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Chapter

Introduction

Graph drawing is not functional, but beautiful.

G1useppPE LioTTA

Dagstuhl seminary on Graph Drawing with Algorithm Engineering Methods

The saying “A picture is worth a thousand words” is very popular among people work-
ing with diagrams. Although being an American invention (“one look is worth a
thousand words”, commending the effectiveness of graphics in advertising, Printer’s
Ink, December 1921), the phrase was falsely attributed to Chinese origin' which also
seemed to be plausible and might have even enforced its credibility. In general, the
phrase expresses the statement that a visualisation is a better description than a verbal

2. Therefore, visualization is considered a powerful tool to express data

description
in a visual representation, e.g. image—guided anamneses, using magnetic resonance
imaging (MRI) or X-rays, are typical application cases of visualization that are today
immanent to our everyday life. In Figure 1, we visually depict the rules of a popu-
lar child’s game as an example of visualization. In this work, we apply the idea of
visualization to business processes models.

In the field of business process management (BPM), visualization quickly conquered
the fundamental process of modeling processes. Where processes were specified in
text files or later using structured text files, e.g. XML, notation languages took over
this part of process management by introducing graphical devices to specify processes.
An example for the growing importance of notation languages, for the field of software
development, is the collection of different diagram styles in UML, the unified model-
ing language, which today, in version 2.3, offers 14 different diagram types>.

Isee details on the origin of the idiom:
http://www.phrases.org.uk/meanings/a-picture-is-worth-a-thousand-words.html,
2012-09-30. Note that, from here on, we state for online references the date of last access.

2see http://en.wiktionary. org/wiki/a_picture_paints_a_thousand_words, 2012-09-30.

3see http://www.uml.org/, 2012-09-30.


http://www.phrases.org.uk/meanings/a-picture-is-worth-a-thousand-words.html
http://en.wiktionary.org/wiki/a_picture_paints_a_thousand_words
http://www.uml.org/
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Figure 1.1.: Rules of child’s game rock, paper, scissors in a slightly extended version. The
visual representation of the rules is backed by a graph of 5 nodes and 20 edges.
The graph is complete and, therefore, called a Ks. The edges of the graph are
directed. Note that the game is fair because each node has two outgoing and two
incoming edges.
Source: http://www.sodahead.com/user/profile/2457469/bazinga/

For business processes, the notation language BPMN (business process model and no-
tation), whose initiatives date back to 2002, is about to dominate the field of process
modeling with the help of graphical notations. The newest release of BPMN 2.0 in
January 2011 by the Object Management Group (OMG)* comprehends three types of
diagrams to specify business processes. Also, this new release attempts to succeed
BPEL (business process execution language) in terms process execution capabilities.

For the modeling of processes, we consider in this work primarily process models
in BPMN or BPEL, which both are de—facto notation standards for business process
models and, therefore, represent a large majority of existing process models. From
an algorithmic point of view, visualization of business process models is a challeng-
ing functional application of graph drawing techniques which have to fulfill aesthetic
requirements of a business process model. Thus, we rely on graphs as mathematical
constructs that are a combination of a set of objects (called nodes or vertices) and a set
of binary relations between these objects (called edges). Many structures, e.g. entity—
relationships, and theoretic and practical problems can be abstracted by projecting

“see http://www.omg.org, 2012-09-30.
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them onto the structure of a graph. The field of graph drawing can be considered to be
a sibling of graph theory and is dedicated to the design and implementation of layout
algorithms for the computation of 'readable’ drawings (diagrams) of graphs. Usually,
as known from diagrams, graphs are embedded in a plane and rectangles are used for
depicting nodes and lines are used for representing edges.

On the mission of visualizing business process models, we also touch further fields
of research, e.g. layout aesthetics or business process management. Layout aesthet-
ics attempt to formalize the readability of a diagram in order to eventually ease the
burden of interpreting visual data for a user. Often, this field employs conductions of
user studies to support or reject hypotheses on effects of layout aesthetics on a user’s
cognition.

The focus of this work is on the development of algorithms for the computation of
visualization of business process models. We also employ earlier findings on layout
algorithms or graph drawing. We introduce new algorithms for the computation of lay-
outs for business process models and we present novel approaches for the extension
of powerful layout frameworks towards support of business process models. We also
provide analysis of new algorithms with respect to performance and with respect to
support of layout aesthetics. To endorse layout aesthetics for BPMN, we present the
results of a user study conducted in order to obtain clues of user preferences for layout
aesthetics in business process models.

The new algorithms are integrated into a software framework called BPMN-Layouter
which provides an interactive modeling environment for BPMN and contains all layout
algorithms developed for BPMN in this work. The layout algorithms compute visual-
izations in two—dimensional space and in three—dimensional space. Therefore, we also
present an extension to BPMN—Layouter, called 3D-Navigator, that allows to navigate
freely in three—dimensional space and integrates our layout algorithms for this display
concept. In the following, we describe the structure of this work.

Outline

This work consists of three parts. The first part focuses on visualizations for business
process models in two—dimensional space (2D). The second part comprehends the pre-
sentation of three novel approaches for computing visualizations for business process
model in three—dimensional space (3D) while delimiting the display space by using the
concept of two-and-a-half dimensions. The last part gives insights into projects that
evolved to be part of my research and that all resulted in publications. The topics of
these projects involve applications of visualizations and development of applications
for graphs.
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We begin in Chapter 2 with a thorough introduction into the field of graph drawing and
define necessary notions. We also briefly recapture common algorithmic methodolo-
gies for the computation of layouts for general graphs. The results of a study on layout
aesthetics of business process models are presented and are considered a starting point
for constraints that should be fulfilled when designing algorithms for the visualization
of business process models. Also, a previous work on a layout approach for BPMN is
rehashed because it is referred to often in the remainder of this work.

The first new layout approach of this work is presented in Section 3 when we extend
the Kandinsky model to support swimlanes in BPMN. The approach allows an inter-
active layout computation for BPMN diagrams where a new layout is based on the
embedding of the input. The concept follows the idea of preserving a user’s mental
map.

Then, we introduce three novel layout patterns that represent semantics in BPMN. The
patterns aim at extending the common set of layout aesthetics, which are mostly appli-
cable only structurally or syntactically, with a set of formal rules that enable a layout
algorithm to consider semantics in a business process model. All three patterns are
fully integrated into the previously presented interactive layout approach. Also, we
provide an analysis of the patterns and their effect on common layout aesthetics.

For business process models that employ the business process execution language
(BPEL), an approach for visualization of these process models is given in Section 3.3.
We define shapes and formats of BPEL elements because BPEL originally is based on
XML-files only. The approach highlights hierarchical and nested structures in a pro-
cess model by deriving execution paths from the models and preserving them during
the computation of the layout.

In the second part, we expand the display space to three dimensions. We introduce the
concept of two-and-a-half dimensions and present our self—developed software envi-
ronment for the presentation of the process models in two-and-a-half dimensions, see
Chapter 5.

In Chapter 6, we introduce three novel approaches for the computations of visual-
izations for business process models in two-and-a-half dimensions. For all three ap-
proaches, we give detailed algorithmic descriptions, followed by an evaluation and
analysis on real-work business process models in Chapter 7. There, we also discuss
the strengths and weaknesses of the approaches.

In the third and last part, we present different applications of visualizations and re-
search projects that were undertaken in parallel to the work of the first two parts. The
applications and projects resulted in various publications and are partially based on
findings of the previous parts. The descriptions of these entertaining projects eventu-
ally lead to the conclusion at the end of this work.



Part I.

Business Process Visualization
in 2—dimensional Space






Chapter

Preliminaries and Methods

In the following, we introduce necessary notions and definitions to build a common
ground of understanding in the wide fields of Graph Drawing and Visualizations for
the remainder of this work. Also, we will provide a short summary in Section 2.2 of the
language Business Process Model and Notation (BPMN) that will be used throughout
this work as standard modeling language for the business process models that are to
be visualized.

Furthermore, we elaborate in Section 2.3 on layout aesthetics for business process
models, and generally, on layout aesthetics as criteria for layout approaches. The
chapter concludes with the presentation of previous work on a layout approach for
BPMN that is referred to various times in this work.

2.1. Preliminaries on Graphs and Graph Drawing

In the next paragraphs, we rehash the basics of graph theory that are required for the
understanding of this work.

A graph G is a ordered pair G = (V, E), where V is the set of nodes and E C V X V,
pairs of nodes, is the set of edges. Nodes are synonymous with vertices. For a pair
e = (u,w) € E, u and w are the endpoints of the edge e. The set of edges E can be
distinguished by directed edges Ep, where the pairs in Ep are ordered, and undirected
edges Ey. For an edge e = (u,w) € Ey, it holds (4, w) = (w, u); pairs in Ey are not
ordered. For an edge e; = (v, x) € Ep, v is called source and x is called target.

If a graph G = (V, E) contains only directed edges, i.e., E = Ep, we call G a directed
graph, or short digraph. If a graph G contains directed and undirected edges, we call it
a mixed graph. An edge e = (u,u) € E with identical endpoints is called self~loop. If
there are multiple edges between a pair of nodes, these edges are called multi—edges.
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A simple graph is a graph without self-loops and multi—edges.

An edge e is incident to a node v, if v is an endpoint of e. A node v is adjacent to a
node u, if (u,v) € E; v is a neighbour of u if (v,u) € E or (u,v) € E. An edge e; is
adjacent to a edge ey, if e; and e, share an endpoint.

A subgraph G’ = (V',E’) of G = (V,E) is a graph with V' C V and E’
subgraph G’ is an induced subgraph if G’ contains all edges (u,v) € E’
u,vev.

The degree 6(v) of a node v denotes the number of incident edges to v. In a digraph,

E. The

-
C E with

we distinguish the degree of a node: the out—degree of a node u is defined by d,,,(1) =
l{u : (u,v) € E}|, the in—degree of a node v is defined by 0;,(v) = [{v : (u,v) € E}|.
For the degrees, it holds 6(v) = 6;,(V) + Sou(v). A k—graph is a graph with nodes of
a maximum degree of k, or max,cy0(v) < k. Self-loops contribute an increase of 2 to
the degree of an incident node.

A path p of length n in a graph is a sequence of nodes (v, ..., v,), v; € V, with start
node v, and end node v,, where (v;,viy1) € E, Y0 < i < n. If the nodes in path p are
pairwise distinct, v; # v; YO < i, j < n with i # j, we call p a simple path. A path p is
a cycle if vo = v,. A graph is acyclic if, for every pair of nodes (u,v) € V X V, there is
no simple, cyclic path from u to v. If there is a path in G for every pair of nodes (u, v),
u # v, then, G is a connected graph.

A tree T is a connected, acyclic and undirected graph. A spanning tree for a graph
G is a tree which is a subgraph of G and which contains exactly |V| — 1 edges. For
a tree T and a weight function w : E — N, T is a minimum spanning tree (MST) if
the sum of weights .7 w(e) is minimum. A rooted tree has exactly one root . The
nodes U C V, that are visited on a path from r to v for anode v € V, v # r, are called
ancestors. A root r has no ancestor.

A subtree T’ of tree T is a tree which is induced by choosing a node v € V of T as root
for T’. A node u is a parent of v if u is an ancestor of v and (u,v) € E, v is a child of
u. A node with a parent but no child is called a leaf. A root is the only node without a
parent.

A topological ordering of a directed acyclic graph G = (V,E) is a linear ordering
n:V — Nof nodes V such that 7(v) < 7(w) V(v,w) € E.

A partition of a graph G = (V, E) is a mapping p : V — N X N of the nodes V to the
coordinates of a cell in a two—dimensional grid. The grid consists of rows and columns;
the width of the partition is defined by width(p) = max{i | p(n) = (i, j), ¥n € V}, and
the height is given by height(p) = max{j | p(n) = (i, j), Yn € V}. In an embedding
with a given partition p(V), each node v € V is placed within the cell assigned by p(v).

A digraph G = (V, E) with associated costs ¢ : E — N and capacities u : E — N is
called a flow network. We associate with each node i € V a number b(i) which denotes
its supply or demand depending on whether b(i) > 0 or b(i) < 0. The minimum cost
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flow for a flow network G can bet stated as follows:
minimize 7(x) = ¥ jer (i, j) - x(i, )
subject to

D oxip- D (i) =b) VieV,
J:i.))EE JUHEE
0 < x(@, ) <u(i, ) VY(,j) € E.

The function x : E — N is called a flow. A flow f is feasible if it satisfies all of the
constraints above. In order to be feasible, a minimum cost flow must satisfy the mass
balance constraints:

Zb(v) = 0.

veV

We refer to (Ahuja, Magnanti, and Orlin 1993) for a more thorough introduction into
network flows. In the following, we introduce necessary notions that stem from the
field of Graph Drawing.

Definition 1 (Drawing of a graph).
A mapping M of a graph G = (V,E) to the plane in R? is a drawing T, if

e V is mapped onto distinct points in R2.

o FE is mapped on open Jordan—curves. A Jordan—curve is a planar curve that
is topologically equivalent to the unit circle. The curve of an edge (v,w)
connects the points that represent vertices v and w.

If no two curves intersect in a drawing I" of a graph G, then, I' is called planar. From
the existence of a planar drawing for a graph, we can state:

Definition 2 (Planarity).
A graph G = (V, E) is planar if there exists a planar drawing T for G. o

A planar drawing of a graph partitions the plane into regions called faces. There is ex-
actly one unbounded region which is called the outer face. An embedding of a graph
is given by the clockwise cyclic ordering of the edges which are incident around each
vertex. An embedding is called planar embedding if there is a planar drawing of the
graph which preserves this ordering.
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The dual graph D¢ of a planar embedding of G has a vertex vy for each face f of G
and an edge (vy, v) for each edge of G separating two faces f and g. Hence, the size
of the dual graph is linear. Furthermore, the dual graph is always planar. If the faces
connected by an edge e in D¢ are identical, we call e a bridge.

In a box drawing, the nodes are mapped to boxes (rectangles) instead of points. A point
drawing is called an orthogonal drawing if the curve of each edge is represented by an
alternating sequence of horizontal and vertical line segments. The chain of alternating
segments is connected by bends.

If all nodes and bends along the edges have integer coordinates, the drawing is called
an orthogonal grid drawing. Note that a graph has an orthogonal grid drawing if and
only if it is a 4—graph. A drawing is called an orthogonal box drawing if it is an orthog-
onal drawing and each vertex is mapped to a box. In an orthogonal box grid drawing,
the center of the boxes and the bends have integer coordinates.

The crossing number cr(G) of a graph G = (V, E) is the minimum number of edge
crossings in any drawing of G in the plane R%. Computing the crossing number of
non—planar graphs is NP-hard (Garey and Johnson 1979; Garey and Johnson 1983).
Note that there are variants on how to count crossings in a graph, e.g. odd crossing
number ocr(G) (Pelsmajer, Schaefer, and Stefankovic 2007), the smallest number of
pairs of edges that cross an odd number of times in any drawing of G, or monotone
crossing number mcr(G) (Pach and Té6th 2011), the smallest number of crossing points
in a drawing of G in the plane, where every edge is represented by an x—monotone
curve, that is, by a connected continuous arc with the property that every vertical line
intersects it in at most one point. An upper bound on the number of crossings is
cr(G) = O(EP). If every pair of edges crosses at most once, then the number of cross-
ings is O(E?).

2.1.1. Sugiyama Framework

The Sugiyama framework (Sugiyama, Tagawa, and Toda 1981) aims at the computa-
tion of a layered drawing for any digraph. It is the most common approach for produc-
ing layered drawings of directed graphs. Almost all graph drawing libraries support
the framework and, therefore, underline its powerfulness and generality. It consists of
four steps:

1. Cycle Removal
2. Layer Assignment
3. Crossing Reduction

4. Horizontal Coordinate Assignment
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The framework is now recaptured because we refer to the steps frequently in the re-
mainder of this work. An excellent description of the framework can also be found
in (Siebenhaller 2009) or, in more detail, in (Kaufmann and Wagner 2001). Together
with the algorithms for each of the steps, the complete framework is also often refer-
enced in abbreviated fashion as Sugiyama’s algorithm.

The algorithmic framework of Sugiyama has also been extended, e.g. to handle radial
layouts (Bachmaier, F.-J. Brandenburg, Brunner, et al. 2008), where the graphs are
arranged in concentric circles around a starting node, and to three—dimensional layered
drawings of graphs (Hong and Nikolov 2005).

Step 1: Cycle Removal

If the connected, directed input graph G contains cycles, this step temporarily reverses
edges to make the graph acyclic. Therefore, we compute a set of edges R C E that,
when all edges in R are reversed, renders G acyclic and we call R a feedback set. The
task is to choose |R| as small as possible. This problem is known as the feedback arc
set problem, which is defined as the set of edges R with minimum cardinality, where
it holds that G = (V, E \ R) is acyclic. The problem is NP-hard (Garey and Johnson
1979; Karp 1972).

The greedy heuristic described in (Eades, Lin, and Smyth 1993) determines a feedback
arc set R of a simple digraph G = (V, E) in linear time such that |E \ R| > |E|/2 + |V]/6.
Note that reversing all edges of a minimal feedback arc set guarantees that G is acyclic.
For heuristics which do not necessarily return a minimal feedback arc set R, we can
proceed as follows: We calculate a topological ordering r of the graph G = (V, E \ R)
and reverse all edges (v,w) € R for which holds n(v) > m(w). This can be done in
linear time and guarantees that G is acyclic.

Step 2: Layer Assighment:

In the layer assignment, nodes V of an acyclic digraph G = (V, E) are assigned to lay-
ers Iy, ..., Ik, k denotes the number of layers, which might not be known beforehand.
Wecall [y, ...,k a partitionof V with; c V ,1 <i < kand Uf:l l; = V. The partition
is called a layering of G if for each edge (v,w) € E with I(v) = [; and I(w) = [; holds
i < j. Then, the span of an edge (u,w) is j —i.

In a layered drawing, all nodes v € [; are drawn on a horizontal line; thus, the layer
assignment step assigns each vertex v € V a y—coordinate. We call a layering proper if
span(e) = 1 for all edges e € E. For edges e = (u, w) with span(e) > 1 with the end-
points # and v on layers [; and /, we replace e by a chain of dummy nodes d;. 1, ...,d;
where vertex dp, i + 1 < h < j— 1, is placed on layer [,. The nodes are connected by
edges (u,d;y1),(dj-1,v) as well as edges (dj, dp41) foreachi+ 1 < h < j—1. We call
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this replacement normalization and the result is a normalized graph Gy = (Vy, EN).
With this construction, the next phase starts with a proper layering. Note that with
O(|E]) edges of span O(|E|), the number of dummy nodes is quadratic. However, the
number of dummy nodes inserted in this step can be reduced (Eiglsperger, Sieben-
haller, and Kaufmann 2005).

A simple layering approach is the longest path layering. It first places all nodes v € V
with in—degree 6;,(v) = 0 in layer /;. For each remaining node v, we compute the
length d of the longest path from v to a node in layer /; and place v in layer ;4. Since
G is acyclic the layering can be computed in O(|V|) using a topological ordering of the
nodes. Furthermore, the layering produces a minimum number of layers.

Another approach introduced in (Gansner et al. 1993) is called simplex layering. Here,
a layer assignment is calculated such that the total edge length, and thus the number of
inserted dummy nodes, is minimized. The layering problem is formulated as a integer
linear program and solved by applying the network simplex method.

Further algorithms for the layer assignment phase are also presented in (Healy and
Nikolov 2001; Sander 1999).

Step 3: Crossing Minimization:

The third step of the Sugiyama framework aims at the reduction of crossings between
edges in the layered, normalized digraph. Since the number of crossings depends
on the position of the nodes within each layer, this step tries to find an ordering of
the nodes such that the number of crossings is minimum. The problem of finding an
optimal solution is NP—complete, even if there are only two layers (Garey and John-
son 1983). Therefore, heuristic algorithms are used to reduce the number of cross-
ings (Eades and Wormald 1994; Jiinger and Mutzel 1997).

A very popular approach is the layer—by—layer—sweep (Di Battista, Eades, et al. 1999)
where two layers /; and /41, 0 < i < k are considered at a time. The ordering of layer
[; is kept fixed while the positions of nodes in /;;; are reordered such that crossings
of edges between /; and /;;; are reduced. This problem is called two—layer crossing
problem and is NP-hard (Eades and Wormald 1994). Heuristics employ two strategies:

1. fast computations of the number of crossings:
Counting the numbers is performed very often in order to decide if the number
of crossings improves when interchanging node positions. For a two-layered
graph G; = ([ Uy, E; C [1X1»), the so-called bilayer cross counting problem can
be solved in O(|E)| + ¢) (Sander 1999) where ¢ denotes the number of crossings,
and improvements are presented in (Barth, Mutzel, and Jiinger 2004) with a time
complexity of O(|Ej| log(|1| + |12])).

2. fast computations of improved orderings in the non—fixed layer /;;;:
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A common method is the barycenter method where the x—coordinate of each
node v € [;41 is computed by the average of the x—coordinates of its neighbours.
This method can be computed in linear time. A variant of this method uses the
median instead of the average. Both approaches give an optimal solution for the
case that the solution has no crossings (Di Battista, Eades, et al. 1999). In other
cases, the heuristic variants cannot guarantee optimal solutions.

In (Jiinger and Mutzel 1997), the two—layer crossing problem is formulated as an in-
teger linear program which guarantees optimal solution. However, due to the high
number of constraints (O(|l;+1?)), the approach is preferred in application cases with
digraphs of small or medium size.

Step 4: Computation of Horizontal Coordinates:

In the last step of the Sugiyama framework, the nodes are assigned a horizontal co-
ordinate in their corresponding layer. Note that each dummy node, in the normalized
graph Gy with a layer ordering for reduced crossings from the last step, can cause a
bend in the resulting layout. Thus, it is the goal of this step to arrange the nodes such
that the edges run “as vertical as possible”, or in other words, with the least possible
number of bends.

The optimization problem for keeping the edges as straight as possible may result in
exponential width of the drawing and the main disadvantage is that since this prob-
lem has a quadratic objective function, it can only be solved to optimality for small
instances (Kaufmann and Wagner 2001).

In (Gansner et al. 1993), it is proposed to model the optimization step as an integer
linear program for a normalized layered graph G = (V, E). The linear program cor-
responds to a layer assignment for a subgraph G, = (V,, E;) = (V,{(u,w) : u,w €
V A u,w consecutive in L;,1 < i < k}), the compaction graph, with the following
objective:

min Z Q(u, w)w(u, w) - |x(w) — x(u)|

(uw)eE

subject to

x(u) — x(w) = p(u, w), Yu,w € V,.

where w is a measure for the importance of an edge and Q denotes an internal weight
for straightening long edges; p denotes the minimal distance between two objects.
Optimality in G, implies optimality in G and a layering for G, gives a solution for
G (Kaufmann and Wagner 2001).

Using heuristics can reduce the complexity to a linear-time algorithm (Brandes and
Kopf 2001; Sander 1999). There, the linear segments model is applied, where each
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edge is drawn as a polyline with at most three segments. The first and the last seg-
ments are always proper (endpoints lie on adjacent layers) and the middle segment is
drawn vertically. (Brandes and K&pf 2001) use a longest path-based heuristic which
runs in linear time complexity to the size of the compaction graph G,. The method
of (Brandes and Kopf 2001) is described as follows: The algorithm consists of three
basic steps. The first two steps are carried out four times. Then, the results of these
four runs are merged and balanced. In the first step, referred to as vertical alignment,
they try to align each vertex with either its median upper or its median lower neighbor,
and, then, alignment conflicts are resolved either in a leftmost or a rightmost fashion.
Thus, one vertical alignment is obtained for each combination of upward and down-
ward alignment with leftmost and rightmost conflict resolution. For the resolution,
the approach distinguishes between three types of crossings in a layered graph: type
2 conflicts correspond to a pair of crossing inner segments; an inner segment is an
edge between two dummy vertices. Type 1 conflicts arise when a non—inner segment
crosses an inner segment. The remaining type 0 conflict corresponds to a pair of non—
inner segments that either cross or share a vertex. In the second step, called horizontal
compaction, aligned vertices are constrained to obtain the same horizontal coordinate.
A maximal set of vertically aligned vertices is called a block. From the blocks, a par-
tition of the block graph into classes is computed such that classes are compounds of
blocks in adjacent layers that are as large as possible. Using a longest path-approach
on each class, all vertices are placed as close as possible to the next vertex in the pre-
ferred horizontal direction of the alignment. Finally, the four assignments obtained are
combined to balance their biases.

2.1.2. Topology-Shape—Metrics and Kandinsky model

The Topology—Shape—Metrics (TSM) is an approach which produces orthogonal grid
drawings. It was first presented in (Tamassia 1987) and in (Tamassia, Di Battista, and
Batini 1988), originally known as the GIOTTO approach. TSM is considered a con-
vincing solution for the problem of producing satisfiable orthogonal layouts compared
to other approaches (Di Battista et al. 1997). The name itself is introduced in (Di Bat-
tista, Eades, et al. 1999). The approach aims at orthogonal layouts with few crossings
and bends. Various refinements and applications of the approach were published (Ei-
glsperger 2003; FoBmeier and Kaufmann 1995; Mutzel and Klau 1998; Siebenhaller
2009; Siebenhaller and Kaufmann 2005).

