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Summary 

Major improvements in DNA sequencing technologies during the last decade gave rise 

to “next generation sequencing” (NGS) technology, that enables routine sampling of 

entire genomes and transcriptomes of various organisms; however, the annotation of 

the raw genome sequence remains a big challenge for ab initio gene prediction 

programs. Experimental evidence of gene expression at the RNA and protein level can 

be used to train the machine learning algorithms and greatly improves accuracy of the 

resulting gene predictions. While NGS can provide gene expression data at the transcript 

level, translational evidence of genes on a large scale can only be addressed using mass 

spectrometry (MS)-based proteomics. Moreover, this technology is an indispensable 

tool to study regulatory post translational protein modifications (PTMs) such as 

phosphorylation. In this work I studied to what extent high accuracy MS-based 

proteomics can contribute to refining genome sequencing data, which is in focus of a 

fast-evolving research field termed “proteogenomics”. I first addressed the main 

parameters of a simple proteogenomic experiment, such as the actual false discovery 

rate of protein database search and sequence coverage of a bacterial genome using 

state-of-the-art MS technology. To that end I used a comprehensive proteome dataset 

of the model gram negative bacterium Escherichia coli, comprising its complete 

expressed proteome in exponential growth, and applied this approach to its well 

characterized genome. This analysis demonstrated a substantial underestimation of the 

false discovery rate in a commonly used proteogenomics workflow and pointed to the 

need for further improvement of sequence coverage in shotgun proteomic experiments. 

I further demonstrated the utility of proteogenomics in annotation of protein coding 

regions of a complex, eukaryotic genome on the example of Pristionchus pacificus, a 

model nematode increasingly used in evolutionary biology. The application led to the 

identification of several thousand novel peptide sequences that were used, together 

with transcriptomic data, to refine the existing genome annotation. Finally, I studied 

functional aspects of the refined P. pacificus proteome by using data from an in-depth 

phosphoproteomic study which enabled me to describe functional categories of 
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detected P. pacificus phosphoproteins, to define its kinome and to perform a 

comparative analysis with a recent phosphoproteomics study of the model nematode 

Caenorhabditis elegans. Taken together, this work demonstrates the value of high 

accuracy MS based proteomics in refinement of genome sequencing data. 
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Zusammenfassung 

Im Verlauf des letzten Jahrzehnts führten wesentliche Verbesserungen der Techniken 

zur DNA Sequenzierung zu einer neuen Generation von Sequenzierungstechnologien 

(„next generation sequencing“, NGS), welche eine routinemäßige Sequenzierung  

ganzer Genome und Transkriptome verschiedenster Organismen ermöglichte. Die 

Annotation der Genomsequenz stellt nach wie vor eine Herausforderung für Programme 

zur ab initio Genvorhersage dar, welche auf Algorithmen des maschinellen Lernens 

basieren. Experimentelle Bestätigung von Genexpression auf RNA- und Proteinebene 

kann dazu verwendet werden, die Genauigkeit der Genvorhersagen enorm zu 

verbessern. Während NGS Technologien Genexpressionsdaten auf der Ebene der 

Transkription generieren, kann die Bestätigung der Translation global nur mittels 

Massenspektrometrie (MS)-basierter Proteomik analysiert werden. Darüber hinaus 

stellt diese Technologie ein unverzichtbares Werkzeug zur Untersuchung 

regulatorischer, posttranslationaler Proteinmodifikationen (PTM), wie zum Beispiel 

Phosphorylierung, dar.  In dieser Arbeit untersuche ich, in welchem Umfang 

hochgenaue, MS-basierte Proteomik zur Verbesserung der Annotation von 

genomischen Sequenzierdaten beitragen kann, welches im Fokus einer sich rasant 

entwickelten Forschungszweigs namens „Proteogenomik“ steht. Zuerst untersuche ich 

grundlegende Parameter eines einfachen proteogenomischen Experimentes, wie zum 

Beispiel die eigentliche Fehlerrate (false discovery rate, FDR) und Sequenzabdeckung 

eines bakteriellen Genoms mittels modernster MS Technologie gewonnener Daten. 

Hierzu verwende ich einen umfassenden Proteomdatensatz des gram-negativen 

Modelbakteriums Escherichia coli, bestehend aus allen exprimierten Proteinen der 

exponentiellen Wachstumsphase, und wende diesen auf das sehr gut charakterisierte 

Genom des Bakteriums an.  Dieser Versuch zeigte eine erhebliche Unterschätzung der 

Fehlerrate (FDR) einer häufig verwendeten Vorgehensweise, und deutete auf die 

Notwendigkeit hin, die Sequenzabdeckung MS-basierter Proteomik zu verbessern. Des 

Weiteren demonstriere ich den Nutzen eines proteogenomischen Experiments bei der 

Annotation Protein kodierender Bereiche eines komplexen, eukaryotischen Genoms am 
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Beispiel des Fadenwurms Pristionchus pacificus, welcher vermehrt als 

Modellorganismus in der Evolutionsbiologie verwendet wird. Das Experiment führte zur 

Identifikation mehrerer Tausend, bisher unbekannter Peptidsequenzen. Diese wurden 

zusammen mit Transkriptionsdaten dazu verwendet, die existierende Annotation des 

Genoms zu verbessern. Abschließend betrachte ich die verbesserte Annotation des P. 

pacificus Proteoms, um dessen funktionelle Aspekte zu untersuchen. Dazu verwende ich 

Daten eines MS-basierten Experiments zur globalen Identifikation von 

Proteinphosphorylierungsstellen, um die phosphorylierten Proteine funktionell zu 

chrakterisieren, das Kinom des Organismus zu bestimmen und die gewonnenen 

Ergebnisse mit einer jüngst veröffentlichten Studie des Phosphoproteoms des 

Modellorganismus Caenorhabditis elegans zu vergleichen. Zusammengenommmen 

demonstriert diese Arbeit den Nutzen hochgenauer MS-basierter Proteomik in der 

Verbesserung von Genomsequenzierungsdaten 
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1. Introduction 

During the last decades methods and technologies used in bioscience have advanced 

dramatically and extended the scope of biological studies to a system-wide analysis 

within a single experiment. Currently, high-throughput analytical methods perform 

measurements in a massively parallel manner can routinely be used to study how 

biological information is transmitted from genes to their products and how it influences 

major processes in the cell. The technologies to sequence DNA, RNA and proteins have 

undergone a revolution in terms of quantity and quality of the generated data. The 

‘next-generation sequencing’ (NGS) technologies for DNA and RNA sequencing comprise 

the methods that evolved after the classical Sanger method, which is referred to as the 

‘first generation’ sequencing. The NGS technology enabled single laboratories to 

generate data that previously required concerted effort of large-scale sequencing 

centers and led to the deciphering of genomes of many different organisms. 

Furthermore, this technology allowed the analysis of gene expression by sequencing 

gene transcripts (RNA-seq) and complemented the already mature microarray 

technology for gene expression analysis. On the other hand mass spectrometry (MS) 

emerged as method of choice to study gene expression at the protein level. Due to 

recent developments in the MS technology as well as the optimization of biochemical 

protocols used for efficient sample preparation, MS-based proteomics is approaching 

the routine identification of nearly all proteins expressed at the point of analysis 

together with their post translational modifications. Both, NGS and proteomics 

technologies require efficient bioinformatic tools for the analysis of the gathered data 

in order to assemble the correct genome sequence and to identify the correct protein 

sequences, respectively. The assembled genome sequence has to be subsequently 

annotated. One of the first steps in the annotation process is to determine the positions 

of genes on the genome, which is commonly done by ab inito gene prediction programs. 

The resulting databases contain the predicted set of gene sequences of an organism. 

These sequences are typically in-silico translated into amino acid sequences and used to 

search the acquired MS data in order to identify the corresponding proteins. This 



9 
 

database-driven approach is well established in proteomics but restricts the 

identification to proteins that are present in the corresponding databases. In cases 

where there is only insufficient gene annotation available, e.g. an early draft annotation 

of a newly sequenced organism, proteomics data can be directly applied to the raw 

genome sequence and the resulting data can be used to refine the existing annotation 

draft. This approach, often referred to as proteogenomics, is the focus of this thesis.  

Here, I will first give a brief introduction on recent advances in genomics and outline the 

principle behind ab initio gene prediction. I will then introduce the experimental 

workflow of a typical MS based proteomics experiment and review the challenges that 

specifically occur in a proteogenomics experiment. I will explain MS-based analysis of 

protein phosphorylation in the last part of the introduction before I summarize the 

results of the manuscripts associated to this thesis and give detailed description of my 

contribution to these studies. 

1.1. Advances in genomics 

The automated Sanger sequencing for genome analysis dominated the field of genomics 

for almost two decades and led to numerous groundbreaking studies such as the 

completion of the first human genome sequence (Lander et al. 2001; Venter et al. 2001; 

Collins et al. 2004). This method, considered as the ‘first-generation’ method, is based 

on the principle of dideoxynucleotide chain termination reaction introduced with the 

classical Sanger method (Sanger et al. 1977) but using differentially dye-labeled 

dideoxynucleotides that enabled an automated read-out of the nucleotide sequence 

within a single reaction. However, this approach was very expensive, time consuming 

and labor intensive leading to the necessity to develop more efficient sequencing 

strategies. During the last decade technical advances have led to improved sequencing 

methods that are referred to as ‘next-generation sequencing’ (NGS) and that can 

inexpensively produce large volumes of sequencing data. Several different sequencing 

technologies are available and excellently reviewed in the literature (Ansorge 2009; 

Metzker 2010). The most frequently used platforms are Solexa (Illumina), 454 FLX 
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(Roche), and to a lesser extent SOLiD (ABI). These platforms rely on diverse sequencing 

protocols each having very specific assets and drawbacks that make them differentially 

suitable for specific biological applications (Table 1). The general strategy common 

across these different platforms starts with the construction of an appropriate DNA 

library by random fragmentation of starting DNA and ligation of resulting fragments with 

custom linkers. The sequencing reactions rely either on reversible terminator 

sequencing (Illumnia), pyrosequencing (Roche), or sequencing by ligation (ABI) and are 

performed step by step together with the detection of the sequenced nucleotide. The 

identification of the sequenced nucleotides is based on the detection of a fluorescence 

dye or emitted light, and thus requires sensitive imaging technology. Typically, the DNA 

libraries are amplified in order to obtain sufficient light signal intensity for reliable 

detection. The nucleotide sequence can then be reconstructed from the recorded 

imaging signals. 

TABLE 1:  OVERVIEW OF THE MOST FREQUENTLY USED NGS PLATFORMS.  DATA IS TAKEN FROM (METZKER 2010) 

 

All three technologies produce millions of short sequence reads ranging from several 

tens of base pairs (bp) to several hundred bp. Therefore, the first step in the analysis of 

NGS data is to assemble sequences into longer contigs and, ultimately, into the complete 

genome sequence. Typically, the reads are assembled by aligning them to a references 

Platform 
Run 
time 

(days) 

Acquired 
data per 
run (Gb) 

Read 
length 

(bp) 
Pros Cons 

SOLiD 7-14 30-50 50 
Inherent error 

correction 
Long run times 

Solexa 4-9 18-35 75 or 100 
Most widely used 

platform 
Low multiplexing 

capabilities of samples 

454 FLX 0.35 0.45 
330 

(average) 

Longer reads improve 
mapping in repetitive 
regions; fast run times 

High reagent costs; 
high error rates in 

homopolymer repeats 
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genome (re-sequencing) or de novo assembly which is necessary in case of a completely 

unknown genome and which is highly demanding in terms of efficient algorithms and 

hardware resources. (Zhang et al. 2011). 

The development of efficient DNA enrichment technologies enabled the sequencing of 

targeted regions of a genome (genomic capture). Exome capture allows the analysis of 

the complete protein-coding region of the genome (Teer and Mullikin 2010). Total DNA 

is fragmented and applied to probes complementary to the desired DNA sequences. The 

target DNA fragments hybridize to the probes, the non-targeted sequences are washed 

away, and the enriched DNA is subsequently eluted for sequencing. Targeted analysis 

and sequencing of gene transcripts (RNA-seq) revolutionized the field of transcriptomics 

by providing a far more precise measurement of levels of transcripts and their isoforms 

than other methods (Wang et al. 2009b). Protocols to isolate different RNA populations 

implement poly(A) selection to enrich poly(A+)-transcripts (mRNA, microRNA, 

snoRNAs), or the depletion of ribosomal RNA to extract other non-coding and protein-

coding RNA that do not possess poly(A) tails, including histone mRNAs, tRNAs and 

certain small RNAs (Cui et al. 2010). Longer RNAs are fragmented and the resulting 

fragments are used to construct cDNA libraries for sequencing. The data derived from 

transcriptomic studies using NGS technology provide experimental evidence on gene 

expression in high-throughput and greatly facilitate the discrimination between coding 

and non-coding parts of the genome (Nagalakshmi et al. 2008). 

1.2. Genome annotation 

Methods to find genes in genome sequence have evolved since the early days of 

genetics. The determination of gene positions along the DNA sequence is usually the 

first step in the annotation of a newly sequenced genome. Classical gene finding 

approaches comprised sequencing of randomly chosen cDNA clones, searching genomic 

regions that are similar to proteins in databases, and manual de novo annotation by 

human curators (Brent 2005). Such experiments were extremely painstaking and 

expensive and were not capable to find genes in a genome sequence at global scale and 
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reasonable expense. Presently, gene finding has turned into a computational problem 

enabling an automated and inexpensive annotation of a genome sequence which is 

required to keep up with the vast amount of raw sequencing data produced by NGS 

technologies. Computational approaches can be divided into homology-based and ab 

initio methods, although many gene finding programs are hybrids (Knapp and Chen 

2007). The underlying algorithms of ab intio gene finders recognize specific structural 

patterns such as start/stop codons and promoter sequences to define the positions of 

genes along the DNA sequence. Due to the relatively simple gene structure, gene 

prediction is straightforward and existing gene finding tools achieve an accuracy of over 

90% on both levels of sensitivity and specificity in prokaryotic and some simple 

eukaryotic organisms (Knapp and Chen 2007). Eukaryotic genomes pose a much greater 

challenge for gene finding tools due to the much larger size and complex gene structure 

consisting of coding sequences (exons) intervened by non-coding sequences (introns). 

The majority of  gene finders is based on hidden Markov models (HMM) that take a 

sequence of inputs (DNA nucleotides) and a set of classes and assign a class (exons, 

introns, TATA boxes, etc.) to each individual input. The gene finders are trained on a 

specific genome, like the human genome, that should be taken into account when 

applied to new genomes (Korf 2004). Thus, any gene finder has specific patterns of 

inaccuracies, and their performance can be evaluated at the level of nucleotides, exons, 

and whole genes. At the nucleotide level, the nucleotide might be incorrectly predicted 

to be in a coding region or vice versa. At the exon level, several other scenarios might 

occur. An exon can be only partially correct or overlapping, completely missed, or 

incorrectly predicted. At the level of whole genes, the gene finder might miss a gene 

completely. Popular implementations of HMM gene finders are Augustus (Stanke and 

Waack 2003), GlimmerHMM (Majoros et al. 2004) and SNAP (Korf 2004), their 

performance besides other tools are reviewed in (Knapp and Chen 2007). Typical values 

for the fraction of correctly predicted exons of the three gene predictors varied between 

35-61% when applied to a human test dataset (FSH298) consisting of 298 genes with 

2555 coding exons (Knapp and Chen 2007). The subsequent in silico translation of 
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resulting gene predictions represent the theoretical proteome of an organism. These 

databases provide an essential resource for the proteomics community as these 

databases are typically used to search the acquired mass spectra in order to identify the 

correct amino acid sequences of the analyzed proteins. 

1.3. Mass spectrometry-based proteomics 

Mass spectrometers enable the analysis of the elemental composition of molecules by 

measuring their mass-to-charge ratio. MS instruments typically consist of an ion source, 

a mass analyzer and a detector. Analyzed molecules are first ionized to produce charged 

ions which are separated in a mass analyzer according to their mass-to-charge ratios and 

subsequently detected, resulting in the mass spectra of the analyzed molecules (Steen 

and Mann 2004). The use of this technology to analyze biopolymers emerged during 

1980s and was revolutionized by invention of two soft ionization methods, matrix-

assisted laser desorption/ionization (MALDI)(Hillenkamp et al. 1991) and electrospray 

(ESI)(Fenn et al. 1989), which were awarded the Nobel Prize in Chemistry in 2002. Mass 

spectrometry gradually displaced the classical technique for protein analysis, known as 

Edman degradation, due to higher speed and sensitivity and enabled global analysis of 

proteins present in a cell, tissue or an organism, which today is termed proteomics 

(Steen and Mann 2004). Since that time the technology improved constantly and today 

several different MS platforms and instruments are in routine use for proteomics 

applications (Ahmed 2008). The different MS instruments can be roughly classified 

according to their achieved accuracy of measured mass-to-charge ratios that is 

expressed in parts per million (ppm) relative to the m/z ratio of the measured ion. For 

example, a peptide ion of 1000 Da measured with 1 ppm accuracy results in an absolute 

mass error of 0.001 Da. Low accuracy instruments (ion traps, triple quadrupoles) enable 

high speed acquisition, but the resulting data suffers from poor resolution and mass 

accuracy, which is typically 200 -500 ppm. 
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FIGURE 1:  QUALITATIVE SHOTGUN PROTEOMICS WORKFLOW F OR PROTEIN IDENTIFICATION.  A) THE 

EFFICIENT EXTRACTION OF THE PROTEIN CONTENT FROM A CELL LYSATE IS  THE FIRST CRUCIAL STEP IN ORDER 

TO ACHIEVE COMPREHENSIVE PROTEOME COVERAGE.  PROTEINS ARE DIGESTED IN-SOLUTION AND THE 

RESULTING COMPLEX PEPTIDE MIXTURE IS FRACTIONATED BY OFFGEL ISOELECTRIC FOCUSING.  

ALTERNATIVELY,  PROTEINS ARE SEPARATED ON A 1D-GEL FOLLOWED BY SUBSEQUENT IN-GEL DIGESTION.  

THE FILTER-AIDED SAMPLE PREPARATION (FASP)  COMBINES THE ADVANTAGES OF THE IN-SOLUTION AND 

IN-GEL DIGESTION WORKFLOWS AND PRESENTS AN ATTRACTIVE METHOD FOR COMPREHENSIVE PROTEOME 

ANALYSIS.  B) THE PEPTIDE FRACTIONS ARE FURTHER SEPARATED BY LIQUID CHROMATOGRAPHY (LC).  THE 

SAMPLE IS  LOADED ONTO A NANO-HPLC  COLUMN THAT IS DIRECTLY COUPLED TO AN ELECTROSPRAY 

IONIZATION SOURCE.  PEPTIDES ELUTE ACCORDING TO THEIR HYDROPHOBICITY,  BECOME IONIZED AND 

ENTER THE MASS SPECTROMETER (MS)  IN WHICH THEIR MASS-TO-CHARGE RATIO ARE MEASURED AT HIGH 

ACCURACY IN THE MS  SCAN.  THE MOST ABUNDANT PEPTIDES ARE FRAGMENTED AND RESULTING FRAGMENT 

IONS ARE DETECTED IN A MS/MS  SCAN.  C) SOPHISTICATED ALGORITHMS HAD TO BE DEVELOPED THAT ARE 

CAPABLE TO DETECT AND EXTRACT TREMENDOUS  NUMBER OF PEPTIDE FEATURES IN A SINGLE LC-MS/MS  

RUN.  PEPTIDE MASSES ACQUIRED AT HIGH MASS ACCURACY ARE RECALIBRATED TO ENABLE A NARROW 

DATABASE SEARCH TOLERANCE AND TO INCREASES SENSITIVITY AND SPECIFICITY OF DATABASE SEARCH.  THE 

PROPORTION OF FALSE POSITIVE IDENTIFICATIONS IS TYPICALLY CONTROLLED BY TARGET-DECOY SEARCH 

STRATEGY.   IDENTIFIED PEPTIDE SEQUENCES ARE ASSEMBLED INTO PROTEINS AND PROTEIN GROUPS AND 

THE RESULTS OF DATA PROCESSING ARE USUALLY PRESENTED IN A DATA SHEET FORMAT THAT CAN BE 

FURTHER INVESTIGATED BY THE USER. 
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High accuracy instruments, such as quadrupole time-of-flight (Q-TOF), Fourier transform 

ion cyclotron resonance (FT-ICR), or orbitrap instruments typically have a very good 

resolution and can achieve sub-ppm accuracy, but are characterized by relatively low 

acquisition speed resulting in lower proteome coverage. Newer generations of MS 

instruments try to circumvent this problem by combining a low- and high accuracy mass 

analyzer. Arguably the most successful hybrid instrument to date is the LTQ-Orbitrap, 

which combines a high accuracy orbitrap mass analyzer with a fast and sensitive ion trap 

mass analyzer. This configuration is commonly used in peptide-based “shotgun” 

experiments that aim to achieve as comprehensive proteome coverage as possible and 

which I will elaborate hereafter. 

1.3.1. Sample preparation 

The typical “shotgun” proteomics workflow starts with a cell culture or tissue of interest 

that needs to be lysed in a way that enables the highest possible retrieval of its protein 

content. Ideally, proteins should be extracted and solubilized in a buffer containing a 

potent denaturating agent and a detergent and digested in solution using a sequence-

specific protease such as trypsin. Peptides are much easier to analyze than intact 

proteins that might not be soluble under the same conditions and get modified and 

processed in a way that affects their mass. Furthermore, peptides are easier to ionize 

and mass spectrometers are usually more sensitive in mass ranges resulting from 

peptides (up to ~20 amino acids) than in the mass range from whole proteins. In order 

to reduce the complexity of the resulting peptide mixture, the sample is separated into 

several fractions that are analyzed separately by MS. Peptides can be separated 

according to their isoelectric point by the application of OffGel electrophoresis (Hubner 

et al. 2008). Alternatively, the protein extract can be separated by 1D SDS-PAGE 

subsequently in-gel digested (Shevchenko et al. 2006) which extracts membrane 

proteins more efficiently. The filter-aided sample preparation (FASP) method combines 

the advantages of the 1D gel-based workflow and in-solution digestion (Manza et al. 

2005; Wisniewski et al. 2009) making it especially attractive for comprehensive 

proteome analysis. 
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1.3.2. LC-MS/MS 

Even if separated previously, the resulting peptide mixtures give rise to thousands of 

peptides upon digestion. Simultaneous ionization of such a complex peptide mixture 

negatively influences the dynamic range of the measurement and therefore leads to 

lower identification rates. To further reduce the complexity of the resulting mixture, the 

peptides are separated by high-performance liquid chromatography (HPLC). The sample 

is injected onto nano-HPLC column (inner diameter 25-75 µm) and eluted using a solvent 

gradient of increasing organic content to separate peptides according to their 

hydrophobicity. Very hydrophilic peptides start to elute immediately while extremely 

hydrophobic peptides are retained for a longer period on the column and elute at a later 

time point. After elution the peptides are ionized by electrospray ionization (ESI). Briefly, 

the peptides flow through a needle, at the tip the liquid vaporizes and the peptides 

become ionized by a strong electric potential (Steen and Mann 2004). The resulting ions 

enter the mass spectrometer through a transfer capillary and reach a vacuum system in 

which they are pulled by an electric field to the mass analyzer (Figure 2A). The mass-to-

charge ratios of intact peptide (precursor) ions eluting from HPLC column at a specific 

time point are measured in a “full” or MS scan performed at high resolution and 

accuracy in the orbitrap mass analyzer. Briefly, the analyzer measures the axial 

frequency of the peptide ions spinning around a spindle like electrode (Hu et al. 2005). 

Application of the Fourier transform algorithm converts the image current into mass 

spectra. Each recorded peptide ion signal appears as a cluster of isotope peaks, caused 

by the natural occurrence of 13C isotope in about 1% of all carbon atoms (Figure 2B). The 

isotope peaks are separated by 1 Da, which can be easily resolved by the orbitrap 

analyzer. Depending on the charge state (z) of the peptide ion, the isotope peaks are 

separated by 1/z Th. For example, if the isotope peaks are separated by 0.5 Th, the 

charge state of the peptide cluster must be 2. 
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FIGURE 2:  HYBRID MS  INSTRUMENTS FOR ‘HIGH-LOW’ SEQUENCING STRATEGY A)  SCHEMATIC OF THE LTQ 

ORBITRAP-VELOS INSTRUMENT.  THE FIGURE HAS BEEN ADOPTED AN MODIFIED FROM (OLSEN ET AL.  2009).  

B)  ISOTOPE CLUSTERS OF TWO PEPTIDE IONS (SILAC  PAIR,  SEE PARAGRAPH 1.3.4),  MEASURED AT HIGH MAS S 

ACCURACY AND RESOLUTION IN THE ORBITRAP MASS ANALYZER.  THE LEFTMOST PEAKS OF THE CLUSTERS 

(648.79  M/Z AND 652.8  M/Z)  REPRESENT THE POPULATION OF PEPTIDE IONS  THAT CONTAIN ONLY 12C  

ATOMS,  WHEREAS THE ADJACENT PEAKS RESULT FROM PEPTIDES I ON CONTAINING ONE 13C  ATOM (649.3  M/Z 

AND 653.3  M/Z).  THE DISTANCE BETWEEN TWO ISOTOPE PEAKS IS  0.5  TH INDICATING DOUBLY CHARGED 

PEPTIDE IONS.  THE TWO ISOTOPE CLUSTER REPRESENT TWO VERSIONS OF THE SAME PEPTIDE,  THE UNLABELED 

(LIGHT)  VERSION AND A STABLE ISOTOPE LABELED (HEAVY)  VERSION.  IN THIS PARTICULAR CASE THE MASS 

DIFFERENCE BETWEEN THE TWO PEPTIDES IS 8  DA.  THE SIGNAL INTENSITY PROVIDES QUANTITATIVE 

INFORMATION ON THE R ELATIVE ABUNDANCE OF THE PEPTIDES,  IN THIS CASE BOTH VERSIONS ARE EQUALLY 

ABUNDANT RESULTING I N AN 1:1  RATIO.  C) MS/MS SPECTRUM OF A FRAGMENTED PEPTIDE ION.  THE MOST 

ABUNDANT PEPTIDE IONS ARE ISOLATED,  FRAGMENTED,  AND RESULTING FRAGMENTS ARE DETECTED AT LOW 

ACCURACY AND HIGH SPEED IN THE LINEAR ION TRAP.  

