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Abstract

The microbial secondary metabolism is a rich source of products with antibacterial,
antifungal, anticancer and immunosuppressant activities that have found their way
into clinical applications. After a golden area of natural product discovery lasting
until the late 1970s, the rate of new discoveries turning into drugs suitable for clin-
ical use has dropped and many pharmaceutical companies have abandoned natural
product research.
The late 1990s saw the rise of a new technological advance that laid the foundation
to a revival of natural products research using improved and more directed method-
ologies. High-throughput full genome sequencing allows to identify the potential
biosynthetic capabilities of a producer organism by genomemining for natural prod-
ucts. The central part of this new approach is to not only identify clusters but also to
predict the product of the biosynthesis.
antiSMASH, a software pipeline to predict a large number of different secondaryme-
tabolite gene clusters fromgenomicdatawasdesignedand implemented. antiSMASH
is a tool that takes genomic DNA input sequences and generates an interactive HTML
output page containing the predictions for 24 different secondarymetabolite classes.
Predictions include the polyketide backbone structure for polyketide synthase (PKS)
products, the polypeptide structure for nonribosomal peptitde synthetase (NRPS)
products and the molecular mass and post-translational modiϐication to lanthipep-
tide core peptides. A public web service for running antiSMASH is available under
http://antismash.secondarymetabolites.org/. Alternatively, antiSMASHcan
also be downloaded and run locally. In order to provide high-quality analyses for the
antiSMASH pipeline, a machine-learning based prediction algorithm capable of pre-
dicting the composition of NRPS products was updated and improved in predictive
power. Additionally, a novel prediction algorithm for the products of lanthipeptide
synthases was developed and integrated into the antiSMASH prediction pipeline.
After a proof-of-concept implementation, a large-scale refactoring project was un-
dertaken to ensure that good software engineering practice was observed in the an-
tiSMASH code base. The refactoring ensures the long-term sustainability, stability
and accessibility of the antiSMASH codebase.
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Zusammenfassung

Der mikrobielle Sekundärmetabolismus ist eine reichhaltige Quelle von Produkten
mit antibakterieller, antimykotischer und immunsuppressiver Wirkung, von denen
viele den Weg zur klinischen Anwendung gefunden haben. Nach einigen erfolgrei-
chen Jahrzehnten der Naturstoffforschung nimmt die Rate der klinisch relevanten
Neuentdeckungen seit den späten 1970ern stetig ab, viele Pharmakonzerne haben
die Naturstoffforschung gänzlich aufgegeben.
In den späten 1990ern wurden einige technologische Fortschritte gemacht, die den
Grundstein legten für eine Renaissance der Naturstoffforschung mit verbesserten
und zielgerichteteren Methoden. Hochdurchsatzsequenzierungen von Gesamtgeno-
men erlauben es diemöglichen biosynthetischen Fähigkeiten von Poduzentenorgan-
ismen mittels genombasierter Naturstoffsuche abzuschätzen. Das Hauptziel der ge-
nombasierten Naturstoffsuche ist es, Gencluster nicht nur zu identiϐizieren sondern
auch die biosynthetischen Produkte vorherzusagen.
antiSMASH, eine Softwarepipeline zur Vorhersage einer großen Zahl an unterschied-
lichen Sekundärmetabolit-Genclustern aus Genomdaten, wurde entworfen und um-
gesetzt. antiSMASH ist ein Werkzeug das genomische DNS-Sequenzen als Eingabe
akzeptiert und daraus eine interaktive HTML-Seite mit den Vorhersagen über 24
unterschiedliche Sekundärmetabolitklassen generiert. Zu den Vorhersagen gehören
das Poliketid-Rückgrat von PKS-Produkten, das Polypeptid-Rückgrat von NRPS-Pro-
dukten und die molare Masse und posttranslationale Veränderungen an Lanthipep-
tid-Kernpeptiden. Ein öffentlich zugänglicher Webdienst mit antiSMASH ist unter
http://antismash.secondarymetabolites.org/verfügbar. Alternativ kannan-
tiSMASH auch heruntergeladen und lokal ausgeführt werden. Um für die Pipeline
qualitativ hochwertige Vorhersagen treffen zu können, wurde ein auf maschinellem
Lernen basierender Algorithmus für die Vorhersage vo NRPS-Produkten aktualisiert
und in seiner Vorhersageleistung verbessert. Zusätzlich wurde ein neuartiger Algo-
rithmus für die Vorhersage von Produkten der Lanthipeptid-Synthetasen etwickelt
und in die antiSMASH-Pipeline integriert.
Nach einer initialen Machbarkeitsstudie wurde ein großangelegtes Refactoring un-
ternommen, um sicherzustellen dass die Prinzipien guter Softwareingenieurpraxis
im Quelltext von antiSMASH beachtet wurden. Dieses Refactoring stellt die langfris-
tige Zukunftstauglichkeit, Stabilität und Benutzbarkeit von antiSMASH sicher.
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ABSTRACT

Bacterial and fungal secondary metabolism is a rich
source of novel bioactive compounds with potential
pharmaceutical applications as antibiotics, anti-
tumor drugs or cholesterol-lowering drugs. To find
new drug candidates, microbiologists are increas-
ingly relying on sequencing genomes of a wide var-
iety of microbes. However, rapidly and reliably
pinpointing all the potential gene clusters for sec-
ondary metabolites in dozens of newly sequenced
genomes has been extremely challenging, due to
their biochemical heterogeneity, the presence of
unknown enzymes and the dispersed nature of the
necessary specialized bioinformatics tools and
resources. Here, we present antiSMASH (antibiotics
& Secondary Metabolite Analysis Shell), the first
comprehensive pipeline capable of identifying bio-
synthetic loci covering the whole range of known sec-
ondary metabolite compound classes (polyketides,
non-ribosomal peptides, terpenes, aminoglycosides,
aminocoumarins, indolocarbazoles, lantibiotics, bac-
teriocins, nucleosides, beta-lactams, butyrolactones,
siderophores, melanins and others). It aligns the
identified regions at the gene cluster level to their
nearest relatives from a database containing all

other known gene clusters, and integrates or
cross-links all previously available secondary-
metabolite specific gene analysis methods in one
interactive view. antiSMASH is available at http://
antismash.secondarymetabolites.org.

INTRODUCTION

Microbial secondary metabolites offer great potential for
the development of new medicines. They belong to a wide
variety of chemical classes, and many of them have
cholesterol-lowering, anti-tumor or antibiotic activities.
The rapid decrease in the cost of genome sequencing
now allows the discovery of hundreds or even thousands
of gene clusters encoding the biosynthetic machinery for
these compounds (1). However, laboratory research can-
not keep pace with the speed of genomic discovery, as the
experimental characterization of each gene cluster is still
very laborious. Therefore, effective in silico identifica-
tion of the most promising targets within genomes is es-
sential for the successful mining of the genomic riches
available. Manual annotation is very labor-intensive and
time-consuming, leading to incomplete annotations.
Automatic annotation of secondary metabolite clusters
may enhance accuracy as well as completeness of the an-
notation. A few in silicomethods have been published thus
far to automate the analysis of secondary metabolism in

*To whom correspondence should be addressed. Tel: +31503632143; Fax: +31503632154; Email: e.takano@rug.nl
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bacterial genomes. The first of these was ClustScan (2),
which allows the uploading of genomic data to a server
for the semi-automatic detection and annotation of poly-
ketide synthase (PKS) and non-ribosomal peptide synthe-
tase (NRPS) gene clusters. Additionally, Anand et al. (3)
recently published the SBSPKS toolbox for structure-
based PKS analysis. Li et al. (4) constructed the
NP.searcher web server, which is specialized in predict-
ing the possible chemical structures resulting from a
subset of gene cluster types. Unfortunately, all these
tools are largely limited to the analysis of the core genes
for type I polyketide (PK) and non-ribosomal peptide
(NRP) biosynthesis. Thus far, accessory genes as well as
core genes for many other secondary metabolite scaffolds
have largely been neglected in computational approaches,
even though some very good but also very specific tools
are available for bacteriocin (5) and type III PKS (6) de-
tection. For fungal genomes, the SMURF tool (7) has
recently become available, which is capable of generating
a somewhat more comprehensive list of secondary metab-
olite biosynthesis gene clusters, but this tool offers little
further detailed analysis. CLUSEAN (8) currently offers
the most comprehensive analysis by including a full
genome annotation, but it is difficult to operate for the
non-specialist and requires intensive manual analysis of
the output.
Here, we present a software pipeline for secondary me-

tabolite gene cluster identification, annotation and analysis
which is comprehensive, rapid and user-friendly (Figure 1).
It can be run either from a web server (http://antismash
.secondarymetabolites.org/) or as a stand-alone version on
a standard desktop computer. It can rapidly detect all
known classes of secondary metabolite biosynthesis gene
clusters, provide detailed NRPS/PKS functional annotation,

and predict the chemical structure of NRPS/PKS products
with higher accuracy than existing methods. Additionally,
by constructing a database of all currently known second-
ary metabolite biosynthesis gene clusters throughout the
tree of life, we were able to equip the tool with a compara-
tive gene cluster analysis module. In this module, evolu-
tionary similarities between a queried gene cluster and
other gene clusters are detected and visualized in order
to be able to rapidly infer functions of genes and operons
based on homology. Finally, from the genes within this
database of gene clusters, we constructed secondary me-
tabolism Clusters of Orthologous Groups (smCOGs).
These are used in yet another module to predict and cat-
egorize the functions of accessory genes, and to calculate
phylogenetic trees for each gene with a seed alignment of
its smCOG protein family. Our benchmark results show
that our method reliably detects gene clusters of a wide
variety of biosynthetic types, and that it is able to signifi-
cantly enhance manual genome annotations of secondary
metabolite biosynthesis.

METHODS AND IMPLEMENTATION

File and options input

The input front end of the antiSMASH web server allows
uploading of sequence files of a variety of types (FASTA,
GBK, or EMBL files). Alternatively, a GenBank/RefSeq
accession number can be provided, which is used by the
web server to automatically obtain the associated file from
GenBank. If the user chooses to use a FASTA input file,
gene prediction is performed by Glimmer3 (9)—using its
long-orfs tool to construct a gene model based on the
input sequence itself—or by GlimmerHMM (10) when

Figure 1. Outline of the pipeline for genomic analysis of secondary metabolites. Genes are extracted or predicted from the input nucleotide sequence,
and gene clusters are identified with signature gene pHMMs. Subsequently, several downstream analyses can be performed: NRPS/PKS domain
analysis and annotation, prediction of the core chemical structure of PKSs and NRPSs, ClusterBlast gene cluster comparative analysis, and smCOG
secondary metabolism protein family analysis. The output is visualized in an interactive XHTML web page, and all details are stored in an EMBL
file for additional analysis and editing in a genome browser. A Microsoft Excel file with an overview of all detected gene clusters and their details is
also generated.

W340 Nucleic Acids Research, 2011, Vol. 39, Web Server issue



eukaryotic input data is submitted. Before starting the
antiSMASH analysis run, the user can select the gene clus-
ter types he or she wants to search for. Additionally, he
can select which of the downstream analysis modules to
include. For those users who, e.g. work with proprietary
data, a stand-alone version with a Java graphical user
interface is available with the same input options as the
web version. Finally, expert users may choose to directly
run the Python-based pipeline program from the command
line in order to batch analyze a larger number of inputs.

Detection of secondary metabolite biosynthesis gene
clusters

Using the HMMer3 tool (http://hmmer.janelia.org/), the
amino acid sequence translations of all protein-encoding
genes are searched with profile Hidden Markov Models
(pHMMs) based on multiple sequence alignments of ex-
perimentally characterized signature proteins or protein
domains (proteins, protein subtypes or protein domains
which are each exclusively present in a certain type of
biosynthetic gene clusters). Using both existing pHMMs
(5,11–13) and new pHMMs from seed alignments, we con-
structed a library of models specific for type I, II and III PK,
NRP, terpene, lantibiotic, bacteriocin, aminoglycoside/
aminocyclitol, beta-lactam, aminocoumarin, indole, but-
yrolactone, ectoine, siderophore, phosphoglycolipid, mel-
anin and aminoglycoside biosynthesis signature genes.
Additionally, we constructed a number of pHMMs
specific for false positives, such as the different types of
fatty acid synthases which show homology to PKSs. The
final detection stage operates a filtering logic of negative
and positive pHMMs and their cut-offs. The logic is based
on knowledge of the minimal core components of each
gene cluster type taken from the scientific literature. The
cut-offs were determined by manual studies of the pHMM
results when run against the NCBI non-redundant (nr)
protein sequence database (ftp://ftp.ncbi.nlm.nih.gov/
blast/db). All technical details on the pHMM library
and the detection rules are available in Supplementary
Tables S1 and S2, respectively.

Gene clusters are defined by locating clusters of signa-
ture gene pHMM hits spaced within <10 kb mutual dis-
tance. To include flanking accessory genes, gene clusters
are extended by 5, 10 or 20 kb on each side of the last sig-
nature gene pHMM hit, depending on the gene cluster
type detected. As a consequence of this greedy method-
ology, gene clusters that are spaced very closely together
may be merged into ‘superclusters’. These gene clusters are
indicated in the output as ‘hybrid clusters’; they may either
represent a single gene cluster which produces a hybrid
compound that combines two or more chemical scaffold
types, or they may represent two separate gene clusters
which just happen to be spaced very closely together.

NRPS/PKS domain architecture analysis

NRPS/PKS domain architectures are analyzed (Figure 2)
using another pHMM library comprising existing models
(8,11–15) as well as newly constructed models specific for
NRPS/PKS protein domains and functional/phylogenetic
subgroups of these domains (Supplementary Table S3).

Conserved motifs within key PKS and NRPS domains
are also detected using the pHMMs described earlier in
the CLUSEAN package (8), and are written to the
detailed downloadable EMBL output. PKS/NRPS gene
names are annotated according to the domains and
domain subtypes that the genes contain (e.g. ‘hybrid
NRPS-PKS’, ‘enediyne PKS’, ‘glycopeptide NRPS’,
‘trans-AT PKS’, etc.).

Substrate specificity, stereochemistry and final structure
predictions

Substrate specificity prediction of PKS and NRPS
modules, based on the active sites of their respective
acyltransferase (AT) and adenylation (A) domains, is per-
formed by various available methods. PKS AT domain
specificities are predicted using a 24 amino acid signature
sequence of the active site (16), as well as with pHMMs
based on the method of Minowa et al. (17), which is also
used to predict co-enzyme A ligase domain specificities.
NRPS A domain specificities are predicted using both
the signature sequence method and the support-vector
machines-based method of NRPSPredictor2 (18,19), and
using the method of Minowa et al. (17). Finally, all pre-
dictions are integrated into a consensus prediction by a
majority vote. Ketoreductase domain-based stereochem-
istry predictions for PKSs (2) are performed as well. An
estimate of the biosynthetic order of PKS/NRPS modules
is predicted based on PKS docking domain sequence
residue matching [for type I modular PKSs, (3)] or
assumed colinearity, and a final predicted core chemical
structure is generated as a SMILES string (20), i.e. a
unique text description of the chemical structure, and
visualized in a picture file (Figure 2). To increase the reli-
ability of the core structure prediction, monomers for
which there was no consensus in the predictions are rep-
resented as generic amino acids or ketides with unspecified
R-groups.

Secondary metabolite clusters of orthologous groups

In order to rapidly annotate the accessory genes surround-
ing the detected core signature genes in the various types
of secondary metabolite biosynthesis gene clusters, we
constructed a database of all gene clusters contained in
the latest NCBI nt database (15 February 2011). To do
so, pHMMs described above were used to detect all sec-
ondary metabolite biosynthesis gene cluster signature
genes in the nr database. The accession numbers of all
hits meeting the described cut-offs were extracted and
used to download the corresponding GenPept files. If
the taxonomy identifier included ‘bacteria’ or ‘fungi’, the
nucleotide source accession number was extracted. The
corresponding nucleotide GenBank files were then down-
loaded as well, and cross-checked for presence of the
queried protein accession number. For each nucleotide
GenBank file, gene clusters were detected as described
above. Amino acid sequences of all genes contained within
the gene clusters were written to a FASTA file with headers
containing key information, and a summary of all detected
gene clusters (nucleotide accession, nucleotide description,
cluster number, cluster type, protein accession numbers)

Nucleic Acids Research, 2011, Vol. 39, Web Server issue W341



was written to a text file. To construct the smCOGs, clus-
tering of all gene cluster proteins was performed using
OrthoMCL (21), and consensus annotations were manu-
ally assigned based on the frequencies of the five most
prevalent annotations of each smCOG in GenBank. For
each smCOG, a seed alignment was created from 100
randomly picked sequences using MUSCLE 3.5 (22),
and a pHMM of each smCOG was generated based on
the conserved core of each alignment (Supplementary
Figure S1). Within the antiSMASH software pipeline,
the smCOG pHMMs are used for functional annotation
of all accessory genes within the gene clusters. After as-
signment of an smCOG to a gene—based on the highest-
scoring pHMM on its sequence above a certain e-value
threshold—the predicted protein sequence is aligned to
the smCOG seed alignment, and a rough neighbor-joining
phylogenetic tree is calculated using FastTree 2 (23)
and visualized with TreeGraph 2 (24) (Supplementary
Figure S1).

