
Visualization of Business Process Models

DISSERTATION

der Mathematisch-Naturwissenschaftlichen Fakultät
der Eberhard Karls Universität Tübingen

zur Erlangung des Grades des

Doktors der Naturwissenschaften
(Dr. rer. nat.)

vorgelegt von
Dipl.-Inform. Philip Josef Effinger

aus Reutlingen

Tübingen
2012

Tag der mündlichen Qualifikation: 17.04.2013
Dekan: Prof. Dr. Wolfgang Rosenstiel
1. Berichterstatter: Prof. Dr. Michael Kaufmann
2. Berichterstatter: Prof. Dr. Herbert Klaeren

c© Copyright by Philip Effinger 2013.
All Rights Reserved.

To my mother.

Acknowledgments

This work is the result of a journey on which many people were on my side to accom-
pany and support me and my work. First and foremost, I would like to thank my su-
pervisor Prof. Dr. Michael Kaufmann who allowed me to be part of his group and who
provided the means that were necessary for my work, be it inspirations or additional
funding. The funding of my research was provided by Deutsche Forschungsgemein-
schaft (DFG) under grant KA812/15-1. This enabled me to concentrate on research
without concerning about existential matters. Also, I was able to participate on numer-
ous international workshops and international conferences which was essential for the
progress on my research. For the commitment and effort as a reviewer of this work, I
am grateful to Prof. Dr. Herbert Klaeren.
The initial spark to visualization was given to me by Dr. Katharina Zweig when point-
ing out this field of research on the search for a topic of my diploma thesis in 2008. The
introduction to the field and reams of hours of tutoring and discussions were graciously
due to Dr. Martin Siebenhaller who did a great job as a forerunner in visualization and
automatic layout in the work group.
Of course, the colleagues that had to deal with me on a daily basis earn special thanks
for motivating me in the many hours of analyzing and solving algorithmic challenges
of visualizations, in alphabetical order, they are: Till Bruckdorfer, Andreas Gerasch,
Markus Geyer, Stephan Kottler, Robert Krug, Christian Zielke. Also, I enjoyed the
short breaks where we also tackled non–algorithmic related issues.
Aside from this thesis, I was involved in numerous publications which also relied on
the contributions of many coauthors, namely: Benjamin Albrecht, Christian Bach-
maier, Franz–Josef Brandenburg, Gero Decker, Carsten Gutwenger, Markus Held,
Nicole Jogsch, Jyrki Katajainen, Karsten Klein, Sascha Meinert, Sandra Seiz, Jo-
hannes Spielmann, Miro Spönemann, Matthias Stegmaier, Tamara Wehrstein, Michael
Wybrow. Thank you all for your fruitful cooperation and very enjoyable discussions
and correspondence.

I

Warmest thanks to Kristina Abels for proofreading this thesis and detecting its short-
comings which could not be fully inhibited during the writing.
Last, I want to mention the guest researchers who visited our work group and who
had quite an impact on me and my research (in order of appearance): Dr. Patrizio
Angelini, Dr. Tamara Mchledlidze, Prof. Dr. Stephen G. Kobourov, Jawaherul Alam,
Dr. Michael A. Bekos.

II

Contents

1. Introduction 1

I. Business Process Visualization in 2–dimensional Space 5

2. Preliminaries and Methods 7
2.1. Preliminaries on Graphs and Graph Drawing 7

2.1.1. Sugiyama Framework . 10
2.1.2. Topology–Shape–Metrics and Kandinsky model 14

2.2. Business Process Model and Notation 22
2.2.1. Objects for Process Flow Control 23
2.2.2. Connecting Objects . 26
2.2.3. Artifacts . 27
2.2.4. Lanes/Pools . 28

2.3. Layout Aesthetics . 31
2.3.1. A User Study on Layout Aesthetics for BPMN 33
2.3.2. Conclusion of User Study 44

2.4. Static 2D–Layouts for BPMN . 45

3. 2D–Visualizations of Business Process Models 49
3.1. Sketch–Driven–Layout for BPMN 49

3.1.1. Algorithm . 51
3.1.2. Application case: Divisions (Cuts) 56

3.2. Pattern–based BPMN–Layout . 59
3.2.1. Motivation . 59
3.2.2. Layout Patterns . 60
3.2.3. Evaluation . 68

III

3.2.4. Summary . 73
3.3. A Layout Approach for BPEL–workflows 73

3.3.1. Preliminaries . 74
3.3.2. Related Approaches . 76
3.3.3. Layout Algorithm for BPEL–workflows 78
3.3.4. Summary . 90

4. Summary for Part I 93

II. Business Process Visualization in 2.5D 95

5. Introduction to 2.5D–Visualizations 97
5.1. Motivation . 97
5.2. Terminology and related work . 98

5.2.1. Related work on 2.5D/3D–graph–layout 99
5.2.2. Related work on (Business Process) Visualization in 3D . . . 101

5.3. A 3D-Framework for 2.5D-Visualizations 102
5.3.1. Criteria and Perspectives . 103
5.3.2. Implementation . 106
5.3.3. Navigation Support . 108
5.3.4. Summary . 109

6. Visualization approaches in 2.5D 113
6.1. Motivation . 113
6.2. Approach 1: Sequential Layer Sweep 114
6.3. Approach 2: ILP formulation . 120
6.4. Approach 3: Partition Supported 2.5D-Layering 128

6.4.1. A 2.5D hierarchical drawing of directed graphs 138

7. Analysis and Benchmarks 143
7.1. Data set . 143
7.2. Performance . 146
7.3. Layout Quality . 148
7.4. Discussion . 153

7.4.1. Sequential layer sweep (SLS) 153
7.4.2. Integer linear programming (ILP) 153
7.4.3. Partition supported layering (PSL) 155

7.5. Conclusion and Summary . 156

IV

III. Epilog 159

8. Applications and Projects 161
8.1. Contribution to GraphDrawing2011 Contest 161

8.1.1. Preprocessing of the graph 163
8.1.2. Layout implementation . 163
8.1.3. Filtering features . 163
8.1.4. Interactive application . 164

8.2. Business Process Modeling using Web2.0 165
8.2.1. Oryx – A Web2.0-based collaborative graphical editor 165
8.2.2. The automatic layout algorithm and integration into Oryx . . 168

8.3. Flight Navigator for Business Process Models 168
8.3.1. Presentation of Flight Navigator 169
8.3.2. Summary . 172

8.4. GraphArchive . 172
8.4.1. Features of the new GraphArchive 173
8.4.2. Presentation of the new system 180
8.4.3. Summary . 181

9. Conclusion 185

Bibliography 195

V

VI

Chapter 1
Introduction

Graph drawing is not functional, but beautiful.

G L
Dagstuhl seminary on Graph Drawing with Algorithm Engineering Methods

The saying “A picture is worth a thousand words” is very popular among people work-
ing with diagrams. Although being an American invention (”one look is worth a
thousand words”, commending the effectiveness of graphics in advertising, Printer’s
Ink, December 1921), the phrase was falsely attributed to Chinese origin1 which also
seemed to be plausible and might have even enforced its credibility. In general, the
phrase expresses the statement that a visualisation is a better description than a verbal
description2. Therefore, visualization is considered a powerful tool to express data
in a visual representation, e.g. image–guided anamneses, using magnetic resonance
imaging (MRI) or X–rays, are typical application cases of visualization that are today
immanent to our everyday life. In Figure 1, we visually depict the rules of a popu-
lar child’s game as an example of visualization. In this work, we apply the idea of
visualization to business processes models.
In the field of business process management (BPM), visualization quickly conquered
the fundamental process of modeling processes. Where processes were specified in
text files or later using structured text files, e.g. XML, notation languages took over
this part of process management by introducing graphical devices to specify processes.
An example for the growing importance of notation languages, for the field of software
development, is the collection of different diagram styles in UML, the unified model-
ing language, which today, in version 2.3, offers 14 different diagram types3.

1see details on the origin of the idiom:
http://www.phrases.org.uk/meanings/a-picture-is-worth-a-thousand-words.html,
2012–09–30. Note that, from here on, we state for online references the date of last access.

2see http://en.wiktionary.org/wiki/a_picture_paints_a_thousand_words, 2012–09–30.
3see http://www.uml.org/, 2012–09–30.

1

http://www.phrases.org.uk/meanings/a-picture-is-worth-a-thousand-words.html
http://en.wiktionary.org/wiki/a_picture_paints_a_thousand_words
http://www.uml.org/

2 CHAPTER 1. INTRODUCTION

Figure 1.1.: Rules of child’s game rock, paper, scissors in a slightly extended version. The
visual representation of the rules is backed by a graph of 5 nodes and 20 edges.
The graph is complete and, therefore, called a K5. The edges of the graph are
directed. Note that the game is fair because each node has two outgoing and two
incoming edges.
Source: http://www.sodahead.com/user/profile/2457469/bazinga/

For business processes, the notation language BPMN (business process model and no-
tation), whose initiatives date back to 2002, is about to dominate the field of process
modeling with the help of graphical notations. The newest release of BPMN 2.0 in
January 2011 by the Object Management Group (OMG)4 comprehends three types of
diagrams to specify business processes. Also, this new release attempts to succeed
BPEL (business process execution language) in terms process execution capabilities.
For the modeling of processes, we consider in this work primarily process models
in BPMN or BPEL, which both are de–facto notation standards for business process
models and, therefore, represent a large majority of existing process models. From
an algorithmic point of view, visualization of business process models is a challeng-
ing functional application of graph drawing techniques which have to fulfill aesthetic
requirements of a business process model. Thus, we rely on graphs as mathematical
constructs that are a combination of a set of objects (called nodes or vertices) and a set
of binary relations between these objects (called edges). Many structures, e.g. entity–
relationships, and theoretic and practical problems can be abstracted by projecting

4see http://www.omg.org, 2012–09–30.

http://www.sodahead.com/user/profile/2457469/bazinga/
http://www.omg.org

3

them onto the structure of a graph. The field of graph drawing can be considered to be
a sibling of graph theory and is dedicated to the design and implementation of layout
algorithms for the computation of ’readable’ drawings (diagrams) of graphs. Usually,
as known from diagrams, graphs are embedded in a plane and rectangles are used for
depicting nodes and lines are used for representing edges.

On the mission of visualizing business process models, we also touch further fields
of research, e.g. layout aesthetics or business process management. Layout aesthet-
ics attempt to formalize the readability of a diagram in order to eventually ease the
burden of interpreting visual data for a user. Often, this field employs conductions of
user studies to support or reject hypotheses on effects of layout aesthetics on a user’s
cognition.
The focus of this work is on the development of algorithms for the computation of
visualization of business process models. We also employ earlier findings on layout
algorithms or graph drawing. We introduce new algorithms for the computation of lay-
outs for business process models and we present novel approaches for the extension
of powerful layout frameworks towards support of business process models. We also
provide analysis of new algorithms with respect to performance and with respect to
support of layout aesthetics. To endorse layout aesthetics for BPMN, we present the
results of a user study conducted in order to obtain clues of user preferences for layout
aesthetics in business process models.
The new algorithms are integrated into a software framework called BPMN–Layouter
which provides an interactive modeling environment for BPMN and contains all layout
algorithms developed for BPMN in this work. The layout algorithms compute visual-
izations in two–dimensional space and in three–dimensional space. Therefore, we also
present an extension to BPMN–Layouter, called 3D–Navigator, that allows to navigate
freely in three–dimensional space and integrates our layout algorithms for this display
concept. In the following, we describe the structure of this work.

Outline

This work consists of three parts. The first part focuses on visualizations for business
process models in two–dimensional space (2D). The second part comprehends the pre-
sentation of three novel approaches for computing visualizations for business process
model in three–dimensional space (3D) while delimiting the display space by using the
concept of two-and-a-half dimensions. The last part gives insights into projects that
evolved to be part of my research and that all resulted in publications. The topics of
these projects involve applications of visualizations and development of applications
for graphs.

4 CHAPTER 1. INTRODUCTION

We begin in Chapter 2 with a thorough introduction into the field of graph drawing and
define necessary notions. We also briefly recapture common algorithmic methodolo-
gies for the computation of layouts for general graphs. The results of a study on layout
aesthetics of business process models are presented and are considered a starting point
for constraints that should be fulfilled when designing algorithms for the visualization
of business process models. Also, a previous work on a layout approach for BPMN is
rehashed because it is referred to often in the remainder of this work.
The first new layout approach of this work is presented in Section 3 when we extend
the Kandinsky model to support swimlanes in BPMN. The approach allows an inter-
active layout computation for BPMN diagrams where a new layout is based on the
embedding of the input. The concept follows the idea of preserving a user’s mental
map.
Then, we introduce three novel layout patterns that represent semantics in BPMN. The
patterns aim at extending the common set of layout aesthetics, which are mostly appli-
cable only structurally or syntactically, with a set of formal rules that enable a layout
algorithm to consider semantics in a business process model. All three patterns are
fully integrated into the previously presented interactive layout approach. Also, we
provide an analysis of the patterns and their effect on common layout aesthetics.
For business process models that employ the business process execution language
(BPEL), an approach for visualization of these process models is given in Section 3.3.
We define shapes and formats of BPEL elements because BPEL originally is based on
XML–files only. The approach highlights hierarchical and nested structures in a pro-
cess model by deriving execution paths from the models and preserving them during
the computation of the layout.
In the second part, we expand the display space to three dimensions. We introduce the
concept of two-and-a-half dimensions and present our self–developed software envi-
ronment for the presentation of the process models in two-and-a-half dimensions, see
Chapter 5.
In Chapter 6, we introduce three novel approaches for the computations of visual-
izations for business process models in two-and-a-half dimensions. For all three ap-
proaches, we give detailed algorithmic descriptions, followed by an evaluation and
analysis on real–work business process models in Chapter 7. There, we also discuss
the strengths and weaknesses of the approaches.
In the third and last part, we present different applications of visualizations and re-
search projects that were undertaken in parallel to the work of the first two parts. The
applications and projects resulted in various publications and are partially based on
findings of the previous parts. The descriptions of these entertaining projects eventu-
ally lead to the conclusion at the end of this work.

Part I.

Business Process Visualization
in 2–dimensional Space

5

Chapter 2
Preliminaries and Methods

In the following, we introduce necessary notions and definitions to build a common
ground of understanding in the wide fields of Graph Drawing and Visualizations for
the remainder of this work. Also, we will provide a short summary in Section 2.2 of the
language Business Process Model and Notation (BPMN) that will be used throughout
this work as standard modeling language for the business process models that are to
be visualized.
Furthermore, we elaborate in Section 2.3 on layout aesthetics for business process
models, and generally, on layout aesthetics as criteria for layout approaches. The
chapter concludes with the presentation of previous work on a layout approach for
BPMN that is referred to various times in this work.

2.1. Preliminaries on Graphs and Graph Drawing

In the next paragraphs, we rehash the basics of graph theory that are required for the
understanding of this work.
A graph G is a ordered pair G = (V, E), where V is the set of nodes and E ⊆ V × V ,
pairs of nodes, is the set of edges. Nodes are synonymous with vertices. For a pair
e = (u,w) ∈ E, u and w are the endpoints of the edge e. The set of edges E can be
distinguished by directed edges ED, where the pairs in ED are ordered, and undirected
edges EU . For an edge e = (u,w) ∈ EU , it holds (u,w) = (w, u); pairs in EU are not
ordered. For an edge ed = (v, x) ∈ ED, v is called source and x is called target.
If a graph G = (V, E) contains only directed edges, i.e., E = ED, we call G a directed
graph, or short digraph. If a graph G contains directed and undirected edges, we call it
a mixed graph. An edge e = (u, u) ∈ E with identical endpoints is called self–loop. If
there are multiple edges between a pair of nodes, these edges are called multi–edges.

7

8 CHAPTER 2. PRELIMINARIES AND METHODS

A simple graph is a graph without self–loops and multi–edges.
An edge e is incident to a node v, if v is an endpoint of e. A node v is adjacent to a
node u, if (u, v) ∈ E; v is a neighbour of u if (v, u) ∈ E or (u, v) ∈ E. An edge e1 is
adjacent to a edge e2, if e1 and e2 share an endpoint.
A subgraph G′ = (V ′, E′) of G = (V, E) is a graph with V ′ ⊆ V and E′ ⊆ E. The
subgraph G′ is an induced subgraph if G′ contains all edges (u, v) ∈ E′ ⊆ E with
u, v ∈ V ′.
The degree δ(v) of a node v denotes the number of incident edges to v. In a digraph,
we distinguish the degree of a node: the out–degree of a node u is defined by δout(u) =

|{u : (u, v) ∈ E}|, the in–degree of a node v is defined by δin(v) = |{v : (u, v) ∈ E}|.
For the degrees, it holds δ(v) = δin(v) + δout(v). A k–graph is a graph with nodes of
a maximum degree of k, or maxv∈Vδ(v) ≤ k. Self–loops contribute an increase of 2 to
the degree of an incident node.
A path p of length n in a graph is a sequence of nodes (v0, . . . , vn), vi ∈ V , with start
node vo and end node vn, where (vi, vi+1) ∈ E, ∀0 ≤ i < n. If the nodes in path p are
pairwise distinct, vi , v j ∀0 ≤ i, j ≤ n with i , j, we call p a simple path. A path p is
a cycle if v0 = vn. A graph is acyclic if, for every pair of nodes (u, v) ∈ V × V , there is
no simple, cyclic path from u to v. If there is a path in G for every pair of nodes (u, v),
u , v, then, G is a connected graph.
A tree T is a connected, acyclic and undirected graph. A spanning tree for a graph
G is a tree which is a subgraph of G and which contains exactly |V | − 1 edges. For
a tree T and a weight function ω : E → N, T is a minimum spanning tree (MST) if
the sum of weights

∑
e∈T ω(e) is minimum. A rooted tree has exactly one root r. The

nodes U ⊆ V , that are visited on a path from r to v for a node v ∈ V, v , r, are called
ancestors. A root r has no ancestor.
A subtree T ′ of tree T is a tree which is induced by choosing a node v ∈ V of T as root
for T ′. A node u is a parent of v if u is an ancestor of v and (u, v) ∈ E, v is a child of
u. A node with a parent but no child is called a leaf. A root is the only node without a
parent.
A topological ordering of a directed acyclic graph G = (V, E) is a linear ordering
π : V → N of nodes V such that π(v) < π(w) ∀(v,w) ∈ E.
A partition of a graph G = (V, E) is a mapping p : V → N × N of the nodes V to the
coordinates of a cell in a two–dimensional grid. The grid consists of rows and columns;
the width of the partition is defined by width(p) = max{i | p(n) = (i, j), ∀n ∈ V}, and
the height is given by height(p) = max{ j | p(n) = (i, j), ∀n ∈ V}. In an embedding
with a given partition p(V), each node v ∈ V is placed within the cell assigned by p(v).

A digraph G = (V, E) with associated costs c : E → N and capacities u : E → N is
called a flow network. We associate with each node i ∈ V a number b(i) which denotes
its supply or demand depending on whether b(i) > 0 or b(i) < 0. The minimum cost

2.1. PRELIMINARIES ON GRAPHS AND GRAPH DRAWING 9

flow for a flow network G can bet stated as follows:

minimize z(x) =
∑

(i, j)∈E c(i, j) · x(i, j)

subject to ∑
j:(i, j)∈E

x(i, j) −
∑

j:(j,i)∈E

x(j, i) = b(i) ∀i ∈ V,

0 ≤ x(i, j) ≤ u(i, j) ∀(i, j) ∈ E.

The function x : E → N is called a flow. A flow f is feasible if it satisfies all of the
constraints above. In order to be feasible, a minimum cost flow must satisfy the mass
balance constraints: ∑

v∈V

b(v) = 0.

We refer to (Ahuja, Magnanti, and Orlin 1993) for a more thorough introduction into
network flows. In the following, we introduce necessary notions that stem from the
field of Graph Drawing.

Definition 1 (Drawing of a graph).
A mapping M of a graph G = (V, E) to the plane in R2 is a drawing Γ, if

• V is mapped onto distinct points in R2.
• E is mapped on open Jordan–curves. A Jordan–curve is a planar curve that

is topologically equivalent to the unit circle. The curve of an edge (v,w)
connects the points that represent vertices v and w.

If no two curves intersect in a drawing Γ of a graph G, then, Γ is called planar. From
the existence of a planar drawing for a graph, we can state:

Definition 2 (Planarity).
A graph G = (V, E) is planar if there exists a planar drawing Γ for G. �

A planar drawing of a graph partitions the plane into regions called faces. There is ex-
actly one unbounded region which is called the outer face. An embedding of a graph
is given by the clockwise cyclic ordering of the edges which are incident around each
vertex. An embedding is called planar embedding if there is a planar drawing of the
graph which preserves this ordering.

10 CHAPTER 2. PRELIMINARIES AND METHODS

The dual graph DG of a planar embedding of G has a vertex v f for each face f of G
and an edge (v f , vg) for each edge of G separating two faces f and g. Hence, the size
of the dual graph is linear. Furthermore, the dual graph is always planar. If the faces
connected by an edge e in DG are identical, we call e a bridge.

In a box drawing, the nodes are mapped to boxes (rectangles) instead of points. A point
drawing is called an orthogonal drawing if the curve of each edge is represented by an
alternating sequence of horizontal and vertical line segments. The chain of alternating
segments is connected by bends.
If all nodes and bends along the edges have integer coordinates, the drawing is called
an orthogonal grid drawing. Note that a graph has an orthogonal grid drawing if and
only if it is a 4–graph. A drawing is called an orthogonal box drawing if it is an orthog-
onal drawing and each vertex is mapped to a box. In an orthogonal box grid drawing,
the center of the boxes and the bends have integer coordinates.
The crossing number cr(G) of a graph G = (V, E) is the minimum number of edge
crossings in any drawing of G in the plane R2. Computing the crossing number of
non–planar graphs is NP-hard (Garey and Johnson 1979; Garey and Johnson 1983).
Note that there are variants on how to count crossings in a graph, e.g. odd crossing
number ocr(G) (Pelsmajer, Schaefer, and Stefankovic 2007), the smallest number of
pairs of edges that cross an odd number of times in any drawing of G, or monotone
crossing number mcr(G) (Pach and Tóth 2011), the smallest number of crossing points
in a drawing of G in the plane, where every edge is represented by an x–monotone
curve, that is, by a connected continuous arc with the property that every vertical line
intersects it in at most one point. An upper bound on the number of crossings is
cr(G) = O(|E|2). If every pair of edges crosses at most once, then the number of cross-
ings is O(|E|2).

2.1.1. Sugiyama Framework

The Sugiyama framework (Sugiyama, Tagawa, and Toda 1981) aims at the computa-
tion of a layered drawing for any digraph. It is the most common approach for produc-
ing layered drawings of directed graphs. Almost all graph drawing libraries support
the framework and, therefore, underline its powerfulness and generality. It consists of
four steps:

1. Cycle Removal
2. Layer Assignment
3. Crossing Reduction
4. Horizontal Coordinate Assignment

2.1. PRELIMINARIES ON GRAPHS AND GRAPH DRAWING 11

The framework is now recaptured because we refer to the steps frequently in the re-
mainder of this work. An excellent description of the framework can also be found
in (Siebenhaller 2009) or, in more detail, in (Kaufmann and Wagner 2001). Together
with the algorithms for each of the steps, the complete framework is also often refer-
enced in abbreviated fashion as Sugiyama’s algorithm.
The algorithmic framework of Sugiyama has also been extended, e.g. to handle radial
layouts (Bachmaier, F.-J. Brandenburg, Brunner, et al. 2008), where the graphs are
arranged in concentric circles around a starting node, and to three–dimensional layered
drawings of graphs (Hong and Nikolov 2005).

Step 1: Cycle Removal

If the connected, directed input graph G contains cycles, this step temporarily reverses
edges to make the graph acyclic. Therefore, we compute a set of edges R ⊂ E that,
when all edges in R are reversed, renders G acyclic and we call R a feedback set. The
task is to choose |R| as small as possible. This problem is known as the feedback arc
set problem, which is defined as the set of edges R with minimum cardinality, where
it holds that G = (V, E \ R) is acyclic. The problem is NP–hard (Garey and Johnson
1979; Karp 1972).
The greedy heuristic described in (Eades, Lin, and Smyth 1993) determines a feedback
arc set R of a simple digraph G = (V, E) in linear time such that |E \R| ≥ |E|/2 + |V |/6.
Note that reversing all edges of a minimal feedback arc set guarantees that G is acyclic.
For heuristics which do not necessarily return a minimal feedback arc set R, we can
proceed as follows: We calculate a topological ordering π of the graph G = (V, E \ R)
and reverse all edges (v,w) ∈ R for which holds π(v) > π(w). This can be done in
linear time and guarantees that G is acyclic.

Step 2: Layer Assignment:

In the layer assignment, nodes V of an acyclic digraph G = (V, E) are assigned to lay-
ers l1, . . . , lk, k denotes the number of layers, which might not be known beforehand.
We call l1, . . . , lk a partition of V with li ⊂ V , 1 ≤ i ≤ k and

⋃k
i=1 li = V . The partition

is called a layering of G if for each edge (v,w) ∈ E with l(v) = li and l(w) = l j holds
i < j. Then, the span of an edge (u,w) is j − i.
In a layered drawing, all nodes v ∈ li are drawn on a horizontal line; thus, the layer
assignment step assigns each vertex v ∈ V a y–coordinate. We call a layering proper if
span(e) = 1 for all edges e ∈ E. For edges e = (u,w) with span(e) > 1 with the end-
points u and v on layers li and l j, we replace e by a chain of dummy nodes di+1, . . . , d j−1

where vertex dh, i + 1 ≤ h ≤ j − 1, is placed on layer lh. The nodes are connected by
edges (u, di+1), (d j−1, v) as well as edges (dh, dh+1) for each i + 1 ≤ h < j − 1. We call

12 CHAPTER 2. PRELIMINARIES AND METHODS

this replacement normalization and the result is a normalized graph GN = (VN , EN).
With this construction, the next phase starts with a proper layering. Note that with
O(|E|) edges of span O(|E|), the number of dummy nodes is quadratic. However, the
number of dummy nodes inserted in this step can be reduced (Eiglsperger, Sieben-
haller, and Kaufmann 2005).
A simple layering approach is the longest path layering. It first places all nodes v ∈ V
with in–degree δin(v) = 0 in layer l1. For each remaining node v, we compute the
length d of the longest path from v to a node in layer l1 and place v in layer ld+1. Since
G is acyclic the layering can be computed in O(|V |) using a topological ordering of the
nodes. Furthermore, the layering produces a minimum number of layers.
Another approach introduced in (Gansner et al. 1993) is called simplex layering. Here,
a layer assignment is calculated such that the total edge length, and thus the number of
inserted dummy nodes, is minimized. The layering problem is formulated as a integer
linear program and solved by applying the network simplex method.
Further algorithms for the layer assignment phase are also presented in (Healy and
Nikolov 2001; Sander 1999).

Step 3: Crossing Minimization:

The third step of the Sugiyama framework aims at the reduction of crossings between
edges in the layered, normalized digraph. Since the number of crossings depends
on the position of the nodes within each layer, this step tries to find an ordering of
the nodes such that the number of crossings is minimum. The problem of finding an
optimal solution is NP–complete, even if there are only two layers (Garey and John-
son 1983). Therefore, heuristic algorithms are used to reduce the number of cross-
ings (Eades and Wormald 1994; Jünger and Mutzel 1997).
A very popular approach is the layer–by–layer–sweep (Di Battista, Eades, et al. 1999)
where two layers li and li+1, 0 ≤ i < k are considered at a time. The ordering of layer
li is kept fixed while the positions of nodes in li+1 are reordered such that crossings
of edges between li and li+1 are reduced. This problem is called two–layer crossing
problem and is NP–hard (Eades and Wormald 1994). Heuristics employ two strategies:

1. fast computations of the number of crossings:
Counting the numbers is performed very often in order to decide if the number
of crossings improves when interchanging node positions. For a two–layered
graph Gl = (l1∪l2, El ⊆ l1×l2), the so-called bilayer cross counting problem can
be solved in O(|El|+ c) (Sander 1999) where c denotes the number of crossings,
and improvements are presented in (Barth, Mutzel, and Jünger 2004) with a time
complexity of O(|El| log(|l1| + |l2|)).

2. fast computations of improved orderings in the non–fixed layer li+1:

2.1. PRELIMINARIES ON GRAPHS AND GRAPH DRAWING 13

A common method is the barycenter method where the x–coordinate of each
node v ∈ li+1 is computed by the average of the x–coordinates of its neighbours.
This method can be computed in linear time. A variant of this method uses the
median instead of the average. Both approaches give an optimal solution for the
case that the solution has no crossings (Di Battista, Eades, et al. 1999). In other
cases, the heuristic variants cannot guarantee optimal solutions.

In (Jünger and Mutzel 1997), the two–layer crossing problem is formulated as an in-
teger linear program which guarantees optimal solution. However, due to the high
number of constraints (O(|li+1|

3)), the approach is preferred in application cases with
digraphs of small or medium size.

Step 4: Computation of Horizontal Coordinates:

In the last step of the Sugiyama framework, the nodes are assigned a horizontal co-
ordinate in their corresponding layer. Note that each dummy node, in the normalized
graph GN with a layer ordering for reduced crossings from the last step, can cause a
bend in the resulting layout. Thus, it is the goal of this step to arrange the nodes such
that the edges run “as vertical as possible”, or in other words, with the least possible
number of bends.
The optimization problem for keeping the edges as straight as possible may result in
exponential width of the drawing and the main disadvantage is that since this prob-
lem has a quadratic objective function, it can only be solved to optimality for small
instances (Kaufmann and Wagner 2001).
In (Gansner et al. 1993), it is proposed to model the optimization step as an integer
linear program for a normalized layered graph G = (V, E). The linear program cor-
responds to a layer assignment for a subgraph Ga = (Va, Ea) = (V, {(u,w) : u,w ∈
V ∧ u,w consecutive in Li, 1 ≤ i ≤ k}), the compaction graph, with the following
objective:

min
∑

(u,w)∈E

Ω(u,w)ω(u,w) · |x(w) − x(u)|

subject to

x(u) − x(w) ≥ ρ(u,w),∀u,w ∈ Va.

where ω is a measure for the importance of an edge and Ω denotes an internal weight
for straightening long edges; ρ denotes the minimal distance between two objects.
Optimality in Ga implies optimality in G and a layering for Ga gives a solution for
G (Kaufmann and Wagner 2001).
Using heuristics can reduce the complexity to a linear–time algorithm (Brandes and
Köpf 2001; Sander 1999). There, the linear segments model is applied, where each

14 CHAPTER 2. PRELIMINARIES AND METHODS

edge is drawn as a polyline with at most three segments. The first and the last seg-
ments are always proper (endpoints lie on adjacent layers) and the middle segment is
drawn vertically. (Brandes and Köpf 2001) use a longest path-based heuristic which
runs in linear time complexity to the size of the compaction graph Ga. The method
of (Brandes and Köpf 2001) is described as follows: The algorithm consists of three
basic steps. The first two steps are carried out four times. Then, the results of these
four runs are merged and balanced. In the first step, referred to as vertical alignment,
they try to align each vertex with either its median upper or its median lower neighbor,
and, then, alignment conflicts are resolved either in a leftmost or a rightmost fashion.
Thus, one vertical alignment is obtained for each combination of upward and down-
ward alignment with leftmost and rightmost conflict resolution. For the resolution,
the approach distinguishes between three types of crossings in a layered graph: type
2 conflicts correspond to a pair of crossing inner segments; an inner segment is an
edge between two dummy vertices. Type 1 conflicts arise when a non–inner segment
crosses an inner segment. The remaining type 0 conflict corresponds to a pair of non–
inner segments that either cross or share a vertex. In the second step, called horizontal
compaction, aligned vertices are constrained to obtain the same horizontal coordinate.
A maximal set of vertically aligned vertices is called a block. From the blocks, a par-
tition of the block graph into classes is computed such that classes are compounds of
blocks in adjacent layers that are as large as possible. Using a longest path-approach
on each class, all vertices are placed as close as possible to the next vertex in the pre-
ferred horizontal direction of the alignment. Finally, the four assignments obtained are
combined to balance their biases.

2.1.2. Topology–Shape–Metrics and Kandinsky model

The Topology–Shape–Metrics (TSM) is an approach which produces orthogonal grid
drawings. It was first presented in (Tamassia 1987) and in (Tamassia, Di Battista, and
Batini 1988), originally known as the GIOTTO approach. TSM is considered a con-
vincing solution for the problem of producing satisfiable orthogonal layouts compared
to other approaches (Di Battista et al. 1997). The name itself is introduced in (Di Bat-
tista, Eades, et al. 1999). The approach aims at orthogonal layouts with few crossings
and bends. Various refinements and applications of the approach were published (Ei-
glsperger 2003; Fößmeier and Kaufmann 1995; Mutzel and Klau 1998; Siebenhaller
2009; Siebenhaller and Kaufmann 2005).
The approach consists of the three steps:

1. Planarization (Topology): the topology of a drawing is found by computing a
planar embedding and stored in a planar representation. Temporary dummy
vertices for the representation of crossings are inserted for non–planar graphs.

2.1. PRELIMINARIES ON GRAPHS AND GRAPH DRAWING 15

The number of dummy vertices, i.e., the number of crossings, is subject to min-
imization.

2. Orthogonalization (Shape): the shape is determined using an orthogonal rep-
resentation: for each edge, edge bends are computed by determining a list of
angles which represent the route and contained bends.

3. Compaction (Metrics): the final positions of nodes and bends are determined.
This step has the aim of using the minimum possible area.

In the following, we will briefly recapture the three steps.

Planarization

Remember that the problem of minimizing crossings is NP–complete (Garey and John-
son 1983). The planar representation determines the topology as follows: For each
edge e ∈ E with endpoints v and w, the two possible orientations 〈v,w〉 and 〈w, v〉
are called darts. A planar representation P encodes the planar embedding as fol-
lows (Siebenhaller 2009): For each face f ∈ F, it contains a cyclic ordered list P(f)
which contains the darts in clockwise order around f . The first list of the planar repre-
sentation always determines the outer face.
To find a planar embedding of a graph, the following technique is very popular (Ei-
glsperger 2003): (1) compute an embedded planar subgraph, (2) insert the remaining
edges sequentially and (3) reduce the number of crossings by rerouting of edges.
The computation of a maximal planar subgraph is NP–hard. Therefore, the planar
subgraph G∗ = (V, E∗) of G has as many edges E∗ ⊆ E as possible but is not re-
quired to be maximal. To compute G∗, the heuristic of (Goldschmidt and Takvorian
1994), Goldschmidt and Takvorian (GT) is a favoured approach (Resende and Ribeiro
1997). At first, a node order Π(V) is determined and nodes are placed on a virtual
chain according to Π(V). Then, GT partitions E into three sets: (a) edges left of the
chain (L), (b) edges right to the chain (R) and (c) remaining edges (B). Of course,
L∩R = L∩B = B∩R = ∅. The partitioning is such that in both, L and R, no two edges
cross with respect to Π(V) and |L ∪ R| is large, or maximum at best. In (Goldschmidt
and Takvorian 1994), it is shown that if the node order calculated in the first phase cor-
responds to a Hamiltonian cycle in a maximum planar subgraph of G, then the number
of edges of the planar subgraph obtained by the GT heuristic is at least three quarters
of the number of edges of a maximum planar subgraph. In (Siebenhaller 2009), the
following heuristic to compute a GT ordering is given which exploit the Hamiltonian
property: the first node v1 in the ordering Π is a node with minimum degree in G. Let
v1, ..., vi denote the first i nodes of the ordering and Gi the subgraph of G induced by
the nodes of V ′ = V \ {v1, ..., vi}. The i + 1-th nodes vi+1 is a vertex of V ′ which is adja-
cent to vi in G and has minimum degree in Gi. If there is no such node adjacent to vi,

16 CHAPTER 2. PRELIMINARIES AND METHODS

vertex vi+1 is a node of minimum degree in Gi. This algorithm computes an ordering
in O(|V |2) time. In a randomized variant (Resende and Ribeiro 1997), the algorithm is
called multiple times and, finally, the result with the largest resulting set |L ∪ R|, .i.e.,
the largest planar subgraph, is chosen.

After the computation of a GT ordering, the remaining edges B are inserted into the
planar subgraph G∗. This is achieved by inserting the edges in B one by one using a
shortest-path approach in the dual graph G∗D of G∗. We will also refer to this technique
as shortest-path routing in the remainder of this work. For every edge e = (u,w) ∈
B, two nodes u′ and w′ are added to the dual graph G∗D which represent u and w.
Also, we add edges (u′, fu) from u′ to nodes fu for each face f of G which contains
a dart incident to u in P(f)). We perform analogously for w′. Then, the shortest path
u′ −−→

G∗D
w′ is computed, and we obtain a list of nodes in G∗D, u′ = v1, . . . , vk = w′, where

v2, . . . , vk−1 correspond to faces in G∗ that are traversed by the computed routing for e.
Edges of G∗ that are crossed by two adjacent path nodes (vi, vi+1), 2 ≤ i ≤ k−2, are now
subdivided by a inserted dummy node which represents a crossing. The shortest path
can be computed in linear time using a breadth–first–search. Therefore, the insertion
of a single edge e can be computed in linear time.

v1

v2 v3

v4v5

(a) Input graph K5.

v1

v2

v3

v4

v5

L R

(b) GT ordering.

v1

v2

v3

v4

v5

(c) Dual graph routing.

v1

v2

v3

v4

v5

(d) Final graph.

Figure 2.1.: Example for a GT ordering for K5. The red edge cannot be inserted into set L or
set R without crossings. In the dual graph, the shortest path is computed and the
edge is inserted. The new dummy node represents the crossing.

2.1. PRELIMINARIES ON GRAPHS AND GRAPH DRAWING 17

Orthogonalization

In the orthogonalization phase, the shape of the orthogonal drawing is determined.
The shape of an orthogonal drawing is encoded by the orthogonal representation Q.
It extends a planar representation P by adding information about bends and angles
of edges. For each element in P(f), f ∈ F, an ordered list of darts, we add a tuple
(〈v,w〉, s, a). The first entry 〈v,w〉 denotes the dart, and s is a bit string where the k-th
bit of s represents the k-th bend when walking along the dart from v to w. A “1" rep-
resents a bend whose angle is 270◦ inside of f and a “0” a bend whose angle is 90◦.
If the dart has no bend, s is set to the empty string ε. The angle between a dart and
its cyclic predecessor in list P(f) is specified by a, where a is a multiple of 90◦ and
a ∈ {1, 2, 3, 4}.
In (Tamassia 1987), valid orthogonal representation for planar 4–graphs are character-
ized with the following properties:
Let G = (V, E, F) be a plane 4–graph with a fixed embedding and an orthogonal shape
Q. Then, Q is valid if the following statements hold:

• Let (〈v,w〉, s1, a1) ∈ Q(fi) and (〈w, v〉, s2, a2) ∈ Q(f j), fi, f j ∈ F denote two
distinct ordered lists whose darts represent the same edge. Then, the bit string
s1 is equal to the reversed and flipped bit string s2.

• Let Lv denote the set of list elements with dart 〈v,w〉, w ∈ V . Then, for each
v ∈ V , we have ∑

(〈v,w〉,s,a)∈Lv

a = 4.

• Let #0 (#1) denote the function that states the number of 0’s (1’s) in a bit string.
Furthermore, let δ(f) denote the number of darts defining a face f . Since each
face f ∈ F is a rectilinear polygon we have:

∑
(〈v,w〉,s,a)∈Q(f)

a − #0(s) + #1(s) =

2δ(f) + 4 if f ∈ F is the outer face

2δ(f) − 4 otherwise.

The number of bends of an orthogonal drawing is given by

#bends =
1
2

∑
f∈F

∑
(〈v,w〉,s,a)∈Q(f)

|s|.

Note that with a valid orthogonal representation, we can handle planar 4–graphs.
With the optimized min–cost–flow algorithm that is presented in (Garg and Tamas-
sia 1996a), the time complexity for the computation of a bend–minimum orthogonal
representation of a plane 4–graph G = (V, E) is O(|V |7/4 log |V |).
For planar graphs of higher degree, we cannot draw nodes as points without producing

18 CHAPTER 2. PRELIMINARIES AND METHODS

edge overlaps since there are only 4 different orthogonal directions. But since nodes
are usually drawn as boxes, this is not an issue. Therefore, two edges that are incident
to the same side of a node can share an angle of 0◦. An orthogonal representation Q
that allows the angle values a to become 0 is called a quasi–orthogonal representation.
A quasi–orthogonal representation is called valid if there exists a corresponding planar
orthogonal box drawing. As shown in (Fößmeier 1997), the above characterization
of orthogonal representations also holds for quasi–orthogonal representations. An ap-
proach that allows us to handle the size of the boxes and supports quasi–orthogonal
representations is the Kandinsky model.

Kandinsky model The Kandinsky model was introduced in (Fößmeier and Kauf-
mann 1995) and (Fößmeier 1997) and was further extended in (Di Battista, Didimo,
et al. 1999) to allow for nodes of arbitrary size. Further results enabled the model to
handle prescribed angles (Brandes, Kaufmann, et al. 2002), special edge shapes (for
UML diagrams) (Eiglsperger, Gutwenger, et al. 2004) and port/side–constraints and
clusters/partitions (Siebenhaller 2009).
The Kandinsky model requires an embedded planar graph G = (V, E, F) and, using F,
a specific circular order of edges around nodes. Also, Kandinsky model assumes grid
drawings where the center of nodes and bends of edges are put on integer coordinates.
Kandinsky model allows drawings with nodes that have a degree larger than 4. This
is achieved by attaching more than one edge per node side. The edges are aligned
on fine grid lines that are adjacent to the nodes which are placed on a coarser grid.
Therefore, for each coarse grid line, a set of 2κ − 1 fine lines is assigned in parallel,
where κ ≥ maxv∈Vδ(v) to guarantee that straight–line edges are attached at the center
of the node side, using the κ-th fine line.
Drawings with a Kandinsky model obey the bend–or–end–property and the non–empty–
face–property (Eiglsperger 2003).

Definition 3 (Bend–Or–End Property).
An orthogonal representation Q satisfies the bend–or–end property if for every pair
〈w, v〉, 〈v, u〉 of darts following each other in a cyclic ordered list Q(f), f ∈ F,
holds: either the last bend of 〈w, v〉 or the first bend of 〈v, u〉 is 270◦ inside of f . �

The bend–or–end property determines that there is at most one straight–line edge on
each node side. Bends that are caused by the bend–or–end property are called vertex–
bends, other bends are called face–bends.

2.1. PRELIMINARIES ON GRAPHS AND GRAPH DRAWING 19

Definition 4 (Non–Empty–Face Property).
Let f ∈ F denote a triangular face with Q(f) = {〈w, v〉, 〈v, u〉, 〈u,w〉}.
Then, f is called:
L–triangle if Q(f) = {(〈w, v〉, 1, 0); (〈v, u〉, ε, 0); (〈u,w〉, ε, 1)} and
T–triangle if Q(f) = (〈u,w〉, 1, 0); (〈v, u〉, 1, 0); (〈u,w〉, ε, 0).
Q satisfies the non–empty–face property if it does not contain L– or T–triangles. �

Examples for the prohibited L– and T–triangles are depicted in Figures 2.2(a) and
2.2(b).

u
w

v

(a) L–triangle

u

v

w

(b) T–triangle

Figure 2.2.: Example for an L–triangle (a) and a T–triangle (b). Both triangles are not allowed
in the Kandinsky model.

With the two properties, we can characterize representations in the Kandinsky model:

Definition 5 (Kandinsky shape).
A quasi–orthogonal representation Q is said to be of Kandinsky shape if it satisfies
both, the bend–or–end property and the non–empty–face property. �

We will now present the network flow formulation for computing a Kandinsky shape
of a embedded planar graph. The formulation is originally presented in (Eiglsperger
2003) and extends Tamassia’s approach (Tamassia 1987). The network flow formula-
tion will be reused and extended in later sections of this work.
Let G = (V, E, F) be an embedded planar graph with planar representation P. We use
P to construct a network N(P) = (N, A) whose minimum cost flow induces a bend–
minimum orthogonal representation Q. In the network, let c : A → N denote the cost
function, u : A→ N the capacity function and b : N → Z the supply/demand function.
The set of nodes N is defined as

N = NV ∪ NF ∪ NH

with

20 CHAPTER 2. PRELIMINARIES AND METHODS

• NV (vertex nodes) contains a node nv for each node v ∈ V with supply b(nv) =

4 − δ(v).
• NF (face nodes) contains a node n f for each face f ∈ F with supply/demand

b(n f) =

−δ(f) − 4 if f ∈ F is the outer face

−δ(f) + 4 otherwise.

• NH (helper nodes) contains a node nh for each dart in P with supply b(nh) = 0.

The set of arcs A is given by

A = AVF ∪ AFF ∪ AHV ∪ AFH

with

• AVF connects each node v with its adjacent faces. AVF contains edges eV
〈v,w〉 =

(nv, n f) for each dart 〈v,w〉 of P(f), f ∈ F, starting at a node v ∈ V . Edges of
AVF have cost 0 and capacity∞.

• AFF connects two faces which share an edge. AFF contains edges eF
〈v,w〉 =

(n f , ng) for each dart 〈v,w〉 of P(f), f ∈ F, that separates f from face g ∈ F,
f , g. Edges of AFF have cost 1 and capacity∞.

• AHV connects the helper nodes with vertex nodes. For each face fi and its helper
node nhi , 0 ≤ i ≤ k around v we insert an edge (uhi , nv) to AHV with cost 0 and
capacity 1.

• AFH connects face nodes and helper nodes in the adjacent faces. For each face
fi and its helper node nhi , 0 ≤ i ≤ k−1 around v we insert edges (n f(i−1) mod k , nhi)
and (n f(i+1) mod k , nhi), 0 ≤ i ≤ k − 1 with cost 1 and capacity 1.

The network model around a node v is depicted in Figure 2.3. Note that we now have
prevent the case, that an edge has two vertex–bends by adjacent faces. This happens
if there is flow on edge (n fi , nhi+1) as well as on edge (n fi+1 , nhi), this would induce
two vertex–bends at one endpoint of edge ei, which is not allowed. Therefore, we
create devices, a partition of the edges A. The set of devices D = {d0, . . . , dk}, di ⊆ A,
0 ≤ i ≤ k, and a capacity function u′ : D → N allow for extending the network to an
edge partition minimum cost flow problem (Eiglsperger 2003) by inserting restrictions
of the form ∑

e∈d

f (e) ≤ u′(d),∀d ∈ D.

