically is 

equipped with an optimized principal components distance (oPC–M) and a 

Gaussian process regression. Furthermore, this approach combines local distance 

matrices and the spectral features as predictor variables. Our SBL was tested in 

two soil spectral libraries: a regional soil vis–NIR library of State of São Paulo 

(Brazil) and a global soil vis–NIR library. We calibrated models of clay content 

(CC), organic carbon (OC) and exchangeable Ca (Ca++). In order to compare the 

predictive performance of our SBL with other approaches, the following algo-

rithms were used: partial least squares (PLS) regression, support vector regres-

sion machines (SVM), locally weighted PLS regression (LWR) and LOCAL. In all 
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cases our SBL algorithm outperformed the accuracy of the remaining algorithms. 

Here we show that the SBL presents great potential for predicting soil attributes 

in large and diverse vis–NIR datasets. In addition we also show that soil vis–NIR 

distance matrices can be used to further improve the prediction performance of 

spectral models. 

Keywords: soil similarity; machine learning; local modeling; memory–based 

learning; soil spectral library; nearest neighbor. 

 

1. Introduction 

It has been demonstrated that soil visible and near infrared (vis–NIR) spectros-

copy can be used to predict multiple soil attributes accurately (Viscarra Rossel et 

al., 2006; Stenberg et al. 2010). Soil vis–NIR libraries have become powerful tools 

in soil science helping to analyze and store large amounts of soil information in 

an efficient way (McBratney et al., 2006). However, the accuracy of the models 

usually decreases when the dataset contains very diverse samples in terms of 

geographical origin, mineralogy, parent material, environmental conditions, etc. 

For instance, Stenberg et al. (2010) showed with a literature review that there is 

positive correlation between the error of the models and the standard deviation of 

the soil property under investigation. Similarly, Savvides et al. (2010) demon-

strated that the spatial relationship between soil reflectance and cation exchange 

capacity is scale-dependent. As a consequence, modeling soil attributes using 

large and diverse soil vis–NIR libraries still remains a challenging task.  

In contrast to pure component systems, soil is a very complex mixture of mineral 

and organic constituents. Soil vis–NIR spectra result from overtones and combi-

nation bands of primary absorptions in the mid infrared region of the electro-

magnetic spectrum. Therefore, soil constituents present weak, broad and some-

times overlapping vis–NIR spectral responses.  

The relationship between vis–NIR spectra and soil properties can vary under dif-

ferent soil mineralogy and their content in soil organic matter since they are the 
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main spectrally–active components of the soil (Stoner and Baumgardner, 1981; 

Brown et al., 2006; Ben-Dor et al., 2008; Stenberg et al., 2010; Viscarra Rossel et 

al., 2011). Information about the variability of soil attributes with a direct and 

strong influence on the vis–NIR features can be very important for developing 

models of other soil attributes. For instance, the vis–NIR spectral response of ex-

changeable bases is associated with the clay minerals and their amount 

(Madejová, 2003). Hence, soils with different mineralogy will show different spec-

tral responses of the cations held by their clay minerals. This implies that in a 

given vis–NIR dataset, soil attributes associated to spectrally active constituents 

(e.g. minerals and organic matter) cannot be expected to be globally stable (Sten-

berg et al., 2010), however, they can be locally stable. In this sense, when spectral 

variations associated to mineralogy and organic matter are reduced, the spectral 

variation of several other soil attributes can be highlighted. This can explain why 

local models work usually better than the global models. Nevertheless, vis–NIR 

dataset partitioning for local modeling is also challenging due to the complexity 

problems mentioned previously. 

One reasonable approach for reducing the complexity of a given soil vis–NIR da-

taset (X), which is very heterogeneous, is to split X into c partitions or clusters, so 

that samples in the same partition share similar soil characteristics. In this 

sense, the complexity in each partition must be lower than the global complexity 

contained in X. In general in soil science and specifically in soil spectroscopy, sev-

eral studies have demonstrated that prediction models based on (either spectrally 

or geographically) local partitions perform better than single or global models. In 

many cases the use of geographical information for partitioning a spectral da-

taset results in reduction of the soil (spectral) variability within each partition in 

comparison to the global soil (spectral) variability. Stevens et al. (2010) observed 

that vis–NIR local models of soil organic carbon perform better than global mod-

els when the soil dataset is partitioned into different soil texture classes and 

agro–pedological regions. They also showed that the organic carbon variability 

within each partition is lower than the organic carbon variability of the entire 

area. Guerrero et al. (2010) used different regional calibration sets for predicting 

soil attributes in each region. For modeling soil attributes in different agricultur-
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al fields, Wetterlind and Stenberg (2010) used models calibrated with a national 

soil vis–NIR library, and models calibrated only with local samples taken from 

those fields. They observed that the local models outperformed the national soil 

vis–NIR models. Janik et al. (2007) suggested that local calibrations of soil spec-

troscopic models based on the minimization of changes in soil type may be more 

accurate than global calibrations. Similar conclusions are reported on the analy-

sis of soil data for digital soil mapping. When the variability patterns of a given 

soil attribute differs between geomorphological or pedological regions, they 

should be modeled separately (McBratney et al., 1991; Schmidt et al., 2010). 

 

1.2 Memory–based learning 

In machine learning theory, memory–based learning (MBL) (a.k.a. instance–

based learning) is a data–driven technique. It can be defined as a lazy learning 

approach which is closely related to case based reasoning (CBR). Like CBR, MBL 

resembles the human reasoning process (An, 2005): remember previous situa-

tions, adapt them for solving the current problem, examine the probability to 

solve the problem with the new solution, and memorize the experience for 

knowledge improvement. The main difference between CBR and MBL is that 

CBR uses knowledge–based reasoning rather than statistical methods (Mitchell, 

1997). In contrast to other learning methods, the main goal in MBL is not to de-

rive general or global target function. Instead, when a solution for a new problem 

is required, the experience in the form of a set of similar related samples is re-

trieved from memory and then those samples are combined to construct the solu-

tion to the new problem. Hence, for each new problem a new target function is 

derived. While a global target function may be very complex, MBL can describe 

the target function as a collection of less complex local (or locally stable) approx-

imations (Mitchell, 1997). In this sense, non–linear relationships can be easily 

resolved. In contrast to complex learning algorithms such as neural networks or 

support vector machines most of the MBL systems do not require a complex func-

tion fitting process (Kang and Cho, 2008). The k-nearest neighbor algorithm is 
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one of the most widely known algorithms which belongs to the family of MBL 

methods (Solomatine et al., 2008, Mitchel, 2011). 

In the literature MBL is sometimes referred to as local modeling, nevertheless 

local modeling comprises other approaches such as cluster–based modeling and 

geographical segmentation–based modeling, etc. Hence, MBL can be described as 

a type of local modeling. 

Several MBL approaches have been useful for solving difficult tasks in areas such 

robotics, linguistics, medical diagnosis, image analysis, etc. For example, in hy-

drological forecasting Solomatine et al. (2008) reported that the performance of 

MBL approaches is often better than performance of complex algorithms such 

artificial neural networks and model trees. In general the use of CBR and MBL 

in soil science research is not new, several authors have already implemented it 

for soil erosion modeling (Meyer et al., 1992), digital soil mapping (e.g. Zhu, and 

Liu, 2011; Shi et al., 2004; Shi, et al., 2009; Qui et ql., 2006) and hydrological 

analysis (e.g. Ostfeld and Salomons 2005; See, 2008; Solomatine et al., 2008; Ak-

bari et al., 2011).  Shi et al., 2004, mention that similarity–based inference can be 

an effective approach to knowledge acquisition and knowledge representation for 

digital soil mapping.  

MBL approaches such as locally weighted partial least squares regression (LWR, 

Naes et al., 1990), LOCAL (Shenk et al., 1997), locally biased regression (Fearn 

and Davies, 2003) and comparison analysis using restructured near-infrared and 

constituent data (CARNAC–D, Davies and Fearn, 2006) have been successfully 

applied in vis–NIR spectroscopy. However, MBL has received little attention in 

soil spectroscopy and only few studies to date have reported its use. Chang et al. 