ClusterBlast comparative gene cluster analysis

Secondary metabolite biosynthesis gene clusters are highly
modular, and their genes are transferred frequently from
one gene cluster to another during evolution (25,26).
Therefore, when trying to obtain a functional understand-
ing of a gene cluster, it is highly beneficial to be able to
compare it with (parts of) other gene clusters which show
similarity to it and which may have been characterized
experimentally. In order to facilitate this, we applied our
annotated database of gene clusters to link up protein se-
quences with their parent gene clusters and create a com-
parison tool—based on the most recent BLAST+

implementation (27)—which ranks gene clusters by simi-
larity to a queried gene cluster. Clusters are sorted first
based on an empirical similarity score S=h+H+s+
S+B, in which h is the number of query genes with a
significant hit, H is the number of core query genes with
a significant hit, s is the number of gene pairs with

Figure 2. Interactive XHTML visualization of results. The numbers below the banner represent the gene clusters that were detected, the type of
which is shown to the left of them at mouse-over. Once a gene cluster has been selected, the ‘Gene cluster description’ tab will display an SVG image
with all genes within the approximate gene cluster, with the detected signature genes displayed in red. Locus tags appear on mouse-over, and on
clicking a gene a small panel pops up with annotation information and cross-links to other web services. If PKS/NRPS proteins are encoded in the
gene cluster, their domain annotations are given in the ‘PKS/NRPS domain annotation’ tab. More detailed domain annotation information and
cross-links are provided on mouse-over. In the ‘Predicted core structure’ tab, a prediction of the core chemical structure is given for PKS or NRPS
gene clusters based on the predictions displayed below it. All tabs contain a wide range of links to pop-ups which further detail the prediction
information.

W342 Nucleic Acids Research, 2011, Vol. 39, Web Server issue



conserved synteny, S is the number of gene pairs with
conserved synteny involving a core gene, and B is a core
gene bonus (three points given when at least one core gene
has a hit in the subject cluster). If the similarity scores are
equal, the hits are subsequently ranked based on the cu-
mulative BlastP bit scores between the gene clusters. This
feature enables a rapid assessment of the comparative
genomics for each annotated cluster (Figure 3).

Genome-wide BLAST and Pfam analysis and prediction
of potential unknown secondary metabolite biosynthesis
gene cluster types

To facilitate further thorough manual genome analysis,
antiSMASH has also been linked up to the whole-genome
BLAST and Pfam analysis modules from the previously
published CLUSEAN framework (8). The CLUSEAN
results are integrated into an EMBL output file.
Furthermore, as unknown biosynthetic gene cluster types
are likely to exist which may be missed by the antiSMASH
gene cluster detection module, the Pfam results are
also used to predict genomic regions with a high probabil-
ity of constituting secondary metabolite biosynthesis

gene clusters in a more generalized fashion than the sig-
nature genes pHMMs method. For this, the genome
sequence is converted to a string of predicted Pfam
domains which is fed to a hidden Markov model
(P. Cimermancic et al., manuscript in preparation)
with transitions between a gene cluster state and a
rest-of-the-genome state. This model was trained on
Pfam domain frequencies from a set of 473 cloned gene
clusters (gene cluster state) and from the set of �1100
genomes currently in the JGI IMG database
(rest-of-the-genome state). The result of this analysis is
visualized in a PNG graph.

Output and visualization

All pipeline analysis results are visualized in a user-
friendly interactive XHTML page (Figure 2), which can
be used to browse through the different gene clusters. For
PKS and NRPS gene clusters, the predicted core chemical
structures are shown as images. Gene cluster maps are
drawn with scalable vector graphics (SVGs), to which
interactive on-click and mouse-over functions are added
through JavaScript to provide annotation information,

Figure 3. Example of ClusterBlast alignment of gene clusters homologous to the query gene cluster. In this case, the ten best hits to the
calcium-dependent antibiotic NRPS gene cluster from Streptomyces coelicolor A3(2) are displayed. Homologous genes (BLAST e-value< 1E-05;
30% minimal sequence identity; shortest BLAST alignment covers over >25% of the sequence) are given the same colors. The ‘select gene cluster
alignment’ drop-down menu provides links to one-by-one gene cluster alignments to each gene cluster hit. In the one-by-one gene cluster alignments,
PubMed and/or PubChem links are provided for gene clusters associated with a known compound.
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pipeline result scores, and BLAST hyperlinks. Detected
signature genes on which the gene cluster identification is
based are shown in a distinct color. ClusterBlast results
are displayed in a similar way, as aligned gene cluster
maps in which genes with mutual BLAST hits are given
identical colors. Additionally, available at the bottom right
of the page, fully annotated EMBL output files provide
the user with the additional possibility to browse their
genome in a genome browser such as Artemis (28).

RESULTS

Compared to previous software, the pipeline described
here is uniquely comprehensive: it integrates all previously
published analysis types into one tool and adds valuable
novel functionalities (Table 1).
In order to measure the accuracy of the gene cluster pre-

dictions, we performed two independent benchmark evalu-
ations of the method. First, we collected the sequences of
cloned gene clusters of known compounds of biosynthetic
types by searching both the GenBank/RefSeq databases
and the scientific literature with a range of different key-
words. From the resulting set of 484 cloned gene cluster
GenBank files, 473 (97.7%) were correctly identified by
antiSMASH, and 468 (96.7%) were given exactly the same
annotation by antiSMASH as by the articles describ-
ing their experimental characterization (Figure 4 and
Supplementary Table S4). In order to test for false posi-
tives as well, we also benchmarked the method on five
well-annotated genomes from different taxonomic groups.
Besides genomes of three different actinomycetes (the or-
ganisms on which the tool is likely to be used most often)
these included a Proteobacterium (Pseudomonas fluorescens
Pf-5) and a fungus (Aspergillus fumigatus Af293). In
the five genomes, 97.3% of all 111 annotated gene
clusters were detected by antiSMASH (Figure 5 and
Supplementary Table S5). Under closer scrutiny, two of
the three gene clusters that were missed by antiSMASH
appeared to lack a complete set of genes associated with
biosynthesis of a known chemical scaffold. More interest-
ingly, 35 additional gene clusters were detected (31.5%)
which had been missed during initial genome annotation
and which after close inspection all appeared to have a
high probability of being actual biosynthetic gene clusters.

The cluster types that appeared to be frequently missed
during the annotation of these genomes appeared to be
butyrolactones (eight gene clusters missed), terpenes
(seven gene clusters missed), NRPSs/PKSs (six gene clus-
ters missed) and lantibiotics (five gene clusters missed),
which suggests that the computational approach used
can yield improvements even in finding gene clusters of
common biosynthetic types.

We also compared the performance of antiSMASH
with other existing tools. No similarly comprehensive tools
are available, but NP.searcher and SMURF each offer
automated gene cluster detection for a small subset of
the cluster types detected by antiSMASH (NP.searcher
detects bacterial NRPS/PKS gene clusters, and SMURF
detects fungal NRPS, PKS, and dimethylallyl trypto-
phan synthase gene clusters). Our analysis of the results
of these tools on four bacterial and two fungal genomes
(Supplementary Table S6), respectively, showed that
antiSMASH and SMURF performed equally well (both
detect 74 gene clusters, with 93.4% overlap). Compared
to NP.searcher, antiSMASH detected significantly more
(47 versus 31, i.e. 51.6% more) NRPS/PKS gene clus-
ters, while all NP.searcher-detected gene clusters were
also picked up by antiSMASH. The gene clusters that
were detected by antiSMASH but not by NP.searcher
were all small NRPS-like or PKS-like gene clusters.
None of the three tools gave predictions that were clear
false positives, except one SMURF detection of a
probable fatty acid synthase (GenBank ID CAP98191.1)
labeled as PKS.

DISCUSSION AND CONCLUSIONS

antiSMASH not only provides a unique integration of
previously widely dispersed tools, but it also achieves
very high accuracy in its individual cluster annotations,
which are enhanced by unique novel analyses such as
BLAST-based gene cluster alignments and secondary me-
tabolite COG phylogenetic trees for accessory genes. As
the field of synthetic biology is opening up new ways to
study these gene clusters in a high-throughput fashion
(29), antiSMASH will enable experimental researchers to
quickly pinpoint those gene clusters most interesting for
further study, and swiftly collect secondary metabolite

Table 1. Comparison of different software tools for secondary metabolite biosynthesis analysis

Software Open-source &
stand-alone
available

Covers
full tree
of life

NRPS/PKS
detection

NRPS/PKS
detailed
functional
domain
annotation

NRP/PK
core
structure
prediction

Detection
of other
biosynthetic
classes

Gene
cluster
border
prediction

Comparative
gene
cluster
analysis

Prediction
of all
secondary
metabolite-like
genomic
regions

ClustScan + + + + ±
CLUSEAN + + +
NP.searcher + + + +
SBSPKS + + +
SMURF + ± +
antiSMASH + + + + + + + + +

Comparison of functionalities of currently existing programs or software packages for secondary metabolite biosynthesis analysis.
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BioBricks for the (re-)design of gene clusters. Moreover,
the new comparative analyses that antiSMASH offers pro-
vide unprecedented possibilities to interpret the func-
tions of both complete gene clusters and their particular
genes in their evolutionary context. The approaches
developed are likely to soon allow global analysis of all
small molecule biosynthesis gene clusters throughout the
tree of life, so that we can acquire a more and more com-
prehensive understanding of how nature itself designs
novel bioactive compounds.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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thank Marc Röttig and Oliver Kohlbacher for providing
NRPSpredictor2.

FUNDING

The Dutch Technology Foundation STW, which is the
applied science division of NWO and the Technology
Programme of the Ministry of Economic Affairs (STW
10463); GenBioCom program of the German Ministry
of Education and Research (BMBF) (grant 0315585A);
Rosalind Franklin Fellowship, University of Groningen
(to E.T.); NWO-Vidi Fellowship (to R.B.); NIH DP2
Award (OD007290) (to M.A.F.); Travel grant from the
Boehringer Ingelheim Fonds (to M.H.M.). Funding for
open access charge: STW (STW 10463).

Conflict of interest statement. None declared.

REFERENCES

1. Walsh,C.T. and Fischbach,M.A. (2010) Natural products version
2.0: connecting genes to molecules. J. Am. Chem. Soc., 132,
2469–2493.

2. Starcevic,A., Zucko,J., Simunkovic,J., Long,P.F., Cullum,J. and
Hranueli,D. (2008) ClustScan: an integrated program package for
the semi-automatic annotation of modular biosynthetic gene
clusters and in silico prediction of novel chemical structures.
Nucleic Acids Res., 36, 6882–6892.

3. Anand,S., Prasad,M.V., Yadav,G., Kumar,N., Shehara,J.,
Ansari,M.Z. and Mohanty,D. (2010) SBSPKS: Structure based
sequence analysis of polyketide synthases. Nucleic Acids Res., 38,
W487–W496.

4. Li,M.H., Ung,P.M., Zajkowski,J., Garneau-Tsodikova,S. and
Sherman,D.H. (2009) Automated genome mining for natural
products. BMC Bioinformatics, 10, 185.

5. de Jong,A., van Heel,A.J., Kok,J. and Kuipers,O.P. BAGEL2:
Mining for bacteriocins in genomic data. Nucleic Acids Res., 38,
W647–W651.

6. Mallika,V., Sivakumar,K.C., Jaichand,S. and Soniya,E.V. (2010)
Kernel based machine learning algorithm for the efficient
prediction of type III polyketide synthase family of proteins.
J. Integr. Bioinform, 7, 143.

7. Khaldi,N., Seifuddin,F.T., Turner,G., Haft,D., Nierman,W.C.,
Wolfe,K.H. and Fedorova,N.D. (2010) SMURF: genomic
mapping of fungal secondary metabolite clusters.
Fungal Genet. Biol., 47, 736–741.

8. Weber,T., Rausch,C., Lopez,P., Hoof,I., Gaykova,V., Huson,D.H.
and Wohlleben,W. (2009) CLUSEAN: a computer-based
framework for the automated analysis of bacterial secondary
metabolite biosynthetic gene clusters. J. Biotechnol., 140, 13–17.

9. Delcher,A.L., Bratke,K.A., Powers,E.C. and Salzberg,S.L. (2007)
Identifying bacterial genes and endosymbiont DNA with glimmer.
Bioinformatics, 23, 673–679.

10. Majoros,W.H., Pertea,M. and Salzberg,S.L. (2004) TigrScan and
GlimmerHMM: two open source ab initio eukaryotic gene-finders.
Bioinformatics, 20, 2878–2879.

11. Finn,R.D., Mistry,J., Tate,J., Coggill,P., Heger,A., Pollington,J.E.,
Gavin,O.L., Gunasekaran,P., Ceric,G., Forslund,K. et al. (2010)
The Pfam protein families database. Nucleic Acids Res., 38,
D211–D222.

12. Letunic,I., Doerks,T. and Bork,P. (2009) SMART 6: Recent
updates and new developments. Nucleic Acids Res., 37,
D229–D232.

13. Yadav,G., Gokhale,R.S. and Mohanty,D. (2009) Towards
prediction of metabolic products of polyketide synthases:
An in silico analysis. PLoS Comput. Biol., 5, e1000351.

14. Ansari,M.Z., Sharma,J., Gokhale,R.S. and Mohanty,D. (2008)
In silico analysis of methyltransferase domains involved
in biosynthesis of secondary metabolites. BMC Bioinformatics,
9, 454.

15. Rausch,C., Hoof,I., Weber,T., Wohlleben,W. and Huson,D.H.
(2007) Phylogenetic analysis of condensation domains in
NRPS sheds light on their functional evolution. BMC Evol. Biol.,
7, 78.

16. Yadav,G., Gokhale,R.S. and Mohanty,D. (2003) Computational
approach for prediction of domain organization and substrate
specificity of modular polyketide synthases. J. Mol. Biol., 328,
335–363.

17. Minowa,Y., Araki,M. and Kanehisa,M. (2007) Comprehensive
analysis of distinctive polyketide and nonribosomal peptide
structural motifs encoded in microbial genomes. J. Mol. Biol.,
368, 1500–1517.
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ABSTRACT

Microbial secondary metabolites are a potent source
of antibiotics and other pharmaceuticals. Genome
mining of their biosynthetic gene clusters has
become a key method to accelerate their identifica-
tion and characterization. In 2011, we developed
antiSMASH, a web-based analysis platform that auto-
mates this process. Here, we present the highly
improved antiSMASH 2.0 release, available at http://
antismash.secondarymetabolites.org/. For the new
version, antiSMASH was entirely re-designed using a
plug-and-play concept that allows easy integration of
novel predictor or output modules. antiSMASH 2.0
now supports input of multiple related sequences
simultaneously (multi-FASTA/GenBank/EMBL), which
allows the analysis of draft genomes comprising
multiple contigs. Moreover, direct analysis of protein
sequences is now possible. antiSMASH 2.0 has also
been equipped with the capacity to detect additional
classes of secondary metabolites, including oligosac-
charide antibiotics, phenazines, thiopeptides, homo-
serine lactones, phosphonates and furans. The
algorithm for predicting the core structure of the clus-
ter end product is now also covering lantipeptides, in
addition to polyketides and non-ribosomal peptides.
The antiSMASH ClusterBlast functionality has been
extended to identify sub-clusters involved in the bio-
synthesis of specific chemical building blocks. The
new features currently make antiSMASH 2.0 the

most comprehensive resource for identifying and
analyzing novel secondary metabolite biosynthetic
pathways in microorganisms.