Using the restrictions, we can now produce a valid Kandinsky shape by setting edges
(n f(i−1) mod k , nhi) and (n f(i+1) mod k , nhi) for a node nhi in one device with capacity u′(d) = 1.
In (Eiglsperger 2003), it is shown that the edge partition minimum cost flow problem is
NP–hard, but it is also given a 2–approximation on a relaxation of the problem which
runs in time O(|V |7/4

√
log |V |).

2.1. PRELIMINARIES ON GRAPHS AND GRAPH DRAWING 21

e1

e2

e3

nv

e4

nf4 nf1

nf2nf3

nh4

nh3 nh2

nh1

Figure 2.3.: Network flow model of a node v for the Kandinsky model.

Compaction

In the compaction phase, nodes and bends are assigned to a grid drawing according
to the orthogonal presentation Q from the orthogonalization phase. The lengths of
the vertical and horizontal edge segments between end points and bends are computed
such that the area consumption of the grid drawing is small. Overlapping of nodes is
not allowed and edges only cross in crossing dummy nodes of the presentation Q.
Orthogonal compaction for general graphs is NP–hard (Patrignani 2001) and, in (Ban-
nister and Eppstein 2011), a fixed–parameter tractable variant and a lower bound on
the optimal solution in polynomial time of Ω(n1/4−ε), n = |V |, is given. In (Bin-
ucci and Didimo 2005), an experimental study on orthogonal compaction approaches
shows that, for larger graphs, the solution that rely on ILP models are not feasible in
terms of running time but, for smaller and high–density graphs, the exact algorithm
outperform the flow–based heuristic. The study prefers an approach that relies on the
turn–regularity (Bridgeman, Battista, et al. 2000) of 4–planar graphs. There, a planar
orthogonal drawing of Q with minimum area can be computed in O(n) time, and a
planar orthogonal drawing of Q with minimum area and minimum total edge length
within that area can be computed in O(n7/4 log n) time.
A popular approach for compaction is the rectangular decomposition (Tamassia 1987)
where the faces are transformed to rectangles by introducing dummy edges and dummy
nodes for bends and crossings, see Figure 2.4. Then, the angles of a face are searched
for patterns to iteratively reduce the consumed area of the faces. Of course, the decom-
position of a graph with representation Q is not unique, but the resulting compaction
depends highly on the decisions of the decomposition of faces into rectangles.

22 CHAPTER 2. PRELIMINARIES AND METHODS

Figure 2.4.: Rectangular decomposition. Faces are transformed to rectangles by inserting
dummy nodes and edges.

In (Eiglsperger 2003; Eiglsperger and Kaufmann 2002), the following approach al-
lowed for efficient compaction of drawings in Kandinsky model with prescribed node
size: first, a coarse but valid compaction is calculated. Then, this low quality com-
paction is improved by a post–processing algorithm in the second step. The first step
is computed using a fast linear–time heuristic. The approach exploits the findings
of a study (Klau, Klein, and Mutzel 2000) which states that the results of different
constructive compaction heuristics are very similar after applying a flow–based one–
dimensional compaction algorithm as a post–processing step.

2.2. Business Process Model and Notation

For the notation of business process models, we use Business Process Model and No-
tation (BPMN) (White 2004a) in most parts throughout this work. The selection of
BPMN among other notation languages, e.g. EPK, UML activity diagrams, etc., is
due to the standardized way to create graphical models of processes which contain all
necessary information for a subsequent implementation (White 2004b, 2005) of the
process model. More important, BPMN is a standard for business process modeling
published by the Object Management Group (OMG)1. Also, it is widely used by many
software vendors offering process modeling tools, often incorporated with larger solu-
tions of business process management systems (BPMS).
Current version of BPMN passed OMG standardization process for version 2.0 in Jan-
uary 2011. When research for this work started at the end of 2008, version 1.2 was
about to be passed in January 2009. New features of BPMN 2.0 in comparison to
version 1.2 are2:

• Aligning BPMN with the business process definition meta model BPDM to form
a single consistent language.

1see the website of OMG: http://www.omg.org, 2012–09–30.
2see description of BPMN 2.0 at http://en.wikipedia.org/wiki/Business_Process_Model_
and_Notation#BPMN_2.0, 2012–09–30.

http://www.omg.org
http://en.wikipedia.org/wiki/Business_Process_Model_and_Notation#BPMN_2.0
http://en.wikipedia.org/wiki/Business_Process_Model_and_Notation#BPMN_2.0

2.2. BUSINESS PROCESS MODEL AND NOTATION 23

• Enabling the exchange of business process models and their diagram layouts
among process modeling tools to preserve semantic integrity.

• Expand BPMN to allow model orchestrations and choreographies as stand–
alone or integrated models.

• Serialize BPMN and provide XML schemes for model transformation and to
extend BPMN towards business modeling and executive decision support.

Since none of these features added more basic BPMN elements to the process mod-
els of BPMN 1.2, i.e., elements were only updated or described in more details to
resolve ambiguities, it is fully reasonable to support 1.2 and statements on BPMN
1.2 models in this work are valid without exceptions for BPMN 2.0. The supported
BPMN 1.2 models are called collaboration diagrams in BPMN 2.0 and are to be dis-
tinguished from conversation diagrams and choreography diagrams which were newly
introduced in BPMN 2.0 and are yet to be adopted and integrated into (commercial)
BPMS software. Since the new diagram types (conversation diagrams and choreogra-
phy diagrams) are not fully supported by commercial tools yet and the future support
is (to this day) questionable, we focused in this work on the established collaboration
diagrams with support of all general elements in BPMN 2.0.
In the following, we present a short summary of modeling elements of BPMN. An
extensive and comprehensive introduction can be found in (Allweyer 2010).

2.2.1. Objects for Process Flow Control

Sequence flow in a BPMN model is controlled by flow objects. They can be considered
vertices in a graph. The largest group among flow objects are events. Events can
trigger actions during a process or initiate/terminate a (sub-)process. Therefore, there
are start events, intermediate events and end events. Depending on the specific event
type, details are depicted by symbols.

1. Events:

a) Start events initiate the process sequence flow. They have a circle shape
and, in our tool BPMN–Layouter, are assigned a green color to emphasize
the initiation of ’start’ as it is popular for dashboards. As a vertex v, a start
event has in–degree δin(v) = 0.

b) Intermediate events control the sequence flow within the process. Interme-
diate events can trigger timer or await other events (conditions, messages,
etc.) before allowing the sequence flow to continue. The shape of interme-
diate events is a circle surrounded by two parallel lines on the circle border.
Our tool assigns intermediate events a yellow color fill.

24 CHAPTER 2. PRELIMINARIES AND METHODS

c) End events terminate sequence flows in process models and represent end-
ing points of sequence flow or sequence flow branches. Note that there
are end events to indicate abnormal termination of a process denoted by
symbols in the circle shape of the end event, e.g. for throwing errors or
triggering compensation actions. Vertices representing end events have al-
ways out–degree δout = 0.

The variants of events are, i.e., external inputs, data transfers or internal timer or
errors occur. The Tables 2.1 and 2.2 depict symbols, unique names and descrip-
tions of BPMN events.

2. Activities:
Activities are the actual transactions or tasks that must be processed and passed

before sequence flow continues on outgoing connecting elements. Activities can
be repeated (multiple instances), depending on logical conditions and termina-
tion criteria (activity loop). The shape of activities is given by yellow rectangles
with rounded corners. The activities are listed in Table 2.3.
Subprocesses allow to encapsulate a process model in another process models.
A subprocess is a decomposable activity. It can be collapsed to hide details. A
subprocess contains a valid BPMN diagram. Note that a subprocess is indepen-
dent from the process model it is embedded to. From the surrounding parent
process, there are no direct connections to elements inside a subprocess. A sub-
process is initiated regularly by a start event that is contained in the valid inner
BPMN diagram. For visualizations, we treat subprocess as regular vertices in
the surrounding process models. If subprocesses exist, we resolve the nested
process model by performing a bottom–up–approach: compute visualization for
subprocesses first, then, compute visualizations for the surrounding (sub–) pro-
cesses. Since process models and the nested subprocesses form a tree structure
and do not contain cycles, this is always feasible. In Table 2.3, the shape of
a collapsed subprocesses, as it is used for the treatment as a regular vertex, is
given. When a subprocess is expanded, it is assigned the shape of a task (yel-
low rectangle) with adapted size such that it contains the BPMN elements of the
inner BPMN model.

3. Gateways:
Gateways are able to process multiple sequence flows. They operate as logical
gates and support simple and complex logic operations, e.g. combinations of
AND– and OR–conjunctions of ingoing sequence flows. Also, outgoing flows
are activated depending on conditions, e.g. for a complex gateway with multi-
ple outgoing flows, it is possible to activate none, one, selected or all outgoing
branches. The gateways in BPMN are listed in Table 2.4.

2.2. BUSINESS PROCESS MODEL AND NOTATION 25

Symbol Unique name Description

start_event (Default) Start Event

intermediate_event (Default) Intermediate Event

end_event (Default) End Event

message_start_event Message Start Event

message_intermediate_event Message Intermediate Event

message_end_event Message End Event

link_start_event Link Start Event

link_intermediate_event Link Intermediate Event

link_end_event Link End Event

rule_start_event Rule Start Event

rule_intermediate_event Rule Intermediate Event

cancel_intermediate_event Cancel Intermediate Event

cancel_end_event Cancel End Event

compensation_intermediate_event Compensation Intermediate Event

compensation_end_event Compensation End Event

Table 2.1.: Table of BPMN events, Part 1.

26 CHAPTER 2. PRELIMINARIES AND METHODS

Symbol Unique name Description

error_intermediate_event Error Intermediate Event

error_end_event Error End Event

timer_intermediate_event Timer Intermediate Event

timer_end_event Timer End Event

terminate_end_event Terminate End Event

Table 2.2.: Table of BPMN events, Part 2.

Symbol Unique name Description

activity_task Task

activity_multiple_instance Multiple Instance

activity_loop Loop

subprocess_collapsed Subprocess

Table 2.3.: Table of BPMN activities.

2.2.2. Connecting Objects

Connecting objects represent connections between elements and are considered edges
in an underlying graph. BPMN offers three basic variants of connection objects:
sequence flows, message flows and associations to attach information data. In Fig-
ures 2.5(a) – 2.5(c), the styles of the connecting objects are depicted. Sequence flow
defines the execution order of activities. Message flow symbolizes information flow
across organizational boundaries. Message flow can be attached to pools (see below),

2.2. BUSINESS PROCESS MODEL AND NOTATION 27

Symbol Unique name Description

gateway_fork_join Fork/Join

gateway_inclusive Inclusive Decision/Merge (OR)

gateway_exclusive_data Exclusive Decision/Merge (XOR) (data-based)

gateway_exclusive_event Exclusive Decision/Merge (XOR) (event-based)

gateway_complex Complex Decision/Merge

Table 2.4.: Table of BPMN gateways.

activities or message events. Associations indicate information flow, e.g. a input or
output data object which is described next.

(a) Sequence flow (b) Message flow (c) Association

Figure 2.5.: Connecting objects in BPMN.

2.2.3. Artifacts

Artifacts are elements in BPMN for representation of data or documentation that can-
not be assigned to any of the element groups mentioned above.

• Data object:
A data object is a placeholder for data that is input to the process or output from
the process, e.g. forms (input) or reports (output). It is always attached to a
element of BPMN which is the sender or recipient of the data. Therefore, a data
object is not autonomous as a single element in a BPMN process model. The
simple shape of a data object is depicted in Figure 2.6 (a).

28 CHAPTER 2. PRELIMINARIES AND METHODS

(a) Shape of a data object in BPMN.

Description
of annotation

(b) Annotation element in BPMN.

Figure 2.6.: Artifacts in BPMN.

• Annotations: Annotations offer the possibility to add comments to flow objects
as well as connecting objects. Annotations are attached to the corresponding ob-
ject by an association. In a graph model, annotations can be handled as common
vertices. The shape of an annotation is given in 2.6 (b).

2.2.4. Lanes/Pools

Lanes (or swimlanes) and pools are structural elements that render the hierarchic struc-
ture of a BPMN process models. BPMN elements are assigned to lanes. Lanes often
reflect the organizational structure of a company, then, e.g. a lane represents a certain
department of this company. Also, lanes can reflect roles and responsibilities of a po-
sition, e.g. marketing manager or CIO of a company. Multiple lanes can be aggregated
to a pool in order to introduce a hierarchy level between roles/responsibilities. BPMN
elements are not assigned to pools directly but to lanes that are subordinated.
In a model, lanes are denoted by a rectangle; elements assigned to a lane are contained
in the rectangle corresponding to the very same lane. A pool is drawn as a rectangle
surrounding the lanes contained in its hierarchy. In Figure 2.7, a pool with three lanes
is depicted. Throughout this work, lanes or swimlanes are used synonymous.

La
n
e
 2

La
n
e
 1

La
n
e
 3

Figure 2.7.: Hierarchic structure of a pool with three lanes in BPMN.

In Figure 2.8, a real–world process model of BPMN is depicted. Closing the summary
of BPMN elements, we define the graph underlying a BPMN process model as it will
used in the visualization approaches in the remainder of this work.

2.2. BUSINESS PROCESS MODEL AND NOTATION 29

Definition 6 (BPMN–Graph).

A BPMN–Graph is a connected graph G = (V, E) with an embedding into the
2D–plane and the following additional information:

• A mapping vertex_type : V → T, where T denotes the set of possible types
of a BPMN–element for a vertex v ∈ V. For a node n ∈ V, the shape of n is
prescribed by the vertex type vertex_type(n).

• A mapping edge_type : E → C, where C denotes the set of connecting
objects in BPMN, available for an edge e ∈ E. Values of C are: sequence
flow, message flow and association.

• A mapping swimlane : V → S , where S denotes the set of swimlanes. A
vertex v ∈ V is assigned to exactly one swimlane s ∈ S . A swimlane s ∈ S is
identified by a unique string. �

Admissible values for vertex types T are:

Events Gateways
start_event gateway_fork_join
intermediate_event gateway_inclusive
end_event gateway_exclusive_data
message_start_event gateway_exclusive_event
message_intermediate_event gateway_complex
message_end_event
link_start_event Activities
link_intermediate_event activity_task
link_end_event activity_multiple_instance
rule_start_event activity_loop
rule_intermediate_event
cancel_intermediate_event
cancel_end_event
compensation_intermediate_event
compensation_end_event
error_intermediate_event
error_end_event
timer_intermediate_event
timer_end_event
terminate_end_event

30 CHAPTER 2. PRELIMINARIES AND METHODS

Figure 2.8.: Example of a BPMN process model. The process represents the sequence flow of
a notification of claim in an insurance company.

2.3. LAYOUT AESTHETICS 31

2.3. Layout Aesthetics

An aesthetics of a layout measures a graphical property of a drawing. The word aes-
thetics derives from the Greek αισθητικóς (aisthetikos), meaning ’esthetic, sensitive,
sentient’, which in turn was derived from αι̇σθάνoµαι (aisthanomai), meaning "I per-
ceive, feel, sense".
According to (Di Battista, Eades, et al. 1999), aesthetics ’specify graphic properties
of the drawing that we would like to apply, as much as possible’. Aesthetics are to
distinguish from drawing conventions. A drawing convention is ’a basic rule that the
drawing must satisfy to be admissible’ (Di Battista, Eades, et al. 1999). For instance, a
drawing convention can define in a drawing what style is to use for drawing the edges,
while an aesthetics prescribes that the number of crossings should be low. In general,
aesthetics are often expressed as optimization problem that should be resolved such
that readability of the drawing is increased.
In the remainder of this section, we introduce the concept of layout aesthetics, and
the distinction from drawing conventions, and present the results of a user study3 that
is performed to obtain conclusions for layout aesthetics which are valid for business
process models in BPMN.
Unfortunately, up to now there are neither research work nor empirical studies for aes-
thetics of BPMN diagrams. However, research was performed in the area of aesthetics
of UML diagrams (Purchase, Allder, and Carrington 2001) or general explorations
for diagram aesthetics (Purchase 1997; Purchase, Cohen, and James 1995), but none
of them is applicable to BPMN diagrams without limitations. Since the underlying
structure of BPMN diagrams are graphs, we will first discuss aesthetics that apply to
abstract graphs (graphs without special semantics).
The formalization of layout aesthetics is reached by expressing them as optimization
problems, as in (Siebenhaller 2009; Siebenhaller and Kaufmann 2006a,b). For BPMN
as a graph–based notation, we consider the following layout aesthetics as necessary:

• Minimize the number of crossings of connecting elements (CROSSING).
• Minimize the area of the drawing (AREA).
• Minimize the sum of the lengths of the edges (EDGE_LENGTH).
• Minimize the number of bends of edges (BEND).
• Minimize the number of overlapping nodes (OVERLAP).
• Maximize the number of orthogonally drawn edges (ORTHOGONAL).

In (Di Battista, Eades, et al. 1999), an overview on common graph drawing aesthetic
3The study was joint work with Sandra Seiz and Nicole Jogsch, née Ferstl. Parts of the result of the user

study are published in (Effinger, Jogsch, and Seiz 2010), (Effinger, Seiz, and Jogsch 2011) and (Seiz
et al. 2010).

32 CHAPTER 2. PRELIMINARIES AND METHODS

criteria is given. Also, in (Schrepfer et al. 2009), a subset of these criteria are confirmed
to be important for BPMN.
In contrast, drawing conventions aim primarily at the style and orientation of edges.
Remember that drawing conventions are compulsory if applied for a drawing. A list
of drawing conventions (Di Battista, Eades, et al. 1999) is given by:

• Polyline drawing: an edge is drawn as a chain of segments.
• Straight–line drawing: an edge is drawn as a single straight line segment.
• Orthogonal drawing: an edge is drawn as a chain of vertical and horizontal

segments.
• Grid drawing: nodes, crossings and bends are placed on integer coordinates.
• Planar drawing: no two (or more) edges cross.
• Upward drawing: given an acyclic digraph, each edge is drawn as a curve mono-

tonically non–decreasing in the vertical direction, e.g., in a drawing oriented
left–to–right, ’upward’ edges point rightward.

While fulfilling multiple aesthetics, layout algorithms solve a multi–objective opti-
mization problem. However, for more complex notation languages, as BPMN is, the
task to tackle the whole set in a single algorithm is very complex which is under-
lined by the low number of tools supporting BPMN layout and the poor quality of
layout results, see (Effinger, Siebenhaller, and Kaufmann 2009a; Seiz et al. 2010) for
an overview.
Also, BPMN has specific requirements towards layout aesthetics since it provides nota-
tion semantics within its graphical representations. The following requirements repre-
sent aesthetics that consider the specific requirements of BPMN which can be derived
inspecting the standardization document:

• Nodes have different sizes (ELEMENT_SIZE).
• Partitions must be considered, e.g. pools and swimlanes (PARTITION).
• Labeling of pools, swimlanes and elements must be feasible (LABEL).
• Maximize the number of edges respecting workflow direction (FLOW).

These principles are also mentioned in informal collections of drawing principles for
special diagram types, e.g. for UML activity diagrams (Ambler 2005) or network di-
agrams (W. Huang, Hong, and Eades 2007). Summing up the relevant aesthetics, we
state the following list of standard layout aesthetics for the layout of BPMN diagrams:

FLOW, PARTITION, OVERLAP, LABEL, ELEMENT_SIZE, CROSSING, EDGE_LENGTH,
ORTHOGONAL, AREA, BEND.

2.3. LAYOUT AESTHETICS 33

The list of design standards is also conform on conventions within the BPMN com-
munity (Mendling, H. A. Reijers, and Cardoso 2007; Silver 2011) and corresponds to
a superset of supported aesthetics in existing BPMN tools. Note that aesthetics SYM-
METRY, which aims at maximizing the number of symmetrical structures, does not
seem appropriate for BPMN diagrams because of the lack of a symmetric structure. A
precedence of the aesthetics is only partly available if we consider user studies, e.g.
(Purchase, Cohen, and James 1997). However, for this larger set of aesthetics, an order
of preference has to be confirmed by a user study.
In the user study that is presented in the following, we developed a test design for a
catalogue with statements that cover the different objectives of layout aesthetics. We
face this catalogue with the users’ personal appreciation of different layouts in order
to confirm or reject our conjectures.

2.3.1. A User Study on Layout Aesthetics for BPMN

Software Tools

In this section, we give a summary of our test design and test method. For a more
detailed description, we refer to (Seiz et al. 2010). For the comparison of layout results
for BPMN models, we have to choose among existing solutions of tools that support
modeling with BPMN and provide automatic layout features. After a market study,
we obtained a list with 54 software packages that support BPMN according to the
vendors. However, support of BPMN solely is not sufficient for our study, therefore,
we developed the following criteria for tool selection:

1. BPMN support: The tool must support the standardized version 1.2 of BPMN,
including all elements given in the standard.

2. Automatic layout support: The tool must provide the user with a feature that
calculates an automatic layout of a given BPMN model. Thus, the user has
the possibility to acquaint himself with the principles of layout aesthetics. The
layout feature must also consider basic BPMN aesthetics, e.g. swimlanes must
be respected and edges must be drawn orthogonally.

3. Evaluation license availability: For our study, we depend on evaluation li-
censes provided by the software vendors.

These criteria were compulsory. We could not consider tools or vendors that could not
meet one or more of the criteria. During the study preparation, the most challenging
criteria was the support of automatic layout. Also, software that supposedly supports
BPMN provided repeatedly only a subset of BPMN. This prevented us from preparing
our modeling test case on those tools.

34 CHAPTER 2. PRELIMINARIES AND METHODS

After applying our criteria filters on the list of software tools, we obtained a set of five
tools: three commercial tools which fulfilled the above mentioned criteria plus two
variants of BPMN–Layouter (one variant of an earlier alpha–version and the current
version which was trimmed to higher usability) that fulfilled all criteria and that were
considered for our user study. In (Seiz et al. 2010), a complete list with all software
vendors, which were considered, and details on the selection process are given.

Test Method

In the following, we briefly describe the procedure instructions given to probands and
the surrounding setup for the experiment of the study. The setup was successfully
confirmed to be well–chosen with the help of a pre–test prior to the experiment.
The probands of the study were chosen among students with majors in economics
and/or computer science. Their skills (education and/or experience) in process mod-
eling spread from very low to very high in order to represent inhomogeneous but,
because of their major subject, potential future users of modeling tools.
The software tools were installed on PCs and probands were randomly assigned to
one tool. For assuring a basic common understanding on BPMN and business process
modeling, probands initially were asked to insert a simple extension into an existing
process using the assigned modeling tool. The set of BPMN elements needed for the
implementation of the extension was given as support. The process for the modeling
task was a book order instance. The process can be inspected in detail in Figure 2.14
on page 43. After the modeling part, probands were requested to prepare a presentable
version of the new process. They were advised to use the automatic layout feature(s)
of the corresponding tool. At this point, probands were supposed to be familiar with
BPMN modeling and also with the automatic layout results and features of the respec-
tive tool. For the evaluation, each proband obtained five different layout versions of
the new process, one from each evaluated tool. In the accompanying questionnaire,
probands were asked to give rankings among the tools for each statement contained in
the questionnaire. For comparison reasons, we chose to ask for rankings with strictly
relative order among the tools. Thus, two tools cannot be ranked equally and we
obtain more exact responses. The statements of the questionnaire correspond to the
layout aesthetics stated in the beginning of Section 2.3. All layout aesthetics are rep-
resented by a statement. For the representation as statements, we group the statements
into categories that aimed at the same attribute of a graph/diagram. The following list
gives the wording of the statements as they appeared in the questionnaire:

1. Category 1: „Connection elements“ (edges)

a) Edges are drawn orthogonally and are inserted in such a way that they
appear as short as possible (ORTHOGONAL,EDGE_LENGTH).

2.3. LAYOUT AESTHETICS 35

b) Edges appear to be drawn with the lowest possible number of crossings
(CROSSING).

c) Edges appear to be drawn with the lowest possible number of bends (BEND).
d) Edges are drawn such that they consider the reading direction (FLOW).

2. Category 2: „Area usage“

a) The size of the swimlanes is chosen such that all elements have enough
space (ELEMENT_SIZE).

b) The diagram contains unused space that could be better exploited by rear-
ranging the elements (AREA).

3. Category 3: „Elements“

a) Elements are arranged such that they do not overlap (OVERLAP).
b) The size of the elements is chosen such that the description of the label is

readable (LABEL).
c) The assignment of an element to its swimlane is easy to perceive (PARTI-

TION).

4. Category 4: „Coloring“

a) The choice of colors supports to obtain a detailed comprehension of the
model.

b) The choice of colors supports to obtain a quick overview of the model.

After the ranking of tools for each statement, probands were asked to rank the cate-
gories in decreasing importance according to their personal judgement. Also, probands
were encouraged to add additional categories and/or statements that, to their opinion,
were not represented in our above catalogue of statements. These proband-defined
categories were also included in the ranking of categories. Eventually, the probands
are asked to give a ranking of all layout diagrams presented in the file to their personal
preference, independently from the above given statements.
The total time per proband of our study depended on the skill level of the probands.
The periods of time ranged from 55-75 minutes per proband for the task of modeling
and responses to the two questionnaires that considered layout and usability questions.
The total number of participants of the study was 39.

Evaluation

In this section, we present the results of our study. The study data was collected while
conducting the study at two universities, at Eberhard Karls Universität Tübingen and
Humbold Universität Berlin. The circumstances were kept comparable during both
times, identical software tools and identical questionnaires were used.

36 CHAPTER 2. PRELIMINARIES AND METHODS

Note that, generally on ordinal scales, the application of mean values is not possible.
However, in our case, as stated in (Gehring and Weins 2009), the distance between the
ordinal items can be considered to be equal from a proband’s perspective. Therefore,
the application of mean values for our evaluation is rendered possible and allows an
thorough evaluation using descriptive statistics.
First, we analyze the categories of the questionnaire of Section 2.3.1. For the cat-
egories, we present the ranking of all users. For the analysis, we also examine the
results of the proband group separately by gender, process modeling experience and
prior education in modeling.
For the analysis, the total user group is filtered yielding to subset groups with the
following attributes:

• Gender: male (m) and female (f)
• Experience: business process modeling experience is rated from ’none’ (0) and

’low’ (1) to ’high/very high’ (2+).
• Education: number of lectures (or similar events) attended in the field of busi-

ness process modeling; the group is split into ranges from none (0), one (1) to
two or more (2+).

The division into subset groups is due to the focus on inhomogeneous user groups.
Each subset group represents a set of business process modelers with distinct back-
grounds, capabilities and skills. Thus, we analyze the corresponding preferences of
these groups. Before that, we propose our conjectures for the analysis in the following
section.

Conjectures

Our conjectures aim to confirm that the set of statements that we defined in Sec-
tion 2.3.1 is convenient to support the aesthetics from Section 2.3 and correspond to
the users’ preferences.
For better coverage, we state our conjectures for the total group and the subset groups
separately. The conjectures are also evaluated separately.

Conjecture 1 (Layout Aesthetics for Total Group).
The user ratings of the total group correspond with respect to 1) the catalogue of
category statements and 2) the users’ personal appreciation (general ranking).

If Conjecture 1 is supported, we can state that the statements of our catalogue of cate-
gories 1-4 are sufficient to fulfill the aesthetics’ requirements of a BPMN diagram for
all probands.

2.3. LAYOUT AESTHETICS 37

Conjecture 2 (Layout Aesthetics for Subset Group ’Gender’).
The user ratings of the subset groups ’Gender’ (male/female) correspond with re-
spect to 1) the catalogue of category statements and 2) the users’ personal appre-
ciation (general ranking).

If Conjecture 2 is supported, we can confirm that the statements of our catalogue of
categories 1-4 are sufficient to fulfill the aesthetics’ requirements for the subset group
of male, or female respectively, probands.

Conjecture 3 (Layout Aesthetics for Subset Group ’Experience’).
The user ratings of the subset groups ’Experience’ (Experience (0), Experience
(1), Experience (2+)) correspond with respect to 1) the catalogue of category state-
ments and 2) the users’ personal appreciation (general ranking).

Conjecture 3 states the validity of the statements considering probands with different
levels of modeling experience, from none (novices) to very high (experts).

Conjecture 4 (Layout Aesthetics for Subset Group ’Education’).
The user ratings of the subset groups ’Education’ (Education (0), Education (1),
Education (2+)) correspond with respect to 1) the catalogue of category statements
and 2) the users’ personal appreciation (general ranking).

If Conjecture 4 is supported, we can confirm that the statements are sufficient to fulfill
the aesthetics’ requirements for the subset groups of probands with different educa-
tional background for business process modeling.
If the correspondence between the general ranking and the catalogue of statements is
not given, that means that Conjectures 1- 4 cannot be supported, we state a conjecture
for the case that, from the resulting values, we can derive a tendency to the better- and
the less well-rated tools.

Conjecture 5 (Layout Aesthetics and Tool Tendency).
From the user ratings of the Total Group/Subset groups ’Experience’ / ’Education’
/ ’Gender’, we can observe a match between the best– and the worst–rated tools
with respect to 1) the catalogue of category statements and 2) the users’ personal
appreciation (general ranking).

In addition to conjectures on whole subset groups, we state conjectures that claim the
statements of our layout aesthetics adapt better the higher the users’ experience or the
better their education in business process modeling with BPMN. In other words, the
differences between the general ranking and the catalogue of aesthetics’ statements
diminish inside the subset group ’Education’, or ’Experience’ respectively:

38 CHAPTER 2. PRELIMINARIES AND METHODS

Conjecture 6 (Increasing Benefit with Higher Experience).
The differences in the user rating of the subset groups ’Experience’ diminish with
increasing experience levels of probands with respect to 1) the catalogue of cate-
gory statements and 2) the users’ personal appreciation (general ranking).

Conjecture 7 (Increasing Benefit with Higher Education).
The differences in the user rating of the subset groups ’Education’ diminish with
increasing educational background of probands with respect to 1) the catalogue of
category statements and 2) the users’ personal appreciation (general ranking).

Conjectures 6 and 7 represent our conjecture that our layout aesthetics are more effi-
cient and exceedingly appropriate for BPMN modeling users that have a fundamental
understanding of process modeling in general. Before analyzing our set of conjectures,
we present the results of the ranking of categories.

Results of Category Ranking

The results of the category ranking show where subset groups depict aesthetics with
the largest impact on the layout. The categories were ranked in a relative order from 1
to 4, respectively to 5 or 6 if proband-defined categories were given. The diagram in
Figure 2.9 depicts the resulting values. After normalization, values can range from 0
to 4 while 4 is the highest (best) score.

all Gender (m) Gender (f) Experience (0) Experience (1) Experience (2+) Education (0) Education (1) Education (2+)

0

0.5

1

1.5

2

2.5

3

3.5

4

Ratings of Categories

Category 1 (2.74, Rank 1) Category 2 (1.75, Rank 4) Category 3 (2.39, Rank 3) Category 4 (2.71, Rank 2) Proband-defined Cat. (1.39,
Rank 5)

Figure 2.9.: Ratings of the categories for total group (all) and all subset groups. Mean values
and ranks for categories are given in parentheses.

The following interpretation of Figure 2.9 is done for each category.
For category 1 “Connection elements”, the values contain only two spikes, for group
’Experience (1)’ (maximum) and group ’Experience (2+)’ (minimum). However, the
derivations of the spikes are diametrically opposed. Thus, no conclusion can be drawn

2.3. LAYOUT AESTHETICS 39

from these spikes. However, together with the highest mean value of all categories, the
low number of derivations show that category 1 has a great effect on the acceptance
of the users. Thus, we can state that users prefer layout models that correspond with
statements 1.1 - 1.4.
Category 2 “Area usage” has the largest spikes in the ’Education’ subset group. More
precisely, it has an obvious peak in ’Education (0)’. This peak renders category 2 to be
the most important for ’Education (0)’, in contrast to other subset groups. For subset
groups ’Education (1)’ and ’Education (2+)’, the derivations are low. Thus, category 2
seems to lead to a most promising but eventually alleged effect on the layout for users
with less education in process modeling. In total, category 2 ranks 4th and therefore
last of all pre-defined categories.
Category 3 “Elements” is the category with the significantly least derivations in all
subset groups. Thus, all users agree that element layout properties are indispensable,
but no group rated this category 1st, or in other words, most preferred. Rank 3 for this
category shows that it contributes important statements and may not be ignored when
creating layout models.
Category 4 “Coloring” has only two minor spikes. In subset groups ’Experience (1)’
and ’Education (1)’, the spikes show two derivations to slightly higher, or lower re-
spectively, values. However, in most subset groups, category 4 is rated most important
or second most important after category 1. Thus, together with category 1, this cate-
gory has strong effect on the layout.
The proband-defined category shows the most diverging behaviour. While for subset
group ’Education (0)’, the category yields the highest value, it ranks last for 6 of 9
subset groups. Only subset group ’Experience (0)’ describes a similar behaviour as
’Education (0)’. The value of ’Experience’ and ’Education’ may already imply that
the more experience or education modeling users are equipped with, the more the
rating of models converges to a set of commonly accepted measurement attributes and
aesthetic criteria (Conjectures 6 and 7).

Overall Ranking

We will now face the results of the general ranking given by the probands with the
aggregation over the results of the set of categories. Therefore, we calculate the mean
values of the general ranking for both, the total group and each subset groups. This ap-
proach allows to consider the subset groups and their inhomogeneities. For obtaining
the results, we compare data from the general ranking (GR) over all tool models with
the aggregated data per category and its corresponding statements from Section 2.3.1
(mean of categories, MC1-4).

40 CHAPTER 2. PRELIMINARIES AND METHODS

By Total Group:
The contrast between the GR and MC1-4 is depicted in Figure 2.10 and becomes
visible when taking a closer look at Tools A,B and E. Their ranking is not equal over
both measurements. However, as Tool C always ranks 1st and Tool D ranks last, we
can state that our methods can distinct between tools that suffice users’ preferences and
those that fail. Thus, we have to reject Conjecture 1, but the support of Conjecture 5
for the total group is successful.

GR - a ll MC1-4 - all

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

General ranking vs. MC1-4: Total group

Tool A
Tool B
Tool C
Tool D
Tool E

Figure 2.10.: Comparison of general ranking (GR) and mean of categories (MC1-4) for total
group.

By Gender:
The gender subset group contains the male and female subsets of probands. For the
comparison between GR and MC1-4, depicted in Figure 2.11, we state that a link
between GR and MC1-4 is not given. The ratings of both, male and female, differ for
GR and MC1-4. However, in all subset groups, Tool C ranks 1st and Tool D ranks
last which, as in the total group, allows us to distinct between best and imperfect tools.
Therefore, Conjecture 2 must be rejected, but Conjecture 5 is supported for subset
group ’Gender’.

GR - Gender (m) MC1-4 - Gender (m) GR - Gender (f) MC1-4 - Gender (f)

0

0.5

1

1.5

2

2.5

3

3.5

4

General ranking vs. MC1-4: Gender

Tool A
Tool B
Tool C
Tool D
Tool E

Figure 2.11.: Comparison of general ranking (GR) and mean of categories (MC1-4) for subset
groups of ’Gender’.

By User experience:
The subset groups for filter ’Experience’ sum up to 6 groups, see Figure 2.12. For

2.3. LAYOUT AESTHETICS 41

’Experience (0), the values and rankings of GR and MC1-4 differ, but considering
users with at least little experience in group ’Experience (1)’, we observe only a minor
switch of ranks for Tool A and B. For users with high experience in group ’Experience
(2+)’, the values correspond and the ranking is identical.
Since the values of ’Experience (0)’ do not correspond, we have to reject Conjecture 3.
However, since the differences clearly diminish with higher experience of modeling
users, Conjecture 6 is supported. Also, for both subset groups ’Experience (1)’ and
’Experience (2+), we can confirm that Conjecture 5 is supported since one can obvi-
ously inspect the best and the deficient tools chosen by the probands.

GR - Experience (0)
MC1-4 - Experience (0)

GR - Experience (1)
MC1-4 - Experience (1)

GR - Experience (2+)
MC1-4 - Experience (2+)

0

0.5

1

1.5

2

2.5

3

3.5

4
General ranking vs. MC1-4: Experience

Tool A
Tool B
Tool C
Tool D
Tool E

Figure 2.12.: Comparison of general ranking (GR) and mean of categories (MC1-4) for subset
groups of ’Experience’.

By User Education:
The filter ’Education’ also creates 6 subset groups. In Figure 2.13, the values are
presented. We can state that for ’Education (0)’, the values diverge, there are two
swaps of tools’ ranking (Tool A, B and E). However, for groups with higher modeling
education, we only notice one swap: Tool D and E for ’Education (1)’, Tool A and D
for ’Education (2+)’. Moreover, the distance between values that cause swaps diminish
the higher the education level, e.g. the distance between Tool A and D for ’Education
(2+) is almost vanished to 0.19 on a 0-to-4-scale.
Also, as for subset group ’Experience’, we cannot state that the corresponding Conjec-
ture 4 for group ’Education’ is supported. On the other hand, we can confirm an im-
provement of the results the higher the educational background, therefore Conjecture 7
is supported. Moreover, Conjecture 5 is supported for ’Education (0)’ and clearly for
’Education (2+), too.

Before closing the evaluation section, we sum up the results and conjectures of this
section. Conjectures 1, 2, 3 and 4 are rejected since the differences between the values
of the general ranking (GR) and the mean of categories (MC1-4) diverge in the total

42 CHAPTER 2. PRELIMINARIES AND METHODS

GR - Education (0) MC1-4 - Education (0) GR - Education (1) MC1-4 - Education (1) GR - Education (2+) MC1-4 - Education (2+)

0

0.5

1

1.5

2

2.5

3

3.5

4

General ranking vs. MC1-4: Education

Tool A
Tool B
Tool C
Tool D

Tool E

Figure 2.13.: Comparison of general ranking (GR) and mean of categories (MC1-4) for subset
groups of education.

group and at least one subset group of the filters (gender, education, experience). How-
ever, we confirm Conjecture 5 for 7 of total 9 subset groups. The Conjecture states the
correct prediction of the user preference tendency of a tool’s layout capabilities when
using our catalogue of statements. Also, Conjectures 6 and 7 can be confirmed. They
state that the values of subset groups ’Experience’ and ’Education’ correspond for GR
and MC1-4 when considering the groups with average or higher practice experience,
or at least basic education respectively, for the field of business process modeling.
The layout from Tool C that was favoured by the probands in the general ranking is
depicted in Figure 2.14.

Related work on Studies of Layout Aesthetics

Layout aesthetics are also known as secondary notation. The term of secondary nota-
tion is due to fundamental cognitive research of (Petre 2006, 1995). Secondary nota-
tion is an important part of the cognitive dimensions of notation framework developed
by (Green and Blackwell 1998). It is also used in the study design of (Schrepfer et
al. 2009) where differences in understandability of business process models between
novices and experts are targeted. In (Ware, Purchase, et al. 2002), graph aesthetics are
used for cognitive measurements.
The area of research on layout aesthetics is broader if considering other diagram types
or graph classes, too. There are diagram types widely related to BPMN, e.g. UML-
diagrams which were part of an analysis in (Sun and Wong 2005) where laws for
diagram layout were formalized, e.g. the ’law of proximity’. This would refer to our
statements ’ORTHOGONAL’ and ’ELEMENT_SIZE’. Aesthetics for UML-diagrams
were also proposed in the context of automatic layout in (Eichelberger 2005). Sugges-
tions of aesthetics are also given for Petri-Nets in (Jensen 1996) or for more general
graphs in (Coleman and Parker 1996). In (Genero, Poels, and Piattini 2008), metrics

2.3. LAYOUT AESTHETICS 43

Figure 2.14.: Layout of Tool C scored highest in 7 of total 9 subset groups. For reading pur-
poses, the image is for this paper manually cut in two halves of equal width; the
upper first part is originally directly connected to the lower second part. As the
study was conducted in German, the labels are given in German language.

are proposed and validated for entity-relationship (ER-) diagrams. Aesthetics, or ’ef-
fects’, for social-network visualization are considered in (W. Huang, Hong, and Eades
2007) with the focus on edge crossings, or in our terminology, aesthetics ’CROSS-
ING’.
The set of layout aesthetics is further enriched by research works and studies of (Pur-
chase 1997; Purchase, Allder, and Carrington 2001; Purchase, Cohen, and James 1995)

44 CHAPTER 2. PRELIMINARIES AND METHODS

where a subset of aesthetics is target of a ranking analysis. Further confirmation for
aesthetics ranking is conducted by (Apfelbacher et al. 2006) that states that diagrams
with short edges can be read more easily because the nodes’ proximity is higher and
the probability of crossings (’CROSSING’) is lower. Also, (W. Huang, Hong, and
Eades 2008) confirmed the importance of ’CROSSING’. Moreover, general modeling
guidelines, e.g. (Apfelbacher et al. 2006), are available and provide a fundamental set
of aesthetics.
User studies concerning aspects of layout aesthetics are done by (Purchase, Allder,
and Carrington 2001) for UML, (Mendling, H. A. Reijers, and Cardoso 2007) for
syntactical structures in process models and also (W. Huang, Eades, and Hong 2008)
for general graphs. The cognitive complexity of integrating multiple diagrams with
different notations is examined in (Hahn and J. Kim 1999). In (Agarwal, De, and Sinha
1999), object–oriented (OO) models are compared to process–oriented (PO) models
with the objective of user comprehension.

2.3.2. Conclusion of User Study

In the user study, we analyzed secondary notation in terms of layout aesthetics and
users’ preferences of layout aesthetics for BPMN with consideration of inhomoge-
neous user groups. We proposed a catalogue of criteria which promises modeling
results that are well–accepted by most users when being applied in algorithms.
The formalized catalogue is tested by the conduction of a user study. The results
of the study were presented and interpreted. The data analysis of the study results
was performed with respect to not only all participants at a time but also to subset
groups according to modeling experience, modeling education and gender. We were
able to show that our layout catalogue is most appropriate when applied for users
with average or higher practice experience and users with at least basic knowledge in
business process modeling. We also could show that our catalogue of statements is
sufficient to predict the tendency of the users’ judgement for the layout capabilities of
a tool.
Concluding, our results can be used for designing powerful algorithms in modeling
tools for BPMN that produce layout for BPMN diagrams that will be well–received
by users. We pursue this goal when presenting visualization approaches in 2D in
Chapter 3 and for two-and-a-half dimensions in Chapter 6.
For the remainder of this work, we refer to the following set of aesthetics as the Stan-
dard Layout Aesthetics for BPMN:

PARTITION, FLOW, OVERLAP, ELEMENT_SIZE, EDGE_LENGTH,
CROSSING, ORTHOGONAL, LABEL, AREA, BEND.

2.4. STATIC 2D–LAYOUTS FOR BPMN 45

The set of aesthetics is ordered according to the results of the category ranking. Note
that aesthetics PARTITION is not part of the category ranking because it is immanent
to valid BPMN models. We therefore added PARTITION as a required aesthetics at
highest priority to this list.

2.4. Static 2D–Layouts for BPMN

In this section, we briefly present results from previous work (Effinger 2008; Effin-
ger, Siebenhaller, and Kaufmann 2009b) that provide the computation of a 2D–layout
for BPMN models. The work is based on results from (Siebenhaller and Kaufmann
2006a,b) and uses the TSM approach and the Sugiyama framework.
In (Siebenhaller and Kaufmann 2006a), the concept of p–planarity is introduced:

Definition 7 (P–Planarity).
In a partitioned drawing of G = (V, E), each node v ∈ V is drawn inside a partition
cell p(v). G is called p–planar if it has a planar and a partitioned drawing at the
same time. �

The concept of p–planarity and the introduction of partitions allows for the support of
swimlanes by assigning the nodes of a business process models to rows; nodes in the
same swimlane are assigned to identical rows in the partition.
P–planarity is related to c–planarity (Siebenhaller and Kaufmann 2006a), or clus-
tered planarity (Cornelsen and Wagner 2003) of compound, or clustered graphs: a
compound graph GC = (G,T) is induced by a graph G = (B ∪ C, EG) and a tree
T = (B ∪ C, ET) which is called inclusion tree; the set B contains the base nodes and
the set C of compound nodes defines the hierarchy in the clustered compound graph
GC . A directed path v→∗ w in T denotes that w is part of the compound node v. Base
nodes are leafs in T and compound nodes are inner nodes of T . A cluster drawing
of a compound graph GC is a drawing where each compound nodes is depicted as a
closed region, e.g. a rectangle. Note that compound nodes can be nested, thus, these
regions can contained further regions. Then, a compound graph is c–planar if it has
a planar and a cluster drawing at the same time. To characterize cluster drawings,
〈α, β, γ〉–drawings are introduced in (Angelini et al. 2012), where α is the number of
edge–edge crossings, β denotes the number of edge–region crossings and γ is the num-
ber of region–region crossings. With this characterization, (Angelini et al. 2012) show
that:

46 CHAPTER 2. PRELIMINARIES AND METHODS

p1,1

p1,2 p2,2 p3,2 p4,2

p2,1 p3,1 p4,1

Figure 2.15.: Example for the matrix–like arrangement of the rectangles of cells in a partition.

1. minimizing α in an 〈α, 0, 0〉–drawing is NP–complete even if the underlying
graph is a matching. For a graph G = (V, E), a matching M ⊆ E is a set of pair-
wise non–adjacent edges. Therefore, no two edges share a common endpoint.

2. minimizing β in a 〈0, β, 0〉–drawing is NP–complete, even if the compound graph
is c–connected embedded and flat. If each compound node in C induces a con-
nected subgraph of G, then GC is c–connected. GC = (G,T) is called flat if, in
any path from the root to a leaf of T , there are at most three nodes. An embedded
graph uniquely defines cyclic orders of edges incident to the same node. Here,
the embedding is given and fixed.

3. minimizing γ in a 〈0, 0, γ〉–drawing is NP–complete.

P–planarity delimits the construct of c–planarity. A graph G = (V, E) with a partition p
can be formulated as a compound graph GC = (G,T), Then, tree T has height 3 and is
induced by the partition p of G. The inner nodes of T are given by compound nodes for
the rows and columns in depth 1 and compound nodes for each single partition cell of
p in depth 2. The leafs of T are the base nodes V of G. Note that in a partition, region–
region crossings are not possible because partition cells are denoted by rectangles in a
matrix–like arrangement, as depicted in Figure 2.15.
In (Siebenhaller 2009), the Sugiyama framework is extended to support p–planarity:
for the partition cells, dummy nodes are inserted into the layers and, during the cross-
ing minimization, a swap of two nodes is not allowed if it requires to cross such a
dummy node. This extension of the Sugiyama framework is then integrated as a pla-
narization phase of the TSM approach. In the orthogonalization phase, the cells are
preserved by preserving the shape of the partition, i.e., border edges of the partition
are not allowed to bend and are considered as fixed.
The overall algorithm for an input graph G = (V, E) and a partition p is as follows:

1. Pre–processing:

a) if G is not connected, insert temporarily connecting edges between con-
nected components.

