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1. Abstract 

PII proteins constitute one of the most widely distributed families of signal transduction 

proteins, whose representatives are present in archaea, bacteria and plants. They play a pivotal 

role to control the nitrogen, carbon and energy status of the cell in response to the central 

metabolites ATP, ADP and 2-oxoglutarate (2-OG). These signals from central metabolites are 

integrated by PII proteins and transmitted to the regulatory targets (protein modifying 

enzymes, metabolic enzymes, transporters and transcription factors).-In-oxygenic 

phototrophic organisms, from cyanobacteria to higher plants, the controlling enzyme of 

arginine synthesis, N-acetyl-L-glutamate kinase (NAGK) is a major PII target, whose activity 

responds to the cellular metabolites via PII signalling. In this work, novel crystal structures of 

PII signal transduction proteins from oxygenic phototrophs (Synechococcus elongatus and 

Chlamydomonas reinhardtii) in the presence of signalling metabolites and in complex with 

NAGK are reported. These structures give deeper insights into PII-mediated mechanism and 

regulation which are in accordance with the obtained biochemical data. The novel role of 

glutamine as a signalling molecule in C. reinhardtii is elucidated for the first time, which 

highlights the nitrogen regulation at a different level. Further, the interpretation of these 

structures together with the comparison of aminoacid sequences sheds light on the 

evolutionary adaptation of PII signal transduction from cyanobacteria to plastids. 
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2. Zusammenfassung 
 
 

PII-Signaltransduktionsproteine fungieren als Relaisstationen bei der Verarbeitung von 

Signalen der zellulären Metaboliten ATP, ADP und 2-Oxoglutarat (2-OG). Abhängig vom 

Bindungsstatus dieser Effektormoleküle nehmen PII-Proteine verschiedene Konformationen 

ein. Diese konformativen Zustände entscheiden über die Interaktion mit den Zielproteinen, zu 

denen proteinmodifizierende Enzyme, Transkriptionsfaktoren, Stoffwechselenzyme und 

Transportproteine gehören. Ein Zielprotein ist N-Acetyl-L-Glutamatkinase (NAGK), das im 

Argininsyntheseweg eine regulatorische Rolle spielt. Biochemische und Strukturanalysen an 

PII und NAGK aus Synechococcus elongatus PCC 7942 zeigten eine in zwei Stufen 

verlaufende Komplexbildung. Zunächst wird ein Ionenpaar zwischen R233 von NAGK und 

E85 von PII gebildet, wodurch der ausgedehnte T-Loop eine gewinkelte Konformation  

einnimmt. Im zweiten Schritt erfolgt die Insertion des T-Loops in den NAGK-Torus. Die 

Komplexbildung wird durch die Bindung von 2-OG unterbunden, welche zu einer T-

Loop- Faltung führt, die eine stabile Interaktion mit NAGK nicht mehr zulässt. Die Bindung 

von 2-OG an PII erfolgt dabei in einem Spalt zwischen den Untereinheiten über Kontakte zu 

den konservierten Resten K58 und Q39, zusätzlich gibt es Wechselwirkungen mit der 

Hauptkette im Bereich der T- und B-Loops. Die negativ-kooperative Bindung von 2-OG an 

ein PII-Trimer gibt einen Einblick in den Verlauf der Signalwege zwischen den 

Untereinheiten in S. elongatus. Ferner wurde die Rolle von Glutamin als Signalmolekül für 

die PII-NAGK-Komplexbildung in Chlamydomonas reinhardtii untersucht. Der Komplex 

bildet sich nur in der Gegenwart von Glutamin. Eine Strukturanalyse fand die Glutamin-

Bindestelle am einzigartig langen C-Terminus von Cr PII. Eine C-terminal verkürzte Form 

von Cr PII bindet auch bei Anwesenheit von Glutamin nicht an Cr NAGK. Dies unterstreicht 

die Bedeutung der Konformation des Cr PII C-Terminus, der das gebundene Glutamin in 

seiner Lage fixiert. Im Komplex sitzt ein PII-Trimer auf einem NAGK-Torus. In den 

Komplexen von S. elongatus und Arabidopsis thaliana jedoch bedecken zwei PII-Trimere den 

NAGK-Torus wie in einem Sandwich. Die Stöchiometrie der PII-NAGK-Komplexe in 

Lösung wurde durch Multiwinkel-Lichtstreuung bestimmt. Die Ergebnisse sind im Einklang 

mit den Kristallstrukturen. Darüber hinaus zeigte ein bioinformatischer Ansatz zur PII-

NAGK-Koevolution den von der Natur ausgeübten selektiven Druck, die Stickstoff-

Regulierungsfunktion von Cyanobakterien bis hin zu Plastiden zu konservieren. Diese Studien 

zeigen, wie bedeutend das PII-Protein und seine Konservierung während der Evolution für die 

Wahrnehmung des und das Eingehen auf den Kohlenstoff-, Stickstoff- und Energiestatus der 

Zelle sind. 
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3. Summary 

 
The PII signal transduction proteins act as a biological central processing unit by integrating 

the signals from various cellular metabolites such as ATP, ADP and 2-oxoglutarate (2-OG). 

Depending on the binding status of the effector molecules, PII proteins can adopt different 

conformational states. These conformational states control the interaction with regulatory 

targets such as protein modifying enzymes, metabolic enzymes, transporters and transcription 

factors. One of the targets of PII proteins is N-acetyl-L-glutamate kinase (NAGK), which is a 

controlling enzyme in the arginine synthesis pathway. Biochemical and structural studies 

reveal a two-step complex formation of PII-NAGK from Synechococcus elongatus PCC 7942. 

The first step involves the formation of an ion-pair between R233 from NAGK and E85 from 

PII which enables the extended T-loop to undergo a kinked conformation. The second step 

involves the insertion of the T-loop from PII trimer into the NAGK toroid. The complex 

formation is disrupted by the addition of 2-OG, which coordinates the T-loop into a specific 

folded state that is incapable to bind NAGK. The binding of 2-OG to PII occurs at the 

intersubunit cleft by establishing a contact with the conserved residues K58 and Q39 along 

with the backbone interactions from T and B-loop. The binding of 2-OG in a negative-

cooperative fashion to PII trimer sheds light on the intersubunit signalling in S. elongatus. 

Further, the role of glutamine as a signalling molecule in the PII-NAGK complex formation in 

Chlamydomonas reinhardtii was investigated. Complex formation between these proteins 

requires the presence of glutamine. Structural studies revealed the binding site of glutamine 

on the unique extended C-terminus of Cr PII. A C-terminally truncated form of Cr PII was 

unable to form a complex with Cr NAGK even in the presence of glutamine. This highlights 

the essential conformation adopted by the Cr PII C-terminus which acts like a plug to hold the 

effector molecule glutamine. The complex consists of one PII trimer bound to the NAGK 

toroid unlike the complexes from S. elongatus and Arabidopsis thaliana which consist of two 

PII trimers sandwiching the NAGK toroid. The state of PII-NAGK oligomerization in 

solution was analysed through Multi-Angle Light Scattering detection, which was consistent 

with the crystal structure of the complex. In addition, a bioinformatics approach on the PII-

NAGK coevolution highlighted nature’s selective pressure to conserve the nitrogen regulation 

function from cyanobacteria to plastids. In conclusion, these studies highlight the importance 

of PII and its evolutionary conservation to sense and respond to the carbon, nitrogen and 

energy status of the cell. 
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4. Introduction 

 
4.1 Origin of oxygenic phototrophs 

 

Life on earth dates back to 3.8 billion years ago, as predicted from the existing evidences 

(Mojzsis et al, 1996; Hayes, 1996). The production of oxygen (O2) by photosynthesis is the 

most dominant global process essential for the sustainability of life on earth. This mechanism 

is an ancient process which has evolved via complex pathways (Blankenship, 2002; Björn and 

Govindjee, 2009). Before the origin of the oxygenic photosynthesis process, the atmospheric 

oxygen levels were insignificantly low. The evolution of oxygenic phototrophs is thought to 

have originated from cyanobacterial ancestors and these events changed the face of earth (Rye 

and Holland, 1998). The accumulation of O2 in the atmosphere was driven by the innovation 

of a photosynthetic apparatus capable of utilizing water as an electron donor, which is 

oxidized to O2. Concomitantly with the fixation of atmospheric CO2, the water-splitting 

activity of cyanobacteria transformed the earth’s atmosphere suitable for the progression of 

complex life forms. 

 

Chlorophyll-based photosynthesis can be found in bacterial and eukaryotic domains 

(Blankenship, 2010). The bacterial domains include six different phyla of photosynthetically 

active species: cyanobacteria, proteobacteria (purple bacteria), green sulfur bacteria, 

firmicutes (helicobacteria), filamentous anoxygenic phototrophs and acidobacteria (Raymond, 

2008). A vast number of research articles support the notion that eukaryotic photosynthesis 

originated from the endosymbiosis of cyanobacteria which resulted in the formation of 

chloroplasts (Schimper, 1883; William et al, 2012; McFadden 2001; Nowack et al, 2008). 

The key players in fixing the atmospheric CO2 are the oxygenic phototrophs which include 

plants, algae and cyanobacteria. These organisms aided the production of 18 times more 

energy (ATP) through aerobic mechanism thereby pumping enough energy to drive the 

emergence of complex evolutionary processes._Despite microorganisms, oxygenic 

phototrophs also in particular play a crucial role to govern the biogeochemical cycle in the 

biotic and abiotic layers of the earth. A vast majority of our planet is covered with water and 

algae, which include the Chlorophyta (green algae), Euglenophyta, Dinoflagellata, 

Chrysophyta (golden algae), Phaeophyta (brown alage), Rhodophyta (red algae) and Diatoms 

are considered to play a disproportionately major role to preserve the biological pump in the 

water bodies. 
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4.2 Importance of the oxygenic phototroph:  Chlamydomonas reinhardtii 

  

Cyanobacteria were the first organisms to carry out oxygenic photosynthesis. During 

evolution, as a result of endosymbiosis some cyanobacteria gave rise to chloroplasts, while 

others continued to evolve as independent organisms. The lineage of green algae, 

Chlamydomonas reinhardtii (~10 µM in size) diverged from land plants over one billion 

years ago. C. reinhardtii are single celled chlorophytes with the photosynthetic apparatus 

residing in the chloroplast and are able to swim with two flagella. They are distributed 

worldwide and majorly used as model organism in biology especially due to their short 

generation time. Further, these algae have gained increased attention with the release of 

several genomic resources to public domain that includes the complete nuclear, chloroplast 

and mitochondrial genome (Merchant et al, 2007; Grossman et al, 2003). As a model 

organism they are used for studying chloroplast based photosynthesis, structure and assembly 

of cilia which was inherited from the common ancestor of plant and animal kingdom but lost 

in land plants. C. reinhardtii is of great interest in the biopharmaceutical industry especially 

for the synthesis of astaxanthin which is a potent anti-oxidant and as an animal feed additive 

to bestow coloration (León et al, 2007). These organisms have also been genetically modified 

to increase the production of elemental hydrogen. Hydrogen is a desirable fuel without any 

greenhouse effects and has a high enthalpy value. This biofuel can be discharged by 

microalgae via reduction of protons to hydrogen by the hydrogenases catalysed reaction, thus 

Chlamydomonas are considered as the most suitable organisms in the biofuel field 

(Hemschemeier 2008; Work et al, 2010; Pinto et al, 2013). Recently, these microalgae are 

being used to study various aspects of evolutionary biology and ecology (De Visser et al, 

1996; Collins and Bell, 2004). The physiological response of algae and plant communities to 

increasing CO2 has been studied to estimate the effect on global warming. Further, to 

understand the maintenance of sex and adaptation to the changing environmental conditions, 

Chlamydomonas species are a major subject of research target (Colegrave, 2002). Functional 

proteomics approach has also been employed on these organisms to discover novel 

components of the circadian system (Mittag et al, 2005). In addition, there has been recent 

focus on Chlamydomonas in the field of bio-remediation for the removal of heavy metals and 

for excess nitrate consumption from waste water (Vı́lchez et al, 2001; Wei et al, 2011). 

Interestingly, unlike the angiosperms, Chlamydomonas has an ability to grow in darkness 

exclusively in the presence of carbon source (Harris, 2009). This makes it an ideal model to 

study the eukaryotic photosynthesis system. 

9



 
 

4.3 Electron transport and carbon metabolism 

 

The metabolism of Chlamydomonas is quite complex, which makes it difficult to comprehend 

the metabolic pathways. In the chloroplast of Chlamydomonas, NADPH and ATP are 

regenerated by the light reaction of photosynthesis and consumed in the Calvin cycle (carbon 

fixation pathway). The atmospheric CO2 is captured into the Calvin cycle and the algae finally 

fix CO2 with the help of light energy, which is driven by series of reactions. The carbon 

reserve is metabolized to yield ATP and reducing power. The carbon metabolism is linked to 

key cellular processes such as cell motility, division, partitioning, carbon uptake, circadian 

rhythm and nutritional stress. The energy derived from photosynthesis and electron transfer is 

a probable means of understanding the regulation and mechanisms of the pathways involved 

in cellular processes. 

 

Electron transport 

The ‘linear electron flow’ symbolizes the electron flow from Photosystem II (PSII) through 

cytochrome b6f (a membrane bound protein) to Photosystem I (PSI). Two molecules of water 

are oxidized into one molecule of O2 in the PSII. The four electrons generated are transferred 

to the electron transport chain to finally reduce two molecules of NADP+. This process is 

mediated in the stroma by ferredoxin (Fd) and ferredoxin NADP+ reductase (FNR) and at the 

thylakoid membrane through PSI, PSII, plastoquinones, cytochrome b6f complex and 

plastocyanin. The electron transfer generates a proton gradient that drives the ATP synthase to 

produce ATP from ADP and Pi. In the case of C. reinhardtii, its chloroplast possesses a fully 

functional electron transport chain even in the absence of light (Johnson and Alric, 2013). 

 

Carbon metabolism 
 
C. reinhardtii has one chloroplast and multiple mitochondria that are tightly packed together. 

A malate shunt operates to transfer the reductants from one organelle to the other (Johnson 

and Alric, 2013). The metabolism of Chlamydomonas mainly relies on reduced carbon 

sources, from the endogenous starch accumulated during the presence of light or from 

exogenous compounds like acetate (Harris, 2009). Higher plants have duplicated the 

glycolytic and the oxidative pentose-phosphate pathways in the chloroplast and cytosol 

(Joyard et al, 2010; Plaxton, 1996). However, in C. reinhardtii the glycolytic pathway is not 

duplicated but it is compartmentalized. The ‘upper half’ of glycolysis (glucose to 

glyceraldehyde-3-phosphate [G3P]) is localized in the chloroplast whereas the ‘lower half’ (3-
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phosphoglycerate [3-PGA] to pyruvate) occurs exclusively in the cytosol (Ball, 1998). During 

unfavourable conditions, the exogenously acquired acetate is fed to glyoxylate cycle via 

gluconeogenesis or into the TCA cycle to sustain respiration and ATP production. Acetate is 

converted into acetyl coenzyme A (acetyl-CoA), which is directed into the TCA cycle and 

results in the production of 2-oxoglutarate (2-OG). The GS/GOGAT pathway requires the 

carbon skeleton in the form of 2-OG for ammonium assimilation. Furthermore, 2-OG acts as a 

metabolic signal to coordinate the regulation of C and N metabolism.  

 

4.4 Nitrogen assimilation 

 

The primary sources of nitrogen are ammonium and nitrate for most of the organisms. The 

energy cost for the ammonium assimilation is lower than that of nitrate assimilation. Many 

organisms favour ammonium uptake, however the abundance of nitrate makes its utilization 

much preferred at times. Chlamydomonas have evolved to harbour requisite genes to ensure 

efficient nitrogen assimilation.  

 

 
 
Figure 1. Nitrogen assimilation in Viridiplantae. The process of reduction of ammonium in the chloroplast and 
synthesis of glutamate through the GS/GOGAT cycle involves two transport and two reduction steps (adapted 
and modified from Fernandez and Galvan, 2008). 
NO3

-: Nitrate, NR: nitrate reductase, NO2
-: Nitrite, NiR: Nitrite reductase, FdxH: [2Fe-2S]-type ferredoxin, 

NH4
+: ammonium, GS: glutamine synthetase, L-Gln: L-glutamine, 2-OG: 2-oxoglutarate, GOGAT: glutamine-2-

oxoglutarate-amido transferase, L-Glu: L-glutamate. 
 
 

In photosynthetic eukaryotes the nitrate assimilation process involves two transport and two 

reduction steps to form ammonium in the chloroplast (Fig. 1). The ammonium incorporation 

into the carbon skeletons takes place through the glutamine synthetase/glutamate synthase 

(GS/GOGAT) cycle. The transport step consists of the entry of nitrate into the cell and nitrite 

into the chloroplast (Fernandez and Galvan, 2008). The first reduction step in the cytosol 
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involves the conversion of nitrate to nitrite with the assistance of the enzyme nitrate reductase 

(NR). The enzyme, nitrite reductase (NiR), catalyses the reduction of nitrite to ammonium in 

the chloroplast. The GS/GOGAT pathway results in conversion of one molecule of 

ammonium and 2-OG (with consumption of 2e-) to one molecule of glutamate from the 

hydrolysis of one ATP molecule (Fig. 1). The nitrate, nitrite and ammonium assimilation of 

Chlamydomonas needs to be further investigated in detail. The advent of genomic data for 

Chlamydomonas has helped to understand a few regulatory networks involved in nitrogen 

assimilation. However, yet more data needs to be examined to study the regulatory and 

metabolic circuits. 

 

4.5 Regulation of nitrogen assimilation and glutamine synthesis 

 

The Chlamydomonas cells when grown in the presence of light and ammonium, failed to 

utilize nitrate and nitrite due to the strong inhibition of ammonium (Florencio and Vega, 

1983). This antagonistic effect of ammonium is as a result of inhibition of the permease which 

is responsible for the transport of nitrate. Such situations with excess of ammonium are toxic 

to the organism and cause repression and deactivation of GS. To counteract such conditions, 

ammonium is incorporated into the GS/GOGAT cycle. At low ammonium concentration, the 

GS/GOGAT is essential for glutamate synthesis and for the regulation of the glutamine pool. 

 

Glutamine synthesis and role in metabolism 

 

GS (Glutamine synthetase) is the prime enzyme needed for the introduction of nitrogen into 

the cellular metabolism. It occurs in all kingdoms of life and is involved in ammonium 

assimilation and glutamine synthesis. The enzyme GS catalyses the formation of glutamine 

from ammonia and glutamate in the presence of ATP and Mg. GS can be composed of 8, 10, 

or 12 identical subunits forming two rings directly facing each other (Eisenberg et al, 2000; 

Stryer et al, 2007; Krajewski et al, 2008). The widely distributed form of GS in prokaryotes is 

GSI, encoded by the glnA gene (Merrick and Edwards, 1995). This class is absent in the 

eukaryotic kingdom. GSI is a homo-dodecameric enzyme forming a double hexameric ring 

structure. The class II (GSII) enzymes consist of a decamer (Krajewski et al, 2008) that are 

found in eukaryotes and also in bacteria belonging to Rhizobiaceae, Frankiaceae, and 

Streptomycetaceae families. Plants have multiple copies of GSII isozymes; one of the 

isozymes is translocated into the chloroplast. The Class III enzyme (GSIII) has only been 
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found in Bacteroides fragilis and in Butyrivibrio fibrisolvens (Hill et al, 1989; Goodman and 

Woods, 1993). It is a double-ringed dodecamer of identical subunits and larger than the other 

enzymes GSI and GSII. In the case of C. reinhardtii, two isoforms of GS have been identified 

which have similar properties to plant GS enzymes. At the molecular genetics level, the 

accumulation of GS transcripts in green algae have been reported in response to the influence 

of ammonium, nitrate and light (Chen and Silflow, 1996). Molecular evolution studies of 

GSII suggest the non-endosymbiotic gene transfer of GSII from gammaproteobacteria 

(Eubacteria) to the Chloroplastida (Ghoshroy et al, 2010). This suggests the occurrence of 

multiple isoenzymes of GS in the chloroplastida due to acquisition through horizontal gene 

transfer process. 

 

Organisms have evolved sophisticated mechanisms to monitor the nitrogen status of the cell 

and during the course of evolution a vast number of bacteria have utilized glutamine as an 

important signalling molecule (Forchhammer, 2007). An increasing number of mechanisms 

are known to control nitrogen regulation of archaea, bacteria and plants. One of the common 

regulatory features found across these kingdoms is the PII signal transduction protein. PII is 

tightly coupled to glutamine signalling in a variety of bacteria (Stadtman, 2001; Adler et al, 

1975). 

 

4.6 PII signal transduction proteins and their evolution 

 

PII proteins are the most widely distributed signal transduction proteins in nature. They play a 

vital role in the C/N metabolism in bacteria, archaea and are also found in the plastids of 

plants. Depending on the carbon, nitrogen and energy status of the cell, PII proteins integrate 

the signals from effector molecules like ATP, ADP and 2-OG (Ninfa and Atkinson, 2000; 

Ninfa and Jiang, 2005; Leigh and Dodsworth, 2007; Forchhammer, 2008) resulting in 

allosteric and covalent modifications followed by conformational changes. These 

conformational changes dictate the binding of PII proteins to their regulatory targets. The 

targets constitute a wide range of metabolic enzymes, transport proteins, transcription factors 

and protein modifying enzymes (Fig. 2). 

 

Based on the genes encoding the PII proteins they are classified into three groups as glnK, 

glnB, nifI (Arcondeguy et al, 2001; Forchhammer 2008). The GlnK protein is widely 

distributed in prokaryotes and is invariably linked to the ammonium transport protein AmtB 
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(Conroy et al, 2007; Gruswitz et al, 2007; Yildiz et al, 2007). The glnK and amtB genes most 

likely arose in archaea and were subsequently transferred between the lineage of archaea and 

bacteria (Sant’Anna et al, 2009; Huergo et al, 2012). It is speculated that the recent PII 

proteins could have originated from the ancient GlnK-AmtB complex involved in ammonium 

uptake. Gene duplication events could have resulted in the origin of the other PII paralogues 

GlnB and NifI. These paralogues are involved in nitrogen fixation mechanisms, gene 

expression and in the regulation of GS (Huergo et al, 2012; Leigh and Dodsworth, 2007). 

Some organisms have been found to harbour one, two and even three paralogues 

(Microcoleus chthonoplastes and Rhodospirillum rubrum) of PII proteins.  

 

 
 
Figure 2. Schematic diagram of the PII protein hub (all known protein structures) representing the regulatory 
targets which include members from metabolic enzymes (NAGK-green), transcription factors (PipX-maroon), 
protein modifying enzymes (DraG-cyan) and transport proteins (AmtB-orange). [PII-NAGK, PDB: 2V5H, 
Synechococcus elongatus PCC 7942], [PII-PipX, PDB: 2XG8, Synechococcus elongatus PCC 7942], [GlnZ-
DraG, PDB: 3O5T, Azospirillum brasilense], [PII-AmtB, PDB: 2NUU, Escherichia coli]. (Conroy et al, 2007; 
Llácer et al, 2007, 2010; Rajendran et al, 2011). 

 

Two signature patterns of PII have been defined in the PROSITE (PS00496 and PS00638). 

The first pattern consist of the following conserved stretch of residues (Y-[KR]-G-[AS]-[AE]-

Y) with a uridylylation site at Y51 and the second is derived from an invariant locus in the C-

terminal part (Fig. 3A) of the PII protein ([ST]-x(3)-G-[DY]-G-[KR]-[IV]-[FW]-[LIVM]-
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x(2)-[LIVM]). The C-terminal signature is more redundant than the first signature pattern 

(Sant’Anna et al, 2009). Bioinformatics analysis revealed a new out-group of PII proteins; 

PII-NG, which were predominantly present in proteobacteria and lacked the two signature 

patterns. These PII proteins were localized downstream and linked to the heavy metal 

transporter genes corresponding to czcCBA operon that encode for proton-cation antiporter of 

Cd2+, Co2+ and Zn2+ (Sant’Anna et al, 2009). Hence, these PII-NG proteins seem to be 

associated with toxic heavy metal resistance conferring proteins.  

 

 
 
Figure 3. A) Representation of the secondary structural elements in the PII sequence from S. elongatus PCC 
7942 B) Structure of PII monomer from S. elongatus highlighting the secondary structure: helix(slate), 
sheet(orange) and loop(green). C) Top view of the PII protein structure (PDB: 1QY7, Xu et al, 2003). 
 