The approach consists of the three steps:

1. Planarization (Topology): the topology of a drawing is found by computing a
planar embedding and stored in a planar representation. Temporary dummy
vertices for the representation of crossings are inserted for non—planar graphs.
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The number of dummy vertices, i.e., the number of crossings, is subject to min-
imization.

2. Orthogonalization (Shape): the shape is determined using an orthogonal rep-
resentation: for each edge, edge bends are computed by determining a list of
angles which represent the route and contained bends.

3. Compaction (Metrics): the final positions of nodes and bends are determined.
This step has the aim of using the minimum possible area.

In the following, we will briefly recapture the three steps.

Planarization

Remember that the problem of minimizing crossings is NP—complete (Garey and John-
son 1983). The planar representation determines the topology as follows: For each
edge e € E with endpoints v and w, the two possible orientations (v, w) and (w, v)
are called darts. A planar representation # encodes the planar embedding as fol-
lows (Siebenhaller 2009): For each face f € F, it contains a cyclic ordered list P(f)
which contains the darts in clockwise order around f. The first list of the planar repre-
sentation always determines the outer face.

To find a planar embedding of a graph, the following technique is very popular (Ei-
glsperger 2003): (1) compute an embedded planar subgraph, (2) insert the remaining
edges sequentially and (3) reduce the number of crossings by rerouting of edges.

The computation of a maximal planar subgraph is NP-hard. Therefore, the planar
subgraph G* = (V, E*) of G has as many edges E* C E as possible but is not re-
quired to be maximal. To compute G*, the heuristic of (Goldschmidt and Takvorian
1994), Goldschmidt and Takvorian (GT) is a favoured approach (Resende and Ribeiro
1997). At first, a node order II(V) is determined and nodes are placed on a virtual
chain according to I1(V). Then, GT partitions E into three sets: (a) edges left of the
chain (L), (b) edges right to the chain (R) and (c) remaining edges (B). Of course,
LNR = LNB = BNR = 0. The partitioning is such that in both, L and R, no two edges
cross with respect to II(V) and |L U R| is large, or maximum at best. In (Goldschmidt
and Takvorian 1994), it is shown that if the node order calculated in the first phase cor-
responds to a Hamiltonian cycle in a maximum planar subgraph of G, then the number
of edges of the planar subgraph obtained by the GT heuristic is at least three quarters
of the number of edges of a maximum planar subgraph. In (Siebenhaller 2009), the
following heuristic to compute a GT ordering is given which exploit the Hamiltonian
property: the first node v; in the ordering II is a node with minimum degree in G. Let
v, ..., v; denote the first i nodes of the ordering and G; the subgraph of G induced by
the nodes of V/ = V\ {vy, ..., v;}. The i + 1-th nodes v;, is a vertex of V’ which is adja-
cent to v; in G and has minimum degree in G;. If there is no such node adjacent to v;,
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vertex v;y1 is a node of minimum degree in G;. This algorithm computes an ordering
in O(|V|?) time. In a randomized variant (Resende and Ribeiro 1997), the algorithm is
called multiple times and, finally, the result with the largest resulting set |L U R|, .i.e.,
the largest planar subgraph, is chosen.

After the computation of a GT ordering, the remaining edges B are inserted into the
planar subgraph G*. This is achieved by inserting the edges in B one by one using a
shortest-path approach in the dual graph G7, of G*. We will also refer to this technique
as shortest-path routing in the remainder of this work. For every edge e = (u,w) €
B, two nodes u’ and w’ are added to the dual graph G}, which represent u and w.
Also, we add edges (¢, f;,) from u’ to nodes f, for each face f of G which contains
a dart incident to u in P(f)). We perform analogously for w’. Then, the shortest path

u G—> w’ is computed, and we obtain a list of nodes in G}, v’ = vy, ..., = w’, where
D
V2, ..., Vi1 correspond to faces in G* that are traversed by the computed routing for e.

Edges of G* that are crossed by two adjacent path nodes (v;, vi41), 2 < i < k—2, are now
subdivided by a inserted dummy node which represents a crossing. The shortest path
can be computed in linear time using a breadth—first—search. Therefore, the insertion
of a single edge e can be computed in linear time.

(a) Input graph K. (b) GT ordering. (¢) Dual graph routing. (d) Final graph.

Figure 2.1.: Example for a GT ordering for K5. The red edge cannot be inserted into set £ or
set R without crossings. In the dual graph, the shortest path is computed and the
edge is inserted. The new dummy node represents the crossing.
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Orthogonalization

In the orthogonalization phase, the shape of the orthogonal drawing is determined.
The shape of an orthogonal drawing is encoded by the orthogonal representation Q.
It extends a planar representation £ by adding information about bends and angles
of edges. For each element in P(f), f € F, an ordered list of darts, we add a tuple
((v,w), s,a). The first entry (v, w) denotes the dart, and s is a bit string where the k-th
bit of s represents the k-th bend when walking along the dart from v to w. A “1" rep-
resents a bend whose angle is 270° inside of f and a “0” a bend whose angle is 90°.
If the dart has no bend, s is set to the empty string €. The angle between a dart and
its cyclic predecessor in list P(f) is specified by a, where a is a multiple of 90° and
ae{l,2,3,4}.

In (Tamassia 1987), valid orthogonal representation for planar 4—graphs are character-
ized with the following properties:

Let G = (V, E, F) be a plane 4—graph with a fixed embedding and an orthogonal shape
Q. Then, Q is valid if the following statements hold:

o Let ((v,w),s1,a1) € Q(f) and ({w, V), s2,a2) € Q(f)), [, [; € F denote two
distinct ordered lists whose darts represent the same edge. Then, the bit string
s1 is equal to the reversed and flipped bit string s;.

e Let L, denote the set of list elements with dart (v, w), w € V . Then, for each
v € V, we have

a=4.
v.w),s,a)€Ly

o Let #y (#;) denote the function that states the number of 0’s (1’s) in a bit string.
Furthermore, let 6(f) denote the number of darts defining a face f. Since each
face f € F is a rectilinear polygon we have:

20(f)+4 if f € F is the outer face

a—#y(s) +#1(s) = {
26(f) —4 otherwise.

(vw),5.0)€Q(f)

The number of bends of an orthogonal drawing is given by

1
#bends = 3 Z Z |s].
SEF ((v,w),s,0)€Q(f)

Note that with a valid orthogonal representation, we can handle planar 4—graphs.
With the optimized min—cost—flow algorithm that is presented in (Garg and Tamas-
sia 1996a), the time complexity for the computation of a bend—minimum orthogonal
representation of a plane 4—graph G = (V, E) is o(v|"* log |V)).

For planar graphs of higher degree, we cannot draw nodes as points without producing
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edge overlaps since there are only 4 different orthogonal directions. But since nodes
are usually drawn as boxes, this is not an issue. Therefore, two edges that are incident
to the same side of a node can share an angle of 0°. An orthogonal representation Q
that allows the angle values a to become 0 is called a quasi—orthogonal representation.
A quasi—orthogonal representation is called valid if there exists a corresponding planar
orthogonal box drawing. As shown in (FoBmeier 1997), the above characterization
of orthogonal representations also holds for quasi—orthogonal representations. An ap-
proach that allows us to handle the size of the boxes and supports quasi—orthogonal
representations is the Kandinsky model.

Kandinsky model The Kandinsky model was introduced in (F6Bmeier and Kauf-
mann 1995) and (F6Bmeier 1997) and was further extended in (Di Battista, Didimo,
et al. 1999) to allow for nodes of arbitrary size. Further results enabled the model to
handle prescribed angles (Brandes, Kaufmann, et al. 2002), special edge shapes (for
UML diagrams) (Eiglsperger, Gutwenger, et al. 2004) and port/side—constraints and
clusters/partitions (Siebenhaller 2009).

The Kandinsky model requires an embedded planar graph G = (V, E, F) and, using F,
a specific circular order of edges around nodes. Also, Kandinsky model assumes grid
drawings where the center of nodes and bends of edges are put on integer coordinates.
Kandinsky model allows drawings with nodes that have a degree larger than 4. This
is achieved by attaching more than one edge per node side. The edges are aligned
on fine grid lines that are adjacent to the nodes which are placed on a coarser grid.
Therefore, for each coarse grid line, a set of 2« — 1 fine lines is assigned in parallel,
where k > max,cyd(v) to guarantee that straight—line edges are attached at the center
of the node side, using the «-th fine line.

Drawings with a Kandinsky model obey the bend—or—end—property and the non—empty—
face—property (Eiglsperger 2003).

Definition 3 (Bend—Or-End Property).

An orthogonal representation Q satisfies the bend—or—end property if for every pair
w,v), (v,u) of darts following each other in a cyclic ordered list Q(f), f € F,
holds: either the last bend of (w, V) or the first bend of (v, u) is 270° inside of f. o

The bend—or—end property determines that there is at most one straight-line edge on
each node side. Bends that are caused by the bend—or—end property are called vertex—
bends, other bends are called face—bends.
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Definition 4 (Non—-Empty—Face Property).

Let f € F denote a triangular face with Q(f) = {{w, v), (v, u), (u, w)}.
Then, f is called:

L—triangle if Q(f) = {({w,v), 1,0); (v, u), €, 0); Ku, w), €, 1)} and
T=triangle if Q(f) = (u, w), 1,0); v, u), 1,0); (u, w), €,0).

Q satisfies the non—empty—face property if it does not contain L— or T-triangles. o

Examples for the prohibited L— and T-triangles are depicted in Figures 2.2(a) and
2.2(b).

u Y

(a) L—triangle (b) T-triangle

Figure 2.2.: Example for an L—triangle (a) and a T-triangle (b). Both triangles are not allowed
in the Kandinsky model.

With the two properties, we can characterize representations in the Kandinsky model:

Definition 5 (Kandinsky shape).
A quasi—orthogonal representation Q is said to be of Kandinsky shape if it satisfies
both, the bend—or—end property and the non—empty—face property. o

We will now present the network flow formulation for computing a Kandinsky shape
of a embedded planar graph. The formulation is originally presented in (Eiglsperger
2003) and extends Tamassia’s approach (Tamassia 1987). The network flow formula-
tion will be reused and extended in later sections of this work.

Let G = (V, E, F) be an embedded planar graph with planar representation . We use
%P to construct a network N () = (N, A) whose minimum cost flow induces a bend—
minimum orthogonal representation Q. In the network, let ¢ : A — N denote the cost
function, u : A — N the capacity function and b : N — Z the supply/demand function.
The set of nodes N is defined as

N = Ny UNgp UNg

with
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e Ny (vertex nodes) contains a node n, for each node v € V with supply b(n,) =
4 -6(v).
e N (face nodes) contains a node ny for each face f € F with supply/demand

-0(f)—4 if f € F is the outer face
b(ny) =

-0(f) +4 otherwise.
o Ny (helper nodes) contains a node ny, for each dart in  with supply b(n;,) = 0.

The set of arcs A is given by
A=AyrUApprUApy UAfpy

with

e Ayr connects each node v with its adjacent faces. Ayr contains edges ez’v W =

(ny,ny) for each dart (v, w) of P(f), f € F, starting at a node v € V. Edges of

Ayr have cost 0 and capacity co.

F _
w) T

(ny,ng) for each dart (v,w) of P(f), f € F, that separates f from face g € F,
f # g. Edges of Arr have cost 1 and capacity oo.

o Arp connects two faces which share an edge. App contains edges e

e Apy connects the helper nodes with vertex nodes. For each face f; and its helper
node ny, , 0 <7 < k around v we insert an edge (uy,, n,) to Agy with cost 0 and
capacity 1.

e Apy connects face nodes and helper nodes in the adjacent faces. For each face
Jfi and its helper node np, , 0 < i < k— 1 around v we insert edges (7f,_, o4 4> ;)
and (£, nogr»h;)» 0 < i < k— 1 with cost 1 and capacity 1.

The network model around a node v is depicted in Figure 2.3. Note that we now have
prevent the case, that an edge has two vertex—bends by adjacent faces. This happens
if there is flow on edge (ny,ny,,) as well as on edge (ny,,,ny,), this would induce
two vertex—bends at one endpoint of edge e;, which is not allowed. Therefore, we
create devices, a partition of the edges A. The set of devices D = {dy, ...,dy}, d; C A,
0 < i £k, and a capacity function #’ : D — N allow for extending the network to an
edge partition minimum cost flow problem (Eiglsperger 2003) by inserting restrictions
of the form

D fley<u(d),¥d e D.

eed
Using the restrictions, we can now produce a valid Kandinsky shape by setting edges
(Mfi1y moar> ) and (g, o 1) for anode ny, in one device with capacity u’(d) = 1.
In (Eiglsperger 2003), it is shown that the edge partition minimum cost flow problem is
NP-hard, but it is also given a 2—approximation on a relaxation of the problem which

runs in time O(|V|"/* \/log V).
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€1

e

€2

€3

Figure 2.3.: Network flow model of a node v for the Kandinsky model.

Compaction

In the compaction phase, nodes and bends are assigned to a grid drawing according
to the orthogonal presentation Q from the orthogonalization phase. The lengths of
the vertical and horizontal edge segments between end points and bends are computed
such that the area consumption of the grid drawing is small. Overlapping of nodes is
not allowed and edges only cross in crossing dummy nodes of the presentation Q.
Orthogonal compaction for general graphs is NP-hard (Patrignani 2001) and, in (Ban-
nister and Eppstein 2011), a fixed—parameter tractable variant and a lower bound on
the optimal solution in polynomial time of Q(n'/4=€), n = |V|, is given. In (Bin-
ucci and Didimo 2005), an experimental study on orthogonal compaction approaches
shows that, for larger graphs, the solution that rely on ILP models are not feasible in
terms of running time but, for smaller and high—density graphs, the exact algorithm
outperform the flow—based heuristic. The study prefers an approach that relies on the
turn—regularity (Bridgeman, Battista, et al. 2000) of 4—planar graphs. There, a planar
orthogonal drawing of @ with minimum area can be computed in O(n) time, and a
planar orthogonal drawing of Q with minimum area and minimum total edge length
within that area can be computed in O(n’/* log n) time.

A popular approach for compaction is the rectangular decomposition (Tamassia 1987)
where the faces are transformed to rectangles by introducing dummy edges and dummy
nodes for bends and crossings, see Figure 2.4. Then, the angles of a face are searched
for patterns to iteratively reduce the consumed area of the faces. Of course, the decom-
position of a graph with representation Q is not unique, but the resulting compaction
depends highly on the decisions of the decomposition of faces into rectangles.
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vy Vo b

g >

Figure 2.4.: Rectangular decomposition. Faces are transformed to rectangles by inserting
dummy nodes and edges.

In (Eiglsperger 2003; Eiglsperger and Kaufmann 2002), the following approach al-
lowed for efficient compaction of drawings in Kandinsky model with prescribed node
size: first, a coarse but valid compaction is calculated. Then, this low quality com-
paction is improved by a post—processing algorithm in the second step. The first step
is computed using a fast linear—time heuristic. The approach exploits the findings
of a study (Klau, Klein, and Mutzel 2000) which states that the results of different
constructive compaction heuristics are very similar after applying a flow—based one—
dimensional compaction algorithm as a post—processing step.

2.2. Business Process Model and Notation

For the notation of business process models, we use Business Process Model and No-
tation (BPMN) (White 2004a) in most parts throughout this work. The selection of
BPMN among other notation languages, e.g. EPK, UML activity diagrams, etc., is
due to the standardized way to create graphical models of processes which contain all
necessary information for a subsequent implementation (White 2004b, 2005) of the
process model. More important, BPMN is a standard for business process modeling
published by the Object Management Group (OMG)'. Also, it is widely used by many
software vendors offering process modeling tools, often incorporated with larger solu-
tions of business process management systems (BPMS).

Current version of BPMN passed OMG standardization process for version 2.0 in Jan-
uary 2011. When research for this work started at the end of 2008, version 1.2 was
about to be passed in January 2009. New features of BPMN 2.0 in comparison to
version 1.2 are’:

o Aligning BPMN with the business process definition meta model BPDM to form
a single consistent language.

Isee the website of OMG: http://www.omg.org, 2012-09-30.
2see description of BPMN 2.0 at http://en.wikipedia.org/wiki/Business_Process_Model_
and_Notation#BPMN_2.0, 2012-09-30.


http://www.omg.org
http://en.wikipedia.org/wiki/Business_Process_Model_and_Notation#BPMN_2.0
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e Enabling the exchange of business process models and their diagram layouts
among process modeling tools to preserve semantic integrity.

e Expand BPMN to allow model orchestrations and choreographies as stand—
alone or integrated models.

o Serialize BPMN and provide XML schemes for model transformation and to
extend BPMN towards business modeling and executive decision support.

Since none of these features added more basic BPMN elements to the process mod-
els of BPMN 1.2, i.e., elements were only updated or described in more details to
resolve ambiguities, it is fully reasonable to support 1.2 and statements on BPMN
1.2 models in this work are valid without exceptions for BPMN 2.0. The supported
BPMN 1.2 models are called collaboration diagrams in BPMN 2.0 and are to be dis-
tinguished from conversation diagrams and choreography diagrams which were newly
introduced in BPMN 2.0 and are yet to be adopted and integrated into (commercial)
BPMS software. Since the new diagram types (conversation diagrams and choreogra-
phy diagrams) are not fully supported by commercial tools yet and the future support
is (to this day) questionable, we focused in this work on the established collaboration
diagrams with support of all general elements in BPMN 2.0.

In the following, we present a short summary of modeling elements of BPMN. An
extensive and comprehensive introduction can be found in (Allweyer 2010).

2.2.1. Objects for Process Flow Control

Sequence flow in a BPMN model is controlled by flow objects. They can be considered
vertices in a graph. The largest group among flow objects are events. Events can
trigger actions during a process or initiate/terminate a (sub-)process. Therefore, there
are start events, intermediate events and end events. Depending on the specific event
type, details are depicted by symbols.

1. Events:
Q a) Start events initiate the process sequence flow. They have a circle shape
and, in our tool BPMN-Layouter, are assigned a green color to emphasize

the initiation of ’start’ as it is popular for dashboards. As a vertex v, a start
event has in—degree 9;,(v) = 0.

@ b) Intermediate events control the sequence flow within the process. Interme-
diate events can trigger timer or await other events (conditions, messages,
etc.) before allowing the sequence flow to continue. The shape of interme-
diate events is a circle surrounded by two parallel lines on the circle border.
Our tool assigns intermediate events a yellow color fill.
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¢) End events terminate sequence flows in process models and represent end-
ing points of sequence flow or sequence flow branches. Note that there
are end events to indicate abnormal termination of a process denoted by
symbols in the circle shape of the end event, e.g. for throwing errors or
triggering compensation actions. Vertices representing end events have al-
ways out—degree J,,, = 0.

The variants of events are, i.e., external inputs, data transfers or internal timer or
errors occur. The Tables 2.1 and 2.2 depict symbols, unique names and descrip-
tions of BPMN events.

. Activities:

Activities are the actual transactions or tasks that must be processed and passed
before sequence flow continues on outgoing connecting elements. Activities can
be repeated (multiple instances), depending on logical conditions and termina-
tion criteria (activity loop). The shape of activities is given by yellow rectangles
with rounded corners. The activities are listed in Table 2.3.

Subprocesses allow to encapsulate a process model in another process models.

A subprocess is a decomposable activity. It can be collapsed to hide details. A
subprocess contains a valid BPMN diagram. Note that a subprocess is indepen-
dent from the process model it is embedded to. From the surrounding parent
process, there are no direct connections to elements inside a subprocess. A sub-
process is initiated regularly by a start event that is contained in the valid inner
BPMN diagram. For visualizations, we treat subprocess as regular vertices in
the surrounding process models. If subprocesses exist, we resolve the nested
process model by performing a bottom—up—approach: compute visualization for
subprocesses first, then, compute visualizations for the surrounding (sub—) pro-
cesses. Since process models and the nested subprocesses form a tree structure
and do not contain cycles, this is always feasible. In Table 2.3, the shape of
a collapsed subprocesses, as it is used for the treatment as a regular vertex, is
given. When a subprocess is expanded, it is assigned the shape of a task (yel-
low rectangle) with adapted size such that it contains the BPMN elements of the
inner BPMN model.

. Gateways:

Gateways are able to process multiple sequence flows. They operate as logical
gates and support simple and complex logic operations, e.g. combinations of
AND- and OR—conjunctions of ingoing sequence flows. Also, outgoing flows
are activated depending on conditions, e.g. for a complex gateway with multi-
ple outgoing flows, it is possible to activate none, one, selected or all outgoing
branches. The gateways in BPMN are listed in Table 2.4.
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Unique name

Description

start_event

(Default) Start Event

intermediate_event

(Default) Intermediate Event

end_event

(Default) End Event

)
<

o

=N

message_start_event

Message Start Event

message_intermediate_event

Message Intermediate Event

message_end_event

Message End Event

20

link_start_event

Link Start Event

link_intermediate_event

Link Intermediate Event

link_end_event

Link End Event

rule_start_event

Rule Start Event

0@

7N\

S~~~

(I

rule_intermediate_event

Rule Intermediate Event

cancel_intermediate_event

Cancel Intermediate Event

cancel_end_event

Cancel End Event

compensation_intermediate_event

Compensation Intermediate Event

compensation_end_event

Compensation End Event

Table 2.1.: Table of BPMN events, Part 1.
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Unique name Description

error_intermediate_event | Error Intermediate Event

error_end_event Error End Event

timer_intermediate_event | Timer Intermediate Event

timer_end_event Timer End Event

)
<

o

=N

terminate_end_event Terminate End Event

Table 2.2.: Table of BPMN events, Part 2.

Symbol Unique name Description

 J | activity_task Task

L w  J | activity_multiple_instance | Multiple Instance

0 activity_loop Loop

B subprocess_collapsed Subprocess

Table 2.3.: Table of BPMN activities.
2.2.2. Connecting Objects

Connecting objects represent connections between elements and are considered edges
in an underlying graph. BPMN offers three basic variants of connection objects:
sequence flows, message flows and associations to attach information data. In Fig-
ures 2.5(a) — 2.5(c), the styles of the connecting objects are depicted. Sequence flow
defines the execution order of activities. Message flow symbolizes information flow
across organizational boundaries. Message flow can be attached to pools (see below),
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Symbol | Unique name Description

gateway_fork_join Fork/Join

gateway_inclusive Inclusive Decision/Merge (OR)

gateway_exclusive_data | Exclusive Decision/Merge (XOR) (data-based)

gateway_exclusive_event | Exclusive Decision/Merge (XOR) (event-based)

*® OO0+

gateway_complex Complex Decision/Merge

Table 2.4.: Table of BPMN gateways.

activities or message events. Associations indicate information flow, e.g. a input or
output data object which is described next.

(a) Sequence flow (b) Message flow (c¢) Association

Figure 2.5.: Connecting objects in BPMN.

2.2.3. Artifacts

Artifacts are elements in BPMN for representation of data or documentation that can-
not be assigned to any of the element groups mentioned above.

e Data object:
A data object is a placeholder for data that is input to the process or output from
the process, e.g. forms (input) or reports (output). It is always attached to a
element of BPMN which is the sender or recipient of the data. Therefore, a data
object is not autonomous as a single element in a BPMN process model. The
simple shape of a data object is depicted in Figure 2.6 (a).
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Description
of annotation

(a) Shape of a data object in BPMN. (b) Annotation element in BPMN.

Figure 2.6.: Artifacts in BPMN.

e Annotations: Annotations offer the possibility to add comments to flow objects
as well as connecting objects. Annotations are attached to the corresponding ob-
ject by an association. In a graph model, annotations can be handled as common
vertices. The shape of an annotation is given in 2.6 (b).

2.2.4. Lanes/Pools

Lanes (or swimlanes) and pools are structural elements that render the hierarchic struc-
ture of a BPMN process models. BPMN elements are assigned to lanes. Lanes often
reflect the organizational structure of a company, then, e.g. a lane represents a certain
department of this company. Also, lanes can reflect roles and responsibilities of a po-
sition, e.g. marketing manager or CIO of a company. Multiple lanes can be aggregated
to a pool in order to introduce a hierarchy level between roles/responsibilities. BPMN
elements are not assigned to pools directly but to lanes that are subordinated.

In a model, lanes are denoted by a rectangle; elements assigned to a lane are contained
in the rectangle corresponding to the very same lane. A pool is drawn as a rectangle
surrounding the lanes contained in its hierarchy. In Figure 2.7, a pool with three lanes
is depicted. Throughout this work, lanes or swimlanes are used synonymous.

Lane 1| Lane 2| Lane 3

Figure 2.7.: Hierarchic structure of a pool with three lanes in BPMN.

In Figure 2.8, a real-world process model of BPMN is depicted. Closing the summary
of BPMN elements, we define the graph underlying a BPMN process model as it will
used in the visualization approaches in the remainder of this work.
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Definition 6 (BPMN-Graph).