(2001) implemented a local principal component regression approach for perform-

ing vis–NIR-based predictions of multiple soil attributes of samples collected 

from several regions in the United States. In their approach, for each soil sample 

in the prediction set, its 30 most similar samples in a reference set were used for 

fitting a local model. They found high prediction accuracy for all the attributes 

under study. Christy and Dyer (2005), compared LWR to other regression algo-

rithms for calibrating models of soil attributes based on data from multiple on-
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the-go soil sensors (including a vis–NIR spectrometer). They report that highest 

prediction accuracies for most of the soil attributes evaluated were produced by 

LWR. Igne et al. (2010) used the LWR algorithm for predicting soil attributes 

from a NIR and mid–infrared library of samples collected at the field scale. Genot 

et al. (2011) used the LOCAL algorithm for predicting soil attributes using a re-

gional soil NIR library. Both works demonstrated that soil attribute models cali-

brated with the LOCAL and the LWR regressions outperformed the global mod-

els. Fernández Pierna and Dardenne (2008) found that the LOCAL algorithm has 

better performance than global PLS and least squares SVM for predicting soil 

properties. Gogé et al. (2012) evaluated different local PLS modeling approaches 

for predicting soil attributes using a vis–NIR soil spectral library of France. They 

obtained high prediction accuracy with similar results for all the local approaches 

tested.  

The main drawbacks of MBL methods lie on the computational costs and the sim-

ilarity measure used for recovering samples from the memory (nearest neighbor 

search). For example, in both LOCAL and LWR algorithms, for n samples in a 

given prediction set, n models need to be calibrated. This implies that n optimiza-

tions for choosing the adequate number of PLS factors must be carried out. This 

can be particularly problematic when the training set includes a large number of 

samples and features or predictor variables. Concerning the second problem, 

since the accuracy of MBL relies entirely on a set of similar samples, inadequate 

strategies for measuring the similarity might degrade the performance of the 

MBL approach (Lopez de Mantaras et al., 2006). 

In this context, our main goal was to develop a high-performance MBL for model-

ing complex soil spectral data. For this purpose we introduced the spectrum–

based learner (SBL) which is equipped with an optimized principal components 

distance (oPC–M) and a Gaussian process algorithm with a linear covariance 

function (GPL). Our SBL can be described as a locally linear Gaussian process 

modeling approach which combines local distance matrices and the spectral fea-

tures as source of predictor variables. 

 



134 
 

 

2. Theory 

2.1 Linear Gaussian process regression 

Gaussian process (GP)  regression is equivalent (in geostatistics) to widely known 

kriging interpolation which has been extensively used in pedometrics research. 

However here, instead using geographical coordinates as input data, we use mul-

tivariate vis–NIR data. Among GP (Williams and Rasmussen, 1996) algorithms, 

the linear Gaussian processes (GP) uses linear covariance function or linear ker-

nel. The GP regression is a probabilistic, non-parametric Bayesian approach. A 

GP is commonly described as a collection of random variables which have a joint 

Gaussian distribution and it is characterized by both a mean and a covariance 

function. In general, Gaussian processes regression is a powerful algorithm for 

function approximation in high–dimensional spaces (Rasmussen and Williams, 

2006).  

In GP regression, given a dataset of N samples with predictors (X =        
 ) and a 

target attribute (Y =       
 ) the function y(x) can be described by a Gaussian dis-

tribution Y ∼G(0, C) where C is a N×N covariance matrix which can be defined 

via a covariance function (a.k.a kernel function) where  

 C = K(X,X)  (1) 

There are several algorithms among the large family of covariance functions (e.g. 

linear, squared exponential, Gaussian, polynomial, laplacian, spline, Bayesian, 

wavelet, etc). Covariance functions implicitly perform a mapping of the original 

feature space into a high dimensional space with linear or nearly linear struc-

ture. This is also referred to as “kernel trick” (Aizerman et al, 1964; Schölkopf 

and Smola, 2002). Since GP is equivalent to kriging, the geostatistcal counter-

parts of the covariance functions that are used in GP are the represented by vari-

ogram models (Gneiting et al., 2001). 

The only free parameters to be optimized in a GP regression are the hyperpa-

rameters of the covariance function to be used. Our SBL uses the following linear 

covariance function for computing the local regressions: 
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              (2) 

In general, the covariance function can be described as: 

        [
                 

   
                 

] (3) 

For predicting a new sample at     , the predictive distribution of       is also 

Gaussian distributed, with mean:  

  ̅                 (4) 

and variance:  

   ̅   

                                  (5) 

where: 

                                               (6) 

Further details on GP regression and covariance functions can be found in Ras-

mussen and Williams (2006), and Chen et al. (2007). 

 

2.2 The spectrum–based learner (SBL) 

Here we introduce our memory–based learning approach which is called spec-

trum–based learner (SBL). The SBL is a three step approach which comprises: i. 

Nearest neighbor search (recovering), ii. training and testing, and iii. fitting and 

predicting. As other MBL methods, the SBL does not yield a global function, in-

stead it performs local interpolations which are based on a reference set or spec-

tral library.   

2.2.1 Nearest neighbor search (recovering)  

The main goal of this step is to discover which samples in a reference set “resem-

ble” the samples to be predicted. Recovering similar samples from a set of sam-

ples stored in a “memory” (reference set) implies that similarity or dissimilarity 

measurements must be carried out. For these measurements a distance matrix 

can be used. In the SBL the nearest neighbor search process is carried out by us-

ing an optimized principal components distance (oPC–M, Ramirez-Lopez et al., 

2012) which indicates how similar or dissimilar the vis–NIR spectra are to the 

samples to predict.  
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Usually for computing distances between samples in a vis–NIR dataset, the spec-

tra are compressed by using principal component analysis. This produces a set of 

score variables (S)  on which the Mahalanobis distance is computed. Only the 

first S variables that accounted for a given percentage of the original spectral 

variability are used. This procedure has been widely used by the vis–NIR spec-

troscopy community (Naes et al. 2002, De Maesschalck et al., 2000). However this 

approach does not take into account the information related to the soil composi-

tion of the samples.  

In the oPC–M distance we also use a nearest neighbor approach for selecting the 

number of optimal principal components that better represents the distance or 

similarity in terms of soil composition (e.g. clay content, organic carbon, ex-

changeable Ca) between samples.  

Given a set of n reference samples                     
  and a set of m samples 

                    
  (where Yu values are unknown) the spectra of X = {Xr ∪ 

Xu} are compressed by using principal component (PC) analysis, obtaining a ma-

trix of scores (S) of N×p dimensions. The singular value decomposition algorithm 

was used for the PC analysis. The Mahalanobis distance (MD) matrix is comput-

ed by varying the number of PC variables (p), so that p = (1,2,3…, t) where t is a 

user–defined threshold which must be lower or equal to the number of spectral 

features. A set of t MD matrices are obtained as a function of the number of PCs: 

                
        

  (7) 

where: 

   [

         

   
         

], (8) 

N = n+m, p is the number of principal components to be retained, o = 1,2,3,…N, 

and M –1 is inverse of the variance–covariance matrix of S.  

By using each MD(p) matrix, the nearest neighbor (NN) of each xri is also select-

ed from Xr as a function of p. i.e. for each p a set of NNs is obtained. The NN of 

each sample indicates its most similar sample in terms of its vis–NIR principal 

components. The samples and their NNs are also compared in terms of soil com-

positional attributes (e.g. clay content, organic carbon, exchangeable Ca, etc). The 
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optimal number of PCs is the one that minimizes the root mean square of compo-

sitional differences (RMSD) between     and  ̈     : 

           √
 

 
∑      ̈       

 

   

 (9) 

where yri is the soil attribute value of each sample and  ̈      is the soil attribute 

value of its corresponding nearest neighbor in vis–NIR principal component space 

with p dimensions (note that  ̈       ∈ Yr). In other words, the number of vis–NIR 

principal components that better represents the soil compositional similarity is 

taken as the optimal for the oPC–M distance computation. The rationale behind 

this approach is based on the fact that soil vis–NIR variability should reflect the 

soil compositional variability as well, at least in terms of those attributes that 

have strong influence on the vis–NIR spectra. Note that in this approach the soil 

compositional information is not used in the PC analysis, it is only used for se-

lecting the optimal number of PCs. If compositional information were included in 

the PC analysis, then compositional information of the samples to be predicted 

would be also needed. And we assume that that information is unknown. 

