
NUMERISCHE MODELLIERUNG VON
MIKROSTRUKTUREN IN EIS

Dissertation

der Mathematisch-Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von

Jens Rößiger

aus Stuttgart

Tübingen

2013

Tag der mündlichen Qualifikation:

Dekan:

1. Berichterstatter:

2. Berichterstatter:

18.07.2013

Prof. Dr. Wolfgang Rosenstiel

Prof. Dr. Paul D. Bons

Prof. Dr. Sérgio H. Faria

May
2013Supervisors

Prof. Paul D. Bons

Prof. Sérgio H. Faria
by

Jens Rößiger

 Eberhard
Karls Universität

Tübingen

MICROST

RUCTURES

MODELLI

 NG OF ICE
NUM

ERICAL

Numerical Modelling of Ice Microstructures

Ich erkläre hiermit, dass ich die zur Promotion eingereichte Arbeit selbständig verfasst, nur
die angegebenen Quellen und Hilfsmittel benutzt und wörtlich oder inhaltlich übernommene
Stellen als solche gekennzeichnet habe. Ich erkläre, dass die Richtlinien zur Sicherung guter
wissenschaftlicher Praxis der Universität Tübingen (Beschluss des Senats vom 25.5.2000)
beachtet wurden. Ich versichere an Eides statt, dass diese Angaben wahr sind und dass ich
nichts verschwiegen habe. Mir ist bekannt, dass die falsche Abgabe einer Versicherung an
Eides statt mit Freiheitsstrafe bis zu drei Jahren oder mit Geldstrafe bestraft wird.

Tübingen, Mai 2013

Jens Rößiger

Jens Rößiger - 2013

 JR

Numerical Modelling of Ice Microstructures

CONTENTS

Zusammenfassung ... 2

Abstract .. 4

Introduction ... 6

References .. 16

Acknowledgements ... 19

Contributions ... 21

Appendix 1 – Competition between grain growth and grain size reduction in polar ice A1

Appendix 2 – Influence of bubbles on grain growth in ice ... A2

Appendix 3 – Multiscale modeling of ice deformation behavior ... A3

Appendix 4 – Simulation code description ... A4

Appendix 5 – Process code .. A5

Appendix 6 – Contents on the DVD.. A6

Jens Rößiger - 2013 Page 1

Numerical Modelling of Ice Microstructures

ZUSAMMENFASSUNG

Für Klimarekonstruktionen, -hochrechnungen und andere wissenschaftliche
Fragestellungen ist es von enormer Wichtigkeit in der Lage zu sein präzise Modelle für
das Verhalten von Eis unter natürlichen Bedingungen aufstellen zu können. Diese
beeinflussen zum Beispiel Aussagen über Meeresspiegelschwankungen und
Interpretationen von Klimasignalen oder -veränderungen und deren Auswirkung auf die
Eisschilde. Besseres Verständnis und erweiterte Formeln sind nötig um die Modellierung
von Gletschern und Eisschilden zu verbessern. Das Ziel dieser Arbeit war es, numerische
Modelle zu entwickeln die in der Lage sind Mikrostrukturen zu simulieren wie sie in
Experimenten und der Natur beobachtet wurden. Nachdem viele neue Funktionen und
Algorithmen für die Modellierplattform „Elle“ entwickelt wurden, konnten die
numerischen Experimente damit durchgeführt werden.

In der ersten Experimentserie wurden die Auswirkungen von statischem Kornwachstum
mit gleichzeitig ablaufender Korngrößenverkleinerung durch dynamische
Rekristallisation untersucht. Ein linearer Anstieg der Kornfläche wird von der etablierten
Theorie für statisches Kornwachstum prognostiziert. Der Parameter k legt die
Wachstumsgeschwindigkeit fest. Für k wird oft ein konstanter Wert eingesetzt welcher
material- und temperaturabhängig ist. Die Simulationen zeigen jedoch, dass k von der
Mikrostruktur abhängt und variieren kann während dieselbe sich entwickelt.
Experimente die mit Ungleichgewichtsstrukturen starten liefern möglicherweise
Wachstumsparameter (k und n, dem Wachstumsexponent), die größer oder kleiner sind
als die, durch die Theorie, für Gleichgewichtsstrukturen prognostizierten. Mit der
Mikrostruktur entwickelt sich auch k bis ein Gleichgewicht erreicht ist. Dadurch ergeben
sich Auswirkungen auf die Bestimmung von n und damit auf den bestimmten,
vorherrschenden Wachstumsprozess.

In der zweiten Experimentserie wurde eine zweite Phase dem System hinzugefügt. Die in
Eis am häufigsten vorkommenden Sekundärphasen sind Luftblasen und Staubpartikel. In
den oberen Schichten der Eisschilde sind Luftblasen sehr häufig. Die Simulationen
zeigen, dass sie abhängig von ihrer Verteilung, Größe und Häufigkeit eine deutliche
Auswirkung auf das Wachstumsverhalten der Eiskristalle haben. Dies wiederrum
beeinflusst den Wachstumsparameter k und möglicherweise auch n. Durch die
Ergebnisse konnten drei unterschiedliche Wachstumsregimes festgelegt werden. Im
ersten Regime sind die meisten Korngrenzen noch blasenfrei und können ungehindert,
ähnlich dem reinen Eis, wachsen. Im darauf folgenden, zweiten Regime werden mehr und
mehr Korngrenzen von Blasen beeinflusst und das Wachstum verlangsamt sich. Im
dritten und letzten Regime ist der Gleichgewichtszustand erreicht und die meisten
Korngrenzen stehen im Kontakt mit Luftblasen.

In der letzten Experimentserie wurde visko-plastische Deformation dem System
hinzugefügt, um das Fließen des Eises zu simulieren. Um die plastische
Kristalldeformation des polykristallinen Aggregats zu simulieren kam die „Full-Field
Theorie (FFT) zur Anwendung. Durch Dislokationen, die durch die Deformation
hervorgerufen wurden, gelangte zusätzliche Verformungsenergie ins System. Diese
zusätzliche, treibende Kraft bewirkt ein verstärktes Kornwachstum sowie eine

Jens Rößiger - 2013 Page 2

Numerical Modelling of Ice Microstructures

Regeneration des Kristallgitters. Durch sequenzielle Experimente mit unterschiedlicher
Stärke dieser Effekte wurde der Einfluss derselben auf die Mikrostruktur bestimmt.
Simulationen ohne Regenerationseffekte sind nur für sehr kleine Verformungen mit
Experimenten vergleichbar. Um die Simulationen stärker zu deformieren ist es
notwendig weitere Prozesse dem System hinzuzufügen welche die angestaute Energie
wieder abbauen. Korngrenzmigration ist ein sehr effektiver. Durch überwachsen der
hochenergetischen Bereiche werden Dislokationen aus dem System entfernt und ein
neues, undeformiertes Kristallgitter geschaffen. Dislokationen bewegen sich auch von
selbst und formen dabei entweder neue Korngrenzen durch Akkumulation vieler
Dislokationen oder gegensätzliche Dislokationen löschen sich wieder aus. Dadurch
regeneriert sich das Kristallgitter zum Teil. Die Experimente zeigen, dass realistische
Simulationen auf dem Maßstab von Kristallkörnern nur durchgeführt werden können,
wenn wirklich alle bedeutenden Prozesse mitwirken.

Die Ergebnisse dieser Arbeit sind in Form von drei Publikationen beigefügt. Zwei
derselben sind bereits akzeptiert und publiziert, eine weitere wurde nach kleineren
Korrekturen wieder eingereicht. Außerdem findet sich am Ende der Arbeit ein
ausführlicher Anhang der die Teile der Simulationssoftware beschreibt welche während
dem Projekt neu entwickelt wurden.

Jens Rößiger - 2013 Page 3

Numerical Modelling of Ice Microstructures

ABSTRACT

Accurate modelling of ice mechanical behaviour under natural conditions is important
for climate reconstruction and prediction, as well as for other scientific questions. It
influences estimates of sea level changes and interpretation of past climate variations or
signals recorded in ice cores. Better insight into the behaviour and constitutive equations
of ice is imperative to improve modelling of glaciers and ice sheets. The aim of this thesis
was to develop numerical models to simulate the microstructural behaviour of ice, as
observed in nature and experiments. Numerical simulations were carried out with the
numerical modelling platform "Elle", for which many new routines and algorithms were
developed and implemented in this project.

In a first series of models static grain growth and simultaneous grain-size reduction by
rotational recrystallization was investigated. Well-established theory for static grain
growth predicts a linear increase of the grain area with time for ice. The growth rate is
then determined by the growth parameter k, which is commonly assumed to be a
temperature and material-dependent constant. However, the simulations show that k
also depends on the microstructure and can thus vary as the microstructure evolves.
Experiments that start with non-equilibrium microstructures potentially yield growth
parameters (k and the growth exponent, n) larger or smaller than theory predicts for
equilibrium foam textures. As the microstructure evolves k also changes until a steady
state is reached. This has an impact on the estimation of the growth exponent n in
experiments and therefore the implied rate controlling process.

In the second series of simulations, a second phase was added to the system. The most
common second phase in ice are air bubbles and small dust particles. In the upper part of
ice sheets bubbles are abundant and simulations show that depending on their size,
amount and distribution they have a major impact on the growth behaviour of the ice
crystals. This in turn affects the growth parameter k and potentially n. Results revealed
three distinct growth regimes. In the first regime most grain boundaries are bubble-free
and can grow unhindered and similar to those in pure ice. That is followed by the
transitional regime where more and more boundaries start to get in contact with the air
bubbles and growth slows down. Finally a steady state is reached where most boundaries
are affected by bubbles.

As a final project crystal-plastic deformation was included in the system to simulate flow
of ice. Additional strain energy introduced by deformation-induced dislocations adds
another driving force for recrystallization, resulting in recovery and enhanced grain-
boundary migration. The Full-Field Theory (FFT) was used to simulate crystal-plastic
deformation of polycrystalline ice. Controls on the microstructure were investigated by
comparing results of simulations with different relative rates of recovery and grain-
boundary migration. Recovery-free simulations are only comparable to experiments for
very small amounts of strain. Applying more deformation to the system makes it necessary
to add processes which dissipate internal energy from the system. Grain-boundary
migration is one effective process since the boundaries sweep dislocations from the
system and give rise to a recrystallized, undeformed lattice. Recovery is another
important process since dislocations can also move, accumulate in sub-grain boundaries

Jens Rößiger - 2013 Page 4

Numerical Modelling of Ice Microstructures

and annihilate themselves by combining with their counterparts. The simulations show
that realistic grain-scale simulations can only be achieved when all grain-scale processes
are included.

In this thesis, the results of the research are included in the form of two accepted
publications, one publication that is at the date of submission awaiting final approval after
minor revisions and, finally, an extensive appendix that describes the new simulation
software that was written and implemented during this project.

Jens Rößiger - 2013 Page 5

Numerical Modelling of Ice Microstructures

INTRODUCTION

The climate around the world is changing and currently many people are trying to understand

the reasons, the origin and the consequences of these changes. From geological records we

know that it already happened many times in the past 1,2. Since the deposition of one meter of

sediments usually takes from a few centuries up to thousands of years 3,4, these records usually

do not provide data with adequate resolution. We have learned however that there were times

in the past with no ice coverage at all and times with very large ice sheets 1,2,5. Some have

postulated that there were even times when the whole Earth was covered by ice, a so-called

"snowball Earth" 6-8. In cold regions, snow may also be considered sediment. Since the

precipitation of snow is usually much higher than the sedimentation rate of rock sediments
9,10, climate records in snow and ice provide a higher resolution. Therefore, climate records

from the polar ice sheets have offered the most detailed records of the last hundred thousands

of years 11,12. So far there is no known ice on Earth older than about one million years 13,14. With

the records derived from ice cores we are trying to better understand the last few climatic

changes. Also the influence of humans, especially over the last few centuries 15, is much better

recorded in ice sheets on Antarctica or Greenland than in the sedimentological record. The

effect of climate change is clearly seen in the rapid retreat of the smaller glaciers, such as those

in the Alps 16-18. Photographs from a few decades ago in direct comparison with recent pictures

reveal a massive retreat of most glaciers. However, to get good data and information from

these ice records we have to understand how ice moves, flows, deforms, and reacts to

changing conditions.

Ice can essentially be considered as both a mineral and a rock with their own particular

properties. A summary of these is given in Petrenko & Whitworth 19, the material properties

are also discussed in Schulson and Duval 20. There are a few major differences when compared

to most rocks on the surface of the Earth. The first one, and probably the most obvious, is that

it consists of only one major phase, which is frozen water. However for many investigations

this simplification cannot be used anymore, as ice contains small quantities of impurities (e.g.

dust) and trapped air forms a major second phase in the upper hundreds of meters of ice sheets
21,22. The second major difference is that on Earth ice is always very close to its melting point 23.

Assuming that the average geothermal gradient is about 30°C per kilometre and that the

Jens Rößiger - 2013 Page 6

Numerical Modelling of Ice Microstructures

average rock type in the earth’s crust melts at 800°C 24, one would need to consider depths of

at least 20-25km to find rocks that are comparable to ice on Earth’s surface. As these rocks, ice

is ductile and flows, albeit very slowly for human perception 25,26. Since it does flow, the

interpretation of records that are stored in an ice sheet becomes difficult. Many different

parameters influence how it flows in different positions and depths of the ice sheet. Because

of that, a linear or similar simple age versus depth relationship in ice cores does not suffice for

meaningful climate record interpretations 11,27.

When dating ice cores, there are some well-known events that can easily be identified. Most

of them are related to major volcanic eruptions. Large amounts of ash and tephra reach high

levels in the atmosphere during such events and therefore get distributed around the globe.

Even if the eruption was thousands of kilometres away there will be ash deposition in thin

layers everywhere on Earth 28,29 and can often be identified in the polar ice records. Since they

can be recognized and distinguished quite well because of different shapes of ash particles or

tephra from different volcanic eruptions, these horizons are very good age markers 30-32.

However, this is not enough for detailed climate reconstructions from ice cores. First of all the

eruptions do not happen regularly 32, and second, ages of these eruptions are only known with

some (~10%) error 32,33. Time of the eruption is only known accurately in historical times. For

age reconstruction of the ice cores it would be perfect to develop an accurate model that

describes the flow of ice on small scales. This would provide a tool to calculate age-depth

relationships at the location of the drill core. However, computing power is not yet sufficient,

nor is it possible (yet) to include all relevant processes and parameters in a single model. An

overview of numerical approaches and methods to simulate deformation of ice at various

scales is given in Montagnat, et al. 34.

THE ELLE SIMULATION FRAMEWORK

There are different approaches to set up a simulation. In continuous models, attributes and

properties of the material are parameterised in equations 35-39. To save computation time these

parameters can also be averaged across certain areas or volumes. A different approach is a

discrete model. The modelling framework Elle uses such an approach. During the whole

simulation a discrete image of the microstructure itself is used 40-43. Elle is modular and each

process is separate. They can be combined as required for the experiments with a script file
Jens Rößiger - 2013 Page 7

Numerical Modelling of Ice Microstructures

that calls the different processes one after the other. Due to technical reasons they do not act

on the microstructure simultaneously, but sequentially. This is permissible for very small time

steps Elle offers different modelling methods. Many processes in Elle make use of the front-

tracking method, where the change of boundaries between different regions (polygons) is

tracked. Other processes utilise the finite-element, finite-difference or other methods.

To describe the system under consideration, Elle offers two different data layers. One consists

of points that can be placed randomly or on a regular grid. They are not connected to each

other and are called “u-nodes”. The second layer consists of points, “b-nodes”, that are

connected to each other and define polygons, termed “flynns”. Each b-node can have two or

three neighbouring nodes. The flynns represent grains or areas while the b-nodes and their

connections define the boundaries between these grains. Both layers can be used in

conjunction with each other or separately.

For the first project the growth code based on boundary curvature already existed 44 but the

combination with a code to reduce the grain size and simulate polygonisation had to be

written. The existing code to split grains in two was found to be inadequate and was rewritten

for the purposes of this project. For the second project, a routine for two-phase grain

boundary migration was already available. However, it was created for the simulation of melt

pockets in a crystalline material, which usually have low dihedral angles 45. The code was not

suitable for systems with high dihedral angles, such as air bubbles in ice, as all air from various

bubbles would tend to “diffuse” into one big bubble. The routine had to be rewritten

completely to be applicable to ice with air, with the major challenge being to preserve areas

of individual bubbles. This is now done by tracking the area of each phase region (single flynns

or connected clusters). Two interaction rules can be chosen. In the first, all second-phase

regions are assumed connected, which is effectively equal to the routine of Becker et al. 45.In

the second, second-phase regions maintain their own area, but can be merged with others

when migration leads to their impingement.

So far no simulation has included effects of deformation and only incorporated the effects of

polygonisation as an abstract mechanism. Dynamic recrystallization can affect the

microstructure significantly by changing grain size, shape and crystallographic preferred

orientations 46,47. To take this into account we combined the two phase growth code from the

second project with a crystal plasticity FFT-based deformation code 48,49 in the third project.

Jens Rößiger - 2013 Page 8

Numerical Modelling of Ice Microstructures

The implementation is similar to Griera et al. 50 and is also described in chapter 5.2.2 in

appendix 3 34. Adjustments to the code were necessary to make a seamless integration of both

codes possible.

THE GROWTH PARAMETER FOR STATIC GRAIN GROWTH

The first publication 51 of this thesis deals with the issue of static grain growth in competition

with other processes that modify the grain size, such as polygonisation 52-58. The general

growth law for static grain growth, which describes the increase in grain size solely driven by

the reduction of free energy of the grain boundaries is 59-65:

𝐷𝐷𝑡𝑡𝑛𝑛 − 𝐷𝐷0𝑛𝑛 = 𝑘𝑘𝑘𝑘 (1)

With Dt being the mean grain diameter at time t after grain growth stared at time t=0. The

growth exponent n and the growth parameter k can be determined experimentally by

sampling the microstructure at different times t after grain growth commenced. For the given

process this growth law describes the grain-size evolution very well. However, in natural

samples it is almost impossible to determine D0 (which is a state parameter and not a material

property) and a simplification of Eq. (1) is sometimes used, which is approximately valid when

D0<<Dt:

𝐷𝐷𝑡𝑡𝑛𝑛 ≈ 𝑘𝑘𝑘𝑘 (𝑖𝑖𝑖𝑖 𝐷𝐷0 ≪ 𝐷𝐷𝑡𝑡) (2)

Theory predicts that, for ideal static grain growth with isotropic grain-boundary energies, the

growth exponent n equals 2 62. As soon as other processes or factors than reduction of free

energy of the grain boundaries contribute to the grain growth, n increases 54,66-68. Under perfect

analytical conditions with only specific processes contributing to grain growth it can be shown

that each process has a specific growth exponent n 64. For example, Ostwald ripening with

diffusion through the grain interiors should have an exponent of n=3 and diffusion along grain

boundaries an exponent of n=4.

The parameter k is normally treated as a temperature dependent material property that is a

function of the boundary energy γ and mobility M:

𝑘𝑘 = 𝑘𝑘0𝛾𝛾𝛾𝛾 (3)

Jens Rößiger - 2013 Page 9

Numerical Modelling of Ice Microstructures

The temperature dependence T of k can be expressed in relation to the activation energy Q

and the universal gas constant R.

𝑘𝑘 ∝ 𝑒𝑒𝑒𝑒𝑒𝑒−𝑄𝑄 𝑅𝑅𝑅𝑅⁄ (4)

It is often assumed that k0 is a material-independent constant, which is 4.48 for grain growth

in 2 dimensions and 2 in 3 dimensions 69. In the first publication 51, however, we show that this

parameter is not a constant. It is dependent on microstructure and can even vary during the

same experiment if the starting microstructure is not a perfect foam texture produced by static

grain growth only but contains remnant internal energy and other influences from different

processes 22,51. This is of importance for various reasons. Hiraga 70,71, Montagnat 72, Mathiesen
73 combined the standard growth law (Eq. 2) with a constant k0 with other processes that

modify the grain size. This, however, leads to erroneous results if the effect of these processes

on k0 is ignored. Furthermore, wrong values of n and k are obtained if during experiments the

microstructure changes. This typically leads to an overestimate of n, which in turn affects the

inferred rate-controlling process.

INFLUENCE OF BUBBLES ON GRAIN GROWTH

It was found in the first chapter that the microstructure plays an important role in determining

the grain growth rate. While that chapter dealt with a pure, single-phase material, the second

chapter investigates the effect of impurities on grain growth 11,22,54,74,75.

A common “impurity” or second phase in natural ice, at least in the upper part of ice sheets,

are air bubbles 20,76. With increasing depth and compaction they eventually transform into

clathrates. The transition zone lies approximately in a range between 600m and 1200m depth
21,77-79. To include a second phase with different properties in the simulations required

significant additions and modifications to the simulation code, which are described in

Appendix 4.

In a two-phase granular material (phases A and B) there are three types of boundaries: A-A,

A-B and B-B boundaries. The number of boundary types increases for more phases. However,

considering the focus on ice in this thesis, the numerical simulations are limited to two phases:

ice and air. In this case only two types of boundaries exist in nature: those between ice and

Jens Rößiger - 2013 Page 10

Numerical Modelling of Ice Microstructures

ice, and between ice and air. For numerical reasons, the simulation code actually also allows

virtual air-air boundaries.

The main additional complexity, compared to grain growth in a single-phase aggregate, is to

maintain a mass balance: the fraction of each phase should remain constant. In an earlier

version of the code, developed by Becker et al. 45,80, movement of boundaries maintained an

overall mass balance, which implies that regions of each phase are fully connected throughout

the model. Where this may be permissible for second-phase regions with a low dihedral angle

(partially molten rocks), it is not for unconnected air bubbles in ice. This required a major

revision of the code to ensure that the area of each individual bubble is maintained in the 2D

model.

In general impurities or additional phases in a grain aggregate complicate the growth process

from single phase materials quite significantly 81. Second-phase particles may stop or hinder

the movement of grain boundaries. This effect can be described by Zener pinning 82-84 and if

the particles completely stop boundary movement they come to a complete stop when all

boundaries are pinned 81,85.

Instead of parameterising the effect of air bubbles in modelling grain growth, air bubble

boundaries were assigned different properties from those of ice-ice boundaries. For grain-

boundary driven grain growth in the ice-air aggregate, the following parameters need to be

known: surface energies of ice-ice and ice-air boundaries (γii and γia), as well as their mobilities

(Mii and Mia). γii is reasonably well constrained from experiments 86. γia is less well known, but

can be inferred from the approximately spherical shape of air bubbles, which implies a

dihedral angle (ω) that is close to 180°. Knowing γii, one can determine γia, using:

𝜔𝜔 = 2 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐−1 � 𝛾𝛾𝑖𝑖𝑖𝑖
2∙𝛾𝛾𝑖𝑖𝑖𝑖

� (5)

In the simulations it was assumed that γia = 8 · γii, which corresponds to ω=174°.

The only variable remaining in the equations is therefore the boundary mobility M. We

decided to vary it by ratios between mobility for ice-air boundaries compared to mobility for

ice-ice boundaries instead of absolute values. That means a ratio of R = 10 defines a setting

where the air-ice boundaries have a mobility which is one order of magnitude higher than the

Jens Rößiger - 2013 Page 11

Numerical Modelling of Ice Microstructures

mobility setting for ice-ice boundaries. The third type of boundary, the air-air boundaries

were introduced for numerical reasons, but they were assigned surface energy and mobility

values such that the dummy air-air boundaries did not affect the behaviour of the system.

The results of this work generally confirm and further develop ideas from the first publication
51. The growth parameter k is not a constant as is often assumed. It is a function of

microstructure and varies with it. Three different growth regimes could be recognized in the

simulations of ice-air aggregates. These depend on how many bubbles or second phase

inclusions are in the microstructure and how they are distributed. If in the beginning there are

many bubble-free boundaries, these can still migrate relatively unhindered and the resulting

growth rate is relatively fast. The growth parameter k is initially close to that for pure ice but

drops quickly once the bubble spacing gets close to the grain size. Since everything slows

down the decline of k does too. In the final regime, a steady state is reached where the

microstructure and topology do not change, except for an increase in both grain and bubble

size. In this regime the low k remains approximately constant 74.

IMPACT OF DEFORMATION ON GRAIN BOUNDARY MIGRATION

So far only static grain growth and an abstract polygonisation parameter, expressed as chance

for each grain to split in two each step was included in the experiments. Investigation on how

static grain growth rates change with microstructure and when a different phase is added

followed. However the “internal energy” was only mentioned as a factor which can also

influence microstructure and a splitting parameter to simulate that to a certain extent was used
51. In the third project, a more detailed simulation of dynamic recrystallization driven by this

internal energy or dislocation density, and the formation of new grain boundaries by sub-grain

rotation 55 was carried out. An implementation 87 of the full stress/strain field solving crystal

plastic code using Fast Fourier Transformation 48,49 was incorporated in the experiments. It is

described in chapter 5.2.2. in appendix 3 34. Since the main work is not yet ready to be

published, a more detailed description follows. As a first step the experiments were restricted

to single-phase pure ice simulations again. An adjustment in the code to enable two-phase

simulations with air bubbles was made and tested successfully later. However a simple setting

was chosen to ensure that the experiments were working correctly.

Jens Rößiger - 2013 Page 12

Numerical Modelling of Ice Microstructures

A detailed description of the underlying process can be found in Lebensohn et al. 48,49 and

Griera et al. 87. Their models were implemented for hexagonal ice 1h, which deforms by slip

on the basal, prismatic and pyramidal planes. It was assumed that the basal plane is the easy-

slip plane with a critical resolved shear stress 20 times lower than that for the other slip systems
20. Chapter 5.2 in appendix 3 34 gives a detailed description of how the various processes

involved, while only a short description is given in the following.

The crystal structure and the orientation of the individual crystals are described in the Elle

format 41,45,68 with grains defined by polygons (flynns). Additional to the previous experiments

there is a regularly spaced square grid (u-nodes) on top of this structure. This is necessary

since the FFT method only works on grids with nth power of two elements along its sides. At

the beginning the lattice-orientation information is copied to this grid which is then deformed

by the given parameters. The FFT formulation provides an exact solution for the stress and

strain field, including rotation of the crystal lattice within the individual elements 48,49. From

the angular mismatches of the lattice in adjacent elements, the least number of geometrically

necessary dislocations with the lowest internal energy is calculated. After that recovery

processes, such as tilt wall formation or annihilation of dislocations 88 (implementation after

Borthwick, V. – unpublished) is activated. Deformation and recovery are calculated based on

the regular u-node grid. Deformation is also applied to grain boundaries by moving their b-

nodes according to the local velocity field. As the FFT-routine requires a regular grid, the

deformed grid is mapped back onto the regular grid for the next FFT calculation.

Nucleation of new grains is carried out by creating new flynns at sites of high local

misorientations, which is equivalent to high internal strain. The small new grains are given a

random lattice orientation. The final process in the loop is grain-boundary migration.

Additional to what was described in the first two publications, this process now additionally

takes strain energy energy into account as well to determine the movement direction and

magnitude of the individual boundary nodes. It gets the internal energy from the dislocation

density map stored in the finite element grid. High dislocation density means high internal

energy and the boundaries most likely will move in that direction to erase this high energy

field. Once overgrown or recrystallized the dislocation density is reset to zero and the

orientations of these grid points are adjusted to that of the neighbouring points inside the

mother grain.
Jens Rößiger - 2013 Page 13

Numerical Modelling of Ice Microstructures

FIGURE 1 AFTER FIG 24 IN APPENDIX 3 34. FFT VISCOPLASTIC SIMULATION OF THE DEFORMATION OF A PURE ICE

AGGREGATE WITH AND WITHOUT DYNAMIC RECRYSTALLISATION (RECOVERY AND GRAIN-BOUNDARY MIGRATION).

TOP ROW SHOWS C-AXIS ORIENTATUNION, LOWER ROW SHOWS LOCAL MISORIENTATION AND TWO C-AXIS

DISTRIBUTION PATTERNS. (A) SHOWS THE STARTING MICROSTRUCTURE WITH A RANDOM LATTICE ORIENTATION FOR

EACH GRAIN. (B) SHOWS THE RESULTS AFTER 40% SHORTENING WITH VISCOPLASTIC DEFORMATION ONLY. (C) SHOWS

THE RESULTS WITH THE SAME SETTINGS BUT ENABLED RECRYSTALLIZATION PROCESSES.

Figure 1 summarizes the work that is also described in appendix 3 34. Starting from a foam

texture with randomly oriented lattice orientations several experiments simulated how adding

different recovery processes influences the final microstructure. Viscoplastic deformation

only results in elongated grains with very unrealistic boundary shapes and very high

dislocation densities in regions of strain localisation. This can be seen best in the local

misorientation map. A misorientation of more than 15° from the neighbouring element results

in a black line. The high amount of black in the local misorientation map shows that after 40%

shortening, almost every element in the model has a high-angle boundary with its neighbours,

especially where strain is localisatized. Adding grain boundary migration and recovery to the

system lowers the internal misorientations and adds moving boundaries and growing grains

to the experiment. The unrealistic boundaries from the pure viscoplastic experiment are now

replaced by smoothly curved boundaries. Grains with high internal energies (lattice

orientations at an unfavourable orientation relative to the deformation field) are preferentially

consumed by neighbouring grains. As a result the c-axis pattern in Figure 1 shows a more

focused maxima. The work started in this PhD thesis will be continued in at least one more

Jens Rößiger - 2013 Page 14

Numerical Modelling of Ice Microstructures

publication with focus on a more detailed description and discussion of findings in our latest

work.

Jens Rößiger - 2013 Page 15

Numerical Modelling of Ice Microstructures

REFERENCES

1 Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K.
Trends, Rhythms, and Aberrations in Global Climate
65 Ma to Present. Science 292, 686-693 (2001).

2 Royer, D. L., Berner, R. A., Montañez, I. P., Tabor, N. J. &
Beerling, D. J. CO2 as a primary driver of Phanerozoic
climate. GSA Today 14, 4-10, doi:10.1130/1052-
5173(2004)014<4:CAAPDO>2.0.CO;2 (2004).

3 Peizhen, Z., Molnar, P. & Downs, W. R. Increased
sedimentation rates and grain sizes 2±4 Myr ago due
to the in¯uence of climate change on erosion rates.
Nature 410, 891-897 (2001).

4 Schwab, F. L. Modern and ancient sedimentary basins:
Comparative accumulation rates. Geology 4, 723-727,
doi:10.1130/0091-
7613(1976)4<723:MAASBC>2.0.CO;2 (1976).

5 Larsen, H. C. et al. Seven Million Years of Glaciation in
Greenland. Science 264, 952-955 (1994).

6 Hoffman, P. F. & Schrag, D. P. The snowball Earth
hypothesis: testing the limits of global change. Terra
Nova 14, 129-155 (2002).

7 Kirschvink, J. L. et al. Paleoproterozoic snowball Earth:
Extreme climatic and geochemical global change and
its biological consequences. PNAS 97, 1400-1405
(2000).

8 Hoffman, P. F., Kaufman, A. J., Halverson, G. P. & Schrag,
D. P. A Neoproterozoic Snowball Earth. Science 281,
1342-1346 (1998).

9 Ekaykin, A. A. et al. The changes in isotope composition and
accumulation of snow at Vostok station, East
Antarctica, over the past 200 years. Annals of
Glaciology 39, 569-575 (2004).

10 Frezzotti, M. et al. New estimations of precipitation and
surface sublimation in East Antarctica from snow
accumulation measurements. Climate Dynamics 23,
803-813, doi:10.1007/s00382-004-0462-5 (2004).

11 Faria, S. H., Freitag, J. & Kipfstuhl, S. Polar ice structure and
the integrity of ice-core paleoclimate records.
Quaternary Science Reviews 29, 338-351 (2010).

12 Petit, J. R. et al. Climate and atmospheric history of the past
420,000 years from the Vostok ice core, Antarctica.
Nature 399, 429-436 (1999).

13 Members, E. C. Eight glacial cycles from an Antarctic ice
core. Nature 429, 623–628, doi:10.1038/nature02599
(2004).

14 Jouzel, J. et al. Orbital and millennial Antarctic climate
variability over the past 800 000 years. Science 317,
793-796, doi:10.1126/science.1141038 (2007).

15 Solomon, S., Plattner, G.-K., Knutti, R. & Friedlingstein, P.
Irreversible climate change due to carbon dioxide
emissions. PNAS 106, 1704-1709,
doi:10.1073/pnas.0812721106 (2009).

16 Huss, M., Usselmann, S., Farinotti, D. & Bauder, A. Glacier
mass balance in the south-eastern Swiss Alps since
1900 and perspectives for the future. Erdkunde 64,
119-140 (2010).

17 Pelto, M. S. Forecasting temperate alpine glacier survival
from accumulation zone observations. The
Cryosphere 4, 67-75 (2010).

18 Kaplan, M. R. et al. Glacier retreat in New Zealand during
the Younger Dryas stadial. Nature 467, 194-197,
doi:doi:10.1038/nature09313 (2010).

19 Petrenko, V. F. & Whitworth, R. W. Physics of Ice. (Oxford
University Press, 1999).

20 Schulson, E. M. & Duval, P. Creep and Fracture of Ice.
(Cambridge University Press, 2009).

21 Hondoh, T. in Physics of Ice Core Records II Vol. 68 (ed T.
Hondoh) 1-23 (Hokkaido University Press, 2009).

22 Arena, L., Nasello, O. B. & Levi, L. Effect of Bubbles on
Grain Growth in Ice. J. Phys. Chem. B 101, 6109-6112
(1997).

23 Dunaeva, A. N., Antsyshkin, D. V. & Kuskov, O. L. Phase
diagram of H2O: Thermodynamic functions of the
phase transitions of high-pressure ices. Solar System
Research 44, 202-222 (2010).

24 Patchett, P. J. Thermal effects of basalt on continental crust
and crustal contamination of magmas. Nature 283,
559-561 (1980).

25 Joughin, I., Smith, B. E., Howat, I. M., Scambos, T. & Moon,
T. Greenland flow variability from ice-sheet-wide
velocity mapping. J Glaciol 56, 415-430 (2010).

26 Seddik, H., Greve, R., Zwinger, T. & Placidi, L. A full stokes
ice flow model for the vicinity of Dome Fuji,
Antarctica, with induced anisotropy and fabric
evolution. The Cryosphere 5, 495-508 (2011).

27 Seddik, H., Greve, R., Zwinger, T., Gillet-Chaulet, F. &
Gagliardini, O. Simulations of the Greenland ice sheet
100 years into the future with the full Stokes model
Elmer/Ice. J Glaciol 58, 427-440 (2012).

28 Murray, J. Volcanic ashes and cosmic dust. Nature, 585-590
(1884).

29 Carey, S. & Sparks, R. S. J. Quantitative models of the fallout
and dispersal of tephra from volcanic eruption
columns. Bulletin of Vulcanology 48, 109-125 (1986).

30 Gow, A. J. & Williamson, T. Volcanic ash in the Antarctic ice
sheet and its possible climate implications. Earth
Planet Sc Lett 13, 210-218 (1971).

31 Narcisi, B., Petit, J. R., Delmonte, B., Basile-Doelsch, I. &
Maggi, V. Characteristics and sources of tephra layers
in the EPICA-Dome C ice record (East Antarctica):
Implications for past atmospheric circulation and ice
core stratigraphic correlations. Earth Planet Sc Lett
239, 253-265 (2005).

32 Mortensen, A. K., Bigler, M., Grönvold, K., Steffensen, J. P.
& Johnsen, S. J. Volcanic ash layers from the Last
Glacial Termination in the NGRIP ice core. Journal of
Quaternary Science 20, 209-219 (2005).

33 Seward, D. & Kohn, B. P. New zircon fission-track ages from
New Zealand Quaternary tephra: an interlaboratory
experiment and recommendations for the
determination of young ages. Chemical Geology 141,
127-140 (1997).

34 Montagnat, M. et al. Journal of Structural Geology
(submitted).

35 Castelnau, O., Brenner, R. & Lebensohn, R. A. The effect of
strain heterogeneity on the work-hardening of
polycrystals predicted by mean-field approaches.
Acta Materialia 54, 2745-2756 (2006).

36 Castelnau, O., Canova, G. R., Lebensohn, R. A. & Duval, P.
Modelling viscoplastic behavior of anisotropic
polycrystalline ice with a self-consistent approach.
Acta Materialia 45, 4823-4834 (1997).

37 Faria, S. H. Creep and recrystallization of large
polycrystalline masses. I. General continuum theory.
Proceedings of the Royal Society A 462, 1493-1514,
doi:10.1098/rspa.2005.1610 (2006).

Jens Rößiger - 2013 Page 16

Numerical Modelling of Ice Microstructures

38 Faria, S. H. Creep and recrystallization of large
polycrystalline masses. III. Continuum theory of ice
sheets. Proceedings of the Royal Society A 462, 2797-
2816, doi:10.1098/rspa.2006.1698 (2006).

39 Faria, S. H., Kremer, G. M. & Hutter, K. Creep and
recrystallization of large polycrystalline masses. II.
Constitutive theory for crystalline media with
transversely isotropic grains. Proceedings of the Royal
Society A 462, 1699-1720, doi:10.1098/rspa.2005.1635
(2006).

40 Jessell, M., Bons, P., Evans, L., Barr, T. & Stuwe, K. Elle: the
numerical simulation of metamorphic and
deformation microstructures. Computers &
Geosciences 27, 17-30 (2001).

41 Bons, P. D., Koehn, D. & Jessell, M. W. Microdynamic
Simulation. Vol. 106 405 pp (Springer, 2008).

42 Piazolo, S., Jessell, M. W., Bons, P. D., Evans, L. & Becker,
J. K. Numerical Simulations of Microstructures Using
the Elle Platform: A Modern Research and Teaching
Tool. Journal of the Geological Society of India 75, 110-
127 (2010).

43 Jessell, M. W. & Bons, P. D. The numerical simulation of
microstructure. Geological Society, London, Special
Publications 200, 137-147 (2002).

44 Jessell, M. W., Kostenko, O. & Jamtveit, B. The preservation
potential of microstructures during static grain
growth. Journal of Metamorphic Geology 21, 481–491,
doi:doi:10.1046/j.1525-1314.2003.00455.x. (2003).

45 Becker, J. K., Bons, P. D. & Jessell, M. W. A new front-
tracking method to model anisotropic grain and
phase boundary motion in rocks. Computers &
Geosciences 34, 201-212 (2008).

46 Jessell, M. W. Simulation of fabric development in
recrystallizing aggregates. 1. Description of the
models. Journal of Structural Geology 10, 771-778
(1988).

47 Jessell, M. W. Simulation of fabric development in
recrystallizing aggregates. 2. Example model runs.
Journal of Structural Geology 10, 779-793 (1988).

48 Lebensohn, R. A. N-site modeling of a 3D viscoplastic
polycrystal using Fast Fourier Transform. Acta
Materialia 49, 2723-2737 (2001).

49 Lebensohn, R. A., Brenner, R., Castelnau, O. & Rollett, A.
D. Orientation image-based micromechanical
modelling of subgrain texture evolution in
polycrystalline copper. Acta Materialia 56, 3914–
3926, doi:10.1016/j.actamat.2008.04.016 (2008).

50 Griera, A. et al. Numerical modelling of porphyroclast and
porphyroblast rotation in anisotropic rocks.
Tectonophysics, in press (2011).

51 Roessiger, J. et al. Competition between grain growth and
grain-size reduction in polar ice. J Glaciol 57, 942-948
(2011).

52 Alley, R. B. Flow-law hypotheses for ice-sheet modelling. J
Glaciol 38, 245-256 (1992).

53 De La Chapelle, S., Castelnau, O., Lipenkov, V. & Duval, P.
Dynamic recrystallization and texture development
in ice as revealed by the study of deep ice cores in
Antarctica and Greenland. Journal of Geophysical
Research 103, 5091-5105 (1998).

54 Durand, G. et al. Effect of impurities on grain growth in cold
ice sheets. Journal of Geophysical Research 111,
F01015 (2006).

55 Urai, J. L., Means, W. D. & Lister, G. S. in Mineral and Rock
Deformation: Laboratory Studies Vol. 36 (eds B. E.
Hobbs & H. C. Heard) 161-200 (Geophysical
Monograph, 1986).

56 Alley, R. B., Gow, A. J. & Meese, D. A. Mapping c-axis
fabrics to study physical processes in ice. J Glaciol 41,
197-203 (1995).

57 Duval, P. & Castelnau, O. Dynamic recrystallisation of ice in
polar ice sheets. J Phys-Paris 5, 197-205 (1995).

58 Faria, S. H., Ktitarev, D. & Hutter, K. Modelling evolution
of anisotropy in fabric and texture of polar ice. Annals
of Glaciology 35, 545-551 (2002).

59 Alley, R. B., Perepezko, J. H. & Bentley, C. R. Grain Growth
in polar ice: I. Theory. J Glaciol 32, 415-424 (1986).

60 Smith, C. S. Some elementary principles of polycrystalline
microstructure. Metallurgical Reviews 9, 1-48 (1964).

61 Weaire, D. & Rivier, N. Soap, cells and statistics - random
patterns in two dimensions (Reprinted from
Contemporary Physics, vol 25, pg 59, 1984).
Contemporary Physics 50, 199-239 (2009).

62 Glazier, J. A., Gross, S. P. & Stavans, J. Dynamics of Two-
Dimensional Soap Froths. Phys Rev A 36, 306-312
(1987).

63 Anderson, M. P. in Annealing processes - Recovery,
Recrystallization and grain growth (eds N. Hanse, N.
Juul Jensen, D. Leffers, & T. B. Ralp) 15-34 (Risø
National Laboratory, 1986).

64 Evans, B., Renner, J. & Hirth, G. A few remarks on the
kinetics of static grain growth in rocks. Int J Earth
Sciences 90, 88-103, doi:DOI 10.1007/s005310000150
(2001).

65 Weygand, D., Bréchet, Y., Lépinoux, J. & Gust, W. Three
dimensional grain growth: a vertex dynamics
simulation. Philos. Mag. B, 79, 703-716 (1998).

66 Gow, A. J. On the rates of growth of grains and crystals in
south polar firn J Glaciol 8, 241-252 (1969).

67 Gow, A. J. et al. Physical and structural properties of the
Greenland Ice Sheet Project 2 ice core: A review.
Journal of Geophysical Research 102, 26559-26575
(1997).

68 Bons, P. D., Jessell, M. W., Evans, L., D., B. T. & K., S.
Modelling of anisotropic grain growth in minerals.
Geological Society of America Memoir 193, 39-49
(2001).

69 Mullins, W. W. Estimation of the Geometrical Rate-
Constant in Idealized 3 Dimensional Grain-Growth.
Acta Metallurgica 37, 2979-2984 (1989).

70 Hiraga, T., Miyazaki, T., Tasaka, M. & Yoshida, H. Mantle
superplasticity and its self-made demise. Nature 468,
1091–1094, doi:doi:10.1038/nature09685 (2010).

71 Hiraga, T., Tachibana, C., Ohashi, H. & Sano, S. Grain
growth systematics for forsterite ± enstatite
aggregates: Effect of lithology on grain size in the
upper mantle. EPSL 291, 10-20 (2010).

72 Montagnat, M. & Duval, P. Rate controlling processes in the
creep of polar ice, influence of grain boundary
migration associated with recrystallization. EPSL
183, 179-186 (2000).

73 Mathiesen, J. et al. Dynamics of crystal formation in the
Greenland NorthGRIP ice core. J Glaciol 50, 325-328
(2004).

74 Roessiger, J., Bons, P. D. & Faria, S. H. Influence of bubbles
on grain growth in ice. Journal of Structural Geology
in press,
doi:http://dx.doi.org/10.1016/j.jsg.2012.11.003
(2012).

75 Azuma, N., Miyakoshi, T., Yokoyama, S. & Takata, M.
Impeding effect of air bubbles on normal grain
growth of ice. Journal of Structural Geology,
doi:http://dx.doi.org/10.1016/j.jsg.2012.05.005
(2012).

76 Arnaud, L., Barnola, J. M. & Duval, P. in Physics of Ice Core
Records (ed T. Hondoh) 285-305 (Hokkaido
University Press, 2000).

77 Barnes, P. R. F., Mulvaney, R., Robinson, K. & Wolff, E. W.
Observations of polar ice from the Holocene and the

Jens Rößiger - 2013 Page 17

Numerical Modelling of Ice Microstructures

glacial period using the scanning electron
microscope. Annals of Glaciology 35, 559-566 (2002).

78 Lipenkov, V. Y., Salamati, A. N. & Duval, P. Bubbly-ice
densification in ice sheets: II. Applications. J Glaciol
43, 398-407 (1992).

79 Faria, S. H. et al. in Physics of Ice Core Records II (ed T.
Hondoh) 39-59 (Hokkaido University Press, 2009).

80 J.K. Becker, N. P. W., M. Jessel, P.D. Bons, C.W. Passchier,
L. Evans. Numerical simulation of disequilibrium
structures in solid-melt systems during grain growth.
J. Virtual Explor. 11 (2003).

81 Herwegh, M., Linckens, J., Ebert, A., Berger, A. & Brodhag,
S. H. The role of second phases for controlling
microstructural evolution in polymineralic rocks: a
review. Journal of Structural Geology 33, 1728-1750
(2011).

82 Olgaard, D. L. & Evans, B. Grain growth in synthetic
marbles with added mica and water. Contrib Mineral
Petrol 100, 246-260 (1988).

83 Olgaard, D. L. & Evans, B. Effect of second-phase particles
on grain growth in calcite. Journal of the American
Ceramic Society 69, C272-C277 (1986).

84 Brodhag, S. H. & Herwegh, M. The effect of different
second-phase particle regimes on grain growth in
two-phase aggregates: insights from in situ rock
analogue experiments. Contributions to Mineralogy
and Petrology 160, 219-238 (2010).

85 Weygand, D., Bréchet, Y. & Lépinoux, J. Zener Pinning and
Grain Growth: a two-dimensional vertex computer
simulation. Acta mater. 47, 961-970 (1999).

86 Ketcham, W. M. & Hobbs, P. V. An experimental
determination of the surface energies of ice.
Philosophical Magazine 19, 1161-1173 (1969).

87 Griera, A. et al. Strain localization and porphyroclast
rotation. Geology, 275-278 (2011).

88 Passchier, C. W. & Trouw, R. A. J. Microtectonics.
(Springer, 2005).

Jens Rößiger - 2013 Page 18

Numerical Modelling of Ice Microstructures

ACKNOWLEDGEMENTS

First of all I would like to thank my supervisor Prof. Paul D. Bons. He always listened to

problems during the long path from the beginning to the end. He also never gave up on trying

to change my writing skills away from the narrative novel writing to a more scientific, precise

and condensed writing. I didn’t live up to this, somehow my mind can’t cope with this style

and always tries to fill in unnecessary words and personal feelings or emotions which most

possibly aren’t true for everyone who reads the work. I guess in the end I’m not capable to

continue the scientific career. Thank you for trying Paul! I had a wonderful time in you

working group, it was a special environment. And when it came to meeting deadlines it never

felt like pressure and was always enjoyable. I really liked coming to work each day. Of course

that also meant that some days were not very productive because I sometimes have a hard

time to do something useful and end up with a day spent on unimportant things. Sometimes

I was also invited to join him on field trips with students as a second supervisor and these days

were always a great chance to see some outcrops again. My second supervisor Prof. Sérgio H.

Faria also had patience with me and we had some very helpful discussions during the last years.

His understanding for Physics astonished me many times, and I also enjoyed when our

discussions on the phone and on workshops reached a more relaxed point after the technical

part was done.

About ten month after I started my PhD my colleague Anett Weisheit started her PhD in the

same working group and I couldn’t think of a more helpful person than her. She was always

open for a talk about everything. We had a lot of fun in our office and altogether she spent a

lot of days helping me with all sorts of things. I guess she wasn’t born with the ability to say

no, a major disadvantage which I sometimes exploited. However I guess inwardly she knew

and did it anyway. Otherwise it wouldn’t have happened because she is a pretty clever person.

When it came to technical bullshit I had to look for someone else to talk to. Balint Morvai

happily filled that position and we spent a lot of hours together talking about computer stuff.

Of course this wasn’t the only topic which filled our Mensa lunch or coffee times. Balint knows

something about almost everything and I’m still puzzled on how he manages to keep being up

to date on so many topics. I’m happy that I met him along with all the other students in our

working group. Jürgen, Philipp and also Simon were often available for long minutes of

Jens Rößiger - 2013 Page 19

Numerical Modelling of Ice Microstructures

babbling if necessary. Of course there were also a few people outside our working group who

made the life as a PhD easier. Especially Wolfgang Siebel and Horst Hann always liked to listen

to my new problems and also provided many tips for a future academic career and also for

other things in life.

At home I also was always welcome and especially my mother Karin showed interest in my

work. Regrettably I rarely showed the patience to explain all the scientific work to her. Most

of the time I just said that simple translation wouldn’t help to make her understand. Since she

is not at all interested in computers it was also difficult to think of a way to make my work

sound interesting for her.

Last but not least I would like to thank the DFG for the funding of my research project 1776/7

and all the interesting conference participations it made possible!

Jens Rößiger - 2013 Page 20

Numerical Modelling of Ice Microstructures

CONTRIBUTIONS

FIRST PAPER

TITLE: “COMPETITION BETWEEN GRAIN GROWTH AND GRAIN-SIZE REDUCTION IN POLAR ICE”

Idea and concept 40%. Code development, simulations and data collection 100%. Analysis

and Interpretation 80%. Writing of paper 60%.

SECOND PAPER:

TITLE: “INFLUENCE OF BUBBLES ON GRAIN GROWTH IN ICE”

Idea and concept 60%. Code development, simulations and data collection 100%. Analysis

and Interpretation 90%. Writing of paper 70%.

THIRD PAPER

TITLE: “MULTISCALE MODELLING OF ICE DEFORMATION BEHAVIOUR”

Idea and concept 8%. Code development, simulations and data collection 8%. Analysis and

Interpretation 6%. Writing of paper 5%.

CODE

All the code described in this part of the appendix was written by myself. In part this involved

modification and further development of existing algorithms and code (marked with a below),

while in other cases completely new code had to be written (marked with b).

• Different approach to the splitting process (b)

• Combination of growth & split (a)

• Two phase grain growth with different options to keep the area constant

o First approach by geometrical movement restrictions (b)

o Second approach by using boundary nodes directly (b)

o Third approach by using grains and clusters of grains (b)

Jens Rößiger - 2013 Page 21

Numerical Modelling of Ice Microstructures

• Combination of two phase grain growth & the FFT deformation approach (together

with Albert Griera). (a)

• Several small routines and scripts to simplify things. (b)

Jens Rößiger - 2013 Page 22

Numerical Modelling of Ice Microstructures

A P P E N D I X 1

COMPETITION BETWEEN GRAIN GROWTH AND GRAIN-SIZE

REDUCTION IN POLAR ICE

Jens Rößiger - 2013 Page A1

Competition between grain growth and grain-size reduction in
polar ice

Jens ROESSIGER,1 Paul D. BONS,1 Albert GRIERA,2 Mark W. JESSELL,3 Lynn EVANS,4

Maurine MONTAGNAT,5 Sepp KIPFSTUHL,6 Sérgio H. FARIA,7 Ilka WEIKUSAT6

1Institut für Geowissenschaften, Eberhard Karls Universität, Wilhelmstrasse 56, D-72074 Tübingen, Germany
E-mail: jens.roessiger@uni-tuebingen.de

2Departament de Geologia, Universitat Autònoma de Barcelona, ES-08193 Bellaterra, Spain
3IRD LMTG UMR 5563, 14 avenue Edouard Belin, 31400 Toulouse Cedex, France

4School of Geosciences, Monash University, Clayton, Victoria 3800, Australia
5Laboratoire de Glaciologie et Géophysique de l’Environnement, CNRS/Université Joseph Fourier – Grenoble I,

54 rue Molière, BP 96, 38402 Saint-Martin-d’Hères Cedex, France
6Alfred Wegener Institute for Polar and Marine Research, Columbusstrasse, D-27568 Bremerhaven, Germany

7GZG, Department of Crystallography, University of Göttingen, Goldschmidtstrasse 1, D-37077 Göttingen, Germany

ABSTRACT. Static (or ‘normal’) grain growth, i.e. grain boundary migration driven solely by grain
boundary energy, is considered to be an important process in polar ice. Many ice-core studies report a
continual increase in average grain size with depth in the upper hundreds of metres of ice sheets, while
at deeper levels grain size appears to reach a steady state as a consequence of a balance between grain
growth and grain-size reduction by dynamic recrystallization. The growth factor k in the normal grain
growth law is important for any process where grain growth plays a role, and it is normally assumed to
be a temperature-dependent material property. Here we show, using numerical simulations with the
program Elle, that the factor k also incorporates the effect of the microstructure on grain growth. For
example, a change in grain-size distribution from normal to log-normal in a thin section is found to
correspond to an increase in k by a factor of 3.5.

INTRODUCTION
Many classical studies of polar ice microstructure report an
evolution of the mean grain size with depth according to
what can be called the ‘three-stage model’ (Gow and
Williamson, 1976; Herron and Langway, 1982; Thorsteins-
son and others, 1997): in the upper few hundred metres,
grain size increases steadily with depth; below a certain
intermediate depth (400–700m), the grain size stabilizes
and remains roughly constant; finally, at great depths
(approximately the last 300m before reaching bedrock,
where temperature exceeds –108C (De La Chapelle and
others, 1998; Duval, 2000) the grain size significantly
increases again. Here we only deal with the upper two
regions, where grain size first increases and then stabilizes.

The initial steady increase in grain size is usually
explained by static (‘normal’) grain growth (Smith, 1964;
Alley and others, 1986; Weaire and Rivier, 2009), defined as
growth that is only driven by the reduction of free energy of
the grain boundaries. The increase in grain size, expressed in
mean radius, r, from a starting grain size, r0, is usually
described by (Anderson, 1986; Glazier and others, 1987;
Weygand and others, 1998)

rn � rn0 ¼ kt : ð1Þ
The growth exponent n has a theoretical value of 2 in ideal
static grain growth of grains with isotropic properties
(Glazier and others, 1987). In natural systems, the exponent
is usually found to be >2. Any other process or factor that
influences grain growth tends to increase n, such as
anisotropic boundary energies, pinning, etc. (Gow, 1969;
Gow and others, 1997; Bons and others, 2001; Durand and
others, 2006). The parameter k is normally treated as a
temperature-dependent material property that is a function

of only the boundary energy �(T) and the grain boundary
mobility M(T):

k ¼ k0 �M, ð2Þ
where T is the temperature and the factor k0 is generally
assumed to be constant. For ideal static grain growth the
value of k0 is �0.5 in three dimensions and �1.12 in two
dimensions (Mullins, 1989; Weygand and others, 1998).
Below we show that in practice k0 is actually not a constant,
but in fact depends on the microstructure (the ideal case
being a particular instance). The factor k0 itself is usually
difficult to determine from experiments or measurements in
nature (i.e. polar ice caps). This is because one normally
only obtains k, which also includes the surface energy and
grain boundary mobility. If k depends on microstructure
through the parameter k0, one cannot apply k obtained from
one study to another situation where the microstructure may
be different. In this paper we show that k0 varies with
microstructure and how ignoring this may lead to erroneous
results if applied to polar ice caps.

If static grain growth were the only process operating in
polar ice, the grain size should increase steadily with the age
of the ice, and hence with depth. The observation in several
ice cores that grain size stabilizes at a certain depth suggests
that another process operates which balances the increase in
grain size (Alley, 1992; De La Chapelle and others, 1998;
Durand and others, 2006). If this other process leads to a
reduction of grain size, a balance between grain-size
increase and decrease will be reached at some point. The
process usually invoked to explain the grain-size reduction
process is polygonization or rotational/continuous recrystal-
lization (Urai and others, 1986; Alley, 1992; Alley and others,
1995; Duval and Castelnau, 1995; Faria and others, 2002).

Journal of Glaciology, Vol. 57, No. 205, 2011942

Rotational recrystallization is a deformation-driven pro-
cess. Deformation by dislocation creep introduces disloca-
tions in the crystal lattice, which can accumulate in planar
zones or tilt walls that define regions within a grain with
small differences in their lattice orientations. The lattice
within these regions or subgrains within a grain thus rotate
relative to each other. Progressive rotation of the subgrains
with ongoing strain eventually leads to the formation of high-
angle grain boundaries, and the subgrains they bound
become real grains (Read, 1953; Duval and others, 1983).
Rotational recrystallization can be regarded as a process that
effectively splits grains into two or more grains (Mathiesen
and others, 2004; Placidi and others, 2004). Each split
increases the number of grains, N, in a volume by 1. The
increase inN, and hence decrease in grain size, thus depends
on the split rate f per grain:

dN
dt
¼ fN: ð3Þ

The parameter f may depend on many factors, most import-
antly on strain rate and hence on deviatoric stress (e.g.
through Glenn’s flow law; Alley, 1992). However, in a first
approximation it is usually assumed that the strain rate is
approximately constant within the upper part of the core
where our calculations apply (Lipenkov and others, 1989;
Thorsteinsson and others, 1997; Montagnat and Duval,
2000). The split rate of a grain probably also depends on
the size and deformation history of that grain. A split rate
proportional to grain size was, for example, assumed by
Mathiesen and others (2004) and Placidi and others (2004),
while Morland (2009) studied the effect of ice flow history.
However, the simplest (but not necessarily realistic) assump-
tion is that f is a constant, not depending on grain size or any
other factor. This simplification is permissible here, since this
paper is mainly concerned with the influence of micro-
structure on growth rate, and we do not intend to model a
particular ice core. For this case, a simple analytical solution
exists for the stable grain size. Assuming that the grain growth
exponent n is 2 in Equation (1), one derives (see Appendix)

dNðtÞ
dt

¼ � 3ka2=3

2
NðtÞ

5=3þ fNðtÞ , rðtÞ2 ¼ 3k
2f

1� e
�2f
3 t

� �
: ð4Þ

Here a is a geometrical factor relating the mean grain radius,
r, to the number, N, of grains in a volume. For illustration, by
applying this equation to the North Greenland Icecore
Project (NorthGRIP) ice-core data (Fig. 1), one obtains a
growth constant of k� 5.0�10–3mm2 a–1 and a split rate of
f�1.5� 10–3 a–1 or once every 650 years. These numbers
are within the range of those reported in the literature (Gow,
1969; Thorsteinsson and others, 1997; Svensson and others,
2003; Mathiesen and others, 2004). The question, however,
is whether the values obtained are realistic and meaningful.

NUMERICAL SIMULATIONS
We used the numerical modelling platform Elle (Jessell and
others, 2001; Jessell and Bons, 2002; Bons and others, 2008)
to simulate the process of grain growth and grain splitting.
The Elle software was developed to simulate the micro-
structural evolution in materials such as rocks. It has been
applied to the simulation of a range of processes, such as
static grain growth in anisotropic polycrystals or partially
molten rocks (Bons and others, 2001; Becker and others,
2008), dynamic recrystallization (Piazolo and others, 2002,

2004) and strain localization (Jessell and others, 2005). The
main distinguishing features are (1) that it uses a two-
dimensional (2-D) image of the actual microstructure, and
(2) that it uses operator-splitting to allow a range of different
processes to operate on, and modify the microstructure. This
means that simultaneously operating processes (such as
grain growth and grain splitting) are modelled as isolated
individual processes that sequentially modify the micro-
structures in very small increments.

The microstructure is defined by a contiguous set of
polygons that are themselves defined by boundary nodes
that link straight boundary segments (Fig. 2). The polygons
typically represent individual grains. Changes in the
microstructure are achieved by (1) changing the properties
of polygons or boundary nodes, (2) changing the position of
boundary nodes, which implies a change in shape of the
polygons, and (3) creating, removing or reordering bound-
ary nodes and segments. A change in shape can be the
result of deformation, for which the finite-element code,
Basil, is available in Elle (Houseman and others, 2008). A
change in shape can also be the result of the movement of
boundaries (grain boundary migration), for example in the
case of grain growth.

The movement of grain boundaries is modelled by
sequentially selecting each boundary node, and applying a
small incremental displacement that depends on the driving
force for migration and the intrinsic boundary mobility. In
this study we test the validity of Equation (4) by combining a
static grain growth routine that moves grain boundaries, and
a split routine that divides grains into two daughter grains.

The normal grain growth routine simulates ideal isotropic
growth (without grain boundary energy anisotropy). For each
time-step, the routine goes through the list of all boundary
nodes and calculates the local radius of curvature, rc, using
the node and its immediate grain boundary neighbours. The
velocity, v, of the node in the direction of the centre of the
curvature is calculated using

v ¼ M�

rc
and �x ¼ v ��t : ð5Þ

Fig. 1. Fit of analytical model (Equation (4)) to the average grain
diameter as a function of age as observed in the NorthGRIP ice core
(squares; data from fig. 3 in Mathiesen and others, 2004). Fit
parameters are k = 5.0� 10–3 mm2 a–1 and a split rate of
f=1.54� 10–3 a–1 or once every 650 years.

Roessiger and others: Grain growth versus grain-size reduction in polar ice 943

The node is then moved over a distance �x for a small time
increment �t. This routine results in ideal growth with a
linear increase in mean grain area A, implying a growth
exponent of n=2, and k0 = 1.22 (Figs 3 and 4a). This would
be the growth exponent as expected from theory (Hum-
phreys and Hatherly, 1996). However, growth exponents
measured in natural ice may deviate from that value due to
other processes not taken into account here.

The effect of rotational recrystallization was implemented
by randomly splitting each grain with a probability of f every
time-step for each grain. This probability determines the rate
of grain-size reduction by splitting. For this, each grain is
selected in turn, and a random number generator determines
whether the grain will be split. If so, one of its nodes is
randomly selected and a new boundary is constructed across
the grain, in a random orientation. Each time, the program
checks whether the intended split will cause topological
problems, such as intersection of the new boundary with
another boundary or that a tiny grain has insufficient
available nodes to split between. As a result, some splits
are cancelled and a set value of f of 1.54� 10–3 a–1 results in
an effective split rate of 1.52�10–3 a–1, meaning that on
average 1.3% of attempted splits are cancelled when a steady
state has been established.

As expected, a stable grain size is established as a result of
the combination of growth and splitting (Figs 4b and 5). For
M� = 3.2�10–3 mm2 a–1 (k = 3.90�10–3 mm2 a–1) and
f=1.52�10–3 a–1), the average stable grain diameter is
3mm2. To compare this result with the analytical model,
we must rewrite Equation (4) for the 2-D case:

A ¼ k
f

1� e�ft
� �

) At!1 ¼ k
f
: ð6Þ

The average stable grain area predicted by the analytical
model (Equation (6)) is similar to the value obtained with the

Elle simulation, although the stable state is only reached after
�4000 years in the simulation. To achieve stabilization of the
grain size after �2000 years, as in the case of the NorthGRIP
data, one has to roughly double both k and f. The discrepancy
between the analytical model (Equation (4)) and the numer-
ical simulation can be explained by considering the
microstructure (Fig. 4). Static grain growth produces a regular
foam texture. The frequency distribution of grain diameter
has a maximum at about the average grain area (Fig. 6), and
the normalized grain-size distribution is time-invariant (for
steady-state growth). When a stable grain size is reached due
to a balance between grain boundary migration and splitting,
the grain size distribution changes significantly, with an
increase of the frequency of very small grains, but also an
increase in grains much larger than the average.

The change in microstructure changes the growth be-
haviour. The relatively abundant small grains have a high
boundary curvature and quickly disappear. Yet many new
small grains constantly appear because in the model every
grain has the same chance of being split, independent of its
size. The effect of the widening of the grain-size spectrum is
an increase in the growth rate that balances the split rate in

Fig. 3. (a) Growth curves for models of pure static grain growth. For
M� =3.2� 10–3, 6.4� 10–3 and 3.2� 10–2mm2 a–1, the average
grain area increases linearly with time. (b) Plot of k values measured
from simulations as a function of the set value of M�. The slope of
1.22 is the value of k0.

Fig. 2. Basic structure of the Elle model. The model consists of
polygons which represent grains, and these polygons are in turn
defined by boundary nodes (a) that are connected by straight
boundary segments. Only boundary nodes with two or three
neighbours are allowed in the model. The boundary nodes can
move (b) and their movement is determined by the curvature of the
boundary of the polygon at that point. Grains are split by the
introduction of a new straight boundary that links two existing
nodes (c).

Roessiger and others: Grain growth versus grain-size reduction in polar ice944

Equation (4). This can be seen if one stops the splitting when a
stable grain size has settled but grain growth is allowed to
continue (Fig. 7). The initial growth rate is over three times
higher than the stable growth rate that is reached after the
mean grain area has about quadrupled. This implies that the
factor k0 is not a constant, but a function of the micro-
structure. For the stable foam texture that results from static
grain growth only, k0 is 1.22. When the microstructure is the
result of a competition and random splitting, the effective
value of k0 increases to 4.2 (an increase by a factor of 3.5).

DISCUSSION
The modelling in this paper is in no way intended to argue
that the microstructure and grain size of the upper hundreds
of metres of polar ice is determined by a balance of static
grain growth and a constant grain-splitting rate. For this
reason, we do not attempt to fit the results of the numerical
simulations to obtain a growth constant or an average split
rate of once every so many years. The dynamics of rotational
recrystallization are much more complex (Faria and
Kipfstuhl, 2004; Weikusat and others, 2011) than can be
grasped by a simple constant split rate that is equally applied
to all grains.

The intention of this paper is to show one of the pitfalls of
numerical simulations that do not include the effect of

Fig. 4. Results of numerical simulations with Elle. (a) Static grain growth only, for 6500 years and M� =3.2� 10–3mm2 a–1. (b) Simulation
with same starting aggregate and settings as for (a), but with splitting at a constant f=1.54� 10–3 a–1 added, which leads to the
establishment of a stable grain size after �4000 years, and a different microstructure compared to static grain growth. Size of box is
72mm � 72mm.

Fig. 5 Evolution of the average grain diameter with time. Static grain
growth (M� =3.2� 10–3mm2 a–1) results in a linear increase of grain
diameter (dotted line) (Fig. 4a). Adding a constant split rate
(f=1.54� 10–3 a–1) for all grains (Fig. 4b) results in the establishment
of a stable average grain diameter (dash-dot line). Applying the same
settings to an initially large grain microstructure (dashed line) results
in the same steady state as for the initially small grainmicrostructure.
For comparison the data from the NorthGRIP core (Fig. 1) have been
plotted as well (squares) along with their fit (solid line).

Roessiger and others: Grain growth versus grain-size reduction in polar ice 945

microstructure. The simple analytical model of growth
versus splitting produces a curve that can be fitted to data
from ice cores. At first sight, it appears that the use of a
simple splitting constant, f, would be the most problematic
simplification. However, our simulations show another
simplification that is rarely considered, namely lack of
coupling between the growth ‘constant’, k0, and f. The
parameter k0 is determined by the microstructure. As the
microstructure is a variable, k0 is not a constant, but a
variable as well. This observation is of importance because
many models that incorporate grain growth, assume k0 to be
constant (Cotterill and Mould, 1976; Randle and others,
1986; Montagnat and Duval, 2000). The numerical simula-
tions show that changing the grain-size distribution from
normal to approximately log-normal increases k0 by a factor
of �3.5. Clearly, other factors may influence k0, such as
grain boundary morphology and grain shape.

The simulation of static grain growth shows that the
resulting grain-size distribution is relatively narrow. A
normal distribution of measured grain diameters is predicted
for static grain growth (Humphreys and Hatherly, 1996).
However, grain diameter distributions in ice are usually log-
normal, even at relatively shallow depths (Arnaud and
others, 1998), for example at 115m depth in the NorthGRIP
core (Thorsteinsson and others, 1997; Svensson and others,
2003). This indicates that the microstructure of ice is already
strongly affected by processes other than only static grain
growth, well above the transition to a stable grain size. This
observation supports the suggestion by various authors
(Kipfstuhl and others, 2006, 2009; Durand and others,
2008; Weikusat and others, 2009a,b) that dynamic recrys-
tallization and other processes (Arnaud and others, 2000;
Faria and others, 2010) already commence at relatively
shallow depth.

The observation that k0 is dependent on the microstruc-
ture may have consequences for the interpretation of grain
growth experiments to determine the growth exponent n. If
the experiment is started with a non-equilibrium micro-
structure, k0 may initially be much higher. As the micro-
structure stabilizes to that characteristic of static grain
growth, k0 decreases (Fig. 7). If the initial phase of

microstructural equilibration is included in an analysis
where k is assumed to be constant, one would erroneously
obtain an exponent n that is larger than the real value. For
example, the applicable value for k0 in a polar ice cap
would be different from one obtained in a static grain growth
experiment, because the microstructure, and hence grain
growth in nature, is influenced by additional factors, such as
dynamic recrystallization, presence of impurities and
bubbles (Cuffey and others, 2000).

CONCLUSIONS
We simulated the process of pure static grain growth and
grain growth in competition with another process, namely
splitting grains at a constant rate. The numerical simulations
show that the growth parameter k0, normally taken to be a
constant, is in fact a function of the microstructure. When

Fig. 7. (a) Grain growth experiment (M� =3.2� 10–3mm2 a–1)
where splitting (f=1.54� 10–3 a–1) is turned off after 6500 years.
The dashed line shows the growth rate of k0 = 1.22, which is
achieved �4000 years after splitting is stopped, at which stage a
foam texture has been established. Just after stopping the splitting,
the growth rate is much higher, corresponding to k0 = 4.2.
(b) Detailed plot of the experiment in Figure 7a after 6500 years
(splitting has been stopped). Equation (1) has been fitted to the
experimental curve, giving apparent k and n values that are
incorrect: napp is 2.79 instead of 2 and kapp � is 6.29� 10–3 instead
of 3.90� 10–3mm2 a–1.

Fig. 6. Normalized frequency distributions of grain diameter. Solid
line is the average of 16 simulations of only static grain growth
(Fig. 4a). Dashed line is for eight simulations after a steady state has
been reached by the competition of static grain growth and splitting
(Fig. 4b).

Roessiger and others: Grain growth versus grain-size reduction in polar ice946

the microstructure is only affected by static grain growth, k0
is 1.22. The change in microstructure resulting from
additional splitting increases k0 by a factor of �3.5.

The numerical simulations show that the log-normal
grain-size distributions observed in polar ice at shallow
depth (�100m) are not in accordance with the expected
distributions for static grain growth. At least one other
process must operate to widen and skew the distribution
towards a log-normal distribution. This supports the idea that
dynamic recrystallization already operates and influences
the microstructure at shallow depth.

The growth exponent and grain boundary properties
(surface energy and mobility) are usually determined from
experimental growth curves. If the microstructure changes
during these experiments, k0 should not be assumed
constant. Making this assumption leads to an overestimate
of the growth exponent n.

ACKNOWLEDGEMENT
We gratefully acknowledge funding by the German
Research Foundation (DFG) project BO-1776/7.

REFERENCES
Alley, R.B. 1992. Flow-law hypotheses for ice-sheet modeling.

J. Glaciol., 38(129), 245–256.
Alley, R.B., J.H. Perepezko and C.R. Bentley. 1986. Grain growth in

polar ice: I. Theory. J. Glaciol., 32(112), 415–424.
Alley, R.B., A.J. Gow and D.A. Meese. 1995. Mapping c-axis

fabrics to study physical processes in ice. J. Glaciol., 41(137),
197–203.

Anderson, M.P. 1986. Simulation of grain growth in two and three
dimensions. In Hansen, N., D. Juul Jensen, T. Leffers and
B. Ralph, eds. Annealing processes: recovery, recrystallization
and grain growth. Proceedings of the 7th Risø International
Symposium on Metallurgy and Materials, Roskilde, Denmark.
Roskilde, Risø National Laboratory, 15–34.