PII proteins are homotrimers of approx. 12 kDa/monomer with a highly conserved 3D 

structure across diverse group of organisms (Sant’Anna et al, 2009; Huergo et al, 2012).  

They are composed of a double ferredoxin-like fold (βαβ-βαβ) with three eminent loops (T-

loop, B-loop and C-loop) emerging from the flattened barrel like structure (Fig. 4). The T-

loops undergo covalent modification, conformational changes and mediate the interaction 

with targeted receptors (Truan et al, 2010; Litz et al, 2011; Radchenko and Merrick 2011; 

Zeth et al, 2012). The two other prominent loops (B and C) occupy the intersubunit cleft 

emerging face to face from the adjacent monomers. The cleft forms the binding site for the 
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effector molecules like ATP-Mg, ADP and 2-OG (Zeth et al, 2012). In S. elongatus, in the 

presence of excess 2-OG, the binding pockets are capable of accommodating up to three 

molecules of ATP-Mg-2-OG for a PII trimer. The crystal structures of PII protein from 

Arabidopsis thaliana bound to citrate and malonate; and S. elongatus bound to citrate have 

also been determined (Mizuno et al, 2007; Zeth et al, 2012).  

 

 
 
Figure 4. A) PII protein from the cyanobacteria Synechococcus elongatus PCC 7942 (PDB: 1QY7, Xu et al, 
2003) with the loops highlighted as T-loop: red, B-loop: orange and C-loop: green. 
 

 
The signal integration of PII protein involves a reversible covalent modification at the apex of 

the T loop region. This is not conserved in all organisms and different types of modifications 

ranging from phosphorylation, adenylylation to uridylylation have been observed so far. The 

PII protein in proteobacteria has been shown to undergo uridylylation/deuridylylation and the 

actinobacteria to undergo adenylylation/deadenylylation at the Y51 residue (Atkinson et al, 

1994; Jonsson and Nordlund, 2007). The cyanobacterial PII proteins have been found to 

exhibit phosphorylation/dephosphorylation at the S49 residue (Forchhammer and de Marsac 

1994; Forchhammer and de Marsac 1995). These modifications govern the conformation and 

fine tuning of the loops, especially the T-loop and determine the interaction with the target 

receptors.  

 

4.6.1 PII signalling network in E. coli 

 

The canonical PII protein in E. coli is GlnB that controls the expression of the nitrogen-

regulated genes (Shapiro, 1969; Jiang and Ninfa, 1999, 2009; Jiang et al, 2012).  GlnB 

regulates the reversible adenylylation of the glutamine synthetase (GS) in response to the 

cellular metabolite glutamine (nitrogen signal) and 2-OG (carbon signal). Covalent 
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adenylylation of GS and the regulation of the structural gene glnA encoding the protein GS 

helps in maintaining the balance between the ammonium and carbon assimilation (Fig. 5). 

During nitrogen limiting conditions, GlnB undergoes reversible uridylylation at Y51 (T-loop 

region) which is catalysed by the signal transducing uridylyltransferse/uridylyl-removing 

enzyme [(UTase/UR)-product of glnD] (Jaggi et al, 1996; Jiang et al, 1998a). In the presence 

of excess glutamine, the uridylyl removing activity of the uridylyltransferase is activated 

resulting in the deuridylylated form of GlnB. The receptor for GlnB is the enzyme glutamine 

synthetase adenylyltransfersae (ATase) which binds to the modified/unmodified form of 

GlnB. The binding of ATase to the deuridylylated form of GlnB results in the adenylylation 

of GS. Whereas, the complex formation between modified form of GlnB and ATase results in 

the deadenylylation and thereby activation of GS (Jiang et al, 1998c). GlnB also controls the 

expression of nitrogen regulated genes through binding to another receptor NRII (NtrB) 

histidine kinase of the two-component NRI/NRII regulatory system (Ninfa and Magasanik, 

1986; Jiang et al, 1997; Jiang et al, 1998b). The unmodified GlnB causes dephosphorylation 

of NRII and thereby inactivates the transcriptional activator NRI (NtrC) (Jiang and Ninfa; 

1999; Weiss et al, 1991). The binding of ATP to NRII promotes the reversible transfer of γ-

phosphate from ATP to a histidine residue of NRII which is then reversibly transferred to the 

aspartic residue of NRI (Weiss and Magasanik, 1988). The uridylylated form of PII is unable 

to form a complex with NRII resulting in the activation of NRI by phosphorylation and hence 

activating the nitrogen regulatory genes (Atkinson et al, 1994). The binding of the effector 

molecule 2-oxoglutarate modulates the ability of GlnB to bind ATase and NRII under 

nitrogen limiting conditions (Ninfa and Atkinson, 2000).  

 

In addition to glnB, E. coli cells harbour another gene encoding the protein PII known as 

GlnK which was noticed in nitrogen deprived cells (Atkinson et al, 2002). In prokaryotes, the 

glnK genes have been shown to be transcriptionally linked (Thomas et al, 2000; Javelle and 

Merrick, 2005) to the membrane-bound ammonium transport protein (AmtB). This linkage 

has been found in most of the eubacteria and archaea showing a high degree of conservation. 

In E. coli, the GlnK-AmtB system is coupled to the intracellular nitrogen regulation (Ntr) 

system to maintain the ammonium status in the cell (Javelle and Merrick, 2005; Coutts et al, 

2002; Javelle et al, 2004). The uridylylation of GlnK dictates the binding to AmtB based on 

the intracellular increase in glutamine caused by ammonium excess. The crystal structure of 

the first PII bound receptor consisting of a GlnK-AmtB complex has been solved for E. coli 

(Conroy et al, 2007; Gruswitz et al, 2007). The GlnK is found to be structurally very similar 
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to the GlnB protein (Xu et al, 1998; Xu et al, 2001). The GlnK-AmtB forms a threefold 

symmetric complex with the GlnK trimer associated to the cytoplasmic side of the AmtB. The 

E. coli AmtB consists of the characteristic 11 transmembrane helices with Nout and Cin 

topology. It forms a homotrimer with a central pore involved in the conductance of ammonia. 

GlnK interacts with AmtB through the extended T-loop that inserts into the cytoplasmic pore 

of the AmtB thereby blocking the ammonia flux into the cell.  The T-loop adopts an unusually 

different conformation consisting of two-stranded short antiparallel β-sheets which are 

separated by a β-turn (Conroy et al, 2007). The formation and dissociation of the complex has 

been found to be sensitive to the effector molecule 2-OG in the presence of ATP-Mg (Durand 

and Merrick, 2006; Wolfe et al, 2007). The occurrence of GlnK suggests the pivotal role 

played during the ammonium flux inside the cell and the genetic linkage of glnK and amtB 

genes suggests the evolutionary significance and conservation of ancestral PII proteins.   

 
Figure 5. Regulation of GS and the Ntr regulon. 
During nitrogen (glutamine) excess condition the PII protein mediates the adenylylation of GS through the 
enzyme ATase. In the unmodified state, PII also causes the dephosphorylation of the NRII and thereby 
inactivates the NRI. Nitrogen (glutamine) limitation conditions result in uridylylation of PII which results in 
deadenylylation of GS and hence its activation. The uridylylated form of PII inhibits the complex formation with 
NRII and this promotes the phosphorylation of NRI. The NRI in the phosphorylated form is capable to activate 
the genes involved in nitrogen regulation.  
GS: glutamine synthetase, ATase: glutamine synthetase adenylyltransfersae, UTase: uridylyltransferse, UR: 
uridylyl-removing enzyme, NRI and NRII: nitrogen regulator I and II.  
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4.6.2 PII signalling in cyanobacteria 

 

The signal perception and receptor interaction for PII proteins has been mainly studied in the 

unicellular cyanobacteria Synechococcus elongatus PCC 7942 and Synechocystis PCC 6803. 

The structures of PII protein from both the organisms have been resolved to be highly 

identical (Xu et al, 2003). The binding pocket for ATP/ADP occurs in the intersubunit crevice 

through interaction with the residues of T-loop, B-loop and the adjoining C-loop from the 

neighbouring subunit. The ATP binding site can compete for the binding of ADP and the 

divalent cation Ca2+ was found to antagonize the effect of ATP-2OG (Maheswaran et al, 

2004).  

 

A. Phosphorylation/dephosphorylation of PII proteins 

 

Besides binding to the effector molecules ATP, ADP and 2-OG, the PII proteins act as a 

highly sensitive signal receiver/transducer protein. In S. elongatus and Synechocystis PCC 

6803, the covalent modification event of phosphorylation occurs in the S49 residue at the tip 

of the T-loop (Forchhammer and de Marsac, 1995; Kloft and Forchhammer, 2005). However, 

it has been reported that the cyanobacteria Prochlorococcus and Anabaena PCC 7120 are 

devoid of this covalent modification (Palinska et al, 2002; Zhang et al, 2007). Surprisingly, 

this Anabaena strain seems rather to undergo nitration at the Y51 residue, which corresponds 

to the same position in proteobacteria being subjected to uridylylation (Zhang et al, 2007). 

Increasing nitrogen starvation coupled with increasing inorganic C-supply has been found to 

be proportional to the amount of PII proteins undergoing phosphorylation. The 

phosphorylation can take place at three sites in the apex of each T-loop of a trimeric PII 

protein. With the introduction of nitrate into the medium the occurrence of intermediate 

phosphorylation states (P0
II, P1

II, P2
II, and P3

II) of PII protein was observed (Forchhammer and 

de Marsac, 1994; Forchhammer, 2010).   

 

Attempts to decipher the kinase responsible for PII phosphorylation through knockout studies 

have been a failure so far leaving the speculation for a possible kinase to be cryptic. In PII 

proteins, the binding of 2-OG to the first two sites has been shown to have a lower 

dissociation constant and the third site needs millimolar concentrations of 2-OG to occupy the 

binding pocket. Hence, the kinase is likely activated in the presence of ATP and high 

concentrations of 2-OG (Forchhammer and de Marsac, 1995). In contrast, the PII phosphatase 
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PphA (responsible for removing the phosphate) has been identified in Synechocystis PCC 

6803 (Irmler and Forchhammer, 2001; Ruppert et al, 2002). The phosphatase belongs to 

PP2C family and is found to be strongly inhibited in the presence of ATP-Mg2+and 2-OG. 

Recently, the crystal structure of PP2Cs from bacterial and plant origin has been solved which 

implicates the important role of three Mg2+/Mn2+ ions in catalysis (Schlicker et al, 2008; 

Melcher et al, 2009; Su et al, 2011). The tPphA from Thermosynechococcus elongatus has 

been well studied among the known PP2C family members and it sheds light on the 

importance of a flap domain that controls the access to catalytic centre and also highlights the 

importance of metal coordination to the catalytic site (Schlicker et al, 2008; Su et al, 2011; Su 

and Forchhammer, 2012; Su and Forchhammer, 2013).  

 

B. Receptor interaction in PII proteins 

 

To identify the interacting partners of PII proteins, two main strategies were employed. The 

first strategy was performed in S. elongatus, which involved the determination of the 

phenotype caused by PII-deficient mutants. The second strategy consisted of yeast two-hybrid 

screening with glnB genes from S. elongatus or Synechocystis PCC 6803 as the bait (Burillo 

et al, 2004; Heinrich et al, 2004; Osanai et al, 2005b). This strategy resulted in finding N-

acetyl-L-glutamate kinase (NAGK), which catalyses the prominent step in arginine 

biosynthesis, PipX: a cofactor of the transcription factor NtcA; and a membrane protein 

PamA of unknown physiological function.  

 

PII-NAGK complex formation 

 

PII proteins have evolved to regulate the ornithine pathway which leads to the synthesis of 

arginine and polyamine (Fig. 6). The second step in the synthesis of arginine; N-acetyl-L-

glutamate (NAG) to N-acetyl-L-glutamyl 5-phosphate (NAG-P) is coordinated by the enzyme 

N-acetyl-L-glutamate kinase (NAGK, encoded by argB gene). In the presence of excess 

arginine, NAGK is feed-back inhibited by arginine and unmodified PII protein plays a vital 

role to relieve this inhibition (Heinrich et al, 2004; Maheswaran et al, 2004). The catalytic 

efficiency of NAGK is remarkably enhanced with the binding of PII which results in approx. 

4-fold increase in the Vmax values and considerable decrease in the Km value (Maheswaran et 

al, 2004; Beez et al, 2009). Further, the binding of PII favours the release of arginine and 

increases the affinity for NAG. The formation of PII-NAGK complex is strongly influenced 
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by the effector loaded state of the PII protein. The binding of ADP leads to immediate 

dissociation of the complex and similar effects have been noted with the addition of ATP-Mg 

and 2-OG (Maheswaran et al, 2004).  

 

 
Figure 6. Arginine biosynthesis and storage mechanism in cyanobacteria. 
During the conditions of nitrogen limitation (high 2-OG and high ADP) NAGK has very low activity and is 
susceptible to feedback inhibition by its pathway product arginine. However, during nitrogen excess conditions 
(low 2-OG and low ADP) PII protein forms a stable complex with NAGK and helps in the conversion of the 
substrate NAG to NAG-P. The arginine synthesized is stored as cyanophycin for later use.  
Glu: glutamate, NAG: N-acetyl-L-glutamate, NAGK: N-acetyl-L-glutamate kinase, NAG-P: N-acetyl-L-
glutamyl 5-phosphate, Arg: arginine, 2-OG: 2-oxoglutarate. (PDB: 2V5H, Llácer et al, 2007). 
 

Structure and function of the PII-NAGK complex 

 

The crystal structure of the bacterium, S. elongatus has been solved at 2.75 Å (Llácer et al, 

2007). The complex reveals two trimers of PII sandwiching the NAGK toroid ring (trimer of 

dimers). NAGK forms a α3β8α4 fold which can be divided into N and C domain. The N 

domain of NAGK contains a mobile kinked α-helix (N-helix) which by interlacing with 

another N-helix forms the toroid. The binding site of NAG and ATP are confined in the N and 

C-domain respectively and the arginine occupies the space near the intersection of the N-

helix. The three fold symmetry axis of PII-NAGK is arranged such that upon encounter, one 

PII subunit makes a contact with one subunit of NAGK. A salt bridge formed in the B-loop of 

free PII between the residues R47 and E85 is broken and a new ion-pair between E85 and 

R233 from NAGK aids in the formation of the complex. Further, the B-loop residues and the 

distal end of the kinked T-loop together establish a firm interaction with the NAGK. The 
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contact also involves the hydrophobic residues F11 and T83 of PII; and I229, I253 and A257 

of NAGK. The residues R45 and S49 (involved in phosphorylation) in the T-loop and E85 in 

the B-loop of PII play a vital role in complex formation and are highly conserved in the 

photosynthetic organisms. Similarly, the conserved residues E194, R233, R254, Q258 and 

A257 (located in the hydrophobic interface) in NAGK play an essential role during the 

formation of complex. The occurrence of these residues is considered as a signature of the 

PII-NAGK signalling system. The binding of PII body to the C-terminus of the NAGK causes 

for widening of the rings thereby resulting in lower affinity for holding the arginine in its 

inhibitory pocket (Llácer et al, 2008). About 14.3% of the exposed surface of PII and 5.8% of 

the exposed surface of the NAGK is buried in the complex.  

 

PII-PipX interaction 

 

The yeast two-hybrid screening with glnB genes as bait resulted in the identification of PipX 

(PII interaction protein X) as well which had no homology to known proteins (Espinosa et al, 

2006). PipX is a protein of 89 aminoacids and is found exclusively in cyanobacteria. In order 

to understand the mechanism of PipX further, it was used as bait for the yeast two-hybrid 

screening which resulted in the recruitment of NtcA (transcription factor) as an interaction 

partner. NtcA (Crp family) is involved in the nitrogen regulated gene expression, where it 

binds and activates the promoter of genes such as: glnA (glutamine synthetase), nir-operon 

(nitrate/nitrite reductase) and ntcA gene itself (Wei et al, 1993; Luque et al, 1994; Vega-Palas 

et al, 1992). NtcA occurs as homodimer of approx. 50 kDa and in the active state forms a 

complex with PipX in the presence of high 2-oxoglutarate concentration. The PipX-NtcA 

complex binds to DNA but PipX does not alter the affinity of NtcA towards its binding site 

(Espinosa et al, 2007). The structures of the PII-PipX and PipX-NtcA complexes have been 

solved for the cyanobacteria, S. elongatus (Llácer et al, 2010). The PipX structure consists of 

a tudor like domain which mediates most of the interaction with PII and NtcA. In the PII-

PipX complex, one PII trimer sequesters three PipX molecules preventing the PipX activation 

of NtcA. Nitrogen starvation (2-OG excess) condition leads to loading of 2-OG molecules to 

PII that result in an extended T-loop conformation leading to the dissociation of PII from 

PipX. Under this condition, PipX favours complex formation with the transcription factor 

NtcA. The PipX-NtcA complex is composed of a dimer of NtcA and two monomers of PipX. 

This complex has been postulated to be involved in the recruitment of the RNA polymerase 

for transcription initiation.  
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PamA-PII interaction: still a mystery unsolved 

 

PamA [PII associated membrane protein A, encoded by sll0985], a transmembrane protein 

was identified as the potential target for PII through the yeast two-hybrid screening process 

(Osanai et al, 2005b). PamA consists of 260 aminoacids and was predicted to contain seven-

membrane spanning segments and a Blast analysis resulted in sequence similarity to a protein 

family elucidated as a mechanosensitive ion channel. Biochemical analyses confirmed the 

interaction of PII and PamA and the inhibitory role exerted by ATP and 2-OG. Further, the 

deletion mutant of PamA resulted in the down regulation of the transcripts (nblA, nrtABCD 

and ureG) involved in nitrogen metabolism and the sigma factor SigE. A SigE mutant of 

Synechocystis showed decrease in the levels of genes involved in glycolysis, oxidative 

pentose phosphate pathway and glycogen metabolism (Osanai et al, 2005a). These results 

shed light on the role of SigE in the transcriptional activation of sugar catabolic pathway. In 

addition, phylogenetic studies revealed that the C-terminus of PamA was composed of a three 

membrane spanning region consisting of the MscS family domain (Osanai and Tanaka, 2007).  

MscS is responsible for relieving the hypo-osmotic shock in bacteria by the release of turgor 

pressure.  

 

4.6.3 PII signalling in plants 

 

PII proteins in plants have been majorly studied in A. thaliana, Oryza sativa and Ricinus 

communis. They are found to be nuclear encoded and localize in the chloroplast of plants 

(Hsieh et al, 1998; Smith et al, 2003; Sugiyama et al, 2004). Until now, there has been no 

covalent modification in the T-loop reported for plants. A well-studied interaction partner of 

plant PII protein is NAGK. The crystal structure of PII-NAGK complex from Arabidopsis has 

been solved (Mizuno et al, 2007). The complex structure is highly similar to the S. elongatus 

structure with an exception of the presence of additional ligands that include ADP, NAG and 

arginine resolved in NAGK and ATP-Mg bound to PII. Similar to S. elongatus, the 

corresponding residues in A. thaliana which include the T-loop residue R56 and S60 and B-

loop residue E96 are highly conserved and are involved in the complex formation between PII 

and NAGK (Mizuno et al, 2007). The residue W22 replaces the residue F11 found in the S. 

elongatus PII protein which has been implicated to play an important role in complex 

formation. Despite high degree of similarity between the complex structures, there are some 

substantial functional differences between the PII and NAGK from A. thaliana in comparison 
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to cyanobacteria. The PII from Arabidopsis is highly dynamic and activates NAGK with an 

increase in the Vmax of up to ~30% (Chen et al, 2006). In the coupled assay, free At NAGK 

displays elevated activity than Se NAGK with a 100-fold overall higher catalytic efficiency. 

In plants neither ADP, 2-OG nor ATP at lower concentrations are effective in disrupting the 

complex (Beez et al, 2009). This could be because of the high affinity of ATP for plant PII 

proteins leading to impairment of the sensing and binding of ADP (Mizuno et al, 2007; Beez 

et al, 2009). However, the Arabidopsis PII alone has been shown to respond to ATP, ADP, 2-

OG and lower amounts of oxaloacetate (Smith et al, 2003). 

 

The plant and the cyanobacterial PII and NAGK proteins have been found to complement 

each other when these proteins were swapped between the organisms (Beez et al, 2009). 

Collectively, it can be concluded that the PII-NAGK interaction is a primitively conserved 

mechanism which has been altered from prokaryotes to eukaryotic phototrophs for the control 

of nitrogen regulation during the evolution. Apart from the regulatory role of PII-NAGK 

complex, recent finding show the involvement of PII in the NO2
- uptake by the A. thaliana 

chloroplast (Ferrario-Méry et al, 2008). A knockout of PII resulted in the significant increase 

in NO2
- toxicity. Such a phenomenon was already observed in cyanobacteria where PII 

proteins phenotypically regulate an ABC type NO2
-/NO3

- transporter (Lee et al, 1998; Kloft 

and Forchhammer, 2005). In plants, the molecular mechanism of NO2
- uptake is unknown 

raising the possibility for existence of a NO2
- channel or NO2

- transporter.   

 

Recently a family of ‘biotin-binding proteins’ was found to interact with PII proteins from A. 

thaliana leaf extracts, one of the most important being Acetyl-CoA carboxylase (ACCase), an 

enzyme involved in initiating the synthesis of fatty acids in plastids (Feria Bourrellier et al, 

2010). The activity of ACCase was antagonised by PII and it was possible to relieve this 

inhibition by addition of the metabolites 2-OG, pyruvate or lower amounts of oxaloacetate. 

Understanding the mechanism of ACCase activity through PII regulation would be helpful to 

increase the oil content in seeds. Further, a transcription factor WRINKLED1 (inducer of 

glycolytic and fatty acid biosynthetic genes) was found to directly control the At GLB1 gene 

(encoding PII protein) expression during early seed maturation (Baud et al, 2010). Altogether, 

these results have indicated a new role of PII in the fine tuning of fatty acid production in 

seeds. Preliminary research work has been done in seed maturation and it’s yet unclear 

whether PII has a role in other developmental stages of plants and this needs to be further 

investigated. 
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4.6.4 PII proteins in Chlamydomonas reinhardtii 

 

PII proteins (encoded by CrGLB1 gene) from Chlamydomonas reinhardtii localize in the 

chloroplast. Unlike red algae, where the glnB gene is chloroplast encoded, PII from 

Viridiplantate (green plants) are coded in the nucleus. The Chlamydomonas PII (17.5 kDa) 

has an exceptionally long N and C-terminus in comparison to bacterial homologues. The N- 

terminus includes a signal peptide (1-46 aminoacids) and the C-terminus ends unusually with 

four positively charged residues (KKKK). A protein BLAST search with the C-terminus 

resulted in a hypothetical protein (XP_002956980.1) with 123 aminoacids from Volvox 

carteri f. nagariensis consisting of highly similar C-terminus ending with a stretch of positive 

residues (RRKR).  

 

The CrGLB1 gene expression is found to be meagrely altered in different cell types and 

growth conditions (Ermilova and Forchhammer, 2013); however dark-light shift and nitrogen 

starvation have some influence in the increase of transcript level. The position Y51 that 

corresponds to the uridylylation site of proteobacteria is substituted with a phenylalanine 

residue. This indicates no possibility of uridylylation in C. reinhardtii. The S49 position in 

cyanobacteria which corresponds to the phosphorylation site is substituted with threonine and 

is not phosphorylated like plant PII proteins (Ermilova et al, 2013). Hence, the mature Cr PII 

doesn’t seem to undergo covalent modifications.  

 

PII has been shown to be involved in NO2
- uptake in S. elongatus PCC 7942 and A. thaliana 

(Ferrario-Méry et al, 2008; Lee et al, 1998; Kloft and Forchhammer, 2005). Nitrite, a 

metabolite of the nitrate assimilation is produced in the cytosol and needs to be transferred 

immediately into the chloroplast to avoid NO2
- toxicity. Two different mechanisms have been 

proposed for the nitrite diffusion in the illuminated chloroplast (Anderson and Done 1978; 

Brunswick and Cresswell, 1988). The first mechanism suggests the free diffusion of nitrite 

due to a sink effect or through an active transport coupled through a photochemical signal 

cascade. Under low nitrate supply, the knockout of a nitrite transporter (NAR1) in C. 

reinhardtii chloroplast caused nitrogen deficiency (Rexach et al, 2000). It needs to be further 

investigated if the PII from Chlamydomonas is also involved in nitrogen regulation 

mechanism through interaction with the nitrite transporters. 
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5. Research objective 
 

PII proteins have evolved to adapt themselves to coordinate the central metabolism with 

nitrogen assimilation in different organisms. These proteins undergo allosteric and covalent 

modifications in order to bind diverse interaction partners and control their regulation. They 

act as a hub protein to coordinate multiple pathways and thereby increasing the complexity 

for interpretation. The presence of multiple PII paralogues in some organism suggests their 

role to interact with multiple targets. As PII proteins are involved in sensing the nitrogen, 

carbon and the energy status of the cells, it is highly interesting to study these control 

mechanisms and pathways in different organisms.  