2.2.2 Training and testing 

Training and testing are carried out in the spectral space. For each xui a model 

must be fitted by using its most similar samples i.e. its k-nearest neighbors. 

However prior fitting is necessary to determine the optimal number of neighbor 

samples (k) to be used in each calibration. In this respect, k must be optimized 

since it can affect the fitting process. For example, if the k is too small the cali-

bration for xui can be highly affected by noise and outliers. On the other hand, if 

k is too large the calibration for xui can be affected by non–linear relationships.  

For each xui its corresponding most spectrally similar sample in the reference set 

(Xr) (i.e. its first nearest neighbor in Xr) or soil spectral library is selected (based 

on the  the oPC–M distance matrix computed in the previous step), resulting in a 

set of most similar samples                         
  where Xru ⊂ Xr and Yru ⊂ 

Yru.  The subset Xru can be viewed as the subset in the reference set that better 
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reproduce the soil variability of the prediction samples         therefore it can be 

exploited for optimizing k. 

From Xr a given number of neighbors (k) of each xruj are retained and used for 

the calibration of a model for predicting yruj. In the calibration process the local 

distance matrix between the neighbors (a k × k matrix which is extracted from 

the oPC–M matrix) is included as an additional set of predictors. A Gaussian pro-

cess regression with a linear covariance function (GPL) is used to predict the tar-

get soil attribute (yruj) corresponding to xruj. These predictions are cross-

validated and the root mean square error of the predictions of Yur (RMSEru) is 

then computed as:  

         √
 

 
∑         ̂  

 

 

   

 (11) 

where    ̂  is each predicted value. This process is repeated for a set of different 

number of neighbors and the idea is to identify the best number of neighbors (k) 

for calibrating models for Xru (the subset of m samples in the reference set which 

better mimics or resemble the spectra of the samples to be predicted) and then 

use it for calibrating the models for Xu. The optimal k is the one that minimizes 

the RMSEru of the prediction of Yru.  

The SBL does not use a distance-based weighting approach, i.e. for the local re-

gressions we did not assign weights to the neighbors based on their distances to 

the target sample. The reason for that is twofold. First, distance-based weighting 

implies the modification of all the spectral variables. Therefore if a distance score 

does not represent properly the similarity/dissimilarity between the samples, 

then it will affect the entire set of predictors of the sample which was weighted 

with the “noisy” distance score. Secondly, in the weighting approach the infor-

mation about the position of the samples within the neighborhood is missing 

since only the information about the distance to the target sample is employed. 

In our SBL approach the use of the linear covariance for the Gaussian process 

regression is motivated by two main reasons: i. our hypothesis is that complex 

covariance functions are not required since the complexity of each subset of sam-
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ples for each local model is low, and ii. the linear covarinace function has no hy-

perparameters to be optimized and therefore simplifies and speed up the local 

modeling process.  

2.2.3 Fitting and predicting 

Once the optimal k is found, a new local GPL model is fitted for each xui with its 

k-nearest neighbors found in Xr. The predictors are the vis–NIR reflectance and 

the distance values of each xui with respect to its k-nearest neighbors.  After each 

calibration the prediction of the target attribute is carried out. Figure 1 shows a 

summary of the above steps carried out in the SBL approach. 

 
Figure 1. Description of the recovering, training and testing, and fitting and pre-

dicting steps of the SBL approach. 

Overall, an important characteristic in our SBL approach is that the only param-

eters to be optimized are: the optimal number of principal components for the 

oPC–M distance matrix computation and the number of nearest neighbors for (k) 

for the local GPL regressions. Another characteristic is that instead using the 

distance information to assign weights (as in LWR) the SBL local distance matri-

ces are used as additional predictors. 
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3. Materials and methods 

3.1 The vis–NIR soil spectral libraries 

In order to test our spectrum–based learner (SBL), we used two vis–NIR soil li-

braries: a regional soil spectral library (R–SSL) of the State of São Paulo (Brazil) 

and a global soil spectral library (G–SSL). The analyses were carried out sepa-

rately for each soil spectral library. 

3.1.1 The regional soil spectral library of the State of São Paulo (R–SSL) 

The soil samples in the R–SSL are historical samples which were collected for 

soil survey purposes in different agricultural fields located in 11 sub-regions of 

the State of São Paulo (Brazil). The R–SSL comprises 4200 samples including 

927 soil profiles (2781 samples) collected at three depths 0–20 cm, 40–60 cm, and 

80–100 cm. In terms of texture, the variability of the samples in the R–SSL is 

large (Figure 2a). The R–SSL comprises soils of 10 soil groups (Arenosols, Lepto-

sols, Cambisols, Ferralsols, Nitisols, Lixisols, Alisols, Acrisols, Gleysols and Pla-

nosols) according to the World Reference Base (WRB) for soil resources (IUSS 

Working Group WRB, 2006). Nevertheless, the predominant soil group is the 

Ferrasol, which is also the predominant soil group in the State of São Paulo 

(Oliveira et al., 1999).  

 
Figure 2. Texture distribution of the samples in the regional soil spectral library 

(left) and samples in the global soil spectral library (right). 
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All soil samples were dried at 45 °C for 24 h and sieved to < 2 mm.dried at 45 °C 

for 24 h and then sieved through a 2 mm mesh. The clay content was determined 

using the pipette method and exchangeable Ca was extracted from the soil with 

an ion exchange resin (Camargo et al. 2009). Soil organic carbon (OC) was meas-

ured with the Walkley–Black method (Heanes, 1984).  

The vis–NIR reflectance spectra of soil samples were obtained with a FieldSpec® 

Pro spectrometer (ASD inc., Boulder, CO, USA) which collects the spectral meas-

urements in a range of 350 to 2500 nm and is characterized by a Full Width Half 

Maximum of 3 nm for the 350-1000 nm region and 10 nm for the 1000-2500 nm 

region. The reflectance of each sample was calculated by taking the average of 

100 scans. The spectra were resampled to a resolution of 5 nm (for a total of 431 

spectral features) and then transformed to absorbance (  ) by:  

         (
 

 
) (12) 

where R is the reflectance. 

3.1.2 The global soil spectral library (G–SSL) 

The G–SSL was developed by the World Agroforestry Centre (ICRAF) and ISRIC 

– World Soil Information (2010). The G–SSL comprises 4438 soil samples (includ-

ing 785 soil profiles), although 3643 of them have both, soil chemical attribute 

and texture information. For this work we only used these 3643 which include 

samples from 55 countries spanning America (27%), Africa (24%), Asia (23%), 

Europe (23%) and Oceania (3%). These soils have large texture variability (Fig-

ure 2b) and are represented by all 32 Reference Soil Groups in the WRB (IUSS 

Working Group WRB, 2006).  

The reflectance spectra of the G–SSL samples were also recorded using a Field-

Spec® Pro spectrometer. The spectra were resampled to a resolution of 10 nm for 

a total of 216 spectral features. See Shepherd et al. (2003) for more details on the 

optical setup and sample preparation for spectral measurements. The vis–NIR 

reflectance spectra were transformed to absorbance.  
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In this library, clay content was determined by the pipette method, the ex-

changeable Ca with the NH4OAc method, and soil organic carbon (OC) with the 

Walkley–Black procedure (Heanes, 1984). These measurements were carried out 

according to the procedures for soil analysis given in Van Reeuwijk (2002). 

 

3.2 Testing the performance of the SBL and comparison with other machine 

learning algorithms 

Calibrations of soil attribute models were carried out separately for each soil 

spectral library. As validation sets, we randomly sampled 350 soil profiles (1050 

samples) from the R–SSL and 125 soil profiles (900 samples) from the G–SSL. 