To retrieve information about the amino acid sequence, the most abundant precursor 

ions are fragmented in the collision cell of the instrument. Although there are several 

different ways to fragment peptides (Ma and Johnson 2012), the most frequently used 

fragmentation method in proteomics relies on the collision of precursor ions with an 

inert gas such as helium. This process termed collision-induced dissociation (CID) 

preferentially results in the cleavage of the peptide bonds primarily producing two types 

of ions designated as b-ions for N-terminal and y-ions for C-terminal types. Other ion 

types might occur depending on the cleavage position on the peptide backbone (Figure 
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3), as well as many additional fragment ions such as internal ions, immonium ions or 

neutral loss ions. The mass-to-charge ratios of resulting fragment ions are measured in 

an MS/MS (or tandem MS) scan that is usually performed with high speed and high 

sensitivity, but low resolution in the ion trap mass analyzer (Figure 2C). This so-called 

“high-low” strategy provides the best tradeoff between accurately measured peptide 

mass-to-charge ratios that directly influences a key parameter in database search (see 

below), and high sequencing speed required for comprehensive proteome coverage. 

Newer generations of orbitrap instruments (Figure 2A) show great promise for in-depth 

and accurate proteome analysis by combining a faster and more sensitive dual-pressure 

ion trap with a high accuracy orbitrap mass analyzer (Olsen et al. 2009), which - in the 

latest configuration level of the instrument - has been replaced by a high-field orbitrap 

that enables a higher resolution at increased sequencing speed (Michalski et al. 2012). 

In addition, an improved higher energy collision-induced dissociation (HCD) collision cell 

enables the acquisition of both MS and MS/MS spectra at high speed and mass accuracy. 

The routine application of the “high-high” strategy in the future will further improve the 

quality of acquired MS data and facilitate the data processing. 

 

FIGURE 3  NOMENCLATURE OF PEPTIDE FRAGMENTATION IONS.  BREAKAGE OF THE BOND BETWEEN THE 

CARBONYL C  AND Cα  PRODUCES A AND X IONS,  BREAKAGE OF THE PEPTIDE BOND RESULTS IN B AND Y IONS 

WHILE THE BREAKAGE OF THE Cα-N  BOND PRODUCES C AND Z IONS. 
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1.3.3. Data processing and database search 

The data derived from a single LC-MS run consists of several tens of thousands peptide 

mass spectra that require automated data processing methods. Several methods have 

been proposed to assign the amino acid sequence to a mass spectrum such as de novo 

sequencing approaches (Allmer 2011), correlation to spectral libraries (Lam et al. 2007) 

or searching protein sequence databases. Despite clear difficulties, the latter is by far 

the best established method within the proteomics community. Specialized software 

converts the MS and MS/MS spectra into a format suitable for database search (peak 

list). The latest generation of processing software makes use of the high mass accuracy 

of modern mass spectrometers to identify spectral features used for mass recalibration 

to compensate for drifts in instrument calibration. Mass recalibration performed in this 

way can improve the mass accuracy by 5-10 fold (Cox and Mann 2008). 

Database search 

Extracted and recalibrated peak lists are submitted to a database search engine, which 

identifies peptides by searching the measured mass spectra against a protein database 

that typically comprises the translated gene sequences derived from ab initio gene 

prediction programs (see section 1.2). The protein sequences are digested in silico and 

the measured peptide mass spectra are correlated to theoretical mass spectra resulting 

from candidates that have a peptide mass within a user specified tolerance (precursor 

mass tolerance) (Figure 4A). The number of potential peptide candidates defines the 

search space which directly affects sensitivity and specificity of database search. The size 

of the search space primarily depends on the mass accuracy of the MS instrument, the 

size of the database, number of missed cleaved peptides, and presence of post 

translational protein modifications (Figure 4B). The degree of similarity between the 

observed mass spectrum and each theoretical candidate spectrum is measured by the 

search score that depends on the applied search engine. Typically only the top scoring 

peptide-spectrum-match (PSM) is suggested by the search engine as correct amino acid 

sequence. The type of search score depends on the scoring function of the search engine 

uses to compare the observed to the theoretical spectra. Probability based search 
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engines like Mascot (Matrix Science) and Andromeda (Cox et al. 2011) calculate the 

probability that the observed PSM is a random event. 

FIGURE 4:  THE PRINCIPLE OF DATABASE SEARCH FOR PEPTIDE SEQUENCE ASSIGNMENT TO MS/MS SPECTRA.  

A)  THE MEASURED SPECTRUM IS CORRELATED TO A NUMBER OF THEORETICAL SPECTRA DERIVED FROM A 

SEQUENCE DATABASE THAT CONTAINS ALL THEORETICAL PROTEIN SEQUENCES OF A SPECIFIC ORGANISM.  THE 

DEGREE OF SIMILARITY BETWEEN OBSERVED AND  THEORETICAL SPECTRA IS MEASURED IN A SEARCH SCOR E,  THE 

NUMBER OF POSSIBLE CANDIDATE SEQUENCES D EFINES THE SEARCH SPACE.  B) RELATIONSHIP OF THE SEARCH 

SPACE AND MASS TOLERANCE IN DATABASE SEARCH.  HIGH MASS ACCURACY INSTRUMENTS ENABLE THE USE OF 

NARROW MASS TOLERANCES (TYPICALLY AROUND 10  PPM)  WHICH CORRESPOND TO A MEDIAN SEARCH SPACE 

OF 44  PEPTIDES IN THIS PAR TICULAR EXAMPLE.  LOW ACCURACY DATA REQUIRES MASS TOLERANCES OF >500  

PPM RESULTING IN AN ALMOST 20-FOLD LARGER SEARCH SPACE (MEDIAN: 850  PEPTIDE CANDIDATES).  C)  

THE TARGET-DECOY SEARCH STRATEGY CONTROLS THE PROPORTION OF  FALSE POSITIVE IDENTIFICATION IN A 

COLLECTION OF PSMS D)  MIXTURE MODEL METHODS CALCULATE A POSTERIOR PROBABILITY FOR EACH 

INDIVIDUAL PSM,  WHICH THEN CAN ALS O BE USED TO ESTIMATE THE FDR. 

 

For example, the algorithm implemented in Andromeda calculates the probability of 

observing at least k out of n matches by chance, where k is the number of matches of 

measured fragment ions to theoretical fragment ions within a specified tolerance 

(fragment ion tolerance) and n depicts the total number of theoretical fragment ions 

(Cox et al. 2011). These probabilities (P) are often reported as −10 log10 𝑃 representing 
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the actual PSM score. Further scoring schemes that have been described in the literature 

include cross correlation (for example SEQUEST (Eng et al. 1994)) and dot product (for 

example TANDEM (Craig and Beavis 2004)) calculations of tandem mass spectra. 

Estimation of false discovery rates 

Large-scale shotgun experiments produce matches of hundreds of thousands mass 

spectra to a database and the respective search engines return a match for almost every 

input spectrum of which only a fraction is true. In an ideal experiment the result of a 

database search would be a list of all peptides that have been sequenced in the mass 

spectrometer (true positives). However, in a real experiment the list contains peptides 

that were not sequenced (false positives), and leaves out peptides that were sequenced 

(false negatives). The fraction of true positive PSMs among all PSMs returned by the 

particular search engine expresses the sensitivity, whereas the fraction of true negatives 

(i.e. peptide sequences that were truly not identified) among all peptides that were not 

sequenced is termed specificity. Both quantities have to be maximized to enable high 

identification and low error rates at the same time. Therefore, the statistical validation 

of PSMs has become a crucial task in every proteomics experiment. The most commonly 

used and accepted confidence measures are the false discovery rate (FDR) as global 

property of a collection of PSMs, and the posterior error probability (PEP) for individual 

PSMs (Kall et al. 2008). The target-decoy search strategy (Elias and Gygi 2007) and 

mixture model methods (Keller et al. 2002) are two complementary and well established 

approaches to assign these confidence measures to database search results.  

By using the target-decoy search strategy the database containing the sequences of 

interest (target) is complemented with a database of the same size containing definite 

incorrect protein sequences (decoy) (Figure 4C). The decoy database can be constructed 

by randomization or reversal of the target sequences; the effect of different strategies 

for decoy sequence generation was discussed elsewhere (Bianco et al. 2009; Wang et 

al. 2009a). The basic assumption of the target-decoy approach is that false matches from 

the target database and matches to decoy peptides follow the same distribution, given 

an equal size of the target and decoy databases. Any PSM to the decoy database is per 
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definition a false positive identification and the overall number of decoy PSMs (𝑁𝑑𝑒𝑐𝑜𝑦) 

can be used to estimate the expected proportion of false positive identifications among 

the PSMs resulting from the target database (𝑁𝑡𝑎𝑟𝑔𝑒𝑡) by applying following formula: 

𝐹𝐷𝑅 =  
2 𝑁𝑑𝑒𝑐𝑜𝑦

𝑁𝑡𝑎𝑟𝑔𝑒𝑡 + 𝑁𝑑𝑒𝑐𝑜𝑦
 

Mixture model approaches explain the distribution of database search scores for all 

PSMs in the dataset as a mixture of correct and incorrect PSMs (Figure 4D). The score 

distributions of the two populations are estimated from the data using the expectation 

maximization (EM) algorithm. Once the two distributions are know the posterior error 

probability (PEP), i.e. the probability that the score of a particular PSM belongs to the 

distribution of incorrect PSMs, can be calculated according to the Bayes’ theorem. 

Alternatively, posterior probabilities (PP) for each PSM can be reported that are 

essentially the compliment of PEPs and therefore defined as 1-PEP. The FDR of a 

collection of PSMs at a specified posterior probability threshold (𝑃𝑃𝑇 ) can then be 

calculated as reported in (Nesvizhskii 2010)  

𝐹𝐷𝑅(𝑃𝑃𝑇) =  
∑ (1 − 𝑃𝑃𝑖){𝑖|𝑃𝑃𝑖≥ 𝑃𝑃𝑇}

∑ 1{𝑖|𝑃𝑃𝑖≥ 𝑃𝑃𝑇}
 

Protein assembly 

Since the ultimate goal of a typical proteomics experiment is to identify proteins, the 

identified peptide sequences have to be assembled into proteins. This represents a non-

trivial and challenging task, especially in proteomes of higher eukaryotes where 

alternative splicing of multi-exon genes is a common process. The same peptide 

sequence can be present in several different proteins or different protein isoforms 

leading to ambiguous protein identifications, a circumstance that is known as the 

protein inference problem (Figure 5). One way to partially circumvent this problem is to 

join and report proteins sharing a set of distinct peptide sequences as single protein 

group (Nesvizhskii and Aebersold 2005). Once the peptide sequences identified at a 

specific FDR are assembled into protein groups, the FDR has to be recomputed at the 
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protein level to address the amplification of error rates starting at PSM levels to 

nonredundant peptide sequences to proteins. The different aspects of protein inference 

are covered in detail elsewhere (Nesvizhskii and Aebersold 2005) 

 

FIGURE 5:  THE PROTEIN INFERENCE PROBLEM – FOUR BASIC GROUPING SCENARIOS.  FIGURE ADAPTED AND MODIFIED 

FROM (NESVIZHSKII AND AEBERSOLD 2005).  A) FOUR DISTINCT PEPTIDES ALLOW IDENTIFICATION OF TWO DISTINCT 

PROTEINS.  B) THE PRESENCE OF ONE UNIQUE PEPTIDE PER PROTEIN (1,  4)  ENABLES THE DISCRIMINATION OF THE TWO 

PROTEINS.  C) THE TWO PROTEINS SHARE THE SAME SET OF PEPTIDES AND CANNOT BE DISTINGUISHED.  D) PROTEIN B  

IS A SUBSET OF PROTEIN A. 

 

1.3.4. Quantitative proteomics 

Two general strategies are used for MS-based protein quantification:1) introduction of 

a stable isotope mass label that allows the discrimination between peptides from 

different experimental conditions in single LC-MS/MS run, or 2) the use of normalized 

peptide ion signals recorded in the mass spectrometer to compare protein abundance 

between different LC-MS/MS runs (“label-free” quantification). The latter require 

efficient normalization algorithms since the ion signals are extremely variable between 

peptides due to different ionization efficiency resulting from the diversity of chemical 

structures. Examples of label-free quantitation approaches are protein abundance index 

(PAI) (Rappsilber et al. 2002), spectral counting (Zhang et al. 2006; Asara et al. 2008), 

iBAQ (intensity based absolute quantification) (Schwanhausser et al. 2011) , or the label-

free algorithm implemented in the MaxQuant software. 
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The incorporation of stable isotope atoms such as carbon (13C), nitrogen (15N), and 

deuterium (2H), into proteins of one or more samples enables an accurate way to 

perform relative quantification of protein expression (Ong et al. 2002). The labeled 

sample is mixed with the unlabeled sample in equal amounts and the mixture is 

subjected LC-MS/MS analysis. The chemical and physical properties of labeled and 

unlabeled peptides are exactly the same, except for the mass difference introduced by 

‘heavy’ stable isotopes, resulting in the appearance of two signals (doublets) of each 

peptide ion in the mass spectrometer that can be directly compared. The isotope label 

can be introduced chemically by adding a specific mass tag, or metabolically by 

incorporation of the heavy isotopes present in e.g. cell culture medium. Stable isotope 

labeling by amino acids in cell culture (SILAC) presents a frequently used metabolic 

labeling method, in which an essential amino acid is replaced by its isotope labeled 

counterpart during growth in cell culture. Cell lysates from different SILAC encoded 

populations are mixed prior to any protein separation and digestion minimizing the 

quantitation errors, and analyzed together in a single LC-MS/MS run. Quantitative 

proteomics was not in focus of this thesis and is extensively reviewed elsewhere 

(Aebersold and Mann 2003; Ong and Mann 2005; Choudhary and Mann 2010). 

1.4. Proteogenomics - Mass spectrometry at the interface of 

proteomics and genomics 

Combining MS based proteomics and genomics is not a new concept. Already in 1995, 

the application of MS/MS spectra to nucleotide sequences was demonstrated (Yates et 

al. 1995) and since then several groups applied this concept to find new genes and to 

improve genome annotations in various organisms using different types of mass 

spectrometers by searching the acquired peptide mass spectra against the genome that 

was translated into all six reading frames (Figure 6A). This strategy enables the 

identification of unpredicted open reading frames and the refinement of existing gene 

models in terms of protein start and stop positions, exon-intron structure as well as their 

exact boundaries (Figure 6B). The detected peptide sequences are used as extrinsic 
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evidence for retraining of gene finding algorithms discussed above in order to refine 

existing gene models. 

 

FIGURE 6:  SEARCHING PROTEOGENOMIC DATABASES TO REFINE EXISTING GENOME ANNOTATIONS.  A)  THE 

TYPICAL PROTEOGENOMIC DATABASE CONSISTS OF THE TRANSLATION OF THE NUCLEOTIDE SEQUENCE INTO ALL 

SIX READING FRAMES,  THREE ON THE FORWARD AND THREE ON THE REVERSE STRAND,  RESPECTIVELY.  THIS 

DATABASE ENABLES THE IDENTIFICATION OF PEPTIDES THAT ARE NOT PRESENT IN THE CORRESPONDING 

PROTEOME DATABASE THAT IS TYPICALLY DERIVED BY TRANSLATION OF THE EXISTING GENOME ANNOTATION 

B)  THE PEPTIDES DETECTED BY SEARCHING A SIX-FRAME DATABASE PROVIDE EVIDENCE FOR THE CORRECT 

ANNOTATION OF EXISTI NG GENE MODELS,  OR CAN BE USED TO CORRECT EXISTING GENE MODELS,  AND CAN 

DETECT GENES THAT ARE ENTIRELY MISSING IN THE EXISTING GENOME ANNOTATION. 

 

1.4.1. Historical overview 

Early proteogenomic studies predominantly involved the use of low accuracy mass 

spectrometers, often in combination with 2D gel separation of proteins. For example, 

Link et al. used triple-quadrupole and ion trap MS in combination with 2D PAGE to 

analyze abundant proteins in Haemophilus influenza, and identified several proteins 

that were not previously annotated (Link et al. 1997). Neubauer et al. used triple 

quadrupole MS and searched expressed sequence tag (EST) databases with MS data to 

detect components of the mammalian spliceosome that were not contained in a 

comprehensive protein database (Neubauer et al. 1998) and Jungblut et al. 

demonstrated the expression of six genes in Mycobacterium tuberculosis not predicted 

by genomic approaches using 2D PAGE and MALDI-QTOF MS (Jungblut et al. 2001).  Soon 

after the first draft of the human genome became available, Choudhary et al. 
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investigated the feasibility of searching the MS/MS spectra against a six-frame 

translation of all 23 human chromosomes and compared it to the search against protein 

and EST database (Choudhary et al. 2001). More recent studies mainly employed ion 

trap mass spectrometers but with application of advanced, shotgun proteomics 

approaches instead of 2D PAGE protein separation. Oshiro et al. used a combination of 

expression profiling and ion trap MS to verify independent transcription and translation 

of genes in Saccharomyces cerevisiae (Oshiro et al. 2002) whereas Jaffe et al. used ion 

trap MS and introduced the concept of a proteogenomic map to predict ORFs in 

Mycoplasma pneumoniae based on expressed protein-based evidence (Jaffe et al. 

2004). As the field of MS-based proteomics was developing, several public repositories 

of MS/MS data became available and were used in proteogenomics projects. Fermin et 

al. used MS data from the Human Proteome Organization (HUPO) Plasma Project 

(Cottingham 2006) consisting mostly of ion trap data to search against a six-frame 

translation of the human genome in order to find novel blood proteins (Fermin et al. 

2006). Tanner et al. used ion trap data as well as MS data obtained from the PeptideAtlas 

(Desiere et al. 2006) to identify novel and extended genes, alternative splicing events 

and variant alleles of coding SNPs in human genome (Tanner et al. 2007). Recent 

applications of mass spectrometry to genomics included large-scale, mostly ion trap 

based proteogenomics studies of model organisms such as Shewanella oneidensis 

(Gupta et al. 2007) several species of the Mycobacterium genus (de Souza et al. 2008; 

de Souza et al. 2009; Gallien et al. 2009) Toxoplasma gondii (Xia et al. 2008), Arabidopsis 

thaliana (Baerenfaller et al. 2008; Castellana et al. 2008) and Caenorhabditis elegans 

(Merrihew et al. 2008). Recently, data derived from proteogenomic studies were 

integrated in the Encyclopedia of DNA Elements (ENCODE) to facilitate the generation 

of high-quality functional annotation of the human genome (Rosenbloom et al. 2012). 

1.4.2. Challenges in proteogenomic experiments 

Besides general challenges arising in any shotgun proteomics experiment such as 

proteome coverage, dynamic range and sequencing speed of mass spectrometers, 

challenges specifically concerning proteogenomic experiments primarily involve 
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computational aspects such as the construction appropriate databases, searching the 

acquired mass spectra against these databases and statistical scoring and validation of 

resulting PSMs. These computational aspects were reviewed in (Castellana and Bafna 

2010).  

Database construction 

To enable the identification of all possible gene products from MS data, the genome 

sequence has to be translated in silico into all six reading frames leading to an at least 

six-fold increase in database entries. Therefore, the search space is noticeably larger 

compared to standard proteome databases, which negatively influences sensitivity and 

specificity of the database search and therefore leads to decreased identification rates. 

This circumstance will be even more pronounced, if target-decoy databases are used to 

control the FDR resulting in an additional doubling of the search space. The construction 

of an appropriate proteogenomic database is relatively straightforward for microbial 

genomes due to their small size and relatively simple genome structure. Proteogenomic 

databases of eukaryotes are far more complex due to the exon-intron gene structure 

and alternative splicing which leads to a disproportional increase in the size of six-frame 

databases. Moreover, any peptide sequence spanning a splice junction is not covered 

by regular six-frame databases and thus cannot be identified using a standard search 

engine as mentioned above. One approach to identify intron-split peptides described in 

(Allmer et al. 2004) combines de novo MS/MS sequencing and classical search engines 

like Sequest or Mascot. De novo deduced peptide sequences are aligned to the genomic 

sequence to assemble a database of possible peptides that match a particular mass 

spectrum. This database can be used by MS/MS search engines to identify and validate 

peptides that span an intron–exon boundary. 
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Database search 

Once an appropriate database has been assembled, it is queried by the acquired mass 

spectra. As previously mentioned, the search space is significantly larger compared to 

standard organism-specific protein databases. High accuracy MS has the intrinsic 

potential to decrease the search space by enabling the use of narrow precursor mass 

tolerances in database search. Figure 7 illustrates the increase of the search space based 

on a simple prokaryotic genome (Escherichia coli K12). Even in this simplified example it 

is noticeable that high measurement accuracy greatly limits the number of candidate 

peptide sequences that ‘‘compete’’ for an MS spectrum acquired at a given mass 

accuracy. Lower number of candidate peptide sequences leads to a smaller search space 

and this in turn leads to an increased sensitivity and specificity of the database search. 

However, the actual mass tolerance during database search usually exceeds the 

achieved measurement mass accuracy by several folds to provide ample number of 

candidate peptide sequences and prevent ‘‘forcing’’ the search engine to report a 

FIGURE 7:  BOXPLOT REPRESENTATION OF THE DATABASE SEARCH SPACE RESULTING FROM A PROTEIN 

DATABASE AND SIX-FRAME TRANSLATION AS A FUNCTION OF MASS T OLERANCE.  THE SEARCH SPACE OF A 

STANDARD PROTEIN DATABASE IS  DEPICTED IN CYAN,  THE SEARCH SPACE RESULTING FROM THE TRANSLATION 

OF THE CORRESPONDING  GENOME INTO SIX READING FRAMES IS  SHOWN IN ORANGE. 
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particular peptide. Various bioinformatics strategies have been applied to reduce the 

search space in proteogenomic experiments. Most approaches incorporate auxiliary 

information into database search, such as knowledge about the pI of analyzed peptides 

(Sevinsky et al. 2008), or de novo deduced short peptide sequence tags (Kuster et al. 

2001). 

Validation of search results 

Besides the increased search space, the use of six-frame databases is made difficult by 

the fact that about 80% of database entries are spurious protein sequences resulting 

from reading frames that are never transcribed. These sequences are in fact decoy 

sequences and therefore should be considered in any FDR calculation. However, it is 

usually not known a priori which frame at a certain locus is used to translate the open 

reading frame into a protein sequence. In case of target-decoy databases the result is 

an unequal size of target and decoy sequence that introduces a bias in a decoy based 

FDR estimation. Many proteogenomic studies did not go beyond the standard 

procedure to control the FDR of six-frame database searches and it was stated that in 

those cases the actual error rate may not be known (Nesvizhskii 2010). The general 

consensus in the community is to carefully examine the database search results, e.g. the 

identification of unpredicted ORFs should be further validated by manual investigation 

of the corresponding MS/MS spectra and the expression of corresponding genomic 

region can be proved by orthogonal methods such as RT-PCR. Furthermore, a 

complementing shotgun transcriptomics experiment can be performed in order to 

increase the reliability of any novel peptide identified in six-frame database searches. 

1.5. Phosphoproteomics 

The MS based proteomics workflow can be modified to enable the global and in vivo 

analysis of posttranslational modifications (PTMs) of proteins, such as phosphorylation, 

acetylation, and ubiquitination, primarily due to the application of efficient enrichment 

strategies and the optimization of fragmentation and acquisition methods for the 

analysis of modified peptides. Published studies predominantly focused on 
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phosphorylation of serine, threonine and tyrosine (Ser/Thr/Tyr) residues, which was the 

first protein modification applicable to large scale MS analysis. In this section, I will give 

a brief introduction of the MS-based workflow for the global analysis of Ser/thr/Tyr 

phosphorylation; a very detailed overview about the principles and applications of 

phosphoproteomics can be found in (Macek et al. 2009). 

1.5.1. Ser/Thr/Tyr Phosphorylation 

The reversible phosphorylation of proteins is involved in almost every known cellular 

signaling pathway and presents the most common and important signal transduction 

event in eukaryotic as well as prokaryotic systems. Protein kinases transfer a phosphate 

group from adenosine triphosphate (ATP) on a protein, while phosphatases catalyze the 

removal the phosphate by hydrolysis. Phosphorylation can occur on several amino acids; 

the most prominent type of phosphorylation in eukaryotic systems involves serine, 

threonine and tyrosine phosphorylation, in which the phosphate group is bound to the 

hydroxyl group of the amino acids. It has been shown that Ser/Thr/Tyr phosphorylation 

is not exclusive to eukaryotic systems, but also plays a key role in prokaryotic signal 

transduction, besides the canonical Asp/His phosphorylation characteristic for two-

component signaling systems in bacteria (Deutscher and Saier 2005). The interplay 

between kinases and phosphatases presents a switch to alter protein activity of its 

substrates by, e.g. inducing a conformational change or creating a docking site for other 

signaling proteins. This activation or deactivation of certain proteins directs the signal 

propagation inside the cell. The complement of protein kinases encoded in a genome is 

termed kinome and can be classified into orthologous kinase groups with conserved 

functions across different species and kinase families within a specific lineage (Manning 

et al. 2002). The classification is primary based on sequence similarity of the catalytic 

kinase domain and the taxonomy of Hanks and Hunter (Hanks and Hunter 1995). 

Eukaryotic protein kinases (ePKs) make up a large superfamily of protein kinases sharing 

a conserved catalytic domain and are divided into two main subgroups - 

serine/threonine kinases and tyrosine kinases. Atypical protein kinases (aPKs) lack 

sequence similarity to ePKs, but are known or predicted to have an enzymatic activity. 
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Most of the kinase groups and families are conserved throughout metazoans, many of 

them are also conserved in yeasts. The number of kinases encoded in a genome differs 

across the species ranging from ~130 (S. cerevisiae) to ~ 500 (human). The study and 

comparison of kinomes across species provides valuable insights into the evolution and 

architecture of protein kinase signaling pathways (Manning et al. 2002). 

TABLE 2:  CLASSIFICATION OF PROTEIN KINASES.  THE TABLE WAS COMPILED USING THE INFORMATION PROVIDED ON 

HTTP://KINASE.COM/WIKI. 