2.4. STATIC 2D–LAYOUTS FOR BPMN 47

b) add the partition graph GP to G, where GP represents the grid graph of p,
see (Siebenhaller and Kaufmann 2006a).

2. Planarization:
We apply the extended Sugiyama framework with support of p–planarity.

3. Orthogonalization
4. Compaction:

We use the approach of (Eiglsperger 2003) that allows for drawings in Kandin-
sky model with prescribed node size.

5. Post–processing:

a) remove all temporary nodes and edges (e.g. for connectedness of G).
b) add rectangles to the drawing that denote the partition cells, .i.e., one rect-

angle per row of the partition p, in order to highlight the swimlanes of the
BPMN model.

An example of a layout produced by the approach is depicted in Figure 2.16. Note that
this approach does not consider a previous embedding of G or a pre–existing layout of
the BPMN model represented by G. The approach produces static layouts only. This
issue will be tackled when computing layouts with respect to given sketches of the
model, see Section 3.1.

Figure 2.16.: Example of a drawing with the 2D–approach for BPMN models that was pre-
sented in previous work (Effinger, Kaufmann, and Siebenhaller 2009).

48 CHAPTER 2. PRELIMINARIES AND METHODS

Chapter 3
2D–Visualizations of Business
Process Models

In this chapter, we present approaches that compute 2D–visualizations with respect to
the specifics of business process models. At first, we will extend an interactive layout
approach in order to be able to comply with aesthetics PARTITION. Then, in Sec-
tion 3.2, we will introduce semantics in visualizations of BPMN models. Therefore,
we define three new layout patterns that apply to semantics of BPMN models and that
are modeled such that the layout algorithm in use is able to handle the patterns when
computing a BPMN layout. Finally, we will present a new approach for computing
visualizations of BPEL models, see Section 3.3. BPEL is a text–based markup lan-
guage to document executable business processes. A brief introduction to BPEL will
be given before stepping into the details of the BPEL layout algorithm.

3.1. Sketch–Driven–Layout for BPMN

In the practice of modeling, changes must be done rather often in an existing model.
The same applies for layouts; a layout can undergo changes since the underlying model
changes. However, if the model changes, the layout should not be changed substan-
tially. Thus, the goal should be, not to destroy the user’s mental map of a model. The
Sketch–Driven–Layout–approach (SDL) addresses this challenge. The original idea of
SDL stems from (Brandes, Kaufmann, et al. 2002). SDL considers an existing drawing
and calculates a new layout targeting to fulfill given objectives. It is built on a Bayesian
framework in order to measure the amount of changes in a graph. In the original ap-
proach, changes in edges’ bends and angles were minimized when performing a layout
algorithm.

49

50 CHAPTER 3. 2D–VISUALIZATIONS OF BUSINESS PROCESS MODELS

The benefits of SDL are obvious: Any time, a BPMN model is changed, an automatic
layout for the model can be calculated without changing the mental map of the model-
ing user. This allows to integrate the layout step in the process of designing the model:
When a connecting object or a flow object is added/removed, SDL is called and adapts
the layout to fulfill the layout requirements. Using SDL for interactive layout enables
a modeling tool to offer an automatic and interactive layout approach that supports the
human designer during the design process of a model.
However, the original idea of SDL was limited, e.g. since PARTITION was not consid-
ered. Thus, we had to extend SDL such that it considers swimlanes beyond preserving
the user’s mental map. This could be solved by extending the Kandinsky network.
In the remainder of this section1, we will present our approach of enabling SDL for
BPMN.
Since the foundations of SDL, as presented in (Brandes, Kaufmann, et al. 2002), are
based on the Kandinsky model (Fößmeier 1997; Fößmeier and Kaufmann 1995), we
will briefly recapture this model in the following paragraphs; for a more detailed de-
scription of the Kandinsky model, see the introduction in Section 2.1.2.
Remember that a Kandinsky model requires an embedded planar graph G = (V, E, F)
where F is the set of faces and, using F, a specific circular order of edges around
nodes is given. Also, Kandinsky model operates on grid drawings where the center
of nodes and bends of edges are put on integer coordinates. An orthogonal shape Q
maps the set of faces F to ordered lists of tuples. For each face f , the tuples (ei, ai, bi),
1 ≤ i ≤ |Q(f)| with edge ei ∈ E and ai ∈ {1, . . . , 4}, where ai represents the angle
formed by multiples of 90◦, give the shape along the face f ; bi denotes the list of
bends of edge ei, given by a string. A quasi-orthogonal shape allows values ai = 0,
denoting that the succeeding edge ei+1 of a edge ei in a tuple is adjacent to the same
side at a node. A quasi-orthogonal shape q is valid if there is a planar orthogonal
box drawing with quasi-orthogonal shape q. A planar orthogonal box drawing is a
planar drawing where nodes are mapped to boxes and edges are mapped to sequences
of vertical and horizontal segments.
Drawings with a Kandinsky model obey the bend–or–end–property (P1) and the non–
empty–face–property (P2). P1 states that, given two edges e1 and e2 which are ad-
jacent to the same side of a node in a face f with e2 being the successor of e1 in the
embedding, either e1 must have a last bend in f with 270◦ or e2 must have a first bend
with 270◦ in f . P2 prevents cases of degenerated triangles in the graph, see Chapter 2
for more details.

1Parts of this section were published in (Effinger, Siebenhaller, and Kaufmann 2009a) and (Effinger,
Kaufmann, and Siebenhaller 2009).

3.1. SKETCH–DRIVEN–LAYOUT FOR BPMN 51

Note that with the topology–shape–metrics (TSM) approach, a Kandinsky drawing,
i.e., a drawing of a graph in valid Kandinsky model, with the minimum number of
bends can be obtained using a minimum–cost–flow in a network (Eiglsperger 2003;
Tamassia 1987).
Before describing the original SDL–approach, we introduce the Bayesian paradigm
that is employed for difference metrics in SDL. In dynamic graph drawing, a series
of graphs, which stems from a single graph and its modified successors over time,
is to be visualized under the premise that changes between consecutive graphs, or
frames in an animation, should be minimized in order not to destroy a user’s mental
map (Eades, Sugiyama, et al. 1991). An example for dynamic graph drawing is the task
of visualizing time–series graph in higher dimensions (Dwyer 2004). The Bayesian
paradigm (Brandes and Wagner 1997) suggests to incorporate a difference metric as a
penalty in the objective function of layout algorithms that are based on the optimization
of objective functions. Difference metrics (Bridgeman and Tamassia 1998) describe
the measurement of layout aesthetics between two drawings of a graph. The original
SDL–approach uses difference metrics for measuring changes in angles and bends in
drawings with orthogonal shapes.

3.1.1. Algorithm

In the following, we will describe the algorithm of SDL for BPMN models. The
new approach is based on the original SDL–approach from (Brandes 1999; Brandes,
Kaufmann, et al. 2002). Therefore, we will introduce the preliminaries of the original
approach before presenting the extended algorithm for BPMN models.
For SDL, let Σ be an admissible drawing, called a sketch, of a graph GΣ = (VΣ, EΣ). A
sketch is admissible if no edge and non–incident node overlap and no more than two
edges cross in the same point. Then, the objective of SDL is to determine a orthogonal
box drawing of GΣ which fulfills the following properties:

• (i) the topology of GΣ is preserved.
• (ii) the final drawing is in the Kandinsky model.
• (iii) angles in the final drawing deviate only little from angles in the sketch.
• (iv) the drawing contains few bends.

Property (iii) constitutes the stability of the drawing and Property (iv) ensures read-
ability. Readability is measured in SDL by the number of bends and stability in the
deviation of angles. Therefore, SDL is defined as a bi–criteria optimization problem
on a quasi–orthogonal shape Q. For the number of bends B in a quasi–orthogonal
shape Q, we know that

B(Q) =
1
2

∑
f∈F

∑
(e,a,b)∈Q(f)

|b|.

52 CHAPTER 3. 2D–VISUALIZATIONS OF BUSINESS PROCESS MODELS

The stability, or deviation of angles, is given by the difference ∆A of the angles in Q
and the angles of the shape S in the sketch

∆A(Q,S) =
∑
f∈F

∑
1≤i≤| f |

|a(S, f , i) − a(Q, f , i)|,

where a(Q, f , i) denotes the value of the i-th angle of face f in shape Q. The difference
∆B in edge bends is given by

∆B(Q,S) =
∑
f∈F

∑
1≤i≤| f |

∆(b(S, f , i) − b(Q, f , i)),

where b(Q, f , i) denotes the value of i-th bend of face f in shapeQ and ∆(s1, s2) denotes
the edit–distance of two strings which allows insert and delete operations only.
Introducing weights α, β, γ gives us the objective function for SDL

D(Q|S) = α · ∆A(Q,S) + β · ∆B(Q,S) + γ · (B(Q) − B(S)).

The weights α, β, γ control the priority of difference of angle bends, edge bends and
bend number. Formally, the problem statement for SDL is now:

Problem 1 ((Brandes, Kaufmann, et al. 2002)).
Given a quasi–orthogonal shapeS of a planar graph G, find a valid quasi–orthogonal
shape Q of G in the Kandinsky model such that D(Q|S) is minimum. �

In the following, we describe the modifications of the min–cost–flow network repre-
sentation of Kandinsky to adapt the network to be able to solve Problem 1 which is
a specification of the CONSTRAINED KANDINSKY BEND MINIMIZATION problem (Ei-
glsperger 2003). We assume familiarity with the min–cost–flow representation of the
Kandinsky model as introduced in Section 2.1.2.
The first modification is performed on the vertex–nodes in the network to model an-
gles around a nodes. For each angle between two adjacent edges e1 and e2, that are
consecutive in the circular order of edges around a node n, an angle–node an

e1,e2
is in-

serted. We insert two arcs in the network connecting an
e1,e2

and the vertex–node v of
n; one arc is directed to an

e1,e2
, the other arc is directed in the opposite direction. Both

arcs have unconstrained capacity and are assigned cost α. Corresponding arcs in the
original network that were connected to v are now connected to an

e1,e2
. Therefore, v is

only connected to angle nodes. For each angle node an, there is a target angle ta(an)
in the shape S of the sketch. If ta(an) > 0, then an is connected to the source with an
arc which is assigned cost 0 and capacity ta(an), else, an is connected to the sink with
an arc which is assigned cost 0 and capacity ta(an). From the supply of v, we remove
ta(an) for each angle node an that is connected to v. In Figure 3.1, the modification of
a vertex–node is depicted.

3.1. SKETCH–DRIVEN–LAYOUT FOR BPMN 53

e1

e2

e3

v
e4

f4 f1

f2f3

(a) Original model for a node v with incident
edges e1, e2, e3, e4 in the Kandinsky network,
as described in Section 2.1.2.

e1

e2

e3

v
e4

f4 f1

f2f3

(b) Vertex–node for node v with inserted an-
gle nodes (solid points). New arcs are de-
picted by solid lines; arcs that are redirected
from the vertex–node the new angle node
are drawn in dashed style. Original arcs are
drawn as dotted lines.

Figure 3.1.: Modification of a vertex–node in the Kandinsky network for SDL.

The second modification affects the modeling of bends in the Kandinsky network. A
distinction has to be made between regular bends and vertex–bends. The modifications
for both types of bends are depicted in Figure 3.2. For each bend, we add a bend–node
to the model. For regular bends, both faces incident to the edge containing the bend
are added a demand of 1, with cost 0 for the face which is on the concave side of the
bend and β− γ for the face on the convex side, respectively, as shown in Figure 3.2(a).
This bend model ensures that the bend is either contained in Q at cost 0 or removed at
cost β − γ. For vertex–bends, we employ the same model with an extension: we add
an additional arc connecting the bend–node to the face–node (of the concave face) of
the vertex–node with capacity 1 and cost 0, see Figure 3.2(b). Also, for face–nodes of
adjacent faces, we add arcs with cost of β+γ representing cost β+γ for each additional
bend on this edge.
It is shown in (Brandes, Kaufmann, et al. 2002) that these modifications in the Kandin-
sky network allow an optimal solution for Problem 1 when solving the min–cost–flow
network.

We will now describe how to modify the presented original SDL–approach in order
to be able to handle a BPMN–graph G = (V, E). Therefore, we use a construction
that considers mapping swimlane and places nodes within the same swimlane in a
surrounding box.

54 CHAPTER 3. 2D–VISUALIZATIONS OF BUSINESS PROCESS MODELS

e1

e2

f2 f1

(2, 0)

s

(1, 0) (2, 0)(1, β − γ)

(a) Regular bend modification.

e1

e2

f2 f1

(2, 0)

s

(1, 0) (2, 0)(1, β − γ)

(1, 0)

(b) Vertex–bend modification.

Figure 3.2.: Modifications for bends at regular and vertex–bends in the Kandinsky network
for SDL. New arcs are drawn as solid lines and labeled with capacity and cost.

A box is constructed by inserting structural edges Es which surround the box in two
vertical and two horizontal segments. The segments are connected such that, together,
they represent a rectangle. For each element of the kernel S of mapping swimlane,
we construct one box. The nodes incident to edges of Es are called structural nodes
Vs. The boxes are then connected such that adjacent boxes share two nodes and one
structural edge, see Figure 3.3 for the resulting graph Gs = (V ∪ Vs, E ∪ Es).

Remark: In the following, we assume that a user that gives the input sketch for SDL
considers the principle of swimlane, that is: a new node n is added to the graph by
drawing/dragging it into the box representing the swimlane of n. If the principle is not
obeyed, we resolve this by translating nodes that are positioned in incorrect boxes in
vertical direction to the corresponding box of their swimlane. Note that by translating
nodes only vertically, we do not affect the (horizontal) flow of the BPMN–graph. Thus,
FLOW is not violated.

Note that preserving the boxes of the swimlanes suffices to support swimlane in SDL.
Therefore, we integrate the structural edges Es into the Kandinsky network as follows:
we remove the arcs from the network connecting the incident face–nodes of a structural
edge e ∈ Es. Remember that an additional bend for an edge e ∈ E has cost β + γ in
the modified Kandinsky network. By not allowing bends on structural edges, we keep
the boxes stable. Without bends, only parallel translation, vertically or horizontally,
of structural nodes is possible in order to align boxes and box sizes. Since the SDL

3.1. SKETCH–DRIVEN–LAYOUT FOR BPMN 55

(a)

ec

(b)

Figure 3.3.: (a) Swimlanes and the corresponding boxes constructed of structural edges Es and
structural nodes Vs (solid circles). Nodes V are depicted as non–filled rectangles
or circles (denoting events). Edges E are omitted. (b) The resulting graph Gs.
Boxes are connected sharing structural edges and nodes. Also, connecting edge
ec is inserted. Again, edges E are omitted.

is topology preserving for a sketch Σ, see above (i), nodes remain in the assigned box
and, therefore, mapping swimlane is further valid and supported.

Alternatively, the arcs between incident face–nodes could remain in the Kandinsky net-
work, but with very high cost and, thus, rendering bends on structural edges unlikely.
This alternative has the benefit that the min–cost–flow might be easier to solve due to
more edges with high capacity that can be used in temporary solutions. However, the
alternative does not guarantee that bends on edges Es are prevented, although, bends
are very unlikely if the bend penalty is set high enough. In Algorithm 1, the integration
of our alternative SDL into the TSM framework is formulated. In (Siebenhaller 2009),
the approach of adopting general constraints is extended further for implementing clus-
ters or port– and side–constraints in the Kandinsky model of static layout approaches.
However, (Siebenhaller 2009) does not apply the concept of SDL, neither on angles
and bends, nor on cluster, partitions or port– and side–constraints. There, the idea of
extending SDL, or interactive layout, is sketched as future work and is now realized
for support of partitions in the present work.

The modification of the Kandinsky network is not yet complete because the sets V
and Vs are not connected by any edge e ∈ E ∪ Es. Note that a BPMN–graph is al-
ways connected. Otherwise, there exists a node n ∈ V which can never be reached
in any execution of the process. Then, the process is not a valid process. Therefore,

56 CHAPTER 3. 2D–VISUALIZATIONS OF BUSINESS PROCESS MODELS

we assume G to be connected. Building a valid Kandinsky model in the orthogonal-
ization phase within TSM, given two unconnected subgraphs as input would result in
two unconnected layouts because TSM reduces crossings (in the planarization phase)
by separating Gs into subgraphs Gs1 = (V, E) and Gs2 = (Vs, Es). Then, the boxes
would not surround the nodes assigned to the corresponding swimlane and swimlane
is not adhered in the layout. Therefore, we introduce a temporary connecting edge ec.
This edge connects a node n ∈ V with vertex_type(n) = start_event and a structural
node ns ∈ Vs of the box surrounding swimlane(n), see Figure3.3. If n is not unique,
a start_event is chosen randomly. Since SDL is preserving the topology of the input
sketch Σ and ec renders Gs to be an admissible sketch for SDL, ec ensures during a call
of TSM with SDL that the boxes are stable. Therefore, mapping swimlane is adhered
in the layout.
The connecting edge ec has cost 0 for additional bends because it is removed after the
solution of the min–cost–flow network and bends of ec do not affect the final layout.
Note that we choose ec to connect a start node. Thus, we can ensure not to intro-
duce additional crossings since FLOW requires start nodes to be aligned in the (left)
beginning of swimlanes. By choosing n to be a start node of a BPMN–graph consid-
ering FLOW, no other node u ∈ V ∪ Vs is placed between n and ns. An example of
the layout with SDL for BPMN in BPMN–Layouter with a small BPMN–graph G is
depicted in Figure 3.4. There, the corresponding extended graph Gs with structural
nodes, structural edges and connecting edge is also shown.

3.1.2. Application case: Divisions (Cuts)

We will now present an application case2 for SDL for BPMN. The application aims
at cutting large process models into submodels by subdividing the underlying embed-
ding of the input diagram. In cases where process models become very complex and
diagrams become large, it is desirable to divide the resulting diagram into smaller
pieces, e.g. for printing a diagram on several sheets of standard size paper. The study
in (H. Reijers and Mendling 2008) showed that finer grained submodels are preferred
to complete models in large diagrams. In the following, we give an algorithm that
divides BPMN–graphs automatically, subject to constraints, e.g. the size of sheets the
BPMN–graph is to be printed on or the number of resulting pieces.
In the following definition, we introduce constraints for a division, e.g. constraints
may comprise requirements concerning partitioning of a BPMN–graph or maximum
area size for a BPMN–graph.

2Parts of this section are published in (Effinger, Siebenhaller, and Kaufmann 2009a).

3.1. SKETCH–DRIVEN–LAYOUT FOR BPMN 57

(a) (b)

(c)

Figure 3.4.: Example for a BPMN–graph and the inserted structural edges for preserving map-
ping swimlane. (a) Input sketch Σ. (b) Temporary structural edges and nodes are
highlighted (fat solid lines and points on border). The connecting edge is connect-
ing boxes and BPMN–graph (attached at start event). (c) Resulting layout after
SDL for BPMN.

Definition 8 (Division of BPMN-Graphs).
A Division of a BPMN–graph G = (V, E) with given constraints C partitions G into
sets of nodes V1, . . . ,Vk with k ≥ 2 such that Vi ∩ V j = ∅, ∀i , j. The subgraphs
induced by Vi on G have to satisfy C. Edges of A = {(v,w) ∈ E | v ∈ Vi,w ∈ V j, i ,
j} are called division connections. �

In BPMN–graphs, the aim of a division is to minimize |A| and to obtain subgraphs of
nearly equivalent size in terms of nodes or area size. For a division, a route for a cut in
a BPMN–graph G has to be found and the resulting subgraphs will then be used as an
input sketch for SDL for BPMN.
In order to find appropriate routes, we introduce the idea of a center band. The center
band is a rectangular space in the graph through which a cut runs, see Figure 3.5(a).
Depending on user’s preferences or given constraints C, the center band can be given
as user input or it can be set automatically to a default fraction of the graph’s size.
We now describe how to perform a horizontal cut, a vertical cut is performed analo-
gously. For a horizontal cut, the width of the center band is set to the width of the
bounding box surrounding the graph. The height of the center band is set to a prede-
fined value yo− yu around the midpoint center ym of the center band, see Figure 3.5(a).

58 CHAPTER 3. 2D–VISUALIZATIONS OF BUSINESS PROCESS MODELS

Algorithm 1: SDL for BPMN
Input: Graph G(V, E)
// construct boxes and store segments

1 Es ← segments of boxes;
2 Vs ← points of boxes; // store shared vertices of boxes

3 ec ← insert connecting edge;
4 Gs ← (V ∪ Vs, E ∪ Es ∪ ec);
// TSM phase 1: planarization

5 G′s ← TS M_planarize(Gs);
6 Q ← shape(G′s);
// TSM phase 2: orthogonalization

7 N ← network(G′s,Q, α, β, γ)// create modified Kandinsky network

8 N ← (Q, Es,∞);// set bend penalty for edges Es to ∞

9 N ← (Q, ec, 0);// set bend penalty for ec to 0
10 N ′ ←solve min − cost − f low(N);
11 G′′s ← apply(N ′,Q);

// TSM phase 3: compaction

12 Gcomp ← TS M_compact(G′′s ,Q);
13 G f inal ← (Vcomp \ Vs, Ecomp \ (Es ∪ ec));// remove structural nodes and

edges

(a) Placing a horizontal center band on the un-
derlying graph. The red box denotes the
center band. Swimlanes are depicted by dot-
ted lines.

(b) Determining a division using the dual graph of
the cut graph. Dashed blue edges denote a short-
est path from s to t and induce a cut with a mini-
mum number of split edges.

Figure 3.5.: Determination a route for a cut in a BPMN–graph.

The predefined value, if not given by the user, is preset with a default fraction of the
graph’s height. In our application cases, we found that a value that corresponds to 10%
of the graph’s height is a reasonable choice for finding a cut.

3.2. PATTERN–BASED BPMN–LAYOUT 59

The core of the division algorithm is a dual graph routing inside the center band using
Dijkstra’s shortest path computation (Cormen et al. 2001). Therefore, the dual graph
G′D = (V ′D, E

′
D) of the cut graph G′ = (V ′ ⊆ V, E′ ⊆ E) is constructed. The cut graph

is the subgraph of G which is induced by the center band.
Since there is a one-to-one relation between edges of E′ and edges of E′D, it is easy
to set higher weights for specific connecting objects of E′ that should not become di-
vision connections. Those specific weights can be set by the user or they can be set
to comply with BPMN specific semantic preferences, e.g. a data object assigned to a
connecting object should not be cut. The connecting object weights are then passed to
the corresponding edges of E′D.
An example of a horizontal cut can be found in Figure 3.5(b). Analogously to hori-
zontal cuts, a vertical cut is performed by using a vertical center band.
Performing a shortest path computation on the dual graph, we obtain the division con-
nections for the original graph. Those edges have to be removed in order to split the
graph. However, a connecting object removal causes information loss. Thus, we insert
two replacement objects (links) for each such connecting object, analogously to the
insertion of two links in (Effinger, Siebenhaller, and Kaufmann 2009a). After the com-
putation of a cut, the resulting submodels are used as sketches for the SDL–approach
for BPMN. Thus, mapping swimlane is preserved and angles of bends and edges of
the original graph are used as sketch and the mental map of the user (induced by the
original large graph) is kept. Eventually, the submodels can be identified to originate
from the large original BPMN–model because the mental maps match.

3.2. Pattern–based BPMN–Layout

3.2.1. Motivation

The existing layout approaches for BPMN, i.e. (Effinger, Siebenhaller, and Kaufmann
2009a; Kitzmann et al. 2009) or SDL (Section 3.1), are based on the underlying struc-
ture of a BPMN diagram. The structure is considered to be a graph with nodes (BPMN
elements) and edges connecting the nodes (in BPMN: sequence flow, conditional flow,
default flow). However, the graph structure might be enriched with meta–data, e.g.
BPMN-Graph, but known layout approaches for BPMN are not adapted for treating
different types of the nodes differently. Therefore, BPMN semantics are not consid-
ered in previous layout approaches. For instance, when creating a layout for a BPMN
diagram with the approach of Section 2.4, the final layout was not influenced by the
distinction if an element was a start event or a gateway. For a user, this distinction
can matter when ’reading’ the layout of a BPMN model. The resulting layout might
not look as expected because BPMN semantics induce distinct treatment of elements
already within the layout algorithm.

60 CHAPTER 3. 2D–VISUALIZATIONS OF BUSINESS PROCESS MODELS

In the following, we present three patterns that are designed to overcome the gap be-
tween graph structure and semantics of BPMN diagrams when creating a layout. Pat-
terns are a common method to express abstract similarities in (process) models or
graphs, e.g. action patterns are used to formalize semantic analysis of BPMN process
models in (Smirnov et al. 2009) or for organization in large business process model
repositories (Smirnov et al. 2010). The term ’layout patterns’ is also used in (Maier
and Minas 2010) for the expression of layout constraints which represent conditions
for generic layout algorithms. There, the term has a similar understanding to the pre-
sented layout aesthetics in Section 2.3.
Our new patterns aim at a) reducing cluttering in diagrams, b) highlighting the logical
structure of a BPMN diagram (induced by gateways) and c) accentuating the process
flow. The patterns can be integrated as extensions to the SDL layout approach from
Section 3.1.
This section3 is organized as follows: In the next section, we will define our new
patterns and provide details of the algorithms that are used for applying the patterns.
Then, we will give an experimental evaluation of the new patterns combined with SDL
in Section 3.2.3 and point out related work before summarizing.

3.2.2. Layout Patterns

Inspecting the list of standard layout aesthetics, see Section 2.3, one realizes that
BPMN semantics in terms of element types, or mapping vertex_type, are not taken
into account in any of the aesthetics. The lack of support for BPMN element types is a
gap between the graph structure and BPMN semantics. By introducing new layout pat-
terns in this section, we attempt to take a first step to overcome this syntax-semantics
gap in BPMN layout.
The patterns also affect different layout aesthetics. As shown later in the experiments,
the patterns might alter the layout of an existing diagram layout and change measure-
ments of aesthetics. However, the patterns should reduce the possibly negative effects
of alterations in aesthetics and, at the same time, increase the support of BPMN se-
mantics. For instance, a pattern might, on the one hand, enlarge the area size of the
diagram and insert new crossings between flows, but on the other hand, bends might
be removed and lengths of flows might be reduced. This shows the tradeoff between
an aesthetically pleasing solution and consideration of semantics.

3Parts of this section were published in (Effinger 2011).

3.2. PATTERN–BASED BPMN–LAYOUT 61

Geometry pattern (GeoP)

The first pattern that we present is the Geometry Pattern (GeoP). It aims at reducing
visual cluttering. Cluttering describes the occurrence of many elements in a small
amount of the diagram area (high element–density). For instance, around gateways
with multiple connected elements, the cluttering is higher as the cluttering around
a start event with a single outgoing sequence flow. Therefore, reducing the visual
cluttering demands a reduction of visual density. At first sight, this pattern appears to
be independent from BPMN semantics because it considers visual density of elements
only, and not elements types. However, as described before, densities are induced by
cluttered nodes which can be caused by parallel flows or complex logic dependencies.
Since both, parallel flows and complex logic, are induced by gateways, high–density
areas in a layout are more likely to be found around gateway elements and less likely
around low–degree nodes, e.g. start/end events. Therefore, GeoP addresses BPMN
semantics as well as the visual effect of cluttering.
As a first step, we will show how the density of a BPMN diagram is determined. A
simplistic approach is depicted in Figure 3.6. There, around each element n, we draw
a circle cn. The circle cn is drawn with gradient opacity such that with increasing
distance from n, the transparency of cn is augmented proportionally. In the center of
n, opacity of cn is 1 and decreases to 0 at a distance of radius r (in Figure 3.6, r is set
to 500px in a grid drawing). If two circles c1 and c2 overlap, the opacity of c1 and
c2 is added up within the overlapping area. From Figure 3.6, one can easily inspect
high–density areas which might benefit from less clutter. However, the gradients do
not allow distinct values for density. Also, the gradient circles focus on the density
centers, the rest of the diagram is not considered, although this information might be
helpful for a better solution where unused area is then activated and is occupied.
In GeoP, densities are determined as depicted in Figure 3.7. The calculation defines
densities that are diametrically opposed to the flow in the model:
In a BPMN-Graph G = (V, E) with swimlanes S , we construct for each swimlane
s ∈ S a set of events Es which is given by the node positions of nodes N with
swimlane(n) = s, n ∈ V . For each node in N, we add two events to E: the x-
coordinates of the left and right border of the drawn node. The left border is called
an increasing event and the right border is a decreasing event. Then, we sort each
set of events Es in order of x-coordinates of the events and, let (e1, . . . , ek) denote the
sorted set Es, proceed for each swimlane with the first event e1 ∈ Es, store its co-
ordinate in xpre and initialize the density ds of s with 1. For each subsequent event
ei ∈ {e2, . . . , ek}, we distinguish the following cases:

• If ei is a decreasing event: let xi denote the x-coordinate of event ei. Then, for
the segment from xpre to xi, we assign the density di given by the current value
of ds. Finalizing, we decrease ds by 1 and set xpre to xi.

62 CHAPTER 3. 2D–VISUALIZATIONS OF BUSINESS PROCESS MODELS

Figure 3.6.: Visualization of cluttering (densities) using circle gradients with decreasing opac-
ity.

���������	
����

�
�	

��

���
�����	
����

�
�	

��

���������

�	��	
����������

��
���
��
����

����

�����������

����������	�
�	

��

�	����������

���������
��

����
�������

��

����

����

�
	�

�
�����	
�

����
�������

���������� 	�!�
��������

����
�����

�
�	

���
����
��	

��

����"
���#��	

��

���

$�

$%

$&

����

����

$

$

$

Figure 3.7.: Visualization of cluttering with blocks diametrically opposed to swimlane orien-
tation (and FLOW).

• If ei is an increasing event: let xi denote the x-coordinate of event ei. For the
segment from xpre to xi, we assign the density di given by ds. Finalizing, we
increase ds by 1 and set xpre to xi.

After the last event ek, ds is 0 because there are no events in Es that change ds and
ds represents, at any event, the number of currently active elements. An element with
left border xl and right border xr is active if xl ≤ xpre ≤ xr. Now, to each segment
in s, a density value ds is assigned. In Figure 3.7, we visualized the density values of
the segments by normalizing the density values to the color range from green to red
(omitting segments with ds = 0).

3.2. PATTERN–BASED BPMN–LAYOUT 63

After having detected dense areas, we now extend the SDL approach from Section 3.1
to provide support for GeoP. Therefore, we insert temporary edges Et that mark these
dense areas for the algorithm. An edge e ∈ Et is inserted for each dense segment. Note
that, in a typical application case of GeoP, only a subset of all segments is selected,
e.g., the 10 segments with highest density are chosen. The important step is to add
edge e as a structural edge to E. Remember that in SDL, structural edges are not
allowed to bend (since a bend in a structural edge causes very high cost). The edges
are inserted orthogonally to the swimlane orientation and are attached to the structural
edges that represent the swimlanes, see Figure 3.8. They are aligned to the center of
the segments. Note that edges Et are allowed to overlap BPMN elements. Then, the
algorithm of SDL extended by edges Et aims at resolving the introduced overlaps by
moving (sifting) nodes affected by marking edges.

�
�

����

����

����

���������	��

Figure 3.8.: Schematic view of the algorithm for the Geometry Pattern. The marking edge is
inserted into a dense segment and attached to the structural edges of the swim-
lanes. Red arrows depict the direction of possible sifting moves when resolving
the overlaps.

This approach for GeoP is related to the Sifting Algorithm (SA) (Matuszewski, Schön-
feld, and Molitor 1999; Rudell 1993). In general, SA tries to move one element at a
time along an ordering of other elements until a goal function reaches a (local) mini-
mum. In our case, we move all elements that are overlapped by a temporary marking
edge. An element can be moved in parallel to its swimlane. Thus, SDL moves an
element in either direction until the overlap with the marking edge is resolved. This
spreads the original density center and the cluttering is reduced. Remember that SDL
aims at keeping the sketch. Thus, the move distance of a node is kept as low as possible
such that the created conflict, caused by the marking edge/node–overlap, is resolved.
Note that other nodes might also be moved when resolving a marking edge/node–
overlap. Thus, resolving overlaps in GeoP might change the overall area size (height
and width) of diagram. The effect of GeoP on the area size is analyzed in the evalua-
tion in Section 3.2.3.

64 CHAPTER 3. 2D–VISUALIZATIONS OF BUSINESS PROCESS MODELS

Gateway Pattern (GaP)

Our second new pattern, the Gateway Pattern (GaP), aims at highlighting the logical
structure of a BPMN process model. The logic structure of a process model is in-
duced by the combination of gateways. Gateways determine the process flow based
on logical expressions that are evaluated when a gateway is passed. Evaluations of
gateways may cause splits or joins of process flow(s). Since BPMN is not a block-
structured notation language, but a graph-based notation language (Kopp et al. 2009),
the underlying logic structure is not trivially induced by blocks. In (Dumas, García-
Bañuelos, and Polyvyanyy 2010), the challenges of ’unraveling’ (transforming) a non–
well–structured process model to a well–structured model are described.
In general, if a process model is not well-structured, the determination of a pair of one
opening split and one closing join, that represent a block, is not unique. We will now
show how to find pairs that represent possible blocks in a non–well–structured model.
In the following, we call such a pair GaP–pair.
If we can find such a GaP–pair pG = (nsplit, n join) that encloses a block structure, the
pattern GaP requires that:

• no element of the block induced by pG is placed before the opening split gateway
nsplit (with respect to the process model flow orientation), and

• no element of the block induced by pG is placed after the closing join gateway
n join.

Thus, the goal of GaP is to highlight the semantic block structure by introducing an
implicit block structure that is implied by the GaP-pair.
In most process models, we cannot find well–structured parts when analysing the gate-
ways. Therefore, we apply a method that allows the construction of blocks that do not
require well–structured processes. The details of this algorithm and the extension to
SDL are described in the following.
For our approach, we consider paths between gateways in a BPMN graph. The idea is
to count the number of paths between two gateways and then construct blocks around
a GaP–pair of two gateways that have the most paths together. Each path starts at an
opening gateway and increases the path counter for each reachable closing gateway.
We define a GaP-pair as follows:

Definition 9 (GaP-Pair).
A split–gateway g1 and a join–gateway g2 form a GaP-pair, if, for all possible
paths starting at g1, the size of the subset of paths arriving at g2 is maximal among
all reachable closing gateways. �

3.2. PATTERN–BASED BPMN–LAYOUT 65

�
�

����

����

����

�����������	��
�����
 �����������	��
����

Figure 3.9.: Insertion of skeleton edges to SDL when applying GaP.

In other words, we count the number of paths cp(G) arriving at any gateway g ∈ G,
where an opening gateway g1 is the root node of each path and G the set of gateway
nodes; then, for a closing gateway g2 where its path counter cp(g2) is maximal among
all cp(G), g1 and g2 form a GaP-pair.
The calculation is performed by using a variant of breadth–first–search (BFS) (Cor-
men et al. 2001): we start a BFS-run from every split-gateway (or other gateways that
perform process flow split, e.g. complex gateways). Since BFS is able to handle cycles
(by storing visited nodes) and employing our path counting method, we are able to find
GaP–pairs in non–well–structured models.
If, for a split–gateway g1, there are two join–gateways g2 and g′2 with the same path
counter, the lower path distance between g1 and either g2 or g′2 is taken as criteria for
determining the GaP-pair.
After finding GaP–Pairs, we insert surrounding temporary edges (skeleton edges) into
the SDL model, analogously to GeoP, orthogonally to the flow orientation. Skeleton
edges are inserted into the swimlane(s) of the gateways forming the GaP-pairs, see
Figure 3.9. For every pair, one skeleton edge is introduced before the split–gateway
and a second skeleton edge after the join–gateway. The skeleton edges delimit the
surrounding box representing the block that is formed by the GaP-pair. The skeleton
edges prevent nodes, which are contained in the block and which are part of a path be-
tween the surrounding GaP–pair pG, to be moved to the outside of the block. If a node
n would be moved to the outside of a block b, it would cause two crossings between
one of the two skeleton edges of b and two edges e1

n and e2
n incident to n. Note that

e1
n and e2

n exist because n was on the path between the opening and closing gateway of
pG. If it was not on this path, it would not have been part of the block b.

For model decomposition that was performed when analyzing the graph for GaP-pairs,
a preferred decomposition for process models is often using SPQR-trees for a subse-
quent analysis of the structure or application of rules for abstraction (Polyvyanyy,
Smirnov, and Weske 2009) or for aggregation and hiding using process fragments

66 CHAPTER 3. 2D–VISUALIZATIONS OF BUSINESS PROCESS MODELS

(Yongchareon et al. 2010). However, SPQR trees cannot handle the issue of loops and
cycles in business process models as shown in (Polyvyanyy, García-Bañuelos, and Du-
mas 2010). The immense reduction in complexity when analyzing process models for
strictly well–structured processes can be inspected in (G.-W. Kim et al. 2010).
In (Siebenhaller 2009), an aesthetics BIMODAL is proposed that can be credited to
consider semantics. It requires incoming and outgoing edges that are incident to a
node to be opposite, e.g. incoming edges are attached on the left side, outgoing edges
are attached on the right side of the node. The effect of GaP on measurable layout
aesthetics is analyzed in Section 3.2.3.

Start–End–Pattern (SEP)

The third new pattern, the Start-End-Pattern (SEP), formalizes the compliance of plac-
ing start- and end–events in a swimlane strictly according to aesthetics FLOW. These
elements should be placed such that they follow the orientation of the process flow (or
’reading’ direction of the user). When SEP is activated, it guarantees that a start–event
is set to the ’beginning’ of its assigned swimlane, and an end–event is set to the ’end’
of its swimlane. The move of a node across a major part of a diagram might introduce
multiple crossings by incident edges and therefore affect CROSSING. Also, lengths of
edges connected to moved events might increase severely. In order to possibly reduce
the increase of edge length and prevent bends, we support two variants of SEP:

1. Dynamic SEP: Events affected by SEP are set to the border of the swimlanes but
may move in parallel to the swimlane orientation in order to reduce unnecessary
long edges or prevent bends, see Figure 3.10.

2. Locked SEP: All start– and end–events of a swimlane are aligned in the be-
ginning/end of the swimlane, see Figure 3.11. The events are locked in a box
surrounded by skeleton edges that guarantee that they do not move to the outer
side of the box when performing a new layout.

The second variant might be more appropriate for process models that have highly
parallel process flow and, thus, several starting/terminating events that can be easily
inspected when they are placed in an vertically aligned fashion at the swimlane border.

As mentioned in the two variants, we employ for SEP the idea of skeleton edges that
was also used in GaP. The skeleton edges ensure the structure of the locking box and
keep the nodes aligned in the beginning/end of the swimlanes when introduced as
structural edges into the SDL model.
The movements of start– and end–elements into the locking boxes correspond to a
shift in the x–coordinates such that the elements are centered in the boxes. Thus, the

3.2. PATTERN–BASED BPMN–LAYOUT 67

�
� ����

����

����

Figure 3.10.: Dynamic Start–End–Pattern: Start– and End–events are moved to the borders
of the swimlane but are allowed to optimize their position, e.g. see the node
MESSAGE_START_EVENT that moved below the gateway in order to prevent
a bend in the connecting edge.

�
�

����

����

����

���������	
�	���
 ��������������

Figure 3.11.: Locked Start–End–Pattern: Start– and End–events are kept static in boxes built
by skeleton edges, compare Figure 3.10. Multiple events in one box are verti-
cally aligned, compare with start events in the diagram.

elements are aligned in x. For the y–coordinates, we use a simple heuristic to optimize
the vertical order of the elements: For each box b, we order the elements in b vertically
according to the mean of the y–coordinates of all neighbours of n. The goal is to adapt
the vertical position of the start– and end–elements to the positions of their successors
or predecessors, respectively, in the graph. This heuristic attempts to keep changes in
elements’ positions, performed by the following SDL call, in the embedding small.
Note that, for the computation of the vertical order, we use a padding between two
vertically adjacent elements in order to prevent element overlaps.
A downside of the alignment of events is the requirement of a move inside the swim-
lane. This move might introduce multiple crossings when many edges have to be
traversed. For SEP, we resolve this problem by storing all traversed edges and, after
the SDL call, we initiate a post–processing stage that reroutes the stored edges if the
crossing, that was caused by the move, persists. For the rerouting of edges, we use the
concept of dual–graph–routing that was presented in Chapter 2.

68 CHAPTER 3. 2D–VISUALIZATIONS OF BUSINESS PROCESS MODELS

3.2.3. Evaluation

We now present the results of an experimental evaluation of the presented BPMN lay-
out patterns. The evaluation is designed to show effects of the patterns concerning
aesthetics since formal aesthetics enable experiments that result in measurable num-
bers.
In order to facilitate comparisons with given layouts, we compare the results of SDL
extended by our new layout patterns with the approach for BPMN–layout that was pre-
sented in Section 2.4. Therefore, we compute layouts with the given approach and then
apply SDL with the corresponding pattern(s) of the test case and analyze differences
in terms of formal aesthetics. The goal of the experimental evaluation is to find hints
on the impact that the patterns might have towards layout aesthetics. Also, we like to
show a quantitative analysis of the impact. If the impact of a pattern on an aesthetics
is such that the aesthetics cannot be qualified as ’fulfilled’, the pattern might not be
appropriate since it violates the list of standard layout aesthetics from Section 2.3.
For the evaluation, a set of industrial business process models is processed. The set
was created from tests in (Fahland et al. 2009). Sizes of the graphs are |V | ≤ 145 and
|E| ≤ 264 with an average node degree of 2.2. For each process model, we test a total
of 11 test cases which represent combinations of the new patterns. The combinations
are depicted in Table 3.1. In Figure 3.12, we depict a BPMN process models and the
resulting visualizations after the application of three different test cases.

XXXXXXXXXXXXPatterns
Test Cases

1 2 3 4 5 6 7 8 9 10 11

GeoP X - - - X X X - - X X
GaP - X - - X - - X X X X

SEP (dynamic) - - X - - X - X - X -
SEP (locked) - - - X - - X - X - X

Table 3.1.: Combinations of patterns usage for experimental evaluation. ’X’ denotes that the
pattern was activated in the corresponding test case.

The implementation was integrated into a test–suite that is part of BPMN–Layouter
which runs with Sun JAVATM 1.5. Tests were performed on a Intel R© CoreTM2 Quad
CPU Q9300 with 2.50GHz and 3GB of RAM. The operating system is Ubuntu 10.04
LTS - Lucid Lynx.

Since GeoP requires a predefined number which states how many of the most dense
centers should be considered, we perform, for every GeoP test case run, 3 distinct runs

3.2. PATTERN–BASED BPMN–LAYOUT 69

with a randomly chosen number 1 < k <= 10 where k determines the number of se-
lected dense centers. The dense centers are selected in decreasing density order such
that the centers with the highest density are always chosen. Higher numbers of chosen
dense centers are not appropriate because this leads to a wide-spread and lengthy dia-
gram due to many sifting operations (negative effect on aesthetics AREA).
The results of the experimental evaluation are depicted in Figures 3.13 - 3.16. The
first fact that comes to mind when inspecting the diagrams is the high running of time
of test cases using GaP, see Figure 3.13. This is a hint to the hidden complexity that
stems from the calculation of number of paths in a graph. In larger process models one
might switch to a high-performance implementation of the pre–processing step to find
all paths that employs a smarter data–structure for storing paths that overlap, e.g. a
sorted set of path lists, and to exploit the topological ordering of elements in the graph
in the sorting.

Test cases using GeoP (cases 1,5,6,7,10,11) show a positive behaviour of aesthetics, the
changes are very low except for a tendency towards higher edge lengths (cases 5,10),
see Figure 3.16. Number of bends and crossings are not affected by a high deviation.
Test cases analysing GaP (2,5,8,9,10,11) show higher deflection, especially case 2
where bends are reduced but area size and edge lengths are increased. The difference
between SEP (locked) and SEP (dynamic) becomes obvious when comparing cases 3
and 4: SEP (locked) produces clearly more crossings and bends than SEP (dynamic),
however, both approaches need slightly more area space, see Figures 3.14 and 3.15.
When comparing test cases with a combination of two patterns (test cases 5,6,7,8,9) or
three patterns (test cases 10,11), the maximum and minimum deflection decrease, i.e.,
see Figure 3.14 for crossings and bends. This indicates that patterns affect aesthetics
in an orthogonal way, e.g. a pattern A affects aesthetics AA positively whereas pattern
B affects AA negatively, in sum, A and B end up to neutralize the measured numbers
of AA. Note that this does not mean that the layout is left unchanged since A and B
still must be ensured in the final layout.
In summary, the impact of the new patterns on the measured aesthetics is not signif-
icantly high and does not turn a diagram layout unreadable (e.g. very flat diagrams
or diagrams with a high fraction of unused area). This allows to state that, from a
experimental point of view, the new patterns do not render accepted aesthetics invalid
or infeasible. Therefore, the patterns may be considered an improvement for BPMN
layouts. Moreover, including semantics in layout approach is a preferable method to
enrich the previously only structure–based layouts. Layouts with support of semantics
are more expressive since they contain implicit information that might not be expressed
textually without overloading the diagram.

70 CHAPTER 3. 2D–VISUALIZATIONS OF BUSINESS PROCESS MODELS

(a) Input example.

(b) Test case 1: GeoP.

(c) Test case 4: SEP locked.

(d) Test case 11: GeoP, GaP and SEP locked.

Figure 3.12.: Example for the application of the layout patterns. (a) The process model from
Figure 2.16 is taken as input. The layout is computed by the static layout ap-
proach from Section 2.4. (b) Test case 1 (GeoP) is applied. Note that the tasks
are now vertically aligned due to the move of the tasks to the same side of the
marking edge. (c) Test case 4 (SEP locked) is applied: the start- and end–events
are attached to the left/right borders. (d) Test case 11 (GeoP, GaP and SEP
locked) is applied. The result is a combination of the layouts in (b) and (c)
because GaP has no effect (the gateways already are in the optimal positions).