The remaining samples were used as training sets in each spectral library. The 

idea behind sampling entire profiles as a validation sets instead individual sam-

ples is to avoid pseudo-replication of samples (Terhoeven-Urselmans et al., 2010). 

When samples in a validation share strong spatial correlation (e.g. belongs to the 

same profile) with samples in the training set, the resulting measure of model 

performance will be biased. 

We evaluated the performance of the SBL for calibrating vis–NIR models to pre-

dict clay content (CC), soil organic carbon (OC) and exchangeable Ca (Ca++) in the 

validation samples.  These attributes in the training sets were also used for op-

timizing the number of PCs for the oPC–M distance matrix computation.  

In addition, we use five other machine learning algorithms for predicting these 

attributes and for comparing their results with those obtained by the SBL ap-

proach. These algorithms were: partial least squares regression (PLS, Wold et al., 

1983), support vector regression machines (SVM, Drucker et al, 1996), locally 

weighted PLS (LWR, Naes et al., 1990) and LOCAL (Shenk et al., 1997). All the 

algorithms were implemented in R 2.14.1 (R Development Core Team, 2011). 

The PLS algorithm has been widely used in soil spectroscopy for calibrating mod-

els of several soil attributes. The number of PLS factors is the only parameter 

that needs to be optimized in PLS regressions. 
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SVM has been widely implemented for solving complex regression and classifica-

tion tasks in several fields. In soil spectroscopy, Viscarra Rossel and Behrens 

(2010) found that it outperforms PLS and several other non-linear algorithms. 

The SVM algorithm uses the so-called “kernel trick”. For SVM we used a radial 

basis function (RBF) as covariance function. In this case a hyper-parameter of the 

RBF called alpha (α) and a penalty factor (C) are the parameters to be optimized. 

The LWR is a non-linear version of PLS and it can be classified also as a 

memory–based learning algorithm. The spectra is first compressed by using prin-

cipal component analysis, and then the Mahalanobis distance (MD) is computed 

on the first principal components which accounts for a given percentage of cumu-

lative explained variance (set here to 99.5 %). The MD obtained is referred here 

to as the standard PC distance. After this procedure local PLS calibrations for 

each unknown sample are carried out in the spectral space using its k-nearest 

neighbors which are weighted according to their distance from the unknown 

sample. In this work, the vector of weights (W) for the k-nearest neighbors of each 

sample was computed by using the following tricubic function:  

        
    (13) 

where ds are the scaled distances from 0 to 1 of the k-nearest neighbors to the 

target unknown sample. In each local calibration the number of PLS factors must 

be optimized. In addition, the number of nearest neighbors (k) must be globally 

optimized. Only a few LWR approaches have been implemented in soil spectros-

copy (e.g. Igne et al., 2010), which report better mode performance compared to 

other algorithms such as global PLS and least squares SVM.  

Similar to LWR, the LOCAL algorithm also operates by calibrating local models 

according to a similarity measure. There are three differences between those al-

gorithms: i. in LOCAL the correlation distance between unknown samples and 

training samples is used for selecting the k-nearest neighbors of each unknown 

sample, ii. the LOCAL algorithm does not use any distance-based weighting 

function and iii. Each local PLS predicted value is a weighted sum of the predict-

ed values from all the models generated between a minimum and a maximum 
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number of PLS factors (Fernández Pierna and Dardenne, 2008). Here we set the 

minimum number of PLS factors to 1. Sot that, there were two parameters to be 

optimized: the (maximum) number of PLS factors in each local calibration and 

the number of nearest neighbors (k).  

 

3.2.1 Tuning the parameters of the models 

A leave-25%-out cross validation with 10 repetitions was used for tuning the PLS 

factors (in global PLS, LWR and LOCAL), the α values of the RBF covariance and 

the C parameter in SVM. We tested 30 PLS factors for global PLS, and 56 combi-

nations of α and C values for SVM calibrations. The best parameters were those 

that minimized the root mean squared error of cross validation (RMSE): 

        √
 

 
∑     ̂   

 

   

 (14) 

where yi is the predicted value,  ̂  is the observed value and n the number of test 

samples.  

For local PLS models in both LWR and LOCAL we tested a maximum of 17 PLS 

factors. Note that the number of optimal PLS factors may vary among local mod-

els. This is due to the fact that each partition could present a different degree of 

complexity. For example, in cases where the variability within the neighborhood 

is low, then the number of optimal PLS factors will be probably low. On the other 

hand in cases where the variability within the neighborhood is high, then the 

number of optimal PLS factors will be probably high.  

For selecting the appropriate number of nearest neighbors (k) in the LWR, LO-

CAL and in our SBL we tested from 30 to 400 samples in steps of 10. The optimal 

k for LWR and LOCAL were those that minimized the average of the RMSEs of 

local internal leave-25%-out cross validations. In the case of our SBL (as ex-

plained previously in section 2.2) the best k was chosen as the one that mini-

mized the RMSE of the prediction of the most (spectrally) similar samples of the 
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test set (Xru) (the subset of m samples in the reference set which better mimics 

or resemble the vis–NIR spectra of the samples to be predicted). 

In order to assess the global predictive capability of the SBL approach, we per-

formed a 10-fold leave-25%-out cross validation in each local model using only the 

optimal number of neighbors. The global RMSE was taken as the average of the 

RMSE of local models.  

We did not compute the training R2 since those values are not comparable be-

tween the different approaches. The training R2 of memory based models repre-

sents variance explained by each local model in its correspondent local portion of 

the data in which the variance is obviously lower than the global variance. In 

other words the maximum variance which can be explained by each local model is 

limited by the variability contained in each local portion. 

After optimization of the parameters, the models were applied to the validation 

set. The RMSE and the coefficient of determination (R2) were also computed for 

assessing accuracy of the results.  

 

4. Results 

4.1 Main characteristics of the soil spectral libraries 

For the whole R–SSL the mean values of CC, OC and Ca++ were 23.51%, 0.64% 

and 15.65 cmolc kg−1 respectively (Table 1). No significant correlations (r<0.30, ρ> 

0.05) between the soil attributes were observed. In all cases, the distribution of 

the properties is positively skewed (Figure 3). A wide range of variation was ob-

served for CC (1% to 81%). In general, the values of OC are low, due to tropical 

climatic conditions in the State of Sao Paulo and the fact that samples in the R–

SSL were collected in croplands. A large variation in Ca++ was observed, with 

values ranging from 1 cmolc kg−1 to 170 cmolc kg−1 and a standard deviation of 

14.49 cmolc kg−1.  
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For the whole G–SSL a large variation of the three soil attributes was observed 

(Table 1, Figure 3). The mean values of soil attributes were 33.08% for CC, 1.10 

for OC and 10.69 for Ca++. As in the R–SSL no significant correlations (r=0.01, p> 

0.05) between the soil attributes were observed and their distributions were posi-

tively skewed (Figure 3). As expected, the G–SSL presented higher variability 

than the R–SSL in terms of soil attributes (Table 1). 

Table 1. Descriptive statistics of the soil attributes of samples in the soil spectral 

libraries. 

Soil attribute Mean S.D. 
C.V. 

(%) 
Min. 

1st 

Qu. 
Median 

3rd 

Qu. 
Max. 