INTRODUCTION

Many microorganisms produce secondary metabolites
with interesting bioactivities, including antibiotics, anti-
cancer agents and many other drugs (1).
For decades, the only way to identify and characterize

such bioactive secondary metabolites involved a labor-
and time-consuming procedure: one had to isolate new
bacterial or fungal strains, cultivate them under different
conditions, identify, isolate, purify and test any bioactive
molecules that were produced and perform a complete
chemical structure elucidation. The rapidly decreasing
cost of whole-genome sequencing technologies enables
new approaches that can greatly accelerate this process
using bioinformatics analysis of the genome sequences of
potential producer strains (2–4), before or in parallel with
the biological/chemical isolation process. The fact that the
biosynthetic pathways for many secondary metabolites are
encoded by highly modular compact gene clusters facili-
tates this kind of analysis (5,6).
In recent years, many individual algorithms have been

developed that cover specific steps in the bioinformatics
analysis of secondary metabolite biosynthesis based on
microbial genome sequences [for review (7,8)]. For
example, ClustScan (9), CLUSEAN (10), SBSPKS (11)
and SMURF (12) are tools for the identification and/or
analysis of the enzymatic domains in multi-modular
polyketide synthases and/or non-ribosomal peptide
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synthetases, which are the key enzymes for the synthesis of
the largest classes of clinically important secondary
metabolites. These include, e.g. non-ribosomal peptide
antibiotics like penicillin and polyketide macrolides like
the immunosuppressant tacrolimus. NRPSpredictor
(13,14), NRPSSP (15) and the PKS/NRPS predictive
BLAST Server (16) are sophisticated tools for the predic-
tion of substrate specificities of key biosynthetic steps,
allowing an approximate prediction of the chemical struc-
ture of bioactive end compounds based on the genome
sequence (Table 1).
In 2011, we released the first version of the ‘antibiotics

and secondary metabolite analysis shell’ (antiSMASH), a
web server and stand-alone software, which combines
automated identification of secondary metabolite gene
clusters in genome sequences with a large collection of
compound-specific analysis algorithms (17). Within the
past two years, antiSMASH has become the standard
tool to analyze genomes of bacteria and fungi for their
potential to produce secondary metabolites. Since the
start of the service, the stand-alone software has been
downloaded >3200 times, and >28 000 antiSMASH jobs
have been submitted to the antiSMASH web server; the
monthly data volume currently processed is >12Gb.
antiSMASH also supports the manual PKS/NRPS
cluster curation effort of the ClusterMine360 database
(18) by providing a standardized annotation basis.
Here, we present version 2.0 of antiSMASH. The

software has been entirely restructured internally, and it
now uses a plug-and-play concept for easier maintainabil-
ity and extensibility. A number of novel cluster detection
and analysis features have been added to cover the
broadest possible range of secondary metabolite classes.
Finally, the web-based user interface was completely re-
designed for better usability and a wider range of possible
input files, allowing, e.g. the analysis of unassembled draft
genomes and metagenomic sequences.

MATERIALS AND METHODS

Implementation of new features

The basic steps of an antiSMASH analysis have been
described by Medema et al. (17): first, potential biosyn-
thetic gene clusters are identified by comparing each gene
product encoded on the uploaded DNA sequence against
a manually curated collection of profile hidden Markov
models (pHMMs). These pHMMs describe key biosyn-
thetic enzymes of the 24 secondary metabolite classes de-
tectable by antiSMASH, using the HMMer3 software
(19). Key enzymes encoded in each gene cluster are
assigned to secondary metabolite-specific clusters of
orthologous groups (smCOGs). Depending on the class
of the detected secondary metabolite gene cluster,
further detailed analyses are performed: the domains of
multimodular polyketide synthases (PKSs) and non-
ribosomal peptide synthetases (NRPSs) are identified by
a pHMM-based approach. Specificities of enzymes are
determined by analyzing active site residues using
integrated third-party algorithms and tools, such as the
methods of Minowa et al. (20) and NRPSpredictor2 (14) T
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for the prediction of NRPS adenylation domain
specificities. Based on these data, a core chemical structure
of the putative biosynthesis product is generated and dis-
played. In addition, an integrated version of MultiGene-
Blast (21), ClusterBlast, is used to identify similar gene
clusters in a comprehensive gene cluster database.
antiSMASH 2.0 can be either installed locally on
Windows, Mac OS X or Linux computers, or be
accessed via the internet at http://antismash.secondaryme-
tabolites.org (recommended). The use of the antiSMASH
web server is free of charge and does not require registra-
tion or login data. Voluntarily, the users can provide an
email address, which is used to send information and the
link of the results, once the computing of the antiSMASH
2.0 results is finished. The data are stored on the server for
30 days and are deleted afterward.

Although the general strategy of antiSMASH has not
changed in version 2.0, many improvements have
been implemented in the new version, which we outline
here.

New file and input options
antiSMASH 2.0 now makes it easier to work with draft
genomes consisting of a large number of individual
sequence records: support has been added for multi-
GenBank, multi-EMBL, as well as multi-FASTA files. If
the NCBI download option yields a whole-genome
shotgun (WGS) master or supercontig record,
antiSMASH 2.0 will download all constituent single
WGS records from NCBI as well and combine all of
them into a single output (Figure 1). For prokaryotic
FASTA inputs, antiSMASH 2.0 now also offers the
option to perform the initial search for gene cluster signa-
ture genes on all open reading frames of >60 nt through-
out all six translation frames of a nucleotide sequence,
before running the standard gene prediction with
Glimmer. This avoids that mistakes in the gene prediction
stage lead to false negatives in the gene cluster prediction
stage. After the gene prediction stage, all open reading
frames that match to pHMMs in the antiSMASH
pHMM library are retained in the gene cluster output,
even if they were not predicted as genes by Glimmer.

In addition to nucleotide sequences, antiSMASH 2.0
can now also be used to analyze PKS, NRPS and
lantipeptide precursor amino acid sequences directly:
their protein sequences can either be analyzed by specify-
ing their NCBI GenPept accession numbers or by pasting
the FASTA sequences directly into an input field.

Detection of secondary metabolite gene clusters in
sequence data
In addition to the secondary metabolite cluster types sup-
ported in the original release of antiSMASH (type I, II and
III polyketides, non-ribosomal peptides, terpenes,
lantipeptides, bacteriocins, aminoglycosides/aminocyclitols,
b-lactams, aminocoumarins, indoles, butyrolactones,
ectoines, siderophores, phosphoglycolipids, melanins and
a generic class of clusters encoding unusual secondary me-
tabolite biosynthesis genes), version 2.0 adds support for
oligosaccharide antibiotics, phenazines, thiopeptides,
homoserine lactones, phosphonates and furans. The

cluster detection uses the same pHMM rule-based
approach as the initial release (17): in short, the pHMMs
are used to detect signature proteins or protein domains
that are characteristic for the respective secondary metab-
olite biosynthetic pathway. Some pHMMs were obtained
from PFAM or TIGRFAM. If no suitable pHMMs were
available from these databases, custom pHMMs were con-
structed based on manually curated seed alignments
(Supplementary Table S1). These are composed of protein
sequences of experimentally characterized biosynthetic
enzymes described in literature, as well as their close
homologs found in gene clusters from the same type. The
models were curated by manually inspecting the output of
searches against the non-redundant (nr) database of protein
sequences. The seed alignments are available online at
http://antismash.secondarymetabolites.org/download.
html#extras. After scanning the genome with the pHMM
library, antiSMASH evaluates all hits using a set of rules
(Supplementary Table S2) that describe the different cluster
types. Unlike the hard-coded rules in the initial release of
antiSMASH, the detection rules and profile lists are now
located in editable TXT files, making it easy for users to
add and modify cluster rules in the stand-alone version,
e.g. to accommodate newly discovered or proprietary
compound classes without code changes. The results of
gene cluster predictions by antiSMASH are continuously
checked on new data arising from research performed
throughout the natural products community, and
pHMMs and their cut-offs are regularly updated when
either false positives or false negatives become apparent.
The profile-based detection of secondary metabolite

clusters has now been augmented by a tighter integration
of the generalized PFAM (22) domain-based Cluster-
Finder algorithm (Cimermancic et al., in preparation)
already included in version 1.0 of antiSMASH. This algo-
rithm performs probabilistic inference of gene clusters by
identifying genomic regions with unusually high
frequencies of secondary metabolism-associated PFAM
domains, and it was designed to detect ‘classical’ as well
as less typical and even novel classes of secondary metab-
olite gene clusters. While antiSMASH 1.0 only generated
the output of this algorithm in a static image, version 2.0
displays these additional putative gene clusters along with
the other gene clusters in the HTML output. A key ad-
vantage of this is that these putative gene clusters will now
also be included in the subsequent (Sub)ClusterBlast
analyses.

Metabolite-specific detection modules
antiSMASH version 2.0 adds lantipeptide-specific
chemical core structure analysis to the existing set of
NRPS/PKS core prediction tools. If one or more open
reading frames encoding putative lantipeptide
prepropeptides are found, antiSMASH predicts the core
peptide molecular mass and sequence after leader peptide
cleavage. The leader peptide cleavage motifs are identified
via pHMMs specific for cleavage sites of class I–IV
lantipeptides, respectively. The best-matching profile de-
termines the classification of the prepropeptide, and the
cleavage site is calculated from the pHMM-sequence
alignment.

Nucleic Acids Research, 2013 3

 by guest on June 9, 2013
http://nar.oxfordjournals.org/

D
ow

nloaded from
 



To obtain the core peptide mass, all serine and threo-
nine residues in the core peptide are assumed to be
dehydrated to didehydro-alanine (Dha) and didehydro-
butyrine (Dhb), the most frequent post-translational
modification in lantipeptides. Reported masses are the
monoisotopic masses of the most prevalent isotopomers.
The number of lanthionine/methyl-lantionine bridges is
calculated from the number of cysteine, Dha and Dhb

residues available for bridge formation (Blin et al., in
preparation).

SubclusterBlast
Extending the ClusterBlast analysis that identifies hom-
ologous gene clusters across many published genome se-
quences, we have added a new option to identify operons
related to the biosynthesis of precursors or specific

Figure 1. Overview page of the antiSMASH results. antiSMASH 2.0 gives an overview of all the output results in a single page, showing all the
detected biosynthetic gene clusters with their type classifications and nucleotide positions. For inputs consisting of multiple entries/contigs, the
clusters are separated by input entry/contig. Gene cluster types are signified by specific colors.
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chemical moieties in a gene cluster’s end product. This new
analysis module, SubclusterBlast, performs blastp searches
of the amino acid translations of all cluster genes against a
database containing 126 sub-clusters from gene clusters
encoding known compounds (Figure 2). These sub-clus-
ters code for the biosynthesis of precursors, such as
6-methylsalicylic acid, 3-amino-5-hydroxybenzoic acid,

ethylmalonyl-CoA, deoxysugars and hydroxyphe-
nylglycine, which are highly specific for certain classes of
bioactive compounds. Hence, their presence in a
genome allows more confident conclusions about the
biosynthetic capacities of an organism. The hits are
sorted in the same way as the ClusterBlast hits (17), but
they are gathered with stricter thresholds: a minimal

Figure 2. ClusterBlast and SubclusterBlast outputs for the balhimycin (23) biosynthesis gene cluster. The top six hits of each analysis module are
shown. The ClusterBlast module shows the homology between the balhimycin gene cluster and the vancomycin, VEG, A40926 and teicoplanin
biosynthesis gene clusters. Homologous genes are shown in identical colors, whereas white-colored genes have no BLAST hits between the gene
clusters. The novel SubclusterBlast module can identify homologous sub-clusters encoding the biosynthesis of specific chemical moieties. In this case,
SubclusterBlast is able to identify the dihydroxyphenylglycine (dHpg), hydroxyphenylglycine (Hpg) and hydroxytyrosine (Bht) precursor biosynthesis
sub-clusters, as well as the vancosamine-like sugar biosynthesis sub-cluster.
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percentage identity of 45% and a minimal sequence
coverage of 40% are required. The highest-scoring sub-
cluster hits are then displayed on the results page using
an annotated vector graphic similar to the general
ClusterBlast output.

Output and visualization
When antiSMASH has finished the computation of an
analysis, it now provides an overview table that displays
all identified secondary metabolite biosynthesis gene
clusters with links to the respective prediction details, as
a convenient starting point for further analysis (Figure 1).
For nucleotide inputs consisting of multiple GBK/EMBL/
FASTA entries, the results are separated per entry.
Because of the large size of the antiSMASH results
webpage in version 1.0, loading took a long time and
sometimes even caused timeout error messages in the
user’s web browser. Therefore, the visualization compo-
nent of antiSMASH 2.0 was completely re-designed, re-
sulting in a reduction of transfer data volume and greatly
accelerated display, even for results containing many
cluster hits.
The overall layout of the interactive results page has

been retained (Figure 3): in the top section, the identified
clusters are displayed as circles that serve as direct links to
the clusters. In antiSMASH 2.0, the circles are color coded
depending on the class of the identified cluster to ease
navigation by the user. The individual cluster result
pages are now reachable via the result URL, making it
possible to both bookmark and direct other people to
specific cluster pages. Individual cluster result pages
contain an interactive graphical representation of the
genes identified in the cluster. Again, color coding was
added to represent the functional classes of the gene
cluster genes according to an smCOG-based classification:
biosynthesis, transport, regulation or other. For modular
enzymes (NRPS, PKS) or lantipeptides, detailed annota-
tion sections provide information on the domain organ-
ization and the putative cleavage sites and molecular
weights, respectively. At the bottom of the page, graphical
representations of the ClusterBlast results and—if avail-
able—the SubclusterBlast results are displayed. For
several classes of antibiotics, where the analysis of the
gene clusters allows the prediction of core structures of
the biosynthetic products, a predicted structure and
detailed information on the prediction source are dis-
played in a box on the right side of the results page
(Figure 3). For lantipeptides and NRPS products, there
is a direct link to the NORINE (24) peptide database. The
information displayed on the interactive webpage is also
annotated in EMBL- or GenBank-formatted sequence
files, which can be downloaded and used with standard
sequence analysis software. In addition, an archive con-
taining all data including the webpage can be saved for
later use.

Plug-and-play architecture
In antiSMASH 2.0, the software architecture has been
completely re-designed to make it easily extendable: the
core program reads in ‘analysis plug-ins’ that are either
general or specific to a certain gene cluster type ‘output

plug-ins’ facilitate the output of the results to HTML,
GBK, EMBL, TXT and XLS files. To make it easy for
users to customize antiSMASH for their own analyses, we
provide a plug-in template from the download section of
http://antismash.secondarymetabolites.org, which can be
used to design custom plug-ins, e.g. for reading user-
specific input formats or analyzing novel cluster types.

RESULTS AND DISCUSSION

With options to upload DNA sequences of both finished
genomes and draft sequences, to make antiSMASH
download published sequences from NCBI and to
analyze amino acid sequences directly, antiSMASH 2.0
now covers all common types of input data. For draft
genome data published in the NCBI genome database,
antiSMASH can automatically download the records
specified in the WGS summary record. As a test for the
downloader, the recently published Oxytricha trifallax
WGS record (Genbank accession no. AMCR00000000.1)
consisting of 22 363 contigs was run via the internet inter-
face, and the server handled the large amount of contigs
and sequence data (67Mb) without issues. For prokary-
otic genome sequences, draft genome support increases
the number of genomes that can be processed directly
via NCBI accession numbers from 2570 to 8898,
a �2.5-fold increase of available sequences. One import-
ant caveat should be noted: when analyzing draft
genomes, the number of detected gene clusters reported
by antiSMASH can be artificially high because gene
clusters can be fragmented across multiple contigs, and
antiSMASH detects all fragments as separate gene
clusters. On the other hand, some contigs with gene
cluster fragments might be left undetected, if the subset
of genes present on a contig does not suffice to match the
criteria for gene cluster detection by antiSMASH.

antiSMASH 2.0 now supports 24 secondary metabolite
cluster types via profile-based detection of their core bio-
synthetic genes (up from 19). In test runs on 28 known
gene clusters encoding compounds of the newly added
classes, all of them were detected successfully
(Supplementary Table S3). To assess the general
accuracy of the antiSMASH predictions, we selected the
same test set of genomes as for the original version (17):
the genomes of the proteobacterium Pseudomonas
fluorescens Pf-5 (25), the actinomycetes Streptomyces
griseus IFO 13350 (26), Kitasatospora setae NBRC
14216T (27) and Salinispora tropica CNB-440 (28) and
the fungus Aspergillus fumigatus Af293 (29) were
analyzed with antiSMASH 2.0 and compared with the
manually identified clusters referred to in the original pub-
lications. In all, 97.3% of clusters (108 of 111) that were
assigned manually were also identified by antiSMASH 2.0.
This is the same performance as with antiSMASH 1.0,
which was expected, as the established cluster finding al-
gorithm has not changed in version 2.0. In addition to the
35 clusters that were predicted by antiSMASH 1.0 but
were missed in the original publications, four additional
clusters were identified by the new detection modules of
antiSMASH 2.0, increasing the percentage of newly found
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gene clusters from 31.5 to 35.1% (Supplementary
Table S4).