 Group Description 

eP
K

 

AGC Contains core intracellular signaling kinases 

CMGC Diversity funcions in cell cycle control, MAPK signaling and  splicing 

CAMK Calcium and calmodulin-dependent kinases 

CK1 Casein kinase 1, small and ancient family 

Ste Consists of three main families that activate the MAPK family 

TK Tyrosine kinase; phosphorylate almost exclusively on tyrosine 

residues 

TKL Tyrosine kinase-like; most similar to tyrosine kinases 

RGC Receptor guanylate cyclase 

Other Several families that do not fit other ePK groups 

aP
K

 aTYPICAL Diverse group with no structural similarity to ePKs 

 

1.5.2. Phosphopeptide enrichment 

Due to the substoichiometric nature of the modification, phosphorylated peptides 

represent only a small proportion of all peptides in the cell lysate and therefore have to 

be biochemically enriched before they can be efficiently analyzed in the mass 

spectrometer (Macek et al. 2009). Among several strategies that exist to specifically 

enrich phosphopeptides, two widely used affinity based enrichment methods are strong 

cation exchange (SCX) chromatography and titanium dioxide (TiO2) enrichment. The 
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combination of both enrichment steps provides a robust and efficient strategy for the 

large-scale analysis of phosphorylated peptides. 

Strong cation exchange (SCX) chromatography 

The principle of SCX chromatography is based on the difference in the solution charge 

states of phosphorylated and nonphosphorylated peptides. The solution charge state of 

a tryptic peptide at pH 2.7 is +2 because C-terminal lysine or arginine and the N-terminal 

amino group are protonated. If the same peptide carries a negatively charged phosphate 

group, the net charge will be reduced by one. Therefore, phosphorylated peptides can 

be enriched by their decreased net charge (Macek et al. 2009). Phosphopeptides are 

separated on an analytical column using a linear salt gradient resulting in several SCX 

fractions. Due to a zero or negative net charge of multiply phosphorylated peptides, 

they are not retained on the SCX column. Thus the unbound material (“flow-through”) 

has to be analyzed separately. 

Titanium dioxide (TiO2) enrichment 

TiO2 spheres covalently bind the phosphate group of the modified peptides, but also 

glutamic and aspartic acid. In order to circumvent the binding of nonphosphorylated 

peptides that are rich in these acidic residues, 2,5-dihydroxy benzoic acid (DHB) is 

usually used as a competitive binder in the buffer. DHB is bound by TiO2 spheres with 

higher affinity than unphosphorylated peptides but with lower affinity than 

phosphopeptides. Thus, TiO2 enrichment relies on the competitive binding of 

phosphopeptides, and DHB which has to be removed from the sample prior to LC-

MS/MS analysis in order to avoid its binding to the separation column. 

1.5.3. MS analysis of phosphopeptides 

The challenge to analyze phosphorylated peptides in a mass spectrometer is the low 

coverage of sequence-specific fragment ions compared to the fragmentation of 

unmodified peptides (Macek et al. 2009). Using collision induced dissociation as 

described above the fragmentation generally occurs at the bonds containing the lowest 

energy; in case of phosphorylated serine and threonine peptides this is the particularly 
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labile O-phosphate bond. The result of this fragmentation is a prominent neutral loss of 

phosphoric acid (97.97 Da) from the phosphopeptide ion, often without any further 

sequence specific b- and y-fragment ions. To circumvent this problem the linear ion trap 

consecutively dissociates ion species that result from neutral losses upon CID, which are 

positioned at -97.97 Th, -48.99 Th, or -32.66 Th away from singly, doubly, or triply 

charged precursor ions, respectively. This so called multi stage activation (MSA) strategy 

is routinely used to analyze protein phosphorylation on LTQ-based hybrid instruments. 

1.5.4. Identification of phosphorylation sites 

To enable the identification of phosphorylated peptides the mass of the phosphate 

group has to be defined as variable modification during database search. The search 

engine adds the mass of the phosphate group to every serine, threonine, and tyrosine 

contained in the candidate peptide sequence to the search space and therefore is able 

to identify the MS/MS spectrum of a phosphorylated peptide. Determination of the 

exact position of a phosphorylation site within the peptide sequence is often difficult, 

especially for multiply phosphorylated peptides. For example, a peptide with 

consecutive serines, threonines, or tyrosines requires identified fragment ions between 

each of them in order to unambiguously assign the phosphorylation sites. A 

computational approach that addresses the phosphorylation site localization after 

peptide identification is integrated into the MaxQuant framework (Cox et al. 2011). The 

identified MS/MS spectrum is compared to all theoretical spectra in which the 

phosphorylation is placed at each possible position. Each position is scored, the scores 

are normalized and transformed into a probability (‘localization probability’) providing 

a statistical means for assigning phosphorylation to individual sites. 
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1.6. Aims of the thesis 

In this thesis I use data derived from mass spectrometry-based proteomics to improve 

the annotation of genome sequencing data and address general properties of the 

proteogenomic approach. Specific aims of the thesis are: 

1) Assessment of general properties of a typical, shotgun proteomics-based 

proteogenomics experiment using the small and well characterized genome of 

E. coli. 

a. Determination of sensitivity, specificity, accuracy, and false discovery 

rate of a proteogenomic experiment based on two well established and 

complementary MS data processing frameworks, MaxQuant (MQ) and 

Trans-Proteomic Pipeline (TPP). 

b. Refinement of the E. coli K12 genome annotation. 

c.  Determination of genome sequence coverage by shotgun proteomics 

data in a typical bacterial proteomics dataset. 

2) Application of proteogenomics to a complex genome assembly of a eukaryotic 

organism using the example of the model nematode P. pacificus. 

a. Refinement of the existing genome annotation and assembly of the P. 

pacificus protein database based on the refined annotation. 

b. Analysis of general properties of the P. pacificus proteome and 

comparison to other model nematodes, in particular C. elegans. 

c. Creation of the first comprehensive catalog of experimentally confirmed 

expressed proteome of P. pacificus. 

3) Functional annotation of the P.pacificus proteome with emphasis on processes 

related to protein phosphorylation and signal transduction. 

a. Characterization of the P. pacificus phosphoproteome using a qualitative 

phosphoproteomic dataset and its comparison to C. elegans. 

b. Characterization of the theoretical kinome of P. pacificus. 

c. Global functional annotation of the theoretical P. pacificus proteome.  
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2. Results 

2.1. Deep coverage of the Escherichia coli proteome enables the 

assessment of false discovery rates in simple proteogenomic 

experiments 

Karsten Krug, Alejandro Carpy, Gesa Behrends, Katarina Matic, Nelson C. Soares, Boris 

Macek 

2.1.1. Synopsis: 

The model Gram-negative bacterium Escherichia coli is one of the most intensively 

studied organisms. Many fundamental molecular processes are universal throughout 

the natural world and are best understood in E. coli. Especially the K-12 strain is a 

preferred model in biochemical genetics and molecular biology and was the earliest 

organism suggested as a candidate for whole genome sequencing (Blattner et al. 1997). 

Since then, its genome has been re-sequenced (Hayashi et al. 2006) and its features have 

been extensively studied (Karp et al. 2007). The E. coli chromosome consists of 4.6 Mb 

and encodes about 4,500 genes of which ~4,300 genes are protein coding (Hayashi et 

al. 2006). All protein entries contained in the UniProt database (E. coli K-12 reference 

proteome) are assigned with status ‘reviewed’ indicating that there is experimental 

evidence of protein existence for every database entry. The high quality of genome 

annotation makes E. coli an ideal model to assess general properties of simple microbial 

proteogenomics experiments. In this study we performed a comprehensive analysis of 

the Escherichia coli proteome using high accuracy LTQ-Orbitrap MS and map the 

corresponding MS/MS spectra onto a six-frame translation of the E. coli genome. We 

assumed complete annotation of the E. coli genome and regard all six frame-specific 

(novel) PSMs as false positive identifications. This enabled us to assess the sensitivity, 

specificity, accuracy and actual false discovery rate in a typical bacterial proteogenomic 

dataset. To increase reliability of our results we used two complementary 

computational frameworks for processing and statistical assessment of MS/MS data: 

MaxQuant and Trans-Proteomic Pipeline. We showed that the posterior error 

probability distribution of novel hits is almost identical to that of reversed (decoy) hits, 
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pointing to substantial underestimation of FDR even in “simple” proteogenomic 

experiments obtained by high accuracy MS. The use of a small and well annotated 

bacterial genome enabled us to address genome coverage achieved in state-of-the-art 

bacterial proteomics: identified peptide sequences mapped to all estimated expressed 

E. coli proteins, but covered 27.5% of the total genome sequence. Our results pointed 

to the necessity for further technological and bioinformatic improvements in 

proteogenomic strategies. 

2.1.2. Contributions: 

Alejandro Carpy, Katarina Matic, and Gesa Behrends prepared the samples; Alejandro 

Carpy performed the MS measurements. I performed the processing of MS raw files and 

complete down-stream analysis of the retrieved results. In particular I constructed 

appropriate proteome databases and performed the data processing using MaxQuant 

and Trans-Proteomic Pipeline. I developed and applied a computational pipeline to map 

the identified peptide sequences onto the genome sequence as well as the protein 

sequences contained in the E. coli database. Based on the results derived from the 

pipeline I developed a strategy to assess several parameters of both data processing 

workflows such as the actual false discovery rate. Furthermore, I performed the genome 

coverage analysis of MS data. I prepared all figures and wrote the manuscript with the 

help of Prof. Dr. Boris Macek. In total, my contribution to this manuscript was about 

75%. 
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2.2. Proteogenomics of Pristionchus pacificus reveals distinct 

proteome structure of nematode models. 

Nadine Borchert, Christoph Dieterich, Karsten Krug, Wolfgang Schütz, Stephan Jung, 
Alfred Nordheim, Ralf J. Sommer, Boris Macek 

2.2.1. Synopsis 

Pristionchus pacificus is a nematode which is increasingly used as model organism in 

developmental biology. In comparison to the classical nematode model, Caenorhabditis 

elegans, P. pacificus occupies a completely different niche and has a necromenic lifestyle 

in association to beetles. While C. elegans was the first multicellular organism having its 

genome sequenced (Consortium 1998), the genome of P. pacificus was sequenced 

recently using the whole genome shotgun method (Dieterich et al. 2008) and revealed 

the same number of chromosomes (5+1) but a substantially larger genome sizes of 169 

Mb than C. elegans (100 Mb). The application of the SNAP gene finder revealed 29,000 

protein-coding genes of which ~11,000 are restricted to P. pacificus and have no 

homologs in other species (‘pioneer or orphan genes’). The aim of this study was to 

refine the genome annotation of P. pacificus by performing transcriptome and 

proteome analysis. The proteome analysis on an LTQ-Orbitrap mass spectrometer 

detected 27,000 non-redundant peptide sequences from more than 4,000 proteins. 

Identified ESTs and detected peptide sequences were used to retrain the SNAP gene 

prediction algorithm to refine the initial genome annotation, which led to a decrease in 

the number of previously predicted protein-coding genes from 29,000 to 24,000 and 

refinement of numerous gene models while the number of pioneer genes only slightly 

decreased. Some of the corresponding proteins appear to be products of highly 

homologous genes, pointing to their common origin. We show that >50% of all pioneer 

genes are transcribed under standard culture conditions and that pioneer proteins 

significantly contribute to a unimodal distribution of predicted protein sizes in P. 

pacificus, which has an unusually low median size of 240 amino acids (26.8 kDa). In 

contrast, the predicted proteome of C. elegans follows a distinct bimodal protein size 

distribution, with significant functional differences between small and large protein 

http://www.ncbi.nlm.nih.gov/pubmed?term=Borchert%20N%5BAuthor%5D&cauthor=true&cauthor_uid=20237107
http://www.ncbi.nlm.nih.gov/pubmed?term=Dieterich%20C%5BAuthor%5D&cauthor=true&cauthor_uid=20237107
http://www.ncbi.nlm.nih.gov/pubmed?term=Krug%20K%5BAuthor%5D&cauthor=true&cauthor_uid=20237107
http://www.ncbi.nlm.nih.gov/pubmed?term=Sch%C3%BCtz%20W%5BAuthor%5D&cauthor=true&cauthor_uid=20237107
http://www.ncbi.nlm.nih.gov/pubmed?term=Jung%20S%5BAuthor%5D&cauthor=true&cauthor_uid=20237107
http://www.ncbi.nlm.nih.gov/pubmed?term=Nordheim%20A%5BAuthor%5D&cauthor=true&cauthor_uid=20237107
http://www.ncbi.nlm.nih.gov/pubmed?term=Sommer%20RJ%5BAuthor%5D&cauthor=true&cauthor_uid=20237107
http://www.ncbi.nlm.nih.gov/pubmed?term=Macek%20B%5BAuthor%5D&cauthor=true&cauthor_uid=20237107
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populations. Combined, these results provide the first catalog of the expressed genome 

of P. pacificus, refinement of its genome annotation, and the first comparison of related 

nematode models at the proteome level. 

2.2.2. Contributions 

The samples for proteomics analysis were prepared by Nadine Borchert and measured 

by Stephan Jung. The genome refinement using transcriptomics and proteomics data 

was performed by Christoph Dieterich. I contributed to the proteomics part of this study 

in which I was primarily involved in data analysis. In particular I constructed the 

proteogenomic database based on the P. pacificus genome assembly and performed the 

processing of MS raw data and subsequent downstream analysis of the results. I re-

processed the acquired MS raw files using the refined genome annotation to provide 

the catalog of expressed proteins. I performed the comparative protein size analysis of 

P. pacificus and the other model nematodes, Gene Ontology analysis, and the analysis 

of pioneer proteins. I was actively involved in the preparation of figures, supplementary 

data, and the methods section of the manuscript. My contribution to this work was 

about 33%. 
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2.3. Phosphoproteome of Pristionchus pacificus provides insights into 

architecture of signaling networks in nematode models. 

Nadine Borchert, Karsten Krug, Florian Gnad, Amit Sinha, Ralf J. Sommer, Boris Macek 

2.3.1. Synopsis 

The analysis of the predicted proteomes of C. elegans and P. pacificus revealed distinct 

proteome structure in terms of protein size distribution. While the P.pacificus proteome 

is characterized by a unimodal protein size distribution, the C. elegans protein size 

distribution is characterized by two modes with distinct protein function of small and 

large protein populations. In particular, the population of large proteins was enriched in 

functions related to protein phosphorylation, signal transduction, and ion transport. To 

gain insight into the architecture of signal transduction networks in model nematodes, 

we performed a large-scale qualitative phosphoproteome analysis of P. pacificus. Using 

two-stage enrichment of phosphopeptides from a digest of P. pacificus proteins and 

their subsequent analysis via high accuracy MS, we detected and localized 6,809 

phosphorylation events on 2,508 proteins. We compared the detected P. pacificus 

phosphoproteome to the recently published phosphoproteome of C. elegans. The 

overall numbers and functional classes of phosphoproteins were similar between the 

two organisms. Interestingly, the products of orphan genes were significantly 

underrepresented among the detected P. pacificus phosphoproteins. We defined the 

theoretical kinome of P. pacificus and compared it to that of C. elegans. While tyrosine 

kinases were slightly underrepresented in the kinome of P. pacificus, all major classes of 

kinases were present in both organisms. Application of our kinome annotation to a 

recent transcriptomic study of dauer and mixed stage populations showed that Ser/Thr 

and Tyr kinases show similar expression levels in P. pacificus but not in C. elegans.  This 

study presents the first systematic comparison of phosphoproteomes and kinomes of 

two model nematodes and, as such, will be a useful resource for comparative studies of 

their signal transduction networks. 

http://www.ncbi.nlm.nih.gov/pubmed?term=Borchert%20N%5BAuthor%5D&cauthor=true&cauthor_uid=22923814
http://www.ncbi.nlm.nih.gov/pubmed?term=Krug%20K%5BAuthor%5D&cauthor=true&cauthor_uid=22923814
http://www.ncbi.nlm.nih.gov/pubmed?term=Gnad%20F%5BAuthor%5D&cauthor=true&cauthor_uid=22923814
http://www.ncbi.nlm.nih.gov/pubmed?term=Sinha%20A%5BAuthor%5D&cauthor=true&cauthor_uid=22923814
http://www.ncbi.nlm.nih.gov/pubmed?term=Sommer%20RJ%5BAuthor%5D&cauthor=true&cauthor_uid=22923814
http://www.ncbi.nlm.nih.gov/pubmed?term=Macek%20B%5BAuthor%5D&cauthor=true&cauthor_uid=22923814
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2.3.2. Contributions 

The samples were prepared by Nadine Borchert who also performed the two-stage 

phosphopeptide enrichment and the MS measurements with the help of Johannes 

Madlung. I performed the data processing of MS raw files and subsequent Gene 

Ontology enrichment analysis of the detected phosphoproteome. I used a recently 

published phosphoproteome dataset of C. elegans (Zielinska et al. 2009) to perform a 

comparative analysis of the phosphoproteomes of the two nematodes. I used the 

psiPRED software to determine secondary protein structures of both proteomes. I 

developed and applied a computational pipeline to predict the theoretical kinome of 

the two nematodes. I further annotated the P. pacificus proteome with Gene Ontology 

terms, protein family and pathway information (Pfam, Interpro, KEGG). I was actively 

involved in the preparation of figures, supplementary data, and the methods section of 

the manuscript. In total, my contribution to this work was about 50%. 
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3. Conclusions 

In this thesis I studied several different aspects of the application of high mass accuracy 

shotgun proteomics data to refinement of genome annotation. Based on the obtained 

results I conclude the following points: 

1) The small and extensively studied genomes of model bacteria are well suited to 

assess general properties of a typical proteogenomics workflow; assuming a 

complete and correct genome annotation, these models can be used to evaluate 

the performance of different data processing strategies. 

a. Sensitivity, specificity, accuracy, and false discovery rate (FDR) markedly 

differ between the two MS data processing workflows, MaxQuant (MQ) 

and Trans-Proteomic Pipeline (TPP). The TPP workflow demonstrated the 

highest specificity and low false discovery rates, while the MQ workflow 

demonstrated the best tradeoff between high sensitivity and acceptable 

FDR. 

b. Despite the high quality of genome annotation of E. coli it was still 

possible to reveal several annotation errors. Nine novel peptides were 

identified by both workflows that point to wrongly annotated protein 

termini, or the absence of the corresponding protein in the database of 

the particular E. coli K12 strain. 

c.  Although the dataset comprised almost all expressed proteins, the 

identified peptide sequences covered 27.5 % of the raw genome 

sequence and 30% of protein coding sequence. Those regions were 

identified with a median of seven MS/MS scan events per nucleotide. 

This points to the limitation of MS in genome annotation alone, where 

comprehensive several fold genome coverage is desired, and which is 

routinely achieved by NGS technologies.  

2) The genome annotation of P. pacificus could be markedly improved using 

proteomics and transcriptomics data. 
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a. The shotgun proteomics approach identified 2,700 novel peptide 

sequences. Together with transcriptomics data the refinement of 

genome annotation lead to a decrease in the number of predicted genes 

from 29,000 to 24,000.  

b. The theoretical proteomes of P. pacificus and C. elegans show distinct 

distributions of protein sizes. In P. pacificus the distribution is unimodal, 

whereas in C. elegans the distribution is bimodal with functional 

differences between the two protein populations, in particular regarding 

protein phosphorylation. 

c. In total, 4,029 P. pacificus proteins were detected by MS providing the 

first global proteome catalog of this nematode. Among all identified 

proteins about 10 % were products of pioneer genes, which is in contrast 

to transcriptomics data, where  >50% of pioneer genes were found to be 

transcribed.  

3) The P. pacificus genome was functionally annotated using a qualitative 

phosphoproteomic dataset. 

a. The detected phosphoproteome of P. pacificus comprised 6,800 

phosphorylation sites on 2,500 proteins. Compared to C. elegans the 

same functional classes of proteins are phosphorylated, but the relative 

frequencies of phosphorylated serines, threonines, and tyrosines are 

markedly different. 

b. The kinome of P. pacificus consists of 368 kinases which is a 11% smaller 

kinome than in C. elegans, but all major kinase groups are present. 

c. About 73% of the refined theoretical proteome could be annotated by at 

least one functional term.  
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With the onset of modern DNA sequencing technologies, genomics is experiencing a revolution in

terms of quantity and quality of sequencing data. Rapidly growing numbers of sequenced genomes

and metagenomes present a tremendous challenge for bioinformatics tools that predict protein-coding

regions. Experimental evidence of expressed genomic regions, both at the RNA and protein level, is

becoming invaluable for genome annotation and training of gene prediction algorithms. Evidence of

gene expression at the protein level using mass spectrometry-based proteomics is increasingly used in

refinement of raw genome sequencing data. In a typical ‘‘proteogenomics’’ experiment, the whole

proteome of an organism is extracted, digested into peptides and measured by a mass spectrometer.

The peptide fragmentation spectra are identified by searching against a six-frame translation of the

raw genomic assembly, thus enabling the identification of hitherto unpredicted protein-coding

genomic regions. Application of mass spectrometry to genome annotation presents a range of

challenges to the standard workflows in proteomics, especially in terms of proteome coverage and

database search strategies. Here we provide an overview of the field and argue that the latest mass

spectrometry technologies that enable high mass accuracy at high acquisition rates will prove to be

especially well suited for proteogenomics applications.

Introduction

Major efforts in genome sequencing at the turn of the 21st

century made a profound impact on biology and laid the

framework for analysis of biological systems at a global level.

Modern generations of DNA sequencing technologies are

capable of identifying and quantifying vast amounts of nucleic

acid sequence, giving rise to an unprecedented number of

sequenced genomes and fueling development of other global

approaches, such as transcriptomics and proteomics. The raw

genomic sequence needs to be correctly annotated and this is

mostly achieved using ab initio gene prediction algorithms

trained to recognize specific features of the open reading

frames (ORFs).1 However, the prediction algorithms often

suffer from low accuracy leading to a high number of false

positive gene predictions and wrongly predicted protein termini

or exon–intron structure in eukaryotic genes.2–7 Moreover,

different algorithms may produce contradictory results making

it difficult to get to an unambiguous annotation of a certain

genome. Therefore, the ultimate validation of genome annota-

tion lies in expression analysis and detection of gene products

at the transcript (RNA) or the protein level.

Transcript analysis has been predominantly used for genome

annotation since the relatively simple extraction protocols and

application of hybridization techniques enabled a routine high

coverage of the transcriptome. Conversely, due to a much

higher chemical diversity of proteins, proteomics was long

plagued by elaborate sample preparation protocols and immature

protein separation, sequencing and data processing workflows—

which led to a comparably poorer proteome coverage and

therefore to a more limited application of proteomics to

genome annotation. However, this situation is rapidly changing.

With development of new methodologies for protein extrac-

tion, separation and especially detection using high precision

mass spectrometry,8 proteomics becomes increasingly capable

of comprehensively and reliably identifying gene products.

Notably, smaller proteomes of Protozoa can be almost com-

pletely detected and quantified by mass spectrometry, albeit

still at a considerable effort. Detection of the complete proteome

of the yeast was recently reported9 and other smaller proteomes,

especially those of bacteria, are within reach.10–12

These improvements in proteome coverage resulted in an

increased application of MS-based proteomics to genome

annotation and refinement. In a modern ‘‘proteogenomics’’

experiment, the complete protein extract of an organism is

digested into peptides, which are then mass-measured and

fragmented in a mass spectrometer (Fig. 1a). Mass spectra

are typically searched against a database containing six-frame

translation of the raw genome assembly and can therefore

identify new, unpredicted open reading frames and refine

existing gene models in terms of protein start and stop positions,

exon–intron structure as well as their exact boundaries (Fig. 1b).

Although conceptually relatively simple, application of mass

spectrometry to genome reannotation still presents a range

of challenges, especially in terms of data analysis; six-frame

translation databases significantly increase the search space,

often requiring application of special strategies in database

search and data processing. Here we will give a brief historical

overview of the field of proteogenomics and outline current

workflows in sample preparation, MS measurement and data

processing strategies used in genome annotation by MS data.
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Historical overview

Combining proteomics and genomics is not a new concept.

Already in 1995, the Yates group demonstrated the correlation

of MS/MS spectra with nucleotide sequences13 and since then

several groups applied this concept to find new genes and

to improve genome annotations in various organisms using

different types of mass spectrometers and data analysis

workflows. Early applications of MS to genome reannotation

predominantly involved the use of low accuracy MS, often in

combination with 2D gel separation of proteins. For example,

Link et al. used triple-quadrupole and ion trap MS in combi-

nation with 2D PAGE to analyze abundant proteins in

Haemophilus influenzae;14 by searching the acquired spectra

against the genomic sequence translated into six reading

frames they identified several proteins that were not previously

Fig. 1 Workflows in a typical proteogenomics experiment. (a) Biochemical workflow. Proteins are extracted from a tissue or a cell line and

digested by a protease into peptides. The resulting peptide mixtures are separated and analyzed by mass spectrometry; peptide masses are recorded

in a ‘‘full scan’’ or ‘‘MS’’ spectrum; peptide ions are fragmented and the fragment ions are recorded in an ‘‘MS/MS’’ spectrum. Both levels of

information are used in protein database search and peptide identification. (b) Data processing workflow. MS and MS/MS spectra are searched

against a special database containing a six-frame translation of the whole genome assembly. Identified peptides are mapped onto the genome and

provide three levels of information: (i) confirmation of the existing gene models; (ii) refinement of the existing gene models (e.g. repositioning of

gene termini and exon/intron boundaries); (iii) identification of new expressed genomic regions (genes).
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annotated. Neubauer et al. used triple quadrupole MS and

searched expressed sequence tag (EST) databases with MS

data to detect components of the mammalian spliceosome that

were not contained in a comprehensive protein database15

and Jungblut et al. demonstrated the expression of six genes

in Mycobacterium tuberculosis not predicted by genomic

approaches using 2D PAGE and MALDI-QTOF MS.16 Soon

after the first draft of the human genome became available,

Choudhary et al. investigated the feasibility of searching the

MS/MS spectra against a six-frame translation of all 23 human

chromosomes and compared it to the search against protein

and EST database.17 More recent studies mainly employed ion

trap mass spectrometers but with application of advanced,

peptide-based ‘‘shot gun’’ proteomics18 approaches instead of

2D PAGE protein separation. Oshiro et al. used a combina-

tion of expression profiling and ion trap MS to verify

independent transcription and translation of genes in

Saccharomyces cerevisiae,19 whereas Jaffe et al. used ion trap

MS and introduced the concept of a proteogenomic map to

predict ORFs in Mycoplasma pneumoniae based on expressed

protein-based evidence.20 As the field of MS-based proteomics

was developing, several public repositories of MS/MS data

became available and were used in proteogenomics projects.