A BPMN-Graph is a connected graph G = (V,E) with an embedding into the
2D—plane and the following additional information:

o A mapping vertex_type : V — T, where T denotes the set of possible types
of a BPMN-element for a vertex v € V. For a node n € V, the shape of n is
prescribed by the vertex type vertex_type(n).

o A mapping edge_type : E — C, where C denotes the set of connecting
objects in BPMN, available for an edge e € E. Values of C are: sequence
flow, message flow and association.

o A mapping swimlane : V — S, where S denotes the set of swimlanes. A
vertex v € V is assigned to exactly one swimlane s € S. A swimlane s € S is
identified by a unique string. o

Admissible values for vertex types T are:

Events Gateways

start_event gateway_fork_join
intermediate_event gateway_inclusive
end_event gateway_exclusive_data
message_start_event gateway_exclusive_event
message_intermediate_event gateway_complex
message_end_event

link_start_event Activities
link_intermediate_event activity_task
link_end_event activity_multiple_instance
rule_start_event activity_loop

rule_intermediate_event
cancel_intermediate_event
cancel_end_event
compensation_intermediate_event
compensation_end_event
error_intermediate_event
error_end_event
timer_intermediate_event
timer_end_event
terminate_end_event
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Insurant Insurer

R

Figure 2.8.: Example of a BPMN process model. The process represents the sequence flow of
a notification of claim in an insurance company.
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2.3. Layout Aesthetics

An aesthetics of a layout measures a graphical property of a drawing. The word aes-
thetics derives from the Greek atofntikos (aisthetikos), meaning ’esthetic, sensitive,
sentient’, which in turn was derived from aiocfd@vouat (aisthanomai), meaning "I per-
ceive, feel, sense".

According to (Di Battista, Eades, et al. 1999), aesthetics ’specify graphic properties
of the drawing that we would like to apply, as much as possible’. Aesthetics are to
distinguish from drawing conventions. A drawing convention is ’a basic rule that the
drawing must satisfy to be admissible’ (Di Battista, Eades, et al. 1999). For instance, a
drawing convention can define in a drawing what style is to use for drawing the edges,
while an aesthetics prescribes that the number of crossings should be low. In general,
aesthetics are often expressed as optimization problem that should be resolved such
that readability of the drawing is increased.

In the remainder of this section, we introduce the concept of layout aesthetics, and
the distinction from drawing conventions, and present the results of a user study> that
is performed to obtain conclusions for layout aesthetics which are valid for business
process models in BPMN.

Unfortunately, up to now there are neither research work nor empirical studies for aes-
thetics of BPMN diagrams. However, research was performed in the area of aesthetics
of UML diagrams (Purchase, Allder, and Carrington 2001) or general explorations
for diagram aesthetics (Purchase 1997; Purchase, Cohen, and James 1995), but none
of them is applicable to BPMN diagrams without limitations. Since the underlying
structure of BPMN diagrams are graphs, we will first discuss aesthetics that apply to
abstract graphs (graphs without special semantics).

The formalization of layout aesthetics is reached by expressing them as optimization
problems, as in (Siebenhaller 2009; Siebenhaller and Kaufmann 2006a,b). For BPMN
as a graph—based notation, we consider the following layout aesthetics as necessary:

e Minimize the number of crossings of connecting elements (CROSSING).
e Minimize the area of the drawing (AREA).

e Minimize the sum of the lengths of the edges (EDGE_LENGTH).

e Minimize the number of bends of edges (BEND).

e Minimize the number of overlapping nodes (OVERLAP).

e Maximize the number of orthogonally drawn edges (ORTHOGONAL).

In (Di Battista, Eades, et al. 1999), an overview on common graph drawing aesthetic

3The study was joint work with Sandra Seiz and Nicole Jogsch, née Ferstl. Parts of the result of the user
study are published in (Effinger, Jogsch, and Seiz 2010), (Effinger, Seiz, and Jogsch 2011) and (Seiz
et al. 2010).
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criteria is given. Also, in (Schrepfer et al. 2009), a subset of these criteria are confirmed
to be important for BPMN.

In contrast, drawing conventions aim primarily at the style and orientation of edges.
Remember that drawing conventions are compulsory if applied for a drawing. A list
of drawing conventions (Di Battista, Eades, et al. 1999) is given by:

e Polyline drawing: an edge is drawn as a chain of segments.

e Straight-line drawing: an edge is drawn as a single straight line segment.

e Orthogonal drawing: an edge is drawn as a chain of vertical and horizontal
segments.

e Grid drawing: nodes, crossings and bends are placed on integer coordinates.

e Planar drawing: no two (or more) edges cross.

o Upward drawing: given an acyclic digraph, each edge is drawn as a curve mono-
tonically non—decreasing in the vertical direction, e.g., in a drawing oriented
left—to—right, "upward’ edges point rightward.

While fulfilling multiple aesthetics, layout algorithms solve a multi—objective opti-
mization problem. However, for more complex notation languages, as BPMN is, the
task to tackle the whole set in a single algorithm is very complex which is under-
lined by the low number of tools supporting BPMN layout and the poor quality of
layout results, see (Effinger, Siebenhaller, and Kaufmann 2009a; Seiz et al. 2010) for
an overview.

Also, BPMN has specific requirements towards layout aesthetics since it provides nota-
tion semantics within its graphical representations. The following requirements repre-
sent aesthetics that consider the specific requirements of BPMN which can be derived
inspecting the standardization document:

Nodes have different sizes (ELEMENT_SIZE).
Partitions must be considered, e.g. pools and swimlanes (PARTITION).

Labeling of pools, swimlanes and elements must be feasible (LABEL).

e Maximize the number of edges respecting workflow direction (FLOW).

These principles are also mentioned in informal collections of drawing principles for
special diagram types, e.g. for UML activity diagrams (Ambler 2005) or network di-
agrams (W. Huang, Hong, and Eades 2007). Summing up the relevant aesthetics, we
state the following list of standard layout aesthetics for the layout of BPMN diagrams:

FLOW, PARTITION, OVERLAP, LABEL, ELEMENT_SIZE, CROSSING, EDGE_LENGTH,
ORTHOGONAL, AREA, BEND.
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The list of design standards is also conform on conventions within the BPMN com-
munity (Mendling, H. A. Reijers, and Cardoso 2007; Silver 2011) and corresponds to
a superset of supported aesthetics in existing BPMN tools. Note that aesthetics SYM-
METRY, which aims at maximizing the number of symmetrical structures, does not
seem appropriate for BPMN diagrams because of the lack of a symmetric structure. A
precedence of the aesthetics is only partly available if we consider user studies, e.g.
(Purchase, Cohen, and James 1997). However, for this larger set of aesthetics, an order
of preference has to be confirmed by a user study.

In the user study that is presented in the following, we developed a test design for a
catalogue with statements that cover the different objectives of layout aesthetics. We
face this catalogue with the users’ personal appreciation of different layouts in order
to confirm or reject our conjectures.

2.3.1. A User Study on Layout Aesthetics for BPMN
Software Tools

In this section, we give a summary of our test design and test method. For a more
detailed description, we refer to (Seiz et al. 2010). For the comparison of layout results
for BPMN models, we have to choose among existing solutions of tools that support
modeling with BPMN and provide automatic layout features. After a market study,
we obtained a list with 54 software packages that support BPMN according to the
vendors. However, support of BPMN solely is not sufficient for our study, therefore,
we developed the following criteria for tool selection:

1. BPMN support: The tool must support the standardized version 1.2 of BPMN,
including all elements given in the standard.

2. Automatic layout support: The tool must provide the user with a feature that
calculates an automatic layout of a given BPMN model. Thus, the user has
the possibility to acquaint himself with the principles of layout aesthetics. The
layout feature must also consider basic BPMN aesthetics, e.g. swimlanes must
be respected and edges must be drawn orthogonally.

3. Evaluation license availability: For our study, we depend on evaluation li-
censes provided by the software vendors.

These criteria were compulsory. We could not consider tools or vendors that could not
meet one or more of the criteria. During the study preparation, the most challenging
criteria was the support of automatic layout. Also, software that supposedly supports
BPMN provided repeatedly only a subset of BPMN. This prevented us from preparing
our modeling test case on those tools.



34 CHAPTER 2. PRELIMINARIES AND METHODS

After applying our criteria filters on the list of software tools, we obtained a set of five
tools: three commercial tools which fulfilled the above mentioned criteria plus two
variants of BPMN-Layouter (one variant of an earlier alpha—version and the current
version which was trimmed to higher usability) that fulfilled all criteria and that were
considered for our user study. In (Seiz et al. 2010), a complete list with all software
vendors, which were considered, and details on the selection process are given.

Test Method

In the following, we briefly describe the procedure instructions given to probands and
the surrounding setup for the experiment of the study. The setup was successfully
confirmed to be well-chosen with the help of a pre—test prior to the experiment.

The probands of the study were chosen among students with majors in economics
and/or computer science. Their skills (education and/or experience) in process mod-
eling spread from very low to very high in order to represent inhomogeneous but,
because of their major subject, potential future users of modeling tools.

The software tools were installed on PCs and probands were randomly assigned to
one tool. For assuring a basic common understanding on BPMN and business process
modeling, probands initially were asked to insert a simple extension into an existing
process using the assigned modeling tool. The set of BPMN elements needed for the
implementation of the extension was given as support. The process for the modeling
task was a book order instance. The process can be inspected in detail in Figure 2.14
on page 43. After the modeling part, probands were requested to prepare a presentable
version of the new process. They were advised to use the automatic layout feature(s)
of the corresponding tool. At this point, probands were supposed to be familiar with
BPMN modeling and also with the automatic layout results and features of the respec-
tive tool. For the evaluation, each proband obtained five different layout versions of
the new process, one from each evaluated tool. In the accompanying questionnaire,
probands were asked to give rankings among the tools for each statement contained in
the questionnaire. For comparison reasons, we chose to ask for rankings with strictly
relative order among the tools. Thus, two tools cannot be ranked equally and we
obtain more exact responses. The statements of the questionnaire correspond to the
layout aesthetics stated in the beginning of Section 2.3. All layout aesthetics are rep-
resented by a statement. For the representation as statements, we group the statements
into categories that aimed at the same attribute of a graph/diagram. The following list
gives the wording of the statements as they appeared in the questionnaire:

1. Category 1: ,,Connection elements* (edges)

a) Edges are drawn orthogonally and are inserted in such a way that they
appear as short as possible (ORTHOGONAL,EDGE_LENGTH).
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b) Edges appear to be drawn with the lowest possible number of crossings
(CROSSING).

c) Edges appear to be drawn with the lowest possible number of bends (BEND).

d) Edges are drawn such that they consider the reading direction (FLOW).

2. Category 2: ,,Area usage*

a) The size of the swimlanes is chosen such that all elements have enough
space (ELEMENT_SIZE).

b) The diagram contains unused space that could be better exploited by rear-
ranging the elements (AREA).

3. Category 3: ,,Elements*

a) Elements are arranged such that they do not overlap (OVERLAP).

b) The size of the elements is chosen such that the description of the label is
readable (LABEL).

c) The assignment of an element to its swimlane is easy to perceive (PARTI-
TION).

4. Category 4: ,,Coloring™

a) The choice of colors supports to obtain a detailed comprehension of the
model.

b) The choice of colors supports to obtain a quick overview of the model.

After the ranking of tools for each statement, probands were asked to rank the cate-
gories in decreasing importance according to their personal judgement. Also, probands
were encouraged to add additional categories and/or statements that, to their opinion,
were not represented in our above catalogue of statements. These proband-defined
categories were also included in the ranking of categories. Eventually, the probands
are asked to give a ranking of all layout diagrams presented in the file to their personal
preference, independently from the above given statements.

The total time per proband of our study depended on the skill level of the probands.
The periods of time ranged from 55-75 minutes per proband for the task of modeling
and responses to the two questionnaires that considered layout and usability questions.
The total number of participants of the study was 39.

Evaluation

In this section, we present the results of our study. The study data was collected while
conducting the study at two universities, at Eberhard Karls Universitdt Tiibingen and
Humbold Universitit Berlin. The circumstances were kept comparable during both
times, identical software tools and identical questionnaires were used.
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Note that, generally on ordinal scales, the application of mean values is not possible.
However, in our case, as stated in (Gehring and Weins 2009), the distance between the
ordinal items can be considered to be equal from a proband’s perspective. Therefore,
the application of mean values for our evaluation is rendered possible and allows an
thorough evaluation using descriptive statistics.

First, we analyze the categories of the questionnaire of Section 2.3.1. For the cat-
egories, we present the ranking of all users. For the analysis, we also examine the
results of the proband group separately by gender, process modeling experience and
prior education in modeling.

For the analysis, the total user group is filtered yielding to subset groups with the
following attributes:

e Gender: male (m) and female (f)

e Experience: business process modeling experience is rated from 'none’ (0) and
low’ (1) to "high/very high’ (2+).

e Education: number of lectures (or similar events) attended in the field of busi-
ness process modeling; the group is split into ranges from none (0), one (1) to
two or more (2+).

The division into subset groups is due to the focus on inhomogeneous user groups.
Each subset group represents a set of business process modelers with distinct back-
grounds, capabilities and skills. Thus, we analyze the corresponding preferences of
these groups. Before that, we propose our conjectures for the analysis in the following
section.

Conjectures

Our conjectures aim to confirm that the set of statements that we defined in Sec-
tion 2.3.1 is convenient to support the aesthetics from Section 2.3 and correspond to
the users’ preferences.

For better coverage, we state our conjectures for the total group and the subset groups
separately. The conjectures are also evaluated separately.

Conjecture 1 (Layout Aesthetics for Total Group).
The user ratings of the total group correspond with respect to 1) the catalogue of
category statements and 2) the users’ personal appreciation (general ranking).

If Conjecture 1 is supported, we can state that the statements of our catalogue of cate-
gories 1-4 are sufficient to fulfill the aesthetics’ requirements of a BPMN diagram for
all probands.
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Conjecture 2 (Layout Aesthetics for Subset Group ’Gender’).

The user ratings of the subset groups 'Gender’ (maleffemale) correspond with re-
spect to 1) the catalogue of category statements and 2) the users’ personal appre-
ciation (general ranking).

If Conjecture 2 is supported, we can confirm that the statements of our catalogue of
categories 1-4 are sufficient to fulfill the aesthetics’ requirements for the subset group
of male, or female respectively, probands.

Conjecture 3 (Layout Aesthetics for Subset Group Experience’).

The user ratings of the subset groups ’Experience’ (Experience (0), Experience
(1), Experience (2+)) correspond with respect to 1) the catalogue of category state-
ments and 2) the users’ personal appreciation (general ranking).

Conjecture 3 states the validity of the statements considering probands with different
levels of modeling experience, from none (novices) to very high (experts).

Conjecture 4 (Layout Aesthetics for Subset Group *Education’).

The user ratings of the subset groups ’Education’ (Education (0), Education (1),
Education (2+)) correspond with respect to 1) the catalogue of category statements
and 2) the users’ personal appreciation (general ranking).

If Conjecture 4 is supported, we can confirm that the statements are sufficient to fulfill
the aesthetics’ requirements for the subset groups of probands with different educa-
tional background for business process modeling.

If the correspondence between the general ranking and the catalogue of statements is
not given, that means that Conjectures 1- 4 cannot be supported, we state a conjecture
for the case that, from the resulting values, we can derive a tendency to the better- and
the less well-rated tools.

Conjecture 5 (Layout Aesthetics and Tool Tendency).

From the user ratings of the Total Group/Subset groups ’Experience’ / ’Education’
/ ’Gender’, we can observe a match between the best— and the worst—rated tools
with respect to 1) the catalogue of category statements and 2) the users’ personal

appreciation (general ranking).

In addition to conjectures on whole subset groups, we state conjectures that claim the
statements of our layout aesthetics adapt better the higher the users’ experience or the
better their education in business process modeling with BPMN. In other words, the
differences between the general ranking and the catalogue of aesthetics’ statements
diminish inside the subset group *Education’, or ’Experience’ respectively:



38 CHAPTER 2. PRELIMINARIES AND METHODS

Conjecture 6 (Increasing Benefit with Higher Experience).

The differences in the user rating of the subset groups ’Experience’ diminish with
increasing experience levels of probands with respect to 1) the catalogue of cate-
gory statements and 2) the users’ personal appreciation (general ranking).

Conjecture 7 (Increasing Benefit with Higher Education).

The differences in the user rating of the subset groups 'Education’ diminish with
increasing educational background of probands with respect to 1) the catalogue of
category statements and 2) the users’ personal appreciation (general ranking).

Conjectures 6 and 7 represent our conjecture that our layout aesthetics are more effi-
cient and exceedingly appropriate for BPMN modeling users that have a fundamental
understanding of process modeling in general. Before analyzing our set of conjectures,
we present the results of the ranking of categories.

Results of Category Ranking

The results of the category ranking show where subset groups depict aesthetics with
the largest impact on the layout. The categories were ranked in a relative order from 1
to 4, respectively to 5 or 6 if proband-defined categories were given. The diagram in
Figure 2.9 depicts the resulting values. After normalization, values can range from 0
to 4 while 4 is the highest (best) score.

Ratings of Categories

35

N

2.5
15

Hb ERRRLAL AL

0

o
o

Gender (m) Gender (f) Experience (0) Experience (1) Experience (2+) Education (0) Education (1)  Education (2+)

M Category 1 (2.74, Rank 1) B Category 2 (1.75, Rank 4) [ Category 3 (2.39, Rank 3) M Category 4 (2.71, Rank 2) M Proband-defined Cat. (1.39,
Rank 5)

Figure 2.9.: Ratings of the categories for total group (all) and all subset groups. Mean values
and ranks for categories are given in parentheses.

The following interpretation of Figure 2.9 is done for each category.

For category 1 “Connection elements”, the values contain only two spikes, for group
"Experience (1)’ (maximum) and group ’Experience (2+)° (minimum). However, the
derivations of the spikes are diametrically opposed. Thus, no conclusion can be drawn
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from these spikes. However, together with the highest mean value of all categories, the
low number of derivations show that category 1 has a great effect on the acceptance
of the users. Thus, we can state that users prefer layout models that correspond with
statements 1.1 - 1.4.

Category 2 “Area usage” has the largest spikes in the ’Education’ subset group. More
precisely, it has an obvious peak in ’Education (0)’. This peak renders category 2 to be
the most important for ’Education (0)’, in contrast to other subset groups. For subset
groups 'Education (1)’ and *Education (2+)’, the derivations are low. Thus, category 2
seems to lead to a most promising but eventually alleged effect on the layout for users
with less education in process modeling. In total, category 2 ranks 4th and therefore
last of all pre-defined categories.

Category 3 “Elements” is the category with the significantly least derivations in all
subset groups. Thus, all users agree that element layout properties are indispensable,
but no group rated this category 1st, or in other words, most preferred. Rank 3 for this
category shows that it contributes important statements and may not be ignored when
creating layout models.

Category 4 “Coloring” has only two minor spikes. In subset groups *Experience (1)’
and ’Education (1), the spikes show two derivations to slightly higher, or lower re-
spectively, values. However, in most subset groups, category 4 is rated most important
or second most important after category 1. Thus, together with category 1, this cate-
gory has strong effect on the layout.

The proband-defined category shows the most diverging behaviour. While for subset
group ’Education (0)’, the category yields the highest value, it ranks last for 6 of 9
subset groups. Only subset group 'Experience (0)’ describes a similar behaviour as
’Education (0)’. The value of *Experience’ and ’Education’ may already imply that
the more experience or education modeling users are equipped with, the more the
rating of models converges to a set of commonly accepted measurement attributes and
aesthetic criteria (Conjectures 6 and 7).

Overall Ranking

We will now face the results of the general ranking given by the probands with the
aggregation over the results of the set of categories. Therefore, we calculate the mean
values of the general ranking for both, the total group and each subset groups. This ap-
proach allows to consider the subset groups and their inhomogeneities. For obtaining
the results, we compare data from the general ranking (GR) over all tool models with
the aggregated data per category and its corresponding statements from Section 2.3.1
(mean of categories, MC1-4).
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By Total Group:

The contrast between the GR and MC1-4 is depicted in Figure 2.10 and becomes
visible when taking a closer look at Tools A,B and E. Their ranking is not equal over
both measurements. However, as Tool C always ranks 1st and Tool D ranks last, we
can state that our methods can distinct between tools that suffice users’ preferences and
those that fail. Thus, we have to reject Conjecture 1, but the support of Conjecture 5
for the total group is successful.

General ranking vs. MC1-4: Total group
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Figure 2.10.: Comparison of general ranking (GR) and mean of categories (MC1-4) for total
group.

By Gender:

The gender subset group contains the male and female subsets of probands. For the
comparison between GR and MC1-4, depicted in Figure 2.11, we state that a link
between GR and MC1-4 is not given. The ratings of both, male and female, differ for
GR and MC1-4. However, in all subset groups, Tool C ranks 1st and Tool D ranks
last which, as in the total group, allows us to distinct between best and imperfect tools.
Therefore, Conjecture 2 must be rejected, but Conjecture 5 is supported for subset
group 'Gender’.

General ranking vs. MC1-4: Gender
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Figure 2.11.: Comparison of general ranking (GR) and mean of categories (MC1-4) for subset
groups of *Gender’.

By User experience:
The subset groups for filter *Experience’ sum up to 6 groups, see Figure 2.12. For
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’Experience (0), the values and rankings of GR and MC1-4 differ, but considering
users with at least little experience in group ’Experience (1)’, we observe only a minor
switch of ranks for Tool A and B. For users with high experience in group ’Experience
(2+)’, the values correspond and the ranking is identical.

Since the values of ’Experience (0)’ do not correspond, we have to reject Conjecture 3.
However, since the differences clearly diminish with higher experience of modeling
users, Conjecture 6 is supported. Also, for both subset groups *Experience (1)’ and
’Experience (2+), we can confirm that Conjecture 5 is supported since one can obvi-
ously inspect the best and the deficient tools chosen by the probands.

General ranking vs. MC1-4: Experience

25
H Tool A
2  Tool B
O Tool C
15 B Tool D
M Tool E
1
0.5
0

MCl4 Experience (0) MClA Experience (1) MC1-4 - Experience (2+)
GR - Experience (0 GR - Experience (1 GR - Experience (2+)

Figure 2.12.: Comparison of general ranking (GR) and mean of categories (MC1-4) for subset
groups of *Experience’.

By User Education:

The filter *’Education’ also creates 6 subset groups. In Figure 2.13, the values are
presented. We can state that for ’Education (0)’, the values diverge, there are two
swaps of tools’ ranking (Tool A, B and E). However, for groups with higher modeling
education, we only notice one swap: Tool D and E for ’Education (1)’, Tool A and D
for ’Education (2+)’. Moreover, the distance between values that cause swaps diminish
the higher the education level, e.g. the distance between Tool A and D for ’Education
(2+) is almost vanished to 0.19 on a 0-to-4-scale.

Also, as for subset group "Experience’, we cannot state that the corresponding Conjec-
ture 4 for group ’Education’ is supported. On the other hand, we can confirm an im-
provement of the results the higher the educational background, therefore Conjecture 7
is supported. Moreover, Conjecture 5 is supported for ’Education (0)’ and clearly for
’Education (2+), too.

Before closing the evaluation section, we sum up the results and conjectures of this
section. Conjectures 1, 2, 3 and 4 are rejected since the differences between the values
of the general ranking (GR) and the mean of categories (MC1-4) diverge in the total



42 CHAPTER 2. PRELIMINARIES AND METHODS

General ranking vs. MC1-4: Education
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Figure 2.13.: Comparison of general ranking (GR) and mean of categories (MC1-4) for subset
groups of education.

group and at least one subset group of the filters (gender, education, experience). How-
ever, we confirm Conjecture 5 for 7 of total 9 subset groups. The Conjecture states the
correct prediction of the user preference tendency of a tool’s layout capabilities when
using our catalogue of statements. Also, Conjectures 6 and 7 can be confirmed. They
state that the values of subset groups *Experience’ and ’Education’ correspond for GR
and MC1-4 when considering the groups with average or higher practice experience,
or at least basic education respectively, for the field of business process modeling.
The layout from Tool C that was favoured by the probands in the general ranking is
depicted in Figure 2.14.

Related work on Studies of Layout Aesthetics

Layout aesthetics are also known as secondary notation. The term of secondary nota-
tion is due to fundamental cognitive research of (Petre 2006, 1995). Secondary nota-
tion is an important part of the cognitive dimensions of notation framework developed
by (Green and Blackwell 1998). It is also used in the study design of (Schrepfer et
al. 2009) where differences in understandability of business process models between
novices and experts are targeted. In (Ware, Purchase, et al. 2002), graph aesthetics are
used for cognitive measurements.

The area of research on layout aesthetics is broader if considering other diagram types
or graph classes, too. There are diagram types widely related to BPMN, e.g. UML-
diagrams which were part of an analysis in (Sun and Wong 2005) where laws for
diagram layout were formalized, e.g. the ’law of proximity’. This would refer to our
statements ’'ORTHOGONAL’ and 'TELEMENT_SIZE’. Aesthetics for UML-diagrams
were also proposed in the context of automatic layout in (Eichelberger 2005). Sugges-
tions of aesthetics are also given for Petri-Nets in (Jensen 1996) or for more general
graphs in (Coleman and Parker 1996). In (Genero, Poels, and Piattini 2008), metrics
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Figure 2.14.: Layout of Tool C scored highest in 7 of total 9 subset groups. For reading pur-
poses, the image is for this paper manually cut in two halves of equal width; the
upper first part is originally directly connected to the lower second part. As the
study was conducted in German, the labels are given in German language.

are proposed and validated for entity-relationship (ER-) diagrams. Aesthetics, or "ef-
fects’, for social-network visualization are considered in (W. Huang, Hong, and Eades
2007) with the focus on edge crossings, or in our terminology, aesthetics ’CROSS-
ING’.