 

The major player of these interactions is the T-loop which adapts different conformations in 

response to sensing distinct effector molecules. One of the key targets for the PII proteins is 

NAGK and the structure of PII-NAGK complexes have been solved for S. elongatus and A. 

thaliana. However, the sequence of steps leading to the complex formation has been unclear 

so far. This research work attempts to investigate the mechanism underlying the complex 

formation through structural and biochemical studies. Further, the T-loop senses the 

metabolite 2-OG through the coordination with ATP-Mg which aids in the disruption of the 

PII-NAGK complex. The affinity for 2-OG binding to PII from S. elongatus and the structural 

basis that mediates these interaction have been examined in this work. Though the recent 

research work in the PII field has been focused majorly on bacteria and plants, there is not 

much information on the characterization of PII from the green algae, C. reinhardtii. The 

current work interrogates the role and importance of glutamine as a signalling molecule of PII 

proteins. The influence of glutamine in the complex formation process of PII-NAGK has been 

explored through structural studies in this work. Further, bioinformatics analyses have been 

performed to understand the co-evolution of PII-NAGK and to interpret their functional and 

structural conservation. Through exploring the possible functions and mechanisms of PII 

proteins from C. reinhardtii, it would be possible to bridge the gap in the understanding of PII 

protein evolution from cyanobacteria to plastids.  
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PII signal transduction proteins are highly conserved in bacteria, archaea
and plants and have key functions in coordination of central metabolism by
integrating signals from the carbon, nitrogen and energy status of the cell. In
the cyanobacterium Synechococcus elongatus PCC 7942, PII binds ATP and 2-
oxoglutarate (2-OG) in a synergistic manner, with the ATP binding sites also
accepting ADP. Depending on its effector molecule binding status, PII (from
this cyanobacterium and other oxygenic phototrophs) complexes and
regulates the arginine-controlled enzyme of the cyclic ornithine pathway,
N-acetyl-L-glutamate kinase (NAGK), to control arginine biosynthesis. To
gain deeper insights into the process of PII binding to NAGK, we searched
for PII variants with altered binding characteristics and found PII variants
I86N and I86T to be able to bind to an NAGK variant (R233A) that was
previously shown to be unable to bind wild-type PII protein. Analysis of
interactions between these PII variants and wild-type NAGK as well as with
the NAGK R233A variant suggested that the PII I86N variant was a
superactive NAGK binder. To reveal the structural basis of this property,
we solved the crystal structure of the PII I86N variant at atomic resolution.
The large T-loop, which prevails in most receptor interactions of PII
proteins, is present in a tightly bended conformation that mimics the T-loop
of S. elongatus PII after having latched onto NAGK. Moreover, both PII I86
variants display a specific defect in 2-OG binding, implying a role of residue
I86 in 2-OG binding. We propose a two-step model for the mechanism of
PII–NAGK complex formation: in an initiating step, a contact between R233
of NAGK and E85 of PII initiates the bending of the extended T-loop of PII,
followed by a second step, where a bended T-loop deeply inserts into the
NAGK clefts to form the tight complex.
© 2010 Elsevier Ltd. All rights reserved.
Keywords: 2-oxoglutarate; nitrogen regulation; Synechococcus; metabolic
signalling; arginine
Edited by I. B. Holland
Introduction

PII proteins belong to a large protein family present
in bacteria, plants and archaea, where they play
pivotal roles as sensors and signal transducers in
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processes connected to nitrogen assimilation.1–4

Generally, PII proteins are signal integrators that
bind the key metabolites ATP, ADP and 2-oxogluta-
rate (2-OG) and in many cases are subjected to
reversible covalent modification in response to the
carbon/nitrogen status of the cell.3,5 Depending on
the signal input state, PII proteins bind and regulate
the activity of keymetabolic and regulatory enzymes,
transcription factors or transport proteins.1–3

PII proteins are homotrimers of 12- to 13-kDa
subunits with a highly conserved three-dimensional
structure. From the body of the trimer, which is
almost hemispheric, three large T-loops, one per
subunit, protrude into the solvent. The T-loops are
d.
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able to adopt multiple conformations and are the
key to the versatile protein–protein interactions of
PII proteins.

3 Further to the T-loop, each subunit has
two smaller loops: the B- and C-loop from opposing
subunits face each other in the intersubunit clefts,
where they are engaged in adenyl nucleotide
binding.6–8 The trimeric PII protein thus contains
three ATP/ADP binding sites, each one in the cleft
between neighbouring subunits. In the presence of
ATP, up to three 2-OG molecules can bind per
trimer; however, the binding site for 2-OG is not
clear hitherto.1,6,9 For a PII paralogue from Metha-
nococcus jannaschii, GlnK1, one 2-OG molecule was
shown to bind from outside to the distal side of the
T-loop in the presence of Mg-ATP.10 This finding is,
however, in conflict with earlier data, which showed
by deletion mutagenesis that this part of the T-loop
is dispensable for 2-OG binding, at least for the PII
protein of Escherichia coli.11 Recent studies suggest
that, in E. coli, 2-OG controls the conformation of the
T-loop after PII binding to its receptor.12 The binding
of ATP and 2-OG are synergistic toward each other,
meaning that the binding of ATP favours the
binding of 2-OG and vice versa. However, the sites
for ATP exhibit negative cooperativity toward the
other ATP binding sites and the same holds true for
the 2-OG binding sites. This feature of anti-cooper-
atively communicating metabolite binding sites
allows PII to sense these metabolites in a wide
range of concentrations.5,13

In the cyanobacterium Synechococcus elongatus
PCC 7942, PII plays essential roles in control of
nitrogen utilization.8 Under nitrogen-poor condi-
tions, PII is phosphorylated at the T-loop residue S49
(PII-P),

8 whereas under nitrogen-sufficient condi-
tions, PII-P is dephosphorylated.14 Phosphorylation
and dephosphorylation of PII had been shown in
vitro to depend on the 2-OG levels, with high 2-OG
stimulating PII phosphorylation and low 2-OG
levels favouring the dephosphorylation of PII-P.
The known regulatory targets of PII in S. elongatus
involve regulation of gene expression controlled by
transcription factor NtcA through binding to an
NtcA-activating factor PipX15 and control of argi-
nine biosynthesis by activatingN-acetyl-L-glutamate
kinase (NAGK).16–18 NAGK converts N-acetyl-L-
glutamate (NAG) to N-acetyl-glutamyl phosphate,
and its activity is regulated through feedback
inhibition by arginine.19 PII exerts control over
NAGK in the following manner: nonphosphory-
lated PII protein, at low 2-OG concentrations, binds
to NAGK. Complex formation not only increases
enzymatic activity by affecting the Km and Vmax of
the catalyzed reaction, but also relieves NAGK from
arginine feedback inhibition by approximately 10-
fold.17 The PII–NAGK complex consists of two PII
trimers sandwiching one NAGK hexamer (trimer of
dimers) with their threefold axes aligned.20 Two
surfaces of each PII subunit are involved in the
contact with NAGK: at the body of the PII protein,
residues F11 and F13 at the β1–α1 junction of PII
make hydrophobic NAGK interactions; residue E85
of the B-loop of PII forms a salt bridge with R233 of
29
NAGK; and B-loop residue T83 is engaged in
hydrophobic interactions. In the complexed state,
the T-loop of PII adopts a unique bended shape and
inserts into the interdomain cavity of NAGK,
making contact with the NAGK N domain, with
R45 and E50 being engaged in an ion pair network
and S49 in tight hydrogen-bond interactions with
NAGK. This compact T-loop conformation requires
that an intramolecular salt bridge between R47 and
E85, which stabilizes an extended T-loop conforma-
tion of free PII protein, is broken, so that the salt
bridge between B-loop R45 and NAGK R233 can be
formed. Almost the same structure as for the S.
elongatus proteins was revealed for the PII–NAGK
complex fromArabidopsis thaliana,21 and the mode of
interaction has apparently been conserved through-
out the evolution of eukaryotic phototrophs, high-
lighted by the fact that the cyanobacterial and plant
proteins are able to functionally interact in vitrowith
each other.22

The current study was carried out to gain deeper
insights into the molecular events leading to PII
interaction with NAGK. A random mutagenesis
approach yielded novel PII variants (I86N and I86T)
that display unique features of NAGK and effector
molecule binding. To explain these features, the
structure of the I86N variant was solved, shedding
new light on the process of how the PII NAGK
complex forms.

Results

Identification of a PII variant with altered
NAGK interaction

To investigate the process of interaction between
S. elongatus PII and its receptor NAGK, we created a
randomly mutated glnB library (encoding PII)
cloned in a bacterial two-hybrid vector. In the
course of this study, a PII variant (carrying an E85-
to-D substitution) was identified as being unable to
interact with NAGK (not shown). Since the resulting
variant has retained the negative charge required for
a critical ion pair interaction with R233 in NAGK,
the loss of interaction indicated a sophisticated role
of the PII-E85–NAGK-R233 interface for complex
formation. To reveal this issue, a bacterial two-
hybrid screening was performed using the glnB
random mutant library against an argB bait that
encodes an NAGK variant with an R233A substitu-
tion. This NAGK variant shows no interaction in
vitro with PII protein of wild-type sequence (wt
PII),

20 in yeast two-hybrid analysis interaction,20 or
in the actual bacterial two-hybrid assay (not shown).
Screening this library for PII variants capable of
interacting with NAGK R233A yielded out of seven
clones two types of complementing PII variants,
both containing substitutions at position 86 (I86T or
I86N PII). To analyze the interaction between NAGK
R233A with the I86 PII variants, the interaction of
these proteins was measured by surface plasmon
resonance (SPR) spectroscopy (Fig. 1a–c). Wild-type
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PII protein showed almost no interaction with
immobilized NAGK R233A, either in the absence
or in the presence of 100 μM ATP (Fig. 1a),
confirming the previous results.20 Strikingly, the
two I86 PII variants were able to form complexes
with NAGK R233A, but only in the presence of
nucleotides. ATP stimulated complex formation in a
concentration-dependent manner (Fig. 1b and c).
For the I86N variant, 1 μM ATP resulted in clearly
detectable NAGK binding (Fig. 1b). Formation of the
complex between the PII variant I86T and NAGK
R233A required higher ATP concentrations; the
association occurred considerably slower than that
of the I86N variant and the complex dissociated
almost immediately at the end of analyte injection in
the ATP-free running buffer (Fig. 1c). Furthermore,
the influence of the two PII variants on the
enzymatic activity of the NAGK R233A variant
was determined.22 Arginine inhibition of NAGK
activity was determined in the absence of PII (IC50
for arginine, 14 μM) and with wt, I86N or I86T PII
proteins (Fig. 1d). The wt PII protein and the I86T
Fig. 1. Interaction of R233A NAGK with recombinant PII pr
loaded NTA sensor chip (see Materials and Methods) and FC1
(ΔRU) between FC1 and FC2 is shown. An arrow indicates the
the presence of 0 and 100 μM ATP, as indicated. (b) Influence o
R233ANAGK; ATP was used at a concentration of 0, 0, 5, 1, 5, 1
presence of ATP at a concentration of 0, 10, 25, 50, 100, 250 a
activity by arginine in the absence and in the presence of PII. C
50 mM NAG and 10 mM ATP, together with increasing con
(squares) and in the presence of wt PII (triangles), I86N (rhom
using reaction velocity without analyte as 100%, was plotte
deviations from different measurements for each data point are
a hyperbolic curve.
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variant both slightly relieved R233A NAGK from
arginine inhibition by increasing the IC50 for
arginine to 40 or 32 μM, respectively. By contrast,
the I86N PII protein was much more efficient in
relieving NAGK R233A from arginine inhibition by
increasing the IC50 for arginine to 197 μM. This is in
agreement with the result from the SPR analysis,
which revealed efficient binding of I86N PII to the
R233A NAGK variant. Interestingly, wt PII showed
a weak effect on NAGK R233A in the enzyme assay
but no interaction in bacterial two-hybrid screening
or almost no binding by SPR analysis. This indicates
that the arginine inhibition assay of NAGK is very
sensitive and detects even very weak interactions,
resulting in slightly enhanced NAGK activity. That
the PII I86T variant is not more efficient than wt PII in
protecting NAGK R233A from arginine inhibition
may be attributed to the instability of the complex
(as revealed by SPR analysis, see above) or could be
a direct effect of this mutation, affecting the ability to
relieve NAGK from arginine feedback inhibition
(compare below).
oteins. (a)–(c), R233A NAGK was bound to FC2 of a Ni2+-
was used as background control. The response difference
end of the injection phase. (a) Binding of 100 nM wt PII in
f ATP on the complex formation of I86N PII (100 nM) and
0, 100 and 1000 μM, as indicated. (c) Binding of I86T in the
nd 1000 μM, as indicated. (d) Inhibition of R233A NAGK
oupled NAGK assays were performed in the presence of

centrations of arginine, as indicated, in the absence of PII
bus) or I86T (circles). The percentage of NAGK activity,

d against the respective analyte concentration (standard
indicated by error bars) and the data points were fitted to



Fig. 2. SPR analysis of the effect of ATP on complex
formation between wt NAGK and wt, I86N or I86T PII
proteins. SPR spectroscopy was performed as described in
Materials and Methods. The response difference (ΔRU)
between FC1 and FC2 is shown. An arrow indicates the
end of the injection phase. (a) Binding of 100 nM wt PII in
the presence of 0, 1, 5, 15, 50 and 100 μM ATP, as
indicated. (b) Influence of ATP on the complex formation
of I86N PII (100 nM) and wt NAGK; ATP was used at a
concentration of 0, 0, 25, 1, 5 and 25 μM, as indicated. (c)
Binding of I86T in the presence of ATP at a concentration
of 0, 0,1, 0,25, 1, 5, 15 and 25 μM, as indicated.

Fig. 3. SPR analysis of the effect of ADP on complex
formation between wt NAGK and wt, I86N or I86T PII
proteins. SPR spectroscopy was performed as described in
Materials and Methods. The response difference (ΔRU)
between FC1 and FC2 is shown. An arrow indicates the
end of the injection phase. (a) Binding of 100 nM wt PII in
the presence of 0, 30, 70, 300 and 500 μM ADP, as
indicated. (b) Influence of ADP on the complex formation
of I86N PII and wt NAGK; ADP was used at a
concentration of 0, 1, 10, 25, 75 and 100 μM, as indicated.
(c) binding of I86T in the presence of ADP at a
concentration of 0, 10, 25, 50, 75 and 100 μM, as indicated.
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Interaction of wt NAGK with PII variants I86N
and I86T

Next, the interaction of the PII variants I86N and
I86T with wild-type NAGK was analyzed to find
out how the substitution of I86 in PII affects its
NAGK-binding properties. Complex formation was
first assayed by SPR spectroscopy. Without effec-
tors, both variants bound significantly weaker to
NAGK compared to wt PII and the complex
31
appeared to be less stable, as revealed by the
dissociation of the complex after the end of analyte
injection (Fig. 2a–c, continuous lines; end of inject
indicated by the arrow). However, binding to
NAGK was significantly improved in the presence
of adenyl nucleotides. The I86N variant responded
to submicromolar concentrations of ATP. In the
presence of 25 μM ATP, four times more binding
was observed than without ATP, whereas wt PII
protein is only slightly affected by ATP (Fig. 2a).



Fig. 4. SPR analysis of the effect of 2-OG on complex
formation between wt NAGK and wt, I86N or I86T PII
proteins in the presence of 1 mM ATP. SPR spectroscopy
was performed as described in Materials and Methods.
The response difference (ΔRU) between FC1 and FC2 is
shown. An arrow indicates the end of the injection phase.
(a) Binding of 100 nM wt PII in the presence of 1 mM ATP
and 2-OG at a concentration of 0, 15, 50, 100, 250 and
500 μM, as indicated. (b) Influence of 2-OG on the complex
formation of I86N PII and wt NAGK in the presence of
1 mM ATP; 2-OG was used at a concentration of 0, 50, 100
and 500 μM, as indicated. (c) Influence of 2-OG on the
complex formation of I86T PII and wt NAGK in the
presence of 1 mM ATP; 2-OG was added at a concentra-
tion of 0, 50, 100 and 500 μM, as indicated.
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Compared to wt PII protein in the presence of
saturating ATP, the I86N variant bound even better
to the NAGK surface and the complex was
apparently stable (compare Fig. 2a and b), indicating
that the I86N variant is a superactive NAGK binder.
32
Concerning the PII variant I86T, ATP also enhanced
complex formation; however, the complex was
unstable, as indicated by the rapid dissociation
following the injection phase (Fig. 2c).
As demonstrated previously,17 ADP negatively

affects wt PII–NAGK interaction (Fig. 3a). Apparent-
ly, ADP does not completely abolish PII–NAGK
interaction, but rather increases the dissociation
constant, as deduced from the decreasing levels of
PII binding to the NAGK surface with increasing
ADP concentrations. In striking contrast to wt PII,
ADP enhanced and stabilized the binding of both PII
I86 variants to NAGK (Fig. 3b and c). Addition of
1 μM ADP noticeably increased the binding of PII
variant I86N toNAGK, and amaximumwas reached
in the presence of 25 μM ADP, with higher ADP
concentrations slightly reducing complex formation
again. This PII variant remained stably bound on the
NAGK surface during the dissociation phase (Fig.
3b, right to the arrow) and in contrast to wt PII could
not be dissociated by injection of 1 mM of ADP (data
not shown). In the case of the I86T variant, ADP only
weakly stimulated NAGK interaction (Fig. 3c).
2-OG is known to be a major effector molecule

involved in PII signal transduction.
17 As shown in Fig.

4a, micromolar amounts of 2-OG in the presence of
1mMATP diminishedwt PII–NAGK interaction, and
in the presence of 500 μM 2-OG, complex formation
between wt PII and NAGK was almost completely
inhibited. Interestingly, addition of 2-OG to the I86N
variant had only a small effect on complex formation,
since significant binding was observed even in the
presence of 500 μM 2-OG and 1 mM ATP (Fig. 4b).
Even more strikingly, the I86T variant was almost
completely insensitive toward 2-OG (Fig. 4c).
The interaction of I86 PII variants with wt NAGK

was further investigated by using the coupled
NAGK enzyme assay (see above). As shown in Fig.
5a, the I86N PII variant was as efficient as wt PII in
relieving NAGK from arginine inhibition (IC50
values of approximately 460 μM for wt PII and
630 μM for PII I86N). On the other hand, the I86T
variant showed a much weaker effect on NAGK
arginine inhibition (IC50, 75 μM). In the absence of
PII, NAGK had an IC50 of 18 μM for arginine, as
reported previously. These results correspond to
SPR measurements shown above, where wt PII and
the I86N variant formed a stable complex with wt
NAGK in the presence of ATP (ATPwas also present
in the coupled assay at 10 mM concentration). By
contrast, the I86T variant dissociates rapidly from
NAGK, leading to the conclusion that the stability of
the PII–NAGK complex could be important for
relieving the enzyme from arginine inhibition.
The next step was to test the inhibitory effects of 2-

OGonNAGKactivation byPII variants I86Nand I86T
via the coupled assay. Therefore, 2-OGwas titrated to
PII–NAGK in a buffer containing 50 μMarginine. This
amount of arginine is highly inhibitory for free
NAGK, but only slightly inhibitory for the PII–
NAGK complex.22 In the control experiment, NAGK
activity in the presence of wt PII was inhibited by the
addition of 2-OG in a concentration-dependent
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manner with an IC50 of 116 μM, as reported
previously.22 With both PII variants, 2-OG was not
effective in antagonizing the PII-mediated protection
of NAGK from arginine inhibition even at high
concentrations (Fig. 5b). This result confirmed data
from SPR experiments, which showed that PII
variants I86N or I86T are insensitive toward 2-OG.

Binding of effector molecules to PII and its I86N
and I86T variants

The experiments shown above indicated that the
PII variants I86N and I86T responded to the effector
molecules ATP, ADP and 2-OG quite differently
from wt PII. Therefore, the effector-binding proper-
ties of these PII variants were determined by
isothermal titration calorimetry (ITC). Previously,
the ligand-binding properties of S. elongatus PII have
not been determined by this method. Therefore, the
ITC characteristics of wt PII protein will be presented
first in some detail. The measurements were
Fig. 5. Arginine inhibition of NAGK and influence of
2-OG in the presence of recombinant PII proteins. Coupled
NAGK assays were performed as described in Materials
and Methods in the presence of 10 mM ATP. The
percentage of NAGK activity, using reaction velocity
without analyte as 100%, was plotted against the
respective analyte concentration (standard deviations
from different measurements for each data point are
indicated by error bars) and the data points were fitted to a
hyperbolic curve. (a) Inhibition of wt NAGK activity by
increasing concentrations of arginine, as indicated, in the
absence of PII (squares) and in the presence of wt PII
(triangles), I86N (rhombus) or I86T (circles). (b) Effect of 2-
OG on the activation of NAGK by PII in the presence of
arginine. Assays were performed in the presence 50 μM
arginine and increasind 2-OG concentrations, as indicated,
with wt PII (squares), I86N (triangles) and I86T (circles).
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performed with different ligand/protein concentra-
tions to determine the conditions under which the
best fitting to the binding model could be achieved.
Subsequently, the experiments were repeated to
confirm the result. As shown in Fig. 6a, wt PII
protein exhibits high affinity toward ATP. Optimal
fitting of the raw data was obtained using a three
sequential binding sites model (Fig. 6a, lower part).
This analysis revealed a low dissociation constant
for the first binding site (Kd1=4 μM) and increased
Kd for binding sites 2 and 3 (Kd2=12.5 μM,
Kd3=47.4 μM) as shown in Table 1, indicative of
negative cooperativity between the binding sites,
similar to values reported previously using equilib-
rium dialysis or ultrafiltration techniques.13 Direct
binding of ADP to S. elongatus PII has so far never
been reported. Here we show that ADP binds almost
as efficiently as ATP (Fig. 6b), with similar anti-
cooperativity among the three sites (Kd1=10.6 μM,
Kd2=19.3 μM, Kd3=133.4 μM). Apparently, for each
site, ATP binding is preferred overADP. The binding
isotherm for 2-OG was measured in the presence of
1 mM ATP (Fig. 6c). According to the model,
assuming three sequential binding sites, the first
two sites are occupied at low 2-OG concentrations
(Kd1=5.1 μM, Kd2=11.1 μM), whereas occupation of
the third site requires approximately 10-fold higher
concentration of 2-OG (Kd3=106.7 μM). Interest-
ingly, the dissociation constant of site 3 corre-
sponds quite well to the IC50 of 2-OG for
antagonizing the PII-mediated protection of
NAGK from arginine inhibition (116 μM, see
above) or with the 2-OG concentration that is
required to inhibit NAGK binding (as determined
by SPR analysis; Fig. 4a). This suggests that for
inhibiting the binding of PII to NAGK, all three 2-
OG sites have to be occupied.
The PII variant I86N has completely lost the anti-

cooperativity of the ATP binding sites: all three sites
were occupied independently with a Kd of approx-
imately 9.6 μM. The raw data could not be fitted
properly using a three sequential binding sites
model; therefore, a one-site binding model was
used for these measurements. This model allowed
us to determine three independent binding sites for
a I86N trimer (Table 1). The I86T variant also
showed lack of anti-cooperativity of the ATP
binding sites. The affinity toward ADP in both
variants was weaker than for wt PII. For both PII
variants, addition of 2-OG in the presence of 1 mM
ATP did not yield any calorimetric signals. This
result agrees with data shown above, which
demonstrate that these PII variants are insensitive
toward 2-OG (Fig. 4 and 5b), implying that I86 of the
B-loop may take part in 2-OG binding.