If further extension of the prediction ability is desired,
new profiles can be added easily and without changes to
the core code of the software using the new plug-and-play
architecture of antiSMASH 2.0. The new version can also
cast a wider net than the original version, by using
improved ways to exploit the outputs of the
ClusterFinder inclusive search algorithm for putative
clusters (Cimermancic et al., in preparation). Although
the inclusive algorithm is likely to identify too many

clusters, the combination with homology search methods
allows focusing on the ones with homology to previously
identified secondary metabolite clusters.
A major goal of antiSMASH 2.0 was to increase usabil-

ity. Because antiSMASH 1.0 loaded all the results simul-
taneously when loading/opening the HTML output file, it
was slow for the typical large results files: e.g. loading the
35 cluster results for Streptomyces tsukubaensis
NRRL18488 (Genbank accession no. AJSZ01000001)
from a local hard drive took �40 s on a fast PC. In
contrast, antiSMASH 2.0 output for the same data now

Figure 3. Top part of a gene cluster overview in the re-designed antiSMASH 2.0 output. The gene cluster shown is the calcium-dependent antibiotic
biosynthesis gene cluster from Streptomyces coelicolor A3(2). The gene cluster-type–specific coloring of the numbered gene cluster buttons makes it
easier to navigate through large result files. smCOG-based coloring of biosynthetic, transport-related and regulatory genes within the gene cluster
make it easier to interpret the architecture of the gene cluster.
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loads in <2 s, even though more clusters (37) are detected.
The reduced result page size has the added benefit of being
accessible from smart phones and tablets (tested for iOS
and Android).
antiSMASH 2.0 is currently the most comprehensive

software for genome mining and analysis of secondary
metabolite biosynthetic pathways, and it includes or
provides direct links to the most significant other tools
and algorithms for this task. The updates to the
antiSMASH framework will enable it to be successfully
used with the latest sequencing technologies and biochem-
ical insights, whereas it will continue to be a key tool for
state-of-the-art synthetic biology approaches towards
secondary metabolism (23).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1–4 and Supplementary
References [30,31].
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Marc Röttig1,*, Marnix H. Medema2,3, Kai Blin4, Tilmann Weber4, Christian Rausch5 and

Oliver Kohlbacher1

1Applied Bioinformatics, Center for Bioinformatics, Department of Computer Science, University of Tübingen,
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ABSTRACT

The products of many bacterial non-ribosomal pep-
tide synthetases (NRPS) are highly important sec-
ondary metabolites, including vancomycin and other
antibiotics. The ability to predict substrate specificity
of newly detected NRPS Adenylation (A-) domains by
genome sequencing efforts is of great importance to
identify and annotate new gene clusters that produce
secondary metabolites. Prediction of A-domain
specificity based on the sequence alone can be
achieved through sequence signatures or, more
accurately, through machine learning methods. We
present an improved predictor, based on previous
work (NRPSpredictor), that predicts A-domain speci-
ficity using Support Vector Machines on four hier-
archical levels, ranging from gross physicochemical
properties of an A-domain’s substrates down to
single amino acid substrates. The three more gen-
eral levels are predicted with an F-measure better
than 0.89 and the most detailed level with an
average F-measure of 0.80. We also modeled the
applicability domain of our predictor to estimate
for new A-domains whether they lie in the applicabil-
ity domain. Finally, since there are also NRPS that
play an important role in natural products chemistry
of fungi, such as peptaibols and cephalosporins,
we added a predictor for fungal A-domains, which
predicts gross physicochemical properties with an
F-measure of 0.84. The service is available at http://
nrps.informatik.uni-tuebingen.de/.

INTRODUCTION

Non-ribosomally synthesized peptides are a class of highly
important metabolites in the secondary metabolisms of
bacteria and fungi (1,2). Important representatives of
this family are mostly antibiotics like penicillin or vanco-
mycin but also the immunosuppressant cyclosporin. The
precursor peptides of these compounds are synthesized by
non-ribosomal peptide synthetases (NRPSs), which are
multi-modular megasynthetases with molecular weights
up to 2.3MDa (tex1 NRPS from Trichoderma virens).
NRPSs act as an assembly line that produces the final
peptide by a chain of reactions occuring along that line.
The primary sequence of the peptide product is deter-
mined by the sequential arrangement of minimal repetitive
modules of an NRPS. The minimal module consists of
three domains termed adenylation domain (A-domain),
peptidyl carrier domain (PCP-domain) and condensation
domain (C-domain). The A-domain is responsible for the
recruitment of the amino acid monomers that are to be
incorporated into the final product. Several hundred dif-
ferent A-domain substrate specificities have been biochem-
ically characterized and each A-domain recruits a specific
amino acid as monomer. Accordingly, the sequential
order of A-domains along the assembly line determines
(in the majority of cases) the primary sequence of the
final peptide product. A comprehensive source of NRPS
peptides and monomers is the NORINE database as-
sembled by Caboche et al. which currently features
over 1000 peptide products and over 500 monomers (3) .
The cross linking between each adjacent monomer is
carried out by the help of the other two domains that
synthesize the peptide bond between these monomers.
The minimal module is often equipped with additional
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domains that allow for modifications of the recruited
amino acid monomers like epimerization, methylation or
formylation.
The structure–function relationship for monomer re-

cruitment by A-domains has been further elucidated by
Stachelhaus et al. and Challis et al. by examining the
crystal structure of the peptide synthetase gramicidin S
synthetase 1 (GrsA, PDB-ID: 1AMU) (4–6). The structure
of the GrsA adenylation domain was determined with a
co-crystallized phenylalanine monomer and thus delivers
additional structural information about the binding pocket
of the A-domain, which enabled Stachelhaus et al. to
propose a specificity conferring-code of A-domains by
relating the active site configuration of A-domains to the
corresponding substrates.
The specificity-conferring code was based on 10 active

site residues and it could be used to predict the putative
substrates of A-domains for which only the sequence was
known. Many NRPS services like the NRPS-PKS
knowledgebase, the NP.searcher or the system devised by
Bachmann et al. make use of this specificity-conferring
code to predict putative A-domain substrates (7–9). The
specificity-conferring code was further refined by Rausch
et al. (10) by not only considering these 10 residues but
by using all active site residues within 8 Å of the amino
acid substrate. A predictor, NRPSpredictor, based on
Transductive Support Vector Machines (TSVMs) was
built on these 34 active site residues to predict A-domain
specificity. In the following part of this article we will
present details about the new version of this predictor,
termed NRPSpredictor2, namely the improved prediction
performance, simplified descriptor set used for signature
encoding and estimation of the applicability domain of the
predictor.

MATERIALS AND METHODS

Method outline

The predictions of substrate specificity are based on the
configuration of the residues in the active site of an
A-domain. We therefore made use of an A-domain
crystal structure (PDB-ID: 1AMU) as a template to de-
termine these active site residues. The positions of these
residues were then located in the A-domain sequences of
our training data set, and for each domain we extracted
those positions. Having labeled sequence data, we applied
machine learning methods, namely SVMs, to train pre-
dictors of substrate specificity. The predictions are based
on numerical representations of the extracted signatures.
The predictors were trained as detectors for each known
substrate specificity in a one-versus-rest scheme, so every
predictor that gives a positive prediction signals that the
query A-domain might activate the corresponding sub-
strate. Using this scheme, a query A-domain might yield
positive signals from more than one predictor and thereby
giving the user additional information about possible sub-
strate promiscuity of the A-domain or ambiguity of the
prediction.

Training data

The starting point for this work were the 397 labeled
A-domains collected by Rausch et al. for which the speci-
ficity had been harvested from scientific literature desc-
ribing their experimental characterization (10). We
added 79 labeled bacterial A-domains and 100 labeled
fungal A-domains to the database of NRPSpredictor.
Furthermore, we added 4282 unlabeled bacterial and 814
unlabeled fungal A-domains to the data set (see
Supplementary Material S1). These A-domains were
retrieved from the UniProt database by an automated
BLAST search for A-domains that are embedded within
a minimal NRPS module, which requires the existence of
an A-domain (Pfam-ID: PF00501), C-domain (Pfam-ID:
PF00668) and PCP-domain (Pfam-ID: PF00550) (11,12).

Signature extraction

The set of all active site amino acids, called the signa-
ture, was identified by extracting all residues within 8 Å
of the substrate phenylalanine in the crystal structure of
GrsA (PDB-ID: 1AMU). These 34 positions were then
extracted from the set of training sequences using an
A-domain profile HMM and selecting relevant positions
from the alignment. The specificity conferring code pro-
posed by Stachelhaus et al. is a subset of these 34 residues
and is also reported by the web server (6). Handling of
protein structures, extraction of signatures and further
processing was carried out using the Active Site
Classification (ASC) software (13).

Encoding

NRPSpredictor2 makes use of two feature encodings for
amino acids: one is the original encoding proposed by
Rausch et al. based on 12 AAindex (14) descriptors and
the other is a reduced encoding based on three z-scales
descriptors devised by Wold et al. (15). The z-scales de-
scriptors represent the following physicochemical proper-
ties: hydrophobicity (WOLS870101), size (WOLS870102)
and electronic properties (WOLS870103). Each signature
can be embedded in R

n by encoding each residue into a
descriptor tuple and concatenating these tuples. The pre-
dictive models are then trained on the transformed data.

SVMs

SVMs are classifiers based on the maximum margin prin-
ciple (16,17). During SVM training a hyperplane in feature
space is determined that gives the largest possible margin
between the positive and negative class, thereby yielding
an intuitively robust classifier. The hyperplane gives a
decision surface defined by f(x)=�i yiai k(x, xi) whose
functional value is zero for data points directly on the
hyperplane, +1 or more for data points in the positive
half-space and �1 or less for points in the negative half-
space. The margin is determined by the geometric distance
of points with functional value of+1 or �1 (support vec-
tors) to the hyperplane. NRPSpredictor2 uses the RBF
kernel k(x, y)= exp(�gjjx�yjj2) and the linear kernel
k(x, y)= xty on the physico-chemical feature vectors.
For the training of SVMs a set of labeled data points
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(xi, yi) is needed where xi is from R
n and the labels yi are in

(+1, �1) for two-class problems.

TSVMs

TSVMs extend classical SVMs by the property of making
use of unlabeled data to train more robust classifiers, es-
pecially in the case of scarce labeled training data (18).
TSVMs try to determine a separating hyperplane that
does not cut clusters of data by forcing the hyperplane
to go through low data density regions. This is enforced
by keeping the margin clear of unlabeled data points.
However, the objective function of TSVMs is not that
easily optimized as the classical SVM objective, hence
heuristics have to be used to optimize the objective. For
NRPSpredictor2 we make use of the SVMlight package
that offers such an heuristic to train TSVM classifiers (18).

Prediction levels and predictor quality

NRPSpredictor2 was designed to predict the putative
substrate specificity on four different hierarchical levels
for bacterial A-domains and on one level for fungal
A-domains. The bacterial levels are: gross physico-
chemical properties of the substrate (hydrophobic–
aromatic, hydrophobic–aliphatic and hydrophilic), large
clusters, small clusters and on a single amino acid level
(Table 1). The fungal predictor predicts only on the
gross physico-chemical properties level (hydrophobic-
aromatic, hydrophobic-aliphatic and hydrophilic) due to
the lack of sufficient fungal training data to allow further
subdivision of substrate clusters. However, within the web
server we trigger the bacterial models to give also more
fine grained predictions for fungal signatures. An overview
of the set of bacterial prediction levels is given in Table 1.
For many substrates there are only very few labeled
A-domains, like the 2-amino-butyric acid (Abu) specificity
with less than five known A-domain sequences. For these
specificities no SVM-model was built. Instead, we
make use of the Nearest-Neighbor Rule to get a specificity
prediction, by reporting for each query the substrate
specificity of the most similar active-site signature (based
on the Stachelhaus code) in our database, along with the
sequence identity.

Predictor validation

To quantify the performance of the NRPSpredictor2 we
used the F-measure as quality criterion, which is defined as
the harmonic mean of precision and recall. The precision
is defined by prec= tp/(tp+fp) and the recall (or sensitiv-
ity) is defined by rec= tp/(tp+fn), where tp, fp and fn are
the number of true positives, false positives and false nega-
tives, respectively. The precision (or positive predictive
value) measures how reliable a positive prediction of a
substrate specificity detector is and the recall measures
how good the detector is in finding the true positives. To
determine the performance on new test data we applied a
repeated external validation scheme. We split the whole
data set into half, selected and trained a SVM model on
one half of the data and evaluated the predictor perform-
ance on the other half, the independent test set. This pro-
cedure was repeated on 10 shuffled versions of the whole

data set to get a more robust average of the predictor
performance on new test data.

Applicability domain

The applicability domain of a predictor is a concept that
helps to give for each predictor query a feedback whether
that query is too far away from the data used during
training or whether that instance lies within the, say,
95% support volume of the training data. Predictions
for queries that do not lie within the applicability
domain of the model should be handled with more care.
To model the applicability domain of our model we made
use of the 1-Class SVM concept as described by Schölkopf
et al. (19). Therefore, we modelled the 95% support of our
data using the 1-Class SVM functionality of LIBSVM. We
selected values for g and n in such a way as to achieve a
recall of �95% on left out data and then trained a 1-class
SVM for the whole data set using these parameters to
describe the 95% support volume in feature space of our
data.

RESULTS

Predictor quality

The quality of each bacterial predictor as determined by
our model validation is given in Table 1. It can be
observed that the predictors at the highest hierarchical
level are the best-performing ones. At the level of gross
physico-chemical properties we have an average
F-measure of F=0.94, whereas the average F-measure at
the most fine-grained level (single substrates) is F=0.80.
Generally, the average performance as quantified by the
F-measure is F=0.94 for the three class level, F=0.93
for the large clusters level, F=0.89 for the small clusters
level and F=0.80 for the single substrate level. The fungal
predictor has an average F-measure of F=0.84 at the
three class level. Table 1 also gives for each prediction
task the best performing kernel, feature encoding and
SVM type (classic or TSVM).
A general trend is that, except from the more exotic

aromatic substrates, like the hydroxy-benzoic derivatives
that can be predicted very well, the other more common
aromatic substrates are predicted less reliably. One reason
might be the observed promiscuity of the A-domains
utilizing these substrates (10). When compared with the
original version of the NRPSpredictor (Table 1) the new
version could improve the performance (F-measure) on
the large cluster level and on the small clusters level by
roughly one percentage point. While the original
NRPSpredictor was able to predict the membership to
clusters of amino acids only, NRPSpredictor2 also can
predict single amino acid specificities. The newly
introduced applicability domain gives further information
on the quality of the specificity prediction. Upon request
of many colleagues working on fungal NRPSs, a predictor
specific for fungal NRPS sequences was included in
NRPSpredictor2.
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Table 1. Prediction levels and predictor quality (bacterial)

Classname Members Type NRPSpredictor2 NRPSpredictor1

F Prec. Rec. F

Three class
Hydrophobic aliphatic Ala, Gly, Val, Leu, Ile, Abu, Iva Ser,

Thr, Hpg, Dhpg, Cys, Pro, Pip
W,R,T 0.974 0.974 0.974 –

Hydrophilic Arg, Asp, Glu, His, Asn, Lys,
Gln, Orn, Aad

W,R,T 0.940 0.940 0.940 –

Hydrophobic aromatic Phe, Tyr, Trp, Dhb, Phg, Bht W,R,T 0.890 0.889 0.892 –

Large clusters
Hydroxy-benzoic acid derivates Dhb, Sal W,R,T 0.982 1.000 0.967 0.982
Polar, uncharged (aliphatic with -SH) Cys R,R,T 0.976 0.975 0.975 0.954
Aliphatic chain or phenyl group with -OH Ser, Thr, Dhpg, Hpg R,R,T 0.968 0.967 0.969 0.963
Aliphatic chain with H-bond donor Asp, Asn, Glu, Gln, Aad W,R,C 0.958 0.969 0.950 0.942
Apolar, aliphatic Gly, Ala, Val, Leu, Ile, Abu, Iva W,R,T 0.940 0.947 0.934 0.940
Aromatic side chain Phe, Trp, Phg, Tyr, Bht W,R,T 0.881 0.881 0.881 0.881
Cyclic aliphatic chain (polar NH2 group) Pro, Pip R,R,T 0.867 0.867 0.867 0.811
Long positively charged side chain Orn, Lys, Arg W,R,T 0.864 0.898 0.833 0.861