Fermin et al. used MS data from the HUPO Plasma Project21

(mostly ion trap MS) to search against a six-frame translation

of the human genome in order to find novel blood proteins22

and Tanner et al. used ion trap data as well as MS data

obtained from the PeptideAtlas23 to identify novel and extended

genes, alternative splicing events and variant alleles of coding

SNPs in human genome.24 Recent applications of mass spectro-

metry to genomics included large-scale, mostly ion trap-

based proteogenomics studies of model organisms such as

Shewanella oneidensis,25 several species of the Mycobacterium

genus,26–28 Toxoplasma gondii,29 Arabidopsis thaliana,30,31

Caenorhabditis elegans32 and Pristionchus pacificus33 (the latter

study employed orbitrap MS and transcriptome analysis for

genome annotation refinement). Importantly, all of the studies

reported hundreds of completely new or reannotated genes at

the protein level, demonstrating the potential and need of

using mass spectrometry-based proteomics in genome

reannotation.

Current workflows in proteogenomics

Application of mass spectrometry to genome annotation presents

a range of challenges to all aspects of a proteomics workflow.

Sample preparation is crucial for extraction of the complete

proteome; mass spectrometry and data processing are essential

for reliable peptide/protein detection; and downstream bio-

informatics is important for interpretation of MS data and

identification/validation of gene models. Here we will discuss

current developments in all segments of a typical proteo-

genomics experiment.

Sample preparation

The aim of every proteogenomics experiment is to achieve as

comprehensive proteome coverage as possible; therefore, the

cell culture or tissue of interest needs to be homogenized and

lysed in a way that enables the highest possible retrieval of its

protein content. Ideally, proteins should be extracted and

solubilized in a buffer containing a potent denaturing agent

and a detergent, digested in solution, and the resulting peptide

mixtures should be separated by at least two orthogonal

separation methods prior to MS analysis. However, efficient

extraction of membrane proteins requires potent ionic

detergents, such as SDS, which complicates downstream

processing of the sample as it inhibits commonly used

proteases and hampers ionization in the MS. This problem is

usually addressed either by separation of the protein extract by

1D SDS-PAGE and subsequent in-gel protein digestion,34 or

by application of less potent non-ionic detergents, such as

N-octylglucoside, during sample homogenization/lysis. Both

approaches, however, yield lower amounts of proteins—

especially membrane proteins—compared to SDS-based lysis

protocols. Recently, a sample preparation method that

combines the advantages of the 1D gel-based workflow and

in-solution digestion was introduced.35,36 The method, termed

filter-aided sample preparation (FASP) by the Mann lab,

involves tissue homogenization/lysis in an SDS-containing

denaturing buffer, which is followed by extensive washing,

buffer exchange and protein digestion on a microcentricon

filter. After digestion, peptides are spun through the filter in

an MS-compatible buffer, collected and, if desired, further

separated. Due to the straightforward sample processing, this

method is applicable to low amounts of material, making it

especially attractive for a comprehensive analysis of proteome

in proteogenomics applications.

Peptide separation

After successful extraction, proteins are digested by a protease

and the resulting peptide mixtures are mass-measured and

fragmented in a mass spectrometer. Even if previously

separated, tissue-derived protein mixtures usually give rise to

thousands of peptides upon digestion. Since simultaneous

ionization of such complex peptide mixtures would lead to

a significant decrease of the measurement dynamic range

(and therefore to the lower number of identifications), the

peptides are further separated by liquid chromatography (LC)

prior to MS measurement. Current LC-MS setups involve the

use of nano-HPLC columns (inner diameter 25–75 mm and

flow rates 100–500 nl min�1), usually packed with reverse-

phase C18 material and/or SCX material in the case of multi-

dimensional chromatography.18 These columns are directly

coupled to an electrospray ionization source to minimize dead

volume that may result in peak broadening after separation.37

Such chromatographic setup results in a high peak capacity

and resolving power, which directly influences the sensitivity

and dynamic range of LC-MS measurement. Alternatively,

HPLC fractions may be spotted on a target plate, mixed with a

matrix and ionized using MALDI ionization.38 An interesting

development in peptide separation prior to MS is the

introduction of the REPLAY chromatography,39 which is

suitable for analysis of extremely low amounts of material

and enables performance of two consecutive and almost

identical LC-MS analyses upon one sample injection, thus

enabling targeted proteomics analysis and higher proteome

coverage.

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

A
E

T
 T

U
E

B
IN

G
E

N
 o

n 
07

 J
an

ua
ry

 2
01

3
Pu

bl
is

he
d 

on
 2

1 
O

ct
ob

er
 2

01
0 

on
 h

ttp
://

pu
bs

.r
sc

.o
rg

 | 
do

i:1
0.

10
39

/C
0M

B
00

16
8F

View Article Online

http://dx.doi.org/10.1039/c0mb00168f


This journal is c The Royal Society of Chemistry 2011 Mol. BioSyst., 2011, 7, 284–291 287

MS measurement

Despite the high importance of all upstream sample processing

and separation workflows, mass spectrometry remains the

most important component of every proteomics experiment.

Several differentMS platforms and instruments are in routine

use today and have been extensively reviewed elsewhere.40 For

the purpose of this review we will divide them into low accuracy

(ion traps, triple quadrupoles) and high accuracy (Q-TOF, FT

ICR, Orbitrap) mass spectrometers. Interestingly, ion traps are

especially popular in proteogenomics applications, mainly due

to their high sensitivity and fast scanning times that enable

extensive proteome coverage. However, the ion trap data suffer

from poor resolution and mass accuracy, which is typically

0.2–0.5 Da (200–500 ppm at 1000 m/z), on modern ion trap

instruments. As discussed below, the low accuracy has wide-

ranging implications for database search, as it requires high

mass tolerances and therefore increases search space and

decreases the search sensitivity. In addition, inability of most

ion traps to simultaneously store all fragment ions41 leads to a

poorer coverage of the low mass fragment ions, often having as

a consequence ambiguous sequence assignment of the peptide

termini. Although this effect may be avoided in the newer ion

traps (e.g. by ‘‘pulsed-Q’’ dissociation42), it can be problematic

in combination with lowmass accuracy of the precursor ion and

may lead to increased false discovery rates when searching large

proteogenomics databases, in which most of the entries are false

(see below).

High accuracy instruments, such as FT ICR and Q-TOF

typically have a very good resolution and can achieve sub-ppm

mass accuracy, which decreases the search space and increases

the sensitivity of the protein database search. However, a

drawback of the high accuracy mass analyzers is a relatively

low speed of acquisition, which leads to undersampling of the

analyzed complex peptide mixtures and therefore to lower

proteome coverage. Newer generations of hybrid mass spectro-

meters circumvent this problem by combining a low- and a

high resolution mass analyzer and enabling their almost

simultaneous action during peptide sequencing. The best

example is the LTQ-Orbitrap, where the precursor (peptide)

ion mass is typically measured at high resolution and accuracy

in the Orbitrap mass analyzer, whereas the peptides are

fragmented at high speed and sensitivity in the linear ion trap

mass analyzer.43 The resulting data provide a good trade-

off between the sequencing speed and mass accuracy and

therefore between proteome coverage and database search

space. Especially the recently developed LTQ Orbitrap Velos

shows a great promise for in-depth and accurate proteome

analysis by combining a faster and more sensitive dual-pressure

linear ion trap with a high accuracy Orbitrap mass analyzer.

In addition, an improved higher energy collision-induced

dissociation (HCD) collision cell enables acquisition of both

MS and MS/MS spectra at a high speed and mass accuracy,44

with a good fragment ion coverage across the mass range. The

instrument can also be fitted with a chemical ionization source

to enable electron transfer dissociation (ETD), another fragmen-

tation method that achieves comprehensive fragmentation of

multiply charged ions45,46 and therefore provides data suitable

for proteogenomics applications.

Data processing and database search

The final segment of a proteomics experiment is MS data

processing. Specialized software converts the MS and MS/MS

spectra into a format suitable for database search. At this

stage, the latest generation of processing software uses high

measurement mass accuracy of modern mass spectrometers to

identify spectral features important for recalibration and

quantification of stable isotope pairs, if these were used in

the experiment; mass recalibration performed in this way can

improve the mass accuracy by 5–10 fold.47 Recalibrated and

quantified peak lists are then submitted to a database search

engine (such as Mascot,48 Sequest49 or OMSSA50), which

identifies peptides by comparing measured fragmentation

spectra with theoretical mass spectra of all peptides in a

protein database, in this case a custom-made database

containing six-frame translation of the raw genome assembly.

The choice of the appropriate database is of great importance:

specialized databases, consisting of forward and reversed

(or randomized) protein sequences are nowadays commonly

used for estimation of false discovery rates of database

searches using a ‘‘target-decoy’’ approach,51 but this approach

is often impractical in proteogenomics due to the initial large

size of six-frame translation databases. In a standard proteomics

experiment, identified peptides are assembled into proteins

or protein groups,52 which represents a non-trivial and challenging

task especially in eukaryotic proteomes where alternative

splicing plays a key role. However, the protein interference

problem does not explicitly occur in proteogenomics experi-

ments, as only the identified peptide sequences—rather than

assembled protein sequences—are used for the purpose of

genome reannotation. These peptide sequences are used as

extrinsic evidence for retraining of gene finding algorithms

and, ultimately, refinement of gene models. Popular gene finding

tools use generalized hidden Markov models (GeneZilla,53

GlimmerHMM,54 GeneScan,55 SNAP56) and/or support

vector machines (mGene57,58), which were shown to signifi-

cantly improve the number of gene annotations. Retraining of

these tools with experimentally determined gene expression

data typically leads to their higher sensitivity and accuracy, as

demonstrated in all proteogenomics studies so far.

Challenges in proteogenomics

Despite the recent breakthroughs in almost all segments of the

proteogenomics workflow, the application of mass spectro-

metry to genome re-annotation is still a challenging task. The

challenges mainly include the proteome coverage; dynamic

range and sequencing speed of mass spectrometers; and

construction of proteogenomics databases. As discussed, bio-

chemical protocols for protein extraction and mass spectro-

meters are developing rapidly, leading to ever-increasing

numbers of sequenced peptides and better proteome coverage;

however, developments in DNA sequencing technologies

appear to be even faster, leading to a more comprehensive

coverage of gene expression at the transcript level. We recently

reannotated the genome of the nematode model P. pacificus by

sequencing the RNA libraries using 454 Roche pyrosequencing

platform and by sampling the proteome using LTQ Orbitrap
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mass spectrometry.30 The transcriptome analysis led to identifi-

cation of >700 000 expressed sequence tags, whereas the

proteome analysis led to identification of>30000 non-redundant

peptide sequences. Despite this apparent discrepancy in coverage,

the proteome data are still of high qualitative importance as they

provide evidence on the translation of the genetic message.

Another problem of proteogenomics concerns the construc-

tion of appropriate protein databases, search of MS spectra

against these databases and the statistical validation of identified

peptides. These computational challenges in proteogenomics

were recently reviewed by Castellana and Bafna.59 To enable

identification of all possible gene products from MS data, the

‘‘raw’’ genome assembly needs to be translated in silico into all

six reading frames, leading to at least six-fold increase

in entries compared to the standard protein database and

therefore to much larger database search space. While the

construction of an appropriate proteogenomics database is

relatively straightforward for microbial genomes due to their

relatively small size and lack of alternative splicing, proteo-

genomics databases of eukaryotes are far more complex due to

the exon–intron gene structure, which leads to a disproportional

increase in database size. Since many more theoretical peptides

from a typical proteogenomics database are considered for

every acquired MS/MS spectrum, the overall peptide scores

tend to be lower, leading to a decrease in the sensitivity

(number of identifications) and specificity (number of correct

identifications) during database search. Importantly, of all

sequences in such a database, less than 20% correspond to

true protein sequences (approximately one out of six reading

frames), whereas the vast majority present non-sense protein

entries. This makes the database searches in proteogenomics

prone to high false discovery rates, especially when combined

with low mass accuracy MS data.

High accuracy mass spectrometry has an intrinsic potential

to decrease the search space and therefore increase the data-

base search sensitivity and specificity. Fig. 2 depicts the number

of theoretical peptide sequences (search space) as a function of

precursor mass error exemplified on a relatively simple genome

of Bacillus subtilis. For each theoretical tryptic peptide from

the B. subtilis decoy protein database (13 000 entries)

all peptides falling into a certain mass difference bin were

counted—for example for a 1000 Da peptide in the 1 ppm

mass tolerance bin all peptides in the window of 1000� 0.001 Da

were counted. This procedure was repeated for all theoretical

peptides and the distribution of all theoretical peptides

observed in one mass tolerance bin is defined as the search

space. Even in this simple case it is visible that high measure-

ment mass accuracy enables a narrow mass tolerance during

database search and limits the number of candidate peptide

sequences that ‘‘compete’’ for an MS spectrum acquired at a

given mass accuracy. Lower number of candidate peptide

sequences leads to a smaller search space and this in turn

leads to an increased sensitivity and specificity of the database

search. However, the actual mass tolerance during database

search usually exceeds the achieved measurement mass

accuracy by several folds to provide ample number of candidate

peptide sequences and prevent ‘‘forcing’’ the search engine to

report a particular peptide. The basic considerations of data-

base search space and strategies are covered elsewhere.60

Various bioinformatics strategies have been applied to reduce

the search space in proteogenomics experiments. Küster et al.

used peptide sequence tags, short sequences of only a few

Fig. 2 Relationship of the search space and mass tolerance in

database search. The data are presented as a box plot where the full

horizontal line is the median size of the search space. This is only a

simplified presentation using a small protein database and the simplest

search parameters (no missed cleavages, one charge state, no modifi-

cation, etc.). The actual search space depends on many parameters and

is in practice much larger. (a) Database search space as a function of

mass tolerance in a standard B. subtilis decoy protein database. Note

that the number of theoretical peptides (search space) is >30 times

higher at a mass accuracy of 200–500 ppm (commonly achieved by ion

trap MS), compared to 1 ppm (commonly achieved by orbitrap MS).

(b) Database search space as a function of mass tolerance in a six

frame translation database of B. subtilis. The search space in this

relatively simple database used in proteogenomics applications is

about six times higher than in a standard proteome database. Note

that the more complex eukaryotic databases lead to even higher

increase of search space due to alternative splicing.
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amino acids, to query the raw genome sequence ofA. thaliana.61

These short tags are determined de novo and define a sequence

of few amino acids from the masses of adjacent fragment ions

in the MS/MS spectrum. Using this information and the

precursor ion mass, a search ‘‘template’’ is created for

each peptide and used in database search, thereby signifi-

cantly reducing the number of theoretical peptide sequences

that ‘‘compete’’ for a positive identification of an MS/MS

spectrum. Sevinsky et al. developed a method for reduction of

the peptide search space by considering isoelectric point and

accurately determined precursor ion mass in database

search.62 In this approach, peptides are fractionated using

isoelectric focusing and the pI range of each fraction is

determined; only peptides with theoretical pI matching the

observed pI range are considered, greatly increasing the

sensitivity of database search. Waridel et al. used a sequence

similarity-driven approach by combining conventional database

searches, de novo sequencing and MS BLAST searches to

characterize the proteome of the unsequenced organism

Dunaliella salina.63 Spectra that could not be confidently

assigned to the database were filtered and further processed

by de novo sequencing algorithm; confidently identified peptide

sequences were submitted to MS BLAST to identify unknown

proteins. Some approaches make use of the evolutionary

information encoded in multiple genomes of closely related

organisms. Gupta et al. used such a comparative approach on

three bacterial genomes of Shewanella under assumption that

the proteins and their start sites are highly conserved between

the analyzed species.64 Based on this assumption there is a

higher probability that a protein is expressed when it was seen

in different species although it was not confidently identified.

Furthermore, peptides that did not fall into previously annotated

regions can be used to identify programmed frame shifts

and sequencing errors. A similar approach, termed ortho-

proteogenomics was introduced by Gallien et al. to perform

a simultaneous refinement and annotation of multiple genomes

at once.26 Recently, Merrihew et al. used shotgun proteomics

to refine the genome annotation of C. elegans.32 By using

conserved sequences in related nematodes as putative ORFs,

in silico gene predictions as well as the protein database from

the Wormbase, they refined existing and identified new gene

models in this well-studied model nematode. They avoided to

explicitly search against a six-frame translation with MS/MS

spectra but used translated intergenic regions to identify

homologous sequences in other nematodes which were included

as putative ORFs in the database used for MS identification.

Another challenge in proteogenomics studies of eukaryotes

is the identification of peptides spanning a splice junction.

While these peptides are crucial for determination of the exact

exon–intron borders they cannot be detected by searching a

raw six-frame translation with a standard search engine as

mentioned above. Allmer et al.65,66 described an approach to

identify intron-split peptides by combining de novo MS/MS

sequencing and classical search engines like Sequest or

Mascot. De novo deduced peptide sequences are aligned to

the genomic sequence to assemble a database of possible

peptides that match a particular mass spectrum. This database

can be queried by an MS/MS search engine to identify

and validate peptides that span an intron–exon boundary.

A different approach, proposed by Chen67 and Colinge et al.68

is to directly account for splice donor and acceptor sites within

the genomic database. These groups used predicted donor/

acceptor sites to generate putative spliced peptides that can

be queried by MS/MS spectra. Finally, the search engine

described in Roos et al.69 can also be used to query genomic

databases directly with MS/MS spectra taking potential

GT-AT introns with a given gap size into account.

Conclusions and outlook

Recent developments in all segments of the proteomics

workflow have enabled a wider application of mass spectro-

metry to genome annotation, which is documented in an

increasing number of large-scale proteogenomics studies.

Although this approach still suffers from the lower coverage

compared to the transcriptome analysis, analysis of gene

expression at the protein level is invaluable for determination

and prediction of protein-coding (translated) genes. Interestingly,

even the most recent proteogenomics studies predominantly

employ low accuracy mass spectrometers that enable high

proteome coverage but at the cost of database search sensitivity

and specificity. Together with the potent bioinformatics

strategies that were developed to circumvent this problem,

the future of the field lies in the use of the newest generation of

fast scanning and high accuracy hybrid mass spectrometers

that have an intrinsic capability to provide both high

proteome coverage and database search specificity. Combined

with the necessary standardization of the data processing

workflows, proteogenomics based on these new technologies

will prove to be an invaluable tool in the future efforts in

interpretation of genome sequencing data.

Abbreviations

SDS sodium dodecyl sulfate

PAGE polyacrylamid gel electrophoresis

HUPO Human Proteome Organization

EST expressed sequence tags

ppm parts-per-million

CID collision-induced dissociation

ETD electron transfer dissociation

ECD electron capture dissociation
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61 B. Küster, P. Mortensen, J. S. Andersen and M. Mann, Mass
spectrometry allows direct identificationof proteins in large
genomes, Proteomics, 2001, 1, 641–650.

62 J. R. Sevinsky, B. J. Cargile, M. K. Bunger, F. Meng, N. A. Yates,
R. C. Hendrickson and J. L. Stephenson, Jr., Whole genome
searching with shotgun proteomic data: applications for genome
annotation, J. Proteome Res., 2008, 7, 80–88.

63 P. Waridel, A. Frank, H. Thomas, V. Surendranath, S. Sunyaev,
P. Pevzner and A. Shevchenko, Sequence similarity-driven proteomics
in organisms with unknown genomes by LC-MS/MS and automated
de novo sequencing, Proteomics, 2007, 7, 2318–2329.

64 N. Gupta, J. Benhamida, V. Bhargava, D. Goodman, E. Kain,
I. Kerman, N. Nguyen, N. Ollikainen, J. Rodriguez, J. Wang,
M. S. Lipton, M. Romine, V. Bafna, R. D. Smith and
P. A. Pevzner, Comparative proteogenomics: combining mass
spectrometry and comparative genomics to analyze multiple
genomes, Genome Res., 2008, 18, 1133–1142.

65 J. Allmer, B. Naumann, C. Markert, M. Zhang and M. Hippler,
Mass spectrometric genomic data mining: novel insights into
bioenergetic pathways in Chlamydomonas reinhardtii, Proteomics,
2006, 6, 6207–6220.

66 J. Allmer, C. Markert, E. J. Stauber and M. Hippler, A new
approach that allows identification of intron-split peptides from
mass spectrometric data in genomic databases, FEBS Lett., 2004,
562, 202–206.

67 T. Chen, Gene-finding via tandem mass spectrometry, RECOMB
2001 Proceedings of the Fifth Annual International Conference on
Computational Biology, 2001, 87–94.

68 J. Colinge, I. Cusin, S. Reffas, E. Mahe, A. Niknejad, P. A. Rey,
H. Mattou, M. Moniatte and L. Bougueleret, Experiments in
searching small proteins in unannotated large eukaryotic genomes,
J. Proteome Res., 2005, 4, 167–174.

69 F. F. Roos, R. Jacob, J. Grossmann, B. Fischer, J. M. Buhmann,
W. Gruissem, S. Baginsky and P.Widmayer, PepSplice: cache-efficient
search algorithms for comprehensive identification of tandem mass
spectra, Bioinformatics, 2007, 23, 3016–3023.

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

A
E

T
 T

U
E

B
IN

G
E

N
 o

n 
07

 J
an

ua
ry

 2
01

3
Pu

bl
is

he
d 

on
 2

1 
O

ct
ob

er
 2

01
0 

on
 h

ttp
://

pu
bs

.r
sc

.o
rg

 | 
do

i:1
0.

10
39

/C
0M

B
00

16
8F

View Article Online

http://dx.doi.org/10.1039/c0mb00168f


1 
 

 
 

 

 
Deep coverage of the Escherichia coli proteome enables the assessment 

of false discovery rates in simple proteogenomic experiments 

 
Karsten Krug, Alejandro Carpy, Gesa Behrends, Katarina Matic, Nelson C. Soares, 

Boris Macek¶ 

 

 

Proteome Center Tuebingen, University of Tuebingen, Germany 
 
 

¶ To whom correspondence should be addressed: 
 
Prof. Dr. Boris Macek 
Proteome Center Tuebingen 
Interfaculty Institute for Cell Biology 
University of Tuebingen 
Auf der Morgenstelle 15 
72076 Tuebingen 
Germany 
Phone: +49/(0)7071/29-70558 
Fax: +49/(0)7071/29-5779 
E-Mail: boris.macek@uni-tuebingen.de 
 

Running Title: Proteogenomics of E. coli 

 

 

 

 

 

 

 

 



2 
 

 
 

 

Summary 

Recent advances in mass spectrometry (MS) have led to increased applications of shotgun 

proteomics to the refinement of genome annotation. The typical “proteogenomic” workflows 

rely on mapping of peptide MS/MS spectra onto databases derived by six-frame translation of 

the genome sequence. These databases contain a large proportion of spurious protein 

sequences which make the statistical confidence of the resulting peptide spectrum matches 

(PSMs) difficult to assess. Here we perform a comprehensive analysis of the Escherichia coli 

proteome using LTQ-Orbitrap MS and map the corresponding MS/MS spectra onto a six-frame 

translation of the E. coli genome. We assume complete annotation of the E. coli genome and 

regard all six frame-specific (novel) PSMs as false positive identifications. This enables us to 

assess the sensitivity, specificity, accuracy and actual false discovery rate in a typical bacterial 

proteogenomic dataset. To increase reliability of our results we use two complementary 

computational frameworks for processing and statistical assessment of MS/MS data: MaxQuant 

and Trans-Proteomic Pipeline. We show that the posterior error probability distribution of 

novel hits is almost identical to that of reversed (decoy) hits, pointing to substantial 

underestimation of FDR even in “simple” proteogenomic experiments obtained by high 

accuracy MS. The use of a small and well annotated bacterial genome enables us to address 

genome coverage achieved in state-of-the-art bacterial proteomics: identified peptide 

sequences mapped to all estimated expressed E. coli proteins, but covered 27.5% of the total 

genome sequence. Our results point to the necessity for further technological and 

bioinformatic improvements in proteogenomic strategies.       
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Introduction 

MS-based proteomics has become an indispensable tool to study in vivo protein expression on 

a global scale (1). Briefly, in a typical “shotgun” proteomic experiment the whole proteome of 

an organism is extracted and digested by a protease (e.g. trypsin).  The resulting complex 

peptide mixtures are usually further fractionated and separated by liquid chromatography (LC) 

before ionization and analysis in the mass spectrometer. Recent innovations in MS technology 

(2-4) enable high peptide sequencing rates at high mass accuracy and sensitivity, making the 

routine analysis of entire proteomes within reach (5, 6). 

Modern genome annotation uses computational ab initio approaches to predict coding regions 

and gene models from raw sequencing data (7, 8). Since the ultimate evidence of gene 

expression is the detection of its product, transcriptomic data are commonly used to train gene 

prediction algorithms (9). Similarly, MS-based proteomics is increasingly used in genome 

annotation. In a typical proteogenomics experiment MS/MS spectra of peptides are searched 

against databases derived by in-silico six frame translation of the whole genome sequence (10-

14). This approach has been applied, alone or in combination with transcriptomic data, in order 

to refine genome annotation in several organisms, including C. elegans (15), P. pacificus (16), S. 

cerevisiae (17), S. pombe (18), A. thaliana (19) , S. nodorum (20), T. gondii (21),  A. gambiae 

(22), mouse (23) and human (24, 25). Bacteria are especially well suited to MS-assisted genome 

annotation, due to their relatively simple genome structures and small genome sizes that lead 

to overall better sequence coverage in a typical proteomics experiment (26-33).  
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Use of six-frame databases in proteogenomics experiments is challenging due to their large 

sizes which increase the search space as well as  affect the sensitivity of database searches (34). 

Additionally, these databases contain a high proportion of artificial sequences resulting from 

frames that are not transcribed (13, 35). These spurious protein sequences are difficult to 

discriminate from the true protein sequences, which make the statistical confidence of the 

resulting peptide spectrum matches (PSMs) difficult to calculate. 