Structure of the PII I86N variant

The observation that PII variant I86N, in particu-
lar, is able to bind to the NAGK variant R233A,
whereas the wt PII protein was unable to interact,
clearly shows that the PII E85–NAGK R233 interac-
tion is not required for the I86N variant. This led us



Fig. 6. ITC of ligand binding to wt PII protein. The upper panels show the raw data in the form of the heat effect during
the titration of 33 μMwt PII solution (trimer concentration) with ligands. The lower panels show the binding isotherm and
the best-fit curve according to the three sequential binding sites model. (a) ATP binding (titration from 2.1 to 146.8 μM). (b)
ADP binding (4.2–293.7 μM). (c) 2-OG binding (4.2–293.7 μM) in the presence of 1 mM ATP.

Table 1. Dissociation constants of ATP, ADP and 2-OG
binding to recombinant PII proteins

Kd1 (μM) Kd2 (μM) Kd3 (μM)
N (no. of sites in
one-site model)

ATP
wt 4.0±0.1 12.5±0.9 47.4±21.9 —
I86N 9.6±1.3 3.0±0.1
I86T 14.3±0.5 3.51±0.62

ADP
wt 10.6±3.2 19.3±2.3 133.4±5.2 —
I86N 165.3±59.0 59.5±49.3 66.2±38.5 —
I86T 41.4±11.5 53.7±13.1 149.9±13.6 —

2-OG (+1 mM ATP)
wt 5.1±4.0 11.1±1.8 106.7±14.8 —
I86N n n n —
I86T n n n —

n, not detectable.
Values for wt PII correspond to the mean±SEM of three
experiments for I86N and to the mean±SEM of two experiments
for I86T.
The raw data for I86N- and I86T-ATP binding was fitted using a
one-site binding model for a PII trimer.
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to hypothesize that this variant may adopt a
conformation that facilitates interaction with
NAGK to make it independent of the NAGK R233
contact. To resolve this issue, the structure of the PII
I86N variant in the presence of ATPwas solved by X-
ray crystallography. Protein crystals diffracted to a
resolution of 1.2 Å with one monomer of the protein
in the asymmetric unit (see also Table 2). The
structure was solved by molecular replacement
using the structure of nonliganded S. elongatus PII
[Protein Data Bank (PDB) entry 1Q7Y] as the search
model. As shown in Fig. 7, the backbone of the I86N
variant is almost identical to that of the wt PII
structure7 (r.m.s.d. of 1.9 Å for 100 aligned residues).
In contrast to the nonliganded S. elongatus PII protein
(Fig. 7b), the T-loop adopts a compact conformation,
which is very similar to that of the wt PII protein in
complex with NAGK20 (Fig. 7a). The I86N substitu-
tion results in a newly formed hydrogen bond
between the amido nitrogen of N86 and the
backbone oxygen of T43, contracting the anterior
part of the T-loop toward the body of PII (Fig. 7c).
This compact conformation is further stabilized by a
salt bridge between E44 and K58. The same
stabilizing salt bridge is observed in the compact T-
loop of NAGK-bound PII (Fig. 7a). Moreover,
residues R45 and E50 at the tip of the T-loop are
connected by another salt bridge in the I86N variant
and E50 forms an additional H-bond with T43. The
same interaction has been observed in NAGK-
complexed PII, where these surface-exposed residues
organize an ion pair network with NAGK, which
appears to be a major determinant for this
interaction.20 In the I86N variant, the hydroxyl
group of S49 is surface-exposed to perfectly match
the corresponding contact surface ofNAGK.Overall,
the structure of the I86N variant appears as a perfect
mimic of wt PII structure in complex with NAGK.
34
Mg-ATP is bound to the canonical ATP binding
site of PII proteins, which lies in the intersubunit clef
between neighbouring subunits.6,23 Accordingly,
key contact residues for Mg-ATP binding are G27,
T29, R101 and R103 from one subunit and G37, G87,
G89 and K90 from the opposing subunit. The C-
terminus of the I86N variant forms a short α-helix,
which folds back toward the ATP binding pocket
(Fig. 7a). This structure is reminiscent of the C-
terminal end of A. thaliana PII.

21 In the I86N PII
variant, this segment is well ordered until the C-
terminal end of the native S. elongatus PII sequence
(amino acid 112). The additional 10 amino acids
from the C-terminal fused Streptag II peptide are not
ordered and therefore not visible, indicating that



Table 2. Data collection and refinement statistics

PII I86N variant

Data collection
Space group P213
Cell dimensions

a, b, c (Å) 80.68, 80.68, 80.68
α, β, γ (°) 90

Resolution (Å) 1.2 (1.27–1.2)
Rsym or Rmerge 0.1 (0.64)
I/σI 17 (2.3)
Completeness (%) 99.9 (99.7)
Redundancy 13.3 (10.3)

Refinement
Resolution (Å) 36–1.2
No. of reflections 52,061
Rwork/Rfree 0.12/0.14
No. of atoms (all)

Protein 919
Ligand/ion (ATP/Mg2+/Cl) 31/1/1
Water 174

B-factors
Protein 9.7
Ligand/ion (ATP/Mg2+/Cl) 8.4/8.9/8.4
Water 31

r.m.s.d.
Bond lengths (Å) 0.03
Bond angles (°) 2.7

Values in parentheses are for the highest-resolution shell.

Fig. 7. The structure of the PII I86N variant mimics the struc
shown as strings and ribbons. ATP, residue side and main c
Superimposed structure of S. elongatus PII in complex with NA
coloured red. The magnification below shows B- and T-loop r
arrangement of residues R45, S49 and E50. (b) Superimposed
1QY7) and the I86N variant (red). (c) T-loop of the I86N varia
amido nitrogen of N86 with the backbone oxygen of T43; bro
and, additionally, salt bridges R45–E50 and E44–K58, which s
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this C-terminal extension is highly flexible and does
not interfere with the PII structure, in accordwith the
full functionality of the C-terminal Strep-tagged PII
protein compared to the untagged version with
respect to effector molecule binding and NAGK
interaction.13,20
Discussion

The structure of the novel PII I86N variant
together with its binding properties to NAGK offers
a mechanistic explanation for the process of complex
formation between PII and NAGK and explains the
role of the PII 85E–NAGK 233R interface. In the
complex of wt PII and NAGK, there are two surfaces
of interaction: a smaller exterior interface (303 A2) is
formed by the peripheral part of the NAGK C
domain and the β1–α1 junction (F11–E15) and B-
loop residues T83 and E85 of PII, the latter forming a
salt bridge with R233 of NAGK. The larger surface
(393 A2) involves the T-loop hairpin that is deeply
buried within the NAGK interdomain cleft.20 There
is a drastic difference between this compact T-loop
conformation and that of the nonliganded free PII,
where the T-loop exhibits an extended conforma-
tion. The extended T-loop of S. elongatus PII may be a
ture of S. elongatus PII in complex with NAGK. Proteins are
hains are shown as sticks and Mg2+ ions as spheres. (a)
GK coloured blue (PDB ID 2V5H) and the PII variant I86N
esidues important for NAGK interaction. Note the similar
structure of nonliganded S. elongatus PII in green (PDB ID
nt (red). Red broken lines show the hydrogen bond of the
ken lines show the hydrogen bonds between E50 and T43
tabilize the bent conformation.
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specificity of cyanobacterial PII proteins, since the
R47–E85 pair, which apparently stabilizes this
conformation, is only present in cyanobacterial PII
proteins. In agreement, from the numerous PII
structures that are available today, only the S.
elongatus PII structure exhibits this type of extended
T-loop.3,23 Obviously, in the process of NAGK–PII
complex formation, the R47–E85 bridge must be
broken and the T-loop must undergo a large
conformational rearrangement to adopt the compact
bended structure. Based on the results of this study,
we propose a two-step mechanism of PII interaction
with NAGK, giving the B-loop a key role in
initiating this process. According to this model, in
the first step, NAGK approaches PII and the NAGK
residue R233 triggers the break of the PII R47–E85
bridge by presenting amore suitable partner for E85.
In the second step, the extended T-loop collapses
into the NAGK interdomain cleft, generating the
large surface for PII binding to NAGK and stabiliz-
ing the complex. As shown in this study, the salt
bridge R233-NAGK–E85-PII is not essential for
binding per se, since the NAGK R233A variant is
able to bind PII variants I86N and I86T. According to
the two-step model, wt PII is not able to bind to
NAGK R233A because the initiating step cannot
take place. For the same reason, PII variant E85A
would be unable to bind wt NAGK. The PII variant
E85D may be impaired in performing the initiating
step because the aspartate side chain could be too
short to interact with R233 of NAGK. Binding of the
PII variant I86N to NAGK R233A is explained in
light of the new structure. It binds to NAGKwithout
the need of the initiating PII E85–NAGK R233
interaction, because due to the I86N substitution,
this PII variant exhibits a conformation that a priori
fits into NAGK. In this variant, the T-loop is fixed in
a conformation that mimics that of the PII T-loop in
the NAGK complex. The interaction of the I86T
variant with NAGK is weaker than that of the I86N
variant. The location of the hydroxyl group of the
T86 residue in this variant may be less favourable for
hydrogen-bonding the backbone oxygen of T43 than
the corresponding amide group of N86, resulting in
a T-loop conformation that less perfectly fits into the
NAGK binding pocket and may be less capable of
relieving NAGK from arginine inhibition.
Whether a two-step binding process as proposed

here for the NAGK–PII interaction is a general
mechanism occurring in PII receptor interactions
remains to be elucidated. Considering the wide
variety of PII interactions with different receptor
proteins, there may be different processes of
complex formation. However, in any case, the
flexibility of the T-loop is predestined for highly
sophisticated interactions involving multistage
binding processes. A recent investigation of E. coli
PII interacting with its receptors NtrB and ATase
implies that in E. coli, PII binds its receptors in a first
step independent of the effector molecule 2-OG. T-
loop structural rearrangements, triggered by 2-OG
binding, could occur in this case at a post-binding
step, thereby modulating the regulation of receptors
36
by 2-OG through PII. Two distinct interaction
surfaces were predicted for such a process, one
that is insensitive toward 2-OG, and a second one
that mediates the regulatory effects and responds to
2-OG.12

More than shedding light on the process of PII–
NAGK complex formation, the I86 variants reveal
an unexpectedly important contribution of the I86
residue to effector molecule binding properties of
PII. First, the I86N variant has completely lost anti-
cooperativity between the ATP binding sites, indi-
cating a role for the B-loop in intersubunit signalling.
Second, the failure to bind 2-OG is remarkable.
Other PII variants, which were reported previously
to be unable to bind 2-OG, had in addition impaired
ATP binding properties. This hampers the interpre-
tation of the phenotype, since as a general rule for
PII proteins, 2-OG binding requires the previous
binding of ATP.1,13 Only upon ATP binding is the 2-
OG binding site of PII created; however, the position
of the 2-OG binding site remains enigmatic so far.
The I86 variants are the only PII variants reported so
far that have retained ATP binding, although
modified, but are completely impaired in 2-OG
binding. This suggests that this B-loop residue is
probably directly involved in 2-OG binding, pro-
posing a possible location of the 2-OG binding site
near the B-loop and the binding site for ATP. This
conclusion is supported by mutational studies of E.
coli PII, which revealed residue Q39 that lies at the
base of the T-loop and opposing residue I86,24 being
involved in 2-OG binding.11 A similar position for
the 2-OG binding sites has already been proposed
for the Herbaspirillum seropedicae GlnK protein (a
member of the PII family) based on sequence
comparisons with other 2-OG binding proteins.25

Alternatively (or in addition), the conformation of
the T-loop adopted by the I86N variant could be
incompatible with 2-OG binding. Since the same T-
loop conformation is found in NAGK-bound PII,
which is able to respond to 2-OG, further conclu-
sions could be made: 2-OG binding could unlock
the bent T-loop conformation, ascribing the failure
of the I86N variant to bind to 2-OG to the fact that
the T-loop in this variant is fixed in the tightly bent
conformation. Unlocking the bent T-loop would
also provide a rationale for the antagonistic effect of
2-OG on PII–NAGK binding. The location of the 2-
OG binding site near the B-loop is in apparent
contradiction with a recently reported structure of
the PII protein GlnK1 from the archaeon M.
jannaschii. In the crystal structure soaked with 2-
OG, the effector was found on the T-loop of GlnK1
with several hydrogen bonds between the keto-
carboxyl group and main-chain NH of I52, V53 and
D54.10 Since a deletion of the corresponding
residues in E. coli PII did not affect 2-OG binding,11
it is unlikely that this 2-OG-binding site of the
archaeal PII protein applies to bacterial PII proteins.
Furthermore, it is hardly conceivable how 2-OG
could bind to such a site, once the complex with
NAGK has formed, since in the complex the 2-OG
site would be shielded by NAGK. However, a
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binding site close to the B-loop would be accessible
even in NAGK-complexed PII. Resolution of the 2-
OG binding site in bacterial PII proteins is urgently
needed to understand the regulatory function of this
effector molecule in PII-regulated processes.
Materials and Methods

Random mutagenesis of recombinant PII protein and
bacterial two-hybrid screen

Before mutagenesis, the glnB gene was cloned into the
bacterial two-hybrid vector pBT (Stratagene) to generate
pBT-glnB with the following oligonucleotides: glnB/
pBTfor (5′-CGGAATTCCATGAAGAAGATTGAGGC-
GATTATT-3′), carrying an EcoRI restriction site, and
glnB/pBTrev (5′-CGGGATCCCTGTTGTCGACGCT-
GACTTAGA-3′), carrying a BamHI restriction site.
Random mutagenesis on pBT-glnB was performed with
the GeneMorph II Random Mutagenesis Kit from
Stratagene (La Jolla, CA) with the following oligonucleo-
tides containing EcoRI and BamHI restriction sites:
glnBRacefor (5′-CGGCCGCATCGAATTCCATGTAG-3′)
and glnBRacerev (5′-TCGAGGATCCCTGTTGTC-
GACGTCGAC-3′), using 2.6 μg of pBT-glnB DNA as
template. The randomly mutated PCR fragments were
purified, restricted with EcoRI and BamHI and re-ligated
into the pBT bait vector to produce the pBT-glnB random
mutant library. For the in vivo assay of the PII–NAGK
interaction, the BacterioMatch II Two-Hybrid System
Vector Kit from Stratagene was used. The argB gene from
S. elongatus, coding for NAGK, was cloned into pTRG
target vector (Stratagene) with the following primers:
NAGK/pTRGfor (5′-CGGGATCCATGTCTAGCGAGTT-
TATCGAAGC-3′), carrying a BamHI restriction site, and
NAGK/pTRGrev (5′-CCGCTCGAGTCACGGATCGCT-
CATTGCCAG-3′), carrying an XhoI restriction site, with
S. elongatus chromosomal DNA as template. To screen for
PII variants that lost the ability to interact with NAGK,
the pBT-glnB random mutant library was transformed
into E. coli strain 200190 BacterioMatch II Screening
Reporter Competent Cells (Stratagene) carrying pTRG-
argB. The transformants were replica-plated on nonselec-
tive Cm/Tet Luria–Bertani (LB) plates and Cm/Tet/3-AT
(3-amino-1,2,4-troazole) plates that only allow growth of
cells, in which hybrid PII–NAGK interaction occurs.
Clones that failed to grow in the presence of the selective
agent 3-AT were further investigated. To exclude glnB
variants that produced instable or truncated versions of
PII, we grew the clones of interest in liquid LB-Cm/Tet
and analyzed the integrity of PII by immunoblot analysis
using PII-specific antibodies.

16 From clones that contained
full-size PII fusion protein, the mutant pBT-glnB plasmids
were checked again by bacterial two-hybrid assay for loss
of NAGK interaction; interaction-negative clones were
isolated and the glnB gene was sequenced from both sides
with primers glnB/pBTfor and glnB/pBTrev.

Overexpression and purification of recombinant PII
and NAGK

The mutant glnB genes were amplified from the
respective mutant pBT-glnB plasmids by PCR using the
following primers: glnBStrep-for (5′-GCAATTGGTCT-
CAAATGAAGAAGATTGAGGCGATTATTC-3′) and
glnBStrep-rev (5 ′ -GATCATGGTCTCAGCGCT-
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GATTGCGTCGGCGTTTTTCTC-3′). The PCR products
containing mutant glnB genes were cloned into the Strep-
tag fusion vector pASK-IBA3 (IBA, Göttingen, Germany)
as described previously.16 Overexpression of mutant glnB
in E. coli RB906026 and purification of recombinant PII
proteins with a C-terminal fused Strep-tag II peptide was
performed according to Heinrich et al.16

The His6-tagged recombinant wt NAGK from S.
elongatus was overexpressed in E. coli strain BL21(DE3)27

and purified as reported previously.17

The argB gene carrying a R233A mutation was cloned
into expression vector pET15b with pUAGC569-argB
plasmid as DNA template according to the protocol
described previously.17
SPR detection

SPR experiments were performed with a BIAcore X
biosensor system (Biacore AB, Uppsala, Sweden) as
described previously at 25 °C in HBS-Mg buffer [10 mM
Hepes, 150 mM NaCl, 1 mM MgCl2, 0.005% Nonidet P-40
(pH 7.5)] at a flow rate of 15 μl/min.17 The purified His6-
NAGK was immobilized on the Ni+-loaded NTA sensor
chip to flow cell 2 (FC2) in a volume of 50 μl at a
concentration of 30 nM (hexamer) to receive a binding
signal of approximately 3000 resonance units (RU), which
corresponds to a surface concentration change of 3 ng/
mm2. To analyze the effect of ATP, ADP or the combined
effect of 2-OG and ATP on binding of PII variants to the
His6-NAGK surface compared to wt PII, we incubated the
analyte (100 nM), diluted in HBS-Mg buffer, with each of
the effector molecules on ice for 5 min and injected (50 μl)
it to both FC1 and FC2 on the sensor chip. The specific
binding of PII to NAGK was recorded as the response
signal difference FC2−FC1. PII was removed from the
His6-NAGK surface by injecting 25 μl of 1 mM ADP. For
novel reload of proteins on the NTA sensor chip, 25 μl of
0.4 M EDTA (ethylenediaminetetraacetic acid) (pH 7.5)
was injected to remove His6-NAGK and Ni+. Subsequent-
ly, the chip could be loaded again with 5 mM NiSO4
solution and His6-NAGK as described above.
Isothermal titration calorimetry

ITC experiments were performed on a VP-ITC micro-
calorimeter (MicroCal, LCC) in 10 mM Hepes–NaOH,
50 mM KCl, 50 mM NaCl, and 1 mM MgCl2 (pH 7.4) at
20 °C. For determination of ATP, ADP and 2-OG binding
isotherms for wt PII protein, 33 μMprotein solution (trimer
concentration) was titrated with 1 mMATP, 2 mMADP or
2 mM 2-OG (in the presence of 1 mM ATP), respectively.
The ligand (3 µl) was injected 70 times into the 1.4285 ml
cell with stirring at 350 rpm.
For determination of ATP, ADP and 2-OG binding

isotherms for I86T and I86N PII variants, 17 μM protein
solution was titrated with 1 mM ATP, 1.5 mM ADP or
2 mM 2-OG (in the presence of 1 mM ATP), respectively.
The ligand (5 μl) was injected 35 times. The binding
isotherms were calculated from received data and fitted to
a three-site binding model or one-site binding model with
the MicroCal ORIGIN software (Northampton, MA) as
indicated.
Coupled NAGK activity assay

The activity of NAGK was assayed by coupling NAG
phosphorylation via pyruvate kinase and lactate
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dehydrogenase to the oxidation of NADH. The assay was
performed as described previously; the reaction buffer
consisted of 50 mM imidazole (pH 7.5), 50 mM KCl,
20 mM MgCl2, 0.4 mM NADH, 1 mM phosphoenolpyr-
uvate, 10 mM ATP, 0.5 mM DTT, 11 U lactate dehydro-
genase, 15 U pyruvate kinase and 50 mM NAGK.22 The
reaction was started by the addition of 3 μg NAGK. When
needed, 1.2 μg PII was added to the reaction mixture
before beginning the assay. Phosphorylation of one
molecule of NAG leads to oxidation of one molecule of
NADH, followed by the linear decrease of absorbance at
340 nm.28 The reaction was recorded in a volume of 1 ml
over a period of 10 min with a SPECORD 200 photometer
(Analytik Jena) at 340 nm. The reaction velocity was
calculated from the slope of the resulting time curve as
change in absorbance per time with 1 U of NAGK
(ɛ340=6178 L mol−1 cm−1) catalyzing the conversion of
1 mmol NAG per minute.

Crystallization of I86N PII variant

Crystallization was performed with the sitting-drop
technique by mixing 400 nl of the protein solution with
equal amounts of the reservoir solution using the
honeybee robot (Genomic Solutions Ltd). Drops were
incubated at 20 °C and pictures were recorded by the
RockImager system (Formulatrix, Waltham, MA). The
protein buffer was composed of 10 mM Tris (pH 7.4),
0.5 mM EDTA, 100 mM NaCl, 1% glycerol, 2 mM ATP-
Mg; crystals appeared after 7 days in a precipitant
condition containing 0.1 M Mes (pH 6.5) and 25% PEG
(polyethylene glycol) 1000. Crystals were mounted direct-
ly in cryoloops and flash-frozen in liquid nitrogen.
Diffraction data were collected at the Swiss Light Source
(SLS, Villigen, Switzerland). Diffraction images were
recorded on a MarCCD camera 225 (Marreserarch,
Norderstedt, Germany) and images were processed
using the XDS/XSCALE software.29 The structure was
solved by molecular replacement using the program
Molrep.30 Rebuilding of the structure and structure
refinement was performed using the programs Coot and
Refmac.31,32 The quality of the structure was analyzed by
the Procheck program.33 Figures were generated using
PyMOL†.
PDB accession numbers

Coordinates and structure factors for the PII I86N
variant have been deposited in the PDB with accession
number 2xbp.
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PII proteins control key processes of nitrogen metabolism in bacter-
ia, archaea, and plants in response to the central metabolites ATP,
ADP, and 2-oxoglutarate (2-OG), signaling cellular energy and
carbon and nitrogen abundance. This metabolic information is in-
tegrated by PII and transmitted to regulatory targets (key enzymes,
transporters, and transcription factors), modulating their activity.
In oxygenic phototrophs, the controlling enzyme of arginine synth-
esis, N-acetyl-glutamate kinase (NAGK), is a major PII target, whose
activity responds to 2-OG via PII. Here we show structures of the
Synechococcus elongatus PII protein in complex with ATP, Mg2þ,
and 2-OG, which clarify how 2-OG affects PII–NAGK interaction.
PII trimers with all three sites fully occupied were obtained as well
as structures with one or two 2-OG molecules per PII trimer. These
structures identify the site of 2-OG located in the vicinity between
the subunit clefts and the base of the T loop. The 2-OG is bound to a
Mg2þ ion, which is coordinated by three phosphates of ATP, and by
ionic interactions with the highly conserved residues K58 and Q39
together with B- and T-loop backbone interactions. These interac-
tions impose a unique T-loop conformation that affects the inter-
actions with the PII target. Structures of PII trimers with one or two
bound 2-OG molecules reveal the basis for anticooperative 2-OG
binding and shed light on the intersubunit signaling mechanism
by which PII senses effectors in a wide range of concentrations.

metabolic signaling ∣ nitrogen regulation ∣ cyanobacteria ∣ chloroplasts

The PII proteins constitute one of the largest and most widely
distributed family of signal transduction proteins present in

archaea, bacteria, and plants. They control key processes of ni-
trogen metabolism in response to central metabolites ATP,
ADP, and 2-oxoglutarate (2-OG), signaling cellular energy and
carbon and nitrogen abundance (1–4). These effectors bind to
PII in an interdependent manner (see below), thereby transmit-
ting metabolic information into structural states of this sensor
protein (3, 5). Furthermore, PII proteins may be posttranslation-
ally modified (1, 6). Depending on the signal input states, PII pro-
teins bind and thereby regulate the activity of key metabolic and
regulatory enzymes, transcription factors, or transport proteins
(1–3). In cyanobacteria and plants, the controlling enzyme of
arginine biosynthesis, N-acetyl-L-glutamate kinase (NAGK), is
a major PII target (7–9). Moreover, PII affects gene expression
in cyanobacteria through binding to the transcriptional coactiva-
tor of NtcA, PipX (10). In plants, acetyl-CoA carboxylase was
recently shown to be regulated by PII, providing an additional link
between carbon and nitrogen regulation (11). Although these PII
targets share no common structural element, interaction with PII
is inhibited by 2-OG.