3.2. PATTERN–BASED BPMN–LAYOUT 71

 0

 200

 400

 600

 800

 1000

 1200

 1 2 3 4 5 6 7 8 9 10 11

T
im

e
/ m

s

Test Cases

Layout-Patterns - Performance

Figure 3.13.: Performance of the layout patterns. For each test case, total layout time including
call of SDL with pattern extensions is measured. Note that the maximum run-
ning time does not exceed 1.2 seconds. Test cases 8-11 only differ marginally.

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 1 2 3 4 5 6 7 8 9 10 11

R
el

. D
iff

er
en

ce
 /

%

Test Cases

Layout-Patterns - CROSSING

-3

-2

-1

 0

 1

 2

 3

 4

 5

 6

 1 2 3 4 5 6 7 8 9 10 11

R
el

. D
iff

er
en

ce
 /

%

Test Cases

Layout-Patterns - BEND

Figure 3.14.: Effects of layout patterns on the number of crossings and bends in the layouts.
Relative differences to the input layouts that are computed with the approach
from Section 2.4 are given.

72 CHAPTER 3. 2D–VISUALIZATIONS OF BUSINESS PROCESS MODELS

-1

 0

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6 7 8 9 10 11

R
el

. D
iff

er
en

ce
 /

%

Test Cases

Layout-Patterns - AREA

Figure 3.15.: Effects of layout patterns on area size. Note that the maximum area difference is
only 6% which is also due to the limited number of selected dense centers when
GeoP is activated.

-1

 0

 1

 2

 3

 4

 5

 6

 1 2 3 4 5 6 7 8 9 10 11

R
el

. D
iff

er
en

ce
 /

%

Test Cases

Layout-Patterns - EDGE_LENGTH

-3

-2

-1

 0

 1

 2

 3

 1 2 3 4 5 6 7 8 9 10 11

R
el

. D
iff

er
en

ce
 /

%

Test Cases

Layout-Patterns - MAX_EDGE_LENGTH

Figure 3.16.: Effects of layout patterns on the sum of edge lengths and the maximum edge
length.

3.3. A LAYOUT APPROACH FOR BPEL–WORKFLOWS 73

3.2.4. Summary

In this section, we introduced new layout patterns for BPMN diagrams. The layout
patterns allow to include BPMN semantics in layout algorithms for BPMN process
models. The layout patterns take into account standard aesthetics of BPMN diagrams.
The patterns address the following issues in BPMN diagrams:

• Cluttering of nodes in diagrams (Geometry Pattern, GeoP),
• Perception of the logical structure of a BPMN diagram (Gateway Pattern, GaP),
• Accentuation of the process flow at start events and process’ termination in end

events (Start–End–Pattern, SEP).

We also presented algorithmic details for the automatic execution of the layout patterns
integrated into the SDL algorithm. The algorithms are evaluated in experiments that
analyze the impact of the pattern on a list of common layout aesthetics for BPMN.

3.3. A Layout Approach for BPEL–workflows

In this section4, we present an approach for producing layouts of workflows that are
based on the Business Process Execution Language (BPEL) (Alves et al. 2007). BPEL
is a verbose and hierarchical workflow language. A BPEL model consists of execution
paths that can be nested, alternative or concurrent; any combination of these attributes
at a time is also possible.
We formalize the BPEL specifics (aesthetics) that a layout algorithm has to fulfill as
a set of layout criteria. The set is not given by any standardization document and has
to be manually created as a step towards a BPEL layout approach. The aesthetics aim
to enhance readability and to comply with commonly adapted styles for BPEL models
and more generally for workflow diagrams or flow charts (Ambler 2005).
Our approach enhances the Sugiyama algorithm (Sugiyama, Tagawa, and Toda 1981),
see Section 2.1.1, by modifying and extending the steps of the original algorithm. The
new algorithm allows to set fixed paths, called pathways, in a workflow that correspond
to parallel execution paths and, therefore, should be drawn in parallel. This goal re-
quires modifications of the original Sugiyama algorithm since pathways consist of a
sequence of edges and these edges create additional dependencies between vertices on
subsequent layers in the model of the Sugiyama algorithm. Moreover, nested struc-
tures, i.e., clusters, in the workflow are supported in our approach such that the result

4Parts of this section were joint work with Benjamin Albrecht, Markus Held, Michael Kaufmann and
Stephan Kottler. Parts of the results were published in (Albrecht, Effinger, Held, Kaufmann, and
Kottler 2009) and (Albrecht, Effinger, Held, and Kaufmann 2010).

74 CHAPTER 3. 2D–VISUALIZATIONS OF BUSINESS PROCESS MODELS

of a layout clearly highlights the nesting of BPEL elements. In addition, our approach
uses different graphical representations for distinct types of BPEL elements. The rep-
resentations also allow for enhancing the visualization of existing parallel structures in
a BPEL model.
This section is structured as follows: in Section 3.3.1, a short introduction to the
specifics of BPEL is given, followed by the determination of the set of aesthetics for
BPEL layout. After pointing to related work in Section 3.3.2, the new algorithm is
presented in Section 3.3.3 including a time complexity analysis of the approach.

3.3.1. Preliminaries

The Business Process Execution Language (BPEL)

BPEL is an XML–based language for orchestration of web services and has been stan-
dardized by the Object Management Group (OMG). BPEL has been derived from two
earlier workflow execution languages, i.e., the block–oriented XLANG language by
Microsoft, and the graph–oriented Web Services Flow Language by IBM. In the fol-
lowing, we will shortly describe the properties of BPEL, as defined in the WS-BPEL
2.0 OASIS standard from 2007 (Alves et al. 2007).
BPEL is an imperative and structured programming language which contains a mix-
ture of block–oriented and graph–oriented elements. In contrast to high–level imper-
ative languages, BPEL does neither encompass any concepts of modules, libraries or
classes. The only way to decompose a BPEL workflow is to encapsulate functionality
in another workflow. BPEL does not contain any concept of functions or procedures.
We now give a short summary of element types in a BPEL model, as given in (Held
and Blochinger 2009):

Activities: The BPEL language distinguishes between basic activities and structured
activities. Atomic tasks are modeled as basic activities which are treated by the work-
flow as "black boxes". Variable values can be changed using the Assign activity. It
may contain an arbitrary number of assignment operations, expressed as copy ele-
ments. The activities receive and reply are used to model communication with a client
of the BPEL process, while Invoke calls an operation on a Web Service. All communi-
cation partners assume roles defined in partner links. Input and output data are passed
via variable references. Most control structures in BPEL are expressed as structured
activities. In contrast to basic activities, structured activities contain child activities.
Therefore, BPEL workflow models can be nested.

3.3. A LAYOUT APPROACH FOR BPEL–WORKFLOWS 75

Sequences and Scopes: The structured activity Sequence is used to express the sub-
sequent execution of an ordered set of activities. The functionality of Sequence resem-
bles the concept of bracket–enclosed blocks in C–like programming languages. How-
ever, Sequence–activities cannot be used for local variable declarations. The BPEL
language provides the structured activity Scope to deal with local declarations of vari-
ables and event handlers. Scope contains one child activity.

Conditionals, Events and Loops: The If–activity contains a set of child elements
which are bound to conditions. Either the first child activity, whose condition evalu-
ates to true, or a default activity, or no child activity is executed. The Pick–activity
resembles the If–activity, but depends on external events rather than conditions. Pick

can be used to wait for the occurrence of one out of a set of messages or timeout events.
Loops are declared with the activities While, RepeatUntil, and ForEach.

Parallelism: Concurrency can be modeled using the structured activities Flow and
ForEach. Flow allows the definition of directed acyclic graphs (DAG) of activities,
while ForEach loops may be marked as ‘parallel’. Links between activities are always
declared inside a Flow activity, and must not form a cycle. Links declared inside a Flow

may cross the boundaries of structured activities within the Flow.
The aforementioned BPEL elements all have specific requirements if developing a
layout algorithm. However, for each element, its respective requirements have to be
fulfilled by the algorithm. In the following, we present a representation of the BPEL–
specific requirements by introducing layout aesthetics for BPEL models.

Layout aesthetics for BPEL models

Generally, a BPEL model represents a workflow. Thus, aesthetics FLOW is the most
important aspect. Often a workflow contains some central paths which are most rele-
vant to understand and follow the whole process. Thus, the algorithm supports high-
lighting of such pathways, formalized in the following aesthetics:

• Maximize the number of fixed pathways (PATHWAY).

Also, for nested or symmetric structures in BPEL (e.g. Flow, ForEach), we define the
following aesthetics that have to be supported by the algorithm:

• Structures may be nested related to the concept of graph clustering (CLUSTER).
• Structures may have a symmetric structure that is to be visualized (SYMME-

TRY).

Following typical layouts of workflows (Diguglielmo et al. 2002), we state all sup-
ported aesthetics and define the following set of aesthetics as requirements for a BPEL
layout approach:

76 CHAPTER 3. 2D–VISUALIZATIONS OF BUSINESS PROCESS MODELS

Figure 3.17.: Image of a layout by a simple approach for BPEL layout. Source: (Zhao, Han,
and Y. Huang 2009). Links are not supported, see Figure 3.27 for comparison.

FLOW, OVERLAP, PATHWAY, CLUSTER, CROSSING, BEND, EDGE_LENGTH,
ORTHOGONAL.

Moreover, aesthetics SYMMETRY is applied when the process consists of parallel
structures with child activities, e.g. Flow and ForEach.
Analogously to aesthetics for BPMN models, see Section 2.3, a precedence of the aes-
thetics is only available in parts if we consider user studies, e.g. (Purchase, Cohen, and
James 1997). Therefore, we assume that CROSSING is the most important aesthetics,
in accordance with (Purchase 1997) and the focus of Sugiyama’s algorithm on crossing
minimization.

3.3.2. Related Approaches

In (Zhao, Han, and Y. Huang 2009), a simple approach for automatic layout of BPEL
models is proposed. However, this approach is limited in several ways: first, the lay-
out algorithm is limited to a simple alignment along the x– and y–axis based on a tree
structure. Second, links between elements in the BPEL are not considered which al-
lows the artificial simplification that the underlying BPEL model is represented as a
tree in the algorithm, see Figure 3.17. This assumption does not correspond to real–
world BPEL models and avoids the more realistic challenges of BPEL layout on graph
structures. These limitations render the approach to be insufficient for the integration
into applications, e.g. BPEL modeling tools.
ActiveBPEL R©Designer by Active Endpoints is a wide–spread visual modeling tool for
BPEL processes. However, the vendor stopped support of ActiveBPEL R©Designer and

3.3. A LAYOUT APPROACH FOR BPEL–WORKFLOWS 77

the publicly available open-source ActiveBPEL R© Engine5 does not contain a visual
modeling tool. Testing an available former version (3.0.3) of ActiveBPEL R© Designer,
we found the layout results to be rather poor, see Figure 3.18: overlapping of elements
occurred and link routing over elements was not prevented.
The Eclipse BPEL Designer (EBD) is a plug-in for the Eclipse IDE6 provided by the
BPEL Team of the Eclipse Foundation. It is a GEF-based (Graphical Editing Frame-
work) editor7 that provides graphical means to design BPEL processes. The latest ver-
sion 1.0.0, a major release, dates from June 2012. The results of EBD can be inspected
in Figure 3.19. Overlapping can occur in complex cases if not manually prevented and
routing of links is poor since it overlaps with other elements and structural graphics. In
Figure 3.20, the identical process is depicted using our approach. We can observe that
links do not overlap and the hierarchical structure becomes more easily perceptible to
the user. Also, our approach optimizes the ports of a link to its partner by using a tech-
nique that extends the Sugiyama algorithm and is presented in (Siebenhaller 2009).
Remember that a port is the coordinate offset at a BPEL element at which the link is
connected to. The optimization of ports for the links prevents unnecessary crossings
during the link insertion.

Related work on layout of workflow and processes

There are several approaches tackling the field of business processes that are related
to BPEL: In (Rinderle et al. 2006), business process visualization is proposed using
Sugiyama algorithm and force–scan, based on (Yang et al. 2004). The approach sup-
ports typed nodes, but cannot handle nesting, hierarchical structures and it is limited
to series–parallel graphs that require acyclic input graphs which imposes a major limi-
tation considering general (cyclic) workflow graphs. In (Six and Tollis 2002), a linear-
time algorithm for processes with partitions is proposed. Business process graphs in
a more general notation are handled in (Wittenburg and Weitzman 1997). However,
both approaches do not take into account that there exist distinct types of nodes which
require different handling in the layout. Additionally, nesting is not supported.
In (Diguglielmo et al. 2002), graph layout for workflow is presented within the com-
mercial solution ILOG JViews that is now integrated into the software department of
the company of IBM. The solution also features incremental drawings and grouping.
However, details of the algorithm are not given and BPEL specific elements cannot be
handled.

5see http://www.activevos.com/community-open-source.php, 2012–09–30.
6see http://www.eclipse.org/bpel/, 2012–09–30.
7see http://www.eclipse.org/gef/, 2012–09–30.

http://www.activevos.com/community-open-source.php
http://www.eclipse.org/bpel/
http://www.eclipse.org/gef/

78 CHAPTER 3. 2D–VISUALIZATIONS OF BUSINESS PROCESS MODELS

Figure 3.18.: A workflow layout by the ActiveBPEL R© Designer (version 3.0.3) of Active
Endpoints. Note that edges are routed on top of node labels and on top of other
edges.

3.3.3. Layout Algorithm for BPEL–workflows

A visualization of BPEL processes with its flows and activities suggests a layered
drawing technique. Thus, our layout approach is based on modified phases of the
Sugiyama algorithm (Sugiyama, Tagawa, and Toda 1981), see Section 2.
For our purposes, we need the following definitions for an underlying graph G = (V, E)
of a BPEL model. For the layout it is important to increase the readability of pathways
denoted by the set of pathways P.

3.3. A LAYOUT APPROACH FOR BPEL–WORKFLOWS 79

Figure 3.19.: A workflow layout by the Eclipse BPEL Designer (version 0.4.0). Note that
edge routing causes unnecessary crossings and edges are routed on top of other
edges and nodes.

Figure 3.20.: The same workflow as represented in Figure 3.19, constructed with our layout
algorithm.

Definition 10.
A pathway P ∈ P is a sorted set of nodes (v1, . . . , vk) ∈ V which represent a path
in G from v1 to vk and which must be vertically aligned in the resulting layout. A
node v ∈ V, that is part of at least one pathway P, is called pathway node, an edge
e ∈ E, contained in at least one pathway P, is called pathway edge respectively. �

80 CHAPTER 3. 2D–VISUALIZATIONS OF BUSINESS PROCESS MODELS

Definition 11.
A node v ∈ V \

⋃
i=1,...,k Pi, i.e., v is not part of a pathway Pi ∈ P, is called standard

node. Analogously, an edge e ∈ E \
⋃

i=1..k {(q, r)|q, r ∈ Pi}, e is not contained in a
pathway, is called standard edge. �

Drawing a path vertically highlights the containing nodes in a way such that the reader
can easily follow it (aesthetics FLOW and PATHWAY). Thus, if possible, each path-
way should be drawn straight from top to bottom without any bends. To achieve this
goal, we perform the following extensions to the phases of the Sugiyama algorithm:

Extensions to the Cycle Removal Phase: Regarding cycles in the graph, we con-
sider the special case of a cycle which consists of pathway edges only. In this case, we
choose the cycle edge emin = (vl, vm) which is contained in the least pathways P′ ⊆ P.
After that each pathway P = (v1, . . . , vl, vm, . . . , vn) of P′ is divided into two paths
P1 = (v1, . . . , vl) and P2 = (vm, . . . , vn). Finally, emin is reversed. Each edge which
is reversed during this step is stored in S. At the end of the algorithm, each edge in
S is restored to its original direction. A simple example of this extension is given in
Figure 3.21. The algorithm is described in Algorithm 2.

Figure 3.21.: (left) Given a pathway P =(1, 2, 3, 4, 5, 2, 6) containing a cycle (2, 3, 4, 5, 2) con-
sisting of pathway edges only. (right) The pathway P can not be drawn straight
from top to bottom. Thus, it is split up into two pathways P1=(1, 2) and
P2=(3, 4, 5, 2, 6). Since node 2 belongs to P1 as well as to P2 it can either be
drawn below node 1 or node 5. The labels on the edges denote the pathway
number followed by the segment number of this edge in the path.

Extensions to the Layer Assignment Phase: To ensure that each pathway is drawn
from top to bottom further constraints are necessary: Given a pathway P = (v1, . . . , vn),

3.3. A LAYOUT APPROACH FOR BPEL–WORKFLOWS 81

Algorithm 2: Extended cycle removal phase

1 S ← ∅; // set of the reversed edges

2 while G contains cycle C do
3 E′ ← set of all cycle edges in C;
4 if E′ contains a standard edge then
5 e← a standard edge of E′ contained in most cycles;
6 reverse e in G;
7 S ← S ∪ {e};
8 else
9 emin ← pathway edge of E′ which is contained in the least pathways in P′;

10 foreach P ∈ P′ do // split each path of P′

11 given P = (v1, . . . , vl, vm, . . . , vn) and emin = (vl, vm);
12 P1 = (v1, . . . , vl);
13 P2 = (vm, . . . , vn);
14 P ← (P \ {P}) ∪ {P1} ∪ {P2};
15 reverse emin in G;
16 S ← S ∪ {emin};

for each adjacent pair of pathway nodes vi and vi+1, we demand that vi is assigned to a
layer above vi+1. Since we removed all cycles consisting only of pathway edges in the
former step, this can always be fulfilled.

Extensions to the Computation of Horizontal Coordinates: For the computa-
tion of the horizontal coordinates, the standard algorithm is applied in a first step
followed by a post–processing step: For each pathway P ∈ P, the barycenter b
of the x–coordinates of all pathway nodes in P is computed. The horizontal coor-
dinates of nodes contained in exactly one path P are set to b. To avoid overlap-
ping pathway nodes, the set of all barycenters B is processed such that, for each
bi, b j ∈ B : |bi − b j| ≥ dmin holds, where dmin is a constant denoting the minimal
node distance. For nodes contained in pathways P1, . . . , Pk, k ≥ 2, the x–coordinate
is set to the barycenter of b1, . . . , bk. Finally, in order to avoid overlapping nodes, the
distance between each standard node v and its neighbour nodes in the same layer of
the Sugiyama model is tested. If the distance to one of these nodes is smaller than
dmin, a new x–coordinate x(v) for v is computed: According to the location of its par-
ent nodes Sp, the shifting direction d is determined at first (see Algorithm 4). Then,
v is shifted towards this direction d to the x–coordinate x(v) such that its distance to
its previous neighbour node is exactly dmin and, subsequently, the distance to the its
new neighbour–nodes, vl and vr, is tested (see Algorithms 3 and 5). If the distance to a
new neighbour node v j is smaller than dmin and v j is a standard node a further shifting

82 CHAPTER 3. 2D–VISUALIZATIONS OF BUSINESS PROCESS MODELS

Figure 3.22.: An example showing the different steps of the computation of the horizontal
coordinates. (left) Input to the extended phase of computation of horizontal
coordinates; pathways are highlighted in green. (middle) All pathway nodes are
set to the barycenter of the corresponding pathway. (right) All standard nodes are
shifted such that every node in the graph adheres to the minimal node distance.

step to v j towards direction d is applied; otherwise, if v j is a pathway node, v is shifted
again (see Algorithm 6). Hence, for each standard node exactly one shifting phase is
performed. An example for this extension phase is depicted in Figure 3.22.

BPEL–specific steps in our algorithm

In addition to the modifications of the phases in the Sugiyama algorithm, our approach
consists of further steps that adapt the layout to BPEL specifics. The activities of a
BPEL model form a nested structure. We assume one top level Flow–activity, which
contains all other activities. Resolving this nested structure we get a graph G in which
paths split up and merge again. For generating an ’adequate’ layout, pathways are
embedded into G. Here, ’adequate’ means that the produced layout should highlight
execution paths by drawing them in parallel (SYMMETRY). In order to add further
information to the layout, modifications are applied to the graphical representation of
the BPEL elements in the layout.
In a BPEL model, we distinguish between two different types of edges:

• Pathway edges are induced by the activity structure, that is designed by the user,
and are created while resolving the nested structure of the workflow.

• Transverse edges are not induced by the activity structure, but they can addition-
ally be added by the human workflow designer to connect any kind of activities,
e.g. an Invoke call to a non-incident BPEL element can be represented by a
transverse edge.

An example for the distinction between the types of edges can be inspected in Fig-
ure 3.23.

3.3. A LAYOUT APPROACH FOR BPEL–WORKFLOWS 83

Algorithm 3: Extended phase for computation of horizontal coordinates

1 apply standard algorithm; // see (Brandes and Köpf 2001).

2 foreach P ∈ P do
3 caverage ←

(∑
v∈P x(v)

)
/|P|;

4 foreach v ∈ Pi do
// set x�coordinate of v

5 x(v)← caverage;

6 foreach Layer L ∈ G do
7 foreach node v ∈ L do
8 vr ← right neighbour of v;
9 if D(v, vr) < dmin then

10 if v is standard node then
11 d ← CSD(v);// see Algorithm 4.

12 if d = R then
13 x← x(vr) + dmin;
14 SN(v, d, x);// see Algorithm 5.

15 else
16 x← x(vr) − dmin;
17 SN(v, d, x);

18 else
19 d ← CSD(vr);
20 if d = R then
21 x← x(v) + dmin;
22 SN(vr, d, x);
23 else
24 x← x(v) − dmin;
25 SN(vr, d, x);

Pathway Construction

Since there is no unique method to derive pathways from a BPEL model, we consider
the number of descendant BPEL activities of structured activities for path construction
and embedding. There is one pathway leading from the top to the bottom of the activity
structure. Whenever a pathway P is split up, copies P1, . . . , Pn of path P are generated.
The end of these new pathways P1, . . . , Pn is the node where they meet path P again.
Thus, each execution path in BPEL is also a pathway in the graph and is drawn in

84 CHAPTER 3. 2D–VISUALIZATIONS OF BUSINESS PROCESS MODELS

Algorithm 4: CSD(v)

1 Sp ← set of all predecessors of node v in G;
2 caverage ←

(∑
v∈Sp x(v)

)
/|Sp|;

3 if caverage , 0 then
4 if x(v) > caverage then
5 return L;

6 return R;

Algorithm 5: SN(v, d, x)

1 x(v)← x;
2 vl, vr ← left and the right neighbour-node of v in the layer;
3 CND(v, vr); // see Algorithm 6.

4 CND(v, vl);

Figure 3.23.: The simple input structure representing a BPEL workflow. Black edges represent
pathway edges, gray edges represent transverse edges.

parallel by the extended layering algorithm described above. Transverse edges are not
considered during the construction of the pathways. However, in the later step that
aims at reducing the numbers of edge crossings, these edges affect the relative position
of the computed pathways in the final layout: Given a layout containing pathways
in the relative ordering P1, . . . , Pn, a transversed edge e between a node of P1 and
a node of Pn would cause a lot of edge crossings. Thus, by considering e in the
crossing minimization phase, the algorithm correctly places P1 and Pn side by side. In
Figures 3.24 and 3.25, an example for pathways is depicted using a different color for
each pathway.

3.3. A LAYOUT APPROACH FOR BPEL–WORKFLOWS 85

Algorithm 6: CND(v, v j)

1 if D(v, v j) < dmin then
2 if v j is a standard node then
3 if d = R then
4 x← x(v) + dmin;
5 SN(v j,R, x);
6 else
7 x← x(v) − dmin;
8 SN(v j,L, x);

9 else
10 if d = R then
11 x← x(v j) + dmin;
12 SN(v,R, x);
13 else
14 x← x(v j) − dmin;
15 SN(v,L, x);

Figure 3.24.: Result of the extension for pathway construction from the input structure to a
graph G. In G, each structured activity, e.g., a Sequence–activity, gets an end–
node forming a nested structure. In addition, pathways (colored blue, green, red
and brown) are embedded to draw each execution path in parallel. The edges
colored in gray are standard edges linking two execution paths.

86 CHAPTER 3. 2D–VISUALIZATIONS OF BUSINESS PROCESS MODELS

Figure 3.25.: Result for the layout of G of Figure 3.24 respecting the drawing of each pathway
straight from top to bottom. Each pathway is highlighted by its own edge color-
ing. Since each pathway starts at the root node the first edge of the blue pathway
belongs also to the brown pathway. Note that colors are used for description
purposes only and don’t contribute to semantics of a BPEL model.

Modifications of the Graphical Representation

Each node in the layout is assigned a specific shape and is labeled according to its
represented BPEL element, i.e., basic activities are represented by a simple node con-
taining its ID and its type. Structured activities consist of two nodes, its start and its end
node containing the ID, see Figure 3.24. The type is expressed by setting the color of
the according nodes (green for ’start’ and red for ’end’ nodes). To FLOW–, PICK– and
IF– activities, rectangles are added which surround all subordinate activities. IF– and
PICK–activities have additional rectangles that contain all nodes of each conditional
case. Also, in the layout, a label is added to each node that contains information de-
rived from the corresponding node in the original BPEL model (e.g. declarative name,
etc.). An example of a layout with BPEL–specific shapes is given in Figure 3.26.

Meta–Data of the BPEL process

A BPEL process may contain additional (meta–) data for its elements, e.g. conditions
for IF–activities or comments on elements. The data is relevant for the later transfor-
mation to an executable process on a process engine. The visualization of meta–data is
not always desirable since important data, i.e., element type, may interfere perception
of less relevant data, i.e., comments. Therefore, we provide the meta–data in a table
that is constructed after the layout algorithm. The elements are connected to the table

3.3. A LAYOUT APPROACH FOR BPEL–WORKFLOWS 87

1

12 3 4 5

Figure 3.26.: Ê A FLOW–activity surrounded by green and red nodes and a gray rectangle;
surrounding rectangles are drawn in dashed lines. Ë A BASIC–activity contain-
ing the type (left) and the type (right). Ì A IF–activity surrounded by gray nodes
and a red rectangle; each case is outlined in a blue rectangle. Í A WHILE–
activity surrounded by blue nodes. Î A SEQUENCE–activity surrounded by
small gray nodes. Each activity also contains a labels that displays its name.

data by their corresponding IDs. Conditions, e.g. IF–conditions, are linked by edge
labels. For ease of use, the table can be exported to HTML format. An example of
such a table is given in Figure 3.28.

Outline of the Layout Algorithm

In the following, we give a short overview on the complete algorithm:

• Input: A graph structure representing the workflow, see Figure 3.23.
• Step 1: Extension of the input structure to a graph with pathways embedded,

result see Figure 3.24.
• Step 2: Extended cycle removal phase.
• Step 3: Extended layer assignment phase.
• Step 4: Standard crossing minimization phase.
• Step 5: Extended assignment of horizontal coordinates. Figure 3.25 as an exam-

ple for the result of step 2–5.
• Step 6: Adaption of the graphical representation of the layout image, see an

example in Figure 3.27.
• Step 7: Handling of meta data: creation of a table linked to layout result, see

Figure 3.28 for a small example and its corresponding meta–data table.
• Output: The layout graph representing the workflow and a table containing the

meta–data for the corresponding graph.

88 CHAPTER 3. 2D–VISUALIZATIONS OF BUSINESS PROCESS MODELS

Figure 3.27.: Result of the final layout for BPEL model of Figure 3.24. Each node is assigned
its specific shape corresponding to its represented BPEL activity.

Analysis of the time complexity

Using heuristics in the Sugiyama algorithm and an acyclic input graph G = (V, E), it is
possible to reduce the running-time to O((|V | + |E|) log |E|) (Eiglsperger, Siebenhaller,
and Kaufmann 2005). We give now a worst–case running time of our layout algo-
rithm. All extensions from Section 3.3.3 and further the BPEL–specific steps must be
considered.

Extensions to the Cycle Removal Phase Obviously, a path division can be done
in O(|E|) time. This division is performed for each pathway containing the cycle edge
which is reversed. In practice, the number of cycles is low, thus, given there are k
cycles containing only pathway edges during the Cycle Removal Phase, this extension
step can be done in O(k|P||E|) time where |P| is the number of pathways.

Extensions to the Phase of Computation of Horizontal Coordinates First the
barycenter of each pathway P ∈ P is computed. Therefore, the x–coordinate of each
pathway node of P must be taken into account. Hence, the running time for the com-
putation of the barycenters is O(|P||V |). Respecting the minimum node distance dmin,
the distance between two adjacent barycenters must be set at least to dmin . If the
set of barycenters B is sorted, this can be done by a simple traversal through B in
O(|B|) = O(|P|) time or O(|P| log |P|) including a sorting algorithm, e.g. MergeSort.
During a shifting phase of a standard node O(|V |) locations must be checked. Hence,
the running time for shifting all non–path nodes is O(|V |2).

3.3. A LAYOUT APPROACH FOR BPEL–WORKFLOWS 89

�������
��	�
��
���

�
����������	
��

�

������
��������
����

�������
�����
���

�
�
�

������
�����	�
��

����

����

����������

����

����������

���� ������

	
�����

����

	
�����

����

��

��

Figure 3.28.: A table containing the meta–data for each node of the process depicted on top
(’-’ means the field is not set, ’X’ denotes that this field is not available for this
activity type).

Path Construction For generating the layout graph, the nested activity structure
must be resolved. For this purpose, every activity is regarded once and the pathways
can be embedded by a simple breadth–first–search (BFS).

Considering all extensions for the worst–case running-time of our layout algorithm,we
obtain:

O(S + k|P||E| + |E| + |P||V | + |V |2 + |V | + |E|)

= O(S + k|P||E| + |V |2)

where S denotes the dominating running–time of the Sugiyama algorithm. Since path-
ways do not necessarily have to be node–disjoint, there can be many pathways in a
general graph. However, in general BPEL models, |P| � |V | holds and, thus, only few
pathways exist.

90 CHAPTER 3. 2D–VISUALIZATIONS OF BUSINESS PROCESS MODELS

3.3.4. Summary

In this section, we tackled the challenge of computing layouts for BPEL models. The
main contribution is a layout algorithm that is highly adapted to the needs of BPEL
and uses the principles of Sugiyama’s algorithm enriched with major extensions and
modifications. For real–world application purposes and prospective empirical evalua-
tions, the approach is integrated in H (Held and Blochinger 2008, 2009).
The approach extends the existing BPEL modeling platform H to enhance com-
munication between designers by discussing and exploring BPEL models. With our
approach, complete BPEL models can be analyzed as visual models that do not rely
on the original BPEL files in XML–format.

3.3. A LAYOUT APPROACH FOR BPEL–WORKFLOWS 91

Figure 3.29.: Layout example of BPEL process that represents the workflow of a student that
pursues to complete a thesis.

92 CHAPTER 3. 2D–VISUALIZATIONS OF BUSINESS PROCESS MODELS

Chapter 4
Summary for Part I

In the first part of this work, we presented techniques for visualizations of business pro-
cess models in 2D. Visualizations adhere to layout aesthetics. We presented a study
on layout aesthetics of visualizations for business process models in BPMN, see Sec-
tion 2.3. We defined a set of aesthetics that is to be supported by layout approaches for
BPMN models. The set comprehends the following aesthetics:

FLOW, PARTITION, OVERLAP, ELEMENT_SIZE, EDGE_LENGTH,
CROSSING, ORTHOGONAL, LABEL, AREA, BEND.

Furthermore, we adapted in Section 3.1 an approach for dynamic visualizations that
considers a given embedding of a graph when computing a layout. The approach
Sketch–Driven–Layout (SDL) is realized as an extension to the TSM approach which
computes visualizations for graphs in Kandinsky model. The extended approach of
SDL is able to consider the partition of a business process models, in the case of
BPMN, a partition corresponds to swimlanes.
In the subsequent Section 3.2, three patterns for visualizations of business process were
presented. They can be applied to SDL and are targeted at semantic considerations of
business process models in visualizations. The patterns and their goals are:

• Geometry pattern (GeoP): reduce visual cluttering of process model diagrams.
• Gateway Pattern (GaP): highlight the logical structure of process models that is

induced by gateways.
• Start–End–Pattern (SEP): enforce aesthetics FLOW on start and end event. Two

variants are provided: dynamic or locked SEP.

We analyzed the effects of the patterns on the layout aesthetics when a visualization
is computed using SDL enriched by patterns. The results show that the effects are

93

94 CHAPTER 4. SUMMARY FOR PART I

manifold and vary for different single patterns or combination of patterns and different
layout aesthetics.
In Section 3.3, we presented algorithms for the computation of visualizations for BPEL
processes. There, a transformation from XML–based files to graphs was introduced
and shapes and structures were integrated in the visualizations to highlight the structure
and semantics of BPEL process elements. The layout approach stresses the hierarchi-
cal and sequential structure of BPEL processes by defining paths in the layout that are
to be visualized in a straight fashion. The algorithms are backed onto the Sugiyama
framework. Modifications of the steps in the framework towards the visualization of
BPEL processes are elaborated in detail.
In the following second part of this work, we extend the display space for visualizations
to three dimensions (3D) while applying the concept of two-and-a-half dimensions
(2.5D). We then present and analyze three different algorithmic approaches for the
computation of visualizations for business process models in 2.5D.

Part II.

Business Process Visualization
in 2.5D

95

Chapter 5
Introduction to 2.5D–Visualizations

5.1. Motivation

In this second part, we present methodologies for visualizations that use 3–dimensional–
space (3D) for the display of business process models. Visualizing in 3D offers one
more dimension of freedom to exploit for the presentation of models. Also, when
extending the projection display, e.g. a computer screen, to virtual reality, user percep-
tion and interaction can be done more efficiently compared to 2D–presentation (Ware
and Franck 1996, 1994). However, from an algorithmic point of view, the additional
dimension of freedom, that is given in 3D, has to be controlled and supported by the
approaches that are used for visualizations. Moreover, visualizations in 3D are in dan-
ger of clutter (Mian, Bennamoun, and Owens 2005) and occlusion which is a very
known phenomenon for the overlap of objects in 3D (Ware 2004). In order to reduce
the ’chaos’ in 3D–images that can occur when the display (with parameters focus
and viewing angle) is not able to master clutter and occlusion, we reduce the 3D–
visualizations in this work to two-and-a-half dimensions (2.5D). The principle of 2.5D
is the following: all elements of a model are fixed to planes in 3D. The planes have
fixed depth coordinates. In Figure 5.1, we depict an example for a visualization in
2.5D.

This part applies the concept of 2.5D–visualizations to business process models. We
describe the framework that we developed for display and presentation, and we present
algorithms for computing 2.5D–visualizations specifically for business process mod-
els. The structure of this part is as follows:
In Chapter 6, we will present new methods to create and compute 2.5D–visualizations
for business process models. The presentation of the approaches will be followed by
an analysis and thorough benchmark process of the performance and layout quality in
Chapter 7.

97

98 CHAPTER 5. INTRODUCTION TO 2.5D–VISUALIZATIONS

Figure 5.1.: Example for a visualization in 2.5D. Here, the planes are used to represent
points in time. Source: http://sydney.edu.au/engineering/it/~shhong/
valacon3.htm, 2012–09–30.

We will now define the terminology that is used in this part for the representation of
business process models in two-and-a-half-dimensions. Also, we will point out related
work to the concept of 2.5D-visualizations. This chapter concludes with the presenta-
tion of our framework for 2.5D-visualizations which is part of BPMN–Layouter.

5.2. Terminology and related work

First, we define the 2.5D–graph and its properties that are necessary to create a 2.5D-
visualization for a business process model in BPMN.

Definition 12 (2.5D-BPMN-Graph).

A 2.5D–BPMN–Graph is a graph G = (V, E, LE) with a set of nodes V, a set of
edges E and a set of layer edges LE.
Also, G has the following additional information (meta–data):

• a mapping vertex_type: V → T, where T denotes the set of possible types of
a BPMN-element for a vertex v ∈ V, see Section 2.

• a mapping swimlane: V → S , where S denotes the set of swimlanes. Each
vertex v ∈ V is assigned to exactly one swimlane s ∈ S . A swimlane s ∈ S is
described by a string and is assigned an identifier (a unique number n ∈ N+).

• a layer assignment layer: V → L, where the ordered list L = {L1, . . . , Lk},
k ≥ 1 denotes the set of layers.

• the position p(v), v ∈ V, of a node in 3D–space is denoted by the coordinates
posx, posy, posz ∈ R. �

http://sydney.edu.au/engineering/it/~shhong/valacon3.htm
http://sydney.edu.au/engineering/it/~shhong/valacon3.htm

5.2. TERMINOLOGY AND RELATED WORK 99

A layer l ∈ L is a rectangular plane in the 3D-space. The sizes and locations (except
for z-coordinates) of the rectangular planes are identical for all layers l ∈ L. A layer
edge le = (u,w) ∈ LE with u,w ∈ V is an edge with layer(u) , layer(w). For all edges
e = (u′,w′) ∈ E with u′,w′ ∈ V , it holds: layer(u′) = layer(w′). Thus, E ∪ LE = ∅.

We also define a distance measure for layer edges:

layerdistance : LE → N : |layer(u) − layer(w)| ,∀ le = (u,w) ∈ LE

In a 2.5D-BPMN-Visualization, the following holds: for any vertex v ∈ V and its
associated layer layer(v) = lv ∈ L, the position of v in the 3D-space lies within the
rectangular plane of lv. The layers L can be considered a stack of rectangular planes in
the three-dimensional space differing in z-coordinates. In Section 5.3.1, we describe
how an assignment for layer can be found for a BPMN–graph and we describe the
relationship and analogy of swimlane and layer.

5.2.1. Related work on 2.5D /3D–graph–layout

Several other approaches have been made in employing 2.5D-techniques for visual-
izing complex data. One of the fundamental works was presented in (Dwyer 2004)
where the usability advantages of 2.5D-layouts for structured and time-lined data are
examined. The work is based on series graphs, where layers are used to represent
distinct points in time and nodes (dis-) appear over time. For recognizing a node at
two points in time (equal to two layers), the points are virtually connected using vir-
tual edges. However, virtual edges are employed to link identical nodes over time but
not considered during the layout computation. For 2.5D–representation, a stratified
graph G is defined as a series of subgraphs S G = (Gt0 , . . . ,Gtτ) with

⋃τ
i=0 Gti = G

where t0, . . . , tτ is an ordered sequence of time instants. Each subgraph is mapped to
a perpendicular plane to the z–axis, or stratum. Stratisfied graphs are related to evolv-
ing graphs (Erten et al. 2003). For layout algorithms for stratisfied graphs, it is stated
in (Dwyer 2004): “Since a node may appear in multiple strata it would make sense
to position the node at the same position in each stratum”. Therefore, the proposed
approach for a layout to a stratified graph is “to find a 2D–embedding of the union
graph G, then extrude into 3D, placing edges and nodes at the appropriate depths”.
The constraints for a 2.5D–layout of stratisfied graph are:

• (C1) Edges must only connect nodes with the same z-coordinate.
• (C2) Edges must lie in a plane orthogonal to the z–axis and intersecting the z–

axis at the same level as the nodes.

100 CHAPTER 5. INTRODUCTION TO 2.5D–VISUALIZATIONS

Due to C1 and C2, stratisfied graphs do not possess layer edges. The given approaches
in (Dwyer 2004) for 2.5D–layouts of stratisfied graphs are: (a) a force–directed ap-
proach for 2D with an extension for strata, called worms, which represent identical
nodes in different subgraphs over time (Dwyer and Eades 2002), (b) a hierarchical
layout approach where Sugiyama’s algorithm is applied with adaptions in the crossing
minimization phase, by weighting a crossing by the number of times that the causing
edges are present in a common stratum, and by allowing overlaps of dummy nodes in
the horizontal coordinate assignment phase which leads to “significant improvement
in aspect ratio of the final layout” (Dwyer 2004). In Figure 5.2, an example for a layout
of a stratified graph is depicted.
Unfortunately, the approaches in (Dwyer 2004; Dwyer and Eades 2002) do not con-
sider layer edges. Therefore, the given algorithms cannot be applied to 2.5D–BPMN–
graphs where optimal routing of layer edges is a critical requirement.

Figure 5.2.: Example for a 2.5D–layout of a stratified graph with the hierarchic approach
of (Dwyer 2004). The pillars, or worms, represent identical nodes of subgraphs
over time. Each layer, or stratum, represents a time instant. Note that layer edges,
i.e., edges connecting or crossing different strata do not exist in a stratified graph.
Source: (Dwyer 2004).

Other works include research into navigation methods for three–dimensional layouts
of clustered graphs and trees (Ahmed and Hong 2007) and also an approach for hierar-
chical drawings of directed graphs in 2.5D (Hong, Nikolov, and Tarassov 2007) which
we will describe in more detail in Section 6.4.1 due to similarities to our visualization
approach (PSL) described in Section 6.4.
An adaption of a 2D–layout approach that is extended to 3D by wrapping a 2D lay-
ered drawing around a cone or a cylinder is presented in (Ostry 1996). The system
GIOTTO3D uses the following approach (Garg and Tamassia 1996b): GIOTTO3D
employs a 3-phase algorithm for drawing hierarchies in 3D. In the first phase a pla-
narization method is used to draw the graph in 2D; then, nodes and edges are assigned

5.2. TERMINOLOGY AND RELATED WORK 101

z-coordinates such that all edges point into the same vertical direction and the total
edge length is minimized. In the last phase, the shape of nodes and edges are fixed.
A 3D layout approach for UML models that computes layouts with a force-directed
approach is designed in (Dwyer 2001). Visualizations for Object Oriented Software
(OOC) in 3D are presented in (Ware, Hui, and Franck 1993) which also states the
requirement for resulting layouts that ”the nodes should be laid out in a top-down
fashion in horizontal layers” using a topological sort. The rise of new modeling lan-
guages allowed more fields of higher dimensional graph layout, e.g. for class template
diagrams (Hoipkemier, Kraft, and Malloy 2006) or JAVA code (Fronk, Bruckhoff, and
Kern 2006).
Many layout approaches exploit the structure of the underlying graph structure, e.g. a
tree structure (Balzer and Deussen 2004) or hierarchical structure (Wettel and Lanza
2007) which is an example for the City metaphor in visualization.
Related work that employs techniques or algorithms similar to our approaches, pre-
sented in Chapter 6, will be mentioned in the description of the corresponding ap-
proach.

5.2.2. Related work on (Business Process) Visualization in 3D

Visualization is a huge field even if restricted to 3D. A comprehensive and excellent
overview can be found in (Teyseyre and Campo 2009). Early approaches on visualiza-
tion in 3D stem from the graph drawing community presenting interactive graph visu-
alization (Bruß and Frick 1995) and program information (Reiss 1994) in 3D. A frame-
work for 2.5D-visualizations for trees (PolyPlane) is presented in (Hong and Murtagh
2004) and is extended to three dimensions (MulitPlane) in (Hong 2005) which is also
part of the GEOMI framework (GEOmetry for Maximum Insight) (Ahmed, Dwyer,
et al. 2005). The graph visualization system WilmaScope (Dwyer and Eckersley 2001)
is able to be employed for computing complex visualizations in 3D.
Other works make use of the 3D hyperbolic space for the investigation of methods for
visualizations of larger graphs (Munzner 1997).
For our 3D-navigation tool, we adopted conventions for navigation and interaction
from (Herman, Melançon, and Marshall 2000), a comprehensive survey on navigation
and interaction techniques.
In (Bobrik, Reichert, and Bauer 2007), visualization methods are analyzed with respect
to individual views of different users on a process. A case study on business processes
in the 3D space is performed in (Schönhage, Ballegooij, and Eliëns 2000). The study
concluded that, on the one hand, 2D diagrams are more easily accessible but, on the
other hand, using 3D–space enables to combine more information in a single scene.
Also, it is stated that visualizations in 3D are not yet widely accepted among business

102 CHAPTER 5. INTRODUCTION TO 2.5D–VISUALIZATIONS

people. In (Jablonski and Götz 2007), perspectives of views on a process are explored
following the approach of perspective oriented process modeling. We make use of the
findings of (Jablonski and Götz 2007) in Section 5.3.1.
A representation of business process models that allows for modeling in 3D is devel-
oped in (Betz et al. 2008) and (R. A. Brown and Recker 2009). A dedicated envi-
ronment for modeling in 3D with support of various types of (workflow) diagrams is
presented in (Pilgrim and Duske 2008). The approach also offers integration into the
powerful Eclipse editing framework GEF1. Modeling environments in 3D that use, for
instance, Second Life R©2 are presented in (R. Brown 2010); an extended version for
collaborative modeling in 3D is shown in (West, R. A. Brown, and Recker 2010).

5.3. A 3D-Framework for 2.5D-Visualizations

This section3 presents our framework for displaying visualizations in 2.5D. Devel-
opment of the 2.5D–framework started in 2006 (Jainek 2006) with basic graph pre-
sentation in 3D and graph data structures for representations of 2.5D-graphs. Also,
initiating work integrated basic actions for a viewer interface, e.g. a graph displayed
in a 3D–environment could be rotated, tilted and zoomed in or out. Further extensions
and features were added by (Spielmann 2009; Stegmaier 2011), see implementation
details in Section 5.3.2.
We now add data structures and rendering features for the presentation of business
process models, see Figure 5.3 for an example of rendering a business process model
in our 2.5D–framework. Also, the framework was integrated into BPMN–Layouter.
Thus, BPMN–Layouter together with the 3D–Navigator of the framework support lay-
out and navigation for business process models in 2D and 2.5D/3D.
In our Navigator which is the interactive user interface of the framework, we represent
a single BPMN element by applying its given BPMN shape, e.g. the texture for a task
element, to all sides of the corresponding 3D–cube in the 2.5D-BPMN-visualization.
This ensures that the type of an element in the 2.5D-BPMN-visualization can always
be recognized regardless of the current viewing angle in the Navigator, see the exam-
ple in Figure 5.4. Also, the guidelines presented in (Ware 2001), suggest to “Use 3D
objects to represent data entities”. According to (Ware 2001), evidence from cogni-
tive psychology and experiments suggest that renderings of 3D objects provide more
recognisable glyphs in an information visualisation than 2D symbols. In information
visualization, a glyph describes either a 2D symbol or 3D object representing a data
entity (Dwyer 2004).

1http://www.eclipse.org/gef3d/, 2012–09–30.
2http://secondlife.com/, 2012–09–30.
3Parts of this section are published in (Effinger and Spielmann 2010).

http://www.eclipse.org/gef3d/
http://secondlife.com/

5.3. A 3D-FRAMEWORK FOR 2.5D-VISUALIZATIONS 103

Figure 5.3.: Example for the rendering of a business process model in the 3D-framework.

(a) A BPMN task. (b) The 3D representative of a
task.

Figure 5.4.: In the 2.5D-BPMN-visualization, textures are applied on each side of the cube
representing a BPMN–element.