Ø 0.930 – – 0.917
Small clusters
2-amino-adipic acid Aad W,L,C 1.000 1.000 1.000 1.000
Dhb, Sal Dhb, Sal W,L,C 1.000 1.000 1.000 0.940
Polar, uncharged (hydroxy-phenyl) Dhpg, Hpg R,L,T 1.000 1.000 1.000 0.981
Cys Cys R,L,T 0.983 0.983 0.983 0.950
Serine-specific Ser W,R,T 0.972 1.000 0.947 0.936
Threonine-specific Thr W,L,C 0.969 0.978 0.961 0.942
Asp-Asn Asp, Asn W,L,C 0.948 0.969 0.931 0.942
Orn and hydroxy- Orn specific Orn R,L,T 0.900 0.900 0.900 0.800
Aliphatic, branched hydrophobic Val, Leu, Ile, Abu, Iva W,R,T 0.893 0.892 0.895 0.887
Tiny, hydrophilic, transition to aliphatic Gly, Ala W,L,C 0.886 0.938 0.843 0.859
Pro-specific Pro R,L,T 0.882 0.938 0.833 0.900
Polar aromatic ring Tyr, Bht W,R,T 0.857 0.892 0.825 0.793
Glu-Gln Glu, Gln W,L,C 0.813 0.850 0.791 0.860
Arg-specific Arg W,L,C 0.740 1.000 0.600 0.800
Unpolar aromatic ring Phe, Trp W,L,C 0.538 0.608 0.500 0.671

Ø 0.892 – – 0.884
Single substrates
Aad Aad W,R,T 1.000 1.000 1.000 –
Cys Cys R,R,T 1.000 1.000 1.000 –
Hpg Hpg R,R,T 0.974 1.000 0.950 –
Ser Ser W,R,T 0.962 0.993 0.933 –
Thr Thr W,R,T 0.949 0.976 0.922 –
Dhb Dhb W,R,T 0.947 1.000 0.900 –
Dhpg Dhpg W,R,T 0.943 0.967 0.925 –
Asn Asn R,R,T 0.939 0.934 0.944 –
Orn Orn R,R,T 0.933 0.933 0.933 –
Ile Ile R,R,T 0.918 1.000 0.850 –
Gly Gly R,R,T 0.906 0.902 0.910 –
Ala Ala W,R,T 0.878 0.901 0.856 –
Arg Arg W,R,T 0.833 0.833 0.833 –
Iva Iva W,R,T 0.814 0.933 0.725 –
Val Val W,R,T 0.801 0.828 0.777 –
Leu Leu W,R,T 0.784 0.782 0.787 –
Pro Pro W,R,T 0.755 0.792 0.722 –
Bht Bht W,R,T 0.717 0.782 0.675 –
Glu Glu R,R,T 0.704 0.760 0.657 –
Pip Pip W,R,T 0.700 0.800 0.625 –
Asp Asp R,R,T 0.700 0.700 0.700 –
Tyr Tyr W,R,T 0.696 0.671 0.725 –
Gln Gln W,R,T 0.689 0.775 0.620 –
Phe Phe W,R,T 0.688 0.740 0.643 –
Lys Lys R,R,T 0.400 0.500 0.333 –
Trp Trp W,R,T 0.320 0.400 0.267 –

The column type gives the best performing predictor encoded by three letters: the first letter represents the used encoding (W: Wold, R: Rausch), the
second letter the used kernel (L: linear, R: RBF) and the third letter the used SVM type (C: classical SVM T: transductive SVM). The columns F,
Prec. and Rec. give the F-measure, Precision and Recall of the best predictor, respectively. Aad: 2-amino-adipic-acid; Bht: beta-hydroxy-tyrosine;
Hpg: 4-hydoxy-phenyl-glycine; Dhb: 2,3-dihydroxy-benzoic acid; Dhpg: 3,5-dihydroxy-phenyl-glycin; Iva: isovaline; Orn: ornitine; Pip: pipecolic acid;
Sal: salicylic acid.
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Web server

Users of the NRPSpredictor2 web server can submit their
data as full NRPS sequences in multi-FASTA format and
the signatures will be extracted automatically. Another
option is to directly supply the extracted signatures and
request a prediction from the predictor, thus users are not
required to disclose the full NRPS sequence. After short
extraction and prediction phases the user receives a list of
detected A-domains along with the predictions of
NRPSpredictor2 at each hierarchical level. For user con-
venience we report the predictions of the original version
of the NRPSpredictor. A typical report for one particular
extracted A-domain is given in Figure 1. For each ex-
tracted A-domain the ID of the parent sequence is given
with the number of the A-domain added as suffix. The
exact location of the A-domain within the parent
sequence is also reported, along with the bit score of the
Pfam HMM that extracted this domain. The result of the
applicability check is given by either a green checkmark
(as shown in Figure 1) if the query signatures lies within
the applicability domain of our predictor or as red X if the
signature is most likely outside the applicability domain of
the model. In this case the prediction should be taken
with caution. Finally, the specificity predictors that give
positive predictions for this signature are listed for each
hierarchical level. The scores of the SVMs along with the
precision of the SVM predictors, determined during model
validation, are given in the last two columns. The last row
gives the nearest neighbor to the query signature found in
our database of annotated A-domain signatures (based on
Stachelhaus code) along with the sequence identity. Using
this rule NRPSpredictor2 can even detect specificities for
which no SVM model could be learned, due to scarcity of
labeled training data.

DISCUSSION

We have presented the NRPSpredictor2 that predicts
A-domain substrate specificity based on sequence and
structural information about the active site of the
domain. The new predictor comes with an improved

prediction performance over the previous version and
also with two new prediction levels, namely the gross
physico-chemical properties level and the detailed predic-
tion level, which predicts the single amino acid likely to be
activated by the given A-domain. The performance im-
provement was mainly due to the additional labeled
training data as well as the use of an additional
encoding of A-domain signatures (Wold encoding). The
transductive SVM method, which makes use of unlabeled
data, is very important in the settings with scarce training
data per class, as can be seen in the most detailed predic-
tion tasks (single amino acid level) where the transductive
SVM is the best performing type of SVM. In the upper
prediction levels classical SVMs quite often suffice to build
a well-performing predictive model. In some of these cases
the use of a transductive SVM might even hurt perform-
ance due to the heuristic training procedure that may yield
suboptimal models, when compared to the classical SVM
models, which use only labeled training data. We also
created a new web interface for the predictor, allowing
prediction of either bacterial or fungal sequences based
on full NRPS sequences or already extracted signatures.
For comparison purposes the web server also reports the
predictions of the original NRPSpredictor. Finally,
NRPSpredictor2 has also been incorporated into
antiSMASH, a new comprehensive pipeline for secondary
metabolite gene cluster detection and annotation, which
allows users to rapidly analyze complete NRPS gene
clusters or even whole genomes containing multiple
NRPS gene clusters (M. H. Medema et al., submitted
for publication).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Figure 1. NRPSpredictor2 prediction report for one extracted A-domain. On top, the ID of the parent sequence, location of the A-domain within
the sequence and the bit score of the PFAM-HMM are given. The green checkmark signals that the signature sequence lies within the applicability
domain of the model. The extracted 8 Å signature and Stachelhaus code are given directly below. Subsequently, the list of predictions is given along
with the score of the respective SVM predictors. For each predictor we also report the reliability of that predictor as determined during model
validation. The last row gives the nearest sequence neighbor in the NRPSpredictor2 database (based on Stachelhaus code) and the respective
sequence identity.
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Abstract1

Lanthipeptides are a class of ribosomally synthesised and post-translationally modified peptide (RiPP)2

natural products from the bacterial secondary metabolism. Their name is derived from the characteristic3

lanthionine or methyl-lanthionine residues contained in the processed peptide. Lanthipeptides that pos-4

sess an antibacterial activity are called lantibiotics. Whereas multiple tools exist to identify lanthipeptide5

gene clusters from genomic data, no programs are available to predict the post-translational modifications6

of lanthipeptides, such as the proteolytic cleavage of the leader peptide part or tailoring modifications7

based on the analysis of the gene cluster sequence.8

antiSMASH is a software pipeline for the identification of secondary metabolite biosynthetic clusters9

from genomic input and the prediction of products produced by the identified clusters.10

Here we present a novel antiSMASH module using a rule-based approach to combine signature motifs11

for biosynthetic enzymes and lanthipeptide-specific cleavage site motifs to identify lanthipeptide clusters12

in genomic data, assign the specific lanthipeptide class, predict prepeptide cleavage, tailoring reactions,13

and the processed molecular weight of the mature peptide products.14

Introduction15

Lanthipeptides16

Lanthipeptides are polycyclic peptides named after the thioether-linked amino acids lanthionine and17

(2S,3S,6R)-3-methyllanthionine contained in the mature peptide. Formerly called lantibiotics from ”lanthionine-18

containing antibiotics”, the new name lanthipeptide was proposed to also include non-antibiotic peptides19
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of the same biosynthetic origin [1]. Lanthipeptides are ribosomally synthesised and post-translationally1

modified peptides (RiPPs). The extensive post-translational modifications enhance the stability of the2

mature peptide against proteolysis and temperature stress. Lanthipeptides are encoded on the genome3

as a precursor peptide containing a leader and a core peptide part. The lanthionine (Lan) and methyllan-4

thionine (MeLan) residues are introduced in a two-step reaction. First, serine (Ser) and threonine (Thr)5

residues are dehydrated to dehydroalanine (Dha) and dehydrobutyrine (Dhb), respectively, usually with6

an intermediate phosphorylation step. In the second step, a Michael-type addition by cysteine (Cys)7

residues onto the dehydro amino acids then yields the thioether cross-links.8

Depending on the biosynthetic enzymes installing the thioether cross-links, lanthipeptides are divided9

into different classes [2]. Currently, four lanthipeptide classes are know. In class I lanthipeptides, the10

dehydration is catalysed by a dedicated dehydratase commonly called LanB. Cyclisation is carried out11

by a cyclase called LanC. In specific gene clusters, the generic enzyme names might be replaced by a12

more specific name: for example in the nisin gene cluster, the LanB-type dehydratase is called NisB13

and the LanC-type cyclase is called NisC. For the remaining class II, III and IV lanthipeptides, both14

dehydration and cyclisation are catalysed by a single bi-functional enzyme. A class II LanM enzyme15

carries an N-terminal dehydratase domain with little sequence similarity to other characterised enzymes.16

The C-terminal cyclisation domain is similar to the LanC enzymes from class I lanthipeptide cyclases.17

The bi-functional enzymes for class III (LanKC) and IV (LanL) have a common N-terminal phospho-18

serine/phosphothreonine lyase domain and a central kinase domain. The C-terminal cyclisation domain19

in class III enzymes, while similar to the cyclisation domains from the other classes, lacks three zinc-20

bindinding residues that are conserved in the other classes. In class IV, those residues are present.21

In addition to the introduction of Lan and MeLan, a number of further post-translational modi-22

fications may occur if the appropriate tailoring enzymes are present in the gene cluster. Among the23

modifications found in lanthipeptides is the formation of S -[(Z )-2-aminovinyl]-D-cysteine (AviCys) or S -24

[(Z )-2-aminovinyl]-(3S )-3-methyl-D-cysteine (AviMeCys) [3]. The formation of AviCys and AviMeCys25

is catalysed by an enzyme of the family of homo-oligomeric flavin-containing cysteine decarboxylases.26

The enzyme with the generic designation LanD catalyses the oxidative decarboxylation of a C-terminal27

cysteine residue to a reactive thio–enol intermediate, which then cyclises with a Dha or Dhb residue,28

respectively, yielding AviCys or AviMeCys. An example would be the AviCys residue in epidermin in-29

troduced by EpiD [4]. Another post-translational modification is the chlorination of tryptophan residues30
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catalysed by a flavin-dependent tryptophan halogenase designated LanH. This kind of reaction has been1

observed in the chlorination of tryptophan by MibH in microbisporicin biosynthesis [5]. If the cluster2

contains a cytochrome P450 oxygenase designated LanO, amino acids in the modified precursor peptide3

can be hydroxylated, as observed in the hydroxylation of proline in microbisporicin biosynthesis [5]. If4

the N-terminal amino acid is Dha and an oxidoreductase is present in the cluster, the N-terminal amino5

acid can be converted to lactate, observed in the epicidin 280 cluster [6].6

antiSMASH7

antiSMASH, the antibiotics and secondary metabolite analysis shell, is a software pipeline for the au-8

tomated identification of secondary metabolite biosynthesis clusters. Initially, product prediction was9

only possible for non-ribosomal peptide synthase (NRPS) and polyketide synthase (PKS) gene clus-10

ters [7]. Earlier this year, we released antibiotics and secondary metabolite analysis shell (antiSMASH)11

2.0 [8]. In the new release, the architecture of the software was redesigned, now making it possi-12

ble to add new predictors as self-contained plug-ins. antiSMASH is available as a web service at13

http://antismash.secondarymetabolites.org and can also be downloaded to run standalone. It is released14

under the GNU Affero Public License version 3, an OSI-approved Open Source license.15

Here we present the implementation of a lanthipeptide-specific analysis module for antiSMASH 2.16

The module is shipped with the antiSMASH 2.1 release and also running on the public web server.17

Design, Implementation and Validation18

Secondary metabolite clusters in antiSMASH are identified using Hidden Markov Models (HMMs) of19

protein motifs for key biosynthetic enzymes. Which profiles are required to be identified for a specific20

secondary metabolite type is described by a rules file containing one rule-set per cluster type. Rule-sets21

can be simple hits against a single profile, AND and OR combinations of multiple profiles, or a selection22

of more complex rules, e.g. requiring a match against a minimum of n hits of a set of profiles. New23

secondary metabolite types can be added by adding new profile HMMs and extending the rules file.24

Once the cluster detection has identified a secondary metabolite cluster of a certain type, specific25

analysis modules can be run to generate a more detailed analysis of the pathway and the prediction of26

the product of a given cluster. Specific analysis modules are written as self-contained plug-ins that are27
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loaded from the user’s PYTHONPATH at run-time.1

Identification of Lanthipeptide Biosynthetic Gene Clusters2

To make more detailed cluster information available to the downstream specific analysis module, the3

cluster detection rules have been extended to include domain-specific Pfam [9] HMMs for the N-terminal4

domain (PFAM: PF13575) of class II LanM enzymes, the central kinase domain (PFAM: PF00069) of class5

III and IV enzymes, LanD-type flavin-dependent decarboxylases (PFAM: PF02441), LanH-type flavin-6

dependent halogenases (PFAM: PF04820), LanO-type cytochrome P450 oxygenases (PFAM: PF00067)7

and EciO-type short chain dehydrogenases (PFAM: PF00106, PF13561) (see Table 1 for details).8

Prediction of the Lanthipeptide Class9

Lanthipeptide classes are assigned by determining the domains present in the biosynthetic enzymes.10

Characteristic for class I lanthipeptides is the separate LanB enzyme containing the dehydratase domain,11

so the class prediction checks for a hit against the Lant dehyd N or Lant dehyd C domains. The dehy-12

dratase domain of class II LanM-type enzymes is characteristic as well, so if the cluster contains this13

dehydratase domain (PFAM: PF13575), the lanthipeptide will be considered class II. Class III LanKC-14

type and class IV LanL-type enzymes are identified via the central kinase domain (PFAM: PF00069). To15

differentiate between class III and IV enzymes, the algorithm checks if the conserved zinc binding sites16

in the C-terminal cyclase domain are absent (class III) or present (class IV).17

Cleavage Site prediction18

In the final step in lanthipeptide biosynthesis, a protease cleaves the leader peptide part off the modified19

precursor peptide to yield the mature peptide. Depending on the class of the lanthipeptide, the cleavage20

site motives vary widely. In order to predict the cleavage site, we have created a manually curated set of21

HMMs, one for lanthipeptide classes I and II each (Tables 2, 3). Profiles for the HMMer 2.3.2 software22

[10] were generated using hmmbuild profile.hmm alignment.fa; hmmcalibrate profile.hmm. As the23

method depends on the size of the seed sequence data set, we decided not to include cleavage site24

predictions for class III (only six seed sequences available) and class IV (no experimentally verified25

sequences available) lanthipeptides. Once more seed sequences become available for these two classes,26
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adding cleavage site predictions using the same method will be straightforward.1

Monoisotopic mass, molecular weight and alternative weights2

Once the cleavage site is predicted, both the monoisotopic mass and the average molecular weight are3

calculated. For the calculation of these numbers it is assumed that all Ser and Thr residues are dehydrated4

to Dha and Dhb respectively. As a lack of dehydration is frequently observed but the mechanism behind5

this has not been elucidated, we also calculate alternative weights under the assumption that one up to6

n Ser or Thr are not dehydrated, where n is the number of Ser and Thr residues in the core peptide7

subtracted by the number of Cys residues in the core peptide. This upper bound is set to account for the8

observation that all Cys residues tend to participate in Lan or MeLan bridges with Dha or Dhb residues.9