 

Regional soil spectral library 

Whole set, N = 4200 

Clay Content (%) 23.51 12.48 53.08 1.00 14.7 20.00 28.00 81.10 

Organic Carbon (%) 0.64 0.39 60.94 0.06 0.35 0.58 0.81 4.00 

Exchangeable Ca (cmolc kg−1) 15.65 14.49 92.59 1.00 7.00 12.00 20.00 170.00 

 

Regional soil spectral library  

Training set,  n = 3150 

Clay Content (%) 23.73 12.21 51.45 1.00 15.30 20.30 28.00 68.20 

Organic Carbon (%) 0.65 0.39 59.76 0.06 0.41 0.58 0.87 4.00 

Exchangeable Ca (cmolc kg−1) 15.22 14.63 96.12 1.00 6.00 12.00 19.00 170.00 

 

Regional soil spectral library  

Prediction set, m = 1050 

Clay Content (%) 22.86 13.24 57.92 4.80 13.92 19.00 27.40 81.10 

Organic Carbon (%) 0.61 0.39 64.47 0.06 0.35 0.52 0.75 2.61 

Exchangeable Ca (cmolc kg−1) 16.94 13.97 82.47 1.00 8.00 14.00 21.00 129.00 

 

Global soil spectral library  

Whole set, N = 3643 

Clay Content (%) 33.08 22.49 67.99 0.00 15.00 30.50 48.10 96.80 

Organic Carbon (%) 1.10 1.93 175.45 0.00 0.22 0.48 1.19 45.80 

Exchangeable Ca (cmolc kg−1) 10.69 15.41 144.15 0.00 0.40 3.60 15.10 168.20 

 

Global soil spectral library  

Training set, n = 2743 

Clay Content (%) 32.97 21.88 66.36 0.00 15.65 30.60 47.60 96.80 

Organic Carbon (%) 1.15 2.07 180.16 0.00 0.22 0.50 1.21 45.80 

Exchangeable Ca (cmolc kg−1) 11.11 15.83 142.48 0.00 0.50 3.90 16.05 168.20 

 

Global soil spectral library  

Prediction set, m = 900 

Clay Content (%) 33.44 24.27 72.58 0.00 12.30 30.30 50.48 95.60 

Organic Carbon (%) 0.94 1.40 148.95 0.00 0.21 0.44 1.10 15.88 

Exchangeable Ca (cmolc kg−1) 9.39 13.97 148.71 0.00 0.20 2.60 12.70 67.20 
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Figure 3. Histograms and box-plots of the soil attributes under study in each soil 

spectral library (whole sets). 

 

In order to illustrate the soil spectral variability we selected five spectra from the 

R-SLL and five from the G-SLL (Figure 4). In each spectral library those spectra 

corresponds to: i. the sample with the maximum mean reflectance (or albedo), ii. 

the sample with the minimum mean reflectance, and iii. three samples selected 

by using a fuzzy k-means sampling (Bezdek, 1981).  

In the R–SSL we observed a high variation of the albedo as well as of the reflec-

tance of the mineralogical energy absorption features which in both cases is 

mainly due to parent material variability of the region. Overall, soils with high 

sand content showed higher albedo than soils with high clay content. Top layer 

samples (0-20 cm) showed low reflectance (especially in the 350 – 1350 nm re-

gion) due to the higher organic carbon content in comparison to the samples col-

lected in deeper soil layers. In most of the samples we observed absorption fea-

tures around 850-900 nm (related to the presence of iron oxides), 2207 nm and 

2160 (both related to the kaolinite content) (Demattê et al., 2004; Viscarra Rossel 

and Behrens, 2010). This reflects the soil composition of most of the samples in 

the R–SSL which are classified as Ferrasol and correspond to highly weathered 



148 
 

soils in general. Additional details about the R–SSL can be found in Bellinaso et 

al. (2010). 

 
Figure 4. Five spectra from each spectral library (R–SSL on the left and G–SSL 

on the right). The spectra correspond to samples with the minimum and maxi-

mum mean reflectance, and three samples selected by using a fuzzy k-means 

sampling. 

 

We found large spectral variation in the G–SSL as consequence of the diversity of 

the soil formation environments where the samples were collected (ICRAF-

ISRIC, 2010). In the NIR region, the main spectral variations among samples 

were observed at wavelengths from 2160 nm to 2230 nm which are due to the 

energy absorption of minerals such kaolin and smectite (Demattê and Garcia, 

1999; Demattê et al., 2004; Viscarra Rossel and Behrens, 2010).  In general, most 

of the samples show well defined absorption features near to 1455 and 1915 nm, 

which are assigned to OH–soil hygroscopic water in clay minerals (Ben–Dor et 

al., 2008). The main spectral differences seem due to absorption bands related to 

iron oxides (435, 550 and 850 nm) and to kaolinite (2207 nm) (Demattê and Gar-

cia, 1999; Demattê et al., 2004; Viscarra Rossel and Behrens, 2010). We observed 

samples with weak absorption features typical spectral of soils with high organic 

matter content (Stoner and Baumgardner, 1981; Ben–Dor, et al., 1999) and/or 

low levels of crystalline iron and amorphous iron (Ben–Dor et al., 2008). 
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4.2 Final parameters used for prediction 

A summary of the main parameters used by the algorithms is presented in Table 

2. In the R–SSL the PLS algorithm used 30, 15 and 21 PLS factors for the models 

of CC, OC and Ca++ respectively. For the calibrations carried out with the G–SSL 

the number of PLS factors were 28, 25 and 30 for CC, OC and Ca++ respectively. 

For SVM models in both libraries the alpha (α) hyper-parameter of the RBF was 

0.01 except for the SVM model of Ca++ in the G–SSL which used an α value of 

0.02. The C parameters of the SVM models varied from 13 (for the model of OC in 

the R–SSL) to 90 (for the model of CC in the G–SSL). 

Table 2. Summary of the final setup of the main parameters of each algorithm in 

the regional soil spectral library (R–SSL) and in the global soil spectral library 

(G–SSL) 

Algorithm Parameter 
R–SSL 

 
G–SSL 

CC OC Ca++ 
 

CC OC Ca++ 

PLS Factors 30 15 21 
 

28 25 30 

SVM 
α 0.01 0.01 0.01 

 
0.01 0.01 0.02 

C 34 13 31 
 

90 40 40 

LWR a,b k 380 400 370 
 

280 320 350 

LOCALb k 400 280 400 
 

220 330 390 

SBLc k 360 260 140 
 

330 310 260 
aThe number of principal components used for computing the distance matrix 

was 4 for the R–SSL and 10 for the G–SSL; bThe number of PLS varied among 

the local models; cThe number of principal components for computing the dis-

tance matrix was 15 for the R–SSL and 27 for the G–SSL. 
 

For LWR models based on the R-SLL and the G–SSL, the number of principal 

components (PCs) used for the computations of the Mahalanobis distance (MD) 

matrices were 4 and 10 respectively. Figure 5 shows the number of PCs used for 

computing the MD matrices against the RMSD between the training samples and 

their correspondent most similar samples (nearest neighbors) in the training set. 

In the R–SSL, the lowest RMSDs was achieved with 15 PCs for CC and Ca++ and 

14 PCs for OC. For the G–SSL the lowest RMSDs for CC, OC and Ca++, were re-

turned by distance matrices computed on 27, 28 and 27 PCs respectively. Figure 

5 shows that there are only small differences in terms of RMSDs between dis-

tance matrices using 14 or 15 PCs for the R–SSL and 27 or 28 PCs for the G–
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SSL. To simplify computations, we decided to use the same distance matrix com-

puted with 15 PCs (R–SSL) and 27 PCs (G–SSL) for all the soil attributes.  

 

Figure 5. Number of PCs used for MD matrix computation against the root mean 

square of differences (RMSD) between samples in the training set and their cor-

respondent most similar samples (nearest neighbors).  

 

Interestingly, the oPC–M approach tends to choose a number of PCs that explain 

a rather large portion of the spectral variation. For instance, only the first 4 PCs 

for the R–SSL and the first 10 PCs for the G–SSL would have been selected if a 

threshold of 99.5 % of explained variance would have been used to compute the 

MD.    

 

4.3 Predictive performance 

Results of the predictive performance of each algorithm in both spectral libraries 

are presented in Table 3. Models calibrated for the R–SSL yielded lower errors 

than models calibrated for the G–SSL. This can be explained in terms of the di-
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versity of the environmental conditions (particularly parent material) of the geo-

graphical origin of samples in the spectral libraries. 

Table 3. Prediction results of the global and memory–based learning approaches. 