For the projection of business process models, based on 2D-graphs, into 3D–space
and 2.5D–graphs, we developed three different perspectives which are presented in the
following.

5.3.1. Criteria and Perspectives

In general, a prerequisite of the concept of 2.5D is that elements of the underlying
graph must be assigned to layers. The definition of criteria for the assignment to the
layers is elementary for the resulting visualization. A perspective on a business pro-
cess provides a mapping for every element to exactly one layer. Thus, perspectives
define the assignment of elements and must be chosen carefully in order to produce

104 CHAPTER 5. INTRODUCTION TO 2.5D–VISUALIZATIONS

meaningful 2.5D–visualizations. In our case, the layering mapping layer for the 2.5D-
BPMN-visualization in the framework can be derived from a perspective.
In (Jablonski and Götz 2007), the following set of perspectives on a general business
process is presented:

• Functional perspective: identifies process steps and defines its purpose.
• Data (flow) perspective: defines data used in the process and the flow of data

between steps. This perspective also involves external data flow.
• Operational perspective: specifies which operation (service) is invoked in order

to execute a process step. It relates to services derived from (external) service
libraries.

• Organizational perspective: defines agents, e.g. users or roles in general, that
are responsible for process steps. Also, agents can be external.

• Behavioural perspective: defines causal dependencies, also called control flow,
between modeling elements.

Note that the aforementioned perspectives were developed independently from a mod-
eling notation. Thus, the perspectives cannot be adopted to BPMN without further
modifications. For example, since BPMN is not an executable language, the opera-
tional perspective which represents (external) library calls, performed during execution
run-time, is not applicable to BPMN. Also, since the control flow in a BPMN model
is explicitly defined by the sequence flow, a behavioural perspective corresponds to
a common control flow (workflow) in the process. No new insights can therefore be
gained by applying a behavioural perspective to a BPMN visualization.
Thus, for introducing perspectives for BPMN, we modified the remaining perspectives
for layer assignment in 2.5D-visualizations and present them in the following:

• Organizational perspective: Layers are assigned to elements according to the at-
tributed swimlane exploiting the mapping swimlane in the BPMN-graph. Since
swimlanes represent, i.e., departments in a company, the 2.5D-visualization is
an intuitive view on the process, e.g. regarding the organizational chart of a
company.

• Control flow/Data flow perspective: In BPMN, the Sequence flow corresponds to
control flow and Message flow corresponds to data flow. Both flows are treated
separately in this perspective. Elements are assigned to layers depending on
incident connecting objects. Elements that provide incoming messages to the
process are assigned to higher layers than elements that receive messages from
the process. Elements that only have sequence flow objects are assigned to the
so-called main process flow layer that represents the process’ flow. Assuming a
message triggers a subprocess in a different pool, we can have several process

5.3. A 3D-FRAMEWORK FOR 2.5D-VISUALIZATIONS 105

flow layers which are assigned to subsequently lower layers than the initiating
main process flow layer.
Thus, sequence flow and message flow are visualized in a diametrical manner;
message flow runs vertically (orthogonally to the layers) and sequence flow runs
horizontally (within the layers). This segregation of flows offers a information
gain from the 2.5D-visualization.

• Functional perspective: The BPMN elements types defined by vertex_type are
used for layer assignment. Moreover, the process flow is traceable from top
to bottom because start events are assigned to higher layers than intermediate
events and end events. Thus, this perspective provides an analytic view on the
process model; e.g. distinct views on the usage of certain elements can be in-
spected. The process model structure becomes clearly visible, e.g. many gate-
ways may indicate a high complexity of the process model.

In the following, we provide an example and discuss the benefits and drawbacks for
each of the perspectives.
In Figure 5.5(a)-(d), a simple process and its perspectives are depicted. Although the
example is very simple, it becomes clear that not all perspectives fit best, i.e. in the
functional perspective, see Figure 5.5(d), a layer only contains one element. This leads
us automatically to a rating among the perspectives and distinct preferred use cases:
A perspective can be considered ’better’ than other perspectives when the layering
of nodes is nearer to an equal distribution among the layers while keeping the total
number of layers low. Thus, it is neither desirable that all nodes are assigned to a
single layer, nor that only one node is assigned to one layer. Examining the three
perspectives with respect to this rating, they all have different use cases where their
application fits better or is less appropriate:

• Use cases for Organizational perspective (Figure 5.5(b)): Since the organiza-
tional perspective is tied to an organizational chart of a company, it has a high
similarity to the structure of a process in a company with several participating
departments. The perspective is superior to the others if the elements of the
process (e.g. tasks) are nearly equally distributed among the departments (and
thus among the layers) and not too many departments are involved which would
always lead to an increased complexity of a process, in the 2D-diagrams and in
the 2.5D-BPMN-visualization as well.

• Use cases for Control flow/Data flow perspective (Figure 5.5(c)): The perspec-
tive is useful when there exist data that are passed in the process. Otherwise, all
nodes are part of the control flow and, therefore, they are assigned to the main
process flow layer. This represents a worst case for the rating of the perspective.
On the other hand, if the amount of messages is higher, e.g. the process needs

106 CHAPTER 5. INTRODUCTION TO 2.5D–VISUALIZATIONS

interaction with (external) data providers, the flow of messages can be visualized
in an intuitive way using the perspective. Recall that the data flow is arranged
from top to bottom in the 2.5D-BPMN-visualization.

• Use cases for Functional perspective (Figure 5.5(d)): If the process mainly con-
sists of one start event, numerous tasks that are to be executed sequentially and
eventually lead to one end event, this use case represents the worst case of the
functional perspective since all elements except start/end event are assigned to
the same layer. The gain of the perspective is increasing for a process that makes
use of more than only a few basic element types. Then, e.g. the workflow that
is arranged from top to bottom can be inspected and the user can analyze if one
element type is over-represented and may cause redundancies.

Our framework comprises an implementation of all three perspectives. Examples of
the resulting visualizations are given in Figure 5.8. In the following, we give details
of the framework implementation and then describe the navigation support that is pro-
vided in the Navigator.

5.3.2. Implementation

For the display of our 2.5D-BPMN–visualizations, a basic framework for 2.5D–visual-
izations was initiated in (Jainek 2006) and continued in (Spielmann 2009). Our frame-
work is developed using Sun JAVATM 1.5 and the graph library yFiles from yWorks
(Wiese, Eiglsperger, and Kaufmann 2001) for basic graph data structures. For display-
ing and rendering objects in 3D and animation of transformations, we chose the Java
Open Graphics Library (JOGL).
Using the general implementation presented in (Spielmann 2009), it is simple to create
2.5D-visualizations for many kinds of graphs. To achieve this, we built an abstraction
that moderates between the different base libraries we use. This abstraction is divided
into two parts: the creation, or factory class on the one hand, and the display classes
on the other hand.
The central element of the creation library is the Graph–2.5D–Factory which stands as
the top level interface for transforming 2.5D–graphs into a 2.5D graph representation.
For the transformation into 2.5D, a mapping to the layers must be given. The layer
mapping is given by one of the above described perspectives that is chosen by the user.
After a 2.5D–graph is created by the Graph–2.5D–Factory class, the display classes
render the 2.5D-graph into the 3D–Navigator of BPMN–Layouter. The display classes
exploit the metadata of the 2.5D–graph given by layer, vertex_type and node positions
p(V). Note that vertex_type is given by the 2D-graph whereas initial positions of p(V)
are set to positions of nodes in the input 2D–graph (posx and posy) and the position of
the assigned layer from layer in the layer stack (posz).

5.3. A 3D-FRAMEWORK FOR 2.5D-VISUALIZATIONS 107

(a) BPMN-Graph of a simple BPMN process.

(b) Organizational perspective.

(c) Control/Data flow perspective.

(d) Functional perspective.

Figure 5.5.: Example process in 2D-layout (a). The three different perspectives (b) - (d) pre-
sented in Section 5.3.1 are applied to the example of (a). The display is centered
on the layer containing the task (red).

108 CHAPTER 5. INTRODUCTION TO 2.5D–VISUALIZATIONS

5.3.3. Navigation Support

We chose an interactive model of navigation in a 2.5D–visualization display. Our
Navigator offers mouse-actuated navigation on the currently active viewing plane and
rotation of that plane, as well as changing the viewing height to accommodate viewing
of different layers. Apart from that, we use keyboard shortcuts for rotation, tilt and
change of viewing height of the display. Moreover, layer distance and graph element
zoom scale can be changed dynamically using keyboard shortcuts. Thus, the user can
navigate freely in the 2.5D–visualization of the BPMN model and adapt the display to
individual preferences.

For computer-aided navigation, layers can be inspected individually and the focus of
the display is automatically adapted to center the currently active layer. Another key
point of the navigation is the ability to create a history of viewpoints. With a single
keystroke, the current position is saved and added to a list of viewpoints. These can
then be traversed in chronological order, thus allowing to backtrack and review already
visited parts of the visualization.
All transitions between different viewpoints are animated with soft movements so to
not disturb the mental model of the viewer. With these techniques combined, we
achieve a persistent model with convenient navigation handling that allows viewers
to survey large and complicated processes swiftly. In Figure 5.6, a screenshot of our
2.5D–Navigator is depicted with its integration into the BPMN–Layouter.

Figure 5.6.: Screenshot of the 2.5D–visualization display of our 2.5D–Navigator embedded in
BPMN–Layouter.

5.3. A 3D-FRAMEWORK FOR 2.5D-VISUALIZATIONS 109

5.3.4. Summary

In comparison to other frameworks for 3D–environments, e.g. WilmaScope (Dwyer
and Eckersley 2001), GEOMI (Ahmed, Dwyer, et al. 2005) and GEF3D (Pilgrim
and Duske 2008), our 3D–Navigator has the benefit of the integration into BPMN–
Layouter such that modeling in 2D, inspection and analysis in 2D/2.5D using one of
the above presented perspectives can be performed seamlessly. According to Wilma-
Scope’s website4, the framework was not updated after October 2003 which does not
indicate the support for state–of–the–art layout techniques. The focus of GEF3D is on
the modeling part of business process models. As the author of GEF3D states himself
in July 2009, ”layouts are a big issue in GEF3D”5.
GEOMI is a powerful framework that also supports layout algorithms which can be at-
tached as plug-ins. GEOMI is also based on previous work on WilmaScope. It attempts
at ’visually explore networks and discover patterns and trends’ (Ahmed, Dwyer, et al.
2005). Currently, GEOMI supports various layout algorithms for 3D: force–directed
layout, clustered graph layout and hierarchical layout. The approach for hierarchical
layout is described in (Hong, Nikolov, and Tarassov 2007) and we will compare this
approach in–depth with our visualization approaches in Section 6.4.1. A weakness of
GEOMI is the missing modeling part. Graphs can be loaded from files or generated
by a built–in graph generator. However, graphs cannot be created and designed within
the framework. In Figure 5.7, a screenshot of the GEOMI–framework is depicted.

Figure 5.7.: Screenshot of the GEOMI–framework with activated plugin for clustered graph
layout. Source: (Ahmed, Dwyer, et al. 2005).

Our framework benefits from the fact that the visualization approaches that we will
present in the next chapter are also integrated into our 3D–framework. Together

4see http://wilma.sourceforge.net/, 2012–09–30.
5see forum entry at http://www.eclipse.org/forums/index.php/m/563904/, 2012–09–30.

http://wilma.sourceforge.net/
http://www.eclipse.org/forums/index.php/m/563904/

110 CHAPTER 5. INTRODUCTION TO 2.5D–VISUALIZATIONS

with the modeling in 2D, layout in 2D and the interactive 3D–Navigator, our BPMN–
Layouter is a very powerful tool for designing, analysing and presenting BPMN busi-
ness process models.

In our framework, only few technical considerations must be observed, since the foun-
dation of our implementation is based on well-understood and widely used libraries.
The frame rate of our 3D–framework is acceptable on modern computers, settling for
small models with approximately 30 elements on around 50 fps and for larger mod-
els (|V | ≈ 100) on around 25 fps. The frame rate is limited mainly by the number
of objects in the scene. Thus, visualizations are limited to relatively small graphs.
However, this does not pose a limitation to this application since BPMN graphs are
not expected to be very large (|V | < 150) in general. This expected size for business
process models will be confirmed in Chapter 7 when the visualization approaches for
2.5D, that we present in the next chapter, will be subject to an analysis and evaluation
using real-world process models.

5.3. A 3D-FRAMEWORK FOR 2.5D-VISUALIZATIONS 111

(a) Organizational perspective of a BPMN model. The elements are assigned to the layers depending
on their swimlane assignment swimlane in the BPMN model. Highlighting layers (see red marked
layers and node labels) is a feature of 2.5D–Navigator for accentuating a specific layer.

(b) Control/Data Flow perspective of the same BPMN model as in (a). Ingoing data flow
is assigned to the upper layer. Elements incident to control flow edges are drawn in the
highlighted main process flow layer. Outgoing data flow is placed in the lower layer.

(c) Functional perspective of the BPMN model of (a). Elements are assigned to layers according
to their BPMN types vertex_type. For better distinction, the layer containing all tasks is
highlighted and the node labels are hidden.

Figure 5.8.: Application of the perspectives to an example process. Selected layers are marked
in red and the labels of the corresponding elements are emphasized.
We observe that, for the example process, the organizational perspective fits best
since it offers the best distribution of elements to layers and, at the same time,
occupies the lowest number of layers. However, the functional perspective shows
clearly that task elements dominate the element type in the example process.

112 CHAPTER 5. INTRODUCTION TO 2.5D–VISUALIZATIONS

Chapter 6
Visualization Approaches for
Business Process Models in 2.5D

6.1. Motivation

This chapter comprehends a description of approaches for 2.5D–visualizations. We
present three different approaches which employ distinct graph drawing techniques. At
first, we will present an approach that uses a layer sweep technique in order to sequen-
tially improve the drawing layer-by-layer. As a second approach, we will model an
ILP (integer linear program) for finding an optimal solution of the 2.5D-visualization
problem. The third approach exploits the sparse structure of process models and tries
to find hierarchical paths, using a ranking of nodes for quickly finding a partitioning,
and also applies Sugiyama’s algorithm (Sugiyama, Tagawa, and Toda 1981) for the
final visualization.
All three approaches have the following objectives:

• OBJ1 – aesthetics FLOW: nodes should be placed in the natural order of the
process’ sequence flow. This goal has highest priority.
For an edge e ∈ E in a graph G = (V, E), FLOW is fulfilled if the following
implication is true:

impl : e = (u,w)⇒ posd(u) < posd(w)

where posd(u) denotes the position of node u in coordinate d; d defines the axis
of the flow orientation. In the visualizations, the flow is defined to be oriented
left–to-right in a two–dimensional plane, therefore, d = x.

113

114 CHAPTER 6. VISUALIZATION APPROACHES IN 2.5D

The goal of OBJ1 is to maximize the number of edges for which implication
impl evaluates to true, or

OBJ1 : max | {e ∈ E|impl(e) = true} |.

• OBJ2 – low edge lengths: edges, and layer edges in particular, should have
lowest possible edge length.
In general, for a 2.5D–BPMN–Graph G = (V, E, LE), the objective OBJ2 can
be expressed as an optimization problem:

OBJ2 : min

α · ∑
(u,w)∈E

L (p(u), p(w)) + β ·
∑

(u,w)∈LE

L (p(u), p(w))


whereL is a metric for the distances between the nodes positions p(u), p(w) and
α, β are weights for the different edge types E and LE, i.e., in order to prioritize
short layer edges LE over regular edges E, it is set β > α.

• OBJ3 – low area size: the amount of area space used for the visualization should
be small. In 2.5D, the area is given by the size of the rectangle that is consumed
by the largest of the planes surrounding the layers. For a 2.5D–BPMN–Graph
G = (V, E, LE) and a rectangle r induced by (px

min, py
min, px

max, py
max), where

px
min = min {posx(v)|v ∈ V} ,

px
max = max {posx(v)|v ∈ V} ,

py
min = min

{
posy(v)|v ∈ V

}
,

py
max = max

{
posy(v)|v ∈ V

}
.

OBJ3 aims at minimizing the size of r, or

OBJ3 : min
(
|px

max − px
min| · |p

y
max − py

min|
)
.

After the description of the algorithms in this chapter, we will analyze the approaches
with respect to OBJ1–OBJ3 and create performance benchmarks in the next chapter.

6.2. Approach 1: Sequential Layer Sweep

The first approach tries to sequentially improve the layout layer-by-layer using a sweep
line algorithm. A sweep line algorithm is a technique that is used in various problems
of computational geometry, e.g. for the construction of Voronoi diagrams (Fortune
1987).
A sweep line algorithm handles events that occur when the (sweep) line/plane passes
points in Euclidean space. The set of points is given as input and is ordered/sorted,

6.2. APPROACH 1: SEQUENTIAL LAYER SWEEP 115

e.g. in their x-coordinates. The line/plane represents the current status of the algo-
rithm; when a point p is passed, the algorithm checks if the current line together with
the point p cause an event that might update the current status. For a detailed descrip-
tion of the general concept of sweep line algorithms, we recommend, for instance, the
introduction to computational geometry in (Berg et al. 2000, pp.20 ff.).
In our case, instead of the set of points, the line passes the layers of the 2.5D-graph.
Since the layers are placed in 3D-space as a stack, we start from the top layer. The
ordered input set for the sweep line algorithm corresponds to the stack of layers in the
2.5D-graph sorted by z-coordinate, see Figure 6.1.

x

y

z

Figure 6.1.: Layer stack in 3D-space and (alternating) sweep line direction (arrows on the
right).

During the sweep line algorithm, we apply, for each layer, a call of the layout algo-
rithm that is adopted from the approach presented in Section 3.1.1, followed by an
update stage that we describe later.
In order to render the approach feasible for 2.5D, we now must adapt the approach
from Section 3.1.1 in order to handle layer edges. This is achieved by performing the
following: a layer edge le is replaced by a pair of dummy nodes (u; w) where u is
connected to the source s of le and u is placed in the layer of s; and w is connected
to the target t of le and w is placed in the layer of t respectively. The dummy nodes
represent symbolic links to the corresponding source/target of the former layer edge.
The symbolic link between u and w is stored in a map references. Dummy nodes are
stored in a set D. We call u the counterpart of w and vice versa.
If a layer edge le connects two non-adjacent layers (layerdistance > 1), we need to
insert placeholders in intermediate layers for splitting the layer edge into segments
with layer distance equal to 1. We call these new placeholders principal nodes. In
Figure 6.2, the replacement step is described. Each principal node is connected to two
dummy nodes that represent links to the next lower/higher layer.
After the replacement of layer edges by dummy nodes and principal nodes, we start
the layout computation by initiating the first sweep. The sweep comprehends several

116 CHAPTER 6. VISUALIZATION APPROACHES IN 2.5D

rounds. A round starts from the top layer and continues downwards, until the bottom
layer is reached. Then, the sweep direction is reversed and the algorithm continues
(upwards), as depicted in Figure 6.1.

Figure 6.2.: Replacement step of a layer edge le by dummy nodes (small blue boxes) and prin-
cipal nodes (red box). Principal nodes are inserted only if le crosses intermediate
layers.

Each round contains |L| steps. A step i corresponds to the handling of one layer Li,
therefore 1 ≤ i ≤ |L|. In each step i of the sweep, a layout for a single layer layer(i) is
computed. The layout also includes the inserted dummy nodes u1, . . . , uk and principal
nodes p1, . . . , pl in that layer.
After computing the layout of a layer Li in step i, we perform the update stage. In
the update stage, we consider the dependencies of the former layer edges, now repre-
sented by dummy nodes and principal nodes. We update the positions of dummy nodes
w1, . . . ,wk in other layers l ∈ L \ Li that represent the corresponding counterparts of
u1, . . . , uk, see Algorithm 7. The update stage changes the positions of the counterparts
w1, . . . ,wk as follows: w1, . . . ,wk are placed orthogonally to the layer stack (or parallel
to the z-coordinate) to be vertically aligned with u1, . . . , uk. After the update stage, the
x- and y-coordinates of two nodes ui and wi are identical. Note that only positions of
dummy nodes are changed in the update stage; principal nodes and regular nodes are
considered fixed.
In the following step i + 1, we perform the layout computation in layer Li+1. In this
step, we take into account that positions of dummy nodes might have been changed
in previous steps. Since our applied layout approach from Section 3.1.1 attempts to
preserve the given embedding as a sketch, dummy nodes positions, that were updated
during an update stage of step j < i + 1, influence the final positions of nodes that are
incident to dummy nodes.

6.2. APPROACH 1: SEQUENTIAL LAYER SWEEP 117

There are two variants for a termination of the algorithm: (a) terminating after a prede-
fined number k ∈ N of rounds or (b) measuring the difference of node positions ∆ for
each round and terminate if ∆ < ε, where ε defines an a-priori threshold for termina-
tion, similar to the termination threshold from force-directed layout approaches (F. J.
Brandenburg, Himsolt, and Rohrer 1995). Since the dependencies of dummy nodes
and their position changes during the update stage might cause circular dependencies,
variant (b) would not guarantee that the algorithm terminates if ε is unfeasible (ε is set
to low). This is the case if, in every round, an update stage moves a single (counter-
part) dummy node a distance greater than ε. Therefore, we decided to prefer variant
(a) and analyze after what number k of rounds the changes in node positions dimin-
ish without entering a cycle of dummy node dependencies, see Chapter 7. The sweep
layer algorithm is thus stopped after a fixed number k of iterations (rounds), changing
sweep direction after each round (when reaching the last/first layer).

Before returning the layout result after the last sweep round, we have to remove the
dummy nodes and principal nodes. This is performed in a post-processing stage that
we describe in the following:
Before finally removing all dummy nodes after the last round, we store their posi-
tion coordinates. For a node n that is adjacent to one or more dummy nodes, we
then choose the best location among its current position p(n) and the positions P =

{p(u1), . . . , p(uk)} of the adjacent dummy nodes u1, . . . , uk. The best location is se-
lected by a weighted ranking on all possible positions P ∪ {p} in order to reduce edge
lengths of edges incident to n. For each position, we compute the weighted distances to
all neighbours of n in the original graph (V \D). The distances of non-layer neighbors
are assigned a weight wle ≥ 1 than neighbours in the same layer as n, see Figure 6.3.
The objective of the ranking for a node n is given by

min

 ∑
{e=(u,w)∈E|u=n∨w=n}

length(e) +
∑

{le=(u,w)∈LE|u=n∨w=n}

wle · length(le)

 .
Using this placing heuristic as post-processing step, we aim at reducing layer edge
lengths (OBJ2) by setting wle >> 1 and routing them as near-orthogonally to the layer
stack as possible such that the length is reduced to the distance given by layerdistance.
In Chapter 7, we discuss benefits and issues of the layer sweep approach. One major
issue, the usage of area space for dummy nodes during the sweep rounds (OBJ3),
is addressed in the following approaches. Furthermore, in Chapter 7, we will argue
that SLS might have issues to guarantee OBJ1 (FLOW) due to the dependency on the
underlying layout algorithm used for the layer-wise layout. In Algorithm 8, all steps
of the complete algorithm for SLS are summarized.

118 CHAPTER 6. VISUALIZATION APPROACHES IN 2.5D

Figure 6.3.: Placing heuristic for the ranking of positions in the post-processing stage where
dummy nodes (small blue boxes) are removed.

Algorithm 7: Update stage for SLS: updateLayer()
Input: Set of dummies D, Layer l, Map references)
// perform update for each dummy in dummies set D.

1 foreach Node d in D do
2 if layer(d) == l then
3 Position p = p(d);

// get dummy node counterpart of d
4 Node counterpart = references(d);
5 posx(counterpart) = posx(d);
6 posy(counterpart) = posy(d);
7

6.2. APPROACH 1: SEQUENTIAL LAYER SWEEP 119

Algorithm 8: Sequential layer sweep (SLS)
Input: 2.5D-graph G(V, E, LE), Iterations k, Algorithm LA, Weight wle

1 Map references;
2 D← ∅;// set of dummy nodes

3 P← ∅;// set of principal nodes

4 foreach Layer edge le = (a, b) ∈ LE do
// create dummies u,w for le

5 V ← V ∪ {u}; layer(u)← layer(a); E ← E ∪ (u, a);
6 V ← V ∪ {w}; layer(w)← layer(b); E ← E ∪ (b,w);
7 Dle ← {w} ∪ {u};
8 if layerdistance(le) > 1 then

// insert principal nodes to intermediate layers

9 minlayerindex = min(layer(a), layer(b));
10 maxlayerindex = max(layer(a), layer(b));
11 foreach Layer l with minlayerindex < index(l) < maxlayerindex do
12 V ← V ∪ {p}; layer(p)← l;// create principal node p
13 V ← V ∪ {pw}; layer(pw)← l; E ← E ∪ (p, pw);
14 V ← V ∪ {pu}; layer(pu)← l; E ← E ∪ (p, pu);
15 P← P ∪ {p}; Dle ← Dle ∪ {pu, pw};

// storing of symbolic links to counterparts

16 update map references← references ∪{le, P,Dle};
17 D← D ∪ Dle ∪ P;

18 while k − − ≥ 0 do
19 foreach Layer l in G do

// see layout algorithm SDL from Section 3.1.1.

20 call layout algorithm LA on l;
21 updateLayer(D,l,references);// see function for update stage

on p.118.

// ranking of positions and removal of inserted nodes.

22 D← D \ P;V ← V \ P;
23 Map positions = Map(V ,p(V));
24 foreach Layer l ∈ L do
25 foreach Node d ∈ D with layer(d) == l do

// get original, adjacent node of d
26 positions(references.orig(d))← positions(references.orig(d)) ∪ {p(d)});
27 V ← V \ {d};

// OBJ2 for layer edges: rank position for each node using

layer edge weight factor wle.

28 positions.rank(wle);
29 foreach Node n in positions do
30 p(n)← positions(n) with best rank;

120 CHAPTER 6. VISUALIZATION APPROACHES IN 2.5D

6.3. Approach 2: ILP formulation

The formulation with integer-linear-programming (ILP) for our task of computing
2.5D-visualizations for process models is an attempt to find an optimal solution with
OBJ1-OBJ3 in mind.
ILP formulations are used in several layout approaches throughout the graph drawing
community, e.g. for orthogonal graph drawing incorporating constraints (Eiglsperger,
Fößmeier, and Kaufmann 2000), a formulation of the crossing minimization prob-
lem (Jünger and Mutzel 1997) or for drawing metro maps (Nöllenburg and Wolff
2005).
Although ILP is NP-hard in general, it provides a preferred method in graph drawing
for two reasons (Nöllenburg 2007) : (a) with ILP, one can find a ’quality benchmark
for heuristics and approximations’ and (b) create ’high-quality drawings for small and
medium size graphs’. As for NP-hard problems, the sizes of graphs are the limit for
the applicability because the maximum allowed running time might be limited. For
large graphs, a ILP formulation might contain many constraints that, in total, cannot
be reduced and solved by a ILP solver in guaranteed amount of time. In our case, the
graphs have limited size (1 ≤ |V | ≤ 200 and 1 ≤ |E| ≤ 300) because they are modeled
and designed by human hand which sets a limit by humans’ perception capability. This
allows us to design an approach for 2.5D layout using ILP that can be solved within a
predefined amount of time.
In the following, we will present our model for representing a 2.5D layout approach
with ILP. Then, we will show the details of the complete algorithm of this approach.

Our approach has the above mentioned objectives OBJ1-OBJ3 that have to be mod-
eled to be incorporated in the objective function:

• consider sequence flow orientation (OBJ1): the orientation of edges should be
according to the overall flow orientation of the model, for instance, respecting
aesthetics FLOW. Edges that are directed but oriented in reverse flow orientation
are penalized.

• short (layer) edge lengths (OBJ2): the lengths of edges should be as minimal as
possible; edges that are longer than the predefined minimum edge length (that
corresponds to the minimum node distance) are penalized in the objective func-
tion. The lengths of layer edges are also penalized; the penalties are multiplied
by a factor since high layer edge length is considered to be more harmful than
high edge length.

• good area usage (OBJ3): consumption of area should be reduced. A 2 : 1-
ratio of width to height is desired. Note that this objective conflicts with the
above objective of flow orientation if an edge is oriented orthogonally to the

6.3. APPROACH 2: ILP FORMULATION 121

flow orientation in order to reduce area consumption. Thus, we model the area
usage in the following way: a start node (with given fixed position) is selected to
be the global origin of our layout; then, the penalty for non-optimal orientation
of an edge (and the resulting placement of the target) depends on the distance
to the start node. The longer the distance, the higher the penalty for preferring
flow orientation over area usage becomes.

Note that distances between nodes are modeled using the L1-norm (or Manhattan dis-
tance) because using linear constraints only, it is not possible to model the L2-norm
(or Euclidean distance) which is defined as d2(p, q) =

√
(q1 − p1)2 + (q2 − p1)2 for

two points p = (p1, p2), q = (q1, q2) ∈ R2. The Manhattan distance d1 for two points
p, q ∈ R2 that is used in the following model is defined as follows

d1(p, q) = |p1 − q1| + |p2 − q2|.

Model

We will now introduce the variables of our ILP model. Also, we will denote the auxil-
iary boolean variables that are necessary to express different cases.
We require the following variables for a node vi ∈ V: we denote its location in x- and
y-coordinates with posx(vi),posy(vi) and posz(vi) and the assigned layer by layer(vi).
For each edge e ∈ E (that is not a layer edge), we define a variable edge_length(e) for
the two-dimensional Manhattan-distance between source(e) and target(e):

edge_length(e) = d1(source(e), target(e))

We also add an auxiliary boolean variable x1gx2(u,w) that holds the order of x-co-
ordinates : x1gx2(u,w) is set to true iff the x-value of u is greater than x-value of w. For
each layer edge le ∈ LE, we define a variable layer_edge_length(le) that models the
three-dimensional Manhattan-distance between source(e) and target(e), for instance,
including the difference of the z-coordinate values |posz(source(le))−posz(target(le))|.
For completeness of (layer_)edge_length, we need to define for each (layer) edge
(u,w) the coordinate-wise distances ∆x(u,w) and ∆y(u,w). As the distance between
two adjacent layers is fixed by a constant value zl, we express the z-distance of two
nodes (u,w) by the fixed term

|layer(u) − layer(w)| · zl = |posz(source(u)) − posz(target(w))| · zl.

In order to model flow orientation, we also need to handle the case that an edge e is
routed parallel to the x- or y-axis: we store an edge’s e state in the boolean variables
x1eqx2(e) and y1eqy2(e):

122 CHAPTER 6. VISUALIZATION APPROACHES IN 2.5D

x1eqx2(e) is set to true iff posx(source(e)) == posx(target(e)) (e is parallel to the y-
axis); y1eqy2(e) is set to true iff posy(source(e)) == posy(target(e)) (e is parallel to
the x-axis).
Area minimization is achieved by the following: we select a start node s ∈ V (that
exists always as an entry point in a valid process model) to be our global origin and
we define, for each node v ∈ V \ {s}, a variable startnode_dist(v, s)) measuring its
distance to s. The sum of these variables is then to be minimized.
The constraints of our ILP model now employ the defined variables to ensure the dis-
tance requirements:

• edge lengths:

∀e = (u,w) ∈ E : edge_length(e) = ∆x(u,w) + ∆y(u,w)

• layer edge lengths:

∀e = (u,w) ∈ LE : layer_edge_length(e) = ∆x(u,w) + ∆y(u,w)

+ |layer(u) − layer(w)| · z

where z is a fixed input parameter for the distance between two adjacent layers.
• area usage in terms of distance to start node s:

∀v ∈ V \ {s} : startnode_dist(v, s) = ∆x(v, s)

Note that we only use ∆x(v, s) for area usage. Since flow orientation is oriented in
direction of the x-axis (see objective function below), we hereby strive to prevent un-
necessarily long edges and high area consumption.
The objective of considering sequence flow orientation is contained in the following
objective function (see Equation 6.4):

min : ce ·
∑

(u,w)∈E

edge_length(u,w) (6.1)

+ cle ·
∑

(u,w)∈LE

layer_edge_length(u,w) (6.2)

+ cs ·
∑

v∈V\{s}

startnode_dist(v, s) (6.3)

+ cdir ·
∑

(u,w)∈E

(x1eqx2(u,w) + x1gx2(w, u)) (6.4)

where cdir, cle, ce, cs ∈ R define the cost factors. Edge lengths are modeled in Equa-
tion 6.1 for edges E and Equation 6.2 for layer edges LE. Equation 6.3 states the
area consumption as dependency to the distance from the start node and Equation 6.4

6.3. APPROACH 2: ILP FORMULATION 123

ensures edge orientation according to FLOW. The values for the cost factors are by
derived by the priorities of the objectives OBJ1–OBJ3: cdir >> cle > ce > cs. cdir

penalizes if edges do not obey FLOW (OBJ1). cle and ce penalize long (layer) edges
(OBJ2), and cs penalizes placement of nodes at high distance from the global origin,
thereby reducing area size (OBJ3).

To ensure correctness of the ILP model during the solving process, we have to insert
the following additional constraints:

edge_length(u,w) ≥ mine(> 0) ∀(u,w)∈E (6.5)

layer_edge_length(u,w) ≥ zl ∀(u,w)∈E (6.6)

∆x(u,w) ≥ 0 ∀u,w∈V (6.7)

∆y(u,w) ≥ 0 ∀u,w∈V (6.8)

startnode_dist(v, s) ≥ mine ∀v∈V\{s} (6.9)

posx(v) ≥ 1 ∀v∈V (6.10)

posy(v) ≥ 1 ∀v∈V (6.11)

Remark Note that we don’t prevent explicitly that two nodes u,w with layer(u) =

layer(w) overlap, e.g. posx(u) = posx(w) ∧ posy(u) = posy(w), and we don’t en-
force minimum node distances on nodes, but for edge_length where a minimum value
mine > 0 is preset. The reason for this relaxation is the following: our above ILP
formulation only contains O(|E|+ |V |+ |LE|) constraints; adding overlap prevention for
each pair of nodes would add O(|V |2) constraints. We note that overlaps can only occur
in the case that two non-adjacent nodes overlap because, for adjacent nodes, a mini-
mum value for edge_length is enforced by constraints. Since Equation 6.4 strongly
penalizes wrong edge orientation, overlaps are rare special cases for which we added a
post-processing step that resolves overlaps: we adapted a concept presented in (Tunke-
lang 1994) which locally searches for free node positions in the surrounding of the
current position while enforcing minimum node distances to surrounding nodes, see
Figure 6.4. This concept might enlarge edge lengths but tries to minimize the amount
of enlargement by starting the search in the very local surrounding of the current po-
sition and, if no possible position was found, gradually increasing the radius of the
surrounding to be searched in, see example in Figure 6.5.

Although the ILP problem is generally NP-hard, running times of ILP formulations
depend on the number of constraints. In our case, the overlap relaxation causes a
significant speed-up (by a factor of > 10), see discussion in Section 7.

124 CHAPTER 6. VISUALIZATION APPROACHES IN 2.5D

mine

1

v

5

11 7 9

3

426

12 8 10

mine

x

y

Figure 6.4.: Placing heuristic for overlaps. New possible node positions of node v are searched
locally for conflicts with other nodes (in the order of given numbers). In the im-
plementation, the numbers of positions to check are not bound by 12. In practice,
this bound suffices to resolve overlaps in process models.

1

u

5 3

426

x

y

v

w
1

u

5 3

26 v

w

Figure 6.5.: Example for the removal of an overlap: nodes u, v,w are in a conflict set; we
analyze alternative positions for node v (see numbered nodes); positions 1, 2, 3
are not available because the conflict persists. Position 4 is free and the resulting
move of node v to position 4 (right) resolves this overlap.

Algorithm

We will now summarize the algorithm for the ILP formulation. Also, the pre- and
post-processing steps are described in the following. An overview of the algorithm is
given in Algorithm 9.

Pre-processing steps

1. ensurePositiveCoordinates(): the function shifts the coordinates of the model
such that all elements have positive coordinates. This is necessary to fulfill
Equations 6.10 and 6.11. If these equations are not fulfilled, the solver might not
find a valid start solution because the solver doesn’t have any knowledge about
how to change initial variables, or more precisely, how to move node positions
to obtain a valid start solution. Therefore, all node positions are shifted by vector
v with

v = (|minv∈V posx(v)| + 1, |minv∈V posy(v)| + 1).

6.3. APPROACH 2: ILP FORMULATION 125

2. integerCoordinates(): moves all nodes to integer coordinates (except for z–
coordinates which are not subject to change during the ILP) by rounding double
values to integer values.

3. selectStartNode(): the global origin is selected by searching the node set V for
a node s with vertex_type(s) = S T ART . If s is not unique, that is ∃s, s′, s ,
s′∧vertex_type(s) = vertex_type(s′) = S T ART , a random node r ∈ S is selected
where S = {s ∈ V |vertex_type(s) = S T ART }.

Then, the ILP solver is called with input of the ILP model that is created as described
above. After the solver process returned, see Chapter 7 for technical details of the
solver in use, the following post-processing steps are executed.

Post-processing steps

1. applySolution(): the solution output from the solver is stored and then parsed
and analyzed for variable assignments and solver statistics (solver time, number
of constraints, final cost of objective function, etc.). In the variable assignments,
the new positions of nodes are contained. The positions are applied to the graph
G. In this step, the drawing corresponds to the ILP solver result (all positions
values are identical to variables in the ILP solution).

2. repositionNodesToOrigin(): after the application of the ILP solution to the graph
G, the shift performed in step ensurePositiveCoordinates() is reversed. This is
achieved by adding −v to every node position.

3. removeOverlaps(): the rare case of overlaps is resolved here. Note that overlaps
may occur only between non-adjacent nodes in the same layer. The resolution
algorithm is described in Algorithm 10. For each layer, we create a set of con-
flict points P. A conflict point p ∈ P is a position of node v ∈ V where a node
v′ ∈ V \{v}with position p′ has distance d1(p, p′) < mine. For each conflict point
p ∈ P, we keep the set of nodes Cp that are affected by this conflict point. A
node u ∈ V with position pu is affected by a conflict point p iff d1(pu, p) < mine.
For each conflict point p, we then resolve the corresponding set Cp using the
method presented on page 123 and described in Figure 6.4.
Note that in line 16 in Algorithm 10, we store all nodes that are resolved and,
thus, these nodes cannot be participate in another conflict. Because of line 15,
these nodes are not considered if they appear in a second conflict set Cp. There-
fore, we prevent cycles when resolving overlaps. A resolved overlap cannot
cause a subsequent (new) conflict set Cnew.

126 CHAPTER 6. VISUALIZATION APPROACHES IN 2.5D

Algorithm 9: ILP algorithm
Input: 2.5D-graph G(V, E, LE), weights cdir, cle, ce, cs

// pre-processing steps

1 ensurePositiveCoordinates(G);
2 integerCoordinates(G);
3 selectStartNode(G);
// create ILP model

4 ILPmodel = createILP(cdir, cle, ce, cs);
// start solver

5 LPSolver.solve(ilp);
// post-processing steps

6 applySolution(ilp);
7 repositionNodesToOrigin();
8 removeOverlaps();

6.3. APPROACH 2: ILP FORMULATION 127

Algorithm 10: Removal of overlaps after solving of ILP
Input: 2.5D-graph G(V, E, LE)

1 solved = ∅; // store solved nodes

2 foreach Layer l ∈ G do
// store all positions of nodes in this layer in a map

3 Map pos = ∅; // map nodes to positions

4 foreach Node n ∈ V with layer(n) = l do
5 pos← pos ∪ pos(n);

// create set of unique positions

6 points← pos.values;
7 Map con f lictS ets = ∅;// map points to conflict set of nodes

8 foreach Point p ∈ points do
// find overlaps

9 foreach Node n ∈ pos.keys do
// check for equality of positions and surrounding by

node size distance

10 if p = pos(n) ∨ d1(p, pos(n)) < mine then
11 con f lictS ets(p)← con f lictS ets(p) ∪ {n};

12 foreach Point p ∈ con f lictS ets.keys do
13 cs← con f lictS ets(p);
14 if |cs| > 1 then

// fix overlaps, only if not yet resolved

15 if cs < solved then
// apply concept presented on p. 123

16 resolveOverlap(p, cs, points);

// store resolved nodes

17 solved ← solved ∪ con f lictS ets(p);

128 CHAPTER 6. VISUALIZATION APPROACHES IN 2.5D

6.4. Approach 3: Partition Supported 2.5D-Layering

Our third approach employs a hierarchical Sugiyama layering (Sugiyama, Tagawa,
and Toda 1981) enriched with techniques to handle partitions (Siebenhaller 2006) and
2.5D-projections. The approach Partition supported 2.5D-layering (PSL) has simplic-
ity as a major goal, in contrast to the former ILP approach where optimality was a
primary goal.
The approach uses the concept of partitions which was presented in Section 2. In order
to apply partitions to a 2.5D-graph, we first create a flattened graph. A flattened graph
is a 2D-graph that has no knowledge of layers. Thus, layer edges have to converted to
regular edges. We then operate on the flattened graph but consider the former assign-
ment of nodes to layers by creating a partitioning of the nodes such that the rows of
the partition correspond to the layers, for instance, if a row ri corresponds to a layer
li, all nodes v1, . . . , vn with layer(v1) = . . . = layer(vn) = li are assigned to row ri in
the partition. Then, we start a layout algorithm that is able to handle partitions and is
based on the hierarchical layout approach in (Siebenhaller and Kaufmann 2006b). As
a post-processing stage, we fix the horizontal coordinates of the rows/layers such that
lengths of the layer edges are minimized. Finally, we project the flattened graph to a
final (unflattened) 2.5D-graph.
The approach consists of the following steps which are further described below:

1. Flattening stage for 2.5D-graph
2. Cycle removal
3. Partition creation of flattened graph
4. Sugiyama-style layering
5. Assignment of final horizontal coordinates
6. Projection to 2.5D

In the following, we will describe the steps of the algorithm in detail.

1. Flattening stage:
In this stage, the 2.5D-graph G(V, E, LE) is converted to a temporary 2D-graph.
The conversion creates a new graph Gn(Vn, En) where V = Vn. For the set
LE of layer edges, we have to create representing new edges Eln in Gn be-
cause Gn doesn’t contain layers and therefore layer edges cannot be inserted
into En. For each layer edge le ∈ LE, we add a new edge eln to Eln with
source(le) = source(eln) and target(le) = target(eln). The set En is then set
to En = E ∪ Eln. For reversing the flattening stage and restoring the original
graph later, we store the mapping in f lat : Eln → LE. Note that mapping layer
is still applicable to Gn because Vn = V . The following steps of the algorithm
work on the temporary graph Gn.

6.4. APPROACH 3: PARTITION SUPPORTED 2.5D-LAYERING 129

2. Breaking of cycles:
Since the creation of a partition on Gn and the hierarchical layout algorithm ap-
plied in step 4 require an acyclic input graph, we have to remove cycles in Gn.
To find and remove cycles temporarily, we apply the algorithm for cycle removal
presented in Section 3.3. It is based on performing a depth-first-search (DFS)
for finding cycles. Cycle removal is achieved by reversing edges, one for each
detected cycle. The reversed edges are stored in Ec.

3. Creating a partition:
Remember that a partition of a graph G′(V ′, E′) is a mapping p : V ′ → N × N
of the nodes V ′ to the coordinates (i, j) of a cell in a two-dimensional grid.
The grid cells build parallel rows and columns; the width of the partition is
defined by width(p) = max{ j | p(n) = (i, j) ∀n ∈ V ′} and the height is given
by height(p) = max{i | p(n) = (i, j) ∀n ∈ V ′}. A row i of p is defined by the
aggregation of all cells (i, j) with 0 ≤ j ≤ width(p); a column j is defined by the
aggregation of all cells (i, j) with 0 ≤ i ≤ height(p).
In this step, we assign the nodes Vn to cells (i, j) of a partition p. Therefore, we
have to define coordinates i and j (row and column) for every node. The row
rv = i of node v ∈ Vn is derived from the layer that contained the node in the
original 2.5D-graph G, thus, p(v) = (i, j) with i = layer(v). For the assignment
of the columns, we compute an ordering of the nodes in the (acyclic) graph Gn.
The ordering is found as follows: the set S of the start nodes in Vn (according
to vertex_type) is taken as the initial sources for a set of breadth-first-search
(BFS) on Gn. For each start node s ∈ S , we call a BFS on Gn with s as root
node. During a BFS, the visited nodes VBFS ⊆ Vn \ S are assigned numbers that
represent the level in the BFS (or the graph distance to s). The level cv for a
node v is stored. Note that since we start |S | many BFS calls, a node v may be
assigned multiple level numbers cv1, . . . , cvk where k ≤ |S |. After the last BFS
call, we then assign cv to be cv = max{cv1, . . . , cvk}, the maximal level number
for this node. Observe that all nodes Vn are visited by the BFS calls: if a node
u is not assigned a level number after the BFS calls, it was not reachable by any
node s ∈ S . Then, u could never be reached in the process model that is initiated
by start nodes only. Therefore, u cannot be part of a valid process model and
cannot exist in a process model.
To assign a column to a node v ∈ Vn \ S , we use the level number cv. We set the
cell of v in the final partition to p(v) = (layer(v), cv). For the start nodes s ∈ S ,
we set p(s) = (layer(s), 0) because the root nodes of a BFS have level number 0.
The worst-time complexity for creating the partition is O(|S | · (|V | + |E|)) where
O(|V | + |E|) for one BFS run and |S | � |V | for the number of start nodes.