PII proteins are homotrimers of 12- to 13-kDa subunits, built of
a double ferredoxin-like fold-containing core (βαβ-βαβ), with a
characteristic and highly conserved 3D structure, as revealed
from numerous crystal structures (3, 12). The trimeric PII archi-
tecture resembles a flattened barrel with long and flexible T loops
extending outward, from the flat side (see Fig. 1 and Fig. S1).
These T loops can adopt multiple conformations and mediate

the versatile protein–protein interactions (3). Each subunit
further comprises two small loops (B and C loop) in the intersu-
bunit clefts, facing each other from opposing subunits and taking
part in a unique mode of ATP-ADP binding (13–15). ADP and
ATP compete here for the same site. In the presence of Mg-ATP,
up to three 2-OG molecules can bind per trimer (1) with ADP
antagonizing 2-OG binding (16). Notably, Arabidopsis thaliana
PII is an exception, because it binds 2-OG also in the presence
of ADP (5, 17). Another feature characteristic for many PII
proteins is also intriguing: The three ATP-binding sites and the
three 2-OG–binding sites each exhibit negative cooperativity. An-
ticooperativity implies strong conformational coupling between
the subunits, and this feature probably allows PII to sense a wide
range of metabolite concentrations (5, 16, 18, 19). In contrast to
the ATP-ADP–binding site, the 2-OG–binding site is controver-
sial (3). From the crystal structure of a PII paralogue fromMetha-
nococcus jannaschii, GlnK1, one 2-OG molecule was shown to
bind from outside to the distal side of the T loop in the presence
of Mg-ATP (20). By contrast, a recently published structure of
a PII homologue form Azospirillum brasiliense in complex with
Mg-ATP and 2-OG revealed the 2-OG–binding site close to the
base of the T loop and near the ATP-binding site (21). However,
neither of these two structures was proved by biochemical studies
nor could they explain the anticooperative binding of 2-OG.

The structures of complexes of PII with its regulatory target
NAGK from Synechococcus elongatus and A. thaliana are highly
similar (22, 23), and the mode of interaction and regulation is
apparently conserved in cyanobacteria and plants (24). The
PII–NAGK complex involves one hexameric (trimer of dimers)
NAGK toroid sandwiched between two PII trimers with the three-
fold axis aligned (23). Each PII subunit engages two contact
surfaces in NAGK binding: A smaller surface involves the B loop
and a larger is formed by the T loop, which adopts a tightly bent
conformation that fits into the interdomain crevice of NAGK.
Binding of PII enhances the catalytic activity of NAGK and
alleviates feedback inhibition by arginine. To bind NAGK, free
PII has to contract its extended T loop. Recently, a two-step pro-
cess of PII–NAGK binding was proposed on the basis of the
properties of a newly identified S. elongatus PII variant (I86N),
which mimics the PII conformation in the NAGK-bound state
(18): First, a salt bridge between PII-E85 and NAGK-R233 forms,
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triggering the extended T loop to fold into the tightly bent
conformation that fits into NAGK.

Detailed structural information together with the well-studied
biochemical features and highly sensitive complex formation
assays render the PII–NAGK system ideal to study the transduc-
tion of metabolic signals into protein action. Until now, it was
unclear how the 2-OG signal, perceived by PII, results in inhibi-
tion of PII–NAGK complex formation. To answer this question,
we solved structures of PII with ATP, Mg2þ, and 2-OG, revealing
the mechanism by which the 2-OG signal is perceived by PII and
controls receptor interactions.

Results
Structure of PII in Complex with ATP and 2-OG. Crystals of recombi-
nant PII protein from S. elongatuswere obtained in the presence of
excess 2-OG/Mg-ATP (PII

OGex) and at substoichiometric amounts
of 2-OG (PII

OG1–3) (Table S1). All structures were solved by
molecular replacement using the free S. elongatus PII as a model
[Protein Data Bank (PDB) ID code 1QY7]. The PII

OGex crystal

diffracting to 2.2 Å contains two identical trimers in the asym-
metric unit (with an rmsd of 0.2 Å2 for all C atoms superposed).
Each trimer contains three Mg2þ, ATP, and 2-OG molecules. In
Fig. 1, this structure is compared to the structures of ligand-free
PII (14) and PII in complex with NAGK (23). In the ligand-free
structure, the T loop, and the C terminus adopt highly extended
conformations away from the ATP-binding site (see Fig. 1 A
andD). Here, PII offers an open binding cavity volume of approxi-
mately 1;000 Å3 for the ligands. Upon ATP and 2-OG binding, a
significant conformational change in the T loop and the C termi-
nus occurs: The C-terminal β-sheet of the free formmoves toward
the ATP-binding site by up to 20 Å (for the terminal residue I112)
to change into a small helix (see Fig. 1D). TheT loop contracts and
the tip (from residues 44–50) becomes disordered. Part of the
flexible T loop moves toward the ATP-binding site to form a kink-
like structure (residues 36–41), thereby forming the scaffold for
proper ATP and 2-OG assembly. As a result, the ATP/2-OG–

binding cavity is completely enclosed by this unique T-loop confor-
mation and the movement of the C terminus (see Fig. 1B, yellow

Fig. 1. Structural basis of PII regulation by 2-oxoglutarate. (A–C) Side views of different S. elongatus PII structures in surface representation. The location of the
ATP-binding site is indicated by a yellow dashed circle; the red boxes highlight the structure part discussed detailed in D. (A) Ligand-free PII modeled together
with ATP (placed according to the superimposed PII

OGex structure). The subunits are color coded in dark blue, light orange, and warm pink. The extended C
termini and T loops of the proteins chains are marked CT and T-loop, respectively. (B) PII∕ATP∕2-OG (PII

OGex) complex structure; subunits color coded in orange,
marine blue, and red. The structure adopts a compact conformation because of the back folding of the C terminus (CT) onto the core domain structure and the
T loop observed in a partially disordered conformation. (C) Structure of PII in the PII–NAGK complex (PDB ID code: 2V5H) modeled together with ATP. Subunits
are color coded in magenta, deep olive, and salmon. (D) Superposition of the ligand-free PII and PII

OGex structure as ribbon models in the color codes derived
from A and B. Secondary structure elements are marked with β1–β5 and α1–α2 and ATP and 2-OG are shown in stick representation, whereas the Mg ion is
marked in green. The sites of two mutations, R9L and K58M, introduced to prove the binding mode of 2-OG are marked with green dots. Remarkable con-
formational transitions are marked with dashed lines: movement of the C terminus, a shift of helix 1, and displacement of the T-loop base by 2-OG while the tip
becomes disordered. (E) Superposition of PII

OGex and PII–NAGK structures as ribbon models in the color codes derived from B and C. Structural details are
indicated as in D.
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circle). In the PII structure complexed with NAGK, the T loop is
clamped in a different conformation (see Fig. 1 C and E). Here,
access to the ligand-binding cavity is slightly reduced compared to
the ATP-free form because of a bend in the T-loop conformation,
thereby reducing the cavity volume to about 600 Å3.

The 2-OG–binding site of PII is formed by an ATP-chelated
Mg2þ ion and residues from one side of the intersubunit cleft
(Fig. 2). The ATP molecule bound in the intersubunit cleft is
ligated mainly by arginine residues (R38 from monomer A; R101
and R103 from monomer B) together with K90 from monomer
A and a small number of hydrogen bonds. ATP fixed by these
residues forms the scaffold for Mg2þ-mediated binding of 2-OG.
The Mg2þ ion has an almost perfect hexagonal coordination
sphere of oxygen atoms, three of which are contributed by oxo
groups of the α-, β-, and γ-phosphate of ATP. Two additional
ligating atoms are accounted for by the O2 and O5 of 2-OG.
The last coordination position is contributed by the OE1 atom
of residue Q39. Notably, the 2-OG–binding sphere mainly com-
prises residues from the T loop. Backbone atoms from residues
Q39, K40, and G41 (all contacting O1 or O2 of 2-OG) together
with the Q39 side-chain ligate the O5 atom and form one area of
interactions. A second interaction region is composed of the
backbone nitrogen of G87 (forming a second H bridge to O5) and
a strong salt bridge of K58 toward the O3 and O4 atoms (distance
of 2.7 Å). Furthermore, residue R9 approaches the O4 to 3.5 Å.
All these residues with the exception of K40 are highly conserved
in PII proteins (4) (Fig. S1).

To validate that 2-OG in the crystal occupies the true binding
site, PII variants were constructed, in which residues K58 and R9,
whose side chains according to the PII

OGex structure specifically
interact with 2-OG, were replaced by similar-sized uncharged
residues (K58M and R9L). Binding of 2-OG in the presence of
Mg-ATP was determined by isothermal calorimetry (ITC). In-
deed, the PII K58M variant was completely unable to bind 2-OG,
although ATP could still be bound, showing that the loss of 2-OG
binding is a specific effect of the K58 replacement. In further
agreement with the structural prediction, the PII R9L variant
was strongly impaired in 2-OG binding (Table 1). Moreover, both
PII variants were impaired in NAGK binding, confirming that
K58 is indeed pivotal for folding the T loop in the tightly bent
structure. The R9 side chain is near the contact surface to
NAGK and appears to stabilize the B-loop–T-loop interface
(23) (Fig. S2).

Structural Basis of Sequential/Anticooperative 2-OG Binding. Crystal-
lization of PII protein in the presence of low 2-OG amounts

yielded PII structures with differing 2-OG content. The structure
resolved at a resolution of 1.95 Å contains three PII trimers in
the asymmetric unit; one trimer contained three ATP, one Mg2þ,
and one 2-OG (PII

OG1), the second three ATP, twoMg2þ, and two
2-OG (PII

OG2), and the third three each ATP, Mg2þ, and 2-OG
(PII

OG3) (Fig. 3 and Fig. S3). Additional details of structural para-
meters are given in SI Text (Tables S1 and S2). Binding of 2-OG
does not significantly render the B-factor distribution of the three
monomers significantly, unless the mobile elements (C terminus
and T loop) contributing to binding are involved (Fig. S4). A
superimposition of the three structurally similar trimers (Fig. 3 A
and B) reveals the structure identity of the S1 site, which is
occupied by 2-OG in all three PII

OG1–3 trimers, and the diver-
gence in the S2 and S3 sites, respectively (Fig. 3B). The ligands
are bound in S1 identical in topology to the mode described
for the PII

OGex structure (Figs. 2 and 3B). The PII
OG1 structure

reveals that binding of the first 2-OG molecule to PII (S1 site)
generates unequal ligand-binding sites in the adjacent monomers,
and, remarkably, sites not occupied by 2-OG also lack the Mg2þ
ion. The conformational differences in the nonoccupied binding
sites provide a structure-based explanation for the anticoopera-
tivity observed in biochemical experiments: After occupation of
the first site, the Kd for the second site increases slightly, but after
occupation of the second site, the Kd for the third site increases
strongly (about 20-fold higher than the Kd for the first site; see
Table 1). In PII

OG1, the ATP molecule attached to the S2 site
exhibits a significantly altered conformation of the phosphate
moiety (Fig. 3 B–D); furthermore, the T-loop basis is displaced
and the C terminus is ordered similar to the S1 site (Fig. 3 C
and D). The S2 site in PII

OG1 resembles the S3 site of the PII
OG2

structure, which, according to the sequential 2-OG–binding
mode, corresponds to the lowest affinity site (for detailed com-
parison of the binding sites, see Fig. S3). The S3 site of PII

OG2

exhibits further changes, visible most significantly in the T loop,
the C terminus, and a small distortion in the β4-strand. Together
these changes can lead to the strongly altered affinity of 2-OG
toward the stereochemically differing S2 and S3 sites.

Effect of 2-OG on the Dissociation of the PII–NAGK Complex. The
structure of the PII Mg-ATP/2OG complex suggests that 2-OG
prevents interaction of PII with NAGK by hindrance of the T loop
folding into the tightly bent conformation needed for NAGK
binding: The NAGK-bound PII structure involves a salt bridge
between K58 and E44 (18, 23), but because K58 is an important
ligand for 2-OG, formation of this salt bridge is prevented.
Furthermore, binding of 2-OG introduces a significant bend in
the backbone of residues 38–43 (Fig. 1E) and together with
the side chain of residue 42 induces a new T-loop conformation,
which is incompatible with NAGK binding. When the PII–NAGK
complex has already been formed, is 2-OG still able to bind to PII
and antagonize the PII–NAGK complex? Because this issue has
not yet been investigated, the dissociation of the PII–NAGK com-
plex by 2-OG was studied. First, complex dissociation was directly

Fig. 2. Stereo image of the 2-OG–binding site. Residues involved in binding
of 2-OG (atoms are marked with small numbers) and the hydrophilic portion
of ATP are numbered according to the sequence. Cofactors as well as side-
and main-chain atoms are marked in stick representation; Mg2þ is marked
as a green sphere. Colors of residue numbers (orange and blue) correspond
to those of the respective subunits. Residues conserved in standard align-
ments are boxed. Dashed blue lines represent bonds between residues
and ATP and black lines indicate bonds for the ligation of 2-OG, whereas
green lines mark the hexagonal coordination of the Mg2þ ion.

Table 1. Effector molecule binding to PII variants R9L and K58M

Kd1, μM Kd2, μM Kd3, μM

2-OG (+1 mM ATP)
R9L 441 ± 40 123 ± 7 509 ± 116
K58M ND ND ND
(WT) (5.1 ± 4.0) (11.1 ± 1.8) (106.7 ± 14.8)

ATP
R9L NM NM NM
K58M 10 ± 5 262 ± 136 31 ± 15
(WT) (4.0 ± 0.1) (12.5 ± 0.9) (47.4 ± 21.9)

Values correspond to the mean of two independent experiments �SEM.
The raw data were fitted by using a three-site binding model for a PII
trimer. For comparison, the original data for WT PII protein are given in
parentheses. ND, not detectable; NM, not measured.
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recorded by surface plasmon resonance (SPR) spectroscopy
(Fig. 4A). The PII–NAGK complex was formed on the sensor
chip, and, subsequently, 2-OG was injected (Fig. 4A, arrow) to
dissociate the complex. No dissociation was observed in the
presence of Mg-ATP alone; with 0.5 mM 2-OG, the complex
decayed slowly with a rate of 1.8 × 10−3 s−1. With 1 mM 2-OG
the decay rate increased to 9.0 × 10−3 s−1 and at 3 mM 2-OG to
28.6 × 10−3 s−1. By comparison, association of the complex was
inhibited by much lower 2-OG concentrations, with an IC50 of
approximately 130 μM (18). In the second assay, the catalytic
activity of NAGK∕PII in the presence of 50 μM arginine as an
indicator of the degree of complex formation (24) was assayed
(Fig. 4B). When 2-OG was added after formation of the PII–

NAGK complex, the inhibitory 2-OG concentration had an IC50

of 0.9 mM. By contrast, addition of 2-OG to PII prior to the
addition of NAGK inhibited the activity with an IC50 for 2-OG
of approximately 120 μM (Fig. 4B, Inset) (18). Thus, 2-OG is able
to dissociate the PII–NAGK complex; however, one order of
magnitude higher 2-OG concentrations are required to achieve
dissociation compared to those required to inhibit association.

Discussion
The structures presented here explain the known features of
PII-mediated 2-OG signaling: A Mg2þ ion, chelated by the phos-
phates of ATP, ligates carboxylate oxygens of 2-OG, and, there-

fore, Mg-ATP binding is the prerequisite for 2-OG binding to
PII. Binding of 2-OG to A. thaliana PII in the presence of Mg-

Fig. 3. Anticooperativity of 2-OG–binding sites. (A) Top view of the PII
OG structure as a ribbon plot and superposition of the PII

OG1 (in blue), PII
OG2 (in green),

and PII
OG3 (in orange) structures. The three ATP/2-OG–binding sites are marked by dashed circles and numbered (S1, S2, and S3). The picture on the right

represents the cofactors bound in the individual sites (highlighted in yellow) with three ATP and 2-OG molecules in S1, three ATP and two 2-OG molecules
in S2, and three ATP and one 2-OG molecules located in S3, respectively. The clockwise consecutive 120° binding into S1 → S2 → S3 sites is shown by an arrow.
(B) Zoom in (side view) of the three binding sites after superposition of the molecules. The content of the individual binding sites is marked below the picture.
T and B loops are marked with Tand B, respectively, for clarity. (C) Binding sites S1, S2, and S3 of the PII

OG1 structure. In the S1 site, ATP, 2-OG, and Mg2þ (green
sphere) are bound, whereas S2 and S3 contain only ATP and noMg2þ. Significant changes in the C terminus and the T loop in site S2 are marked with numbered
circles. (D) Superposition of effector molecules bound to sites S1, S2, and S3 in the PII

OG1 structure. The ATP molecule observed in the S2 site is significantly
distorted relative to that in S1 and S3.

Fig. 4. The 2-OG effect on PII–NAGK complex dissociation. (A) SPR analysis of
2-OG-induced dissociation of NAGK–PII complex in the presence of 1 mMATP.
The response difference (ΔRU) between flow cells FC2 and FC1 (control) is
shown. After binding of 100 nM PII to NAGK in FC2, a mixture of 1 mM
ATP, 1 mM MgCl2, and 2-oxoglutarate [at a concentration of 0 (solid line),
0.5 (dotted line), 1 (dashed line), and 3 mM (dot-dashed line), as indicated]
was injected at the point indicated by an arrow. (B) The effect of 2-OG on
NAGK activity in the presence of 50 μM arginine. Increasing 2-OG concentra-
tions were added to reaction mixtures after the formation of the PII–NAGK
complex, and NAGK activity was determined as detailed in Materials and
Methods. (Inset) Effect of 2-OG on NAGK activity in the presence of PII, when
2-OG was preincubated with PII.
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ADP could involve additional residues, possibly from its pro-
longed C-terminal segment, which contacts the effector molecule-
binding site (22). The fact that all residues revealed here to be
involved in 2-OG binding are highly conserved among PII proteins
(see also Fig. S1) strongly suggests that the reported mode of 2-
OG binding could apply to all PII proteins. The only contradiction
is the previously reported structure of the PII family member
GlnK1 from M. jannaschii, where 2-OG bound from outside to
the apex of a bent T loop (20). Because no biochemical evidence
to support this binding mode was provided, it remains to be
clarified whether this 2-OG binding mode is a peculiarity of
the archaeal PII protein or whether this mode of binding resulted
from special crystallization conditions. In contrast, a recently de-
scribed structure of the PII homologue GlnZ from the proteobac-
terium A. brasiliense in complex with Mg-ATP and 2-OG revealed
a mode of 2-OG binding, which is highly similar to the 2-OG
binding described here, in particular the involvement of the
Mg2þ ion and the highly conserved key residues Q39 and K58
(21). This one and our PII structures perfectly agree with the prop-
erties of S. elongatus PII variants bearing mutations in residues
R9 and K58 described in this work and with the previously
described I86N variant, displaying a closed 2-OG–binding site
(18). Furthermore, they agree with previously reported properties
of other PII mutant variants. For instance, a Q39 mutation
was shown to strongly impair 2-OG binding, whereas a deletion
of the apical T-loop residues did not prevent 2-OG binding to
Escherichia coli PII (25). Furthermore, a K58 substitution abol-
ished 2-OG signaling in Rhodospirillum rubrum PII (26). More-
over, the actual structure reveals how precisely the carboxylate
oxygens of 2-OG are probed by Mg2þ coordination and by inter-
actions with protein backbone and side-chain atoms, explaining
the high selectivity of PII proteins for 2-OG (1, 16, 19). All
together, these evidences strongly imply that the mode of 2-OG
binding described here can be generalized for PII proteins.

It has been shown that 2-OG controls PII target interactions
that involve the T loop, with X-ray structural information avail-
able for the S. elongatus and A. thaliana PII–NAGK complex
(22, 23), the S. elongatus PII–PipX complex (27), and the E. coli
GlnK–AmtB complex (28, 29). The mechanism of 2-OG-
mediated PII-target control was clarified here with the cognate
PII–NAGK complex. When PII binds 2-OG, the base of the T loop
(R38-G41) wraps around this metabolite, thereby adopting a
unique retracted conformation. Furthermore, residues K58 and
R9, which are involved in folding the T loop into the tightly bent
conformation that fits into the NAGK crevice, perform ionic and
H-bond interactions with the 2-OG γ-carboxylate oxygens, pre-
venting formation of this fold. The IC50 for 2-OG to inhibit
PII–NAGK association (120–130 μM, depending on the method)
matches the dissociation constant of the third, low-affinity 2-OG–

binding site (approximately 110 μM). This correlation implies
that all three sites in PII have to be occupied by 2-OG in order
to inhibit NAGK binding. Consequently, PII partially loaded
with 2-OG should be able to bind NAGK, whereby 2-OG should
be displaced from PII. The driving force squeezing out 2-OG
could be provided by the encounter complex between PII and
NAGK, which, according to a recent analysis, could be formed
by an ionic interaction of the B-loop residue E85 of PII with
R233 of NAGK (18).

The present study also revealed how 2-OG dissociates the
PII–NAGK complex. As shown in Fig. 1C, 2-OG can access its
binding site from the PII periphery, which is not shielded by
NAGK in the complex. However, approximately 10-fold higher
concentrations of 2-OG are required to dissociate the PII–NAGK
complex than to inhibit its association. The difference could
be explained by the 2-OG–binding site being closed in the
PII–NAGK complex by the tightly bent T loop. The 2-OG should
unlock this compact conformation to gain access to its binding
site, and this process probably requires much higher concentra-

tions than binding to the open sites, which are accessible when PII
is not attached to NAGK.

The structure of the second cyanobacterial PII target complex,
PII–PipX, has been determined recently (27). It reveals three
PipX molecules bound on the flat bottom surface of the PII body
(orientation of Fig. 1), trapped between vertically extended T
loops whose tip residues grasp the PipX monomers. Notably, this
extended T-loop conformation is incompatible with the T-loop
fold imposed by Mg-ATP-2-OG binding (see structure overlay
in Fig. S5). Binding of 2-OG to the PII–PipX complex will retract
the extended T loop, releasing the bound PipX molecules, which
explains the biochemical data, showing that binding of PipX to
PII is antagonized by Mg-ATP/2-OG (10). A similar antagonistic
mechanism of Mg-ATP/2-OG can be assumed for the complex of
the PII family member GlnK with the ammonium transport chan-
nel AmtB, as deduced from the complex structure of the E. coli
proteins (28, 29). In complex with AmtB, the T loop is in a ver-
tically extended structure, resembling the T loop of S. elongatus
PII in complex with PipX. In the AmtB complex, GlnK residue
Q39 interacts with K58 and ADP is bound to the adenylate-bind-
ing pocket (28, 29). Given that the binding mode of Mg-ATP/
2-OG to GlnK is identical as outlined above, the resulting T-loop
conformation will be incompatible with formation of the GlnK–
AmtB complex (21). Studies with other E. coli PII receptors such
as NtrB imply that 2-OG does not always inhibit complex forma-
tion, but it may affect receptor activity at a postbinding step (16).
In this case, it is conceivable that receptor binding occurs apart
from the T loop (like the B-loop interaction of PII with NAGK)
and the conformational changes of the T loop imposed by 2-OG
binding to PII are transduced into conformational changes in the
receptor, thereby altering its activity.

PII proteins are highly sophisticated devices for measuring
the concentration of central metabolites ATP, ADP, and 2-OG
in an interdependent manner. This study reveals the mechanisms
underlying this process. Binding of one, two, or three 2-OG
molecules generates, via intersubunit communication, distinct
structural states of PII. Intermolecular signaling is based on the
highly conserved trimeric architecture of the PII proteins. The
β2-strands, which directly connect the three binding sites, could
play an important role. Binding of 2-OG to one site affects the
two neighboring sites asymmetrically, generating the anticooper-
ativity that allows metabolite sensing in a wide concentration
range. Moreover, the free site in clockwise orientation displays
a characteristic T-loop structure. PII receptors perceive the signal
via intimate T-loop interactions, which affect binding or influence
the receptor at a postbinding stage (16, 18). This mode of signal
transduction by PII is unique, and the complexity of interactions
explains the remarkably high conservation of PII proteins.

Materials and Methods
Full protocols are available in SI Materials and Methods.