Arnaud, L., M. Gay, J.M. Barnola and P. Duval. 1998. Imaging of
firn and bubbly ice in coaxial reflected light: a new technique
for the characterization of these porous media. J. Glaciol.,
44(147), 326–332.

Arnaud, L., J.M. Barnola and P. Duval. 2000. Physical modeling of
the densification of snow/firn and ice in the upper part of polar
ice sheets. In Hondoh, T., ed. Physics of ice core records.
Sapporo, Hokkaido University Press, 285–305.

Becker, J.K., P.D. Bons and M.W. Jessell. 2008. A new front-tracking
method to model anisotropic grain and phase boundary motion
in rocks. Comput. Geosci., 34(3), 201–212.

Bons, P.D., M.W. Jessell, L. Evans, T. Barr and K. Stüwe. 2001.
Modelling of anisotropic grain growth in minerals. In Koyi, H.A.
and N.S. Mancktelow, eds. Tectonic modeling: a volume in
honor of Hans Ramberg. Boulder, CO, Geological Society of
America, 45–49. (Memoir 193.)

Bons, P.D., D. Koehn and M.W. Jessell, eds. 2008. Microdynamics
simulation. Berlin, Springer-Verlag. (Lecture Notes in Earth
Sciences 106.)

Cotterill, P. and P.R. Mould. 1976. Recrystallization and grain
growth in metals. New York, Wiley.

Cuffey, K.M., T. Thorsteinsson and E.D. Waddington. 2000. A
renewed argument for crystal size control of ice sheet strain
rates. J. Geophys. Res., 105(B12), 27,889–27,894.

De La Chapelle, S., O. Castelnau, V. Lipenkov and P. Duval. 1998.
Dynamic recrystallization and texture development in ice as
revealed by the study of deep ice cores in Antarctica and
Greenland. J. Geophys. Res., 103(B3), 5091–5105.

Durand, G. and 10 others. 2006. Effect of impurities on grain
growth in cold ice sheets. J. Geophys. Res., 111(F1), F01015.
(10.1029/2005JF000320.)

Durand, G., A. Perrson, D. Samyn and A. Svensson. 2008. Relation
between neighbouring grains in the upper part of the NorthGRIP
ice core – implications for rotation recrystallization. Earth
Planet. Sci. Lett., 265(3–4), 666–671.

Duval, P. 2000. Deformation and dynamic recrystallization of ice in
polar ice sheets. In Hondoh, T., ed. Physics of ice core records.
Sapporo, Hokkaido University Press, 103–113.

Duval, P. and O. Castelnau. 1995. Dynamic recrystallization of ice
in polar ice sheets. J. Phys. IV [Paris], 5(C3), 197–205.

Duval, P., M.F. Ashby and I. Anderman. 1983. Rate-controlling
processes in the creep of polycrystalline ice. J. Phys. Chem.,
87(21), 4066–4074.

Faria, S.H. and S. Kipfstuhl. 2004. Preferred slip-band orientations
and bending observed in the Dome Concordia (East Antarctica)
ice core. Ann. Glaciol., 39, 386–390.

Faria, S.H., D. Ktitarev and K. Hutter. 2002. Modelling evolution of
anisotropy in fabric and texture of polar ice. Ann. Glaciol., 35,
545–551.

Faria, S.H., J. Freitag and S. Kipfstuhl. 2010. Polar ice structure and
the integrity of ice-core paleoclimate records. Quat. Sci. Rev.,
29(1–2), 338–351.

Glazier, J.A., S.P. Gross and J. Stavans. 1987. Dynamics of two-
dimensional soap froths. Phys. Rev. A, 36(1), 306–312.

Gow, A.J. 1969. On the rates of growth of grains and crystals in
South Polar firn. J. Glaciol., 8(53), 241–252.

Gow, A.J. and T. Williamson. 1976. Rheological implications of the
internal structure and crystal fabrics of the West Antarctic ice
sheet as revealed by deep core drilling at Byrd Station. Geol.
Soc. Am. Bull., 87(12), 1665–1677.

Gow, A.J. and 6 others. 1997. Physical and structural properties of
the Greenland Ice Sheet Project 2 ice cores: a review.
J. Geophys. Res., 102(C12), 26,559–26,575.

Herron, S.L. and C.C. Langway, Jr. 1982. A comparison of ice
fabrics and textures at Camp Century, Greenland and Byrd
Station, Antarctica. Ann. Glaciol., 3, 118–124.

Houseman, G., T. Barr and L. Evans. 2008. Basil: stress and
deformation in a viscous material. In Bons, P.D., D. Koehn and
M.W. Jessell, eds. Microdynamics simulation. Berlin, Springer-
Verlag, 139–154. (Lecture Notes in Earth Sciences 106.)

Humphreys, F.J. and M. Hatherly. 1996. Recrystallization and
related annealing phenomena. Oxford, Pergamon.

Jessell, M.W. and P.D. Bons. 2002. The numerical simulation of
microstructure. In de Meer, S., M.R. Drury, J.H.P. de Bresser and
G.M. Pennock, eds. Deformation mechanisms, rheology and
tectonics: current status and future perspectives. London,
Geological Society, 137–147. (Special Publication 200.)

Jessell, M., P. Bons, L. Evans, T. Barr and K. Stüwe. 2001. Elle: the
numerical simulation of metamorphic and deformation micro-
structures. Comput. Geosci., 27(1), 17–30.

Jessell, M.W., E. Siebert, P.D. Bons, L. Evans and S. Piazolo. 2005. A
new type of numerical experiment on the spatial and temporal
patterns of localization of deformation in a material with a
coupling of grain size and rheology. Earth Planet. Sci. Lett.,
239(3–4), 309–326.

Kipfstuhl, S. and 6 others. 2006. Microstructure mapping: a
new method for imaging deformation-induced microstructural
features of ice on the grain scale. J. Glaciol., 52(178),
398–406.

Kipfstuhl, S. and 8 others. 2009. Evidence of dynamic recrystalliza-
tion in polar firn. J. Geophys. Res., 114(B5), B05204. (10.1029/
2008JB005583.)

Lipenkov, V.Ya., N.I. Barkov, P. Duval and P. Pimienta. 1989.
Crystalline texture of the 2083 m ice core at Vostok Station,
Antarctica. J. Glaciol., 35(121), 392–398.

Mathiesen, J. and 6 others. 2004. Dynamics of crystal formation in
the Greenland NorthGRIP ice core. J. Glaciol., 50(170),
325–328.

Roessiger and others: Grain growth versus grain-size reduction in polar ice 947

Montagnat, M. and P. Duval. 2000. Rate controlling processes in
the creep of polar ice: influence of grain boundary migration
associated with recrystallization. Earth Planet. Sci. Lett.,
183(1–2), 179–186.

Morland, L.W. 2009. Age–depth correlation, grain growth and
dislocation-density evolution, for three ice cores. J. Glaciol.,
55(190), 345–352.

Mullins, W.W. 1989. Estimation of the geometrical rate constant in
idealized three dimensional grain growth. Acta Metall., 37(11),
2979–2984.

Piazolo, S., P.D. Bons, P.D. Jessell, L. Evans andC.W. Passchier. 2002.
Dominance of microstructural processes and their effect on
microstructural development: insights from numerical modelling
of dynamic recrystallization. In de Meer, S., M.R. Drury, J.H.P. de
Bresser and G.M. Pennock, eds. Deformation mechanisms,
rheology and tectonics: current status and future perspectives.
London, Geological Society. (Special Publication 200.)

Piazolo, S., M.W. Jessell, D.J. Prior and P.D. Bons. 2004. The
integration of experimental in-situ EBSD observations and
numerical simulations: a novel technique of microstructural
process analysis. J. Microsc., 213(3), 273–284.

Placidi, L., S.H. Faria and K. Hutter. 2004. On the role of grain
growth, recrystallization and polygonization in a continuum
theory for anisotropic ice sheets. Ann. Glaciol., 39, 49–52.

Randle, V., B. Ralph and N. Hansen. 1986. Grain growth in
crystalline materials. In Hansen, N., D. Juul Jensen, T. Leffers
and B. Ralph, eds. Annealing processes: recovery, recrystalliza-
tion and grain growth. Proceedings of the 7th Risø International
Symposium on Metallurgy and Materials, Roskilde, Denmark.
Roskilde, Risø National Laboratory, 123–142.

Read, W.T. 1953. Dislocations in crystals. New York, McGraw-Hill.
Smith, C.S. 1964. Some elementary principles of polycrystalline

microstructure. Metall. Rev., 9(33), 1–48.
Svensson, A. and 6 others. 2003. Properties of ice crystals in

NorthGRIP late- to middle-Holocene ice. Ann. Glaciol., 37,
113–122.

Thorsteinsson, T., J. Kipfstuhl and H. Miller. 1997. Textures and
fabrics in the GRIP ice core. J. Geophys. Res., 102(C12),
26,583–26,599.

Urai, J.L., W.D. Means and G.S. Lister. 1986. Dynamic recrystalli-
zation of minerals. In Hobbs, B.E. and H.C. Heard, eds. Mineral
and rock deformation: laboratory studies: the Paterson Volume.
Washington, DC, American Geophysical Union, 161–199.
(Geophysical Monograph 36.)

Weaire, D. and N. Rivier. 2009. Soap, cells and statistics – random
patterns in two dimensions. Contemp. Phys., 50(1), 199–239.

Weikusat, I., S. Kipfstuhl, N. Azuma, S.H. Faria and A. Miyamoto.
2009a. Deformation microstructures in an Antarctic ice core
(EDML) and in experimentally deformed artificial ice. In
Hondoh, T., ed. Physics of ice core records II. Sapporo,
Hokkaido University Press, 115–123. (Low Temperature Science
Supplement Issue 68.)

Weikusat, I., S. Kipfstuhl, S.H. Faria, N. Azuma and A. Miyamoto.
2009b. Subgrain boundaries and related microstructural features
in EDML (Antarctica) deep ice core. J. Glaciol., 55(191),
461–472.

Weikusat, I., A. Miyamoto, S.H. Faria, S. Kipfstuhl, N. Azuma and
T. Hondoh. 2011. Subgrain boundaries in Antarctic ice
quantified by X-ray Laue diffraction. J. Glaciol., 57(201),
111–120.

Weygand, D., Y. Bréchet, J. Lépinoux and W. Gust. 1998. Three
dimensional grain growth: a vertex dynamics simulation. Philos.
Mag. B, 79(5), 703–716.

APPENDIX: DERIVATION OF EQUATIONS (4) AND
(6)
The number, N, of grains per unit volume equals

N ¼ 1
ar3

, ðA1Þ

where a is a shape factor that depends on the shape of
grains. If only static grain growth operates, Equation (A1) can
be combined with Equation (1), which gives, assuming n=2:

N ¼ 1

a kt þ r20
� �3=2 () dN

dt
¼ �3ka

2=3

2
N5=3: ðA2Þ

Adding the effect of splitting Equation (3) has an additional
term, and the number of grains per time is

dN
dt
¼ ��N5=3þ fN, and hence �

Z
dN

�N 5=3� fN
¼
Z
dt, ðA3Þ

where �=3ka2/3/2.
This equation can be solved with the standard indefinite

integral: Z
dx

x xp � bpð Þ ¼
1

pbp ln
xp � bp

xp

� �
: ðA4Þ

By using p ¼ 2=3, f ¼ N and b ¼ f =�ð Þ3=2 the relation
between t and N results in

t ¼ �3
2f

ln
N2=3 � f

�

N2=3

 !
() N�2=3 ¼ �

f
1� e

�2f
3 t

� �
, ðA5Þ

and by using Equation (A1) grain-size evolution finally gives

r2 ¼ 3k
2f

1� e
�2f
3 t

� �
: ðA6Þ

Note that variable � is replaced by full expression (A3), and
the shape factor, a, used in Equation (A1) is cancelled out of
the equation.

The derivation of Equation (6) for two dimensions is
similar to the above. In two dimensions, Equation (1) still
holds and if n=2 we can write for the mean grain area, A:

A� A0 ¼ kt : ðA7Þ
The number, N, of grains per unit area equals 1/A, which
gives

N ¼ 1
kt þ A0

: ðA8Þ

Taking the time derivative and adding the increase in
number of grains as a result of constant splitting, Equation (3)
results in:

dN
dt
¼ �k
ðkt þ A0Þ2

þ fN ¼ �kN2 þ fN: ðA9Þ

The last equation can be solved with the indefinite integral
of Equation (A4) to obtain:

1
N
¼ A ¼ k

f
1� e�ft
� �

: ðA10Þ

MS received 31 January 2011 and accepted in revised form 25 July 2011

Roessiger and others: Grain growth versus grain-size reduction in polar ice948

Numerical Modelling of Ice Microstructures

A P P E N D I X 2

INFLUENCE OF BUBBLES ON GRAIN GROWTH IN ICE

Jens Rößiger - 2013 Page A2

Influence of bubbles on grain growth in ice

Jens Roessiger a, Paul D. Bons a,*, Sérgio H. Faria b,c

aDepartment for Geosciences, Eberhard Karls University, Wilhelmstraße 56, 72074 Tübingen, Germany
bBasque Centre for Climate Change (BC3), Alameda Urquijo 4, 48008 Bilbao, Spain
c Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain

a r t i c l e i n f o

Article history:
Received 29 March 2012
Received in revised form
16 October 2012
Accepted 11 November 2012
Available online xxx

Keywords:
Grain growth
Growth exponent
Growth constant
Ice
Numerical simulations
Two phase

a b s t r a c t

Numerical static grain growth simulations of ice with air bubbles as a second phase show a significant
drop in grain-growth rate compared to bubble-free ice. The magnitude of this drop in growth rate is
dependent on the bubble boundary mobility, the volume fraction of air, the average bubble size and the
bubble size distribution. The rate of grain growth decreases at first, as the microstructure evolves
towards a steady state. Only then does grain growth follow the expected linear increase of mean grain
area with time. In experiments, this decrease in growth rate could erroneously be interpreted as growth
with a deviating growth exponent.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Natural ice is rarely a single-phasematerial. It generally contains
chemical impurities and dust, as well as air inclusions. In glaciers
and ice sheets, air is trapped in the form of bubbles during the
compaction from snow to firn to ice (Arnaud et al., 2000). In lake- or
sea-ice, air bubbles may also occur due to gas accumulations along
the watereice interface (Schulson and Duval, 2009). With ongoing
burial, air bubbles are compressed and may eventually convert to
clathrates, in a transition zone that for polar ice sheets lies
approximately in the range 600e1200m depth (Barnes et al., 2002;
Faria et al., 2009; Hondoh, 2009; Lipenkov et al., 1992). Air bubbles,
clathrates, dust and other chemical impurities all influence
recrystallisation of ice (Durand et al., 2006; Faria et al., 2010). While
one expects that small particles such as microscopic inclusions and
clathrates may mostly modify the grain boundary velocity, air
bubbles form a significant volume fraction in the upper few
hundred meters of ice sheets and glaciers, and could therefore
influence recrystallisation even more (Arena et al., 1997; Azuma
et al., 2012).

Grain size increases significantly in the upper few hundred
metres of polar ice sheets (De La Chapelle et al., 1998). The increase
in grain size is assumed to be driven by a reduction of grain
boundary surface energy, a process usually termed static or normal
grain growth (Alley et al., 1986a; Smith, 1964). This process is
thought to dominate over flow-induced dynamic recrystallisation
or polygonisation (Urai et al., 1986), which increasingly affects the
ice microstructure with depth (Alley, 1992; Duval and Castelnau,
1995; Faria et al., 2002). The depth at which dynamic recrystalli-
sation becomes significant is still under debate (Kipfstuhl et al.,
2009). The stabilisation of grain size at depth has been observed
in several deep ice cores. It is thought to result from a balance
between grain growth and grain size reduction by dynamic
recrystallisation (Gow et al., 1997; Gow and Williamson, 1976;
Mathiesen et al., 2004; Montagnat and Duval, 2000; Thorsteinsson
et al., 1997). Such a dynamic equilibrium between grain size
increase and decrease is also invoked to explain grain sizes in other
minerals, for example olivine, in deforming rocks (Herwegh and
Handy, 1996; De Bresser et al., 2001).

Knowledge of the rate of grain size increase by grain growth is of
clear relevance to be able to interpret grain sizes, grain size
evolution and microstructures (Urai et al., 1986; Stöckhert and
Duyster, 1999; Herwegh and Berger, 2003; Herwegh et al., 2011;
etc.). The increase of grain size (diameter Dt) with time (t) from an
initial size (D0) is usually expressed in the form (Anderson, 1986;
Glazier et al., 1987; Evans et al., 2001):

* Corresponding author. Tel.: þ49 70712976469; fax: þ49 7071293060.
E-mail addresses: roessiger@gmail.com (J. Roessiger), paul.bons@uni-

tuebingen.de (P.D. Bons), sergio.faria@bc3research.org (S.H. Faria).

Contents lists available at SciVerse ScienceDirect

Journal of Structural Geology

journal homepage: www.elsevier .com/locate/ jsg

0191-8141/$ e see front matter � 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.jsg.2012.11.003

Journal of Structural Geology xxx (2012) 1e10

Please cite this article in press as: Roessiger, J., et al., Influence of bubbles on grain growth in ice, Journal of Structural Geology (2012), http://
dx.doi.org/10.1016/j.jsg.2012.11.003

Dn
t � Dn

0 ¼ kt with Dn
t zktðif D0 << DtÞ (1)

The growth parameter (k) is determined by the grain boundary
energy (g) and the grain boundary mobility (M) with k ¼ k0Mg.
M [m2s/kg] and g [kg/s2] are material properties. The temperat-
ure dependence of k is determined by the activation energy Q
(since kfexp�Q=RT, with R the universal gas constant and T the
absolute temperature). In the literature, Q is assumed to be about
40e50 kJ/mol, which is based on observations on polar ice sheets
(Gow, 1969, 1971; Paterson, 1994). Recent experiments by Azuma
et al. (2012) indicate that Q for pure ice is much higher at about
110e120 kJ/mol.

The dimensionless parameter k0 is usually assumed constant
with a theoretical value of k0 ¼ 4.48 or 2 in a two- or three-
dimensional aggregate, respectively (Mullins, 1989). However, in
reality k0 is not a constant, but depends on the microstructure
(Arena et al., 1997; Roessiger et al., 2011). Only if the microstructure
is a foam texture will k0 equal the theoretical value. The growth
exponent (n) depends on the grain growthmechanism (Evans et al.,
2001). In a pure grain aggregate, grain growth is controlled by the
curvature of grain boundaries. If all boundaries have the same
mobility, the growth exponent should be two. This can be derived
from a simple dimension analysis, considering that the unit of k is
m2/s. Inserting this in Eq. (1) gives n ¼ 2.

In impure grain aggregates, grain growth is a much more
complicated process, due to the interaction between the grains and
the impurities (Herwegh et al., 2011 and references therein).
Impurities, such as dust particles, chemical impurities, or second
phases such as air bubbles, may hinder or completely stop grain
boundary movement (Zener pinning; Olgaard and Evans, 1986,
1988; Brodhag and Herwegh, 2010). If impurities inhibit grain
boundary movement, growth comes to a complete halt when all
boundaries are pinned (Weygand et al., 1999; Herwegh et al., 2011).
In this case equation (1) does not apply, but grain size will
asymptotically approach a fully pinned state. The maximum grain
size (Dmax) is usually related to the fraction of second phase (f) and
the size of the second phase particles or regions (ds) by the Zener
equation, where z is a scaling parameter:

Dmax ¼ z
ds
f m

(2)

See Olgaard and Evans (1986), Manohar et al. (1998) and Evans
et al. (2001) for the background of the Zener equation and varia-
tions proposed in the literature.

If particles can be dragged along by the boundaries (Zener drag),
the boundaries keep moving, but at a reduced rate as they accu-
mulate more and more particles. If the second phase occupies
a significant fraction of the material, as is the case for air bubbles in
ice, the overall growth rate is assumed to be controlled by the
increase in ds of the minor phase (Hiraga et al., 2010a). In a two-
phase material, such as ice with air bubbles, grains and bubbles
represent phase regions. Isolated phase regions (air bubbles) can
grow by two basic mechanisms:

� Diffusional material transfer between phase regions. The
driving force for this is the higher surface energy of small
compared to large phase regions, which have a larger radius of
curvature (Ostwald ripening). If transport is by volume diffu-
sion, theory predicts a growth exponent n ¼ 3, while n ¼ 4 is
expected for grain-boundary diffusion (Evans et al., 2001).
However, much higher growth exponents have been reported
in the literature (Hiraga et al., 2010a; Ohuchi and Nakamura,
2007; Olgaard and Evans, 1988; Tullis and Yund, 1982;
Yamazaki et al., 1996).

� Migration andmerging of phase regions. Grain boundaries may
drag phase regions, which may lead to them merging to form
larger volumes (Brodhag and Herwegh, 2010). No diffusional
exchange between phase regions is required for this
mechanism.

Depending on the mechanism of migration of the second phase,
surface-energy driven grain growth does not necessarily follow the
normal grain growth law (Eq. (1)). For example, in case of migration
of bubbles in ice, the migration rate is a function of bubble radius,
diffusivity of water molecules in air, etc. (Hsueh et al., 1982; Alley
et al., 1986a). In this case, the growth rate (dD/dt) is no longer
proportional to 1/D (Eq. (12) in Azuma et al., 2012) and if Eq. (1)
were to be applied, high apparent growth exponents are the result.

Few studies on grain growth in ice specifically address the
influence of air bubbles (Arena et al., 1997; Azuma et al., 2012). It is
usually assumed that grain boundary migration in nature is in the
fast migration regime, also called regime 2 (Alley et al., 1986b). In
this regime, migrating boundaries can sweep across bubbles and
these do not remain on the boundaries but slow them down. The
inferred regime 2 migration is based on the observation that air
bubbles occur inside ice grains (Alley et al., 1986b). However, in the
upper part of polar ice sheets, around the firneice transition, most
bubbles are actually residing on grain boundaries (Arnaud et al.,
1998; Kipfstuhl et al., 2009), which suggests that boundaries can
usually not sweep across bubbles and leave them behind.

In this paper we investigate grain growth in ice with air bubbles
with numerical simulations. Our model only includes grain
boundary migration driven by the reduction in grain boundary
curvature and thus excludes air transfer between air bubbles
(Ostwald ripening). Rather than attempting to provide a grain-
growth law for ice, as a function of parameters such as bubble
content, temperature, etc., we discuss the behaviour of a two-phase
grain aggregate, with particular attention to the influence of the
two-phase (iceeair) boundary mobility relative to the single-phase
(iceeice) boundary mobility.

2. Method

For our simulations we used the open-source modelling soft-
ware package Elle (Bons et al., 2008; Jessell et al., 2001; Piazolo
et al., 2010). It has been used for the simulation of recrystallisa-
tion processes in ice, rock-forming minerals, and partially molten
rocks (Becker et al., 2008; Bons et al., 2001; Jessell et al., 2003;
Piazolo et al., 2004; Roessiger et al., 2011). The 2-dimensional
microstructure is defined by a contiguous set of polygons (termed
flynns) that are themselves defined by boundary nodes (termed
bnodes). Bnodes are linked to two or three neighbours by straight
segments (Fig.1). Spatial resolution is defined by the switch distance
(Dsw), here set at 0.005 of the unit-sized square model. Spacing
between bnodes is held between 1 and 2.2� Dsw by either inserting
or removing bnodes when they are too far apart or too close,
respectively. With a starting grain aggregate of about 420 grains,
this means that grains have on average about 26 bnodes. A neigh-
bour switch is induced when two converging grain boundary triple
junctions are less than Dsw apart. Attributes can be assigned to both
boundaries and flynns. Flynns represent individual ice grains or air
bubbles. Boundaries can be (1) iceeice grain boundaries, (2) iceeair
interfaces, or (3) aireair boundaries, which are sometimes neces-
sary for numerical reasons, but have no physical meaning. Periodic
boundary conditions are applied in both horizontal and vertical
directions, meaning that a grain boundary that reaches the left or
bottom edge continues its motion on the right or top edge,
respectively. The model can thus be considered a unit cell in an
infinite grain aggregate.

J. Roessiger et al. / Journal of Structural Geology xxx (2012) 1e102

Please cite this article in press as: Roessiger, J., et al., Influence of bubbles on grain growth in ice, Journal of Structural Geology (2012), http://
dx.doi.org/10.1016/j.jsg.2012.11.003

2.1. Movement of single-phase iceeice boundaries

The model aims to simulate grain growth that is driven by
a reduction of surface energy, based on the algorithm of Becker
et al. (2008). No air transfer by diffusion between individual
bubbles is incorporated in the model. Each program cycle, each
bnode is moved over a small distance, representing the boundary
movement during a small time increment. For iceeice boundaries,
movement is solely determined by the reduction of surface energy.
For a given bnode, four orthogonal trial positions at very small
distances from the original bnode position are carried out and the
total boundary length for these positions is calculated. The total
free energy (E(j)) for each j-th trial position is simply the product of
the distances (S) to the two or three neighbouring bnodes, multi-
plied by the iceeice surface energy (gii), here set at 0.065 J/m2

(Ketcham and Hobbs, 1969):

EðjÞ ¼ gii
X

SðjÞ (3)

The driving force for boundary migration is the spatial gradient
in free energy, which can be calculated from the four E(j) values. The
direction of bnode movement is thus determined by calculating the
direction of highest negative free-energy gradient (Fig. 2a). The
velocity (v) of a boundary is proportional to the driving stress (s)
and the boundary mobility (Mii), another material property that is

modified for several experiments. The driving stress is calculated
from the driving force, by taking into account the length and
orientations of the boundary segments this force acts on. The third
dimension is assumed to be unity which then drops out from the
equation again. The bnode is finally moved over a small distance
(Dx) for a small time increment (Dt) with:

Dx ¼ MiisDt (4)

A more detailed description of this node movement algorithm
can be found in Becker et al. (2008) and Bons et al. (2008).

2.2. Movement of two-phase iceeair boundaries

For the two-phase (iceeair) boundaries an additional factor that
influences boundary velocity and direction is the conservation of
mass requirement. In the model, with no mass transfer between air
bubbles, this implies conserving the cross-sectional area of each
bubble. Movement of a single iceeair bnode, however, normally
involves changing the areas of the adjacent air and ice flynns and,
therefore, a small violation of the conservation of mass require-
ment. Not allowing this would freeze the iceeair bnodes in the
model. In reality, cross-sectional area changes by inward bubble
surface migration at one side of a bubble would be compensated by
outward migration at another side. Since bnode movements are

Fig. 2. Explanation of the node movement routine. (a) Local geometry around node (C) that will be moved. Nodes are moved one by one, while all other nodes remain fixed during
a single node movement. (b) The boundary-energy (FBE) field around node C. With the current surface energy settings, the lowest energy position for the node is at location S. The
lower part shows the free energy (E) profile along the x-axis (dashed line). The free-energy gradient causes movement of the node in the direction of S. (c) The area-energy (FAE)
field around a node at C. Only movement of the node along a line parallel to the line connecting the neighbour iceeair boundary nodes is area conservative. Different movement will
change the area and hence the free energy of the system, as illustrated in the free-energy profile. (d) The combination of both energy fields gives the total energy (FTE) field, which
drives the node down the steepest gradient of this field (arrow F

!
TE).

Fig. 1. (a) The Elle data structure consists of polygons, termed flynns. (b) In detail the boundaries consist of nodes (bnodes) which can have either two or three neighbours (circles
and squares, respectively). If two triple nodes get closer together than the switch distance (e.g. when polygons 2 and 4 are shrinking), a neighbour switch is induced. After the
switch polygons 2 and 4 are no longer neighbours and can shrink further. Double nodes are removed or inserted if they are too close or too far apart.

J. Roessiger et al. / Journal of Structural Geology xxx (2012) 1e10 3

Please cite this article in press as: Roessiger, J., et al., Influence of bubbles on grain growth in ice, Journal of Structural Geology (2012), http://
dx.doi.org/10.1016/j.jsg.2012.11.003

calculated and carried out one by one, an additional energy term
needs to be incorporated in Eq. (3).

Again, we take four trial positions and calculate their effect
on total surface energy (Esurf). However (gii) is now different for
iceeice and iceeair boundaries. Additionally, the bubble cross-
sectional area (A(j)) is calculated every cycle. It results from bnode
movement, and is normalised by the original area (A0) of the
bubble, which is stored as an attribute of the air flynn. The total free
energy for each of j trial positions is now calculated with:

EðjÞ ¼ EsurfðjÞ þ a
�
AðjÞ � A0

A0

�b

(5)

The parameter a (set to 0.01) determines the magnitude of the
contribution of bubble area changes to the total surface energy. The
parameter b (set to 2) determines the sensitivity of the energy to
changes in the bubble original cross-sectional area. This routine
effectively simulates the compressibility of air in a bubble. Surface
energy drives inward movement of the bubble surface, which
would compress the enclosed air and increase the pressure. The
pressure increasingly counteracts shrinkage of the bubble, until
equilibrium is reached and the bubble overpressure balances
the surface tension (Fig. 2b). Once the free energy gradient of the
iceeair bnode is calculated with Eq. (5), the bnode movement is
calculated in the same way as for an iceeice bnode, but taking into
account the different mobilities of the iceeice and iceeair
boundaries.

2.3. Topological events

Starting with an initial microstructure (Fig. 3), the program goes
through 80,000 cycles. At the beginning of each cycle, the index
number of each bnode is randomized. Next, the program goes
through this randomized list of bnodes and treats each one by one.
This ensures that each bnode is treated once, but in a different order
every time step. For each bnode, displacement is calculated and
carried out immediately. After eachmovement, the program carries
out a number of checks. It first determines whether the displace-
ment is permissible, i.e. does not cause boundary segments to cross
each other. The second check is whether topological changes need
to be carried out. If two triple junctions approach each other to less
than the switch distance (Dsw), a neighbour switch (Fig. 1b) is
induced by re-ordering the links to neighbouring bnodes. A grain is
removed if it consists of only three triple junctions and is below
a set threshold in size. With individual grains disappearing during
a simulation, the average grain size increases with time.

Neighbour switches can lead to two air flynns becoming
neighbours, which leads to the creation of an aireair boundary,
without physical meaning. The air bubble now consists of a cluster
of flynns. The original cross-sectional area (A0) of the new, merged
bubble is the sum of the original areas of the two merged flynns.
This value is attributed to all flynns in the cluster. In the simula-
tions, aireair boundaries are treated in the same way as iceeice
boundaries. They are given a very low surface energy (20 times
lower than gii), so that they do not influence the shape of air
bubbles. A high mobility (1.2 times the ice-air boundary mobility)
ensures that aireair bnodes/segments/boundaries can still move
(and usually disappear in the end) and do not control the mobility
of bubble-surface bnodes, as the boundary velocity is controlled by
the least mobile segments.

2.4. Settings

Grain boundary surface energy of iceeice boundaries is
reasonably well constrained at about 0.065 J/m2 (Ketcham and

Hobbs, 1969). Considering that the ice lattice is highly anisotropic,
it is to be expected that the surface energy is actually a function of
its orientation relative to the two adjacent crystal lattice orienta-
tions (Bons et al., 2001). The equigranular shape of statically
recrystallised ice grains, however, suggests that surface energy
anisotropy is not strong in ice. For simplicity, this effect was
therefore ignored and all iceeice boundaries were given the
constant surface energy of 0.065 J/m2. The surface energy of iceeair
boundaries cannot be constrained well from the literature.
However, the spherical shape of air bubbles in ice indicates a high
dihedral angle at iceeair grain boundary triple junctions. The
dihedral angle (u) is a function of the iceeice and iceeair surface
energies (gii and gia):

u ¼ 2$cos�1
�

gii
2$gia

�
(6)

In all simulations, gia was set at eight times (0.52 J/m2) that of
iceeice boundaries, giving a dihedral angle of 173� and almost
circular air bubbles.

Azuma et al. (2012) experimentally determined the growth
constant for pure ice down to �40 �C. Using their 113 kJ/mol acti-
vation energy, k at �32 �C is 7.9 10�14 m2/s, which is one or two
orders of magnitude higher than values commonly used in the
literature (Petit et al., 1987; Paterson, 1994; Thorsteinsson et al.,
1997; Arena et al., 1997). The temperature of �32 �C was chosen
as it was the temperature used by Mathiesen et al. (2004) for their
modelling of grain size evolution in the upper 880 m of the North
Greenland Icecore Project (NorthGRIP). Using k0 ¼ 2 (for three-
dimensional growth) and gii ¼ 0.065 J/m2, this gives
Mii ¼ 6.07$10�13 m2 s/kg. We set the model size at 4 � 4 cm, giving
a starting grain diameter of about 2 mm, again comparable to the
NorthGRIP data. To achieve the same growth rate, k, at the same gii
in our 2-dimensional simulations (k0 ¼ 4.48), we use a time step of
0.79 h in the calculations and a numerical mobility of iceeice
boundaries of Mii ¼ 2.70$10�13 m2 s/kg. For the mobility of icee
air boundaries (Mia) we ran a series of simulations at different
ratios R ¼ Mia/Mii of 10, 1, 0.1 and 0.01. This way, we could inves-
tigate the effect of very immobile versus very mobile iceeair
boundaries, relative to iceeice boundaries.

Three starting models were used for the simulations. The first is
a foam texture with 420 grains and no air bubbles. This model
serves as a reference to determine the grain growth parameter (k in
Eq. (1)). The secondmodel is the same foam texturewith 530 equal-
sized bubbles occupying an area fraction of 7%, while the third
model has 134 equal-sized bubbles and an area fraction of 14%. The
main difference between models 2 and 3 is that many iceeice grain
boundaries in model 3 are bubble-free, while virtually all iceeice
boundaries in model 2 carry one or more bubbles. It should be
noted that the model does not allow flynns within flynns, and
hence all bubbles are and remain on iceeice boundaries. The
numerical model can clearly be scaled to any size (with appropriate
concomitant scaling of the time step). Herewe set the model size at
40 � 40 mm, which means that the average initial ice grain
diameter is 2 mm and that of the bubbles is 0.5 mm and 1.4 mm in
models 2 and 3, respectively.

3. Results

Simulations for pure, bubble-free ice show a steady increase in
grain size, with D2 proportional to time in accordance with Eq. (1)
(Fig. 3a and Fig. 4 growth). The microstructure started as and
remained a foam texture with approximately 120� angles at triple
junctions and smoothly curved grain boundaries. This reference
experiment shows that the energy minimisation routine indeed

J. Roessiger et al. / Journal of Structural Geology xxx (2012) 1e104

Please cite this article in press as: Roessiger, J., et al., Influence of bubbles on grain growth in ice, Journal of Structural Geology (2012), http://
dx.doi.org/10.1016/j.jsg.2012.11.003

Fig. 3. (a) Three stages of a simulation of growth in bubble-free ice. (b) Results of the numerical simulationwith model 2, where bubbles are much smaller than the average ice grain
size. Top row shows the starting microstructure and two stages of growth for a high mobility ratio (R) of 10. Bottom rows show the final stage for different mobility ratios. Drag and
merging of bubbles at high mobility ratio reduces the number of bubbles and increases their size and size variation. (c) Same as (b), but for model 3 with fewer, but larger bubbles.

Please cite this article in press as: Roessiger, J., et al., Influence of bubbles on grain growth in ice, Journal of Structural Geology (2012), http://
dx.doi.org/10.1016/j.jsg.2012.11.003

gives the results expected from theory and experiments (Glazier
et al., 1987; von Neumann, 1952).

The presence of bubbles slows down grain growth significantly,
even at the highest iceeair mobility (R ¼ 10) (Fig. 3b, c and Fig. 4).
At the beginning of each run, many bubble-free grain boundaries
exist, especially inmodel 3 with large bubbles. These boundaries can
at first migrate relatively unhindered by bubbles. Initial growth rate
is therefore close to thatof bubble-free ice, but thenquickly decreases
as more and more boundaries are slowed down by bubbles. Espe-
cially when a triple junction snaps on to a bubble, it tends to remain
on it. At low R (<1), grain growth quickly slows down and almost
comes to a halt, especially inmodel 2withmany bubbles. This shows
that not only the fraction, but also the size of bubbles is important.

At higher R, grain growth continues, albeit at a slower rate than
for bubble-free ice. Since triple junctions mainly remain on
bubbles, continued growth is only possible when the bubbles
migrate through the material. This occurs since the surface tension
of grain boundaries ending on bubbles effectively pulls on these
bubbles. Unless the grain boundaries are evenly distributed around
the bubble, the net pull on a bubble is non-zero. The bubble can
migrate by removal of ice on one side and deposition on the other.
This process is visualized well in experiments on grain boundary-
induced migration of fluid inclusions by Schmatz et al. (2011).
Migration of bubbles leads to merging of bubbles. This has two
effects: the bubble size and their size range increases. Numerical
simulations by Bons et al. (2004) where spheres were randomly
merged, showed that that process eventually results in a power-law
distribution of sphere sizes. In our simulations we observe a similar
tendency with the development of a few large bubbles and many
small ones (Fig. 3b, c).

According to Eq. (2) growth should stop when the maximum
grain size (Dmax) is reached, which is related to the bubble size (ds)
and bubble fraction (f). At this stage, the ratio Dmax/ds should
remain constant at a fixed f (as is the case in each simulation). This
ratio is plotted against grain size in Fig. 5. After an initial increase,
Dmax/ds settles close to 3 and 4.5 for large and small bubbles,
respectively. The different values reflect the different bubble frac-
tions. Slow mobilities follow the same trend as high mobilities, but
take much longer to reach a steady-state Dmax/ds.

A redistribution and size increase of bubbles (and concomitant
reduction of their number) implies a change in microstructure. The
microstructure in the bubble-free ice simulation did not change
during the simulation. Shape and size distribution at the beginning
and the end of the simulation are identical, except for the length
scale. For simple scaling reasons, D2 must increase linearly with
time, as it indeed does. This is not the case for growth with bubbles,
were the microstructure at the beginning and end of a simulation
change significantly where there was significant grain growth
(higher R). The growth curves are not straight, but curved: dD2/dt
decreases with time. Assuming that the growth exponent (n in Eq.
(1)) remains two, dD2/dt equals k. Fig. 6 shows the normalised slope
of the growth curves (b), using an approximately one year moving
window. The normalised growth rate is dD2/dt divided by that for
bubble-free ice (Arena et al., 1997). Owing to the relatively small
number of grains, there is much noise. However, a clear tendency
for an initial reduction towards a steady-state value of b can be
seen. b is reduced by about one order of magnitude at the highest
ice-air boundary mobility and by almost three orders of magnitude

Fig. 4. Mean grain size evolution of all experiments, shown as squared grain diameter
(D2) against time in years. The single-phase simulations show the expected linear
increase in grain area. The second phase slows down the growth rate in all simulations.
Depending on the mobility ratio (R) between iceeair and iceeice boundaries grain
growth can almost stop.

Fig. 5. Graph of mean grain diameter (Dice) divided by mean bubble diameter (ds) as
a function of Dice. Flattening of the curve indicates that the maximum grain size (Dmax)
for the given bubble size and fraction is reached.

Fig. 6. b values of all simulations as a function of the mobility ratio R. Error bars are
one standard deviation. b values reported by Arena et al. (1997) are indicated with the
grey area.

J. Roessiger et al. / Journal of Structural Geology xxx (2012) 1e106

Please cite this article in press as: Roessiger, J., et al., Influence of bubbles on grain growth in ice, Journal of Structural Geology (2012), http://
dx.doi.org/10.1016/j.jsg.2012.11.003

for the lowest mobility (Fig. 7), which is in the range of b-values
reported by Arena et al. (1997) for artificial bubbly ice and glacial
ice from Byrd station up to a depth of 279 m.

As bubbles coalesce they do not only increase their mean size
(ds), but also their size and spatial distribution. In the Zener equa-
tion (Eq. (2)), this would be reflected in a change in the constant z
and the exponent m, which may explain the decreasing grain/
bubble size ratio at the end of the R � 1 simulations (Fig. 5).

4. Discussion

These numerical simulations do not attempt to model any
specific natural ice occurrence, but rather serve to provide insight
in grain growth behaviour in the presence of a second phase, here
ice with bubbles. Results, however, apply equally well to other
systems (Hiraga et al., 2010a,2010b; Ohuchi and Nakamura, 2007;
Yamazaki et al., 1996). First of all, by varying the relative mobility of
iceeair boundaries, the simulations show that this has a first order
effect on grain growth. It effectively controls the drag rate of the
second phase. At about the same fraction of the second phase, many
small bubbles slow down grain growth more than a few large ones,
in accordance with the Zener equation (Eq. (2)). However, the
bubbles grow by coalescence and thus the maximum grain size
(Dmax) keeps increasing. The trajectory towards a stable grain/
bubble size ratio is the same for all mobilities, but proceeds much
slower at low bubble mobility.

It should be stressed that, in our simulations, bubbles always
stay on grain boundaries and cannot be dropped. Alley et al.
(1986b), Weikusat et al. (2009), and others observed bubbles
inside grains, which means that bubbles in natural ice can be
dropped. However, images of bubbly ice in the upper few hundred
metres of ice sheets, show that the vast majority of bubbles are
actually on grain boundaries (e.g. Fig. 3 in Arnaud et al., 1998). This
is important in determining whether grain boundaries are in the
fast regime (relatively unhindered by dragging particles or bubbles)

or in the slow regime, where drag controls their velocity (Hsueh
et al., 1982; Urai et al., 1986). Although Alley et al. (1986b) argue
that ice recrystallisation is in the fast regime, the microstructures
suggest otherwise, at least for the upper hundreds of metres where
air bubbles are still relatively large. In our simulations dropping of
bubbles would actually rarely occur, even if the code would
potentially allow it. This is because most bubbles are on triple or
more junctions and even if a triple junction would “break away”
from the bubble, the bubble still remains on one or more grain
boundaries. Bubbles on a single boundary also do not get dropped,
because during static grain growth the boundaries remain close to
straight.

The fact that dropped bubbles are observed in natural ice indi-
cates that grain boundary migration is not only driven by surface
energy, but also by internal strain energy. This much higher driving
force (Urai et al., 1986) would lead to a consistent and faster
migration of a boundary, which would allow it to drop a bubble.
Although dynamic recrystallisation in the upper few hundred
meters of ice sheets is controversial, (Alley, 1992; Duval and
Castelnau, 1995; Faria et al., 2002) compelling arguments for it,
even above the firneice transition, were recently published
(Kipfstuhl et al., 2009; see also the review by Faria et al., this issue).

The simulations show three regimes of grain growth. In the first
regime, most boundaries are not slowed down by bubbles and grain
growth rate approximates that of bubble-free ice (D << Dmax;
b � 1). This stage is most noticeable in model 3, where the initial
spacing between bubbles is significantly larger than the average
grain diameter. As grains grow, their mean diameter approaches
that of the bubble spacing and most grain boundaries are hindered
in their movement by bubbles. Grain growth is significantly slowed
down (D z Dmax; b << 1). Drag by grain boundaries leads to
a spatial redistribution of bubbles and merging to a change in the
bubble-size distribution. The Zener parameters z and m change
gradually. This continues until in the third regime a stable micro-
structure (spatial and size distribution of bubbles) is reached, after

Fig. 7. (a) Squared mean grain diameter versus time graphs for pure ice and ice with large bubbles at R ¼ 1 and 10. Grey dots are the simulation results and closed lines the best fit
with Eq. (8). (b) Same as (a) for simulations with small bubbles. (c) b versus time curves derived from a best fit of Eq. (8) to the numerical simulations. (d) Same b versus squared
mean grain diameter.

J. Roessiger et al. / Journal of Structural Geology xxx (2012) 1e10 7

Please cite this article in press as: Roessiger, J., et al., Influence of bubbles on grain growth in ice, Journal of Structural Geology (2012), http://
dx.doi.org/10.1016/j.jsg.2012.11.003

which grain growth continues, without a change in microstructure,
except for length scale. The Zener parameters z andm have reached
steady-state values. In our simulations this third regime may have
been approached in the R¼ 1 and 10 simulations. Only at this stage
would one expect a linear increase of D2 with time, as the micro-
structural parameter k0 does not change any more.

4.1. Exponential model for k

The different regimes of grain growth discussed above suggest
that the microstructural parameter b decays from close to unity
(regime 1) to a lower steady state value in regime 3. This change
reflects the change from the initial microstructure to a steady-state
one, achieved after a certain amount of grain growth, and hence
time. It is postulated here that the rate of change of the micro-
structure, and hence of b, depends on how strongly the micro-
structure deviates from the stable steady-state one. Considering
this, it is suggested to express b as follows:

bðtÞ ¼ bN þ ð1� bNÞexp�ct (7)

This means that b(t¼0) is that for a bubble-free foam texture and
decays to bN << 1 as t goes to infinity (Fig. 5). The rate of micro-
structure change is given by the “decay constant” c. Combining Eq.
(7) with Eq. (1) and integrating gives:

D2
ðtÞ ¼ D2

0 þ
k
c

�
ð1� bNÞ þ cbNt � ð1� bNÞexp�ct

�
(8)

We can fit Eq. (8) to the growth curves from our simulations by
varying both bN and c and using the value of k derived from the
bubble-free simulation (Fig. 6). For R ¼ 1 and R ¼ 10 we achieve
a reasonable fit. Since little growth occurred in the lower air-ice
mobility experiments, a fit in such cases would be meaningless.
bN should be a function of the fraction of bubbles and their
mobility. More and longer simulations are needed to investigate
this function. A first impression is given by Fig. 7, where we see an
approximately linear increase in bN with the logarithm of the
relative ice-air mobility within the range 0.1� R� 10. This suggests
that when R >> 10, bubbles have negligible effect on the growth
rate (bN z 1), while at R << 0.1 bN is so small that growth is
effectively inhibited on time scales relevant to nature.

4.2. Implications for the experimental determination of growth
exponents of diverse materials

The above results have direct implications for the interpretation
of grain growth experiments in two-phase materials (Hiraga et al.,
2010a; Ohuchi and Nakamura, 2007; Olgaard and Evans, 1988;
Tullis and Yund,1982; Yamazaki et al., 1996). Here one usually takes
several samples from the same starting material, heats these for
different periods of time at a constant temperature and then
measures the grain size at the end of each experiment. Equation (1)
is then fitted to the grain size e time data. If the grain growth
mechanism is unknown, this fit has two unknown parameters, k
and n. It is rarely taken into account that k is not a constant when
themicrostructure is not in steady state. Erroneously assuming that
k is constant can lead to errors in the growth exponent n and
possibly in the inferred growth mechanism that determines n.

Hiraga et al. (2010b), for example, find very high n-values in
forsterite þ enstatite aggregates, even up to n > 6, which they use
to infer that grain growth is controlled by grain-boundary diffusion
(n ¼ 4). It is critical to assess whether the microstructure has
reached a steady state in their experiments. Our simulations show
that significant growth must have taken place before a steady state
(regime 3) has been reached. Fitting Eq. (1) to data from regime 1

and 2 leads to too high apparent grain growth exponents. One can
see this, if one fits Eq. (1) to the numerical simulations, assuming k
is constant. This would give n-values in the order of 3, which would
suggest that the rate controlling mechanism is perhaps Ostwald
ripening. This is clearly not the case, as the driving mechanism
in our model is known to scale with m2/s, and hence n ¼ 2. We
do not wish to imply that grain growth in the example of
forsteriteþ enstatite aggregates is not controlled by grain boundary
diffusion. Clearly this is possible. The question, however, is how
well constrained this interpretation is in experiments with less
than five-fold increase in grain diameter, as is the case in, for
example, Hiraga et al. (2010b), where the steady-state regime (with
constant k) may just set in. Extreme care should be taken when
extrapolating these data from experimental time scales of 50 h to
millions of years (Hiraga et al., 2010a).

Even if grain growth is controlled by grain boundary diffusion
(n ¼ 4) at the grain scale of about one micron as is often used in
experiments (Hiraga et al., 2010a; Ohuchi and Nakamura, 2007;
Olgaard and Evans, 1988; Tullis and Yund, 1982; Yamazaki et al.,
1996), care should be taken in extrapolating the growth law (here
with n ¼ 4) to larger grain sizes. If second-phase material can be
transferred across the grains (e.g. by grain boundary diffusion), the
process modelled here (controlled by grain boundary curvature
with n ¼ 2) would also occur. Neglecting the transition regimes 1
and 2, the growth law for such as material would be an addition of
D4fkgbd$t and D2fbNkcurve$t, where kgbd and kcurve stand for the
growth constants of grain-boundary diffusion and curvature
controlled growth, respectively. Rewriting this in the growth rate
(dD/dt) as a function of grain size gives:

dD
dt

¼ kgbd
4D3 þ

bNkcurve
2D

(9)

At a grain size of D ¼
ffi
kgbd=2bNkcurve

q
the two processes

contribute equally to grain growth. At a smaller grain size, grain-
boundary diffusion dominates, while at a larger grain size grain-
boundary curvature dominates. Clearly, experiments carried out
in the first regime should not be extrapolated to grain sizes in the
second regime. Unfortunately, this means that experiments need to
be carried out over much longer time scales than currently done.
This is because growth must be long enough to establish a steady
state (regime 3) and at larger grain sizes. Since these time scales
may be impossible (>>years) for practical reasons, numerical
models such as the ones shown here may provide a solution.

5. Conclusions

We presented two-dimensional numerical simulations of two-
phase grain growth, where the second phase has a high dihedral
angle, as in the case of bubbly ice. Three growth regimes could be
identified:

� Regime 1: Relatively fast growth, when bubble spacing is larger
than the grain diameter and many iceeice boundaries can still
migrate unhindered by bubbles. The growth parameter k is
initially close to that for bubble-free ice, but it rapidly declines.

� Regime 2: Once bubble spacing is in the order of the grain
diameter, a transitional regime starts where growth decreases
as the spatial and size distribution evolves to a steady state. The
decline in k slows down.

� Regime 3: Steady-state growth with a constant microstructure
and hence, constant k.

As the growth exponent in the numerical simulations is known
to be two, the decline in growth rate is solely due to the decline in

J. Roessiger et al. / Journal of Structural Geology xxx (2012) 1e108

Please cite this article in press as: Roessiger, J., et al., Influence of bubbles on grain growth in ice, Journal of Structural Geology (2012), http://
dx.doi.org/10.1016/j.jsg.2012.11.003

the growth rate parameter k, which can be expressed (after Arena
et al., 1997) by the factor b, which is the ratio of actual k (a func-
tion of microstructure, including bubble volume fraction and size
distribution) and the one for bubble-free ice.We propose to express
the evolution of b as an exponential function of time.

Our numerical simulations indicate that extreme caution should
be taken in the interpretation of two-phase grain growth experi-
ments, if these are in regimes 1 and 2. Failure to recognise growth in
these regimes can lead to spurious growth exponents and erro-
neous interpretations of the growth mechanism.

Acknowledgements

The authors gratefully acknowledge funding from the DFG
research project 1776/7 and ESF Research Networking Programme
Micro-Dynamics of Ice (Micro-DICE). We thank Marco Herwegh
and an anonymous reviewer for very helpful suggestions to
improve the manuscript.

References

Alley, R.B., 1992. Flow-law hypotheses for ice-sheet modelling. Journal of Glaciology
38, 245e256.

Alley, R.B., Perepezko, J.H., Bentley, C.R., 1986a. Grain Growth in polar ice: I. Theory.
Journal of Glaciology 32, 415e424.

Alley, R.B., Perepezko, J.H., Bentley, C.R., 1986b. Grain Growth in polar ice: II.
Application. Journal of Glaciology 32, 425e433.

Anderson, M.P., 1986. Simulation of grain growth in two and three dimensions. In:
Hanse, N., Juul Jensen, N., Leffers, D., Ralp, T.B. (Eds.), Annealing Processes e

Recovery, Recrystallization and Grain Growth. Risø National Laboratory, Ros-
kilde, pp. 15e34.

Arena, L., Nasello, O.B., Levi, L., 1997. Effect of bubbles on grain growth in ice. Journal
of Physical Chemistry B 101, 6109e6112.

Arnaud, L., Barnola, J.M., Duval, P., 2000. Physical modeling of the densification of
snow/firn and ice in the upper part of polar ice sheets. In: Hondoh, T. (Ed.),
Physics of Ice Core Records. Hokkaido University Press, Sapporo, pp. 285e305.

Arnaud, L., Gay, M., Barnola, J.M., Duval, P., 1998. Imaging of firn and bubbly ice in
coaxial reflected light: a new technique for the characterization of these porous
media. Journal of Glaciology 44, 326e332.

Azuma, N., Miyakoshi, T., Yokoyama, S., Takata,M., 2012. Impeding effect of air bubbles
on normal grain growth of ice. Journal of Structural Geology. http://dx.doi.org/
10.1016/j.jsg.2012.05.005.

Barnes, P.R.F., Mulvaney, R., Robinson, K., Wolff, E.W., 2002. Observations of polar ice
from the Holocene and the glacial period using the scanning electron micro-
scope. Annals of Glaciology 35, 559e566.

Becker, J.K., Bons, P.D., Jessell, M.W., 2008. A new front-tracking method to model
anisotropic grain and phase boundary motion in rocks. Computers & Geo-
sciences 34, 201e212.

Bons, P.D., Arnold, J., Elburg, M.A., Kalda, J., Soesoo, A., van Milligen, B.P., 2004. Melt
extraction and accumulation from partially molten rocks. Lithos 78, 25e42.

Bons, P.D., Jessell, M.W., Evans, L., Barr, T.D., Stüwe, K., 2001. Modelling of anisotropic
grain growth in minerals. Geological Society of America Memoir 193, 39e49.

Bons, P.D., Koehn, D., Jessell, M.W. (Eds.), 2008. Microdynamic Simulation. Springer,
Berlin.

Brodhag, S.H., Herwegh, M., 2010. The effect of different second-phase particle
regimes on grain growth in two-phase aggregates: insights from in situ
rock analogue experiments. Contributions to Mineralogy and Petrology 160,
219e238.

De Bresser, J.H.P., Ter Heege, J.H., Spiers, C.J., 2001. Grain size reduction by dynamic
recrystallization: can it result in major rheological weakening? International
Journal of Earth Sciences 90, 28e45.

De La Chapelle, S., Castelnau, O., Lipenkov, V., Duval, P., 1998. Dynamic recrystalli-
zation and texture development in ice as revealed by the study of deep ice cores
in Antarctica and Greenland. Journal of Geophysical Research 103, 5091e5105.

Durand, G., Weiss, J., Lipenkov, V., Barnola, J.M., Krinner, G., Parrenin, F.,
Delmonte, B., Ritz, C., Duval, P., Rothlisberger, R., Bigler, M., 2006. Effect of
impurities on grain growth in cold ice sheets. Journal of Geophysical Research
111, F01015.

Duval, P., Castelnau, O., 1995. Dynamic recrystallisation of ice in polar ice sheets.
Journal De Physique 5, 197e205.

Evans, B., Renner, J., Hirth, G., 2001. A few remarks on the kinetics of static grain
growth in rocks. International Journal of Earth Sciences 90, 88e103.

Faria, S.H., Freitag, J., Kipfstuhl, S., 2010. Polar ice structure and the integrity of ice-
core paleoclimate records. Quaternary Science Reviews 29, 338e351.

Faria, S.H., Kipfstuhl, S., Azuma, N., Freitag, J., Hamann, I., Murshed, M.M., Kuhs, W.F.,
2009. Themultiscale structure of Antarctica. Part I: inland ice. In: Hondoh, T. (Ed.),
Physics of Ice Core Records II. Hokkaido University Press, Sapporo, pp. 39e59.

Faria, S.H., Ktitarev, D., Hutter, K., 2002. Modelling evolution of anisotropy in fabric
and texture of polar ice. Annals of Glaciology 35, 545e551.

Faria, S.H., Weikusat, I., Azuma, N. The microstructure of polar ice. Journal of
Structural Geology, in this issue.

Glazier, J.A., Gross, S.P., Stavans, J., 1987. Dynamics of two-dimensional soap froths.
Physical Review A 36, 306e312.

Gow, A.J., 1969. On the rate of growth of grains and crystals in south polar firn.
Journal of Glaciology 8, 241e252.

Gow, A.J., 1971. Depth-time-temperature relationships of crystal growth in polar
glaciers. Cold Regions Research and Engineering Lab Hanover NH Report 300, 20.

Gow, A.J., Meese, D.A., Alley, R.B., Fitzpatrick, J.J., Anandakrishnan, S., Woods, G.A.,
Elder, B.C., 1997. Physical and structural properties of the Greenland Ice Sheet
Project 2 ice core: a review. Journal of Geophysical Research 102, 26559e26575.

Gow, A.J., Williamson, T., 1976. Rheological implications of the internal structure
and crystal fabrics of the West Antarctic ice sheet as revealed by deep core
drilling at Byrd Station. Geological Society of America Bulletin 87, 1665e1677.

Herwegh, M., Berger, A., 2003. Differences in grain growth of calcite: a field-based
modeling approach. Contributions to Mineralogy and Petrology 145, 600e611.

Herwegh, M., Handy, M.R., 1996. The evolution of high-temperature mylonitic
microfabrics: evidence from simple shearing of a quartz analogue (norcam-
phor). Journal of Structural Geology 18, 689e710.

Herwegh, M., Linckens, J., Ebert, A., Berger, A., Brodhag, S.H., 2011. The role of second
phases for controlling microstructural evolution in polymineralic rocks:
a review. Journal of Structural Geology 33, 1728e1750.

Hiraga, T., Miyazaki, T., Tasaka, M., Yoshida, H., 2010a. Mantle superplasticity and its
self-made demise. Nature 468, 1091e1094.

Hiraga, T., Tachibana, C., Ohashi, H., Sano, S., 2010b. Grain growth systematics for
forsterite � enstatite aggregates: effect of lithology on grain size in the upper
mantle. Earth and Planetary Science Letters 291, 10e20.

Hondoh, T., 2009. An overview of microphysical processes in ice sheets: toward
nanoglaciology. In: Hondoh, T. (Ed.), Physics of Ice Core Records II. Hokkaido
University Press, Sapporo, pp. 1e23.

Hsueh, C.H., Evans, A.G., Cobble, R.L., 1982. Microstructure development during
final/intermediate stage sintering - I. Pore/grain boundary separation. Acta
Metallurgica 30, 1269e1279.

Jessell, M., Bons, P., Evans, L., Barr, T., Stuwe, K., 2001. Elle: the numerical simulation of
metamorphic anddeformationmicrostructures. Computers&Geosciences27,17e30.

Jessell, M.W., Kostenko, O., Jamtveit, B., 2003. The preservation potential of micro-
structuresduringstaticgraingrowth. JournalofMetamorphicGeology21, 481e491.

Ketcham, W.M., Hobbs, P.V., 1969. An experimental determination of the surface
energies of ice. Philosophical Magazine 19, 1161e1173.

Kipfstuhl, S., Faria, S.H., Azuma, N., Freitag, J., Hamann, I., Kaufmann, P., Miller, H.,
Weiler, K., Wilhelms, F., 2009. Evidence of dynamic recrystallization in polar
firn. Journal of Geophysical Research 114, B05204.

Lipenkov, V.Y., Salamati, A.N., Duval, P., 1992. Bubbly-ice densification in ice sheets:
II. Applications. Journal of Glaciology 43, 398e407.

Manohar, P.A., Ferry, M., Chandra, T., 1998. Five decades of the Zener equation. ISIJ
International 38, 913e924.

Mathiesen, J., Ferkinghoff-Borg, J., Jensen, M.H., Levinsen, M., Olesen, P., Dahl-
Jensen, D., Svensson, A., 2004. Dynamics of crystal formation in the Greenland
NorthGRIP ice core. Journal of Glaciology 50, 325e328.

Montagnat, M., Duval, P., 2000. Rate controlling processes in the creep of polar ice,
influence of grain boundary migration associated with recrystallization. Earth
and Planetary Science Letters 183, 179e186.

Mullins, W.W., 1989. Estimation of the geometrical rate-constant in idealized 3
dimensional grain-growth. Acta Metallurgica 37, 2979e2984.

Ohuchi, T., Nakamura, M., 2007. Grain growth in the forsteriteediopside system.
Physics of the Earth and Planetary Interiors 160, 1e21.

Olgaard, D.L., Evans, B., 1986. Effect of second-phase particles on grain growth in
calcite. Journal of the American Ceramic Society 69, C272eC277.

Olgaard, D.L., Evans, B., 1988. Grain growth in synthetic marbles with added mica
and water. Contributions to Mineralogy and Petrology 100, 246e260.

Paterson, W.S.B., 1994. The Physics of Glaciers. Pergamon, Oxford.
Petit, J.R., Duval, P., Lorius, C., 1987. Long-term climatic changes indicated by crystal

growth in polar ice. Nature 326, 62e64.
Piazolo, S., Jessell, M.W., Bons, P.D., Evans, L., Becker, J.K., 2010. Numerical simula-

tions of microstructures using the Elle platform: a modern research and
teaching tool. Journal of the Geological Society of India 75, 110e127.

Piazolo, S., Jessell, M.W., Prior, D.J., Bons, P.D., 2004. The integration of experimental
in-situ EBSD observations and numerical simulations: a novel technique of
microstructural process analysis. Journal of Microscopy 213, 273e284.

Roessiger, J., Bons, P.D., Griera, A., Jessell, M.W., Evans, L., Montagnat, M.,
Kipfstuhl, S., Faria, S.H., Weikusat, I., 2011. Competition between grain growth
and grain-size reduction in polar ice. Journal of Glaciology 57, 942e948.

Schmatz, J., Schenk, O., Urai, J.L., 2011. The interaction of migrating grain boundaries
with fluid inclusions in rock analogues: the effect of wetting angle and fluid
inclusion velocity. Contributions to Mineralogy and Petrology 162, 193e208.

Schulson, E.M., Duval, P. (Eds.), 2009. Creep and Fracture of Ice. Cambridge
University Press, Cambridge.

Smith, C.S., 1964. Some elementary principles of polycrystalline microstructure.
Metallurgical Reviews 9, 1e48.

Stöckhert, B., Duyster, J., 1999. Discontinuous grain growth in recrystallised vein
quartz e implications for grain boundary structure, grain boundary mobility,
crystallographic preferred orientation, and stress history. Journal of Structural
Geology 21, 1477e1490.

Thorsteinsson, T., Kipfstuhl, J., Miller, H., 1997. Textures and fabrics in the GRIP ice
core. Journal of Geophysical Research 102, 26583e26599.

J. Roessiger et al. / Journal of Structural Geology xxx (2012) 1e10 9

Please cite this article in press as: Roessiger, J., et al., Influence of bubbles on grain growth in ice, Journal of Structural Geology (2012), http://
dx.doi.org/10.1016/j.jsg.2012.11.003

Tullis, J., Yund, R.A., 1982. Grain growth kinetics of quartz and calcite aggregates.
Journal of Geology 90, 301e318.

Urai, J.L., Means, W.D., Lister, G.S., 1986. Dynamic recrystallization of minerals. In:
Hobbs, B.E., Heard, H.C. (Eds.), Mineral and Rock Deformation: Laboratory
Studies. Geophysical Monograph, pp. 161e200.

von Neumann, J., 1952. Written discussion on grain topology and the relationships
to growth kinetics. In: Herring, C. (Ed.), Metallic Materials. American Society for
Metals. Metals Park, Cleveland, pp. 108e113.

Weikusat, I., Kipfstuhl, S., Faria, S.H., Azuma, N., Miyamoto, A., 2009. Subgrain
boundaries and related microstructural features in EDML (Antarctica) deep ice
core. Journal of Glaciology 55, 461e472.

Weygand, D., Bréchet, Y., Lépinoux, J., 1999. Zener Pinning and Grain Growth: a two-
dimensional vertex computer simulation. Acta Materialia 47, 961e970.

Yamazaki, D., Kato, T., Ohtani, E., Toriumi, M., 1996. Grain growth rates of
MgSiO3 Perovskite and Periclase under lower mantle conditions. Science 274,
2052e2054.

J. Roessiger et al. / Journal of Structural Geology xxx (2012) 1e1010

Please cite this article in press as: Roessiger, J., et al., Influence of bubbles on grain growth in ice, Journal of Structural Geology (2012), http://
dx.doi.org/10.1016/j.jsg.2012.11.003

Numerical Modelling of Ice Microstructures

A P P E N D I X 3

MULTISCALE MODELING OF ICE DEFORMATION BEHAVIOR

Jens Rößiger - 2013 Page A3

Multiscale modeling of ice deformation behavior

M. Montagnata,, O. Castelnaub, P. D. Bonsc, S. H. Fariad,e, O. Gagliardinia,i, F. Gillet-Chauleta, F. Grennerata, A. Grieraf, R. A.
Lebensohng, H. Moulinech, J. Roessigerc, P. Suqueth

aLaboratoire de Glaciologie et Géophysique de l’Environnement, CNRS, UJF - Grenoble I, 38402 Saint-Martin d’Hères, France
bProcédés et Ingénierie en Mécanique et Matériaux, CNRS, Arts & Métiers ParisTech, 151 Bd de l’hopital, 75013 Paris, France

cDepartment of Geosciences, Eberhard Karls University Tübingen, Wilhelmstr. 56, 72074 Tübingen, Germany.
dBasque Centre for Climate Change (BC3), Alameda Urquijo 4, 48008 Bilbao, Spain

eIkerbasque, Basque Foundation for Science, 48011 Bilbao, Spain
fDepartament de Geologia, Universitat Autónoma de Barcelona, 08193 Bellaterra (Cerdanyola del V.), Spain

gLos Alamos National Laboratory, MS G755, Los Alamos, NM 87545, USA
hLaboratoire de Mécanique et d’Acoustique, CNRS, UPR 7051, 13402, Marseille cedex 20, France.

iInstitut Universitaire de France (IUF), Paris, France

Abstract

Understanding the flow of ice in glaciers and polar ice sheets is of increasing relevance in a time of potentially significant climate
change. The flow of ice has hitherto received relatively little attention from the structural geological community. This paper aims
to provide an overview of methods and results of ice deformation modeling from the single crystal to the polycrystal scale, and
beyond to the scale of polar ice sheets. All through these scales, various models have been developed to understand, describe
and predict the processes that operate during deformation of ice, with the aim to correctly represent ice rheology and self-induced
anisotropy. Most of the modeling tools presented in this paper originate from the material science community, and are currently
used and further developed for other materials and environments. We will show that this community has deeply integrated ice as a
very useful ”model” material to develop and validate approaches in conditions of a highly anisotropic behavior. This review, by no
means exhaustive, aims at providing an overview of methods at different scales and levels of complexity.

Keywords: ice mechanical behavior, multiscale modeling, viscoplastic anisotropy, fabric development

Contents

1 Introduction 2
1.1 Mechanical properties of ductile ice 2
1.2 Main objectives 3

2 Modeling ice single crystal behavior 3
2.1 Dislocation Dynamics modeling 3
2.2 Field Dislocation Mechanics (FDM) 4
2.3 Crystal plasticity modeling 4

2.3.1 Data for elasticity 5
2.3.2 Data for basal slip 5

3 Mean field approaches for the mechanical response
of ice polycrystals 6
3.1 Microstructure characterization 6
3.2 Linear thermo-elasticity 6
3.3 Reuss and Voigt approximations 7
3.4 The Self-Consistent (SC) scheme 7
3.5 Nonlinear viscoplasticity 8

3.5.1 Application to natural ices: effective
behavior 9

Email address: montagnat@lgge.obs.ujf-grenoble.fr (M.
Montagnat)

URL: http://lgge.osug.fr/montagnat-rentier-maurine (M.
Montagnat)

3.5.2 Application to natural ices: texture de-
velopment 10

3.6 Modeling the elasto-viscoplastic behavior . . . 11

4 Full field approaches for the polycrystal 11
4.1 Viscoplastic approach - FFT 12

4.1.1 Viscoplastic FFT-based formulation . . 12
4.1.2 Application to columnar ice deforming

in the secondary creep regime. 13
4.2 Elasto-viscoplastic FFT approach 14

4.2.1 The mechanical problem 14
4.2.2 Application to strain field prediction in

a 2D-1/2 configuration. 15

5 Modeling of dynamic recrystallization mechanisms 15
5.1 Dynamic recrystallization within mean-field

approaches 16
5.2 Dynamic recrystallization within full-field ap-

proaches . 17
5.2.1 The Elle modeling plateform 17
5.2.2 Coupling Elle platform to FFT approach 18
5.2.3 Application to creep experiments and

natural ice 19

6 Toward large scale ice flow modeling 20
6.1 Continuous Diversity and the CAFFE model . . 20

Preprint submitted to Journal of Structural Geology April 19, 2013

6.2 GOLF law and Elmer/Ice 22

7 Synthesis and perspectives 23

8 Acknowledgement 24

1. Introduction

Ice is a common mineral on the Earth’s surface, where it oc-
curs as ice Ih. As ice is relatively close to its melting tem-
perature, glaciers and polar ice sheets deform by ductile dis-
location creep at strain rates in the order of 10−12 to 10−6 s−1.
Research on the flow of ice is of direct importance to society
as it is needed to understand and predict the effects that global
warming could have on sea level rise, glacier retreat, etc. There
is also an increasing awareness that ice is a valuable analogue
for other minerals and crystalline materials, as it is the only
common mineral where this creep can be readily observed in
nature and in the laboratory. Numerical modeling has become
a key method to link the mechanics of ice from the dislocation
scale to that of flowing ice masses.

Most of the efforts made to simulate the ductile mechanical
behavior of polycrystalline ice are related to the modeling of ice
flow and fabric evolution in the conditions of polar ice sheets or
glaciers. Ice is increasingly considered a model material to val-
idate micro-macro mechanical approaches for materials with a
high viscoplastic anisotropy. Most of the modeling techniques
presented in this paper are currently used or further developed
for other materials. For geological applications, one main limi-
tation could be related to the ”one phase” approach for most of
these techniques, well adapted to ice. The reader will find, at
the end of the paper, a table summarizing the main aspects of
each techniques, with application ranges and limitations.

1.1. Mechanical properties of ductile ice
Ice Ih has an hexagonal crystal structure with a c/a ratio

of 1.628. This c/a ratio is very close to the 1.633 value for
a closely packed structure, but ice is not closely packed (see
Schulson and Duval (2009) for a recent review). The elastic
anisotropy of ice single crystals is small. The Young modulus
E only varies by about 30%, depending on the direction of the
loading axis with respect to the c-axis. The highest value is
along the c-axis with E = 11.8 GPa at −16◦C (Gammon et al.,
1983).

Single crystals deform plastically essentially by glide of
dislocations on the basal plane. There are three equivalent
< 12̄10 > directions for the Burgers vector, but slip on the basal
plane is almost isotropic. In conditions where basal slip is fa-
vored, the stress-strain rate relationship after a strain of about
5% can be expressed by a power law with a stress exponent
n = 2 ± 0.3 (Higashi et al., 1965; Jones and Glen, 1969; Mellor
and Testa, 1969). At similar strain rates, the equivalent stress
requested for non-basal slip is about 60 times larger than for
basal slip (Duval et al., 1983).
For ice polycrystals deformed under the laboratory conditions
(strain rate between about 10−8 s−1 and 10−6 s−1 and temper-
ature generally higher than -30◦C), strain is essentially due to

intracrystalline dislocation glide. The transient creep regime is
characterized by a strong directional hardening until the strain-
rate minimum is reached for an overall strain of 1% (Duval
et al., 1983). This strain-rate decrease can reach three orders of
magnitude. It is associated to the development of a strong in-
ternal stress field due to plastic incompatibility between grains
(Ashby and Duval, 1985; Duval et al., 1983; Castelnau et al.,
2008b). A significant part of the transient creep is recoverable,
i.e., on unloading a creep specimen, a reverse creep is observed,
with reverse strain which can be more than ten times the initial
elastic strain (Duval, 1976; Duval et al., 1983). In the secondary
creep regime, isotropic polycrystals deform (at similar stress
levels) a 100 times slower than a single crystal optimally ori-
ented for basal slip. In this regime, the minimum strain rate and
the stress are linked by a power law, referred to as Glen’s law
in glaciology (Glen, 1955), expressed through a relationship of
the form (1) for temperatures lower that -10◦C.