Here we take the advantage of the small size (4.6Mb), simple architecture and a high 

annotation level of the Escherichia coli genome, and use it as benchmark model for 

proteogenomic data interpretation. We derive a comprehensive dataset of proteins expressed 

in the exponential growth of Escherichia coli and map the corresponding MS/MS spectra onto a 

six-frame translation of the E. coli genome. We assume complete annotation of the E. coli 

genome, which enables us to regard all six frame-specific (novel) PSMs as wrongly identified 

and to assess the actual false discovery rate in a simple proteogenomic experiment. We show 

that the posterior error probability distribution of novel peptides is almost identical to that of 

decoy (reversed) hits, which validates our assumption and points to the accumulation of false 

positive PSMs within novel peptide identifications. Our dataset comprises 2,600 E. coli proteins, 

approaching the identification of the complete proteome expressed during the exponential 

growth (36). The combined peptide sequences cover 48.5% of the expressed genome sequence 

but only about 27.5% of the total genome sequence.  
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Experimental Procedures 

Bacterial Cell Culture 

Wild-type E. coli strain K12 (isolate BW25113) (37) was inoculated in 5 mL Lysogeny Broth 

Luria/Miller (LB) medium at 37 °C under vigorous shaking for 24 h (OD600=1.9), then 1 mL of the 

stationary culture was spun down at 260 x g for 10 min, in order to remove any remaining from 

the LB medium. The bacterial cells were washed twice with  M9 minimal medium consisting of  

M9 salts (6.78 g/L Na2HPO4, 3 g/L KH2PO4, 0.5 g/L NaCl, 1 g/L NH4Cl, Sigma-Aldrich) 

supplemented with additional 0.5% (w/v) glucose, 33 µM thiamine, 1mM MgSO4, 0.1 mM CaCl2. 

Next, the resultant pellet was resuspended in a final volume of 1 mL M9. Immediately after, 5 

µL of this culture were used to inoculate 5 mL of fresh M9 medium, containing 0.25 mg/mL of 

lysine (Sigma-Aldrich,). Overnight minimal medium cell cultures were grown at 37 °C under 

vigorous shaking to an OD600=0.5 and used to inoculate (1:100 dilution) 125 mL of fresh minimal 

medium containing 0.25 mg/mL lysine. The cell cultures were grown to OD600=0.5, harvested by 

centrifugation at 3345 x g for 10 min, washed with phosphate buffered saline (PBS) and snap-

frozen in liquid nitrogen. 

 

Protein Extraction 

The frozen cell pellets were resuspended in 3-5 mL lysis buffer (pH 7.5) containing 2 mg/mL 

lysozyme (Sigma-Aldrich) in 50 mM Tris/HCl buffer, 1 mM EDTA and 5 mM of each of the 

following phosphatase inhibitors: glycerol-2-phosphate; sodium fluoride (Sigma-Aldrich) and 

sodium orthovanadate (Alfa Aesar). Cell wall lysis was performed at 37 °C for 15 min and DNA 

was comminuted by benzonase (1875 U) (Merck) for additional 10 min. For solubilization of 
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membrane proteins, lithiumdodecylsulfate (LDS) (Sigma-Aldrich) was added to a final 

concentration of 1% (w/v) and was incubated at 37 °C under vigorous shaking for 15 min. Cell 

debris was removed by centrifugation at 3345 x g for 5 min and repeated centrifugation of the 

supernatant at 11,300 x g for 10 min. The crude protein extract was methanol/chloroform 

precipitated and the protein precipitates were redissolved in denaturation buffer containing 

6 M urea/2 M thiourea in 10 mM Tris buffer. For estimation of the protein concentration, each 

extract was measured by Bradford assay (Bio-Rad). 

 

SDS-PAGE and In-Gel Digestion 

In-Gel digestion was performed as previously described (16). Briefly, extracted proteins were 

separated on a NuPage Bis-Tris 4-12% gradient gel (Invitrogen). The gel was stained with 

Coomassie Blue and subsequently cut into 15 slices. Resulting gel pieces were destained by 

washing three times with 10 mM ammonium bicarbonate (ABC) and acetonitrile (ACN) (1:1, 

v/v). Proteins were then reduced with 10 mM dithiothreitol (DTT) in 20 mM (ABC) for 45 min at 

56°C and alkylated with 55 mM iodoacetamide IAA in 20 mM ABC for 30 min at room 

temperature in the dark. After washing two times with 5 mM ABC and one time with ACN, the 

gel pieces were dehydrated in a vacuum centrifuge. Proteins were either digested with trypsin 

(Promega) or Lys-C (Wako) (12.5 ng/µL in 20 mM ABC) at 37°C over night. Resulting peptides 

were extracted in three subsequent steps with the following solutions: I) 3% TFA in 30% ACN II) 

0.5% acetic acid in 80% ACN III) 100% ACN. After evaporation of the ACN in a vacuum centrifuge 

peptide fractions were desalted using StageTips (38). 
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In-Solution Digestion  

Protein extracts were reduced for 1 hour at room temperature with 1mM dithiothreitol (DTT) 

and subsequently alkylated with 1 mM iodoacetamide (IAA) for 1 hour at room temperature in 

the dark. Proteins were pre-digested with Lys-C (1:100 w/w) for 3 hours at room temperature. 

After dilution with 4 volumes of 20 mM ammonium bicarbonate (ABC), proteins were digested 

overnight at room temperature with either trypsin (1:100 w/w) or Lys-C (1:100 w/w).  

 

Off-Gel Isoelectric Focusing  

Peptides derived from the in-solution digestion were separated according to their isoelectric 

point using the 3100 OffGel fractionator (Agilent) following the manufacturer´s instructions. 

Peptides mixtures were separated into 12 fractions using 13 cm Immobiline DryStrips with a pH 

3-10 gradient (GE Healthcare). Separation was performed at a maximum current of 50 µA until 

50 kVH were reached. Peptide fractions were acidified with acidic solution (30% CAN, 5% Acetic 

Acid and 10% trifluoracetic acid in water) and desalted using Stage-Tips.  

 

Strong Anion Exchange Chromatography  

Peptides from the in-solution digestion were desalted using solid phase extraction. Strong 

Anion Exchange Chromatography (SAX) was performed as described before (39). Briefly, 

desalted peptides were loaded at pH 11 onto an anion exchange column containing 6 layers of 

Empore/Disk Anion Exchange (Varian) in a 200 µL pipette tip. For conditioning and elution the 

Britton & Robinson Universal Buffer (0.02 M Ch3COOH, 0.02 M H3PO4 and 0.02 M H3BO3) at pH 

3, 4, 5, 6, 8 and 11 was prepared. The column was activated with Methanol and conditioned 
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with 1M NaOH followed by buffer pH 11. The flow-through was acidified with acidic solution 

and loaded on a Stage-Tip. Peptides were eluted at pH 8, 6, 5, 4 and 3 also acidified with acidic 

solution and desalted using Stage-Tips. 

 

Nano-LC-MS/MS analysis 

All peptide fractions were measured on an EASY-nLC II nano-LC (Proxeon Biosystems) coupled 

to an Orbitrap Velos mass spectrometer (Thermo Fisher Scientific). Chromatographic separation 

was done on a 15 cm PicoTip fused silica emitter with an inner diameter (ID) of 75 µm and an 8 

µm Tip ID (New Objective) packed in-house with reversed-phase ReproSil-Pur C18-AQ 3 µm 

resin (Dr. Maisch GmbH). Peptides were injected into the column with solvent A (0.5% acetic 

acid) at 700 nL/min using a maximum pressure of 280 Bar. Peptides were then eluted using an 

81 min or a 221 min segmented gradient of 5-50% solvent B (80% ACN in 0.5% acetic acid) at a 

flow rate of 200 nL/min. The mass spectrometer was operated on a data-dependent mode. 

Survey full-scans for the MS spectra were recorded between 300 – 2000 Thompson at a 

resolution of 60,000 with a target value of 1E6 charges. The 15 most intense peaks from the 

survey scans were selected for fragmentation with collision induced dissociation (CID) at a 

target value of 5000 charges. The fragment spectra were recorded in the linear ion trap. 

Selected masses were included in a dynamic exclusion list for 90 seconds.  

 

MS data processing 

Acquired MS data were preprocessed by MaxQuant (v.1.2.2.9) (40) in order to generate peak 

lists that can be submitted to database search. Derived peak lists were submitted to 
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Andromeda (41) and Mascot v2.2.0 (Matrix Science, UK) search engines to query the genome 

database translated into all six reading frames. The genome sequence of E. coli (42, 43) was 

downloaded from the NCBI homepage (accession number NC_000913.2). The translation into all 

six reading frames was done from stop codon to stop codon by applying the bacterial and plant 

plasmid code (translation table 11) using the transeq tool that is part of the Emboss software 

package (44). We required a minimal length of six amino acids for each resulting putative open 

reading frame (ORF) which corresponds to the minimal peptide length that we required in the 

database search. To that database we added decoy sequences using the SequenceReverse.exe 

tool shipped with MaxQuant software. The resulting database consisted of 263,159 putative 

open reading frames, 248 commonly observed lab contaminants and 263,407 reversed 

sequences. 

Database search was performed using the following parameters: precursor mass tolerance was 

set to 6 and 7ppm for Andromeda and Mascot database search, respectively. The fragment ion 

mass tolerance was set to 0.5 Da for both search engines. Full enzyme specificity for trypsin and 

Lys-C was required and up to two missed cleavages were allowed. Oxidation of methionine and 

protein N-terminal acetylation were defined as variable modifications; carbamidomethylation 

of cysteine was defined as fixed modification. 

The resulting lists of peptide spectrum matches (PSMs) were further processed by MaxQuant 

and Trans Proteomic Pipeline (v4.5 RAPTURE rev 0)  (45). Andromeda database scores 

calculated by MaxQuant were converted to posterior error probabilities (PEP) as described in 

(41). We calculated q-values based on PEPs to estimate false discovery rates. Mascot result files 

(.dat) files were converted to mzML format and further processed by PeptideProphet (45) 
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module as part of the Trans-Proteomic Pipeline. We used the accurate mass binning option, 

excluded singly charged peptides, and used decoy hits to model the score distribution of false 

positives for semi-supervised mixture modeling. The FDR was controlled by filtering PSMs 

according to the probability assigned by PeptideProphet. The corresponding probability 

threshold was calculated by the ‘calctppstat.pl’ perl script as part of the TPP and the ‘Approx. P 

threshold for FDR’ was used to filter the list of PSMs. 

Acquired MS data were additionally searched against a recent annotation of the E. coli genome 

(UniProt reference proteome set; downloaded on 18 January 2012; 4309 protein entries) using 

MaxQuant v1.2.2.9 operating the same database search parameters as described above. False 

discovery rates on peptide and protein group level were set to 1%, respectively. 

 

Proteogenomic workflow 

Detected peptide sequences that resulted from searching the six-frame database were 

matched to the proteome and the genome database using BLASTP and TBLASTN, respectively 

(Blast 2.2.25+) (46, 47). For BLAST searches of typically short peptide sequences against the 

genome and proteome database, we set the maximal E-value to 10000 and the number of 

alignments to 20 in order to ensure that the peptides can be found in the genome and 

proteome databases. To map these peptides unambiguously, we required a full length 

alignment and 100% similarity. Multiple occurrences of the same peptide in the genome or 

proteome were considered separately. All peptides that did not meet these criteria were 

defined as initial candidate list of novel peptides. To address the ambiguity of leucine and 

isoleucine, the initial set of novel peptides was checked once again using regular expression 
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matching. Peptide sequences that could not be found in the proteome database because of any 

isobaric amino acids were removed from the initial set of novel peptides. In a second BLAST 

iteration all six-frame ORFs that were detected by one or more novel peptides were matched to 

the proteome database as well as the non-redundant protein database (NCBI nr) database. In 

addition we re-submitted the spectra of novel peptides to query NCBI nr database using Mascot 

search engine, to check consistency between PSMs derived from searching the six-frame 

translation and NCBI nr database. Together with the genome coordinates of the peptides and 

the annotated proteins, we used this information to classify the novel peptides into different 

types of annotation conflicts. 

The proteogenomic pipeline and further down-stream data analysis was  implemented in R 

v2.13 (48). 

 

Results 

We derived a comprehensive dataset of E. coli proteins by harvesting the cells in the 

exponential phase of growth, extracting the proteome and applying three separation methods 

(strong anion exchange chromatography, OffGel isoelectric focusing and GeLC-MS) in 

combination with protein digestion using two proteases, trypsin and Lys-C. We analyzed the 

resulting peptide mixtures by nano-LC-MS on an LTQ Orbitrap Velos mass spectrometer. We 

measured the precursor (peptide) ion masses at high resolution and mass accuracy in the 

Orbitrap analyzer, while performing peptide fragmentation and fragment ions measurement at 

low resolution in the linear ion trap analyzer. In total, we acquired 1,941,724 mass spectra in 

about 6 days of measurement time. The average absolute mass accuracy of the identified PSMs 
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was 0.34 ppm and 99% of the PSMs were measured within 1.8 ppm, which enabled us to use 

narrow (up to 7 ppm) precursor mass tolerance windows during database search. We mapped 

these spectra onto the six-frame translation of the raw genome sequence in order to assess 

sensitivity, specificity, accuracy, and the actual false discovery rate in a typical bacterial 

proteogenomic experiment (Supplemental Figure 1). Separately, we mapped the spectra to the 

annotated genome sequence (UniProt reference E. coli proteome database) to assess genome 

coverage by detected peptide sequences. 

 

Assigning Statistical Confidence to Six Frame Database Search Results 

The translation of the E. coli genome sequence from stop codon to stop codon resulted in 

263,159 putative ORFs, which were generally short database entries with a median length of 20 

amino acids. Most of these ORFs represent spurious sequences since usually only one reading 

frame at a given locus is transcribed; this means that on average five out of six sequences are 

artificial database entries. To increase confidence in the interpretation of proteogenomic data 

analysis we used two common workflows for processing and statistical assessment of MS/MS 

data: MaxQuant (40), based on Andromeda  search engine (41) and target-decoy approach 

(TDA) for FDR estimation (49, 50); and Trans-Proteomic Pipeline (51), used with Mascot search 

engine (Matrix Science, UK) and mixture model approach (MMA) for FDR estimation (45). 

Searching the acquired MS data against the six-frame database using Mascot and Andromeda 

search engines and controlling the false discovery rate at 1 percent yielded markedly different 

numbers of identified MS/MS spectra and peptide sequences (Table 1). The application of 

Mascot search engine in combination with the MMA identified almost 24% fewer peptide 
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sequences and 48% fewer MS/MS spectra at the same FDR compared to Andromeda search 

engine in combination with the TDA. This was not surprising, as the more conservative 

character of the MMA to control FDR was reported previously (35, 52). 

 

False Positive Identifications Accumulate among Novel Peptide Hits 

We investigated whether identified peptide sequences are present in the annotated, protein 

coding portion of the genome. Peptides that could not be assigned to any annotated protein in 

the UniProt E. coli database, we refer to as six frame-specific or novel peptides. Assuming a 

complete and correct annotation of the E. coli genome, these peptide hits are false positives 

and can be used to assess the performance of the applied proteogenomic search strategies. In 

order to validate this hypothesis we processed the MS data without any control of the FDR and 

classified the resulting peptide sequences according to whether they are annotated (“target”, 

44,872 hits), reversed hits (“decoy”, 35,370 hits) or novel peptides (“novel”, 31,075 hits) (Figure 

1A). Interestingly, the absolute number of decoy and novel hits was very similar and the 

corresponding PEP values followed almost the same distribution with median PEP values of 

0.79 (decoy) and 0.787 (novel), respectively (Figure 1B). Conversely, the PEP values of peptides 

that could be assigned to annotated proteins followed a very tight distribution around a median 

PEP of 3.26e-6 indicating that a high percentage was true positive identifications. Application of 

the TPP workflow confirmed these results (Supplemental Figure 2). Taken together, these 

findings support the initial assumption of a complete genome annotation of E. coli and point to 

the fact that majority of novel peptides are in fact false positive hits. Therefore, these peptides 

can be used as decoy hits to estimate a false discovery rate according to the target-decoy 
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approach. We calculated q-values (53) for all peptides that could be assigned to the existing 

protein database using the novel peptides as decoy hits and correlated the calculated values to 

‘standard’ q-values (Figure 1C). Overall there was a very high correlation of q-values calculated 

based on decoy peptides (x-axis) and novel peptides (y-axis) pointing to a substantial bias of 

FDR assessment using the target-decoy approach even in simple proteogenomic experiments. 

 

Assessment of Proteogenomic Workflows 

The assumption of complete annotation of the E. coli genome enabled the calculation of 

various features of the applied proteogenomic pipeline, such as sensitivity (SENS), specificity 

(SPC), accuracy (ACC) and actual false discovery rate (FDRact). The general strategy to calculate 

these values is depicted in Supplemental figure 3A. An experimental outcome, in our case the 

result of the proteogenomic workflow, is compared to a ‘golden standard’, which in our case is 

the annotated, protein-coding part of the E. coli genome. We classified all peptide sequences 

returned by MaxQuant and Trans-Proteomic Pipeline into the four possible contingencies (true 

positive, false positive, false negative, true negative) of this comparison (Supplemental figure 

3B).  Based on the derived contingency tables we assessed sensitivity, specificity, accuracy and 

the actual false discovery rate as a function of the FDR utilized by both approaches (Figure 2). 

To assess FDRact we used the number of false positive (FP) identifications to estimate the 

expected number of FPs among the list of all detected peptide sequences, equivalent to the 

target-decoy approach. Both workflows demonstrated high specificity and accuracy which are 

essential to discriminate false positive from true positive identifications. The sensitivity of the 

TPP based workflow was consistently lower, on average 42.3%, compared to the MQ workflow 
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across different FDR thresholds. Strikingly, the actual false discovery rate as a function of the 

decoy FDR utilized by MaxQuant increased linearly, with a constant ratio FDRact/FDRdecoy of 

about 3.5 in our particular study, whereas the FDRact did not approach the probability based 

FDR used in the TPP workflow confirming the conservative character of MMA. We expect that 

these features of MMA and TDA will be applicable to other proteogenomics datasets of similar 

sizes and complexities. 

 

Novel Peptides and Potential Annotation Conflicts 

In total, 313 peptide sequences passing the default constraint of 1% FDR were specifically found 

in the genomic six-frame translation and are not annotated according to UniProt E. coli 

database. Of all peptide sequences 68.1% were identified by both workflows whereas only nine 

peptides (2.8% of the total novel peptides) were identified as novel in both datasets 

(Supplemental figure 4A,B). The poor overlap of detected novel peptides further pointed to 

their stochastic distribution in the two datasets, and thus to an increased likelihood of false 

positive identifications among them. 

We next focused on the nine novel peptides identified by both data processing workflows. The 

corresponding PEPs of these peptides were noticeably better compared to other novel peptides 

(Supplemental figure 5A) and therefore had the highest likelihood of being correctly identified. 

Manual inspection of the corresponding MS/MS spectra validated eight of the nine novel 

peptides which we classified into potential annotation conflicts (Table 2). The fact that most of 

the best-scoring novel peptides were known annotation conflicts and therefore true positive 

hits pointed to the fact that our calculations are conservative in nature (represent the “worst 
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scenario”). Their presence also points to substantial number of annotation conflicts even in the 

simplest genomes. The presence of at least one obvious false positive even in this “golden” set 

of novel peptides indicated increased FDR in this part of the dataset. Examples of a novel 

peptide resulting from known annotation conflict, as well as a novel peptide resulting from 

false identification are presented in the Figure 3. All nine novel peptide sequences, together 

with their annotation details are presented in the Supplemental Figure 6 and Supplemental 

table 3. 

 

The Expressed Proteome of E. coli in Exponential Growth Phase  

The dataset derived in this study represents one of the most comprehensive proteomics 

datasets of E. coli. In order to assess proteome coverage, we searched the acquired MS spectra 

against the UniProt proteome database using MaxQuant operating with default parameters. 

Resubmission of the 1.9M spectra to the Andromeda search engine identified 42,780 non-

redundant peptide sequences (Supplemental table 4) corresponding to 2,626 distinct E. coli 

proteins (Supplemental table 5/6) with an FDR of 1% at protein level. A detailed summary of all 

sub-datasets concerning the different fractionation methods as well as the two enzymes used 

can be found in Supplemental table 7. Although 2,626 proteins represent about 61% of the 

annotated proteome, a dataset of similar size was reported before and comparison to 

transcriptome showed that about 2,600 E. coli genes are expected to be expressed during 

exponential growth in culture (36). In that study, combined proteome and transcriptome 

(microarray) analysis detected 2,602 and 2,543 E. coli gene products, respectively. We 
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therefore conclude that our dataset approached full coverage of the E. coli proteome expressed 

at the point of culture harvesting.  

This comprehensive dataset enabled us to address general features of bacterial proteomics 

experiments, especially in the context of the coverage of the genome sequence by detected 

peptides. We first defined the protein-coding part of the genome by mapping the 4,309 

proteins present in the UniProt E. coli database onto the chromosome (Figure 4A). This analysis 

revealed that 86.8% of the genome is annotated in the protein database (4.0 Mb). We next 

used sequences of all proteins identified in our dataset to define the expressed part of the 

genome (3.0 Mb), which corresponded to 65.4% of protein-coding genome regions. Finally, 

mapping of the detected peptide sequences onto the chromosome captured 1.27 Mb of the 

raw genome sequence, matching 48.5% of the expressed part of the genome (Figure 4B). The 

number of MS/MS events with which each nucleotide is represented, ranged from 1 to 1344 

with an average coverage of 20 MS/MS and median number of 7 MS/MS events per nucleotide 

(Figure 4C). However, despite this relatively high average coverage of the expressed genome, 

the coverage of the total genome sequence was only about 27.5%. This limited sequence 

coverage is a major limitation in proteogenomics experiments and points to the need for highly 

sensitive MS and proteogenomic workflows in experiments that aim at genome reannotation.  

 

Discussion  

Performance of different search strategies in proteogenomic applications was subject to a 

number of previous studies. For example, the application of TDA to searches of protein 

databases derived by six-frame translation has been assessed recently (35) and previous reports 
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pointed to important general considerations for application of this approach in database search 

(54, 55). There is a global consensus that the increased size of the databases obtained by six-

frame translation decreases the sensitivity and specificity of database search and that the 

spurious protein sequences present in such databases make the statistical confidence of the 

resulting peptide spectrum matches (PSMs) difficult to assess (13, 56). To circumvent this 

problem, in this study we assumed complete annotation of the E. coli genome which enabled us 

to call all six frame-specific (novel) PSMs as false positive identifications. This simple 

assumption was confirmed by almost identical distribution of the PEP values of the novel and 

decoy hits, as well as the low number of detected novel peptides. We note that the low number 

of true positive novel hits influences the reported values, but we expect their effect to be 

minimal. The assumption of full genome annotation is only valid for this system (E. coli) and is 

not applicable to organisms with large and/or partially annotated genomes. However, it proved 

to be useful to assess general features of a typical bacterial proteogenomic dataset, such as 

sensitivity, specificity, accuracy and actual false discovery rate.  

We used two complementary MS/MS data processing frameworks, MaxQuant implementing 

the target-decoy approach (TDA) and Trans-Proteomic Pipeline/Peptide Prophet using mixture-

model approach for FDR assessment. While both achieved deep proteome coverage, the 

MaxQuant-based workflow identified significantly higher number of peptides, whereas TPP-

based workflow had significantly lower actual FDR. However, TPP also led to a decreased 

sensitivity, resulting in lower number of identified spectra, which can significantly affect the 

coverage of the genome sequence by detected peptides (see below). In our view, the 
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MaxQuant workflow led to a better tradeoff between maximal peptide identification rates 

(sensitivity) desired in proteogenomic studies at acceptable false positive rate (FP). 

Somewhat surprisingly, our data point to substantial underestimation of FDR even in “simple” 

proteogenomic experiments obtained by high accuracy mass spectrometry. Although several 

strategies to decrease the search space in proteogenomic databases have been proposed (57) 

we argue that the use of high accuracy is one of the most effective ways to achieve this. In this 

context, the use of “high-high” acquisition methods (ones in which the survey and MS/MS scans 

are acquired at high (ppm to sub-ppm) accuracy), will further improve the confidence of 

detected PSMs and become indispensable in future proteogenomic experiments. However, 

novel peptides detected in such experiments should still undergo thorough investigation before 

treated as true positive identifications, regardless of the acquisition method or proteogenomic 

workflow used. 

The comprehensive proteome dataset derived for the purpose of this study enabled us to 

assess another important aspect of a proteogenomics experiment: coverage of the genome 

sequence by identified peptide sequences. The field of proteomics is getting to the remarkable 

stage of identification and quantification of all gene products expressed under specific 

conditions, and this especially applies to organisms with small and relatively simple genomes, 

such as bacteria and yeast (5). In addition to the detection of a gene product, genome 

reannotation also requires high coverage of the genome sequence. In our study, we achieved a 

comprehensive detection of the expressed E. coli proteome, which was in agreement with 

previous studies (36); however, the identified peptide sequences covered 48.5% of the 

estimated expressed, 65.4% of the protein-coding but only 27.5% of the total genome 
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sequence. Since NGS studies routinely achieve up to 50-fold base coverage of 99.9% of genome 

sequence (58, 59), our results demonstrate the limitation of using mass spectrometry-based 

proteomics for the sole purpose of genome annotation. Despite of the constant improvements 

in mass spectrometry technology it is hard to see how the genome sequence coverage by 

detected peptides will be improved to the level achieved by the NGS technology. Therefore, we 

believe that the major impact of proteogenomics will not be in genome reannotation, but in 

analysis of features that are beyond the reach of genomics, such as posttranslational 

modifications of proteins in the context of individualized protein databases derived by NGS. 

However, the routine application of proteomics in these areas will require further substantial 

improvements aimed at increasing the sequencing speed/coverage (MS level) and 

specificity/sensitivity (bioinformatic workflows).   
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Tables 

Table 1: Identified MS/MS spectra and peptide sequences after searching a six frame 
translation of E. coli chromosome using two MS data processing workflows. 
 

 

Table 2: Novel peptide sequences identified by both data processing workflows. Accession 
numbers shown in brackets correspond to proteins of another organism or E. coli strains.  
 