Overexpression and Purification of Recombinant PII and NAGK. The R9L and
K58M variants were created with artificial glnB genes carrying the respective
mutations and cloned into the Strep-tag fusion vector pASK-IBA3 (IBA) after
restriction with BsaI as described previously (7). Overexpression of wild-type
and mutant S. elongatus glnB in E. coli RB9060 (30) and purification of
recombinant PII proteins with a C-terminal-fused Strep-tag II peptide were
performed according to Heinrich et al. (7). His6-tagged recombinant NAGK
from S. elongatus was overexpressed in E. coli strain BL21(DE3) (31) and
purified as reported previously (8).

SPR Detection. SPR experiments were performed by using a BIAcore X biosen-
sor system (GE Healthcare) at 25 °C in Hepes-buffered saline-Mg buffer as de-
scribed previously (8). In order to analyze the effect of 2-OG on the
dissociation of the PII–NAGK complex, 100 nM PII was first bound to immo-
bilized His6–NAGK in flow cell 2 (FC2) (ascending curves). Subsequently, 50 μL
buffer containing 1 mM ATP and different concentrations of 2-OG was in-
jected (start of injection indicated by the arrow). Binding and dissociation
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of PII to NAGK was recorded as the response signal difference (ΔRU) of
FC2-FC1; FC1, reference cell without His6–NAGK.

ITC. ITC experiments were performed on a VP-ITCmicrocalorimeter (MicroCal,
LCC) in ITC buffer containing 10 mMHepes-NaOH, pH 7.4, 50 mM KCl, 50 mM
NaCl, and 1 mM MgCl2 at 20 °C as described previously (18). For determina-
tion of ATP- and 2-OG–binding isotherms for PII variants R9L and K58M, solu-
tions with different protein concentration were titrated with 1 mM ATP or
4 mM 2-OG (in the presence of 1 mM ATP). The binding isotherms were
calculated from received data and fitted to a three-site binding model using
the MicroCal ORIGIN software (Northampton) as indicated.

Coupled NAGK Activity Assay.Activity of NAGKwas assayed by a coupled assay
(32) with modifications as described previously (24), in the buffer consisting
of 50 mM imidazole, pH 7.5, 50 mM KCl, 20 mM MgCl2, 0.4 mM NADH, 1 mM
phosphoenolpyruvate, 10 mM ATP, 0.5 mM DTT, 11 U lactate dehydrogenase,
15 U pyruvate kinase, 50 μM arginine, 1.2 μg PII, and 3 μg NAGK. The mixture
was preincubated for 3 min to allow PII–NAGK complex formation. Then the
reaction was started by the addition of 50 mM NAG and 2-OG (to determine
the effect of increasing 2-OG concentrations on disruption of PII–NAGK com-
plex in the presence of NAGK-inhibiting concentrations of arginine). Then,
20 s after addition of substrate, the change in absorbance at 340 nm was
recorded for 10 min. Linear kinetics were observed over that period of time.

Crystallization of Recombinant S. elongatus PII Protein. Crystallization was
performed with the sitting-drop technique by mixing 400 nL of the protein
solution with equal amounts of the reservoir solution by using the honeybee
robot (Genomic Solutions Ltd). Drops were incubated at 20 °C, and pictures
were recorded by the RockImager system (Formulatrix). The crystallization
buffer was composed of 10 mM Tris (pH 7.4), 0.5 mM EDTA, 100 mM NaCl,
1% glycerol, and 2 mM ATP-Mg, and also 2 mM 2-OG was added; crystals
appeared in a precipitant condition containing PEG 4000. Glycerol was used
as the cryoprotectant, and the crystals were flash-frozen in liquid nitrogen.
Diffraction data were collected at the Swiss Light Source. Diffraction images
were recorded on a MarCCD camera 225 (Marresearch), and images were
processed by using the XDS/XSCALE software (33). The structure was solved
by molecular replacement using the program Molrep (34). Rebuilding of the
structure and structure refinement was performed by using the programs
Coot and Refmac (35, 36). The quality of the structure was analyzed by
the Procheck program (37). Figures were generated by using PyMOL
(www.pymol.org).
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Supporting Information
Fokina et al. 10.1073/pnas.1007653107
SI Materials and Methods
Overexpression and Purification of Recombinant PII and N-Acetyl-Glu-
tamate Kinase (NAGK). The R9L and K58M variants were created
with artificial glnB genes carrying the respective mutations and
cloned into the Strep-tag fusion vector pASK-IBA3 (IBA) after
restriction with BsaI as described previously (1). Overexpression
of wild-type and mutant Synechococcus elongatus glnB in Escher-
ichia coliRB9060 (2) and purification of recombinant PII proteins
with a C-terminal fused Strep-tag II peptide was performed
according to Heinrich et al. (1). His6-tagged recombinant NAGK
from S. elongatus was overexpressed in E. coli strain BL21(DE3)
(3) and purified as reported previously (4).

Surface Plasmon Resonance Detection (SPR). SPR experiments were
performed using a BIAcore X biosensor system (Biacore AB)
at 25 °C in Hepes-buffered saline (HBS)-Mg buffer containing
10 mMHepes, 150 mMNaCl, 1 mMMgCl2, and 0.005%Nonidet
P-40, pH 7.5 at a flow rate of 15 μL∕min as described previously
(4). The purified His6–NAGK was immobilized on the
Niþ-loaded nitrilotriacetate (NTA) sensor chip to flow cell 2
(FC2) in a volume of 50 μL at a concentration of 30 nM (hexam-
er) to receive a binding signal of approximately 3,000 resonance
units (RU), which corresponds to a surface concentration change
of 3 ng∕mm2.

In order to analyze the effect of 2-oxoglutarate (2-OG) on the
dissociation of WT PII–NAGK complex, 100 nM PII was bound
to the His6–NAGK and then the analyte containing 1 mM ATP
and different concentrations of 2-OG diluted in HBS-Mg buffer
(50 μL) was injected to both FC1 and FC2 on the sensor chip. The
specific binding of PII to NAGK and dissociation was recorded
as the response signal difference FC2-FC1.

PII was removed from the His6–NAGK surface by injecting
25 μL of 1 mM ADP. For novel reload of proteins on the
NTA sensor chip, 25 μL of 0.4 M EDTA pH 7.5 was injected
to remove His6–NAGK and Niþ. Subsequently, the chip could
be loaded again with 5 mM Ni2SO4 solution and His6–NAGK
as described above.

Isothermal Titration Calorimetry (ITC). ITC experiments were
performed on a VP-ITC microcalorimeter (MicroCal, LCC) in
buffer containing 10 mM Hepes-NaOH, pH 7.4, 50 mM KCl,
50 mM NaCl, and 1 mM MgCl2 at 20 °C. For determination
of ATP- and 2-OG–binding isotherms for PII variants R9L and
K58M, different amounts of protein solution (16, 25, or 33 μM
trimer concentration) were titrated with 1 mM ATP or 4 mM
2-OG (in the presence of 1 mM ATP). For one measurement
5 μL ligand was injected 35 times in 1.4285 mL cell with stirring
at 350 rpm. The binding isotherms were calculated from received
data and fitted to a three-site binding model using the MicroCal
ORIGIN software (Northampton) as indicated.

Coupled NAGK Activity Assay.Activity of NAGK was determined by
coupling NAG phosphorylation via pyruvate kinase and lactate
dehydrogenase to the oxidation of NADH. The assay was per-
formed as described previously, the reaction buffer consisting of
50 mM imidazole, pH 7.5, 50 mM KCl, 20 mM MgCl2, 0.4 mM
NADH, 1 mM phosphoenolpyruvate, 10 mM ATP, 0.5 mM DTT,
11 U lactate dehydrogenase, 15 U pyruvate kinase, 50 μM argi-
nine, 1.2 μg PII, and 3 μg NAGK (5). The mixture was preincu-
bated for 3 min to allow PII–NAGK complex formation. Then,
the reaction was started by the addition of 50 mM NAG and
2-OG (to determine the effect of increasing 2-OG concentrations
on disruption of PII–NAGK complex in the presence of NAGK-
inhibiting concentrations of arginine). Then 20 s after addition of
substrate, the change in absorbance at 340 nm was recorded for
10 min. Linear kinetics were observed over the period of time.
Phosphorylation of one molecule of NAG leads to oxidation
of one molecule of NADH, which is followed by the linear
decrease of absorbance at 340 nm. The reaction was recorded
in a SPECORD 200 photometer (Analytik Jena). The reaction
velocity was calculated from the slope of the resulting time curve
as change in absorbance per time with one unit of NAGK
(e ~34 ¼ 6;178 Lmol−1 cm−1) catalyzing the conversion of 1 mmol
NAG per min.

Crystallization of Recombinant S. elongatus PII Protein. Crystalliza-
tion was performed with the sitting-drop technique by mixing
400 nL of the protein solution with equal amounts of the reservoir
solution using the honeybee robot (Genomic Solutions Ltd.).
Drops were incubated at 20 °C and pictures were recorded by
the RockImager system (Formulatrix). The crystallization buffer
was composed of 10 mM Tris (pH 7.4), 0.5 mM EDTA, 100 mM
NaCl, 1% glycerol, and 2 mMATP-Mg, and also 2 mM 2-OG was
added; crystals appeared in a precipitant condition containing
PEG 4000. Glycerol was used as the cryoprotectant and the
crystals were flash-frozen in liquid nitrogen. Diffraction data
were collected at the Swiss Light Source. Diffraction images were
recorded on a MarCCD camera 225 (Marresearch) and images
were processed using the XDS/XSCALE software (6). The struc-
ture was solved by molecular replacement using the program
Molrep (7). Rebuilding of the structure and structure refinement
was performed using the programs Coot and Refmac (8, 9). The
quality of the structure was analyzed by the Procheck program
(10). Figures were generated using PyMOL (www.pymol.org).

For crystallization of PII
OG1–3 structures, 2-OG-containing PII

protein was used. Crystals appeared after 30 d in a precipitant
condition containing sodium acetate trihydrate 0.1 M, pH 5,
PEG 4000, and 2-methyl-2,4-pentanediol.
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Fig. S1. Primary and secondary structure of the S. elongatus PII protein with representation of sequence conservation and indication of amino acids, involved
in ATP and 2-OG binding. Below the amino acid sequence of the S. elongatus PII protein (middle line), the secondary structure elements and T, B, and C loops are
indicated; α-helices and β-strands are underlined and colored in red or in brown, respectively. The position of amino acids involved in ATP binding (blue), 2-OG
binding (green), or both (cyan) are highlighted with A or O (the coloring of these amino acids overrides the coloring of secondary structure elements). On top,
the amino acid sequence conservation is represented as a sequence logo, derived from multiple sequence alignment of 14 different PII proteins from the
major prokaryotic lineages. The sequence logo was created with the program WebLogo 3.0. (http://weblogo.threeplusone.com/). The frequency of an amino
acid in the multiple alignment is represented by the height of the letter. Multiple sequence alignment was carried out with the program ClustalW
(http://www.ebi.ac.uk/Tools/clustalw2/) using the following PII sequences (Gene Bank accession numbers in parentheses): S. elongatus (YP_171902.1); Nostoc
sp. strain 7120 (BAB74018.1); Prochlorococcus marinus MIT 9301 (YP_001091877.1); Thiobacillus denitrificans ATCC25259 (AAZ96761.1); E. coli GlnB
(AAB28779.1); E. coli GlnK (CAQ30923.1); Azospirillum brasiliense GlnB (AAK01659.1); A. brasiliense GlnK (ADK11050.1); A. brasiliense GlnZ (AAG10012.1);
Bacillus subtilis GlnK (AAA17400.1); Lactococcus lactis subsp. cremoris MG1363 (AAX82491.1); Streptomyces coelicolor A3 (NP_733668.1); Methonococcus
maripaludis GlnB (CAF29622.1); Methanocaldococcus jannaschii DSM 2661 GlnB (AAB98041.1).

Fig. S2. Role of R9 residue in stabilizing the active site of PII in the NAGK-binding conformation. Ribbon presentation of the structure of the PII I86N variant
(mimicking the NAGK-binding conformation) with unbound water molecules. ATP and relevant side- or main-chain residues are shown in sticks; black broken
lines indicate contacts between R9 and main-chain oxygens of B-loop residues or water molecules that are designated 1, 2, 3, and 4. One of these water
molecules (2) makes contact with T-loop backbone oxygen of R45 (2.80 Å), water 3 with the carboxyl group of E85 (2.83 Å), and water 4 also with E85
(2.66 Å) and the hydroxyl group of T83 (2.84 Å).
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Fig. S3. Comparison of effector molecule-binding sites between PII
OG1 and PII

OG2. (A) Ribbon representation figure identical to Fig. 3C (this paper) for com-
parison. (B) Ribbon representation of the PII

OG2 structure with a view into the three ligand-binding sites (S1, S2, and S3). Cofactors as well as the B loop, T loop,
and C terminus are marked and the composition of the complex is marked below the structure figure. Significant structural changes between the three mono-
mers are marked in S3 with encircled numbers (3, T loop; 4, C terminus). (C) Superposition of the three monomers of PII

OG2 and zoom into the ligand-binding
pocket with the ligands of one monomer color coded in different greens. Significant changes are visible in the ATP conformation (marked with 2), in the T-loop
conformation (marked with 3), and in strand β4 with residues contributing to ATP and 2-OG complexation located close to the binding site (marked with 1).

Fig. S4. Representation of the B factors in structures PII
OG1–PII

OG3 with blue color indicating lowest B factors and red color highest temperature factors. The
structures indicate that binding of the 2-OG ligand does not induce major changes in the protein flexibility and thereby the B factors.
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Fig. S5. Superposition of the PII
OGex structure with the structure of PII in complex with PipX [Protein Data Bank (PDB) ID code 2XG8] as ribbonmodels. The color

code for the PII
OGex structure is derived from Fig 1B, and that for PII from the PII–PipX complex is adapted. Secondary structure elements are marked. ATP and

2-OG are shown in stick representation whereas the Mg2þ ion is marked in green. The T loop from the PII–PipX complex structure, labeled as “T loop (C)”,
displays a vertically extended conformation, which retracts upon 2-OG binding.

Table S1. Data collection and refinement statistics

PII
OGex PII

OG1–3

Data collection
Space group P212121 P22121
Cell dimensions

a, b, c, Å 71.87, 87.99, 116.34 72.33, 102.37, 135.77
α, β, γ, ° 90 90

Resolution, Å 29 – 2.2 (2.33-2.2) 48 – 1.95 (2.06-1.95)
Rsym or Rmerge 0.12 (0.78) 0.12 (0.85)
I∕σI 13.3 (2.6) 12.2 (1.8)
Completeness, % 99.6 (98.1) 98.1 (94.1)
Redundancy 7.2 (7.1) 7.1 (6.9)
Refinement
Resolution, Å 29 – 2.2 (2.25-2.2) 48 – 1.95 (2-1.95)
No. reflections 36239 (2522) 69753 (3672)
Rwork∕Rfree 0.18/0.22 (0.22/0.29) 0.17/0.22 (0.22/0.29)
No. atoms (all) 5433 8101

Protein (chains/residues) 6/646 9/965
Ligands (ATP∕αKG∕CIT∕Mg2þ) 6/6/-/6 9/7/-/7
Water 248 318

B factors
Protein 22 24.6

Ligand/ion (ATP∕αKG∕CIT∕Mg2þ) 22.4/31.1/-/29.6 22.5/27.6/-/23.4
Water 59 59.4

rmsd
Bond lengths, Å 0.029 0.025
Bond angles, ° 2.1 2.2

Ramachandran statistics
No. of residues in favored region (%) 605 (97.4) 912 (97.7)
No. of residues in allowed region (%) 16 (2.6) 21 (2.3)
No. of residues in outlier region (%) 0 0
PDB ID code 2XOH 2XOJ

Values in parentheses are for the highest-resolution shell.
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Table S2. Molecular interface analysis of the
subunits in the POG1–3

II structure (values are
given in Å2)

A B C

PII
OG1

A 1,200 1,180
B 1,200 1,070
C 1,180 1,070

PII
OG2

A 1,210 1,190
B 1,210 1,090
C 1,190 1,090

PII
OG3

A 1,260 1,250
B 1,260 1,160
C 1,250 1,160
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Abstract This article reviews the current state-of-the-art

concerning the functions of the signal processing protein

PII in cyanobacteria and plants, with a special focus on

evolutionary aspects. We start out with a general intro-

duction to PII proteins, their distribution, and their evolu-

tion. We also discuss PII-like proteins and domains, in

particular, the similarity between ATP-phosphoribosyl-

transferase (ATP-PRT) and its PII-like domain and the

complex between N-acetyl-L-glutamate kinase (NAGK)

and its PII activator protein from oxygenic phototrophs.

The structural basis of the function of PII as an ATP/ADP/

2-oxoglutarate signal processor is described for Synecho-

coccus elongatus PII. In both cyanobacteria and plants, a

major target of PII regulation is NAGK, which catalyzes

the committed step of arginine biosynthesis. The common

principles of NAGK regulation by PII are outlined. Based

on the observation that PII proteins from cyanobacteria and

plants can functionally replace each other, the hypothesis

that PII-dependent NAGK control was under selective

pressure during the evolution of plastids of Chloroplastida

and Rhodophyta is tested by bioinformatics approaches.

It is noteworthy that two lineages of heterokont algae,

diatoms and brown algae, also possess NAGK, albeit

lacking PII; their NAGK however appears to have des-

cended from an alphaproteobacterium and not from a

cyanobacterium as in plants. We end this article by coming

to the conclusion that during the evolution of plastids, PII

lost its function in coordinating gene expression through

the PipX-NtcA network but preserved its role in nitrogen

(arginine) storage metabolism, and subsequently took over

the fine-tuned regulation of carbon (fatty acid) storage

metabolism, which is important in certain developmental

stages of plants.

Keywords Chloroplast � CLANS � NAGK � Oxygenic

phototroph � PII signaling � Synechococcus elongatus

Abbreviations

ATP-PRT ATP-phosphoribosyltransferase

NAGK N-acetyl-L-glutamate kinase

2-OG 2-Oxoglutarate

Introduction to PII signal processors: general

properties and evolution of canonical PII proteins

PII proteins constitute a superfamily of the most widely

distributed signaling proteins in nature, represented in all

domains of life (Sant’Anna et al. 2009; Huergo et al. 2012).

Members of this superfamily are present in almost all

taxonomic groups of bacteria and are ubiquitous in nitro-

gen-fixing methanogens of the archaeal kingdom; however,

in eukaryotes they are only found in oxygenic phototrophs

(Arcondéguy et al. 2001; Forchhammer 2008). In all cases

studied so far, PII proteins are involved in the control of

anabolic nitrogen metabolism. They detect the metabolite
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state of the cell by interdependent binding of ATP and

2-oxoglutarate (2-OG) or ADP in a highly conserved

manner, and thereby regulate the activity of transcription

factors or key metabolic enzymes (Fokina et al. 2010a, b;

Truan et al. 2010; Litz et al. 2011; Radchenko and Merrick

2011; Zeth et al. 2012). Interestingly, these PII-regulated

target proteins are distinct in different phylogenetic groups

of organisms.

Based on the widespread occurrence of the PII super-

family member GlnK in diverse prokaryotes and its con-

served genetic coupling with the ammonium transport

protein AmtB, it has been hypothesized that modern tri-

meric PII proteins may have arisen from an ancient trimeric

PII protein that originated early in the evolution of pro-

karyotes in conjunction with the trimeric ammonium

transporters to control ammonium uptake in response to the

metabolite state of the cells (Thomas et al. 2000; San-

t’Anna et al. 2009). Other PII paralogues, GlnB and NifI,

may have evolved subsequently from this primordial GlnK

protein by gene duplication and functional diversification.

These paralogues are implicated in the regulation of

nitrogen-dependent gene expression, in the activity regu-

lation of glutamine synthetase, and in the control of

nitrogen fixation through a stupendous variety of mecha-

nisms (Huergo et al. 2012; Leigh and Dodsworth 2007;

Luque and Forchhammer 2007; Masepohl and Forchham-

mer 2007).

In cyanobacteria, PII proteins are present in all known

species. While most cyanobacteria harbor one PII protein,

some strains encode a second or even a third paralogue

(Laichoubi et al. 2011). In contrast to many bacteria, where

PII proteins (mainly of the GlnB subfamily) are involved in

regulation of glutamine synthetase at various levels (Ninfa

and Atkinson 2000; Leigh and Dodsworth 2007), cyano-

bacterial PII proteins have evolved to regulate the ornithine

pathway, which leads to arginine and polyamine synthesis,

and to the modulation of nitrogen-dependent transcription.

In eukaryotes, PII homologues have only been identified in

Chloroplastida (green algae and land plants), where they

are nuclear-encoded, and in Rhodophyta, where they are

coded by the plastid genome (Uhrig et al. 2009). In both

these groups, PII is localized in the chloroplast (Hsieh et al.

1998; Ermilova et al. 2012) and appears to control the key

step in arginine synthesis, as in cyanobacteria.

PII-like proteins: witnesses of a widely distributed

signal processing mode

In the phylogenetic analysis carried out by Sant’Anna et al.

(2009), a novel group of PII-like proteins, termed PII-new

group (PII-NG), was identified and included in the PII

superfamily based on sequence similarity. These sequences

however lack the two PROSITE signatures characteristic of

PII proteins (http://prosite.expasy.org). One of these

PROSITE patterns (PS00496; Nitrogen regulatory protein

P-II, uridylation site 46–51) is not highly conserved even

among canonical bacterial PII proteins; it is located in the

flexible T-loop region and is subjected to covalent modi-

fications. The second PROSITE signature (PS00638; [ST]-

x(3)-G-[DY]-G-[KR]-[IV]-[FW]-[LIVM]-x(2)-[LIVM]) is

part of the nucleotide binding site (Xu et al. 1998) and is

intimately involved in signal perception by PII proteins.

Therefore, especially the lack of this latter site indicates

that these proteins cannot fulfill canonical PII functions as

previously described. Intriguingly, however, the PII-NG

encoding genes are localized next to heavy metal efflux

pumps and thus might be involved in the regulation of

these transporters. The architectural principle of PII pro-

teins seems to be apparently even more widely distributed.

It is seen in proteins that do not share appreciable sequence

conservation with canonical PII, but have structures that

are highly similar to the PII core architecture, except for

the loops, which seem to be characteristic for the canonical

PII protein. These proteins form a widespread superfamily

of trimeric proteins with potential regulatory roles and

occur in almost all known organisms (Kinch and Grishin

2002; Arnesano et al. 2003; Saikatendu et al. 2006). While

in most cases their function is unknown, in some cases they

are known to be involved in diverse functions such as

copper tolerance (Arnesano et al. 2003) or anchoring ace-

tylcholinesterase in mammalian neurons (Perrier et al.

2000). Whether these proteins are evolutionary related to

PII proteins or not remains to be clarified. A protein

domain that exhibits a structure highly similar to PII has

been found in the enzyme ATP-phosphoribosyltransferase

(ATP-PRT) from Mycobacterium tuberculosis (Cho et al.

2003) and Escherichia coli (Lohkamp et al. 2004). ATP-

PRT is the first enzyme of the histidine pathway and is

allosterically inhibited by AMP and histidine. The C-ter-

minal PII-like domain comprises the binding site for the

allosteric inhibitor histidine. The structure of the PII-like

domain of ATP-PRT has striking similarities with the PII

in complex with the key enzyme of arginine synthesis,

N-acetyl-L-glutamate kinase (see structure comparison in

Fig. 1). Note that the orientation of the PII-like domain is

upside down compared to Synechococcus elongatus PII

bound to NAGK. This similarity is highly intriguing and

indicates that the PII-like domain is possibly a relic of an

ancestral PII-like protein found in ATP-PRT. At present,

the PII-like domain functions as a sensory device for ATP-

PRT, using the architectural principle of PII proteins as

signal processing units. Regulation of amino acid biosyn-

thesis reactions (glutamine, arginine, and histidine) thus

emerges as a common basis of the function of PII and PII-

like proteins.
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The PII architecture: from structure to function

PII proteins have a common architecture: a typical bacterial

PII protein consists of three identical subunits of 112 amino

acids, which fold into a b1–a1–b2–[S-loop]–b3–a2–b4–

b5 structure. The three subunits assemble with the b-sheets

in the center, forming an intertwined triangular core of

three extended b2-sheets that pair with the neighboring

b20- and b200-sheets (Fig. 1e). The C-terminal b5-sheet

swaps to the b4-strand of the neighboring subunit to form

part of the active site (Cheah et al. 1994; Leigh and

Dodsworth 2007; Forchhammer 2008). The periphery is

made up of six (three times two) a-helices and nine (three

times three) loop regions, which connect the secondary

structural elements, to form a barrel-like structure with

three lateral clefts between the subunits. For the function of

PII proteins, the three signal transducing T-loops (one per

subunit) are of particular importance, since they transmit

information on the ligand-binding state of PII into con-

formational change and mediate many (but not all) of the

PII-receptor interactions. The T-loop is a large solvent-

exposed and flexible loop that extends between the b2- and

b3-strand and protrudes from the bottom of the intersubunit

cleft. The three clefts arrange the binding sites for the

effector molecules. About 20 structures of PII proteins

(Huergo et al. 2012) in complex with ATP or ADP have

been deposited in the PDB, including PII from cyanobac-

teria and Arabidopsis. Comparison of these structures

reveals a highly conserved adenyl nucleotide binding mode

(Xu et al. 1998; Zeth et al. 2012) with ATP and ADP

competing for the same site. The nucleotide is bound

essentially through positively charged residues and

Fig. 1 Comparison of the structures of ATP-phosphoribosyltransfer-

ase and PII-NAGK complex. a The complex of PII (slate) and the

hexameric N-acetyl-L-glutamate-kinase (light green) from S. elong-
atus (PDB ID: 2V5H) are shown. b In the structure of ATP-PRT

(PDB ID: 1Q1K) from E. coli, the enzymatic domain is colored in

green and the C-terminal, PII-like domain in salmon. c, d Enlarged

views of the PII and PII-like domain are shown in the same

orientation as in panels (a) and (b). The N-terminal b-strands are

colored in magenta. e, f The structural superimposition of the PII and

PII-like domain, in top and side view, is depicted. The large T-loops

of PII, which are absent in the PII-like domain, are colored in gray.