˙̄εmin = Aσ̄nexp(−Ep/kBT) (1)

with σ̄ the applied stress, Ep = 0.72 eV and the stress expo-
nent n = 3 (Barnes et al., 1971; Budd and Jacka, 1989). A is
a constant, kB the Boltzmann constant and T the temperature.
Above -10◦C, ˙̄εmin rises more rapidly with increasing tempera-
ture and cannot be described by this equation (Morgan, 1991).
No grain-size effect is expected for power-law secondary creep
at laboratory conditions (see Duval and Le Gac (1980); Jacka
(1994) for instance). But a grain size effect was, however, mea-
sured during transient creep (Duval and Le Gac, 1980).
At strains larger than 1 to 2% (tertiary creep regime), dynamic
recrystallization is predominant, and new grain microstructures
and crystal orientations are generated (Jacka and Maccagnan,
1984; Duval et al., 2000).
At stresses lower than 0.1 MPa, relevant to deformation con-
ditions in glaciers, ice sheets or planetary bodies, there is a
clear indication of a creep regime with a stress exponent lower
than two. This indication results from both the analysis of field
data and laboratory tests, although the difficulty of obtaining
reliable data at strain rates lower than 10−10s−1 is at the ori-
gin of contradictory results (Mellor and Testa, 1969; Barnes
et al., 1971; Dahl-Jensen and Gundestrup, 1987; Pimienta et al.,
1987; Lipenkov et al., 1997; Goldsby and Kohlstedt, 1997).
In particular, Goldsby and Kohlstedt (1997) suggest a grain-
size dependence of the ice viscosity associated with this low
stress regime, based on laboratory experiments performed on
very small grain-size samples. This grain-size effect would be
associated with a grain boundary-sliding dominated creep. Its
extrapolation to polar ice-core deformation conditions remains
controversial (Duval and Montagnat, 2002). Diffusional creep,
commonly associated with such conditions in many materials
yields a viscosity much higher than that deduced from field data
(Lliboutry and Duval, 1985). For a review on ice behavior, see
(Duval et al., 2010).
Ice as a model material exhibits a challenging viscoplastic
anisotropy owing to the presence of only two independent easy
slip systems for the dislocations (basal plane). While five inde-
pendent systems are required to accommodate an arbitrary de-
formation in a single crystal (Taylor, 1938), Hutchinson (1977)

2

showed that four systems are required for allowing an hexago-
nal polycrystal such as ice to deform. Being able to represent
and to take into account this anisotropy in micro-macro models
which aim at linking the single crystal scale to the polycrystal
scale, is of primary interest to the material science community.
This anisotropy needs to be accounted for at the dislocation
scale in order to build physically-based model for the activa-
tion of (poorly known) secondary slip systems. The impact of
dislocation induced internal stress fields, but also the charac-
terization and development of highly heterogeneous strain and
stress fields within polycrystals, and their impact on fabric de-
velopment turn out to be of strong importance (Castelnau et al.,
1996a; de la Chapelle et al., 1998).

During gravity-driven flow of glaciers and ice sheets, the
macroscopic behavior of ice becomes progressively anisotropic
with the development of fabrics (or textures, c-axis preferred
orientations). This anisotropy and its development depends on
the flow conditions, but strongly influences the response of ice
layers to imposed stress (see Gundestrup and Hansen (1984);
Van der Veen and Whillans (1990); Mangeney et al. (1997)
for pioneer field work and modeling on the subject). Indeed,
a polycrystal of ice with most of its c-axes oriented in the same
direction deforms at least ten times faster than an isotropic poly-
crystal, when sheared parallel to the basal planes.
Fabrics basically develop as the result of lattice rotation by
intracrystalline slip (Azuma and Higashi, 1985; Alley, 1988,
1992). Dynamic recrystallization can have a major impact on
fabric development, especially at temperatures above -10◦C
close to bedrocks or within temperate glaciers (Alley, 1992;
Duval and Castelnau, 1995; de la Chapelle et al., 1998; Mon-
tagnat et al., 2009), see Section 5. Questions, however, remain
to what extent different recrystallization processes operate as
a function of depth in polar ice sheets (Kipfstuhl et al., 2006,
2009; Weikusat et al., 2009).

1.2. Main objectives
Accurate modeling of ice flow under natural conditions is

relevant for many scientific objectives, such as the response
of ice sheet to climate changes (Seddik et al., 2012), the
interpretation of climate signals extracted from ice cores (Faria
et al., 2010), the energy balance in extraterrestrial satellites
(Sotin et al., 2009), and since a few years, the accurate
prediction of sea-level rise that is linked to the behavior of
fast-moving coastal glaciers (Gillet and Durand, 2010). In this
context, challenges are mainly (i) to establish an ice flow law
adapted to low stress conditions, changes in temperatures and
impurity content, (ii) to consider the macroscopic anisotropy
due to fabric development at the given conditions, (iii) to be
able to integrate processes such as dynamic recrystallization
that can strongly influence fabric development and the flow law.

The aim of this paper is to present a general overview of
the main modeling techniques adapted to ice, and the main
modeling results obtained from the single crystal scale to
the large scale that is relevant to ice sheet flow modeling.
Techniques are highly diverse, from dislocation dynamics
(micron scale) to Finite Element methods that are adapted to

the whole ice sheet (km scale), via mean-field and full-field
micro-macro approaches and coupling with a microstructure
evolution models (cm to m scale, limited to a 2D configuration,
see 5.2). We will mostly focus on recent advances and topics
that are still under development.

2. Modeling ice single crystal behavior

Owing to its high viscoplastic anisotropy, with dislocations
gliding mostly on the basal plane, studying and modeling ice
single crystal behavior is a challenge for regular approaches.
Recent efforts focused on three main objectives; (i) understand-
ing, representing and taking into account the dislocation dy-
namics, (ii) improving our knowledge about secondary slip sys-
tems in ice, (iii) providing an accurate crystal plasticity con-
stitutive law that can be implemented in mean-field and full-
field approaches for micro-macro polycrystal models. For the
two first objectives, Dislocation Dynamic models (DD) were
used at the scale of the interaction between dislocation popula-
tions (Section 2.1). At a larger scale, the Field Dislocation Me-
chanic modeling approach (FDM) was applied to ice to evalu-
ate the role of internal stresses associated with dislocation fields
and arrangements (Section 2.2). Section 2.3 presents a crystal-
plasticity model adapted to the transient creep behavior of ice
single crystals.

2.1. Dislocation Dynamics modeling
Dislocation dynamics in ice was shown to be scale free and

intermittent, thanks to dislocation avalanche measurements via
acoustic emissions (Weiss and Grasso, 1997; Weiss et al., 2001;
Weiss and Marsan, 2003; Weiss and Montagnat, 2007). Ice was
used as a model material for the following reasons: (i) trans-
parency allows direct verification that acoustic emission activ-
ity is not related to microcraking, (ii) with the range of stress
and temperature considered, diffusion creep is not a significant
mechanism, and deformation occurs by dislocation glide only.
DD modeling tools were used to better understand and char-
acterize this scale free and intermittent behavior (for example
Miguel et al. (2001); Weiss and Miguel (2004)).
Miguel et al. (2001) made use of a discrete dislocation dynam-
ics model with a two-dimensional cross-section of the crystal.
This 2D space is randomly filled with edge dislocations gliding
along a single slip direction parallel to their respective Burgers
vector. This simplification is an effective way to describe ma-
terials like ice crystals owing to their strong plastic anisotropy
with a single slip system dominating. A basic feature common
to most DD models is that dislocations interact with each other
through the long-range elastic stress field they produce in the
host material. In (Miguel et al., 2001), dislocation velocity de-
pends linearly on this effective stress, and the Peierls stress is
set to zero. Mechanisms for dislocation annihilation and multi-
plication are classically taken into account.

Within this simplified scheme the authors found that disloca-
tions generate a slowly evolving configuration landscape which
coexists with rapid collective rearrangements. These arrange-
ments involve a comparatively small fraction of dislocations

3

and lead to an intermittent behavior of the net plastic response.
The model was therefore able to reproduce the fact that disloca-
tions themselves, through the various structures such as dipoles
and walls, generate a pinning force landscape that is virtually
frozen into a slow state. Creation and annihilation mechanisms
allow the system to jump between slow dynamics states through
bursts of activity.
More recently, Chevy et al. (2007, 2012) used DD simulations
to analyze torsion tests performed on ice single crystals. The
tests were performed with the ice-crystal c-axis oriented par-
allel to the torsion axis so that basal screw dislocations were
mainly activated. With synchrotron topography analyses of the
deformed samples, it was possible to show that dislocation ar-
rangements were highly heterogeneous, with a scale-invariant
character and long-range correlations (Montagnat et al., 2006;
Weiss and Montagnat, 2007; Chevy et al., 2010). Although
these tests were performed in a way that highly favored basal
glide, the double-cross slip mechanisms was invoked to explain
this scale invariant dislocation arrangement.
Three-dimensional DD simulations, based on the TRIDIS code
(Verdier et al., 1998), were adapted to these torsion tests on ice
and the hexagonal structure. Screw dislocation sources were
positioned within one slip plane at the periphery of a cylinder
submitted to a constant torque. Cross-slip on prismatic planes
was made possible thanks to the internal stress induced by the
pile-up of basal dislocations in the center of the cylinder (where
σapp = 0), which produces the out-of-plane component needed
(see Fig. 1). Simulation results allowed to test this hypothe-
sis, and explain the power law relationship between stress and
strain rate (Chevy et al., 2012).

2.2. Field Dislocation Mechanics (FDM)
Field dislocation theory is a mesoscale approach, which aims

at taking into account the inhomogeneous distribution of dis-
locations in plasticity modeling. Therefore, FDM modeling
makes it possible to represent and consider the internal stress
field created by the dislocation arrangements within the crys-
tal. FDM is a continuous approach able to deal simultaneously
with long-range correlations associated with distortion fields,
internal stresses due to dislocation arrangements, and short-
range correlations (Acharya, 2001). The reader is referred to
(Acharya and Roy, 2006; Varadhan et al., 2006; Fressengeas,
2010) for details.
The first application to ice samples was performed in the con-
figuration of the torsion test presented in part 2.1 (Taupin et al.,
2007). This test is by itself highly heterogeneous, and this
heterogeneity was shown to induce unexpected non-basal slip.
Taking into account the coupled dynamics of geometrically
necessary screw dislocations gliding in the basal plane (also
called ”excess” dislocations) and statistical dislocations devel-
oped through cross slip in prismatic planes, the model was able
to reproduce the creep curves during torsion, and the size ef-
fect measured experimentally (see Fig. 2). More recently, the
model was used to reproduce the complex scale-invariant char-
acter of dislocation arrangements forming during torsion tests
on ice single crystals (Chevy et al., 2010). In particular, the fact
that the model takes into account both the long-range elastic

interactions due to the presence of dislocations and the short-
range interactions inherent to the transport of dislocations (ob-
stacles, cross-slip, etc.) allowed to reproduce the shift in control
of the dislocation distribution by long-range correlations at low
strain to a control by short-range correlations at strain as high as
50%. It was shown that non-basal dislocations activated by the
internal stress fields induce a screening potential at large strain,
through obstacles such as twist sub-boundaries. However, this
screening was shown to be too small to hinder creep acceler-
ation prevailing during torsion creep test on ice single crystals
(Chevy et al., 2010).

2.3. Crystal plasticity modeling

Constitutive relations to describe the transient creep of ice
single crystals have been proposed by Castelnau et al. (2008b)
and then used in a modified version in Suquet et al. (2011). One
of the difficulty here is the description of the softening of basal
slip in the transient regime, as discussed above. As is usual
in crystal plasticity at infinitesimal strains, the strain tensor is
decomposed into the sum of an elastic εe and a viscoplastic εvp

part
ε = εe + εvp . (2)

The elastic strain is related to the local stress tensor σ with the
local compliance tensor S, and the viscoplastic strain results
from slips on a total of M different slip systems:

εe = S : σ , εvp =

M∑
k=1

γ(k)µ(k) . (3)

Here, µ(k) = 1
2 (n(k) ⊗ b(k) + b(k) ⊗ n(k)) is the (purely geometric)

Schmid tensor depending on the orientation of the slip system
(k), n being the slip plane normal and b the slip direction (par-
allel to the Burgers vector and orthogonal to n) in that plane,
with ⊗ the dyadic product.

Ice crystals, which have an hexagonal symmetry, deform eas-
ily by shear on the basal plane, on the three systems {0001} <
1120 >which provide only two independent systems. The three
prismatic systems {1100} < 1120 > provide two more indepen-
dent systems. An additional independent slip system is thus re-
quired to attain any isochoric deformation at the single crystal
level and this is achieved by adding the six < c + a > pyramidal
systems {1122} < 1123 >. In total, M = 12 slip systems are
taken into account in the present analysis.

In the constitutive relations originally proposed by Castelnau
et al. (2008b), the slip rate on the k-th system is related to the
resolved shear stress τ(k) on that system through:

γ̇(k) = γ̇(k)
0


∣∣∣τ(k)

∣∣∣
τ(k)

0

n(k)

sgn(τ(k)), τ(k) = σ : µ(k), (4)

where τ(k)
0 , the reference resolved shear stress on system k, de-

pends on the activity of the other systems through:

τ̇(k)
0 =

M∑
`=1

H(k,`)

τ(`)
sta − τ

(`)
0

τ(`)
sta − τ

(`)
ini

 ∣∣∣γ̇(`)
∣∣∣ . (5)

4

The two material parameters τ(`)
ini and τ(`)

sta refer, respectively, to
the initial value of τ(`)

0 at the onset of plasticity (when the γ(k)’s
are small) and to the stationary value of τ(`)

0 at saturation when
the plasticity is fully developed (i.e. when the γ(k)’s are large).
Therefore the contribution of system ` in the hardening (or soft-
ening) of system k vanishes when τ(`)

0 is close to τ(`)
sta. The hard-

ening matrix H(k,`) expresses the influence of the plastic activity
of system ` on the hardening of system k and is taken to be sym-
metric. Material data for this model are given in Castelnau et al.
(2008b).

In (Suquet et al., 2011), Eqs (4) and (5) are improved in two
ways:

1. Kinematic hardening is introduced in (4) through a back
stress X(k):

γ̇(k) = γ̇(k)
0


∣∣∣τ(k) − X(k)

∣∣∣
τ(k)

0

n(k)

sgn
(
τ(k) − X(k)

)
, (6)

where the back stress evolves with the plastic activity ac-
cording to an Armstrong-Frederick type law (Chaboche,
2008):

Ẋ(k) = c(k)γ̇(k) − d(k)X(k)
∣∣∣γ̇(k)

∣∣∣ − e(k)X(k), (7)

including static recovery through coefficient e(k). The in-
troduction of a back stress on each slip system is motivated
by the experimental observation of recovery strain devel-
oping in single crystals when specimens are subjected to
recovery tests (see Section 2.3.2 and Fig. 4).

2. The equation governing the reference resolved shear stress
τ(k)

0 is modified into

τ̇(k)
0 =

(
τ(k)

sta − τ
(k)
0

)
ṗ(k), ṗ(k) =

M∑
`=1

H(k,`)
∣∣∣γ̇(`)

∣∣∣ . (8)

The motivation for the change in the evolution rule for the
reference resolved shear stresses τ(k)

0 is that with the origi-
nal rule (5) they never reach their stationary value, unless
all systems do so at the same time, a condition which can-
not be met in a polycrystal (see details in (Suquet et al.,
2011)). By contrast, the law (8) ensures convergence of
τ(k)

0 towards its stationary value, provided all coefficients
H(k,`) are positive. Indeed, in this case, ṗ(k) is always pos-
itive and p(k) is increasing with time, acting on system k
in a similar way as the classical cumulated plastic strain
of von Mises plasticity. The differential Eq. (8) can be
integrated into

τ(k)
0 (p(k)) = τ(k)

sta + (τ(k)
ini − τ

(k)
sta) exp (−p(k)), (9)

which shows that τ(k)
0 − τ

(k)
sta has the same sign as τ(k)

ini − τ
(k)
sta.

Furthermore τ(k)
0 tends to τ(k)

sta when p(k) becomes large.

2.3.1. Data for elasticity
As mentioned in Section 1, ice crystals exhibit a low elas-

tic anisotropy, the largest stiffness (E ∼ 11.8GPa) being along

the c-axis (Fig. 3). The tensor of elastic moduli (in Kelvin’s
notations) at −16◦C is given by (10) (Gammon et al., 1983),



σ11
σ22
σ33√
2σ23√
2σ13√
2σ12


=



13930. 7082. 5765. 0. 0. 0.
7082. 13930. 5765. 0. 0. 0.
5765. 5765. 15010. 0. 0. 0.

0. 0. 0. 6028. 0. 0.
0. 0. 0. 0. 6028. 0.
0. 0. 0. 0. 0. 6848.





εe
11
εe

22
εe

33√
2εe

23√
2εe

13√
2εe

12


,

(10)

where all entries are in MPa and 3 is the axis of transverse
isotropy (c-axis of the hexagonal crystalline structure). For con-
ditions prevailing in ice sheets and glaciers, elastic constants
vary little with temperature: a temperature change of 5◦C only
modifies the elastic constants by about 1.5%.

2.3.2. Data for basal slip
The literature provides a number of experimental data for the

behavior of ice crystals deformed in such a way that only basal
slip is activated. Due to the very large viscoplastic anisotropy
of ice single crystals, it is stressed that mechanical tests have to
be carried out very carefully to avoid any heterogeneity of the
stress field within the specimen (Boehler et al., 1987).

Mechanical tests on single crystals where solely non-basal
systems are activated have not been reported so far. This would
require straining the crystal along or perpendicular to the c-axis,
but unfortunately any unavoidable deviation from perfect align-
ment activates basal slip. Duval et al. (1983) has given upper
bounds for the flow stress on non-basal systems.

Consequently, only the material parameters of Eq. (6) rele-
vant for basal slip can be identified with confidence from exper-
imental data on single crystals :

• First, data compiled by Duval et al. (1983) were used to de-
termine the stationary flow stress and the stress-sensitivity
exponent n(k) of basal slip. There is quite a large spread
in these experimental results from different authors. De-
spite these uncertainties, the stress-sensitivity exponent for
basal slip can be directly identified from these experimen-
tal data (numerical values are reported in Table 1), whereas
the stationary flow stress depends on both the stationary
reference stress τ(k)

sta and the stationary backstress X(k).

• Next, data from Weertman (1973) were used for the iden-
tification of the transient creep regime of basal systems.
Single crystals were deformed under uniaxial compression
at different strain rates, with c-axis oriented at 45◦ from
the loading direction (Fig. 4). The observed stress peak is
associated with the increase in density of mobile disloca-
tions (Duval et al., 1983), a behavior typical for material
with very low initial dislocation density (see Sauter and
Leclercq (2003); Cochard et al. (2010)). These tests shed
light on the softening of basal slip in the transient regime.
The static recovery term e(k) in the constitutive law (7)
helps achieving the correct stationary stress at very small
strain rates (since X(k) tends to a constant value c(k)/d(k) at
large shear γ(k) if static recovery is not introduced).

• Finally, the recovery test of Taupin et al. (2008) performed
on single crystals under uniaxial compression was consid-

5

ered. Here the c-axis orientation was not precisely defined
experimentally, but it made an angle “less than 10◦” with
the compression direction. The single crystal was submit-
ted to four creep loadings for 30 minutes separated by
unloading stages for respectively 1 minute, 10 minutes,
and 100 minutes (Fig. 4). Upon reloading, the strain
rate is larger than just before the last unloading, indicating
that dislocations are rearranging during the time intervals
where the specimen is unloaded. This is accounted for in
the model by the back stress X(k), and by e(k).

Fig. 4 shows the good match between the model (constitutive
Eq. (6)) with the set of parameters given in Table 1 and these
experimental results.

3. Mean field approaches for the mechanical response of ice
polycrystals

3.1. Microstructure characterization
From the mechanical point of view, polycrystalline materials

have to be considered as a specific class of composites. They
are composed of many grains, with grain size in the range of
mm to cm for natural ice. Grains are assembled in a random
way, i.e. their size, shape, and lattice orientation do gener-
ally not depend on the size, shape, and orientation of the sur-
rounding grains (Fig. 5). Therefore, the microstructure of ice
polycrystals can hardly be described exactly in 3-D, unless one
makes use of tomography techniques (Rolland du Roscoat et al.,
2011). From (2-D) thin sections, one can at best access a sta-
tistical characterization of the 3-D grain arrangement e.g. with
the help of cross-correlation functions, although the description
is generally limited to a few parameters, such as the average
grain size and grain shape (aspect ratio). In the Euler orien-
tation space, microstructure description is based on the distri-
bution of crystal lattice orientations (Orientation Distribution
Function, ODF, or crystallographic texture, often denoted ”fab-
ric” in the geophysical community). The complex behavior of
polycrystalline materials comes from the anisotropic behavior
at the grain scale, closely related to the symmetry of the crystal
lattice. This is true for all quantities of interest here, such as
elasticity, viscoplasticity and thermal dilation. Grains with dif-
ferent lattice orientations react differently to a given stress level.
As far as grain boundaries maintain the cohesion of the mate-
rial, the local stress (i.e. inside a grain) differs from the overall
one (the applied stress), leading to a heterogeneous distribution
of stress and strain fields within the polycrystal.

Most research efforts in the past years have focussed on the
understanding of the build-up of these heterogeneities, in rela-
tion with the microstructure and local (grain) behavior, since
they greatly influence the overall behavior (for ice, see Gren-
nerat et al. (2012) for instance). For instance, plasticity in a
polycrystal can start far below the macroscopic yield stress, as
it is sufficient that the local stress reaches the local yield stress
somewhere in the structure where stress concentration is large
enough, such as along grain boundaries (Brenner et al., 2009).

There are basically two strategies to get the mechanical re-
sponse: mean-field (this section) and full-field (next section)

approaches. For both of them, the key issue is the estimation of
the stress or strain localization (or heterogeneities), in relation
to the microstructure and local behavior of grains. Basically,
the problem to be solved is to find an equilibrated stress field,
related to a compatible strain field with the local constitutive re-
lation, both fields fulfilling the applied boundary conditions. In
the following, we review (not in an exhaustive way) some ho-
mogenization techniques used for the investigation of the me-
chanical behavior of ice polycrystals.

3.2. Linear thermo-elasticity
For reasons that will become evident below, let us consider

the case of thermo-elastic ice polycrystals. The local constitu-
tive relation at point (x) reads

ε(x) = S(x) : σ(x) + ε0(x), (11)

with ε0 a stress-free thermal strain (e.g. a dilation), due to tem-
perature changes. The local stress σ(x) can be related to the
overall stress (applied at the polycrystal scale) by means of the
stress-concentration tensor B(x) for the purely elastic problem

σ(x) = B(x) : σ̄ + σres(x), (12)

with σres the residual stress, i.e. the stress field remaining lo-
cally when the overall load is suppressed (σ̄ = 0). It can be
shown that the overall polycrystal behavior takes a similar form
as Eq. (11)

ε̄ = S̃ : σ̄ + ε̃0 , (13)

with symbols .̃ and .̄ denoting the homogenized (or effective)
property and the volume average over the whole polycrystal
volume (also denoted 〈.〉), respectively. Therefore, one has
σ̄ = 〈σ(x)〉 and ε̄ = 〈ε(x)〉, and it can be shown that the effec-
tive compliance S̃ and the effective thermal strain ε̃0 are given
by (Laws, 1973)

S̃ = 〈S(x) : B(x)〉, ε̃0 = 〈ε0(x) : B(x)〉 . (14)

Since, for thermo-elastic polycrystals, the elastic compliance
and the thermal dilation coefficients are uniform properties in-
side grains, the quantities S(x) and ε0(x) in Eq. (11) can be re-
placed by the corresponding homogeneous values S(r) and ε(r)

0
of the considered phase (r). A similar substitution can be made
in Eq. (14), leading to

S̃ =
∑

r

c(r)S(r) : B̄(r) , ε̃0 =
∑

r

c(r)ε(r)
0 : B̄(r) (15)

with .̄(r) indicating the average over the volume of phase (r), e.g.
B̄(r) = 〈B(x)〉(r), and c(r) the volume fraction of phase (r). Here,
a mechanical phase (r) denotes the set of all grains of the poly-
crystal having the same crystal orientation; those grains have
different shape and environment but their elastic and thermal
properties are identical. From (15), it can be observed that the
sole knowledge of the mean (phase average) values B̄(r) is suf-
ficient to estimate the overall polycrystal behavior. It can be
anticipated that, if the quantities B̄(r) can be calculated without
having to know the complete field of B(x), computation will be

6

way faster. Hence the name of ”mean-field” approaches pre-
sented here.

With the effective behavior (Eq. 14) in hand, statistical av-
erages over crystal orientations (r) can be estimated. Basically,
two quantities can be obtained from mean-field approaches:

1. The phase average stress (or first moment) σ̄(r) = 〈σ(x)〉(r)

σ̄(r) = B̄(r) : σ̄ + σ̄(r)
res, (16)

with σ̄(r)
res the average residual stress of phase (r). The

knowledge of σ̄(r) for all phases (r) allows investigating
the so-called interphase heterogeneities, i.e. the variation
of the phase average stress with respect to the crystal ori-
entation.

2. Deeper insight into the stress distribution can be obtained
from the second moment 〈σ ⊗ σ〉(r) of the stress.This sec-
ond moment can be obtained by a derivation of the effec-
tive energy with respect to local compliances, see (Bobeth
and Diener, 1987; Kreher, 1990; Ponte-Castañeda and Su-
quet, 1998; Brenner et al., 2004).

The standard deviation of the stress distribution within a given
crystal orientation (r) can be estimated from these two moments
as the square root of < σ ⊗ σ >(r) − < σ >(r) ⊗ < σ >(r)

(i.e. the mean of the square of the stress minus the square of
the mean); it is related to the width of the stress distribution in
crystal orientation (r), and accounts for both the heterogeneity
of stress distribution inside grains but also for the heterogene-
ity between grains of identical orientation but exhibiting differ-
ent shapes and having different neighborhood. Similar relations
can be derived for the strain statistics.

3.3. Reuss and Voigt approximations
First, two very basic models can be derived, namely Reuss

(also called static in the viscoplastic context) and Voigt (or Tay-
lor) models. The Reuss model is constructed by considering a
uniform stress throughout the polycrystal, i.e. σ(x) = σ̄ ∀x, or
equivalently B(x) = I (with I the identity tensor), and leads to
vanishing intra– and inter–granular stress heterogeneities, and
uniform strain within grains. The Voigt model considers uni-
form strain, i.e. ε(x) = ε̄ ∀x, i.e. no intra– and inter–granular
strain heterogeneities, and uniform stress within grains. These
models violate strain compatibility and stress equilibrium, re-
spectively, and are of limited accuracy when the local behavior
is highly nonlinear and/or highly anisotropic, as will be illus-
trated in the next section. Besides simplicity, the main interest
of Reuss and Voigt models is based on their bounding character,
since they provide, respectively, a lower and an upper bound for
the effective stress potential.

3.4. The Self-Consistent (SC) scheme
Unlike full-field approaches detailed in the Section 4, mean-

field methods are based on a statistical description of the mi-
crostructure, e.g. based on few n-points correlation functions,
so that the exact position and shape of a specific grain with
respect to its neighbors is not known. However, as already in-
troduced, all grains exhibiting the same crystallographic orien-
tation are treated as a single mechanical phase. Owing to the

random character of the microstructure with all grains playing
geometrically similar roles, the Self-Consistent (SC) scheme
(Hershey, 1954; Kröner, 1958; Willis, 1981) is especially well
suited for polycrystals. This model, which provides a relatively
simple expression for B̄(r), relies on specific microstructures ex-
hibiting perfect disorder and infinite size graduation (Kröner,
1978). The SC scheme has often been described as if the inter-
action between each grain and its surrounding could be approx-
imated by the interaction between one ellipsoidal grain with
the same lattice orientation as the original grain and a homo-
geneous equivalent medium whose behavior represents that of
the polycrystal, taking thus advantage of the analytical solution
of Eshelby (1957) for the inclusion/matrix interaction. This rea-
soning led to the conclusion that the SC scheme implicitly con-
siders uniform stress and strain rate inside grains. This interpre-
tation turns out to be incorrect, since intraphase stress and strain
heterogeneities do not vanish as explained above, see Ponte-
Castañeda and Suquet (1998) for a review.

The ability of the SC scheme to estimate polycrystal behavior
is shown in Fig. 6. Numerical reference solutions from the full-
field FFT method (see Section 4) have been generated for many
randomly generated Voronoi microstructures, and ensemble av-
erage over these random microstructures has been calculated
in order to attain results that are representative for a Represen-
tative Volume Element, i.e. a volume sufficiently large to be
statistically representative of the material (Kanit et al., 2003;
Lebensohn et al., 2004b). In Fig. 6, we provide results for the
effective behavior, that is entirely defined by the effective refer-
ence stress σ̃0 which enters in the effective constitutive relation

˙̄εeq

ε̇0
=
σ̄′eq

σ̃0
(17)

with ε̇0 a reference strain rate (taken here equal to γ̇0), and σ̄′eq
and ˙̄εeq the effective equivalent stress and strain rate respec-
tively (σ̄′eq =

√
3σ̄ : σ̄/2, ˙̄εeq =

√
2˙̄ε : ˙̄ε/3). Calculations are

performed for various viscoplastic anisotropy contrasts (or slip
system contrasts) at the grain level, defined by the ratio between
non-basal and basal reference shear stresses, i.e. τ(Pr)

0 /τ(Ba)
0 for

τ
(Pyr)
0 = τ(Pr)

0 . It can be observed that the SC model perfectly
reproduces the reference full-field (FFT) results. Note also that
the Reuss bound, often used for highly anisotropic materials
like ice, predicts a much too soft overall behavior. This simple
approach does not allow to make a realistic link between local
and overall rheologies. We also report in this figure the stan-
dard deviations (or overall heterogeneities) of equivalent stress
and strain rate. These standard deviations have been calculated
over the whole polycrystal. Recall that they account for both
intra- and inter-granular field heterogeneities for both SC and
FFT approaches. It can be observed that the increase of stan-
dard deviation with the slip system contrast is well reproduced
by the SC scheme, although some discrepancies with FFT re-
sults arise at very large contrasts (mostly for the strain-rate fluc-
tuation). Note again that Reuss and Voigt bound do not repro-
duce these results, even in a qualitative way, since they predict,
by construction, vanishing fluctuation of stress and strain rate,
respectively. Unlike these simple approaches, the SC scheme

7

not only predicts the correct effective stress, but also accurately
captures the field heterogeneities within the polycrystal. Sim-
ilar agreement have been obtained for Voronoi and EBSD 2-
D microstructures under antiplane shear by Lebensohn et al.
(2005).

3.5. Nonlinear viscoplasticity
The mean-field estimate of nonlinear materials is signifi-

cantly more complex than the thermo-elastic case treated above.
We consider the case of a viscoplastic polycrystal of ice in
which grains are deforming by glide of dislocations on specific
slip planes, as discussed above, with slip rates given by Eq. (4),
so that the local strain rate reads, since elastic deformations are
neglected:

ε̇(x) =
∑

k

µ(r)
(k)γ̇(k)(x) . (18)

Here, reference stresses τ0 and stress sensitivities n are sup-
posed to be constant. The constitutive Eq. (18) can also be
written

ε̇(x) = M(x) : σ(x) (19)

with

M(x) =
∑

k

γ̇(k)
0

τ(k)
0

∣∣∣∣∣∣∣µ(k)(x) : σ(x)

τ(k)
0

∣∣∣∣∣∣∣
n(k)−1

µ(k)(x) ⊗ µ(k)(x) . (20)

Obviously, the viscous compliance M relating ε̇(x) and σ(x) –
which plays a similar role as S in Eq. (11) – is not uniform
within a phase, owing to the stress sensitivities n , 1 and the
heterogeneity of σ in the phases. Consequently, (14) cannot be
replaced by (15) for nonlinear behavior. The basic method to
deal with such nonlinear behavior is to define a Linear Compar-
ison Polycrystal (LCP) having the same microstructure as the
real nonlinear polycrystal, and to which the linear homogeniza-
tion scheme applies (Ponte-Castañeda and Suquet, 1998). Of
course, the effective behavior estimated this way remains non-
linear, since the definition of the LCP depends on the applied
macroscopic stress. The difficult part of the problem consists
of finding the best linearization procedure leading to the opti-
mal selection of the LCP. Since decades, there has been quite
a number of propositions in the literature dealing with this is-
sue, leading to a generalization of the SC scheme for nonlinear
behavior. The local constitutive relation given by Eqs (18-20)
has to be linearized in a suitable way to obtain a form simi-
lar to (11), with S and ε̇0 uniform per phase (and where ε is
replaced everywhere by ε̇). Generally speaking, the lineariza-
tion can be expressed in the form depicted in Fig. 7, (Liu and
Ponte Castañeda, 2004).

γ̇(k)(x) = α(r)
(k)τ(k)(x) + ė(r)

(k), (21)

thus leading to the following expressions for S(r) and ε̇(r)
0

S(r) =
∑

k

α(r)
(k)µ

(r)
(k) ⊗ µ

(r)
(k) , ε̇(r)

0 =
∑

k

ė(r)
(k)µ

(r)
(k) , (22)

where the shear compliance α(r)
(k) and stress-free slip-rate ė(r)

(k) can
be easily expressed with respect to two reference shear stresses

τ̌(r)
(k) and τ̂(r)

(k), see Fig. 7. The optimal choice (from the point
of view of the variational mechanical problem) of those refer-
ence stresses is not straightforward; this is the main reason why
several extensions of the SC scheme have been proposed in the
literature. Obviously, all of them reduce to the same SC model
in the linear case n = 1.

Following Ponte Castañeda (1996), Masson et al. (2000) pro-
posed the so-called “affine” (AFF) linearization scheme which
is based on the simple idea of a linear behavior (21) tangent to
the nonlinear one (4) at the mean shear stress, leading to

τ̌(r)
(k) = τ̂(r)

(k) = 〈τ(k)〉
(r), α(r)

(k) =
∂γ̇

∂τ

∣∣∣∣∣
τ=τ̌(r)

(k)

. (23)

The main limitations of this procedure are discussed in detail in
Masson et al. (2000) and Bornert and Ponte Castañeda (1998).
One of them is the violation of rigorous upper bounds for the ef-
fective behavior. More generally, the affine extension is known
to overestimate the overall viscosity, i.e. to predict an effective
behavior that is too stiff. This negative feature can be allevi-
ated by means of the energy formulation originally proposed
by Ponte Castañeda (1996) (see Bornert et al. (2001)).

Alternative, more sophisticated ways to generalize the SC
scheme have been proposed by Ponte Castañeda and co-
workers during the last decades. The basic idea of these meth-
ods is to guide the choice of the properties of the LCP by a suit-
ably designed variational principle. An “optimal” solution has
been obtained in the context of the so-called “variational” pro-
cedure (VAR) (Ponte Castañeda, 1991), which was extended to
polycrystals by De Botton and Ponte Castañeda (1995), leading
to the choice

τ̌(r)
(k) = 0, τ̂(r)

(k) =
[
< τ2

(k) >
(r)

]1/2
. (24)

The main advantage of this procedure is to provide a rigor-
ous bound, sharper than the Voigt bound, for the effective po-
tential. More recently, the “second-order” (SO) method of
Ponte Castañeda (2002), extended to polycrystals in (Liu and
Ponte Castañeda, 2004) has been proposed. It leads to refer-
ence shear stresses reading

τ̌(r)
(k) = 〈τ(k)〉

(r), τ̂(r)
(k) = τ̌(r)

(k) ±
[
< (τ(k) − τ̌

(r)
(k))

2 >(r)
]1/2

. (25)

The main differences between AFF, VAR, and SO models
may be summarized as follows. The AFF estimate can be re-
garded as a relatively simple model, allowing rapid computa-
tions which can even be rather accurate for polycrystals with
weak grain anisotropy and small stress sensitivity. However, its
predictions can become unrealistic (e.g. bound violation) at a
strong anisotropy or nonlinearity. Contrary to AFF, for which
linearization only accounts for the phase average stress, VAR
accounts for the second moments of the stress, whereas the SO
procedure accounts for both the phase average stress and in-
traphase standard deviation (first and second moments) to build
the LCP. They can therefore provide better estimates in cases of
highly heterogeneous stress distributions, such as for strongly
nonlinear or anisotropic polycrystals. Applications of the VAR

8

procedure to polycrystals with grains having cubic or hexago-
nal crystallographic structures can be found in (Nebozhyn et al.,
2001; Liu et al., 2003).

Finally, the “tangent” (TGT) extension of the SC scheme
(Molinari et al., 1987; Lebensohn and Tomé, 1993), often re-
ferred to as the “VPSC model” in the literature, is based on
the same tangent linearization (23) as the AFF method. How-
ever, unlike the AFF extension, this procedure takes advantage
of the fact that, for power-law polycrystals with a single stress
exponent n for all slip systems, the tangent behavior (21) can
be replaced by a secant-like relation, with ė(r)

(k) = 0 and α(r)
(k) re-

placed by α(r)
(k)/n. The same procedure is further applied at the

macroscopic level, leading to an inconsistent definition for the
stress localization tensor B(r) that combines a secant description
for the local and global behaviors but a tangent analysis for the
inclusion/matrix interaction (Masson et al., 2000). When ex-
pressed in the form of tangent expressions, it can be shown that
˙̃ε0 differs from the exact relation given in (15).

3.5.1. Application to natural ices: effective behavior
Application of homogenization techniques to natural ices

aims at understanding (and predicting) the anisotropic behav-
ior of strongly textured specimens, as encountered at depth in
natural ice sheets. As will be seen in section 6, the viscoplas-
tic anisotropy of polycrystals significantly influences ice flow
at large scales (Mangeney et al., 1996; Gillet-Chaulet et al.,
2006; Pettit et al., 2007; Martı́n et al., 2009). Castelnau et al.
(1998) reported mechanical tests performed on specimens from
the GRIP ice core (Central Greenland). Along the ice core, the
ice microstructure, and in particular the crystallographic fabric,
is evolving; with increasing depth, randomly oriented c-axis at
the surface of the ice sheet tend to concentrate towards the in
situ vertical direction down to a depth of ∼ 2600 m. Beneath
this depth, less pronounced textures are observed due to the
initiation of migration recrystallization (Thorsteinsson et al.,
1997). In (Castelnau et al., 1998), the experimental stationary
creep behavior of those ices have been obtained for two loading
conditions (Fig. 8). The first one corresponds to an in situ verti-
cal compression, showing an increasing flow stress (decreasing
strain rate for a constant applied stress) with increasing depth,
since the activation of non-basal slip systems is necessary for
pronounced fabrics. The second loading condition corresponds
to in situ horizontal shear, promoting basal slip and resulting in
a softening of the ice with increasing fabric strength. It can be
seen that for a given applied stress, strain rates can vary by more
than two orders of magnitude depending on the orientation of
the applied stress with respect to the specimen fabric, reflecting
the very strong viscoplastic anisotropic of ice specimens.

The effective behavior predicted by the affine (AFF) SC
model is compared to the experimental data in Fig. 8. It can
be observed that the agreement is excellent, meaning that the
relation between fabric and effective rheology is very well cap-
tured by the model. The model captures correclty the increas-
ing anisotropy from the surface down to ∼ 2600 m depth, and
the decrease below. The difference by more than two orders of
magnitude between the vertical and shear strain-rates at ∼ 2600

m is also well reproduced, although this was a challenging fea-
ture for the model. To get these results, the reference shear
stress τ(k)

0 entering the local constitutive relation, and also the
stress sensitivity n(k), for each slip system (k), had to be iden-
tified from comparison with a database that included single-
crystal experimental tests, and polycrystal ones on many dif-
ferent crystallographic textures (Castelnau et al., 2008b). The
resulting single-crystal rheology, used as input in the SC model
to get the effective behavior described above, is shown in Fig.
9. For basal slip, agreement with experimental data from the
literature is almost perfect. Non-basal systems are much stiffer
than the basal systems, and pyramidal slip is found to be much
more difficult than prismatic slip. These results are in good
agreement with the available data on single crystals, and in
qualitative agreement with the known dislocation structure in
ice. Therefore, it can be anticipated that the affine SC model
does a good job in making the link between the grain and the
polycrystal scales, and provides an accurate estimate of the me-
chanical interaction between deforming grains. In other words,
one can anticipate that results shown in Fig. 8 are based on
a realistic description of the mechanical interaction between
grains and physical deformation processes (dislocation glide)
at the (sub)grain level. It can also be seen on Fig. 9 that this
identification procedure leads to different stress sensitivities for
the different slip system families. A value n(k) = 2 was im-
posed for basal slip in accordance with experimental data, but
values for prismatic and pyramidal systems were considered as
adjustable parameters. It is also worth noting that the affine
model perfectly reproduces an effective stress sensitivity (i.e.
at the polycrystal scale) ñ = 3 in agreement with experimen-
tal data, although the two major slip systems, basal and pris-
matic slip, have stress sensitivities smaller than 3 (n(bas) = 2.0,
n(pr) = 2.85). A larger value was considered only for pyramidal
slip (n(py) = 4.0), but it is worth mentioning that the contribu-
tion of pyramidal slip is only very minor (<2%). It can be con-
cluded that, in ice, although basal slip is by far the most active
deformation mechanism, secondary slip systems are of great
importance for explaining the polycrystal behavior. Basal slip
alone does not allow for plastic deformation of ice polycrystals,
since it only provides two independent slip systems. Secondary
slip systems, here prismatic and pyramidal slip, must therefore
be activated to add two more independent slip systems. The
strength of these stiffer mechanisms determines the viscoplastic
anisotropy at the grain scale, and therefore they also control the
level of inter– and intra–granular heterogeneities of stress and
strain(-rate), and therefore the effective polycrystal rheology.
Similar conclusions have been drawn for olivine, a mineral with
only three independent slip systems (Castelnau et al., 2008a,
2009, 2010a,b). We therefore anticipate that the strong effect
of secondary deformation mechanisms observed here might be
a general feature for all polycrystalline materials with less than
four independent slip systems. The corollary of these results
is that simple or ad hoc polycrystal models, such as the Reuss
(uniform stress) model, in which ice polycrystals can deform
with only basal slip, cannot be accurate. This has been shown
for example in (Castelnau et al., 1997): whatever the strength
used for prismatic and pyramidal systems, the Reuss model is

9

not able to reproduce the very large anisotropy of GRIP spec-
imens shown in Fig. 8. This comes from the fact that internal
stresses, that have a large influence on the material behavior,
are ignored.

Finally, it is also worth mentioning that the TGT SC ap-
proach, used in earlier studies, e.g. (Castelnau et al., 1997),
does not provide as good a match to experimental data as the
AFF SC extension. There can be two reasons for that: (i) first
of all, it is now known that the inconsistency in the formula-
tion of the TGT SC version leads to an underestimation of the
internal stress level, predicting a too soft polycrystal behavior
(Gilormini, 1995; Masson et al., 2000); (ii) second, by con-
struction, the TGT model is limited to grain behavior for which
all slip systems exhibit the same stress sensitivity n(k). When
applied to ice, one must thus consider n(k) = 3.0 for all systems,
including basal slip, in order to get an effective ñ = 3. The fact
that the AFF extension does not have this limitation might also
explain a better consistency with experimental data.

3.5.2. Application to natural ices: texture development
Using the Reuss approximation, Van der Veen and Whillans

(1994) and Castelnau and Duval (1994) described the fabric
evolution under compression, tension, simple and pure shear.
Van der Veen and Whillans (1994) needed to impose a kind
of ”recrystallization” criterion (see Section 5.1) to be able to
correctly represent the single-maximum fabric (with c-axis ori-
ented along one direction) in ice deforming in pure shear. Nev-
ertheless, the Reuss approximation faces inconsistency to de-
scribe the fabric evolution at the polycrystal scale, as it requires
additional kinematical constraints to link the grain rotation-rate
with the polycrystal rotation-rate. In most of the ”Reuss” type
models, these two rates are supposed to be equal, although the
velocity field is not continuous.

Models that modify this homogeneous stress assumption
were proposed by Azuma (1994) and Thorsteinsson (2002).
They introduce some redistribution of stress through neigh-
borhood interaction to define the crystal strain at a given bulk
equivalent strain. In particular, Thorsteinsson (2002) defines a
crystal arrangement on a three-dimensional cubic grid, where
each crystal has six nearest neighbors. The nearest neighbor
interaction (NNI) is taken into account by defining a local soft-
ness parameter for each crystal which modifies the stress act-
ing on the central crystal compared to the macroscopic stress.
This softness parameter further influences the rotation rate of
the crystal lattice compared to the bulk. For uniaxial compres-
sion tests, the fabrics obtained with the NNI formulation are
less concentrated than the ones where no NNI is considered.
The reason for this is that the NNI formulation allows all crys-
tals to deform to some extent, while only ”soft” crystals would
deform in the no-NNI formulation. The fabric obtained after
50% shortening strain compares qualitatively well with the one
measured along the GRIP ice core at a depth where the strain is
similar (1293 m) (Thorsteinsson et al., 1997).

The VPSC model in its ”tangent” version was applied to sim-
ulate the fabric development along ice cores (Castelnau et al.,
1996b,a, 1998). In (Castelnau et al., 1996a), a comparison was

made with bound estimates (Reuss and Voigt). Fabrics simu-
lated in uniaxial compression and extension were found to be
qualitatively similar for all models. However, large differences
in the rate of fabric development were found. This was ex-
plained by the different interaction stiffness between grain and
matrix for the three approaches. The fabrics obtained with the
VPSC model for uniaxial deformation were in close agreement
with the one measured along the ice core (see Fig. 10). In par-
ticular, this model well reproduced the fabric evolution along
the GRIP ice core within the upper 650 m where dynamic re-
crystallization is not supposed to strongly impact this evolu-
tion (Castelnau et al., 1996b). Lower down, the modeled fabric
concentration is too high. Although Castelnau et al. (1996b)
attributed this discrepancy to the effects of rotation recrystal-
lization along the core, it was later shown that the tangent ap-
proximation overestimates the lattice rotation.In simple shear,
the single-maximum fabric found along the ice cores or exper-
imentally could not be reproduced with the VPSC scheme. To
get close to this fabric, an extensive (and probably unrealis-
tic) activity of non-basal slip systems was required. More re-
cently, the ”second order” (SO) mean field method of Ponte
Castañeda (2002) was used to simulate the fabric development
along the Talos Dome ice core (Montagnat et al., 2012). Al-
though no recrystallization mechanisms were implemented in
this version, the fabric development was astonishingly well re-
produced, under the crude assumption of uniaxial compression
with a constant strain rate (see Fig. 11). In particular, a good
match was obtained when the initial fabric is non isotropic and
similar to the one measured in the top firn, at 18 m depth. The
cumulated compressive strain along the core was derived from
the thinning function provided by the TALDICE-1 chronol-
ogy (Buiron et al., 2011). The good prediction performed by
the VP-SO scheme is probably due to the fact that this SO
approach provides a better estimate of the effective behavior
than the classical tangent ”VPSC” model does in the case of
strongly anisotropic materials such as ice (see Section 3.5).
Nevertheless, the modeled fabric evolution could not capture
the strengthening rate associated with the Glacial to Interglacial
climatic transition. At these transition, a change in ice viscos-
ity is expected. It induces an higher sensitivity to the impact of
shear stress increasing with depth, that the modeling approach
did not considered.

It is also recalled that the heterogeneity of shear on slip sys-
tems at the grain level gives rise to heterogeneities of lattice
rotation, and therefore generates intragranular misorientations
that somehow spread crystal orientations. It is however worth
mentioning that all models presented above do not consider
this strain heterogeneity for estimating fabric evolutions at fi-
nite strain. Even in VAR and SO procedures, intraphase strain
heterogeneities are considered for defining the LCP, but so far
not for estimating microstructure evolutions. As a consequence,
mean-field approaches generally predict too sharp textures. The
same applies to the prediction of strain hardening, associated
with dislocation processes such as storage and annealing. A
quantitative study, based on comparisons with reference results
obtained by a FFT full-field approach, can be found in (Castel-
nau et al., 2006).

10

Most of the efforts to simulate the fabric development in ice,
and especially along ice cores, had to face the fact that recrys-
tallization mechanisms could impact this fabric development.
This was, most of the time, the analysis made for the observed
discrepancies between simulated and measured fabrics (Van der
Veen and Whillans, 1994; Wenk et al., 1997; Castelnau et al.,
1996b; Thorsteinsson, 2002). Some efforts to implement re-
crystallization mechanisms in mean-field approaches will be
described in Section 5.1.

3.6. Modeling the elasto-viscoplastic behavior
Transient creep is typically encountered when ice flow

changes direction, such as in glaciers flowing above irregular
bedrock or submitted to tide forcing close to the sea-shore or
in icy satellites. During laboratory experiments, transient creep
is characterized by a strain-rate drop of more than two orders
of magnitude before reaching the secondary creep close to 1%
strain, following Andrade’s law (Duval, 1978). This decrease
is associated with the development of large internal stress fields
due to intergranular interactions and a strong kinematic hard-
ening (Duval et al., 1983; Ashby and Duval, 1985; Castelnau
et al., 2008b). To reproduce this transient behavior, one has
to consider the coupling between elasticity and viscoplasticity
that gives rise to the so-called ”long-term memory effect”, as
explained below.

The application of homogenization schemes to the elasto-
viscoplasticity of polycrystals is more complicated than for vis-
coplasticity, see for instance (Laws and McLaughlin, 1978).
In short, it can be shown that, even in the simple case of a
polycrystal comprising grains whose behavior exhibits a sin-
gle relaxation time (so-called “short-term memory”), the effec-
tive behavior exhibits a continuous spectrum of relaxation time
(”long-term memory effect”) (Sanchez-Hubert and Sanchez-
Palencia, 1978; Suquet, 1987). In other words, the overall be-
havior of a polycrystal is not of the Maxwell type (parallel asso-
ciation of a spring and a dashpot with constant viscosity), even
though the individual grains do exhibit local Maxwell type be-
havior. The basic difference between elasto-viscoplasticity and
viscoplasticity is that, for elasto-viscoplasticity, the local strain
rate depends on both the stress (viscous part) and the stress-
rate (elastic part), whereas it only depends on the stress for vis-
coplasticity. Therefore, the local strain rate not only depends
on the actual local stress, but also on the whole stress history
from the initial specimen loading at t = 0 up to the current
time. To obtain the exact effective mechanical response at time
t, it is thus required to keep track of all information (or inter-
nal variables) corresponding to the strains at all previous times,
and therefore the problem is not simple. Within mean-field ap-
proaches, some approximations (with hopefully limited effects
on the accuracy of the solution) are thus necessary.

Basically, two approaches have been proposed to deal with
this issue. A promising method based on an incremental vari-
ational procedure has been proposed by Lahellec and Suquet
(2006, 2007). These authors have shown that the homogeniza-
tion of a linear visco-elastic material (i.e. with n = 1) can
be expressed in terms of a homogenization problem for a lin-
ear thermoelastic composite with non piecewise uniform eigen-

strains.One advantage of this formulation is that it can make
use of the intraphase heterogeneities of stress and strain (-rate),
and it can therefore probably provide accurate results even at
high stress sensitivity and/or local anisotropy. An alternative
approach, which provides a good compromise between accu-
racy of the solution and simplicity of the formalism, is the so-
called “affine” Self-Consistent method of Masson and Zaoui
(1999). It is based on the correspondence principle (Mandel,
1966), which states that the elasto-viscoplastic problem can be
reduced to a simpler homogenization problem (in fact similar to
a standard thermo-elastic problem) if solved in Laplace space.
One difficulty of this approach is the calculation of the inverse
Laplace transforms, that has to be carried out numerically. An
approximate inversion procedure, adapted for creep, has been
proposed by Brenner et al. (2002b). It has provided promis-
ing results for the creep behavior of Zirconium alloys (Letouzé
et al., 2002; Brenner et al., 2002a), since it retains the long-term
memory effect associated with the elasto-viscoplastic coupling.
Recent developments (Ricaud and Masson, 2009) have shown
that an internal variable formulation arises naturally from this
affine method, providing results in perfect match with reference
FFT solutions in the case of linear viscoelasticity (Vu et al.,
2012).

To the best of our knowledge, this affine method is the only
mean-field approach that has been applied to simulate the tran-
sient creep of ice (Castelnau et al., 2008b). Applications make
use of the crystal plasticity model for single crystals detailed in
Section 2.3. It was shown that the strong hardening amplitude
during the transient creep (i.e. the decrease of the overall strain
rate by several orders of magnitude) is explained by the stress
redistribution within the specimen: when the overall stress is
applied instantaneously, the instantaneous polycrystal response
is purely elastic, and since the elastic anisotropy is small, stress
distribution within and between grains is almost uniform. But
plastic deformation comes into play rapidly to cause a strong re-
distribution of stress (with large interphase and intraphase het-
erogeneities) due to the strong viscoplastic anisotropy at the
grain scale. This significantly reduces the overall strain rate.
On the other hand, the experimental hardening rate (i.e. the
time necessary to reach the secondary creep regime) is much
too slow to be explained by the same process, and is attributed
to the hardening of hard-glide slip systems (prismatic slip) in
the transient regime, associated with dislocation processes (Fig.
12).

4. Full field approaches for the polycrystal

Mean-field approaches have been extensively used to pre-
dict the mechanical behavior of ice polycrystals, and the fab-
ric development as measured along ice cores. Due to its high
viscoplastic anisotropy, deformation in ice is expected to be
strongly heterogeneous, with a strong impact of grain inter-
actions and kinematic hardening (Duval et al., 1983; Hamman
et al., 2007; Montagnat et al., 2011; Grennerat et al., 2012). The
mean-field approaches described above are based on the sta-
tistical characterization of the intragranular mechanical fields
(in terms of average grain stresses and strain rates, and, in the

11

most advanced formulations, also through the determination of
the intracrystalline average field fluctuations), but the actual
micromechanical fields remain inaccessible to these homoge-
nization approaches. Modeling the full intracrystalline hetero-
geneity that develops in ice polycrystals requires the use of
full-field approaches. This part will concentrate on full-field
approaches that are using the Fast Fourier Transform method
to solve the constitutive equations in a discretized polycrystal.
It aims at studying the correlation between the heterogeneous
deformation patterns that appear inside the constituent single-
crystal grains of an ice aggregate and their corresponding crys-
tallographic orientations, along with the influence of other fac-
tors, such as orientation and size of neighboring grains. Both
viscoplastic and elasto-viscoplastic behavior were investigated,
and are presented in the two following sections.

4.1. Viscoplastic approach - FFT

4.1.1. Viscoplastic FFT-based formulation
The intracrystalline states that are developed during creep of

polycrystalline ice can be obtained using an extension of an it-
erative method based on FFT, originally proposed by Moulinec
and Suquet (1998) and Michel et al. (2001) for linear and non-
linear composites (Lebensohn et al., 2009; Montagnat et al.,
2011). This formulation was later adapted to polycrystals and
applied to the prediction of texture development of fcc materi-
als (Lebensohn, 2001), and in turn used for the computation of
field statistics and effective properties of power-law 2D poly-
crystals (Lebensohn et al., 2004a, 2005) and 3D cubic, hexag-
onal (Lebensohn et al., 2004b) and orthorhombic (Castelnau
et al., 2008a) materials. The FFT-based formulation was also
applied to compute the development of local misorientations in
polycrystalline copper, with direct input from orientation im-
ages (Lebensohn et al., 2008). As will be detailed is Section
4.2 it was further extended to transient behavior with an elasto-
viscoplastic formulation (Idiart et al., 2006; Suquet et al., 2011;
Lebensohn et al., 2012). The FFT-based full-field formulation
for viscoplastic polycrystals is conceived for a periodic unit
cell, provides an exact solution of the governing equations, and
has better numerical performance than a FE calculation for the
same purpose and resolution. The viscoplastic FFT-based for-
mulation consists in finding a strain-rate field, associated with
a kinematically-admissible velocity field, which minimizes the
average of local work-rate, under the compatibility and equi-
librium constraints. The method is based on the fact that the
local mechanical response of a periodic heterogeneous medium
can be calculated as a convolution integral between the Green
function of a linear reference homogeneous medium and the ac-
tual heterogeneity field. Such type of integrals reduce to a sim-
ple product in Fourier space, therefore the FFT algorithm can
be used to transform the heterogeneity field into Fourier space
and, in turn, to get the mechanical fields by antitransforming
that product back to real space. However, since the actual het-
erogeneity field depends precisely on the a priori unknown me-
chanical fields, an iterative scheme should be implemented to
obtain, upon convergence, a compatible strain-rate field and a
stress field in equilibrium.

The periodic unit cell representing the polycrystal is dis-
cretized by means of a regular grid {xd}, which in turn deter-
mines a corresponding grid of the same dimensions in Fourier
space {ξd}. Velocities and tractions along the boundary of the
unit cell are left undetermined under the sole condition of peri-
odicity. An average velocity gradient Vi, j is imposed to the unit
cell, which gives an average strain rate ˙̄εi j = 1

2 (Vi, j + V j,i). The
local strain-rate field is a function of the local velocity field,
i.e. ε̇i j(vk(x)), and can be split into its average and a fluctuation
term: ε̇i j(vk(x)) = ˙̄εi j + ˜̇εi j(ṽk(x)), where vi(x) = ˙̄εi jx j + ṽi(x).
By imposing periodic boundary conditions, the velocity fluctu-
ation field ṽk(x) is assumed to be periodic across the boundary
of the unit cell, while the traction field is antiperiodic, to meet
equilibrium on the boundary between contiguous unit cells.
The local constitutive equation that relates the deviatoric stress
σ′(x) and the strain rate ε̇(x) at point x is obtained from Eqs
(18) to (20).

If p(x) is the unknown pressure field introduced by the in-
compressibility constraint, the Cauchy stress field can be writ-
ten as:

σ(x) = L0 : ε̇(x) + ϕ(x) − p(x)I (26)

where the polarization field ϕ(x) is given by:

ϕ(x) = σ′(x) − L0 : ε̇(x) (27)

where L0 is the stiffness (viscosity) of a linear reference
medium. Eqs. (26) and (27) amount to transform the actual
heterogeneity problem into an equivalent one, corresponding
to a homogenous medium with eigen-strain-rates. Note, how-
ever, that the above defined polarization field depends on the
unknown ε̇(x). Combining Eq. (27) with the equilibrium and
the incompressibity conditions gives:

L0
i jklvk,l j(x) + ϕi j, j(x) − p,i(x) = 0, vk,k(x) = 0 (28)

Assuming for a moment that the polarization field ϕ(x) is
known, the system of partial differential equations (28), with
periodic boundary conditions across the unit cell boundary, can
be solved by means of the Green function method.
If Gkm and Hm are the periodic Green functions associated with
the velocity and hydrostatic pressure fields, the solutions of sys-
tem (28) are convolution integrals between those Green func-
tions and the actual polarization term. The velocity gradient,
after some manipulation is given by:

ṽi, j(x) =

∫
R3

Gik, jl(x − x′)ϕkl(x′)dx′. (29)

Convolution integrals in direct space are simply products in
Fourier space. Hence:

ˆ̇̃εi j(ξ) = Γ̂
sym
i jkl (ξ)ϕ̂kl(ξ), (30)

where Γ̂
sym
i jkl = sym(Ĝik, jl). The tensors Ĝik(ξ) and Γ̂

sym
i jkl (ξ) are

only functions of L0 and can be readily obtained for every point
belonging to {ξd} (for details, see Lebensohn et al. (2008)).
Now, taking into account the definition 27 of ϕ(x), Eq. 29
is an integral equation where the velocity gradient appears in

12

both sides, and, thus, it can be solved iteratively. Assigning ini-
tial guess values to the strain-rate field in the regular grid (e.g.
˜̇ε
(
xd

)
= 0 ⇒ ε̇(0)(xd) = ˙̄ε), and computing the corresponding

stress field σ′(0)(xd) from the local constitutive relation (18) al-
lows to obtain an initial guess for the polarization field in direct
space ϕ(0)(xd) (27), which in turn can be Fourier-transformed
to obtain ϕ̂(0)(ξd).

The rate of convergence of this fixed point technique is rather
poor for nonlinear constitutive relations such as power-law re-
lations between the stress and the strain-rate. Accelerated
schemes based on augmented Lagrangians have been proposed
to improve this rate of convergence originally by Michel et al.
(2000, 2001) for composites, and later adapted by Lebensohn
(2001) for polycrystals to which the interested reader in referred
for details. Upon convergence, the stress at each material point
can be used to calculate the shear rates associated with each
slip system (Eq. 4), from which fields of relative activity of the
basal, prismatic and pyramidal slip modes can be obtained, as
well. While it is certainly possible to use the FFT-based for-
mulation for the prediction of microstructure evolution, in this
section we have restricted our analysis to the local fields that
are obtained for a fixed configuration. In this sense, the high
strain-rate regions predicted by the model (see below) should
be regarded as precursors of localization bands. Evidently, mi-
crostructural changes that are not considered under this approx-
imation, like the eventual grain’s and subgrain’s morphologic
evolution and rotation, as well as the possible occurrence of lo-
cal strain hardening, may modify some of the trends observed
in the initial micromechanical fields. In order to account for
these microstructural changes, the FFT-based formulation has
been coupled with the front-tracking numerical platform Elle
(Bons et al., 2001). Results of this coupled model are reported
in Section 5.2.2.

4.1.2. Application to columnar ice deforming in the secondary
creep regime.

Lebensohn et al. (2009) and Montagnat et al. (2011)
applied this FFT method to simulate strain rate and stress
fields, and local lattice misorientations obtained at secondary
creep in columnar ice polycrystals. Lebensohn et al. (2009)
compared the simulated fields to a series of compression
creep experiments performed by Mansuy et al. (2000, 2002)
on laboratory-grown columnar ice samples characterized
by multicrystals of controlled shape and orientations. The
specimen used for this comparison (see Fig. 13) was a plate of
210×140 mm with a relatively thick (8 mm) section, consisting
of a multicrystalline cluster, located in the center of the plate,
with c-axes lying on the plane of the plate, and embedded in a
matrix of fine-grained ice. This specimen was deformed under
a compressive stress of 0.75 MPa exerted vertically in the
plane at -10◦C under plane strain conditions. Fig. 13 shows,
after 0.07 strain, three types of localization bands: basal shear
bands, kink bands and sub-boundaries, that change orientation
to follow crystallographic directions when they cross from one
grain to another.
In this configuration, kink band boundaries are seen mainly

inside grains oriented close to 45◦ from the imposed com-
pression direction. Kink bands, described as a sharp or
discontinuous change in orientation of the active slip surface,
had been reported in experimental studies conducted on 2-D
ice polycrystals (Wilson et al., 1986; Wilson and Zhang, 1994;
Montagnat et al., 2011). Sub-boundaries parallel to the c-axis
were also observed.

The FFT-based calculation as described in the previous sec-
tion was run to obtain the overall and local mechanical response
of the above-described unit cell representing a columnar ice
polycrystal, to the following imposed strain-rate tensor (see also
Fig. 14):

˙̄εi j =

 1 × 10−8 0 0
0 −1 × 10−8 0
0 0 0

 s−1 (31)

The crystallographic texture of the 2-D ice polycrystal consist-
ing of columnar grains with c-axes perpendicular to the ax-
ial (vertical) direction x3 was described in terms of a collec-
tion of Euler-angle triplets of the form (ϕ1, 90◦, ϕ2) (Bunge
convention). The application of the FFT method required the
generation of a periodic unit cell or representative volume Ele-
ment (RVE), by repetition along x1 and x2 of a square domain.
This square domain was constructed in such a way that it con-
tained the cross-sections of 200 columnar grains, generated by
Voronoi tessellation (see Fig. 14). This square domain is the
cross-section of the unit cell, consisting of columnar grains with
axes along x3 and sections in the x1-x2 plane. This unit cell
was discretized using a 1024×1024×1 grid of regularly-spaced
Fourier points, resulting in an average of around 5250 Fourier
points per grain. Note that the periodic repetition of this unit
cell along x3 determines infinitely long grains along this direc-
tion. Three specific orientations with c-axis respectively at 0◦,
45◦, and 90◦ from the compression direction were forced to be
among the set of 200 (otherwise random) orientations assigned
to the grains. For a plane-strain state, such that x1 is the tensile
direction and x2 is the compression direction, the grain with ϕ1
= 45◦(45 deg grain in what follows) is theoretically favorably
oriented to deform by soft basal slip, while in the 0 deg and
90 deg grains, the hard pyramidal systems are the only ones
favorably oriented to accommodate deformation. It is worth
noting that due to the above plane-strain condition and the in-
plane orientation of the c-axes, the prismatic slip systems are
not well-oriented, for any ϕ1 angle.

The computed effective response of this kind of isotropic
columnar ice polycrystal deformed in-plane is twice softer com-
pared to an isotropic 3-D polycrystalline ice (Lebensohn et al.,
2007). The computed overall relative activities of the different
slip modes (i.e. 90.7%, 7.6% and 1.7% for basal, pyramidal and
prismatic slip, respectively) show a preeminence of basal slip, a
minor contribution of pyramidal slip and a very low activity of
prismatic slip. Fig. 15 shows the computed equivalent strain-
rate field for the entire unit cell, normalized with respect to the
average equivalent strain rate (˙̄εeq = 1.15 × 10−8s−1). The main
feature observed in this plot is a network of high strain-rate
bands, precursors of localization bands (in what follows we will

13

sometimes refer to them simply as ”localization bands”). These
bands are transmitted from grain to grain and are, in general, in-
clined with respect to the shortening and extension directions.
They follow tortuous paths, sometimes with large deviations
from ±45 ◦ (i.e. the macroscopic directions of maximum shear
stress). They follow crystallographic directions (basal poles or
basal planes) inside each grain. The predicted bands parallel or
perpendicular to the c-axis were reasonably assumed to be kink
or shear bands, respectively (see Lebensohn et al. (2009) for
details). Some segments of these bands also follow favorably-
oriented grain boundaries and frequently go through triple or
multiple points between grains, in good agreement with some
of the observations of (Mansuy et al., 2002) (Fig. 13). Fig. 16
shows in more details the predicted fields of equivalent strain
rate (normalized to ˙̄εeq), equivalent stress (in units of τbas) and
relative basal activity, in the vicinities of the 45 deg grain. Two
very intense (i.e. local strain rates higher than 10 times the
macroscopic strain rate) and parallel kink bands are seen in-
side the 45 deg grain, connected by several less intense shear
bands (orthogonal to the pair of kink bands, lying on to the basal
plane), in good agreement with Mansuy’s experiments (see Fig.
13). The basal activity in the 45 deg grain is very high, al-
though some regions of high non-basal activity can be observed
between shear bands and immediately outside the kink bands.
The latter is compatible with a low or even vanishing resolved
shear stress on basal planes in those locations, which may be
responsible for the formation of basal dislocation walls that are
at the origin of a kink band (Mansuy et al., 2002). This corre-
lation between kink band precursors and nearby localized high
non-basal activity is systematic in these results. From the same
detailed analysis performed around the 0 and 90 deg grains, a
good match was found with experimental observations.

In (Montagnat et al., 2011), the viscoplastic FFT-based ap-
proach was applied to the exact experimental microstructure of
a compressive test performed on a 2D columnar sample. Sam-
ples (dimensions ≈ 10×10×1.5 cm3) were grown in the labora-
tory under a uniaxial temperature gradient to reach a columnar
microstructure with all c-axes lying parallel to the sample sur-
face. In this work, the observed kink bands could be associated
with misorientations between adjacent regions of a grain inte-
rior of more than 5◦, and their exact nature in term of dislocation
arrangements were confirmed by EBSD measurements. Al-
though the boundary conditions of the modeling were slightly
different from the experimental one, the model was able to pre-
dict the exact location of the localization bands. The bands were
associated with stress concentration that could reach five times
the applied macroscopic stress, and to high levels of local non
basal activity (see Fig. 17). Nevertheless, the amplitude of the
modeled lattice misorientations were always overestimated, and
this was associated with the fact that very local grain boundary
migration and new grain nucleation (dynamic recrystallization
mechanisms) observed experimentally were not considered in
the model (see Section 5.2.2).

4.2. Elasto-viscoplastic FFT approach
The full-field FFT approach described above has been ex-

tended very recently to the case of elasto-viscoplasticity, see

(Idiart et al., 2006; Suquet et al., 2011; Lebensohn et al., 2012).
As for purely viscoplastic behaviors, its application to highly
anisotropic material like ice allows investigating the accuracy of
elasto-viscoplastic mean-field models (see Section 3.6) since,
as already mentioned, the FFT technique provides the “exact”
(in a numerical sense) response of the specimen with the ac-
tual microstructure and local constitutive relations. Applica-
tion to ice allows studying transient creep effects with more de-
tail. Comparison with experimental strain field measured with
an intragranular spatial resolution has been provided in (Gren-
nerat et al., 2012) making use of the relative ease of producing
samples with controlled 2-D microstructure, compared to other
polycrystalline materials.

4.2.1. The mechanical problem
The method described in Suquet et al. (2011) considers the

same microstructure description as in Section 4.1: a polycrys-
talline volume V composed of several grains of different orien-
tations, each grain obeying constitutive relations defined in Sec-
tion 2.3. The volume V is subjected to a macroscopic loading
path, which can be a prescribed history of average strain, or a
history of average stress or a combination of both. For simplic-
ity, the method is presented here assuming a prescribed history
of macroscopic strain ε(t), t ∈ [0,T]. Other types of loadings
can be handled by different methods described in (Michel et al.,
1999) for instance.

The local problem to be solved to determine the local stress
and strain fields in the volume element V consists of the equilib-
rium equations, compatibility conditions, constitutive relations
and periodicity boundary conditions:

(σ̇, τ̇0, Ẋ) = F(ε̇,σ, τ0, X, x, t), for (x, t) ∈ V × [0,T],

ε(x, t) = 1
2 (∇u(x, t) + T∇u(x, t)),

div σ(x, t) = 0 for (x, t) ∈ V × [0,T],

u(x, t) − ε(t).x periodic on ∂V, for t ∈ [0,T]
(32)

The data of interest are the effective response σ(t), t ∈ [0,T] of
the polycrystal, the history of the average strain ε(t), t ∈ [0,T],
but also the local fields σ(x, t), ε(x, t) and other significant
fields (internal variables, thermodynamic forces etc....).