130 CHAPTER 6. VISUALIZATION APPROACHES IN 2.5D

4. Find partitioned layout:
In this step, we apply on Gn an extended variant of Sugiyama’s algorithm to
obtain an upward planarization of the input graph Gn. For this purpose, the
approach in (Siebenhaller 2009, Section 4.4) is adapted to match for our process
models. It supports constraints for given partitions and clusters but, in our case,
we focus on partitions (not clusters) and its construction.
In the following, we depict the single phases:

a) PHASE 1 – Layer assignment: In this phase, the first step of Sugiyama is
adapted to incorporate the partition cells of the nodes in partition p. This is
achieved by adding dummy nodes and temporary edges to Gn. Remember
that width(p), the maximum level number of a column, also gives us the
numbers of columns that have to be preserved by dummy nodes. We now
fix the columns by inserting width(p) + 1 temporary nodes Ct, where a
column j is represented by nodes c j, c j+1 ∈ Ct. Also, we add temporary
edges EC such that a node c j ∈ Ct is connected to all nodes of Gn in
column j, that is Vc j = {v|cv = j, v ∈ Vn \Ct}, and edges from nodes Vc j

to c j+1. The structure of the resulting graph is depicted in Figure 6.6. For
the layering, a heuristic GT layering is applied (Eiglsperger and Kaufmann
2001). After this phase, each node is assigned to a (Sugiyama) layer. Also,
we obtain as a return parameter the set of edges El that were reversed
during the layering in order to ensure that the graph Gnc = (Vnc, Enc) =

(Vn ∪Ct, En ∪ EC) remains acyclic (using a DFS for cycle detection inside
the GT layering).

ba

c

e

d

ba

c

e

d

c0 c1 c2 c3

Figure 6.6.: Insertion of temporary nodes Ct = {c0, . . . , cwidth(p)} and edges EC (black
edges in (b), original edges are hidden) to preserve columns during
Sugiyama layering.

b) PHASE 2 – Edge preparation: This phase converts the edges for prepa-
ration of the crossing minimization. It is called the normalization phase
because of the following normalization of edges:

6.4. APPROACH 3: PARTITION SUPPORTED 2.5D-LAYERING 131

Each edge e ∈ Enc has to fulfill the following requirements:

i. e is upward, e.g. e does not span from a layer i to a layer i − k, k > 0.
ii. e has unit-length, e.g. e does not span from a layer i to layer i+k, k > 1.

iii. e is an inter-layer edge, e.g. e does not connect two nodes u,w ∈ Vnc

in the same layer i.

To ensure the last requirement (condition iii), edges that connect nodes in
the same layer are temporarily removed before the next phase (crossing
minimization). Edges with non-unit-length (condition ii) are split, using
a dummy node for each intermediate Sugiyama layer of a long edge and
replacing the original edge e with the chain of dummy nodes Vd(e) and
unit-length edges Ed(e). Edges that are not upward (condition i) are tem-
porarily reversed. Changes performed on the edges in this phase are saved
in data maps for later restoration of original edges.

c) PHASE 3 – Position assignment: The crossing minimization phase, or
one-sided two-layer crossing minimization, reduces the crossings between
any two adjacent Sugiyama layers in a layer-by-layer sweep. The phase
corresponds to the step of the Sugiyama approach for crossing reduction.
In order to preserve the partitions during the crossing minimization, the
phase adapts the sweep approach as follows (Forster 2002, 2005; Sieben-
haller 2009): Let G′ = (L1 ∪ L2, E′ ⊆ L1 × L2) denote a two-layered graph
and Li

2 ⊆ L2 the set of nodes assigned to the i-th column, i.e., the nodes
v ∈ L2 with cv = i. We apply the crossing reduction approach separately to
the subgraphs G′i induced on G′ by the nodes of L1 ∪ Li

2, 0 ≤ i < width(p).
We process the subgraphs G′i in increasing order of i and concatenate the
resulting node orders to obtain the order of L2. It is shown that we can sep-
arately calculate the node order for each subgraph without losing quality
in O(|V ||E| log |E|) for a graph G = (V, E) (Siebenhaller 2009)

d) PHASE 4 – Node placement: This phase assign the y-coordinates to the
nodes Vnc. We use the linear–time algorithm of (Brandes and Köpf 2001)
which is a longest path-based heuristic, see Section 2. For constructing
the partition, we apply the following: Let Gl = (Vl, El) denote the di-
rected acyclic graph resulting from the layer ordering calculated during the
(last) crossing reduction phase. Now, we have to align the dummy nodes
uc j

i ∈ Ct ∪ Vd(Enc), 1 ≤ i ≤ k for each column c j, 0 ≤ j ≤ width(p), k
is given by number of dummy nodes inserted during normalization, to ob-
tain the vertical grid lines of the partition. This is achieved by mapping all
nodes (including temporary nodes inserted by normalization) that should

132 CHAPTER 6. VISUALIZATION APPROACHES IN 2.5D

be aligned to a single node of Gl such that all nodes representing one col-
umn grid line have the same y-coordinate. After this phase, dummy nodes
and temporary edges inserted during normalization are removed. Original
edges in Vnc that were removed are now restored and added to El. Edges
that were reversed are not yet recovered in their orientation before the next
(and last) phase.

e) PHASE 5 – Edge routing: In the final phase, we reroute the edges of Gl.
For each edge, we perform a shortest path–routing on the dual graph, see
Section 2. However, we have to restrict the dual graph such that the parti-
tion is considered in the routing. Therefore, we introduce two requirements
for edge routing in a partitioned graph:

i. Each route of an edge (v,w) ∈ El is completely contained inside the
smallest rectangle that surrounds partition cells p(v) and p(w).

ii. An edge is allowed to cross a cell border at most once.

Note that for two nodes u,w with p(u) = p(w), an edge (u,w) fulfilling
the above requirements is not allowed to leave the cell c = p(u) = p(w).
This prevents unnecessary crossings and higher edge lengths by simple
dual graph routing, compared to routing in an un-partitioned graph.
The necessary requirements are guaranteed by modifying the dual graph
DGl = (VGl , EGl) of Gl that is used for edge routing. For the first require-
ment, for an edge e = (u,w), we construct the smallest possible rectangle
rect that surrounds the cells p(u), p(w). Nodes in DGl that represent faces
outside of rect are removed. To guarantee requirement (ii), we direct the
edges in DGl as follows: assuming de is the (Manhattan) distance between
p(u) and p(w). Then, an edge e ∈ EDGl

is undirected if source and target
of e are in the same cell, i.e. the distance to p(w) is not changed if routing
over e. However, if source and target of e are in different cells q, v, e is di-
rected such that routing over e from p to q reduces the distance of de by 1
(towards p(w)), see Figure 6.7. Edge routing can be done in O((|V |+ x)|E|)
where x denotes the number of crossings in Gn. Remember that crossings
were temporarily replaced by dummy edges.
Finally, dummy nodes Ct inserted for preserving the partition are removed
and edges Ec that were reversed for making the graph acyclic (for the
Sugiyama layering) are recovered to the original orientation.

After the extended Sugiyama layering, we obtain a graph Gl that is embedded as
a 2D partitioned layout: all nodes are positioned in their layers such that FLOW
is considered because we assigned the nodes into the partitions cells according
to their BFS-order in the previous step. Since the layering in Sugiyama style

6.4. APPROACH 3: PARTITION SUPPORTED 2.5D-LAYERING 133

ba

c

e

d

Figure 6.7.: Shortest path routing in the (modified) dual graph D = (VD, ED) for the
example graph of Figure 6.6 and the rerouting of edge ed = (d, b). The
partition is depicted by grey lines and squared grey nodes. Edges of the
original graph are represented by dashed black lines. Dummy nodes are
drawn as small grey circle shaped nodes. Nodes of the dual graph are drawn
as blue circle shaped nodes. Note that an edge e ∈ ED (solid black lines)
is directed only if it points to a cell that has lower distance to the target’s
cell of ed than the source’s cell of e. Otherwise, e is undirected and can
traversed in both directions for rerouting.

of this step preserved the partition, FLOW is not violated. The BFS order ex-
presses high parallelisms in process models because parallel elements (started
or initiated at the same single element) are then placed in the same column c in
p (having the same number from the BFS order). Remember that elements in
identical columns are not moved apart in the layering due to the inserted dummy
nodes bounding the columns in the crossing minimization.
We now rearrange the rows and columns of the partition such that the layout of
Gl is prepared for 2.5D.

5. Assignment of final horizontal coordinates:
From the last step, we obtain a layout considering partition p for the 2D-graph
Gl. In this step, we arrange the rows of the partition p such that the rows can
be re-mapped to layers and the original layer edges can be recovered in the next
step.
Note that layer edges in Gn correspond to edges connecting two rows i, k, i , k
in Gl. To reduce the average length of layer edges in the later projection to 2.5D,
we now align the elements in the rows of Gl in terms of y-coordinates. Therefore,

134 CHAPTER 6. VISUALIZATION APPROACHES IN 2.5D

we compute the overall median My of the y-coordinates of the nodes Vl. We also
compute the row-wise average mean of y-coordinates m1, . . . ,mheight(p), where

mi = mean
{
y|y = posy(v) ∧ p(v) = (i, j), 0 ≤ j ≤ width(p), v ∈ Vl

}
.

Note that for the rows, we compute the mean, and not the median, because we
want single nodes in a row i with high distance to the rest of the nodes in i (peak
nodes) to contribute to the final y-coordinate mi of row i. Taking the median
would diminish the effect of the peak nodes to mi because the median is defined
such that points with high variance are neglected to reduce the resulting variance
and preserve robustness in the presence of outliers (Hogg, McKean, and Craig
2012).
We now set the distance vector for each row i to

di =

 0
My − mi

 .
The vector di gives us the direction and amount of the translation for the align-
ment of the rows. The translation for a node n in row i and its position (posx(n),
posy(n)) is then given by posx(n)

posy(n)

 :=
 posx(n)

posy(n)

 − di =

 posx(n)
posy(n) − My + mi

 .
The assignment of final horizontal coordinates can be done in linear time. In the
last step, we will project the aligned graph to 3D to obtain the final layout result.

6. Projection onto 2.5D-stack:
After the last step, every node n ∈ Gl has a geometric (x/y)-location. These
locations are final. In this step, we will project the nodes into 3D by assigning
each node a z-coordinate and recover the layers L from the input graph G. Also,
the layer edges LE are restored. This step is also called the un-flattening stage.
Note that the assignment layer is still valid for all nodes Vl in Gl because all
temporarily inserted nodes were removed after the Sugiyama layering. There-
fore, we recover the original layers by assigning each layer l ∈ L a z-coordinate
zl that is recovered from the flattening stage.
However, if the predefined distance zd between each pair of (adjacent) layers in
the stack is changed (by user input), the set of layers is translated in direction of
z-axis such that zd is maintained for each pair of adjacent layers.
Also, the rectangles representing the layers in the stack are updated because the
position of the nodes Gl after the layout step are different from the input posi-
tions in Gn. We compute the smallest rectangle r (sides of r are parallel to x- and
y-axis) that contains all positions (posx(v), posy(v)) of nodes v ∈ Vl by setting

6.4. APPROACH 3: PARTITION SUPPORTED 2.5D-LAYERING 135

px
min = min {posx(v)|v ∈ Vl} ,

px
max = max {posx(v)|v ∈ Vl} ,

py
min = min

{
posy(v)|v ∈ Vl

}
,

py
max = max

{
posy(v)|v ∈ Vl

}
.

Rectangle r is then set to the rectangle induced by (px
min, py

min, px
max, py

max). Then,
for each layer l ∈ L, the rectangle of l is set to r with the z-coordinate zl.

Now, the layers are arranged in a 2.5D-stack and we obtained our final 2.5D-
graph layout. In Algorithm 11 on page 137, the algorithm for PSL is summarized
with an overview on the different steps. The steps of PSL applied on a simple
process model example are depicted in Figure 6.8.

136 CHAPTER 6. VISUALIZATION APPROACHES IN 2.5D

A B

CD
(a) Removal of cycles

A B

CD

1

2

1 2 3 4

(b) Partitioning

A B

CD

1 2 3 4

(c) Layering

A B

CD
(d) Projection

Figure 6.8.: Steps of PSL with a small process model (swimlanes are depicted by dashed black
line). Numbers (x) describe the corresponding stage in the algorithm: (a) Flat-
tened graph after flattening stage (1); removal of cycles (edge marked in red is
reversed) (2). (b) Partition assignment of nodes (grey lines) using BFS order for
columns and layer assignment for rows (3). (c) Sugiyama layering (layers are
represented by blue lines, dummy nodes for preserving columns and rows or for
normalization of edges are omitted here) (4). (d) Alignment of horizontal coor-
dinates of rows (5) and un-flattening stage with final projection onto 2.5D-stack
(6).

6.4. APPROACH 3: PARTITION SUPPORTED 2.5D-LAYERING 137

Algorithm 11: Partition supported 2.5D-layering
Input: 2.5D-graph G(V, E, LE)
// Flattening of graph G

1 Gn = (Vn, En)← (V, E ∪ LE);
2 Ec ← DFS _acyclic(Gn); // Cycle removal

// Create partition p
3 BFS _order(Vn)← BFS (startnodesS ⊆ Vn);
4 foreach v ∈ Vn do
5 p(v) = (i, j)← (layer(v), BFS _order(v));

// Sugiyama-style partitioned layering

// 1. layer assignment

6 Ct ←partition p preserving column nodes;
7 EC ⊂ (Ct × Vn) connecting edges for Ct;
// 2. create partition in layering

8 Ed(En), Vd(En)←normalize(En); // normalize edges

9 Enc ← En ∪ Ed(En) ∪ EC\ non-normalized edges Enn ⊂ En;
10 Vnc ← Vn ∪Ct ∪ Vd(En);

// 3. crossing minimization

11 one-sided two-layer crossing minimization (Gnc = (Vnc, Enc));
// 4. horizontal coordinate assignment

12 Gl = (Vl, El)← BrandesKoep f (Gnc);
13 El ← (El \ Ed(Enc)) ∪ Enn;
14 Vl ← Vl \ Vd(Enc);

// 5. rerouting edges

15 partitioned-shortest-path-routing(DGl ,p);
16 El ← El \ Ec;
17 Vl ← Vl \Ct;

// assigning of final horizontal coordinates

18 My = median
{
y|y = py(v), v ∈ Vl

}
;

19 foreach layer li ∈ L do
20 mi = mean

{
y|y = py(v) ∧ p(v) = (i, j), 0 ≤ j ≤ width(p), v ∈ Vl

}
;

21 foreach v ∈ Vl, layer(v) == li do
22 di = My − mi;

23 shift v by
 0
−di

;
// Projection to 2.5D-layer-stack

24 foreach v ∈ Vl do
25 set pz(v) to zl of layer l = layer(v);

26 El ← El ∪ LE; // restore layer edges

27 compute layer rectangle R containing all posx(v), posy(v), v ∈ Vl;
28 draw layer stack with zd as layer distance;

138 CHAPTER 6. VISUALIZATION APPROACHES IN 2.5D

6.4.1. A 2.5D hierarchical drawing of directed graphs

In this section, we will describe the approach HONG of (Hong, Nikolov, and Tarassov
2007) to compute hierarchical drawings for directed graphs in 2.5D. Also, we will
compare HONG to PSL and point out the distinctions in terms of objectives.
HONG introduces an extra step to the Sugiyama framework, called wall assignment,
that is inserted into the framework after the layer assignment step and before the com-
putation of vertex ordering. The idea is based on walls that occupy parallel planes
which are perpendicular to the planes of the layers. Walls partition the vertex set of a
layer into subsets; each of these subsets represents one wall. In Figure 6.9, an example
for a graph with layout by HONG is depicted.

Figure 6.9.: Example for layout with HONG. The layers are vertical and the walls are
orthogonal to the layers. Nodes of the same layer are depicted by identi-
cal color. Source: http://rp-www.cs.usyd.edu.au/~visual/valacon/

gallery/3DHL/, 2012–09–30.

The work in (Hong, Nikolov, and Tarassov 2007) presents five algorithms that each
tackle a subset of the following criteria:

• C1. Even distribution of vertices among walls, i.e., balanced partition of the
vertex set into walls.

• C2. Minimum number of inter wall edges; an inter wall edge is an edge that is
incident to two nodes in different walls).

• C3. Minimum number of crossings between inter wall edges in the projection
of the drawing into a plane which is orthogonal to both the layer planes and the
wall planes, .i.e. direction of view in a 3D–environment).

• C4. Minimum total edge length of inter wall edges.

The first proposed algorithm is targeted at C1 and C2. It is a greedy heuristic algorithm
for the minimum bisection problem which is known to be NP-hard (Garey and Johnson
1979). The problem solved by the heuristic is the following:

http://rp-www.cs.usyd.edu.au/~visual/valacon/gallery/3DHL/
http://rp-www.cs.usyd.edu.au/~visual/valacon/gallery/3DHL/

6.4. APPROACH 3: PARTITION SUPPORTED 2.5D-LAYERING 139

Definition 13 (Minimum One-Layer Bisection Problem).
Consider two adjacent layers Li−1 and Li. Let Li−1 be partitioned into subsets Ai−1

and Bi−1. Find a partition of Li into subsets Ai and Bi such that ||Ai| − |Bi|| ≤ 1 and
the number of edges between Ai−1 and Bi plus the number of edges between Ai and
Bi−1 is the minimum. �

Note that this problem only considers two walls A, B. The greedy algorithm given for
the problem has two phases and runs in O(|V | log |V | + |E|); at the first phase each ver-
tex in layer Li is assigned to the wall that contains the biggest number of its immediate
successors; at the second phase some vertices are moved from one wall to the other
in order to achieve a balanced partition. In PSL, the columns correspond to walls in
HONG, because they both are oriented perpendicularly to the layers. In contrast to
walls in HONG, the number of columns is not limited in PSL. The given algorithm
tries to compute a balanced distribution among the walls. In our case, the distribu-
tion to columns is induced by the BFS runs in the stage of creating the partition. Our
approach is motivated by fulfilling FLOW and follows the natural way of thinking ’for-
ward’ (from left to right) when analyzing the 2.5D–graph.
Also, C2 aims at reducing occlusion in the 3D–space. When inspecting the inter wall
edges in Figure 6.9, it seems that occlusion is still an issue because it is hard to distin-
guish two adjacent nodes connected by an inter wall edge. Inter wall edges correspond
to layer edges in PSL. Although the number of layer edges |LE| is not limited, two
layer edges l1, l2 ∈ LE can only cause occlusion in PSL if there exists parallelism
in the business process that require l1 and l2 to start and end in the same cell in the
partition. Since only splitting gateways can initiate parallelisms in business process
models, the number of causes for occlusion in PSL is limited by at most the number of
gateways |G| where |G| � |V |.
To satisfy C3, HONG proposes two approaches: zig-zag wall partition (ZZ) or dom-
inating wall-partition (DW). Both algorithms scan all layers one by one from bottom
to top and partition each of them into two subsets. They start with a random balanced
partition of the first layer. Each next layer Li is partitioned into L1

i and L2
i such that

L1
i ∪ L2

i = Li and L1
i ∩ L2

i = ∅ based on the partition of layer Li−1. Both, ZZ and DW
call the procedure DIVIDELAYER(i, x, y) which sets Lx

i ← {v ∈ Li : N+(v) ∩ Ly
i−1 = ∅}

and Ly
i ← Li \ Lx

i , N+ denotes the successors of a node. In ZZ, the sources of the
inter wall edges alternate between two layers on a path of inter wall edges, whereas
in DW, the sources of inter wall edges are in the same wall, see Figure 6.10. In other
words, both algorithms assign vertices to two walls, thus, this approach is also limited
to two walls. Although both algorithms do not explicitly consider C2, it appears from
Figure 6.10 that the assignment to two walls according to ZZ or DW increases the neg-
ative effect of occlusion and make a distinction between two inter wall edges very hard.

140 CHAPTER 6. VISUALIZATION APPROACHES IN 2.5D

(a) Zig-Zag wall partition (b) Dominating-wall partition

Figure 6.10.: Example for zig-zag wall partition and dominating-wall partition in HONG. The
vertices are distributed to two walls. Nodes of the same layer are depicted by
identical color.
Source: http://rp-www.cs.usyd.edu.au/~visual/valacon/gallery/

3DHL/, 2012–09–30.

For support of k ≥ 2 walls and to satisfy C4, the sum of total edge lengths of inter
wall edges, HONG proposes the following algorithm k-wall partitioning: Similar to
the algorithms described above, all the layers are scanned one by one from bottom to
top. The first layer is partitioned randomly and each next layer Li is partitioned on
the basis of the partition of layer Li−1. For partitioning layer Li into k subsets such
that the total edge length of inter wall edges is small, the following is applied for each
vertex u ∈ Li: all its immediate successors are considered, and u is placed in the
wall whose number is the closest integer to the average of the wall numbers of the
immediate successors of u. In other words, the wall u is placed in the barycenter of the
walls its immediate successors are placed in. When k = 2, this algorithm is basically
equal to the first proposed algorithm for Minimum One-Layer Bisection Problem. To
guarantee a balanced distribution of vertices among the walls (according to C1), the
author describe a simple technique that computes for each vertex a barycenter value b
that alternates for giving preference to the walls with fewer number of vertices. For a
vertex u, the wall assignment is computed by the barycenter bu that is given by

bu =


∑k

j=1 j · max
{
0, neighbours[j] − |L j

i |
}

∑k
j=1 max

{
0, neighbours[j] − |L j

i |
} + 0.5

 .
The underlying problem of balanced partitioning with k ≥ 2 subsets and the minimum
number of edges between the subsets is a generalization of the minimum bisection
problem and, therefore, it is NP-hard. The given algorithm for k-wall partitioning has
time complexity O(|V | + |E|) because each vertex and each edge is scanned only once.

http://rp-www.cs.usyd.edu.au/~visual/valacon/gallery/3DHL/
http://rp-www.cs.usyd.edu.au/~visual/valacon/gallery/3DHL/

6.4. APPROACH 3: PARTITION SUPPORTED 2.5D-LAYERING 141

The test data set for HONG is taken from the ROME graph library (Di Battista et al.
1997) with limited graph size, 10 ≤ |V | ≤ 100. Also, the direction of edges is assigned
randomly.
We can conclude that HONG provides a general framework for 2.5D–visualizations of
directed graphs. However, for our application domain of business process models, the
given algorithms do not comply with the requirements of 2.5D–visualizations for busi-
ness process models. None of the algorithms given in (Hong, Nikolov, and Tarassov
2007) fulfills all requirements C1-C4. For business process models, the requirements
can be discriminated as follows:

• C1 (equal distribution of nodes) is not desired for business process models. In
PSL, we use metadata of the process models, e.g. organizational semantics from
swimlanes, and encapsulate them into constraints for the 2.5D–visualization by
creating a partition. The partition reflects the metadata of swimlanes and follows
aesthetics FLOW.

• C2 (minimum number of inter wall edges) attempts to reduce occlusion. When
analyzing the given figures from HONG, this requirement still seems to be an
issue. In business process models, we argumented above that the number of
occlusions is limited by the number of splitting gateways |G|. And for real–
world process models, it holds that |G| � |V |. Therefore, occlusion is a small
threat for 2.5D–visualizations for business process models. Also, the number of
layer edges is induced by the choice of the perspective, see Section 5.3.1.

• C3 (minimum number of crossings of inter wall edges) is tackled only for two
walls by HONG. In our case, business process models are sparse. Crossings
between layer edges are very rare and the reduction of crossings has not highest
priority.

• C4 (minimum number of total edge length of inter wall edges) is also a require-
ment for layer edges in 2.5D–visualizations of business process models. With
our approach ILP from Section 6.3, we attempted to find an optimal solution for
2.5D–visualizations with respect to total edge length of all edges.
Also, PSL explicitly attempts to minimize total edge lengths by assigning cells
to nodes in the partition according to node order in BFS and assigning optimized
final horizontal coordinates.

Concluding, the algorithms of HONG do not suffice to fulfill the requirements of 2.5D–
visualizations of business process models. However, they provide an useful collection
of algorithms that tackle NP–hard problems for partitioning into subsets with con-
straints. The algorithms are simple and provide fast heuristics.

142 CHAPTER 6. VISUALIZATION APPROACHES IN 2.5D

In the next chapter, we will analyze and benchmark our three approaches SLS, ILP and
PSL. We will compare performance and layout quality. Also, we will compare them
against a force–feedback approach for 2.5D.

Chapter 7
Analysis and Benchmarks

After the description of the approaches for 2.5D-visualizations of business process
models in the last chapter, we will now present the analysis of the approaches and the
results of benchmark tests.
We will at first describe the properties of the data set of business process models that is
used for the benchmark tests, and then , we evaluate the approaches empirically with
respect to performance and layout quality. Finally, we will discuss the strengths and
weaknesses of the approaches in detail.

7.1. Data set

For our test data set, we decided not to use random graphs or collections of random
graphs, e.g. Rome graphs (Di Battista et al. 1997) or Graph Catalog (also known as
the AT&T Graphs) (Di Battista et al. 2000). Instead, we preferred a collection of real
industrial business process models because our approaches are targeted to work with
process models. A collection of random graphs might not reflect the graph structure of
industrial process models and might produce misleading results when used in bench-
mark tests.
The real-world business process models, which we used, stem from a collection cre-
ated for soundness checking of industrial business process models (Fahland et al.
2009). The origins of the data are manifold:

Quotation from (Fahland et al. 2009):
These data mostly resulted from modeling activities in customer projects
within a SOA context, i.e., processes were captured with the final goal
of implementing them in a Service-Oriented Architecture. The models
covered various industry domains such as financial services, automotive,

143

144 CHAPTER 7. ANALYSIS AND BENCHMARKS

telecommunications, construction, supply chain, health care, and customer
relationship management. We also looked at large collections of reference
processes that were created for the insurance and banking domain by users
who explored different modeling styles, i.e., different ways of capturing
data and control-flow at varying level of granularity. All models were
available in the IBM WebSphere Business Modeler tool [. . .]
Many process models are in fact quite small, as good modeling practice
suggests an appropriate structuring of processes into subprocesses, and are
therefore not a challenge for our soundness-checking approaches. Others,
in particular those created in other tools, might not have been created with
the appropriate notion of soundness or might have been created by non-
experts and consequently turned out to be syntactically incomplete and
therefore flawed in such a way that it made no sense to consider them fur-
ther. In the course of our experimental studies, we therefore reduced our
initial test set of approx. 3000 models to 5 libraries of 735 different mod-
els in total from the insurance, banking, customer relationship, as well as
construction and automotive supply chain domains.

The data files with the process models were provided on the web and, eventually,
contained 748 process models. The models were completely anonymized, i.e., de-
scription of tasks or gateways were relabeled to t1, t2, . . ., and g1, g2, . . . respectively.
The anonymization had no drawback for our purpose of visualizations because we are
interested only in the structural information of the underlying graphs and in predefined
node types for the mapping vertex_type, which were not removed by the anonymiza-
tion procedure.
For the mapping swimlane, we have to create an assignment of the nodes to swim-
lanes because the mapping is not given by the data set. Since we want to prevent a
purely random assignment, we apply Algorithm 12 that sequentially assign swimlanes
to nodes depending on the type and the neighbourhood. For the maximum number of
swimlanes that are available for the assignment, we analyzed a repository of existing
processes (Kunze et al. 2011) and we found that the number of swimlanes |S | (= |L|)
grows sublinear to |V |, i.e., |S | < o(|V |). Therefore, we set the maximum number of
swimlanes for the assignment to |S | = o(

√
|V |).

The test set of 748 real process models (Fahland et al. 2009) had the following graph
properties: graphs are very sparse with an average node degree of 2.2. The distribution
of the number of nodes and the number of edges is depicted in Figure 7.1.
In order to increase the validity of our benchmark results, we use an implementation of
Fruchterman-Reingold (FR) (Fruchterman and Reingold 1991) for comparison. The
implementation of FR was adapted for 2.5D by restricting forces to act only in the
layers (z-coordinates of nodes are fixed). In the following, we abbreviate this imple-
mentation by Spring.

7.1. DATA SET 145

Algorithm 12: Swimlane assignment for models in test data set
Input: Map vertex_type, Graph model(V, E)

1 RandGen = random integer generator for [0, . . . ,
√
|V |);

2 Nu = ∅; // set of unassigned nodes

3 foreach v ∈ V do
4 if vertex_type(v) == task ∨ vertex_type(v) == subprocess then
5 swimlane(v) = RandGen();
6 else
7 Nu ← Nu ∪ {v};
8

// handle unassigned nodes (gateways/events first)

9 foreach v ∈ |Nu| do
10 if vertex_type(v) == gateway ∨ vertex_type(v) == event then
11 Nn ← neighbourhood of v;
12 foreach n ∈ Nn do

// if a node n in neighbourhood of v is assigned

13 if swimlane(n) ∈ [0, . . . ,
√
|V |) then

// swimlane of v is set to swimlane of n
14 swimlane(v)← swimlane(n);
15 Nu ← Nu \ {v};
16 break;
17

18

// handle remaining unassigned nodes

19 while |Nu| > 0 do
20 foreach v ∈ |Nu| do
21 Nn ← neighbourhood of v;
22 foreach n ∈ Nn do

// if a node n in neighbourhood of v is assigned

23 if swimlane(n) ∈ [0, . . . ,
√
|V |) then

// swimlane of v is set to swimlane of n
24 swimlane(v)← swimlane(n);
25 Nu ← Nu \ {v};
26 break;
27

146 CHAPTER 7. ANALYSIS AND BENCHMARKS

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200

N
o

of
 m

od
el

s

No of nodes

Node-Distribution

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250 300

N
o

of
 m

od
el

s

No of edges

Edge-Distribution

Figure 7.1.: Graph properties of test set data. Industrial business process models have limited
size in terms of elements (max(|V |) = 145) and connections (max(|E|) = 264).

The four approaches are compared quantitatively (analyzing running times) and quali-
tatively (layout quality). Note that all our new approaches from Chapter 6 also consider
FLOW. However, the reference implementation Spring does not consider edge orien-
tations.
All tests were run on a Intel R© CoreTM2 Quad CPU Q9300 with 2.50GHz and 3GB of
RAM. The operating system is Ubuntu 10.04 LTS - Lucid Lynx. The algorithms were
implemented in JAVATM 1.5. For solving the linear programs of the ILP approach, we
used the solver SCIP (Achterberg 2009). The weights for the objective function are set
as follows: ce = 5.0, cle = 10.0, cs = 0.25 and cdir = 120.0. The values represent the
priority of the objectives stated in Section 6.3. In SLS, we ran 5 iterations of sweeps,
e.g. sweep orientation was flipped five times. Thus, the number k of Section 6.2 was
set to 5. In pre-experiments, we evaluated that changes of node positions ∆ was close
to 0 for all test process models after five flips of direction in the sweep algorithm.
For each model and approach, we ran 3 iterations to eliminate variance due to limited
computing hardware resources and parallel calls of the underlying operating system.
The test runs resulted in total number of ≈ 9000 data sets.

7.2. Performance

Execution times were recorded per model instance and the total time of each algo-
rithm was measured, including the pre- and post-processing stages. We depict the
times in relation to the number of nodes and in relation to the number of edges, see
Figures 7.2 - 7.5. We remark that the data structures of the algorithms of Spring did
not support multi-edges. Multi-edges were removed in a pre-processing stage and,
therefore, and the maximum number of edges of the test graphs might differ in the
following diagrams.

7.2. PERFORMANCE 147

The aggregated diagram for execution times of all approaches is depicted in Figure 7.6.
ILP was aborted after 120 seconds if no optimal solution was found, or after 20.000
LP iterations without improvement of the objective function. For models with more
than 180 edges, this abortion was critical as Figure 7.4 indicates.
It is clearly obvious that Partition supported layering (PSL) outperforms the other ap-
proaches, see Figure 7.6. Execution times of Sequential layer sweep (SLS) is ranked
between ILP and Fruchterman-Reingold (Spring), see also discussion in Section 7.4.

 1

 10

 100

 1000

 10000

 100000

 0 50 100 150 200 250 300

T
im

e
/ m

s

No of edges

Edges / Layout Time (Spring)

Spring
 1

 10

 100

 1000

 10000

 100000

 0 20 40 60 80 100 120 140 160

T
im

e
/ m

s

No of nodes

Nodes / Layout Time (Spring)

Spring

Figure 7.2.: Execution times for the reference implementation of Fruchterman-Reingold (FR).

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 50 100 150 200 250 300

T
im

e
/ m

s

No of edges

Edges / Layout Time (SLS)

SLS
 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 20 40 60 80 100 120 140 160

T
im

e
/ m

s

No of nodes

Nodes / Layout Time (SLS)

SLS

Figure 7.3.: Execution times for SLS.

148 CHAPTER 7. ANALYSIS AND BENCHMARKS

 10

 100

 1000

 10000

 100000

 1e+06

 0 50 100 150 200 250 300

T
im

e
/ m

s

No of edges

Edges / Layout Time (ILP)

ILP
 10

 100

 1000

 10000

 100000

 1e+06

 0 20 40 60 80 100 120 140 160

T
im

e
/ m

s

No of nodes

Nodes / Layout Time (ILP)

ILP

Figure 7.4.: Execution times for ILP.

 1

 10

 100

 1000

 10000

 0 50 100 150 200 250 300

T
im

e
/ m

s

No of edges

Edges / Layout Time (PSL)

PSL
 1

 10

 100

 1000

 10000

 0 20 40 60 80 100 120 140 160

T
im

e
/ m

s

No of nodes

Nodes / Layout Time (PSL)

PSL

Figure 7.5.: Execution times for PSL.

7.3. Layout Quality

For evaluating the quality of the approaches according to OBJ1-OBJ3, we consult the
edge lengths and the area size of the resulting layouts. In Figures 7.7 - 7.10, we depict
maximum and average edge lengths for each of the approaches and, in Figure 7.11, we
present the aggregated diagram for the data set of all four approaches.
We decided to consult maximum edge lengths and average edge lengths as metrics for
the benchmark measurements for the following reason: Aesthetics FLOW (OBJ1) is
fulfilled if an edge e ∈ E of a graph G = (V, E) is oriented in the orientation of the
flow of the process model. Also, FLOW implies that the nodes incident to an edge
are positioned such that the edge is easy to follow. Therefore, the length of an edge e

7.3. LAYOUT QUALITY 149

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 50 100 150 200 250 300

T
im

e
/ m

s

No of edges

Edges / Layout Time (all)

PSL
SLS

Spring
ILP

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 20 40 60 80 100 120 140 160

T
im

e
/ m

s

No of nodes

Nodes / Layout Time (all)

PSL
SLS

Spring
ILP

Figure 7.6.: Comparison of aggregated execution times.

should as short as possible. Thus, average edge length of a process model is desired to
be as low as possible. However, the average edge length does not suffice to prevent the
following: many short edges Es ⊂ E but a few single edges El ⊆ E \ Es that result to
be very long in the final layout, i.e., layer edges, because routing of the short edges Es

causes unfortunate routing of long edges El. This case is observed in our benchmarks
by measuring the maximum edge length for each process model. The good case in
terms of layout quality is a low average edge length but not at the expense of high
maximum edge length (OBJ2).
Although SLS produced high maximum edge lengths, average edge length was only
outperformed by PSL for small graphs. Note that ILP did not produce measurable re-
sults for larger graphs (|E| > 180) due to timeouts. Remember that Spring could not
handle multi-edges between two nodes which explains the missing points of results for
|E| > 170.
In Figure 7.12, we present the aggregated data for area consumption of the four ap-
proaches (OBJ3). ILP produced few outliers for graphs with |V | < 100 with very area
size. This is attributed to the fact that not all process model instances could be solved
optimally within given time constraints, as discussed in Section 7.4.2.
For a visual presentation of the resulting visualizations of our approaches, we refer to
an example in Figure 7.16. Also, we provide a high–resolution video which enables
the reader to analyze the results interactively in an animated fashion in the environ-
ment of BPMN–Layouter. The video can be found online at:
http://algo.inf.uni-tuebingen.de/?site=forschung/graphenzeichnen/bpmn-layouter

http://algo.inf.uni-tuebingen.de/?site=forschung/graphenzeichnen/bpmn-layouter

150 CHAPTER 7. ANALYSIS AND BENCHMARKS

 10

 100

 1000

 10000

 0 50 100 150 200 250 300

Le
ng

th
 /

un
it

No of edges

Edges / Max Edge Length (Spring)

Spring
 10

 100

 1000

 0 50 100 150 200 250 300

Le
ng

th
 /

un
it

No of edges

Edges / Avg Edge Length (Spring)

Spring

Figure 7.7.: Maximum/Average edge lengths for SLS.

 10

 100

 1000

 10000

 0 50 100 150 200 250 300

Le
ng

th
 /

un
it

No of edges

Edges / Max Edge Length (SLS)

SLS
 10

 100

 1000

 0 50 100 150 200 250 300

Le
ng

th
 /

un
it

No of edges

Edges / Avg Edge Length (SLS)

SLS

Figure 7.8.: Maximum/Average edge lengths for SLS.

7.3. LAYOUT QUALITY 151

 10

 100

 1000

 10000

 0 50 100 150 200 250 300

Le
ng

th
 /

un
it

No of edges

Edges / Max Edge Length (ILP)

ILP
 10

 100

 1000

 0 50 100 150 200 250 300
Le

ng
th

 /
un

it

No of edges

Edges / Avg Edge Length (ILP)

ILP

Figure 7.9.: Maximum/Average edge lengths for ILP.

 10

 100

 1000

 10000

 0 50 100 150 200 250 300

Le
ng

th
 /

un
it

No of edges

Edges / Max Edge Length (PSL)

PSL
 10

 100

 1000

 0 50 100 150 200 250 300

Le
ng

th
 /

un
it

No of edges

Edges / Avg Edge Length (PSL)

PSL

Figure 7.10.: Maximum/Average edge lengths for PSL.

152 CHAPTER 7. ANALYSIS AND BENCHMARKS

 10

 100

 1000

 10000

 0 50 100 150 200 250 300

Le
ng

th
 /

un
it

No of edges

Edges / Max Edge Length (all)

PSL
SLS

Spring
ILP

 10

 100

 1000

 0 50 100 150 200 250 300

Le
ng

th
 /

un
it

No of edges

Edges / Avg Edge Length (all)

PSL
SLS

Spring
ILP

Figure 7.11.: Aggregated data for maximum/average edge lengths of all four approaches.

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 20 40 60 80 100 120 140 160

A
re

a
si

ze
 /

px

No of nodes

Nodes / Area size (all)

PSL
SLS

Spring
ILP

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 50 100 150 200 250 300

A
re

a
si

ze
 /

px

No of edges

Edges / Area size (all)

PSL
SLS

Spring
ILP

Figure 7.12.: Aggregated data for area consumption of all four approaches.

7.4. DISCUSSION 153

7.4. Discussion

In the following, we will discuss the results of the benchmarks and algorithmic details
of the three approaches SLS, ILP and PSL.

7.4.1. Sequential layer sweep (SLS)

A drawback of SLS is that it may end up in a state where no changes are performed
when sweeping through the layer although optimality (in terms of edge lengths) is not
reached. This case occurs if the dummy nodes (that are set in (a) the update layer stage
and (b) layer layout stage) block the layout stage of a layer to utilize the area space for
regular nodes. The issue of space squandering by inserted dummy nodes is a major
drawback for SLS and can be observed in the resulting high (maximum and average)
edge lengths in Figure 7.8, especially for graphs with |E| > 50, and the area consump-
tion in Figure 7.12. Remember that the number of dummy nodes |D| is |D| ≤ 3 · |LE| · |L|
(dummy nodes and principal are represented by at most three inserted nodes per layer
and per layer edge).
Another issue of SLS is that a node n (incident to a layer edge) may oscillate between
two positions: caused by connected dummy node(s) and the update layer stage that
sets the dummy node(s) in the neighbourhood of n, a call of the layout stage in layer
layer(n) may reset the position n and therefore render the previous update layer to be
without effect on the position of n. This was solved by setting k, the number of sweeps,
and breaking oscillating dependencies of nodes incident to layer edges. However, it
cannot be guaranteed that the final position of n is optimal.
Executions times of SLS are high, see Figure 7.3 due to multiple calls of the layer
layout algorithm for each layer (including dummy nodes). The layer layout algorithm
in SLS is called in total |L| · k times for each process model with layers L.

7.4.2. Integer linear programming (ILP)

The ILP approach has a very high running time for larger process model instances
(|E| > 180); for smaller examples, the rise in running time with increasing number
of edges is still steep, see Figure 7.4. ILP accomplishes best the task of reducing the
maximum edge lengths. However, average edge lengths are mediocre compared to
SLS and PSL, see Figure 7.11.
Of 748 tested models, 323 (= 43%) were solved optimally, the remaining 425 process
model instances caused an LP solver interruption due to the above mentioned con-
straints: solving time was limited to 120 seconds and solving was interrupted after
20.000 LP iterations without improvement on the objective function. Although, the

154 CHAPTER 7. ANALYSIS AND BENCHMARKS

ratio of aborted ILP calls is high (57%), the average optimality gap for these calls is
low (9.59%), the maximal optimality gap was 63.18%, see Figure 7.13. The gap is
defined by the current (relative) gap given by

gap = |primal − dual|/min(|dual|, |primal|

where |primal| and |dual| are the values of the objective function in the solving process
of the primal linear program and the dual linear program, respectively. This shows
that, although 57% of the process models could not be solved optimally within solving
constraints, the remaining steps in the linear program to reach an optimal solution of
the ILP layout problem for these models were small. The resulting layouts of ILP are
also satisfying for larger process models, despite an aborted solving process.

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200

G
ap

 s
iz

e
/ %

No of nodes

ILP optimality gap

Figure 7.13.: Optimality gap of ILP solving processes. Gap values > 0% stem from aborted
LP solver processes due to time or improvement constraints.

Remember that the ILP model contained relaxed constraints with respect to node over-
laps. In tests, we found that removing the overlap relaxation resulted in process mod-
els that were not solvable in less than 2 hours. Therefore, the relaxation produces a
significant speed-up and allows us to compute layouts in practically acceptable time
constraints.
The post-processing stage for node overlap removal was called in special cases only:
for small process models (|V | ≤ 50) the overlap removal stage counted an average
number of overlaps of 2. For larger process models, the maximum number of overlaps
in a process model was 6. Note that node overlaps cause high costs in the objective
function as described in Section 6.3.
Remember that an ILP model for a process model instance has O(|E|+ |V |+ |LE|) con-
straints, see Section 6.3. In Figure 7.14, we depict the sizes of the test model instances
for the original models (as described in Section 6.3) and the presolved model sizes.
Presolving is a step of SCIP that is performed before the solving process is initiated.

7.4. DISCUSSION 155

Presolving attempts the following goals: domain tightening, coefficient modification,
deletion of redundant constraints, constraint upgrading (Achterberg 2009). From Fig-
ure 7.14, we observe that presolving has a significant effect on our ILP model instances
in terms of deletion of redundant constraints.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0 50 100 150 200

N
o

of
 c

on
st

ra
in

ts
/v

ar
ia

bl
es

No of nodes

ILP model size (original)

constraints
variables

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 50 100 150 200
N

o
of

 c
on

st
ra

in
ts

/v
ar

ia
bl

es

No of nodes

ILP model size (presolved)

constraints
variables

Figure 7.14.: Sizes of the ILP models for the process model instances in the benchmarks. The
models were created according to description in Section 6.3.

7.4.3. Partition supported layering (PSL)

From Figure 7.6, we can observe that PSL has the lowest execution times and outper-
forms the four approaches. This is a major benefit of PSL. In terms of layout quality,
PSL produces low average edge lengths and consumed lowest area space, see Fig-
ure 7.12. However, PSL creates higher maximal edge length for graphs with |V | ≤ 100
compared to Spring and ILP. This can be attributed to the upward layering. Edges that
are reversed for cycle removal can result in a very long at the benefit of short edges in
the remaining edges of the cycle, see example in Figure 7.15.

Figure 7.15.: Layering of a cycle causes (at least) one long edge in the layer assignment.

156 CHAPTER 7. ANALYSIS AND BENCHMARKS

The resulting layouts of PSL are very pleasing. A benefit of PSL is that parallelisms
in the process model are visualized in a manner that they easy to perceive. This is
achieved by using the BFS for the assignment of partition cells: tasks that are executed
in parallel are assigned the identical BFS number (when initiated by the same gate-
way). Therefore, they are assigned the identical column j in partition p and placed in
parallel in the resulting layout.
The reason that PSL outperforms the other approaches in terms of performance and
layout quality is based on the fact that PSL exploits the graphs’ structure of the busi-
ness process models: the underlying graphs are sparse and contain few cycles. Thus,
the assignment into a partition is a pre–processing stage that allows the underlying lay-
ering algorithm to be fast and simple, i.e., compared to the model of linear program-
ming. We also use PSL in our project Flight Navigator that is presented in Section 8.3.

7.5. Conclusion and Summary

Concluding the analysis and benchmarks of the proposed approaches for 2.5D–visual-
izations of business process models, we can observe that our approaches SLS, ILP and
PSL are feasible and produce satisfying layouts.
From Figures 7.6, 7.11 and 7.12 and the discussion in the previous section, we can
conclude that

1. PSL computes the resulting layouts with the best performance.
2. PSL consumes the lowest amount of area for the resulting layouts.
3. PSL has the lowest average edge lengths.
4. PSL achieves lowest average edge lengths at the expense of higher maximum

edge lengths.
5. PSL exploits the graphs’ structure of business process models best.
6. SLS is unable to cover the issue of space usage by inserted dummy nodes.
7. ILP produces optimal results (with respect to the objectives given in Section 6.3).
8. ILP solves only 43% of the instances in the test data set within a given time

frame of 120 seconds, despite the relaxation of node overlaps.

Furthermore, we presented perspectives for the projection of business process models
into the 3D–space. These perspectives are a requirement for semantically expressive
2.5D–visualizations of business process models. The perspectives are:

• Organization perspective
• Functional perspective
• Control flow/Data flow perspective

We employ the perspectives in our three approaches for 2.5D–visualizations.

7.5. CONCLUSION AND SUMMARY 157

The algorithms for 2.5D–visualizations are integrated into BPMN–Layouter. There-
fore, we developed a 3D–framework for the presentation and analysis of 2.5D–visual-
izations. This so–called 3D–Navigator provides highly interactive user interfaces with
navigation support in 3D and real–time presentation of 2.5D–visualizations. A use
case of the 3D–Navigator is the Flight–Navigator for business process models that is
presented in Section 8.3.

158 CHAPTER 7. ANALYSIS AND BENCHMARKS

(a) SLS visualization. It is obvious that, in this example, SLS is not able to guarantee FLOW, see lower
layer. Also, placement of nodes is far from optimal considering area consumption which is due to the
temporarily inserted dummy nodes.

(b) ILP visualization. The approach has a good area consumption. Also, layer edge lengths are optimal
in this example. Note that the approach considers the minimum node distance which is given as input
parameter. (The view is rotated by 45◦ around the z-axis.)

(c) PSL visualization. FLOW is highlighted best for this example. Note that the concurrency of the three
parallel tasks is easily identifiable. Layer edge lengths are not optimal but FLOW is stressed further
because layer edges are oriented in flow direction.

Figure 7.16.: Examples of 2.5D–visualizations with our approaches. The process from Fig-
ure 2.16 on page 47 is used as input model.

Part III.

Epilog

159

Chapter 8
Applications and Projects

In this chapter, we would like to present additional projects that were undertaken dur-
ing the time of this thesis. All projects are related to visualization and were published
and/or presented at conferences or workshops in the field of graph drawing or process
visualization. Among the projects are attempts to visualize business process models,
either in an online–application on the web, see Section 8.2, or in an interactive brows-
ing mode in 3D, see Flight–Navigator in Section 8.3. Also, there is a project which the
graph drawing community benefits from: an online archive for graphs (GraphArchive)
is presented in Section 8.4. I would like to start with a project of personal interest,
the visualization of the relations between the most important composers since the 10th
century.