Predicting Tailoring Reactions10

Tailoring reactions are not performed by the core biosynthetic enzymes that perform the dehydration11

and cyclisation but instead by additional enzymes also encoded on the cluster.12

AviCys and AviMeCys formation13

The unusual amino acids AviCys and AviMeCys are formed by oxidative decarboxylation of the C-14

terminal Cys residue. The resulting thio–enol intermediate cyclises with a Dha or Dhb side-chain re-15

spectively. This reaction is catalysed by a LanD-type flavin-dependent decarboxylase, identified by a hit16

against the PFAM PF02441 profile with a score ≥ 20. The formation of AviCys or AviMeCys reduces17

the predicted peptide weight by 46 Da.18

Halogenation19

Identified by a hit against the PFAM PF04820 profile with a score ≥ 20, LanH-type halogenases chlorinate20

an amino acid side chain, increasing the predicted peptide weight by 34 Da.21

Hydroxylation22

LanO-type cytochrome P450 oxygenases catalyse the regiospecific oxidation of non-activated hydrocar-23

bons. The enzyme is identified by a hit against PFAM PF00067 with a score ≥ 60. The hydroxylation24

increases the predicted peptide weight by 16 Da.25
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Lactate formation1

EciO-type short-chain dehydrogenases identified by a hit against PFAM PF00106 or PFAM PF135612

with a score ≥ 100 catalyse the final step of the conversion of the N-terminal Dha residue to lactate.3

This increases the predicted peptide weight by 2 Da.4

Predicting the number of Lan and MeLan bridges5

To predict the number of Lan and MeLan bridges, a simple heuristic is applied using the formula6

|b| = min(|S|+ |T |, |C|)− v, v =











1 if AviCys or AviMeCys residue is present

0 otherwise

where |b| is the number of bridges, and |S|, |T |, |C| is the number of amino acids Ser, Thr, and Cys in7

the core peptide.8

Validation and Benchmarking9

To validate the robustness of the cleavage site profiles, we used n-fold cross validation. For a seed10

alignment of size n, we built n different profiles by including n − 1 sequences, and then checked if a11

cleavage site was predictable and correct for the left out sequence. A cleavage site was predictable if the12

profile produced a hit with a score above the threshold. A cleavage site was considered correct if the13

prediction matched the ungapped seed sequence not used for building the profile.14

To benchmark the overall performance of the prediction, we ran a number of lanthipeptide biosyn-15

thetic gene clusters through antiSMASH. We checked if the gene cluster was identified, the precursor16

peptide was detected, and finally the peptide mass was predicted correctly. Among the clusters run for17

benchmarking, we included the planosporicin and epilancin 15X clusters. The cleavage sites of both of18

these lanthipeptides were not part of the seed alignments.19

Discussion20

Only few tools are currently available that allow the automated identification of RiPPs. Apart from21

antiSMASH, there is BAGEL, recently released in version 3 [11]. BAGEL targets a large number of22
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different ribosomally synthesised peptides. For lanthipeptides, BAGEL only predicts the leader peptide1

and the class, but does not attempt to predict tailoring reactions, number of Lan and MeLan bridges or2

the molecular weight.3

Determining the lanthipeptide class from the biosynthetic enzymes in the cluster is straightforward,4

and antiSMASH performs this tasks flawlessly on the benchmark data set (Table 4). Predicting the core5

peptide sequence is more difficult. The cleavage site motif of class II lanthipeptides (Table 3) is relatively6

uniform, largely consisting in two amino acids with small side chains that are preceded by alternating7

hydrophobic and hydrophilic residues. In fact, all the four of the 21 class II cleavage sites incorrectly8

predicted during validation (Table 5) differ from this pattern and contain a site that more closely matches9

the motif upstream of the actual cleavage site. Some class II core peptides like mersacidin [12] or10

lichenicidin A2 [13] lose an additional six amino acids at the N-terminus after the proteolytic cleavage, so11

it seems likely that the predicted cleavage sites may be accurate and some additional enzyme catalyses12

the N-terminal modifications. Class I leader peptides also carry a short motif of alternating hydrophobic13

and hydrophilic amino acids, usually called the FNLD motif. The spacer between this motif and the14

actual cleavage site varies. At position -2 in front of the cleavage site, many leader peptides carry a15

proline residue (Table 2). During validation, all cleavage sites were predicted correctly (Table 5). Due16

to the strong signal of the FNLD motif, class I prediction (stability 100 %) is even more robust than the17

class II prediction (stability 81 %) with the shorter motif. As a proof of concept, we used the gene18

clusters of the recently published planosporicin [14] and the lactate-containing epilancin 15X [15]. Both19

precursor peptides contain cleavage sites that are distinct from all the sequences included in the class I20

seed alignment. For both lanthipeptides the algorithm is able to correctly predict the mass, number of21

Lan/MeLan bridges and tailoring modifications.22

The detection of enzymes responsible for tailoring reactions is central in the prediction of the mature23

peptide mass. antiSMASH correctly predicts the AviCys residues present in epidermin and microbis-24

poricin, the two amino-vinylated peptides in the benchmark data-set (Table 4). The halogenation and25

hydroxylation of microbisporicin is also detected. A remaining issue in mass prediction is that not all Ser26

and Thr residues are dehydrated in all the peptides, resulting in mass predictions that are 18 Da too low27

per undehydrated amino acid. antiSMASH assists in detecting the presence of undehydrated residues by28

providing alternative mass predictions for lanthipeptides that carry more Ser and Thr than Cys residues.29

Once the tailoring reactions have been predicted, the final step is the prediction of the number of30



8

Lan and MeLan bridges. The näıve heuristic of counting the Cys and Ser/Thr residues and then using1

the smaller number fails if the mature peptide contains an AviCys or AviMeCys residue and needs to be2

adjusted accordingly. Using the advanced heuristic, antiSMASH correctly predicts the number or bridges3

in almost all residues of the benchmark data-set (Table 4). The heuristic only fails if two Cys residues4

form a disulphide bridge, a rare occurrence observed in e.g. thermophilin 1277 [16]. Unfortunately, the5

enzyme catalysing the formation of the disulphide bridge is not present on the gene cluster and thus can6

not be used to predict a disulphide bridge formation.7

After all prediction steps are completed, the prediction details will be annotated into the antiSMASH8

output. For the HTML output (Figure 1), lanthipeptide class and leader / core peptide split predicted9

are shown in the ”detailed annotation” section of the cluster page. The score of the class prediction,10

predicted monoisotopic mass and molecular weights, the number of bridges and the identified additional11

modifications are shown in the ”prediction details” sidebar.12

Conclusions13

With the algorithm described in this paper, antiSMASH gains extensive lanthipeptide-specific predictive14

capabilities. antiSMASH is the only software currently available that will predict lanthipeptide class,15

core peptide cleavage, tailoring reactions, number of Lan and MeLan bridges, and the molecular weight16

of the mature peptide product.17

List of abbreviations18

antiSMASH antibiotics and secondary metabolite analysis shell19

AviCys S -[(Z )-2-aminovinyl]-D-cysteine20

AviMeCys S -[(Z )-2-aminovinyl]-(3S )-3-methyl-D-cysteine21

Cys cysteine22

Dha dehydroalanine23

Dhb dehydrobutyrine24
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HMM Hidden Markov Model1

Lan lanthionine2

MeLan methyllanthionine3

NRPS non-ribosomal peptide synthase4

PKS polyketide synthase5

RiPP ribosomally synthesised and post-translationally modified peptide6

Ser serine7

Thr threonine8
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Figure Legends1

Figure 1. Example lanthipeptide output antiSMASH 2.1 output for the microbisporicin [5] gene
cluster, showing the predicted leader/core peptide split and the predicted tailoring reactions and
weights in the sidebar.
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Tables1

Table 1. Lanthipeptide-related HMM profiles and scores

Name Description Cutoff File
LANC like LanC-like lantibiotics biosynthesis protein 17 LANC like.hmm
DUF4135 Lantibiotic-associated domain 150 PF13575.hmm
Lant dehyd N Lantibiotic dehydratase, N-terminus 20 Lant dehyd N.hmm
Lant dehyd C Lantibiotic dehydratase, C-terminus 20 Lant dehyd C.hmm
Flavoprotein Lantibiotic aminovinly flavoprotein 20 PF02441.hmm
Trp halogenase Tryptophan halogenase 20 PF04820.hmm
p450 P450 oxygenase 60 PF00067.hmm
Pkinase Protein kinase domain 30 PF00069.hmm
adh short Short-chain dehydrogenase 100 PF00106.hmm
adh short C2 Short-chain dehydrogenase, C-terminus 100 PF13561.hmm
Antimicr18 Lantibiotic antimicrobial peptide 18 20 Antimicrobial18.hmm
Gallidermin Gallidermin 20 Gallidermin.hmm
L biotic A Lantibiotic, type A 20 L biotic typeA.hmm
TIGR03731 Lantibiotic, gallidermin/nisin family 18 TIGR03731.hmm
leader d Lantibiotic leader lacticin 481 group 20 LE-LAC481.hmm
leader eh Lantibiotic leader mersacidin cinnamycin group 20 LE-MER+2PEP.hmm
leader abc Lantibiotic leader LanBC modified 20 LE-LanBC.hmm
mature d Lantibiotic peptide lacticin 481 group 20 MA-LAC481.hmm
mature ab Lantibiotic peptide nisin epidermin group 20 MA-NIS+EPI.hmm
mature a Lantibiotic peptide nisin group 20 MA-NIS.hmm
mature b Lantibiotic peptide epidermin group 20 MA-EPI.hmm
mature ha Lantibiotic peptide two component alpha 20 MA-2PEPA.hmm
mature h beta Lantibiotic peptide two component beta 20 MA-2PEPB.hmm
lacticin l lantibiotic peptide lacticin 481 group (dufour et al) 20 LE-DUF.hmm
lacticin mat lantibiotic leader lacticin 481 group (dufour et al) 20 MA-DUF.hmm
LD lanti pre FxLD family lantipeptide 20 TIGR04363.hmm
strep PEQAXS Streptomyces PEQAXS motif lantipeptide 20 strep PEQAXS.hmm

A list of the lanthipeptide-related HMM profiles
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Table 2. Class I cleavage site motif sequences

Name Position Sequence
mutacin 1140 22. . .41 FAFDTTDTTIVASNDDPDTR

mutacin Ny266 22. . .41 FTFDTTDTIVAESNDDPDTR

salivaricin D 6. . .23 FNLDLVEVSK--SNTGASAR

nisin U 6. . .24 FNLDLIKISK-ENNSGASPR

nisin A 6. . .23 FNLDLVSVSKK--DSGASPR

nisin Z 6. . .23 FNLDLLSVSKK--DSGASPR

nisin Q 6. . .23 FNLDLVSVSKT--DSGASTR

gallidermin 11. . .30 FDLDVKVNAKESNDSGAEPR

epidermin 11. . .30 FNLDVKVNAKESNDSGAEPR

entianin 7. . .24 FDLDVVKVSKQ--DSKITPQ

Pep5 8. . .26 FDLEIKKETSQNTD-ELEPQ

epicidin 280 8. . .26 FDLEIKKDNME-NNNELEPQ

epilancin K7 6. . .24 FDLNLNKGVETQK-SDLSPQ

geobacillin I 7. . .23 FDLDIVVK-KQ--DDVVQPN

streptin 8. . .23 FDLDLKTNKK---D-TATPY

microbisporicin 17. . .33 LDLDLSIGVEE---ITAGPA

Sequences used to create the class I cleavage site motif

Table 3. Class II cleavage site motif sequences

Name Position Sequence
mutacin II 19. . .52 EL-TILGG

variacin 15. . .47 ELDAILGG

salivaricin A 22. . .51 ELMEVAGG

butyrivibriocin 16. . .48 ELEQILGG

streptococcin A FF22 20. . .51 ELDNLLGG

lichenicidin A1 30. . .74 EQHSIAGG

lichenicidin A2 27. . .72 ELKALVGG

thermophilin 1277 18. . .66 ELEMLIGG

lacticin A1 16. . .59 FDEDVFGA

lacticin A2 26. . .65 EGDESHGG

nukacin KQ 131 23. . .57 ELNEVLGA

macedocin 18. . .51 ELDQIIGA

salivaricin B 24. . .56 ELDNVLGA

haloduracin A1 33. . .69 ILAGVNGA

haloduracin A2 28. . .65 ELSSLAGS

cytolysin 12. . .68 EMEAIQGS

plantaricin W 24. . .59 NLLNVNGA

cinnamycin 52. . .59 IAATEAFA

mersacidin 41. . .48 QMDKLVGA

actagardine 35. . .64 EDRTIYAA

michiganin A 36. . .66 RRVVSPYM

Sequences used to create the class II cleavage site motif
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Table 4. Benchmark results

Substance Class Predicted Mass (Da) Actual Mass (Da) # bridges Source
Salivaricin D I 3466.7 3467.5 4 [17]
Nisin U I 3029.6 3029.0 5 [18]
Nisin A I 3353.9 3354.5 5 [19]
Nisin Z I 3330.9 3331.5 5 [19]
Nisin Q I 3326.9 3327.3 5 [19]
Gallidermin I 2164.0 2164 4 [4]
Epidermin I 2164.0 2164 4 [4]
Entianin I 3346.7 3346 5 [20]
Pep5 I 3487.1 3488 3 [4]
Epicidin 280 I 3135.6 3135 3 [6]
Geobacillin I I 3261.5 3265 7 [21]
Streptin 1´ I 2441.9 2442 3 [22]
Microbisporicin A2 I 2232.4 2232 5 [23]
Mutacin II II 3243.5 3244 3 [24]
Salivaricin A2 II 2366.6 2368 3 [25]
Streptococcin A-FF22 II 2796.1 2795 3 [26]
Lichencidin A1 II 3250.7 3251 4 [13]
Lichencidin A2 II 3632.8† 3021 4 [13]
Thermophilin 1277 II 3395.9‡ 3428 2‡ [16]
Lacticin 3147 A1 II 3322.6 3322.3 4 [27]
Lacticin 3147 A2 II 2843.2 2847.5 3 [27]
Salivaricin B II 2733.1 2740 3 [28]
Cinnamycin II 2043.2 2041 3 [29]
Mersacidin II 2399.0† 1826.3 3 [30]
Actagardine II 1856.2 1860.5 4 [31]

Michiganin A II 2145.5 2145 4* [32]
Planosporicin I 2193.3 2194 5 [14]
Epilancin 15X I 3171.8 3171.7 3 [15]
†N-terminal removal of six amino acids not predicted
‡Contains a disulphide bridge
*Not shown experimentally

Benchmark of the antiSMASH lanthipeptide predictor

Table 5. Stability of the prediction motifs

Class # Sequences # Found % Found # Correct % Correct
I 16 16 100 16 100
II 21 21 100 17 81

Stability of the prediction motifs
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2 IntroducƟon

2.1 BioinformaƟcs Approaches

2.1.1 DefiniƟon

When the term ”bioinformatics” was coined initially (Hesper and Hogeweg 1970),
it was meant to represent the study of informatic processes in biological systems –
for a review, see (Hogeweg 2011). With the advent of large-scale shotgun sequenc-
ing projects, the meaning bioinformatics was frequently reduced to computational
handling and analysis of genomic data. To avoid this narrow classiϐication, the alter-
native term ”computational biology” has emerged to represent all biological research
performed with the aid of computational methods. In recent years, different -omics
disciplines and the connection of the data produced have broadened the ”bioinfor-
matics” deϐinition again. TheUSNational Institute ofHealthdeϐinesbioinformatics as
the ”[r]esearch, development, or application of computational approaches for expand-
ing the use of biological […] data, including those to acquire, store, organize, archive,
analyze, or visualize such data”, and computational biology as ”[t]he development and
application of data-analytical and theoretical methods, mathematical modeling and
computational simulation techniques to the study of biological […] systems” (Huerta
et al. 2000). Drawing a clear border between these deϐinitions is difϐicult, and for
this work, I will simply be using ”bioinformatics” as a synonym for ”computational
biology”, meaning the research and development of computational applications of
data-analytical methods to acquire, study, store, or visualize biological data or sys-
tems.