The extension of the simplest version of the FFT-based
method, also called the basic scheme, to constitutive relations
including crystalline elasto-viscoplasticity relies on two ingre-
dients:

1. A time-integration scheme for the constitutive differen-
tial equations. The time interval of interest [0,T] is split
into time steps [tn, tn+1]. All quantities are assumed to be
known at time tn, and the quantities at time tn+1 are un-
known. This time integration is performed at every point
xd of the discretized polycrystal and the evolution prob-
lem is reduced to a problem for the stress and strain fields
σ and ε at time tn+1 in the form

σn+1(xd) = Fn+1(xd, εn+1(xd)) (33)

2. A FFT global scheme to solve the local problem for a non-
linear composite obeying Eq. (33).

14

The algorithm developed applies to a wide class of constitu-
tive relations, see (Suquet et al., 2011). As before, it is limited
to specimens submitted to periodic boundary conditions. Re-
sults presented below are performed with the FFT-based pro-
gram Craft (freely available at http://craft.lma.cnrs-mrs.fr). For
application to elastoviscoplasticity in ice, the local constitutive
relation is the one provided above, see Eqs (2, 3, 6, 7, 8). It can
also be formulated via the following differential equation:

Ẏ = F(ε̇,Y, t), (34)

where

Y =


σ

τ(k)
0 , k = 1, ...M

X(k), k = 1, ...M

 ,

F(ε̇,Y, t) =

C :

ε̇ − M∑
k=1

γ̇(k)(Y)µ(k)

(
τ(k)

sta − τ
(k)
0

) M∑
`=1

h(k,`)
∣∣∣γ̇(`)(Y)

∣∣∣
c(k)γ̇(k)(Y) − d(k)X(k)

∣∣∣γ̇(k)(Y)
∣∣∣ − e(k)

∣∣∣X(k)
∣∣∣msign

(
X(k)

)


(35)

with C the elastic stiffness (C = S−1). The set of parameters
used are given in Table 1.

4.2.2. Application to strain field prediction in a 2D-1/2 config-
uration.

The elasto-viscoplastic FFT approach was used to predict
strain and stress field evolution during transient creep tests on
ice polycrystals, in comparison with experimental measure-
ments performed by Grennerat et al. (2012).
Samples were grown following (Montagnat et al., 2011)
(see Section 4.1.2). This way, when compressed, (i) plastic
deformation can be approximate as 2-D, and (ii) strain fields
measured at the specimen surface are representative for
the sample volume owing to the minimisation of in-depth
microstructure gradients. Average grain size (section perpen-
dicular to the column direction) was about 5 mm and most of
the c-axes were oriented parallel to the surface (± 15◦). The
microstructure and grain orientation were measured using an
Automatic Fabric Analyzer (Russell-Head and Wilson, 2001)
which provides orientation values with about 50 µm resolution,
and 1◦ accuracy. A Digital Image Correlation technique
(Vacher et al., 1999) was applied to measure the strain hetero-
geneities on the surface perpendicular to the column direction.
From displacement measurements performed during transient
creep in ice, i.e. up to 1 to 2%, at -10◦C, under 0.5 MPa, strain
fields were evaluated with a resolution of about 0.2%, and at a
spatial resolution of about 1 mm.

The experimental microstructures were implemented in the
code using the fabric analyzer data of 2000×2000 pixels (but
the model input does not need to be square). One pixel in the
third dimension (column direction) is enough to reproduce the
2D-1/2 geometry thanks to the periodic boundary conditions.

Fig. 18 presents the strain field measured experimentally
at the end of the transient creep, and the simulated fields of
strain and stress. Although simulated boundary conditions did
not precisely match the experimental ones, the heterogeneities
of the strain field that develop during transient creep of poly-
crystalline ice were reproduced well by the model (Grennerat
et al., 2012). In particular, the model was able to reproduce
the characteristic length of the heterogeneities being larger than
the grain size, and scaling with the sample dimensions. Fur-
thermore, both experimental and modeled results showed no
correlation between the orientation of the c-axis and the strain
intensity (see Fig. 19). This result casts doubt on the relevance
of the distinction between ”hard grains” and ”soft grains” clas-
sically made for the analysis of ice mechanical behavior, and
more generally for anisotropic materials.
Fig. 20 represents the evolution of the simulated equivalent
strain field from 0.25 to 0.60% of compression during transient
creep. As observed experimentally, the strain heterogeneities
develop early during the transient creep and are reinforced up
to about 10 times the imposed strain.

5. Modeling of dynamic recrystallization mechanisms

Under laboratory conditions (described in Section 1), dy-
namic recrystallization (DRX) dominates the changes of mi-
crostructures and fabrics in the tertiary creep regime, that is
after about 1% macroscopic strain (Duval, 1981; Jacka and
Maccagnan, 1984; Jacka and Li, 1994). During DRX, grain
nucleation and grain boundary migration are two processes that
contribute to the reduction of the dislocation density, therefore
of the stored deformation energy (Humphreys and Hatherly,
2004). In the laboratory, tertiary creep is a continuous sequence
of deformation and recrystallization that gradually results in
a steady state. This steady state is associated with an equi-
librium grain size (Jacka and Li, 1994) and a girdle-type fab-
ric with c-axes at about 30◦ from the compression axis (Jacka
and Maccagnan, 1984), or with two maxima in simple shear
(Bouchez and Duval, 1982).
In polar ice sheets, DRX was identified from observation on ice
thin sections along ice cores (Alley, 1992; Thorsteinsson et al.,
1997; de la Chapelle et al., 1998; Kipfstuhl et al., 2006). Three
regions are usually defined: (i) normal grain growth driven by
the reduction of grain-boundary energy in the upper hundreds
meters of the core, (ii) rotation recrystallization during which
new grains are formed by the progressive lattice rotation of the
subgrains in the main part of the core and (iii) migration recrys-
tallization similar to the one observed in the laboratory, in the
bottom part where the temperature is above -10◦C (see Mon-
tagnat et al. (2009) and Faria et al. (this issue) for a review).

Recrystallization and grain growth significantly influence the
microstructure, the fabric and therefore the mechanical proper-
ties. To be able to integrate these mechanisms in the modeling

15

of ice deformation is therefore crucial for an accurate prediction
of its behavior.

5.1. Dynamic recrystallization within mean-field approaches

Several attempts were made to integrate dynamic recrystal-
lization mechanisms into mean-field approaches as described in
Section 3.

On the basis of the VPSC scheme (tangent version) described
in Section 3 for the description of the mechanical behavior,
Wenk et al. (1997) developed a nucleation and grain-growth
model to represent DRX in anisotropic materials such as ice.
The model is based on the hypothesis that grains with a high
stored energy (highly deformed) are likely to nucleate new
grains and become dislocation-free. They may also be invaded
by their neighbors which have a lower stored energy. Depend-
ing on the respective importance of nucleation and grain bound-
ary migration processes, the recrystallization textures are ex-
pected to favor either highly deformed components or less de-
formed ones.
One must first remember that, in the VPSC scheme, grains
are represented by inclusions in an homogenous equivalent
medium (HEM). Grain interactions are therefore represented
”averaged” through the interaction between the inclusion and
the HEM.
In this model, nucleation is represented, by a probability of nu-
cleation P per time increment ∆t for each deformation step:

P ∝ ∆t × exp(−A/E2) (36)

The constant A depends on the grain boundary energy and was
taken as an adjustable parameter. E is a proxy of the stored
energy, E ∝

∑
s(∆τs

0) with ∆τs
0 the variation of the critical

resolved shear stress on the system s during the deformation
step. This calculation supposes a hardening law for each slip
system to be defined. An isotropic hardening law was chosen
in the form τ̇s

0 = H
∑

s γ̇
s, with hardening matrix H being

isotropic. A threshold was then defined for the minimum strain
energy to nucleate, and the new grain completely replaced the
old one (same size, same orientation), with a stored energy
equal to zero.
The grain boundary migration rate was taken proportional to
the difference in stored energy between the grain and the aver-
age, i.e., the HEM. The development of the microstructure is
therefore a balance between nucleation and growth. Adjustable
parameters were varied arbitrarily for comparison purpose.
Applied to ice, this model resulted into weaker fabrics than the
one obtained by the classical VPSC tangent approach, mostly
because grains near the compression axis disappeared (high
stored energy) and only a few girdle grains, and a few grains
exactly aligned with the compression axis from the beginning,
remained.

Thorsteinsson (2002) included some DRX in its Nearest-
Neighbor Interaction (NNI) model described in Section 3.
Polygonization associated with rotation (or continuous) recrys-
tallization is accounted for by comparing the resolved shear
stress in the crystal (|

∑
s τs b̂s|) to the applied stress (with τs the

shear stress on system s, and b̂s a unit vector in the direction
of the Burgers vector). If the ratio is smaller than a given
value, and the dislocation density higher than a given value,
then the crystal size is halved and both new grains are rotated
by a fixed ∆θ of 5◦. Grain growth occurs by normal grain
growth according to (Gow, 1969; Alley et al., 1986) parabolic
law (D2 − D2

0 = Kt). The grain growth factor K follows an
Arhenius-type dependence on the temperature. To take into
account the grain growth associated with the difference in
dislocation-stored energy between the grain i and the average,
this growth factor was modified into (K̃ = (Eav

disl − Ei
disl)K

′)
with K′ a constant depending on temperature and impurities.
Migration recrystallization is included in the model by con-
sidering the balance between grain-boundary energy, and
stored energy associated with dislocations (the stored energy
is calculated following (Wenk et al., 1997), as just described,
and translated into dislocation density). A crystal recrystallizes
(i.e. is replaced by a crystal with initial dislocation density ρ0)
when the dislocation energy is higher than the grain-boundary
energy. This assumption relies on the hypothesis that stored
energy is released by normal grain growth (driven by GB
energy), and that dynamic recrystallization only occurs if this
relaxation in not efficient enough to decrease the dislocation
density. The size of the new crystal is adjusted with the
effective stress following (Guillopé and Poirier, 1979; Jacka
and Li, 1994) and its orientation is chosen at random in the
range of the ”softest” orientations in the applied stress state.
Modeling results were obtained for comparison to a case
similar to the GRIP ice core, with vertical compression, and
rotation recrystallization dominating. The introduction of
polygonization allows for the preferential removal of ”hard”
grains, which leads to a weaker fabric compared to the ”no-
recrystallization” case. In particular, when associated with the
NNI formulation, the model is able to reproduce fabrics quite
similar to those measured along the GRIP ice core at several
depths. ”Girdle-type” fabric similar to the experimental fabrics,
results from the introduction of migration recrystallization.
However, parametrization remains weak, in particular the
estimation of the dislocation density, and of the recrystallized
grain orientations.

The last example presented here is the cellular automaton
model for fabric development by Ktitarev et al. (2002) and
Faria et al. (2002). The application was mostly to reproduce
the fabric measured along deep ice cores, with the assumption
of deformation under uniaxial compression. The cellular
automaton (CA) frame is especially suitable for simulation
of systems represented by a certain number of cells, which
are associated with generalized state variables and arranged
in regular environment. The considered material is a thin
horizontal layer of ice located along the ice core, thin enough
so that it is considered homogeneous in the vertical dimension.
To discretize the problem according to the CA method, the au-
thors took a one-dimensional lattice of equal cells representing
the grains, described by their size, and their orientation. The
basic dynamical quantity of the algorithm is the dislocation
density. This density increases with deformation and depends

16

on the orientation of the grain. Recrystallization mechanisms
proceed when a critical value is reached. Normal grain growth
is accounted for following Gow (1969) and is apparently the
only growth mechanism associated with polygonization mech-
anisms. The increase in dislocation density is associated with
the resolved shear stress on the basal system and the recrys-
tallization model developed in Montagnat and Duval (2000) is
used to estimate the evolution of the density in relation with
grain size and polygonization mechanisms. Rotation of grains
is ruled by a kinematic equation based on the inelastic spin,
assuming a compressive stress proportional to the depth along
the core, and a linear dependence between the shearing rate of
sliding on the basal system and the resolved shear stress. The
time evolution was related to the depth along the core using
the Dansgaard et al. (1993) relation. Following Duval and
Castelnau (1995), migration recrystallization was only applied
bellow 2800 m depth. During migration recrystallization, new
grains were allowed to grow much faster by consuming up
to ten cells at every time step, until it is impinged by another
growing grain, or until it reaches the critical size of the steady
state.
The model was able to provide a good qualitative evolution
of the grain size, by separating the influence of normal grain
growth, polygonization and migration recrystallization sim-
ilarly to what was suggested from the measurements along
the GRIP ice core (Thorsteinsson et al., 1997; de la Chapelle
et al., 1998). Concerning the fabric evolution, the model was
able to predict the evolution toward a single maximum, but the
kinetics is too strongly influenced by the polygonization, and
further by migration recrystallization.

5.2. Dynamic recrystallization within full-field approaches

This section presents a coupling between a platform for
structural change in materials (Elle) with the full-field FFT
approach presented in Section 4.1, to predict the microstructure
evolution of ice polycrystals during dynamic recrystallization.
A critical step in the development of generic models linking
plastic deformation and recrystallization is the incorporation of
the interaction between intra- and intergranular heterogeneities
of the micromechanical fields (i.e. strain rate and stress) and
the recrystallization processes. Because local rotations of
the crystal lattice are controlled by local gradients of plastic
deformation, heterogeneous distributions of lattice orientations
are observed at the grain and subgrain scale, see Section 4. This
has a strong influence on recrystallization as this is a process
driven by the local gradients of energy (e.g. grain boundary
or stored strain energy). Traditional mean-field models used
to predict microstructure evolution during recrystallization
are based on a simplified description of the medium and
cannot fully describe intragranular heterogeneities (Section
5.1). Therefore, explicit full-field approaches are required
for a better understanding of dynamic recrystallization and
prediction of microstructure evolution at large strain.

5.2.1. The Elle modeling plateform
Elle is a platform for the numerical simulation of processes

in rocks and grain aggregates, with particular focus on (micro-)
structural changes (Jessell et al., 2001; Jessell and Bons, 2002;
Bons et al., 2008; Piazolo et al., 2010). The simulations act on
an actual 2D image of the microstructure (Fig. 21.a). Elle is
currently restricted to 2D cases although the underlying princi-
ples for 2D are equally valid in 3D (Becker et al., 2008), and
therefore the approach could be converted for 3D simulations.

The central philosophy of Elle is to enable the coupling
of processes that act on the material, recognizing that the ef-
fect of one process may significantly alter that of a concurrent
process. Dynamic recrystallization, for example, can greatly
change crystallographic preferred orientations in mineral aggre-
gates deforming by dislocation creep (Jessell, 1988a,b). Cou-
pling of processes is achieved in Elle using the principle of op-
erator splitting, whereby individual processes successively act
on the model in isolation, for a small time step. This approach
greatly simplifies coding, as the coupling between processes
needs not be programmed itself, but emerges from their alter-
nating effect on the model.

Each process in Elle is an individual program or module.
A shell-script takes the starting model and then passes it in a
loop to the individual processes, which each in turn modify the
model slightly. Each loop represents one time step. The user
can freely determine the mix of processes that operate by choos-
ing which ones to include in the loop. The relative activity of
individual processes is determined by the parameters passed on
to each process.

The model is essentially defined by two types of nodes:
boundary nodes (bnodes) and unconnected nodes (unodes) (Fig.
21.b). Bnodes define the boundaries of a contiguous set of poly-
gons (termed flynns). These flynns typically represent single
grains, but can also represent regions within a material, for ex-
ample rock layers (Llorens et al., 2012). The boundaries of the
flynns are formed by straight segments that connect neighbor-
ing bnodes. One bnode can be connected by either two or three
other bnodes. The use of bnodes and flynns makes the model
suitable for a range of Finite Element and front-tracking mod-
els.

Unodes form a second layer of the model. These are nodes
that do not necessarily have fixed neighborhood relationships
and typically represent points within the material. Some pro-
cesses are not amenable to be modeled with polygons, but are
best simulated with a regular grid of unodes. The FFT code is
an example. Nodes and flynns can have a range of attributes as-
signed to them, such as c-axis orientation, boundary properties,
etc.

Elle uses fully wrapping boundaries. A flynn that touches
one side of the model continues on the other side (Fig. 21.a).
The model is thus effectively a unit cell that is repeated in-
finitely in all directions. Although Elle typically uses a square
model, deformation may change the unit cell into a parallelo-
gram shape.
Elle now includes a large and ever growing number of process
modules for a variety of processes that mostly relate to mi-

17

crostructural developments in mineral aggregates. Each process
can essentially act on the model in only two ways: changing the
position of a node (e.g. a bnode in case of grain boundary mi-
gration) or changing the value(s) of attributes of flynns or nodes
(e.g. concentration at a unode in a diffusion simulation). Some
of the most relevant current processes are:

• Normal grain growth driven by the reduction of surface
energy, and hence curvature of grain boundaries. This
process was used by Roessiger et al. (2011) to address
the issue of the competition between grain growth and
grain size reduction in the upper levels of polar ice
caps (Mathiesen et al., 2004). Surface energy can be
anisotropic, i.e. depending on the lattice orientation of the
grains on either side of the boundary (Bons et al., 2001).
Two-phase grain growth has been applied to grain growth
in rocks with a small proportion of melt (Becker et al.,
2008) and to ice with air bubbles (Fig. 21)(Roessiger et
al. this volume).

• The Finite Element module Basil is used for incompress-
ible power-law viscous deformation (Barr and Houseman,
1996). Using viscosities that are assigned to flynns, it cal-
culates the stress and velocity fields resulting from applied
boundary conditions. It has been used to study the be-
haviour of rigid inclusions in a deforming matrix (Bons
et al., 1997), the behaviour of deforming two-phase mate-
rials as a function of viscosity contrast and composition
(Jessell et al., 2009) and for folding of layers (Llorens
et al., 2012). The wrapping boundaries of the Elle model,
in combination with continuous remeshing allows for ar-
bitrarily high strains (Jessell et al., 2009). In combina-
tion with grain growth and dynamic viscosity, Jessell et al.
(2005) studied strain localisation behaviour. Durand et al.
(2004) investigated the influence of uniaxial deformation
on grain size evolution in polar ice cores and its influence
on ice dating methods.

• Dynamic recrystallisation includes grain boundary migra-
tion driven by strain energy (dislocation density) and the
formation of new grain boundaries by progressive sub-
grain rotation or polygonisation (Urai et al., 1986). In the
next section (5.2.2) we will describe how these processes,
employing a front-tracking model for grain-boundary mi-
gration, are linked with the FFT approach (Griera et al.,
2011, 2012; Piazolo et al., 2012) to model the stress and
strain-rate fields and the driving forces for recrystalliza-
tion.

• A final Elle module of potential relevance to ice is that
developed by Schmatz (2010) for the interaction between
migrating grain boundaries and small particles (e.g. dust
or clathrates). The particles are represented by unodes,
which, when swept by a grain boundary, can latch onto
that boundary. Particles can slow down grain boundary
movement, but can also be dragged along and eventually
be released by a grain boundary.

Summarizing, Elle provides a large number of routines to sim-
ulate grain-scale processes in minerals and rocks, and hence in
glacial or polar ice. The open and versatile code allows for
more process modules to be added or existing ones to be tai-
lored for application to ice. A significant advantage of the code
is that it enables the investigation of the complex microstruc-
tural and mechanical effects of multiple, concurrent and cou-
pled processes.

5.2.2. Coupling Elle platform to FFT approach
Most of the numerical approaches used to simulate defor-

mation and microstructural evolution of rocks and metals are
based on combining deformation approaches based on the Fi-
nite Element Method with Monte Carlo, cellular automaton,
phase field, network or level-set methods to simulate recrys-
tallization (Jessell, 1988a,b; Raabe and Becker, 2000; Piazolo
et al., 2002, 2010, 2012; Solas et al., 2004; Battaile et al., 2007;
Logé et al., 2008). An alternative to these methods is the numer-
ical scheme used in this study based on the coupling between
the crystal plasticity FFT-based code (Lebensohn, 2001) (sec-
tion 4.1) and the Elle modeling platform just described (Bons
et al., 2008). Both codes have been previously explained and
here we only concentrate on some particularities of the coupling
between them. The FFT-based formulation is integrated within
the Elle plateform using a direct one-to-one mapping between
data structures. The polycrystalline aggregate is discretized
into a periodic, regular array of spaced and unconnected nodes
(Fourier Points in the FFT and ”unconnected nodes”, unodes,
in Elle; Fig. 21).

Numerical simulation is achieved by iterative application of
small time steps of each process. After numerical conver-
gence of the FFT model, data is transferred to Elle assuming
that the micromechanical fields are constant in the incremen-
tal time step. The position and material information of unodes
are directly updated because they are equivalent to the Fourier
points, while position of boundary nodes (bnodes) are calcu-
lated using the velocity field. Based on the evolution of the
predicted local lattice rotation field, the dislocation density can
be estimated using strain gradient plasticity theory (e.g. Gao
et al. (1999); Brinckmann et al. (2006)) or using the disloca-
tion density tensor or Nyes tensor (Nye, 1953; Arsenlis and
Parks, 1999; Pantleon, 2008). With this approach, only geomet-
rical necessary dislocations required to ensure strain compati-
bility are estimated. To simplify the problem, we use a scalar
approach where all dislocations are assumed to be related to
the basal plane. The lattice-orientation and dislocation-density
fields provide the input parameters to predict recrystallization
in the aggregate.

Recrystallization is simulated by means of three main pro-
cesses: nucleation, subgrain rotation and grain boundary mi-
gration. Using the kinematic and thermodynamic instability
criteria of classical recrystallization theory (Humphreys and
Hatherly, 2004; Raabe and Becker, 2000), nucleation is simu-
lated by the creation of a small new, dislocation-free flynn when
the local misorientation or dislocation density exceeds a defined
threshold. The lattice orientation of the new grain is set to that
of the critical unode. When a cluster of unodes within a grain

18

share the same orientation that is different from the rest of the
unodes in that grain, a new grain boundary is created, while pre-
serving the lattice orientations of the unodes. A technical limi-
tation is that nucleation of grains and subgrains is only allowed
along grain boundaries. Nucleation within grains are therefore
not possible.

Grain boundary migration is described by a linear relation-
ship between velocity (v) and driving force per unit area (∆ f),
by v = M∆ f where M corresponds to the grain boundary mo-
bility, which has an Arhenius-type dependency on temperature.
Grain boundary curvature and stored strain energies are used as
driving forces for grain boundary motion. For this situation, the
driving force can be defined as

∆ f = ∆E − 2γ/r (37)

where ∆E is the difference of stored strain energy across the
boundary, γ is the boundary energy and r is the local radius of
curvature of the grain boundary. Stored strain energy is the en-
ergy per unit volume associated with lattice distortions and de-
pends on the dislocation density (ρ) and dislocation type. Grain
boundary motion is simulated using the free-energy minimiza-
tion front-tracking scheme of (Becker et al., 2008). When an
unode is swept by a moving grain boundary, it is assumed that
dislocations are removed and the new lattice orientation is that
of the nearest unode belonging to the growing grain.
Following the Elle philosophy, each process runs individually,
following a pre-established sequence. After all Elle processes
have run, the unodes layer is used to define the new input mi-
crostructure to be deformed viscoplastically by the FFT code. A
drawback is that the unodes are not following a regular mesh,
a requirement needed by the FFT approach. For this reason,
as proposed by Lahellec et al. (2003), and later adapted in the
context of Elle by Griera et al. (2011, 2012), a particle-in-cell
method is used to remap all material and morphological infor-
mation to a new regular computational mesh. In order to avoid
unrealistic crystallographic orientations, these are not interpo-
lated during remapping. The crystallographic orientation of a
new Fourier Point that belongs to a specific grain is that of the
nearest unode that belongs to the same grain. This allows to run
numerical simulation up to large strains.

5.2.3. Application to creep experiments and natural ice
An example of numerical simulation using the FFT/Elle ap-

proach is shown in Fig. 22. The simulation is based on a creep
experiment of polycrystalline columnar ice. Samples and ex-
perimental conditions are those of (Montagnat et al., 2011) de-
scribed in Section 4.1.2. The specimen was deformed at -10◦C
under uniaxial conditions with a constant load of 0.5 MPa up to
an axial strain of 4%. A thin section of the initial and the final
microstructure was analyzed using the Automatic Ice Texture
Analyzer method (Russell-Head and Wilson, 2001) to obtain
the local c-axis orientations. After a 4% of shortening, the on-
set of local recrystallization is evident in the experiment (Fig.
22a), in the form of irregular and serrated grain boundaries
and small new grains that are preferentially located at triple
junctions and along grain boundaries. Localized variations in

the orientation of the basal plane form sharp and straight sub-
grain boundaries that indicate intracrystalline deformation. The
experimental c-axis map was used as input for the FFT/Elle
simulation. The experimental starting microstructure was dis-
cretized into a grid of 256×256 Fourier points. As only the
c-axis orientation is known, the other axes are given a random
orientation. Crystal plasticity is described with an incompress-
ible rate-dependent equation for basal, prismatic and pyramidal
slip (see Section 3). Critical resolved shear stress for basal slip
was set 20 times lower than for non-basal systems. The physi-
cal properties used for recrystallization are as follows: mobility
M = 1 × 10−10 m2Kg−1s−1 (e.g. Nasello et al., 2005), isotropic
boundary energy γ = 0.065 Jm−2 (Ketcham and Hobbs, 1969),
shear modulus G = 3×109 Pa and critical dislocation density
ρ = 1 × 1012 m−2 (de la Chapelle et al., 1998). Pure shear
boundary conditions were imposed with vertical constant strain
rate of −1 × 10−8 s−1 up to a 4% of strain in 1% increments.

The computed orientation map and grain boundary misorien-
tation are shown in Fig. 22b. Several features of the experiment
are seen in the numerical simulation, such as the development
of sharp misorientations or kink bands, bulging and serrated
grain boundaries, and new grains at triple junction and grain
boundaries. There is a good correlation between location of
kink bands in the experiment and the simulation. However,
the width of kink bands in the simulation is dependent on the
numerical resolution. A relationship between grain boundary
motion/nucleation and high dislocation-density regions is
observed (Fig. 23). Variations in dislocation densities across
grain boundaries lead to migration of these boundaries in
the direction of the dislocation density gradient. However,
some discrepancies are also seen, such as, for example, grain
boundary motion (e.g. at the bottom-left part) that was not
observed in the experiment. One explanation may be that low
and high angle grain boundaries were not differentiated in the
simulation and, therefore, both types had similar mobility.

A second example aims to show the strong effect recrystal-
lization can have on the final microstructure. A 10×10 cm2 mi-
crostructure with 1600 grains with random c-axis orientations
(Fig. 24a) was deformed to 40% shortening in plane-strain pure
shear. The values of mechanical (slip systems, CRSS, etc) and
recrystallization (mobility, surface energy, etc) properties are
similar to those of the model described before, but adjusted to a
natural strain rate of 10−12 s−1 at about -30◦C. Fig. 24b shows
the c-axis and relative misorientation maps for an extreme case
with no recrystallization (FFT only). Dominant red and purple
colors indicate that the c-axis of crystallites are preferentially
oriented at low angles to the shortening direction. Elongated
grains are oriented parallel to the stretching direction. Remark-
able differences are observed when recrystallization is activated
(Fig. 24c). Grain boundaries are smooth and grains larger and
more equidimensional. Despite the significant difference in mi-
crostructure, both simulations show a single maximum c-axis
distribution at low angle to the shortening direction. The strong
resemblance of the simulated microstructure with that of natu-
ral ice (Thorsteinsson et al., 1997; de la Chapelle et al., 1998;
Weikusat et al., 2009) shows the strong potential of modeling of

19

ice deformation based on an actual map of the microstructure.

6. Toward large scale ice flow modeling

A number of models have been developed in glaciology to
simulate the flow of anisotropic ice and the strain-induced de-
velopment of fabric within polar ice-sheets. Accounting for ice
anisotropy in an ice-flow model implies to (i) build a macro-
scopic anisotropic flow law whose response will depend on the
local fabric and (ii) have a proper description of the ice fabric
at each node of the mesh domain and be able to model the fab-
ric evolution as a function of the flow conditions. We hereafter
present the main issues to address these two points.

Due to the scale of these large ice-masses, the implemen-
tation of a polycrystalline law must stay simple enough and
numerically tractable. At present, full-field or even homoge-
nization models presented previously are computationally too
demanding and cannot realistically be used to estimate the me-
chanical response in an ice-sheet flow model. Here we present
two approaches to build a simple and efficient macroscopic law
for polycrystalline ice. The first one is based on the concept
of a scalar enhancement factor function so that the collinear-
ity between the strain-rate and the deviatoric stress tensors is
conserved (Placidi and Hutter, 2006), see Section 6.1. The sec-
ond polycrystalline law is fully orthotropic and depends on six
relative viscosities, function of the fabric (Gillet-Chaulet et al.,
2005, 2006), see Section 6.2. Both models are phenomeno-
logical and must be calibrated using experimental or numerical
results, as described below.

With regards to other materials, the advantage of the hexago-
nal symmetry of ice is that the crystal rheology can be assumed
transversally isotropic (only true for a linear rheology). Under
this assumption, only one unit vector suffices to describe the lat-
tice orientation, thus simplifying the mathematical description
of fabrics. With regards to other materials, the advantage of the
hexagonal symmetry of ice is that only one unit vector suffices
to describe the lattice orientation, thus simplifying the math-
ematical description of fabrics. The discrete description of the
fabric, i.e. a couple of angles for each crystal, would require too
large a number of variables to be stored at each node of the do-
main mesh. Typical mesh size are hundreds of thousand nodes
in 3D (Seddik et al., 2011) up to few millions for the most recent
applications (Gillet-Chaulet et al., 2012). The use of a parame-
terized orientation distribution function (ODF) would decrease
the number of parameters, but evolution equations for these pa-
rameters to describe the fabric evolution cannot be obtained in
a general case (Gagliardini et al., 2009). The orientation ten-
sors, which describe the fabric at the macroscopic scale in a
condensed way are more suitable. Five parameters are needed
to describe an orthotropic fabric (the two eigenvalues of the
second-order orientation tensor and the three Euler angles to
specify the position of the material symmetry basis), and an
evolution equation for the second-order orientation tensor can
be easily derived from the macroscopic stress and strain-rate
fields.

6.1. Continuous Diversity and the CAFFE model

The CAFFE model (Continuum-mechanical Anisotropic
Flow model based on an anisotropic Flow Enhancement fac-
tor) results from a suitable combination of two basic concepts:
a power law description of ice rheology resembling the well-
known Glen’s flow law (Glen, 1955); and a multiscale approach
to model the evolution of the polycrystalline microstructure of
ice based on the general theory of continuous diversity (Faria,
2001; Faria and Hutter, 2002; Faria et al., 2003).

The ideas leading to the CAFFE model have been elabo-
rated in a series of works by Luca Placidi and his collaborators
(Placidi, 2004, 2005; Placidi and Hutter, 2005, 2006; Placidi
et al., 2004). These ideas culminated in the definitive CAFFE
formulation, presented by Placidi et al. (2010), in which the so-
called enhancement factor of Glen’s flow law becomes a func-
tion of the material anisotropy (fabric), and the evolution of
the latter is governed by an orientation-dependent mass balance
equation derived from the theory of continuous diversity ap-
plied to glacier and ice-sheet dynamics (Faria, 2006a,b; Faria
et al., 2006).

The greatest strength of the CAFFE model is its successful
compromise between accuracy and flexibility, which allows one
to upgrade existing computer models of isotropic ice-sheet dy-
namics based on Glen’s flow law into efficient anisotropic mod-
els, without profound changes in the original code. In fact, due
to its relative simplicity, the CAFFE model has already been
implemented in several numerical ice-flow simulations. For in-
stance, it has been used by Seddik et al. (2008) and Bargmann
et al. (2011) to simulate the ice flow at the site of the EPICA-
DML drill site at Kohnen Station, Dronning Maud Land, East
Antarctica, while Seddik et al. (2011) used it to simulate the ice
flow in the vicinity of the Dome Fuji drill site in central East
Antarctica.

In the following, we review the CAFFE formulation pre-
sented by Placidi et al. (2010). The fundamental idea is to
regard polycrystalline ice as a ”mixture” of lattice orientations,
following the philosophy of the theory of Mixtures with Contin-
uous Diversity (MCD) proposed by Faria (2001, 2006a). Suc-
cinctly, a mixture with continuous diversity is a multicompo-
nent medium made up of an infinite number of mutually inter-
acting species, whose distinctive properties vary smoothly from
one to another.

In the case of polycrystalline ice, species are distinguished by
their c-axis orientations. Each point of the continuous body is
interpreted as a representative volume element, which encom-
passes a large number of crystallites with their own c-axis orien-
tations. Each of such orientations is mathematically identified
with a point on the surface of the unit sphere S2 and represented
by a unit vector n ∈ S2. As a consequence, for each species
one can introduce a mass density field %∗(x, t, n), given at a
certain position x within the polycrystal, and at time t, some-
times called orientational mass density, such that, when inte-
grated over the whole unit sphere, the usual mass density field
of the polycristal (i.e. of the ”mixture”) results:

%(x, t) =

∫
S2
%∗(x, t, n) d2n , (38)

20

where d2n (= sin θdθdφ in spherical coordinates) is the in-
finitesimal solid angle on the unit sphere S2. The product
%∗(x, t, n) d2n is the mass fraction of crystalline material in the
volume element with c-axis directed towards n within the solid
angle d2n. Therefore, assuming that the material is incompress-
ible, the mass (or volume) fraction %∗/% can be interpreted as
the usual orientation distribution function (ODF) in the context
of materials science (Bunge, 1993; Zhang and Jenkins, 1993;
Raabe and Roters, 2004). It should be remarked that in the
glaciological literature the term ”ODF” sometimes refers to the
relative number, instead of the mass (or volume) fraction, of
grains with a certain orientation.

The time evolution of %∗ is governed by the balance equation
of species (orientational) mass

∂%∗

∂t
+ div (%∗v) + divn (%∗u∗) = %∗Γ∗ (39)

with
divn (Φ∗) = tr

[
gradn (Φ∗)

]
,

gradn (Φ∗) =
∂Φ∗

∂n
−

(
∂Φ∗

∂n
· n

)
n

(40)

for any scalar-, vector- or tensor-valued field Φ∗(x, t, n). In
(39), u∗(x, t, n) denotes a sort of ”velocity” on the unit sphere
(with u∗ · n = 0), called orientational transition rate. Further,
Γ∗(x, t, n) is the specific recrystallization rate, which describes
the rate of change of mass (per unit mass) of one species into
another one with different orientation. Integration of (39) over
the unit sphere S2 gives rise to the usual mass balance equation
for the polycrystal (i.e. the ”mixture”)

∂%

∂t
+ div (%v) = 0 with∫

S2
%∗Γ∗ d2n =

∫
S2

divn (%∗u∗) d2n = 0 ,
(41)

Notice that the first integral in (41) is a consequence of mass
conservation, while the second integral follows from Gauss’
theorem.

As shown by Faria (2001, 2006a) and Faria and Hutter
(2002), the transition rate u∗ is governed by its own balance
equation, involving couple stresses and body couples. In the
development of the CAFFE model, however, an abridged ap-
proach has been adopted by postulating a constitutive equation
for the transition rate

u∗ = Wn− ι [ε̇n− (n · ε̇n) n] −
λ

%∗
gradn (%∗H∗) (42)

where

W =
1
2

(
grad v −

(
grad v

)T
)
, ε̇ =

1
2

(
grad v +

(
grad v

)T
)

(43)

are the tensors of rotation and strain rate, respectively. The first
term on the right hand side of (42) represents a rigid-body ro-
tation, while the second term describes the process of strain-
induced lattice rotation (Dafalias, 2001), with ι > 0 denoting
the so-called ”shape factor” of the theory of rotational diffusion

(Faria, 2001). According to Placidi et al. (2010), fabric evolu-
tion simulations of the GRIP and EPICA-DML ice cores sug-
gest that best results are obtained for 0.6 > ι > 0.4. Finally, the
third term on the right hand side of (42) models rotation recrys-
tallization as a diffusive process, with λ > 0 being the orien-
tational diffusivity and H∗(x, t, n) an orientational (”chemical”)
potential, also called ”hardness function” by Gödert (2003). In
principle H∗ should be a constitutive function, but, based on mi-
crostructural analyses of the NorthGRIP ice core (Durand et al.,
2008), Placidi et al. (2010) suggest that one may simply set
H∗ = 1.

In the original application of the MCD theory to the flow of
glaciers and ice sheets (Faria, 2006b), the specific recrystalliza-
tion rate Γ∗ is regarded as a dissipative variable. However, for
simplicity, in the CAFFE model Placidi (2004, 2005) has pro-
posed the following relation between Γ∗ and the strain rate

Γ∗ = G (D∗ − D) , with

D∗ = 5
(ε̇n)2 − (n · ε̇n)2

tr
(
ε̇2

) and D =
1
%

∫
S2
%∗D∗d2n ,

(44)

where G > 0 is a material parameter, while 5/2 ≥ D∗ ≥ 0 and
5/2 ≥ D ≥ 0 are called the species and polycrystal ”deforma-
bility”, respectively.

As remarked by Placidi et al. (2010), owing to the difficulties
in determining the values of the material parameters λ and G
from experiments, they are usually determined by fitting numer-
ical simulations of ice core fabrics and grain stereology. This
concludes the description of the fabric evolution.

As for the flow law, in contrast to the full stress–strain rate
relation with tensorial fluidity (viscosity) predicted by the the-
ory of continuous diversity (Faria, 2006b), the CAFFE model
adopts a much simplified generalization of Glen’s flow law:

ε̇ = E(D) A(T)σn−1
eq σ′ , (45)

where σ′ is the deviatoric part of the Cauchy stress tensor σ,
σeq is the effective stress invariant, n is the power law ex-
ponent (usually set equal 3), T is the temperature, and A(T)
is a temperature-dependent rate factor. Clearly, (45) implies
that all anisotropy effects are contained in the scalar-valued,
deformability-dependent flow enhancement factor E(D), such
that stress and strain rate are collinear and (45) reduces to the
classical form of Glen’s flow law when E(D) ≡ const.

A detailed functional form for the enhancement factor E(D)
has been proposed by Seddik et al. (2008) and Placidi et al.
(2010), which is continuously differentiable at D = 1 and is
compatible with the experimental results of Azuma (1995) and
Miyamoto (1999)

E (D) =


(1 − Emin) Dζ + Emin 1 ≥ D ≥ 0 ,

4D2 (Emax − 1) + 25 − 4Emax

21
5/2 ≥ D > 1 ,

(46)

with

ζ =
8

21

(
Emax − 1
1 − Emin

)
, Emax ≈ 10 , Emin ≈ 0.1 . (47)

21

By introducing the orientation tensors (essentially equivalent
to the dipole and quadrupole moments of %∗/%)

a(2) =
1
%

∫
S2
%∗n⊗ n d2n , a(4) =

1
%

∫
S2
%∗n⊗ n⊗ n⊗ n d2n

(48)
to reformulate the CAFFE flow law (45) in an explicitly
anisotropic form

ε̇ = Ê(σ′) A(T)σn−1
eq τ , (49)

In plain words, (49) tells us that the CAFFE model can be ap-
plied to all anisotropies (fabrics) that can satisfactorily be repre-
sented by a multipole expansion up to fourth order. Fortunately,
most anisotropies observed in glaciers and ice sheets.

6.2. GOLF law and Elmer/Ice

In this section, we present the anisotropic ice flow model de-
veloped at LGGE. This model has been used for various appli-
cations (Gillet-Chaulet et al., 2005, 2006; Durand et al., 2007;
Martı́n et al., 2009; Ma et al., 2010). In this approach, the fabric
is described using the second and fourth-order orientation ten-
sors (48). In this continuum description of the fabric, the poly-
crystal represents the local behavior of a representative elemen-
tary ice volume. By assuming that the fourth-order orientation
tensor a(4) is given as a tensorial function of a(2) (Gillet-Chaulet
et al., 2005), the fabric can be described in a very condensed
way using a(2) solely. By definition, tr a(2) = 1, so that only
the first two eigenvalues a(2)

1 and a(2)
2 and three Euler angles are

needed to completely define the fabric. As a consequence, mod-
eled fabrics are orthotropic, i.e. the c-axes distribution presents
three orthogonal symmetry planes. Although orthotropy is a
simple form of the most general anisotropy, it is thought to be
a good compromise between physical adequateness and sim-
plicity. The second-order orientation tensor allows to describe
all the observed fabric patterns: for random c-axes distribution
the diagonal entries of a(2) are a(2)

11 = a(2)
22 = a(2)

33 = 1/3, for
a single maximum fabric with its maximum in the third direc-
tion, a(2)

33 > 1/3 and a(2)
11 ≈ a(2)

22 < 1/3, and for a girdle type
fabric in the plane (x1, x2), a(2)

33 < 1/3 and a(2)
11 ≈ a(2)

22 > 1/3.
When the material symmetry axes are those of the general ref-
erence frame, as for the three particular previous fabrics, the
non-diagonal entries of a(2) are zero.

The behavior of the polycrystal is described by the general
orthotropic linear flow law (GOLF, Gillet-Chaulet et al., 2005).
In its initial form, ice was assumed to behave as a linearly vis-
cous orthotropic material. In more recent works (Martı́n et al.,
2009; Ma et al., 2010), the GOLF law has been extended to a
nonlinear form by adding an invariant in the anisotropic linear
law. The simple choice is either to add the second invariant of
the strain rate (Martı́n et al., 2009) or the second invariant of the
deviatoric stress (Pettit et al., 2007). No theoretical or experi-
mental results are available today to discard one of these two
solutions, and other solutions based on anisotropic invariants of
the deviatoric stress and/or the strain rate are also possible. In
(Ma et al., 2010) approach, the nonlinearity of the law is in-
troduced through the second invariant of the deviatoric stress.

With this definition, the anisotropy factors of the polycrystalline
law for a given stress are identical in the linear and nonlinear
cases. In other words, for a given fabric and a given state of
stress, the corresponding strain rate relative to the isotropic re-
sponse is the same for the linear and nonlinear cases. Using
the strain-rate invariant in the same way as Martı́n et al. (2009)
did, leads to different anisotropy factors (as defined here) in the
linear and nonlinear cases. Therefore, the proposed expression
of the nonlinear GOLF law is as follows:

3∑
r=1

[
ηrtr(Mr · ε̇)M′

r + ηr+3(ε̇ ·Mr + Mr · ε̇)′
]

= 2Aσn−1
eq σ′ ,

(50)
where A is the temperature-dependent Glen’s law parameter
for isotropic ice. The six dimensionless anisotropy viscosities
ηr(a(2)) and ηr+3(a(2)) (r =1, 2, 3) are functions of eigenvalues
of the second-order orientation tensor a(2), which represent a
measure of the anisotropy strength. The three structure tensors
Mr are given by the dyadic products of the three eigenvectors
of a(2), which then represent the material symmetry axes. In
the method proposed by Gillet-Chaulet et al. (2005), the six di-
mensionless viscosities ηr(a(2)) are tabulated as a function of
the fabric strength (i.e., the a(2)

i) using a micro-macro model.
When ice is isotropic, ηr = 0 and ηr+3 = 1 (r =1, 2, 3), and Eq.
(50) reduces to the isotropic Glen’s flow law.

Following Gillet-Chaulet et al. (2005), the six dimensionless
viscosities ηr(a(2)) are tabulated using the visco-plastic self-
consistent model (VPSC, Castelnau et al., 1996a, 1998), see
Section 3. The two crystal parameters in the VPSC model
used to tabulate the GOLF law were chosen so that the experi-
mentally observed polycrystal anisotropy is reproduced. Gillet-
Chaulet et al. (2005) use the shear-strain rates ratio for a poly-
crystal with a single maximum fabric and an isotropic polycrys-
tal both experiencing the same shear stress. This anisotropy
factor in shear is hereafter noted ks and, according to the exper-
imental results of Pimienta et al. (1987), its value is approxi-
mately ks = 10. In other words, the VPSC parameters are cho-
sen so that the response under simple shear of a polycrystal with
a single maximum fabric is ks times easier to deform than the
corresponding isotropic polycrystal. The experimental results
of Pimienta et al. (1987) also indicate that an isotropic poly-
crystal is much easier to deform than a single maximum fab-
ric polycrystal experiencing the same uniaxial compressional
stress. These experiments allow to define a second anisotropy
factor for uniaxial compressional stress, which is noted kc. A
value kc = 0.4 is in accordance with the experimental results
of Pimienta et al. (1987). As discussed before, the anisotropy
factors ks and kc are independent of Glen’s flow law exponent n
with the adopted nonlinear formulation.

Assuming that recrystallization processes do not occur and
that the ice fabric is induced solely by deformation, the evolu-
tion of the second-order orientation tensor a(2) can be written
as

Da(2)

Dt
= W · a(2)−a(2) ·W−(C · a(2) + a(2) ·C)+2a(4) : C , (51)

where W is the spin tensor defined as the antisymmetric part of

22

the velocity gradient. The tensor C is defined as

C = (1 − α)ε̇ + α ks Aσn−1
eq σ′ . (52)

The interaction parameter α controls the relative weighting of
the strain rate ε̇ and the deviatoric stress σ′ in the fabric evo-
lution Eq. (51). When α = 0, the fabric evolution is solely
controlled by the state of strain rate, whereas in the case where
α = 1 the fabric evolves under the influence of the deviatoric
stress solely. In between, as for the VPSC, both the strain rate
and deviatoric stress contribute to the fabric evolution. In what
follows, the interaction parameter is α = 0.06 in accordance
with the crystal anisotropy and the VPSC model used to derive
the polycrystal behaviour (Gillet-Chaulet et al., 2005). In Eq.
(51), the fourth-order orientation tensor is evaluated assuming a
closure approximation giving a(4) as a tensorial function of a(2)

(Gillet-Chaulet et al., 2005).
The anisotropic polycrystalline law described above and the

associated fabric evolution equations have been implemented in
the Finite Element code Elmer/Ice, the glaciological part of the
open source Finite Element software Elmer developed by CSC
(http://www.elmerfem.org/). Ice flow (velocity and isotropic
pressure) are obtained solving the anisotropic Stokes equations
and coupled with the fabric evolution equation (51) and the up-
per free surface equation in the case of transient simulations.
In Gillet-Chaulet et al. (2006), the model was applied to syn-
thetic geometries in order to show the influence of coupling the
Stokes and fabric evolution equations on the flow of ice over a
bumpy bedrock. In Durand et al. (2007), the model was used
to explain the fabric evolution in the Dome C ice core, in the
framework of the EPICA project. The authors showed that to
explain the fabric evolution at Dome C, shear stress must be
invoked. The model was also applied to evaluate the value of
the ad-hoc enhancement factor that should be incorporated in
large-scale isotropic ice-sheet flow model in Ma et al. (2010).
In Martı́n et al. (2009), the anisotropic ice flow model was ap-
plied to explain observed shapes of isochrones below ridges or
domes.

7. Synthesis and perspectives

Applications of ice mechanical behavior modeling extend
from below the single-crystal scale to the ice sheet scale. Up-
wards, this scale range far exceeds that of engineering mate-
rial sciences but is similar to the geological one. Within this
scale range, many physical processes come into play, some of
which are not yet very well described. Furthermore, there exist
strong interactions between these processes that create bridges
between the different levels of complexity. Modeling of ice has
strongly benefited from advances in materials science. In re-
turn, as shown by the results presented in this paper, the con-
tribution of the ice community to the theoretical understanding
and modeling of the mechanical behavior of anisotropic ma-
terials is significant. With the large viscoplastic anisotropy of
the ice crystal, ice is now considered a model material. The ad-
vances presented here may equally well be applied to, for exam-
ple, mantle flow, where the anisotropy due to fabric (CPO) de-

velopment in olivine is thought to play a significant role (Tom-
masi et al., 2009; Long and Becker, 2010).

The presented modeling methods are basically of two types;
some that aim to precisely reproduce the physical mechanisms
as observed experimentally, and some with a more phenomeno-
logical approach. Going through scales, it clearly appears that
individual dislocation interactions cannot be taken into account
at the scale of the polycrystal imbedded in a glacier environ-
ment. Nevertheless, modeling at the scale of dislocation inter-
actions provides a better estimate of the interactions between
slip systems at the single crystal scale, which, in turn, is essen-
tial to reproduce an accurate mechanical response of the poly-
crystal with mean-field and full-field approaches. Furthermore,
full-field approaches are necessary to validate the approxima-
tions made using mean-field models, as they provide the ”ex-
act” (in a numerical sense) response of the specimen with a real
microstructure, integrating the inter- and intra-granular interac-
tions. Finally, large-scale flow models are now getting to a suffi-
cient level of complexity to be able to take into account and rep-
resent the anisotropy associated with the fabrics induced by the
flow conditions. To do so, they integrate mean-field approaches
that correctly reproduce the viscoplastic anisotropy and a non-
linear mechanical behavior.

A summary of the main domains of application, advantages,
and limitations of the main modeling tools presented in the pa-
per is given on tables 2, 3 and 4

Much progress has recently been made in the modeling of
dynamic recrystallization processes and their interactions with
flow anisotropy. Nevertheless, due to the complexity of the
physical processes involved, to jump the gap between scales
is a strong challenge. The field dislocation mechanics approach
appears very promising to associate the internal stress field and
dislocation arrangements to the nucleation and grain boundary
migration mechanisms. However, field dislocation mechanics
cannot yet be applied to scales larger than the polycrystal. Full-
field models, including the FFT-Elle coupling, have the same
scale limitation, but may play an important role in parameter-
izing small-scale processes (dislocation glide, grain boundary
migration, etc.) for mean-field models. They are also important
tools to test models of mechanical and microstructural evolu-
tion.

Compared to other minerals, ice shows remarkably strong
transient behavior (Duval et al., 1983; Castelnau et al., 2008b).
Continuum flow models, such as Glen law (Glen, 1955) have so
far not been able to incorporate the resulting mechanical com-
plexity of polycrystalline ice deformation. Only recently have
mechanical models reached a level of sophistication to address
transient behavior. This development is promising and proba-
bly highly relevant in cases where ice flow changes at rates for
where both elastic and viscoplastic behavior may interact. In
particular, this concerns the very topical subject of ice shelves,
ice streams or extra-terrestrial ice submitted to tide forcing.
Which model will be able to correctly take into account these
transient, and event cyclic behavior, and at which scale?

A next step will likely be the multi-scale coupling of models
of increasing complexity. We can expect dislocation dynamics
and field dislocation mechanics to provide the local criteria for

23

slip system interactions, nucleation, grain boundary migration
as local input to full-field approaches that will be further used
in interaction with mean-field approaches to calibrate dynamic
recrystallization variables influencing the mechanical response
and fabric development.

An interesting example of such model interweaving is given
by the large-scale flow modeling presented in this paper. Nev-
ertheless, a strong effort is still required concerning the flow
law of ice and its dependency on fabrics (CPO) and strain. Re-
cent velocity measurements in Greenland (Gillet-Chaulet et al.,
2011) questioned the relevance of a stress exponent equal to
three as classically considered for large scale flow modeling
(for instance Paterson (1994); Hooke (2005); Greve and Blatter
(2009), ...). Owing to the variety of processes that accommo-
date strain along an ice core path, one could also expect several
regimes to occur with depth, as suggested by some authors (see
for instance Lipenkov et al. (1989); Faria et al. (2009); Pettit
et al. (2011)). Such modeling - observation comparisons mainly
raise the complexity of the physical processes involved that can
probably not be summarized in a single universal law.

8. Acknowledgement

Financial support by the French ”Agence Nationale de
la Recherche” is acknowledged (project ELVIS, #ANR-08-
BLAN-0138). Together with support from institutes INSIS
and INSU of CNRS, and UJF - Grenoble 1, France. PDB and
JR gratefully acknowledge funding by the German Research
Foundation (DFG, project BO-1776/7). The authors gratefully
aknowledge the ESF Research Networking Programme Micro-
Dynamics of Ice (MicroDIce).

References

Acharya, A.. A model of crystal plasticity based on the theory of continuously
distributed dislocations. Journal of the Mechanics and Physics of Solids
2001;49(4):761 – 784.

Acharya, A., Roy, A.. Size effects and idealized dislocation microstructure
at small scales: Predictions of a phenomenological model of mesoscopic
field dislocation mechanics: Part I. Journal of the Mechanics and Physics of
Solids 2006;54(8):1687 – 1710.

Alley, R.B.. Fabrics in polar ice sheets - Development and prediction. Science
1988;240:493–495.

Alley, R.B.. Flow-law hypotheses for ice-sheet modeling. J Glaciol
1992;38(129):245–255.

Alley, R.B., Perepezko, J.H., Bentley, C.R.. Grain growth in polar ice: I.
theory. J Glaciol 1986;32(112):415–424.

Arsenlis, A., Parks, D.M.. Crystallographic aspects of geometrically-
necessary and statistically-stored dislocation density. Acta Materialia
1999;47:1597–1611.

Ashby, M.F., Duval, P.. the creep of polycrystalline ice. Cold Reg Sc Tech
1985;11:285–300.

Azuma, N.. A flow law for anisotropic ice and its application to ice sheets.
Earth and Planetary Science Letters 1994;128(3â“4):601 – 614.

Azuma, N.. A flow law for anisotropic polycrystalline ice under uniaxial com-
pressive deformation. Cold Reg Sci Technol 1995;23:137–147.

Azuma, N., Higashi, A.. Formation processes of ice fabric pattern in ice
sheets. Ann Glaciol 1985;6:130–134.

Bargmann, S., Seddik, H., Greve, R.. Computational modeling of flow-
induced anisotropy of polar ice for the EDML deep drilling site, Antarctica:
the effect of rotation recrystallization and grain boundary migration. Int J
Numer Anal Meth Geomech 2011;:DOI: 10.1002/nag.1034.

Barnes, P., Tabor, D., Walker, J.. The friction and creep of polycrystalline
ice. Proceeding of the Royal Society of London Series A, Mathematical and
Physical Sciences 1971;324(1557):127–155.

Barr, T., Houseman, G.. Deformation fields around a fault embedded in a non-
linear ductile medium. Geophysical Journal International 1996;125:473–
490.

Battaile, C., Counts, W., Wellman, G., Buchheit, T., Holm, E.. Simulating
grain growth in a deformed polycrystal by coupled finite-element and mi-
crostructure evolution modeling. Metallurgical and Materials Transactions
A 2007;38:2513–2522. 10.1007/s11661-007-9267-6.

Becker, J.K., Bons, P.D., Jessell, M.W.. A new front-tracking method to
model anisotropic grain and phase boundary motion in rocks. Computers &
Geosciences 2008;34:201–212.

Bobeth, M., Diener, G.. Static and thermoelastic field fluctuations in multi-
phase composites. JMech Phys Solids 1987;35:137–149.

Boehler, J.P., Aoufi, L.E., Raclin, J.. On experimental testing methods for
anisotropic materials. Res Mech 1987;21:73–95.

Bons, P.D., Barr, T.D., ten Brink, C.E.. The development of delta-clasts
in non-linear viscous materials: a numerical approach. Tectonophysics
1997;270:29–41.

Bons, P.D., Jessell, M.W., Evans, L., Barr, T.D., Stüwe, K.. Modelling
of anisotropic grain growth in minerals. Geological Society of America
Memoir 2001;193:39–49.

Bons, P.D., Koehn, D., Jessell, M.W.. Lecture notes in earth sciences.
In: Bons, P., Koehn, D., Jessell, M., editors. Microdynamic Simulation.
Springer, Berlin; number 106; 2008. 405pp.

Bornert, M., Masson, R., Ponte Castañeda, P., Zaoui, A.. Second-order esti-
mates for the effective behaviour of viscoplastic polycrystalline materials. J
Mech Phys Solids 2001;49:2737–2764.

Bornert, M., Ponte Castañeda, P.. Second-order estimates of the self-consistent
type for viscoplastic polycrystals. ProcRSocLond 1998;A454:3035–3045.

Bouchez, J.L., Duval, P.. The fabric of polycrystalline ice deformed in simple
shear : experiments in torsion, natural deformation and geometrical inter-
pretation. Textures and microstructures 1982;5:171–190.

Brenner, R., Béchade, J.L., Castelnau, O., Bacroix, B.. Thermal creep of
Zr-Nb1%-O alloys: experimental analysis and micromechanical modelling.
J Nucl Mater 2002a;305:175–186.

Brenner, R., Castelnau, O., Badea, L.. Mechanical field fluctuations in
polycrystals estimated by homogenization techniques. ProcR SocLond
2004;A460(2052):3589–3612.

Brenner, R., Lebensohn, R.A., Castelnau, O.. Elastic anisotropy and yield
surface estimates. Int J Solids Struct 2009;46:3018–3026.

Brenner, R., Masson, R., Castelnau, O., Zaoui, A.. A “quasi-elastic” affine
formulation for the homogenized behaviour of nonlinear viscoelastic poly-
crystals and composites. Eur J Mech A/Solids 2002b;21:943–960.

Brinckmann, S., Siegmund, T., Huang, Y.. A dislocation density based strain
gradient model. International Journal of Plasticity 2006;22:1784–1797.

Budd, W., Jacka, T.. A review of ice rheology for ice sheet modelling. Cold
Reg Sci Technol 1989;16:107–144.

Buiron, D., Chappellaz, J., Stenni, B., Frezzoti, M., Baumgartner, M.,
Capron, E., Landais, A., Lemieux-Dudon, B., Masson-Delmotte, V.,
Montagnat, M., Parrenin, F., Schilt, A.. TALDICE-1 age scale of the Talos
Dome deep ice core, East Antarctica. Climate of the Past 2011;7:1–16.

Bunge, H.J.. Texture Analysis in Materials Science. 3rd ed. Goettingen:
Cuvillier, 1993.

Castelnau, O., Blackman, D.K., Becker, T.W.. Numerical simulations of tex-
ture development and associated rheological anisotropy in regions of com-
plex mantle flow. Geophys Res Let 2009;36(L12304).

Castelnau, O., Blackman, D.K., Lebensohn, R.A., Ponte-Castañeda, P.. Mi-
cromechanical modeling of the viscoplastic behavior of olivine. Journal of
Geophysical Research 2008a;113:B09202.

Castelnau, O., Brenner, R., Lebensohn, R.A.. The effect of strain hetero-
geneity on the work-hardening of polycrystals predicted by mean-field ap-
proaches. Acta Materialia 2006;54:2745–2756.

Castelnau, O., Canova, G.R., Lebensohn, R.A., Duval, P.. Modelling vis-
coplastic behavior of anisotropic polycrystalline ice with a self-consistent
approach. Acta Materialia 1997;45(11):4823 – 4834.

Castelnau, O., Cordier, P., Lebensohn, R.A., Merkel, S., Raterron, P..
Microstructures and rheology of the earth’s upper mantle inferred from a
multiscale approach. Comptes Rendus Physique 2010a;11(3-4):304 – 315.
Computational metallurgy and scale transitions.

24

Castelnau, O., Duval, P.. Simulations of anisotropy and fabric development in
polar ices. Ann Glaciol 1994;20:277–282.

Castelnau, O., Duval, P., Lebensohn, R.A., Canova, G.. Viscoplas-
tic modeling of texture development in polycrystalline ice with a self-
consistent approach : Comparison with bound estimates. J Geophys Res
1996a;101(6):13,851–13,868.

Castelnau, O., Duval, P., Montagnat, M., Brenner, R.. Elastoviscoplastic
micromechanical modeling of the transient creep of ice. Journal of Geo-
physical Research Solid Earth 2008b;113(B11203).

Castelnau, O., Lebensohn, R.A., Ponte Castañeda, P., Blackman, D.. Earth
Mantle Rheology Inferred from Homogenization Theories; ISTE. p. 55–70.

Castelnau, O., Shoji, H., Mangeney, A., Milsch, H., Duval, P., Miyamoto,
A., Kawada, K., Watanabe, O.. Anisotropic behavior of GRIP ices and
flow in Central Greenland. Earth and Planetary Science Letters 1998;154(1-
4):307 – 322.

Castelnau, O., Thorsteinsson, T., Kipfstuhl, J., Duval, P., Canova, G.R..
Modelling fabric development along the GRIP ice core, central Greenland.
Ann Glaciol 1996b;23:194–201.

Chaboche, J.L.. A review of some plasticity and viscoplasticity constitutive
theories. International Journal of Plasticiy 2008;24:1642–1693.

de la Chapelle, S., Castelnau, O., Lipenkov, V., Duval, P.. Dynamic recrys-
tallization and texture development in ice as revealed by the study of deep
ice cores in Antarctica and Greenland. J Geophys Res 1998;103(B3):5091–
5105.

Chevy, J., Fressengeas, C., Lebyodkin, M., Taupin, V., Bastie, P., Duval, P..
Characterizing short-range vs. long-range spatial correlations in dislocation
distributions. Acta Materialia 2010;58(5):1837 – 1849.

Chevy, J., Louchet, F., Duval, P., Fivel, M.. Creep behaviour of ice single
crystals loaded in torsion explained by dislocation cross-slip. Phil Mag Let
2012;92(6):262–269. In press.

Chevy, J., Montagnat, M., Duval, P., Fivel, M., Weiss, J.. Dislocation pat-
terning and deformation processes in ice single crystal deformed by torsion.
Proc 11th Int Conf Phys & Chem of Ice 2007;:142–146.

Cochard, J., Yonenaga, I., Gouttebroze, S., MHamdi, M., Zhang, Z.L..
Constitutive modeling of intrinsic silicon monocrystals in easy glide. Journal
of Applied Physics 2010;107(3):033512 –033512–9.

Dafalias, Y.F.. Orientation distribution function in non-affine rotations. J Mech
Phys Solids 2001;49:2493–2516.

Dahl-Jensen, D., Gundestrup, N.S.. Constitutive properties of ice at Dye
3, Greenland. In: The physical basis of ice sheet modelling. Vancouver
Symposium; IAHS; volume 170; 1987. p. 31–43.

Dansgaard, W., Johnsen, S.J., Clausen, H.B., Dahl-Jensen, D., Gundestrup,
N.S., Hammer, C.U., Hvidberg, C.S., Steffensen, J.P., Sveinbjörnsdottir,
A.E., Jouzel, J., Bond, G.. Evidence for general instability of past climate
from a 250 kyr ice-core record. Nature 1993;364:218–220.

De Botton, G., Ponte Castañeda, P.. Variational estimates for the creep be-
haviour of polycrystals. Proc R Soc Lond 1995;A 448:121–142.

Durand, G., Gillet-Chaulet, F., Svensson, A., Gagliardini, O., Kipfstuhl, S.,
Meyssonnier, J., Parrenin, F., Duval, P., Dahl-Jensen, D., Azuma, N..
Change of the ice rheology with climatic transitions. Implication on ice flow
modelling and dating of the EPICA Dome C core. Climates of the Past
2007;3:155–167.

Durand, G., Graner, F., Weiss, J.. Deformation of grain boundaries in polar
ice. EPL (Europhysics Letters) 2004;67(6):1038.

Durand, G., Persson, A., Samyn, D., Svensson, A.. Relation between neigh-
bouring grains in the upper part of the NorthGRIP ice core - Implications
for rotation recrystallization. Earth and Planet Sc Let 2008;265:666–671.

Duval, P.. Lois du fluage transitoire ou permanent de la glace polycristalline
pour divers états de contraintes. Ann Geophys 1976;32(4):335–350.

Duval, P.. Anelastic behaviour of polycrystalline ice. J Glaciol
1978;21(85):621–628.

Duval, P.. Creep and fabrics of polycrystalline ice under shear and compres-
sion. J Glaciol 1981;27(95):129–140.

Duval, P., Arnaud, L., Brissaud, O., Montagnat, M., de La Chapelle, S..
Deformation and recrystallization processes of ice from polar ice sheets.
Ann Glaciol 2000;30:83–87.

Duval, P., Ashby, M., Anderman, I.. Rate controlling processes in the creep
of polycrystalline ice. J Phys Chem 1983;87(21):4066–4074.

Duval, P., Castelnau, O.. Dynamic recrystallization of ice in polar ice sheets.
J Physique IV (suppl J Phys III), C3 1995;5:197–205.

Duval, P., Le Gac, H.. Does the permanent creep-rate of polycrystalline ice

increase with crystal size? Journal of Glaciology 1980;25:151–157.
Duval, P., Montagnat, M.. Comment on ”Superplastic deformation of ice:

experimental observations” by D.L. Goldsby and D.L. Kohlstedt. J Geophys
Res 2002;107:(2082)1–4.

Duval, P., Montagnat, M., Grennerat, F., Weiss, J., Meyssonnier, J., Philip,
A.. Creep and plasticity of glacier ice: a material science perspective. Jour-
nal of Glaciology 2010;56(200):1059–1068.

Eshelby, J.. The determination of the elastic field of an ellipsoidal inclusion,
and related problems. Proc R Soc London Ser A 1957;241:376–396.

Faria, S.H.. Mixtures with continuous diversity: general theory and appli-
cation to polymer solutions. Continuum Mechanics and Thermodynamics
2001;13(2):91–120.

Faria, S.H.. Creep and recrystallization of large polycrystalline masses. I.
General continuum theory. Royal Society of London Proceedings Series A
2006a;462(2069):1493–1514.

Faria, S.H.. Creep and recrystallization of large polycrystalline masses. III:
Continuum theory of ice sheets. Royal Society of London Proceedings Se-
ries A 2006b;462:2797–2816.

Faria, S.H., Freitag, J., Kipfstuhl, S.. Polar ice structure and the integrity of
ice-core paleoclimate records. Quat Sci Rev 2010;29(1):338–351.

Faria, S.H., Hutter, K.. A systematic approach to the thermodynamics of single
and mixed flowing media withmicrostructure. Part I: balance equations and
jump conditions. Continuum Mech Thermodyn 2002;14(5):459–481.

Faria, S.H., Kipfstuhl, S., Azuma, N., Freitag, J., Hamann, I., Murshed,
M.M., Kuhs, W.F.. The multiscale structure of Antarctica. Part I: inland ice.
Low Temp Sci 2009;68:39–59.

Faria, S.H., Kremer, G.M., Hutter, K.. On the inclusion of recrystallization
processes in the modeling of induced anisotropy in ice sheets: a thermody-
namicist’s point of view. Ann Glaciol 2003;37(1):29–34.

Faria, S.H., Kremer, G.M., Hutter, K.. Creep and recrystallization of large
polycrystalline masses. II. Constitutive theory for crystalline media with
transversely isotropic grains. Royal Society of London Proceedings Series
A 2006;462(2070):1699–1720.

Faria, S.H., Ktitarev, D., Hutter, K.. Modelling evolution of anisotropy in
fabric and texture of polar ice. Ann Glaciol 2002;35:545–551.

Faria, S.H., Weikusat, I., Azuma, N.. The microstructure of polar ice. J Struct
Geol this issue;.

Fressengeas, C.. La mécanique des champs de dislocations. Hermés Sciences,
2010.

Gagliardini, O., Gillet-Chaulet, F., Montagnat, M.. A review of anisotropic
polar ice models: from crystal to ice-sheet flow models. In: Hondoh, T., ed-
itor. Physics of Ice Core Records II. Supplement Issue of Low Temperature
Science, Hokkaido University; volume 68; 2009. p. 149–166.

Gammon, P., Kiefte, H., Clouter, M.. Elastic constants of ice samples by
Brillouin spectroscopy. J Phys Chem 1983;87:4025–4029.

Gao, H., Huang, Y., Nix, W.D., Hutchinson, J.W.. Mechanism-based strain
gradient plasticity – I. theory. Journal of the Mechanics and Physics of
Solids 1999;47(6):1239 – 1263.

Gillet, F., Durand, G.. Ice-sheet advance in Antarctica. Nature 2010;467:794–
795.

Gillet-Chaulet, F., Gagliardini, O., Meyssonnier, J., Montagnat, M., Castel-
nau, O.. A user-friendly anisotropic flow law for ice-sheet modelling. J
Glaciol 2005;41(172):3 – 14.

Gillet-Chaulet, F., Gagliardini, O., Meyssonnier, J., Zwinger, T., Ruoko-
lainen, J.. Flow-induced anisotropy in polar ice and related ice-sheet flow
modelling. J Non-Newtonian Fluid Mech 2006;134:33–43.

Gillet-Chaulet, F., Gagliardini, O., Seddik, H., Nodet, M., Durand, G.,
Ritz, C., Zwinger, T., Greve, R., Vaughan, D.G.. Greenland ice sheet
contribution to sea-level rise from a new-generation ice-sheet model. The
Cryosphere 2012;6(6):1561–1576.

Gillet-Chaulet, F., Hindmarsh, R.C.A., Corr, H.F.J., King, E.C., Jenkins, A..
In-situ quantification of ice rheology and direct measurement of the Ray-
mond effect at Summit, Greenland using a phase-sensitive radar. Geophys
Res Lett 2011;38(24).

Gilormini, P.. A critical evaluation for various non-linear extensions of the
self-consistent model. In: Pineau, A., Zaoui, A., editors. IUTAM Symp. on
Michromecanics of Plasticity and Damage of Multiphase Materials. Klower
Acad. Publ., Sèvres, France; 1995. p. 67–74.

Glen, J.. The creep of polycrystalline ice. Proc Roy Soc London
1955;A228:519–538.

Gödert, G.. A mesoscopic approach for modelling texture evolution of polar

25

ice including recrystallization phenomena. Ann Glaciol 2003;37:23–28.
Goldsby, D.L., Kohlstedt, D.L.. Grain boundary sliding in fine-grained ice I.

Scripta Mater 1997;37(9):1399–1406.
Gow, A.. On the rate of growth of grains and crystals in south polar firn. J

Glaciol 1969;8:241–252.
Grennerat, F., Montagnat, M., Castelnau, O., Vacher, P., Moulinec, H.,

Suquet, P., Duval, P.. Experimental characterization of the intragran-
ular strain field in columnar ice during transient creep. Acta Materialia
2012;60(8):3655–3666.

Greve, R., Blatter, H.. Dynamics of Ice Sheets and Glaciers. Berlin: Springer,
2009.

Griera, A., Bons, P.D., Jessell, M.W., Lebensohn, R.A., Evans, L.,
Gomez-Rivas, E.. Strain localization and porphyroclast rotation. Geology
2011;39:275–278.

Griera, A., Llorens, M.G., Gomez-Rivas, E., Bons, P.D., Jessell, M.W.,
Evans, L.A., Lebensohn, R.A.. Numerical modelling of porphyroclast and
porphyroblast rotation in anisotropic rocks. Tectonophysics 2012;587:4–29.
In press.

Guillopé, M., Poirier, J.. Dynamic recrystallization during creep of single-
crystalline halite: an experimental study. J Geophys Res 1979;84:5557–
5567.

Gundestrup, N., Hansen, B.L.. Bore-hole survey at Dye 3, South Greenland.
Journal of Glaciology 1984;30:282–288.

Hamman, I., Weikusat, C., Azuma, N., Kipfstuhl, S.. Evolution of crystal
microstructure during creep experiments. J Glaciol 2007;53(182):479–489.

Hershey, A.V.. The elasticity of an isotropic aggregate of anisotropic cubic
crystals. J Appl Mech 1954;21:236–240.

Higashi, A., Koinuma, S., Mae, S.. Bending creep of ice single crystals. Jpn
J Appl Phys 1965;4:575–582.

Hooke, R.L.. Principles of Glacier Mechanics. 2nd ed. Cambridge: Cambridge
University Press, 2005.

Humphreys, F.J., Hatherly, M.. Recrystallization and related annealing phe-
nomena. Second ed. Pergamon, Oxford, 2004.

Hutchinson, J.. Creep and plasticity of hexagonal polycrystals as related to
single crystal slip. Metall Trans 1977;8A(9):1465–1469.

Idiart, M.I., Moulinec, H., Ponte Castañeda, P., Suquet, P.. Macroscopic
behavior and field fluctuations in viscoplastic composites: Second-order es-
timates versus full-field simulations. Journal of the Mechanics and Physics
of Solids 2006;54(5):1029 – 1063.

Jacka, T.. Investigations of discrepancies between laboratory studies on the
flow of ice: density, sample shape and size and grain size. Annals of Glaciol-
ogy 1994;19:146–154.

Jacka, T.H., Li, J.. The steady-state crystal size of deforming ice. Ann Glaciol
1994;20:13–18.

Jacka, T.H., Maccagnan, M.. Ice crystallographic and strain rate changes with
strain in compression and extension. Cold Reg Sci Technol 1984;8:269–286.