8.1. Contribution to GraphDrawing2011 Contest

In parallel to the annual International Symposium of Graph Drawing, the organization
committee calls for participation in the GraphDrawing Contest. The tasks given to
participants are of the following two categories:
(a) problems in graph drawing that are known to be hard to solve optimally, e.g. layout
of a graph with given restricted area size, or (b) visualize given data in a sense that
the underlying data becomes perceptible, e.g. if nodes represent cities, they might be
placed according to location on the globe.
In 2011, the following task was published in category (b):

The composers graph is a large directed graph, where the nodes repre-
sent Wikipedia articles about composers, and the edges represent links
between these articles. The graph has too many nodes and edges to be ef-
fectively presented in a straightforward way. The task is to combine graph

161

162 CHAPTER 8. APPLICATIONS AND PROJECTS

drawing algorithms with appropriate techniques for complexity reduction
(such as filtering and varying the graphical attributes) to create an illumi-
nating visualization (one or more images, possibly with commentaries, or
a movie). It is by no means a requirement to present the entire data set.
Source: homepage of GraphDrawing Symposium 2011:
http://graphdrawing.de/contest2011/topic2-2011.html, 2012–09–30.

Our contribution to the GraphDrawing Contest 2011 consists of a dedicated application
(ComposerGraphViewer, CGV) that allows interactive browsing and filtering of the
composers graph. CGV is also mentioned on the homepage of the contest results, see
http://graphdrawing.de/contest2011/results.html, 2012–09–30.
Furthermore, we created a video for the presentation of the interactive features, see
http://www.youtube.com/watch?v=8b5z4nLL8KM&hd=1], 2012–09–30.
In the following summary, we present the ideas and features that are incorporated in
our contributed tool CGV.

Figure 8.1.: A screenshot of the graphical user interface for the CGV. The timeline is drawn
on top of the composers nodes. Colors represent centrality values of nodes in the
composers graph (from ’red’ nodes that denote high centrality to ’green’ nodes
with low centrality).

http://graphdrawing.de/contest2011/topic2-2011.html
http://graphdrawing.de/contest2011/results.html
http://www.youtube.com/watch?v=8b5z4nLL8KM&hd=1]

8.1. CONTRIBUTION TO GRAPHDRAWING2011 CONTEST 163

8.1.1. Preprocessing of the graph

The following steps were applied to the graph prior to a visualization in CGV. The
main goal was to reduce the huge amount of indistinguishable data contained in the
graph.

• Component analysis: Analysis revealed 623 components (622 components
with size ≤ 3). These small components were removed and the connected re-
maining graph (with approx. 2750 nodes) was processed further.

• Retrieval of birth dates: For the remaining nodes, composer names were used
to search for birth dates of composers in wikipedia articles. Birth dates were
found for 2684 composers.

• Computation of centrality values: Centrality values of nodes are computed
and visualized using colors in the range from red (high centrality) to green (low
centrality). Centrality computations can be done with two centrality measures:
degree– or node–betweenness–centrality.

• Assign default coordinates: x–coordinates of nodes are given by birth dates.
Composer node length is set relatively to the years of a composer’s life. y–
coordinates are initially set to 0, see layouter in next section

• Edge removal: Due to performance reasons, edges are prevented from being
displayed but will be considered in filtering features, see Section 8.1.3.

8.1.2. Layout implementation

Our layout algorithm applies a layered layout to the nodes. Nodes are inserted sequen-
tially in descending order of centrality. Initiating with the timeline and a single empty
layer, the algorithm searches for the next (to top, and to timeline respectively) unused
area space in the given life span of the composer. If no layer contains free space, a new
layer is appended to the layout.
It is possible that a node a with lower centrality appears higher in the display than a
node b with high centrality since the algorithm looks for an area next to the time-line
and if a has a shorter life span than b, it might be inserted in a higher layer.
The number of layers is bound by the maximum of composers that live at a time in
any period of time. In our case, the maximum numbers of layers is occupied by alive
composers in the present.

8.1.3. Filtering features

Filtering is a powerful feature when displaying massive amount of data. Our visual-
ization approach supports three different filters:

164 CHAPTER 8. APPLICATIONS AND PROJECTS

Algorithm 13: Layering layout algorithm

1 Let Vu be the set of nodes;
2 Vs = Sort Vu in descending order of (degree-) centrality value;
3 Let L = ∅ be the ordered list of layers;
4 for Node v in Vs do
5 let tv = (birth, death)v be the life time period of v;
6 for Layer l in L do
7 if l has free space for tv then
8 insert v to l;
9 break;

// if no layer contained free space

10 create new layer ln = {v};
11 L = L : l; // append new layer to list of layers

12 return L;

• Incidence selection: incident edges of selected nodes are taken into account:
only neighbours of selected nodes are displayed. When multiple nodes are se-
lected, the displayed nodes can be set to be the union or intersection of the set
of neighbour nodes.

• Centrality: a lowest centrality bound can be set by using an interactive slider in
the application. The slider defines the lowest bound for the centrality of a node
to be displayed. Distribution of centrality can be linear (same number of nodes
in each slider unit) or absolute (ranges according to centrality values). Degree–
and node–betweenness–centrality are available to interactively swap between
the two types of centrality.

• String search: a string filter enables the search for composers’ names.

The filters can also be combined. Using the combinations lead to many interesting use–
cases that allow to inspect the graph in detailed manner, e.g., the following analysis:
what composer(s) has interacted with what other composer(s) that have at least the
importance (in the sense of centrality) of a given value?

8.1.4. Interactive application

Our application comes with a small graphical interface ’ComposerGraphViewer’ (CGV)
for user interactivity, see Figure 8.1. Important parts of the interface are the following:

• Statistics: a window for statistics can be enabled. It displays the total number
of composers currently displayed, as well as the chronological predecessors,

8.2. BUSINESS PROCESS MODELING USING WEB2.0 165

contemporary colleagues and successors of one or more selected composers.
• Switch of applied centrality type (degree– or node–betweenness).
• Update after slider changes with layout computation in real–time.
• Text search for names in real–time.
• Selection box for union or intersection when applying the selection filter.

The user can discover surprising connections between the composers and analyze them
further since the filters can interactively be changed and update the current graph im-
mediately. By not displaying the huge number of edges (> 13.000), the application
runs smoothly and allows real-time interaction with the user. A switch of centrality
type needs, as a one–time pre–processing step, between 2-7 seconds per computation
for the whole graph.

8.2. Business Process Modeling using Web2.0

The second project1 provides automatic layout algorithms that are incorporated in a
Web2.0 modeling platform. The project was a joint work with Dr. Gero Decker,
a former PhD student at Hasso–Plattner–Institut (HPI) Potsdam, Germany. He later
founded Signavio GmbH2, a company providing software tools for business process
modeling.
Modern business process modeling can be facilitated using automatic layout tech-
niques. Business process modeling accomplishes the task of designing processes in
a graphical manner. With Oryx, we have a open–source modeling tool at hand that
supports collaborative and web–based modeling of BPMN diagrams. Here, we show
how automatic layout of diagrams can support the designer when starting to model a
process in BPMN. We provide an automatic layout approach integrated into Oryx that
computes a new layout for a given BPMN diagram. When constructing a new layout,
BPMN drawing conventions have to be considered, e.g. orthogonal edges, hierarchical
structures, partitions, etc.

8.2.1. Oryx – A Web2.0-based collaborative graphical editor

Tooling plays an increasing role in academic research. This is mainly due to two
reasons. Firstly, theoretical concepts can benefit from exploration using prototypi-
cal implementation. Secondly, the practical applicability of the research work can be
demonstrated, which is important to raise awareness of results of academic research to
practitioners.

1Parts of this section are published in (Effinger and Decker 2010).
2see company website: http://www.signavio.com/de, 2012–09–30.

http://www.signavio.com/de

166 CHAPTER 8. APPLICATIONS AND PROJECTS

In academic research groups, researchers tend to implement small-scale prototypes that
can do exactly what the particular researcher is interested in. Typically each project is
started from scratch. If results from collaborators are reused, then re–use is done in a
non–structured way, by copying and pasting program code. As a result, the wheel is
reinvented many times, and valuable resources are wasted. Motivated by this obser-
vation, the business process technology research group at the Hasso–Plattner–Institute
has decided to develop an open and extensible framework for graphical modeling3

called Oryx.

Figure 8.2.: A BPMN process diagram modeled by a human process designer. The Oryx user
interface is completely browser–based and allows user–friendly drag–and–drop
usability.

Oryx is an extensible framework for graphical modeling in the web browser. Using
JavaScript and Scalable Vector Graphics (SVG), Oryx uses modern web technologies
that realize a similar user experience like a classical modeling tool that runs on the
desktop. The application is loaded into the browser whenever a graphical model is
opened for editing.
In Oryx, each artifact is identified by a URL, so that models can be shared by passing
references, rather than by exchanging model documents as email attachments. Oryx
follows the Representational State Transfer (REST) architectural style, using the HTTP
verbs GET, PUT, POST and DELETE for reading and updating models. This enables
a highly scalable architecture, allowing for caching mechanisms at the protocol level.

3see http://oryx-project.org, 2012–09–30.

http://oryx-project.org

8.2. BUSINESS PROCESS MODELING USING WEB2.0 167

The Oryx source code is available under an Open Source license and has become
a widely used technology platform, especially in the Business Process Management
(BPM) community. Here, process modeling using languages such as the Business
Process Modeling Notation (BPMN) is a central activity.
The plugin infrastructure of Oryx allows to easily add (1) new modeling notations
in a declarative way, including syntax rules such as containment and connection con-
straints, (2) new client– and server–side functionality, e.g. language transformations or
advanced model verification techniques and (3) UI mashups on top of graphical mod-
els. The latter can be compared to the Google Maps API: graphical models serve as
read-only canvas that can be enriched with UI elements that provide additional func-
tionality on top of model elements.

(a)

(b)

Figure 8.3.: (a) A BPMN example process diagram. (b) The resulting process diagram after
our approach is applied. The drawing conventions of BPMN are fulfilled.

168 CHAPTER 8. APPLICATIONS AND PROJECTS

8.2.2. The automatic layout algorithm and integration into Oryx

Our layout approach for support of automatic layout in Oryx is developed by extending
previous works on layout techniques adoptable for BPMN (Effinger, Kaufmann, and
Siebenhaller 2009; Effinger, Siebenhaller, and Kaufmann 2009a) which were rehashed
in Section 2.4. The layout is computed on BPMN diagrams that are based on a graphs
according to the definition of a BPNM–Graph in Section 2.
An automatic layout approach for BPMN–Graphs has to support the drawing conven-
tions that represent specific layout requirements of the BPMN notation. In the case for
the online modeling platform, we use the following specific layout requirements:

• Elements have different sizes.
• We have to consider partitions, e.g. (collapsed/expanded) pools and swimlanes.
• Handle labels of pools, swimlanes, elements and edges.

Since BPMN–graphs are usually drawn using orthogonal routes for edges in Oryx, we
use our orthogonal layout approach for computing a layout of a given BPMN-graph.
Our layout approach employs the implementation described in (Effinger, Kaufmann,
and Siebenhaller 2009; Effinger, Siebenhaller, and Kaufmann 2009a; Siebenhaller and
Kaufmann 2006a) that incorporates different constraints needed for the automatic lay-
out of activity diagrams which are related to business process diagrams. The supported
constraints include partitions (a generalization of swimlanes), clusters (subprocesses/-
groups) as well as a common workflow direction of edges which is especially important
for such diagrams. Remember that the techniques in use are based on Sugiyama’s al-
gorithm (Sugiyama, Tagawa, and Toda 1981) and the Topology-Shape-Metrics (TSM)
approach (Tamassia 1987). All above mentioned layout requirements and drawing con-
ventions required by BPMN models can be satisfied.
For the integration of the layout implementations into Oryx, a wrapper was imple-
mented in JAVA that offers interfaces for the connection to the JavaScript-based BPMN–
editor Oryx and support of the Oryx–internal diagram model.
An integration of the layout feature into the productive branch of Oryx is yet to be
performed. Then, users of Oryx can apply the layout algorithm by pushing a single
button in the web–interface of Oryx.

8.3. Flight Navigator for Business Process Models

There are countless tools for modeling business processes. They serve the purpose of
creating models from new or existing business processes. However, in many cases, a
model might already exist but has to be understood and/or analyzed.

8.3. FLIGHT NAVIGATOR FOR BUSINESS PROCESS MODELS 169

The understanding of a business process model depends on the preferred method of
presentation. In this project4, we present an alternative method called ’Flight Naviga-
tor’ for presenting and analyzing models.
We exploit the freedom of an additional dimension for displaying models (3D) and
offer keyboard/mouse interaction methods to the user for simple navigation in 3D.
For sequential analysis/presentation of models, we support ’flights’ through the pro-
cess model using smooth animations. We aim at supporting the user to keep his/her
mental model while browsing in 3D. Then, the amount of information perceived by the
user is higher than compared to 2D-diagrams (Ware and Franck 1994). For preserva-
tion of a user’s mental model, we keep the number of animation motions per flight step
steady and set the orientation in the 3D-environment as fixed, e.g. the up-direction of
the viewing angle in 3D is set to be constant.
In the following, we specify the method that Flight Navigator uses for projection of an
input model to its 3D-environment and describe the navigation and flight features of
our tool.

8.3.1. Presentation of Flight Navigator

In this section, we present details of our Flight Navigator, a software with features pro-
viding interactive browsing in a 3D-environment. The goal is to support presentation,
inspection and analysis of business process models, also with the help of Business
Process Flights (BPFs).
For depicting the business process models, we use BPMN. More specifically, we use
the part of collaboration diagrams of BPMN which represent interactions between
roles and responsibilities and their corresponding tasks. In the following, we describe
used techniques for projection of process models into 2.5D, supported navigation fea-
tures and flight planning of Flight Navigator.

Perspectives and Projection onto 2.5D

For the creation of our BPMN-models in 3D, we use two techniques: organizational
perspective and 2.5D-projection. In Section 5.3.1, the following set of perspectives on
a general business process is presented:

• Functional perspective
• Data (flow) perspective
• Operational perspective
• Organizational perspective
• Behavioural perspective

4Parts of this project were published in (Effinger 2012).

170 CHAPTER 8. APPLICATIONS AND PROJECTS

For our purpose, we employ the organizational perspective. We derive the roles and re-
sponsibilities from the structure of swimlanes/pools in the original BPMN model. For
instance, swimlanes and pools represent departments or single executives in compa-
nies which are assigned specific tasks in a process. If not given by the input model, we
compute element positions in 2.5D using layers by applying techniques of automatic
layout algorithms, see Section 6.4.
After having derived the view from the organizational perspective of a model, we
project the view into 3D, using the concept of two-and-a-half dimensions (2.5D), see
Section 5.3. Remember that, in 2.5D, elements of the model are assigned to layers.
Layers are planes in 3D, with a individual but fixed value in z-axis direction (z defines
the depth values of layers). The layers can be considered as a stack of planes with
equal size. The final view of a process model after projection is depicted in Figure 8.4.

Figure 8.4.: Overview of a complete process model in the 3D-navigator. The layout of the
model considers the flow orientation (left to right) of the process.

Navigation support

For navigating in Flight Navigator, we aimed to support high user interactivity and
smooth transitions when moving in the 2.5D-model. Flight Navigator offers mouse–
actuated navigation on the viewing plane and rotation of that plane, as well as chang-
ing the viewing height to accommodate viewing of different layers. The navigation
features of our 3D–Navigator, presented in Section 5.3, are also available in Flight
Navigator.

8.3. FLIGHT NAVIGATOR FOR BUSINESS PROCESS MODELS 171

Navigating Flights

The idea of flights in process models is the following: (a) start at an element that
represents an entry point of the process; (b) then, follow the process by considering
the predetermined directed sequence flow; (c) analyse/present the sequence flow, e.g.,
check if the order of tasks in this flight was correct and as expected. A jump (a step in
the flight) from an element a to an element b is allowed only if b is a successor of a
in the process’ sequence flow, or if b is a predecessor of a. A jump is performed by a
smooth animated transition of the view perspective in Flight Navigator.
Since an element a may have several predecessors and/or successors, we use a heads–
up–display (HUD) to preview miniature images of the possible destination elements.
The destination elements are updated after every jump since the destination candidates
(the sets of predecessors and successors) depend on the current element. In Figure 8.5,
the HUD is depicted for a node with two predecessors and one successor. The placing
of the HUD miniature preview images is derived from the keyboard numpad shortcuts
for the destination node, e.g. Key ’8’ represents the top center in the HUD, Key ’1’
for the left bottom position of the HUD, see Figure 8.5 for an example. The keyboard
shortcuts are chosen for good support of a intuitive user interface: going ’forward’ is
assigned to keys ’7’ to ’9’ on the numerical pad for successors; going ’backwards’ is
assigned to keys ’1’ to ’3’ for predecessors while ’2’ (backwards) is also used to keep
a history of the last visited nodes. Keys ’4’ to ’6’ are dynamically assigned if the set
of neighbours of either direction (forward, backward) grows larger than 3. However,
this is a rare case. The maximum size of predecessors/successors in our test set, taken
from (Fahland et al. 2009), was low (≤ 6).
In activated flight mode, the user can simply select a random node from the model to
start a flight. The HUD is then updated immediately. Also, we implemented to switch
to start/end nodes using shortcut keys ’HOME’ / ’END’.

Implementation

The Flight Navigator is implemented using standard technology. We use JAVATM 1.5
and JOGL 5, an open-source interface for binding OpenGL R© into a JAVA program. For
graph analysis and basic data structures, we employ the graph library yFiles developed
by yWorks 6. Flight Navigator is also integrated into our academic BPMN modeling
tool BPMN-Layouter 7.

5http://download.java.net/media/jogl/www/, 2012–09–30.
6http:///www.yworks.de, 2012–09–30.
7 see homepage of BPMN–Layouter for a video demonstrating interactivity and animations in Flight–Navigator:
http://algo.inf.uni-tuebingen.de/?site=forschung/graphenzeichnen/bpmn-layouter, 2012–
09–30.

http://download.java.net/media/jogl/www/
http:///www.yworks.de
http://algo.inf.uni-tuebingen.de/?site=forschung/graphenzeichnen/bpmn-layouter

172 CHAPTER 8. APPLICATIONS AND PROJECTS

Figure 8.5.: Display of the HUD (head-up-display) in the Flight Navigator. From the current
node (Gateway ’G13’), a single successor (’TASK - 24’) is reachable by press-
ing keyboard shortcut ’8’, see top center HUD position; the two predecessors
(’START EVENT - 15’,’START EVENT - 16’) are reachable by pressing ’1’, or
’2’ respectively, see bottom HUD positions.

8.3.2. Summary

We presented our project with the software tool ’Flight Navigator’, a 3D-navigator for
analyzing and presenting business process models. It supports strong interactivity with
the user using keyboard/mouse input and real-time 3D-presentation. For the presen-
tation, we use the concept of 2.5D for projection of business process models into 3D.
Future development might comprehend adding more features: The Flight Navigator
software is ready to be extended, e.g. for editing business process models in 3D or for
activating an ’autopilot’ for automatic process presentations.

8.4. GraphArchive

The work on GraphArchive, an online database for graphs, was initiated during Dagstuhl
seminary 111918 in May 2011. There, the need for a central store for graphs become
obvious when performing a survey among the seminary participants. The survey asked
for needs and habits when handling graphs which, i.e., were used in publications for

8for more details on Dagstuhl seminary 11191, see http://www.dagstuhl.de/en/program/

calendar/semhp/?semnr=11191, 2012–09–30.

http://www.dagstuhl.de/en/program/calendar/semhp/?semnr=11191
http://www.dagstuhl.de/en/program/calendar/semhp/?semnr=11191

8.4. GRAPHARCHIVE 173

testing or evaluation and should be made open to the public for further investigations.
Our survey results are made accessible by the Dagstuhl organizers at:
http://www.dagstuhl.de/mat/Files/11/11191/11191.SpoenemannMiro.Slides1.pdf

The fruitful discussions at the seminary and the subsequent development of a web–
platform resulted in several publications where our approach GraphArchive was de-
scribed and used. Among these publications are (Bachmaier et al. 2011a,b; Effinger,
Kaufmann, Meinert, et al. 2011). The details of the code base development are pre-
sented in (Stegmaier 2011). In (Effinger, Kaufmann, Meinert, et al. 2011), a history of
GraphDB is presented. GraphDB is the predecessor of GraphArchive which dates back
to 2004 and had several drawbacks that required a full redesign and new implementa-
tion. However, the overall goal is already valid for both, GraphArchive and GraphDB:
to enable researcher to share graphs as easy as possible for a fast distribution of data
sets. On the 19th International Symposium on Graph Drawing in September 2011,
GraphArchive was officially launched and it was presented to its target audience.

8.4.1. Features of the new GraphArchive

In the following, we will provide a list of the main features of our new approach and
present our system architecture as presented in (Effinger, Kaufmann, Meinert, et al.
2011). Then, we will present selected key features in more detail.

Main features of GraphArchive

All features are chosen supporting the guideline that our major goal is to provide an
open and easily accessible system. In the following, we present the main features of
the new system:

• web–based user interface: All user interaction is done online via a browser.
A web portal offers all functionality that is needed to handle a graph from up-
loading data, inspection of existing graphs and search for others and, finally,
downloading a found graph.

• automated registration (email opt–in): Registration is performed online using
a registration form, which is handled automatically. The system sends immedi-
ately a registration link via email after submitting the form.

• limited rights management: There are no groups of users that define rights for
small circles of users. Licenses for graphs limiting usage are not encouraged
in our open approach, thus, if necessary, a license can be attached to individual
graphs only.

http://www.dagstuhl.de/mat/Files/11/11191/11191.SpoenemannMiro.Slides1.pdf

174 CHAPTER 8. APPLICATIONS AND PROJECTS

• open access to all graphs after registration: After confirming registration by
fulfilling the email opt–in process, a user has full access to all graphs and can
initiate queries without restrictions.

• categorization of graphs (e.g., fields of application): For search, graphs can
be assigned to the field(s) of application that they derive from. This enables
researchers from different fields to use GraphArchive as a common platform.

• automatic graph analysis after upload (for graphs with <100.000 nodes):
After upload, graphs are analyzed in order to provide consistent data. The con-
sistency is very important for search queries on graph properties. Also, auto-
matic analysis might reveal more properties than manual assignment.

• search for graphs using multiple criteria: Search queries can be executed on
multiple parameters, among them are graph properties, categories, author, name
and upload date. Also, search parameters can be combined to further narrow
down the result set.

• support of user–defined tags attachable to graphs: Users can define individ-
ual tags to identify special attributes of graph(s). All user-defined tags are made
fully searchable.

• support of grouping of graphs: Graphs can be grouped to mark their relation,
e.g., graphs that stem from a specific test data set. Graphs that are uploaded as a
single zip file are also grouped using one distinct tag, e.g. the zip file’s name.

• support of graph layouts to create visualizations (images) of graphs: An
image of a graph is valuable if a user quickly wants to inspect visually a graph’s
properties. Layouts are computed automatically in the background and also can
be changed after upload.

• support for creating comments and references: Commenting on graphs might
initiate discussions on certain graphs. Also, descriptions can be stored as com-
ments. References can be assigned to a graph in order to highlight publications
and/or websites that made use of this graph in any kind.

• unique links to a graph (URI) for referencing in publications: A URI al-
lows for a permanent reference in publications. Stating the URI in a publication
enables the reader to quickly find the used graph data set.

• ’multiview’ for comparing multiple graphs on a single page: For quickly
comparing multiple graphs at a time, we support the presentation of various
graphs at a time. Properties are displayed for all graphs. Boolean properties, e.g.,
directed/undirected, are presented visually on a scale (property can be fulfilled
by (a) no graph, (b) a subset of the displayed graphs or (c) all graphs).

• support of various graph file formats: Since it is impossible to decide on
a specific file format when supporting many fields of applications, we aim at

8.4. GRAPHARCHIVE 175

providing support for as many formats as possible. Our system allows to add
further formats in the future.

• support of graph file format conversion for downloads: For downloading
graphs, a user can choose the format that fits best to his/her work environment.
We provide cross conversion (the users can select any supported format and the
system starts the conversion automatically).

• support of zipped files for import/export of multiple graphs: When han-
dling a test data set of graphs, we allow to upload/download several graphs at a
time using zip compression. In an upload process, each file in the compressed
file can optionally be processed individually (for properties analysis and layout
computation). When downloading several files, the system automatically creates
a compressed file containing all selected graphs.

• graph authorship management featuring my graphs for graph authors: An
author of graphs can easily manage his/her graphs using the view ’my graphs’
where inspections and actions, e.g., deletions of multiple graphs, are quickly
accessible.

• guest access for non–registered users: If a user wants to check a specific graph,
he/she can access a detailed view on the graph using the URI. All properties and
attributes of the graph are made visible entering via the guest account. However,
actions, e.g., commenting, changing properties or download, are disabled in this
view.

Architecture

Our system architecture is built similar to a common web–browser application in-
cluding a couple of necessary extensions for handling of graphs. The application is
written in PHP59 using Apache210 for online presentation. For graph analysis and lay-
out computation, we make use of the java graph library yFiles11, which is handled in
the background via PHP/JAVA Bridge12. Data storage is provided by a PostgreSQL
database13. A schema of the system architecture is depicted in Figure 8.6.

9see project homepage: http://www.php.net, last accessed 2011-07-12
10see project homepage: http://www.apache.org, last accessed 2011-07-12
11developed and maintained by yWorks GmbH: http://www.yworks.com, last accessed 2011-07-29
12Online source to the SourceForge project available at:

http://php-java-bridge.sourceforge.net/pjb/index.php, last accessed 2011-07-12
13see project homepage: http://www.postgresql.org/, last accessed 2011-07-12

http://www.php.net
http://www.apache.org
http://www.yworks.com
http://php-java-bridge.sourceforge.net/pjb/index.php
http://www.postgresql.org/

176 CHAPTER 8. APPLICATIONS AND PROJECTS

Figure 8.6.: Architecture of GraphArchive.

Presentation of selected key features:

Rights management In the former approach GraphDB, many graphs were not pub-
lic by default. Thus, rights handling was a major issue. A hierarchy of rights was in-
tegrated, involving group rights and user rights for a graph. Download of a graph was
allowed only if a user was granted the appropriate rights. If a user was not specifically
granted the right for a graph, and the user was also not assigned to a group that had
access to the graph, access and download of the graph was denied.
Our system pushes rights for access and downloads towards an open–access approach.
After registration, all graphs are accessible and may be inspected, e.g., to analyze graph
properties. When uploading a graph to GraphArchive, the author of a graph needs to
confirm that he/she holds the rights to publish the graph. Also, the author agrees that
the graph is shared in GraphArchive.
Since some graphs come with usage limitations and/or demands, it is possible to inte-
grate a license to a graph when uploading as graph author. In this case, a later graph
download demands confirmation of the license before file transfer is started. Due to the
fact that GraphArchive is intended to be an open–access platform we restrict licenses
to be assignable on a ’per–graph’ base only.

Tagging For assigning properties to graphs, we use the principle of tags. Tags con-
sist of a (key, value)–pair, whose value is of type boolean, integer or double. Since the
principle of tags is general, we can use it for several purposes:
Tags allow . . .

• . . . graph categorization, i.e., assignment to field(s) of application (e.g., metabolic
networks, electrical circuit, class diagrams and many others).

8.4. GRAPHARCHIVE 177

• . . . assigning of graph properties, e.g., acyclic, directed or degree, etc.
• . . . graph grouping, e.g., graphs of one group have the same boolean tag set to

true.
• . . . user-defined properties, e.g., user can create new tags and assign them to

graphs.

Graph analysis and visualization Graph analysis can be a tedious task when done
manually, it even may prevent users to upload graphs. However, graph properties are
of essential importance when it comes to search for specific properties. To provide a
valuable query mechanism, an archive depends on sufficient assigned properties.
To free the user from this task, we perform an automatic graph analysis on the graphs
after upload. Graphs are analyzed for a pre–defined default set of properties. The set
comprises the following:

node count edge count biconnected bipartite
connected cyclic forest multiple edge free
planar rooted tree self loop free simple
strongly connected tree component count minimum degree
maximum degree average degree median degree

In parallel to the graph analysis, layouts of the graph are created and stored as im-
ages for later presentation on the graph’s detail page. The images are created using
a standard layout algorithm provided in yFiles, a Java library to work with graphs.
The default layout is computed by a spring layout algorithm (Di Battista, Eades, et al.
1999). The library is integrated into the system with the help of the PHP/Java Bridge,
which allows to connect JAVA classes to PHP scripts. The layout algorithm can be
changed later on the graph detail page where new layouts can be created (e.g. orthog-
onal/hierarchical/spring/circular layout).
Since the computation for some properties and layouts is very time consuming, we
perform a complete analysis only for graphs with < 100.000 nodes. The analysis is
done in the background to not disturb the user while browsing in GraphArchive; this
also holds for the computation of layouts.

Referencing graphs Often, researchers use sets of graphs to perform experiments.
In order to render such experiments repeatable for other researchers, it is preferable
that these data sets are referenced in the corresponding publication. To allow this,
we introduced the possibility to add references to a graph in our system. A reference
consists of a description and an optional link to the relating publication. For each
graph, multiple references are possible. The references are also searchable to be found
easily via the main page.

178 CHAPTER 8. APPLICATIONS AND PROJECTS

Additionally, we create a unique description for each graph (URI). Given the URI of a
graph, it can be reached online by adding the URL of our system, e.g.,

http://algo.inf.uni-tuebingen.de/forschung/graphdb/graphs/showgraph.

php?graph=bdc3639a

where bdc3639a represents a graph’s URI. URIs are considered static such that they
are not supposed to undergo changes even in case that the underlying system is mod-
ified heavily. Also, given the URI, one can view the corresponding graph as a non-
registered user. Thus, readers of a publication given a URI of our GraphArchive can
have a look at the graph. This is provided by our guest access. The guest access is
entered by browsing to a URL as described above. Major differences between a guest
and registered users are: guests can only access a single graph, they have no access
to the main page; guests are not allowed to perform actions, e.g., search, upload or
download.

Search for graphs The query mechanism of our system allows to search for graphs
by selecting and specifying query parameters. The parameters can be combined. A
picture of the search form is given in Figure 8.7. Main search criteria are:

• graph properties: when searching for a graph property, e.g., number of nodes,
a distinct value is supported as well as a given range or upper/lower bound, e.g.,
graphs with more that 10 nodes but less than 100 nodes.

• graph categories: the categories are stored using tags. Thus, graphs with a
specific field of application carry the name of their field as an attributed keyword.

• author/graph name: search for graphs uploaded by a specific user or named by
a specific name, e.g., Metro map.

• upload date: search for graphs according to an upload date. We provide search
for specific dates but also for periods of dates, if the exact date is unknown.

• additional keywords (tags): user-defined keywords are treated as tags and are
searchable by selecting the appropriate keyword in the search form.

• references: graphs can also be found by a lookup according to the references
that are connected to them or their specific URI.

File formats In the field of Graph Drawing, there are numerous tools with very
different file formats. The reasons for the usage of a distinct file format can be multi-
faceted, e.g., text graph format (.tgf) can be favoured for its simplicity whereas xml–
based format graphml (.gml) (Brandes, Eiglsperger, et al. 2001) might be preferred
due to its extensibility.

http://algo.inf.uni-tuebingen.de/forschung/graphdb/graphs/showgraph.php?graph=bdc3639a
http://algo.inf.uni-tuebingen.de/forschung/graphdb/graphs/showgraph.php?graph=bdc3639a

8.4. GRAPHARCHIVE 179

Figure 8.7.: Query form of the free search: retrieving graphs by giving a range of upload dates
is also among the possible search queries.

The reasons why one file format is preferred over others depends on the field of ap-
plication. One aim of GraphArchive is to become a central graph repository for all
domains of interest. Therefore, we do not favor one of the file formats, but we try to
achieve support of as many file formats as possible. We are convinced that limitation
to a few file formats might prevent people to use the GraphArchive. We also support
conversion between our supported formats when the user wants to download a graph.
As we continuously improve our approach, we are open for source code contributions
to enlarge our set of supported file formats. Currently, the following formats are sup-
ported:

Description Abbreviation
Text graph file format .tgf
GraphML .graphml
Compressed GraphML .graphmlz
Graph Markup Language .gml
Graph Markup Language (XML) .xgml
Y Graph Format .ygf

If a graph is uploaded in an unknown format, it is left unprocessed and stored as a
binary file. Then, graph analysis and layout computation as well as conversion for
export is not possible for this graph.
For ease of import/export and the handling of graph libraries with numerous graphs,
we also support zipped files. When uploading a zipped file, the compressed file is
optionally extracted and each contained file is processed individually as a graph file.
Downloading several graphs (without format conversion) is facilitated by compressing
these graphs using zip compression before download.

180 CHAPTER 8. APPLICATIONS AND PROJECTS

Figure 8.8.: Screenshot of the GraphArchive main page.

8.4.2. Presentation of the new system

In this section, we want to give an impression of the design and online appearance of
GraphArchive by taking a virtual walk through a typical use case. The reader is en-
couraged to make a tour on his own by browsing to the current GraphArchive via our
institute entry page:

http://algo.inf.uni-tuebingen.de/?site=forschung/graphdb/grapharchive

In Figure 8.8, the main page is depicted, graphs are displayed in a table. The table
is sortable ascending/descending in any of the columns. For a quick overview on the
main page, the user may show detailed information of the displayed graphs, where key
facts of the graphs are given, see Figure 8.9.

The detailed single graph page is shown in Figure 8.10 including an image for visu-
alization and a list of the attributes of the graph. On the details page, comments or
references can be updated and users may add additional tags. The default set of tags
that is analyzed automatically and the insertion for user-defined keywords is presented
in Figure 8.11.

http://algo.inf.uni-tuebingen.de/?site=forschung/graphdb/grapharchive

8.4. GRAPHARCHIVE 181

Figure 8.9.: Expanded view of the main page with quick facts of graphs.

8.4.3. Summary

In this section, we presented our project GraphArchive. It enables the community to
exchange graphs in a central online storage. Also, it provides a data store for archiving
graphs, e.g., graphs that are used in test suites.
With our new approach GraphArchive, we tackle the identified weak spots of the pre-
decessor GraphDB. The new application is developed as an online tool supporting
and exploiting modern web technologies. The portal is fully accessible via a common
browser. The goal was to provide an easy–to–use and powerful yet simple graph data
platform.
GraphArchive enables interested researchers to find, share and store graphs of various
fields of applications, e.g., social networks, road networks, class diagrams or metabolic
networks. Additionally, it provides a persistency mechanism, which allows for storing
data sets and permanently referencing them by a URI. This allows to reference data
sets in future publications, which makes experiments more transparent, repeatable and
reliable.
Also, the automated analysis of graphs increases usability and data consistency. In-
tegrated layout computations provide visualizations for quickly grasping mental maps
of graphs.

182 CHAPTER 8. APPLICATIONS AND PROJECTS

Figure 8.10.: Detailed graph page; downloads can be initialized on this page and layout cal-
culation can be selected. On the right, attributes are listed; at the bottom, user–
defined tags can be added, as shown in Figure 8.11.

Figure 8.11.: Complete display of default graph tags, the user–defined tags can be set at the
bottom and will be added immediately to the tags.

8.4. GRAPHARCHIVE 183

As a matter, development of the tool is not completed. In the future, we will keep
improving the running system and adding new features to GraphArchive. We will use
the homepage at http://www.graph-archive.org as a platform to post news and
development progress of our system. We hope that our system succeeds in providing
a helpful service and is hopefully being promoted and supported by the community
to establish a central place to go for sharing graphs. The rise and fall of the system
depends on user acceptance and its regular usage. What renders us to be optimistic is
the number of ≈ 170 registered users (last checked on August 1st, 2012) less than one
year after the official launch.

http://www.graph-archive.org

184 CHAPTER 8. APPLICATIONS AND PROJECTS

Chapter 9
Conclusion

In this work, we addressed the challenge of computing visualizations for business pro-
cess models. We presented various novel algorithmic approaches to compute visual-
izations in 2D and 2.5D/3D. The approaches are based on the projection of business
process models on graphs. Using graphs as abstracts for process models, we were able
to employ graph drawing techniques, combined with results of research on layout aes-
thetics in order to provide visualizations of business process models.
In the following, we will briefly summarize our results and contributions. Also, we
point out relevant publications of the author which were published during the research
for this work. We will close with an outlook on possible future topics.

Results

Groundwork: study of layout aesthetics

For the modeling of business process models, we use the standard notation language
BPMN. For the computation of visualizations for models in BPMN, we conducted a
study on user preferences of layout aesthetics in BPMN models. This was necessary
preparatory work to create a starting point for our algorithmic approaches which are
to fulfill these layout aesthetics. Due to the study, we could define a set of layout
aesthetics, the Standard Layout Aesthetics, to rely on for the remainder of the work.
The algorithms, which we developed for BPMN, aimed at considering the Standard
Layout Aesthetics and were able to fulfill these constraints.
Also, in the study, we evaluated the usability and user friendliness of our integrated
software suite BPMN–Layouter which allows to model and visualize BPMN in models
in 2D and 2.5D.
Publications: (Jogsch et al. 2010), (Seiz et al. 2010), (Effinger, Jogsch, and Seiz 2010),
(Effinger, Seiz, and Jogsch 2011).

185

186 CHAPTER 9. CONCLUSION

Algorithms for visualizations of business process models in 2D

For visualizations of business process models in the two–dimensional plane, we pre-
sented the following contributions:

• Sketch–Driven–Layout (SDL) for BPMN: we presented an approach for dy-
namic visualizations that considers a given embedding of a graph when com-
puting a layout. The approach SDL is realized as an extension to the TSM
approach which computes visualizations for graphs in Kandinsky model. The
extended approach of SDL is able to consider the partition of a business process
models, which is prerequisite to support BPMN models, because swimlanes and
pools are basic structures in BPMN models.
Publications: (Effinger, Kaufmann, and Siebenhaller 2009), (Effinger, Sieben-
haller, and Kaufmann 2009b), (Effinger, Siebenhaller, and Kaufmann 2009a).

• Layout Patterns: three novel patterns for visualizations of business process were
presented. They can be applied to SDL and are targeted at semantic considera-
tions of business process models in visualizations. The patterns and their goals
are:

– Geometry pattern (GeoP): reduce visual cluttering of process model dia-
grams.

– Gateway Pattern (GaP): highlight the logical structure of process models.
– Start–End–Pattern (SEP): enforce aesthetics FLOW on start and end event.

We provided two variants, dynamic SEP or locked SEP.

We gave details on the algorithmic extensions that are necessary to integrate the
patterns into SDL. We also analyzed the effects of the patterns on layout aes-
thetics. Therefore, we computed visualizations using SDL enriched by patterns
and compared the results against a static approach. The effects of the patterns on
performance and layout aesthetics are manifold and vary for different single pat-
terns or combination of patterns and different layout aesthetics. However, this
is a new approach for layout algorithms which promises more satisfiable visual-
izations by targeting at specific semantic properties of business process models.
Publication: (Effinger 2011).

• Visualization of BPEL models: we presented a complete algorithm for the com-
putation of visualizations for BPEL processes. A transformation from XML–
based BPEL files to graphs was introduced, and shapes and structures were in-
tegrated in the visualizations to highlight the structure and semantics of BPEL
process elements. The layout approach stresses the hierarchical and sequential
structure of BPEL processes, by defining paths in the layout that are to be vi-
sualized in a straight fashion. The algorithms are integrated into the Sugiyama

187

framework. The necessary modifications of the steps in the Sugiyama frame-
work towards the visualization of BPEL processes were elaborated in detail.
Also, we provided comparisons to other (commercial) visualizations of BPEL
models which clearly indicated the supremacy of our visualization approach.
The approach was integrated into the BPEL modeling platform H.
Publications: (Albrecht, Effinger, Held, Kaufmann, and Kottler 2009), (Albrecht,
Effinger, Held, and Kaufmann 2010).

Algorithms for visualizations of business process models in 2.5D

The second part comprehends contributions to visualizations in 3D. We applied the
concept of two-and-a-half–dimensions (2.5D) to business process models by creating
perspectives for BPMN models in 3D. The perspectives are: (a) organizational per-
spective, (b) functional perspective and (c) control flow/data flow perspective.
We presented our software tool 3D–Navigator which extended BPMN–Layouter to
support and display BPMN models in 3D, integrated in an interactive user interface
with real–time 3D–rendering.
For the computation of 2.5D–visualizations, we presented three different algorithmic
approaches: (a) SLS: an approach which is SDL–based and operates on single layers
in 2.5D, (b) ILP: an ILP formulation for 2.5D–visualization of BPMN models, and
(c) PSL: a TSM–based approach, with extended Sugiyama framework and usage of
topological orderings, for the projection of BPMN models into 3D–space.
Summarizing the thorough analysis and benchmarks of the proposed approaches for
2.5D–visualizations of business process models, we observed that our approaches SLS,
ILP and PSL are feasible and produce satisfying layouts.
We can draw the following conclusions from the benchmarks on SLS, ILP, PSL and a
reference implementation of Fruchterman-Reingold (FR) (Fruchterman and Reingold
1991):

1. PSL computes the resulting layouts with the best performance.
2. PSL consumes the lowest amount of area for the resulting layouts.
3. PSL has the lowest average edge lengths.
4. PSL achieves lowest average edge lengths at the expense of higher maximum

edge lengths.
5. SLS is unable to cover the issue of space usage by inserted dummy nodes.
6. ILP produces optimal results. However, ILP solves only 43% of the instances in

the test data set within a given time frame of 120 seconds.

188 CHAPTER 9. CONCLUSION

Additional projects involving visualization

Furthermore, we could also present additional visualization projects that produced fur-
ther results during the research on this work:

• 3D–Navigator provides a highly interactive user interface with navigation sup-
port in 3D and real–time presentation of 2.5D–visualizations. A use case of
3D–Navigator is the newly introduced Flight–Navigator for business process
models that enables a user to interactively browse through a process model by
following the sequence flow.
Publication: (Effinger 2012).

• ComposerGraphViewer (CGV) : an interactive tool for the visualization of rela-
tions between composers with birth dates from the year 1000 A.D. to the present.
The tool provides extensive features for filtering and search and visualizes the
data in an animated fashion.

• Layout in Web2.0–modeling with BPMN: an extension for the ORYX modeling
platform for BPMN models was presented which incorporated layout features to
ORYX by integrating the visualization approach of Section 2.4 into the backend
of the online Web2.0–based modeling platform.
Publication: (Effinger and Decker 2010).

• Community project GraphArchive: design and implementation of an online
portal for a graph database which was provided to the graph drawing commu-
nity. The feature list of the online database is evolving further until today and
GraphArchive has about ≈170 registered users (date: August 2012).
Publications: (Effinger, Kaufmann, Meinert, et al. 2011), (Bachmaier et al. 2011a).

We think that the results of our visualization approaches for 2D and 2.5D are able to
ignite the influence of visualization in business process models. Also, we hope that
our findings contribute to the rising importance of visualizing processes during the
modeling and analysis phase of process management.

189

Future topics

Before closing, we would like to point to possible future topics on visualization of
business process models.

Improvements in pattern–based layout:
It is an interesting task for the future to conduct a user study in order to receive feed-
back on the benefits/drawbacks of the patterns from the user’s perspective. Also, state-
ments from users might lead to more patterns in the future that incorporate BPMN
semantics in layouts for BPMN diagrams.
Furthermore, user studies might lead to findings for higher interactivity when using
the patterns, e.g. automatic recommendations which patterns might be suited well for
a specific BPMN model.

User experience in 2D vs. 2.5D:
Although we provided the algorithmic foundations for visualizations of business pro-
cess models in 2.5D in this work, we did not examine if a human process modeler
might prefer 2.5D– over 2D–visualizations of a particular BPMN model. User stud-
ies in this field are necessary to analyze the possible benefits and typical use–cases of
2.5D–visualizations.

Support of BPMN 2.0:
In this work, we focused on collaboration diagrams of BPMN. With BPMN2.0, there
are now two new diagrams types, conversations and choreographies. It would be worth
to include these diagrams in a tool which supports visualization for all diagram types of
BPMN. From an algorithmic perspective, the two diagram types require less complex
solutions because their necessary set of layout aesthetics is smaller than our Standard
Layout Aesthetics for collaboration diagrams, i.e., conversations and choreographies
do not use partitioning.
We had several requests from developers of commercial modeling suites for the tech-
niques and algorithms used in our visualization. However, during this work, we were
not able to spend more time on placing our approaches in a widely used modeling
software, apart from Oryx. Full support of BPMN2.0, including conversations and
choreographies, might ease this future task.