The set of layout aesthetics is further enriched by research works and studies of (Pur-
chase 1997; Purchase, Allder, and Carrington 2001; Purchase, Cohen, and James 1995)
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where a subset of aesthetics is target of a ranking analysis. Further confirmation for
aesthetics ranking is conducted by (Apfelbacher et al. 2006) that states that diagrams
with short edges can be read more easily because the nodes’ proximity is higher and
the probability of crossings (CROSSING’) is lower. Also, (W. Huang, Hong, and
Eades 2008) confirmed the importance of ’"CROSSING’. Moreover, general modeling
guidelines, e.g. (Apfelbacher et al. 2006), are available and provide a fundamental set
of aesthetics.

User studies concerning aspects of layout aesthetics are done by (Purchase, Allder,
and Carrington 2001) for UML, (Mendling, H. A. Reijers, and Cardoso 2007) for
syntactical structures in process models and also (W. Huang, Eades, and Hong 2008)
for general graphs. The cognitive complexity of integrating multiple diagrams with
different notations is examined in (Hahn and J. Kim 1999). In (Agarwal, De, and Sinha
1999), object—oriented (OO) models are compared to process—oriented (PO) models
with the objective of user comprehension.

2.3.2. Conclusion of User Study

In the user study, we analyzed secondary notation in terms of layout aesthetics and
users’ preferences of layout aesthetics for BPMN with consideration of inhomoge-
neous user groups. We proposed a catalogue of criteria which promises modeling
results that are well-accepted by most users when being applied in algorithms.

The formalized catalogue is tested by the conduction of a user study. The results
of the study were presented and interpreted. The data analysis of the study results
was performed with respect to not only all participants at a time but also to subset
groups according to modeling experience, modeling education and gender. We were
able to show that our layout catalogue is most appropriate when applied for users
with average or higher practice experience and users with at least basic knowledge in
business process modeling. We also could show that our catalogue of statements is
sufficient to predict the tendency of the users’ judgement for the layout capabilities of
a tool.

Concluding, our results can be used for designing powerful algorithms in modeling
tools for BPMN that produce layout for BPMN diagrams that will be well-received
by users. We pursue this goal when presenting visualization approaches in 2D in
Chapter 3 and for two-and-a-half dimensions in Chapter 6.

For the remainder of this work, we refer to the following set of aesthetics as the Stan-
dard Layout Aesthetics for BPMN:

PARTITION, FLOW, OVERLAP, ELEMENT_SIZE, EDGE_LENGTH,
CROSSING, ORTHOGONAL, LABEL, AREA, BEND.
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The set of aesthetics is ordered according to the results of the category ranking. Note
that aesthetics PARTITION is not part of the category ranking because it is immanent
to valid BPMN models. We therefore added PARTITION as a required aesthetics at
highest priority to this list.

2.4. Static 2D-Layouts for BPMN

In this section, we briefly present results from previous work (Effinger 2008; Effin-
ger, Siebenhaller, and Kaufmann 2009b) that provide the computation of a 2D-layout
for BPMN models. The work is based on results from (Siebenhaller and Kaufmann
2006a,b) and uses the TSM approach and the Sugiyama framework.

In (Siebenhaller and Kaufmann 2006a), the concept of p—planarity is introduced:

Definition 7 (P-Planarity).
In a partitioned drawing of G = (V, E), each node v € V is drawn inside a partition
cell p(v). G is called p—planar if it has a planar and a partitioned drawing at the

same time. o

The concept of p—planarity and the introduction of partitions allows for the support of
swimlanes by assigning the nodes of a business process models to rows; nodes in the
same swimlane are assigned to identical rows in the partition.

P—planarity is related to c—planarity (Siebenhaller and Kaufmann 2006a), or clus-
tered planarity (Cornelsen and Wagner 2003) of compound, or clustered graphs: a
compound graph G¢ = (G, T) is induced by a graph G = (B U C, Eg) and a tree
T = (BU C, E7) which is called inclusion tree; the set B contains the base nodes and
the set C of compound nodes defines the hierarchy in the clustered compound graph
Gc. A directed path v —* w in T denotes that w is part of the compound node v. Base
nodes are leafs in 7 and compound nodes are inner nodes of T. A cluster drawing
of a compound graph G¢ is a drawing where each compound nodes is depicted as a
closed region, e.g. a rectangle. Note that compound nodes can be nested, thus, these
regions can contained further regions. Then, a compound graph is c—planar if it has
a planar and a cluster drawing at the same time. To characterize cluster drawings,
(@, B, y)—drawings are introduced in (Angelini et al. 2012), where « is the number of
edge—edge crossings, 8 denotes the number of edge—region crossings and y is the num-
ber of region—region crossings. With this characterization, (Angelini et al. 2012) show
that:
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Figure 2.15.: Example for the matrix—like arrangement of the rectangles of cells in a partition.

1. minimizing @ in an (@, 0, 0)-drawing is NP—-complete even if the underlying
graph is a matching. For a graph G = (V, E), a matching M C E is a set of pair-
wise non—adjacent edges. Therefore, no two edges share a common endpoint.

2. minimizing §in a (0, 8, 0)—drawing is NP—complete, even if the compound graph
is c—connected embedded and flat. If each compound node in C induces a con-
nected subgraph of G, then G¢ is c—connected. G¢ = (G, T) is called flat if, in
any path from the root to a leaf of T', there are at most three nodes. An embedded
graph uniquely defines cyclic orders of edges incident to the same node. Here,
the embedding is given and fixed.

3. minimizing vy in a {0, 0, y)—drawing is NP—complete.

P—planarity delimits the construct of c—planarity. A graph G = (V, E) with a partition p
can be formulated as a compound graph G¢ = (G, T), Then, tree T has height 3 and is
induced by the partition p of G. The inner nodes of 7" are given by compound nodes for
the rows and columns in depth 1 and compound nodes for each single partition cell of
p indepth 2. The leafs of 7" are the base nodes V of G. Note that in a partition, region—
region crossings are not possible because partition cells are denoted by rectangles in a
matrix—like arrangement, as depicted in Figure 2.15.

In (Siebenhaller 2009), the Sugiyama framework is extended to support p—planarity:
for the partition cells, dummy nodes are inserted into the layers and, during the cross-
ing minimization, a swap of two nodes is not allowed if it requires to cross such a
dummy node. This extension of the Sugiyama framework is then integrated as a pla-
narization phase of the TSM approach. In the orthogonalization phase, the cells are
preserved by preserving the shape of the partition, i.e., border edges of the partition
are not allowed to bend and are considered as fixed.

The overall algorithm for an input graph G = (V, E) and a partition p is as follows:

1. Pre—processing:

a) if G is not connected, insert temporarily connecting edges between con-
nected components.
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b) add the partition graph Gp to G, where Gp represents the grid graph of p,
see (Siebenhaller and Kaufmann 2006a).

2. Planarization:
We apply the extended Sugiyama framework with support of p—planarity.

3. Orthogonalization

4. Compaction:
We use the approach of (Eiglsperger 2003) that allows for drawings in Kandin-
sky model with prescribed node size.

5. Post—processing:

a) remove all temporary nodes and edges (e.g. for connectedness of G).

b) add rectangles to the drawing that denote the partition cells, .i.e., one rect-
angle per row of the partition p, in order to highlight the swimlanes of the
BPMN model.

An example of a layout produced by the approach is depicted in Figure 2.16. Note that
this approach does not consider a previous embedding of G or a pre—existing layout of
the BPMN model represented by G. The approach produces static layouts only. This
issue will be tackled when computing layouts with respect to given sketches of the
model, see Section 3.1.

A=
= T

. Se-4-- 1@

END EVENT

L2

Figure 2.16.: Example of a drawing with the 2D-approach for BPMN models that was pre-
sented in previous work (Effinger, Kaufmann, and Siebenhaller 2009).
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Chapter

2D—Visualizations of Business
Process Models

In this chapter, we present approaches that compute 2D—visualizations with respect to
the specifics of business process models. At first, we will extend an interactive layout
approach in order to be able to comply with aesthetics PARTITION. Then, in Sec-
tion 3.2, we will introduce semantics in visualizations of BPMN models. Therefore,
we define three new layout patterns that apply to semantics of BPMN models and that
are modeled such that the layout algorithm in use is able to handle the patterns when
computing a BPMN layout. Finally, we will present a new approach for computing
visualizations of BPEL models, see Section 3.3. BPEL is a text-based markup lan-
guage to document executable business processes. A brief introduction to BPEL will
be given before stepping into the details of the BPEL layout algorithm.

3.1. Sketch-Driven—-Layout for BPMN

In the practice of modeling, changes must be done rather often in an existing model.
The same applies for layouts; a layout can undergo changes since the underlying model
changes. However, if the model changes, the layout should not be changed substan-
tially. Thus, the goal should be, not to destroy the user’s mental map of a model. The
Sketch—Driven—Layout—approach (SDL) addresses this challenge. The original idea of
SDL stems from (Brandes, Kaufmann, et al. 2002). SDL considers an existing drawing
and calculates a new layout targeting to fulfill given objectives. It is built on a Bayesian
framework in order to measure the amount of changes in a graph. In the original ap-
proach, changes in edges’ bends and angles were minimized when performing a layout
algorithm.

49
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The benefits of SDL are obvious: Any time, a BPMN model is changed, an automatic
layout for the model can be calculated without changing the mental map of the model-
ing user. This allows to integrate the layout step in the process of designing the model:
When a connecting object or a flow object is added/removed, SDL is called and adapts
the layout to fulfill the layout requirements. Using SDL for interactive layout enables
a modeling tool to offer an automatic and interactive layout approach that supports the
human designer during the design process of a model.

However, the original idea of SDL was limited, e.g. since PARTITION was not consid-
ered. Thus, we had to extend SDL such that it considers swimlanes beyond preserving
the user’s mental map. This could be solved by extending the Kandinsky network.
In the remainder of this section!, we will present our approach of enabling SDL for
BPMN.

Since the foundations of SDL, as presented in (Brandes, Kaufmann, et al. 2002), are
based on the Kandinsky model (FoBBmeier 1997; FoBmeier and Kaufmann 1995), we
will briefly recapture this model in the following paragraphs; for a more detailed de-
scription of the Kandinsky model, see the introduction in Section 2.1.2.

Remember that a Kandinsky model requires an embedded planar graph G = (V, E, F)
where F is the set of faces and, using F, a specific circular order of edges around
nodes is given. Also, Kandinsky model operates on grid drawings where the center
of nodes and bends of edges are put on integer coordinates. An orthogonal shape Q
maps the set of faces F' to ordered lists of tuples. For each face f, the tuples (e;, a;, b;),
1 < i < |Q(f)| with edge ¢; € E and a; € {l1,...,4}, where a; represents the angle
formed by multiples of 90°, give the shape along the face f; b; denotes the list of
bends of edge e;, given by a string. A quasi-orthogonal shape allows values a; = 0,
denoting that the succeeding edge e;, of a edge e; in a tuple is adjacent to the same
side at a node. A quasi-orthogonal shape ¢ is valid if there is a planar orthogonal
box drawing with quasi-orthogonal shape ¢q. A planar orthogonal box drawing is a
planar drawing where nodes are mapped to boxes and edges are mapped to sequences
of vertical and horizontal segments.

Drawings with a Kandinsky model obey the bend—or—end—property (P1) and the non—
empty—face—property (P2). P1 states that, given two edges e; and e, which are ad-
jacent to the same side of a node in a face f with e, being the successor of e; in the
embedding, either e; must have a last bend in f with 270° or e, must have a first bend
with 270° in f. P2 prevents cases of degenerated triangles in the graph, see Chapter 2
for more details.

"Parts of this section were published in (Effinger, Siebenhaller, and Kaufmann 2009a) and (Effinger,
Kaufmann, and Siebenhaller 2009).
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Note that with the topology—shape—metrics (TSM) approach, a Kandinsky drawing,
i.e., a drawing of a graph in valid Kandinsky model, with the minimum number of
bends can be obtained using a minimum—cost—flow in a network (Eiglsperger 2003;
Tamassia 1987).

Before describing the original SDL—approach, we introduce the Bayesian paradigm
that is employed for difference metrics in SDL. In dynamic graph drawing, a series
of graphs, which stems from a single graph and its modified successors over time,
is to be visualized under the premise that changes between consecutive graphs, or
frames in an animation, should be minimized in order not to destroy a user’s mental
map (Eades, Sugiyama, et al. 1991). An example for dynamic graph drawing is the task
of visualizing time—series graph in higher dimensions (Dwyer 2004). The Bayesian
paradigm (Brandes and Wagner 1997) suggests to incorporate a difference metric as a
penalty in the objective function of layout algorithms that are based on the optimization
of objective functions. Difference metrics (Bridgeman and Tamassia 1998) describe
the measurement of layout aesthetics between two drawings of a graph. The original
SDL-approach uses difference metrics for measuring changes in angles and bends in
drawings with orthogonal shapes.

3.1.1. Algorithm

In the following, we will describe the algorithm of SDL for BPMN models. The
new approach is based on the original SDL-approach from (Brandes 1999; Brandes,
Kaufmann, et al. 2002). Therefore, we will introduce the preliminaries of the original
approach before presenting the extended algorithm for BPMN models.

For SDL, let X be an admissible drawing, called a sketch, of a graph Gsz = (Vs, Ex). A
sketch is admissible if no edge and non—incident node overlap and no more than two
edges cross in the same point. Then, the objective of SDL is to determine a orthogonal
box drawing of Gy which fulfills the following properties:

e (i) the topology of Gy is preserved.
e (ii) the final drawing is in the Kandinsky model.
e (iii) angles in the final drawing deviate only little from angles in the sketch.

e (iv) the drawing contains few bends.

Property (iii) constitutes the stability of the drawing and Property (iv) ensures read-
ability. Readability is measured in SDL by the number of bends and stability in the
deviation of angles. Therefore, SDL is defined as a bi—criteria optimization problem
on a quasi—orthogonal shape Q. For the number of bends B in a quasi—orthogonal

1
BQ=5, », bl
JEF (e.a.b)eQ(f)

shape @, we know that
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The stability, or deviation of angles, is given by the difference A4 of the angles in Q
and the angles of the shape S in the sketch

M@S) =), >, laS, f.) —a@ £,
feF 1<i<|f|
where a(Q, f, i) denotes the value of the i-th angle of face f in shape Q. The difference
Ap in edge bends is given by

AB@S) =D D AB(S. £, - b@ £.1),

feF 1<i<|f|

where b(Q, f, i) denotes the value of i-th bend of face f in shape Q and A(s1, s2) denotes
the edit—distance of two strings which allows insert and delete operations only.
Introducing weights a, 8, v gives us the objective function for SDL

D(@QS) = a - As(Q,S) +B-Ap(Q,S) + v - (B(Q) — B(S)).

The weights «a, 8,y control the priority of difference of angle bends, edge bends and
bend number. Formally, the problem statement for SDL is now:

Problem 1 ((Brandes, Kaufmann, et al. 2002)).
Given a quasi—orthogonal shape S of a planar graph G, find a valid quasi—orthogonal
shape Q of G in the Kandinsky model such that D(Q|S) is minimum. o

In the following, we describe the modifications of the min—cost-flow network repre-
sentation of Kandinsky to adapt the network to be able to solve Problem 1 which is
a specification of the CONSTRAINED KANDINSKY BEND MINIMIZATION problem (Ei-
glsperger 2003). We assume familiarity with the min—cost—flow representation of the
Kandinsky model as introduced in Section 2.1.2.

The first modification is performed on the vertex—nodes in the network to model an-

gles around a nodes. For each angle between two adjacent edges e; and e, that are

n

consecutive in the circular order of edges around a node n, an angle-node a,, ,, is in-

n

serted. We insert two arcs in the network connecting aj, ,

" and the vertex—node v of

n

n; one arc is directed to ay, ,,,

the other arc is directed in the opposite direction. Both
arcs have unconstrained capacity and are assigned cost a. Corresponding arcs in the

n

original network that were connected to v are now connected to a ,

. Therefore, v is
only connected to angle nodes. For each angle node a,, there is a target angle ta(ay,)
in the shape S of the sketch. If ta(a,) > 0, then a, is connected to the source with an
arc which is assigned cost 0 and capacity ta(a,), else, a, is connected to the sink with
an arc which is assigned cost 0 and capacity ta(a,). From the supply of v, we remove
ta(a,) for each angle node a, that is connected to v. In Figure 3.1, the modification of

a vertex—node is depicted.
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(a) Original model for a node v with incident (b) Vertex-node for node v with inserted an-
edges e, e, 3, e4 in the Kandinsky network, gle nodes (solid points). New arcs are de-
as described in Section 2.1.2. picted by solid lines; arcs that are redirected
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are drawn in dashed style. Original arcs are
drawn as dotted lines.

Figure 3.1.: Modification of a vertex—node in the Kandinsky network for SDL.

The second modification affects the modeling of bends in the Kandinsky network. A
distinction has to be made between regular bends and vertex—bends. The modifications
for both types of bends are depicted in Figure 3.2. For each bend, we add a bend—node
to the model. For regular bends, both faces incident to the edge containing the bend
are added a demand of 1, with cost O for the face which is on the concave side of the
bend and S — 7y for the face on the convex side, respectively, as shown in Figure 3.2(a).
This bend model ensures that the bend is either contained in Q at cost 0 or removed at
cost 8 — y. For vertex—bends, we employ the same model with an extension: we add
an additional arc connecting the bend—node to the face—node (of the concave face) of
the vertex—node with capacity 1 and cost 0, see Figure 3.2(b). Also, for face—nodes of
adjacent faces, we add arcs with cost of S+ representing cost S+ for each additional
bend on this edge.

It is shown in (Brandes, Kaufmann, et al. 2002) that these modifications in the Kandin-
sky network allow an optimal solution for Problem 1 when solving the min—cost—flow
network.

We will now describe how to modify the presented original SDL—approach in order
to be able to handle a BPMN—graph G = (V, E). Therefore, we use a construction
that considers mapping swimlane and places nodes within the same swimlane in a
surrounding box.
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(a) Regular bend modification. (b) Vertex—bend modification.

Figure 3.2.: Modifications for bends at regular and vertex—bends in the Kandinsky network
for SDL. New arcs are drawn as solid lines and labeled with capacity and cost.

A box is constructed by inserting structural edges Es which surround the box in two
vertical and two horizontal segments. The segments are connected such that, together,
they represent a rectangle. For each element of the kernel S of mapping swimlane,
we construct one box. The nodes incident to edges of E; are called structural nodes
Vs. The boxes are then connected such that adjacent boxes share two nodes and one
structural edge, see Figure 3.3 for the resulting graph G, = (VU V, E U Ej).

Remark: In the following, we assume that a user that gives the input sketch for SDL
considers the principle of swimlane, that is: a new node »n is added to the graph by
drawing/dragging it into the box representing the swimlane of n. If the principle is not
obeyed, we resolve this by translating nodes that are positioned in incorrect boxes in
vertical direction to the corresponding box of their swimlane. Note that by translating
nodes only vertically, we do not affect the (horizontal) flow of the BPMN-graph. Thus,
FLOW is not violated.

Note that preserving the boxes of the swimlanes suffices to support swimlane in SDL.
Therefore, we integrate the structural edges E into the Kandinsky network as follows:
we remove the arcs from the network connecting the incident face—nodes of a structural
edge e € E;. Remember that an additional bend for an edge e € E has cost 5 + v in
the modified Kandinsky network. By not allowing bends on structural edges, we keep
the boxes stable. Without bends, only parallel translation, vertically or horizontally,
of structural nodes is possible in order to align boxes and box sizes. Since the SDL
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Figure 3.3.: (a) Swimlanes and the corresponding boxes constructed of structural edges E and
structural nodes V (solid circles). Nodes V are depicted as non—filled rectangles
or circles (denoting events). Edges E are omitted. (b) The resulting graph G;.
Boxes are connected sharing structural edges and nodes. Also, connecting edge
e. is inserted. Again, edges E are omitted.

is topology preserving for a sketch X, see above (i), nodes remain in the assigned box
and, therefore, mapping swimlane is further valid and supported.

Alternatively, the arcs between incident face—nodes could remain in the Kandinsky net-
work, but with very high cost and, thus, rendering bends on structural edges unlikely.
This alternative has the benefit that the min—cost—flow might be easier to solve due to
more edges with high capacity that can be used in temporary solutions. However, the
alternative does not guarantee that bends on edges E; are prevented, although, bends
are very unlikely if the bend penalty is set high enough. In Algorithm 1, the integration
of our alternative SDL into the TSM framework is formulated. In (Siebenhaller 2009),
the approach of adopting general constraints is extended further for implementing clus-
ters or port— and side—constraints in the Kandinsky model of static layout approaches.
However, (Siebenhaller 2009) does not apply the concept of SDL, neither on angles
and bends, nor on cluster, partitions or port— and side—constraints. There, the idea of
extending SDL, or interactive layout, is sketched as future work and is now realized
for support of partitions in the present work.

The modification of the Kandinsky network is not yet complete because the sets V
and V; are not connected by any edge e € E U E;. Note that a BPMN-graph is al-
ways connected. Otherwise, there exists a node n € V which can never be reached
in any execution of the process. Then, the process is not a valid process. Therefore,
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we assume G to be connected. Building a valid Kandinsky model in the orthogonal-
ization phase within TSM, given two unconnected subgraphs as input would result in
two unconnected layouts because TSM reduces crossings (in the planarization phase)
by separating G into subgraphs G5, = (V,E) and Gy, = (V, E). Then, the boxes
would not surround the nodes assigned to the corresponding swimlane and swimlane
is not adhered in the layout. Therefore, we introduce a temporary connecting edge e..
This edge connects a node n € V with vertex_type(n) = start_event and a structural
node n; € V; of the box surrounding swimlane(n), see Figure3.3. If n is not unique,
a start_event is chosen randomly. Since SDL is preserving the topology of the input
sketch X and e, renders G to be an admissible sketch for SDL, e, ensures during a call
of TSM with SDL that the boxes are stable. Therefore, mapping swimlane is adhered
in the layout.

The connecting edge e, has cost 0 for additional bends because it is removed after the
solution of the min—cost—flow network and bends of e. do not affect the final layout.
Note that we choose e, to connect a start node. Thus, we can ensure not to intro-
duce additional crossings since FLOW requires start nodes to be aligned in the (left)
beginning of swimlanes. By choosing n to be a start node of a BPMN-graph consid-
ering FLOW, no other node u € V U V; is placed between n and n;. An example of
the layout with SDL for BPMN in BPMN-Layouter with a small BPMN-graph G is
depicted in Figure 3.4. There, the corresponding extended graph G, with structural
nodes, structural edges and connecting edge is also shown.

3.1.2. Application case: Divisions (Cuts)

We will now present an application case® for SDL for BPMN. The application aims
at cutting large process models into submodels by subdividing the underlying embed-
ding of the input diagram. In cases where process models become very complex and
diagrams become large, it is desirable to divide the resulting diagram into smaller
pieces, e.g. for printing a diagram on several sheets of standard size paper. The study
in (H. Reijers and Mendling 2008) showed that finer grained submodels are preferred
to complete models in large diagrams. In the following, we give an algorithm that
divides BPMN-graphs automatically, subject to constraints, e.g. the size of sheets the
BPMN-graph is to be printed on or the number of resulting pieces.

In the following definition, we introduce constraints for a division, e.g. constraints
may comprise requirements concerning partitioning of a BPMN-graph or maximum
area size for a BPMN—graph.

ZParts of this section are published in (Effinger, Siebenhaller, and Kaufmann 2009a).
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Figure 3.4.: Example for a BPMN-graph and the inserted structural edges for preserving map-
ping swimlane. (a) Input sketch X. (b) Temporary structural edges and nodes are
highlighted (fat solid lines and points on border). The connecting edge is connect-
ing boxes and BPMN-graph (attached at start event). (c) Resulting layout after
SDL for BPMN.

Definition 8 (Division of BPMN-Graphs).

A Division of a BPMN-graph G = (V, E) with given constraints C partitions G into
sets of nodes V1, ..., Vi with k > 2 such that V; N V; = 0, Vi # j. The subgraphs
induced by V; on G have to satisfy C. Edges of A={(v,w) € E|veV,weV, i+
Jj} are called division connections. o

In BPMN—graphs, the aim of a division is to minimize |A| and to obtain subgraphs of
nearly equivalent size in terms of nodes or area size. For a division, a route for a cut in
a BPMN-graph G has to be found and the resulting subgraphs will then be used as an
input sketch for SDL for BPMN.

In order to find appropriate routes, we introduce the idea of a center band. The center
band is a rectangular space in the graph through which a cut runs, see Figure 3.5(a).
Depending on user’s preferences or given constraints C, the center band can be given
as user input or it can be set automatically to a default fraction of the graph’s size.