2.1.2 History

Even before DNA sequencing was invented in the mid-seventies of the last century,
peoplehad startedusing computers tohelp answerbiological questions. WhenNeedle-
man andWunsch (1970) pioneered sequence comparison and alignment algorithms,
they were working on amino acid sequences. The concepts of the algorithms were
easily adaptable to nucleotide sequences, and onceDNA sequence data became avail-
able, the Needleman–Wunsch algorithm was quickly adapted. Beyond alignment,
earlyusesof bioinformatics include thepredictionofRNAsecondary structure (Nussi-
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nov and Jacobson 1980) and building phylogenies (Dayhoff and Eck 1969).
In the late nineties, building on the technological advances brought by the Human
Genome project, sequencing whole genomes became a possibility. At ϐirst, the small
length of sequencing reads made assembly of large genomes difϐicult, but later gen-
erations of the sequencing technologies gave larger and larger read sizes. Around
2008, the improvements to sequencing technology reached a level where sequence
sizeswere growing exponentially faster than the computing capacity to process them
(Wetterstrand 2013). The ϐield of bioinformatics is still adapting to this ”data deluge”
(Bell et al. 2009).

2.1.3 From Gene to Product, BioinformaƟc Steps

Following the data from sequencing via genes to gene products, bioinformatics is in-
voled in every step of the pipeline. After a sequencing run, short DNA snippets called
”reads” need to be assembled into a contiguous sequence. This is done by trying to
ϐind the shortest common superstring of the overlapping sequence reads, while ac-
counting for sequencing errors. As a mathematically optimal solution would require
a prohibitive amount of computation, approximations and heuristics are employed
to lower the time complexity of assemblies (see e.g. Chevreux 2005).
Once the genome sequence is assembled, the next step is annotating it. Usually this
focuses on gene ϐinding, but additional features like RNAs, promotors, ribosomal
binding sites, secondary structure elements, and intron/exon layout also can be iden-
tiϐied in this step. During gene ϐinding, theusual approach is to identify the set ofmax-
imal non-overlapping open reading frames (ORFs) (see Majoros et al. 2004; Delcher
et al. 2007). Frequently, those ORFs are then compared to databases of known genes
to identify the correct start codons (e.g. Blattner et al. 1997). While annotations from
related organisms might provide additional clues, relying on those annotations also
increases the risk of propagating and cementing annotation errors (Richardson and
Watson 2013).
Having identiϐied genes, the next step frequently is functional annotation. By com-
paring translated protein sequences against databases of conserved proteins or pro-
tein domains (like PFAM, Punta et al. 2012), one can derive the function of a gene
product. Of course the risk mentioned by Richardson and Watson (2013) again ap-
plies, basing automated annotations of function on automated annotations of func-
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tion carries the risk of propagating annotation errors.

2.2 Genome Mining

In many prokaryotes, enzymes that act together to perform their function are also
clustered together on the genome. This feature has been utilised since the early
days of genetic engineering in secondary metabolite producers, e.g. to isolate sec-
ondary metabolite clusters onto plasmids that can then be transferred into heterol-
ogous hosts (Malpartida and Hopwood 1984). Locating secondary metabolites on
plasmids also helped in early sequencing attempts, like the sequencing of the nisin
structural gene (Kaletta and Entian 1989). Still, in the early days of genome mining,
a lot of the methods depended on hybridisation experiments with plasmids carry-
ing random fragments of genomic DNA (Chinault and Carbon 1979), and then using
primers derived from the hybridisation sequences.
When the genome of an organism is available, different approaches become feasi-
ble. The ϐirst bacterial genome,Haemophilus inϔluenzae, was sequenced usingwhole-
genome shotgun sequencing (Fleischmann et al. 1995) in 1995, followed by the Es-
cherichia coli K12 genome (Blattner et al. 1997) in 1997. To date, the GenBank data-
base (Benson et al. 2013) contains 2666 completed and more than 12 000 partially
sequenced and assembled prokaryotic genomes. Especially the latter number is ex-
pected to rise sharply over the next years. Data from the USNational HumanGenome
Research Institute showthat starting in January2008, sequencing costs per rawmega-
base of DNA has dropped drastically (Wetterstrand 2013), making it feasible to se-
quence more and more organisms of interest.
The genome of the model Actinomycete Streptomyces coelicolor was sequenced in
2002 (Bentley et al. 2002). In addition to the three previously identiϐied secondary
metabolite gene clusters – the blue polyketide actinorhodin, the red oligopyrrole
prodiginine, and the non-ribosomal peptide CDA– the S. coelicolor genome contained
an additional 18 characteristic secondary metabolite clusters. Based on the genetic
information about the clusters, a number of the additional secondary metabolites
have since been elucidated (Bentley et al. 2002). Similar observations were made
in the sequencing of Streptomyces avermitilis (Ikeda et al. 2003) and Streptomyces
griseus (Ohnishi et al. 2008).
Walsh and Fischbach (2010) assumed that based on the knowledge gap between sec-
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ondarymetabolite clusters with known products from Streptomycetes and the num-
ber of cryptic and predicted clusters found on their genomes, we are missing about
90% of the secondary metabolite production capability. Even if only a small part of
the cryptic gene clusters actually produces novel molecules, elucidating those clus-
ters’ biosynthetic steps will easily double the knowledge on biosynthetic processes.

2.3 Natural Products

Natural products are small molecules produced by living organisms. Many natural
products have unusual chemical folds and show antibacterial, antifungal, antipara-
sitical, anticancer or immunosuppressive activities. After Alexander Fleming’s dis-
covery of penicillin (Fleming 1929), an antibacterial compound produced by a Peni-
cillium, microorganisms have been in the focus of natural product research. When
Waksman and coworkers isolated streptomycin (Schatz et al. 1944) from Strepto-
myces griseus, the group of Actinobacteria began to get increased attention. Strepto-
mycetes andotherActinomycetales indeedhave a great biosynthetic potential. About
two thirds of the antibacterial compounds in use in the clinics today are produced by
Actinomycetales (Demain 1999). Many different classes of natural product biosyn-
thesis pathways have been identiϐied. In the following, the three classes most rele-
vant for this work will be introduced.

PolykeƟdes

A big and important class are the polyketides. Interest in polyketide synthesis had
started early last century, but the biosynthesis pathways continued to be elusive (for
a historical overview, see Staunton andWeissman 2001). Polyketides are assembled
fromsimple buildingblocks bypolyketide synthases (PKSs). Thebuildingblocks usu-
ally are malonic acid derivatives coupled with coenzyme A. Polyketides are synthe-
sised in a process similar to the fatty acid synthesis. Depending on the genetic and
enzymatic organisation, different types of PKSs are distinguished, again in analogy to
the fatty acid biosynthesis. Type I PKSs carry the different enzymatic domains cova-
lently linked on largemultifuntional proteins. In contrast, type II PKSs carrymultiple
discrete proteins catalysing one function each.
In the case of macrolide type I PKSs like the erythromycin synthase, multiple mod-
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ules perform subsequent synthesis steps (Donadio et al. 1991; Bevitt et al. 1992).
Eachmodule contains at least the three enzymatic domains (keto synthase (KS), acyl
transferase (AT) and acyl carrier protein (ACP)) required for a single chain exten-
sion step by Claisen condensation (Claisen 1887). Additional domains positioned
between the AT and ACP domains can catalyse additional keto group modiϐiciations
(e.g. the reduction by a keto reductase (KR), dehydratiation by a dehydratase (DH)
and further reduction by an enoyl reductase (ER)). In front of the ϐirst module, a
starter module usually consisting of an AT and an ACP domain load and activate the
starter substrate. Many PKSs contain a C-terminal thioesterase (TE) domain releas-
ing the polyketide chain from the synthase. As the extender units forming the back-
bone of the polyketide are selected by the AT domains, it is possible to derive the
structure of the polyketide backbone from substrate speciϐicity predictions of the AT
domains, the reductive domains and the order of those domains. As an exception to
these canonical modules, some bacteria also contain so-called trans-AT PKSs, where
the AT domain is not encoded in the same gene product as the rest of the PKSmodule
but instead is located on a separate gene product, this occurs e.g. in the kirromycin
gene cluster (Weber et al. 2008). Apart from the different location of the AT domain,
trans-AT PKSs work similar to the canonical cis-AT PKSs (Piel 2010).
In contrast, type II PKSs like the actinorhodin synthase only contain a single module
that iteratively builds the polyketide product (Malpartida and Hopwood 1984). This
module is encoded on discrete enzymes carrying a KSα, a KSβ , and an ACP domain
respectively. The KSα enzyme resembles the fatty acid keto synthase domains. The
KSβ is thought to be responsible for controling the chain length (Tang et al. 2003).
Type III PKSs perform similar condensation reactions, but their domain setup and
mode of action greatly differs from type I and II PKSs. Unlike the latter, type III PKSs
directly utilise substrates and percursors, without the help of an ACP domain. This
is possible because the whole set of condensation, cyclisation and aromatisation re-
actions is carried out in a single active site (Ferrer et al. 1999).

Nonribosomal PepƟdes

Nonribosomal peptides are polypeptides that are not of ribosomal origin but instead
are synthesised bymodularmegaenzymes called nonribosomal peptitde synthetases
(NRPSs) (for a review, see Schwarzer et al. 2003). They are not limited to the 20
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proteinogenic amino acids but instead can contain non-proteinogenic amino acids
such as hydroxyphenyl-glycine, dihydroxyphenyl-glycine (e.g. in balhimycin, Pelzer
et al. 1999) or ornithine. So far, over 500 amino acids have been identiϐied (Caboche
et al. 2008).

Following similar principles as the type I PKSs, nonribosomal peptitde synthetases
consist of modules carrying three domains responsible for synthesising the peptide
backbone. The substrate amino acid integrated into the non-ribosomal peptide is se-
lected and activated by the adenylation (A)-domain. The activated amino acid is then
covalently bound to the peptidyl carrier protein (PCP), which takes care of transport-
ing the amino acid residue to a condensation (C)-domain forming the peptide bond
during chain elongation. The common organisation of these domains in a module
usually is C–A–PCP, with an exception of the initiation module that does not need to
performa chain elongation step and thus only carries theA–PCPdomains. Analogous
to type I PKSs, a C-terminal thioesterase (TE)-domain releases the polypeptide chain,
frequently catalysing a macrocyclisation.

Deviations from the C–A–PCP pattern are possible and usually indicate additional
modiϐications. Epimerisations from L- to D-amino acids are catalysed by epimerisa-
tion (E)-domains, heterocyclisation (Cy)-domains can replace C-domains and intro-
duce heterocyclisations, and methyltransferase-domains methylate amino acid side
chains. In addition to tailoring domains integrated into the NRPS macromolecule,
many NRPS gene clusters also contain standalone modiϐication enzymes like P450
oxygenases, halogenases and methyltransferases.

The peptide backbone synthesised byNRPSs can be derived from the substrate speci-
ϐicity and the order of the A-domains. Unfortunately, the overall sequence similarity
of A-domains with different substrate speciϐities in an NRPS cluster does not allow
for a simple sequence-based approach to determining the substrate speciϐicity. After
obtaining a crystal structure of an A-domain of the gramicidin S synthase (Conti et
al. 1997), it was possible to investigate the substrate binding pocket and to propose
ϐirst models for predicting the substrate speciϐicity based on the residues contained
in the active site (Stachelhaus et al. 1999; Challis et al. 2000).
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LanthipepƟdes

Lanthipeptides are ribosomally synthetised and post-translationally modiϐied pep-
tides (RiPPs) undergoing extensive post-translational modiϐications. These modiϐi-
cations increase the stability of the peptide product against heat stress and prote-
olysis. The name lanthipeptide is derived from the characteristic lanthionine (Lan)
and methyl-lanthionine (MeLan) residues contained in the processed peptide prod-
uct. The best-knownmembers of this secondarymetabolite type – like nisin (Kaletta
and Entian 1989) – possess an antibacterial activity and are called lantibiotics for
”lanthionine-containing antibiotics”. The signature Lan and MeLan residues are in-
troduced in a two-step reaction, ϐirst dehydrating serine (Ser) and threonine (Thr) to
dehydroxyalanine (Dha) and dehydroxybutyrine (Dhb), respecively. A Michael-type
addition by cysteine (Cys) residues onto the dehydro amino acids yields the thioether
cross-links in the second step.
Lanthipeptides are classiϐied bybiosynthetic enzymes catalysing these two steps (Ta-
ble 1) and to date, four different classes are known (Knerr and van der Donk 2012).

Class # Core Enzymes Enzyme Name Zn Binding Site

I 2 LanB & LanC yes
II 1 LanM yes
III 1 LanKC no
IV 1 LanL yes

Table 1: Lanthipeptide core biosynthesis enzyme properties

In lanthipeptides of class I, two separate enzymes catalyse the two steps: Dehydra-
tion is carried out by a dehydratase designated LanB. Cyclisation then is performed
by a cyclase called LanC. To derive cluster-speciϐic names from these generic names,
the ”Lan”-part is usually replaced by a cluster-speciϐic identiϐier: e.g. NisB and NisC
for the nisin gene cluster (Kuipers et al. 1993). In class II, III and IV lanthipeptides,
bi-functional enzymes performboth the dehydration and condensation reactions. An
enzyme called LanM in class II lanthipeptides carries an N-terminal dehydratase do-
main and aC-terminal cyclisation domain resembling class I LanC enzymes. The class
III and IV bi-functional enzymes are very similar in their domain organisation. They
carry an N-terminal phosphoserine/phosphothreonine lyase domain, a central ki-
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nase domain and a C-terminal cyclase domain. In class III clusters the enzyme is
called LanKC, in class IV clusters it is called LanL. LanKC enzymes lack three zinc-
binding residues in the C-terminal cyclase domain that are conserved in the other
three cluster type cyclases.
In addition to the corebiosynthetic enzymes, furthermodiϐications canbe introduced
to form the ϐinished lanthipeptide. Enzymes responsible for the formation of S-[(Z)-
2-aminovinyl]-D-cysteine and S-[(Z)-2-aminovinyl]-(3S)-3-methyl-D-cysteine cycli-
sations (Sit et al. 2011) have been identiϐied and given the generic designation LanD.
A ϐlavin-dependent tryptophanhalogenasedesignatedLanH is able to chlorinate tryp-
tophan, as observed in the microbisporicin biosysnthesis (Foulston and Bibb 2010).
A cytochrome P450 oxygenase designated LanO is able to synthesise (di)hydroxy-
proline, also observed in the microbisporicin gene cluster (Foulston and Bibb 2010).
In core peptides carrying an N-terminal Dha residue, a short-chain dehydrogenase of
the EciO type can convert theDha residue into a lactate (Heidrich et al. 1998). Amore
detailed description of the enzyme classes responsible for lanthipeptide biosynthesis
can be found in (Blin et al. 2013a).
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3 Goals

1. The goal of this work was to create an easy to use, comprehensive secondary
metabolite analysis software.
Various software tools were available to perform predictions for specic types
of secondarymetabolite clusters. Most of these tools focus on the prediction of
NRPS and PKS clusters. This study introduces the ϐirst analysis tool that has
the aim to predict many different secondary metabolite gene clusters: anti-
SMASH. A central aim of antiSMASH is, besides covering a wide range of sec-
ondary metabolites, to allow easy access to both input and ouput data for the
target audience of wet lab natural product researchers. Also covered in this
study is the work on antiSMASH 2.0, which further improves both predictive
capabilities and the usability of the antiSMASH pipeline.

2. The substrate speciϐicity predictionsprovidedbyNRPSPredictorwere improved.
The initial release of NRPSPredictor (Rausch et al. 2005) in 2005 constructed
support vector machine (SVM) models from the available NRPS A-domain se-
quences and their associated substrate speciϐicities. In the six years since that
publication, a large number of new A-domains have been identiϐied and pub-
lished. This study introduces an improved set of SVMmodels for the NRPSPre-
dictor2 software.