Jessell, M.W.. Simulation of fabric development in recrystallizing aggregates.
1. Description of the models. Journal of Structural Geology 1988a;10:771–
778.

Jessell, M.W.. Simulation of fabric development in recrystallizing aggregates.
2. Example model runs. Journal of Structural Geology 1988b;10:779–793.

Jessell, M.W., Bons, , P. D. Evans, L., Barr, T., Stüwe, K.. Elle: the numerical
simulation of metamorphic and deformation microstructures. Computers &
Geosciences 2001;27:17–30.

Jessell, M.W., Bons, P.D.. The numerical simulation of microstructure. Geol
Soc, London, Spec Publ 2002;200:137–147.

Jessell, M.W., Bons, P.D., Griera, A., Evans, L.A., Wilson, C.J.L.. A tale of
two viscosities. Journal of Structural Geology 2009;31:719–736.

Jessell, M.W., Siebert, E., Bons, P.D., Evans, L., Piazolo, S.. A new type of
numerical experiment on the spatial and temporal patterns of localization of
deformation in a material with a coupling of grain size and rheology. Earth
and Planetary Science Letters 2005;239:309–326.

Jones, S., Glen, J.. The mechanical properties of single crystals of pure ice. J
Glaciol 1969;8(54):463–473.

Kanit, T., Forest, S., Galliet, I., Mounoury, V., Jeulin, D.. Determination
of the size of the representative volume element for random composites:
statistical and numerical approach. Int J Solids Struct 2003;40:3647–3679.

Ketcham, W.M., Hobbs, P.V.. An experimental determination of the surface
energies of ice. Philosophical Magazine 1969;19:1161–1173.

Kipfstuhl, S., Faria, S.H., Azuma, N., Freitag, J., Hamann, I., Kaufmann, P.,
Miller, H., Weiler, K., Wilhelms, F.. Evidence of dynamic recrystallization

in polar firn. J Geophys Res 2009;114:B05204.
Kipfstuhl, S., Hamann, I., Lambrecht, A., Freitag, J., Faria, S.H., Grigoriev,

D., Azuma, N.. Microstructure mapping: a new method for imaging defor-
mation induced microstructural features of ice on the grain scale. J Glaciol
2006;52(178):398–406.

Kreher, W.. Residual stresses and stored elastic energy of composites and
polycrystals. JMechPhys Solids 1990;38:115–128.

Kröner, E.. Berechnung der elastischen Konstanten des Vielkristalls aus den
Konstanten des Einkristalls. Z Phys 1958;151:504–518.

Kröner, E.. Self-consistent scheme and graded disorder in polycrystal elastic-
ity. J Phys F: Metal Phys 1978;8:2261–2267.

Ktitarev, D., Gödert, G., Hutter, K.. Cellular automaton model for recrystal-
lization, fabric, and texture development in polar ice. Journal of Geophysical
Research (Solid Earth) 2002;107(B8).

Lahellec, N., Michel, J., Moulinec, H., Suquet, P.. Analysis of inhomoge-
neous materials at large strains using fast fourier transforms. In: Miehe, C.,
editor. IUTAM Symposium on Computational Mechanics of Solid Materials
at Large Strains. Kluwer Ac. Pub. Dordrecht; 2003. p. 247–258.

Lahellec, N., Suquet, P.. Effective behavior of linear viscoelastic composites:
a time-integration approach. Int J Solids Struct 2006;44:507–529.

Lahellec, N., Suquet, P.. On the effective behavior of nonlinear inelas-
tic composites: I. Incremental variational principles. J Mech Phys Solids
2007;55:1932–1963.

Laws, N.. Thermostatics of composite materials. J Mech Phys Solids
1973;21(9).

Laws, N., McLaughlin, R.. Self-consistent estimates for the viscoelastic creep
compliances of composite materials. Proc R Soc Lond 1978;A353:251–273.

Lebensohn, R.A.. N-site modeling of a 3D viscoplastic polycrystal using Fast
Fourier Transform. Acta Materialia 2001;49(14):2723 – 2737.

Lebensohn, R.A., Brenner, R., Castelnau, O., Rollett, A.D.. Orientation
image-based micromechanical modelling of subgrain texture evolution in
polycrystalline copper. Acta Materialia 2008;56(15):3914 – 3926.

Lebensohn, R.A., Castelnau, O., Brenner, R., Gilormini, P.. Study of the
antiplane deformation of linear 2-D polycrystals with different microstruc-
tures. International Journal of Solids and Structures 2005;42(20):5441 –
5459.

Lebensohn, R.A., Kanjarla, A.K., Eisenlohr, P.. An elasto-viscoplastic formu-
lation based on fast Fourier transforms for the prediction of micromechan-
ical fields in polycrystalline materials. International Journal of Plasticity
2012;32â“33(0):59 – 69.

Lebensohn, R.A., Liu, Y., Ponte-Castañeda, P.. Macroscopic prop-
erties and field fluctuations in model power-law polycrystals: full-field
solutions versus self-consistent estimates. Proc Royal Soc Lond A
2004a;460(2045):1381–1405.

Lebensohn, R.A., Liu, Y., Ponte-Castañeda, P.. On the accuracy of the self-
consistent approximation for polycrystals: comparison with full-field nu-
merical simulations. Acta Materialia 2004b;52(18):5347–5361.

Lebensohn, R.A., Montagnat, M., Mansuy, P., Duval, P., Meyssonnier,
J., Philip, A.. Modeling viscoplastic behavior and heterogeneous in-
tracrystalline deformation of columnar ice polycrystals. Acta Materialia
2009;57(5):1405 – 1415.

Lebensohn, R.A., Tomé, C.N.. A self-consistent viscoplastic model: predic-
tion of rolling textures of anisotropic polycrystals. Mat Sci and Engin, A
1993;175:71–82.

Lebensohn, R.A., Tomé, C.N., Ponte-Castañeda, P.. Self-consistent modelling
of the mechanical behaviour of viscoplastic polycrystals incorporating intra-
granular field fluctuations. Phil Mag 2007;87(28):4287–4322.

Letouzé, N., Brenner, R., Castelnau, O., Béchade, J.L., Mathon, M.H..
Residual strain distribution in Zircaloy-4 measured by neutron diffraction
and estimated by homogenization techniques. Scripta Mat 2002;47:595–
599.

Lipenkov, V.Y., Barkov, N.I., Duval, P., Pimienta, P.. Crystalline
texture of the 2083m ice core at Vostok Station, Antarctica. J Glaciol
1989;35(121):392–398.

Lipenkov, V.Y., Salamatin, A.N., Duval, P.. Bubbly-ice densification in ice
sheets: II. Applications. J Glaciol 1997;43(145):397–407.

Liu, Y., Gilormini, P., Ponte Castañeda, P.. Variational self-consistent
estimates for texture evolution in viscoplastic polycrystals. Acta Mater
2003;51:5425–5437.

Liu, Y., Ponte Castañeda, P.. Second-order theory for the effective behavior
and field fluctuations in viscoplastic polycrystals. Journal of the Mechanics

26

and Physics of Solids 2004;52(2):467 – 495.
Lliboutry, L., Duval, P.. Various isotropic and anisotropic ices found in glacier

and polar ice caps and their corresponding rheologies. Annales Geophysicae
1985;3(2):207–224.

Llorens, M.G., Bons, P.D., Griera, A., Gomez-Rivas, E., Evans, L.A.. Single
layer folding in simple shear. Journal of Structural Geology 2012;(0):–.

Logé, R., Bernacki, M., Resk, H., Delannay, L., Digonnet, H., Chastel, Y.,
Coupez, T.. Linking plastic deformation to recrystallization in metals using
digital microstructures. Philosophical Magazine 2008;88:3691–3712.

Long, M., Becker, T.. Mantle dynamics and seismic anisotropy. Earth and
Planetary Science Letters 2010;297:341–354.

Ma, Y., Gagliardini, O., Ritz, C., Gillet-Chaulet, F., Durand, G., Montagnat,
M.. Enhancement factors for grounded ice and ice shelves inferred from an
anisotropic ice-flow model. Journal of Glaciology 2010;56(199):805–812.

Mandel, J.. Mécanique des milieux continus. Paris, France: Gauthier-Villars,
1966.

Mangeney, A., Califano, F., Castelnau, O.. Isothermal flow of an
anisotropic ice sheet in the vicinity of an ice divide. J Geophys Res
1996;101(12):28,189–28,204.

Mangeney, A., Califano, F., Hutter, K.. A numerical study of anisotropic, low
Reynolds number, free surface flow of ice sheet modeling. J Geophys Res
1997;102(B10):22,749–22,764.

Mansuy, P., Meyssonnier, J., Philip, A.. Localization of deformation in
polycrystalline ice: experiments and numerical simulations with a simple
grain model. Computational Materials Science 2002;25(1-2):142–150.

Mansuy, P., Philip, A., Meyssonnier, J.. Identification of strain heterogeneities
arising during deformation of ice. Ann Glaciol 2000;30:121–126.

Martı́n, C., Gudmundsson, G.H., Pritchard, H.D., Gagliardini, O.. On the
effects of anisotropic rheology on ice flow, internal structure, and the age-
depth relationship at ice divides. J Geophys Res 2009;114:F04001.

Masson, R., Bornert, M., Suquet, P., Zaoui, A.. An affine formulation
for the prediction of the effective properties of nonlinear composites and
polycrystals. Journal of the Mechanics and Physics of Solids 2000;48(6-
7):1203 – 1227.

Masson, R., Zaoui, A.. Self-consistent estimates for the rate-dependent
elastoplastic behaviour of polycrystalline materials. J Mech Phys Solids
1999;47:1543–1568.

Mathiesen, J., Ferkinghoff-Borg, J., Jensen, M., Levinsen, M., Olesen, P.,
Dahl-Jensen, D., Svensson, A.. Dynamics of crystal formation in the
Greenland NorthGRIP ice cores. Journal of Glaciology 2004;50:325–328.

Mellor, M., Testa, R.. Creep of ice under low stress. Journal of Glaciology
1969;8:147–152.

Michel, J.C., Moulinec, H., Suquet, P.. Effective properties of composite
materials with periodic microstructure: a computational approach. Comp
Meth Appl Mech Engng 1999;172:109–143.

Michel, J.C., Moulinec, H., Suquet, P.. A computational method based on
augmented lagrangians and fast Fourier transforms for composites with high
contrast. Comput Model Eng Sci 2000;1:79–88.

Michel, J.C., Moulinec, H., Suquet, P.. A computational scheme for linear and
non-linear composites with arbitrary phase contrast. International Journal
for Numerical Methods in Engineering 2001;52(1-2).

Miguel, M.C., Vespignani, A., Zapperi, S., Weiss, J., Grasso, J.R.. Intermit-
tent dislocation flow in viscoplastic deformation. Nature 2001;410:667–671.

Miyamoto, A.. Mechanical properties and crystal textures of Greenland deep
ice cores. Ph.D. thesis; Hokkaido University; Sapporo; 1999.

Molinari, A., Canova, G., Ahzi, S.. A self-consistent approach of the large
deformation polycrystal viscoplasticity. Acta Metall 1987;35:2983–2994.

Montagnat, M., Blackford, J.R., Piazolo, S., Arnaud, L., Lebensohn, R.A..
Measurements and full-field predictions of deformation heterogeneities in
ice. Earth and Planetary Science Letters 2011;305(1-2):153 – 160.

Montagnat, M., Buiron, D., Arnaud, L., Broquet, A., Schlitz, P., Jacob, R.,
Kipfstuhl, S.. Measurements and numerical simulation of fabric evolution
along the Talos Dome ice core, Antarctica. Earth and Planetary Science
Letters 2012;357-358(0):168 – 178.

Montagnat, M., Durand, G., Duval, P.. Recrystallization processes in granular
ice. Supp Issue Low Temperature Science 2009;68:81–90.

Montagnat, M., Duval, P.. Rate controlling processes in the creep of polar
ice, influence of grain boundary migration associated with recrystallization.
Earth Planet Sc Lett 2000;183:179–186.

Montagnat, M., Weiss, J., Chevy, J., Duval, P., Brunjail, H., Bastie, P.,
Gil Sevillano, J.. The heterogeneous nature of slip in ice single crystals

deformed under torsion. Philosophical Magazine 2006;86(27):4259–4270.
Morgan, V.. High-temperature ice creep tests. Cold Reg Sc Tech 1991;19:295–

300.
Moulinec, H., Suquet, P.. A numerical method for computing the overall

response of nonlinear composites with complex microstructure. Computer
Methods in Applied Mechanics and Engineering 1998;157(1-2):69 – 94.

Nebozhyn, M., Gilormini, P., Ponte Castañeda, P.. Variational self-consistent
estimates for cubic viscoplastic polycrystals : the effects of grain anisotropy
and shape. J Mech Phys Solids 2001;49:313–340.

Nye, J.. Some geometrical relations in dislocated crystals. Acta Materialia
1953;1:153–162.

Pantleon, W.. Resolving the geometrically necessary dislocation content
by conventional electron backscattering diffraction. Scripta Materialia
2008;58(11):994 – 997.

Paterson, W.S.B.. The physics of glaciers. Pergamon, Oxford, 1994.
Pettit, E.C., Thorsteinsson, T., Jacobson, P., Waddington, E.D.. The role of

crystal fabric in flow near an ice divide. J Glaciol 2007;53(181):277–288.
Pettit, E.C., Waddington, E.D., Harrison, W.D., Thorsteinsson, T., Elsberg,

D., Morack, J., Zumberge, M.A.. The crossover stress, anisotropy and
the ice flow law at Siple Dome, West Antarctica. Journal of Glaciology
2011;57(201):39–52.

Piazolo, S., Bons, P.D., Jessell, M.W., Evans, L., Passchier, C.W.. Dom-
inance of microstructural processes and their effect on microstructural de-
velopment: insights from numerical modelling of dynamic recrystallization.
Geol Soc, London, Spec Publ 2002;200:149–170.

Piazolo, S., Borthwick, V., Griera, A., Montagnat, M., Jessell, M.W., Leben-
sohn, R.A., Evans, L.. Substructure dynamics in crystalline materials:
New insight from in situ experiments, detailed EBSD analysis of experi-
mental and natural samples and numerical modelling. Materials Science
Forum 2012;715-716:502–507.

Piazolo, S., Jessell, M.W., Bons, P.D., Evans, L., Becker, J.K.. Numerical
simulations of microstructures using the Elle platform: A modern research
and teaching tool. Journal of the Geological Society of India 2010;75:110–
127.

Pimienta, P., Duval, P., Lipenkov, V.Y.. Mechanical behaviour of anisotropic
polar ice. In: International Association of Hydrological Sciences, Publica-
tion 170. Symposium on The Physiscal Basis of Ice Sheet Modelling, Van-
couvert; 1987. p. 57–66.

Placidi, L.. Thermodynamically consistent formulation of induced anisotropy
in polar ice accounting for grain rotation, grain-size evolution and recrys-
tallization. Ph.D. thesis; Darmstadt University of Technology; Darmstadt;
2004. Available at http://elib.tu-darmstadt.de/diss/000614/.

Placidi, L.. Microstructured continua treated by the theory of mixtures.
Ph.D. thesis; University of Rome, La Sapienza; Rome; 2005.

Placidi, L., Faria, S.H., Hutter, K.. On the role of grain growth, recrystalliza-
tion, and polygonization in a continuum theory for anisotropic ice sheets.
Ann Glaciol 2004;39:49–52.

Placidi, L., Greve, R., Seddik, H., Faria, S.H.. Continuum-mechanical,
anisotropic flow model, based on an anisotropic flow enhancement factor
(CAFFE). Continuum Mech Thermodyn 2010;22(3):221–237.

Placidi, L., Hutter, K.. An anisotropic flow law for incompressible poly-
crystalline materials. Zeitschrift für Angewandte Mathematik und Physik
(ZAMP) 2005;57:160–181. 10.1007/s00033-005-0008-7.

Placidi, L., Hutter, K.. Thermodynamics of polycrystalline materials treated
by the theory of mixtures with continuous diversity. Continuum Mechanics
and Thermodynamics 2006;17(6):409–451.

Ponte Castañeda, P.. The effective mechanical properties of nonlinear isotropic
composites. J Mech Phys Solids 1991;39:45–71.

Ponte-Castañeda, P., Suquet, P.. Nonlinear composites. Advance in Applied
Mechanics 1998;34:171–302.

Ponte Castañeda, P.. Exact second-order estimates for the effective me-
chanical properties of nonlinear composite materials. J Mech Phys Solids
1996;44:827–862.

Ponte Castañeda, P.. Second-order homogenization estimates for nonlinear
composites incorporating field fluctuations. I – Theory. J Mech Phys Solids
2002;50:737–757.

Raabe, D., Becker, R.C.. Coupling of a crystal plasticity finite-element model
with a probabilistic cellular automaton for simulating primary static recrys-
tallization in aluminium. Modelling and Simulation in Materials Science
and Engineering 2000;8(4):445.

Raabe, D., Roters, F.. Using texture components in crystalplasticity finite

27

element simulations. Int J Plasticity 2004;20:339–361.
Ricaud, J.M., Masson, R.. Effective properties of linear viscoelastic het-

erogeneous media: Internal variables formulation and extension to ageing
behaviours. Int J Solids Struct 2009;46:1599–1606.

Roessiger, J., Bons, P.D., Griera, A., Jessell, M.W., Evans, L., Montag-
nat, M., Kipfstuhl, S., Faria, S.H., Weikusat, I.. Competition between
grain growth and grain size reduction in polar ice. Journal of Glaciology
2011;57:942–948.

Rolland du Roscoat, S., King, A., Philip, A., Reischig, P., Ludwig, W.,
Flin, F., Meyssonnier, J.. Analysis of snow microstructure by means
of x-ray diffraction contrast tomography. Advances Enginering Materials
2011;13:128–135.

Russell-Head, D.S., Wilson, C.J.L.. Automated fabric analyser system for
quartz and ice. J Glaciol 2001;24(90):117–130.

Sanchez-Hubert, J., Sanchez-Palencia, E.. Sur certains problèmes physiques
d’homogénéisation donnant lieu à des phénomènes de relaxation. Comptes
Rendus Acad Sc Paris 1978;A286:903–906.

Sauter, F., Leclercq, S.. Modeling of the non-monotonous viscoplastic behav-
ior of uranium dioxide. J Nucl Mater 2003;322:1–14.

Schmatz, J.. Grain boundary – fluid inclusion interaction in rocks and ana-
logues. Ph.D. thesis; RWTH-Aachen, Germany; 2010.

Schulson, E.M., Duval, P.. Creep and Fracture of Ice. Cambridge University
Press, 2009.

Seddik, H., Greeve, R., Placidi, L., Hamann, I., Gagliardini, O.. Application
of a continuum-mechanical model for the flow of anisotropic polar ice to the
EDML core, Antarctica. Journal of Glaciology 2008;54(187):631–642.

Seddik, H., Greve, R., Zwinger, T., Gillet-Chaulet, F., Gagliardini, O..
Simulations of the Greenland ice sheet 100 years into the future with the full
Stokes model Elmer/Ice. J Glaciol 2012;58(209):427–440.

Seddik, H., Greve, R., Zwinger, T., Placidi, L.. A full stokes ice flow model
for the vicinity of Dome Fuji, Antarctica, with induced anisotropy and fabric
evolution. The Cryosphere 2011;5(2):495–508.

Solas, D., Gerber, P., Baudin, T., Penelle, R.. Monte Carlo method for sim-
ulating grain growth in 3D. influence of lattice site arrangements. Materials
Science Forum 2004;467 - 470:1117–1122.

Sotin, C., Tobie, G., J., W.. Europa after Galileo; The University of Arizona
Press, Tucson, AZ. p. 85–118.

Suquet, P.. In: Sanchez-Palencia, E., Zaoui, A., editors. Homogenization
Techniques for Composite Media. Springer Berlin / Heidelberg; volume 272
of Lecture Notes in Physics; 1987. p. 193–198.

Suquet, P., Moulinec, H., Castelnau, O., Montagnat, M., Lahellec, N.,
Grennerat, F., Duval, P., Brenner, R.. Multi-scale modeling of the mechan-
ical behavior of polycrystalline ice under transient creep. Proceida IUTAM
2011;In press.

Taupin, V., Richeton, T., Chevy, J., Fressengeas, C., Weiss, J., Louchet,
F., Miguel, M.. Rearrangement of dislocation structures in the aging of ice
single crystals. Acta Materialia 2008;56(7):1555 – 1563.

Taupin, V., Varadhan, S., Chevy, J., Fressengeas, C., Beaudoin, A.J., Mon-
tagnat, M., Duval, P.. Effects of size on the dynamics of dislocations in ice
single crystals. Phys Rev Lett 2007;99(15):155507.

Taylor, G.. Plastic strain in metals. J Inst Met 1938;62:307–324.
Thorsteinsson, T.. Fabric development with nearest-neighbor interaction and

dynamic recrystallization. J Geophys Res 2002;107(B1).
Thorsteinsson, T., Kipfstuhl, J., Miller, H.. Textures and fabrics in the GRIP

ice core. J Geophys Res 1997;102(C12):26,583–26,600.
Tommasi, A., Knoll, M., Vauchez, A., Signorelli, J., Thoraval, C., Logé,

R.. Structural reactivation in plate tectonics controlled by olivine crystal
anisotropy. Nature Geoscience 2009;2(6):423–427.

Urai, J., Means, W., Lister, G.. Dynamic recrystallization of minerals.
In: Mineral and Rock Deformation: Laboratory Studies. Hobbs, B.E. and
Heard, H.C.; Geophysical Monograph; 1986. p. 161–200.

Vacher, P., Dumoulin, S., Morestin, F., Mguil-Touchal, S.. Bidimensional
strain measurement using digital images. Proceedings of the Institution of
Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
1999;213(8):811–817.

Van der Veen, C.J., Whillans, I.M.. Flow law for glacier ice: comparison
of numerical predictions and field measurements. Journal of Glaciology
1990;36:324–339.

Van der Veen, C.J., Whillans, I.M.. Development of fabric in ice. Cold Reg
Sci Technol 1994;22(2):171–195.

Varadhan, S., Beaudoin, A., Fressengeas, C.. Coupling the dynamic of statisti-

cally distrbuted and excess dislocations. Proc of Science 2006;SMPRI2005,
004:1–11.

Verdier, M., Fivel, M., Groma, I.. Mesoscopic scale simulation of dislocation
dynamics in fcc metals: principles and applications. Modelling Simul Mat
Sci Eng 1998;6:755–770.

Vu, Q.H., Brenner, R., Castelnau, O., Moulinec, H., Suquet, P.. A self-
consistent estimate for linear viscoelastic polycrystals with internal variables
inferred from the collocation method. Modelling and Simulation in Materi-
als Science and Engineering 2012;20(2):024003.

Weertman, J.. Creep of ice. In: Whalley, E., Jones, S., Gold, L., editors.
Physics and Chemistrey of Ice. Roy. Soc. Canada, Ottawa; 1973. p. 320–
337.

Weikusat, I., Kipfstuhl, S., Faria, S.H., Azuma, N., Miyamoto, A.. Subgrain
boundaries and related microstructural features in EDML (Antarctica) deep
ice cores. J Glaciol 2009;55(191):461–472.

Weiss, J., Grasso, J.R.. Acoustic emission in single crystals of ice. Journal of
Physical Chemistry B 1997;101(32):6113–6117.

Weiss, J., Grasso, J.R., Miguel, M.C., Vespignani, A., Zapperi, S.. Complex-
ity in dislocation dynamics: experiments. Materials Science and Engineer-
ing: A 2001;309– 310(0):360 – 364. Dislocations 2000: An International
Conference on the Fundamentals of Plastic Deformation.

Weiss, J., Marsan, D.. Three-dimensional mapping of dislocation avalanches:
Clustering and space/time coupling. Science 2003;299(5603):89–92.

Weiss, J., Miguel, M.C.. Dislocation avalanche correlations. Materials Science
and Engineering A 2004;387-389:292 – 296. 13th International Conference
on the Strength of Materials.

Weiss, J., Montagnat, M.. Long-range spatial correlations and scaling in
dislocation and slip patterns. Philosophical Magazine 2007;87(8-9):1161–
1174.

Wenk, H.R., Canova, G., Bréchet, Y., Flandin, L.. A deformation-
based model for recrystallization of anisotropic materials. Acta Mater
1997;45(8):3283–3296.

Willis, J.R.. Variational and related methods for the overall properties of com-
posites. Adv Appl Mech 1981;21:2–78.

Wilson, C., Burg, J., Mitchell, J.. The origin of kinks in polycrystalline ice.
Tectonophysics 1986;127:27–48.

Wilson, C., Zhang, Y.. Comparison between experiment and com-
puter modelling of plane strain simple shear ice deformation. J Glaciol
1994;40(134):46–55.

Zhang, Y., Jenkins, J.T.. The evolution of the anisotropy of a polycrystalline
aggregate. J Mech Phys Solids 1993;41:1213–1243.

28

Figure 1: Map of the resolved shear stress in the prismatic system for a torsion
boundary made of basal screw dislocations. The cylinder diameter is 1 mm,
and the maximum applied stress is 0.1 MPa. From (Chevy et al., 2012)

Figure 2: Creep curves in forward and reverse torsion from experiments on
single crystals, obtained by 1D and 3D FDM models. From (Taupin et al.,
2007)

Young Modulus - Ice

Min = 8.3927E+03 Max = 1.1847E+04

x

y

z

 8000

 8500

 9000

 9500

 10000

 10500

 11000

 11500

 12000

Figure 3: Young’s modulus in [MPa] of an ice single crystal with its c-axis
aligned with z, at −16◦C.

29

Figure 4: Behavior of an ice single crystal deformed by basal slip. a) Predictions of the model, based on Eq. (6) and with parameters given in Table 1, in comparison
with the experimental data of Weertman (1973). Axial strain rates are indicated. b) Prediction of the model in comparison with the results of the recovery tests of
Taupin et al. (2008). Temperature is −10◦C. From (Suquet et al., 2011)

30

Figure 5: Typical 2D microstructure of an ice polycrystal grown in the labora-
tory. The color wheel gives the color-code for the c-axis orientation.

31

Figure 6: Full-field vs. mean-field behavior for ice polycrystals with random fabric, for a linear viscous behavior (n = 1) and various viscoplastic anisotropy (or slip
system contrats) at the grains level. a) Effective flow stress σ̃0. b) Standard deviation of equivalent stress and strain rate, normalized by σ̄eq and ˙̄εeq, respectively,
characterizing field heterogeneities at the polycrystal scale. Results from the linear SC scheme are compared to reference numerical solutions provided by the FFT
approach. Reuss and Voigt bounds are also indicated. Note that, for these bounds, standard deviations of stress and strain rate, respectively, do vanish.

32

τ

.
γ .

γ (τ)

τ̂τ̌

ė

α

Figure 7: Schematic representation of the linearization between the shear rate
(γ̇) and the stress (τ), to illustrate Eq. (21).

Figure 8: Stationary creep behavior at −10◦C calculated by the affine SC model,
and compared to experimental data obtained on anisotropic specimens from
the GRIP ice core. The c-axis pole figures on the right show an increasing
concentration of c-axes towards the in situ vertical direction from the surface of
the ice sheet down to ∼ 2600m depth. Experimental data from Castelnau et al.
(1998) are expressed for a stress of 1MPa using a stress sensitivity n = 3. Points
on the left hand side reflect the (hard) behavior under vertical compression,
whereas data on the right correspond to (soft) horizontal shear.

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

 0.1 1 10

A
x

ia
l

st
ra

in
 r

a
te

 [
s-1

]
Axial stress [MPa]

basal

non-basal

45º

⊥ c-axis

//
c
-a

xi
s

Figure 9: Stationary creep behavior of single crystals at −10◦C input in the AFF
SC model to get results of Fig. 8 (lines), compared to the data set compiled by
Duval et al. (1983) (symbols). Results are indicated for uniaxial compression
at 45◦ from the c-axis (activation of basal slip), as well as for compression
perpendicular (activation of prismatic slip) and parallel (activation of pyramidal
systems) to the c-axis. From (Castelnau et al., 2008b)

Figure 10: Comparison between fabrics measured along the GRIP ice core (911
m depth), simulated by the static (Reuss), VPSC-tangent, and Taylor (Voigt)
approaches.

33

Figure 11: a) Evolution of the eigenvalues of the orientation tensor a(2) = c⊗ c
of the fabric along the Talos Dome ice core, as a function of the cumulated
compressive strain. Lines = VP-SO model results, dashed line represents the
range of fabric evolution modeled with variation of the initial orientation ten-
sor eigenvalue from isotropic (bottom line), as measured at 18 m (central line),
more concentrated than measured (top line). Dots, crosses and plus = measure-
ments performed with the Automatic Ice Texture Analyzer (Russell-Head and
Wilson, 2001). b) Cumulated in-situ compressive strain as a function of depth
as model by the TALDICE-1 chronology (full line) (Buiron et al., 2011).

10
-8

10
-7

10
-6

10
-5

10
-4

10
0

10
1

10
2

10
3

10
4

10
5

10
6

A
x
ia

l
st

ra
in

 r
a
te

 [
s-1

]

Time [s]

Figure 12: Transient creep response of isotropic ice under an uniaxial compres-
sive stress of 1 MPa predicted with the affine elasto-viscoplastic extension of
the self-consistent scheme (line). Model results are compared to the data of
Ashby and Duval (1985), expressed for the same loading conditions (points).
Strain hardening of prismatic and pyramidal slip systems is taken into account.
From (Castelnau et al., 2008b)

Figure 13: Photograph of a compression creep specimen (after (Mansuy et al.,
2000)) between crossed polarizers, after a deformation of 6.6 × 10−2 at -10◦C.
The corresponding strain rate was 6.0×10−8 s−1. The compression direction in
vertical in the plane of the photograph.The mean size of each hexagonal grain
was 20 mm. Black and white arrows indicate the initial c-axis orientations.
Kink bands appear as abrupt changes in color parallel to the c-axis, shear bands
are perpendicular to the c-axis direction.

Figure 14: Unit cell containing the cross-sections of 200 columnar grains gen-
erated by Voronoi tesellation. The three hand-picked orientations: (0◦, 90◦, 0◦)
, (45◦, 90◦, 0◦) and (90◦, 90◦, 0◦), and the extension and shorting directions are
also indicated.

34

Figure 15: Predicted equivalent strain-rate field over the entire unit cell of Fig.
14, normalized with respect to the average equivalent strain rate (˙̄εeq = 1.15 ×
10−8s−1)..

Figure 16: Predicted fields of equivalent strain rate (normalized to ˙̄εeq), equiv-
alent stress (in units of τbas), relative basal activity, and map of neighbor orien-
tations, for the 45 deg grain and its surroundings.

Figure 17: a) Predicted equivalent stress field (in units of τbas), and b) the
misorientation, compared with initial orientation, obtained after 1% strain in a
laboratory made microstructure. From (Montagnat et al., 2011)

35

Figure 18: a) Strain field measured experimentally, b) simulated, and c) stress field simulated, after 0.85 % of axial compression. Experimental resolution is about
75×75 pixels, the modeling one is 1024×1024 pixels. From (Grennerat et al., 2012)

36

Figure 19: Equivalent strain as a function of the Schmid factor (as a proxy of
the orientation). Experimental results are in blue, modeling results in red. Each
point is one pixel of the microstructure. The macroscopic strain was 0.7%.
From (Grennerat et al., 2012)

Figure 20: Evolution of the FFT-simulated equivalent strain field during the
transient creep of a ”2D-1/2” sample of ice, after (a) 0.15%, (b) 0.35% and (c)
0.60% compressive strain (see Grennerat et al. (2012)).

37

Figure 21: (a) Example of an Elle model: ice (white) with air bubbles (pale blue) (Roessiger et al., this volume). The Elle model has fully wrapping boundaries and
grains A to D are in fact one single grain. (b) Close-up showing that grains are defined by flynns (polygons), themselves defined by straight segments that connect
boundary nodes (bnodes). A second layer of unconnected nodes (unodes) can be added to keep track of material points. (c) For the FFT module, the microstructure
is discretized into a periodic, regular mesh of Fourier Points defined by a characteristic lattice orientation. A direct mapping between unodes layer and Fourier
points is established between both codes.

38

Figure 22: Comparison of (a) physical experiment and (b) numerical simula-
tion after a vertical shortening of 4%. A qualitative equivalence between exper-
iment and simulations is observable, such as correspondence of kink-bands or
discontinuous subgrain boundaries at sharp grain boundaries asperities. Colors
indicate the orientation of the c-axis respect to the sample reference. Misori-
entation angle between nodes are indicated in grey (> 4◦) and black (> 10◦).
Triangular patches seen in the experiment are due to erroneous misfit during
Automatic Ice Texture Analyzer acquisition.

Figure 23: Dislocation density maps after (a) 1% and (b) 4% of shortening.
Grain microstructure is indicated by dark lines. Serrated and bulging grain
boundaries develop due to grain boundary migration into regions of high dislo-
cation density. New recrystallized grains develop preferentially at triple points
and along grain boundaries. Low dislocation densities are typically observed at
bulge areas and new grains.

39

Figure 24: Numerical simulation of polar ice microstructure using the FFT/Elle scheme. (a) Starting microstructure. (b) 40% vertical shortening with only
viscoplastic deformation. (c) 40% shortening with viscoplastic deformation coupled with recrystallization. Top row shows c-axis orientations in color and local
misorientation in grey. Bottom row shows local misorientation only. C-axis orientation distributions are shown in lower-hemisphere stereoplots.

40

τini τsta γ̇0 n c d e
Basal 0.1 0.022 10−6 2 9 60 0.0003

Prismatic 0.13 1.5 10−6 2.85 9 60 0.0003
Pyramidal 3.875 3.875 10−6 4 9 60 0.0003

Hardening matrix:

Basal Prismatic Pyramidal
Basal 70 125 0

Prismatic 125 110 0
Pyramidal 0 0 0

Table 1: Material parameters used in the full-field simulations for single crystals
of ice at −10◦C. Units are MPa and s−1.

M
od

el
Sc

al
e

Ty
pe

A
pp

lic
at

io
ns

A
dv

an
ta

ge
s

L
im

ita
tio

ns

D
D

Si
ng

le
cr

ys
ta

l
(m

es
os

co
pi

c)
Fi

ni
te

E
le

m
en

t(
FE

)
D

is
lo

ca
tio

n
dy

na
m

ic
s

an
d

in
te

ra
ct

io
ns

So
lv

e
ph

ys
ic

s
of

pl
as

tic
ity

at
th

e
di

sl
oc

at
io

n
sc

al
e

-P
ro

vi
de

sl
ip

sy
st

em
ac

tiv
iti

es
an

d
in

te
ra

ct
io

ns

C
om

pu
tin

g
tim

e-
in

te
ns

iv
e.

Sm
al

ls
am

pl
es

.S
im

pl
ifi

ed
co

nfi
gu

ra
tio

ns

FD
M

Si
ng

le
to

po
ly

-c
ry

st
al

Fu
ll-

fie
ld

(F
E

)

Pl
as

tic
ity

m
od

el
in

g
ta

ki
ng

in
to

ac
co

un
th

et
er

og
en

eo
us

in
te

rn
al

st
re

ss
fie

ld
as

so
ci

at
ed

w
ith

di
sl

oc
at

io
ns

L
en

gt
h

sc
al

in
g,

m
ak

es
th

e
lin

k
be

tw
ee

n
th

e
co

m
pl

ex
ity

of
th

e
di

sl
oc

at
io

n
fie

ld
dy

na
m

ic
s

an
d

th
e

m
ac

ro
sc

op
ic

be
ha

vi
or

-
Pr

ov
id

e
in

tr
a-

cr
ys

ta
lli

ne
fie

ld
s

C
om

pu
tin

g
tim

e-
in

te
ns

iv
e

-
L

im
ite

d
nu

m
be

ro
fg

ra
in

s

V
PS

C
Po

ly
cr

ys
ta

l
M

ea
n-

fie
ld

Pr
ov

id
es

eff
ec

tiv
e

vi
sc

o-
pl

as
tic

be
ha

vi
or

of
po

ly
cr

ys
ta

ls
,b

as
ed

on
a

gi
ve

n
si

ng
le

-c
ry

st
al

be
ha

vi
or

Te
xt

ur
e-

in
du

ce
d

po
ly

cr
ys

ta
l

an
is

ot
ro

py
,t

ex
tu

re
ev

ol
ut

io
n

fo
r

se
co

nd
ar

y
cr

ee
p,

ca
n

re
ac

h
la

rg
e

st
ra

in
s

V
er

y
lim

ite
d

in
fo

rm
at

io
n

on
in

tr
a-

cr
ys

ta
lli

ne
fie

ld
s,

el
as

tic
ity

an
d

re
cr

ys
ta

lli
za

tio
n

ne
gl

ec
te

d

E
V

PS
C

Po
ly

cr
ys

ta
l

M
ea

n-
fie

ld

Pr
ov

id
es

eff
ec

tiv
e

el
as

to
-v

is
co

-p
la

st
ic

be
ha

vi
or

at
po

ly
cr

ys
ta

ll
ev

el
,b

as
ed

on
kn

ow
n

si
ng

le
-c

ry
st

al
be

ha
vi

or

C
ap

tu
re

s
te

xt
ur

e-
in

du
ce

d
an

is
ot

ro
py

du
ri

ng
tr

an
si

en
t

cr
ee

p
re

gi
m

e

V
er

y
lim

ite
d

in
fo

rm
at

io
n

on
in

tr
a-

cr
ys

ta
lli

ne
fie

ld
s,

lim
ite

d
to

sm
al

ls
tr

ai
ns

Ta
bl

e
2:

Su
m

m
ar

y
of

te
ch

ni
qu

es
ap

pl
ic

at
io

n
do

m
ai

ns
,i

nt
er

es
ta

nd
lim

ita
tio

ns
.D

D
:D

is
lo

ca
tio

n
D

yn
am

ic
s,

FD
M

:F
ie

ld
D

is
lo

ca
tio

n
M

ec
ha

ni
cs

,V
PS

C
:H

om
og

en
iz

ed
Po

ly
cr

ys
ta

lV
is

co
-P

la
st

ic
ity

,E
V

PS
C

:H
om

og
-

en
iz

ed
Po

ly
cr

ys
ta

lE
la

st
o-

V
is

co
-P

la
st

ic
ity

41

M
odel

Scale
Type

A
pplications

A
dvantages

L
im

itations

V
PSC

+
D

R
X

Polycrystal
M

ean-field
D

R
X

m
echanism

s
w

ith
phenom

enologicallaw
s,fabric

evolution

Fastto
run

forhigh
strain

-
easily

adaptable
to

various
D

R
X

law
s

Too
sim

plified
description

of
D

R
X

m
echanism

s.N
o

account
forintra-crystalline

fields

V
PFFT

Polycrystal
Full-field

Provides
effective

visco-plastic
behaviorand

localintra-
crystalline

fields,2D
and

3D

M
icrostructuraleffects

on
local

fields
distribution

in
the

secondary
creep

regim
e

M
icrostructure

evolution
at

large
strains

can
only

be
captured

in
a

crude
w

ay.N
o

elasticity
and

D
R

X

E
V

PFFT
Polycrystal

Full-field

Provides
effective

elasto-
visco-plastic

behaviorand
local

intra-crystalline
fields,2D

and
3D

M
icrostructuraleffects

on
local

fields
distribution

and
their

evolution
during

transientcreep

L
im

ited
to

sm
allstrains,no

m
icrostructure

evolution
yet,no

D
R

X

V
PFFT

-E
lle

Polycrystal
Full-field

Provides
localintra-crystalline

fields
and

m
icrostructure

evolution
in

2D

C
ouple

localfield
predictions

to
D

R
X

m
echanism

s
in

the
secondary

creep
regim

e

N
o

accountforlocalfield
evolution

during
transient

creep.L
im

ited
to

2D
(E

lle).
R

ough
update

ofthe
dislocation

field
during

D
R

X

Table
3:

Sum
m

ary
oftechniques

application
dom

ains,interestand
lim

itations.D
R

X
:dynam

ic
recrystallization,V

PFFT:FFT-based
form

ulation
forV

isco-Plastic
polycrystals

,E
V

PFFT:FFT-based
form

ulation
for

E
lasto-V

isco-Plastic
polycrystals

M
odel

Scale
Type

A
pplications

A
dvantages

L
im

itations

M
ixture

w
ith

C
ontinuous

D
iversity

(M
C

D
)

L
arge

scale
G

eneral
continuum
theory

G
eneraloverview

ofthe
interactions

betw
een

m
icrostructure

evolution,D
R

X
and

ice
flow

E
ffects

ofm
icrostructure

and
its

evolution
via

internalvariables.
Secondary

and
tertiary

creep
regim

es.T
herm

odynam
ically

consistent

M
athem

atically
com

plex.N
ot

im
plem

ented
num

erically
yet

C
A

FFE
L

arge
Scale

C
ontinuum

m
odel

Provides
effective

visco-plastic
behavioron

the
large

scale,
including

fabric
developm

ent

C
aptures

the
effects

offabric
developm

entin
the

secondary
and

tertiary
creep

regim
es,easy

to
im

plem
ent

Stress
and

strain
rate

are
colinear(scalareffective
viscosity).L

im
ited

to
fabrics

represented
by

a
m

ultipole
expansion

up
to

fourth
order

only.

G
O

L
F

law
Polycrystal

Phenom
en-

ological
orthotropic
non-linear
law

Provides
orthotropic

viscous
behaviorand

fabric
developm

ent

E
ffi

cient,easy-to-use
and

able
to

reproduce
the

response
of

m
icro-m

acro
m

odels

O
rthotropic

fabric
restricted

to
the

assum
ed

closure
approxim

ation.N
on-linearcase

notvalidated
against

m
icro-m

acro
m

odels
yet

E
lm

er/Ice
L

arge
scale

FE
code

including
G

O
L

F
and

C
A

FE
E

law

Flow
ofanisotropic

polarice
and

its
fabric

evolution

Fabric
evolution

consistentw
ith

the
stress

field
and

strain-rate
field

C
an

notbe
used

to
sim

ulate
the

localization
ofthe

deform
ation

(diffusion
ofthe

fabric
induced

by
interpolation)

Table
4:Sum

m
ary

oftechniques
application

dom
ains,interestand

lim
itations.D

R
X

:dynam
ic

recrystallization

42

Numerical Modelling of Ice Microstructures

A P P E N D I X 4

SIMULATION CODE DESCRIPTION

Jens Rößiger - 2013 Page A4

Appendix 4 - simulation code description

CONTENTS

1 Code description of written ELLE modules .. ii

1.1 Naming Conventions .. ii

1.2 Split Code .. ii

1.3 Growth+Split ... vi

1.4 Poly-phase grain boundary migration .. vii

1.4.1 Two-phase growth .. vii

1.4.2 Poly-phase grain boundary migration (using B-Nodes) ... viii

1.4.3 Poly-phase grain boundary migration (using Flynns) ..ix

1.4.4 FFT Implementation .. xxiii

1.5 Personal mini programs .. xxvi

1.5.1 JR-stats .. xxvi

1.5.2 JR_collection ... xxvi

1.5.3 Elle file creator ... xxvii

1.5.4 Python scripts .. xxvii

2 References ... xxviii

Jens Rößiger - 2013 Page i

Appendix 4 - simulation code description

1 CODE DESCRIPTION OF WRITTEN ELLE MODULES

The intension of this chapter is to provide people using my code with a detailed description of all the

modules I changed and wrote myself. Where useful I included small sections of the original code. The

full length of the code is found in the source code files in the appropriate folders however. It is advisable

to open that file and browse to the appropriate sections while reading this description. Altogether I

completed three major projects and the last of them underwent a major revision after a serious

disadvantage of the second approach started to show up. I will start with the description of the second

project “a new split code” because this one resulted and is used by the first project “growth + split”.

For explanation purposes it is better to understand how the new split works first and why I decided to

create it instead of sticking to the old split code.

1.1 NAMING CONVENTIONS

Code Meaning

i Integer

d Double

1.2 SPLIT CODE

Generally speaking split is not a process on its own. Although there is the possibility to run the split

code directly on an Elle file, the by far most common use is to call the split function from another

process. While writing the split code I could think of three different methods which are incorporated

in the following functions in the code.

i = directionsplit (i, d, d, d, *i, *i)
Return (int): Error code (to count errors in split for statistical reasons)
Input (int): Flynn number
Input (double): Split direction (x part of the vector)
Input (double): Split direction (y part of the vector)
Input (double): Minimum child area (the resulting Flynns have to have at least that size)
Input by reference 2x(*int) : Variables to store and return the Flynn numbers of the resulting child grains

i = randomsplit(i, d, *i, *i)
Return (int): Error code (to count errors in split for statistical reasons)
Input (int): Flynn number
Input (double): Minimum child area (the resulting Flynns have to have at least that size)
Input by reference 2x(*int) : Variables to store and return the Flynn numbers of the resulting child grains

i = directsplit (i, i, i, *i, *i)
Return (int): Error code (to count errors in split for statistical reasons)
Input (int): Flynn number
Input 2x(int): Start and end node of the Split
Input by reference 2x(*int) : Variables to store and return the Flynn numbers of the resulting child grains

Jens Rößiger - 2013 Page ii

Appendix 4 - simulation code description

The first two are used most of the time because they include topology checks. The difference between

both is merely that “randomsplit” determines a random direction for the split before it calls

“directionsplit” itself.

The last function “directsplit” doesn’t execute topology checks before the split is carried out. It might

only be used for testing purposes or if the process which calls the “directsplit” function already did

topology checks itself. However in this chase a custom implementation of the basecode functions is

advisable.

Since “randomsplit” is basically the same as “directionsplit” and “directsplit” just calls several basecode

functions I will now focus on the description of “directionsplit”

Before the compilation of the code there are two constants set as DEFINES at the top of the file which

can be changed. The first one MINDNODES is set to 2 by default. It defines how many double nodes

a Flynn must have in order to split. Depending on the switch distance of the file this influences the

minimal size of Flynns available for a split. The code won’t insert double nodes in order to split a Flynn

and it won’t change triple nodes in any way to achieve a split. That means that a Flynn has to have at

least two double nodes to be able to split in two. The second constant SECONDTRY is basically a bool

constant. It can be set to 0 or 1 whereas 1 is the default setting. This constant influences how split

continues if no split is possible with the set minimal size for child grains. 0 means no split will happen,

1 means that another attempt is made with half the set minimal size.

The function itself will determine all nodes along the Flynn and stores them in an array. In the

following main part of the function a series of if statements is carried out which all have to be true in

order for the split to happen.

if ((check = assignstruct (&id, dir, num_nodes, &possis)) == 1) {
 // step 5 use quicksort to sort the struct
 sortstruct (dev, 0, possis-1);
 // start from the first to the last entry in the deviation struct
 for (j=0, i=0; j<possis && i==0; j++) {
 start = dev[j].x;
 end = dev[j].y;
 if ((check = nodes2childs(&id, num_nodes, start, end, &child1, &child2, &nchild1, &nchild2)) == 1)
 //check min area of child 1
 if ((test_area = areacheck(&child1, nchild1)) >= min_area)
 //if ok, check min area of child 2
 if ((test_area = areacheck(&child2, nchild2)) >= min_area)
 //if ok, check intersections of child 1 with split direction
 if (intersectioncheck(&child1, nchild1))
 //if ok, check intersections of child 2
 if (intersectioncheck(&child2, nchild2)) {
 flynnsplit2(flynn, start, end, &child1, &child2, &nchild1, &nchild2, &c1, &c2);
 //printf("Successfully split flynn %d\n", flynn);
 i = 1;

Jens Rößiger - 2013 Page iii

Appendix 4 - simulation code description

By calling function “assignstruct” the orientations of all possible splits between all double nodes of the

Flynn and the given, desirable split direction are calculated. To achieve that, the function calculates

the orientation of each vector from the first double node along the Flynn boundary to all other double

nodes in relation to the split direction after each other. Next it will calculate the orientation of each

vector from the second double node to all other double nodes except the first one and so on until the

last calculation between the previous to last and the last double node is made. As side effect the number

of possibilities is also returned. The resulting array is then sorted by a quicksort algorithm.

Each entry in the array will now have two integers which are the two node numbers of the start and

end node of that possible split, and a double which will be the deviation from the desirable split

direction starting with the least possible deviation from the split direction to the largest.

The next function call “nodes2childs” will divide all boundary nodes along the original Flynn in two

arrays. Assuming the nodes along the original Flynn have the numbers as shown in Fig 1, the first Array

will contain nodes 2, 3, 4, 5 and 6. The second array will contain nodes 6, 7, 8, 9, 10, 11, 12, 1 and 2.

Also returned are the sizes of both arrays.

With that information the next two checks will determine whether the size of both childs is not smaller

than the given minimum child area from the function call. Normally that would be somewhere

between 0.4 and 0.48 times the original area of the Flynn.

If both areas are in range the next two checks will determine whether the intended split will cut the

original boundary of the Flynn in any location. For standard shaped Flynns that is not a problem in

most of the cases. However with certain processes and settings some Flynns will start to develop a

quite unusual shape. Imagine a banana shaped grain and the split currently under investigation should

FIG 1: NODE NUMBERING ALONG A FLYNN SHOWING ATTEMPTED

SPLIT BETWEEN NODE 2 AND 6. THE DOTTED LINE SHOWS THE ACTUAL

SPLIT LINE WHILE THE DASHED LINE SHOWS THE VIRTUAL

CONTINUATION OF THAT LINE USED FOR THE TOPOLOGY CHECKS.

Jens Rößiger - 2013 Page iv

Appendix 4 - simulation code description

take place between both ends of the banana. If carried out like this it will cut through areas which are

not even part of the original Flynn. That would result in corrupt data arrays leading to an unstable

simulation and ultimately to the crash of the program.

The topology checks consist of two parts. The first part will put the position of each node of the child

in relation to the split direction. The first neighbour node will determine the side of the virtual line

representing the split and its continuation (dashed and dotted lines in Fig 1) on which all other nodes

have to be in order to not produce an intersection. If the result is that all nodes are on the same side

the second part of the test will not be carried out. In the case that a node is on the other side of the split

line the second part of the test will compare the length of the split line (dotted line) and the vector

connecting the start of the split and the node under investigation. If the vector is shorter or of equal

length than the split line the topology check will return an error. If it is longer no error is returned

because the split is not compromised. The child grain is just billowing out in an area which is not

affected by the split (Fig 1).

Once both topology checks for the two child Flynns are completed without errors the split is carried

out and the loop which cycles through all possible splits is stopped. In the case that no split possibility

is found which satisfies all requirements a second attempt is made if the SECONDTRY constant is set.

Basically this is the same procedure as already described only the required minimal child area is halved.

At the end of the function one of four codes is returned which can be used to count the number of

splits on either the first (1) or the second try (3) and the number of cancelled splits which can be the

result of the Flynn being too small (2) or another error (0). This is especially useful to check whether

it might be advisable to reduce the switch distance in order to get more double nodes along Flynn

boundaries. Also for the statistical analysis of the simulations that information is required.

Jens Rößiger - 2013 Page v

Appendix 4 - simulation code description

1.3 GROWTH+SPLIT

Since the split part is now explained let me introduce my first process which was used to simulate

experiments in our first publication. Basically it is just a combination of the growth code which was

one of the first ELLE processes ever written and the split process. At first I used the split process

already included in the ELLE package when I started my PhD. However detailed logging and

observation showed that in quite many cases this process doesn’t split certain grains when it should. I

didn’t investigate it further, I think however this is related to the triangulate functions which are used

in many processes. Basically if you set a certain split chance and you don’t check whether the splits are

actually successful you assume a split chance in the statistics which is higher than the actual rate. Since

the difference in my first attempts was in the order of 5% I thought about possibilities to change the

way Flynns are split.

Again there are several operation modes for this process. All parameters required are substituted by

the userdata option in the command line.

elle_jr_gg_split –u 1 2 3 4 5 6

1. Splitmode (int 1, 2, 3)

Splitmode 1: all grains have the same split chance

Splitmode 2: every grain > min_area have the same chance to split.

Splitmode 3: chance increasing. From < min_area = 0% to > max_area = 100%

2. Splitchance (double between 0 and 1)

3. Random forward (int): does a given number of random calls before the value is actually used.

Further randomizes the simulation.

4. Starting step (int): In case of a restart. Influences the file numbering. This way a restart can be

done in the same directory without overwriting files.

5. Min_area (double): used by Splitmode 2 and 3

6. Max_area (double): used by Splitmode 3

The process will always write out a log file which contains information about how many errors

occurred while splitting.

In general every time step all the boundary nodes are moved to reduce the curvature of the whole

system. To achieve that in the case of double nodes, a circle is constructed through the node under

investigation and its’ two neighbouring nodes. The node is then moved towards the centre of the circle

(calculated using a vector) by a small amount. The magnitude of the movement is modified by the

Jens Rößiger - 2013 Page vi

Appendix 4 - simulation code description

settings for parameters like timestep, switchdistance and speedup. For triple nodes the calculation is

basically the same. However three circles are constructed and the resulting vectors are added together.

Once all modes have been moved the split part takes over operation and depending on the setting for

split mode either all Flynns or just a portion of Flynns will have a chance to split in two. This is

determined by a random number generator which generates double numbers between 0 and just short

of 1. If a chance if 25% (0.25) for all grains is set. Every result of a number < 0.25 will lead to a split of

the Flynn. After the loop cycled through all Flynns the overall working loop will start the next time

step and continue again with the growth loop for all nodes.

1.4 POLY-PHASE GRAIN BOUNDARY MIGRATION

This process is the largest piece of code which has been developed during my PhD. It underwent one

major revamp and started out with a quite simple approach which was soon abandoned due to

technical issues. In section 1.4.1 I will describe the issues with the simple first approach. Continuing in

section 1.4.2 will be a broad description of the first working approach of this process. However with

time it got clear that this approach had one major disadvantage which was then overcome by a revision

of the code (section 1.4.3) with a different handling of parameters.

1.4.1 TWO-PHASE GROWTH

The first idea on how to realize two phase grain growth was the application of a simple geometrical

rule. Imagine a triangle as shown in Fig 2 with three nodes in each corner.

Using the equation 𝐴𝐴 = 12𝑏𝑏ℎ always yields the same area since neither the base nor the height change

during a movement of the upper corner along a line parallel to the base line which connects the other

two corners. Now that would work as an area conservative mechanism to move double nodes if we

restrict their movement to one parallel to a line connecting their two neighbour nodes. For triple nodes

we thought allowing a free movement for them wouldn’t affect the outcome very much since only a

minority of all nodes in the simulation are actually triple nodes. It turned out that restricting the

FIG 2 FIG 2 SHOWS A TRIANGLE WITH A NODE IN EACH CORNER. IF MOVING THE MIDDLE NODE ALONG

A LINE PARALLEL TO THE CONNECTION LINE BETWEEN THE TWO OTHER NODES, THE AREA

WON’T CHANGE.

b
h

Jens Rößiger - 2013 Page vii

Appendix 4 - simulation code description

movement in this way affected microstructure evolution very strong and the results were far from any

natural example we had. This basically meant the simple way wouldn’t work and we had to come up

with a more complex function to keep areas constant.

1.4.2 POLY-PHASE GRAIN BOUNDARY MIGRATION (USING B-NODES)

Basically this approach also started off with a simple idea. I will frame it shortly but I won’t describe it

in full detail since it is a discontinued part of the code. Some functions remain in the code because they

might be reused in further development which is only possibly by using b-nodes. The idea was to give

each node an additional area energy for each phase. At the start of the simulation that should be 0.

Movement of the nodes during the simulation most of the time results in changes of area of the

neighbouring Flynns. This area change was recorded for each node and for each phase neighbouring

this node separately. Area loss for a phase resulted in negative values, gain in positive ones. Nodes

which only had neighbouring Flynns of the same phase were skipped because the net gain and loss of

area for this phase was zero anyway. These values then influenced the movement of the nodes since

the area energy also contributed to the calculation of the energy contours during the trial position step.

In the equation used it wasn’t important whether the values were positive or negative. The larger they

were the larger was the area energy. The goal was to keep the nodes close to an area energy of zero.

Now leaving the code at this stage would have resulted in moving nodes around their original position

but no development of the whole microstructure. This problem was solved by different mechanisms

of “diffusion” of this area energy. The simplest mechanism was to distribute the area energy for each

phase equally between all nodes neighbouring this phase after each step. We called this “infinite”

diffusion because it simulated a very large diffusion coefficient regardless of the material between the

nodes. One can probably think of this like diffusion in hot gas. The second mechanism was similar with

a major difference in checking the material between the nodes. It only used infinite diffusion between

nodes which were actually connected to each other through a boundary. This diffusion was called

cluster diffusion. One can probably think of this as simulation of melt pockets in a crystallized

structure. Diffusion in the melt is much faster than in the solid grains. The last technique was

implemented as Fick’s diffusion. Depending on the setting each node only diffused to the immediate

neighbouring nodes and so on. Probably this function might be of use later to simulate diffusion of one

phase through grain boundaries of another phase.

During continuous simulations with this code it seemed to work fine at first because all simulations I

carried out had settings for high wetting angles between the minor and the major phase. That meant

that the minor phase formed round areas within the major phase which were not connected to each

other. Due to the setup of the data structure this there is not much change in the boundary nodes in an
Jens Rößiger - 2013 Page viii

Appendix 4 - simulation code description

environment like this. Later, after Philipp, a diploma student, was making use of the code himself to

simulate the evolution of melt distribution we discovered that with settings for low wetting angles

between the phases the change in the boundary nodes has a major impact. With settings for low

wetting angles between the phases the minor phase might start as individual areas in the major phase.

However it is going to be distributed along the grain boundaries and forms connections to each other.

Because of that in the beginning there might be just a few boundary nodes in contact with the minor

phase but because it keeps being distributed more and more boundary nodes come in contact with it.

The major flaw of the code in this case was that it doesn’t keep track of the amount of boundary nodes.

Also if new nodes are inserted the usually start off with no attributes. That means the build-up of

“pressure” of the area energy is counteracted because it gets distributed between more and more nodes

during diffusion. This resulted in significant area loss of the minor phase in most cases. Several

attempts were made to counteract this problem like keeping track of the amount of nodes or to give

new nodes always the average value of the neighbouring nodes. In the end there was no satisfactory

result and this lead to the third approach using Flynns instead of boundary nodes for area energy

calculation.

1.4.3 POLY-PHASE GRAIN BOUNDARY MIGRATION (USING FLYNNS)

This version of the poly phase grain growth code represents the latest development stage. Due to the

different steps which in the end lead to this approach it has to be said that there are a couple of

functions still in the code which are not used by the current process anymore and are only related to

previous developments. The code will be cleaned up in the future. However until now I didn’t find

time to complete that step. Because the last version of the code had problems with settings for low

wetting angles, I thought of a different approach. It is similar to the melt code of J. Becker, however, it

keeps the fraction of phase constant for each cluster of Flynns. Clusters consist of one or more Flynns

of the same phase which at least share one boundary. Clusters of one Flynn are theoretically not a

cluster. To avoid the necessity to distinguish between single Flynns and actual Clusters I treated single

Flynns also as a special kind of Cluster. The disadvantage of this approach is that as it is there is no

possibility to implement slow diffusion along the phase boundary of a cluster or even along grain

boundaries between other phases. This was one of the reasons why I didn’t clean the code and get rid

of all old functions. Since they worked with the boundary nodes my idea was to implement this ability

later by recycling old functions.

Jens Rößiger - 2013 Page ix

Appendix 4 - simulation code description

1.4.3.1 CONFIG FILE AND SETTINGS

Like the previous version of the code, this process needs the “phase_db.txt” configuration file to be in

the same directory as all the other experiment related files. Some of the settings in this file are also

outdated and related to previous versions of the code. In the following I will highlight the important

sections and mark outdated sections in grey. The grey parts have to stay in the file for now, otherwise

the file reading would be messed up. You can write your own comments in the file. They should always

start with a #.

Number of phases. ######

2

Phase Properties ######
A) Phase Number
B) Infinite Diffusion (y/n)
C) Cluster Diffusion (y/n)
D) Ficks Diffusion (Number of diff steps per time step)
E) Exponent for scaling
F) Constant for scaling
G) Kappa for Ficks diffusion
H) Merge (y/n)

0 0 0 0 2 12000 2e-9 0
1 1 1 0 2 12000 2e-9 0

Phase Boundary Properties ######
Boundaries are defined by A and B
A) Phase Number one
B) Phase Number two
C) Mobility of these boundary segments
below -10ÂºC 7.5e-5 (Duval Book - Creep and Fracture of Ice)
above -10ÂºC 1.0e-4 (P. Duval and O. Castelnau, Dynamic Recrystallization of Ice in Polar Ice […]
D) Surface Energy of these segments
E) GB Activation Energy (Q)
mobil = mobility * exp(-(Q) / (R * T));

0 0 0.023 0.065 51.1e3
0 1 0.023 0.032 51.1e3
1 1 0.038 0.0032 51.1e3

MELT TRACKING ######
A) Use the Unode layer to track the given phase.
(-2 --> don't do tracking)

-2

CLUSTER_TRACKING ######

The cluster tracking multiplier energy function is
defined by these values...
area_percentage = (area_new – area_old) / (area_old)
area_multiplier = A * (area_percentage) ^ D

A B C D

0.1 0 0 2

The first section highlighted denotes the number of phases in the experiment. Theoretically the code

should work for more than two phases. However it has only been extensively tested for two phases. In

Jens Rößiger - 2013 Page x

Appendix 4 - simulation code description

the “Phase Properties” section only the first three numbers are important at the moment. The others

have to stay there to keep the file reading in line. Basically the first number denotes the phase number.

The two following numbers are either 0 for the most common phase and 1 for all other phases. The

“Phase boundary properties” section is the most important one since it sets surface energy and

boundary mobility for all different boundaries. The first two numbers denote the phases on both sides

of the boundary. The following numbers are mobility, surface energy and grain boundary activation

energy. The “Melt tracking” section is only used if you want to use unodes to track the evolution of a

specific phase. And the last part, the “Cluster tracking” section is used to set the scaling parameters of

the area energy function. So far only A and D are used.

There is another set of configuration setting in the beginning of the cpp file which basically tells the

code which Elle storage attribute it should use. “iFlynnPhase” is the attribute for the phase number.

“iFlynnCluster” is the attribute for the cluster number (which is the original area of the cluster).

“iUnodePhase” and “iUnodeConc” are used for phase tracking which is explained later on in the code.

However these values are only used if phase tracking in the config file is set to -1. For all larger numbers

fixed storage attributes are used (U_ATTRIB_A, B and C). “iUnodeUpdateMethod” also influences

the approach on how unode phases are updated during phase tracking. The next three variables called

i, d and bCheckEnergy were used during debugging of the code. At the moment all parts using these

don’t do much. In general they can be reactivated and used for energy checking. The idea was to get

an idea on writing a function which determines the scaling scalar automatically. The last constant

“iMinTjs” is used by the “ElleCheckTripleJ” function. If it is larger than 2 only Flynns with more triple

nodes than the set number are checked for possible triple node neighbour switches. That has for the

moment statistical reasons which are also explained later, where the constant is actually used in the

code.

int iClusterNodeCount = N_ATTRIB_A; //not used atm
int attrib[2] = { N_ATTRIB_B, N_ATTRIB_C };
int iFlynnPhase = F_ATTRIB_A;
int iFlynnCluster = F_ATTRIB_C;
int iUnodePhase = U_ATTRIB_C;
int iUnodeConc = U_ATTRIB_A;
//
int iUnodeUpdateMethod = 1;
// 1 = Find Unodes in a Flynn and update them accordingly with the FlynnPhase in iUnodePhase.
// 0 = Find according Flynn for each Unode and update them with the FlynnPhase in iUnodePhase.
double dCheckEnergy[4];
int bCheckEnergy = 0;
int iCheckEnergy = 0;
int iMinTjs = 0;

In addition to these two configuration settings the code will create different files during runtime.

Probably the most important one to understand the code is the “initial_stuff.txt” file. If it is not present

when starting the experiment it will be created in the same directory. Depending on the file being there

Jens Rößiger - 2013 Page xi

Appendix 4 - simulation code description

or not tells the code to either assume a new simulation or a restarted/continued one. On the very first

step no values which are used for cluster tracking and energy management have been stored in the

attributes of the Flynns. That means if the file is not present. The code will calculate these variables

and store them in the corresponding attribute slots overwriting everything which has been stored there

before. If the file is present the code assumes that this step has already been done and the experiment

is a continuation of an old experiment. If that is not the case and the file has not been deleted by

accident although the simulation is new. The code will crash or end up in a close to infinite loop

because all values it needs are either invalid or everything is set to 0 or 1. That means you have to make

sure to delete the file if you want to restart from the beginning and you have to make sure it is in the

same directory when you want to restart from a later step or continue after running some other

function on the experiment. The file itself contains the areas the phases occupied in the very first step.

1.4.3.2 START THE MAIN FUNCTION AND THE CLUSTER TRACKING CLASS

The main function of this process (GBMGrowth) will initialise the clusterTracking class in the

beginning.

 // Initialize the clusterTracking class...
 clusterTracking clusters;
 if (clusters.writeInitialData("initial_stuff.txt")) {
 clusters.setClusterAreas();
 clusters.checkDoubleClusterAreaLoop();
 if (phases.p_track == -1)
 UnodePhaseUpdate();
 }

If this is the first run and the Initial_Stuff.txt file is not present it will run additional functions. During

initialisation this class will check with arrays that were created during the parsing of the config file

whether there are phases in the experiment that will use cluster tracking. If cluster tracking should

work both switches for infinite diffusion and cluster diffusion have to be activated because only Flynns

which diffuse their area instantly can also use this approach of cluster diffusion.

 for (int i = 0; i < phases.no_phases; i++) {
 if (phases.phasep[i].infinite_diff == 1)
 if (phases.phasep[i].cluster_diff == 1) {
 lClustDiffPhases.push_back(i);
 lAllPhases.push_back(i);
 vClusterPhases.push_back(i);
 }
 else {
 lInfDiffPhases.push_back(i);
 lAllPhases.push_back(i);
 }
 else {
 lFicksDiffPhases.push_back(i);
 lAllPhases.push_back(i);
 }
 }

Jens Rößiger - 2013 Page xii

Appendix 4 - simulation code description

After that, additional parameters which are only important for the scaling of the energy functions

during cluster tracking will be parsed from the config file. In the end it will set a constant which is used

to shift cluster areas by a small amount in the unusual case that two clusters have exactly the same area.

Then the constructor will call the “findClusters” function. At the end an array is created which will

contain all clusters of the different phases which should use cluster diffusion. To achieve that it will

create two vectors containing all Flynns and their phases respectively.

<vector> vFlynn  Contains the Flynn numbers
<vector> vFlynnPhase  Contains the phase numbers of the Flynns

If both vectors don’t have the same size at the end of the loop an error message will be printed. In any

other case the cluster determination is started by calling the function “getClusters”. This function is at

the moment a slightly modified version of the original from the second version. It makes use of two

lists and three vectors where one of the vectors is actually a vector containing another vector on each

position and one contains that vector again.

<vector> vCluster  Is used temporary to find Clusters
<vector<vector>> vClusters  Is used to store all clusters of the current phase
<vector<vector<vector> vPhaseClusters  Contains the Flynn numbers of all Clusters of all Phases as vectors.
<list> lOriginal  All Flynns of the current phase are stored here
<list> lNeighbour  Is used as temporary storage of neigbouring Flynns

To clarify the setup I’ve drawn a small sketch of the data structure (Fig 3)

 vPhaseClusters vCluster(Phase1)(Cluster6)

vClusters(Phase1) 4325

vClusters(Phase2) 34

… 234

 647

 2

 34

 123

FIG 3 SETUP OF THE CLUSTER DATA STRUCTURE. VPHASECLUSTERS CONTAINS A VECTOR (VCLUSTERS) FOR EACH

PHASE THAT USES CLUSTER DIFFUSION. THAT VECTOR CONTAINS OTHER VECTORS (VCLUSTER) FOR EACH CLUSTER

OF THAT PHASE. AND THAT VECTOR CONTAINS ALL FLYNN NUMBERS THAT BELONG TO THAT CLUSTER.

The first for loop will cycle through all phases which should diffuse using cluster diffusion. In general

that will be a very short vector containing only one or two entries. This way the cluster initialising is

done separately for each phase. The next for loop will cycle through all Flynns and check whether their

phase is equal to the phase under investigation. If that is the case their Flynn number is pushed to one

of the lists (lOriginal). At the end of this loop all Flynns of the current phase should be on that list. To

make sure that there are no double entries the list is sorted and all additional, identical entries are

Jens Rößiger - 2013 Page xiii

Appendix 4 - simulation code description

deleted. While there are entries in the lOriginal list, the first entry is transferred to the vClusters vector.

The next loop will cycle through this vCluster vector which at the moment only consists of one entry.

However usually it will grow if it is not a one Flynn cluster. The loop will find all neighbour Flynns of

the current Flynn and puts them on the lNeighbour list. All entries in that list are checked whether

they have the same phase as is currently under investigation. If not the Flynn number is deleted from

the neighbour list. If they do it will be checked whether the same Flynn number is already in the

vCluster vector. If not it will be transferred to the vector, if it is it will just be deleted from the neighbour

list. If there was actually one or more neighbours the vCluster loop continues with the next entry. If

none was found the vCluster size is still one and the loop therefore finishes. At its end the vCluster

vector containing all Flynn numbers of a cluster is pushed to the vClusters vector which in the end will

contain all clusters of the current phase as vectors. After the lOriginal list is empty and all entries have

been checked that vector is pushed to another vector which in the end will hold information about all

clusters of all phases which diffuse by cluster diffusion.

while (lOriginal.size() > 0) {
 vCluster.clear();
 vCluster.push_back(lOriginal.front()); // put the first flynn into the cluster list
 lOriginal.pop_front(); // delete that element from the list

 for (int n = 0; n < vCluster.size(); n++) {
 lNeighbour.clear(); // clear the neigbour list
 ElleFlynnNbRegions(vCluster.at(n), lNeighbour); //find neighbours for the current flynn (n) in the cluster list

 // check whether any flynn in the neighbour list matches the current phase (i)
 // as long as there are entries in the neighbours list do the following
 while (lNeighbour.size() > 0) {
 ElleGetFlynnRealAttribute(lNeighbour.front(), &temp_double, iFlynnPhase); // get phase from flynn
 temp_int = (int) temp_double; // convert to int
 //compare to current phase
 if (temp_int == vClusterPhases.at(z)) { // if Flynn has the same phase
 // look whether the Flynn is already on the cluster list
 int iOnList = 0;
 for (int i = 0; i < vCluster.size() && iOnList == 0; i++)
 if (lNeighbour.front() == vCluster.at(i))
 iOnList = 1;
 if (iOnList == 0) { // if NOT
 vCluster.push_back(lNeighbour.front()); // add flynn to cluster list
 lOriginal.remove(lNeighbour.front()); // remove that flynn from the original phase list
 lNeighbour.pop_front(); // remove it from the neighbours list
 }
 else // if it is
 lNeighbour.pop_front(); // just remove it from the neighbours list
 }
 else // if Flynn has not the same phase
 lNeighbour.pop_front(); // just remove it from the neighbours list
 }
 }
 vClusters.push_back(vCluster); //vector which contains all the flynns beloning to a cluster is put in another vector
}
vPhasesClusters.push_back(vClusters);

After this triple vector is created the function “getClusterAreas” will calculate the areas of each cluster.