No Peptide sequence 
Annotation conflict in 

E. coli K12 
Remarks 

UniProt 
Accession(s) 

A VGSESWWQSK 
Erroneous initiation 
(upstream peptide) 

known conflict P13039 

B INQTSAMPEK 
Erroneous initiation 
(spanning peptide) 

known conflict P32695 

C LAMPSGNQEPR 
Erroneous initiation 
(spanning peptide) 

Correct in E. coli 
O157:H7  

P0CB62 
(Q8X3T3) 

D MMQTVLAK 
Erroneous initiation 
(spanning peptide) 

known conflict 
(in E. coli O157:H7) 

P00909 
(Q8X7B7) 

E CSEFGEAIIENM 

Point 
mutation/sequencing 

error or 
deamidated version 

Present in other E. coli 
strains, e.g. MS 116-1, 

DH1 

P13039 
(D8AHK0) 
(E6P3Y4) 

F GVALHAVK 
Not present Present in E .coli strain 

MS 117-3 
(E9THR2) 

G SLYSIALIR 

Not present 78% similarity to a 
sequence in Selaginella 

moellendorffi 

(D8RY37) 

H GLSGPASQATVAAP Not present Unclear  
I LSIRIQPPK Not present Unclear/FP  

 

 

 MS/MS 
spectra 
identified 

MS/MS 
spectra 
identified 
(%) 

Peptide 
sequences 

Novel 
peptides 

Decoy 
peptides 

Lab 
contaminant 
peptides 

Annotat
ed E. 
coli 
proteins 

MQ  
workflow 

370,231 19,1 33,964 263 336 306 2,653 

TPP 
workflow 

162,028 8.3 25,724 59 0 209 2,524 
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Data Access 

All raw files, peak lists, fasta databases and result tables returned by MQ and TPP were 

submitted to PeptideAtlas data repository. The data can be accessed by following ID and 

password: 

ID: PASS00147 

Password: GW584mr 
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Figure 1 

A                                                           B               C 
                      

Figure 1: Distribution of PSM confidence scores 
A) Distributions of posterior error probabilities (PEP) of different PSM populations that result from searching a genomic six-frame 
translation in a target-decoy database design. The PEPs of novel and decoy peptides are distinctly different distributed than the 
PEPs of all target peptides, that are contained in the UniProt proteome database of E . coli. B) Quantile-Quantile (QQ)-plot of PEPs 
resulting from decoy (x-axis) and novel peptides (y-axis) demonstrating an almost identical PEP distribution of novel and decoy 
peptides. C) Correlation of estimated false discovery rates (q-values) derived from decoy (x-axis) and novel peptide sequences (y-
axis). Colors correspond to PSM populations shown in A). 

Figure 2         
  

A                                                                                   B  

Figure 2: Assessing proteogenomic data processing workflows 
The assumption of a complete annotation of the E . coli genome enabled the assessment of sensitivity (SENS), specificity (SPC), 
accuracy (ACC), and actual false discovery rate (FDRact) as a function of the false discovery rate (FDR). Emphasized values 
correspond to commonly used FDR thresholds of 1% and 5%. A) MaxQuant (MQ) workflow utilizing decoy FDR approach 
demonstrated the best tradeof of high sensitivity, specificity and accuracy at a decoy FDR of 1%. The actual FDR increased linearly 
to the decoy FDR by a constant factor of 3.5.B) Trans-Proteomic Pipeline (TPP) workflow demonstrated high and constant specificity 
and accuracy across the probability based FDR, at much lower level of sensitivity and actual FDR compared to MQ based workflow. 
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Figure 3: True positive and likely false positive example among highest scoring novel peptides 
A) Schematic representation of the erroneous initiation of the fes gene. Annotated proteins are shown in blue, detected peptides are 
depicted in black, and six frame ORFs are shown in green. ORFs that were hit by peptides are shown in dark green. The novel 
peptide (VGSESWWQSK) was located upstream of the predicted protein N-terminus. The corresponding six frame ORF 
encompassed the complete sequence and employed the same reading frame as the fes gene. B) Corresponding MS/MS spectrum of 
the novel peptide depicted in A) annotated with a comprehensive series of b and y fragment ions. C) Schematic representation of a 
dubious novel peptide identified at 1% FDR by both data processing workflows used in this study. Although an adjacent cluster of 
peptides was detected that mapped to the tref gene, the novel peptide (LSIRIQPPK) utilized a different reading frame. D) MS/MS 
spectrum of the corresponding novel peptide shown in C) poorly annotated with b and y fragment ions.  

Figure 4 
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Figure 4: Achieved coverage of the E. coli genome by MS data 
A) Schematic representation of achieved coverage of the E. coli chromosome by MS data derived in this study. Detected peptides 
are shown in red; protein sequences according to UniProt annotation are depicted in green. B) Venn diagram illustrating the coverage 
of detected peptide sequences to several layers of the E. coli genome. C) Histogram depicting the number of MS/MS scans per 
nucleotide that was detected in this study.  
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University of Tübingen, 72076 Tübingen, Germany; 4Department of Molecular Biology, University of Tübingen,
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Pristionchus pacificus is a nematode model organism whose genome has recently been sequenced. To refine the genome
annotation we performed transcriptome and proteome analysis and gathered comprehensive experimental information
on gene expression. Transcriptome analysis on a 454 Life Sciences (Roche) FLX platform generated >700,000 expressed
sequence tags (ESTs) from two normalized EST libraries, whereas proteome analysis on an LTQ-Orbitrap mass spec-
trometer detected >27,000 nonredundant peptide sequences from more than 4000 proteins at sub-parts-per-million
(ppm) mass accuracy and a false discovery rate of <1%. Retraining of the SNAP gene prediction algorithm using the gene
expression data led to a decrease in the number of previously predicted protein-coding genes from 29,000 to 24,000 and
refinement of numerous gene models. The P. pacificus proteome contains a high proportion of small proteins with no known
homologs in other species (‘‘pioneer’’ proteins). Some of these proteins appear to be products of highly homologous genes,
pointing to their common origin. We show that >50% of all pioneer genes are transcribed under standard culture con-
ditions and that pioneer proteins significantly contribute to a unimodal distribution of predicted protein sizes in P. pacificus,
which has an unusually low median size of 240 amino acids (26.8 kDa). In contrast, the predicted proteome of Caenorhabditis
elegans follows a distinct bimodal protein size distribution, with significant functional differences between small and large
protein populations. Combined, these results provide the first catalog of the expressed genome of P. pacificus, refinement of
its genome annotation, and the first comparison of related nematode models at the proteome level.

[Supplemental material is available online at http://www.genome.org. The 454 Life Sciences (Roche) sequencing data from
this study have been submitted to the NCBI Short Read Archive (http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi) under
accession no. SRA010772. Sequences from targeted RT-PCR reactions have been submitted to GenBank (http://
www.ncbi.nlm.nih.gov/Genbank/) (accession numbers provided in Supplemental Tables 4 and 6). Mass spectrometry data
have been uploaded to the Proteome Commons Tranche repository (https://proteomecommons.org/tranche/).]

Genome sequence data are useful only when genes are correctly

annotated and information on their genomic localization, ex-

pression, and function is available. Comprehensive annotation of

protein-coding genes is largely done in silico and is error-prone,

especially when performed without experimental information

on gene expression. Recent development of rapid techniques for

nucleic acid sequencing has enabled comprehensive detection of

transcribed genomic regions and use of this information in ge-

nome annotation. Especially, the platforms that implement high-

throughput pyrosequencing, such as 454 Life Sciences (Roche)

FLX, are powerful tools for genome annotation. This platform

produces fewer reads (400 K–500 K) than other next-generation

sequencers. However, these reads are on average longer (>200 bp

vs. ;50 bp) and are essential for an accurate reconstruction of any

metazoan transcriptome. This platform has recently been used in

the annotation of eukaryotic and prokaryotic genomes (Shin et al.

2008; Vera et al. 2008).

In addition to the evidence of gene expression at transcrip-

tion level, mass spectrometry (MS)-based proteomics is increas-

ingly used for experimental identification of translated genomic

sequence. In a ‘‘proteogenomics’’ approach (Ansong et al. 2008;

Gupta et al. 2008), the complete protein extract of an organism

is digested into peptides, which are then mass-measured and

fragmented in a mass spectrometer. Mass spectra are typically

searched against a database containing a six-frame translation of

the raw genome assembly and can therefore identify new, unpre-

dicted open reading frames and refine existing gene models. Pio-

neered already in 1995 (Yates et al. 1995), proteogenomics has

since been used to provide experimental evidence for gene ex-

pression in various model organisms, such as Arabidopsis thaliana

(Baerenfaller et al. 2008), Plasmodium yoelii yoelii (Carlton et al.

2002), Toxoplasma gondii (Xia et al. 2008), and Homo sapiens

(Fermin et al. 2006). A recent study of Caenorhabditis elegans iden-

tified more than 6000 gene products by mass spectrometry and

refined many gene models even in this well-studied organism

(Merrihew et al. 2008).

Pristionchus pacificus is a nematode that has been established

as a model organism in evolutionary developmental biology

(Sommer et al. 1996; Hong and Sommer 2006). It shares many

advantageous features with C. elegans, in that it can be grown easily

under laboratory conditions by feeding on Escherichia coli OP 50, it

has a short generation time (4 d at 20°C), and it is a self-fertilizing

5These authors contributed equally to this work.
6Corresponding authors.
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hermaphrodite, which makes it amenable to forward and reverse

genetics. The genome of P. pacificus was recently sequenced in

a whole-genome shotgun approach with 10-fold coverage. The

calculated genome size is 169 megabases (Mb) with a total num-

ber of 29,000 predicted protein-coding genes and a minimal gene

content of 23,500 genes, as inferred from RT-PCR analyses (Diet-

erich et al. 2008). Many of these genes share no sequence similarity

with already known genes in other nematodes and different phyla

(‘‘pioneer’’ genes). In comparison, the genome of C. elegans is

completely assembled, consisting of a 100-Mb genome with 20,060

encoding genes (The C. elegans Sequencing Consortium 1998;

Dieterich and Sommer 2009). P. pacificus and C. elegans belong to the

same phylogenetic clade (Fig. 1A), which provides an ideal evolu-

tionary distance for comparison of their proteome structures.

Here, we perform a comprehensive analysis of the P. pacificus

transcriptome and proteome using 454 FLX sequencing and LTQ-

Orbitrap mass spectrometry, respectively. We search high-accuracy

MS data against the predicted proteome and six-frame translation

of the raw genomic assembly. We identify more than 700,000

expressed sequence tags (ESTs) and 27,000 nonredundant peptide

sequences and use these data to refine the genome annotation and

compare the predicted and detected proteome of P. pacificus with

that of the other nematode models. We show that >50% of all pi-

oneer genes are transcribed and that pioneer proteins significantly

contribute to the unimodal distribution of predicted protein sizes in

P. pacificus. Finally, we observe that the predicted proteome of C.

elegans follows a distinct bimodal distribution, with significant

functional differences between small and large protein populations.

Results
The aim of this study was to provide the first experimental catalog

of the expressed genome of P. pacificus and to use this information

for further refinement of the genome annotation. To obtain

enhanced coverage of the expressed genome, we used two com-

plementary approaches: transcriptome sequencing and high-

accuracy MS proteomics. For the transcriptome analysis, total RNA

was isolated from a mixed culture (containing all developmental

stages, including eggs) and dauer stage culture of P. pacificus and

sequenced on the 454 Life Sciences (Roche) FLX pyrosequencing

platform.

For the proteome analysis, protein extracts were isolated from

a mixed culture and second juvenile (J2) stage culture of P. pacificus.

In all proteomics experiments, the protein extracts were divided

into soluble and insoluble fractions, separated by 1D SDS-PAGE,

and in-gel digested by trypsin. To achieve better analytical depth,

soluble protein fractions were additionally digested in-solution by

trypsin, and the resulting peptide mixtures were separated by

isoelectric focusing. All peptide mixtures were subjected to nano-

LC-MS/MS analysis on an LTQ-Orbitrap mass spectrometer. The

MS data were processed and prepared for database search using the

MaxQuant software suite. All MS/MS spectra were searched using

the Mascot search engine against a decoy database consisting of

the predicted P. pacificus proteome (based on old assembly;

Dieterich et al. 2008), E. coli proteome, common laboratory con-

taminant proteins, and a six-frame translation of the P. pacificus

raw genomic assembly. The complete workflow is summarized in

Figure 1B.

Gene expression analysis of P. pacificus

In the 454 FLX transcriptome measurement, a sequencing run of

the normalized mixed stage cDNA library yielded 334,441 ESTs

that mapped uniquely to the genome top 965 contigs and had

a median read length of 240 bp. In the normalized dauer stage li-

brary, 376,796 ESTs mapped to the top 965 contigs and had a me-

dian read length of 250 bp. In total, 711,237 ESTs were detected in

both analyzed developmental stages.

In the proteome measurement, MS data pre-processing using

MaxQuant software resulted in 1,190,811 spectra that were sub-

mitted to the Mascot search engine. Database searching led to the

identification of 27,561 nonredundant peptide sequences at an

estimated false discovery rate (FDR) of 0.2% at the peptide level. Of

these, 22,208 were detected in the mixed culture and 17,412 in the

J2 stage (Supplemental Table 1). The applied biochemical workflow

enabled enhanced proteome coverage, as only 7989 (29%) pep-

tides were identified in all three approaches (Fig. 2A). Robust

recalibration algorithms integrated in the MaxQuant software led

to the overall average absolute peptide mass deviation of 0.345

parts per million (ppm) with a standard deviation of 0.434 ppm

and enabled the use of narrow individualized precursor ion mass

tolerances in the database search (Fig. 2B; Cox and Mann 2008) .

Detected peptides were assembled into proteins and protein

groups by MaxQuant software (see Methods). Of the detected

protein groups, 3451 mapped to the P. pacificus predicted proteome

(old assembly), 266 to the E. coli proteome, 50 to reversed se-

quences, 30 to contaminants included in the database, and the

remainder to the raw genomic translation. The FDR at the protein

Figure 1. Phylogeny of Pristionchus pacificus and proteogenomics
workflow employed in this study. (A) Phylogenetic relationship of nema-
todes with sequenced genomes. The genome sizes (megabases) are
written in brackets. The clades are depicted in the tree. (B) P. pacificus gene
expression was assessed at the levels of transcription and translation and
in three different developmental stages: dauer, J2, and ‘‘mixed stage’’
(containing all developmental stages, including eggs). In proteomics ap-
proach, several workflows for protein extraction and separation were
used. ESTs detected with 454 pyrosequencing and peptide sequences
detected with LTQ-Orbitrap mass spectrometry were used for genome
reannotation.
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group level was 1%. A list of all proteins detected by searching the

six-frame translation database is available in Supplemental Table 2.

Refinement of P. pacificus gene predictions

We used the transcriptomics and proteomics data to refine the

gene predictions in the P. pacificus genome sequence. In the tran-

scriptome measurement, of a total of 711,237 detected ESTs,

223,849 ESTs corresponded to genomic regions that were not

predicted by the old gene model (Dieterich et al. 2008): 96,754

ESTs in the mixed culture and 127,095 ESTs in the dauer stage.

In the proteomics measurement, of 27,561 detected nonredun-

dant peptide sequences, 2783 nonredundant peptides exclusively

mapped to the translated genomic sequence, providing direct ex-

pression evidence for 1537 genomic regions (contigs and their

corresponding reading frames) that were previously not predicted

as protein-coding. The median length of genomic peptide hits was

12 amino acids (Fig. 2C), and their posterior error probability (PEP)

distribution was distinctly different than that of highest-scoring

reverse database hits (Fig. 2D), confirming the high reliability of

the data set. To gain additional information on the splice junc-

tions, MS/MS peak lists derived by MaxQuant software were sub-

mitted to the PepSplice search engine, which uses raw DNA

sequence information to calculate peptides with gaps corre-

sponding to potential GT–AG introns (Roos et al. 2007). The

PepSplice database search resulted in identification of 541 spliced

peptide sequences (Supplemental Table 3) that enabled identifi-

cation of exact exon/intron boundaries in corresponding genes.

We used the information on the newly detected loci

from both approaches to retrain the SNAP prediction algorithm

(Dieterich and Sommer 2009), previously used for genome anno-

tation of P. pacificus (Dieterich et al. 2008), and employed it to

reannotation of gene predictions on the raw genome assembly.

The genome reannotation led to a decrease in the number of pre-

dicted protein-coding genes from 29,424 (as reported at http://

www.pristionchus.org), to 24,231, mainly through connection of

Figure 2. Overview of the proteomics results. (A) Application of complementary biochemical workflows for protein extraction and peptide separation
led to enhanced proteome coverage. (sol) Soluble fraction; (pel) pellet. (B) Peptides were detected with a mean absolute mass deviation of 0.345 ppm. (C )
Peptide sequences that mapped to the genome translation (‘‘genomic peptides’’) had a median size of 12 amino acids. (D) Distribution of posterior error
probabilities (PEP) was markedly different in the genomic and reversed peptide sequences.
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neighboring coding regions. Consequently, 3263 old gene models

were not contained in the genome reannotation, 1848 new gene

models (7736 exons) have been identified, and 11,313 existing

gene models were extended (Fig. 3). The new gene prediction is

available at http://www.pristionchus.org.

Although our experiments were not designed to perform

a direct comparison of the transcriptomics and proteomics, our

study provides insights into the main contributions of the

two platforms to genome reannotation. Of 1848 new gene mod-

els, only 73 were covered by peptides, demonstrating the superior

genome coverage of the transcriptomics platform and pointing to the

gene model refinement—rather than gene discovery—as the main

contribution of the proteomics platform. Indeed, <25% of peptides

that mapped to translated genomic sequence were in the inter-

genic regions of the old gene model, whereas the majority were in

the intragenic regions (i.e., in the intron sequences), therefore

Figure 3. Genome reannotation resulted in new gene predictions and new gene models. (A) Example of a new gene model. New gene model
‘‘Contig126-snap.64’’ contains the old model ‘‘Contig126-snap.71’’. (B) Example of a new gene prediction. The gene model ‘‘Contig125-snap.27’’
appeared only after retraining of the SNAP prediction algorithm with gene expression data.
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exclusively affecting the existing gene

models. In addition, proteomics signifi-

cantly contributed to determination of

exon–exon splice junctions.

For independent confirmation of

expression of newly predicted genes, we

chose 99 candidates and amplified them

with RT-PCR on cDNA from mixed-stage

animals. Of analyzed transcripts, 60 could

be amplified and sequenced, confirming

their expression (Supplemental Table 4).

Catalog of detected P. pacificus proteins

The refinement of the P. pacificus genome

using transcriptomics and proteomics

data led to its most comprehensive and

accurate annotation to date. To derive a

comprehensive catalog of detected P.

pacificus proteins, we used the refined ge-

nome database to create the corresponding

decoy protein database and search our

mass spectrometry data against it. Resub-

mission of 1,190,811 spectra to the Mascot

search engine resulted in identification of

32,126 nonredundant peptide sequences

that mapped to 4029 P. pacificus protein

groups at FDR 1% (Supplemental Table 5).

To gain insight into the distribution of

functional protein classes among detected

proteins, we used the Blast2GO software to

perform BLAST searches of detected pro-

tein sequences against the complete

nrNCBI database and to extract the Gene

Ontology (GO) terms. The GO analysis of

the detected P. pacificus proteins revealed

overrepresentation of cytosolic and de-

velopmental proteins, and underrepre-

sentation of membrane proteins (Sup-

plemental Fig. 1). The distribution of GO

terms compared favorably with the recent

proteomics analysis of C. elegans (Schrimpf

et al. 2009) and demonstrated a sampling

of similar protein classes in P. pacificus de-

spite the more comprehensive proteome

coverage in the C. elegans study.

Features of the predicted P. pacificus proteome

In silico translation of the predicted P. pacificus protein-coding

genes showed an unusually low median predicted protein size of

240 amino acids (26.8 kDa) (Fig. 4A). BLAST analysis of the pre-

dicted proteome against the whole nrNCBI database did not

retrieve any significant hits (E < 1 3 10�3) for 10,258 (42.3%)

predicted proteins. We refer to them as ‘‘pioneer’’ proteins.

To gain insights into this group of proteins, we created a data-

base consisting only of pioneer proteins and analyzed their features

separately from the complete predicted proteome. Interestingly,

the pioneer proteins are very short, with a median protein size

of 143 amino acids (16 kDa). Their removal from the predicted

proteome resulted in a significant increase in median size of the

remaining proteins, from 240 amino acids (26.8 kDa) to 330 amino

acids (36.9 kDa) (Fig. 4A), a value very close to the median size

of proteins detected by MS (358 amino acids or 40 kDa). This leads

to the conclusion that a majority of pioneer genes are not trans-

lated under tested conditions (environmental and/or develop-

mental). Indeed, out of 4029 P. pacificus protein groups detected

by MS, only 435 (10.8%) were products of pioneer genes. The

search of unidentified MS spectra against a decoy database con-

sisting only of pioneer proteins did not lead to significantly better

coverage (data not shown). However, the coverage of pioneer

genes was greater in the transcriptome analysis, where 5224

(51%) were detected to be expressed. To verify expression of pi-

oneer genes we performed developmental stage-specific RT-PCR

experiments. Out of 86 randomly chosen pioneer genes detected

by MS, 56 could be amplified from mixed-stage cDNA and se-

quenced. Of this 56 transcripts, 31 showed different levels of

expression in the tested second to fourth juvenile (J2–J4) stages,

showing that at least some of the pioneer proteins may be

Figure 4. Features of the P. pacificus predicted proteome. (A) Protein size distribution shows that the
pioneer proteins are mainly responsible for the unusually low median protein size in P. pacificus. (B)
BLAST results of the pioneer proteins against themselves show presence of highly homologous proteins
that may have a common origin.
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functionally relevant in different developmental stages (Supple-

mental Table 6).

To gain further insights into primary sequence characteristics

and origin of pioneer proteins, we performed a stringent BLAST

analysis (E < 1 3 10�20, bit score > 90) of every entry in the pioneer

protein database against the whole database. Despite the stringent

criteria, 2086 entries (20%) returned multiple (1–85) BLAST hits,

pointing to the existence of close structural homologs among

pioneer proteins (Fig. 4B). Indeed, the first genome draft of

P. pacificus has already revealed that ;30% of the pioneer genes

could be grouped into distinct protein families (Dieterich et al.

2008). We observe that some of the structurally related pioneer

proteins reside on the same translated contigs, reflecting the prox-

imity of their corresponding genes in the genome. Together, these

data point to a likely common origin of part of the pioneer genes.

Comparison of the predicted P. pacificus proteome
with proteomes of nematode models

We used the reannotated genome as a starting point for compari-

son of the predicted proteome of P. pacificus with three published

nematode proteomes: C. elegans (The C. elegans Sequencing Con-

sortium 1998), C. briggsae (Stein et al. 2003), and Brugia malayi

(Ghedin et al. 2007). Surprisingly, the predicted protein sizes fol-

lowed a unimodal distribution in P. pacificus and B. malayi and

a distinct bimodal distribution in C. elegans and C. briggsae

(Fig. 5A). To test whether this was a consequence of different

qualities of gene annotations, we extended this comparison to

three additional members of the Caenorhabditis genus: C. remanei,

C. brenneri, and C. japonica, whose genome assemblies are publicly

available (http://www.wormbase.org/), but are not yet peer-

reviewed. These three organisms also showed distinct distributions

of protein sizes, with C. japonica matching the unimodal protein

size distribution and C. remanei and C. brenneri matching the bi-

modal distribution (Supplemental Fig. 2A,B). To assess the func-

tional relevance of this observation, we performed GO analysis of

the predicted P. pacificus and C. elegans proteomes. Whereas the GO

analysis of the two proteomes showed a very similar overall dis-

tribution of GO classes (Supplemental Fig. 3), the GO analysis

applied separately to the small and large protein populations in

C. elegans pointed to a significant functional relevance (Fig. 5B).

The short protein population was enriched in functions related to

nucleosome assembly, translation, and development, while the

long protein population was enriched in functions related to

protein phosphorylation, signal transduction, and ion transport.

Notably, protein functions (GO terms) enriched in one tested data

set were depleted in the other, pointing to the functional com-

plementarity of the two protein populations.

Discussion
In this study, we performed a comprehensive analysis of gene ex-

pression in P. pacificus with the goals of (1) genome refinement, (2)

in-depth analysis of the detectable proteome, and (3) comparative

predicted proteome analysis of the nematode model organisms. To

achieve optimal gene expression coverage, we performed tran-

scriptome and proteome analyses of P. pacificus cultures from

different developmental stages, covering the mixed population,

dauer, and J2 stages. By sequencing ESTs we achieved compre-

hensive coverage of the transcribed genomic regions and com-

plemented it with information on the translated genomic regions

from the proteomics experiment. Both technological platforms

used in this study—454 FLX nucleic acid pyrosequencing and LTQ-

Orbitrap mass spectrometry—represent the state of the art in the

fields of transcriptomics and proteomics, respectively. The use of

the 454 platform in this study enabled acquisition of one of the

most comprehensive collection of ESTs so far used for genome

refinement. In addition, the use of LTQ-Orbitrap MS resulted in

one of the most accurate proteogenomics data sets to date, both in

terms of mass accuracy and FDR (0.2%). We note that in this study

the MS/MS spectra were recorded in the low-resolution linear ion

trap analyzer, whereas the MS spectra were recorded in the high-

resolution Orbitrap mass analyzer. This was needed to achieve

a high speed of MS/MS acquisition at high precursor ion mass ac-

curacy, both of which are crucial in proteogenomics. One of the

challenges in the use of mass spectrometry in proteogenomics

applications is the use of six-frame translation protein databases

that result in the increase of search space and decrease in search

specificity. Although high mass accuracy has an obvious potential

to resolve this problem, the proteome complexity and high dy-

namic range of gene expression have so far made fast-scanning and

low-accuracy mass spectrometers almost exclusively used in pro-

teogenomics applications. While such instrumentation ensures in-

depth proteome coverage, it requires the use of wide mass toler-

ance windows (up to 4 Da) during database search. In this study,

the sub-ppm measurement mass accuracy of precursor ions en-

abled the use of narrow initial mass tolerance window during da-

tabase search (7 ppm or 0.007 Da at m/z = 1000), and even higher

tolerances for peptide acceptance (Cox and Mann 2008), thereby

significantly increasing search specificity and reducing the FDR.