This figure was generated using PyMOL (www.pymol.org)
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hydrogen bonding contacts contributed from two opposing

subunits of the cleft (Fig. 2a): from one subunit, Arg38 and

Gln39 residues (belonging to the basal part of the T-loop)

contact the c-phosphate of ATP, whereas Lys90 and Gly89

contact the b- and a-phosphate; from the opposite subunit,

two Arg residues (101 and 103) of the C-loop contact

c- and b-phosphates, whereas Thr29 and Val64 coordinate

the adenosine moiety. The mode of 2-oxoglutarate binding

to PII has been clarified recently by solving the crystal

structures of PII proteins with Mg-ATP and 2-OG from the

archaeon Archaeoglobus fulgidus (Maier et al. 2011), the

proteobacterium Azospirillum brasiliense (Truan et al.

2010), and the cyanobacterium S. elongatus (Fokina et al.

2010a). In the latter case, a snapshot of the sequential

anticooperative binding of 2-OG to the three sites could be

obtained. In all cases, a Mg2? ion bound by the b- and

c-phosphate of ATP plays an essential role by coordinating

the 1-carboxy- and carbonyl-oxygens of 2-OG (Fig. 2b).

Furthermore, a universally conserved Lys58 residue forms

a salt bridge with the 5-carboxy-group of 2-OG. The basal

part of the T-loop wraps around the 2-OG molecule mainly

through backbone interactions of Gln39, Lys40, and Gly41.

This results in a unique conformation of the T-loop,

thereby affecting the T-loop-mediated protein interactions.

From the plant kingdom, only the structure of Arabidopsis

thaliana PII has been resolved to date. Overall, its structure

corresponds to the archetypical PII architecture described

above. However, A. thaliana PII contains N- and C-ter-

minal extensions of 13 and 15 amino acids length,

respectively. These extensions are also found in all other

plant PII proteins analyzed so far, including green algae,

with an exception of chloroplast-encoded PII of red algae

(Uhrig et al. 2009; Ermilova et al. 2012). In the A. thaliana

structure, the N-terminal extension is organized opposite to

the T-loop, whereas the C-terminal extension folds back

towards the effector binding site and in the ATP-free

structure, it occupies part of the ATP binding site (Mizuno

et al. 2007). It was suggested that these additional sequence

elements could mediate plant-specific functions. The

effector molecule binding properties of A. thaliana PII are

quite similar to those of cyanobacterial PII proteins

(Forchhammer and Hedler 1997; Smith et al. 2003; Fokina

et al. 2010b): ATP and ADP compete for the same binding

site and 2-OG binds in synergy with ATP. However, in

case of PII from S. elongatus, ADP does not support the

binding of 2-OG, and antagonizes 2-OG binding even in

the presence of ATP (Fokina et al. 2011); in contrast ADP

does support the binding of 2-OG to A. thaliana PII.

Curiously however, 2-OG lowered the affinity of ADP for

A. thaliana PII, indicating unfavorable ligand contacts. The

unique C-terminal segment, which contacts the effector

molecule binding site, might cause these differences.

However, ligand-binding properties of other plant PII

proteins should be analyzed before generalizing the prop-

erties of A. thaliana to all plants.

Modification of PII proteins

The E. coli GlnB protein was the first PII protein to be

carefully studied. As in many other proteobacteria, E. coli

PII proteins (GlnB and GlnK) are subject to covalent UMP-

modification (uridylylation) at Tyr51, located at the apex of

the T-loop (Adler et al. 1975; Atkinson et al. 1994). In fact,

uridylylation was long regarded as the hallmark of PII

signaling (Arcondeguy et al. 2000; Ninfa and Atkinson

2000). Uridylylation is brought about by the bifunctional

enzyme GlnD (Uridylyltransferase/uridylyl-removase),

whose activity is regulated by glutamine, with low gluta-

mine levels favoring PII uridylylation and high glutamine

Fig. 2 Comparison of all residues and water molecules that form

polar contacts with ATP alone and ATP ligated to 2-OG in PII protein

from S. elongatus (PDB ID: 2XZW). Amino acids forming contacts

with the side-chains are indicated in blue letter code, amino acids

forming backbone interactions are indicated in black. a Polar contacts

formed by ATP when bound to PII protein, b ATP undergoes minor

changes in conformation to establish polar contacts with residues to

enable the 2-OG molecule to ligate in the presence of ATP and Mg2?
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levels favoring PII deuridylylation. By these means, the PII

protein becomes a highly sensitive transmitter of the cel-

lular glutamine status (Jiang and Ninfa 2011). However,

uridylylation is not a general trait of PII signaling. The PII

protein in the cyanobacterium S. elongatus was shown to

be phosphorylated at Ser49, a position adjacent to the

uridylylation site of E. coli PII (Forchhammer and Tandeau

de Marsac 1994). In vivo, the phosphorylation status of PII

depends on the carbon/nitrogen supply of the cells: nitro-

gen-limiting conditions favor PII phosphorylation, excess

nitrogen, preferably in the form of ammonia, causes PII

dephosphorylation. With S. elongatus cell-free extracts,

phosphorylation could be achieved in the presence of

millimolar concentrations of 2-OG and ATP. The PII

kinase is still unknown; however, the phosphatase of PII-P,

PphA, could be identified in Synechocystis PCC 6803

(Irmler and Forchhammer 2001) and has since then been

thoroughly studied (Ruppert et al. 2002; Kloft and Forch-

hammer 2005; Schlicker et al. 2008; Su et al. 2011; Su and

Forchhammer 2011, 2012). PphA is a Ser/Thr phosphatase

of the PP2C family and the crystal structure of the PphA

homologue from the thermophilic cyanobacterium Ther-

mosynechococcus has been solved (Schlicker et al. 2008).

In addition to the binuclear metal center, a third metal,

which is occasionally observed in bacterial PP2C homo-

logues, was shown to be an essential part of the catalytic

center (Su et al. 2011). Recognition of the phosphorylated

PII protein involves a flap subdomain, which shields the

catalytic center of PphA (Su and Forchhammer 2011). The

formation of a precisely fitted substrate-enzyme complex is

a prerequisite for dephosphorylation. The conformation of

the T-loop plays a critical role in this process: only when

PII is non-ligated with 2-OG, PphA is able to dephos-

phorylate PII. As long as PII-P resides in the Mg-ATP/2-

OG ligated state, it is protected from dephosphorylation

(Ruppert et al. 2002; Su and Forchhammer 2011), implying

that the 2-OG induced conformation of the T-loop does not

fit into the catalytic crevice of PphA. Ser49 phosphoryla-

tion seems not to be generally conserved in cyanobacteria.

In Prochlorococcus marinus, an abundant marine pro-

chlorophyte, the evidences indicate absence of PII phos-

phorylation (Palinska et al. 2002), in agreement with the

lack of a PphA homologue gene (Cyanobase: http://

genome.kazusa.or.jp/cyanobase). In filamentous cyano-

bacteria, the situation is less clear. No PII phosphorylation

could be detected in Nostoc punctiforme extracts but the

N. punctiforme PII protein could be phosphorylated in vitro

by S. elongatus cell extracts (Hanson et al. 1998). Mass

spectroscopic analysis of the PII protein from Anabaena

extracts revealed Tyr51 to be subjected to nitration under

diazotrophic conditions while no phosphorylation at Ser49

was detected (Zhang et al. 2007). Absence of PII phos-

phorylation in the Nostocales is, however, in contrast to the

presence of a PphA homologue. Mutation of the PphA

homologue gene resulted in altered PII functions in Ana-

baena (Laurent et al. 2004). In plants, potential PII phos-

phorylation was investigated in A. thaliana. Its PII protein

has conserved the seryl-phosphorylation site, but no

phosphorylation could be identified. Recently, the PII

protein from Chlamydomonas reinhardtii was character-

ized. It has a potentially phosphorylatable threonyl residue

at the corresponding position, but like in Arabidopsis,

protein phosphorylation analysis revealed only non-phos-

phorylated PII protein (Ermilova et al. 2012). At a first

glance, it seems odd that in spite of conservation of this

site, phosphorylation of PII seems not to be conserved.

However, conservation of this site could be due to its

pivotal role in PII-NAGK interaction.

PII-mediated regulation of the arginine pathway

in cyanobacteria and plants

Yeast-two hybrid screening for PII-interaction partners in

cyanobacteria and plants using genomic DNA from

S. elongatus and A. thaliana identified the enzyme N-acetyl-

L-glutamate kinase (NAGK) as a novel PII receptor (Burillo

et al. 2004; Heinrich et al. 2004; Sugiyama et al. 2004). In

plants and cyanobacteria, NAGK catalyzes the committed

step of arginine biosynthesis and in agreement, the enzyme

is feedback-inhibited by arginine. In S. elongatus and

A. thaliana, PII modulates the catalytic properties of

NAGK. Initial experiments (Heinrich et al. 2004; Chen

et al. 2006) yielded some inconsistent results due to the use

of a non-optimized assay buffer, which impaired 2-OG

effects and which lacked a reducing agent, necessary for

high NAGK activities (Beez et al. 2009). When tested under

optimized conditions, the following common properties

between the proteins from S. elongatus and A. thaliana

became evident (Beez et al. 2009): (1) PII activates the

overall catalytic efficiency (kcat/Km) of NAGK, for

S. elongatus 8-fold and for A. thaliana 1.5-fold. In the latter

case, activation is mainly an effect on kcat. (2) PII relieves

NAGK from arginine feed-back inhibition. It also increases

the half maximal inhibitory concentration of arginine (IC50)

from 20 to 200 lM for S. elongatus, and from 1 to 6 mM for

A. thaliana NAGK. Arginine inhibits NAGK by increasing

the Km for the substrate NAG, an effect, which is counter-

acted by PII. (3) 2-OG antagonizes the protection of NAGK

by PII from arginine inhibition.

The most prominent differences between NAGK of

S. elongatus and A. thaliana are a much higher activity

(almost 100-fold) of A. thaliana NAGK and a much higher

IC50 towards arginine. In A. thaliana, ATP accelerated

complex formation; however, ADP did not negatively

affect this process (Beez et al. 2009). By contrast, in

Planta (2013) 237:451–462 455

123

55

http://genome.kazusa.or.jp/cyanobase
http://genome.kazusa.or.jp/cyanobase


S. elongatus, ADP lowered the affinity of the PII-NAGK

complex formation (Fokina et al. 2011). Therefore, in

S. elongatus, PII activation of NAGK activity not only

depends on 2-OG but also on the ATP/ADP ratio (Fokina

et al. 2011), whereas in A. thaliana, only 2-OG antago-

nizes NAGK activation by PII (Beez et al. 2009). A

remarkable finding was the observation that the A. thali-

ana PII protein could completely replace S. elongatus PII

in activating its NAGK. Conversely, S. elongatus PII

protein could at least partially activate A. thaliana NAGK.

This functional swapping between the cyanobacterial and

higher plant PII-NAGK protein pair points out that the

fine-tuned interactions between PII and NAGK are

extremely conserved. The high degree of similarity was

also revealed by the crystal structures of PII-NAGK

complexes from S. elongatus (Llacer et al. 2007) and A.

thaliana (Mizuno et al. 2007). The NAGK enzyme is a

trimer of dimers (each subunit approximately 32 kDa),

assembling into a hexameric toroid with two identical

faces. On each side of the toroid one PII trimer attaches

(see Fig. 1a) mainly by contacts from the T-loop and by a

second interaction surface contributed by the body of the

PII protein and B-loop residues (Llacer et al. 2007, 2008;

Mizuno et al. 2007). To bind NAGK, the T-loop of PII

has to adopt a tightly folded conformation (Llacer et al.

2007; Fokina et al. 2010b). In the 2-OG ligated state, the

T-loop is not able to adopt this fold, explaining the

antagonistic effect of 2-OG on PII-NAGK complex for-

mation. The tightly folded T-loop inserts into the

interdomain crevice of NAGK, a process in which

hydrogen bonding interactions of T-loop residue Ser49

(the site of phosphorylation in S. elongatus PII) and an ion

pair network organized by Arg45 play a critical role

(Llacer et al. 2008). Phosphorylation of Ser49 impairs

these interactions and thus prevents NAGK binding in

S. elongatus. The pivotal PII residues for NAGK interac-

tion, Arg45, Ser49, and Glu85, as well as the correspond-

ing NAGK residues for these contacts, Glu194, Arg233,

Arg254, Ala257, and Gln258, comprise sequence signa-

tures for PII-NAGK interaction unique for most oxygenic

phototrophic organisms. Lack of this signature in NAGK

sequences from two red algae (Gracilaria tenuistipitata and

Cyanidioschyzon merolae) correlates with the apparent

absence of PII proteins in these organisms (Llacer et al.

2007). Figure 3 shows an alignment of the C-terminal part

of NAGK sequences from oxygenic phototrophs and from

various bacteria. Besides the above-mentioned signature

sequences, a Cys–Cys pair located between signature res-

idues Arg233 and Ala257 is almost unique for the oxygenic

phototrophs. These residues do not directly take part in

complex formation. However, it is tempting to speculate

that this cysteine-pair could be the cause for the demand of

reducing conditions in vitro for the NAGK enzyme activity

in cyanobacteria/plants (Beez et al. 2009). Thus, it is likely

that NAGK could be redox controlled in oxygenic photo-

trophs, a mechanism that would allow them to switch off

the energy consuming arginine synthesis during light to

dark transition.

Fig. 3 Multiple sequence alignment of the C-terminal region of

NAGK. Representative NAGK sequences from cyanobacteria, green

plants, red algae, proteobacteria, archaea, brown algae, and diatoms

were aligned using T-Coffee (Di Tommaso et al. 2011) with default

settings. Residues important for interactions with PII are highlighted

in salmon. The highly conserved adjacent cysteine residues seen in

NAGK sequences of oxygenic phototrophs are shown in yellow with

an exception of a proteobacteria Desulfovibrio vulgaris
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Conservation of PII-NAGK interaction during plastid

evolution

The high degree of conservation in sequence, structure, and

function between S. elongatus and A. thaliana PII-NAGK

complexes implies a strong selective pressure for main-

taining PII-regulated arginine biosynthesis in the evolution

of plastids from an ancestral cyanobacterium. If this is

indeed the case, the phylogeny of PII and NAGK sequen-

ces should be similar to each other, and should also reflect

the evolution of plants. Hitherto studies have only focused

on the phylogenetic analysis of the PII superfamily and

they have not been conclusive on whether plant PII pro-

teins are of cyanobacterial origin or not (Osanai and

Tanaka 2007; Uhrig et al. 2009; Sant’Anna et al. 2009).

Since PII proteins are short and highly similar in sequence,

reliable inference of their phylogeny is difficult. Also, to

our knowledge, a comprehensive phylogenetic analysis of

NAGK proteins has not been performed yet. Spurred by

this, we decided to revisit the analysis of PII and NAGK

proteins using cluster analysis and maximum likelihood-

based phylogenetic reconstruction. In cluster analysis,

sequences are treated as point masses in a virtual multi-

dimensional space which attract or repel each other

depending on the statistical significance of their pairwise

sequence similarities. Sequences find their equilibrium

position in the map not only by attraction to similar

sequences but also by repulsion of different ones. Unlike

phylogenetic methods, which have exponential computa-

tional complexity and only allow calculation of trees with a

few thousand sequences at most, the computational com-

plexity of cluster analyses only increases approximately

quadratically with the number of sequences, making cal-

culation of maps with several thousand sequences within a

reasonable time possible. In fact, cluster maps become

more accurate with an increasing number of sequences as

the larger number of pairwise relationships average out the

random error arising from simpler pairwise similarity-

based comparisons.

In the map of PII proteins (Fig. 4a), the sequences from

cyanobacteria (cyan) form a tight cluster that groups

together with clusters of sequences from other bacteria

(black), whereas sequences from plants (green) and red

algae (red) build individual clusters only connected to

Fig. 4 Cluster map of PII and NAGK proteins. To gather PII and NAGK

sequences for cluster analysis, the non-redundant protein sequence

database at the NCBI, filtered to a maximum sequence identity of 90 %

(nr90), was searched by seeding BLAST (Altschul et al. 1997) with the

PII (gi 3885943) and NAGK (gi 332646151) sequences from S. elongatus
PCC 6301. All sequence matches with an E-value of less than 1E-10

were pooled together. In the next step, the obtained PII and NAGK

sequences were clustered separately in CLANS (Frickey and Lupas

2004) based on their all-against-all pairwise similarities as measured by

BLAST P-values. In the cluster map, dots represent sequences and line

coloring reflects BLAST P-values; the brighter a line, the lower the

P-value. Sequences are colored as follows: cyanobacteria—cyan, green

plants (Viridiplantae)—green, red algae—red, archaea—yellow, fungi—

light violet, cellular slime molds—orange, diatoms—blue, brown

algae—magenta, and other bacteria—black. a 1744 PII sequences

obtained using BLAST were clustered at a P-value cut-off of 1E-33. At

this stringent cut-off, while highly similar sequences remain connected to

each other and form central clusters, less similar sequences drift to the

periphery of the map. PII sequences from green plants and red algae make

their best matches to cyanobacteria, whereas sequences from cyanobac-

teria are closer to other bacteria. b 1,583 NAGK sequences identified by

BLAST are shown. Clustering was carried out at a P-value cut-off of 1E-

83. NAGK sequences from cyanobacteria, green plants, and red algae

form a tight cluster in the obtained cluster map
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cyanobacterial sequences (cyan). This suggests that PII

proteins of plants and red algae are of cyanobacterial ori-

gin, which is in accordance with previous proposals

(Osanai and Tanaka 2007; Sant’Anna et al. 2009; Uhrig

et al. 2009). While the cyanobacterial cluster is in close

proximity to the other bacterial clusters, the plant cluster is

further removed from the cyanobacterial cluster. This

indicates that PII proteins from cyanobacteria had limited

freedom to evolve, but PIIs from plants were altered to

adapt to new niches after being acquired from an ancient

cyanobacterium. By contrast, in the NAGK map (Fig. 4b),

the sequences from cyanobacteria, red algae, and Chlo-

roplastida cluster together indicating an endosymbiotic

origin of these proteins. NAGK from the two sequenced

diatoms (blue), Thalassiosira pseudonana and Phaeo-

dactylum tricornutum, cluster together with NAGK from

alphaproteobacteria. It is possible that in the evolution of

heterokonts, which include diatoms and brown algae, an

argB gene (encoding NAGK) was acquired by horizontal

gene transfer from an alphaproteobacterium while the ori-

ginal cyanobacterial/plastidal NAGK and PII genes were

lost. To exclude that this grouping was an artifact of the

cluster analysis, we inferred phylogeny of PII (Fig. 5a) and

NAGK (Fig. 5b) sequences using maximum likelihood-

based reconstruction. The resulting trees support the phy-

logenetic grouping exhibited by the cluster maps. Overall,

the evolutionary trees of PII and NAGK sequences are in

perfect agreement with the assumed evolution of cyano-

bacteria and of the plant kingdom (Deschamps and Moreira

2009). In support of co-evolution between PII and NAGK,

the phylogenetic tree of NAGKs matches the tree of PII

sequences, except for the two red algae Gracilaria tenu-

istipitata and Cyanidioschyzon merolae (denoted as 2* in

Fig. 5b), which have lost PII during evolution. Their

NAGKs are distantly related to the NAGKs from the other

red algae. In these organisms, the loss of PII has released

NAGK from the constraint to interact with PII and there-

fore, their NAGK sequences gained more freedom to

evolve. Together, this analysis shows that control of argi-

nine synthesis through PII-dependent signaling was kept

under selective pressure in the evolution of plastids of

Chloroplastida and most Rhodophyta.

Fig. 5 Molecular phylogenetic analyses of PII and NAGK proteins.

For the analysis, representative PII (GlnB), PII-like (GlnK), and

NAGK proteins were selected from cyanobacteria, green plants, red

algae, a-proteobacteria, c-proteobacteria, archaea, brown algae, and

diatoms. Multiple sequence alignments of PII and NAGK sequences

were calculated using T-Coffee (Di Tommaso et al. 2011) with

default parameters. Poorly aligned positions and highly divergent

regions were removed using Gblocks (Talavera and Castresana 2007).

The refined alignments were then used to infer phylogenetic trees in

MEGA 5.0 (Tamura et al. 2011), employing the maximum likelihood

(ML) method with the WAG model of substitutions and the discrete

Gamma distribution model of evolutionary rate variation among sites.

The bootstrap consensus trees inferred from 1,000 replicates are

shown; branches corresponding to partitions reproduced in less than

50 % bootstrap replicates are collapsed. The phylogenetic tree of PII

(a) contains 28 amino acid sequences and that of NAGK (b) consists

of 27 sequences
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Further functions of PII signaling in oxygenic

phototrophs

The complete network of interactions of PII with its binding

partners in cyanobacteria (summarized in Fig. 6) has been

reviewed previously (Osanai and Tanaka 2007; Forch-

hammer 2008, 2010). In brief, two major targets of PII

regulation have been identified at the molecular level, the

transcriptional co-activator PipX and NAGK. PipX, a small

protein of approximately 90 amino acids, was shown to

be required for full expression of NtcA-activated genes

(Espinosa et al. 2006, 2007; Laichoubi et al. 2012). Binding

of PipX to NtcA is favored by high 2-OG levels in vitro,

whereas 2-OG in concert with Mg-ATP prevents binding of

PipX to PII. The structures of PipX-NtcA and PipX-PII

complexes have been solved (Llacer et al. 2010; Zhao et al.

2010). It is thought that PII binding of PipX tunes down

NtcA-dependent gene expression (Espinosa et al. 2007).

PipX homologues have been identified in all cyanobacterial

genomes, but they are absent in eukaryotes, implying that

modulation of gene expression by PII was lost during the

endosymbiotic transition of the cyanobacterial ancestor into

a chloroplast. A few cyanobacteria possess multiple PII

paralogues, and in these cases, the organisms also contain

multiple PipX paralogues. In the case of the marine cya-

nobacterium Synechococcus WH5701, it could be shown

that only one of the two PII paralogues activates NAGK and

binds to PipX protein; the function of the other PII para-

logue is unknown (Laichoubi et al. 2011). A further target

of PII was identified as PamA in the cyanobacterium Syn-

echocystis PCC 6803. PamA is a potential transmembrane

channel protein of the MscS family with unknown function.