We now describe how to perform a horizontal cut, a vertical cut is performed analo-
gously. For a horizontal cut, the width of the center band is set to the width of the
bounding box surrounding the graph. The height of the center band is set to a prede-
fined value y, —y, around the midpoint center y,, of the center band, see Figure 3.5(a).
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Algorithm 1: SDL for BPMN
Input: Graph G(V, E)
// construct boxes and store segments

E; <« segments of boxes;
Vs < points of boxes; // store shared vertices of boxes
e. « insert connecting edge;
G, — VUV, EUE U e,
// TSM phase 1: planarization
5 G, « TSM_planarize(Gy);
6 Q « shape(G’);
// TSM phase 2: orthogonalization
7 N < network(G),,Q,a,,y)// create modified Kandinsky network
8 N « (Q,E;,);// set bend penalty for edges E, to
9 N « (Q,e.,0);// set bend penalty for e, to 0
10 N’ «solve min — cost — flow(N);
11 G « apply(N’, Q);
// TSM phase 3: compaction
12 Geomp < TS M_compact(GY, Q);
13 Ginal < Veomp \ Vs, Ecomp \ (E5 U e.));// remove structural nodes and
edges
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(a) Placing a horizontal center band on the un-  (b) Determining a division using the dual graph of
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derlying graph. The red box denotes the the cut graph. Dashed blue edges denote a short-
center band. Swimlanes are depicted by dot- est path from s to ¢ and induce a cut with a mini-
ted lines. mum number of split edges.

Figure 3.5.: Determination a route for a cut in a BPMN-graph.

The predefined value, if not given by the user, is preset with a default fraction of the
graph’s height. In our application cases, we found that a value that corresponds to 10%
of the graph’s height is a reasonable choice for finding a cut.
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The core of the division algorithm is a dual graph routing inside the center band using
Dijkstra’s shortest path computation (Cormen et al. 2001). Therefore, the dual graph
G, = (V},, E}) of the cut graph G" = (V' C V,E’ C E) is constructed. The cut graph
is the subgraph of G which is induced by the center band.

Since there is a one-to-one relation between edges of £’ and edges of E7,, it is easy
to set higher weights for specific connecting objects of E’ that should not become di-
vision connections. Those specific weights can be set by the user or they can be set
to comply with BPMN specific semantic preferences, e.g. a data object assigned to a
connecting object should not be cut. The connecting object weights are then passed to
the corresponding edges of E7,.

An example of a horizontal cut can be found in Figure 3.5(b). Analogously to hori-
zontal cuts, a vertical cut is performed by using a vertical center band.

Performing a shortest path computation on the dual graph, we obtain the division con-
nections for the original graph. Those edges have to be removed in order to split the
graph. However, a connecting object removal causes information loss. Thus, we insert
two replacement objects (links) for each such connecting object, analogously to the
insertion of two links in (Effinger, Siebenhaller, and Kaufmann 2009a). After the com-
putation of a cut, the resulting submodels are used as sketches for the SDL—approach
for BPMN. Thus, mapping swimlane is preserved and angles of bends and edges of
the original graph are used as sketch and the mental map of the user (induced by the
original large graph) is kept. Eventually, the submodels can be identified to originate
from the large original BPMN-model because the mental maps match.

3.2. Pattern—based BPMN-Layout

3.2.1. Motivation

The existing layout approaches for BPMN, i.e. (Effinger, Siebenhaller, and Kaufmann
2009a; Kitzmann et al. 2009) or SDL (Section 3.1), are based on the underlying struc-
ture of a BPMN diagram. The structure is considered to be a graph with nodes (BPMN
elements) and edges connecting the nodes (in BPMN: sequence flow, conditional flow,
default flow). However, the graph structure might be enriched with meta—data, e.g.
BPMN-Graph, but known layout approaches for BPMN are not adapted for treating
different types of the nodes differently. Therefore, BPMN semantics are not consid-
ered in previous layout approaches. For instance, when creating a layout for a BPMN
diagram with the approach of Section 2.4, the final layout was not influenced by the
distinction if an element was a start event or a gateway. For a user, this distinction
can matter when 'reading’ the layout of a BPMN model. The resulting layout might
not look as expected because BPMN semantics induce distinct treatment of elements
already within the layout algorithm.
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In the following, we present three patterns that are designed to overcome the gap be-
tween graph structure and semantics of BPMN diagrams when creating a layout. Pat-
terns are a common method to express abstract similarities in (process) models or
graphs, e.g. action patterns are used to formalize semantic analysis of BPMN process
models in (Smirnov et al. 2009) or for organization in large business process model
repositories (Smirnov et al. 2010). The term ’layout patterns’ is also used in (Maier
and Minas 2010) for the expression of layout constraints which represent conditions
for generic layout algorithms. There, the term has a similar understanding to the pre-
sented layout aesthetics in Section 2.3.

Our new patterns aim at a) reducing cluttering in diagrams, b) highlighting the logical
structure of a BPMN diagram (induced by gateways) and c) accentuating the process
flow. The patterns can be integrated as extensions to the SDL layout approach from
Section 3.1.

This section® is organized as follows: In the next section, we will define our new
patterns and provide details of the algorithms that are used for applying the patterns.
Then, we will give an experimental evaluation of the new patterns combined with SDL
in Section 3.2.3 and point out related work before summarizing.

3.2.2. Layout Patterns

Inspecting the list of standard layout aesthetics, see Section 2.3, one realizes that
BPMN semantics in terms of element types, or mapping vertex_type, are not taken
into account in any of the aesthetics. The lack of support for BPMN element types is a
gap between the graph structure and BPMN semantics. By introducing new layout pat-
terns in this section, we attempt to take a first step to overcome this syntax-semantics
gap in BPMN layout.

The patterns also affect different layout aesthetics. As shown later in the experiments,
the patterns might alter the layout of an existing diagram layout and change measure-
ments of aesthetics. However, the patterns should reduce the possibly negative effects
of alterations in aesthetics and, at the same time, increase the support of BPMN se-
mantics. For instance, a pattern might, on the one hand, enlarge the area size of the
diagram and insert new crossings between flows, but on the other hand, bends might
be removed and lengths of flows might be reduced. This shows the tradeoff between
an aesthetically pleasing solution and consideration of semantics.

3Parts of this section were published in (Effinger 2011).
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Geometry pattern (GeoP)

The first pattern that we present is the Geometry Pattern (GeoP). It aims at reducing
visual cluttering. Cluttering describes the occurrence of many elements in a small
amount of the diagram area (high element—density). For instance, around gateways
with multiple connected elements, the cluttering is higher as the cluttering around
a start event with a single outgoing sequence flow. Therefore, reducing the visual
cluttering demands a reduction of visual density. At first sight, this pattern appears to
be independent from BPMN semantics because it considers visual density of elements
only, and not elements types. However, as described before, densities are induced by
cluttered nodes which can be caused by parallel flows or complex logic dependencies.
Since both, parallel flows and complex logic, are induced by gateways, high—density
areas in a layout are more likely to be found around gateway elements and less likely
around low—degree nodes, e.g. start/end events. Therefore, GeoP addresses BPMN
semantics as well as the visual effect of cluttering.

As a first step, we will show how the density of a BPMN diagram is determined. A
simplistic approach is depicted in Figure 3.6. There, around each element n, we draw
a circle ¢,. The circle ¢, is drawn with gradient opacity such that with increasing
distance from n, the transparency of ¢, is augmented proportionally. In the center of
n, opacity of ¢, is 1 and decreases to O at a distance of radius r (in Figure 3.6, r is set
to 500px in a grid drawing). If two circles ¢y and ¢, overlap, the opacity of ¢; and
¢ is added up within the overlapping area. From Figure 3.6, one can easily inspect
high—density areas which might benefit from less clutter. However, the gradients do
not allow distinct values for density. Also, the gradient circles focus on the density
centers, the rest of the diagram is not considered, although this information might be
helpful for a better solution where unused area is then activated and is occupied.

In GeoP, densities are determined as depicted in Figure 3.7. The calculation defines
densities that are diametrically opposed to the flow in the model:

In a BPMN-Graph G = (V, E) with swimlanes S, we construct for each swimlane
s € § a set of events E; which is given by the node positions of nodes N with
swimlane(n) = s, n € V. For each node in N, we add two events to E: the x-
coordinates of the left and right border of the drawn node. The left border is called
an increasing event and the right border is a decreasing event. Then, we sort each
set of events E in order of x-coordinates of the events and, let (e, ..., ¢;) denote the
sorted set Ey, proceed for each swimlane with the first event e; € Ej, store its co-
ordinate in x,. and initialize the density d; of s with 1. For each subsequent event
e; € {en, ..., e}, we distinguish the following cases:

o If ¢; is a decreasing event: let x; denote the x-coordinate of event e¢;. Then, for
the segment from x,. to x;, we assign the density d; given by the current value
of dy. Finalizing, we decrease d; by 1 and set x,,. to x;.
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Figure 3.6.: Visualization of cluttering (densities) using circle gradients with decreasing opac-
ity.

4,

15 {=] B

Figure 3.7.: Visualization of cluttering with blocks diametrically opposed to swimlane orien-
tation (and FLOW).

o If ¢; is an increasing event: let x; denote the x-coordinate of event e;. For the
segment from x,, to x;, we assign the density d; given by d;. Finalizing, we
increase d, by 1 and set x,, to x;.

After the last event eg, ds is 0 because there are no events in E; that change d; and
d, represents, at any event, the number of currently active elements. An element with
left border x; and right border x, is active if x; < x, < x,. Now, to each segment
in s, a density value d; is assigned. In Figure 3.7, we visualized the density values of
the segments by normalizing the density values to the color range from green to red
(omitting segments with d; = 0).
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After having detected dense areas, we now extend the SDL approach from Section 3.1
to provide support for GeoP. Therefore, we insert temporary edges E; that mark these
dense areas for the algorithm. An edge e € E, is inserted for each dense segment. Note
that, in a typical application case of GeoP, only a subset of all segments is selected,
e.g., the 10 segments with highest density are chosen. The important step is to add
edge e as a structural edge to £. Remember that in SDL, structural edges are not
allowed to bend (since a bend in a structural edge causes very high cost). The edges
are inserted orthogonally to the swimlane orientation and are attached to the structural
edges that represent the swimlanes, see Figure 3.8. They are aligned to the center of
the segments. Note that edges E; are allowed to overlap BPMN elements. Then, the
algorithm of SDL extended by edges E; aims at resolving the introduced overlaps by
moving (sifting) nodes affected by marking edges.

marking edge
/@E@LKH[@ d 6qde

A
— s 4
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o ,‘ s

Figure 3.8.: Schematic view of the algorithm for the Geometry Pattern. The marking edge is
inserted into a dense segment and attached to the structural edges of the swim-
lanes. Red arrows depict the direction of possible sifting moves when resolving
the overlaps.

This approach for GeoP is related to the Sifting Algorithm (SA) (Matuszewski, Schon-
feld, and Molitor 1999; Rudell 1993). In general, SA tries to move one element at a
time along an ordering of other elements until a goal function reaches a (local) mini-
mum. In our case, we move all elements that are overlapped by a temporary marking
edge. An element can be moved in parallel to its swimlane. Thus, SDL moves an
element in either direction until the overlap with the marking edge is resolved. This
spreads the original density center and the cluttering is reduced. Remember that SDL
aims at keeping the sketch. Thus, the move distance of a node is kept as low as possible
such that the created conflict, caused by the marking edge/node—overlap, is resolved.
Note that other nodes might also be moved when resolving a marking edge/node—
overlap. Thus, resolving overlaps in GeoP might change the overall area size (height
and width) of diagram. The effect of GeoP on the area size is analyzed in the evalua-
tion in Section 3.2.3.
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Gateway Pattern (GaP)

Our second new pattern, the Gateway Pattern (GaP), aims at highlighting the logical
structure of a BPMN process model. The logic structure of a process model is in-
duced by the combination of gateways. Gateways determine the process flow based
on logical expressions that are evaluated when a gateway is passed. Evaluations of
gateways may cause splits or joins of process flow(s). Since BPMN is not a block-
structured notation language, but a graph-based notation language (Kopp et al. 2009),
the underlying logic structure is not trivially induced by blocks. In (Dumas, Garcia-
Bafiuelos, and Polyvyanyy 2010), the challenges of "unraveling’ (transforming) a non—
well-structured process model to a well-structured model are described.

In general, if a process model is not well-structured, the determination of a pair of one
opening split and one closing join, that represent a block, is not unique. We will now
show how to find pairs that represent possible blocks in a non—well-structured model.
In the following, we call such a pair GaP-pair.

If we can find such a GaP—pair pG = (npir, njoin) that encloses a block structure, the
pattern GaP requires that:

¢ no element of the block induced by pg is placed before the opening split gateway
ngpiir (With respect to the process model flow orientation), and
¢ no element of the block induced by p¢ is placed after the closing join gateway

Njoin-

Thus, the goal of GaP is to highlight the semantic block structure by introducing an
implicit block structure that is implied by the GaP-pair.

In most process models, we cannot find well-structured parts when analysing the gate-
ways. Therefore, we apply a method that allows the construction of blocks that do not
require well-structured processes. The details of this algorithm and the extension to
SDL are described in the following.

For our approach, we consider paths between gateways in a BPMN graph. The idea is
to count the number of paths between two gateways and then construct blocks around
a GaP-pair of two gateways that have the most paths together. Each path starts at an
opening gateway and increases the path counter for each reachable closing gateway.

We define a GaP-pair as follows:

Definition 9 (GaP-Pair).

A split—gateway g and a join—gateway g, form a GaP-pair, if, for all possible
paths starting at g, the size of the subset of paths arriving at g, is maximal among
all reachable closing gateways. o
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Figure 3.9.: Insertion of skeleton edges to SDL when applying GaP.

In other words, we count the number of paths c¢,(G) arriving at any gateway g € G,
where an opening gateway g is the root node of each path and G the set of gateway
nodes; then, for a closing gateway g, where its path counter c,(g>) is maximal among
all ¢,(G), g1 and g> form a GaP-pair.

The calculation is performed by using a variant of breadth—first-search (BFS) (Cor-
men et al. 2001): we start a BFS-run from every split-gateway (or other gateways that
perform process flow split, e.g. complex gateways). Since BES is able to handle cycles
(by storing visited nodes) and employing our path counting method, we are able to find
GaP—pairs in non—well-structured models.

If, for a split-gateway g1, there are two join—gateways g> and g} with the same path
counter, the lower path distance between g; and either g; or g} is taken as criteria for
determining the GaP-pair.

After finding GaP—Pairs, we insert surrounding temporary edges (skeleton edges) into
the SDL model, analogously to GeoP, orthogonally to the flow orientation. Skeleton
edges are inserted into the swimlane(s) of the gateways forming the GaP-pairs, see
Figure 3.9. For every pair, one skeleton edge is introduced before the split—gateway
and a second skeleton edge after the join—gateway. The skeleton edges delimit the
surrounding box representing the block that is formed by the GaP-pair. The skeleton
edges prevent nodes, which are contained in the block and which are part of a path be-
tween the surrounding GaP—pair pg, to be moved to the outside of the block. If a node
n would be moved to the outside of a block b, it would cause two crossings between
one of the two skeleton edges of b and two edges e! and e2 incident to n. Note that
e) and €2 exist because n was on the path between the opening and closing gateway of
pc- If it was not on this path, it would not have been part of the block b.

For model decomposition that was performed when analyzing the graph for GaP-pairs,
a preferred decomposition for process models is often using SPQR-trees for a subse-
quent analysis of the structure or application of rules for abstraction (Polyvyanyy,
Smirnov, and Weske 2009) or for aggregation and hiding using process fragments
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(Yongchareon et al. 2010). However, SPQR trees cannot handle the issue of loops and
cycles in business process models as shown in (Polyvyanyy, Garcia-Bafuelos, and Du-
mas 2010). The immense reduction in complexity when analyzing process models for
strictly well-structured processes can be inspected in (G.-W. Kim et al. 2010).

In (Siebenhaller 2009), an aesthetics BIMODAL is proposed that can be credited to
consider semantics. It requires incoming and outgoing edges that are incident to a
node to be opposite, e.g. incoming edges are attached on the left side, outgoing edges
are attached on the right side of the node. The effect of GaP on measurable layout
aesthetics is analyzed in Section 3.2.3.

Start—End—Pattern (SEP)

The third new pattern, the Start-End-Pattern (SEP), formalizes the compliance of plac-
ing start- and end—events in a swimlane strictly according to aesthetics FLOW. These
elements should be placed such that they follow the orientation of the process flow (or
‘reading’ direction of the user). When SEP is activated, it guarantees that a start—event
is set to the ’beginning’ of its assigned swimlane, and an end—event is set to the ’end’
of its swimlane. The move of a node across a major part of a diagram might introduce
multiple crossings by incident edges and therefore affect CROSSING. Also, lengths of
edges connected to moved events might increase severely. In order to possibly reduce
the increase of edge length and prevent bends, we support two variants of SEP:

1. Dynamic SEP: Events affected by SEP are set to the border of the swimlanes but
may move in parallel to the swimlane orientation in order to reduce unnecessary
long edges or prevent bends, see Figure 3.10.

2. Locked SEP: All start— and end—events of a swimlane are aligned in the be-
ginning/end of the swimlane, see Figure 3.11. The events are locked in a box
surrounded by skeleton edges that guarantee that they do not move to the outer
side of the box when performing a new layout.

The second variant might be more appropriate for process models that have highly
parallel process flow and, thus, several starting/terminating events that can be easily
inspected when they are placed in an vertically aligned fashion at the swimlane border.

As mentioned in the two variants, we employ for SEP the idea of skeleton edges that
was also used in GaP. The skeleton edges ensure the structure of the locking box and
keep the nodes aligned in the beginning/end of the swimlanes when introduced as
structural edges into the SDL model.

The movements of start— and end—elements into the locking boxes correspond to a
shift in the x—coordinates such that the elements are centered in the boxes. Thus, the
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Figure 3.10.: Dynamic Start-End-Pattern: Start— and End—events are moved to the borders
of the swimlane but are allowed to optimize their position, e.g. see the node
MESSAGE_START_EVENT that moved below the gateway in order to prevent
a bend in the connecting edge.
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Figure 3.11.: Locked Start—-End—Pattern: Start— and End—events are kept static in boxes built
by skeleton edges, compare Figure 3.10. Multiple events in one box are verti-
cally aligned, compare with start events in the diagram.

elements are aligned in x. For the y—coordinates, we use a simple heuristic to optimize
the vertical order of the elements: For each box b, we order the elements in b vertically
according to the mean of the y—coordinates of all neighbours of n. The goal is to adapt
the vertical position of the start— and end—elements to the positions of their successors
or predecessors, respectively, in the graph. This heuristic attempts to keep changes in
elements’ positions, performed by the following SDL call, in the embedding small.
Note that, for the computation of the vertical order, we use a padding between two
vertically adjacent elements in order to prevent element overlaps.

A downside of the alignment of events is the requirement of a move inside the swim-
lane. This move might introduce multiple crossings when many edges have to be
traversed. For SEP, we resolve this problem by storing all traversed edges and, after
the SDL call, we initiate a post—processing stage that reroutes the stored edges if the
crossing, that was caused by the move, persists. For the rerouting of edges, we use the
concept of dual-graph-routing that was presented in Chapter 2.



68 CHAPTER 3. 2D-VISUALIZATIONS OF BUSINESS PROCESS MODELS

3.2.3. Evaluation

We now present the results of an experimental evaluation of the presented BPMN lay-
out patterns. The evaluation is designed to show effects of the patterns concerning
aesthetics since formal aesthetics enable experiments that result in measurable num-
bers.

In order to facilitate comparisons with given layouts, we compare the results of SDL
extended by our new layout patterns with the approach for BPMN-layout that was pre-
sented in Section 2.4. Therefore, we compute layouts with the given approach and then
apply SDL with the corresponding pattern(s) of the test case and analyze differences
in terms of formal aesthetics. The goal of the experimental evaluation is to find hints
on the impact that the patterns might have towards layout aesthetics. Also, we like to
show a quantitative analysis of the impact. If the impact of a pattern on an aesthetics
is such that the aesthetics cannot be qualified as ’fulfilled’, the pattern might not be
appropriate since it violates the list of standard layout aesthetics from Section 2.3.
For the evaluation, a set of industrial business process models is processed. The set
was created from tests in (Fahland et al. 2009). Sizes of the graphs are |V| < 145 and
|E| < 264 with an average node degree of 2.2. For each process model, we test a total
of 11 test cases which represent combinations of the new patterns. The combinations
are depicted in Table 3.1. In Figure 3.12, we depict a BPMN process models and the
resulting visualizations after the application of three different test cases.

TestCases | 4 )y 13l als5]6|7]8]9l10]11

Patterns
GeoP [ X | - | - | - | X[ X[|X]|-]-]X]|X
GaP | - |X|-|-|x|-|-|x|x|x]|x
SEP (dynamic) | - | - [ X | - | - | X|-|x|-]x]| -
SEP(locked) | - | - | - | x| -|-|x|-|x]|-|x

Table 3.1.: Combinations of patterns usage for experimental evaluation. *X’ denotes that the
pattern was activated in the corresponding test case.

The implementation was integrated into a test—suite that is part of BPMN-Layouter
which runs with Sun JAVA™ 1.5. Tests were performed on a Intel® Core™?2 Quad
CPU Q9300 with 2.50GHz and 3GB of RAM. The operating system is Ubuntu 10.04
LTS - Lucid Lynx.

Since GeoP requires a predefined number which states how many of the most dense
centers should be considered, we perform, for every GeoP test case run, 3 distinct runs
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with a randomly chosen number 1 < k <= 10 where k determines the number of se-
lected dense centers. The dense centers are selected in decreasing density order such
that the centers with the highest density are always chosen. Higher numbers of chosen
dense centers are not appropriate because this leads to a wide-spread and lengthy dia-
gram due to many sifting operations (negative effect on aesthetics AREA).

The results of the experimental evaluation are depicted in Figures 3.13 - 3.16. The
first fact that comes to mind when inspecting the diagrams is the high running of time
of test cases using GaP, see Figure 3.13. This is a hint to the hidden complexity that
stems from the calculation of number of paths in a graph. In larger process models one
might switch to a high-performance implementation of the pre—processing step to find
all paths that employs a smarter data—structure for storing paths that overlap, e.g. a
sorted set of path lists, and to exploit the topological ordering of elements in the graph
in the sorting.

Test cases using GeoP (cases 1,5,6,7,10,11) show a positive behaviour of aesthetics, the
changes are very low except for a tendency towards higher edge lengths (cases 5,10),
see Figure 3.16. Number of bends and crossings are not affected by a high deviation.
Test cases analysing GaP (2,5,8,9,10,11) show higher deflection, especially case 2
where bends are reduced but area size and edge lengths are increased. The difference
between SEP (locked) and SEP (dynamic) becomes obvious when comparing cases 3
and 4: SEP (locked) produces clearly more crossings and bends than SEP (dynamic),
however, both approaches need slightly more area space, see Figures 3.14 and 3.15.
When comparing test cases with a combination of two patterns (test cases 5,6,7,8,9) or
three patterns (test cases 10,11), the maximum and minimum deflection decrease, i.e.,
see Figure 3.14 for crossings and bends. This indicates that patterns affect aesthetics
in an orthogonal way, e.g. a pattern A affects aesthetics AA positively whereas pattern
B affects AA negatively, in sum, A and B end up to neutralize the measured numbers
of AA. Note that this does not mean that the layout is left unchanged since A and B
still must be ensured in the final layout.

In summary, the impact of the new patterns on the measured aesthetics is not signif-
icantly high and does not turn a diagram layout unreadable (e.g. very flat diagrams
or diagrams with a high fraction of unused area). This allows to state that, from a
experimental point of view, the new patterns do not render accepted aesthetics invalid
or infeasible. Therefore, the patterns may be considered an improvement for BPMN
layouts. Moreover, including semantics in layout approach is a preferable method to
enrich the previously only structure-based layouts. Layouts with support of semantics
are more expressive since they contain implicit information that might not be expressed
textually without overloading the diagram.
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(d) Test case 11: GeoP, GaP and SEP locked.

Figure 3.12.: Example for the application of the layout patterns. (a) The process model from
Figure 2.16 is taken as input. The layout is computed by the static layout ap-
proach from Section 2.4. (b) Test case 1 (GeoP) is applied. Note that the tasks
are now vertically aligned due to the move of the tasks to the same side of the
marking edge. (c) Test case 4 (SEP locked) is applied: the start- and end—events
are attached to the left/right borders. (d) Test case 11 (GeoP, GaP and SEP
locked) is applied. The result is a combination of the layouts in (b) and (c)
because GaP has no effect (the gateways already are in the optimal positions).
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Figure 3.13.: Performance of the layout patterns. For each test case, total layout time including
call of SDL with pattern extensions is measured. Note that the maximum run-
ning time does not exceed 1.2 seconds. Test cases 8-11 only differ marginally.
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Figure 3.14.: Effects of layout patterns on the number of crossings and bends in the layouts.
Relative differences to the input layouts that are computed with the approach
from Section 2.4 are given.
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Figure 3.15.: Effects of layout patterns on area size. Note that the maximum area difference is
only 6% which is also due to the limited number of selected dense centers when
GeoP is activated.
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Figure 3.16.: Effects of layout patterns on the sum of edge lengths and the maximum edge
length.
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3.2.4. Summary

In this section, we introduced new layout patterns for BPMN diagrams. The layout
patterns allow to include BPMN semantics in layout algorithms for BPMN process
models. The layout patterns take into account standard aesthetics of BPMN diagrams.
The patterns address the following issues in BPMN diagrams:

o Cluttering of nodes in diagrams (Geometry Pattern, GeoP),

e Perception of the logical structure of a BPMN diagram (Gateway Pattern, GaP),

e Accentuation of the process flow at start events and process’ termination in end
events (Start—-End-Pattern, SEP).