Algorithm 

CC 
 

OC 
 

Ca++ 

RMSE 

tr
a 

RMSE 

pred
b 

R2 

pred
b  

RMSE 

tr
a 

RMSE 

pred
b 

R2 

pred
b  

RMSE 

tr
a 

RMSE 

pred
b 

R2 

pred
b 

 
Regional soil spectral library (R–SSL) 

PLS* 6.47 6.10 0.78 
 

0.28 0.28 0.48 
 

9.60 9.13 0.59 

SVM* 6.33 6.40 0.78 
 

0.28 0.27 0.54 
 

9.57 9.84 0.54 

LWR** 5.64 6.15 0.79 
 

0.27 0.28 0.48 
 

8.53 9.11 0.62 

LOCAL** 5.39 5.90 0.81 
 

0.26 0.27 0.53 
 

7.82 8.15 0.67 

SBL** 5.31 5.18 0.85 
 

0.25 0.25 0.59 
 

7.52 7.90 0.70 

 
Global soil spectral library (G–SSL) 

PLS* 12.44 12.95 0.71 
 

1.35 1.08 0.50 
 

10.30 9.79 0.51 

SVM* 10.80 13.84 0.68 
 

1.27 0.93 0.57 
 

10.24 10.36 0.47 

LWR** 10.72 12.81 0.73 
 

0.82 1.02 0.56 
 

8.97 10.94 0.49 

LOCAL** 12.19 12.98 0.72 
 

0.94 1.02 0.55 
 

8.83 9.83 0.53 

SBL** 7.97 12.01 0.77 
 

0.79 0.80 0.68 
 

6.93 8.48 0.63 

*Global learning approaches; **Memory–based learning approaches; numbers in 

bold indicate the best results; aRMSEtr indicates the training RMSE; bR2
pred. and 

RMSEpred. indicate the R2 and RMSE of the validation set respectively. 

 

Overall, SBL outperformed the global calibration models (PLS and SVM) and the 

other memory–based learning approaches (LWR and LOCAL) in both spectral 

libraries (Table 3). In all cases the SBL produced the lowest training and predic-

tion RMSEs (RMSEtr and RMSEpred in Table 3), as well as the highest prediction 

R2 (R2
pred) (Table 3). In terms of the RMSEpred the highest variability between re-

sults in the R–SSL were found for Ca++ predictions followed by CC predictions. 

The OC presented the lowest variability between the RMSEspred produced by the 

regression algorithms. This is attributed to the fact that the OC presented a very 

low variation in the R–SSL. In the G–SSL the highest variability in terms of 

RMSEpred was observed for the OC predictions. In this case this can be related 

with the high OC variability observed in the G–SSL. For the Ca++, the RMSEspred 

producded by the different algorithms were also highly variable, while the varia-

bility of the RMSEspred of the CC models was low. In summary, we observed a 
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trend in which the variability of the RMSEspred produced by the algorithms in-

creases with the variability of the soil attribute. Comparing the prediction errors 

of CC in both libraries we found that the differences between algorithms is much 

higher in the R–SSL than in the G–SSL. This can be probably due to the influ-

ence of OC in the spectral variability. We believe that the vis–NIR spectral vari-

ability of the R–SSL presents a low influence of the OC due to the fact that it 

presents a very low variation. This probably facilitates the modeling process of 

the CC since the “interference” of the OC is low. On the other hand, in the G–SSL 

the OC presents a large variability which influences the variability of the vis–

NIR spectra and therefore can affect the modeling process of the CC.  

For CC in both spectral libraries, the highest prediction errors were produced by 

the SVM models (RMSEpred=6.40 % for the R–SSL and RMSEpred=13.84% for the 

G–SSL), closely followed by the PLS models with RMSEspred of 6.10 % and 12. 

95% for the R–SSL and the G–SSL respectively. The error produced by the SBL 

model of OC in the R–SSL (RMSEpred.=0.25%) was slightly lower than the error 

returned by the other algorithms. The R2
 pred of the SBL was higher than those 

returned by other algorithms. In all cases the R2 of the soil OC predictions in the 

R–SSL were low (<0.60), which also is attributed to the small OC variation in 

that spectral library (this also explains why the low training and prediction er-

rors of OC in this library). For the G–SSL, the RMSEspred of the PLS (RMSEp-

red=1.08), SVM (RMSEpred=0.93%), LWR (RMSEpred=1.02%) and LOCAL (RMSEp-

red=1.02%) were similar and in all cases much higher than the RMSEpred obtained 

with the SBL model (0.80%) (Table 3).  

Models of Ca++ calibrated with PLS, SVM and LWR produced similar prediction 

results with RMSEspred. ranging from 9.11 to 9.84 cmolc kg−1 and 9.79 to 10.94 

cmolc kg−1 for the R–SSL and the G–SSL respectively. For the R–SSL the error of 

LOCAL predictions of Ca++ (RMSEspred.= 8.15 cmolc kg−1) was slightly higher than 

the error returned by the SBL (RMSEspred.= 7.90 cmolc kg−1). For the G–SSL, we 

found much larger differences between LOCAL and SBL in terms of prediction 

error (LOCAL RMSEspred.= 9.83 cmolc kg−1; SBL RMSEspred.= 8.48 cmolc kg−1) 
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For the results obtained in the G–SLL we found that the SBL can produce com-

petitive results in comparison with other approaches applied in global soil spec-

tral libraries reported in the literature. For example, Brown et al., (2006) cali-

brated models of OC using vis–NIR data in combination with sand content and 

pH as auxiliary predictors. They found an RMSE of 0.79% which is comparable to 

the one obtained by the SBL in the G–SSL, however in contrast to their ap-

proach, the SBL did not use other soil attributes as auxiliary predictors. 

Terhoeven-Urselmans et al. (2010) used a global soil mid infrared soil spectral 

library for modeling several soil attributes. In their validations they found 

RMSEs values of 12.6%, 0.90% and 10.2 cmolc kg−1 for CC, OC and Ca++ respec-

tively. In case of CC the results are comparable to our SBL results, however for 

OC and Ca++ we obtained lower RMSEs in the G–SSL. 

 

5. Discussion 

We found that SBL produces more accurate results than the rest of the algo-

rithms tested. It results from the combination of two important characteristics of 

the SBL: i. a more appropriate neighbor selection is carried out by using the dis-

tance matrix computed with the oPC–M method, and ii. the inclusion in each lo-

cal model of a k × k distance matrix as a source of additional predictor variables. 

Furthermore, the use of a GP algorithm with linear covariance function for local 

modeling seems to be a suitable regression approach.   

One interesting characteristic which is proposed in SBL is the use of the distance 

matrix as a source of additional predictor variables. In other words, the SBL ap-

proach derives from the spectra additional predictive information that is not ex-

ploited in any of the other algorithms. For example, for the SBL model of CC in 

the R–SSL a number of 360 neighbors was used. This means that each local mod-

el of CC was calibrated with 360 new features or predictor variables in addition 

to the spectral features.  
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We assumed that the more similar two samples are in terms of their vis–NIR 

spectra, the more similar they could be in terms of soil compositional characteris-

tics.  This means that in a given set of samples, the variability of a soil attribute 

could be explained in part by the variability of the spectral similari-

ty/dissimilarity scores with respect to a reference point (spectrum).  

Each sample in the neighborhood is used as a reference point within the same 

neighborhood. The similarity/dissimilarity between the reference point and all 

the samples is estimated. Each new similarity/dissimilarity variable (or column 

of the distance matrix) represents new information about the position of the 

samples in the multivariate space. The exact position of the target sample within 

the neighborhood is known since the number of reference points is equal to the 

number of neighbor samples.   

We think that the information about the position of the target sample in the 

neighborhood contains some information about the variability of the samples 

which cannot be easily captured by the regression algorithm when it is applied 

only on the vis–NIR variables. Zerzucha et al. (2012) showed that non-linear 

modeling problems can be resolved by simply applying partial least square re-

gression on distance matrices. In general they concluded that the predictor vari-

ables based on distance measurements can increase the predictive power of mod-

els in complex datasets. In soil science, some works have shown that soil distanc-

es can be very useful for modeling soil variation. Kriging is a clear example of the 

application of distance matrices in the prediction of soil properties. In digital soil 

mapping, Minasny and McBratney (2007) suggested the use of soil taxonomic dis-

tances as source of predictor variables for soil classes. Furthermore, Carre and 

Jacobson et al. (2009) observed that pedological distances can be used as predic-

tors for modeling soil available water capacity with high prediction performance. 