Jens Rößiger - 2013 Page xiv

Appendix 4 - simulation code description

 for (int z = 0; z < vPhasesClusters.size(); z++) {
 vClusterArea.clear();
 for (int i = 0; i < vPhasesClusters[z].size(); i++) {
 dClusterArea = 0.0;
 for (int j = 0; j < vPhasesClusters[z][i].size(); j++) {
 dClusterArea += ElleRegionArea(vPhasesClusters[z][i][j]);
 }
 vClusterArea.push_back(dClusterArea);
 }
 vPhasesClusterAreas.push_back(vClusterArea);

If the “initial_stuff.txt” file is not present the just calculated areas are written into the set Elle Flynn

attribute, overwriting everything that has been there. That means that if the file is deleted during the

experiment all areas are basically reset. It will also prevent two clusters from having exactly the same

area, which would prevent the cluster tracking system from working properly, by calling

“checkDoubleClusterArea”.

1.4.3.3 THE MAIN LOOP

After the clusterTracking class has been constructed everything is set to enter the main loop which

cycles through all nodes for each time step. The nodes are shuffled each time step to prevent the same

node from moving at exactly the same time in a time step. For each node there are four trial positions

which are equally displaced from the nodes original position in both directions horizontally and

vertically. The energy at each trial position equals the length of each segment, which is the distance

between the node and one of the neighbouring nodes, times the set energy for that phase boundary

(Eq. 1). Of course the third segment is only significant if the node is a triple node.

 𝐸𝐸 = �(𝑙𝑙1 ∗ 𝑒𝑒1) + (𝑙𝑙2 ∗ 𝑒𝑒2)[+(𝑙𝑙3 ∗ 𝑒𝑒3)]� (1)

With the exception that the energy is read from the config file rather than somewhere else, this code

hasn’t been changed since it has been originally developed by J. Becker, et al. (1) To keep the areas of

the phases more or less constant another form of energy was introduced which counteracts the natural

reduction of energy once the area change of a cluster compared to its original area is larger than 0. This

idea is explained in detail in J. Roessiger, et al. (2) In code form the function calls a member of the

clusterTracking class called “returnClusterAreaEnergy”. This function will determine all

neighbouring Flynns of the node.

for (int i = 0; i < vClusterPhases.size(); i++) {
 vClusterPhaseFlynns.clear();
 for (int j = 0; j < iNodeType; j++) {
 ElleGetFlynnRealAttribute(iFlynns[j], &dFlynnPhaseCheck, iFlynnPhase);
 iFlynnPhaseCheck = (int) dFlynnPhaseCheck;
 if (iFlynnPhaseCheck == vClusterPhases[i]) {
 vClusterPhaseFlynns.push_back(iFlynns[j]);
 }
 }
 if (vClusterPhaseFlynns.size() > 0)
 vPhaseClusterFlynns.push_back(vClusterPhaseFlynns);

Jens Rößiger - 2013 Page xv

Appendix 4 - simulation code description

}

if (vPhaseClusterFlynns.size() == 0)
 return 0.0;

double dClusterAreaEnergy = 0;
vector<double> vClusterAreaEnergy = clusterTracking::returnClusterAreaChange (vPhaseClusterFlynns, iNode, xyLoc);

for (int i = 0; i < vClusterAreaEnergy.size(); i++)
 dClusterAreaEnergy += vClusterAreaEnergy.at (i);

return dClusterAreaEnergy;

At the end of the loop the Flynns are put into a vector called vPhaseClusterFlynns in regard of the

phase they belong to. That means calculation only continues if there is at least one neighbouring Flynn

which belongs to a phase that uses cluster diffusion. If not this term is 0 and calculation stops. If there

are entries in the vector the function “returnClusterAreaChange” is called to return the actual area

change of all clusters neighbouring the node. Each entry in vPhaseClusterFlynns consists of another

vector which contains all neighbouring Flynn numbers which belong to the same phase. Let me give

an example which might make the setup clearer. Imagine a triple node. That means there are three

neighbouring Flynns. Two of them belong to the same phase, one to another. All of them are set to

cluster diffusion. That means vPhaseClusterFlynns contains two vectors. One only carries one Flynn

number and the other contains two Flynn numbers. The “returnClusterAreaChange” function now

calculates the area change for all Flynns.

for (int i = 0; i < vPhaseFlynns.size(); i++) {
 vPhaseClusterAreaChange.push_back (0);
 ElleGetFlynnRealAttribute(vPhaseFlynns[i][0], &dClusterArea, iFlynnCluster);
 for (int j = 0; j < vPhaseFlynns[i].size(); j++) {
 vPhaseClusterAreaChange.at (i) += returnFlynnAreaChange (vPhaseFlynns[i][j], iNode, xyLoc);
 if (j > 0) {
 ElleGetFlynnRealAttribute(vPhaseFlynns[i][j], &dClusterAreaCheck, iFlynnCluster);
 if (dClusterArea != dClusterAreaCheck) {
 cout << "WARNING: Stored Clusterareas in the Flynns […] are not the same!!" << endl;
 clusterTracking::findClusters();
 clusterTracking::findSplit();
 clusterTracking::findMerge();
 clusterTracking::checkDoubleClusterAreaLoop();
 ElleGetFlynnRealAttribute(vPhaseFlynns[i][0], &dClusterArea, iFlynnCluster);
 }
 }
 }

 vClusterArea.push_back(dClusterArea);

 // get the current area
 for (int z = 0, bFound = false; z < vPhasesClusters.size() && bFound == false; z++) {
 for (int j = 0; j < vPhasesClusters[z].size() && bFound == false; j++) {
 for (int k = 0; k < vPhasesClusters[z][j].size() && bFound == false; k++) {
 if (vPhasesClusters[z][j][k] == vPhaseFlynns[i][0]) {
 vCurrentArea.push_back(vPhasesClusterAreas[z][j]);
 bFound = true;

However if they belong to the same phase their area change is added together. There is also a check to

make sure there were no errors in the previous simulation. If, like for the triple node in the example,

Jens Rößiger - 2013 Page xvi

Appendix 4 - simulation code description

there are two Flynns of the same phase neighbouring the node it is checked whether the stored original

area for both Flynns is the same. If that is not the case something went wrong in the previous part of

the process and an error message is displayed as well as some functions are called to correct that

problem. I will not explain these check functions at this stage since they will be explained later on. In

the end the function determined the area change of the Flynns. It has read the original area of the

cluster the Flynns belong to from the Flynn attribute and it has read the Flynns current area from the

clusterTracking class variable. After some more checks, which make sure that all vectors contain the

required information, all of these values are set in relation to each other and scaled by values from the

config file by equation 2.

𝐴𝐴𝐴𝐴 = 𝛼𝛼 ∙ �(𝐴𝐴𝑡𝑡+𝐴𝐴∆𝑡𝑡)−𝐴𝐴0
𝐴𝐴0

�
𝛽𝛽

 (2)

vClusterAreaEnergy.push_back (dMultiplierA * pow (fabs(((vCurrentArea.at(i) + (vPhaseClusterAreaChange.at(i))) -
vClusterArea.at(i)) / vClusterArea.at(i)), dMultiplierD));

The area energy (AE) equals the current area (At) including the small change by moving to one of the

trial positions (AΔt) compared to its original area (A0) normalized by the original area. That value is

scaled by a scalar (α) and also by an exponent (β) both can be set in the config file and are used to set

the sensitivity of the experiment towards phase area changes and also to adjust the energy level to the

general energy level in the simulation to prevent larger changes in the beginning of the simulation.

Now if energy tracking is set for one node in the config file. These values will be written to “1.txt” once

that node is under investigation.

A vector containing the area energy values for each phase is returned to the function

“returnClusterAreaEnergy” which will just add all values in the vector up and return the resulting

scalar to “GGMoveNode”.

for (int i = 0; i < vClusterAreaEnergy.size(); i++)
 dClusterAreaEnergy += vClusterAreaEnergy.at (i);

return dClusterAreaEnergy;

After both energies have been calculated for all four trial positions. The resulting total energy, which

is just the sum of both energies, at all trial positions will be passed to the next function called

“GetMoveDir”.

Jens Rößiger - 2013 Page xvii

Appendix 4 - simulation code description

“GetMoveDir” and the function it calles (“MoveDNode” or “MoveTNode”) are unchanged in regard

to their original versions in the GBM code by J. Becker (1) except that the mobility for the phase

boundaries is read from the config file. Basically they are calculating the energy field surrounding the

node under investigation. From that a movement direction is derived which is then modified by the

mobility for the individual segments in contact with the node. In the end a movement vector for the

node is returned which in regard to its current position will result in the new position for the node.

 ElleSetNodeChange(0);
 ElleCrossingsCheck(ran.at(j), & newxy);
 if (ElleNodeChange() != 0)
 clusters.updateClusters();

The node will be moved by “ElleCrossingsCheck” which will move the node to the new position and

check for any topology problems which can result from that movement. To make this code faster a

change has been implemented to the base code. Before each function which could alter the topology

setting a call of “ElleSetNodeChange(0)” will set a variable to 0. Now if in the following function the

topology is actually altered that variable will be changed. Otherwise it will stay 0. If it is still 0 afterwards

nothing has to be done. If the topology was altered the whole cluster class has to be updated since

clusters could have been changed. This is done by a call of “updateClusters”.

void clusterTracking::updateClusters(void)
{
 clusterTracking::findClusters();
 clusterTracking::findSplit();
 clusterTracking::findMerge();
 clusterTracking::checkDoubleClusterAreaLoop();
}

“updateClusters” consists of four sub function. First there will be a call of “findClusters” which I

already described during the discussion of the constructor. So all clusters will be determined and

stored in a triple vector. Since the current setup might be different from the previous one before the

topology change the code checks for split events afterwards. That means part of the cluster might have

been cut off due to boundary movement and the previous single cluster is now divided in two separate

parts which are not connected anymore. That is done with the help of the cluster areas which are stored

in one of the set Flynn attributes for each Flynn. Each Flynn in one cluster has got exactly the same

number. If two clusters would have had exactly the same number during construction of the cluster in

the first step, their areas would have been shifted by a small amount mentioned before to prevent that

sort of problem. Now at the current stage of the simulation the only way for two clusters to have exactly

the same area number is that there was a split.

Jens Rößiger - 2013 Page xviii

Appendix 4 - simulation code description

for (int z = 0; z < vPhasesClusters.size(); z++) {
 for (int i = 0; i < vPhasesClusters[z].size(); i++) {
 ElleGetFlynnRealAttribute(vPhasesClusters[z][i][0], &dArea, iFlynnCluster);

 vSplitClusters.clear();

 for (int j = 0; j < vPhasesClusters[z].size(); j++) {
 vSplitClusterFlynns.clear();
 for (int k = 0; k < vPhasesClusters[z][j].size(); k++) {
 ElleGetFlynnRealAttribute(vPhasesClusters[z][j][k], &dAreaCheck, iFlynnCluster);
 if (dArea == dAreaCheck) {
 vSplitClusterFlynns.push_back(vPhasesClusters[z][j][k]);
 }
 }
 if (vSplitClusterFlynns.size() > 0) {
 vSplitClusters.push_back(vSplitClusterFlynns);
 }
 }
 // Wenn mehr als ein Cluster mit Flynns mit der gleichen Fläche gefunden wurde
 // --> Der Cluster hat sich geteilt --> Flächen neu verteilen.
 // (Ein Cluster bedeutet der Cluster selbst wurde gefunden)
 if (vSplitClusters.size() > 1) {
 clusterTracking::resolveSplit(vSplitClusters);

This is exactly what the “findSplit” function does. It checks whether there are two entries in the Cluster

vector which Flynns have the same are number. If it detects such an event it will call the function

“resolveSplit”.

ElleGetFlynnRealAttribute(vSplitClusters[0][0], &dSplitClusterNewArea, iFlynnCluster);
cout << "Cluster with same areanumber detected.... (SPLIT) " << dSplitClusterNewArea << " |";
dSplitClusterAreaComplete = 0;
for (int j = 0; j < vSplitClusters.size(); j++) {
 dSplitClusterAreas[j] = 0;
 cout << "| ";
 for (int k = 0; k < vSplitClusters[j].size(); k++) {
 dSplitClusterAreas[j] += ElleRegionArea(vSplitClusters[j][k]);
 cout << vSplitClusters[j][k] << " ";
 }
 dSplitClusterAreaComplete += dSplitClusterAreas[j];
}
cout << "|" << endl;
for (int j = 0; j < vSplitClusters.size(); j++) {
 // Calculate Ratio for that part of the split Cluster (Split Part / Current Complete Area) --> For the Ratio calculation the
old Area is not used.
 dSplitClusterRatio = dSplitClusterAreas[j] / dSplitClusterAreaComplete;
 // Calculate New Area with the OLD Area and the calculated Ratio
 ElleGetFlynnRealAttribute(vSplitClusters[j][0], &dSplitClusterNewArea, iFlynnCluster);
 dSplitClusterNewArea *= dSplitClusterRatio;
 // Write new Area in that part of the Flynn.
 for (int k = 0; k < vSplitClusters[j].size(); k++) {
 ElleSetFlynnRealAttribute(vSplitClusters[j][k], dSplitClusterNewArea, iFlynnCluster);

This function does nothing else than to adjust the area number for both parts of the old cluster. It will

calculate the ratio of both parts with the help of their current areas in relation to their total current

area. The original area is then divided with these ratios and the new values are assigned to each new

cluster individually.

for (int z = 0; z < vPhasesClusters.size(); z++) {
 for (int i = 0; i < vPhasesClusters[z].size(); i++) {
 lNotMatchingAreas.clear();
 ElleGetFlynnRealAttribute(vPhasesClusters[z][i][0], &dArea, iFlynnCluster);
 for (int j = 1; j < vPhasesClusters[z][i].size(); j++) {
 ElleGetFlynnRealAttribute(vPhasesClusters[z][i][j], &dAreaCheck, iFlynnCluster);
 // if the Cluster Areas of the Flynn ain't match the first one... --> Merge?
 if (dArea != dAreaCheck) {

Jens Rößiger - 2013 Page xix

Appendix 4 - simulation code description

 lNotMatchingAreas.push_back(dAreaCheck);
 }
 }
 // all double Entries have to be deleted... --> problem if two of the merged clusters had the same areas...
 lNotMatchingAreas.sort();
 lNotMatchingAreas.unique();

 if (lNotMatchingAreas.size() > 0) {
 lNotMatchingAreas.push_back(dArea);
 clusterTracking::resolveMerge(z, i, lNotMatchingAreas);

The next sub function called by “updateClusters” is “findMerge”. Find merge will detect two clusters

that have merged together during grain boundary movement. The two clusters which used to have

two separate entries in the Clusters vector will now end up in only one entry. However their area

numbers are still different because they used to be two separate clusters. This is exactly how the

“findMerge” function works. It will loop through every entry in the Clusters vector and check whether

all Flynns have got the same area number. If they don’t there was a merge during the last topology

check.

double dMergedArea = 0.0;
// calculate new cluster area (just add the old areas together)

cout << "Cluster has different Clusterflynns... (MERGE) ";
while (lNotMatchingAreas.size() > 0) {
 cout << lNotMatchingAreas.back() << " ";
 dMergedArea += lNotMatchingAreas.back();
 lNotMatchingAreas.pop_back();
}
cout << ":: " << dMergedArea << endl;
// set new area for ALL flynns in that cluster!
for (int j = 0; j < vPhasesClusters[z][i].size(); j++) {
 ElleSetFlynnRealAttribute(vPhasesClusters[z][i][j], dMergedArea, iFlynnCluster);

“resolveMerge” will be called which adds all original areas stored in the Flynn attribute from all Flynns

in the cluster. Afterwards all duplicate entries are deleted. That way the code has got one entry for

each cluster that has merged into the new combined cluster. In case two clusters merged together there

are two entries. With three there is one more and so on. All of these different original areas are then

summed up and stored in the set Flynn attribute for each Flynn of the new combined cluster updating

the old values.

The last function called by “updateClusters” is another call of “checkDoubleClusterAreaLoop”. I

already discussed this function during the explanation of the constructor. The only thing it does is to

loop through all entries in the Clusters vector and check whether there are two entries which have

exactly the same area number. That could have happened during the adjustment of the split or merge

functions. If it happens their values are adjusted by a small amount. To prevent the overall area from

changing one cluster gets assigned a slightly larger number while the other a slightly smaller number.

Jens Rößiger - 2013 Page xx

Appendix 4 - simulation code description

After all four functions are completed the main loop continues. Next are calls for “ElleCheckDoubleJ”

and “ElleCheckTripleJ”. While the DoubleJ function is trivial and only inserts or deletes a double node

if the distance to the neighbouring nodes is too large or to small respectively, the TripleJ function is

more complicated. What has to be said is that in a correct Elle topology there can only be Flynns with

at least two triple nodes otherwise the Flynn ends up to be a Flynn inside another Flynn which leads

to problems. Now “ElleCheckTripleJ” induces triple switches between two triple nodes which are too

close together. Under certain conditions that could lead to a single triple node Flynn in another Flynn.

To prevent that, the other Flynn is also split and essentially a new Flynn is created (Fig 4).

FIG 4 FLYNN 689 IS SMALL AND SHRINKING. AT SOME STAGE “ELLECHECKTRIPLEJ” WILL SWITCH NODE 689 AND 750.

SINCE THAT WOULD RESULT IN A FLYNN IN FLYNN (689 IN 811) A SPLIT IS INDUCED WHICH SPLITS FLYNN 811 INTO

0 AND 1. FLYNN 689 IS NOW A FLYNN WITH ONLY THREE NODES AND WILL BE DISREGARDED BY “ELLECHECKTRIPLEJ”

SINCE IT IS VERY LIKELY THAT IT WILL DISAPPEAR SOON. (FIGURE AFTER EVANS, L. (PC))

This procedure is messing with Flynn statistics and in some cases the number of Flynns could be

increasing even if there is no process in the experiment which could induce that.

if (iMinTjs > 2) {
 int iNeighbours[3], iFlynns[3];
 int iNodeCount = 0;
 int * iNodes = NULL;
 int iTripleCheck;

 ElleNeighbourNodes(j, iNeighbours);
 for (int k = 0; k < node_type; k++) {
 ElleNeighbourRegion(j, iNeighbours[k], &iFlynns[k]);
 ElleFlynnNodes(iFlynns[k], &iNodes, &iNodeCount);
 iTripleCheck = 0;
 for (int l = 0; l < iNodeCount; l++) {
 if (ElleNodeIsTriple (iNodes[l])) {
 iTripleCheck++;
 }
 }

Jens Rößiger - 2013 Page xxi

Appendix 4 - simulation code description

 if (iTripleCheck < iMinTjs) {
 fstream fTripleFile;
 fTripleFile.open ("FailedTripleSwitches.txt", fstream::out | fstream::app);
 if (fTripleFile.is_open()) {
 fTripleFile << i << ": " << j << "{" << iTripleCheck << " (" << iNeighbours[k] << ") […]
 fTripleFile.close();
 }
 break;
 }
 free(iNodes);
 iNodes = NULL;
 }
 if (iTripleCheck >= iMinTjs) {
 ElleSetNodeChange(0);
 ElleCheckTripleJ(j);
 if (ElleNodeChange() != 0)
 clusters.updateClusters();

To prevent that there is a switch in the loop which checks how many triple nodes a Flynn has and it

only calls “ElleCheckTripleJ” if the Flynn has more triple nodes than set in the beginning of the file

(config section). In general this switch is deactivated and all triple nodes will be checked with

“ElleCheckTripleJ”. Basically this is the end of the main loop and it will continue with the next time

step.

There are additional statistics functions to track melt evolution with unodes if that has been set in the

config file. For phase tracking values in the config file that are equal or larger to 0 phase tracking will

be done for the phase equaling that number. That means there are two different values stored in the

unode attributes. U_ATTRIB_A will hold information about how many time steps of the total amount

of time steps that unode has been part of the tracked phase. U_ATTRIB_B will hold information on

how often that node has been converted from any other phase to the tracked phase. U_ATTRIB_C is

just a variable which is used to save the phase the unode currently belongs to. This way the code is able

to compare that value with the value of the next step which is necessary to determine the amount of

phase changes.

If the phase tracking value equals “-1” the unodes are used in a different way. All unodes can contain

information which could be concentration in one unode attribute which is set in the beginning of the

file. This concentration is not diffused. Every step it is determined which “concentration” belongs to

which phase. The values are summed up for each phase separately and written to the file. It was used

to check how the diffusion code for unodes of Gomez-Rivaz, E. works together with gbm_pp.

If the phase tracking value is less than -1 the phase tracking is deactivated.

Jens Rößiger - 2013 Page xxii

Appendix 4 - simulation code description

1.4.4 FFT IMPLEMENTATION

During a visit in Barcelona Albert Griera and me tried to combine my code for two or more phase grain

boundary migration with his grain boundary migration modification to take dislocation density from

the fft viscoplastic deformation into account. Summarized it wasn’t a big problem. We just had to make

sure that the storage variables are not used twice and we had to copy some functions from one gbm

version to the other. In general both versions calculate a different additional energy. For my process

this would be the area energy to keep the phase areas constant and for his process this would be the

internal energy in grains as a result from the dislocation density. Both functions used the same story

slots because they were very limited by this time. Also using both processes like it is the normal Elle

procedure wasn’t an option because both actually represent the same process with different additions.

Since our attempt to adjust both codes they already have been further developed and that is why

further thought has to be spent to make use of both codes again. However since the newest version of

the poly phase grain boundary migration code mainly uses the Flynns as storage containers and also a

recent modification to the basecode allows more storage variables to be used, this shouldn’t be a big

deal. All storage variables for gbm_pp can be set in the beginning of the source code file. Copying the

additional internal energy functions along with a few other adjustments should be the main part.

1.4.4.1 MULTITHREADING

Since the calculation of the internal energy during the gbm process is very time consuming we also

spent thoughts about making this process multithreading. With other processes this can be done easily

by splitting the available data in 2 or more parts and just starting another thread with the script. Later

on the results have to be combined again. For gbm this is not that easy because the data points are

actually dependent on each other. Moving one immediately affects the next calculation. Splitting the

points would lead to different results. What is possible however is starting a thread for every trial

position calculation because during the calculation of the trail position nothing in the data structure is

changed. This way not the complete process is multithreading, the most intensive part is however. We

made use of the boost library to start one separate thread for each of the four trial positions. At first it

seemed to work alright and we measured a speed increase of up to 300%. During the test simulations

we experienced random crashes and our investigations didn’t get to the bottom of that. Our conclusion

was that they were related to the fact that we didn’t copy the Elle data arrays for each thread and they

were all using the same array to get the data for their calculations. Since we didn’t want to use four

times as much memory for this process further development was stopped.

Jens Rößiger - 2013 Page xxiii

Appendix 4 - simulation code description

1.4.4.2 GENERAL SETUP

A few more files are required to run a simulation which combines gbm_pp and the fft viscoplastic

deformation. The main loop is commonly stored in a file called launch.sh or similar. Usually the loop

starts with one step of fft deformation. For that the elle file in the directory has to be prepared. Albert

wrote a very helpful description on how to use and prepare files for the use with fft called “Introduction

to FFT-ELLE”. It can be found in the fft directory on the CD but should also be part of each Elle

download from Sourceforge with cvs. Important parameters in the elle file are dimensions and

temperature as well as the phase number for the individual Flynns.

The FFT process needs the files make.out, ice3d.sx, ppc.in, ppc.dim and temp.out. Make.out contains

the information of the individual points. Ice3d.sx is the crystal file and contains information about the

slip systems available in ice. For different materials a different file is necessary. Ppc.in contains the

settings for the simulations like strain rate. Temp.out is a dummy file and ppc.dim only needs

modifications of the resolution should be changed (default is 256x256x1).

Some details about ice3d.sx are the tau0xf and tau0xb values. They determine the energy needed for

activation of theses slip systems. For the pyramidal and prismatic slip planes they are set to 20

compared to 1 for the basal plane. This means it takes 20 times more energy to activate them compared

to the basal plane.

A few settings can be adjusted in the ppc.in file. The number of nodes has to be adjusted to the

resolution. 256x256x1 = 65536. Then the name of the output file and the name of the crystal file can be

specified. Next are the boundary conditions. Because we assume plain strain we only need 𝑒𝑒𝑥𝑥𝑥𝑥 = 𝛾𝛾
2

and 𝑒𝑒𝑦𝑦𝑦𝑦 = −𝛾𝛾
2

 for pure shear or 𝑒𝑒𝑥𝑥𝑥𝑥 = 𝛾𝛾 for simple shear. After that we set the step size (in seconds)

and with imax the maximum number of iterations can be set. More takes longer but is more accurate.

Default is about 400. The last two numbers are the length scale which should be the same like in the

elle files and a value to estimate dislocation density, the Burgers vector for basal slip.

Additionally I will provide some information about reading output data if required from the make.out

and tex.out files. The make.out file is split in three parts. First part is the first line and contains the

number of grains. Second part contains the Euler angles of the grains followed by the FFT grain

number. The last part contains the Euler angles of the unodes followed by the FFT point location, the

Flynn number that contains that point and the Phase ID. The tex.out file can basically be read like

columns. The lines represent the unode data points. The first three columns are the Euler angles again.

The next one is the Phase ID followed by the strain and stress values in the next two columns. The next

number represents the basal slip activity which is followed by that for the prismatic slip. Next are

Jens Rößiger - 2013 Page xxiv

Appendix 4 - simulation code description

geometrically necessary dislocation density and the statistical dislocations. The last two columns are

the unode points and the grain number in FFT again.

./fft256/fft_256 ~ Run FFT
 cp temp-FFT.out temp.out ~ Copy an output file
 fft2elle -i elle2fft001.elle –n ~ Conversion from FFT results to the elle format.
 reposition -i fft2elle.elle –n ~ Check all nodes and reposition them if necessary.
 importFFTdata_user_DDsum -i repos.elle -u 4 5 -n ~ Import FFT results to variables in the ELLE file
FFT finished

shiftphase -i fft_out.elle -s 1 -f 1 -n -u -1 ~ In case the processes use different phase numbers
elle_gg -i shiftphase001.elle -s 1 -f 1 –n ~ Helps preventing problems sometimes.

1. Step of NUCLEATION

cp growth001.elle tmp.elle ~ Copy the output file
dislocden_rx -i tmp.elle -n -u 1e13 1 50 ~ Run Nucleation based on dislocation density
tricky_vs02 -i dislocden_rx.elle -s 1 -f 1 –n ~ Repair some unnodes in case of boundary changes

1. Step of GBM

full_gbmunodes -i tricky.elle -s $gbmsteps -f 1 -n -u 0 ~ Run gbm
cp gbmunodes0$gbmsteps.elle gbm$gbmsteps_ok1.elle ~ Copy the output file
mv gbmunodes0$gbmsteps.elle splitSGG.elle ~ Rename the output file

1. STEP of SGG
splitflynnSGG -i splitSGG.elle -n -u 4 ~ Run recovery as 4 threaded process
parallelSGG -i splitSGG.elle -s $sggsteps -n -u 15 1 &
parallelSGG -i splitSGG.elle -s $sggsteps -n -u 15 2 &
parallelSGG -i splitSGG.elle -s $sggsteps -n -u 15 3 &
parallelSGG -i splitSGG.elle -s $sggsteps -n -u 15 4 &

while [! -e 1.unodes]; do
sleep .1
done

while [! -e 2.unodes]; do
sleep .1
done

while [! -e 3.unodes]; do
sleep .1
done

while [! -e 4.unodes]; do
sleep .1
done ~ Wait until all threads are finished

importparallelSGG -i splitSGG.elle -n -u 4 $sggsteps ~ Put the files together again

while [! -e pSGG.0$sggsteps.elle] ; do
sleep .1
done

checkangle -i pSGG.0$sggsteps.elle -s 1 -f 1 -n -u 0.4 1 ~ Check for some small angles
elle_gg -i checkangle001.elle -s 1 -f 1 –n ~ Helps preventing problems sometimes
mv pSGG.0$sggsteps.elle sgg$sggsteps_ok1.elle ~ Rename output file
rm splitSGG.elle *.unodes checkangle001.elle ~ Clean temporary files
shiftphase -i growth001.elle -s 1 -f 1 -n -u 1 ~ Shift phases back for FFT.

Example of a launch.sh script file with a few explanations on what is called with each line.

Jens Rößiger - 2013 Page xxv

Appendix 4 - simulation code description

1.5 PERSONAL MINI PROGRAMS

During the last 4 years I wrote a few small programs which help with the daily workflow of the

simulations and results. Most of them are related to easier data handling and statistic processing of the

experiments.

1.5.1 JR-STATS

JR-stats is a modification of the already existing stats routine. It needs the userdata options. The first

paramteter of the userdata array tells the routine which of the stats functions it should call. At the

moment there are six different ones.

1) Is very simple. It doesn’t need additional parameters. It just counts all Flynns and calculates

the average area (1 / number of Flynns)

2) Also doesn’t need additional parameters. It writes 2 files. In area_phase_side.txt it writes out

every grain along with its area, phase number and amount of neighbouring grains. In

grains_splitgrains.txt it just writes one line which says how many grains there are and how

many of them have been split.

3) This is the old stat function. It does exactly the same thing.

4) Needs one additional parameter as the second userdata parameter which tells the function

how many phases are in the experiment. For two phases the call would be –u 4 2. It counts the

number of grains and their area for each phase separately and writes them out in log.txt.

5) This function is a bit more complicated and was only useful for a specific analysis of bubble

migration speed in an idealised microstructure. Basically it calculates the distance of the centre

point of a grain towards a position along with some angles.

6) Creates a script file to call stats on many different elle files. This has been replaced by the

python script.

1.5.2 JR_COLLECTION

This little program helps with random allocation of attributes. When run, it will ask a few questions in

the command line to carry out specific functions. It can allocate the expand attribute randomly as well

as set random c-axis orientations. The phase and viscosity settings can be set (different options) or the

Flynn numbers can be saved to an attribute of choice. Also the phases of specific Flynns can be adjusted

(min T nodes, max T nodes, max area). The advantage of doing it with this program is that the results

can be seen immediately if the colouring of the Flynns is set previous to running the program. For that

Jens Rößiger - 2013 Page xxvi

Appendix 4 - simulation code description

the program has to be loaded with an elle file. All visualisation settings have to be set and then the

simulation has to be started. On the first step it will ask all the necessary questions in the command

line window.

1.5.3 ELLE FILE CREATOR

This little tool creates elle files with a perfect 120° microstructure. When run it will ask some questions

about how many hexagons and the file name. After that it writes out an elle file with the default header

settings. It also only creates the triple nodes. The double nodes have to be inserted by running one step

of elle_gg or similar programs.

1.5.4 PYTHON SCRIPTS

Three small python scripts to make life easier.

Rename.py calls the unix rename function on all gbm_pp file names in a directory. This can be changed

in the script. Doing that prevents sorting problems with other programs since the default elle

numbering starts with three numbers. More than 999 steps result in four numbers and so on. Also

having letters like the process name in the file name sometimes prevent proper sorting. After the

rename is complete all files have a six digits file name by default. If an argument is supplied they will

have a seven digits file name. It is advisable to use this script before using stats.py or other scripts.

Stats.py basically takes the same parameters as the jr-stats function. It will call the latter on all elle files

in the directory sequentially, renaming the log files if necessary to prevent them from being

overwritten.

Extract.py is helpful after fft experiments. Usually these experiments are compressed after each step to

save disc space and to keep order with all the different output files. The compressed files are saved in

different directories for every step. If all the elle files from the archives are needed for analysis it can be

tedious to extract them manually. This is what this script does. Extract all elle files from the archives

and put them together into a separate folder, renaming them according to their step number.

Jens Rößiger - 2013 Page xxvii

Appendix 4 - simulation code description

2 REFERENCES

1 Becker, J. K., Bons, P. D. & Jessell, M. W. A new front-tracking method to model anisotropic
grain and phase boundary motion in rocks. Computers & Geosciences 34, 201-212, (2008).

2 Roessiger, J., Bons, P. D. & Faria, S. H. Influence of bubbles on grain growth in ice. Journal of
Structural Geology in press, (2012).

Jens Rößiger - 2013 Page xxviii

Numerical Modelling of Ice Microstructures

A P P E N D I X 5

PROCESS CODE

Jens Rößiger - 2013 Page A5

Appendix 5 – process code

CONTENTS

1 Split 2 ..1.2

1.1 Header: Split2.h ..1.2

1.2 Code: Split2.cc ..1.2

2 Growth + split ...2.9

3 Poly phase grain boundary migration ... 3.14

3.1 Header: gbm_pp_unodes.h .. 3.14

3.3 Code: gbm_pp_unodes.cc .. 3.16

Jens Rößiger - 2013 Page 1

Appendix 5 – process code

1 SPLIT 2

1.1 HEADER: SPLIT2.H

#ifndef SPLIT2_ELLE_H_ 1
#define SPLIT2_ELLE_H_ 2
#include <vector> 3
#include <algorithm> 4
#include <stdio.h> 5
#include <math.h> 6
#include <string.h> 7
#include <time.h> 8
#include "flynnarray.h" 9
#include "attrib.h" 10
#include "nodes.h" 11
#include "file.h" 12
#include "display.h" 13
#include "check.h" 14
#include "error.h" 15
#include "runopts.h" 16
#include "init.h" 17
#include "general.h" 18
#include "stats.h" 19
#include "update.h" 20
#include "interface.h" 21
#include "polygon.h" 22
 23
typedef struct 24
{ 25
 int x, y; 26
 double error; 27
} DEVIATION; 28
 29
int Init_Split2(void); 30
int intsplit2(void); 31
int directsplit2(int flynn, int start, int end, int *c1, int *c2); 32
int randomsplit2(int flynn, double mcs, int *c1, int *c2); 33
int directionsplit2(int flynn, double x, double y, double mcs, int *c1, int *c2); 34
int nodes2childs(int **id, int num_nodes, int start, int end, int **child1, int **child2, int *nchild1, int *nchild2); 35
double areacheck(int **nodes, int num_nodes); 36
int intersectioncheck(int **child, int nchild); 37
int flynnsplit2(int flynnindex, int start, int end, int **child1, int **child2, int *nchild1, int *nchild2, int **c1, int 38
**c2); 39
int assignstruct(int **id, double dir, int num_nodes, int *possis); 40
void sortstruct(DEVIATION items[], int left, int right); 41
 42
#endif /* SPLIT2_ELLE_H_ */ 43

1.2 CODE: SPLIT2.CC

#include "split2.elle.h" 1
 2
using std::vector; 3
 4
// this is IMPORTANT. A flynn has to have a minimum of defined double nodes 5
// otherwise it won't split. Dependent on switch distance it influences the 6
// min flynn size. 7
#define MINDNODES 2 8
// this defines whether the 2nd try approach (step 10 for direction and randomsplit) is used or not 9
// set to 0 if you don't want to use it. 10
#define SECONDTRY 1 11
 12
UserData userdata; 13
 14
FILE *split; 15
 16
DEVIATION *dev; 17
 18
int Init_Split2(void) 19
{ 20
 int err=0; 21
 int max, maxf, n; 22
 char *infile; 23
 24
 ElleReinit(); 25
 ElleSetRunFunction(intsplit2); 26
 27
 infile = ElleFile(); 28
 if (strlen(infile)>0) { 29
 if (err=ElleReadData(infile)) OnError(infile,err); 30
 31
 ElleAddDoubles(); 32
 } 33
} 34
 35
int intsplit2(void) 36
{ 37
 int splittype, flynn, start, end, c1, c2, check=0; 38

Jens Rößiger - 2013 Page 1.2

Appendix 5 – process code

 double dx, dy, mcs; //mcs=min_child_size 39
 40
 ElleUserData(userdata); 41
 splittype = (int)userdata[2]; 42
 flynn = (int)userdata[0]; 43
 //get the min_child_size as fraction of the parent grain. 44
 //If userdata returns 1 than the global or MINERAL specific data is retrieved. 45
 mcs = (double)userdata[1]; 46
 if (mcs==1) 47
 mcs=ElleFindFlynnMinArea(flynn); 48
 49
 //if splittype is out of range, define random split as default 50
 if (splittype<1 || splittype>3) 51
 splittype=1; 52
 53
 //for random split define random dx and dy and split 54
 if (splittype==1) { 55
 check = randomsplit2(flynn, mcs, &c1, &c2); 56
 } 57
 //for direction split get the dx and dy directions from userdata and split 58
 if (splittype==2) { 59
 dx = (double)userdata[3]; 60
 dy = (double)userdata[4]; 61
 check = directionsplit2(flynn, dx, dy, mcs, &c1, &c2); 62
 } 63
 //for direct split get the start and end nodes from userdata and split 64
 if (splittype==3) { 65
 start=(int)userdata[3]; 66
 end=(int)userdata[4]; 67
 directsplit2(flynn, start, end, &c1, &c2); 68
 check=1; 69
 } 70
 71
 //printf("Childs: %d & %d\n", c1, c2); 72
 if (check==1 || check==3) { 73
 EllePromoteFlynn(c1); 74
 EllePromoteFlynn(c2); 75
 ElleRemoveFlynn(flynn); 76
 ElleAddDoubles(); 77
 } 78
 ElleUpdate(); 79
 80
} 81
 82
int directsplit2(int flynn, int start, int end, int *c1, int *c2) 83
{ 84
 int *nodes=0, num_nodes; 85
 int *child1=0, *child2=0, nchild1=0, nchild2=0; 86
 87
 ElleFlynnNodes(flynn, &nodes, &num_nodes); 88
 nodes2childs(&nodes, num_nodes, start, end, &child1, &child2, &nchild1, &nchild2); 89
 flynnsplit2(flynn, start, end, &child1, &child2, &nchild1, &nchild2, &c1, &c2); 90
 91
 //EllePromoteFlynn(c1); 92
 //EllePromoteFlynn(c2); 93
 //ElleRemoveFlynn(flynn); 94
 95
 free(nodes); 96
 free(child1); 97
 free(child2); 98
} 99
 100
int randomsplit2(int flynn, double mcs, int *cc1, int *cc2) 101
{ 102
 int i, c1, c2; 103
 double x, y; 104
 105
 x=ElleRandomD(); 106
 y=ElleRandomD(); 107
 for (;x==0.0 && y==0.0;) { 108
 x = ElleRandomD(); 109
 y = ElleRandomD(); 110
 } 111
 x*=2; 112
 x-=1; 113
 y*=2; 114
 y-=1; 115
 i = directionsplit2(flynn, x, y, mcs, &c1, &c2); 116
 *cc1=c1; 117
 *cc2=c2; 118
 return i; 119
} 120
 121
//#define MINAREA 0.0002 // flynn has to be larger than that to actually be able to split. 122
 123
int directionsplit2(int flynn, double x, double y, double mcs, int *c1, int *c2) 124
{ 125
 int i, j=0, check=0, *id=0, maxnint, num_nodes, start=0, end=0, starti=0, endi=0, *child1=0, *child2=0, nchild1=0, 126
nchild2=0, possis, nd=0; 127
 double dir, min_area, test_area, maxn; 128
 vector<int> seq; 129
 130
 // find all the Nodes of a specified flynn 131
 ElleFlynnNodes(flynn, &id, &num_nodes); 132
 133
 nd = SECONDTRY; 134
 135
 // don't know if this is really good, but it helps to randomize the split origins.... 136
 maxn = ElleRandomD(); 137
 maxn *= num_nodes; 138
 maxnint = (int)maxn; 139

Jens Rößiger - 2013 Page 1.3

Appendix 5 – process code

 ElleSetFlynnFirstNode(flynn, *(id+maxnint)); 140
 free(id); 141
 ElleFlynnNodes(flynn, &id, &num_nodes); 142
 143
 144
 // set minimum area 145
 min_area = areacheck(&id, num_nodes); 146
 min_area *= mcs; 147
 148
 //calculate direction relative to x-axis 149
 dir=atan(y/x); 150
 151
 // assignt the struct of arrays explained in step 4 152
 if ((check=assignstruct(&id, dir, num_nodes, &possis))==1) { 153
 // step 5 use quicksort to sort the struct 154
 sortstruct(dev, 0, possis-1); 155
 //if ((test_area=areacheck(&id, num_nodes))>MINAREA) { 156
 // start from the first to the last entry in the deviation struct 157
 for (j=0,i=0;j<possis && i==0;j++) { 158
 start=dev[j].x; 159
 end=dev[j].y; 160
 if ((check=nodes2childs(&id, num_nodes, start, end, &child1, &child2, &nchild1, &nchild2))==1) 161
 //check min area of child 1 162
 if ((test_area=areacheck(&child1, nchild1))>=min_area) 163
 //if ok, check min area of child 2 164
 if ((test_area=areacheck(&child2, nchild2))>=min_area) 165
 //if ok, check intersections of child 1 with split direction 166
 if (intersectioncheck(&child1, nchild1)) 167
 //if ok, check intersections of child 2 168
 if (intersectioncheck(&child2, nchild2)) { 169
 flynnsplit2(flynn, start, end, &child1, &child2, &nchild1, &nchild2, &c1, &c2); 170
 //printf("Successfully split flynn %d\n", flynn); 171
 i=1; 172
 } 173
 } 174
 if (j==possis && i==0 && nd == 1) { 175
 min_area /= 2; 176
 //nd=1; // marker for the 2nd try 177
 //split=fopen("split.txt", "a"); 178
 //fprintf(split,"nd-try startet\n"); 179
 //fclose(split); 180
 for (j=0,i=0;j<possis && i==0;j++) { 181
 start=dev[j].x; 182
 end=dev[j].y; 183
 if ((check=nodes2childs(&id, num_nodes, start, end, &child1, &child2, &nchild1, &nchild2))==1) 184
 //check min area of child 1 185
 if ((test_area=areacheck(&child1, nchild1))>=min_area) 186
 //if ok, check min area of child 2 187
 if ((test_area=areacheck(&child2, nchild2))>=min_area) 188
 //if ok, check intersections of child 1 with split direction 189
 if (intersectioncheck(&child1, nchild1)) 190
 //if ok, check intersections of child 2 191
 if (intersectioncheck(&child2, nchild2)) { 192
 flynnsplit2(flynn, start, end, &child1, &child2, &nchild1, &nchild2, &c1, &c2); 193
 //printf("Successfully split flynn %d\n", flynn); 194
 i=3; 195
 } 196
 } 197
 } 198
 // for(i=0; i<possis; i++) 199
 // printf("DEV%d: %d - %d : %f\n", i, dev[i].x, dev[i].y, dev[i].error); 200
 // printf("Possies: %d\n", possis); 201
 free(dev); 202
 free(child1); 203
 free(child2); 204
 //} else { 205
 //printf("ERROR: flynn too small to split\n"); 206
 //} 207
 } else { 208
 if (check==2) // this is to not count split attempts of too small grains as errors 209
 i=2; 210
 else 211
 printf("ERROR: split2 completely failed: assignstruct error\n"); 212
 } 213
 214
 free(id); 215
 216
 if (i==1) // successful split 217
 return 1; 218
 else if (i==2) // too small grain 219
 return 2; 220
 else if (i==3) // successful split after 2nd try with half min_area 221
 return 3; 222
 else 223
 return 0; // error 224
} 225
 226
int nodes2childs(int **id, int num_nodes, int start, int end, int **child1, int **child2, int *nchild1, int *nchild2) 227
{ 228
 int i, j, starti, endi, temp, *iptr; 229
 /* if a matching direction is found 230
 * the nodes are are written into two possible child arrays which can be 231
 * further investigated. 232
 * start node of the possible split is always element 0 233
 * and end node always the last element 234
 * all the other nodes are arranged between those two 235
 * 236
 * returns 1 if successful and 0 if not successful. 237
 */ 238
 239
 // find the position of the start and end nodes within the array 240

Jens Rößiger - 2013 Page 1.4

Appendix 5 – process code

 for (i=0; i<num_nodes;i++) { 241
 if (start==*(*id+i)) 242
 starti=i; 243
 } 244
 for (i=0; i<num_nodes;i++) { 245
 if (end==*(*id+i)) 246
 endi=i; 247
 } 248
 //printf("%d, %d\n", start, end); 249
 250
 // Exchanges starti and endi if starti is bigger than endi 251
 // this is needed because the first child doesn't check for start/end overstep 252
 if (starti>endi) { 253
 temp=starti; 254
 starti=endi; 255
 endi=temp; 256
 } 257
 258
 // child1 259
 // count elements for child 1 and sets *nchild1 accordingly 260
 for (i=starti,j=0;i<=endi;i++,j++) { 261
 ; 262
 } 263
 *nchild1=j; 264
 265
 // writes all the elements of child1 into the child1 array 266
 if ((*child1 = (int *)malloc(*nchild1 * sizeof(int)))==0) { 267
 printf("ERROR: nodes2childs: Malloc_Err: child1\n"); 268
 return 0; 269
 } 270
 for (i=starti,j=0,iptr=*child1;i<=endi;i++,j++) 271
 iptr[j] = *(*id+i); 272
 273
 274
 // child2 275
 // do the same for child2 276
 // except it starts at endi to the end and continues at 0 to stari 277
 for (i=endi,j=0;i<num_nodes;i++,j++) { 278
 ; 279
 } 280
 for (i=0; i<=starti;i++,j++) { 281
 ; 282
 } 283
 *nchild2=j; 284
 285
 if ((*child2 = (int *)malloc(*nchild2 * sizeof(int)))==0) { 286
 printf("ERROR: nodes2childs: Malloc_Err: child2\n"); 287
 return 0; 288
 } 289
 for (i=endi,j=0,iptr=*child2;i<num_nodes;i++,j++) 290
 iptr[j] = *(*id+i); 291
 for (i=0;i<=starti;i++,j++) 292
 iptr[j] = *(*id+i); 293
 294
 return 1; 295
} 296
 297
double areacheck(int **nodes, int num_nodes) 298
{ 299
 /* This one is copied from elsewhere except 300
 * I have commented out the ElleFlynnNodes function and pass the these 301
 * values as function arguments instead. 302
 * It returns the area between the nodes passed. 303
 */ 304
 int j; //*id=0; 305
 double area, *coordsx=0, *coordsy=0, *ptrx, *ptry; 306
 Coords xy,prev; 307
 308
 //ElleFlynnNodes(poly,&id,&num_nodes); 309
 if ((coordsx = (double *)malloc(num_nodes*sizeof(double)))== 0) 310
 printf("ERROR: areacheck: Malloc_Err: coordsx\n"); //OnError("ElleRegionArea",MALLOC_ERR); 311
 if ((coordsy = (double *)malloc(num_nodes*sizeof(double)))== 0) 312
 printf("ERROR: areacheck: Malloc_Err: coordsy\n"); //OnError("ElleRegionArea",MALLOC_ERR); 313
 ElleNodePosition(*(*nodes),&prev); 314
 for (j=0,ptrx=coordsx,ptry=coordsy;j<num_nodes;j++) { 315
 ElleNodePlotXY(*(*nodes+j),&xy,&prev); 316
 *ptrx = xy.x; ptrx++; 317
 *ptry = xy.y; ptry++; 318
 prev = xy; 319
 } 320
 area = polyArea(coordsx,coordsy,num_nodes); 321
 free(coordsx); 322
 free(coordsy); 323
 //if (id) free(id); 324
 return(area); 325
} 326
 327
int intersectioncheck(int **child, int nchild) 328
{ 329
 int i, j, check, test, horizontal=0, wrap; 330
 double dir, dir_test, l, l_test; 331
 Coords start, end, temp; 332
 333
 // First get the node position of the start node which is the first one in the array 334
 // Then get the position of the last node to determine the split direction against which 335
 // all the other directions are tested. 336
 //wrap=wrapcheck(&child, nchild); 337
 338
 ElleNodePosition(**child, &start); 339
 ElleNodePlotXY(*(*child+(nchild-1)), &end, &start); 340
 end.x = end.x - start.x; 341

Jens Rößiger - 2013 Page 1.5

Appendix 5 – process code

 end.y = end.y - start.y; 342
 if (end.y==0) 343
 horizontal=1; 344
 345
 346
 // for the dir test the equation x2 = (x1/y1) * y2 is used 347
 348
 // if the split direction is horizontal y2 = (y1/x1) * x2 is used instead. 349
 350
 // this is the part between the brackets 351
 352
 if (horizontal==0) 353
 dir=(end.x/end.y); 354
 else if (horizontal==1) 355
 dir=(end.y/end.x); 356
 357
 //determine the length of the split for the second part of the test (without root) 358
 l=(end.y*end.y)+(end.x*end.x); 359
 360
 // get the node position of the 2nd node to determine whether this child 361
 // is above or below the split. 362
 ElleNodePlotXY(*(*child+1), &temp, &start); 363
 //ElleNodePosition(*(*child+1), &temp); 364
 temp.x = temp.x - start.x; 365
 temp.y = temp.y - start.y; 366
 // if there is no difference between the split direction and the test direction 367
 // print out an error and quit. 368
 if (temp.x==0 && temp.y==0) { 369
 printf("Error: intersection check: first node check is the same as split direction\n"); 370
 return 0; 371
 } 372
 // otherwise determine the test direction 373
 374
 if (horizontal==0) 375
 dir_test=dir*temp.y; 376
 else if (horizontal==1) 377
 dir_test=dir*temp.x; 378
 /* for x2 = (x1/y1) * y2 the part between the brackets has already been calculated 379
 * above. Now this party is multiplied with the y-part of the test location 380
 * to see whether this point is above or below the split boundary. 381
 * 382
 * The result will be the virtual x location of the split boundary for the y value 383
 * of the test location. Afterwards the two locations are compared and depending 384
 * on if the result is larger or smaller then the test location a value is stored 385
 * that is needed for comparison of the other points afterwards. 386
 * 387
 * If the virual location for every point is the same (in terms of smaller or larger) than the 388
 * test location there is no intersection. 389
 */ 390
 if (temp.x>dir_test) 391
 check=0; 392
 else if (temp.x<dir_test) 393
 check=1; 394
 else 395
 printf("ERROR: intersection check: check determination\n"); 396
 397
 // this is needed for the second part of the test. 398
 test=check; 399
 400
 // now the loop for all the other nodes starting from the 3rd to the penultimate node 401
 for (i=2; i<(nchild-1) && test==check; i++) { 402
 ElleNodePlotXY(*(*child+i), &temp, &start); 403
 //ElleNodePosition(*(*child+i), &temp); 404
 temp.x = temp.x - start.x; 405
 temp.y = temp.y - start.y; 406
 407
 if (horizontal==0) 408
 dir_test=dir*temp.y; 409
 else if (horizontal==1) 410
 dir_test=dir*temp.x; 411
 412
 if (temp.x>dir_test) 413
 test=0; 414
 else if (temp.x<dir_test) 415
 test=1; 416
 else if (temp.x==dir_test) 417
 test=2; 418
 else 419
 printf("ERROR: intersection check: check determination 2\n"); 420
 421
 // Second part of the test. 422
 // If the check and the test differs, the length of the split against the check is tested 423
 // If the test length is longer than the split length then the split is still ok -- no intersection. 424
 if (test!=check) { 425
 if ((l_test=(temp.y*temp.y)+(temp.x*temp.x))<l) { 426
 //printf("Error: intersection check: length: INTERSECTION\n"); 427
 break; 428
 } 429
 else if (l_test==l) { 430
 //printf("Error: intersection check: length: possible Intersection\n"); 431
 break; 432
 } 433
 else if (l_test>l) 434
 // test is set equal to check again, because split is possible if 435
 // l_test is longer than l 436
 test=check; 437
 else 438
 printf("Error: intersection check: length: undefined error\n"); 439
 } 440
 441
 } 442

Jens Rößiger - 2013 Page 1.6

Appendix 5 – process code

 // if test was equal to check for the whole loop, return that the split is possible without intersection. 443
 if (test==check) 444
 return 1; 445
 else 446
 return 0; 447
} 448
 449
int flynnsplit2(int flynnindex, int start, int end, int **child1, int **child2, int *nchild1, int *nchild2, int **c1, int 450
**c2) 451
{ 452
 int i, j; 453
 ERegion rgn1, rgn2; 454
 455
 // create 2 new children 456
 // search for 2 spare flynns and set them as childs of the parent grain 457
 // assign an ERegion to them. 458
 **c1 = ElleFindSpareFlynn(); // first -> end 459
 **c2 = ElleFindSpareFlynn(); // end -> first 460
 ElleAddFlynnChild(flynnindex, **c1); 461
 ElleAddFlynnChild(flynnindex, **c2); 462
 rgn1 = **c1; 463
 rgn2 = **c2; 464
 465
 // First Child 466
 // for all the nodes in the array of child 1 467
 for (i=0;i<*nchild1;i++) { 468
 // for the last node, connect it with the first node 469
 if (i==*nchild1-1) { 470
 // find the NO_NB entry in the neighbours of the last node 471
 j = ElleFindNbIndex(*(*child1),*(*child1+i)); 472
 // assign this NO_NB entry in the neighbours of the last node to the first node --> new triple node 473
 ElleSetNeighbour(*(*child1+i), j, *(*child1), &rgn1); 474
 //printf("End of Child1: %d - %d: %d\n", *(*child1+i), *(*child1), rgn1); 475
 } else { 476
 // find out which of the 3 neighbours of a node the next node is 477
 j = ElleFindNbIndex(*(*child1+(i+1)),*(*child1+i)); 478
 // set the next node as this neighbour for the node 479
 ElleSetNeighbour(*(*child1+i), j, *(*child1+(i+1)), &rgn1); 480
 //ElleSetRegionEntry(*child1+i,j,rgn1); 481
 //printf("child1: %d - %d: %d\n", *(*child1+i), *(*child1+(i+1)), rgn1); 482
 } 483
 } 484
 // set the first node as first node of child 1 485
 ElleSetFlynnFirstNode(**c1, start); 486
 487
 // Second Child 488
 // do the same for child 2 except that start and end nodes are exchanged. 489
 for (i=0;i<*nchild2;i++) { 490
 if (i==*nchild2-1) { 491
 j = ElleFindNbIndex(*(*child2),*(*child2+i)); 492
 ElleSetNeighbour(*(*child2+i), j, *(*child2), &rgn2); 493
 //printf("End of Child2\n"); 494
 } else { 495
 j = ElleFindNbIndex(*(*child2+(i+1)),*(*child2+i)); 496
 ElleSetNeighbour(*(*child2+i), j, *(*child2+(i+1)), &rgn2); 497
 //ElleSetRegionEntry(*child2+i,j,rgn2); 498
 //printf("child2\n"); 499
 } 500
 } 501
 // set the end node as first node of child 1 502
 ElleSetFlynnFirstNode(**c2, end); 503
 // add new double nodes to the newly created boundary. 504
 ElleAddDoubles(); 505
} 506
 507
// not from me, a common quicksort alogarithm 508
void sortstruct(DEVIATION items[], int left, int right) 509
{ 510
 511
 register int i, j; 512
 double x; 513
 DEVIATION temp; 514
 515
 i = left; j = right; 516
 x = items[(left+right)/2].error; 517
 518
 do { 519
 while(items[i].error < x && (i < right)) i++; 520
 while(items[j].error > x && (j > left)) j--; 521
 if(i <= j) { 522
 temp = items[i]; 523
 items[i] = items[j]; 524
 items[j] = temp; 525
 i++; j--; 526
 } 527
 } while(i <= j); 528
 529
 if(left < j) sortstruct(items, left, j); 530
 if(i < right) sortstruct(items, i, right); 531
} 532
 533
int assignstruct(int **id, double dir, int num_nodes, int *possis) 534
{ 535
 int i, j, k=0; 536
 double dir_test; 537
 Coords n1, n2; 538
 539
 // count the maximum connections that need to be tested num_nodes! 540
 // without the triple nodes because they aren't used 541
 for (j=0,i=0; j<num_nodes; j++) 542
 if (ElleNodeIsDouble(*(*id+j))) 543

Jens Rößiger - 2013 Page 1.7

Appendix 5 – process code

 i++; 544
 545
 // only do that if there are at least MINDNODES double nodes. 546
 if (i>=MINDNODES) { 547
 // substract 1 from the amount of double nodes because that one is used as starting 548
 // node and therefore isn't used in this calculation. Then calculate factorial of the nodes 549
 for (--i,j=0;i>0;i--) 550
 j+=i; 551
 552
 //printf("Possis: %d\n", j); 553
 554
 555
 if ((dev = (DEVIATION *)malloc(j * sizeof *dev))==0) { 556
 printf("ERROR: assignstruct: Malloc_Err: deviation struct\n"); 557
 return 0; 558
 } 559
 560
 //find a pair of nodes fitting the direction 561
 /* compares the direction from every node to every other node 562
 * only accepts double nodes as possible split nodes 563
 */ 564
 for(i=0, k=0; i<num_nodes; i++) { 565
 if (ElleNodeIsDouble(*(*id+i))) { 566
 ElleNodePosition(*(*id+i), &n1); 567
 for(j=i; j<num_nodes ;j++) { 568
 if (i!=j && ElleNodeIsDouble(*(*id+j))) { 569
 //ElleNodePosition(*(*id+j), &n2); 570
 ElleNodePlotXY(*(*id+j), &n2, &n1); 571
 dir_test=atan((n2.y-n1.y)/(n2.x-n1.x)); 572
 dev[k].x = *(*id+i); 573
 dev[k].y = *(*id+j); 574
 dev[k++].error = fabs(dir-dir_test); 575
 } 576
 } 577
 } 578
 } 579
 580
 *possis=k; 581
 return 1; 582
 } else { 583
 //printf("ERROR: assignsstruct: too less d-nodes: no possibility to split\n"); 584
 return 2; 585
 } 586
} 587
 588

Jens Rößiger - 2013 Page 1.8

Appendix 5 – process code

2 GROWTH + SPLIT

#include <vector> 1
#include <algorithm> 2
#include <stdio.h> 3
#include <math.h> 4
#include <string.h> 5
#include <time.h> 6
#include "attrib.h" 7
#include "nodes.h" 8
#include "file.h" 9
#include "display.h" 10
#include "check.h" 11
#include "error.h" 12
#include "runopts.h" 13
#include "init.h" 14
#include "general.h" 15
#include "stats.h" 16
#include "update.h" 17
#include "interface.h" 18
#include "polygon.h" 19
#include "../split2/split2.elle.cc" 20
 21
#define PI 3.141592653589793 22
#define DtoR PI/180 23
#define RtoD 180/PI 24
 25
using std::vector; 26
 27
int InitGG_Split(void); 28
int Init_GG_Split(void); 29
int GG_Split(int splitmode, double chance, double min_area, double max_area, double mcs, int x); 30
int MoveDoubleJ(int node1); 31
int MoveTripleJ(int node1); 32
extern void GetRay(int node1,int node2,int node3,double *ray,Coords *movedist); 33
void MoveFlynnNodes(int **nodes, int num, int moves); 34
void TimeWrite(FILE **where); 35
double ListBNodes(int **nodes, int n, double *dir_x, double *dir_y); 36
 37
extern runtime_opts Settings_run; 38
 39
/* mid_area: the average of all grain areas 40
 * TotalTime: not really used 41
 * max_split_age: age a daughter grain has to be before it can split again 42
 * chance: chance for a grain to split 43
 * min_child_area: minimum fraktion of the area of the parent flynn for the 2 daughter flynns 44
 * max_area: area when the chance comes to 100% for splitting 45
 */ 46
 47
double TotalTime, gb_energy; 48
FILE *fp; //this is where the log is written. 49
 50
int InitGG_Split(void) 51
{ 52
 int err=0; 53
 char *infile; 54
 55
 printf("Usage:\ncommand line parameter -u x1 x2 x3 (x4) (x5) (x6) -- (x)=optional, *=standard (used if nothing else is 56
supplied\nx1: splitmode\n\t1* = every grain same chance (x2)\n\t2 every grain starting from min_area (x5) same chance 57
(x2)\n\t3 increasing chance from min_area (x5) with chance (x2) to max_area (x6) with 100%% chance\n"); 58
 printf("x2: split chance from 0 to 1*\nx3: randomshuffle&randomD forward - supplied int-1, 0* is default\nx4: restart step -59
- supplied in case of crash to restart at the given step number (e.g. for numeration), 0* is default\nx5: min_area - double 60
(should be supplied in split mode 2&3)\nx6: max_area - double (should be supplied in split mode 3)\n"); 61
 62
 63
 ElleReinit(); 64
 ElleSetRunFunction(Init_GG_Split); 65
 66
 infile = ElleFile(); 67
 68
 69
 if (strlen(infile)>0) { 70
 if (err=ElleReadData(infile)) OnError(infile,err); 71
 72
 ElleAddDoubles(); 73
 } 74
 75
 if (!ElleFlynnAttributeActive(SPLIT)) 76
 ElleInitFlynnAttribute(SPLIT); 77
} 78
 79
int Init_GG_Split(void) 80
{ 81
 int split_mode, start_stage, x, i; 82
 double chance, min_area, max_area, min_child_area; 83
 84
 UserData userdata; 85
 86
 ElleUserData(userdata); 87
 // 1=every grain has same chance2split, 88
 // 2=every grain>MinArea same chance2split, 89
 // 3= grains<MinArea 0%chance till grains>MaxArea 100%chance2split, 90
 split_mode = (int)userdata[0]; 91
 if (split_mode<1 || split_mode>3) 92
 split_mode=1; 93
 chance = (double)userdata[1]; 94

Jens Rößiger - 2013 Page 2.9

Appendix 5 – process code

 if (chance<0) 95
 chance=0; 96
 else if (chance>1) 97
 chance=1; 98
 x = (int)userdata[2]; 99
 x = fabs(x); 100
 x -= 1; 101
 for (i=0; i<x; i++) 102
 ElleRandomD(); 103
 min_area = (double)userdata[4]; 104
 max_area = (double)userdata[5]; // area where chance to split becomes 100% used for split mode 3 105
 if (min_area>max_area) { 106
 printf("Error: min_area > max_area: correction of max_area\n"); 107
 max_area=min_area*.5; 108
 } 109
 // last stage if simulations has crashed. 110
 if ((start_stage=(int)userdata[3])!=1) 111
 Settings_run.Count = start_stage; 112
 113
 min_child_area = .4; 114
 // command line can be started with e.g. -u 0.01 0.001 0.35 115
 116
 //printf("How many steps should the randomD generator be forwarded? - Enter an int.\n"); 117
 //scanf("%d", &x); 118
 //x = fabs(x); 119
 120
 121
 fp=fopen("log.txt", "a"); 122
 //filename for the log 123
 124
 fprintf(fp,"\n***********************************\n************** RUN 125
****************\n***********************************\n\n"); 126
 TimeWrite(&fp); 127
 fprintf(fp, "%d\tforward of randomD\n", x); 128
 fprintf(fp, "%d\t\tsplit mode\n", split_mode); 129
 fprintf(fp, "%E\tmin grain size\n", min_area); 130
 fprintf(fp, "%E\tmax grain size\n", max_area); 131
 fprintf(fp, "%E\tchance for a grain to split\n", chance); 132
 fprintf(fp, "%E\tminimum area for child grains as fraction of the parent grain\n", min_child_area); 133
 fflush(fp); 134
 135
 fclose(fp); 136
 137
 TotalTime=0.0; 138
 139
 GG_Split(split_mode, chance, min_area, max_area, min_child_area, x); 140
} 141
 142
void TimeWrite(FILE **where) 143
{ 144
 char timestore[80]; 145
 146
 time_t rawtime; 147
 struct tm * timeinfo; 148
 149
 time (&rawtime); 150
 timeinfo = localtime (&rawtime); 151
 // for the time... 152
 153
 strftime(timestore, 80, "Date: %d/%m/%Y, %H:%M:%S\n", timeinfo); 154
 fprintf(*where,"%s", timestore); 155
} 156
 157
int GG_Split(int splitmode, double chance, double min_area, double max_area, double mcs, int x) 158
{ 159
 160
 int i=0, j=0, n=0, c1, c2, k, savestep; 161
 int maxn, maxf; 162
 int errors=0, splits=0, small_errors=0, nd=0, *nodes, num; 163
 vector<int> seq; 164
 double a, test, try_x, try_y; 165
 166
 savestep = Settings_run.save.frequency; 167
 168
 fp=fopen("log.txt", "a"); 169
 170
 fprintf(fp,"**************START****************\nStages: %d\n***********************************\n", EllemaxStages()); 171
 fprintf(fp,"STEP\tSplits+ndSplits\tsGrains\tErrors\n"); 172
 173
 if (ElleCount()==0) ElleAddDoubles(); 174
 if (ElleDisplay()) EllePlotRegions(ElleCount()); 175
 ElleCheckFiles(); 176
 177
 gb_energy = (1e-7)*ElleTimestep(); 178
 179
 180
 for (i=0;i<EllemaxStages();i++) { 181
 182
 maxn = ElleMaxNodes(); 183
 seq.clear(); 184
 for (j=0;j<maxn;j++) 185
 if (ElleNodeIsActive(j)) 186
 seq.push_back(j); 187
 188
 random_shuffle(seq.begin(),seq.end()); 189
 maxn = seq.size(); 190
 for (n=0;n<maxn;n++) { 191
 j=seq[n]; 192
 if (ElleNodeIsActive(j)) { 193
 if (ElleNodeIsDouble(j)) { 194
 MoveDoubleJ(j); 195

Jens Rößiger - 2013 Page 2.10

Appendix 5 – process code

 ElleCheckDoubleJ(j); 196
 } 197
 else if (ElleNodeIsTriple(j)) { 198
 MoveTripleJ(j); 199
 ElleCheckTripleJ(j); 200
 } 201
 } 202
 } 203
 seq.clear(); 204
 maxf = ElleMaxFlynns(); 205
 206
 for (j=0;j<maxf;j++) 207
 if (ElleFlynnIsActive(j)) 208
 seq.push_back(j); 209
 for (j=0;j<x;j++) 210
 random_shuffle(seq.begin(),seq.end()); 211
 maxf = seq.size(); 212
 213
 for (n=0;n<maxf;n++) { 214
 j=seq[n]; 215
 216
 //area of the flynn 217
 a = fabs(ElleRegionArea(j)); 218
 test = ElleRandomD(); 219
 if (splitmode == 3) 220
 chance += ((a-min_area)/(max_area-min_area)); 221
 //printf("Chance: %f\n", chance); 222
 if (splitmode == 1) { 223
 if (test<chance) { 224
 ElleFlynnNodes(j, &nodes, &num); 225
 ListBNodes(&nodes, num, &try_x, &try_y); 226
 k = directionsplit2(j, try_x, try_y, mcs, &c1, &c2); 227
 if (k==1) { 228
 splits++; 229
 EllePromoteFlynn(c1); 230
 EllePromoteFlynn(c2); 231
 ElleRemoveFlynn(j); 232
 } 233
 else if (k==2) 234
 small_errors++; 235
 else if (k==3) { 236
 nd++; 237
 EllePromoteFlynn(c1); 238
 EllePromoteFlynn(c2); 239
 ElleRemoveFlynn(j); 240
 } 241
 else 242
 errors++; 243
 } 244
 } 245
 else if (splitmode == 2 || splitmode ==3) { 246
 if (a >= min_area) { 247
 if (test<chance) { 248
 ElleFlynnNodes(j, &nodes, &num); 249
 ListBNodes(&nodes, num, &try_x, &try_y); 250
 k = directionsplit2(j, try_x, try_y, mcs, &c1, &c2); 251
 if (k==1) { 252
 splits++; 253
 EllePromoteFlynn(c1); 254
 EllePromoteFlynn(c2); 255
 ElleRemoveFlynn(j); 256
 ElleSetFlynnIntAttribute(c1,1,SPLIT); 257
 ElleSetFlynnIntAttribute(c2,1,SPLIT); 258
 } 259
 else if (k==2) 260
 small_errors++; 261
 else if (k==3) { 262
 nd++; 263
 EllePromoteFlynn(c1); 264
 EllePromoteFlynn(c2); 265
 ElleRemoveFlynn(j); 266
 ElleSetFlynnIntAttribute(c1,1,SPLIT); 267
 ElleSetFlynnIntAttribute(c2,1,SPLIT); 268
 } 269
 else 270
 errors++; 271
 } 272
 } 273
 274
 } 275
 } 276
 277
 if (savestep == 0) { 278
 if (i%5000==0) //Write the time in the log every 10k steps 279
 TimeWrite(&fp); 280
 if (i%200==0) 281
 fprintf(fp,"%d\t%d+%d\t%d\t%d\n", Settings_run.Count, splits, nd, small_errors, errors); 282
 fflush(fp); 283
 } else { 284
 if (i%(savestep*5)==0) //Write the time in the log every 10k steps 285
 TimeWrite(&fp); 286
 if (i%savestep==0) 287
 fprintf(fp,"%d\t%d+%d\t%d\t%d\n", Settings_run.Count, splits, nd, small_errors, errors); 288
 fflush(fp); 289
 } 290
 291
 ElleUpdate(); 292
 } 293
 fprintf(fp, "%d\t%d+%d\t%d\t%d\nEND: STEP\tSplits+ndSplits\tsGrains\tErrors\n", Settings_run.Count, splits, nd, 294
small_errors, errors); 295
 fclose(fp); 296

Jens Rößiger - 2013 Page 2.11

Appendix 5 – process code

} 297
 298
double ListBNodes(int **nodes, int n, double *dir_x, double *dir_y) 299
{ 300
 int i, j; 301
 double l=0, cl=0; 302
 Coords node, dist; 303
 304
 // Checks distance from every node to the other nodes and keeps the direction perpendicular to the longest direction 305
 306
 for (i=0; i<n; i++) { 307
 ElleNodePosition(*(*nodes+i), &node); 308
 for (j=0; j<n; j++) { 309
 ElleNodePlotXY(*(*nodes+j),&dist,&node); 310
 dist.x-=node.x; 311
 dist.y-=node.y; 312
 cl = sqrt((double)((dist.x*dist.x)+(dist.y*dist.y))); 313
 if (l<cl) { 314
 l=cl; 315
 *dir_x = -dist.y/cl; 316
 *dir_y = dist.x/cl; 317
 } 318
 } 319
 320
 321
 } 322
 return l; 323
} 324
 325
void MoveFlynnNodes(int **nodes, int num, int moves) 326
{ 327
 int i, n, j, maxn; 328
 vector<int> seq; 329
/* 330
 printf("%d:", flynn); 331
 for (j=0;j<num;j++) 332
 printf(" %d", *(*nodes+j)); 333
 printf("\n"); 334
*/ 335
 for (j=0;j<num;j++) 336
 if (ElleNodeIsActive(*(*nodes+j))) 337
 seq.push_back(*(*nodes+j)); 338
 random_shuffle(seq.begin(),seq.end()); 339
 maxn = seq.size(); 340
 //printf("%d\n", maxn); 341
 for (i=0;i<moves;i++) { 342
 for (n=0;n<maxn;n++) { 343
 j=seq[n]; 344
 if (ElleNodeIsActive(j)) { 345
 if (ElleNodeIsDouble(j)) { 346
 MoveDoubleJ(j); 347
 ElleCheckDoubleJ(j); 348
 } 349
 else if (ElleNodeIsTriple(j)) { 350
 MoveTripleJ(j); 351
 ElleCheckTripleJ(j); 352
 } 353
 } 354
 } 355
 } 356
} 357
 358
int MoveDoubleJ(int node1) 359
{ 360
 int i, nghbr[2], nbnodes[3], err; 361
 double maxV,ray,deltaT,vlen; 362
 double switchDist, speedUp; 363
 Coords xy1, movedist; 364
 365
 switchDist = ElleSwitchdistance(); 366
 speedUp = ElleSpeedup() * switchDist * switchDist * 0.02; 367
 maxV = ElleSwitchdistance()/5.0; 368
 /* 369
 * allows speedUp to be 1 in input file 370
 */ 371
 //gb_energy = speedUp; 372
 deltaT = 0.0; 373
 /* 374
 * find the node numbers of the neighbours 375
 */ 376
 if (err=ElleNeighbourNodes(node1,nbnodes)) 377
 OnError("MoveDoubleJ",err); 378
 i=0; 379
 while (i<3 && nbnodes[i]==NO_NB) i++; 380
 nghbr[0] = nbnodes[i]; i++; 381
 while (i<3 && nbnodes[i]==NO_NB) i++; 382
 nghbr[1] = nbnodes[i]; 383
 384
 GetRay(node1,nghbr[0],nghbr[1],&ray,&movedist); 385
 if (ray > 0.0) { 386
 /*if (ray > ElleSwitchdistance()/100.0) {*/ 387
 vlen = gb_energy/ray; 388
 if (vlen > maxV) { 389
 vlen = maxV; 390
 deltaT = 1.0; 391
 } 392
 if (vlen>0.0) { 393
 movedist.x *= vlen; 394
 movedist.y *= vlen; 395
 } 396
 else { 397