This is especially important when searching the peptide mass

spectra against the translation of the complete genome assembly as

>80% of entries present nonsense protein sequences (e.g., wrong

reading frames).

The refined P. pacificus gene predictions provided a unique

opportunity to study its proteome features and compare them with

C. elegans, a related and well-studied nematode model. C. elegans

was recently a subject of a comprehensive proteogenomics study,

in which 245 novel genes were identified and 151 existing gene

models were modified (Merrihew et al. 2008). The drastically

higher number of newly predicted and modified P. pacificus gene

models in our study is caused in part by using a transcriptomics

platform for genome reannotation, but also reflects more com-

prehensive existing genome annotation of C. elegans.

A distinct feature of the P. pacificus proteome is the presence of

short proteins with no apparent homologs in current protein

databases such as nrNCBI (‘‘pioneer’’ proteins). A high proportion

of genes without any known homologs was previously reported

in the P. pacificus genome (Dieterich et al. 2008), but their ex-

pression was never demonstrated. Here, we show that at least

a portion of these genes is expressed under tested conditions. Al-

though only ;10% of predicted pioneer proteins were detected by

MS, their coverage was higher in the transcriptome data set, where

>50% were detected. At present, it is not clear whether this dis-

crepancy is due to better transcriptome coverage, impaired trans-

lation, or low abundance (and therefore undersampling) of this

class of proteins. The RT-PCR data showed that at least part of the

pioneer genes show stage-specific expression, pointing to their

potential roles in development. Interestingly, >20% of the pioneer

proteins show similarity in primary structure and may therefore

have a common origin. Although these data show that a fraction of

pioneer proteins are synthesized and may be functional, their ex-

act function and origin remain to be elucidated.
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An interesting aspect that arose from the comparison of

P. pacificus and C. elegans proteomes is the bimodality of protein

size distribution in the C. elegans proteome. To our knowledge,

this is the first reported example of a bimodal distribution of pro-

tein sizes in any proteome, with pronounced functional differ-

ences between the two protein populations. At present it is

not clear whether this distinct proteome feature is of biological

relevance; however, it seems to represent a phylogenetic trait,

as only species of the Caenorhabditis crown group show the

bimodal distribution, whereas C. japonica follows a unimodal

distribution. Also, we note that the enrichment of GO terms

related to protein phosphorylation among the larger protein

population may reflect the unusually high number of protein

kinases reported in C. elegans (Manning et al. 2002). Since the

recently published phosphoproteome of C. elegans showed an

unusual functional distribution of phosphoproteins (Zielinska

et al. 2009), a quantitative comparison of P. pacificus and C. elegans

organisms at the phosphoproteome level is likely to give valu-

able insights into evolution of phosphorylation networks in

Metazoa.

Figure 5. Comparison and functional analysis of protein size distributions in nematode models. (A) Predicted protein sizes in P. pacificus and B. malayi
have a unimodal distribution, whereas C. elegans and C. briggsae have distinct bimodal distributions. (B) Gene Ontology enrichment analysis for short and
long proteins in C. elegans shows distinct functional differences between the two classes of proteins.
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Methods

Culturing of worms and preparation of protein extracts
P. pacificus strain PS312 was grown on 10-cm NGM agar plates
spotted with 2 mL of E. coli OP50 solution. Plates were inoculated
with 50–100 worms and incubated at 25°C. The mixed-stage
population was harvested shortly after the bacterial lawn was
consumed, avoiding starvation of the animals. After thoroughly
washing with distilled water and 0.9% sodium chloride, the ani-
mals were incubated with ampicillin (100 mL/mL) and chloram-
phenicol (34 mL/mL) in 0.9% sodium chloride for 48 h to remove
residual bacteria. The worms were then pelleted and prepared for
proteomics measurements. The animals in the J2 developmental
stage were harvested as follows: Plates full of eggs were washed
with distilled water and the animals were bleached with hydrogen
peroxide and 5 M sodium hydroxide, leaving just the eggs alive.
Animals were then spotted on 10-cm NGM agar plates for hatching
for 24 h, and collected by washing after removing debris and
corpses. Animals were pelleted and stored frozen until further
analysis. For protein isolation, 100 mL of animals was solubilized in
300 mL of denaturation buffer (6 M urea, 2 M thiourea, 10 mM Tris
at pH 8.0). After three cycles of freeze (liquid nitrogen) and thaw
(37°C), 100 mL of glass beads were added and the solution was
vortexed for 20 min. After centrifugation (20 min, 20.800g, 4°C),
the protein concentration of the supernatant was determined us-
ing the Bradford assay. The pellet was solubilized in sample buffer
for gel electrophoresis and further analysis.

OffGel electrophoresis and in-solution digestion

For OffGel fractionation the proteins were reduced by incubation
in 1 mM dithiotreitol (DTT) for 1 h at room temperature. Alkyl-
ation was performed in 5.5 mM iodoacetamide (IAA) in 50 mM
ABC for 1 h at room temperature in the dark. Proteins were
digested using LysC (1:100 w/w) for 3 h at room temperature and
trypsin (1:100 w/w) overnight at room temperature after diluting
the sample with four volumes of 20 mM ammonium bicarbonate
(ABC). The resulting peptides were separated using the 3100 Off-
Gel fractionator (Agilent) according to manufacturer’s instruc-
tions with a 12- or 24-well setup. Focusing was done with 13-cm
(12-well) or 24-cm (24-well) Immobiline DryStrips pH 3–10
(GE Healthcare) at a maximum current of 50 mA for 50 kVh. Pep-
tide fractions were harvested and desalted using C18 StageTips as
previously described (Ishihama et al. 2006).

GeLC-MS and in-gel digestion

For GeLC-MS analysis 100 mg of the supernatant and the solubi-
lized pellet were loaded on a NuPAGE Bis-Tris 4%–12% gradient gel
(Invitrogen). After brief Coomassie staining, each lane was cut into
10 slices that were further cut into small pieces. Destaining was
performed by washing three times with 10 mM ABC and acetoni-
trile (ACN) (1:1, v/v) and was followed by protein reduction with
10 mM DTT in 20 mM ABC for 45 min at 56°C, and alkylation with
55 mM iodoacetamide in 20 mM ABC for 30 min at room temper-
ature in the dark. The gel pieces were then washed twice for 20 min
in destaining solution followed by dehydration with ACN. The
liquid was removed and gel pieces were swollen at room tempera-
ture by adding 13 ng/mL sequencing-grade trypsin (Promega) in
20 mM ABC. Digestion of proteins was performed at 37°C over-
night. The resulting peptides were extracted in three subsequent
incubation steps with 30% ACN/3% TFA; with 80% ACN/0.5%
acetic acid; and with 100% ACN. Supernatants were combined,
ACN was evaporated in a vacuum centrifuge, and peptides were
desalted using C18 StageTips.

NanoLC-MS/MS analysis

All digested peptide mixtures were separated on a nanoLC-2D
HPLC (Eksigent) coupled to a LTQ-Orbitrap-XL (Thermo Fisher
Scientific) through a nano-LC-MS interface (Proxeon Biosystems).
Binding and chromatographic separation of the peptides was
performed on a 15-cm fused silica emitter of 75-mm inner diame-
ter (Proxeon Biosystems), in-house packed with reversed-phase
ReproSil-Pur C18-AQ 3-mm resin (Dr. Maisch GmbH). The peptide
mixtures were injected onto the column in HPLC solvent A (0.5%
acetic acid) at a flow rate of 500 nL/min and subsequently eluted
with a 107-min segmented gradient of 2%–80% HPLC solvent
B (80% ACN in 0.5% acetic acid) at a flow rate of 200 nL/min.

The mass spectrometer was operated in the data-dependent
mode to automatically switch between MS and MS/MS acquisition.
Survey full-scan MS spectra were acquired in the mass range of m/z
300–2000 in the orbitrap mass analyzer at a resolution of 60,000.
An accumulation target value of 106 charges was set and the lock
mass option was used for internal calibration (Olsen et al. 2005).
The 10 most intense ions were sequentially isolated and frag-
mented in the linear ion trap using collision-induced dissociation
(CID) at the ion accumulation target value of 5000 and default CID
settings. The ions already selected for MS/MS were dynamically
excluded for 90 sec. The resulting peptide fragment ions were
recorded in the linear ion trap. In total, 101 LC-MS measurements
were performed, corresponding to 10 d of measurement time.

The mass spectrometry data associated with this manuscript
may be downloaded from the Proteome Commons Tranche re-
pository (https://proteomecommons.org/tranche/) using the fol-
lowing hash: QgF9ukyrC8Y74IIE8L/y2ccmTd02ElO8UnFcVLVF
wvy1C+/41QDGWVzZIR96f33MKIui57iuS6x8 8KNT2v4RiIuHRN4
AAAAAAAALhA==.

Data processing and analysis

MaxQuant data processing and Mascot database search

All raw files were processed together using the MaxQuant software
suite (v. 1.12.35) (Cox and Mann 2008; Cox et al. 2009). Raw MS
spectra were first processed by the Quant module to generate peak
lists. This module performs a nonlinear mass recalibration for each
individual precursor ion and calculates precise masses as well as
individual mass errors. To retrieve peptide sequences from the
processed spectra, we used the Mascot search engine v.2.2 (Matrix
Science). The processed MS spectra were searched against an
in-house assembled target-decoy database that consisted of the
in silico–predicted proteome of P. pacificus (SNAPNG2.aa.annot,
27,103 sequences); a complete six-frame translation of its genome
(sctg_plus_2000.fas, 14,654 contigs; 87,924 sequences after six-
frame translation); E. coli proteome (4256 sequences); and 262
commonly observed contaminants. All protein sequences in the
database were reversed and appended to the database. This enabled
the estimation of false discovery rate (FDR) in the data set by
a target-decoy search strategy (Elias and Gygi 2007).

In the database search, carbamidomethylation (Cys) was set
as fixed modification, whereas oxidation (Met) and acetylation
(protein N termini) were set as variable modifications. The mass
tolerances for precursor and fragment ions were set to 7 ppm and
0.5 Da, respectively.

The retrieved peptide sequences were further processed with
the Identify module of the MaxQuant software. This module
considers all 10 peptide candidates suggested by Mascot for each
fragmentation spectrum and filters them according to consistency
with a priori information, e.g., the individual precursor mass er-
rors. Furthermore, the probability that an individual peptide is
a false hit given its score and length is estimated by a Bayesian
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probability (posterior error probability [PEP]). All filtered peptide
sequences are sorted according to their PEP values, starting with
the best PEP. To control the FDR the peptides are accepted until 1%
of reversed peptides have accumulated within the list. The iden-
tified peptides are then assembled back into proteins. If a set or
subset of identified peptides can be assigned to more than one
protein, these proteins are joined into a protein group (Nesvizhskii
and Aebersold 2005; Cox and Mann 2008). Finally, the FDR on
protein group level was also controlled to be at 1%.

PepSplice database search

The PepSplice search engine (Roos et al. 2007) was used to com-
plement Mascot-based searches. PepSplice uses a cache-optimized
peptide database search algorithm for aligning spectra to genome-
wide spliced six-frame translations. MaxQuant-processed MS/MS
spectra (J2 + Mixed Stage) were searched against a target database,
which contained all spliced six-frame translations of the 965
largest supercontigs ($2 kb). All possible splicing events up to an
intron size of 2 kb were considered and the maximal FDR was set to
1% on the peptide level. PepSplice also employs a target-decoy
search strategy to estimate the FDR.

Downstream bioninformatics analysis

All downstream bionformatics was done in R (v. 2.9.0; http://
www.r-project.org).

Protein size distributions were determined from the most
recent versions of publicly available protein databases (http://
www.wormbase.org). Distributions were determined by the ‘‘den-
sity’’ function from the base R package using default bandwidth.
For robust estimation of protein size distribution, 99% of all pro-
teins within the particular databases were considered. All BLAST
searches in this study were performed by BLASTP v.2.2.21.

Gene Ontology analysis

GO annotation for the predicted P. pacificus and C. elegans (WS140,
WS195) proteomes was derived using Blast2GO software (Conesa
et al. 2005). For each query sequence the software first detects up to
20 homolog sequences in the nrNCBI database (nrNCBI version
was from August, 2009; E-value <1 3 10�3) by a BLAST search.
Based on the GO terms associated with these candidate sequences
the software applies an annotation rule that filters and reports the
most specific annotations.

To test for enrichment or depletion of specific GO terms
among the identified proteome, the topGO R package was used
(Alexa et al. 2006). This package implements two scoring methods
that take care of the underlying GO graph topology. We used the
‘‘elim’’ algorithm that starts at the leaves of the induced GO graph
and subsequently removes all proteins from the corresponding
parent nodes that have been already used for testing the children
nodes. Therefore, only the most specific GO terms for each protein
were considered.

Fisher’s exact test served as test statistic assuming the hyper-
geometric distribution as null-distribution. The derived P-values
were further adjusted for multiple hypothesis testing by the
method of Benjamini and Hochberg (Benjamini and Hochberg
1995) to control the FDR.

PCR analysis

To validate expression of proteins that were identified by MS, we
chose 184 genes for RT-PCR. The primers were designed with the
online tool Primer3 (Rozen and Skaletsky 2000) with an average
amplicon size of 100 bp and were purchased from Eurofins MWG.
For stage-specific cDNA, J2 stages were collected as described above

and grown to J3 and J4, respectively. Total RNA was isolated using
TRIzol (Invitrogen) according to the manufacturer’s instructions.
cDNA was produced using the Superscript III cDNA synthesis
kit (Invitrogen) for 2 h at 42°C for the reverse transcription. PCR
reactions were performed for 35 cycles of 20 sec at 95°C, 30 sec at
55°C, and 30 sec at 72°C. The reactions were subsequently sepa-
rated on a 2% TBE agarose gel, stained with ethidium bromide, and
visualized under UV light.

Transcriptome sequencing on the 454 Life Sciences (Roche)
FLX platform

Total RNA was isolated from a mixed and dauer stage culture of
P. pacificus (Ppa 312, California) using TRIzol (Invitrogen) according
to the manufacturer’s instructions. The RNA was sequenced at the
Genome Sequencing Center at Washington University, St. Louis,
MO using the 454 FLX for 454 sequencing.

Transcriptome assembly

The 454 reads were processed prior to assembly. Low-quality base
calls were removed from read ends by Lucy (Chou and Holmes
2001) using default settings. Highly repetitive sequence segments
were removed by Figaro (White et al. 2008) using default settings.
We assembled 28,599/26,092 contigs from the 350,839/394,453
remaining sequences with the EST version of PCAP.REP. These
contigs encompass >10 Mb of transcribed sequence.

Transcriptome mapping

The assembled contigs and all trimmed reads were aligned to the
genome using Exonerate (Slater and Birney 2005) with a maximal
intron size of 20 kb. In summary, we could identify 98,254 unique
acceptor and 95,210 unique donor sites. This data set was sub-
sequently used to improve the Pristionchus genome annotation.

Gene prediction

We took the 11 largest supercontigs from the Hybrid Genome As-
sembly (Sanger + 454). We predicted a new set of genes with the
current hidden Markov model (HMM) gene model plus external
evidence as given by the 454 transcriptome data (98254 Acceptor
and 95210 Donor sites). This new gene set was subsequently used
to retrain our HMM gene model (SNAPNG2).

All protein database searches for peptide identification were
carried out on this reference data set. We used the genomic hits
from Mascot and PepSplice as additional external evidence in the
next gene model training step (4431 data points/coding seg-
ments). We updated our gene model to its final version and reran
the gene predictions including all available external evidence
(MS/MS + 454).
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Phosphoproteome of Pristionchus pacificus
Provides Insights into Architecture of Signaling
Networks in Nematode Models□S

Nadine Borchert‡§, Karsten Krug§¶, Florian Gnad�**, Amit Sinha‡, Ralf J. Sommer‡‡‡,
and Boris Macek¶‡‡

Pristionchus pacificus is a nematode that is increasingly
used as a model organism in evolutionary biology. The
genome of P. pacificus differs markedly from that of C.
elegans, with a high number of orphan genes that are
restricted to P. pacificus and have no homologs in other
species. To gain insight into the architecture of signal
transduction networks in model nematodes, we per-
formed a large-scale qualitative phosphoproteome anal-
ysis of P. pacificus. Using two-stage enrichment of phos-
phopeptides from a digest of P. pacificus proteins and
their subsequent analysis via high accuracy MS, we de-
tected and localized 6,809 phosphorylation events on
2,508 proteins. We compared the detected P. pacificus
phosphoproteome to the recently published phosphopro-
teome of C. elegans. The overall numbers and functional
classes of phosphoproteins were similar between the two
organisms. Interestingly, the products of orphan genes
were significantly underrepresented among the detected
P. pacificus phosphoproteins. We defined the theoretical
kinome of P. pacificus and compared it to that of C.
elegans. While tyrosine kinases were slightly underrepre-
sented in the kinome of P. pacificus, all major classes of
kinases were present in both organisms. Application
of our kinome annotation to a recent transcriptomic study
of dauer and mixed stage populations showed that Ser/
Thr and Tyr kinases show similar expression levels in P.
pacificus but not in C. elegans. This study presents the
first systematic comparison of phosphoproteomes and
kinomes of two model nematodes and, as such, will be a
useful resource for comparative studies of their signal
transduction networks. Molecular & Cellular Proteom-
ics 11: 10.1074/mcp.M112.022103, 1631–1639, 2012.

Pristionchus pacificus is a nematode that is established as
a model in evolutionary developmental biology (2). Like

Caenorhabditis elegans, which was the first multicellular or-
ganism to have its genome completely sequenced (3), it has
several advantageous features: it is easy to cultivate in the
laboratory, it feeds on E. coli, it has a short generation time of
4 days (at 20 °C), and, because it is a self-fertilizing hermaph-
rodite, it is amenable to forward and reverse genetic tech-
niques. Its genome has recently been sequenced, revealing a
high number of predicted genes that share no sequence
similarity to genes from any other organisms (“orphan” or
“pioneer” genes) (4). Like many other nematodes, P. pacificus
exhibits phenotypic plasticity of its life cycle and is able to
quickly adapt to different environmental conditions. Under
favorable conditions, P. pacificus undergoes direct develop-
ment, but it can arrest development to form a stress resistant
dauer stage when the environmental conditions turn unfavor-
able. These examples of phenotypic plasticity have allowed
nematodes to invade many different habitats (5). P. pacificus
occupies a completely different ecological niche than C. el-
egans. It has a necromenic lifestyle in which the developmen-
tally arrested dauer larva infests a scarab beetle and resumes
development upon the beetle’s death, feeding on the micro-
organisms that decompose the beetle’s carcass (6). The es-
timated evolutionary distance between C. elegans and P.
pacificus is 250 to 420 million years, which makes them very
attractive models in evolutionary developmental biology (4).

We recently performed a comprehensive analysis of the
proteome and transcriptome of P. pacificus, with the aim of
refining its genome annotation. Retraining the gene prediction
algorithm with gene expression data estimated the number of
predicted open reading frames to 24,000. Comparison of our
data to the predicted proteome of C. elegans revealed differ-
ences in the proteome structures of the two nematodes.
Whereas the predicted proteome of P. pacificus showed a
unimodal distribution of protein sizes, the proteome of C.
elegans followed a clearly bimodal distribution. Interestingly,
this bimodal distribution seemed to be connected to functions
related to protein phosphorylation, suggesting a potential dif-
ference in protein phosphorylation between the two organ-
isms (7).

To gain further insights into the proteome of P. pacificus, we
performed a large-scale analysis of P. pacificus phosphopro-
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teome using phosphopeptide enrichment and high accuracy
mass spectrometry. Here we report the first comprehensive
phosphoproteome map of P. pacificus, measured to a depth
of almost 7,000 localized phosphorylation sites, and compare
it to the recently reported phosphoproteome of C. elegans (8).
We show that the two phosphoproteomes are of similar sizes
but differ significantly in the frequencies of phosphorylated
serine, threonine, and tyrosine residues. We define direct
orthologs between the two organisms and show that this
discrepancy is also pronounced at the ortholog level. We
show that the products of orphan genes are significantly
underrepresented among the detected P. pacificus phospho-
proteins. Finally, we define the predicted kinome of P. pacifi-
cus and show that it is slightly smaller than that of C. elegans
but contains all major classes of kinases.

MATERIALS AND METHODS

Culturing of Worms and Preparation of Protein Extracts—P. pacifi-
cus strain PS312 was grown on 10 cm NGM agar plates spotted with
2 ml E. coli OP50 solution. Plates were inoculated with between 50
and 100 worms and incubated at 25 °C. The mixed stage population
was harvested shortly after the bacterial lawn was consumed, avoid-
ing the starvation of the animals. After thorough washing with distilled
water and 0.9% sodium chloride, worms were pelleted and prepared
for proteomics measurements.1

For protein isolation, 100 �l of animals were solubilized in 300 �l
denaturation buffer (6 M urea, 2 M thiourea, 10 mM Tris pH 8.0). After
three cycles of freezing (liquid nitrogen) and thawing (37 °C), 100 �l of
glass beads were added, and the solution was vortexed for 20 min.
After centrifugation (20 min, 20.800 � g, 4 °C), the protein concen-
tration of the supernatant was determined using the Bradford assay
and further processed using the filter-aided sample preparation
(FASP)2 method (9) (see below).

Protein Digestion—The soluble protein fraction was digested as
described previously (7). Briefly, 5 mg of protein was reduced with a
final concentration of 1 mM DTT and alkylated with a final concentra-
tion of 5.5 mM iodoacetamide. After the pH was adjusted to 8.0, 1 �g
of trypsin was added per 100 �g of protein, and the mixture was
incubated overnight at 37 °C.

The insoluble protein fraction was processed with a modified FASP
protocol (9). The protein pellet was solubilized in 4% SDS, 100 mM

DTT, and 100 mM Tris pH 7.6. An aliquot of the pellet was precipitated
with chloroform/methanol and solubilized in denaturation buffer for
Bradford analysis. Based on the Bradford measurement, a protein-
SDS solution containing 5 mg of protein was diluted with urea buffer

A (8 M urea in 100 mM Tris, pH 8.5) to a final volume of 6 ml and
pipetted into the 15-ml Centriprep column YM-30 (Millipore,
Billerica, MA). After the sample had been spun for 15 min at 6,000
g, 600 �l of iodoacetamide solution (550 mM) was added, and the
sample was incubated for 1 h in the dark and then centrifuged for
15 min at 3,000 g. The protein was washed with UA three times, and
the last centrifugation step was increased to 20 min. Six ml of
ammonium bicarbonate was added, and the sample was centrifuged
for another 15 min at 3,000 g. After that, Trypsin was added at a final
concentration of 1 �g per 100 �g total protein and incubated over-
night at 37 °C. After the next centrifugation step (15 min, 3,000 g), the
peptides were collected in the flowthrough. Centrifugation was re-
peated with 3 ml water, and the flowthrough was collected for strong
cation exchange (SCX).

Phosphopeptide Enrichment—After 5 mg of digested total protein
lysate had been acidified to pH 2.7 with trifluoroacetic acid, the
sample was loaded onto an ÄKTApurifier (GE Healthcare, Little Chal-
font, UK) HPLC for SCX. The 16 resulting fractions were pooled
according to the elution profile to 10 fractions for titanium dioxide
enrichment. Five mg of TiO2 beads were resuspended in 50 �l of a 30
mg/ml 2.5 dihydrobenzoic acid, 80% acetonitrile in water solution.
After 10 min of incubation at room temperature, the TiO2 loading
solution was added to the sample and mixed for 30 min at room
temperature using an orbital shaker. The beads were precipitated with
centrifugation at 13,000 rpm for 2 min and washed with 1 ml Wash
Solution I (30% acetonitrile (ACN), 3% TFA) for 10 min in a shaker and
Wash Solution II (10) (80% ACN, 0.1% TFA) for 10 min in a shaker.
The beads were then resuspended in 50 �l Wash Solution II and
transferred to a 200 �l pipette tip plugged with one layer of Empore
C8 tip. After the beads had been washed three times with 100 �l 40%
ammonia solution (25% in water) in ACN pH 10.5, the eluate was
reduced to 5 �l in a SpeedVac.

NanoLC-MS/MS Analysis—Enriched phosphopeptide mixtures
were separated via Easy-LC nano-HPLC (Proxeon Biosystems,
Odense, DK) coupled to an LTQ-Orbitrap-XL (Thermo Fisher Scien-
tific) through a nano-LC-MS interface (Proxeon Biosystems). Chro-
matographic separation of the peptides was performed on a 15 cm
fused silica emitter with a 75 �m inner diameter (Proxeon Biosys-
tems), in-house packed with reversed-phase ReproSil-Pur C18-AQ 3
�m resin (Dr. Maisch GmbH, Ammerbuch-Entringen, DE). The peptide
mixtures were injected onto the column in HPLC solvent A (0.5%
acetic acid) at a flow rate of 500 nl/min and subsequently eluted with
a 107 min segmented gradient of 2% to 80% of HPLC solvent B (80%
acetonitrile in 0.5% acetic acid) at a flow rate of 200 nl/min.

The MS was operated in the data-dependent mode so as to auto-
matically switch between MS and MS/MS acquisition. Survey full
scan MS spectra were acquired in the mass range from m/z 300 to
2,000 in the orbitrap mass analyzer at a resolution of 60,000. An
accumulation target value of 106 charges was set, and the lock mass
option was used for internal calibration (11). The five most intense
ions were sequentially isolated and fragmented in the linear ion trap
using collision-induced dissociation (CID) at an ion accumulation
target value of 5,000 and default CID settings. Multistage activation
(at �98, �49, and �32.66 Th relative to the precursor ion) was used
to optimize fragmentation of Ser/Thr phosphopeptides. The ions al-
ready selected for MS/MS were dynamically excluded for 90 s. The
resulting peptide fragment ions were recorded in the linear ion trap. In
total, 41 LC-MS measurements were performed, corresponding to 4
days of measurement time.

Data Processing and Analysis—MS data were processed with Max-
Quant (12), version 1.0.14.3. Peak lists were generated and subse-
quently submitted to the Mascot search engine (Matrix Science,
London, UK) to query a database consisting of the latest annotation of
P. pacificus (dataset “HYBRID1 proteomics gene models”; 24,231

1 The data associated with this manuscript may be downloaded
from ProteomeCommons.org Tranche using the following hash:
pxGey/Jh9q186pz5hyUKK13Idzf8sjFVLW�ZZbNgv0IkOAH71q31oIf
K2vNyvp8wb7ItfBczkQ8O5W/llVxLtpPhpEoAAAAAAAA1Ow��.