We also presented algorithmic details for the automatic execution of the layout patterns
integrated into the SDL algorithm. The algorithms are evaluated in experiments that
analyze the impact of the pattern on a list of common layout aesthetics for BPMN.

3.3. A Layout Approach for BPEL-workflows

In this section*, we present an approach for producing layouts of workflows that are
based on the Business Process Execution Language (BPEL) (Alves et al. 2007). BPEL
is a verbose and hierarchical workflow language. A BPEL model consists of execution
paths that can be nested, alternative or concurrent; any combination of these attributes
at a time is also possible.

We formalize the BPEL specifics (aesthetics) that a layout algorithm has to fulfill as
a set of layout criteria. The set is not given by any standardization document and has
to be manually created as a step towards a BPEL layout approach. The aesthetics aim
to enhance readability and to comply with commonly adapted styles for BPEL models
and more generally for workflow diagrams or flow charts (Ambler 2005).

Our approach enhances the Sugiyama algorithm (Sugiyama, Tagawa, and Toda 1981),
see Section 2.1.1, by modifying and extending the steps of the original algorithm. The
new algorithm allows to set fixed paths, called pathways, in a workflow that correspond
to parallel execution paths and, therefore, should be drawn in parallel. This goal re-
quires modifications of the original Sugiyama algorithm since pathways consist of a
sequence of edges and these edges create additional dependencies between vertices on
subsequent layers in the model of the Sugiyama algorithm. Moreover, nested struc-
tures, i.e., clusters, in the workflow are supported in our approach such that the result

“Parts of this section were joint work with Benjamin Albrecht, Markus Held, Michael Kaufmann and
Stephan Kottler. Parts of the results were published in (Albrecht, Effinger, Held, Kaufmann, and
Kottler 2009) and (Albrecht, Effinger, Held, and Kaufmann 2010).



74 CHAPTER 3. 2D-VISUALIZATIONS OF BUSINESS PROCESS MODELS

of a layout clearly highlights the nesting of BPEL elements. In addition, our approach
uses different graphical representations for distinct types of BPEL elements. The rep-
resentations also allow for enhancing the visualization of existing parallel structures in
a BPEL model.

This section is structured as follows: in Section 3.3.1, a short introduction to the
specifics of BPEL is given, followed by the determination of the set of aesthetics for
BPEL layout. After pointing to related work in Section 3.3.2, the new algorithm is
presented in Section 3.3.3 including a time complexity analysis of the approach.

3.3.1. Preliminaries
The Business Process Execution Language (BPEL)

BPEL is an XML-based language for orchestration of web services and has been stan-
dardized by the Object Management Group (OMG). BPEL has been derived from two
earlier workflow execution languages, i.e., the block—oriented XLANG language by
Microsoft, and the graph—oriented Web Services Flow Language by IBM. In the fol-
lowing, we will shortly describe the properties of BPEL, as defined in the WS-BPEL
2.0 OASIS standard from 2007 (Alves et al. 2007).

BPEL is an imperative and structured programming language which contains a mix-
ture of block—oriented and graph—oriented elements. In contrast to high-level imper-
ative languages, BPEL does neither encompass any concepts of modules, libraries or
classes. The only way to decompose a BPEL workflow is to encapsulate functionality
in another workflow. BPEL does not contain any concept of functions or procedures.
We now give a short summary of element types in a BPEL model, as given in (Held
and Blochinger 2009):

Activities: The BPEL language distinguishes between basic activities and structured
activities. Atomic tasks are modeled as basic activities which are treated by the work-
flow as "black boxes". Variable values can be changed using the Assign activity. It
may contain an arbitrary number of assignment operations, expressed as copy ele-
ments. The activities receive and reply are used to model communication with a client
of the BPEL process, while Invoke calls an operation on a Web Service. All communi-
cation partners assume roles defined in partner links. Input and output data are passed
via variable references. Most control structures in BPEL are expressed as structured
activities. In contrast to basic activities, structured activities contain child activities.
Therefore, BPEL workflow models can be nested.
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Sequences and Scopes: The structured activity Sequence is used to express the sub-
sequent execution of an ordered set of activities. The functionality of Sequence resem-
bles the concept of bracket—enclosed blocks in C—like programming languages. How-
ever, Sequence—activities cannot be used for local variable declarations. The BPEL
language provides the structured activity Scope to deal with local declarations of vari-
ables and event handlers. Scope contains one child activity.

Conditionals, Events and Loops: The lf—activity contains a set of child elements
which are bound to conditions. Either the first child activity, whose condition evalu-
ates to true, or a default activity, or no child activity is executed. The Pick—activity
resembles the lf—activity, but depends on external events rather than conditions. Pick
can be used to wait for the occurrence of one out of a set of messages or timeout events.
Loops are declared with the activities While, RepeatUntil, and ForEach.

Parallelism: Concurrency can be modeled using the structured activities Flow and
ForEach. Flow allows the definition of directed acyclic graphs (DAG) of activities,
while ForEach loops may be marked as ‘parallel’. Links between activities are always
declared inside a Flow activity, and must not form a cycle. Links declared inside a Flow
may cross the boundaries of structured activities within the Flow.

The aforementioned BPEL elements all have specific requirements if developing a
layout algorithm. However, for each element, its respective requirements have to be
fulfilled by the algorithm. In the following, we present a representation of the BPEL—
specific requirements by introducing layout aesthetics for BPEL models.

Layout aesthetics for BPEL models

Generally, a BPEL model represents a workflow. Thus, aesthetics FLOW is the most
important aspect. Often a workflow contains some central paths which are most rele-
vant to understand and follow the whole process. Thus, the algorithm supports high-
lighting of such pathways, formalized in the following aesthetics:

e Maximize the number of fixed pathways (PATHWAY).

Also, for nested or symmetric structures in BPEL (e.g. Flow, ForEach), we define the
following aesthetics that have to be supported by the algorithm:

e Structures may be nested related to the concept of graph clustering (CLUSTER).
e Structures may have a symmetric structure that is to be visualized (SYMME-
TRY).

Following typical layouts of workflows (Diguglielmo et al. 2002), we state all sup-
ported aesthetics and define the following set of aesthetics as requirements for a BPEL
layout approach:
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Figure 3.17.: Image of a layout by a simple approach for BPEL layout. Source: (Zhao, Han,
and Y. Huang 2009). Links are not supported, see Figure 3.27 for comparison.

FLOW, OVERLAP, PATHWAY, CLUSTER, CROSSING, BEND, EDGE_LENGTH,
ORTHOGONAL.

Moreover, aesthetics SYMMETRY is applied when the process consists of parallel
structures with child activities, e.g. Flow and ForEach.

Analogously to aesthetics for BPMN models, see Section 2.3, a precedence of the aes-
thetics is only available in parts if we consider user studies, e.g. (Purchase, Cohen, and
James 1997). Therefore, we assume that CROSSING is the most important aesthetics,
in accordance with (Purchase 1997) and the focus of Sugiyama’s algorithm on crossing
minimization.

3.3.2. Related Approaches

In (Zhao, Han, and Y. Huang 2009), a simple approach for automatic layout of BPEL
models is proposed. However, this approach is limited in several ways: first, the lay-
out algorithm is limited to a simple alignment along the x— and y—axis based on a tree
structure. Second, links between elements in the BPEL are not considered which al-
lows the artificial simplification that the underlying BPEL model is represented as a
tree in the algorithm, see Figure 3.17. This assumption does not correspond to real—
world BPEL models and avoids the more realistic challenges of BPEL layout on graph
structures. These limitations render the approach to be insufficient for the integration
into applications, e.g. BPEL modeling tools.

ActiveBPEL® Designer by Active Endpoints is a wide—spread visual modeling tool for
BPEL processes. However, the vendor stopped support of ActiveBPEL® Designer and
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the publicly available open-source ActiveBPEL® Engine’ does not contain a visual
modeling tool. Testing an available former version (3.0.3) of ActiveBPEL® Designer,
we found the layout results to be rather poor, see Figure 3.18: overlapping of elements
occurred and link routing over elements was not prevented.

The Eclipse BPEL Designer (EBD) is a plug-in for the Eclipse IDE® provided by the
BPEL Team of the Eclipse Foundation. It is a GEF-based (Graphical Editing Frame-
work) editor’ that provides graphical means to design BPEL processes. The latest ver-
sion 1.0.0, a major release, dates from June 2012. The results of EBD can be inspected
in Figure 3.19. Overlapping can occur in complex cases if not manually prevented and
routing of links is poor since it overlaps with other elements and structural graphics. In
Figure 3.20, the identical process is depicted using our approach. We can observe that
links do not overlap and the hierarchical structure becomes more easily perceptible to
the user. Also, our approach optimizes the ports of a link to its partner by using a tech-
nique that extends the Sugiyama algorithm and is presented in (Siebenhaller 2009).
Remember that a port is the coordinate offset at a BPEL element at which the link is
connected to. The optimization of ports for the links prevents unnecessary crossings
during the link insertion.

Related work on layout of workflow and processes

There are several approaches tackling the field of business processes that are related
to BPEL: In (Rinderle et al. 2006), business process visualization is proposed using
Sugiyama algorithm and force—scan, based on (Yang et al. 2004). The approach sup-
ports typed nodes, but cannot handle nesting, hierarchical structures and it is limited
to series—parallel graphs that require acyclic input graphs which imposes a major limi-
tation considering general (cyclic) workflow graphs. In (Six and Tollis 2002), a linear-
time algorithm for processes with partitions is proposed. Business process graphs in
a more general notation are handled in (Wittenburg and Weitzman 1997). However,
both approaches do not take into account that there exist distinct types of nodes which
require different handling in the layout. Additionally, nesting is not supported.

In (Diguglielmo et al. 2002), graph layout for workflow is presented within the com-
mercial solution ILOG JViews that is now integrated into the software department of
the company of /BM. The solution also features incremental drawings and grouping.
However, details of the algorithm are not given and BPEL specific elements cannot be
handled.

see http://www.activevos.com/community-open-source.php, 2012-09-30.
see http://www.eclipse.org/bpel/, 2012-09-30.
7see http://www.eclipse.org/gef/, 2012-09-30.
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W Gerortal... W Cardidogst ¥ swogem W Trestment

Figure 3.18.: A workflow layout by the ActiveBPEL® Designer (version 3.0.3) of Active
Endpoints. Note that edges are routed on top of node labels and on top of other
edges.

3.3.3. Layout Algorithm for BPEL-workflows

A visualization of BPEL processes with its flows and activities suggests a layered
drawing technique. Thus, our layout approach is based on modified phases of the
Sugiyama algorithm (Sugiyama, Tagawa, and Toda 1981), see Section 2.

For our purposes, we need the following definitions for an underlying graph G = (V, E)
of a BPEL model. For the layout it is important to increase the readability of pathways
denoted by the set of pathways .
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Figure 3.19.: A workflow layout by the Eclipse BPEL Designer (version 0.4.0). Note that
edge routing causes unnecessary crossings and edges are routed on top of other
edges and nodes.

[Process Name]

Figure 3.20.: The same workflow as represented in Figure 3.19, constructed with our layout
algorithm.

Definition 10.

A pathway P € P is a sorted set of nodes (vi,...,vi) € V which represent a path
in G from vy to vy and which must be vertically aligned in the resulting layout. A
node v € V, that is part of at least one pathway P, is called pathway node, an edge
e € E, contained in at least one pathway P, is called pathway edge respectively. o
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Definition 11.
Anodev e V\ -
node. Analogously, an edge e € E \ | J,—1 1 {(g,1)lg,r € P;}, e is not contained in a

« Pi» i.e., v is not part of a pathway P; € P, is called standard

.....

pathway, is called standard edge. o

Drawing a path vertically highlights the containing nodes in a way such that the reader
can easily follow it (aesthetics FLOW and PATHWAY). Thus, if possible, each path-
way should be drawn straight from top to bottom without any bends. To achieve this
goal, we perform the following extensions to the phases of the Sugiyama algorithm:

Extensions to the Cycle Removal Phase: Regarding cycles in the graph, we con-
sider the special case of a cycle which consists of pathway edges only. In this case, we
choose the cycle edge emin = (vi, Vi) Which is contained in the least pathways ' C P.
After that each pathway P = (vi,...,V}, Vi, ..., vy) of £’ is divided into two paths
Py = (vi,...,v)and P = (vy,...,v,). Finally, ey, is reversed. Each edge which
is reversed during this step is stored in S. At the end of the algorithm, each edge in
S is restored to its original direction. A simple example of this extension is given in
Figure 3.21. The algorithm is described in Algorithm 2.

118 s1.18

. $1.28
6! @
$1.68

$1.28

[3]
$1.3%

Figure 3.21.: (left) Given a pathway P =(1,2, 3,4, 5, 2, 6) containing a cycle (2, 3,4, 5, 2) con-
sisting of pathway edges only. (right) The pathway P can not be drawn straight
from top to bottom. Thus, it is split up into two pathways P;=(1,2) and
P»=(3,4,5,2,6). Since node 2 belongs to P; as well as to P, it can either be
drawn below node 1 or node 5. The labels on the edges denote the pathway
number followed by the segment number of this edge in the path.

Extensions to the Layer Assignment Phase: To ensure that each pathway is drawn
from top to bottom further constraints are necessary: Given a pathway P = (vq, ..., V),
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Algorithm 2: Extended cycle removal phase

1 S« 0;// set of the reversed edges
2 while G contains cycle C do
3 E’ « set of all cycle edges in C;
4 if £’ contains a standard edge then
5 e « a standard edge of E’ contained in most cycles;
6 reverse e in G;
7 S« Sulel;
8 else
9 emin < pathway edge of E’ which is contained in the least pathways in #’;
10 foreach P € £’ do // split each path of #’
11 given P = (vi,..., v, Vips ..., V) and emin = (v, vi)s
12 P1=(V1,...,V1);
13 Py =0, sv);
14 P — P\{P}) U {P1}U (P2}
15 reverse epyi, in G;
16 S « S U {emin);

for each adjacent pair of pathway nodes v; and v;;, we demand that v; is assigned to a
layer above v;.1. Since we removed all cycles consisting only of pathway edges in the
former step, this can always be fulfilled.

Extensions to the Computation of Horizontal Coordinates: For the computa-
tion of the horizontal coordinates, the standard algorithm is applied in a first step
followed by a post—processing step: For each pathway P € %, the barycenter b
of the x—coordinates of all pathway nodes in P is computed. The horizontal coor-
dinates of nodes contained in exactly one path P are set to b. To avoid overlap-
ping pathway nodes, the set of all barycenters B is processed such that, for each
bi,bj € B : |bj — bj| > dpin holds, where dy,;, is a constant denoting the minimal
node distance. For nodes contained in pathways Py, ..., P, k > 2, the x—coordinate
is set to the barycenter of by, ..., bx. Finally, in order to avoid overlapping nodes, the
distance between each standard node v and its neighbour nodes in the same layer of
the Sugiyama model is tested. If the distance to one of these nodes is smaller than
dmin, @ new x—coordinate x(v) for v is computed: According to the location of its par-
ent nodes S, the shifting direction d is determined at first (see Algorithm 4). Then,
v is shifted towards this direction d to the x—coordinate x(v) such that its distance to
its previous neighbour node is exactly d,i, and, subsequently, the distance to the its
new neighbour—nodes, v; and v,, is tested (see Algorithms 3 and 5). If the distance to a
new neighbour node v; is smaller than dp,i, and v; is a standard node a further shifting
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Figure 3.22.: An example showing the different steps of the computation of the horizontal
coordinates. (left) Input to the extended phase of computation of horizontal
coordinates; pathways are highlighted in green. (middle) All pathway nodes are
set to the barycenter of the corresponding pathway. (right) All standard nodes are
shifted such that every node in the graph adheres to the minimal node distance.

step to v; towards direction d is applied; otherwise, if v; is a pathway node, v is shifted
again (see Algorithm 6). Hence, for each standard node exactly one shifting phase is
performed. An example for this extension phase is depicted in Figure 3.22.

BPEL-specific steps in our algorithm

In addition to the modifications of the phases in the Sugiyama algorithm, our approach
consists of further steps that adapt the layout to BPEL specifics. The activities of a
BPEL model form a nested structure. We assume one top level Flow—activity, which
contains all other activities. Resolving this nested structure we get a graph G in which
paths split up and merge again. For generating an ’adequate’ layout, pathways are
embedded into G. Here, adequate’ means that the produced layout should highlight
execution paths by drawing them in parallel (SYMMETRY). In order to add further
information to the layout, modifications are applied to the graphical representation of
the BPEL elements in the layout.

In a BPEL model, we distinguish between two different types of edges:

e Pathway edges are induced by the activity structure, that is designed by the user,
and are created while resolving the nested structure of the workflow.

o Transverse edges are not induced by the activity structure, but they can addition-
ally be added by the human workflow designer to connect any kind of activities,
e.g. an Invoke call to a non-incident BPEL element can be represented by a
transverse edge.

An example for the distinction between the types of edges can be inspected in Fig-
ure 3.23.
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Algorithm 3: Extended phase for computation of horizontal coordinates

apply standard algorithm; // see (Brandes and Kopf 2001).
foreach P € # do

1
2
3 Caverage <~ (ZveP X(V)) /IPl;
4

foreach v € P; do

// set x-coordinate of v
5 L x(v) « Caverages
6 foreach Layer L € G do
7 foreach node v € L do
8 v, « right neighbour of v;
9 if DisTaNce(v, v,) < dnin then
10 if v is standard node then
11 d < CHECKSHIFTDIRECTION(V);// see Algorithm 4.
12 if d = RiguT then
13 x — x(v,) + dmin;
14 SuirtNoDE(v, d, x);// see Algorithm 5.
15 else
16 X x(vy) = dmin;
17 SHIFTNODE(V, d, X);
18 else
19 d <« CHECKSHIFTDIRECTION(V,);
20 if d = RigHT then
21 x — x(v) + din;
22 SHIFTNODE(V,, d, X);
23 else
24 x « x(v) = dnin;
25 SHIFTNODE(V,, d, X);

Pathway Construction

Since there is no unique method to derive pathways from a BPEL model, we consider
the number of descendant BPEL activities of structured activities for path construction
and embedding. There is one pathway leading from the top to the bottom of the activity
structure. Whenever a pathway P is split up, copies Py, ..., P, of path P are generated.
The end of these new pathways Py, ..., P, is the node where they meet path P again.
Thus, each execution path in BPEL is also a pathway in the graph and is drawn in
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Algorithm 4: CHECK SHIFTDIRECTION(V)

-

S, « set of all predecessors of node v in G;
Caverage < (ZVESP X(V)) /|Sp|>

if caverage # 0 then

L if x(v) > caverage then

A W N

t return LEFT;

=)}

return RiGHT;

Algorithm 5: SarrrNope(v, d, x)

1 x(v) « x;

2 vy, v, « left and the right neighbour-node of v in the layer;
3 CHECKNEIGHBOURDISTANCE(V, v,); // see Algorithm 6.
4 CHECKNEIGHBOURDISTANCE(V, v));

Figure 3.23.: The simple input structure representing a BPEL workflow. Black edges represent
pathway edges, gray edges represent transverse edges.

parallel by the extended layering algorithm described above. Transverse edges are not
considered during the construction of the pathways. However, in the later step that
aims at reducing the numbers of edge crossings, these edges affect the relative position
of the computed pathways in the final layout: Given a layout containing pathways
in the relative ordering Py,..., P,, a transversed edge e between a node of P; and
a node of P, would cause a lot of edge crossings. Thus, by considering e in the
crossing minimization phase, the algorithm correctly places P, and P, side by side. In
Figures 3.24 and 3.25, an example for pathways is depicted using a different color for
each pathway.
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Algorithm 6: CHECKNEIGHBOURDISTANCE(V, V ;)

X N A N R W N =

10
11
12
13
14
15

if DISTANCE(V, V) < dj;, then

if v; is a standard node then

if d = Rigut then

x — x(v) + dmin;
SHIFTNODE(V j, RIGHT, X);
else

X — x(v) — dmin;

SHIFTNODE(V j, LEFT, X);

else

if d = Rigut then

X« x(vj) + dpin;
SHIFTNODE(v, RIGHT, X);
else

x < x(v;) = dmin;

SHIFTNODE(v, LEFT, X);

[ Flow End l [ While End l [Seq end

Flow End

Figure 3.24.: Result of the extension for pathway construction from the input structure to a

graph G. In G, each structured activity, e.g., a Sequence—activity, gets an end—
node forming a nested structure. In addition, pathways (colored blue, green, red
and brown) are embedded to draw each execution path in parallel. The edges
colored in gray are standard edges linking two execution paths.
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While Begin

Flow End

aj

Figure 3.25.: Result for the layout of G of Figure 3.24 respecting the drawing of each pathway
straight from top to bottom. Each pathway is highlighted by its own edge color-
ing. Since each pathway starts at the root node the first edge of the blue pathway
belongs also to the brown pathway. Note that colors are used for description
purposes only and don’t contribute to semantics of a BPEL model.

Modifications of the Graphical Representation

Each node in the layout is assigned a specific shape and is labeled according to its
represented BPEL element, i.e., basic activities are represented by a simple node con-
taining its ID and its type. Structured activities consist of two nodes, its start and its end
node containing the ID, see Figure 3.24. The type is expressed by setting the color of
the according nodes (green for ’start’ and red for ’end’ nodes). To FLOW-, PICK— and
IF—- activities, rectangles are added which surround all subordinate activities. IF— and
PICK-activities have additional rectangles that contain all nodes of each conditional
case. Also, in the layout, a label is added to each node that contains information de-
rived from the corresponding node in the original BPEL model (e.g. declarative name,
etc.). An example of a layout with BPEL—specific shapes is given in Figure 3.26.

Meta—Data of the BPEL process

A BPEL process may contain additional (meta—) data for its elements, e.g. conditions
for IF—activities or comments on elements. The data is relevant for the later transfor-
mation to an executable process on a process engine. The visualization of meta—data is
not always desirable since important data, i.e., element type, may interfere perception
of less relevant data, i.e., comments. Therefore, we provide the meta—data in a table
that is constructed after the layout algorithm. The elements are connected to the table
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[Process Name]

[Name] 9 [Name] e [Name] 6 o [Name] |
ifBegin whileBegin | flowBeg |
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| ! [Name] i ! [Name] i i [Name] [Name] [Name]
i ! invoke Act6 i ! reply Act8 i i reply Act2 exit Acttt wait Act10
i | | Pl
I |1 ||
| [ !
[Name] [Name] [Name]
ifEnd ‘whileEnd flowEnd
Act5 Actt Actd

Figure 3.26.: @ A FLOW-activity surrounded by green and red nodes and a gray rectangle;
surrounding rectangles are drawn in dashed lines. @ A BASIC—-activity contain-
ing the type (left) and the type (right). ® A IF—-activity surrounded by gray nodes
and a red rectangle; each case is outlined in a blue rectangle. @ A WHILE-
activity surrounded by blue nodes. @ A SEQUENCE-activity surrounded by
small gray nodes. Each activity also contains a labels that displays its name.

data by their corresponding IDs. Conditions, e.g. IF—conditions, are linked by edge
labels. For ease of use, the table can be exported to HTML format. An example of
such a table is given in Figure 3.28.

Outline of the Layout Algorithm

In the following, we give a short overview on the complete algorithm:

Input: A graph structure representing the workflow, see Figure 3.23.

Step 1: Extension of the input structure to a graph with pathways embedded,
result see Figure 3.24.

Step 2: Extended cycle removal phase.

Step 3: Extended layer assignment phase.

Step 4: Standard crossing minimization phase.

Step 5: Extended assignment of horizontal coordinates. Figure 3.25 as an exam-
ple for the result of step 2-5.

Step 6: Adaption of the graphical representation of the layout image, see an
example in Figure 3.27.

Step 7: Handling of meta data: creation of a table linked to layout result, see
Figure 3.28 for a small example and its corresponding meta—data table.

Output: The layout graph representing the workflow and a table containing the
meta—data for the corresponding graph.
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[Process Name]

Figure 3.27.: Result of the final layout for BPEL model of Figure 3.24. Each node is assigned
its specific shape corresponding to its represented BPEL activity.

Analysis of the time complexity

Using heuristics in the Sugiyama algorithm and an acyclic input graph G = (V, E), it is
possible to reduce the running-time to O((|V| + |E|) log |E|) (Eiglsperger, Siebenhaller,
and Kaufmann 2005). We give now a worst—case running time of our layout algo-
rithm. All extensions from Section 3.3.3 and further the BPEL—specific steps must be
considered.

Extensions to the Cycle Removal Phase Obviously, a path division can be done
in O(|E]) time. This division is performed for each pathway containing the cycle edge
which is reversed. In practice, the number of cycles is low, thus, given there are k
cycles containing only pathway edges during the Cycle Removal Phase, this extension
step can be done in O(k|P||E|) time where |P| is the number of pathways.

Extensions to the Phase of Computation of Horizontal Coordinates First the
barycenter of each pathway P € P is computed. Therefore, the x—coordinate of each
pathway node of P must be taken into account. Hence, the running time for the com-
putation of the barycenters is O(|P]|V|). Respecting the minimum node distance dpin,
the distance between two adjacent barycenters must be set at least to dpi, . If the
set of barycenters 8 is sorted, this can be done by a simple traversal through 8 in
O(1B)) = O(|P)) time or O(|P|log |P|) including a sorting algorithm, e.g. MergeSort.
During a shifting phase of a standard node O(|V|) locations must be checked. Hence,
the running time for shifting all non—path nodes is o(VP).
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Figure 3.28.: A table containing the meta—data for each node of the process depicted on top
(’-> means the field is not set, X’ denotes that this field is not available for this
activity type).