Jens Rößiger - 2013 Page 2.12

Appendix 5 – process code

 movedist.x = 0.0; 398
 movedist.y = 0.0; 399
 } 400
 TotalTime += deltaT; 401
 ElleUpdatePosition(node1,&movedist); 402
 } 403
 else { 404
 vlen = 0.0; 405
 } 406
} 407
 408
int MoveTripleJ(int node1) 409
{ 410
 int i, nghbr[3], finished=0, err=0; 411
 double maxV,/*gb_energy[3],*/ray[3],deltaT,vlen[3],vlenTriple; 412
 double switchDist, speedUp; 413
 Coords xy1, movedist[3], movedistTriple; 414
 415
 switchDist = ElleSwitchdistance(); 416
 /* 417
 * allows speedUp to be 1 in input file 418
 */ 419
 speedUp = ElleSpeedup() * switchDist * switchDist * 0.02; 420
 maxV = switchDist/5.0; 421
 //for (i=0;i<3;i++) gb_energy[i] = speedUp; 422
 deltaT = 0.0; 423
 /* 424
 * find the node numbers of the neighbours 425
 */ 426
 if (err=ElleNeighbourNodes(node1,nghbr)) 427
 OnError("MoveTripleJ",err); 428
 429
 GetRay(node1,nghbr[0],nghbr[1],&ray[0],&movedist[0]); 430
 GetRay(node1,nghbr[1],nghbr[2],&ray[1],&movedist[1]); 431
 GetRay(node1,nghbr[2],nghbr[0],&ray[2],&movedist[2]); 432
 for(i=0;i<3;i++) { 433
 if (ray[i] > 0.0) { 434
 /*if (ray[i] > switchDist/100.0) {*/ 435
 vlen[i] = gb_energy/ray[i]; 436
 /*if (vlen[i] > maxV) vlen[i] = maxV;*/ 437
 } 438
 else { 439
 vlen[i] = 0.0; 440
 finished = 1; 441
 } 442
 } 443
 if (!finished) { 444
 for(i=0;i<3;i++) { 445
 if (vlen[i] < maxV) { 446
 movedist[i].x *= vlen[i]; 447
 movedist[i].y *= vlen[i]; 448
 } 449
 else { 450
 movedist[i].x *= maxV; 451
 movedist[i].y *= maxV; 452
 } 453
 } 454
 movedistTriple.x = movedist[0].x+movedist[1].x+movedist[2].x; 455
 movedistTriple.y = movedist[0].y+movedist[1].y+movedist[2].y; 456
 vlenTriple = sqrt(movedistTriple.x*movedistTriple.x + 457
 movedistTriple.y*movedistTriple.y); 458
 if (vlenTriple > maxV) { 459
 vlenTriple = maxV/vlenTriple; 460
 movedistTriple.x *= vlenTriple; 461
 movedistTriple.y *= vlenTriple; 462
 deltaT = 1.0; 463
 } 464
 if (vlenTriple <= 0.0) movedistTriple.x = movedistTriple.y = 0.0; 465
 466
 TotalTime += deltaT; 467
 } 468
 else { 469
 ElleNodePosition(node1,&xy1); 470
 ElleNodePlotXY(nghbr[0],&movedist[0],&xy1); 471
 ElleNodePlotXY(nghbr[1],&movedist[1],&xy1); 472
 ElleNodePlotXY(nghbr[2],&movedist[2],&xy1); 473
 for(i=0;i<3;i++) { 474
 movedist[i].x = movedist[i].x - xy1.x; 475
 movedist[i].y = movedist[i].y - xy1.y; 476
 } 477
 movedistTriple.x = (movedist[0].x+movedist[1].x+movedist[2].x)/2.0; 478
 movedistTriple.y = (movedist[0].y+movedist[1].y+movedist[2].y)/2.0; 479
#if XY 480
 vlenTriple = sqrt(movedistTriple.x*movedistTriple.x + 481
 movedistTriple.y*movedistTriple.y); 482
 if (vlenTriple > maxV) { 483
 vlenTriple = maxV/vlenTriple; 484
 movedistTriple.x *= vlenTriple; 485
 movedistTriple.y *= vlenTriple; 486
 deltaT = 1.0; 487
 } 488
#endif 489
 } 490
 ElleUpdatePosition(node1,&movedistTriple); 491
} 492
 493

Jens Rößiger - 2013 Page 2.13

Appendix 5 – process code

3 POLY PHASE GRAIN BOUNDARY MIGRATION

3.1 HEADER: GBM_PP_UNODES.H

#ifndef _gbm_pp_elle_h 1
#define _gbm_pp_elle_h 2
#include <cstdio> 3
#include <cmath> 4
#include <cstring> 5
#include <vector> 6
#include <algorithm> 7
#include <list> 8
#include <iostream> 9
#include <fstream> 10
#include <sstream> 11
#include "attrib.h" 12
#include "nodes.h" 13
#include "unodes.h" 14
#include "file.h" 15
#include "display.h" 16
#include "check.h" 17
#include "error.h" 18
#include "runopts.h" 19
#include "init.h" 20
#include "general.h" 21
#include "stats.h" 22
#include "update.h" 23
#include "interface.h" 24
#include "crossings.h" 25
#include "mineraldb.h" 26
#include "polygon.h" 27
#include "movenode_unodes.h" 28
//#include "growthstats.h" 29
/*#define PI 3.1415926 30
#define DTOR PI/180 31
#define RTOD 180/PI*/ 32
 33
 34
typedef struct 35
{ 36
 int flynn; 37
 int phase; 38
} Flynnies; 39
 40
typedef struct 41
{ 42
 double mobility; 43
 double b_energy; 44
 double dGbActEn; 45
} PhaseBoundaryProps; 46
 47
typedef struct 48
{ 49
 int infinite_diff; 50
 int cluster_diff; 51
 int diffusion_times; 52
 double elasticity; 53
 double scale; 54
 double kappa; 55
 int merge; 56
} PhaseProps; 57
 58
typedef struct 59
{ 60
 int no_phases; 61
 int p_en; 62
 int p_track; 63
 PhaseProps phasep[15]; 64
 PhaseBoundaryProps pairs[120][120]; 65
} AllPhases; 66
 67
typedef struct 68
{ 69
 int node; 70
 int p; 71
 int nb1; 72
 int nb2; 73
 int nb1_p1; 74
 int nb1_p2; 75
 int nb2_p1; 76
 int nb2_p2; 77
 int not_diff; 78
 double newconc; 79
} DiffNodes; 80
 81
class clusters 82
{ 83
public: 84
 clusters(std::vector<int>, double); 85
 ~clusters (); 86

Jens Rößiger - 2013 Page 3.14

Appendix 5 – process code

 std::vector<int> ReturnClusterFlynns (void); 87
 double ReturnClusterArea (void); 88
private: 89
 std::vector<int> vFlynns; 90
 double dArea; 91
}; 92
 93
class clusterTracking 94
{ 95
public: 96
 clusterTracking(); 97
 ~clusterTracking(); 98
 bool writeInitialData(const char*); 99
 bool writeData(const char*, int); 100
 void setClusterAreas(void); 101
 void findSplit(void); 102
 void findMerge(void); 103
 void findClusters(void); 104
 void updateClusters(void); 105
 void checkDoubleClusterAreaLoop(void); 106
 double returnClusterAreaEnergy (int , Coords *); 107
 108
private: 109
 int iMaxFlynns; // max Flynns. Has to by initialized with this value 110
 double dAreaShift, dMultiplierA, dMultiplierB, dMultiplierC, dMultiplierD; 111
 //std::vector<clusters> vClusters; 112
 std::vector<int> vFlynns, vFlynnPhase; 113
 std::vector<double> vPhaseAreas; // Areas of the phases 114
 std::vector<std::vector<double> > vPhasesClusterAreas; // Areas of the Clusters for all Clusterphases 115
 116
 // vClusterPhases -> stores Phases which are set to clusterdiffusion 117
 // |---------| 118
 // | Phase 1 | --> Phase 1 is set to cluster diffusion 119
 // |---------| ------------------------------ 120
 // | ... | | Cluster 1 | Cluster 2 | ... 121
 // ------------------------------ 122
 // --> First Cluster of Flynns of Phase 1 123
 // |---------| 124
 // | Flynn 1 | --> First Flynn of that Cluster 125
 // |---------| 126
 // | Flynn 2 | 127
 // |---------| 128
 // | ... | 129
 std::vector<std::vector<std::vector<int> > > vPhasesClusters; // Flynns of all Clusters of all Clusterphases 130
 131
 std::vector<int> vClusterPhases; // a copy of the ClusterDiffPhases (copied in the Constructor) 132
 133
 134
 // FUNKTIONEN 135
 136
 std::vector<double> returnMultiplier (std::vector<double >); 137
 double returnFlynnAreaChange (int, int, Coords *); 138
 std::vector<double> returnClusterAreaChange (std::vector<std::vector<int > > , int, Coords *); 139
 bool checkDoubleClusterArea(int, int, int); 140
 void getPhaseAreas(void); 141
 void getClusters(void); 142
 void getClusterAreas(void); 143
 void resolveSplit(std::vector<std::vector<int > >); 144
 void resolveMerge(int, int, std::list<double>); 145
 bool resolveDoubleClusterArea(int, int, int, double); 146
}; 147
 148
 149
 150
 151
int InitGrowth(void); 152
int GBMGrowth(void); 153
 154
double GetNodeEnergy(int, Coords *, clusterTracking *); 155
int GGMoveNode(int, Coords *); 156
 157
int Read2PhaseDb(char *dbfile, AllPhases *phases); 158
double CheckPair(int node1, int node2, int type); 159
 160
int StoreAreaChange(int node, Coords *vector, int node_type); 161
int GetArea(int node, double area[], double phase_area[], int type_i[], int nodetype, Coords *loc); 162
double ReturnAreaEnergy(int node, Coords *location); 163
double ReturnArea(ERegion poly, int node, Coords *pos); 164
 165
bool fileExists(const char*); 166
 167
int diffusearea(int mode, int max); 168
int shiftarea(int node, int n1, int n2, int i); 169
int diffuse_dn(int position, DiffNodes *nodes); 170
void writenewconc(int number, DiffNodes *nodes); 171
void mergeair(int mode); 172
int savearea(int mode, int max); 173
int setupflynnies(void); 174
 175
int UnodePhaseUpdate(); 176
int UnodePhaseShift(); 177
int AssignUnodeProperties(); // Enriques melt tracking function 178
#endif 179

Jens Rößiger - 2013 Page 3.15

Appendix 5 – process code

3.3 CODE: GBM_PP_UNODES.CC

#include "gbm_pp_unodes.elle.h" 1
 2
using namespace std; 3
 4
extern runtime_opts Settings_run; 5
 6
// Phasenspeicherplaetze 7
int iClusterNodeCount = N_ATTRIB_A; //not used atm 8
int attrib[2] = { N_ATTRIB_B, N_ATTRIB_C }; 9
int iFlynnPhase = F_ATTRIB_A; 10
int iFlynnCluster = F_ATTRIB_C; 11
int iUnodePhase = U_ATTRIB_C; 12
int iUnodeConc = U_ATTRIB_A; 13
// 14
int iUnodeUpdateMethod = 1; 15
// 1 = Find Unodes in a Flynn and update them accordingly with the FlynnPhase in iUnodePhase. 16
// 0 = Find according Flynn for each Unode and update them with the FlynnPhase in iUnodePhase. 17
double dCheckEnergy[4]; 18
int bCheckEnergy = 0; 19
int iCheckEnergy = 0; 20
int iMinTjs = 0; 21
 22
#define MAX_PHASES 2 23
#define MAX_DIFF_STEPS 1000 //the maximum number of diffusion steps --> overwrites the values given in the config file. 24
#define MIN_DIFF_DT 500 // something that is used in the gbdiff code. for the moment I just copied it. 25
 26
AllPhases phases; 27
UserData userdata; 28
Flynnies *grains; 29
 30
// the phases which have to diffuse by different kinds... 31
// used by a few different processes. 32
list<int> lInfDiffPhases, lClustDiffPhases, lFicksDiffPhases, lAllPhases; 33
 34
FILE *fp; 35
 36
//The nodes are moved along the energy gradient 37
//Written by Dr. J.K. Becker 38
//Modified by Jens Roessiger 39
 40
/*!/brief Calculates the (Surface) Energy of a node 41
 42
This really only calculates the surface energy of the node, nothing else. General equation is E=en(l1+l2+l3)*lengthscale 43
with E=energy, en=surface energy and l1/l2/l3 the length of the segments next to the node adjusted to the lengthscale */ 44
double GetNodeEnergy(int node, Coords * xy) 45
{ 46
 int err, n, node2, node1, node3, nbnode[3], mineral, rgn[3]; 47
 Coords n1, n2, n3, v1, v2, v3; 48
 double l1, l2, l3, E, en = 0; 49
 double bodyenergy=0, energyofsurface=0; 50
 //Get the neighbouring nodes 51
 if (err = ElleNeighbourNodes(node, nbnode)) 52
 OnError("MoveNode", err); 53
 n = 0; 54
 //and put them into variables. In case of a double node, one is NO_NB and we don't want to use 55
 //that 56
 while (n < 3 && nbnode[n] == NO_NB) 57
 n++; 58
 node1 = nbnode[n]; 59
 n++; 60
 while (n < 3 && nbnode[n] == NO_NB) 61
 n++; 62
 node2 = nbnode[n]; 63
 n = 0; 64
 //see if the neighbouring nodes are active. Do we need that? Don't think so... 65
 if (ElleNodeIsActive(node1)) 66
 n++; 67
 if (ElleNodeIsActive(node2)) 68
 n++; 69
 //Get positions of neighbouring nodes 70
 ElleNodePlotXY(node1, & n1, xy); 71
 ElleNodePlotXY(node2, & n2, xy); 72
 //we don't really need the positions, we just need the length of the segments 73
 v1.x = n1.x - xy->x; 74
 v1.y = n1.y - xy->y; 75
 v2.x = n2.x - xy->x; 76
 v2.y = n2.y - xy->y; 77
 l1 = GetVectorLength(v1); 78
 l2 = GetVectorLength(v2); 79
 //if the node is a triple, we have to get the third node and the length of the segment 80
 if (ElleNodeIsTriple(node)) 81
 { 82
 node3 = nbnode[2]; 83
 ElleNodePlotXY(node3, & n3, xy); 84
 v3.x = n3.x - xy->x; 85
 v3.y = n3.y - xy->y; 86
 l3 = GetVectorLength(v3); 87
 } 88
 // Check which combination of phases is present at the current bounary segment and return the energy of that. 89
 E = l1*CheckPair(node, node1, 1); 90
 E += l2*CheckPair(node, node2, 1); 91
 if (ElleNodeIsTriple(node)) 92
 E += l3*CheckPair(node, node3, 1); 93
 E *= ElleUnitLength(); 94
 // printf("%le %le %le %le\n",l1,l2,l3,E); 95
 return E; 96

Jens Rößiger - 2013 Page 3.16

Appendix 5 – process code

} 97
 98
int InitGrowth() 99
{ 100
 int err = 0; 101
 char * infile; 102
 char *dbfile; 103
// unsigned char found = 0; 104
 105
 106
 ElleReinit(); 107
 ElleSetRunFunction(GBMGrowth); 108
 109
 //if (!ElleNodeAttributeActive(ATTRIB_A)) 110
 //ElleInitNodeAttribute(ATTRIB_A); 111
 //if (!ElleNodeAttributeActive(ATTRIB_B)) 112
 //ElleInitNodeAttribute(ATTRIB_B); 113
 //if (!ElleNodeAttributeActive(ATTRIB_C)) 114
 //ElleInitNodeAttribute(ATTRIB_C); 115
 116
// ElleSetDefaultNodeAttribute(0, ATTRIB_A); 117
// ElleSetDefaultNodeAttribute(0, ATTRIB_B); 118
// ElleSetDefaultNodeAttribute(0, ATTRIB_C); 119
/* 120
 if (!ElleFlynnAttributeActive(F_ATTRIB_A)) { 121
 ElleInitFlynnAttribute(F_ATTRIB_A); 122
 cout << "NO PHASES HAVE BEEN SET!" << endl << "This is a single phase process..." << endl; 123
 } 124
 if (!ElleFlynnAttributeActive(F_ATTRIB_B)) 125
 ElleInitFlynnAttribute(F_ATTRIB_B); 126
 127
// ElleSetDefaultFlynnAttribute(-1, F_ATTRIB_A); 128
// ElleSetDefaultFlynnAttribute(-1, F_ATTRIB_B); 129
 130
*/ 131
 ElleUserData(userdata); 132
 ElleSetOptNames("Starting TimeStep","unused","unused","unused","unused","unused","unused","unused","unused"); 133
 134
 135
 136
 infile = ElleFile(); 137
 if (strlen(infile) > 0) 138
 { 139
 if (err = ElleReadData(infile)) 140
 OnError(infile, err); 141
 ElleAddDoubles(); 142
 } 143
 144
 if((dbfile=ElleExtraFile())<0) 145
 OnError(dbfile, 0); 146
 147
 if(!Read2PhaseDb(dbfile, &phases)) //dbfile 148
 OnError(dbfile, 0); 149
 150
 if (phases.p_track >= 0) { 151
 if(!ElleUnodeAttributeActive(U_ATTRIB_A)) 152
 ElleInitUnodeAttribute(U_ATTRIB_A); 153
 if(!ElleUnodeAttributeActive(U_ATTRIB_B)) 154
 ElleInitUnodeAttribute(U_ATTRIB_B); 155
 if(!ElleUnodeAttributeActive(U_ATTRIB_C)) 156
 ElleInitUnodeAttribute(U_ATTRIB_C); 157
 ElleSetDefaultUnodeAttribute(0, U_ATTRIB_A); 158
 ElleSetDefaultUnodeAttribute(0, U_ATTRIB_B); 159
 ElleSetDefaultUnodeAttribute(-1.0, U_ATTRIB_C); 160
 } 161
 else if (phases.p_track == -1) { 162
 if(!ElleUnodeAttributeActive(iUnodePhase)) 163
 ElleInitUnodeAttribute(iUnodePhase); 164
 ElleSetDefaultUnodeAttribute(0, iUnodePhase); 165
 } 166
 167
 168
} 169
 170
/* !/brief this is called to when it is time to move a node (and also to check if a node has to be moved) */ 171
int GGMoveNode(int node, Coords *xy, clusterTracking *clusterData) 172
{ 173
 double e[4], a[4], ca[4], switchd = ElleSwitchdistance()/100; //added a for the area 174
 Coords oldxy, newxy, prev; 175
 176
 ElleNodePosition(node, &oldxy); 177
 ElleNodePrevPosition(node, &prev); 178
 newxy.x = oldxy.x + switchd; 179
 newxy.y = oldxy.y; 180
 e[0] = GetNodeEnergy(node, &newxy); 181
 a[0] = 0; //ReturnAreaEnergy(node, &newxy); 182
 ca[0] = clusterData->returnClusterAreaEnergy(node, &newxy); 183
 newxy.x = oldxy.x - switchd; 184
 e[1] = GetNodeEnergy(node, &newxy); 185
 a[1] = 0; //ReturnAreaEnergy(node,&newxy); 186
 ca[1] = clusterData->returnClusterAreaEnergy(node, &newxy); 187
 newxy.x = oldxy.x; 188
 newxy.y = oldxy.y + switchd; 189
 e[2] = GetNodeEnergy(node, &newxy); 190
 a[2] = 0; //ReturnAreaEnergy(node, &newxy); 191
 ca[2] = clusterData->returnClusterAreaEnergy(node, &newxy); 192
 newxy.y = oldxy.y - switchd; 193
 e[3] = GetNodeEnergy(node, &newxy); 194
 a[3] = 0; //ReturnAreaEnergy(node, &newxy); 195
 ca[3] = clusterData->returnClusterAreaEnergy(node, &newxy); 196
 if (bCheckEnergy == 0) { 197

Jens Rößiger - 2013 Page 3.17

Appendix 5 – process code

 dCheckEnergy[0] = 0; 198
 dCheckEnergy[1] = 0; 199
 dCheckEnergy[2] = 0; 200
 dCheckEnergy[3] = 0; 201
 bCheckEnergy = 1; 202
 } 203
 if (bCheckEnergy == 1) { 204
 dCheckEnergy[0] += ((e[0] - e[1]) / (2 * switchd)); 205
 dCheckEnergy[1] += ((e[2] - e[3]) / (2 * switchd)); 206
 dCheckEnergy[2] += ((ca[0] - ca[1]) / (2 * switchd)); 207
 dCheckEnergy[3] += ((ca[2] - ca[3]) / (2 * switchd)); 208
 iCheckEnergy++; 209
 } 210
 // To check stuff, has to be activated in the config file... 211
 if (phases.p_en>=0) { 212
 if (node==phases.p_en) { 213
 fstream fEnergies; 214
 char cFileName[50]; 215
 sprintf(cFileName, "Node%dEnergies.txt", phases.p_en); 216
 fEnergies.open (cFileName, fstream::out | fstream::app); 217
 fEnergies << scientific << "Energy: " << e[0] << " " << e[1] << " " << e[2] << " " << e[3] << " " << e[0]-e[1] << " " << 218
e[2]-e[3] << endl; 219
 fEnergies << "Area: " << a[0] << " " << a[1] << " " << a[2] << " " << a[3] << " " << a[0]-a[1] << " " << a[2]-a[3] << 220
endl; 221
 fEnergies << "ClusterArea: " << ca[0] << " " << ca[1] << " " << ca[2] << " " << ca[3] << " " << ca[0]-ca[1] << " " << 222
ca[2]-ca[3] << endl; 223
 fEnergies.close(); 224
 //printf("Area:\t\t%le\t%le\t%le\t%le\n", a[0], a[1], a[2], a[3]); 225
 //printf("ClusterArea:\t%le\t%le\t%le\t%le\n", ca[0], ca[1], ca[2], ca[3]); 226
 } 227
 } 228
 return GetMoveDir(node, e[0]+a[0]+ca[0], e[1]+a[1]+ca[1], e[2]+a[2]+ca[2], e[3]+a[3]+ca[3], xy ,switchd); 229
 //return GetMoveDir(node, e[0], e[1], e[2], e[3], xy ,switchd); 230
} 231
 232
 233
/* !/brief Runs through all the nodes (in random order) and moves them also writes out some statistics, turn 234
this on or off using STATS*/ 235
int GBMGrowth() 236
{ 237
 int i, j, n, iMaxFlynns, iMaxNodes, movement, x; 238
 int same=0, node_type; 239
 Coords newxy; 240
 vector < int > ran; 241
 242
 if ((int) userdata[0] > 1) 243
 Settings_run.Count = (int) userdata[0]; 244
 245
 246
 if (ElleCount() == 0) 247
 ElleAddDoubles(); 248
 if (ElleDisplay()) 249
 EllePlotRegions(ElleCount()); 250
 251
 ElleCheckFiles(); 252
 253
 // Initialize the clusterTracking class... 254
 clusterTracking clusters; 255
 if (clusters.writeInitialData("initial_stuff.txt")) { 256
 clusters.setClusterAreas(); 257
 clusters.checkDoubleClusterAreaLoop(); 258
 if (phases.p_track == -1) 259
 UnodePhaseUpdate(); 260
 } 261
 262
 263
 264
 for (i = 0; i < EllemaxStages(); i++) 265
 { 266
 if (bCheckEnergy == 1) { 267
 if (i == 1) 268
 bCheckEnergy = 2; 269
 } 270
 if (!(i % 10)) 271
 clusters.writeData("PhaseAreaHistory.txt", i); //cout << "STEP: " << i << "/" << EllemaxStages() << endl; 272
 iMaxNodes = ElleMaxNodes(); 273
 274
 //to prevent moving a single node always at the same time, we shuffel them randomly at each step 275
 ran.clear(); 276
 for (j = 0; j < iMaxNodes; j++) 277
 if (ElleNodeIsActive(j)) 278
 ran.push_back(j); 279
 std::random_shuffle(ran.begin(), ran.end()); 280
 for (j = 0; j < ran.size(); j++) 281
 { 282
 //cout << ran.at(j) << endl; 283
 //cout << "Start" << endl; 284
 if (ElleNodeIsActive(ran.at(j))) 285
 { 286
 if (GGMoveNode(ran.at(j), &newxy, &clusters)) { // same==1 && 287
 if (sqrt((newxy.x*newxy.x)+(newxy.y*newxy.y)) > 0.01) 288
 cout << "PROBLEM: Movement is very large... Reduce mobility, energy or time step settings..." << endl; 289
 290
 ElleSetNodeChange(0); 291
 ElleCrossingsCheck(ran.at(j), & newxy); 292
 if (ElleNodeChange() != 0) 293
 clusters.updateClusters(); 294
 295
 if (ElleNodeIsActive(j)) { 296
 if (ElleNodeIsDouble(j)) 297
 node_type = 2; 298

Jens Rößiger - 2013 Page 3.18

Appendix 5 – process code

 else if (ElleNodeIsTriple(j)) 299
 node_type = 3; 300
 else { 301
 node_type = 0; 302
 cout << "ERROR: No known node type(2)... (Node: " << j << ")" << endl; 303
 } 304
 if (node_type == 2 || node_type == 3) { 305
 if (node_type == 2) { 306
 ElleSetNodeChange(0); 307
 ElleCheckDoubleJ(j); 308
 // Probably not neccessary since the only thing CheckDJ does is adding or removing dJs next to the node... 309
 if (ElleNodeChange() != 0) 310
 clusters.updateClusters(); 311
 } 312
 else { 313
 // Checks if sufficient Triple nodes are available. Variable has to be set in the beginning of this file. 314
 // If the flynn has less TJs than this number no Triple J check will be done. 315
 // Possibly prevents statistical errors because of increasing flynn numbers during static grain growth. 316
 ///JR CHANGE TO THE TYPICAL ONCE IMPLEMENTED IN THE BASECODE AND ONCE IT IS POSSIBLE TO CHECK TRIPLE J IF 317
SOMETHING HAS CHANGED. 318
 if (iMinTjs > 2) { 319
 int iNeighbours[3], iFlynns[3]; 320
 int iNodeCount = 0; 321
 int * iNodes = NULL; 322
 int iTripleCheck; 323
 324
 ElleNeighbourNodes(j, iNeighbours); 325
 for (int k = 0; k < node_type; k++) { 326
 ElleNeighbourRegion(j, iNeighbours[k], &iFlynns[k]); 327
 ElleFlynnNodes(iFlynns[k], &iNodes, &iNodeCount); 328
 iTripleCheck = 0; 329
 for (int l = 0; l < iNodeCount; l++) { 330
 if (ElleNodeIsTriple (iNodes[l])) { 331
 iTripleCheck++; 332
 } 333
 } 334
 335
 if (iTripleCheck < iMinTjs) { 336
 fstream fTripleFile; 337
 fTripleFile.open ("FailedTripleSwitches.txt", fstream::out | fstream::app); 338
 if (fTripleFile.is_open()) { 339
 fTripleFile << i << ": " << j << "{" << iTripleCheck << "} (" << iNeighbours[k] << ") 340
[" << iFlynns[k] << "]" << endl; 341
 fTripleFile.close(); 342
 } 343
 break; 344
 } 345
 free(iNodes); 346
 iNodes = NULL; 347
 } 348
 if (iTripleCheck >= iMinTjs) { 349
 ElleSetNodeChange(0); 350
 ElleCheckTripleJ(j); 351
 if (ElleNodeChange() != 0) 352
 clusters.updateClusters(); 353
 } 354
 } 355
 else { 356
 ElleSetNodeChange(0); 357
 ElleCheckTripleJ(j); 358
 if (ElleNodeChange() != 0) 359
 clusters.updateClusters(); 360
 } 361
 } 362
 } 363
 } 364
 } 365
 } 366
 } 367
 ///JR THIS ADDIDITIONAL CHECKING LOOP IS COMMENTED OUT FOR SPEED ATM. DON'T KNOW IF IT IS NECCESSARY ANYWAY... 368
 //cout << "Loop End, Cluster..."; 369
 //clusters.updateClusters(); 370
 //cout << " ...check" << endl; 371
 ////cout << "Loop finished" << endl; 372
 //iMaxNodes = ElleMaxNodes(); 373
 //cout << "Checkloop..."; 374
 //for (j=0;j<iMaxNodes;j++) { 375
 //if (ElleNodeIsActive(j)) { 376
 //if (ElleNodeIsDouble(j)) 377
 //node_type = 2; 378
 //else if (ElleNodeIsTriple(j)) 379
 //node_type = 3; 380
 //else { 381
 //node_type = 0; 382
 //cout << "ERROR: No known node type(2)... (Node: " << j << ")" << endl; 383
 //} 384
 //if (node_type == 2 || node_type == 3) { 385
 //if (node_type == 2) { 386
 //ElleCheckDoubleJ(j); 387
 ////clusters.updateClusters(); 388
 //} 389
 //else { 390
 //if (iMinTjs > 2) { 391
 //int iNeighbours[3], iFlynns[3]; 392
 //int iNodeCount = 0; 393
 //int * iNodes = NULL; 394
 //int iTripleCheck; 395
 396
 //ElleNeighbourNodes(j, iNeighbours); 397
 //for (int k = 0; k < node_type; k++) { 398
 //ElleNeighbourRegion(j, iNeighbours[k], &iFlynns[k]); 399

Jens Rößiger - 2013 Page 3.19

Appendix 5 – process code

 //ElleFlynnNodes(iFlynns[k], &iNodes, &iNodeCount); 400
 //iTripleCheck = 0; 401
 //for (int l = 0; l < iNodeCount; l++) { 402
 //if (ElleNodeIsTriple (iNodes[l])) { 403
 //iTripleCheck++; 404
 //} 405
 //} 406
 407
 //if (iTripleCheck < iMinTjs) { 408
 //fstream fTripleFile; 409
 //fTripleFile.open ("FailedTripleSwitches.txt", fstream::out | fstream::app); 410
 //if (fTripleFile.is_open()) { 411
 //fTripleFile << i << ": " << j << "{" << iTripleCheck << "} (" << iNeighbours[k] << ") [" << iFlynns[k] << 412
"]" << endl; 413
 //fTripleFile.close(); 414
 //} 415
 //break; 416
 //} 417
 //free(iNodes); 418
 //iNodes = NULL; 419
 //} 420
 //if (iTripleCheck >= iMinTjs) { 421
 //ElleCheckTripleJ(j); 422
 //clusters.updateClusters(); 423
 //} 424
 //} 425
 //else { 426
 //ElleCheckTripleJ(j); 427
 //clusters.updateClusters(); 428
 //} 429
 //} 430
 //} 431
 //} 432
 //} 433
 434
 // Just to be sure... 435
 ElleAddDoubles(); 436
 437
 // This does the cluster tracking using unodes... 438
 if (phases.p_track >= 0) // größer als max phases ist schon beim Auslesen berücksichtigt. 439
 AssignUnodeProperties(); // Call the melt tracking. 440
 else if (phases.p_track == -1) { 441
 // UnodePhaseShift(); 442
 UnodePhaseUpdate(); 443
 int iMaxUnodes = ElleMaxUnodes(); 444
 fstream fUnodePhases; 445
 int iUPhases[3]; 446
 double iUConc[3]; 447
 fUnodePhases.open ("UnodePhase.txt", fstream::out | fstream::app); 448
 449
 for (int i = 0; i < 3; i++) { 450
 iUPhases[i] = 0; 451
 iUConc[i] = 0.0; 452
 } 453
 454
 for (int i = 0; i < iMaxUnodes; i++) { 455
 double dPhase, dConc; 456
 ElleGetUnodeAttribute(i, iUnodePhase, &dPhase); 457
 ElleGetUnodeAttribute(i, iUnodeConc, &dConc); 458
 459
 if ((int) dPhase == 0 || (int) dPhase == 1) { 460
 iUPhases[(int) dPhase] += 1; 461
 iUConc[(int) dPhase] += dConc; 462
 } 463
 else { 464
 iUPhases[2] += 1; 465
 iUConc[2] += dConc; 466
 } 467
 } 468
 fUnodePhases << iMaxUnodes << "\t: " << iUConc[0]+iUConc[1]+iUConc[2] << "\t| " << iUPhases[0] << "\t: " << iUConc[0] << 469
"\t| " << iUPhases[1] << "\t: " << iUConc[1] << "\t| " << iUPhases[2] << "\t: " << iUConc[2] << "\t| " << endl; 470
 fUnodePhases.close(); 471
 } 472
 473
 ElleUpdate(); 474
 } 475
} 476
 477
int UnodePhaseShift() 478
{ 479
 int iMaxUnodes = ElleMaxUnodes(); 480
 int iUnodesRow = (int) sqrt((double) iMaxUnodes); 481
 double dUnodeSpacing = 1.0 / (double) iUnodesRow; 482
 Coords ref, xy; 483
 484
 for (int i = 0; i < iMaxUnodes; i++) { 485
 int iFlynn = ElleUnodeFlynn(i); 486
 if (ElleFlynnIsActive(iFlynn)) { 487
 double dPhase, dOldPhase; 488
 ElleGetFlynnRealAttribute(iFlynn, &dPhase, iFlynnPhase); 489
 ElleGetUnodeAttribute(i, iUnodePhase, &dOldPhase); 490
 if ((int) dPhase != (int) dOldPhase) { 491
 cout << i << "(" << dOldPhase << ") "<< iFlynn << "(" << dPhase << ") " << endl; 492
 int iFound = 0; 493
 // first neighbours check 494
 for (int k = 0; k < 4 && iFound == 0; k ++) { 495
 //0 --> left, 1 --> right, 2 --> down, 3 --> up 496
 int iUnodeCheck; 497
 if (k == 0) { 498
 // to the left of the unode, be careful of the left boundary 499
 if (!(i % iUnodesRow)) 500

Jens Rößiger - 2013 Page 3.20

Appendix 5 – process code

 iUnodeCheck = i + iUnodesRow - 1; 501
 else 502
 iUnodeCheck = i - 1; 503
 } 504
 else if (k == 1) { 505
 // to the right of the unode, be careful of the right boundary 506
 if (!((i + 1) % iUnodesRow)) 507
 iUnodeCheck = i - iUnodesRow + 1; 508
 else 509
 iUnodeCheck = i + 1; 510
 } 511
 else if (k == 2) { 512
 // lower boundary, careful of the first row... 513
 if (i < iUnodesRow) 514
 iUnodeCheck = i - iUnodesRow + iMaxUnodes; 515
 else 516
 iUnodeCheck = i - iUnodesRow; 517
 } 518
 else { 519
 // upper boundary, careful of the last row... 520
 if (i >= iMaxUnodes - iUnodesRow) 521
 iUnodeCheck = i + iUnodesRow - iMaxUnodes; 522
 else 523
 iUnodeCheck = i + iUnodesRow; 524
 } 525
 526
 // Check the distance 527
 ElleGetUnodePosition(i, &ref); 528
 ElleGetUnodePosition(iUnodeCheck, &xy); 529
 ElleCoordsPlotXY (&ref, &xy); 530
 double dist = pointSeparation(&ref, &xy); 531
 532
 if (dist > dUnodeSpacing * 1.2) 533
 cout << "WARNING: UnodePhaseShift: Distance between Unodes too large... " << i << ":" << iUnodeCheck << " | " << 534
dist << ">" << dUnodeSpacing * 1.2 << endl; 535
 536
 537
 double dOldNeighbourPhase; 538
 ElleGetUnodeAttribute(iUnodeCheck, iUnodePhase, &dOldNeighbourPhase); 539
 540
 //check if both were the same phase last step 541
 if (dOldPhase == dOldNeighbourPhase) { 542
 // if they were both the same shift the phase contents from one to the other 543
 double dPhaseConc1, dPhaseConc2; 544
 ElleGetUnodeAttribute(i, iUnodeConc, &dPhaseConc1); 545
 ElleGetUnodeAttribute(iUnodeCheck, iUnodeConc, &dPhaseConc2); 546
 ElleSetUnodeAttribute(i, iUnodeConc, 0.0); 547
 ElleSetUnodeAttribute(iUnodeCheck, iUnodeConc, (dPhaseConc1 + dPhaseConc2)); 548
 // The unode which changed phase gets set to 0.0 549
 // the content gets transfered to the neighbour one. 550
 551
 iFound = 1; // break condition for the loop. 552
 } 553
 554
 if (k == 3 && iFound == 0) 555
 cout << "ERROR: UnodePhaseShift: No neighbour found!!!" << endl; 556
 } 557
 } 558
 } 559
 else 560
 cout << "ERROR: UnodePhaseShift: Unode in inactive Flynn" << endl; 561
 } 562
} 563
 564
int UnodePhaseUpdate() 565
{ 566
 int iMaxFlynns = ElleMaxFlynns(); 567
 vector<int> vUnodes; 568
 569
 for (int i = 0; i < iMaxFlynns; i++) { 570
 if (ElleFlynnIsActive(i)) { 571
 ElleGetFlynnUnodeList(i, vUnodes); 572
 double dPhase; 573
 ElleGetFlynnRealAttribute(i, &dPhase, iFlynnPhase); 574
 while (vUnodes.size() > 0) { 575
 ElleSetUnodeAttribute(vUnodes.back(), iUnodePhase, dPhase); 576
 vUnodes.pop_back(); 577
 } 578
 } 579
 } 580
 return 1; 581
} 582
 583
// Written by Enrique & me to track changes in melt. 584
int AssignUnodeProperties() 585
{ 586
int i, j, k, t; // Variables for looping 587
 int max_flynns, max_unodes, flynnid, count;// num_nbs; // Variables to manipulate flynns, Unodes and their neighbours 588
 589
 ElleCheckFiles(); 590
 591
 max_flynns = ElleMaxFlynns(); 592
 max_unodes = ElleMaxUnodes(); 593
 594
 // Define array for unode property 595
 double UnodeProp[max_unodes][3]; 596
 597
 // Define array for flynn phase 598
 double FlynnPhase[max_flynns]; 599
 600
 // 601

Jens Rößiger - 2013 Page 3.21

Appendix 5 – process code

 // Loop to find Unodes and to store Unode and segment properties into the defined arrays 602
 // 603
 for (j=0;j<max_flynns;j++) 604
 { 605
 if (ElleFlynnIsActive(j)) 606
 { 607
// ElleClearTriAttributes(); 608
// TriangulateUnodes(j,MeshData.tri); // Do the triangulation of the active flynn 609
 610
 vector<int> unodelist; // create a vector list of unodes 611
 612
 ElleGetFlynnUnodeList(j,unodelist); // get the list of unodes for a flynn 613
 614
 ElleGetFlynnRealAttribute(j, &FlynnPhase[j], iFlynnPhase); // Read the phase of each flynn 615
 616
 count = unodelist.size(); // Number of unodes in flynn 617
 618
 for (i=0; i<count; i++) 619
 { 620
// vector<int> nbnodes,bndflag; // Define vectors 621
 622
// ElleGetTriPtNeighbours(unodelist[i],nbnodes,bndflag,0); // Get the list of Unode neighbours of the selected Unode 623
and save it into nbnodes array 624
// num_nbs = nbnodes.size(); // Number of neighbours of selected unode 625
 626
 ElleGetUnodeAttribute(unodelist[i],&UnodeProp[unodelist[i]][0],U_ATTRIB_A); // Read value of Unode property 627
 ElleGetUnodeAttribute(unodelist[i],&UnodeProp[unodelist[i]][1],U_ATTRIB_B); 628
 ElleGetUnodeAttribute(unodelist[i],&UnodeProp[unodelist[i]][2],U_ATTRIB_C); 629
 630
 if (FlynnPhase[j] == phases.p_track) // if Flynn is solid 631
 { 632
 UnodeProp[unodelist[i]][0] += 1; // New value of Unode property 633
 634
 if (UnodeProp[unodelist[i]][2] != phases.p_track) { 635
 UnodeProp[unodelist[i]][1] += 1; 636
 } 637
 } 638
 639
 ElleSetUnodeAttribute(unodelist[i],UnodeProp[unodelist[i]][0],U_ATTRIB_A); // We assign a property to Unodes, depending 640
on to which flynn they belong 641
 ElleSetUnodeAttribute(unodelist[i],UnodeProp[unodelist[i]][1],U_ATTRIB_B); 642
 ElleSetUnodeAttribute(unodelist[i],FlynnPhase[j],U_ATTRIB_C); 643
 644
 } 645
 } 646
 } 647
} 648
 649
int Read2PhaseDb(char *dbfile, AllPhases *phases) 650
{ 651
 fstream file; 652
 string line; 653
 stringstream linestr; 654
 int no_phases=0, comb, count, p1, p2, infinite, cluster, diff_times, x, merge, p_en, el, scale, p_track; 655
 double mob, en, dif, kappa, dGbActEn; 656
 int input=0; 657
 int plot=1; // enable plotting to command line. 658
 char c; 659
 // This functions reads the config file to storage... 660
 661
 file.open ("phase_db.txt", fstream::in); 662
 663
 if (file.is_open()) { 664
 while (file.good()) { 665
 getline (file,line); 666
 if (line.length() > 0) { 667
 // check for keywords 668
 if (line.find("PHASE PROPERTIES") != string::npos) 669
 input = 1; 670
 else if (line.find("PHASE BOUNDARY PROPERTIES") != string::npos) 671
 input = 2; 672
 else if (line.find("MELT TRACKING") != string::npos) 673
 input = 3; 674
 else if (line.find("VERBOSE STUFF") != string::npos) 675
 input = 4; 676
 else if (line.find("CLUSTER_TRACKING") != string::npos) 677
 input = 5; 678
 else if (line.find("TROUBLESHOOTING") != string::npos) 679
 input = 6; 680
 c = line.at(0); 681
 if (c!='#' && c!=' ') { 682
 // Read number of phases 683
 if (input == 0) { 684
 linestr << line; 685
 linestr >> no_phases; 686
 linestr.clear(); 687
 if (no_phases > MAX_PHASES) { 688
 cerr << "More phases than this program can handle" << endl; 689
 return 0; 690
 } 691
 phases->no_phases=no_phases; 692
 } 693
 // Read Phase properties 694
 else if (input == 1) { 695
 linestr << line; 696
 linestr >> p1 >> infinite >> cluster >> diff_times >> el >> scale >> kappa >> merge; 697
 linestr.clear(); 698
 699
 phases->phasep[p1].infinite_diff=infinite; 700
 phases->phasep[p1].cluster_diff=cluster; 701
 phases->phasep[p1].diffusion_times=diff_times; 702

Jens Rößiger - 2013 Page 3.22

Appendix 5 – process code

 phases->phasep[p1].elasticity=el; 703
 phases->phasep[p1].scale=scale; 704
 phases->phasep[p1].kappa=kappa; 705
 phases->phasep[p1].merge=merge; 706
 } 707
 // Read Phase Boundary properties 708
 else if (input == 2) { 709
 linestr << line; 710
 linestr >> p1 >> p2 >> mob >> en >> dGbActEn; 711
 linestr.clear(); 712
 713
 phases->pairs[p1][p2].mobility=mob; 714
 phases->pairs[p2][p1].mobility=mob; 715
 phases->pairs[p1][p2].b_energy=en; 716
 phases->pairs[p2][p1].b_energy=en; 717
 phases->pairs[p1][p2].dGbActEn=dGbActEn; 718
 phases->pairs[p2][p1].dGbActEn=dGbActEn; 719
 } 720
 // Read Phase Tracking 721
 else if (input == 3) { 722
 linestr << line; 723
 linestr >> p_track; 724
 linestr.clear(); 725
 if (p_track > no_phases-1) // wenn größer als max phases -> kein tracking (kleiner spielt keine Rolle) 726
 p_track = -1; 727
 phases->p_track=p_track; 728
 } 729
 // Read Verbouse 730
 else if (input == 4) { 731
 linestr << line; 732
 linestr >> p_en; 733
 linestr.clear(); 734
 735
 phases->p_en=p_en; 736
 } 737
 // read Clustertracking 738
 // Read Troubleshooting 739
 else if (input == 6) { 740
 linestr << line; 741
 linestr >> iMinTjs; 742
 linestr.clear(); 743
 } 744
 } 745
 } 746
 } 747
 // Plot the whole stuff into command line window. 748
 if (plot == 1) { 749
 cout << endl << "=================== INPUT FILE ===================" << endl 750
 << "Number of phases: " << phases->no_phases << endl 751
 << "==================== TIMESTEP ====================" << endl 752
 << ElleTimestep() << " sec <=> " << ElleTimestep()/(60*60) << " h <=> "<< ElleTimestep()/(365*24*60*60) << " years" 753
<< endl 754
 << "================== LENGTH SCALE ==================" << endl 755
 << ElleUnitLength() << " m <=> " << ElleUnitLength()*1000 << " mm" << endl //" <=> "<< 756
ElleTimestep()/(365*24*60*60) << " years" << endl 757
 << "===================== PHASES =====================" << endl 758
 << "Phase\tI-diff\tC-diff\tT-diff\telasticity\tscale\tkappa\tmerge" << endl; 759
 for (int i = 0; i < no_phases; i++) { 760
 cout << i << "\t" 761
 << phases->phasep[i].infinite_diff << "\t" 762
 << phases->phasep[i].cluster_diff << "\t" 763
 << phases->phasep[i].diffusion_times << "\t" 764
 << phases->phasep[i].elasticity << "\t\t" 765
 << phases->phasep[i].scale << "\t" 766
 << phases->phasep[i].kappa << "\t" 767
 << phases->phasep[i].merge 768
 << endl; 769
 } 770
 cout << "================ PHASE BOUNDARIES ================" << endl 771
 << "Phase1\tPhase2\tMobility\tB-energy\tGB-ActivEn" << endl; 772
 for (int i = 0; i < no_phases; i++) { 773
 for (int j = i; j < no_phases; j++) { 774
 cout << i << "\t" 775
 << j << "\t" 776
 << phases->pairs[i][j].mobility << "\t\t" 777
 << phases->pairs[i][j].b_energy << "\t\t" 778
 << phases->pairs[i][j].dGbActEn 779
 << endl; 780
 } 781
 } 782
 if (phases->p_track >= 0) { 783
 cout 784
 << "================= PHASE TRACKING =================" << endl 785
 << "Track phase: " << phases->p_track << " in Unode layer" 786
 << endl; 787
 } 788
 if (phases->p_en > 0) { 789
 cout 790
 << "================ VERBOSE STUFF ================" << endl 791
 << "Print energies for node: " << phases->p_en 792
 << endl; 793
 } 794
 if (iMinTjs > 2) { 795
 cout 796
 << "================ TROUBLESHOOTING ================" << endl 797
 << "Min Tjs: " << iMinTjs << " for Triple switching" 798
 << endl; 799
 } 800
 } 801
 file.close(); 802
 return (1); 803

Jens Rößiger - 2013 Page 3.23

Appendix 5 – process code

 } else 804
 return (0); 805
 806
} 807
 808
// This returns the value for mob/en/any other stuff defined by type for a segment between node 1 and node 2 809
// type = 0 == mobility, 1==b_energy, 2==Activation Energy 810
double CheckPair(int node1, int node2, int type) 811
{ 812
 int rgn[2], int_a[2], i; 813
 double type_a[2]; 814
 815
 ElleNeighbourRegion(node1,node2,&rgn[0]); 816
 ElleNeighbourRegion(node2,node1,&rgn[1]); 817
 ElleGetFlynnRealAttribute(rgn[0], &type_a[0], iFlynnPhase); 818
 ElleGetFlynnRealAttribute(rgn[1], &type_a[1], iFlynnPhase); 819
 //printf("%lf %lf\n", type_a[0], type_a[1]); 820
 int_a[0] = (int)type_a[0]; 821
 int_a[1] = (int)type_a[1]; 822
 823
 // printf("%le %le %d %d\n", phases.pairs[int_a[0]][int_a[1]].mobility, 824
phases.pairs[int_a[0]][int_a[1]].b_energy,int_a[0],int_a[1]); 825
 if (type == 0) 826
 return phases.pairs[int_a[0]][int_a[1]].mobility; 827
 else if (type == 1) 828
 return phases.pairs[int_a[0]][int_a[1]].b_energy; 829
 else if (type == 2) 830
 return phases.pairs[int_a[0]][int_a[1]].dGbActEn; 831
 else 832
 return 0; 833
 834
} 835
 836
int StoreAreaChange(int node, Coords *vector, int node_type) 837
{ 838
 int type_i[3], x, nghbr[3], n, j, nnode[3], rgn[3]; 839
 double area[9], phase_area[phases.no_phases], bla, type_a[3]; 840
 Coords loc; 841
 842
 // find the neighbours 843
 if (ElleNeighbourNodes(node,nghbr)) 844
 cout << "StoreAreaChange: Neighbour determination..." << endl; 845
 // read the attributes of that node 846
 for (n=0,j=0;n<3;n++) 847
 { 848
 if(nghbr[n]!=NO_NB && j<node_type) { 849
 nnode[j] = nghbr[n]; 850
 ElleNeighbourRegion(node,nghbr[n],&rgn[j]); 851
 ElleGetFlynnRealAttribute(rgn[j], &type_a[j], iFlynnPhase); 852
 type_i[j] = (int)type_a[j]; 853
 j++; 854
 } 855
 } 856
 857
 ElleNodePosition(node, &loc); 858
 859
 loc.x = loc.x+vector->x; 860
 loc.y = loc.y+vector->y; 861
 862
 if (node_type == 2) { 863
 //do nothing if it is a same phase everywhere node 864
 if (type_i[0]==type_i[1]) 865
 ; 866
 //if there are different phases store the areas. 867
 else { 868
 x=GetArea(node, area, phase_area, type_i, node_type, &loc); 869
// cout << "node: " << node << endl; 870
// cout << "area:"; 871
// for (int l = 0; l < 9; l ++) 872
// cout << " " << area[l]; 873
// cout << endl; 874
// cout << "phase area-area:"; 875
// for (int l = 0; l < phases.no_phases; l++) 876
// cout << " " << phase_area[l] << "-" << type_i[l]; 877
// cout << endl << "node type: " << node_type << endl; 878
 879
 if(x==0) 880
 printf("ERROR: StoreAreaChange: node_type=2: GetArea"); 881
 882
 ElleSetNodeAttribute(node, (phase_area[type_i[0]]+area[2]), attrib[type_i[0]]); 883
 //this check is needed, because if both are the same phase the addition wouldn't be considered and just overwritten 884
 if (type_i[0] == type_i[1]) 885
 phase_area[type_i[1]] = ElleNodeAttribute(node, attrib[type_i[0]]); 886
 ElleSetNodeAttribute(node, (phase_area[type_i[1]]-area[2]), attrib[type_i[1]]); 887
 } 888
 } 889
 else if (node_type == 3) { 890
 //do nothing if it is a same phase node 891
 if (type_i[0]==type_i[1] && type_i[0]==type_i[2]) 892
 ; 893
 else { 894
 x=GetArea(node, area, phase_area, type_i, node_type, &loc); 895
 if(x==0) 896
 printf("ERROR: StoreAreaChange: node_type=3: GetArea"); 897
 898
 ElleSetNodeAttribute(node, ((phase_area[type_i[0]])+area[6]), attrib[type_i[0]]); 899
 // same as double node check... 900
 if (type_i[0] == type_i[1]) 901
 phase_area[type_i[1]] = ElleNodeAttribute(node, attrib[type_i[1]]); 902
 ElleSetNodeAttribute(node, ((phase_area[type_i[1]])+area[7]), attrib[type_i[1]]); 903
 if (type_i[1] == type_i[2]) 904

Jens Rößiger - 2013 Page 3.24

Appendix 5 – process code

 phase_area[type_i[2]] = ElleNodeAttribute(node, attrib[type_i[2]]); 905
 if (type_i[0] == type_i[2]) 906
 phase_area[type_i[2]] = ElleNodeAttribute(node, attrib[type_i[2]]); 907
 ElleSetNodeAttribute(node, ((phase_area[type_i[2]])+area[8]), attrib[type_i[2]]); 908
 } 909
 } 910
 else 911
 printf("Are you kidding??? What kind of node is it then?\n"); 912
 913
 return 1; 914
} 915
 916
int GetArea(int node, double area[], double phase_area[], int type_i[], int nodetype, Coords *loc) 917
{ 918
 int nghbr[3], i, j, rgn[3], err=0, x=1; 919
 double type_a[3]; 920
 Coords location[5]; 921
 922
 // store the location of the center node to location 3, and the new position at location 4 923
 ElleNodePosition(node, &location[3]); 924
 location[4].x = loc->x; 925
 location[4].y = loc->y; 926
 927
 // store the locations of the imidiate neigbour nodes as location 0,1 and 2 if it is a Triple Node. 928
 if (err=ElleNeighbourNodes(node,nghbr)) 929
 printf("ERROR: Get Area: getting neighbour nodes\n"); 930
 for (i=0, j=0;i<3;i++) 931
 { 932
 if(nghbr[i]!=NO_NB && j<nodetype) { 933
// ElleNodePlotXY(nghbr[i], &location[j], &location[3]); 934
 ElleNeighbourRegion(node,nghbr[i],&rgn[j]); 935
 ElleGetFlynnRealAttribute(rgn[j], &type_a[j], iFlynnPhase); 936
 type_i[j] = (int)type_a[j]; 937
 j++; 938
 } 939
 } 940
 for (i=0;i<phases.no_phases;i++) 941
 phase_area[i] = ElleNodeAttribute(node, attrib[i]); 942
 943
 if (nodetype == 2) { 944
 if (type_i[0] != type_i[1]) { 945
 area[0] = ElleRegionArea(rgn[0]); 946
 area[1] = ReturnArea(rgn[0],node,&location[4]); 947
 area[2] = area[1] - area[0]; 948
 } else 949
 area[2] = 0; 950
 } 951
 else if (nodetype == 3) { 952
 // if all 3 phases along the boardering the triple node are the same. -> 0 area change... 953
 if (type_i[0] == type_i[1] && type_i[0] == type_i[2] && type_i[1] == type_i[2]) { 954
 area[6] = 0; 955
 area[7] = 0; 956
 area[8] = 0; 957
 } else { 958
 area[0] = ElleRegionArea(rgn[0]); 959
 area[1] = ElleRegionArea(rgn[1]); 960
 area[2] = ElleRegionArea(rgn[2]); 961
 area[3] = ReturnArea(rgn[0],node,&location[4]); 962
 area[4] = ReturnArea(rgn[1],node,&location[4]); 963
 area[5] = ReturnArea(rgn[2],node,&location[4]); 964
 area[6] = area[3] - area[0]; 965
 area[7] = area[4] - area[1]; 966
 area[8] = area[5] - area[2]; 967
 //cout << area[6] << " " << area[7] << " " << area[8] << endl; 968
 } 969
 } 970
 else 971
 printf("ERROR: GetArea: Are you kidding??? What kind of node is it then?\n"); 972
 973
 if (err==1) 974
 x=0; 975
 976
 return x; 977
} 978
 979
double ReturnAreaEnergy(int node, Coords *loca) 980
{ 981
 int type_i[3], node_type, x; 982
 double a[3], ret_area, area[9], phase_area[phases.no_phases], temp_area; 983
 984
 //set area to 0 985
 a[0]=a[1]=a[2]=0; 986
 987
 988
 if (ElleNodeIsDouble(node)) 989
 node_type = 2; 990
 else if (ElleNodeIsTriple(node)) 991
 node_type = 3; 992
 else 993
 return 0; 994
 995
 996
 if (node_type == 2) { 997
 998
 x=GetArea(node, area, phase_area, type_i, node_type, loca); 999
 if(x==0) 1000
 printf("ERROR: ReturnAreaEnergy: node_type=2: GetArea"); 1001
 1002
 1003
 //a1 1004
 if(phases.phasep[type_i[0]].elasticity==0.0) //not used if elasticity[a1]=0.0 1005

Jens Rößiger - 2013 Page 3.25

Appendix 5 – process code

 a[0]=0.0; 1006
 else { 1007
 a[0]=(pow((fabs(phase_area[type_i[0]]+area[2])),(phases.phasep[type_i[0]].elasticity)))*phases.phasep[type_i[0]].scale; 1008
// if (node==615) 1009
// printf("%le, 1010
%le+%le^%le*%le\n",a[0],phase_area[type_i[0]],area[2],phases.phasep[type_i[0]].elasticity,phases.phasep[type_i[0]].scale); 1011
 } 1012
 //a2 1013
 if(phases.phasep[type_i[1]].elasticity==0.0) //not used if elasticity[a2]=0.0 1014
 a[1]=0.0; 1015
 else { 1016
 a[1]=(pow((fabs(phase_area[type_i[1]]-area[2])),(phases.phasep[type_i[1]].elasticity)))*phases.phasep[type_i[1]].scale; 1017
 } 1018
 1019
 //return both added together 1020
 ret_area=a[0]+a[1]; 1021
 } 1022
 else if (node_type == 3) { 1023
 1024
 x=GetArea(node, area, phase_area, type_i, node_type, loca); 1025
 if(x==0) 1026
 printf("ERROR: ReturnAreaEnergy: node_type=3: GetArea"); 1027
 1028
 //a1 1029
 if(phases.phasep[type_i[0]].elasticity==0.0) //not used if elasticity[a1]=0.0 1030
 a[0]=0.0; 1031
 else { 1032
 a[0]=(pow((fabs(phase_area[type_i[0]]+area[6])),(phases.phasep[type_i[0]].elasticity)))*phases.phasep[type_i[0]].scale; 1033
 } 1034
 //a2 1035
 if(phases.phasep[type_i[1]].elasticity==0.0) //not used if elasticity[a2]=0.0 1036
 a[1]=0.0; 1037
 else { 1038
 a[1]=(pow((fabs(phase_area[type_i[1]]+area[7])),(phases.phasep[type_i[1]].elasticity)))*phases.phasep[type_i[1]].scale; 1039
 } 1040
 //a3 1041
 if(phases.phasep[type_i[2]].elasticity==0.0) //not used if elasticity[a3]=0.0 1042
 a[2]=0.0; 1043
 else { 1044
 a[2]=(pow((fabs(phase_area[type_i[2]]+area[8])),(phases.phasep[type_i[2]].elasticity)))*phases.phasep[type_i[2]].scale; 1045
 } 1046
 1047
 //return all three added together 1048
 ret_area=a[0]+a[1]+a[2]; 1049
// cout << a[0] << "+" << a[1] << "+" << a[2] << "=" << ret_area << endl; 1050
 } 1051
 else 1052
 printf("Are you kidding??? What kind of node is it then?\n"); 1053
 1054
 return ret_area; 1055
} 1056
 1057
double ReturnArea(ERegion poly, int node, Coords *pos) 1058
{ 1059
 int j, *id=0, num_nodes; 1060
 double area, *coordsx=0, *coordsy=0, *ptrx, *ptry; 1061
 Coords xy,prev; 1062
 list<int> nodes; 1063
 //printf("x:%f\ty:%f\n", pos->x, pos->y); 1064
 1065
 ElleFlynnNodes(poly,&id,&num_nodes); 1066
 if ((coordsx = (double *)malloc(num_nodes*sizeof(double)))== 0) OnError("ElleRegionArea",MALLOC_ERR); 1067
 if ((coordsy = (double *)malloc(num_nodes*sizeof(double)))== 0) OnError("ElleRegionArea",MALLOC_ERR); 1068
 1069
 for (j=0;j<num_nodes;j++) 1070
 nodes.push_back(id[j]); 1071
 1072
 if (num_nodes != nodes.size()) 1073
 printf("ERROR: ReturnArea: sizes don't match\n"); 1074
 1075
 if (id) free(id); 1076
 1077
 j=0; 1078
 1079
 //just reordeer the list until the current node is at the front 1080
 while (j==0) { 1081
 if(nodes.front()==node) 1082
 j=1; 1083
 else { 1084
 nodes.push_back(nodes.front()); 1085
 nodes.pop_front(); 1086
 } 1087
 } 1088
 1089
 //do the same stuff as ElleRegionArea except for the first "node" 1090
 prev.x = pos->x; 1091
 prev.y = pos->y; 1092
 1093
 ptrx=coordsx; 1094
 ptry=coordsy; 1095
 while (nodes.size()>0) { 1096
 if (nodes.front()==node){ 1097
 xy=*pos; 1098
 ElleCoordsPlotXY(&xy, &prev); 1099
 *ptrx = xy.x; ptrx++; 1100
 *ptry = xy.y; ptry++; 1101
 nodes.pop_front(); 1102
 } else { 1103
 ElleNodePlotXY(nodes.front(),&xy,&prev); 1104
 *ptrx = xy.x; ptrx++; 1105
 *ptry = xy.y; ptry++; 1106

Jens Rößiger - 2013 Page 3.26

Appendix 5 – process code

 prev = xy; 1107
 nodes.pop_front(); 1108
 } 1109
 } 1110
 area = polyArea(coordsx,coordsy,num_nodes); 1111
 free(coordsx); 1112
 free(coordsy); 1113
 return(area); 1114
} 1115
 1116
clusterTracking::clusterTracking(void) 1117
{ 1118
 1119
 // find the phases --> temporary since it has to stay compatible to other functions... 1120
 lInfDiffPhases.clear(); 1121
 lClustDiffPhases.clear(); 1122
 lFicksDiffPhases.clear(); 1123
 lAllPhases.clear(); 1124
 1125
 for (int i = 0; i < phases.no_phases; i++) { 1126
 if (phases.phasep[i].infinite_diff == 1) 1127
 if (phases.phasep[i].cluster_diff == 1) { 1128
 lClustDiffPhases.push_back(i); 1129
 lAllPhases.push_back(i); 1130
 vClusterPhases.push_back(i); 1131
 } 1132
 else { 1133
 lInfDiffPhases.push_back(i); 1134
 lAllPhases.push_back(i); 1135
 } 1136
 else { 1137
 lFicksDiffPhases.push_back(i); 1138
 lAllPhases.push_back(i); 1139
 } 1140
 } 1141
 1142
 // read the Cluster Tracking stuff from the config file 1143
 1144
 bool bFound = false; 1145
 fstream file; 1146
 string line; 1147
 stringstream linestr; 1148
 char c; 1149
 // This functions reads the config file to storage... 1150
 1151
 file.open ("phase_db.txt", fstream::in); 1152
 1153
 if (file.is_open()) { 1154
 while (file.good()) { 1155
 getline (file,line); 1156
 //cout << line << endl; 1157
 if (bFound == false) { 1158
 if (line.find("CLUSTER_TRACKING") != string::npos) 1159
 bFound = true; 1160
 } 1161
 else { 1162
 if (line.length() > 0) { 1163
 c = line.at(0); 1164
 if (c!='#' && c!=' ') { 1165
 linestr.clear(); 1166
 linestr << line; 1167
 linestr >> dMultiplierA >> dMultiplierB >> dMultiplierC >> dMultiplierD; 1168
 linestr.clear(); 1169
 bFound = false; 1170
 } 1171
 } 1172
 } 1173
 } 1174
 } 1175
 file.close(); 1176
 1177
 // set the max Flynns parameter. 1178
 dAreaShift = 1e-10; 1179
 clusterTracking::findClusters(); 1180
} 1181
 1182
clusterTracking::~clusterTracking() 1183
{ 1184
} 1185
 1186
void clusterTracking::updateClusters(void) 1187
{ 1188
 clusterTracking::findClusters(); 1189
 clusterTracking::findSplit(); 1190
 clusterTracking::findMerge(); 1191
 clusterTracking::checkDoubleClusterAreaLoop(); 1192
} 1193
 1194
void clusterTracking::getPhaseAreas(void) 1195
{ 1196
 double dPhaseArea; 1197
 1198
 vPhaseAreas.clear(); 1199
 // get the complete area for each phase 1200
 for (int i = 0; i < phases.no_phases; i++) { 1201
 dPhaseArea = 0; // set the start to 0 1202
 for (int j = 0; j < iMaxFlynns; j++) { 1203
 if (vFlynnPhase.at (j) == i) { 1204
 dPhaseArea += ElleRegionArea(vFlynns.at (j)); 1205
 } 1206
 } 1207

Jens Rößiger - 2013 Page 3.27

Appendix 5 – process code

 vPhaseAreas.push_back(dPhaseArea); 1208
 } 1209
} 1210
 1211
bool clusterTracking::writeInitialData(const char *filename) 1212
{ 1213
 fstream fInitial; 1214
 1215
 if (!fileExists(filename)) { 1216
 1217
 fInitial.open (filename, fstream::out | fstream::trunc); 1218
 1219
 clusterTracking::getPhaseAreas(); 1220
 1221
 if (fInitial.is_open()) { 1222
 fInitial << scientific << vPhaseAreas[0]; 1223
 for (int i = 1; i < phases.no_phases; i++) 1224
 fInitial << " " << vPhaseAreas[i]; 1225
 fInitial << endl; 1226
 } 1227
 fInitial.close(); 1228
 1229
 return true; 1230
 } 1231
 else { 1232
 cout << "WARNING: initial file present!" << endl << "If you start at step 0 delete this file first!" << endl; 1233
 return false; 1234
 } 1235
} 1236
 1237
bool clusterTracking::writeData(const char *filename, int step) 1238
{ 1239
 fstream fDataFile; 1240
 1241
 fDataFile.open (filename, fstream::out | fstream::app); 1242
 1243
 clusterTracking::getPhaseAreas(); 1244
 1245
 if (fDataFile.is_open()) { 1246
 fDataFile << step << " " << scientific << vPhaseAreas[0]; 1247
 for (int i = 1; i < phases.no_phases; i++) 1248
 fDataFile << " " << vPhaseAreas[i]; 1249
 fDataFile << endl; 1250
 } 1251
 fDataFile.close(); 1252
 1253
 return true; 1254
} 1255
 1256
 1257
void clusterTracking::getClusters(void) 1258
{ 1259
 int temp_int, iOnList; 1260
 double temp_double; 1261
 1262
 vector<int> vCluster; 1263
 vector<vector<int> > vClusters; 1264
 list<int> lOriginal, lNeighbour; 1265
 1266
 for (int z = 0; z < vClusterPhases.size(); z++) { 1267
 lOriginal.clear(); 1268
 // get all flynns with phase i 1269
 for (int j = 0; j < iMaxFlynns; j++) { 1270
 if (vFlynnPhase.at (j) == vClusterPhases.at(z)) 1271
 lOriginal.push_back(vFlynns.at (j)); 1272
 } 1273
 // just to be sure that every Flynn is only once in the Vector. 1274
 lOriginal.sort(); 1275
 lOriginal.unique(); 1276
 1277
 // find flynns that are clustered together 1278
 // as long as there are any flynns in the phase list 1279
 while (lOriginal.size() > 0) { 1280
 vCluster.clear(); 1281
 vCluster.push_back(lOriginal.front()); // put the first flynn into the cluster list 1282
 lOriginal.pop_front(); // delete that element from the list 1283
 1284
 for (int n = 0; n < vCluster.size(); n++) { 1285
 lNeighbour.clear(); // clear the neigbour list 1286
 ElleFlynnNbRegions(vCluster.at(n), lNeighbour); //find neighbours for the current flynn (n) in the cluster list 1287
 1288
 // check whether any flynn in the neighbour list matches the current phase (i) 1289
 // as long as there are entries in the neighbours list do the following 1290
 while (lNeighbour.size() > 0) { 1291
 ElleGetFlynnRealAttribute(lNeighbour.front(), &temp_double, iFlynnPhase); // get phase from flynn 1292
 temp_int = (int) temp_double; // convert to int 1293
 1294
 //compare to current phase 1295
 if (temp_int == vClusterPhases.at(z)) { // if Flynn has the same phase 1296
 // look whether the Flynn is already on the cluster list 1297
 int iOnList = 0; 1298
 for (int i = 0; i < vCluster.size() && iOnList == 0; i++) 1299
 if (lNeighbour.front() == vCluster.at(i)) 1300
 iOnList = 1; 1301
 if (iOnList == 0) { // if NOT 1302
 vCluster.push_back(lNeighbour.front()); // add flynn to cluster list 1303
 lOriginal.remove(lNeighbour.front()); // remove that flynn from the original phase list 1304
 lNeighbour.pop_front(); // remove it from the neighbours list 1305
 } 1306
 else // if it is 1307
 lNeighbour.pop_front(); // just remove it from the neighbours list 1308