We think that the incorporation of soil distances in soil modeling is very promis-

ing approach which requires more research. 

The neighbor selection for local models is an important step which can be viewed 

as a way to clean each local partition, i.e. noisy samples or samples which have 

low predictive information are ignored. In this respect the use of a reliable dis-
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tance matrix can be critical for appropriate neighbor selections in local modeling 

(Gogé et al. 2012). Here we showed that in most of the cases the SBL used a low 

number of nearest neighbors (k) than LWR and LOCAL (Table 2) suggesting that 

the distance matrix computed in the SBL is more appropriate to find relevant 

neighbors for soil predictions.  

In order to gain some insights about  the importance of the oPC–M distance in 

the SBL approach we implemented the methodological framework carried out by 

the SBL with three different variations. In the first variation (Local GPL a) the 

oPC–M distance is used for neighbor selection and the local distance matrices are 

not used as source of additional predictors. The second variation (Local GPL b) 

follows the same methodological framework of the SBL approach but instead us-

ing the oPC–M distance it uses the standard principal component distance, this 

means that it uses the same distance matrix as in the LWR approach. The third 

variation (Local GPL c) also follows the methodological framework of the SBL but 

in this case the correlation distance is used, i.e. the same distance matrix used in 

LOCAL. Soil attribute predictions with these three Local GPL were carried out 

for both spectral libraries. The number of nearest neighbors was fixed to the 

same number of neighbors used for each soil attribute in the SBL method (see 

Table 2). In comparison to the prediction results found for the SBL (Table 3) we 

found that when the local oPC–M distance matrices are not used as source of ad-

ditional predictors the accuracy is lower (Table 4). When the standard principal 

component distance or the correlation distance are used for both neighbor selec-

tion and source of additional predictors, the prediction performance is also lower 

than in the SBL approach (Table 4). For CC predictions, in the R–SSL the results 

returned by the three Local GPL were very similar while in the G–SSL the Local 

GPL a outperformed both, the Local GPL b and the Local GPL c. These results 

indicate that for local modeling, the oPC–M distance could perform better than 

the standard principal component distance and the correlation distance.  
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Table 4. Prediction results using different local Gaussian process regression 

strategies. The number of neighbors used for modeling each soil attribute in each 

spectral library was the same as in the SBL approach (see Table 2). 

Algorithm 
CC 

 

OC 

 

Ca++ 

RMSEpred. R2
pred. 

 
RMSEpred. R2

pred. 
 

RMSEpred. R2
pred. 

 

Regional soil spectral library (R–SSL) 

Local GPL a* 5.65 0.82 

 

0.25 0.58 

 

8.11 0.69 

Local GPL b** 5.60 0.82 

 

0.27 0.54 

 

8.94 0.61 

Local GPL c*** 5.66 0.82 

 

0.26 0.56 

 

8.22 0.66 

 

Global soil spectral library (G–SSL) 

Local GPL a* 12.36 0.75 

 

0.89 0.61 

 

8.80 0.61 

Local GPL b** 12.87 0.72 

 

0.97 0.59 

 

9.22 0.57 

Local GPL c*** 13.02 0.72 

 

1.00 0.54 

 

9.01 0.59 

Numbers in bold indicate the best results;  

*Local GPL a: local Gaussian process regressions using the oPC–M for neighbor 

selection and excluding the local distance matrices as additional predictors.  
**Local GPL b: local Gaussian process regressions using the standard principal 

component distance for neighbor selection and local distance matrices as addi-

tional predictors.  
***Local GPL c: local Gaussian process regressions using the correlation distance 

for neighbor selection and local distance matrices as additional predictors. 

 

In terms of computational cost, in LWR and LOCAL the number of PLS factors in 

each local model needs to be optimized and this represents one important draw-

back. The SBL is more efficient than LWR and LOCAL regarding the optimiza-

tion of k. This is due to the fact that the SBL (unlike LWR and LOCAL) does not 

require any internal optimization in each local model and for cross validation on-

ly the most similar samples (nearest neighbor) of the prediction set found in the 

training set are used. Despite SBL uses much more predictor variables than 

LWR and LOCAL, we found that the computational cost of the SBL is lower. For 

example for optimizing k for models of both models (using the grid of 30 to 400 k 

by steps of 10), SBL was 2.21 and 2.24 times faster than LWR and LOCAL re-

spectively.  

In general, despite LWR, LOCAL and SBL belong to the memory–based learning 

methods, the LWR and LOCAL did not showed clear evidence to perform better 

than the global models. This is mainly attributed to the distance matrices used 

which does not represent correctly the similarity between samples and therefore 

can fail in the neighbor selection. However we showed through the SBL results 
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that when appropriate similarity measurements are performed, memory–based 

learning is a reasonable approach for modeling soil attributes in complex vis–NIR 

datasets. Memory based learners such our SBL are very flexible approaches since 

they offer the possibility to combine other approaches. For example in each parti-

tion a local outlier analysis can be carried out in order to obtain a better identifi-

cation of those samples. Another possibility is to calculate the prediction inter-

vals for each partition, and then identifying the samples outside those ranges.  

Soil spectroscopy research should be focused on bridging the gap between model-

ing algorithms and theories of the interactions between soil components and elec-

tromagnetic radiation. With the development of the SBL algorithm, we attempt 

to stimulate the use of memory–based learning which represents a straightfor-

ward strategy for integrating theory and algorithms. 

It is worth to mention that in extrapolation cases (i.e. when samples to be pre-

dicted are far away from the spectral library), the SBL (as any other regression 

algorithm) would be prone to fail in producing reliable model soil predictions. In 

this sense, Shepherd and Walsh (2002) propose a very simple (non-modeling) so-

lution to this problem: take the samples which are far away from the spectral li-

brary and perform soil routine analyses of the target soil attributes, then include 

those samples in the spectral library (which means library improvement).  

 

6. Conclusions 

Two important goals in this research were to introduce a new high performance 

memory–based learning approach and also to point out the importance of study-

ing local modeling approaches for modeling soil attributes using visible and near 

infrared spectral libraries.  

The main conclusions derived from this research are: i. our SBL is a new and re-

liable approach which returned the best prediction results (lowest RMSEs and 

highest R2s) for both spectral libraries, in comparison to the global calibration 

models (PLS and SVM) and the other memory–based learning approaches (LWR 

and LOCAL); ii. the oPC–M distance matrices (used in the SBL approach) proba-
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bly represent better the compositional similarity between samples than the con-

ventional principal component distance matrices (used in the LWR approach). 

This indicates that probably the SBL performs a better neighbor selection than 

LWR; ii. the use of local oPC–M distance matrices as source of additional predic-

tive variables do not degrade the prediction performance, instead it can result in 

an increment of it. iii. in terms of computational time for optimizing the number 

of nearest neighbors, the SBL is more efficient than both LWR and LOCAL; and 

iv. both LWR and LOCAL did not show clear evidence to perform better than the 

global calibration algorithms (PLS and SVM).  
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Project: 

Digital hydropedological mapping in Swiss forests. 

2. Université Catholique de Louvain (Belgium) 

2011 – 2012 

 

Researcher 

The Georges Lemaître Centre for Earth and Climate Research  

 

Project: 

SOC 3D: Three dimensional soil organic carbon (SOC) monitor-

ing using VNIR reflectance spectroscopic techniques  
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3. University of Tübingen – iSoil Project (Germany) 

2009 –  

 

Doctoral student 

Chair of Soil Science and Geomorphology.  

 

Project: 

iSOIL project: Interactions between soil related sciences – Link-

ing geophysics, soil science and digital soil mapping. 