3. An algorithm capable of predicting the post-translational modiϐications of lan-
thipeptide precursor peptides was designed and implemented.
To the best of the author’s knowlede, no published software tool is available to
identify lanthipeptide gene clusters and then predict post-translational modi-
ϐications to the precursor peptides based on the cluster layout. Predicting the
post-translational modiϐications is central in assessing themolecular weight of
the processed peptide product, which in turn is important for identifying this
product in culture extract via mass spectrometric approaches. This study pro-
vides the ϐirst such software tool, based on novel prediction algorithms and
fully integrated into the antiSMASH pipeline.
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4 Results & Discussion

4.1 anƟSMASH 1

antiSMASH – the antibiotics and secondary metabolite analysis shell – is a software
pipeline designed to predict secondary metabolite gene clusters from genomic DNA
sequences. While other software tools have been published aiming at speciϐic sec-
ondary metabolite types (e.g. Ansari et al. 2004; Kamra et al. 2005; Rausch et al.
2005; Caboche et al. 2008; Weber et al. 2009), antiSMASH is the ϐirst Open Source
Software pipeline to support a large number of secondarymetabolite types (18 types
in antiSMASH 1 (Medema et al. 2011), 24 types in antiSMASH 2 (Blin et al. 2013b)).
Users can either upload aDNA sequence in GenBank, EMBL or FASTA format, or spec-
ify an NCBI ID identifying the sequence to download from the GenBank (Benson et
al. 2013) database. If no genes are annotated in the sequence record, (e.g. the input
was a FASTA ϐile), antiSMASH will automatically run a gene ϐinding step (Glimmer
(Delcher et al. 2007) for prokaryotic inputs, GlimmerHMM (Majoros et al. 2004) for
eukaryotic inputs). In a next step, protein sequences for the annotated genes are
compared to amanually curated database of secondarymetabolite speciϐic signature
proϐiles using HMMer (Eddy 2011). The signature proϐiles are taken from the PFAM
database (Punta et al. 2012) or generated from seed alignments speciϐically for an-
tiSMASH. A set of secondary metabolite cluster rules deϐines which biosynthetic do-
mains need to be present for biosynthesis to occur and the overall size range of the
cluster. Cluster rules can range from simple rules (phenazine clusters are identi-
ϐied by a single hit against the phzB domain proϐile) via combination rules (type I
PKS clusters are identiϐied by a hit against the KS proϐile in proximity to a hit against
the AT proϐile) to complex rules (oligosaccharide clusters are identiϐied by hitting at
least three different proϐiles out of a set of six glycosyltransferase-like proϐiles). Sec-
ondarymetabolite clusters are annotated in the output when all the protein domains
are identiϐied within the deϐined distance range on the input genome.
Once secondary metabolite clusters are identiϐied, cluster-speciϐic analyses are run
for NRPS and PKS type I clusters. For both these types, the domain structure of their
modular biosynthetic megaenzymes is analysed. Substrates of PKS AT domains are
predicted using an active site signature sequence consisting of 24 amino acids (Yadav
et al. 2003) and a proϐile Hidden Markov Model (pHMM) based approach (Minowa
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et al. 2007). Substrates of NRPS A domains are predicted using both a pHMM based
approach and a SVMbased approach (Röttig et al. 2011). Using the individual domain
predictions from the different tools, a consensus prediction is generated for every
AT/A domain. From these consensus predictions and the order of the domains in the
synthase, the core polyketide/polypeptide sequence is predicted and visualised in a
picture ϐile.
A secondary metabolite cluster does not only consist of the genes encoding for the
core biosynthetic enzymes. In order to aid in the annotation of the accessory genes
surrounding the signature genes, antiSMASH contains four additional analysis steps.
ClusterBlast uses a manually curated set of all secondary metabolite gene clusters
identiϐied from the NCBI nt database. Using NCBI BLAST+ (Camacho et al. 2009),
secondary metabolite clusters identiϐied in the user’s input sequence are compared
to the gene clusters in our database. The tenmost similar clusters from the database
are reported in the results.
The same database was used to construct secondary metabolite clusters of ortholo-
gous groups (smCOGs), an evolutionary classiϐication system in the spirit of the es-
tablished cluster of orthologous groups (COG) classiϐication system (Tatusov et al.
2003). Additionally, a whole-genome search against the PFAM database and all bac-
terial/fungal genomes from the GenBank database is offered to improve annotations
at the cost of additional run-time.

4.2 anƟSMASH 2

After the publication of antiSMASH 1, the development methodology was changed
from the rapidprototyping approach takenwith the ϐirst version to amore formalised
development process better suited for future sofware maintenance. While the goal
still was to add new features such as novel predictors or secondarymetabolite types,
it was also important to ensure that new code did not interfere with existing predic-
tors. Additionally, any issues identiϐiedwith the runningweb server instance needed
to be resolved, again without breaking other functionality.
As a result of the rapid prototyping approach used to develop antiSMASH 1, different
predictionmoduleswere tightly coupled, responsibilities in the codewere not clearly
separated, and parts of the functionality were duplicated (Figure 1). Adding new
modules required changes at many locations of the source code, making it relatively
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gene finding
(if needed)

detect gene clusters
(cluster rules/HMM profiles)

NRPS/PKS analysis

Generate Output

data input
GenBank

data input
EMBL

data input
FASTA

smCOG analysis

Figure 1: antiSMASH 1 architecture. Boxes show different tasks, arrows show dependencies
between the tasks

hard to maintain and extend. To improve the state of the software in a controlled
manner – commonly called refactoring (Fowler 1999) – the dependencies were iso-
lated following the recommendations set by Feathers (2004). The individual parts
were then brought under unit test (Martin 2008) coverage. Following the so-called
DRY principle: ”Every piece of knowledge must have a single, unambiguous, author-
itative representation within a system” (Thomas and Hunt 1999, page 27), areas of
duplicated functionality were abstracted out and collected in a central utility library.
The inputmoduleswere switched to using parsers providedby theBioPythonproject
(Cock et al. 2009). Instead of hard-coding lists of signature proϐiles and cluster rules,
plain text ϐiles (Thomas and Hunt 1999, page 73) were used to dynamically load the
rules to identify secondary metabolite clusters. Predictor modules speciϐic for a sec-
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data input
(GenBank/EMBL/FASTA)

gene finding
(if needed)

detect gene clusters

lanthi-
peptide

NRPS customPKS

plug-and-play analysis modules

HTML GenBank customEMBL plug-and-play output modules

cluster
rules

HMM
profiles

HMM
profiles

HMM
profiles

HMM
profiles

Figure 2: antiSMASH 2 architecture. Rounded boxes are predeϐined tasks, yellow frames are
modular tasks, box arrows are individual modules of modular tasks, and folded-
corner boxes are external ϐiles that can be modiϐied by the antiSMASH user.

ondary metabolite cluster type work independently, all using the same application
programming interface (API). As the last step, all output modules work on the same
data, again producing their output independent of each other. The resulting archi-
tecture (Figure 2) is much less complex and easier to extend.
In addition to these signiϐicant changes to the antiSMASH software back-end compo-
nents, a number of user-visible changes were introduced to antiSMASH 2. In addi-
tion to the 18 secondarymetabolite cluster types identiϐied by antiSMASH 1 (polyke-
tides, nonribosomal peptides, terpenes, aminoglycosides, aminocoumarins, indolo-
carbazoles, lantibiotics, bacteriocins, nucleosides, β-lactams, ectoines, butyrolactones,
siderophores, melanins and others), antiSMASH 2 supports six additional cluster
types: oligosaccharides, thiopeptides, phenazines, furans, homoserine lactones and
phosphonates. Furthermore, improved detection proϐiles for many of the existing
cluster types were added (for a detailed list, see Blin et al. 2013b, Table S1). All these
24 cluster types are identiϐied using the secondarymetabolite cluster rules fromBlin
et al. (2013b, Table S2). Extending the method used by the ClusterBlast algorithm,
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a new method called SubClusterBlast was introduced, making it possible to identify
operons related in the biosyntheis of precursor moieties. SubClusterBlast contains
a database of 126 sub-clusters related to precursor biosynthesis from gene clusters
encoding known compounds. A ϐirst implementation of a cluster-speciϐic prediction
module for lanthipeptideswas added, predicting the lanthipeptide class based on the
sequence of the precursor peptide.
Apart from these scientiϐic additions, the interface was improved to provide a better
user experience. Support for draft genome input was added, both for NCBI down-
loads and uploads from the user’s browser. For prokaryotic sequences alone, this
change increases the number of available genomes from 2570 to 8898. In coordina-
tionwith feature requensts fromantiSMASHusers, several changes to the antiSMASH
web interface were made in an agile development approach (Beck 2000). Most no-
tably, an overview page gives a summary of the identiϐied secondarymetabolite clus-
ters. Cluster navigation buttons are now colour coded by secondarymetabolite type,
allowing quick access to secondarymetabolite clusters of interest. Most graphics are
nowvector-based, so they canbeused to create publication quality illustrations, even
for poster formats. Major improvements were made to the page loading times. On
the arbitrary example of Streptomyces tsukubaensisNRRL18488 (Genbank accession
no. AJSZ01000001), loading the result page with 35 detected clusters took over 40
seconds in antiSMASH 1, due to the large size of the result page. In antiSMASH 2,
the visualisation component was redesigned and optimized for loading speed. Load-
ing the result page for the example S. tsukubaensis NRRL18488 took less than 2 sec-
onds, even though 37 secondary metabolite clusters were identiϐied. Thanks to the
redesign of the visualisation, antiSMASH results now can also be browsed from smart
phone and tablet browsers.

4.3 NRPSPredictor2

After providing an accessible user interface for secondary metabolite analysis tools
in the form of antiSMASH, focus was shifted towards improving individual predic-
tion algorithms. Six years after the original release of the NRPSPredictor software
(Rausch et al. 2005), an updated version of NRPSPredictor was released, taking into
account the novel A domains with elucidated substrate speciϐicities and an improved
prediction algorithm. To the 397 labeled domains taken from the original release, 79
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labeled bacterial and 100 labeled fungal A domains were added. To further improve
the predictions, 4282 unlabeled bacterial and 814 unlabeled fungal A domains were
also added to the training set (for a detailed list, see Röttig et al. 2011, supplemen-
tal material ϐile S1). To train classical SVMs, only labeled training data may be used.
As labeled training data for A domains are scarce, especially for fungal A domains,
transductive support vector machines (TSVMs) (Joachims 1999) were integrated to
also utilise unlabeled training data to train more robust classiϐiers.
In order toprovide thebest possiblepredictionwith the available trainingdata, NRPS-
Predictor2 predicts A domain substrate speciϐicities in four different detail levels for
bacterial A domains and one detail level for fungal A domains. The detail levels avail-
able for bacterial sequences are predictions of the gross physio-chemical proper-
ties (hydrophobic-aromatic, hydrophobic-aliphatic and hydrophilic), large clusters
of amino acids with similar physiochemical properties and sizes, small clusters of
closely related amino acids, and single amino acids (see Röttig et al. (2011, Table 1)
for a detailed list). Due to the lack of sufϐicient training data, the fungal predictor only
predicts the gross physio-chemical properties. For substrates where less than ϐive A
domain sequences are known, no single amino acid SVM model was constructed. In
order to also cover these substrates, NRPSPredictor2 utilises a nearest neighbour
rule to predict the substrate speciϐicity based on the most similar active site signa-
ture, based on the Stachelhaus code (Stachelhaus et al. 1999).
By using different predictivemodels for bacterial and fungal sequences, NRPSPredic-
tor2 is the ϐirst NRPS prediction tool to account for the different active site residues,
yielding in a more accurate overall prediction. NRPSPredictor2 was fully integrated
into the NRPS prediction module of antiSMASH.

4.4 LanthipepƟde PredicƟon

When trying todetect ribosomally synthetisedandpost-translationallymodiϐiedpep-
tides (RiPPs), a common approach is to run culture extracts from the organism of
interest through HPLC analysis and comparing the identiϐied mass peaks with prod-
uct predictions from an antiSMASH analysis for said organism. Having an accurate
mass available makes it easier to identify compounds in an HPLC screening. In the
initial antiSMASH 2.0 release, the lanthipeptide prediction only took the precursor
peptide into account and thusdidnotmodel thebiosynthesis performedby thewhole
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biosynthetic gene cluster accurately. A novel prediction algorithmwas implemented
in antiSMASH2.2 to improve the prediction accuracy for lanthipeptide products from
identiϐied clusters. Unlike the old version, the new algorithm speciϐically considers
the whole lanthipeptide biosynthetic gene cluster composition. This allows the algo-
rithm to distinguish between class I, II, III and IV lanthipeptides by checking for the
presence of LanB & LanC, LanM, LanKC, and LanL enzymes, respectively. Based on
the identiϐied class, the applicable cleavage site proϐile is selected.
Afterpredicting the cleavage site, both themonoisotopicmass and the averagemolec-
ular weight are calculated under the assumption that all Ser and Thr residues are de-
hydrated. A lack of dehydration is observed frequently. Unfortunately nomechanism
behind this has been described so far. To still allow for an easy identiϐication of these
partially still hydrated peptides, a list of alternative weights is calulated to cover the
possible hydration of all Ser and Thr not participating in a lanthionine bridge with a
Cys residue.
The presence of further tailoring enzymes determines the post-translational tailor-
ing reactions. The presence of a LanD-type ϐlavin-dependent decarboxylase indicates
the formation of a C-terminal S-[(Z)-2-aminovinyl]-D-cysteine (AviCys) or S-[(Z)-2-
aminovinyl]-3-methyl-D-cysteine (AviMeCys) residue. LanH-type halogenases chlo-
rinate amino acid side chains. LanO-type cytochrome P450 oxygenases regiospeci-
ϐically oxidise non-activated hydrocarbons. EciO-type short chain dehydrogenases
catalyse the ϐinal step in the conversion of an N-terminal Dha residue into lactate.
All these tailoring reactions affect the predicted molecular mass and are also iden-
tiϐied explicitly in the lanthipeptide cluster details page. By considering the whole
gene cluster instead of basing the prediction on the precursor peptide alone, it is
now possible to correctly predict 89 % of the lanthipeptide benchmark dataset (see
Blin et al. 2013a, Table 4).

4.5 Conclusions

antiSMASH is the ϐirst Open Source Software pipeline to assist natural product re-
searchers in the analysis of a wide range of secondary metabolite gene cluster types.
Not only does it provide an accessible and easy to use web interface for prediction
algorithms that have been published previously (e.g. Rausch et al. 2005; Minowa
et al. 2007; Weber et al. 2009; Stachelhaus et al. 1999), it also adds a number of
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novelmechanisms to further annotate secondarymetabolite clusters, like the smCOG
analysis, ClusterBlast & SubClusterBlast, and the lanthipeptide prediction algorithm.
Since the release of the antiSMASH 1 publication (Medema et al. 2011) in July 2011,
thepublicly availablewebserver athttp://antismash,secondarymetabolites.
org has processed about 50 000 analysis jobs. The standalone version of antiSMASH
has been downloaded over 6000 times.
In the past years, antiSMASH has established itself as the standard tool natural prod-
uct scientists run on newly sequenced genomes, to date over 120 genome anounce-
ment papers have used antiSMASH to identify secondary metabolite clusters. The
standalone version has been integrated into several other toolchains, both propri-
etary and published (e.g. Conway and Boddy 2013). Even in the competitive ϐield
of NRPS/PKS analysis tools, antiSMASH is considered ”the most comprehensive tool
currently available” (Boddy 2013). An important factor for the success of antiSMASH
is the public web server. It is both easy to use and free, without forcing users to
sign up for an account or getting a formal license, thus lowering the barrier of entry.
Power users who have more requirements in terms of performance or who cannot
send their genome data to a third party can use the standalone version, again with-
out having to obtain an explicit license. The source code for antiSMASH is publicly
available as well, enabling both peer review of the implementation details as well as
an easy creation of ϐixes for any potential bugs identiϐied in the software.
With the new software architecture introduced with antiSMASH 2, the software has
become easy to extend, making it possible to quickly add new prediction modules
as new research ϐields gain inϐluence and more data becomes available. The lan-
thipeptide prediction module is an example, more speciϐic predictors for the cur-
rently trending ϐield of RiPPs (Arnison et al. 2013) can be addedwithoutmuch effort.
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In publication 1 (Medema et al. 2011), I designed the antiSMASH web service job
control and scheduling system, and the sandboxing system that isolates the different
jobs from each otherwhile running. Marnix H.Medema andmyself implemented and
tested the core antiSMASHprogram in equal parts. The Linux install scriptswere also
developed and tested by me.
In publication 2 (Blin et al. 2013b), I redesigned and reimplemented the antiSMASH
web service component, and adjusted the job control, scheduling and sandboxing
systems accordingly. I designed the new modular core program architecture, wrote
the unit tests and reimplemented the sequence input modules. I converted the clus-
ter identiϐication logic to the new architecture. I redesigned the HTML output page,
performing continuous benchmarks to identify performance bottlenecks, and reim-
plemented the JavaScript logic behind the dynamic elements of the output page. I
set up the continuous integration system ensuring that the test routines were run on
every change of the antiSMASH program. I also wrote most of the manuscript.
In publication 3 (Röttig et al. 2011), I performed the literature mining to identify
novel A domains with biochemically characterized substrate speciϐicity. I also as-
sisted in testing the NRPSPredictor 2 program.
In publication 4 (Blin et al. 2013a), I developed the algorithm for predicting cleav-
age site, modiϐications and the resultingmolecularmass of lanthipeptide cluster core
peptides. I supervised Daniyal Kazempour during his initial attempt of cleavage site
prediction. I wrote the program parts that predict the tailoring reactions based on
other enzymes present in the cluster, updated the cleavage site prediction logic to in-
fer the lanthipeptide class from the cluster layout and integrated the prediction tool
as an antiSMASH module. I also worte the manuscript.
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