Jens Rößiger - 2013 Page 3.28

Appendix 5 – process code

 } 1309
 else // if Flynn has not the same phase 1310
 lNeighbour.pop_front(); // just remove it from the neighbours list 1311
 } 1312
 } 1313
 vClusters.push_back(vCluster); //vector which contains all the flynns beloning to a cluster is put in another vector 1314
 } 1315
 vPhasesClusters.push_back(vClusters); 1316
 } 1317
 1318
 //for (int z = 0; z < vPhasesClusters.size(); z++) { 1319
 //for (int i = 0; i < vPhasesClusters[z].size(); i++) { 1320
 //cout << vPhasesClusterAreas[z][i] << " :"; 1321
 //for (int j = 0; j < vPhasesClusters[z][i].size(); j++) { 1322
 //cout << " " << vPhasesClusters[z][i][j]; 1323
 //} 1324
 //cout << endl; 1325
 //} 1326
 //} 1327
} 1328
 1329
vector<double> clusterTracking::returnMultiplier (vector<double> vAreaPercentage) 1330
{ 1331
 //cout << dMultiplierA << " " << dMultiplierB << " " << dMultiplierC << " " << dMultiplierD << endl; 1332
 vector<double> vMultiplier; 1333
 1334
 for (int i = 0; i < vAreaPercentage.size(); i++) { 1335
 vMultiplier.push_back ((dMultiplierA * pow(vAreaPercentage[i], dMultiplierD)) + (dMultiplierB * vAreaPercentage[i]) 1336
+ dMultiplierC); 1337
 } 1338
 return vMultiplier; 1339
} 1340
 1341
double clusterTracking::returnFlynnAreaChange (int iFlynn, int iNode, Coords * xyNewPos) 1342
{ 1343
 //if (iNode == phases.p_en) { 1344
 //fstream file; 1345
 //file.open ("2.txt", fstream::out | fstream::app); 1346
 //file << ReturnArea(iFlynn, iNode, xyNewPos) << " - " << ElleRegionArea(iFlynn) << " = " << (ReturnArea(iFlynn, 1347
iNode, xyNewPos) - ElleRegionArea(iFlynn)) << endl; 1348
 //file.close(); 1349
 //} 1350
 return (ReturnArea(iFlynn, iNode, xyNewPos) - ElleRegionArea(iFlynn)); 1351
} 1352
 1353
vector<double> clusterTracking::returnClusterAreaChange (vector<vector<int> > vPhaseFlynns, int iNode, Coords * xyLoc) 1354
{ 1355
 bool bFound; 1356
 double dClusterArea, dClusterAreaCheck; 1357
 vector<double> vClusterAreaPercentageChange, vClusterAreaMultiplier, vClusterAreaEnergy, vCurrentArea, vClusterArea;// just 1358
get the area for all clusters which touch that node and store it there. 1359
 vector<double> vPhaseClusterAreaChange; // get the area change for all clusters which touch the node with the given 1360
movement. 1361
 1362
 for (int i = 0; i < vPhaseFlynns.size(); i++) { 1363
 vPhaseClusterAreaChange.push_back (0); 1364
 ElleGetFlynnRealAttribute(vPhaseFlynns[i][0], &dClusterArea, iFlynnCluster); 1365
 for (int j = 0; j < vPhaseFlynns[i].size(); j++) { 1366
 vPhaseClusterAreaChange.at (i) += returnFlynnAreaChange (vPhaseFlynns[i][j], iNode, xyLoc); 1367
 if (j > 0) { 1368
 ElleGetFlynnRealAttribute(vPhaseFlynns[i][j], &dClusterAreaCheck, iFlynnCluster); 1369
 if (dClusterArea != dClusterAreaCheck) { 1370
 cout << "WARNING: Stored Clusterareas in the Flynns that belong to the same Cluster are not the same!!" << endl; 1371
 //cout << dClusterArea << "=" << dClusterAreaCheck << endl; 1372
 //cout << *vPhaseFlynns[i][0] << " - " << *vPhaseFlynns[i][j] << endl; 1373
 clusterTracking::findClusters(); 1374
 clusterTracking::findSplit(); 1375
 clusterTracking::findMerge(); 1376
 clusterTracking::checkDoubleClusterAreaLoop(); 1377
 ElleGetFlynnRealAttribute(vPhaseFlynns[i][0], &dClusterArea, iFlynnCluster); 1378
 } 1379
 } 1380
 } 1381
 1382
 vClusterArea.push_back(dClusterArea); 1383
 1384
 1385
 // get the current area 1386
 for (int z = 0, bFound = false; z < vPhasesClusters.size() && bFound == false; z++) { 1387
 for (int j = 0; j < vPhasesClusters[z].size() && bFound == false; j++) { 1388
 for (int k = 0; k < vPhasesClusters[z][j].size() && bFound == false; k++) { 1389
 if (vPhasesClusters[z][j][k] == vPhaseFlynns[i][0]) { 1390
 vCurrentArea.push_back(vPhasesClusterAreas[z][j]); 1391
 bFound = true; 1392
 } 1393
 } 1394
 } 1395
 } 1396
 //vClusterAreaPercentageChange.push_back (fabs(((vCurrentArea.at(i) + vPhaseClusterAreaChange.at(i)) / 1397
vClusterArea.at(i)) - 1)); 1398
 } 1399
 //vClusterAreaMultiplier = clusterTracking::returnMultiplier (vClusterAreaPercentageChange); 1400
 if (vPhaseClusterAreaChange.size() != vCurrentArea.size()) 1401
 cout << "ERROR in returnClusterAReaChange --> Vector size (PhaseCluster:CurrentArea) Not the same!! " 1402
 << vPhaseClusterAreaChange.size() << ":" << vCurrentArea.size() 1403
 << " " << vPhaseClusterAreaChange.front() << " " << vPhaseFlynns[0][0] << endl; 1404
 1405
 if (vPhaseClusterAreaChange.size() != vClusterArea.size()) 1406
 cout << "ERROR in returnClusterAReaChange --> Vector size (PhaseCluster:ClusterArea) Not the same!!" 1407
 << vPhaseClusterAreaChange.size() << ":" << vClusterArea.size() << endl; 1408
 1409

Jens Rößiger - 2013 Page 3.29

Appendix 5 – process code

 for (int i = 0; i < vPhaseClusterAreaChange.size(); i++) { 1410
 vClusterAreaEnergy.push_back (dMultiplierA * pow (fabs(((vCurrentArea.at(i) + (vPhaseClusterAreaChange.at(i))) 1411
- vClusterArea.at(i)) / vClusterArea.at(i)), dMultiplierD)); 1412
 //vClusterAreaEnergy.push_back (fabs(vCurrentArea.at(i) + (vPhaseClusterAreaChange.at(i)) - vClusterArea.at(i)) 1413
* vClusterAreaMultiplier.at(i)); 1414
 } 1415
 1416
 1417
 if (iNode == phases.p_en) { 1418
 fstream file; 1419
 file.open ("1.txt", fstream::out | fstream::app); 1420
 for (int i = 0; i < vPhaseClusterAreaChange.size(); i++) { 1421
 file << "TripleNodeArea " << i << " " << xyLoc->x << " " << xyLoc->y << " " << vPhaseClusterAreaChange.at (i) << " " 1422
<< vClusterArea.at(i) << " " << vCurrentArea.at(i) << " " << vClusterAreaEnergy.at (i) << endl; 1423
 //file << "TripleNodeArea " << i << " " << xyLoc->x << " " << xyLoc->y << " " << vPhaseClusterAreaChange.at (i) << " " 1424
<< vClusterArea.at(i) << " " << vCurrentArea.at(i) << " " << vClusterAreaPercentageChange.at (i) << " " << 1425
vClusterAreaMultiplier.at (i) << " " << vClusterAreaEnergy.at (i) << endl; 1426
 } 1427
 file.close(); 1428
 } 1429
 1430
 //if (iNode == 18474) { 1431
 //for (int i = 0; i < vClusterAreaPercentageChange.size(); i++) { 1432
 //cout << "TripleNode " << i << " : " << vClusterAreaPercentageChange.at (i) << " : " << vClusterAreaMultiplier.at (i 1433
) << " : " << vClusterAreaEnergy.at (i) << endl; 1434
 //} 1435
 //} 1436
 1437
 //if (iNode == 14034) { 1438
 //for (int i = 0; i < vClusterAreaPercentageChange.size(); i++) { 1439
 //cout << "DoubleNode " << i << " : " << vClusterAreaPercentageChange.at (i) << " : " << vClusterAreaMultiplier.at (i 1440
) << " : " << vClusterAreaEnergy.at (i) << endl; 1441
 //} 1442
 //} 1443
 1444
 return vClusterAreaEnergy; 1445
} 1446
 1447
double clusterTracking::returnClusterAreaEnergy (int iNode , Coords * xyLoc) 1448
{ 1449
 int iNodeType = 3; 1450
 int iNeighbours[3], iFlynns[3]; 1451
 1452
 ElleNeighbourNodes(iNode,iNeighbours); 1453
 1454
 //cout << "Node: " << iNode << ", Neighbours:"; 1455
 //for (int i = 0; i < 3; i++) 1456
 //cout << " " << iNeighbours[i]; 1457
 //cout << endl; 1458
 1459
 for (int i = 0, j = 0; i < 3; i++) { 1460
 if (iNeighbours[i] != NO_NB) { 1461
 ElleNeighbourRegion(iNode,iNeighbours[i],&iFlynns[j]); 1462
 j++; 1463
 } 1464
 else 1465
 iNodeType = 2; 1466
 } 1467
 //cout << "NodeType: " << iNodeType << ", NeighbourFlynns:"; 1468
 //for (int i = 0; i < iNodeType; i++) 1469
 //cout << " " << iFlynns[i]; 1470
 //cout << endl; 1471
 1472
 1473
 1474
 int iFlynnPhaseCheck; 1475
 double dFlynnPhaseCheck; 1476
 vector<int> vClusterPhaseFlynns; 1477
 vector<vector<int> > vPhaseClusterFlynns; 1478
 1479
 for (int i = 0; i < vClusterPhases.size(); i++) { 1480
 vClusterPhaseFlynns.clear(); 1481
 for (int j = 0; j < iNodeType; j++) { 1482
 ElleGetFlynnRealAttribute(iFlynns[j], &dFlynnPhaseCheck, iFlynnPhase); 1483
 iFlynnPhaseCheck = (int) dFlynnPhaseCheck; 1484
 if (iFlynnPhaseCheck == vClusterPhases[i]) { 1485
 vClusterPhaseFlynns.push_back(iFlynns[j]); 1486
 } 1487
 } 1488
 if (vClusterPhaseFlynns.size() > 0) 1489
 vPhaseClusterFlynns.push_back(vClusterPhaseFlynns); 1490
 } 1491
 1492
 if (vPhaseClusterFlynns.size() == 0) 1493
 return 0.0; 1494
 1495
 double dClusterAreaEnergy = 0; 1496
 vector<double> vClusterAreaEnergy = clusterTracking::returnClusterAreaChange (vPhaseClusterFlynns, iNode, xyLoc); 1497
 1498
 for (int i = 0; i < vClusterAreaEnergy.size(); i++) 1499
 dClusterAreaEnergy += vClusterAreaEnergy.at (i); 1500
 1501
 return dClusterAreaEnergy; 1502
} 1503
 1504
 1505
void clusterTracking::getClusterAreas(void) 1506
{ 1507
 // Calculate the Area of the Cluster 1508
 double dClusterArea = 0.0; 1509
 1510

Jens Rößiger - 2013 Page 3.30

Appendix 5 – process code

 vector<double> vClusterArea; 1511
 1512
 vPhasesClusterAreas.clear(); 1513
 1514
 for (int z = 0; z < vPhasesClusters.size(); z++) { 1515
 vClusterArea.clear(); 1516
 for (int i = 0; i < vPhasesClusters[z].size(); i++) { 1517
 dClusterArea = 0.0; 1518
 for (int j = 0; j < vPhasesClusters[z][i].size(); j++) { 1519
 dClusterArea += ElleRegionArea(vPhasesClusters[z][i][j]); 1520
 } 1521
 vClusterArea.push_back(dClusterArea); 1522
 } 1523
 vPhasesClusterAreas.push_back(vClusterArea); 1524
 } 1525
} 1526
 1527
void clusterTracking::setClusterAreas(void) 1528
{ 1529
 for (int z = 0; z < vPhasesClusters.size(); z++) { 1530
 for (int i = 0; i < vPhasesClusters[z].size(); i++) { 1531
 for (int j = 0; j < vPhasesClusters[z][i].size(); j++) { 1532
 ElleSetFlynnRealAttribute(vPhasesClusters[z][i][j], vPhasesClusterAreas[z][i], iFlynnCluster); 1533
 } 1534
 } 1535
 } 1536
} 1537
 1538
void clusterTracking::findSplit(void) 1539
{ 1540
 double dArea, dAreaCheck; 1541
 1542
 vector<int> vSplitClusterFlynns; 1543
 vector<vector<int> > vSplitClusters; 1544
 1545
 for (int z = 0; z < vPhasesClusters.size(); z++) { 1546
 for (int i = 0; i < vPhasesClusters[z].size(); i++) { 1547
 ElleGetFlynnRealAttribute(vPhasesClusters[z][i][0], &dArea, iFlynnCluster); 1548
 1549
 vSplitClusters.clear(); 1550
 1551
 for (int j = 0; j < vPhasesClusters[z].size(); j++) { 1552
 vSplitClusterFlynns.clear(); 1553
 for (int k = 0; k < vPhasesClusters[z][j].size(); k++) { 1554
 ElleGetFlynnRealAttribute(vPhasesClusters[z][j][k], &dAreaCheck, iFlynnCluster); 1555
 if (dArea == dAreaCheck) { 1556
 vSplitClusterFlynns.push_back(vPhasesClusters[z][j][k]); 1557
 } 1558
 } 1559
 if (vSplitClusterFlynns.size() > 0) { 1560
 vSplitClusters.push_back(vSplitClusterFlynns); 1561
 } 1562
 } 1563
 // Wenn mehr als ein Cluster mit Flynns mit der gleichen Fläche gefunden wurde --> Der Cluster hat sich geteilt --> 1564
Flächen neu verteilen. 1565
 // (Ein Cluster bedeutet der Cluster selbst wurde gefunden) 1566
 if (vSplitClusters.size() > 1) { 1567
 //cout << "Cluster with same areanumber detected.... (SPLIT)" << endl; 1568
 //for (int g = 0; g < vSplitClusters.size(); g++) { 1569
 //for (int h = 0; h < vSplitClusters[g].size(); h++) { 1570
 //cout << vSplitClusters[g][h] << " "; 1571
 //} 1572
 //cout << endl; 1573
 //} 1574
 clusterTracking::resolveSplit(vSplitClusters); 1575
 } 1576
 } 1577
 } 1578
} 1579
 1580
void clusterTracking::findClusters(void) 1581
{ 1582
 vPhasesClusterAreas.clear(); 1583
 vPhasesClusters.clear(); 1584
 vFlynns.clear(); 1585
 vFlynnPhase.clear(); 1586
 1587
 int temp_int; 1588
 double temp_double; 1589
 1590
 vector<int> ran; 1591
 1592
 iMaxFlynns = ElleMaxFlynns(); 1593
 ran.clear(); 1594
 for (int i = 0; i < iMaxFlynns; i++) 1595
 if (ElleFlynnIsActive(i)) 1596
 ran.push_back(i); 1597
 1598
 iMaxFlynns = ran.size(); 1599
 1600
 for (int i = 0; i < iMaxFlynns; i++) { 1601
 vFlynns.push_back(ran.at(i)); 1602
 ElleGetFlynnRealAttribute(vFlynns.back(), &temp_double, iFlynnPhase); 1603
 temp_int = (int)temp_double; 1604
 vFlynnPhase.push_back(temp_int); 1605
 } 1606
 1607
 if (vFlynnPhase.size() != vFlynns.size()) 1608
 cout << "ERROR: findClusters --> FlynnPhase and Flynn Vector don't have the same size!!!" << endl; 1609
 1610
 clusterTracking::getClusters(); 1611

Jens Rößiger - 2013 Page 3.31

Appendix 5 – process code

 clusterTracking::getClusterAreas(); 1612
} 1613
 1614
void clusterTracking::findMerge(void) 1615
{ 1616
 double dArea, dAreaCheck; 1617
 1618
 list<double> lNotMatchingAreas; 1619
 1620
 for (int z = 0; z < vPhasesClusters.size(); z++) { 1621
 for (int i = 0; i < vPhasesClusters[z].size(); i++) { 1622
 lNotMatchingAreas.clear(); 1623
 ElleGetFlynnRealAttribute(vPhasesClusters[z][i][0], &dArea, iFlynnCluster); 1624
 for (int j = 1; j < vPhasesClusters[z][i].size(); j++) { 1625
 ElleGetFlynnRealAttribute(vPhasesClusters[z][i][j], &dAreaCheck, iFlynnCluster); 1626
 // if the Cluster Areas of the Flynn ain't match the first one... --> Merge? 1627
 if (dArea != dAreaCheck) { 1628
 lNotMatchingAreas.push_back(dAreaCheck); 1629
 } 1630
 } 1631
 // all double Entries have to be deleted... --> problem if two of the merged clusters had the same areas... 1632
 lNotMatchingAreas.sort(); 1633
 lNotMatchingAreas.unique(); 1634
 1635
 if (lNotMatchingAreas.size() > 0) { 1636
 lNotMatchingAreas.push_back(dArea); 1637
 clusterTracking::resolveMerge(z, i, lNotMatchingAreas); 1638
 } 1639
 } 1640
 } 1641
} 1642
 1643
void clusterTracking::checkDoubleClusterAreaLoop (void) 1644
{ 1645
 bool bChange; 1646
 1647
 do { 1648
 bChange = false; 1649
 for (int z = 0; z < vPhasesClusters.size() && !bChange; z++) 1650
 for (int i = 0; i < vPhasesClusters[z].size() - 1 && !bChange; i++) 1651
 bChange = clusterTracking::checkDoubleClusterArea (z, i, vPhasesClusters[z].size() - 1); 1652
 } while (bChange == true); 1653
} 1654
 1655
bool clusterTracking::checkDoubleClusterArea (int z, int i, int iMax) 1656
{ 1657
 bool bChanged = false; 1658
 1659
 if (i < iMax) { 1660
 double dCheckA, dCheckB; 1661
 ElleGetFlynnRealAttribute(vPhasesClusters[z][i][0], &dCheckA, iFlynnCluster); 1662
 ElleGetFlynnRealAttribute(vPhasesClusters[z][iMax][0], &dCheckB, iFlynnCluster); 1663
 if (dCheckA == dCheckB) { 1664
 cout << "DOUBLE AREA DETECTED!!!" << endl; 1665
 cout << dCheckA << " | Flynn: " << vPhasesClusters[z][i][0] << " (" << i << ") || " << dCheckB << " | Flynn: " << 1666
vPhasesClusters[z][iMax][0] << " (" << iMax << ")" << endl; 1667
 bChanged = clusterTracking::resolveDoubleClusterArea (z, i, iMax, dCheckA); 1668
 } 1669
 if (clusterTracking::checkDoubleClusterArea (z, i, iMax-1)) 1670
 bChanged = true; 1671
 } 1672
 return bChanged; 1673
} 1674
 1675
bool clusterTracking::resolveDoubleClusterArea (int z, int i, int iMax, double dCheck) 1676
{ 1677
 for (int j = 0; j < vPhasesClusters[z][i].size(); j++) 1678
 ElleSetFlynnRealAttribute(vPhasesClusters[z][i][j], dCheck-dAreaShift, iFlynnCluster); 1679
 for (int j = 0; j < vPhasesClusters[z][iMax].size(); j++) 1680
 ElleSetFlynnRealAttribute(vPhasesClusters[z][iMax][j], dCheck+dAreaShift, iFlynnCluster); 1681
 1682
 return true; 1683
} 1684
 1685
void clusterTracking::resolveMerge (int z, int i, list<double> lNotMatchingAreas) 1686
{ 1687
 double dMergedArea = 0.0; 1688
 // calculate new cluster area (just add the old areas together) 1689
 1690
 cout << "Cluster has different Clusterflynns... (MERGE) "; 1691
 while (lNotMatchingAreas.size() > 0) { 1692
 cout << lNotMatchingAreas.back() << " "; 1693
 dMergedArea += lNotMatchingAreas.back(); 1694
 lNotMatchingAreas.pop_back(); 1695
 } 1696
 cout << ":: " << dMergedArea << endl; 1697
 // set new area for ALL flynns in that cluster! 1698
 for (int j = 0; j < vPhasesClusters[z][i].size(); j++) { 1699
 ElleSetFlynnRealAttribute(vPhasesClusters[z][i][j], dMergedArea, iFlynnCluster); 1700
 } 1701
} 1702
 1703
void clusterTracking::resolveSplit(vector<vector<int> > vSplitClusters) 1704
{ 1705
 double dSplitClusterAreas[vSplitClusters.size()], dSplitClusterRatio, dSplitClusterAreaComplete, dSplitClusterNewArea; 1706
 1707
 ElleGetFlynnRealAttribute(vSplitClusters[0][0], &dSplitClusterNewArea, iFlynnCluster); 1708
 cout << "Cluster with same areanumber detected.... (SPLIT) " << dSplitClusterNewArea << " |"; 1709
 dSplitClusterAreaComplete = 0; 1710
 for (int j = 0; j < vSplitClusters.size(); j++) { 1711
 dSplitClusterAreas[j] = 0; 1712

Jens Rößiger - 2013 Page 3.32

Appendix 5 – process code

 cout << "| "; 1713
 for (int k = 0; k < vSplitClusters[j].size(); k++) { 1714
 dSplitClusterAreas[j] += ElleRegionArea(vSplitClusters[j][k]); 1715
 cout << vSplitClusters[j][k] << " "; 1716
 } 1717
 dSplitClusterAreaComplete += dSplitClusterAreas[j]; 1718
 } 1719
 cout << "|" << endl; 1720
 for (int j = 0; j < vSplitClusters.size(); j++) { 1721
 // Calculate Ratio for that part of the split Cluster (Split Part / Current Complete Area) --> For the Ratio calculation 1722
the old Area is not used. 1723
 dSplitClusterRatio = dSplitClusterAreas[j] / dSplitClusterAreaComplete; 1724
 // Calculate New Area with the OLD Area and the calculated Ratio 1725
 ElleGetFlynnRealAttribute(vSplitClusters[j][0], &dSplitClusterNewArea, iFlynnCluster); 1726
 dSplitClusterNewArea *= dSplitClusterRatio; 1727
 // Write new Area in that part of the Flynn. 1728
 for (int k = 0; k < vSplitClusters[j].size(); k++) { 1729
 ElleSetFlynnRealAttribute(vSplitClusters[j][k], dSplitClusterNewArea, iFlynnCluster); 1730
 } 1731
 } 1732
} 1733
 1734
bool fileExists(const char *filename) 1735
{ 1736
 ifstream ifile(filename); 1737
 return ifile; 1738
} 1739
 1740
int diffusearea(int mode, int max) 1741
{ 1742
 int bracket = 20; // Used for inf and clust diffusion. Defines the bracket for the node amount in each cluster. 10 Means for 1743
-9 to +9 nodes compared to the previous step the node amount of the previous step is used. A larger changes results in the 1744
use of the current node amount. 1745
 int n, i, j, m, x=1, err, temp_int, check, found; // infinite=0, infinite_p[3], *nodes, node_type, node, 1746
 int nghbr[3], rgn[3], nn_rgn[3], type_i[3], nn_type_i[3], nnode[3], diff_nodes_size=0; //Diffusion stuff 1747
 double type_a[3], nn_type_a[3], phase_area[phases.no_phases], temp_double, area; 1748
 //int *inf_diff_p, infn, *clust_diff_p, clustn; // collection arrays and counter for infinite und cluster diffusion phases 1749
 int on_list=0, *flynnnodes, flynnnodecount=0; //clusterdiffusion stuff 1750
 1751
 vector<int> cluster; 1752
 list<int> original, neighbour, doubles, triples, doubles_temp, triples_temp, infinite; 1753
 list<int> inf_diff_p, clust_diff_p, diff_p, all_p; 1754
 1755
 // copy the stuff from the overall list. 1756
 inf_diff_p = lInfDiffPhases; 1757
 clust_diff_p = lClustDiffPhases; 1758
 diff_p = lFicksDiffPhases; 1759
 all_p = lAllPhases; 1760
 1761
 DiffNodes *diff_nodes; 1762
 1763
 infinite.clear(); 1764
 1765
 // if there are cluster diffusion phases do cluster diffusion 1766
 while (clust_diff_p.size()>0) { 1767
 original.clear(); 1768
 // get all flynns with phase i 1769
 for (j=0;j<max;j++) { 1770
 if (grains[j].phase==clust_diff_p.front()) 1771
 original.push_back(grains[j].flynn); 1772
 } 1773
 // find flynns that are clustered together 1774
 // as long as there are any flynns in the phase list 1775
 while (original.size()>0) { 1776
 cluster.clear(); 1777
 cluster.push_back(original.front()); // put the first flynn into the cluster list 1778
 original.pop_front(); // delete that element from the list 1779
 for (n=0;n<cluster.size();n++) { 1780
 neighbour.clear(); // clear the neigbour list 1781
 ElleFlynnNbRegions(cluster.at(n), neighbour); //find neighbours for the current flynn (n) in the cluster list 1782
 1783
 //check whether any flynn in the neighbour list matches the current phase (i) 1784
 // as long as there are entries in the neighbours list do the following 1785
 while (neighbour.size()>0) { 1786
 ElleGetFlynnRealAttribute(neighbour.front(), &temp_double, iFlynnPhase); // get phase from flynn 1787
 temp_int = (int)temp_double; // convert to int 1788
 1789
 //compare to current phase 1790
 if (temp_int == clust_diff_p.front()) { // if right 1791
 for (i=0,on_list=0;i<cluster.size() && on_list==0;i++) // look whether the Flynn is already on the cluster list 1792
 if (neighbour.front()==cluster.at(i)) 1793
 on_list=1; 1794
 if (on_list==0) { // if NOT 1795
 cluster.push_back(neighbour.front()); // add flynn to cluster list 1796
 original.remove(neighbour.front()); // remove that flynn from the original phase list 1797
 neighbour.pop_front(); // remove it from the neighbours list 1798
 } 1799
 else // if it is 1800
 neighbour.pop_front(); // just remove it from the neighbours list 1801
 } 1802
 else // if not right 1803
 neighbour.pop_front(); // just remove it from the neighbours list 1804
 } 1805
 } 1806
 1807
 // for every flynn on the cluster list -> find the nodes and separate them on a list for doubles and triples. 1808
 doubles_temp.clear(); 1809
 triples_temp.clear(); 1810
 while (cluster.size()>0) { 1811
 ElleFlynnNodes(cluster.back(), &flynnnodes, &flynnnodecount); 1812
 for (j=0;j<flynnnodecount;j++) { 1813

Jens Rößiger - 2013 Page 3.33

Appendix 5 – process code

 if (ElleNodeIsDouble(*(flynnnodes+j))) 1814
 doubles_temp.push_back(*(flynnnodes+j)); 1815
 else if (ElleNodeIsTriple(*(flynnnodes+j))) 1816
 triples_temp.push_back(*(flynnnodes+j)); 1817
 else 1818
 printf("ERROR: diffusearea: node.push_back\n"); 1819
 } 1820
 cluster.pop_back(); 1821
 free(flynnnodes); 1822
 flynnnodecount=0; 1823
 1824
 } 1825
 // sort the two lists 1826
 doubles_temp.sort(); 1827
 triples_temp.sort(); 1828
 doubles.clear(); 1829
 triples.clear(); 1830
 1831
 // clear the doubles list of double entries 1832
 // those are the doubles nodes enclosed in the same phase and therefore don't matter for diffusion 1833
 temp_int=-1; 1834
 while (doubles_temp.size()>0) { 1835
 temp_int=doubles_temp.front(); // first one 1836
 doubles_temp.pop_front(); // delete "first" list entry 1837
 if (temp_int==doubles_temp.front()) { // compare to the "second" entry 1838
 doubles_temp.remove(temp_int); // if the same, delete all entries with that number 1839
 } 1840
 else { 1841
 doubles_temp.remove(temp_int); // if not the same as the "second" delete all entries with that 1842
number, but 1843
 doubles.push_back(temp_int); // add it to the end of the list again 1844
 } 1845
 } 1846
 1847
 // clear the triples list of triple entries (double entries are still valid) 1848
 temp_int=-1; 1849
 while (triples_temp.size()>0) { 1850
 temp_int=triples_temp.front(); // first one 1851
 triples_temp.pop_front(); // delete first list entry 1852
 if (temp_int==triples_temp.front()) { // compare to the first entry (actually the second, because the 1853
first one got deleted) 1854
 triples_temp.pop_front(); // if the same delete the "second" entry 1855
 if (temp_int==triples_temp.front()) // compare to the "third" entry 1856
 triples_temp.remove(temp_int); // if the same, delete all entries with that number 1857
 else { 1858
 triples_temp.remove(temp_int); // if not the same as the "third" delete all entries, but 1859
 triples.push_back(temp_int); // add it to the end of the list again 1860
 } 1861
 } 1862
 else { 1863
 triples_temp.remove(temp_int); // if not the same as the "second" delete all entries, but 1864
 triples.push_back(temp_int); // add it to the end of the list again 1865
 } 1866
 } 1867
 1868
 // just in case delete all double entries of the lists 1869
 triples.unique(); 1870
 doubles.unique(); 1871
 1872
 //combine both lists 1873
 doubles.splice (doubles.begin(), triples); 1874
 1875
 // CHECK whether there are more or less boundary nodes along a cluster 1876
 int node_amount = (int) ElleNodeAttribute(doubles.front(), iClusterNodeCount); 1877
 int node_amount_new = (int) doubles.size(); 1878
 1879
 for (j=0;j<phases.no_phases;j++) { 1880
 // summarize all areas from the nodes of that phase 1881
 for (i=0,temp_double=0;i<doubles.size();i++) { 1882
 temp_double += ElleNodeAttribute(doubles.front(), attrib[j]); 1883
 doubles.push_back(doubles.front()); 1884
 doubles.pop_front(); 1885
 } 1886
 1887
// cout << "Cluster: " << original.size() << " Phase: " << j << " AreaEnergy: " << scientific << temp_double << endl; 1888
 1889
 if (node_amount < 0) 1890
 cout << "Invalid node amount...." << endl; 1891
 else if (node_amount == 0) { 1892
 temp_double /= doubles.size(); // Probably for the first step. Has to be extra case otherwise division by 0 1893
possible.... 1894
 // cout << "There would have been an impossible division at timestep: " << Settings_run.Count << " at Node: " << 1895
doubles.front() << endl; 1896
 } 1897
 else if (node_amount > node_amount_new - bracket && node_amount < node_amount_new + bracket) 1898
 temp_double /= node_amount; // divide area equally however use the previous node count in case there are 1899
nodes lost/added in the last time step. 1900
 else 1901
 temp_double /= doubles.size(); // divide the area equally 1902
 1903
 // set the new area for all nodes 1904
 for (i=0;i<doubles.size();i++) { 1905
 if (j > 0 && doubles.size() != (int) ElleNodeAttribute(doubles.front(), iClusterNodeCount)) 1906
 cout << "Node Amount Error" << endl; 1907
 ElleSetNodeAttribute(doubles.front(), (double) node_amount_new, iClusterNodeCount);// set the node amount for this 1908
time step for the nodes as well. 1909
 ElleSetNodeAttribute(doubles.front(), temp_double, attrib[j]); 1910
 doubles.push_back(doubles.front()); 1911
 infinite.push_back(doubles.front()); //add all the cluster nodes to a list which will be later on removed from the 1912
all nodes list 1913
 doubles.pop_front(); 1914

Jens Rößiger - 2013 Page 3.34

Appendix 5 – process code

 if (mode==2) { 1915
 fp=fopen("diff_cluster.txt", "a"); 1916
 fprintf(fp,"%d\t%le\t%d\t%d\n",doubles.back(),temp_double,original.size(),j); 1917
 fclose(fp); 1918
 } 1919
 } 1920
 } 1921
 1922
// OUTDATED --> New code works for all phases that lie on a infinite boundary and not just that one phase... 1923
// // summarize all areas from the nodes of that phase 1924
// for (i=0,temp_double=0;i<doubles.size();i++) { 1925
// temp_double += ElleNodeAttribute(doubles.front(), attrib[clust_diff_p.front()]); 1926
// doubles.push_back(doubles.front()); 1927
// doubles.pop_front(); 1928
// } 1929
// 1930
// // divide the area equally 1931
// temp_double /= doubles.size(); 1932
// 1933
// // set the new area for all nodes 1934
// for (i=0;i<doubles.size();i++) { 1935
// ElleSetNodeAttribute(doubles.front(), temp_double, attrib[clust_diff_p.front()]); 1936
// doubles.push_back(doubles.front()); 1937
// infinite.push_back(doubles.front()); //add all the cluster nodes to a list which will be later on removed from the 1938
all nodes list 1939
// doubles.pop_front(); 1940
// if (mode==2) { 1941
// fp=fopen("diff_cluster.txt", "a"); 1942
// fprintf(fp,"%d\t%le\t%d\n",doubles.back(),temp_double,original.size()); 1943
// fclose(fp); 1944
// } 1945
// } 1946
 1947
 1948
 } 1949
// inf_diff_p.remove(clust_diff_p.front()); //not needed anymore since it changed a bit 1950
 clust_diff_p.pop_front(); 1951
 1952
 1953
 } 1954
 // cluster diffusion finished 1955
 //## 1956
 //## 1957
 //## 1958
 // INFINTE DIFFUSION 1959
 //basicly the same as cluster diffusion without the finding of clusters at the beginning 1960
 //just add all the nodes of all the flynns that have this phase and remove the double double_nodes and triple triple_nodes 1961
 1962
 while (inf_diff_p.size()>0) { 1963
 original.clear(); 1964
 // get all flynns with phase i 1965
 for (j=0;j<max;j++) { 1966
 if (grains[j].phase==inf_diff_p.front()) 1967
 original.push_back(grains[j].flynn); 1968
 } 1969
 // find flynns that are clustered together 1970
 // as long as there are any flynns in the phase list 1971
 doubles_temp.clear(); 1972
 triples_temp.clear(); 1973
 while (original.size()>0) { 1974
 1975
 ElleFlynnNodes(original.back(), &flynnnodes, &flynnnodecount); 1976
 for (j=0;j<flynnnodecount;j++) { 1977
 if (ElleNodeIsDouble(*(flynnnodes+j))) 1978
 doubles_temp.push_back(*(flynnnodes+j)); 1979
 else if (ElleNodeIsTriple(*(flynnnodes+j))) 1980
 triples_temp.push_back(*(flynnnodes+j)); 1981
 else 1982
 printf("ERROR: diffusearea: inf_diff: node.push_back\n"); 1983
 } 1984
 original.pop_back(); 1985
 free(flynnnodes); 1986
 flynnnodecount=0; 1987
 1988
 } 1989
 // sort the two lists 1990
 doubles_temp.sort(); 1991
 triples_temp.sort(); 1992
 doubles.clear(); 1993
 triples.clear(); 1994
 1995
 // clear the doubles list of double entries 1996
 // those are the doubles nodes enclosed in the same phase and therefore don't matter for diffusion 1997
 temp_int=-1; 1998
 while (doubles_temp.size()>0) { 1999
 temp_int=doubles_temp.front(); // first one 2000
 doubles_temp.pop_front(); // delete "first" list entry 2001
 if (temp_int==doubles_temp.front()) { // compare to the "second" entry 2002
 doubles_temp.remove(temp_int); // if the same, delete all entries with that number 2003
 } 2004
 else { 2005
 doubles_temp.remove(temp_int); // if not the same as the "second" delete all entries with that 2006
number, but 2007
 doubles.push_back(temp_int); // add it to the end of the list again 2008
 } 2009
 } 2010
 2011
 // clear the triples list of triple entries (double entries are still valid) 2012
 temp_int=-1; 2013
 while (triples_temp.size()>0) { 2014
 temp_int=triples_temp.front(); // first one 2015

Jens Rößiger - 2013 Page 3.35

Appendix 5 – process code

 triples_temp.pop_front(); // delete first list entry 2016
 if (temp_int==triples_temp.front()) { // compare to the first entry (actually the second, because the 2017
first one got deleted) 2018
 triples_temp.pop_front(); // if the same delete the "second" entry 2019
 if (temp_int==triples_temp.front()) // compare to the "third" entry 2020
 triples_temp.remove(temp_int); // if the same, delete all entries with that number 2021
 else { 2022
 triples_temp.remove(temp_int); // if not the same as the "third" delete all entries, but 2023
 triples.push_back(temp_int); // add it to the end of the list again 2024
 } 2025
 } 2026
 else { 2027
 triples_temp.remove(temp_int); // if not the same as the "second" delete all entries, but 2028
 triples.push_back(temp_int); // add it to the end of the list again 2029
 } 2030
 } 2031
 2032
 // just in case delete all double entries of the lists 2033
 triples.unique(); 2034
 doubles.unique(); 2035
 2036
 //combine both lists 2037
 doubles.splice (doubles.begin(), triples); 2038
 2039
 // CHECK whether there are more or less boundary nodes along a cluster 2040
 int node_amount = 0; (int) ElleNodeAttribute(doubles.front(), iClusterNodeCount); 2041
 int node_amount_new = doubles.size(); 2042
 2043
 for (j=0;j<phases.no_phases;j++) { 2044
 // summarize all areas from the nodes of that phase 2045
 for (i=0,temp_double=0;i<doubles.size();i++) { 2046
 temp_double += ElleNodeAttribute(doubles.front(), attrib[j]); 2047
 node_amount += (int) ElleNodeAttribute(doubles.front(), iClusterNodeCount); 2048
 doubles.push_back(doubles.front()); 2049
 doubles.pop_front(); 2050
 } 2051
 2052
 node_amount /= node_amount_new; 2053
 2054
 if (node_amount < 0) 2055
 cout << "Invalid node amount...." << endl; 2056
 else if (node_amount == 0) 2057
 temp_double /= doubles.size(); // Probably for the first step. Has to be extra case otherwise division by 0 2058
possible.... 2059
 else if (node_amount > doubles.size()-bracket && node_amount < doubles.size()+bracket) 2060
 temp_double /= node_amount; // divide area equally however use the previous node count in case there are 2061
nodes lost/added in the last time step. 2062
 else 2063
 temp_double /= doubles.size(); // divide the area equally 2064
 2065
 // set the new area for all nodes 2066
 for (i=0;i<doubles.size();i++) { 2067
 if (j > 0 && doubles.size() != (int) ElleNodeAttribute(doubles.front(), iClusterNodeCount)) 2068
 cout << "Node Amount Error" << endl; 2069
 ElleSetNodeAttribute(doubles.front(), (double) node_amount_new, iClusterNodeCount);// set the node amount for this time 2070
step for the nodes as well. 2071
 ElleSetNodeAttribute(doubles.front(), temp_double, attrib[j]); 2072
 doubles.push_back(doubles.front()); 2073
 doubles.pop_front(); 2074
 if (mode==2) { 2075
 fp=fopen("diff_infinite.txt", "a"); 2076
 fprintf(fp,"%d\t%le\t%d\n",doubles.back(),temp_double, j); 2077
 fclose(fp); 2078
 } 2079
 } 2080
 } 2081
 2082
// // summarize all areas from the nodes of that phase 2083
// for (i=0,temp_double=0;i<doubles.size();i++) { 2084
// temp_double += ElleNodeAttribute(doubles.front(), attrib[inf_diff_p.front()]); 2085
// doubles.push_back(doubles.front()); 2086
// doubles.pop_front(); 2087
// } 2088
// 2089
// // divide the area equally 2090
// temp_double /= doubles.size(); 2091
// 2092
// // set the new area for all nodes 2093
// for (i=0;i<doubles.size();i++) { 2094
// ElleSetNodeAttribute(doubles.front(), temp_double, attrib[inf_diff_p.front()]); 2095
// doubles.push_back(doubles.front()); 2096
// doubles.pop_front(); 2097
// if (mode==2) { 2098
// fp=fopen("diff_infinite.txt", "a"); 2099
// fprintf(fp,"%d\t%le\n",doubles.back(),temp_double); 2100
// fclose(fp); 2101
// } 2102
// } 2103
 2104
 inf_diff_p.pop_front(); 2105
 2106
 } 2107
 2108
 // infinite diffusion finished 2109
 //## 2110
 //## 2111
 //## 2112
 // DIFFUSION 2113
 2114
 // find all nodes 2115
 max = ElleMaxNodes(); 2116

Jens Rößiger - 2013 Page 3.36

Appendix 5 – process code

 doubles.clear(); 2117
 triples.clear(); 2118
 doubles_temp.clear(); 2119
 triples_temp.clear(); 2120
 2121
 2122
 for (i=0;i<max;i++) { 2123
 if (ElleNodeIsActive(i)) { 2124
 if (ElleNodeIsDouble(i)) 2125
 doubles.push_back(i); 2126
 else if (ElleNodeIsTriple(i)) 2127
 triples.push_back(i); 2128
 else 2129
 printf("ERROR: this is not possible yet\n"); 2130
 } 2131
 } 2132
 2133
 //************************* 2134
 //Added to delete the nodes which already diffused infinite from the list 2135
 doubles.sort(); 2136
 triples.sort(); 2137
 infinite.sort(); 2138
 infinite.unique(); 2139
 while (infinite.size()>0) { 2140
 doubles.remove(infinite.front()); 2141
 triples.remove(infinite.front()); 2142
 infinite.pop_front(); 2143
 } 2144
 //don't think this is necessary... 2145
// random_shuffle(doubles.begin(),doubles.end()); 2146
// random_shuffle(triples.begin(),triples.end()); 2147
 //************************ 2148
 2149
 if ((diff_nodes = (DiffNodes *)malloc((2*doubles.size()+3*triples.size())*sizeof(DiffNodes)))== 0) 2150
 printf("ERROR: diffusearea: Malloc_Err: diff_nodes\n"); 2151
 2152
 2153
 2154
 2155
 2156
 //reset the counter 2157
 m=0; 2158
 2159
 2160
 //******************************DOUBLE NODES****************************** 2161
 while (doubles.size()>0) { 2162
 2163
 2164
 2165
 // find the neighbours 2166
 if (err=ElleNeighbourNodes(doubles.front(),nghbr)) 2167
 printf("ERROR: diffusearea: doublenode diffusion"); 2168
 // read the attributes of that node 2169
 for (n=0,j=0;n<3;n++) 2170
 { 2171
 if(nghbr[n]!=NO_NB && j<2) { 2172
 nnode[j] = nghbr[n]; 2173
 ElleNeighbourRegion(doubles.front(),nghbr[n],&rgn[j]); 2174
 ElleGetFlynnRealAttribute(rgn[j], &type_a[j], iFlynnPhase); 2175
 type_i[j] = (int)type_a[j]; 2176
 j++; 2177
 } 2178
 } 2179
 // put the stuff into the array 2180
 if (type_i[0]==type_i[1]) { 2181
 diff_nodes[m].node=doubles.front(); 2182
 diff_nodes[m].not_diff=1; // 2 phases are the same 2183
 diff_nodes[m].newconc=0.0; 2184
 //needed for shiftarea 2185
 diff_nodes[m].nb1=nnode[0]; 2186
 diff_nodes[m].nb2=nnode[1]; 2187
 //inserted just for readability of the logfile... 2188
 diff_nodes[m].p=0; 2189
 diff_nodes[m].nb1_p1=0; 2190
 diff_nodes[m].nb1_p2=0; 2191
 diff_nodes[m].nb2_p1=0; 2192
 diff_nodes[m].nb2_p2=0; 2193
 m++; 2194
 } 2195
 else { // are not the same 2196
 for (i=0;i<2;i++) { 2197
 diff_nodes[m].node=doubles.front(); 2198
 diff_nodes[m].p=type_i[i]; 2199
 diff_nodes[m].nb1=nnode[0]; 2200
 diff_nodes[m].nb2=nnode[1]; 2201
 diff_nodes[m].nb1_p1=type_i[0]; 2202
 diff_nodes[m].nb1_p2=type_i[1]; 2203
 diff_nodes[m].nb2_p1=type_i[0]; 2204
 diff_nodes[m].nb2_p2=type_i[1]; 2205
 diff_nodes[m].not_diff=2; 2206
 diff_nodes[m].newconc=0.0; 2207
 m++; 2208
 } 2209
 } 2210
 // delete the node from the double list 2211
 2212
 doubles.pop_front(); 2213
 } 2214
 2215
 //******************************TRIPLE NODES****************************** 2216
 2217

Jens Rößiger - 2013 Page 3.37

Appendix 5 – process code

 while (triples.size()>0) { 2218
 2219
 2220
 // find the neighbours 2221
 if (err=ElleNeighbourNodes(triples.front(),nghbr)) 2222
 OnError("diffusearea: triplenode diffusion",err); 2223
 // read the attributes of that node 2224
 for (n=0,j=0;n<3;n++) 2225
 { 2226
 if(nghbr[n]!=NO_NB && j<3) { 2227
 nnode[j] = nghbr[n]; 2228
 //from node to neighbour 2229
 ElleNeighbourRegion(triples.front(),nnode[j],&rgn[j]); 2230
 ElleGetFlynnRealAttribute(rgn[j], &type_a[j], iFlynnPhase); 2231
 type_i[j] = (int)type_a[j]; 2232
 //from neighbour to node 2233
 ElleNeighbourRegion(nnode[j],triples.front(),&nn_rgn[j]); 2234
 ElleGetFlynnRealAttribute(nn_rgn[j], &nn_type_a[j], iFlynnPhase); 2235
 nn_type_i[j] = (int)nn_type_a[j]; 2236
 j++; 2237
 } 2238
 } 2239
 if (type_i[0]==type_i[1]) { 2240
 if (type_i[0]==type_i[2]) { 2241
 diff_nodes[m].node=triples.front(); 2242
 diff_nodes[m].not_diff=1; // every 3 phases are the same 2243
 diff_nodes[m].newconc=0.0; 2244
 //add at least a triple node to the list -- needed for shiftarea 2245
 if (ElleNodeIsTriple(nnode[0])) 2246
 diff_nodes[m].nb1=nnode[0]; 2247
 else 2248
 diff_nodes[m].nb1=nnode[1]; 2249
 diff_nodes[m].nb2=nnode[2]; 2250
 //inserted just for readability of the logfile... 2251
 diff_nodes[m].p=0; 2252
 diff_nodes[m].nb1_p1=0; 2253
 diff_nodes[m].nb1_p2=0; 2254
 diff_nodes[m].nb2_p1=0; 2255
 diff_nodes[m].nb2_p2=0; 2256
 m++; 2257
 } 2258
 else { // phase 2 is different from 0 and 1 2259
 for (i=1;i<3;i++) { // 2 entries for phase 0 and 2, since 0 and 1 are the same it 2260
could also be from 1 till 2. 2261
 diff_nodes[m].node=triples.front(); 2262
 diff_nodes[m].p=type_i[i]; 2263
 diff_nodes[m].nb1=nnode[0]; 2264
 diff_nodes[m].nb2=nnode[2]; 2265
 diff_nodes[m].nb1_p1=type_i[0]; 2266
 diff_nodes[m].nb1_p2=nn_type_i[0]; 2267
 diff_nodes[m].nb2_p1=type_i[2]; 2268
 diff_nodes[m].nb2_p2=nn_type_i[2]; 2269
 diff_nodes[m].not_diff=3; 2270
 diff_nodes[m].newconc=0.0; 2271
 m++; 2272
 } 2273
 } 2274
 } 2275
 else { 2276
 if (type_i[0]==type_i[2]) { // phase 1 is different from 0 and 2 2277
 for (i=1;i<3;i++) { // 2 entries for phase 1 and 2->(same as 0) 2278
 diff_nodes[m].node=triples.front(); 2279
 diff_nodes[m].p=type_i[i]; 2280
 diff_nodes[m].nb1=nnode[1]; 2281
 diff_nodes[m].nb2=nnode[2]; 2282
 diff_nodes[m].nb1_p1=type_i[1]; 2283
 diff_nodes[m].nb1_p2=nn_type_i[1]; 2284
 diff_nodes[m].nb2_p1=type_i[2]; 2285
 diff_nodes[m].nb2_p2=nn_type_i[2]; 2286
 diff_nodes[m].not_diff=3; 2287
 diff_nodes[m].newconc=0.0; 2288
 m++; 2289
 } 2290
 } 2291
 else if (type_i[1]==type_i[2]) { // phase 0 is different from 1 and 2 2292
 for (i=0;i<2;i++) { // 2 entries for phase 0 and 1 (same as 2) 2293
 diff_nodes[m].node=triples.front(); 2294
 diff_nodes[m].p=type_i[i]; 2295
 diff_nodes[m].nb1=nnode[0]; 2296
 diff_nodes[m].nb2=nnode[1]; 2297
 diff_nodes[m].nb1_p1=type_i[0]; 2298
 diff_nodes[m].nb1_p2=nn_type_i[0]; 2299
 diff_nodes[m].nb2_p1=type_i[1]; 2300
 diff_nodes[m].nb2_p2=nn_type_i[1]; 2301
 diff_nodes[m].not_diff=3; 2302
 diff_nodes[m].newconc=0.0; 2303
 m++; 2304
 } 2305
 } 2306
 else if (type_i[0]!=type_i[2] && type_i[1]!=type_i[2]) { // every 3 phases different 2307
 for (i=0;i<3;i++) { // 3 2308
entries every phase 2309
 diff_nodes[m].node=triples.front(); 2310
 diff_nodes[m].p=type_i[i]; 2311
 diff_nodes[m].nb1=nnode[i]; 2312
 for (j=0, found=0;j<3;j++) { 2313
 if (nn_type_i[j] == type_i[i]) { 2314
 diff_nodes[m].nb2=nnode[j]; 2315
 found=1; 2316
 } 2317
 } 2318

Jens Rößiger - 2013 Page 3.38

Appendix 5 – process code

 if (found==0) 2319
 printf("ERROR: diffusearea: triple_node - 3phases: no 2nd neighbour found\n"); 2320
 2321
 diff_nodes[m].nb1_p1=type_i[i]; 2322
 diff_nodes[m].nb1_p2=nn_type_i[i]; 2323
 diff_nodes[m].nb2_p1=type_i[j]; 2324
 diff_nodes[m].nb2_p2=nn_type_i[j]; 2325
 diff_nodes[m].not_diff=4; 2326
 diff_nodes[m].newconc=0.0; 2327
 m++; 2328
 } 2329
 } 2330
 } 2331
 2332
 triples.pop_front(); 2333
 } 2334
 2335
 diff_nodes_size=m; 2336
 2337
 2338
// fp=fopen("log.txt", "a"); 2339
// fprintf(fp, 2340
"##\n##\n########################2341
########################\n"); 2342
// fprintf(fp, "\n\nNODE\tNB1\tNB2\tNB1_P1\tNB1_P2\tNB2_P1\tNB2_P2\tNOT_DIFF\tNEWCONC\n"); 2343
// for (i=0;i<diff_nodes_size;i++) 2344
// fprintf(fp, "%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%le\n", diff_nodes[i].node, diff_nodes[i].nb1, diff_nodes[i].nb2, 2345
diff_nodes[i].nb1_p1, diff_nodes[i].nb1_p2, diff_nodes[i].nb2_p1, diff_nodes[i].nb2_p2, diff_nodes[i].not_diff, 2346
diff_nodes[i].newconc); 2347
// fclose(fp); 2348
 2349
 2350
 //do shiftarea 2351
 while (all_p.size()>0) { 2352
 for (i=0;i<diff_nodes_size;i++) { 2353
 2354
 // if the node is surrounded by one phase --> check if there is area of the current phase to diffuse back to the 2355
boundary. 2356
 // but only one time, for each step and phase. For additional diffusion_times from the config file there is no need for 2357
shiftarea 2358
 if (diff_nodes[i].not_diff==1) { 2359
 if ((area=ElleNodeAttribute(diff_nodes[i].node, attrib[all_p.front()]))!=0.0) { 2360
 //printf("Node: %d --> area:%le\n", diff_nodes[i].node, area); 2361
 x=shiftarea(diff_nodes[i].node, diff_nodes[i].nb1, diff_nodes[i].nb2, all_p.front()); 2362
// if (x==0) 2363
// printf("ERROR: diffusearea: shiftarea: node: %d\n", diff_nodes[i].node); 2364
 } 2365
 } 2366
 } 2367
 all_p.pop_front(); 2368
 } 2369
 2370
 // as long as there are phases to diffuse 2371
 while (diff_p.size()>0) { 2372
 2373
 // diffuse for x diffusion steps in the config file 2374
 for (j=0;j<phases.phasep[diff_p.front()].diffusion_times;j++) { 2375
 2376
 // for all the nodes 2377
 for (i=0;i<diff_nodes_size;i++) { 2378
 2379
 if (diff_nodes[i].not_diff>1) { 2380
 x=diffuse_dn(i, diff_nodes); 2381
 if (x==0) 2382
 printf("ERROR: diffusearea: diffuse_dn: node: %d\n", diff_nodes[i].node); 2383
 } 2384
// fprintf(fp, "%le\n", diff_nodes[i].newconc); 2385
 // Just to print the areas for the last diff step for all nodes 2386
 if (mode==2) { 2387
 if (j==((phases.phasep[diff_p.front()].diffusion_times)-1)) { 2388
 fp=fopen("diff_normal.txt", "a"); 2389
 fprintf(fp,"%d\t%le\t%d\n",diff_nodes[i].node,diff_nodes[i].newconc,diff_nodes[i].not_diff); 2390
 fclose(fp); 2391
 } 2392
 } 2393
 2394
 2395
 } // end of all nodes 2396
// fprintf(fp, "\n"); 2397
// fprintf(fp, "node %d conc %le\n", diff_nodes[1].node, diff_nodes[1].newconc); 2398
// fprintf(fp, "Size: %d\n", diff_nodes_size); 2399
// fclose(fp); 2400
 writenewconc(diff_nodes_size, diff_nodes); 2401
 } // end of diffusion_times 2402
 2403
 // delete the diffusion phase from the list 2404
 diff_p.pop_front(); 2405
 } // end of diff_p 2406
 2407
// for (i=0;i<max;i++) 2408
// printf("flynn-phase: %d-%d\n", grains[i].flynn, grains[i].phase); 2409
 2410
 2411
 //free malloc arrays 2412
 free(diff_nodes); 2413
 diff_nodes = NULL; 2414
 2415
 //x=1; 2416
 return (x); 2417
} 2418
 2419

Jens Rößiger - 2013 Page 3.39

Appendix 5 – process code

int shiftarea(int node, int n1, int n2, int type) 2420
{ 2421
 int found=-1, direction=0, nnode[3], nghbr[3], rgn[3], type_i[3], current, next, last, x, n, j, i; 2422
 double area, old_area, type_a[3]; 2423
 2424
 for (i=0;i<2 && found<0;i++) { 2425
 last=node; 2426
 if (i==0) 2427
 current=n1; 2428
 else 2429
 current=n2; 2430
 2431
 while (found<0 && direction==i) { // && ElleNodeAttribute(n1, attrib[type])>0.0) 2432
 // find the neighbours 2433
 if (x=ElleNeighbourNodes(current,nghbr)) 2434
 printf("ERROR: shiftarea: find neighbours for node: %d\n", current); //OnError("diffusearea: triplenode 2435
diffusion",err); 2436
 // check if node is triple 2437
 if (ElleNodeIsTriple(current)==1) { 2438
 // read the attributes of that node 2439
 for (n=0;n<3 && found<0;n++) { 2440
 ElleNeighbourRegion(current,nghbr[n],&rgn[n]); 2441
 ElleGetFlynnRealAttribute(rgn[n], &type_a[n], iFlynnPhase); 2442
 type_i[n] = (int)type_a[n]; 2443
 } 2444
 for (n=0;n<3 && found<0;n++) { 2445
 if (type_i[n]==type) { 2446
 for (j=0;j<3 && found<0;j++) { 2447
 if (type_i[j]!=type) 2448
 found=current; 2449
 } 2450
 } 2451
 } 2452
 if (found<0) { 2453
 if (i==0) 2454
 direction=1; 2455
 else 2456
 direction=4; 2457
 } 2458
 } 2459
 // if it isn't triple, find the next node in that direction 2460
 else if (ElleNodeIsDouble(current)==1){ 2461
 // find next node 2462
 for (n=0;n<3;n++) { 2463
 if(nghbr[n]!=NO_NB && nghbr[n]!=last) 2464
 next=nghbr[n]; 2465
 } 2466
 last=current; 2467
 current=next; 2468
 } 2469
 } 2470
 } 2471
// else 2472
// printf("ERROR: shiftarea: no triple neighbour found for node: %d\n", node); 2473
 2474
 2475
 // if a shiftnode was found the area of the old node is added to the area already on the shiftnode 2476
 // everything only for phase=type 2477
 if (found>=0) { 2478
 //printf("found: %d\n", found); 2479
 area = ElleNodeAttribute(node, attrib[type]); 2480
 old_area = ElleNodeAttribute(found, attrib[type]); 2481
 ElleSetNodeAttribute(node, 0.0, attrib[type]); 2482
 area += old_area; 2483
 ElleSetNodeAttribute(found, area, attrib[type]); 2484
 return (1); 2485
 } 2486
 else 2487
 return (0); 2488
} 2489
 2490
 2491
int diffuse_dn(int position, DiffNodes *nodes) 2492
{ 2493
 2494
 int dt_int; 2495
 double tmp1, tmp2, tmp3; 2496
 double double_kappa, kappa, dt, temp_conc, temp_segwidth, temp_seglength, s; 2497
 2498
 kappa=phases.phasep[nodes[position].p].kappa; 2499
 2500
 double_kappa=kappa*2.0; // was kappa*2 but since I don'T know yet what kappa is..... 2501
 dt = ((ElleTimestep()*ElleSpeedup())/((ElleSwitchdistance()*ElleSwitchdistance())/kappa*0.25)); 2502
 dt_int = (int)dt; 2503
 if (dt_int<MIN_DIFF_DT) 2504
 dt_int=MIN_DIFF_DT; 2505
 dt = ElleTimestep()*ElleSpeedup()/dt_int; 2506
 2507
 tmp1 = tmp2 = tmp3 = 0; 2508
 2509
 // FIRST Neighbour 2510
 temp_conc=ElleNodeAttribute(nodes[position].nb1, attrib[nodes[position].p]); 2511
 temp_segwidth=ElleBndWidth()/ElleUnitLength(); 2512
 temp_seglength=ElleNodeSeparation(nodes[position].node,nodes[position].nb1); 2513
 2514
 s=(kappa*dt)/(temp_seglength*temp_seglength); 2515
 if(s<=0 || s>=0.5) 2516
 printf("ERROR: diffuse_dn: s is not in range for explicite finite difference!!! (1st neighbour)\n"); 2517
 2518
 2519
 tmp1 += temp_conc*temp_segwidth/temp_seglength; 2520

Jens Rößiger - 2013 Page 3.40

Appendix 5 – process code

 tmp2 += temp_segwidth*temp_seglength; 2521
 tmp3 += temp_segwidth/temp_seglength; 2522
 2523
 // SECOND Neighbour 2524
 temp_conc=ElleNodeAttribute(nodes[position].nb2, attrib[nodes[position].p]); 2525
 temp_seglength=ElleNodeSeparation(nodes[position].node,nodes[position].nb2); 2526
 2527
 s=(kappa*dt)/(temp_seglength*temp_seglength); 2528
 if(s<=0 || s>=0.5) 2529
 printf("ERROR: diffuse_dn: s is not in range for explicite finite difference!!! (2nd neighbour)\n"); 2530
 2531
 2532
 tmp1 += temp_conc*temp_segwidth/temp_seglength; 2533
 tmp2 += temp_segwidth*temp_seglength; 2534
 tmp3 += temp_segwidth/temp_seglength; 2535
 2536
 // NODE itself 2537
 2538
 temp_conc=ElleNodeAttribute(nodes[position].node, attrib[nodes[position].p]); 2539
 2540
 nodes[position].newconc = temp_conc*(1 - double_kappa*dt*(tmp3/tmp2)) + (double_kappa*dt*tmp1/tmp2); 2541
 2542
 2543
 return (1); 2544
} 2545
 2546
void writenewconc(int max, DiffNodes *nodes) 2547
{ 2548
 int i; 2549
 2550
 for (i=0;i<max;i++) 2551
 ElleSetNodeAttribute(nodes[i].node, nodes[i].newconc, attrib[nodes[i].p]); 2552
} 2553
 2554
void mergeair(int mode) 2555
{ 2556
 int i, x=1, max, temp_int, found, trys; 2557
 double temp_double; 2558
 2559
 vector<int> ran; 2560
 list<int> original, neighbour; 2561
 list<int> merge_p; 2562
 Flynnies *flynns; 2563
 2564
 2565
 // find all flynns 2566
 max = ElleMaxFlynns(); 2567
 ran.clear(); 2568
 for (i=0;i<max;i++) 2569
 if (ElleFlynnIsActive(i)) 2570
 ran.push_back(i); 2571
 max=ran.size(); 2572
 2573
 if ((flynns = (Flynnies *)malloc(max*sizeof(Flynnies)))== 0) 2574
 printf("ERROR: diffusearea: Malloc_Err: flynns\n"); 2575
 2576
 for (i=0;i<max;i++) { 2577
 flynns[i].flynn=ran.at(i); 2578
 ElleGetFlynnRealAttribute(flynns[i].flynn, &temp_double, iFlynnPhase); 2579
 temp_int = (int)temp_double; 2580
 flynns[i].phase=temp_int; 2581
 } 2582
 2583
 // check which phases to merge 2584
 merge_p.clear(); 2585
 for (i=0;i<phases.no_phases;i++) { 2586
 if (phases.phasep[i].merge==1) 2587
 merge_p.push_back(i); 2588
 } 2589
 2590
 // if there are cluster diffusion phases do cluster diffusion 2591
 while (merge_p.size()>0) { 2592
 original.clear(); 2593
 // get all flynns with phase i 2594
 for (i=0;i<max;i++) { 2595
 if (flynns[i].phase==merge_p.front()) 2596
 original.push_back(flynns[i].flynn); 2597
 } 2598
 // find flynns that are clustered together 2599
 // as long as there are any flynns in the phase list 2600
 while (original.size()>0) { 2601
 found=1; 2602
 trys=0; 2603
 while (found==1 && trys<5) { //for (n=0;n<cluster.size();n++) { 2604
 found=0; // will be set 1 again if the loop finds neighbours of the same phase 2605
 neighbour.clear(); // clear the neigbour list 2606
 ElleFlynnNbRegions(original.front(), neighbour); //find neighbours for the current flynn (n) in the cluster list 2607
 2608
 //check whether any flynn in the neighbour list matches the current phase (i) 2609
 // as long as there are entries in the neighbours list do the following 2610
 while (neighbour.size()>0) { 2611
 ElleGetFlynnRealAttribute(neighbour.front(), &temp_double, iFlynnPhase); // get phase from flynn 2612
 temp_int = (int)temp_double; // convert to int 2613
 2614
 //compare to current phase 2615
 if (temp_int == merge_p.front()) { // if right 2616
 found=1; 2617
 x=ElleMergeFlynnsNoCheck(original.front(), neighbour.front()); 2618
 if (x==0) { 2619
 original.remove(neighbour.front()); 2620
 neighbour.pop_front(); 2621

Jens Rößiger - 2013 Page 3.41

Appendix 5 – process code

 } 2622
 else { 2623
 printf("ERROR: mergeair: flynn merge error between flynn %d and %d\n", original.front(), neighbour.front()); 2624
 printf("No solution to that problem yet. Maybe it works later on...--> NOT MERGING\n"); 2625
 neighbour.pop_front(); 2626
 trys++; 2627
 } 2628
 } 2629
 else // if not right 2630
 neighbour.pop_front(); 2631
 } 2632
 } 2633
 original.pop_front(); 2634
 } 2635
 merge_p.pop_front(); 2636
 } 2637
 free(flynns); 2638
} 2639
 2640
int savearea(int mode, int max) 2641
{ 2642
 int i, j, c, x, found=0; 2643
 double area[phases.no_phases], org_area[phases.no_phases], diff; 2644
 2645
 FILE *af, *sh; 2646
 2647
 for (i=0;i<phases.no_phases;i++) { 2648
 area[i]=0; 2649
 } 2650
 2651
 for (int i = 0; i < phases.no_phases; i++) { 2652
 area[i]=0; // set the start to 0 2653
 for (int j = 0; j < max; j++) { 2654
 if (grains[j].phase == i && ElleFlynnIsActive(grains[j].flynn)) { 2655
 area[i] += ElleRegionArea(grains[j].flynn); 2656
 } 2657
 } 2658
 } 2659
 2660
 if (mode==1) { 2661
 if((af=fopen("initial_area.txt","a+"))== 0L) 2662
 return (0); 2663
 if((sh=fopen("scale_history.txt","a+"))== 0L) 2664
 return (0); 2665
 for (i=0;i<phases.no_phases;i++) { 2666
 fprintf(sh, "%le ", phases.phasep[i].scale); 2667
 } 2668
 fprintf(sh, "\n"); 2669
 fclose(sh); 2670
 for (i=0;i<phases.no_phases;i++) { 2671
 fprintf(af, "%1.12lf ", area[i]); 2672
 } 2673
 //fseek(af, -1, SEEK_CUR); 2674
 fprintf(af, "\n"); 2675
 fclose(af); 2676
 } 2677
 else if (mode==2) { 2678
 if((af=fopen("initial_area.txt","r"))== 0L) 2679
 return (0); 2680
 if((sh=fopen("scale_history.txt","a+"))== 0L) 2681
 return (0); 2682
// fseek(af, -1, SEEK_END); 2683
// 2684
// while (found==0) { 2685
// c = fgetc(af); 2686
// //printf("%d\n", c); 2687
// if (c=='*') { 2688
// found=1; 2689
// } 2690
// else 2691
// fseek(af, -2, SEEK_CUR); 2692
// } 2693
 2694
 2695
 for (i=0;i<phases.no_phases;i++) { 2696
 x = fscanf(af,"%lf",&org_area[i]); 2697
 if(x==0) { 2698
 cout << "ERROR: reading initial_area file" << endl; 2699
 break; 2700
 } 2701
 } 2702
// cout << "Initial Area: Phase1: " << org_area[0] << ", Phase2: " << org_area[1] << endl; 2703
 fclose(af); 2704
 2705
 for (i=0;i<phases.no_phases;i++) { 2706
 diff=100*area[i]; 2707
 fprintf(sh, "%lf ", diff); 2708
// if (diff>0) 2709
// phases.phasep[i].scale = phases.phasep[i].scale*fabs(diff);//, phases.phasep[i].elasticity); 2710
// else if (diff<0) 2711
// phases.phasep[i].scale = phases.phasep[i].scale*fabs(diff);//, phases.phasep[i].elasticity); 2712
 } 2713
 2714
// for (i=0;i<phases.no_phases;i++) { 2715
// fprintf(sh, "# %le %le #", phases.phasep[i].scale, area[i]); 2716
// } 2717
 fprintf(sh, "\n"); 2718
 fclose(sh); 2719
 2720
 2721
 2722

Jens Rößiger - 2013 Page 3.42

Appendix 5 – process code

 } 2723
 2724
 return 1; 2725
} 2726
 2727
int setupflynnies(void) 2728
{ 2729
 2730
 int max, i, temp_int; 2731
 double temp_double; 2732
 2733
 vector<int> ran; 2734
 2735
 max = ElleMaxFlynns(); 2736
 ran.clear(); 2737
 for (i=0;i<max;i++) 2738
 if (ElleFlynnIsActive(i)) 2739
 ran.push_back(i); 2740
 max=ran.size(); 2741
 2742
 if ((grains = (Flynnies *)malloc(max*sizeof(Flynnies)))== 0) 2743
 printf("ERROR: diffusearea: Malloc_Err: flynns\n"); 2744
 2745
 for (i=0;i<max;i++) { 2746
 grains[i].flynn=ran.at(i); 2747
 ElleGetFlynnRealAttribute(grains[i].flynn, &temp_double, iFlynnPhase); 2748
 temp_int = (int)temp_double; 2749
 grains[i].phase=temp_int; 2750
 } 2751
 return max; 2752
} 2753
 2754
clusters::clusters (vector<int> vPushedFLynns, double dPushedArea) 2755
{ 2756
 //use swap pointers if possible put the pushed flynns in class storage. 2757
} 2758
 2759
clusters::~clusters () 2760
{ 2761
 2762
} 2763

Jens Rößiger - 2013 Page 3.43

Numerical Modelling of Ice Microstructures

A P P E N D I X 6

CONTENTS OF THE DVD

Jens Rößiger - 2013 Page A6

Appendix 6 – DVD contents

CODE

This directory contains the source code of all developments that during my PhD.

• split2  is the new version of the splitting code

• jr_gg_split  is the combination of the growth and the split2 code that was used in the first

project.

• gbm_tou  was the first, geometrical approach to two phase grain growth.

• gbm_pp_old  is the second approach to poly phase grain growth using the boundary nodes

to keep areas constant.

• gbm_pp  the last, most recent approach to poly phase grain growth utilising Flynns to keep

areas constant.

• fft  The last version of the fft integration in Elle including adjustments that were made to

make poly phase grain growth and fft work in conjunction with each other.

• jr_collection, jr-stats, ellefilecreator, *.py scripts  these folders contain tools that I wrote

to make the daily workflow easier. Description is given in appendix 4.

CONFERENCES + WORKSHOPS

This directory contains several directories related to conferences and workshops. These contain

material that was used to prepare talks and posters for these conferences.

EXPERIMENTS + ANALYSIS

All data regarding the experiments can be found here. The analysis is also included here.

• gg+split  contains files from the first project. Read the explanation.txt files in the individual

directories for more information on folder structure.

• ice+air-bubbles  contains files from the second project. Read the explanation.txt files in the

individual directories for more information on the folder structure and experiment settings.

• fft  contains files that were used for the third publication and will also be used to complete

the third project.

THESIS

The digital version of this thesis can be found here along with digital versions of the publications.

Jens Rößiger - 2013 Page i

	01_[DoublePage][WhitePaper] (1 colour) Introduction
	Zusammenfassung
	Abstract
	Introduction
	The ELLE Simulation Framework
	The Growth Parameter for static grain growth
	Influence of bubbles on grain growth
	Impact of deformation on Grain Boundary Migration

	References
	Acknowledgements
	Contributions
	first paper
	Second Paper:
	third Paper
	code

	Blank Page
	Blank Page
	Blank Page
	Blank Page

	02_[SinglePage][ColorPaper] Appendix covers
	03_[DoublePage][WhitePaper] Publication 1
	04_[SinglePage][ColorPaper] Appendix covers 2
	06_[SinglePage][ColorPaper] Appendix covers 3
	08_[SinglePage][ColorPaper] Appendix covers 4
	09_[DoublePage][WhitePaper] (2 colour) Code explanation
	1 Code description of written ELLE modules
	1.1 Naming Conventions
	1.2 Split Code
	1.3 Growth+Split
	1.4 Poly-phase grain boundary migration
	1.4.1 Two-phase growth
	1.4.2 Poly-phase grain boundary migration (using B-Nodes)
	1.4.3 Poly-phase grain boundary migration (using Flynns)
	1.4.3.1 Config file and Settings
	1.4.3.2 Start The main function and the cluster tracking class
	1.4.3.3 The Main loop

	1.4.4 FFT Implementation
	1.4.4.1 Multithreading
	1.4.4.2 General Setup

	1.5 Personal mini programs
	1.5.1 JR-Stats
	1.5.2 Jr_collection
	1.5.3 Elle file creator
	1.5.4 Python scrips

	2 References

	10_[SinglePage][ColorPaper] Appendix covers 5
	11_[DoublePage][WhitePaper] Code
	1 Split 2
	1.1 Header: Split2.h
	1.2 Code: Split2.cc

	2 Growth + split
	3 Poly phase grain boundary migration
	3.1 Header: gbm_pp_unodes.h
	3.2
	3.3 Code: gbm_pp_unodes.cc

	12_[SinglePage][ColorPaper] Appendix covers 6
	13_[DoublePage][WhitePaper] DVD
	code
	Conferences + Workshops
	Experiments + analysis
	Thesis

	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	01_[DoublePage][WhitePaper] (1 colour) Introduction.pdf
	Zusammenfassung
	Abstract
	Introduction
	The ELLE Simulation Framework
	The Growth Parameter for static grain growth
	Influence of bubbles on grain growth
	Impact of deformation on Grain Boundary Migration

	References
	Acknowledgements
	Contributions
	first paper
	Second Paper:
	third Paper
	code

	Blank Page
	Blank Page
	Blank Page
	Blank Page

	09_[DoublePage][WhitePaper] (2 colour) Code explanation.pdf
	1 Code description of written ELLE modules
	1.1 Naming Conventions
	1.2 Split Code
	1.3 Growth+Split
	1.4 Poly-phase grain boundary migration
	1.4.1 Two-phase growth
	1.4.2 Poly-phase grain boundary migration (using B-Nodes)
	1.4.3 Poly-phase grain boundary migration (using Flynns)
	1.4.3.1 Config file and Settings
	1.4.3.2 Start The main function and the cluster tracking class
	1.4.3.3 The Main loop

	1.4.4 FFT Implementation
	1.4.4.1 Multithreading
	1.4.4.2 General Setup

	1.5 Personal mini programs
	1.5.1 JR-Stats
	1.5.2 Jr_collection
	1.5.3 Elle file creator
	1.5.4 Python scrips

	2 References

	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Appendix_druck.pdf
	1 Code description of written ELLE modules
	1.1 Naming Conventions
	1.2 Split Code
	1.3 Growth+Split
	1.4 Poly-phase grain boundary migration
	1.4.1 Two-phase growth
	1.4.2 Poly-phase grain boundary migration (using B-Nodes)
	1.4.3 Poly-phase grain boundary migration (using Flynns)
	1.4.3.1 Config file and Settings
	1.4.3.2 Start The main function and the cluster tracking class
	1.4.3.3 The Main loop

	1.4.4 FFT Implementation
	1.4.4.1 Multithreading
	1.4.4.2 General Setup

	1.5 Personal mini programs
	1.5.1 JR-stats
	1.5.2 JR_collection
	1.5.3 Elle file creator
	1.5.4 Python scripts

	2 References

	Blank Page
	Blank Page
	Blank Page
	Blank Page