190 CHAPTER 9. CONCLUSION

List of Figures

1.1. Rules of rock, paper, scissors as a graph. 2

2.1. Example for a GT ordering . 16
2.2. Example for an L–triangle and a T–triangle 19
2.3. Network flow model of a node v for the Kandinsky model. 21
2.4. Rectangular decomposition . 22
2.5. Connecting objects in BPMN. 27
2.6. Artifacts in BPMN. 28
2.7. Hierarchic structure of a pool with three lanes in BPMN. 28
2.8. Example of a BPMN process model 30
2.9. Ratings of the categories for total group 38
2.10. Comparison for total group. 40
2.11. Comparison for subset groups of ’Gender’. 40
2.12. Comparison for subset groups of ’Experience’. 41
2.13. Comparison for subset groups of education. 42
2.14. Layout example of tool with highest score. 43
2.15. Structure of partition cells . 46
2.16. Example drawing of 2D–approach for BPMN models. 47

3.1. Modification of a vertex–node in the Kandinsky network for SDL. . . 53
3.2. Modifications for bends in Kandinsky network. 54
3.3. Structural edges. 55
3.4. Steps of layout example with SDL. 57
3.5. Determination a route for a cut in a BPMN–graph. 58
3.6. Visualization of cluttering (densities) using circles. 62
3.7. Visualization of cluttering with blocks. 62
3.8. Schematic view of the algorithm for the Geometry Pattern. 63

191

192 List of Figures

3.9. Insertion of skeleton edges to SDL when applying GaP. 65
3.10. Dynamic Start–End–Pattern. 67
3.11. Locked Start–End–Pattern. 67
3.12. Example results for layout patterns 70
3.13. Performance of the layout patterns. 71
3.14. Effects of layout patterns on crossings and bends. 71
3.15. Effects of layout patterns on area size. 72
3.16. Effects of layout patterns on edge lengths. 72
3.17. Example layout by a simple approach for BPEL layout. 76
3.18. Workflow layout by the ActiveBPEL R© Designer. 78
3.19. Workflow layout by the Eclipse BPEL Designer. 79
3.20. Workflow example constructed with our layout algorithm. 79
3.21. Split of pathways. 80
3.22. Modifications of the computation of the horizontal coordinates. 82
3.23. Input structure of a BPEL workflow. 84
3.24. Result of the extension for pathway construction. 85
3.25. Result for the layout of G. 86
3.26. BPEL–specific shapes. 87
3.27. Result of the final layout for running BPEL model example. 88
3.28. Table containing the BPEL model meta–data. 89
3.29. Layout example of a larger BPEL process. 91

5.1. Example for a visualization in 2.5D. 98
5.2. Example for a 2.5D–layout of a stratified graph. 100
5.3. Rendering of a business process model in the 3D-framework.. 103
5.4. Rendering of single BPMN elements in 3D. 103
5.5. Example process and 2.5D–perspectives. 107
5.6. Screenshot of the 2.5D–visualization display in 2.5D–Navigator. . . . 108
5.7. Screenshot of the GEOMI–framework. 109
5.8. Application of the perspectives to an example process. 111

6.1. Layer stack in 3D-space and (alternating) sweep line direction. 115
6.2. Replacement step of a layer edge. 116
6.3. Placing heuristic for the ranking of positions. 118
6.4. Placing heuristic for overlaps. 124
6.5. Example for the removal of an overlap. 124
6.6. Insertion of temporary nodes and edges. 130
6.7. Shortest path routing in the (modified) dual graph. 133
6.8. Steps of PSL . 136
6.9. Example for layout with HONG. 138

List of Figures 193

6.10. Example for zig-zag wall partition and dominating-wall partition. . . . 140

7.1. Graph properties of test set data. 146
7.2. Execution times for the reference implementation. 147
7.3. Execution times for SLS. 147
7.4. Execution times for ILP. 148
7.5. Execution times for PSL. 148
7.6. Comparison of aggregated execution times. 149
7.7. Maximum/Average edge lengths for SLS. 150
7.8. Maximum/Average edge lengths for SLS. 150
7.9. Maximum/Average edge lengths for ILP. 151
7.10. Maximum/Average edge lengths for PSL. 151
7.11. Aggregated data for maximum/average edge lengths. 152
7.12. Aggregated data for area consumption. 152
7.13. Optimality gap of ILP solving processes. 154
7.14. Sizes of the ILP models for the process model instances. 155
7.15. Layering of a cycle. 155
7.16. Examples of 2.5D–visualizations with our approaches 158

8.1. A screenshot of the graphical user interface for the CGV. 162
8.2. A BPMN process diagram in Oryx. 166
8.3. Layout example in Oryx. 167
8.4. Overview of a complete process model in the 3D-navigator. 170
8.5. Display of the heads–up–display in the 3D-navigator. 172
8.6. Architecture of GraphArchive. 176
8.7. Query form of the free search. 179
8.8. Screenshot of the GraphArchive main page. 180
8.9. Expanded view of the main page. 181
8.10. Detailed graph page. 182
8.11. Complete display of tags. 182

194 List of Figures

Bibliography

Publications of the Author

Albrecht, Benjamin, Philip Effinger, Markus Held, and Michael Kaufmann. “An Au-
tomatic Layout Algorithm for BPEL Processes”. In: SoftVis ’10: Proceedings of the
5th ACM Symposium on Software visualization. Salt Lake City, Utah, USA: ACM,
2010.

Albrecht, Benjamin, Philip Effinger, Markus Held, Michael Kaufmann, and Stephan
Kottler. “Visualization of Complex BPEL Models”. In: Proc. of the 17th Interna-
tional Symposium on Graph Drawing (GD ’09). LNCS. Springer, 2009, pp. 421–
423.

Bachmaier, Christian, Franz-Josef Brandenburg, Philip Effinger, Carsten Gutwenger,
Jyrki Katajainen, Karsten Klein, Miro Spönemann, Matthias Stegmaier, and Michael
Wybrow. “The Open Graph Archive: A Community-Driven Effort”. In: Proc. of
the 19th International Symposium on Graph Drawing (GD ’11). Vol. 7034. 2011,
pp. 435–440.

Bachmaier, Christian, Franz-Josef Brandenburg, Philip Effinger, Carsten Gutwenger,
Jyrki Katajainen, Karsten Klein, Miro Spönemann, Matthias Stegmaier, and Michael
Wybrow. “The Open Graph Archive: A Community–Driven Effort”. In: CoRR abs/
1109.1465 (2011), pp. 1–10.

Effinger, Philip. “A 3D Navigator for Business Process Models”. In: Intl. Workshop on
Theory and Applications of Process Visualization (TAProViz12). LNBIP. Springer
Berlin Heidelberg, 2012.

Effinger, Philip. “Automatisches Layout von Geschäftsprozessen”. (german). Diploma
thesis. Arbeitsbereich Algorithmik, Wilhelm Schickard Institut, Eberhard Karls Uni-
versität Tübingen, 2008.

195

196 Bibliography

Effinger, Philip. “Layout Patterns with BPMN Semantics”. In: 3rd International Work-
shop on Business Process Model and Notation (BPMN). LNBIP. Springer Berlin
Heidelberg, 2011, pp. 130–135.

Effinger, Philip and Gero Decker. “Layout techniques coupled with Web2.0-based
Business Process Modeling”. In: Proc. of the 17th International Symposium on
Graph Drawing (GD ’09). Vol. 5849. LNCS. 2010, pp. 417–418.

Effinger, Philip, Nicole Jogsch, and Sandra Seiz. “On a Study of Layout Aesthetics for
Business Process Models Using BPMN”. In: Business Process Modeling Notation
(BPMN2010). Vol. 67. LNBIP. Springer, 2010, pp. 31–45.

Effinger, Philip, Michael Kaufmann, Sascha Meinert, and Matthias Stegmaier. Graph-
Archive - An Online Graph Data Store. Technical report WSI-2011-03. Wilhelm-
Schickard-Institut, Eberhard Karls Universität Tübingen, 2011.

Effinger, Philip, Michael Kaufmann, and Martin Siebenhaller. “Enhancing Visualiza-
tions of Business Processes”. In: Proc. of the 16th International Symposium on
Graph Drawing (GD ’08). LNCS. 2009, pp. 437–438.

Effinger, Philip, Sandra Seiz, and Nicole Jogsch. “Evaluating single features in us-
ability tests for modeling tools”. In: 3rd Workshop Methodische Entwicklung von
Modellierungswerkzeugen (MEMWe 2011) at Informatik 2011. LNI. Berlin, 2011.

Effinger, Philip, Martin Siebenhaller, and Michael Kaufmann. “An Interactive Layout
Tool for BPMN”. In: Proc. of the IEEE International Conference on Commerce and
Enterprise Computing (CEC2009). IEEE Computer Society, 2009, pp. 399–406.

Effinger, Philip, Martin Siebenhaller, and Michael Kaufmann. Improving Business Pro-
cess Visualizations. Technical report WSI-2009-02. Wilhelm–Schickard–Institut, Eber-
hard Karls Universität Tübingen, 2009.

Effinger, Philip and Johannes Spielmann. “Lifting Business Process Diagrams to 2.5
Dimensions”. In: IS&T/SPIE Electronic Imaging, Visualization and Data Analysis,
(VDA2010). Vol. 7530. Proc. SPIE. San Jose, 2010.

Jogsch, Nicole, Sandra Seiz, Philip Effinger, and Tamara Wehrstein. “Softwareauswahl
- auch eine Frage der Usability”. In: Wirtschaftsinformatik und Management 03
(2010), pp. 26 –30.

Seiz, Sandra, Philip Effinger, Nicole Jogsch, and Tamara Wehrstein. Forschungspro-
jekt: Usability–Evaluation von BPMN–konformer Geschäftsprozessmodellierungs-
software. Arbeitsberichte zur Wirtschaftsinformatik 35. (german). Lehrstuhl für Wirt-
schaftsinformatik, Universität Tübingen, Apr. 2010.

Bibliography 197

Publications on Graph Drawing and 2D–Visualization

Ahmed, Adel, Tim Dwyer, et al. “GEOMI: GEOmetry for Maximum Insight”. In:
Proc. of the 13th International Symposium on Graph Drawing, GD’05. 2005, pp. 468–
479.

Ahuja, R.K., T.L. Magnanti, and J.B. Orlin. Network flows: theory, algorithms, and
applications. Prentice Hall, 1993.

Angelini, Patrizio, Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio Frati, and Vin-
cenzo Roselli. “Beyond Clustered Planarity”. In: CoRR abs/1207.3934 (2012).

Bachmaier, Christian, Franz-Josef Brandenburg, Wolfgang Brunner, and Gergö Lovász.
“Cyclic Leveling of Directed Graphs”. In: Proc. of the 16th International Sympo-
sium on Graph Drawing, GD’08. 2008, pp. 348–359.

Bannister, Michael J. and David Eppstein. “Hardness of Approximate Compaction
for Nonplanar Orthogonal Graph Drawings”. In: Proc. of the 19th International
Symposium on Graph Drawing, GD’11. 2011, pp. 367–378.

Barth, Wilhelm, Petra Mutzel, and Michael Jünger. “Simple and Efficient Bilayer
Cross Counting”. In: Journal of Graph Algorithms and Applications 8.2 (2004),
pp. 179–194.

Berg, Mark de, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf. Com-
putational Geometry: Algorithms and Applications. Second edition. Springer, 2000,
p. 367.

Binucci, Carla and Walter Didimo. “Experiments on Area Compaction Algorithms for
Orthogonal Drawings”. In: Proc. of the 17th Canadian Conference on Computa-
tional Geometry, CCCG’05. 2005, pp. 113–116.

Brandenburg, Franz J., Michael Himsolt, and Christoph Rohrer. “An Experimental
Comparison of Force–Directed and Randomized Graph Drawing Algorithms”. In:
Graph Drawing. 1995, pp. 76–87.

Brandes, U., M. Eiglsperger, I. Herman, M. Himsolt, and MS. Marshall. “GraphML
Progress Report - Structural Layer Proposal”. In: Proc. of the 9th Symposion on
Graph Drawing (GD ’01). Springer Verlag, 2001, pp. 501–512.

Brandes, Ulrik. “Layout of Graph Visualizations”. PhD thesis. http://www.ub.uni-
konstanz/kops/volltexte/1999/255/: University of Konstanz, 1999.

Brandes, Ulrik, Michael Kaufmann, Dorothea Wagner, and Markus Eiglsperger. “Sketch-
Driven Orthogonal Graph Drawing”. In: Proc. of the 10th International Symposium
on Graph Drawing (GD ’02). Vol. 2528. LNCS. Springer, 2002, pp. 131–148.

Brandes, Ulrik and Boris Köpf. “Fast and Simple Horizontal Coordinate Assignment”.
In: Proc. of the 9th International Symposium on Graph Drawing, (GD ’01). Vol. 2265.
LNCS. 2001, pp. 31–44.

http://www.ub.uni-konstanz/kops/volltexte/1999/255/
http://www.ub.uni-konstanz/kops/volltexte/1999/255/

198 Bibliography

Brandes, Ulrik and Dorothea Wagner. “A Bayesian Paradigm for Dynamic Graph Lay-
out”. In: Proc. of the 5th International Symposium on Graph Drawing (GD ’97).
London, UK: Springer-Verlag, 1997, pp. 236–247.

Bridgeman, Stina S., Giuseppe Di Battista, Walter Didimo, Giuseppe Liotta, Roberto
Tamassia, and Luca Vismara. “Turn-regularity and optimal area drawings of orthog-
onal representations”. In: Computational Geometry 16.1 (2000), pp. 53–93.

Bridgeman, Stina S. and Roberto Tamassia. “Difference Metrics for Interactive Or-
thogonal Graph Drawing Algorithms”. In: Proc. of the 6th International Symposium
on Graph Drawing (GD ’98). London, UK: Springer-Verlag, 1998, pp. 57–71.

Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. In-
troduction to Algorithms, Second Edition. The MIT Press, 2001.

Cornelsen, Sabine and Dorothea Wagner. “Completely Connected Clustered Graphs”.
In: Graph-Theoretic Concepts in Computer Science, 29th International Workshop,
WG 2003. Vol. 2880. Lecture Notes in Computer Science. Springer, 2003, pp. 168–
179.

Di Battista, Giuseppe, Ashin Garg, Roberto Tamassia, Emanuele Tassinari, and Francesco
Vargiu. “An Experimental Comparison of Four Graph Drawing Algorithms”. In:
7.5–6 (1997), pp. 303–325.

Di Battista, Giuseppe, Ashin Garg, Roberto Tamassia, Emanuele Tassinari, and Francesco
Vargiu. “Drawing Directed Acyclic Graphs: An Experimental Study”. In: J. Comput.
Geom. Apppl. 10.6 (2000), pp. 623–648.

Di Battista, Guiseppe, Walter Didimo, Maurizio Patrignani, and Maurizio Pizzonia.
“Orthogonal and Quasi-upward Drawings with Vertices of Prescribed Size”. In:
Proc. of the 7th International Symposium on Graph Drawing (GD ’99). Vol. LNCS
1731. Springer, 1999, pp. 297–310.

Di Battista, Guiseppe, Peter Eades, Robert Tamassia, and Ioannis Tollis. Graph Draw-
ing: Algorithms for the visualization of graphs. Prentice Hall, 1999, p. 432.

Diguglielmo, Gilles, Eric Durocher, Philippe Kaplan, Georg Sander, and Adrian Vasiliu.
“Graph Layout for Workflow Applications with ILOG JViews”. In: Proc. of the 10th
Symposium on Graph Drawing (GD ’02). 2002, pp. 362–363.

Eades, Peter, Xuemin Lin, and W. F. Smyth. “A Fast and Effective Heuristic for the
Feedback Arc Set Problem”. In: Inf. Process. Lett. 47.6 (1993), pp. 319–323.

Eades, Peter, Kozo Sugiyama, Kazuo Misue, and Wei Lai. “Preserving the mental map
of a diagram”. In: Proceedings of Compugraphics. 1991.

Eades, P. and N.C. Wormald. “Edge crossings in drawings of bipartite graphs”. In:
Algorithmica 11 (1994), pp. 379–403.

Eichelberger, Holger. “Aesthetics and Automatic Layout of UML Class Diagrams”.
PhD thesis. Universität Würzburg, 2005.

Bibliography 199

Eiglsperger, Markus. “Automatic Layout of UML Class Diagrams: A Topology-Shape-
Metrics Approach”. PhD thesis. Wilhelm-Schickard-Institut, Eberhard Karls Uni-
versität Tübingen, 2003.

Eiglsperger, Markus, Ulrich Fößmeier, and Michael Kaufmann. “Orthogonal graph
drawing with constraints”. In: Proceedings of the 11th annual ACM-SIAM sympo-
sium on Discrete algorithms, SODA ’00. Philadelphia, PA, USA: Society for Indus-
trial and Applied Mathematics, 2000, pp. 3–11.

Eiglsperger, Markus and Michael Kaufmann. “An Approach for Mixed Upward Pla-
narization”. In: Proceedings of 7th International Workshop on Algorithms and Data
Structures, WADS 2001. Vol. 2125. LNCS. Springer, 2001, pp. 352–364.

Eiglsperger, Markus and Michael Kaufmann. “Fast compaction for orthogonal draw-
ings with vertices of prescribed size”. In: Proc. of the 9th International Symposium
on Graph Drawing (GD ’01). LNCS. Germany: Springer, 2002, pp. 124–138.

Eiglsperger, Markus, Martin Siebenhaller, and Michael Kaufmann. “An efficient im-
plementation of Sugiyama’s algorithm for layered graph drawing”. In: Proc. of the
12th International Symposium on Graph Drawing (GD ’04). Vol. 3383. LNCS.
Springer, 2005, pp. 155–166.

Eiglsperger, M., C. Gutwenger, M. Kaufmann, J. Kupke, M. Jünger, S. Leipert, K.
Klein, P. Mutzel, and M. Siebenhaller. “Automatic layout of UML class diagrams
in orthogonal style.” In: Information Visualization 3.3 (2004), pp. 189–208.

Erten, Cesim, Philip J. Harding, Stephen G. Kobourov, Kevin Wampler, and Gary V.
Yee. “GraphAEL: Graph Animations with Evolving Layouts”. In: Proc. of the 11th
International Symposium on Graph Drawing, GD2003. Vol. 2912. LNCS. Springer,
2003, pp. 98–110.

Forster, Michael. “Applying Crossing Reduction Strategies to Layered Compound
Graphs”. In: Proc. of the 10th International Symposium on Graph Drawing (GD
’02). Vol. 2528. LNCS. Springer, 2002, pp. 276–284.

Forster, Michael. “Crossings in clustered level graphs”. PhD thesis. Fakultät für Infor-
matik und Mathematik, Universität Passau, 2005.

Fortune, Steven. “A sweepline algorithm for Voronoi diagrams”. In: Algorithmica 2 (1
1987). 10.1007/BF01840357, pp. 153–174.

Fößmeier, Ulrich. “Orthogonale Visualisierungstechniken für Graphen”. german. PhD
thesis. Wilhelm-Schickard-Institut, Eberhard Karls Universität Tübingen, 1997.

Fößmeier, Ulrich and Michael Kaufmann. “Drawing High Degree Graphs with Low
Bend Numbers”. In: Proc. of the 4th Symposium on Graph Drawing (GD ’95).
Vol. 1027. LNCS. Springer, 1995, pp. 254–266.

Fruchterman, Thomas M. J. and Edward M. Reingold. “Graph Drawing by Force-
directed Placement”. In: Software - Practice and Experience 21 (11 1991), pp. 1129–
1164.

200 Bibliography

Gansner, Emden R., Eleftherios Koutsofios, Stephen C. North, and Kiem-Phong Vo.
“A Technique for Drawing Directed Graphs”. In: IEEE Transactions on Software
Engineering 19.3 (1993), pp. 214–230.

Garey, M. R. and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

Garey, M. R. and D. S. Johnson. “Crossing Number is NP-Complete”. In: SIAM Jour-
nal on Algebraic and Discrete Methods 4 (3 1983).

Garg, Ashim and Roberto Tamassia. “A new Minimum Cost Flow Algorithm with Ap-
plications to Graph Drawing”. In: Graph Drawing. Vol. 96. Graph Drawing. 1996,
pp. 201–216.

Goldschmidt, O. and A. Takvorian. “An efficient graph planarization two-phase heuris-
tic”. In: Networks 24 (1994), pp. 69–73.

Healy, Patrick and Nikola S. Nikolov. “How to Layer a Directed Acyclic Graph”.
In: Proc. of the 9th International Symposium on Graph Drawing (GD’01). 2001,
pp. 16–30.

Herman, Ivan, Guy Melançon, and M. Scott Marshall. “Graph Visualization and Navi-
gation in Information Visualization: A Survey”. In: IEEE Trans. Vis. Comput. Graph.
6.1 (2000), pp. 24–43.

Jünger, Michael and Petra Mutzel. “2-Layer Straightline Crossing Minimization: Per-
formance of Exact and Heuristic Algorithms”. In: J. Graph Algorithms Appl. 1.1
(1997), pp. 1 –25.

Kaufmann, Michael and Dorothea Wagner, eds. Drawing Graphs: Methods and Mod-
els. Vol. 2025. LNCS. Springer, 2001.

Kitzmann, Ingo, Christoph König, Daniel Lübke, and Leif Singer. “A Simple Algo-
rithm for Automatic Layout of BPMN Processes”. In: Proc. of the IEEE Inter-
national Conference on Commerce and Enterprise Computing (CEC2009). IEEE
Computer Society, 2009, pp. 391–398.

Klau, Gunnar W., Karsten Klein, and Petra Mutzel. “An Experimental Comparison
of Orthogonal Compaction Algorithms (Extended Abstract)”. In: Proc. of the 8th
International Symposium on Graph Drawing, GD’00. 2000, pp. 37–51.

Matuszewski, Christian, Robby Schönfeld, and Paul Molitor. “Using Sifting for k -
Layer Straightline Crossing Minimization”. In: Proc. of the 7th International Sym-
posium on Graph Drawing (GD ’99). Vol. 1731. LNCS. Springer, 1999, pp. 217–
224.

Mutzel, Petra and Gunnar W. Klau. Quasi-orthogonal drawing of planar graphs. Tech.
rep. MPI-I-98-1-013. MPI Saarbrücken, 1998.

Nöllenburg, Martin and Alexander Wolff. “A Mixed-Integer Program for Drawing
High-Quality Metro Maps”. In: Graph Drawing. 2005, pp. 321–333.

Bibliography 201

Pach, János and Géza Tóth. “Monotone Crossing Number”. In: Proc. of the 19th In-
ternational Symposium on Graph Drawing (GD’11). 2011, pp. 278–289.

Patrignani, Maurizio. “On the complexity of orthogonal compaction”. In: Computa-
tional Geometry 19.1 (2001), pp. 47–67.

Pelsmajer, Michael J., Marcus Schaefer, and Daniel Stefankovic. “Crossing Numbers
and Parameterized Complexity”. In: Proc. of the 15th International Symposium on
Graph Drawing (GD ’07). 2007, pp. 31–36.

Resende, Mauricio and Celso C. Ribeiro. “A grasp for graph planarization”. In: NET-
WORKS: Networks: An International Journal 29 (1997), p. 3.

Rinderle, Stefanie, Ralph Bobrik, Manfred Reichert, and Thomas Bauer. “Business
Process Visualization - Use Cases, Challenges, Solutions”. In: Proceedings of the
Eighth International Conference on Enterprise Information Systems (ICEIS2006).
3. 2006, pp. 204–211.

Sander, Georg. “Graph Layout for Applications in Compiler Construction”. In: Theo-
retical Computer Science 217.2 (1999), pp. 175–214.

Siebenhaller, Martin. “Orthogonal Drawings with Constraints: Algorithms and Appli-
cations”. PhD thesis. Wilhelm-Schickard-Institut, Eberhard Karls Universität Tü-
bingen, 2009.

Siebenhaller, Martin. “Partitioned Drawings”. In: Proc. of the 14th International Sym-
posium on Graph Drawing (GD ’06). Vol. 4372. LNCS. Springer, 2006, pp. 252–
257.

Siebenhaller, Martin and Michael Kaufmann. Drawing Activity Diagrams. Techni-
cal report WSI-2006-02. Eberhard Karls Universität Tübingen: Wilhelm-Schickard-
Institut, 2006.

Siebenhaller, Martin and Michael Kaufmann. “Drawing Activity Diagrams”. In: Proc.
of ACM 2006 Symposium on Software Visualization, SoftVis 2006. ACM, 2006,
pp. 159–160.

Siebenhaller, Martin and Michael Kaufmann. “Mixed upward planarization - fast and
robust”. In: Proc. of the 13th Symposium on Graph Drawing (GD ’05). Vol. 3843.
LNCS. Springer, 2005, pp. 522–523.

Six, Janet M. and Ioannis G. Tollis. “Automated Visualization of Process Diagrams”.
In: Proc. of the 9th International Symposium on Graph Drawing (GD ’01). Springer,
2002, pp. 45–59.

Sugiyama, K., S. Tagawa, and M Toda. “Methods for visual understanding of hierar-
chical system structures”. In: IEEE Transactions on Systems, Man, and Cybernetics
SMC-11,2 (1981), pp. 109–125.

Tamassia, Robert. “On Embedding a Graph in the Grid with the Minimum Number of
Bends”. In: SIAM Journal on Computing 16(3) (1987), pp. 421–444.

202 Bibliography

Tamassia, Roberto, Giuseppe Di Battista, and Carlo Batini. “Automatic graph draw-
ing and readability of diagrams”. In: IEEE Trans. Syst. Man Cybern. 18.1 (1988),
pp. 61–79.

Tunkelang, Daniel. A practical approach to drawing undirected graphs. Tech. rep.
Carnegie Mellon, 1994.

Wiese, Roland, Marcus Eiglsperger, and Michael Kaufmann. “yFiles: Visualization
and Automatic Layout of Graphs”. In: Proc. of the 9th International Symposium on
Graph Drawing (GD ’01). LNCS 2265. Springer, 2001, pp. 453–454.

Yang, Yun, Wei Lai, Jun Shen, Xiaodi Huang, Jun Yan, and Lukman Setiawan. “Ef-
fective Visualisation of Workflow Enactment”. In: Advanced Web Technologies and
Applications, 6th Asia-Pacific Web Conference (APWeb04). 2004, pp. 794–803.

Zhao, Xin, Jun Han, and Yaling Huang. “An Automatic Layout Function in BPEL
Visual Modeling Tool”. In: SNPD ’09: Proc. of the 10th ACIS International Con-
ference on Software Engineering, Artificial Intelligences, Networking. Washington,
DC, USA: IEEE Computer Society, 2009, pp. 14–17.

Publications on 3D–Visualization

Ahmed, Adel and Seok-Hee Hong. “Navigation techniques for 2.5D graph layout”. In:
Proc. of the 6th International Asia-Pacific Symposium on Visualization (APVIS07).
IEEE, 2007, pp. 81–84.

Balzer, Michael and Oliver Deussen. “Hierarchy Based 3D Visualization of Large Soft-
ware Structures”. In: IEEE Visualization. 2004, p. 4.

Betz, Stefanie, Daniel Eichhorn, Susan Hickl, Stefan Klink, Agnes Koschmider, Yu
Li, Andreas Oberweis, and Ralf Trunko. “3D Representation of Business Process
Models”. In: Modellierung betrieblicher Informationssysteme (MobIS). Vol. 141.
LNI. GI, 2008, pp. 73–87.

Brown, Ross. “Conceptual modelling in 3D Virtual Worlds for Process Communi-
cation”. In: Proc. of the 7th Asia-Pacific Conference on Conceptual Modelling,
APCCM 2010. 2010, pp. 25–32.

Bruß, Ingo and Arne Frick. “Fast interactive 3-D graph visualization”. In: Proc. of the
Symposium on Graph Drawing (GD ’95). Vol. 1027. LNCS. Springer, 1995, pp. 99–
110.

Dwyer, Tim. “Three Dimensional UML Using Force Directed Layout”. In: Proc. of
the Australasian Symposium on Information Visualisation (InVis.au ’01). Vol. 9.
CRPIT. Australian Computer Society, 2001, pp. 77–85.

Dwyer, Tim. “Two and a Half Dimensional Visualisation of Relational Networks”.
PhD thesis. The University of Sydney, 2004.

Bibliography 203

Dwyer, Tim and Peter Eades. “Visualising a Fund Manager Flow Graph with Columns
and Worms”. In: Sixth International Conference on Information Visualisation (IV’02).
2002, pp. 147–152.

Dwyer, Tim and Peter Eckersley. “WilmaScope - An Interactive 3D Graph Visualisa-
tion System”. In: Proc. of the 9th International Symposium on Graph Drawing (GD
’01). Vol. 2265. LNCS. Springer, 2001, pp. 442–443.

Fronk, Alexander, Armin Bruckhoff, and Michael Kern. “3D visualisation of code
structures in Java software systems”. In: Proc. of the ACM 2006 Symposium on
Software Visualization (SOFTVIS ’06). ACM, 2006, pp. 145–146.

Garg, Ashim and Roberto Tamassia. “GIOTTO3D: A System for Visualizing Hierar-
chical Structures in 3D”. In: Graph Drawing. 1996, pp. 193–200.

Hoipkemier, Benjamin N., Nicholas A. Kraft, and Brian A. Malloy. “3D visualiza-
tion of class template diagrams for deployed open source applications”. In: Proc. of
the 18th Intern. Conference on Software Engineering and Knowledge Engineering.
2006.

Hong, Seok-Hee. “MultiPlane: A New Framework for Drawing Graphs in Three Di-
mensions”. In: Proc. of the 13th International Symposium on Graph Drawing (GD
’05). Vol. 3843. LNCS. Springer, 2005, pp. 514–515.

Hong, Seok-Hee and Tom Murtagh. “Visualisation of Large and Complex Networks
Using PolyPlane”. In: Proc. of the 12th International Symposium on Graph Drawing
(GD ’04). Vol. 3383. LNCS. Springer, 2004, pp. 471–481.

Hong, Seok-Hee and Nikola S. Nikolov. “Layered drawings of directed graphs in three
dimensions”. In: Proc. of the 2005 Asia-Pacific symposium on Information visual-
isation - Volume 45. APVis ’05. Sydney, Australia: Australian Computer Society,
Inc., 2005, pp. 69–74.

Hong, Seok-Hee, Nikola S. Nikolov, and Alexandre Tarassov. “A 2.5D Hierarchical
Drawing of Directed Graphs”. In: J. Graph Algorithms Appl. 11.2 (2007), pp. 371–
396.

Jainek, Werner. “y25 - Graphs in 2.5 Dimensions”. (german). Study thesis. Eber-
hard Karls Universität Tübingen: Arbeitsbereich Algorithmik, Wilhelm-Schickard-
Institut, 2006.

Mian, A. S., M. Bennamoun, and R. A. Owens. “3D Recognition and Segmentation
of Objects in Cluttered Scenes”. In: Applications of Computer Vision and the IEEE
Workshop on Motion and Video Computing, IEEE Workshop on 1 (2005), pp. 8–13.

Munzner, Tamara. “H3: laying out large directed graphs in 3D hyperbolic space”. In:
Proc. of the IEEE Symposium on Information Visualization (INFOVIS ’97). IEEE
Computer Society, 1997, pp. 2–10.

204 Bibliography

Ostry, Diethelm Ironi. “Some Three-Dimensional Graph Drawing Algorithms”. MA
thesis. Department of Computer Science and Software Engineering, University of
Newcastle, 1996.

Pilgrim, Jens von and Kristian Duske. “GEF3D: a framework for two-, two-and-a-half-
, and three-dimensional graphical editors”. In: Proc. of the ACM 2008 Symposium
on Software Visualization (SOFTVIS ’08). ACM, 2008, pp. 95–104.

Reiss, Steven P. “3-D Visualization of Program Information”. In: DIMACS Interna-
tional Workshop on Graph Drawing (GD ’94). Vol. 894. LNCS. Springer, 1994,
pp. 12–24.

Schönhage, Bastiaan, Alex van Ballegooij, and Anton Eliëns. “3D gadgets for business
process visualization - a case study”. In: Web3D Symposium. 2000, pp. 131–138.

Spielmann, Johannes. “Werkzeuge für Graphen in 2.5 Dimensionen”. (german). Diplo-
ma thesis. Arbeitsbereich Algorithmik, Wilhelm-Schickard-Institut, Eberhard Karls
Universität Tübingen, 2009.

Teyseyre, Alfredo R. and Marcelo R. Campo. “An Overview of 3D Software Visual-
ization”. In: IEEE Transactions on Visualization and Computer Graphics 15 (2009),
pp. 87–105.

Ware, Colin. “Designing with a 2.5D attitude”. In: Information Design Journal 10.3
(2001), pp. 255–262.

Ware, Colin, David Hui, and Glenn Franck. “Visualizing object oriented software in
three dimensions”. In: Proc. of the 1993 conference of the Centre for Advanced
Studies on Collaborative research (CASCON ’93). Toronto, Ontario, Canada: IBM
Press, 1993, pp. 612–620.

West, Stephen, Ross A. Brown, and Jan C. Recker. “Collaborative business process
modeling using 3D virtual environments”. In: 16th Americas Conference on Infor-
mation Systems. Association for Information Systems (AIS), 2010.

Publications on Aesthetics

Agarwal, Ritu, Prabuddha De, and Atish P. Sinha. “Comprehending Object and Process
Models: An Empirical Study”. In: IEEE Trans. Software Eng. 25.4 (1999), pp. 541–
556.

Ambler, Scott W. The Elements of UML 2.0 Style. Cambridge University Press, 2005.
Apfelbacher, R., A. Knopfel, P. Aschenbrenner, and S. Preetz. FMC Visualization

Guidelines. online. http://www.fmc-modeling.org/visualization_guidelines.
2006.

Bobrik, Ralph, Manfred Reichert, and Thomas Bauer. “View-Based Process Visual-
ization”. In: Proc. of the 5th International Conference on Business Process Man-
agement (BPM ’07). Vol. 4714. LNCS. Springer, 2007, pp. 88–95.

http://www.fmc-modeling.org/visualization_guidelines

Bibliography 205

Coleman, M. K. and D. S. Parker. “Aesthetics-based Graph Layout for Human Con-
sumption”. In: Software – Practice and Experience 26.12 (1996), pp. 1415–1438.

Genero, Marcela, Geert Poels, and Mario Piattini. “Defining and validating metrics for
assessing the understandability of entity-relationship diagrams”. In: Data Knowl.
Eng. 64.3 (2008), pp. 534–557.

Green, Thomas R.G. and Alan F. Blackwell. A tutorial on cognitive dimensions. on-
line. http : / / www . cl . cam . ac . uk / %7Eafb21 / CognitiveDimensions /
CDtutorial.pdf, last accessed (2010-05-31). 1998.

Hahn, Jungpil and Jinwoo Kim. “Why are some diagrams easier to work with? Effects
of diagrammatic representation on the cognitive intergration process of systems
analysis and design”. In: ACM Trans. Comput.-Hum. Interact. 6.3 (1999), pp. 181–
213.

Huang, Weidong, Peter Eades, and Seok-Hee Hong. “Beyond time and error: a cog-
nitive approach to the evaluation of graph drawings”. In: BELIV ’08: Proceedings
of the 2008 conference on BEyond time and errors. Florence, Italy: ACM, 2008,
pp. 1–8.

Huang, Weidong, Seok-Hee Hong, and Peter Eades. “Effects of Crossing Angles”. In:
IEEE Pacific Visualization Symposium 2008, PacificVis. 2008, pp. 41–46.

Huang, Weidong, Seok-Hee Hong, and Peter Eades. “Effects of Sociogram Drawing
Conventions and Edge Crossings in Social Network Visualization”. In: J. Graph
Algorithms Appl. 11.2 (2007), pp. 397–429.

Maier, Sonja and Mark Minas. “Interactive diagram layout”. In: Proceedings of the
28th of the international conference extended abstracts on Human factors in com-
puting systems. CHI EA ’10. New York, NY, USA: ACM, 2010, pp. 4111–4116.

Mendling, Jan, Hajo A. Reijers, and Jorge Cardoso. “What Makes Process Models
Understandable?” In: Proceedings of the 5th International Conference on Business
Process Management (BPM 2007). Ed. by M. Rosemann G. Alonso P. Dadam.
Vol. 4714. LNCS. 2007, pp. 48–63.

Petre, Marian. “Cognitive dimensions ’beyond the notation’”. In: J. Vis. Lang. Comput.
17.4 (2006), pp. 292–301.

Petre, Marian. “Why Looking Isn’t Always Seeing: Readership Skills and Graphical
Programming”. In: Commun. ACM 38.6 (1995), pp. 33–44.

Purchase, Helen C. “Which aesthetic has the greatest effect on human understanding?”
In: Proc. of the 5th Symposium on Graph Drawing (GD ’97). Vol. 1353. LNCS.
Springer, 1997, pp. 248–261.

Purchase, Helen C., Jo-Anne Allder, and David A. Carrington. “User Preference of
Graph Layout Aesthetics: A UML Study”. In: Proc. of the 8th International Sympo-
sium on Graph Drawing (GD ’00). Vol. 1984. LNCS. Springer, 2001, pp. 5–18.

http://www.cl.cam.ac.uk/%7Eafb21/CognitiveDimensions/CDtutorial.pdf
http://www.cl.cam.ac.uk/%7Eafb21/CognitiveDimensions/CDtutorial.pdf

206 Bibliography

Purchase, Helen C., Robert F. Cohen, and Murray I. James. “An Experimental Study
of the Basis for Graph Drawing Algorithms”. In: ACM Journal of Experimental
Algorithmics 2.4 (1997), p. 4.

Purchase, Helen C., Robert F. Cohen, and Murray I. James. “Validating Graph Drawing
Aesthetics”. In: Graph Drawing. 1995, pp. 435–446.

Schrepfer, Matthias, Johannes Wolf, Jan Mendling, and Hajo A. Reijers. “The Impact
of Secondary Notation on Process Model Understanding”. In: PoEM. 2009, pp. 161–
175.

Sun, Dabo and Kenny Wong. “On Evaluating the Layout of UML Class Diagrams for
Program Comprehension”. In: IWPC. 2005, pp. 317–326.

Ware, Colin. Information Visualization: Perception for Design. Second Edition. Mor-
gan Kaufmann, 2004.

Ware, Colin and Glenn Franck. “Evaluating Stereo and Motion Cues for Visualiz-
ing Information Nets in Three Dimensions”. In: ACM Trans. Graph. 15.2 (1996),
pp. 121–140.

Ware, Colin and Glenn Franck. “Viewing a Graph in a Virtual Reality Display is
Three Times as Good as 2D Diagram”. In: IEEE Conference on Visual Languages,
(VL1994). 1994, pp. 182–183.

Ware, Colin, Helen C. Purchase, Linda Colpoys, and Matthew McGill. “Cognitive
measurements of graph aesthetics”. In: Information Visualization 1.2 (2002), pp. 103–
110.

Wettel, Richard and Michele Lanza. “Program Comprehension through Software Hab-
itability”. In: Proc. of the 15th International Conference on Program Comprehen-
sion (ICPC ’07). IEEE Computer Society, 2007, pp. 231–240.

Wittenburg, K. and L. Weitzman. “Qualitative Visualization of Processes: Attributed
Graph Layout and Focusing Techniques”. In: Proc. of the 4th International Sym-
posium on Graph Drawing (GD ’96). Vol. 1190. LNCS. Springer, 1997, pp. 401–
408.

Publications on Business Process Management

Allweyer, Thomas. BPMN 2.0. Books on Demand, 2010, p. 156.
Alves, Alexandre et al. Web Services Business Process Execution Language Version

2.0. Standard. OASIS, Apr. 11, 2007.
Brown, Ross A. and Jan C. Recker. “Improving the Traversal of Large Hierarchical

Process Repositories”. In: 20th Australasian Conference on Information Systems.
Monash University, Melbourne, 2009.

Bibliography 207

Dumas, Marlon, Luciano García-Bañuelos, and Artem Polyvyanyy. “Unraveling Un-
structured Process Models”. In: Business Process Modeling Notation (BPMN2010).
Vol. 67. LNBIP. 2010, pp. 1–7.

Fahland, Dirk, Cédric Favre, Barbara Jobstmann, Jana Koehler, Niels Lohmann, Ha-
gen Völzer, and Karsten Wolf. “Instantaneous Soundness Checking of Industrial
Business Process Models”. In: Proceedings of the 7th International Conference on
Business Process Management, BPM 2009. Ed. by Umeshwar Dayal, Johann Eder,
Jana Koehler, and Hajo Reijers. Vol. 5701. LNCS. Springer, 2009, pp. 278–293.

Held, Markus and Wolfgang Blochinger. “Collaborative BPEL Design in a Rich Inter-
net Application”. In: CCGRID ’08: 8th International Symposium on Cluster Com-
puting and the Grid. Lyon: IEEE Computer Society Press, 2008, pp. 202–209.

Held, Markus and Wolfgang Blochinger. “Structured Collaborative Workflow Design”.
In: Future Generation Computer Systems 25.6 (2009), pp. 638–653.

Jablonski, Stefan and Manuel Götz. “Perspective Oriented Business Process Visual-
ization”. In: Business Process Management Workshops. Vol. 4928. LNCS. Springer,
2007, pp. 144–155.

Jensen, Kurt. Coloured Petri nets: basic concepts, analysis methods, and practical use.
Vol. 2. Monographs in Theoretical Computer Science. An EATCS Series. Springer,
1996.

Kim, Gun-Woo, Seung Hoon Lee, Jae Hyung Kim, and Jin Hyun Son. “An Effective
Algorithm for Business Process Mining Based on Modified FP-Tree Algorithm”.
In: Proc. of the Second International Conference on Communication Software and
Networks (ICCSN ’10). IEEE Computer Society, 2010, pp. 119–123.

Kopp, Oliver, Daniel Martin, Daniel Wutke, and Frank Leymann. “The Difference Be-
tween Graph-Based and Block-Structured Business Process Modelling Languages”.
In: Enterprise Modelling and Information Systems Architectures 4.1 (2009), pp. 3–
13.

Kunze, Matthias, Alexander Luebbe, Matthias Weidlich, and Mathias Weske. “To-
wards Understanding Process Modeling – The Case of the BPM Academic Initia-
tive”. In: Third International Workshop on Business Process Model and Notation
(BPMN 2011). Vol. 95. LNBIP. Springer, 2011, pp. 44–58.

Polyvyanyy, Artem, Luciano García-Bañuelos, and Marlon Dumas. “Structuring Acyclic
Process Models”. In: Proc. of the 8th International Conference on Business Process
Management (BPM ’10). Vol. 6336. LNCS. 2010, pp. 276–293.

Polyvyanyy, Artem, Sergey Smirnov, and Mathias Weske. “The Triconnected Ab-
straction of Process Models”. In: Proceedings of the 7th International Conference
on Business Process Management (BPM ’09). Vol. 5701. LNCS. Springer, 2009,
pp. 229–244.

208 Bibliography

Reijers, Hajo and Jan Mendling. “Modularity in Process Models: Review and Effects”.
In: Proc. of the 6th International Conference on Business Process Management,
BPM2008. Vol. 5240. LNCS. Springer, 2008, pp. 20–35.

Silver, Bruce. BPMN Method and Style. Second edition. Code-Cassidy Press, 2011.
Smirnov, Sergey, Matthias Weidlich, Jan Mendling, and Mathias Weske. “Action Pat-

terns in Business Process Models”. In: ICSOC/ServiceWave. 2009, pp. 115–129.
Smirnov, Sergey, Matthias Weidlich, Jan Mendling, and Mathias Weske. “Object-

Sensitive Action Patterns in Process Model Repositories”. In: Business Process
Management Workshops. 2010, pp. 251–263.

White, Stephen A. Introduction to BPMN. online. online: http://www.bpmn.org.
United States: IBM Corporation, 2004.

White, Stephen A. Process Modeling Notations and Workflow Patterns. online: http:
//www.bpmn.org. IBM Corporation. 2004.

White, Stephen A. Using BPMN to Model a BPEL Process. online: http://www.
bpmn.org. IBM Corporation. United States, 2005, p. 18.

Yongchareon, Sira, Chengfei Liu, Xiaohui Zhao, and Marek Kowalkiewicz. “BPMN
Process Views Construction”. In: Database Systems for Advanced Applications.
Ed. by Hiroyuki Kitagawa, Yoshiharu Ishikawa, Qing Li, and Chiemi Watanabe.
Vol. 5981. LNCS. Springer, 2010, pp. 550–564.

Other Publications

Achterberg, Tobias. “SCIP: Solving constraint integer programs”. In: Mathematical
Programming Computation 1.1 (2009), pp. 1–41.

Gehring, Uwe W. and Cornelia Weins. Grundkurs Statistik für Politologen und Sozi-
ologen. 5th ed. (german). VS Verlag für Sozialwissenschaften, 2009, p. 46.

Hogg, Robert V., Joeseph McKean, and Allen T. Craig. Introduction to Mathematical
Statistics. 7th edition. Prentice Hall, 2012.

Karp, R. M. “Reducibility Among Combinatorial Problems”. In: Complexity of Com-
puter Computations. Ed. by R. E. Miller and J. W. Thatcher. Plenum Press, 1972,
pp. 85–103.

Nöllenburg, Martin. Integer-Programming methods in graph drawing. Presentation
slides, online, http://bowman.infotech.monash.edu.au/cbldd07/. 2007.

Rudell, Richard. “Dynamic variable ordering for ordered binary decision diagrams”.
In: Proceedings of the IEEE/ACM International Conference on Computer-Aided De-
sign (ICCAD’93). 1993, pp. 42–47.

Stegmaier, Matthias. “GraphDB im Web”. (german). Study thesis. Eberhard Karls Uni-
versität Tübingen: Arbeitsbereich Algorithmik, Wilhelm-Schickard-Institut, Eber-
hard Karls Universität Tübingen, 2011.

http://www.bpmn.org
http://www.bpmn.org
http://www.bpmn.org
http://www.bpmn.org
http://www.bpmn.org

	Introduction
	Business Process Visualization in 2--dimensional Space
	Preliminaries and Methods
	Preliminaries on Graphs and Graph Drawing
	Sugiyama Framework
	Topology--Shape--Metrics and Kandinsky model

	Business Process Model and Notation
	Objects for Process Flow Control
	Connecting Objects
	Artifacts
	Lanes/Pools

	Layout Aesthetics
	A User Study on Layout Aesthetics for BPMN
	Conclusion of User Study

	Static 2D--Layouts for BPMN

	2D--Visualizations of Business Process Models
	Sketch--Driven--Layout for BPMN
	Algorithm
	Application case: Divisions (Cuts)

	Pattern--based BPMN--Layout
	Motivation
	Layout Patterns
	Evaluation
	Summary

	A Layout Approach for BPEL--workflows
	Preliminaries
	Related Approaches
	Layout Algorithm for BPEL--workflows
	Summary

	Summary for Part I

	Business Process Visualization in 2.5D
	Introduction to 2.5D--Visualizations
	Motivation
	Terminology and related work
	Related work on 2.5D/3D--graph--layout
	Related work on (Business Process) Visualization in 3D

	A 3D-Framework for 2.5D-Visualizations
	Criteria and Perspectives
	Implementation
	Navigation Support
	Summary

	Visualization approaches in 2.5D
	Motivation
	Approach 1: Sequential Layer Sweep
	Approach 2: ILP formulation
	Approach 3: Partition Supported 2.5D-Layering
	A 2.5D hierarchical drawing of directed graphs

	Analysis and Benchmarks
	Data set
	Performance
	Layout Quality
	Discussion
	Sequential layer sweep (SLS)
	Integer linear programming (ILP)
	Partition supported layering (PSL)

	Conclusion and Summary

	Epilog
	Applications and Projects
	Contribution to GraphDrawing2011 Contest
	Preprocessing of the graph
	Layout implementation
	Filtering features
	Interactive application

	Business Process Modeling using Web2.0
	Oryx -- A Web2.0-based collaborative graphical editor
	The automatic layout algorithm and integration into Oryx

	Flight Navigator for Business Process Models
	Presentation of Flight Navigator
	Summary

	GraphArchive
	Features of the new GraphArchive
	Presentation of the new system
	Summary

	Conclusion
	Bibliography