 

4. University of São Paulo (USP) - The State of São Paulo Research Foundation 

(FAPESP) (Brazil) 

2007 – 2009 

 

M.Sc. Student/Researcher 

Soil Science Department.  

Laboratory of remote sensing and geoprocessing applied to soils 

and land use planning. 

 

Projects: 

Digital soil assessment for improving soil management in sugar-

cane plantations. 

Global soil spectral library (Project from the soil spectroscopy 

group, South America). 

 

5. El Palmar del Llano S.A. (Colombia) (oil palm plantation) 

2007  

 

Assistant soil surveyor  

Agronomy department  

 

 

6. Colombian Oil Palm Research Center – cenipalma (Colombia) 

2006 Undergraduate research intern  

Soil and water management division 

 

Main research areas of interest  

1  Pedometrics, (spatial) soil data mining and machine learning 

2 Soil sensing 

3  Digital soil mapping 

4 Quantitative analysis of soil-landscape formation 

5 Geomorphometry 

6  Chemometrics 

 

Awards 

2008  The State of São Paulo Research Foundation Scholarship for Master 

Studies 

2003  Best undergraduate academic performance award during the first se-

mester of 2003. Agronomy program, University of Cundinamarca 
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Invited talks and courses 

Training course on reflectance spectroscopy and multivariate calibration in R. 

Carried out at: Natural Resources Management Cluster, Centre for Development 

and Environment, University of Bern. Switzerland. (Dates in which the course 

will be carried out: 12- 14th November, 2012). Lecturers: Leonardo Ramirez-

Lopez and Antoine Stevens.  

Proximal soil sensing and digital soil mapping. At: V international lectures on 

engineering. National University of Colombia. Colombia, 2011. Lecturer: Leonar-

do Ramirez-Lopez 

Pedometrics and proximal soil infrared spectroscopy. At: Scientific seminars. 

University of Cundinaraca. Colombia, 2011. Speaker: Leonardo Ramirez-Lopez 

 

 

Peer reviews 

Geoderma 2011-2012 (2 papers) 

International Journal of Remote Sensing 2011-2012 (2 papers) 

 

 

Articles in scientific journals 

Ramirez-Lopez, L.; Behrens, T.; Schmidt, K.; Stevens, A.; Demattê, J.A.M.; 

Scholten. 2013. The spectrum-based learner: a new local approach for modeling 

soil vis–NIR  spectra of complex datasets. Geoderma 195-196, 268-279.  

Ramirez-Lopez, L.; Behrens, T.; Schmidt, K.; Viscarra Rossel, R.; Demattê, 

J.A.M., Scholten, T. Distance and similarity-search metrics for use with soil vis–

NIR  spectra. Geoderma (Special issue on proximal soil sensing). doi: 

10.1016/j.geoderma.2012.08.035. Accepted on August 2012. 

 

Articles under review 

Ramirez-Lopez, L.; Demattê, J.A.M.; Schmidt, K. Behrens, T.; van Wesemael, B.; 

Scholten, T. Calibration sampling and calibration set size for soil vis–NIR model-

ing and mapping. (Submitted to Geoderma in July 2012). 

Behrens, T.; Schmidt, K.; Ramirez-Lopez, L.; Gallant, J.; A-Xing Zhu; Scholten, T. 

Hyper-scale digital soil mapping and soil formation analysis. (Submitted to Ge-

oderma July 2012, special issue on pedometrics conference 2011). 

Schmidt, K.; Behrens, T.; Daumman, J.; Ramirez-Lopez, L.; Scholten, T. A com-

parison of calibration sampling schemes at the field scale for proximal gamma 

ray spectroscopy (Submitted to Geoderma July 2012, special issue on pedometrics 

conference 2011). 
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Conference presentations 

Ramirez-Lopez, L., Knauer, K. SOC3D: Three dimensional soil organic carbon 

monitoring using VNIR reflectance spectrometry. In: BruHyp Airborne Imaging 

Spectroscopy Workshop 2012. Brugge (Belgium). 

Ramirez-Lopez, L., Behrens, T., Schmidt, K., Demattê, J.A.M., ,Scholten, T.  Op-

timal calibration set size and sampling strategies for modeling vis–NIR  spectra 

at the field sacle.  In: EUROSOIL 2012. Bari (Italy) 

Ramirez-Lopez, L., van Wesemael, B., Stevens, A., Doetterl, S., Van Oost, K., 

Behrens, T., Schmidt, K. Integrating depth functions and hyper-scale terrain 

analysis for 3D soil organic carbon modeling in agricultural fields at regional 

scale. In: European Geosciences Union General Assembly 2012. Vienna (Austria). 

Behrens, T., Schmidt, K., Ramirez-Lopez, L., Scholten. Contextual mapping ap-

proaches for terrain based digital soil mapping. In: Pedometrics conference. 2011. 

Trest (Czech Republic) 

Ramirez-Lopez, L., Behrens, T., Schmidt, K., Viscarra Rossel, R, Scholten, T.  

Learning a new soil vis–NIR distance metric by using a manifold based approach.  

In: Pedometrics conference. 2011. Trest (Czech Republic). 

Vasques, G.M., Dematte, J.A.M., Viscarra Rossel, R.A., Ramirez-Lopez, L., Terra, 

F.S., Rizzo, F. Enhancing digital soil mapping in southeaster Brazil: incorporat-

ing stream density and soil reflectance from multiple depths. In: Pedometrics 

conference. 2011. Trest (Czech Republic). 

Vasques, G., Demattê, J.A.M, Ramirez-Lopez, L., Terra, F. Soil classification 

from visible/near-infrared diffuse reflectance spectra at multiple depths. XXXIII 

Brazilian soil science congress. 2011. Uberlandia (Brazil). 

Ramirez-Lopez, L., Behrens, T., Schmidt, K., Viscarra Rossel, R, Scholten, T. 

New approaches of soil similarity analysis and manifold learning of proximal vis–

NIR sensing data.  In: Global Workshop in Proximal Soil Sensing. 2011. Montreal 

(Canada). 

Behrens, T., Schmidt, K., Ramirez-Lopez, L., Werban, U., Scholten, T . Digital 

Soil Sensing and Mapping - Lessons from the iSOIL Project. In: European 

Geosciences Union General Assembly 2011. Vienna (Austria). 

Schmidt, K., Behrens, T., Ramirez-Lopez, L., Werban, U., Scholten, T. Digital 

Soil Mapping und Geophysik – Erfahrungen aus dem iSoil-Projekt. In: German 

Digital Soil Mapping Workshop. 2011. Muenchen (Germany) 

Ramírez-López, L., Demattê, J.A.M. Terra, F. Bortoletto, M.A. Proximal soil 

sensing on digital soil fertility mapping for precision agriculture. In: Brazilian 

Remote sensing symposium. 2009. Natal (Brazil) 

Ramírez-López, L.; Demattê, J.A.M. Pedometric methodologies for digital predic-

tion of detailed soil maps. In: Brazilian Remote sensing symposium. 2009. Natal 
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(Brazil) 

Demattê, J.A.M, Fiorio, P.R, Ramirez-Lopez, L. Different strategies on soil map-

ping by using laboratory and orbital spectral information In: European Geosci-

ences Union General Assembly 2008. Vienna (Austria). 

Araújo, S.R, Ramirez-Lopez, L, Demattê, J.A.M, Bellinaso, H 

Use of proximal soil sensing techniques for the identification of chemical altera-

tions induced by plants and lime applications. In: Brazilian precision agriculture 

congress– ConBAP, 2008, Piracicaba (Brazil).           

Ramirez-Lopez, L., A. Cristancho R., Tovar, J.P, Navia, E., Gutierrez, D. Spatial 

relationship between oil palm plants affected by “mortal disease“ and some soil 

factors. In: Colombian soil science congress, 2008.  Bogota (Colombia) 

Ramirez-Lopez, L., Reina, G. A., Camacho Tamayo, J.H. Spatial variation of soil 

impedance as a factor of several physical attributes. In: V International congress 

of agricultural engineering, Chile. 2006.  

 

 