Path Construction For generating the layout graph, the nested activity structure
must be resolved. For this purpose, every activity is regarded once and the pathways
can be embedded by a simple breadth—first—search (BFS).

Considering all extensions for the worst—case running-time of our layout algorithm,we
obtain:

O(S +KIPIE| + |E| + |PIIV| + [V* + V| + |E])
= O(S +KIPIE| + V%)

where S denotes the dominating running—time of the Sugiyama algorithm. Since path-
ways do not necessarily have to be node—disjoint, there can be many pathways in a
general graph. However, in general BPEL models, || < |V| holds and, thus, only few
pathways exist.



90 CHAPTER 3. 2D-VISUALIZATIONS OF BUSINESS PROCESS MODELS

3.3.4. Summary

In this section, we tackled the challenge of computing layouts for BPEL models. The
main contribution is a layout algorithm that is highly adapted to the needs of BPEL
and uses the principles of Sugiyama’s algorithm enriched with major extensions and
modifications. For real-world application purposes and prospective empirical evalua-
tions, the approach is integrated in HoBes (Held and Blochinger 2008, 2009).

The approach extends the existing BPEL modeling platform HoBBEes to enhance com-
munication between designers by discussing and exploring BPEL models. With our
approach, complete BPEL models can be analyzed as visual models that do not rely
on the original BPEL files in XML—format.
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[Process Name]

Figure 3.29.: Layout example of BPEL process that represents the workflow of a student that
pursues to complete a thesis.
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Chapter

Summary for Part I

In the first part of this work, we presented techniques for visualizations of business pro-
cess models in 2D. Visualizations adhere to layout aesthetics. We presented a study
on layout aesthetics of visualizations for business process models in BPMN, see Sec-
tion 2.3. We defined a set of aesthetics that is to be supported by layout approaches for
BPMN models. The set comprehends the following aesthetics:

FLOW, PARTITION, OVERLAP, ELEMENT_SIZE, EDGE_LENGTH,
CROSSING, ORTHOGONAL, LABEL, AREA, BEND.

Furthermore, we adapted in Section 3.1 an approach for dynamic visualizations that
considers a given embedding of a graph when computing a layout. The approach
Sketch—Driven—Layout (SDL) is realized as an extension to the TSM approach which
computes visualizations for graphs in Kandinsky model. The extended approach of
SDL is able to consider the partition of a business process models, in the case of
BPMN, a partition corresponds to swimlanes.

In the subsequent Section 3.2, three patterns for visualizations of business process were
presented. They can be applied to SDL and are targeted at semantic considerations of
business process models in visualizations. The patterns and their goals are:

e Geometry pattern (GeoP): reduce visual cluttering of process model diagrams.

o Gateway Pattern (GaP): highlight the logical structure of process models that is
induced by gateways.

e Start—-End-Pattern (SEP): enforce aesthetics FLOW on start and end event. Two
variants are provided: dynamic or locked SEP.

We analyzed the effects of the patterns on the layout aesthetics when a visualization
is computed using SDL enriched by patterns. The results show that the effects are
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manifold and vary for different single patterns or combination of patterns and different
layout aesthetics.

In Section 3.3, we presented algorithms for the computation of visualizations for BPEL
processes. There, a transformation from XML-based files to graphs was introduced
and shapes and structures were integrated in the visualizations to highlight the structure
and semantics of BPEL process elements. The layout approach stresses the hierarchi-
cal and sequential structure of BPEL processes by defining paths in the layout that are
to be visualized in a straight fashion. The algorithms are backed onto the Sugiyama
framework. Modifications of the steps in the framework towards the visualization of
BPEL processes are elaborated in detail.

In the following second part of this work, we extend the display space for visualizations
to three dimensions (3D) while applying the concept of two-and-a-half dimensions
(2.5D). We then present and analyze three different algorithmic approaches for the
computation of visualizations for business process models in 2.5D.



Part Il.

Business Process Visualization
in 2.5D
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Chapter

Introduction to 2.5D—Visualizations

5.1. Motivation

In this second part, we present methodologies for visualizations that use 3—dimensional—
space (3D) for the display of business process models. Visualizing in 3D offers one
more dimension of freedom to exploit for the presentation of models. Also, when
extending the projection display, e.g. a computer screen, to virtual reality, user percep-
tion and interaction can be done more efficiently compared to 2D—presentation (Ware
and Franck 1996, 1994). However, from an algorithmic point of view, the additional
dimension of freedom, that is given in 3D, has to be controlled and supported by the
approaches that are used for visualizations. Moreover, visualizations in 3D are in dan-
ger of clutter (Mian, Bennamoun, and Owens 2005) and occlusion which is a very
known phenomenon for the overlap of objects in 3D (Ware 2004). In order to reduce
the ’chaos’ in 3D—images that can occur when the display (with parameters focus
and viewing angle) is not able to master clutter and occlusion, we reduce the 3D—
visualizations in this work to two-and-a-half dimensions (2.5D). The principle of 2.5D
is the following: all elements of a model are fixed to planes in 3D. The planes have
fixed depth coordinates. In Figure 5.1, we depict an example for a visualization in
2.5D.

This part applies the concept of 2.5D—visualizations to business process models. We
describe the framework that we developed for display and presentation, and we present
algorithms for computing 2.5D—-visualizations specifically for business process mod-
els. The structure of this part is as follows:

In Chapter 6, we will present new methods to create and compute 2.5D-visualizations
for business process models. The presentation of the approaches will be followed by
an analysis and thorough benchmark process of the performance and layout quality in
Chapter 7.
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Figure 5.1.: Example for a visualization in 2.5D. Here, the planes are used to represent

points in time. Source: http://sydney.edu.au/engineering/it/~shhong/
valacon3.htm, 2012-09-30.

We will now define the terminology that is used in this part for the representation of

business process models in two-and-a-half-dimensions. Also, we will point out related

work to the concept of 2.5D-visualizations. This chapter concludes with the presenta-

tion of our framework for 2.5D-visualizations which is part of BPMN-Layouter.

5.2. Terminology and related work

First, we define the 2.5D—graph and its properties that are necessary to create a 2.5D-

visualization for a business process model in BPMN.

Definition 12 (2.5D-BPMN-Graph).

A 2.5D-BPMN-Graph is a graph G = (V, E, LE) with a set of nodes V, a set of
edges E and a set of layer edges LE.
Also, G has the following additional information (meta—data):

o a mapping vertex_type: V — T, where T denotes the set of possible types of
a BPMN-element for a vertex v € V, see Section 2.

e a mapping swimlane: V — S, where S denotes the set of swimlanes. Each
vertex v € V is assigned to exactly one swimlane s € S. A swimlane s € S is
described by a string and is assigned an identifier (a unique number n € N*),

o a layer assignment layer: V — L, where the ordered list L = {Ly,..., L},
k > 1 denotes the set of layers.

e the position p(v), v € V, of a node in 3D—space is denoted by the coordinates
pOSyx, posy, pos; € R. o


http://sydney.edu.au/engineering/it/~shhong/valacon3.htm
http://sydney.edu.au/engineering/it/~shhong/valacon3.htm
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A layer [ € L is a rectangular plane in the 3D-space. The sizes and locations (except
for z-coordinates) of the rectangular planes are identical for all layers / € L. A layer
edge le = (u,w) € LE with u,w € V is an edge with layer(u) # layer(w). For all edges
e =W ,w) e Ewithu',w €V, itholds: layer(u’) = layer(w”). Thus, EU LE = (.

We also define a distance measure for layer edges:

layerdistance : LE — N : |layer(u) — layer(w)| ,V le = (u,w) € LE

In a 2.5D-BPMN-Visualization, the following holds: for any vertex v € V and its
associated layer layer(v) = [, € L, the position of v in the 3D-space lies within the
rectangular plane of /,. The layers L can be considered a stack of rectangular planes in
the three-dimensional space differing in z-coordinates. In Section 5.3.1, we describe
how an assignment for layer can be found for a BPMN—graph and we describe the
relationship and analogy of swimlane and layer.

5.2.1. Related work on 2.5D/3D—graph-layout

Several other approaches have been made in employing 2.5D-techniques for visual-
izing complex data. One of the fundamental works was presented in (Dwyer 2004)
where the usability advantages of 2.5D-layouts for structured and time-lined data are
examined. The work is based on series graphs, where layers are used to represent
distinct points in time and nodes (dis-) appear over time. For recognizing a node at
two points in time (equal to two layers), the points are virtually connected using vir-
tual edges. However, virtual edges are employed to link identical nodes over time but
not considered during the layout computation. For 2.5D-representation, a stratified
graph G is defined as a series of subgraphs S¢ = (Gy,,...,Gy) with UiT:O G, =G
where 1y, ..., t; is an ordered sequence of time instants. Each subgraph is mapped to
a perpendicular plane to the z—axis, or stratum. Stratisfied graphs are related to evolv-
ing graphs (Erten et al. 2003). For layout algorithms for stratisfied graphs, it is stated
in (Dwyer 2004): “Since a node may appear in multiple strata it would make sense
to position the node at the same position in each stratum”. Therefore, the proposed
approach for a layout to a stratified graph is “to find a 2D—embedding of the union
graph G, then extrude into 3D, placing edges and nodes at the appropriate depths”.
The constraints for a 2.5D-layout of stratisfied graph are:

e (C1) Edges must only connect nodes with the same z-coordinate.
e (C2) Edges must lie in a plane orthogonal to the z—axis and intersecting the z—
axis at the same level as the nodes.
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Due to C1 and C2, stratisfied graphs do not possess layer edges. The given approaches
in (Dwyer 2004) for 2.5D-layouts of stratisfied graphs are: (a) a force—directed ap-
proach for 2D with an extension for strata, called worms, which represent identical
nodes in different subgraphs over time (Dwyer and Eades 2002), (b) a hierarchical
layout approach where Sugiyama’s algorithm is applied with adaptions in the crossing
minimization phase, by weighting a crossing by the number of times that the causing
edges are present in a common stratum, and by allowing overlaps of dummy nodes in
the horizontal coordinate assignment phase which leads to “significant improvement
in aspect ratio of the final layout” (Dwyer 2004). In Figure 5.2, an example for a layout
of a stratified graph is depicted.

Unfortunately, the approaches in (Dwyer 2004; Dwyer and Eades 2002) do not con-
sider layer edges. Therefore, the given algorithms cannot be applied to 2.5D0-BPMN-
graphs where optimal routing of layer edges is a critical requirement.

Figure 5.2.: Example for a 2.5D-layout of a stratified graph with the hierarchic approach
of (Dwyer 2004). The pillars, or worms, represent identical nodes of subgraphs
over time. Each layer, or stratum, represents a time instant. Note that layer edges,
i.e., edges connecting or crossing different strata do not exist in a stratified graph.
Source: (Dwyer 2004).

Other works include research into navigation methods for three—dimensional layouts
of clustered graphs and trees (Ahmed and Hong 2007) and also an approach for hierar-
chical drawings of directed graphs in 2.5D (Hong, Nikolov, and Tarassov 2007) which
we will describe in more detail in Section 6.4.1 due to similarities to our visualization
approach (PSL) described in Section 6.4.

An adaption of a 2D-layout approach that is extended to 3D by wrapping a 2D lay-
ered drawing around a cone or a cylinder is presented in (Ostry 1996). The system
GIOTTO3D uses the following approach (Garg and Tamassia 1996b): GIOTTO3D
employs a 3-phase algorithm for drawing hierarchies in 3D. In the first phase a pla-
narization method is used to draw the graph in 2D; then, nodes and edges are assigned
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z-coordinates such that all edges point into the same vertical direction and the total
edge length is minimized. In the last phase, the shape of nodes and edges are fixed.

A 3D layout approach for UML models that computes layouts with a force-directed
approach is designed in (Dwyer 2001). Visualizations for Object Oriented Software
(O0OC) in 3D are presented in (Ware, Hui, and Franck 1993) which also states the
requirement for resulting layouts that ’the nodes should be laid out in a top-down
fashion in horizontal layers” using a topological sort. The rise of new modeling lan-
guages allowed more fields of higher dimensional graph layout, e.g. for class template
diagrams (Hoipkemier, Kraft, and Malloy 2006) or JAVA code (Fronk, Bruckhoff, and
Kern 2006).

Many layout approaches exploit the structure of the underlying graph structure, e.g. a
tree structure (Balzer and Deussen 2004) or hierarchical structure (Wettel and Lanza
2007) which is an example for the City metaphor in visualization.

Related work that employs techniques or algorithms similar to our approaches, pre-
sented in Chapter 6, will be mentioned in the description of the corresponding ap-
proach.

5.2.2. Related work on (Business Process) Visualization in 3D

Visualization is a huge field even if restricted to 3D. A comprehensive and excellent
overview can be found in (Teyseyre and Campo 2009). Early approaches on visualiza-
tion in 3D stem from the graph drawing community presenting interactive graph visu-
alization (BruB3 and Frick 1995) and program information (Reiss 1994) in 3D. A frame-
work for 2.5D-visualizations for trees (PolyPlane) is presented in (Hong and Murtagh
2004) and is extended to three dimensions (MulitPlane) in (Hong 2005) which is also
part of the GEOMI framework (GEOmetry for Maximum Insight) (Ahmed, Dwyer,
et al. 2005). The graph visualization system WilmaScope (Dwyer and Eckersley 2001)
is able to be employed for computing complex visualizations in 3D.

Other works make use of the 3D hyperbolic space for the investigation of methods for
visualizations of larger graphs (Munzner 1997).

For our 3D-navigation tool, we adopted conventions for navigation and interaction
from (Herman, Melancgon, and Marshall 2000), a comprehensive survey on navigation
and interaction techniques.

In (Bobrik, Reichert, and Bauer 2007), visualization methods are analyzed with respect
to individual views of different users on a process. A case study on business processes
in the 3D space is performed in (Schonhage, Ballegooij, and Eli€ns 2000). The study
concluded that, on the one hand, 2D diagrams are more easily accessible but, on the
other hand, using 3D—space enables to combine more information in a single scene.
Also, it is stated that visualizations in 3D are not yet widely accepted among business
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people. In (Jablonski and G6tz 2007), perspectives of views on a process are explored
following the approach of perspective oriented process modeling. We make use of the
findings of (Jablonski and G&tz 2007) in Section 5.3.1.

A representation of business process models that allows for modeling in 3D is devel-
oped in (Betz et al. 2008) and (R. A. Brown and Recker 2009). A dedicated envi-
ronment for modeling in 3D with support of various types of (workflow) diagrams is
presented in (Pilgrim and Duske 2008). The approach also offers integration into the
powerful Eclipse editing framework GEF'. Modeling environments in 3D that use, for
instance, Second Life®? are presented in (R. Brown 2010); an extended version for
collaborative modeling in 3D is shown in (West, R. A. Brown, and Recker 2010).

5.3. A 3D-Framework for 2.5D-Visualizations

This section® presents our framework for displaying visualizations in 2.5D. Devel-
opment of the 2.5D—framework started in 2006 (Jainek 2006) with basic graph pre-
sentation in 3D and graph data structures for representations of 2.5D-graphs. Also,
initiating work integrated basic actions for a viewer interface, e.g. a graph displayed
in a 3D—environment could be rotated, tilted and zoomed in or out. Further extensions
and features were added by (Spielmann 2009; Stegmaier 2011), see implementation
details in Section 5.3.2.

We now add data structures and rendering features for the presentation of business
process models, see Figure 5.3 for an example of rendering a business process model
in our 2.5D—framework. Also, the framework was integrated into BPMN-Layouter.
Thus, BPMN-Layouter together with the 3D—Navigator of the framework support lay-
out and navigation for business process models in 2D and 2.5D/3D.

In our Navigator which is the interactive user interface of the framework, we represent
a single BPMN element by applying its given BPMN shape, e.g. the texture for a task
element, to all sides of the corresponding 3D—cube in the 2.5D-BPMN-visualization.
This ensures that the type of an element in the 2.5D-BPMN-visualization can always
be recognized regardless of the current viewing angle in the Navigator, see the exam-
ple in Figure 5.4. Also, the guidelines presented in (Ware 2001), suggest to “Use 3D
objects to represent data entities”. According to (Ware 2001), evidence from cogni-
tive psychology and experiments suggest that renderings of 3D objects provide more
recognisable glyphs in an information visualisation than 2D symbols. In information
visualization, a glyph describes either a 2D symbol or 3D object representing a data
entity (Dwyer 2004).

"http://www.eclipse.org/gef3d/, 2012-09-30.
*http://secondlife.com/, 2012-09-30.
3Parts of this section are published in (Effinger and Spielmann 2010).
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Figure 5.3.: Example for the rendering of a business process model in the 3D-framework.

Task XYZ

(a) A BPMN task. (b) The 3D representative of a
task.

Figure 5.4.: In the 2.5D-BPMN-visualization, textures are applied on each side of the cube
representing a BPMN—element.

For the projection of business process models, based on 2D-graphs, into 3D—space
and 2.5D—graphs, we developed three different perspectives which are presented in the
following.

5.3.1. Criteria and Perspectives

In general, a prerequisite of the concept of 2.5D is that elements of the underlying
graph must be assigned to layers. The definition of criteria for the assignment to the
layers is elementary for the resulting visualization. A perspective on a business pro-
cess provides a mapping for every element to exactly one layer. Thus, perspectives
define the assignment of elements and must be chosen carefully in order to produce
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meaningful 2.5D-visualizations. In our case, the layering mapping layer for the 2.5D-
BPMN-visualization in the framework can be derived from a perspective.

In (Jablonski and Gotz 2007), the following set of perspectives on a general business
process is presented:

o Functional perspective: identifies process steps and defines its purpose.

e Data (flow) perspective: defines data used in the process and the flow of data
between steps. This perspective also involves external data flow.

e Operational perspective: specifies which operation (service) is invoked in order
to execute a process step. It relates to services derived from (external) service
libraries.

e Organizational perspective: defines agents, e.g. users or roles in general, that
are responsible for process steps. Also, agents can be external.

e Behavioural perspective: defines causal dependencies, also called control flow,
between modeling elements.

Note that the aforementioned perspectives were developed independently from a mod-
eling notation. Thus, the perspectives cannot be adopted to BPMN without further
modifications. For example, since BPMN is not an executable language, the opera-
tional perspective which represents (external) library calls, performed during execution
run-time, is not applicable to BPMN. Also, since the control flow in a BPMN model
is explicitly defined by the sequence flow, a behavioural perspective corresponds to
a common control flow (workflow) in the process. No new insights can therefore be
gained by applying a behavioural perspective to a BPMN visualization.

Thus, for introducing perspectives for BPMN, we modified the remaining perspectives
for layer assignment in 2.5D-visualizations and present them in the following:

¢ Organizational perspective: Layers are assigned to elements according to the at-
tributed swimlane exploiting the mapping swimlane in the BPMN-graph. Since
swimlanes represent, i.e., departments in a company, the 2.5D-visualization is
an intuitive view on the process, e.g. regarding the organizational chart of a
company.

o Control flow/Data flow perspective: In BPMN, the Sequence flow corresponds to
control flow and Message flow corresponds to data flow. Both flows are treated
separately in this perspective. Elements are assigned to layers depending on
incident connecting objects. Elements that provide incoming messages to the
process are assigned to higher layers than elements that receive messages from
the process. Elements that only have sequence flow objects are assigned to the
so-called main process flow layer that represents the process’ flow. Assuming a
message triggers a subprocess in a different pool, we can have several process
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flow layers which are assigned to subsequently lower layers than the initiating
main process flow layer.

Thus, sequence flow and message flow are visualized in a diametrical manner;
message flow runs vertically (orthogonally to the layers) and sequence flow runs
horizontally (within the layers). This segregation of flows offers a information
gain from the 2.5D-visualization.

o Functional perspective: The BPMN elements types defined by vertex_type are
used for layer assignment. Moreover, the process flow is traceable from top
to bottom because start events are assigned to higher layers than intermediate
events and end events. Thus, this perspective provides an analytic view on the
process model; e.g. distinct views on the usage of certain elements can be in-
spected. The process model structure becomes clearly visible, e.g. many gate-
ways may indicate a high complexity of the process model.

In the following, we provide an example and discuss the benefits and drawbacks for
each of the perspectives.

In Figure 5.5(a)-(d), a simple process and its perspectives are depicted. Although the
example is very simple, it becomes clear that not all perspectives fit best, i.e. in the
functional perspective, see Figure 5.5(d), a layer only contains one element. This leads
us automatically to a rating among the perspectives and distinct preferred use cases:
A perspective can be considered ’better’ than other perspectives when the layering
of nodes is nearer to an equal distribution among the layers while keeping the total
number of layers low. Thus, it is neither desirable that all nodes are assigned to a
single layer, nor that only one node is assigned to one layer. Examining the three
perspectives with respect to this rating, they all have different use cases where their
application fits better or is less appropriate:

e Use cases for Organizational perspective (Figure 5.5(b)): Since the organiza-
tional perspective is tied to an organizational chart of a company, it has a high
similarity to the structure of a process in a company with several participating
departments. The perspective is superior to the others if the elements of the
process (e.g. tasks) are nearly equally distributed among the departments (and
thus among the layers) and not too many departments are involved which would
always lead to an increased complexity of a process, in the 2D-diagrams and in
the 2.5D-BPMN-visualization as well.

e Use cases for Control flow/Data flow perspective (Figure 5.5(c)): The perspec-
tive is useful when there exist data that are passed in the process. Otherwise, all
nodes are part of the control flow and, therefore, they are assigned to the main
process flow layer. This represents a worst case for the rating of the perspective.
On the other hand, if the amount of messages is higher, e.g. the process needs
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interaction with (external) data providers, the flow of messages can be visualized
in an intuitive way using the perspective. Recall that the data flow is arranged
from top to bottom in the 2.5D-BPMN-visualization.

e Use cases for Functional perspective (Figure 5.5(d)): If the process mainly con-
sists of one start event, numerous tasks that are to be executed sequentially and
eventually lead to one end event, this use case represents the worst case of the
functional perspective since all elements except start/end event are assigned to
the same layer. The gain of the perspective is increasing for a process that makes
use of more than only a few basic element types. Then, e.g. the workflow that
is arranged from top to bottom can be inspected and the user can analyze if one
element type is over-represented and may cause redundancies.

Our framework comprises an implementation of all three perspectives. Examples of
the resulting visualizations are given in Figure 5.8. In the following, we give details
of the framework implementation and then describe the navigation support that is pro-
vided in the Navigator.

5.3.2. Implementation

For the display of our 2.5D-BPMN-visualizations, a basic framework for 2.5D—visual-
izations was initiated in (Jainek 2006) and continued in (Spielmann 2009). Our frame-
work is developed using Sun JAVA™ 1.5 and the graph library yFiles from yWorks
(Wiese, Eiglsperger, and Kaufmann 2001) for basic graph data structures. For display-
ing and rendering objects in 3D and animation of transformations, we chose the Java
Open Graphics Library (JOGL).

Using the general implementation presented in (Spielmann 2009), it is simple to create
2.5D-visualizations for many kinds of graphs. To achieve this, we built an abstraction
that moderates between the different base libraries we use. This abstraction is divided
into two parts: the creation, or factory class on the one hand, and the display classes
on the other hand.

The central element of the creation library is the Graph—2.5D—Factory which stands as
the top level interface for transforming 2.5D—graphs into a 2.5D graph representation.
For the transformation into 2.5D, a mapping to the layers must be given. The layer
mapping is given by one of the above described perspectives that is chosen by the user.
After a 2.5D—graph is created by the Graph—2.5D-Factory class, the display classes
render the 2.5D-graph into the 3D-Navigator of BPMN-Layouter. The display classes
exploit the metadata of the 2.5D—-graph given by layer, vertex_type and node positions
p(V). Note that vertex_type is given by the 2D-graph whereas initial positions of p(V)
are set to positions of nodes in the input 2D—graph (pos, and pos,) and the position of
the assigned layer from layer in the layer stack (pos;).
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(a) BPMN-Graph of a simple BPMN process.
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(b) Organizational perspective.
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(c) Control/Data flow perspective.
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(d) Functional perspective.

Figure 5.5.: Example process in 2D-layout (a). The three different perspectives (b) - (d) pre-
sented in Section 5.3.1 are applied to the example of (a). The display is centered
on the layer containing the task (red).
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5.3.3. Navigation Support

We chose an interactive model of navigation in a 2.5D-visualization display. Our
Navigator offers mouse-actuated navigation on the currently active viewing plane and
rotation of that plane, as well as changing the viewing height to accommodate viewing
of different layers. Apart from that, we use keyboard shortcuts for rotation, tilt and
change of viewing height of the display. Moreover, layer distance and graph element
zoom scale can be changed dynamically using keyboard shortcuts. Thus, the user can
navigate freely in the 2.5D-visualization of the BPMN model and adapt the display to
individual preferences.