The hash may be used to prove exactly what files were published
as part of this manuscript’s data set, and the hash may also be used
to check that the data have not changed since publication. The data
can also be viewed through the PHOSIDA database www.phosida.
com (1).

2 The abbreviations used are: CID, collision-induced dissociation;
EC, enzyme commission number; EGF, epidermal-growth factor;
FASP, filter-aided sample preparation; GO, Gene Ontology; KEGG,
Kyoto Encyclopedia of Genes and Genomes; Pfam, protein families
and domains; SCX, strong cation exchange; VPC, vulva precursor
cell.
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protein entries) (7), 4,256 E. coli proteins, 262 commonly observed
protein contaminants, and 28,749 reversed sequences. The initial
precursor mass tolerance was set to 7 ppm for Orbitrap data (full
scans); fragment ion mass tolerance was set to 0.5 Da for ion trap
data (MS/MS scans). Full trypsin specificity was required, and up to
two missed cleavages were allowed. Carbamidomethylation on cys-
teine was defined as fixed modification; methionine oxidation, protein
N-terminal acetylation, and phosphorylation on serine, threonine, and
tyrosine were defined as variable modifications. The database search
results were parsed by MaxQuant to assemble protein groups, pep-
tides, and phosphorylation sites at a false discovery rate of 1%. All
phosphorylation events having a reported localization probability of at
least 0.75 were considered as localized (assigned to a specific amino
acid). Subsequent downstream analysis of the result tables was done in
R v2.11.1 (13).

Determination of Orthologous and Homologous Relationships—
Pairwise orthologs and homologs between P. pacificus and C.
elegans were inferred using bidirectional and unidirectional BLASTP,
respectively (14, 15). We used Wormbase WS200 for C. elegans and
the latest genome annotation for P. pacificus (7) as input. Global
alignments between orthologous proteins were derived using Needle
(16, 17).

Determination of Orphan/Pioneer Proteins—Orphan proteins were
defined by two BLAST analyses. First we regarded every P. pacificus
protein having no homologue in the NCBInr database (BLASTP
E-value � 1 � 10�3) as a potential orphan. Second, we used the
information derived from the pairwise BLAST analysis of the theoret-
ical proteomes of P. pacificus and C. elegans as described above.
Orphan proteins were required to have no homologues in the NCBInr
database or in the Wormbase WS200.

Functional Annotation of the P. pacificus Proteome—Blast2GO
software was used to derive Gene Ontology (GO) (18) terms via a
BLAST search of the theoretical proteome of P. pacificus against the
nonredundant NCBI protein database (downloaded on April 29, 2010)
using default parameters. Information on specific pathways on the
basis of Kyoto Encyclopedia of Genes and Genomes (KEGG) terms
(19) was obtained from the KEGG Automatic Annotation Server (20)
using default parameters. The classification of proteins into protein
families was performed using Pfam (21). The significance E-value
threshold was gathered by the software automatically. All types of
annotation were merged and exported to an Excel sheet using R.

Functional Enrichment Analysis of the Detected Phosphopro-
teome—The frequencies of functional annotation terms assigned to
the detected phosphoproteome were tested against the correspond-
ing frequencies in the entire proteome using Fisher’s exact test (one-
sided). A minimum of five occurrences of each term was required in
order for the term to be taken into account for analysis. Derived p
values were further adjusted for multiple hypothesis testing using the
method proposed by Benjaminii and Hochberg (22).

Draft Kinome Annotation—We considered all proteins having pre-
dicted Pfam domains “Pkinase,” “Pkinase_C,” or “Pkinase_Tyr” as
potential kinases. In order to classify these kinases into kinase
groups, families, and subfamilies, we performed a BLAST search of
predicted kinase domains against all nematode-specific kinase do-
mains contained in Kinbase. BLAST hits were considered significant
if the reported E-value was below 1 � 10�20, resulting in a minimal bit
score of 90.9. For further validation, we did a second BLAST search
by querying the kinase domains contained in Kinbase against the
predicted Pfam domains in the P. pacificus proteome and checking
whether the results were consistent. All predicted Pfam domains that
met these criteria were classified according to Kinbase annotation.

Phylogenetic distances between the domains were estimated by
ClustalW and exported to Nexus format. Distances were logarith-
mized and imported into the Interactive Tree of Life online tool (23) to

produce the phylogenetic trees. The trees were annotated with kinase
groups using the classification obtained by the BLAST analysis de-
scribed above.

Secondary Protein Structure Prediction—The secondary structures
of all phosphorylated proteins detected in P. pacificus and C. elegans
were calculated using PsiPred v3.3 (24) and PSIBLAST v2.2.23. Initial
PSIBLAST searches were done against the Unriref90 database. Prior
to the search, low complexity regions were removed from that data-
base as described in the README file of the Psipred software.

Comparison with Transcriptome Data—The gene expression data
from a dauer versus mix-stage comparison in both C. elegans and P.
pacificus were obtained from Sinha et al. (25). For P. pacificus, the
gene predictions and, hence, the gene identifiers used in Ref. 25 are
different from those used in Ref. 7, although the underlying genome
assembly is the same. Thus, the mapping from a microarray probe to
a gene prediction corresponding to Ref. 7 was calculated using
stringent BLAST criteria (E-value � 1 � 10�10, 100% identity between
the 60 bp microarray probe and the target gene). Probes that
matched multiple genes were removed from the analysis, and fold-
changes were calculated using the same parameters and methods as
in Ref. 25. Pfam domain annotations of C. elegans were based on
wormpep-210. We used kinase domain annotation for P. pacificus
from supplemental Table 2. The average expression values of all the
kinase genes (expression ratio “Dauer/Mix-stage”) for all genes an-
notated with a particular kinase domain (“Pkinase” or “Pkinase_Tyr”)
were compared within species, and the significance of the difference
was assessed based on two-sample Wilcoxon tests. The number n in
Fig. 5 is the total number of genes belonging to a particular gene
family. The “average expression” is defined as log2(RedSignal *
GreenSignal) on an arbitrary scale. Hence the values can be com-
pared only within a nematode species and should not be compared
across nematodes. The P. pacificus and C. elegans fold-change and
average expression data on kinases are included in supplemental
Table 5.

RESULTS

In this study we aimed to provide the reference phospho-
proteome of the nematode model P. pacificus and compare it
to the recently published phosphoproteome of C. elegans (8).
To minimize experimental bias and enable direct comparison
between the datasets, we employed similar sample prepara-
tion, measurement, and data processing workflows as in the
phosphoproteomic study of C. elegans. Briefly, we lysed a
well-fed mixed stage P. pacificus culture by rupturing the
cuticle with freeze-thaw cycles and glass bead treatment. We
extracted the proteins from the insoluble fraction in 4% SDS
and processed them via the FASP protocol as described by
Wisniewski et al. (9). We digested the soluble protein fraction
in solution with trypsin and separately subjected both frac-
tions to two stages of phosphopeptide enrichment, consisting
of strong cation exchange and TiO2 chromatographies (26,
27). We performed LC-MS analysis on an Easy-LC (Proxeon
Biosystems) coupled to an LTQ-Orbitrap XL MS (Thermo
Fisher Scientific) and processed the data using the MaxQuant
software suite (12). The workflow employed in this study is
depicted in Fig. 1.

Detected Phosphoproteome of P. pacificus—The analysis
of the P. pacificus phosphoproteome resulted in 60,358 iden-
tified MS/MS spectra that detected 9,872 nonredundant pep-
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tide sequences with a median absolute mass deviation of 255
ppb (supplemental Fig. 1). We detected 3,158 P. pacificus
protein groups at a false discovery rate of 1%; of these, 2,508
were phosphorylated (Table I) and 1,518 were not detected in
our previous large-scale proteomics study (7). This resulted in
extension of the catalogue of P. pacificus proteins detected
by MS to 5,547 (supplemental Fig. 2). In total, we localized
6,809 phosphorylation events to a specific amino acid residue
with a median confidence level of 99.8%. The frequencies of
phosphorylated serines, threonines, and tyrosines were found
to be 87.8% (5,981 events), 11.1% (756 events), and 1.06%
(72 events), respectively. All detected phosphorylation sites
are presented in supplemental Table 1.

Functional Classes and Kinase Motifs of Detected P. pacifi-
cus Phosphoproteins—To gain insight into the functional dis-
tribution of proteins phosphorylated in P. pacificus, we first
retrieved the latest functional annotation according to GO
terms, KEGG pathways, enzyme commission numbers (ECs),
and protein families and domains (Pfam) (supplemental Table
2). We then performed enrichment analyses of the GO, KEGG,
Pfam, and EC terms of proteins detected as phosphorylated
(supplemental Table 3). The GO term analysis showed an
enrichment of functions related to protein and nucleoside

binding, transcription repressor activities, and kinase regula-
tor activities, terms commonly enriched in large phosphopro-
teome datasets. The Enzyme Class analysis showed signifi-
cant enrichment of only two classes, protein tyrosine kinases
(EC 2.7.10.0; 23 detected phosphoproteins) and protein ser-
ine kinases (EC 2.7.11.0; 35 detected phosphoproteins). This
was expected because kinases and phosphatases them-
selves are commonly regulated by phosphorylation, and many
kinases show autophosphorylation activity. In agreement with
this, the Pfam analysis showed an enrichment of protein ki-
nase domains, as well as phosphatase domains. Proteins with
domains involved in protein–protein interactions and signaling
were also overrepresented in comparison with the total gene
predictions. Among the detected domains, WD40, VWD,
Ankyrin, and PDZ domains were highly represented. More-
over, RNA binding domains such as rrm-1, helicase, and
DEAD were also overrepresented. The results of the functional
enrichment analysis are summarized in Fig. 2.

We next tested the representation of P. pacificus orphan
gene products in the phosphoproteome. In total, we detected
phosphorylation on 234 products of orphan genes (9.3% of
the detected phosphoproteome). Compared with all orphan
genes in the P. pacificus genome (9,957; 41.09% of the ge-
nome), this presented a significant underrepresentation (p �

3.64 � 10�303). However, it has to be noted that this class of
gene products showed a similar underrepresentation at the
proteome level (7), pointing to the fact that their underrepre-
sentation in the phosphoproteome results from the lack of
expression, not phosphorylation.

Next, we tested the enrichment of specific kinase target
motifs on P. pacificus phosphoproteins detected in our
dataset, as described by Zielinska et al. (8). On proteins
phosphorylated on serine, three motifs were overrepresent-
ed—CAMK2 (RXX[pS]), CK2 ([pS]XXE), and PKA (RX[pS])—
whereas on proteins phosphorylated on threonine, only the
CAMK2 motif was overrepresented. For both phosphorylated
residues there was also significant overrepresentation of pro-
line adjacent to the phosphorylation site ([pS]P and [pT]P)
(supplemental Fig. 3). No significant motifs were detected on
proteins phosphorylated on tyrosine residues, most likely be-
cause of the small size of the dataset.

Comparison of P. pacificus and C. elegans Phosphopro-
teomes—We next compared the phosphoproteome of P. pa-
cificus to the recently published phosphoproteome of C.
elegans (8), in which 6,699 phosphorylation sites were local-
ized on 2,365 proteins (Table II). The sizes of the two phos-
phoproteomes were very similar, and the enriched functional
classes of detected phosphoproteins were almost identical,
demonstrating that both nematodes likely use protein phos-
phorylation in similar biological processes. Interestingly, the
two phosphoproteomes differed in frequencies of S/T/Y phos-
phorylation events. In C. elegans, the reported pSer, pThr, and
pTyr frequencies were 80.2%, 18%, and 1.8%, whereas in P.
pacificus they were 87.8%, 11.1%, and 1.1%, respectively.

FIG. 1. Biochemical workflow used in this study. A mixed popu-
lation of P. pacificus worms was harvested, and the protein extract
was split into soluble and insoluble fractions, which were processed
further using the FASP protocol. After LysC/trypsin digestion, phos-
phopeptides were enriched by SCX and TiO2 chromatographies and
measured on an LTQ Orbitrap XL mass spectrometer.

TABLE I
Number of (phospho)proteins detected in this study (at 1% false

discovery rate (FDR))

MS data were searched against a decoy database containing P.
pacificus and E. coli protein entries.

Phosphoproteins All proteins

P. pacificus 2,508 3,158
E. coli 11 23
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The frequencies of all phosphorylated amino acids were sig-
nificantly different despite very similar overall frequencies of
these amino acids in the proteomes of P. pacificus and C.
elegans (Table II).

To gain insight into the potential origin of this discrepancy,
we investigated the frequencies of pSer, pThr, and pTyr in
orthologs shared between P. pacificus and C. elegans and
therefore likely present in their common ancestor. Based on
the bidirectional BLASTP approach, 619 phosphoproteins
from our dataset were defined as orthologs between P. pa-
cificus and C. elegans and phosphorylated in both species.
On these orthologs, 340 phosphorylation sites were deter-
mined as conserved (Fig. 3; supplemental Table 4). Interest-
ingly, the frequencies of pSer, pThr, and pTyr at the ortholog
level (90%, 9.1%, and 0.9%, respectively) resembled more
closely the frequencies measured in the phosphoproteome of
P. pacificus than those in the phosphoproteome of C. elegans.
This means that the basal phosphoproteome of P. pacificus
might resemble the phosphoproteome of the common ances-
tor of P. pacificus and C. elegans.

Whereas different frequencies of tyrosine phosphorylation
may be explained by different usages of this modification in
signal transduction (see Discussion), different frequencies of
detected serine and threonine phosphorylation are more dif-
ficult to explain, mostly because of the dual specificity of
Ser/Thr kinases. A potential reason could be different repre-
sentation of these amino acids in the unstructured protein
regions that are more accessible to protein kinases. To test

FIG. 2. Functional enrichment analysis of the detected P. pacificus phosphoproteome. a, enrichment of Pfam terms; b, enrichment of
GO terms (molecular function).

TABLE II
Numbers and frequencies of phosphorylation sites localized on serine, threonine, and tyrosine in P. pacificus and C. elegans

To test whether the frequencies of pS, pT, and pY were significantly different between the two nematodes, we calculated p values using a
two-sided binomial test.

Total pS pT pY

Wormbase200 23,973 proteins 7.81% 5.85% 2.75%
Ppa database 24,231 proteins 8.12% 5.89% 3.13%
C. elegans (Zielinska et al. (8)) 6,699 (2,365 proteins) 5,372 (80.19%) 1,207 (18.02%) 120 (1.79%)
P. pacificus (this study) 6,809 (2,401 proteins) 5,981 (87.84%) 756 (11.1%) 72 (1.06%)
Binomial p value p � 2.2 � 10�16 p � 2.2 � 10�16 p � 1.18 � 10�6

FIG. 3. Evolutionary conserved phosphorylated residues be-
tween P. pacificus and C. elegans. Venn diagram depicting the
overlap of conserved phosphorylation sites on direct orthologs found
to be phosphorylated in the phosphoproteome datasets.
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this hypothesis, we calculated the frequencies of all serine,
threonine, and tyrosine residues in coiled coils and in helical
and strand regions of proteins from detected phosphopro-
teomes of P. pacificus and C. elegans and compared them to
detected phosphorylation sites (supplemental Fig. 4). As ex-
pected, this analysis did not reveal any significant differences
in the frequencies of serine, threonine, and tyrosine in the two
organisms, demonstrating that different accessibility is not
the reason for the observed differences in frequencies of
phosphorylated amino acids.

Predicted Kinome of P. pacificus and Its Comparison with
C. elegans—We next compared the predicted kinomes of
several sequenced model nematodes. To define the predicted
kinomes of P. pacificus, we used Pfam annotation and con-
sidered all proteins containing a “P-kinase” domain as poten-
tial kinases (see Methods). After collapsing all C. elegans
kinase isoforms, we compared the predicted kinome to that of
P. pacificus. The kinome of P. pacificus contained 368 kinases
(supplemental Table 2) and was 11% smaller than that of C.
elegans, which contained 413 kinases (Table III); interestingly,
the number of predicted tyrosine kinases was 20% lower in P.
pacificus (94 kinases) and therefore was underrepresented
relative to C. elegans (117 kinases). Of the 368 predicted
kinases in P. pacificus, 77 were detected as phosphorylated in
our study. Of those, 61 had direct orthologs and 30 were
detected as phosphorylated in C. elegans (8). Interestingly,
two of the three (66.6%) conserved pTyr residues were lo-
cated on kinases (cdk-1, mbk-1), one of the 31 (3.2%) con-
served pThr residues was located on a kinase (sek-1), and 12
of 306 (3.9%) conserved pSer residues were located on ki-
nases (unc-82, unc-22, pkc-1, grk-1, ZK524.4, gcy-28,
ZC581.9, B0495.2).

To classify P. pacificus kinases into groups, families, and
subfamilies, we performed a bidirectional BLAST analysis of
predicted kinase domains against C. elegans kinase domains
contained in Kinbase. The BLAST analysis resulted in 282
highly confident hits, indicating that the catalytic domains of
predicted kinases appeared to be conserved between the two
nematodes. All eight major protein kinase groups present in
C. elegans were also present in P. pacificus (Fig. 4; supple-
mental Fig. 5).

Expression of Different Kinase Classes in C. elegans and P.
pacificus—To assess the expression of different kinase
classes in C. elegans and P. pacificus, we analyzed a recently

published transcriptome dataset that addresses global
changes in gene expression in the dauer and mixed popula-
tions of these two nematodes (25). Applying our Pfam-based
kinome annotation, we extracted expression data for 404
kinases in C. elegans (288 Ser/Thr and 116 Tyr kinases) and
316 kinases in P. pacificus (239 Ser/Thr and 77 Tyr kinases).
As expected, the transcriptome analysis showed good cov-
erage of the kinome in both organisms, albeit slightly higher in
C. elegans (404/413, 98%) than in P. pacificus (316/368,
86%). Interestingly, in C. elegans, the average expression of
“Pkinase_Tyr” genes was significantly higher than the average
expression of “Pkinase” genes in the dauer population. How-
ever, in P. pacificus, all kinase genes were expressed at a
significantly higher level in the dauer population, and there
was no difference in average expression between the two
kinase categories, pointing to the fact that tyrosine kinases
are expressed at levels similar to those of Ser/Thr kinases
(Fig. 5). These data reveal that both nematodes express all
classes of kinases and point to their potentially different usage
in the dauer stage of the life cycle.

DISCUSSION

In this study, we have reported the first global phosphopro-
teomic dataset of the mixed stage population of the P. pacifi-
cus nematode. In order to increase the number of identified
phosphorylation sites, we performed three biological repli-
cates, two with the soluble and one with the insoluble protein
fraction. In this way, we made all cellular compartments ac-
cessible to protein analysis. By using mixed stages, we aimed
to get an in-depth catalog of phosphorylation sites of P.
pacificus and compare it to the previously reported phospho-
proteome of C. elegans, analyzed under similar conditions.

Although the two phosphoproteomes were very similar in
terms of size, classes of phosphorylated proteins, and over-
represented kinase motifs, they were different in the extent of
serine, threonine, and tyrosine phosphorylation. Interestingly,
this difference might reflect the observed alterations in signal
transduction during postembryonic development of these two
species. Work over the past decade has compared signaling
networks during vulva development and dauer formation be-
tween P. pacificus and C. elegans and identified substantial
differences (28). In C. elegans, three vulva precursor cells
(VPCs) are induced to form vulval tissue by a signal from the
gonadal anchor cell. This signal is a secreted epidermal-
growth factor (EGF)-type factor that is transmitted within the
VPCs by EGFR-RAS-MAP kinase signaling and finally results
in the initiation of cell division. A series of phosphorylation
events by LIN-45/RAF, MEK-2/MAP kinase, and MPK-1/MAP
kinase is at the center of C. elegans vulva induction (29). In P.
pacificus, in contrast, vulva formation is regulated by a com-
pletely different regulatory mechanism (for a review, see (30)).
While the same VPCs form vulval tissue, their induction re-
quires regulatory input from Wnt signaling rather than EGF-
MAP kinase signaling (31). This involves an unusual regulatory

TABLE III
Number of predicted protein kinases in different nematodes according

to Pfam annotations of protein kinase domains

Domains Proteins

C. elegans 441 (119 pTyr) 413 (117 pTyr)
P. Pacificus 408 (102 pTyr) 368 (94 pTyr)
B. malayi 406 (89 pTyr) 378 (83 pTyr)
M. incognita 392 (57 pTyr) 361 (53 pTyr)

Phosphoproteome of P. pacificus

1636 Molecular & Cellular Proteomics 11.12

http://www.mcponline.org/cgi/content/full/M112.022103/DC1
http://www.mcponline.org/cgi/content/full/M112.022103/DC1
http://www.mcponline.org/cgi/content/full/M112.022103/DC1
http://www.mcponline.org/cgi/content/full/M112.022103/DC1


linkage of Wnt-type ligands and Frizzled-type receptors, as
well as novel protein-interaction domains in LIN-18/Ryk/De-
railed-type co-receptor (28). Thus, vulva induction in C. el-
egans is regulated by a kinase pathway involving a high extent
of tyrosine phosphorylation, whereas the same process in P.
pacificus depends much less on tyrosine phosphorylation. It
has to be noted, however, that P. pacificus contains 1:1
orthologs for all of the EGF/Ras pathway genes/proteins
known from C. elegans. Interestingly, Ppa-MPK-1 was the
only kinase of the EGF/RAS pathway shown to be phosphor-
ylated in our dataset. The functional significance of this find-
ing, if any, has yet to be identified.

Similarly, work on dauer formation revealed potential differ-
ences in signaling activity during development. In C. elegans,

the formation of dauer larvae, an arrested alternative life stage
that facilitates the survival of harsh environmental conditions,
involves insulin and TGF-� signaling activity that is coupled to
transcriptional activity of the nuclear hormone receptor
DAF-12 and the FOXO-transcription factor DAF-16 (5). In P.
pacificus, both transcription factors have similar roles during
dauer regulation, as indicated by the phenotype of mutations
in the corresponding genes, whereas there is no report that
would suggest similar roles of insulin and TGF-� signaling (6).
However, as indicated above for vulva development, these
differences in signaling activity in these two nematodes are
not reflected in the copy number of genes encoding signaling
components in the respective genomes. Thus, differences in
phosphorylation patterns as revealed in our study can occur

FIG. 4. Phylogentic tree of the predicted P. pacificus kinome. The tree shows the phylogentic relationships of predicted kinase domains
and their classification into kinase groups according to the C. elegans kinome. Phylogenetic distances are based on multiple sequence
alignments of predicted kinase domains. The classification of domains into kinase groups is shown by the different colors of the branches. Red
rectangles at the outer edge of the circle indicate kinases that are detected as phosphorylated; green rectangles indicate kinases that are
detected as nonphosphorylated in our study.
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in the absence of major changes in the signaling pathways
that act during development.

The comparative analysis of the predicted kinomes of P.
pacificus and C. elegans indicates that all major protein kinase
groups are conserved between these two nematodes (sup-
plemental Table 2), and recent transcriptome analysis sug-
gests that all kinase classes are expressed (and presumably
active) in both nematodes during the dauer stage of the life
cycle (25). When compared with other protein classes, the
kinome shows a relatively high level of conservation and low
copy number variations. For example, many of the detoxifi-
cation enzymes, such as cytochrome P450 proteins, show a
more than 3-fold difference between the P. pacificus and C.
elegans proteomes with 197 and 67 protein predictions, re-
spectively (4). We speculate that the difference in cytochrome
P450 enzymes reflects the adaptation to the different environ-
ments in which these nematodes are found. In contrast, the
overall similarity of the two kinomes represents the conserved
molecular and cellular processes, which evolved largely inde-
pendent of ecological alterations. This evolutionary pattern
becomes even stronger when data available for additional
nematodes are considered: the numbers of predicted protein
kinases of P. pacificus, C. elegans, the human parasite B.
malayi, and the plant parasite M. incognita are surprisingly
similar (Table III). Thus, the kinome represents a stable part of
the nematode proteome, and most likely the analysis of a
small number of selected model organisms will provide com-
prehensive insight into processes of phosphorylation.
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Supplementary Figure 1. Technical details of the detected phosphoryla�on events. A) distribu�on of measured mass  
                                              devia�ons of all iden�fied phosphopep�des; B) distribu�on of localiza�on probabili�es of all  
                                              phosphoryla�on events; C) distribu�ons of pep�de PEP values of all iden�fied phosphopep�des 

A) B) 

C) 

In total: 5547 detected P. paci�icus proteins 

Phosphoproteome (this dataset) Proteogenomics (Borchert et al., Ref. 12) 

1640 1518 2389 

Supplementary Figure 2.  Addi�onal P. paci�icus protein iden�fica�ons derived from the phosphoproteome dataset  
                                               (compared to Borchert et al.). 



Supplementary Figure 3. Overrepresented kinase mo�fs in P. pacificus phosphoproteome.  
 

A) 

B) 

C) 

Supplementary Figure 4.  Calculated frequencies of all serine, threonine and tyrosine residues in A) coiled coils; B) helical;  
and C) strand regions of proteins from detected phosphoproteomes of P. pacificus and C. elegans (le� panel) and comparison  
with frequencies detected phosphoryla�on sites in the same protein regions (right panel) 

Phosphoproteome (all S,T,Y) Phosphoproteome (phosphorylated S,T,Y) 

Phosphoproteome (all S,T,Y) Phosphoproteome (phosphorylated S,T,Y) 

Phosphoproteome (all S,T,Y) Phosphoproteome (phosphorylated S,T,Y) 



C. elegans 

Supplementary Figure 5. Annotated kinome of C. elegans. The kinome tree is based on kinase domains predicted using  
                                              Pfam. The annota�on of kinases is based on kinbase (h�p://kinase.com/). 

Supplementary Figure 6.  Expression of different protein kinase classes in dauer vs. mixed stage of C. elegans 
   (cel) and P. paci�icus (ppa). Data are derived from Sinha et.al. A) changes in expression
   of all annotated kinases from the dataset; B) Changes in expression of significantly
   regulated kinases from the dataset; C) Changes in average expression of kinases. 
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