For computer-aided navigation, layers can be inspected individually and the focus of
the display is automatically adapted to center the currently active layer. Another key
point of the navigation is the ability to create a history of viewpoints. With a single
keystroke, the current position is saved and added to a list of viewpoints. These can
then be traversed in chronological order, thus allowing to backtrack and review already
visited parts of the visualization.

All transitions between different viewpoints are animated with soft movements so to
not disturb the mental model of the viewer. With these techniques combined, we
achieve a persistent model with convenient navigation handling that allows viewers
to survey large and complicated processes swiftly. In Figure 5.6, a screenshot of our
2.5D—Navigator is depicted with its integration into the BPMN-Layouter.

©.© @ BPMN-Layouter - 500000256-randomLanes.bxm|

File Edit View Layout Tools Debug Help

CEeE & $ [ &% = & [Automatic BPMN-Layout B8 ® [Show Organizational2.5D Persp... bl = [®

Figure 5.6.: Screenshot of the 2.5D-visualization display of our 2.5D—Navigator embedded in
BPMN-Layouter.
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5.3.4. Summary

In comparison to other frameworks for 3D—environments, e.g. WilmaScope (Dwyer
and Eckersley 2001), GEOMI (Ahmed, Dwyer, et al. 2005) and GEF3D (Pilgrim
and Duske 2008), our 3D-Navigator has the benefit of the integration into BPMN-
Layouter such that modeling in 2D, inspection and analysis in 2D/2.5D using one of
the above presented perspectives can be performed seamlessly. According to Wilma-
Scope’s website*, the framework was not updated after October 2003 which does not
indicate the support for state—of—the—art layout techniques. The focus of GEF3D is on
the modeling part of business process models. As the author of GEF3D states himself
in July 2009, “layouts are a big issue in GEF3D">.

GEOMI is a powerful framework that also supports layout algorithms which can be at-
tached as plug-ins. GEOMI is also based on previous work on WilmaScope. It attempts
at ’visually explore networks and discover patterns and trends’ (Ahmed, Dwyer, et al.
2005). Currently, GEOMI supports various layout algorithms for 3D: force—directed
layout, clustered graph layout and hierarchical layout. The approach for hierarchical
layout is described in (Hong, Nikolov, and Tarassov 2007) and we will compare this
approach in—depth with our visualization approaches in Section 6.4.1. A weakness of
GEOMI is the missing modeling part. Graphs can be loaded from files or generated
by a built—in graph generator. However, graphs cannot be created and designed within
the framework. In Figure 5.7, a screenshot of the GEOMI-framework is depicted.
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Figure 5.7.: Screenshot of the GEOMI—framework with activated plugin for clustered graph
layout. Source: (Ahmed, Dwyer, et al. 2005).

Our framework benefits from the fact that the visualization approaches that we will
present in the next chapter are also integrated into our 3D—framework. Together

4see http://wilma.sourceforge.net/, 2012—-09-30.
see forum entry at http://www.eclipse.org/forums/index.php/m/563904/, 2012-09-30.
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with the modeling in 2D, layout in 2D and the interactive 3D-Navigator, our BPMN—
Layouter is a very powerful tool for designing, analysing and presenting BPMN busi-
ness process models.

In our framework, only few technical considerations must be observed, since the foun-
dation of our implementation is based on well-understood and widely used libraries.
The frame rate of our 3D-framework is acceptable on modern computers, settling for
small models with approximately 30 elements on around 50 fps and for larger mod-
els (JV| = 100) on around 25 fps. The frame rate is limited mainly by the number
of objects in the scene. Thus, visualizations are limited to relatively small graphs.
However, this does not pose a limitation to this application since BPMN graphs are
not expected to be very large (|[V| < 150) in general. This expected size for business
process models will be confirmed in Chapter 7 when the visualization approaches for
2.5D, that we present in the next chapter, will be subject to an analysis and evaluation
using real-world process models.
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(a) Organizational perspective of a BPMN model. The elements are assigned to the layers depending
on their swimlane assignment swimlane in the BPMN model. Highlighting layers (see red marked
layers and node labels) is a feature of 2.5D—Navigator for accentuating a specific layer.

(b) Control/Data Flow perspective of the same BPMN model as in (a). Ingoing data flow
is assigned to the upper layer. Elements incident to control flow edges are drawn in the
highlighted main process flow layer. Outgoing data flow is placed in the lower layer.
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(c) Functional perspective of the BPMN model of (a). Elements are assigned to layers according
to their BPMN types vertex_type. For better distinction, the layer containing all tasks is
highlighted and the node labels are hidden.

Figure 5.8.: Application of the perspectives to an example process. Selected layers are marked
in red and the labels of the corresponding elements are emphasized.
We observe that, for the example process, the organizational perspective fits best
since it offers the best distribution of elements to layers and, at the same time,
occupies the lowest number of layers. However, the functional perspective shows
clearly that task elements dominate the element type in the example process.
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Chapter

Visualization Approaches for
Business Process Models in 2.5D

6.1. Motivation

This chapter comprehends a description of approaches for 2.5D-visualizations. We
present three different approaches which employ distinct graph drawing techniques. At
first, we will present an approach that uses a layer sweep technique in order to sequen-
tially improve the drawing layer-by-layer. As a second approach, we will model an
ILP (integer linear program) for finding an optimal solution of the 2.5D-visualization
problem. The third approach exploits the sparse structure of process models and tries
to find hierarchical paths, using a ranking of nodes for quickly finding a partitioning,
and also applies Sugiyama’s algorithm (Sugiyama, Tagawa, and Toda 1981) for the
final visualization.

All three approaches have the following objectives:

e OBJ1 - aesthetics FLOW: nodes should be placed in the natural order of the
process’ sequence flow. This goal has highest priority.
For an edge e € E in a graph G = (V, E), FLOW is fulfilled if the following
implication is true:

impl : e = (u,w) = posg(u) < posz(w)

where pos;(u) denotes the position of node u in coordinate d; d defines the axis
of the flow orientation. In the visualizations, the flow is defined to be oriented
left—to-right in a two—dimensional plane, therefore, d = x.

113
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The goal of OBJ1 is to maximize the number of edges for which implication
impl evaluates to true, or

OBJ1 : max |{e € Elimpl(e) = true}|.

e OBJ2 - low edge lengths: edges, and layer edges in particular, should have
lowest possible edge length.
In general, for a 2.5D-BPMN-Graph G = (V, E, LE), the objective OBJ2 can
be expressed as an optimization problem:

OBJ2:minfa- Y L(pG),pw)+B- > L(p),p(w)

(u,w)eE (u,w)eLE

where £ is a metric for the distances between the nodes positions p(u), p(w) and
a, B are weights for the different edge types E and LE, i.e., in order to prioritize
short layer edges LE over regular edges E, it is set 5 > a.

e OBJ3 - low area size: the amount of area space used for the visualization should
be small. In 2.5D, the area is given by the size of the rectangle that is consumed
by the largest of the planes surrounding the layers. For a 2.5D-BPMN-Graph
G = (V,E, LE) and a rectangle r induced by (p%. . P, . . Praxs Pmax)> Where

X —

Phw = min {pos,)lve V),
Pmax = max {posc(v)lv €V},
p;”.n = min \pos,(V)|veV;,
P = max posy,(Wv e V;.

OBJ3 aims at minimizing the size of r, or
OBJ3 : min (1P = Pl 1Pax = Pyl -

After the description of the algorithms in this chapter, we will analyze the approaches
with respect to OBJ1-OBJ3 and create performance benchmarks in the next chapter.

6.2. Approach 1: Sequential Layer Sweep

The first approach tries to sequentially improve the layout layer-by-layer using a sweep
line algorithm. A sweep line algorithm is a technique that is used in various problems
of computational geometry, e.g. for the construction of Voronoi diagrams (Fortune
1987).

A sweep line algorithm handles events that occur when the (sweep) line/plane passes
points in Euclidean space. The set of points is given as input and is ordered/sorted,
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e.g. in their x-coordinates. The line/plane represents the current status of the algo-
rithm; when a point p is passed, the algorithm checks if the current line together with
the point p cause an event that might update the current status. For a detailed descrip-
tion of the general concept of sweep line algorithms, we recommend, for instance, the
introduction to computational geometry in (Berg et al. 2000, pp.20 ff.).

In our case, instead of the set of points, the line passes the layers of the 2.5D-graph.
Since the layers are placed in 3D-space as a stack, we start from the top layer. The
ordered input set for the sweep line algorithm corresponds to the stack of layers in the
2.5D-graph sorted by z-coordinate, see Figure 6.1.

Figure 6.1.: Layer stack in 3D-space and (alternating) sweep line direction (arrows on the
right).

During the sweep line algorithm, we apply, for each layer, a call of the layout algo-
rithm that is adopted from the approach presented in Section 3.1.1, followed by an
update stage that we describe later.

In order to render the approach feasible for 2.5D, we now must adapt the approach
from Section 3.1.1 in order to handle layer edges. This is achieved by performing the
following: a layer edge le is replaced by a pair of dummy nodes (u#; w) where u is
connected to the source s of /e and u is placed in the layer of s; and w is connected
to the target ¢ of le and w is placed in the layer of ¢ respectively. The dummy nodes
represent symbolic links to the corresponding source/target of the former layer edge.
The symbolic link between u and w is stored in a map references. Dummy nodes are
stored in a set D. We call u the counterpart of w and vice versa.

If a layer edge /e connects two non-adjacent layers (layerdistance > 1), we need to
insert placeholders in intermediate layers for splitting the layer edge into segments
with layer distance equal to 1. We call these new placeholders principal nodes. In
Figure 6.2, the replacement step is described. Each principal node is connected to two
dummy nodes that represent links to the next lower/higher layer.

After the replacement of layer edges by dummy nodes and principal nodes, we start
the layout computation by initiating the first sweep. The sweep comprehends several



116 CHAPTER 6. VISUALIZATION APPROACHES IN 2.5D

rounds. A round starts from the top layer and continues downwards, until the bottom
layer is reached. Then, the sweep direction is reversed and the algorithm continues
(upwards), as depicted in Figure 6.1.
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Figure 6.2.: Replacement step of a layer edge /e by dummy nodes (small blue boxes) and prin-
cipal nodes (red box). Principal nodes are inserted only if le crosses intermediate

layers.

Each round contains |L| steps. A step i corresponds to the handling of one layer L;,
therefore 1 < i < |L|. In each step i of the sweep, a layout for a single layer layer(i) is
computed. The layout also includes the inserted dummy nodes u, .. ., u; and principal
nodes py,..., p; in that layer.

After computing the layout of a layer L; in step i, we perform the update stage. In
the update stage, we consider the dependencies of the former layer edges, now repre-
sented by dummy nodes and principal nodes. We update the positions of dummy nodes

wi,..., Wi in other layers [ € L\ L; that represent the corresponding counterparts of
ui,...,ux, see Algorithm 7. The update stage changes the positions of the counterparts
wi, ..., wg as follows: wy, ..., wy are placed orthogonally to the layer stack (or parallel
to the z-coordinate) to be vertically aligned with uy, . .., u;. After the update stage, the

x- and y-coordinates of two nodes u; and w; are identical. Note that only positions of
dummy nodes are changed in the update stage; principal nodes and regular nodes are
considered fixed.

In the following step i + 1, we perform the layout computation in layer L;;;. In this
step, we take into account that positions of dummy nodes might have been changed
in previous steps. Since our applied layout approach from Section 3.1.1 attempts to
preserve the given embedding as a sketch, dummy nodes positions, that were updated
during an update stage of step j < i + 1, influence the final positions of nodes that are
incident to dummy nodes.
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There are two variants for a termination of the algorithm: (a) terminating after a prede-
fined number k € N of rounds or (b) measuring the difference of node positions A for
each round and terminate if A < €, where € defines an a-priori threshold for termina-
tion, similar to the termination threshold from force-directed layout approaches (F. J.
Brandenburg, Himsolt, and Rohrer 1995). Since the dependencies of dummy nodes
and their position changes during the update stage might cause circular dependencies,
variant (b) would not guarantee that the algorithm terminates if € is unfeasible (€ is set
to low). This is the case if, in every round, an update stage moves a single (counter-
part) dummy node a distance greater than €. Therefore, we decided to prefer variant
(a) and analyze after what number k of rounds the changes in node positions dimin-
ish without entering a cycle of dummy node dependencies, see Chapter 7. The sweep
layer algorithm is thus stopped after a fixed number k of iterations (rounds), changing
sweep direction after each round (when reaching the last/first layer).

Before returning the layout result after the last sweep round, we have to remove the
dummy nodes and principal nodes. This is performed in a post-processing stage that
we describe in the following:

Before finally removing all dummy nodes after the last round, we store their posi-
tion coordinates. For a node n that is adjacent to one or more dummy nodes, we
then choose the best location among its current position p(n) and the positions P =
{p(u1),..., p(uy)} of the adjacent dummy nodes u,...,u;. The best location is se-
lected by a weighted ranking on all possible positions P U {p} in order to reduce edge
lengths of edges incident to n. For each position, we compute the weighted distances to
all neighbours of 7 in the original graph (V' \ D). The distances of non-layer neighbors
are assigned a weight w;, > 1 than neighbours in the same layer as n, see Figure 6.3.

The objective of the ranking for a node n is given by

min Z length(e) + Z wye - length(le) |.

{e=(u,w)eElu=nvVw=n} {le=(u,w)eLElu=nVw=n}

Using this placing heuristic as post-processing step, we aim at reducing layer edge
lengths (OBJ2) by setting w;, >> 1 and routing them as near-orthogonally to the layer
stack as possible such that the length is reduced to the distance given by layerdistance.
In Chapter 7, we discuss benefits and issues of the layer sweep approach. One major
issue, the usage of area space for dummy nodes during the sweep rounds (OBJ3),
is addressed in the following approaches. Furthermore, in Chapter 7, we will argue
that SLS might have issues to guarantee OBJ1 (FLOW) due to the dependency on the
underlying layout algorithm used for the layer-wise layout. In Algorithm 8, all steps
of the complete algorithm for SLS are summarized.



118 CHAPTER 6. VISUALIZATION APPROACHES IN 2.5D

Li==t) Ll S
N\
ARNyY7 AN

Figure 6.3.: Placing heuristic for the ranking of positions in the post-processing stage where
dummy nodes (small blue boxes) are removed.

Algorithm 7: Update stage for SLS: updateLayer()
Input: Set of dummies D, Layer [, Map references)
// perform update for each dummy in dummies set D.
1 foreach Node d in D do
2 if layer(d) == [ then
3 Position p = p(d);

// get dummy node counterpart of d
Node counterpart = references(d);
posy(counterpart) = pos,(d);

posy(counterpart) = posy(d);

S I Y I N
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Algorithm 8: Sequential layer sweep (SLS)
Input: 2.5D-graph G(V, E, LE), Iterations k, Algorithm LA, Weight wy,
1 Map references;
2 D« (;// set of dummy nodes
3 P« 0;// set of principal nodes
4 foreach Layer edge le = (a,b) € LE do

// create dummies u,w for le
5 V «— VU {u}; layer(u) < layer(a); E < E U (4, a);
6 V «— VU{w}; layer(w) « layer(b); E < E U (b,w);
7 Dje — {w} U {u};
8 if layerdistance(le) > 1 then
// insert principal nodes to intermediate layers
9 minlayerindex = min(layer(a), layer(b));
10 maxlayerindex = max(layer(a), layer(b));
11 foreach Layer [ with minlayerindex < index(l) < maxlayerindex do
12 V <« VU {p}; layer(p) < [;// create principal node p
13 V « VU{py}; layer(p,,) < [; E — E U (p, py);
14 V « VU{pu}; layer(p,) < I; E < E U (p, py);
15 P «— PU{p}; Dj, < Dj. U{py, pw};
// storing of symbolic links to counterparts
16 update map references «— references U{le, P, Dj,};
17 D« DuUD,U P,
18 while k — — > 0 do
19 foreach Layer [ in G do
// see layout algorithm SDL from Section 3.1.1.
20 call layout algorithm LA on [;
21 updateLayer(D, L references);// see function for update stage
on p.118.

// ranking of positions and removal of inserted nodes.
2 D« D\PV < V\P
23 Map positions = Map(V,p(V));
24 foreach Layer [ e L do
25 foreach Node d € D with layer(d) == [ do

// get original, adjacent node of d

26 positions(references.orig(d)) « positions(references.orig(d)) U {p(d)});
27 V « V\{d}

// OBJ2 for layer edges: rank position for each node using
layer edge weight factor wy,.
28 positions.rank(wy);
29 foreach Node n in positions do
30 L p(n) « positions(n) with best rank;
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6.3. Approach 2: ILP formulation

The formulation with integer-linear-programming (ILP) for our task of computing
2.5D-visualizations for process models is an attempt to find an optimal solution with
OBJ1-OBJ3 in mind.

ILP formulations are used in several layout approaches throughout the graph drawing
community, e.g. for orthogonal graph drawing incorporating constraints (Eiglsperger,
FoBmeier, and Kaufmann 2000), a formulation of the crossing minimization prob-
lem (Jiinger and Mutzel 1997) or for drawing metro maps (Nollenburg and Wolft
2005).

Although ILP is NP-hard in general, it provides a preferred method in graph drawing
for two reasons (Nollenburg 2007) : (a) with ILP, one can find a ’quality benchmark
for heuristics and approximations’ and (b) create "high-quality drawings for small and
medium size graphs’. As for NP-hard problems, the sizes of graphs are the limit for
the applicability because the maximum allowed running time might be limited. For
large graphs, a ILP formulation might contain many constraints that, in total, cannot
be reduced and solved by a ILP solver in guaranteed amount of time. In our case, the
graphs have limited size (1 < |V| <200 and 1 < |E| < 300) because they are modeled
and designed by human hand which sets a limit by humans’ perception capability. This
allows us to design an approach for 2.5D layout using ILP that can be solved within a
predefined amount of time.

In the following, we will present our model for representing a 2.5D layout approach
with ILP. Then, we will show the details of the complete algorithm of this approach.

Our approach has the above mentioned objectives OBJ1-OBJ3 that have to be mod-
eled to be incorporated in the objective function:

e consider sequence flow orientation (OBJ1): the orientation of edges should be
according to the overall flow orientation of the model, for instance, respecting
aesthetics FLOW. Edges that are directed but oriented in reverse flow orientation
are penalized.

e short (layer) edge lengths (OBJ2): the lengths of edges should be as minimal as
possible; edges that are longer than the predefined minimum edge length (that
corresponds to the minimum node distance) are penalized in the objective func-
tion. The lengths of layer edges are also penalized; the penalties are multiplied
by a factor since high layer edge length is considered to be more harmful than
high edge length.

e good area usage (OBJ3): consumption of area should be reduced. A 2 : 1-
ratio of width to height is desired. Note that this objective conflicts with the
above objective of flow orientation if an edge is oriented orthogonally to the
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flow orientation in order to reduce area consumption. Thus, we model the area
usage in the following way: a start node (with given fixed position) is selected to
be the global origin of our layout; then, the penalty for non-optimal orientation
of an edge (and the resulting placement of the target) depends on the distance
to the start node. The longer the distance, the higher the penalty for preferring
flow orientation over area usage becomes.

Note that distances between nodes are modeled using the £;-norm (or Manhattan dis-
tance) because using linear constraints only, it is not possible to model the £;-norm

(or Euclidean distance) which is defined as da(p,q) = +(q1 — p1)* + (g2 — p1)? for
two points p = (p1, p2).q = (q1,92) € R2. The Manhattan distance d; for two points
P, q € R? that is used in the following model is defined as follows

di(p,q) = Ip1 —qil +|p2 — qal.

Model

‘We will now introduce the variables of our ILP model. Also, we will denote the auxil-
iary boolean variables that are necessary to express different cases.

We require the following variables for a node v; € V: we denote its location in x- and
y-coordinates with pos.(v;),pos,(v;) and pos.(v;) and the assigned layer by layer(v;).
For each edge e € E (that is not a layer edge), we define a variable edge_length(e) for
the two-dimensional Manhattan-distance between source(e) and target(e):

edge_length(e) = d(source(e), target(e))

We also add an auxiliary boolean variable x;gx>(u, w) that holds the order of x-co-
ordinates : x1gxp(u, w) is set to true iff the x-value of u is greater than x-value of w. For
each layer edge le € LE, we define a variable layer_edge_length(le) that models the
three-dimensional Manhattan-distance between source(e) and target(e), for instance,
including the difference of the z-coordinate values |pos,(source(le))— pos (target(le))|.
For completeness of (layer_)edge_length, we need to define for each (layer) edge
(u, w) the coordinate-wise distances Ax(u, w) and Ay(u, w). As the distance between
two adjacent layers is fixed by a constant value z;, we express the z-distance of two
nodes (u, w) by the fixed term

[layer(u) — layer(w)| - z; = |pos;(source(u)) — pos,(target(w))| - z;.

In order to model flow orientation, we also need to handle the case that an edge e is
routed parallel to the x- or y-axis: we store an edge’s e state in the boolean variables

x1eqxz(e) and yieqy»(e):
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xireqxy(e) is set to true iff pos,(source(e)) == posy(target(e)) (e is parallel to the y-
axis); yregyz(e) is set to true iff posy(source(e)) == pos,(target(e)) (e is parallel to
the x-axis).

Area minimization is achieved by the following: we select a start node s € V (that
exists always as an entry point in a valid process model) to be our global origin and
we define, for each node v € V \ {s}, a variable startnode_dist(v, s)) measuring its
distance to s. The sum of these variables is then to be minimized.

The constraints of our ILP model now employ the defined variables to ensure the dis-
tance requirements:

e edge lengths:
Ve = (u,w) € E : edge_length(e) = Ax(u,w) + Ay(u, w)
o layer edge lengths:

Ve = (u,w) € LE : layer_edge_length(e) = Ax(u, w) + Ay(u, w)
+ |layer(u) — layer(w)| - z

where z is a fixed input parameter for the distance between two adjacent layers.
e area usage in terms of distance to start node s:

Yv e V\ {s}: startnode_dist(v, s) = Ax(v, s)

Note that we only use Ax(v, s) for area usage. Since flow orientation is oriented in
direction of the x-axis (see objective function below), we hereby strive to prevent un-
necessarily long edges and high area consumption.

The objective of considering sequence flow orientation is contained in the following
objective function (see Equation 6.4):

min : ¢, + Z edge_length(u,w) (6.1)
(u,.w)ekE
+ Cle - Z layer_edge_length(u, w) (6.2)
(u,w)eLE
+ cy Z startnode_dist(v, s) (6.3)
veV\{s}
ear Y (x1eqxa(u, w) + x1gx(w, u) (6.4)
(u,w)eE

where cgir, Cle, Ce, €5 € R define the cost factors. Edge lengths are modeled in Equa-
tion 6.1 for edges E and Equation 6.2 for layer edges LE. Equation 6.3 states the
area consumption as dependency to the distance from the start node and Equation 6.4



6.3. APPROACH 2: ILP FORMULATION 123

ensures edge orientation according to FLOW. The values for the cost factors are by
derived by the priorities of the objectives OBJ1-OBJ3: cyir >> cje > co > ¢s. Cair
penalizes if edges do not obey FLOW (OBJ1). ¢, and c, penalize long (layer) edges
(OBJ2), and c, penalizes placement of nodes at high distance from the global origin,
thereby reducing area size (OBJ3).

To ensure correctness of the ILP model during the solving process, we have to insert
the following additional constraints:

edge_length(u,w) > min,(> 0) Y (ww)eE (6.5)
layer_edge_length(u, w) > z; Y (ww)eE (6.6)
Ax(u,w) >0 Vo wev (6.7)

Ay(u,w) >0 Yo wev (6.8)
startnode_dist(v, s) > min, Yoev\(s) (6.9)
pos(v) > 1 Yyev (6.10)

posy(v) > 1 Yyey (6.11)

Remark Note that we don’t prevent explicitly that two nodes u, w with layer(u) =
layer(w) overlap, e.g. pos.(u) = posy(w) A pos,(u) = posy(w), and we don’t en-
force minimum node distances on nodes, but for edge_length where a minimum value
min, > 0 is preset. The reason for this relaxation is the following: our above ILP
formulation only contains O(|E|+|V|+ |LE|) constraints; adding overlap prevention for
each pair of nodes would add O(|V[?) constraints. We note that overlaps can only occur
in the case that two non-adjacent nodes overlap because, for adjacent nodes, a mini-
mum value for edge_length is enforced by constraints. Since Equation 6.4 strongly
penalizes wrong edge orientation, overlaps are rare special cases for which we added a
post-processing step that resolves overlaps: we adapted a concept presented in (Tunke-
lang 1994) which locally searches for free node positions in the surrounding of the
current position while enforcing minimum node distances to surrounding nodes, see
Figure 6.4. This concept might enlarge edge lengths but tries to minimize the amount
of enlargement by starting the search in the very local surrounding of the current po-
sition and, if no possible position was found, gradually increasing the radius of the
surrounding to be searched in, see example in Figure 6.5.

Although the ILP problem is generally NP-hard, running times of ILP formulations
depend on the number of constraints. In our case, the overlap relaxation causes a
significant speed-up (by a factor of > 10), see discussion in Section 7.
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Figure 6.4.:

Figure 6.5.:
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Placing heuristic for overlaps. New possible node positions of node v are searched
locally for conflicts with other nodes (in the order of given numbers). In the im-
plementation, the numbers of positions to check are not bound by 12. In practice,
this bound suffices to resolve overlaps in process models.
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