Fig. 6 Schematic representation of the 2-oxoglutarate (2-OG) depen-

dent cycle of PII interactions in cyanobacteria under ATP-replete

conditions. Under low 2-OG conditions (left), PII (slate) forms a

complex with NAGK (light green), the key enzyme of the arginine

pathway (top, light gray background), or with PipX (brown), the co-

activator of transcription factor NtcA (yellow) (middle part, dark gray
background). In complex with PII, NAGK is highly active and

protected from tight arginine feedback-inhibition. The NtcA-factor is

unable to bind PipX. At increasing 2-OG levels, the PII-complexes

dissociate and release 2-OG-ligated PII, which becomes phosphory-

lated by PII kinase activity. Free NAGK has diminished activity and

is tightly feedback-inhibited by arginine. PipX associates with NtcA

and activates NtcA-dependent gene expression. When the 2-OG

levels drop again, phosphorylated PII has to be dephosphorylated by

PII phosphatase PphA before being able to form complexes with

NAGK and PipX again. In the chloroplasts of plants, PII-NAGK

interaction is conserved, whereas no homologues of PipX, NtcA, and

PphA are found. Instead, PII interacts with ACCase (see text for

details). PDB ID of structures: 2V5H (PII-NAGK complex), 2XGX

(NtcA), 2XG8 (PII-PipX), 2XKO (NtcA-PipX), 1QY7 (free PII), and

2XUL (PII2OG). This figure was generated using PyMOL
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Mutation of PamA affects the expression of a subset of

nitrogen-regulated genes, among them is a sigma-factor

required for the expression of sugar-catabolic genes (Osanai

et al. 2005). Furthermore, circumstantial evidence suggests

that PII is also involved in the control of nitrate/nitrite

uptake in S. elongatus (Forchhammer 2010).

The above-mentioned PII receptors are absent in plants;

however, a new PII receptor, the chloroplast acetyl-CoA

carboxylase (ACCase), a key enzyme in fatty acid synthesis

in plastids, was identified by pull-down experiments with A.

thaliana extracts (Feria Bourrellier et al. 2010). ACCase

activity was repressed by PII, but this repression was

antagonized by 2-OG and oxaloacetate and to a lesser extent

by pyruvate. So far this interaction has not been charac-

terized in great detail and also it needs to be confirmed if

this interaction can be generalized for all plants. Never-

theless, the regulation of ACCase by PII represents an

intriguing link to carbon storage metabolism. Physiological

analyses in A. thaliana support the function of PII in storage

metabolism. The PII gene is upregulated in early seed

maturation by the transcription factor WRINKLED1 (Baud

et al. 2010), and in seeds of PII deficient mutants, a transient

increase of fatty acid production and an alteration in fatty

acid composition were observed. From these results, a

regulatory role of PII in the fine-tuning of fatty acid bio-

synthesis and partitioning in seeds had been inferred (Baud

et al. 2010). Furthermore, in A. thaliana PII mutants, nitrite

uptake in chloroplast is enhanced (Ferrario-Mery et al.

2008), resembling the regulatory defect of nitrite/nitrate

uptake in cyanobacterial PII mutants (Kloft and Forch-

hammer 2005). Altogether, the data indicate that during the

evolution of plastids, PII lost its primary function of coor-

dinating gene expression through interactions with PipX,

but preserved its role in nitrogen (arginine) storage metab-

olism, and eventually took over fine-tuned regulation of

carbon (fatty acid) storage metabolism. Currently, PII is

known to play a role in early seed maturation, but it is

unclear if it also has roles in other developmental stages of

plants. Studies of phylogenetically more ancient plants and

of unicellular green algae will be necessary to unravel the

roles of PII in the metabolic pathways of Chloroplastida.
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9. Contribution of the candidate 

 
Publication 1: A novel signal transduction protein P(II) variant from Synechococcus 

elongatus PCC 7942 indicates a two-step process for NAGK-P(II) complex formation. 

 

The crystallization of PII I86N variant (PDB: 2XBP, 1.20 Å) from Synechococcus elongatus 

PCC 7942 in the presence of ligands ATP and Mg2+ was done by me. The protein was set up 

for sitting drop crystallization in the presence of ATP-Mg or ADP-Mg. I had screened, 

selected and frozen the crystals with various cryoprotectants. The data was collected at atomic 

resolution from the Swiss Light Source, Villigen, Switzerland. I had refined and solved the 

structure with the guidance of Prof. Kornelius Zeth. I contributed for the structural data 

analysis and interpretation. I also contributed in the writing and revising of the manuscript.   

 

Publication 2: Mechanism of 2-oxoglutarate signaling by the Synechococcus elongatus 

PII signal transduction protein. 

 
PII proteins in the presence of ATP-Mg and also with ATP-Mg plus 2-OG were prepared by 

me for crystallization trials.  The drops were set up in the presence of low (PDB: 2XZW) and 

excess (PDB: 2XUL) amounts of 2-OG. The crystals were screened and frozen with glycerol 

as the cryoprotectant. The diffraction quality crystals were subjected to X-ray diffraction at 

the Swiss Light Source, Villigen, Switzerland. The data was collected and the structure was 

solved by me with the guidance of Prof. Kornelius Zeth. I was also involved in the structure 

analysis, writing and revision of manuscript.  

 
Publication 3: From cyanobacteria to plants: conservation of PII functions during 

plastid evolution. 

 
I contributed to writing, creating figures and manuscript preparation. I was involved in the 

PII-NAGK coevolution analysis from sequence to structural level through bioinformatics 

approach by employing phylogenetic tree construction and CLANS analysis. The paper was 

submitted by me and I took part in the revision of manuscript.  
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10. Additional Research 

 
10.1 Cloning, expression and purification of proteins 

 

Cloning of the Cr PII gene was performed as described in Ermilova et al, 2013. A C-terminal 

truncated Cr PII was designed to mimic the length of a bacterial PII protein by deletion of the 

terminal 12 aminoacids. This truncated version of Cr PII (Delta C Cr PII) was obtained by 

amplification of the Cr PII gene with the primer pair 5’-

ATTGGTCTCAAATGGAACTGGAAAG-3’ and 5’-GATGGTCTCAGCGCTCATTTTTTC

CGCTTCCAGGCCGGTTTC-3’. In order to obtain the native Cr PII protein without any tag, 

a construct was designed for insertion into the pASK-IBA15 vector which encodes a 

enterokinase cleavage site between the N-terminal Strep-tag and the gene of interest. The Cr 

PII synthetic gene was amplified with the forward primer 5’-

GCCACCCGCAGTTCGAAAAAGGCGCCGACGACGACGACAAGATGGAACTGGAAA

GCATTCAGTGCG-3’ and the reverse primer 5’-CCATTTTTCACTTCACAGGTCA-

AGCTTAGTTAGATATCAGAGACCTTACTTTTTTTTCTTCATCATATCTTCC-3’. The 

amplified fragment was cloned into the Strep-tag fusion vector pASK-IBA15 using the 

Gibson cloning strategy (Gibson et al, 2009). Overexpression of the recombinant PII proteins 

was performed in E. coli RB9060 strain (Bueno et al, 1985), which is GlnB deficient in order 

to prevent any formation of heterotrimers. The protein was affinity purified on a Strep-Tactin 

column according to Heinrich et al, 2004. The N-terminal Strep-tag Cr PII protein was 

subjected to enterokinase treatment to derive the native protein after an additional affinity 

purification step. 

 

The Cr NAGK synthetic gene with an optimized codon usage for the E. coli expression was 

synthesized by Geneart/Life Technologies, Germany. The DNA sequence was derived from 

the aminoacid sequence of the potential chloroplast-localized Cr NAGK; starting with the 

aminoacid 44 (MAAAT) based on the prediction from the program ChloroP (Emanuelsson et 

al, 1999) and homology deduction with the A. thaliana NAGK. The synthetic gene in pMA-T 

vector was digested with NdeI and EcoRI and cloned into the pET15b vector.  Overexpression 

of the recombinant Cr NAGK protein was performed in E. coli BL21(DE3) and the protein 

with a N-terminal fused His6-tag was affinity purified on a NiNTA column according to 

Maheswaran et al, 2004. 
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10.2 Enzymatic assay for NAGK activity 

 

A coupled enzyme assay system was used to determine the NAGK activity in which the 

production of ADP was coupled to the oxidation of NADH by pyruvate kinase and lactate 

dehydrogenase as described previously (Jiang and Ninfa, 1999; Beez et al, 2009; Fokina et al, 

2010a, b). The reaction mix consisted of 50 mM imidazole pH 7.5, 50 mM KCl, 20 mM 

MgCl2, 0.4 mM NADH, 1 mM phosphoenolpyruvate, 10 mM ATP, 0.5 mM DTT, 11 U 

lactate dehydrogenase, 15 U pyruvate kinase and 50 mM NAG. When necessary, 2.4 µg of 

PII protein was added to the reaction mix and the reaction was started by the addition of 3 µg 

NAGK, unless indicated otherwise. The reaction was recorded over a period of 10 min with a 

SPECORD 200 photometer (Analytik Jena) at 340 nm. Phosphorylation of one molecule of 

NAG is proportional to the oxidation of one molecule of NADH, with an indication of linear 

decrease of absorbance at 340 nm. One unit of NAGK catalyses the conversion of 1 µmol of 

NAG min-1, calculated with the molar absorption coefficient of NADH [ε340 = 6178 L mol-1 

cm-1]. Means of triplicate experimental determinations are shown with a Standard Deviation 

of less than 5%. The enzymatic parameters Km, kcat, Hill slope and IC50 were calculated from 

the velocity slopes using the GraphPad Prism-6.01 software program (GraphPad Software, 

USA).  

 

10.2.1 Effect of NAG on Cr NAGK activity 

 
 
 
 
 
 
 

Figure 7. Effect of increasing NAG on Cr NAGK activity. 

 Vmax [mM s-1] Km [mM] kcat [s-1] 
Cr NAGK alone 5.49 7.77±0.85 56.76 
Cr NAGK, Cr PII 5.09 4.71±0.87 52.62 
Cr NAGK, Cr PII, 5 mM Gln 5.20 3.94±0.44 53.76 
Cr NAGK, Delta C Cr PII 5.45 6.87±1.17 56.36 
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For determination of kinetic parameters (Vmax, Km and kcat), the coupled enzyme assay for Cr 

NAGK was performed by increasing the substrate (NAG) concentration from 2.5 to 50 mM 

(Fig. 7). Addition of Cr PII to Cr NAGK enhances the catalytic efficiency (lowers Km for 

NAG); nevertheless, the activity of Cr NAGK is further enhanced in the presence of Cr PII 

and 5 mM Gln. The Michaelis-Menten constant (Km) of Cr NAGK decreases from 7.77 mM 

to 3.94 mM with addition of Cr PII and glutamine implying the favourable direction of 

reaction. The enzymatic studies for A. thaliana revealed moderate activation of NAGK upon 

binding PII; however, the S. elongatus PII highly activated (increase in Vmax and decrease in 

Km values) its NAGK protein (Maheswaran et al, 2004; Chen et al, 2006). The C-terminal 

truncation of Cr PII (Delta C Cr PII) resulted in no further increase of Cr NAGK activity even 

in the presence of glutamine. Three individual measurements were performed and the data 

points were fitted to a hyperbolic curve. 

 
10.2.2 Effect of arginine on Cr NAGK activity 

 
 
  
 
 
 
 
 
 
 

Figure 8. Effect of increasing arginine on Cr NAGK activity. [n.a.-not applicable] 

  Plateau Arg IC50 [mM] 
Cr NAGK alone 0.60 0.14 
Cr NAGK, 10 mM Gln 0.40 0.11 
Cr NAGK, Cr PII 0.62 0.14 
Cr NAGK, Cr PII, 5 mM Gln n.a. n.a. 
Cr NAGK, Cr PII, 10 mM Gln n.a. n.a. 
Cr NAGK, Delta C Cr PII 0.64 0.08 
Cr NAGK, At PII, 10 mM Gln 0.47 0.23 

 

PII relieves the feedback inhibition of arginine on NAGK (Mizuno et al, 2007; Forchhammer, 

2008; Llácer et al, 2008). The arginine sensitivity of Cr NAGK was determined by increasing 

the concentration of arginine up to 1 mM in the enzymatic assay (Fig. 8). The half maximum 
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inhibitory concentration of arginine (Arg IC50) to inhibit the Cr NAGK activity was found to 

be 140 µM. With the addition of up to 10 mM glutamine in the presence of Cr PII, the Arg 

IC50 gradually increased. In the absence of glutamine, Cr PII was unable to relieve the 

feedback inhibition of arginine on NAGK. The data points from triplicate experiments were 

fitted to a one phase exponential decay equation. 

 
10.2.3 Maximal arginine inhibition on Cr NAGK 

 

  
Figure 9. Determination of maximum arginine needed to inhibit Cr NAGK activity. A) Data fitted to 
a one phase exponential decay equation. B) Data fitted to a nonlinear regression-log(inhibitor) vs. 
normalized response (variable slope) equation. 
 

 
A) one phase exponential 

decay equation 
B) log(inhibitor) vs. normalized 

response-variable slope 
 

 Plateau Arg IC50 [mM] Hill slope Arg IC50 [mM] 
Cr NAGK, 10 mM Gln 0.36 0.12 -1.327 0.13 
Cr NAGK, Cr PII, 10 mM Gln -0.24 1.34 -1.994 1.06 

The arginine concentration was further increased up to 5 mM to determine the maximum 

amount needed to completely inhibit the NAGK activity. Triplicate experiments were 

performed and the data was fitted as indicated in Fig. 9A, B. The Arg IC50 values of free Cr 

NAGK enzyme and Cr PII bound form was approx. 120 μM and 1 mM. In the case of S. 

elongatus, the free enzyme had an Arg IC50 of 20 μM, which increased 10 fold with the 

addition of Se PII (Beez et al, 2009). Interestingly, A. thaliana free enzyme had an Arg IC50 of 

1 mM which increased to about 6 fold with the addition of At PII. The non-conserved C-

terminus of S. elongatus has been found responsible for its increased arginine sensitivity. The 

IC50 values of Cr NAGK places it in between the Se and At NAGK enzymes in terms of 

arginine sensitivity.  
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10.2.4 Effect of 2-OG on Cr NAGK activity  

 
Figure 10. Antagonistic effect of 2-OG on Cr NAGK activity in the presence of 400 µM Arg. 

 

The effector molecule 2-OG acts as an antagonist for the complex formation between PII-

NAGK in S. elongatus and A. thaliana (Maheswaran et al, 2004; Feria Bourrellier et al, 

2009). At 400 µM concentration of arginine, increasing amounts of 2-OG from 0.25 mM to 1 

mM was applied to the assay system consisting of Cr NAGK, Cr PII and 10 mM Gln. Up to 1 

mM 2-OG was needed to considerably inhibit the Cr NAGK activity (Fig. 10). The IC50 of 2-

OG to inhibit the NAGK activity was 300 µM. The data points from three experimental trials 

were fitted to a one phase exponential decay equation. 

 
10.2.5 Effect of increasing glutamine on Cr NAGK activity 

 
 Vmax [mM s-1] Km [mM] kcat [s-1] 

Cr PII 7.34 3.35±0.55 75.43 
Delta C Cr PII 0.78 0 n.a 

 
Figure 11. Effect of increasing amounts of glutamine on Cr NAGK activity. 
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Increasing amounts of glutamine was added to examine its effect on Cr NAGK activity in the 

presence of Cr PII (Fig. 11). Titration with up to 15 mM glutamine increasingly favoured the 

complex formation. As a negative control, Delta C Cr PII was tested with increasing amounts 

of glutamine and confirmed no binding. Thus, the C-terminus of Cr PII plays an important 

role in the tight complex formation between Cr PII-Cr NAGK. The data from three different 

experiments were fitted to a one site binding hyperbolic equation. 

 
10.3 Surface Plasmon Resonance 

 
To investigate the binding of effector molecules to protein complexes, Surface Plasmon 

Resonance (SPR) detection experiments were performed by using a BIAcore X biosensor 

system (GE Healthcare). A buffer containing HBS-Mg [10 mM Hepes, 150 mM NaCl, 1 mM 

MgCl2, 0.005% Nonidet P-40 (pH 7.5)] was used at a flow rate of 15 μl/min at 25 °C and the 

experiments were performed as described previously (Maheswaran et al, 2004; Fokina et al, 

2010a, b). His6-tagged NAGK was immobilized onto a Ni+-loaded nitrilotriacetate (NTA) 

sensor chip in a volume of 50 μl at a concentration of 30 nM (hexamer) to receive a signal of 

3000 resonance units (RU) and Strep-tagged PII protein was used as an analyte in 

combination with various effector molecules. 1 μM PII was injected and the binding and 

dissociation of PII to NAGK was studied and recorded as a response signal difference (ΔRU) 

of FC2-FC1. Where, FC1 and FC2 are flow cells; FC1 being the reference cell without His6-

NAGK and FC2 was loaded with PII protein. The experiments were performed by loading Cr 

NAGK on the chip in the presence of 1 mM Arg and followed by injection of Cr PII.  

 

10.3.1 Effect of glutamine on Cr PII-Cr NAGK complex formation  

 
Figure 12. Increasing glutamine and its effect on Cr PII-Cr NAGK complex formation.  
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Cr NAGK was loaded with a resonance unit (RU) of ~2700 and increasing amounts of 

glutamine was injected to assist the complex formation in 50 µl of a buffer containing Cr PII, 

1 mM ATP and 2 mM MgCl2. In the absence of glutamine there was no complex formation 

(Fig. 12). Increasing amounts of glutamine, up to 7.5 mM enhanced complex formation 

between Cr PII and Cr NAGK. Strikingly, the complex dissociated spontaneously as it 

encountered a buffer devoid of glutamine. However, in the case of S. elongatus the complex 

dissociation took a considerably longer period and progressed faster with addition of 2-OG or 

ADP (Fokina et al, 2010b). 

 

10.3.2  Effect of increasing 2-OG concentration on Cr PII-Cr NAGK complex 

 
Figure 13. Increasing amounts of 2-OG and its effect on Cr PII-Cr NAGK complex formation. 

 

Cr NAGK was loaded with a RU of ~2600 and increasing amounts of 2-OG was added to 

monitor its effect on antagonizing the complex formation along with 50 µl of a buffer 

containing 1 µM Cr PII, 1 mM ATP, 2 mM MgCl2 and 5 mM Gln. The complex formation 

between PII and NAGK in S. elongatus is known to be prevented with the addition of 2-OG, 

where the T-loops of PII undergo conformational changes that facilitate the dissociation of PII 

from NAGK (Fokina et al, 2010a). However, SPR experiments with C. reinhardtii system 

with increasing amounts of 2-OG did not favour the dissociation of complex even at 

concentrations as high as 20 mM (Fig. 13). There is a slight reduction in ΔRU values in the 

presence of 2-OG indicating subtle changes caused by this effector molecule. This indicates 

tight conformation of Cr NAGK and Cr PII and inability of 2-OG to cause major 

conformational changes in the T-loop region of PII proteins.  
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10.3.3 Effect of glutamine on Delta C Cr PII 

 
Figure 14. Effect of ATP, MgCl2 and glutamine on Delta C Cr PII. 

 
Cr NAGK was loaded with a RU of ~2600 and 50 µl of a buffer containing Delta C Cr PII 

along with various effector molecules as indicated in the above Fig. 14 were added. Delta C 

Cr PII was used as a control to examine the influence of glutamine. Addition of 1 mM ATP in 

the presence and absence of MgCl2 had no influence on the complex formation. Increasing 

amounts of glutamine up to 10 mM was used in combination with ATP-Mg and was neither 

found to have any influence on favouring the complex formation.  

 

10.3.4 Effect of ADP on Cr PII 

 
Figure 15. Influence of ADP on Cr PII in the presence of glutamine and MgCl2. 
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Cr NAGK was loaded with a RU of ~2600 and 50 µl of Cr PII was injected in the presence of 

effector molecules (as indicated above) especially ADP, to determine its influence in complex 

formation (Fig. 15). Addition of ADP alone or in the presence of MgCl2 displayed negative 

effect on the complex formation. It has been reported previously that the presence of ATP-Mg 

in the active pocket of PII proteins and not ADP, is crucial for certain interactions (Fokina et 

al, 2010b; Gerhardt et al, 2012). Further, the presence of ADP has been reported to display an 

antagonistic effect on the complex formation between PII and NAGK in S. elongatus 

(Maheswaran et al, 2004). In C. reinhardtii system, ADP is not capable of replacing ATP to 

favour complex formation in the presence of glutamine.  

 
10.3.5 Effect of glutamine on WT Se PII and Cr NAGK 

 
Figure 16. Influence of ATP, MgCl2, 2-OG and glutamine on WT Se PII 

 
 

Cr NAGK was loaded with a RU of ~2700 and 50 µl of Cr PII/Delta C Cr PII/WT Se PII was 

added in combination with different effector molecules as needed (Fig. 16). Cr PII in the 

presence of ATP-Mg and glutamine was used as a positive control and Delta C Cr PII was 

used as a negative control. The ability of WT Se PII to form a complex with Cr NAGK in the 

presence of glutamine was investigated and it was determined that in the presence of ATP-Mg 

and glutamine the formation of complex was not possible. S. elongatus PII protein doesn’t 

respond to glutamine and is not capable of forming a complex with Cr NAGK in the presence 

of glutamine. 
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10.3.6  Effect of glutamine on WT Se NAGK and Cr PII 

 
Figure 17. Influence of glutamine on WT Se NAGK and Cr PII 

 

Se NAGK was loaded with a RU of ~2200 and 50 µl of reaction mix was added consisting of 

either Se PII, Delta C Cr PII or Cr PII along with effector molecules (Fig. 17). Se PII binds to 

Se NAGK in the presence of ATP-Mg and starts to dissociate slowly with the continuous flow 

of buffer. The ability of Cr PII to bind Se NAGK was examined with the addition of ATP-Mg 

in the presence of 5 mM Gln. Interestingly, this resulted in complex formation between Cr PII 

and Se NAGK. This experiment confirms that Cr PII devoid of its native partner Cr NAGK 

can still form stable complexes with Se NAGK in the presence of ATP-Mg and glutamine. 

Similarly, the ability of PII and NAGK to mutually replace and activate each other from S. 

elongatus and A. thaliana has been reported earlier (Beez et al, 2009). These results highlight 

the PII-NAGK functional conservation across the different kingdoms.  

 

10.4 Isothermal Titration Calorimetry 

 

The Isothermal Titration Calorimetry (ITC) experiments were performed on a VP-ITC 

(MicroCal, LCC) instrument and the buffer consisted of 10 mM potassium phosphate pH 7.5, 

100 mM NaCl and 2 mM MgCl2. The titrations were done at 20 °C. For the determination of 

binding isotherm of 2-OG to Cr PII and Delta C Cr PII, 33.3 µM (PII trimers) of protein was 

mixed with 1 mM ATP and titrated against 1 mM or 2 mM 2-OG. The ligand (5 μl) was 

injected 30-40 times into the 1.4285 ml cell with a stirring speed of 350 rpm. The binding 

isotherms were calculated from the data and fitted to appropriate equation using the MicroCal 

ORIGIN software (Northampton, MA).  
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10.4.1 Binding of 2-OG to Cr PII 

The effector molecule 2-OG binds to PII proteins by establishing a contact with ATP-Mg. An 

anti-cooperative manner of 2-OG binding to S. elongatus has been already established (Fokina 

et al, 2010a). A preliminary effort to titrate 1 mM 2-OG against Cr PII protein resulted in a 

binding isotherm as depicted below (Fig. 18). When fitted with a one site binding model, the 

number of sites occupied in the Cr PII (trimer concentration) is 1 with a Kd value of 38.90 

µM. The 2-OG binding sites are not completely occupied and imply a strong affinity to bind 

the first site. 

 

 

 

One site binding 
1 mM 2-OG 

 
Ka 2.57 E4 M-1 
Kd 38.90 µM 

Figure 18. Binding of 2-OG to Cr PII. The upper panel in the figure shows the raw data in the form of heat effect 
during the titration against ligand. The lower panel shows the binding isotherm and best-fit curve. 

 
 

10.4.2 Binding of 2-OG to Delta C Cr PII  

The inability of Delta C Cr PII to promote the PII-NAGK complex formation in the presence 

of glutamine has been described previously (section 10.2.5). Despite its inefficacy, it is 

important to examine the active and functional status of the Delta C Cr PII protein. In order to 

check the functional state of the protein, a titration of Delta C Cr PII (in the presence of ATP-

Mg) against 2-OG was carried out. The data obtained fitted well to a one site binding model 
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(Fig. 19). The number of binding site varies in the presence of 1 or 2 mM 2-OG. At a 

concentration of 1 mM 2-OG, the number of sites occupied for PII trimer is 1 with a Kd of 90 

µM. However, when the concentration of the ligand is increased to 2 mM the number of 

binding sites is 3 with a similar Kd value of 91.7 µM. The binding of Delta C Cr PII to 2-OG 

is indicative of an active and functional protein which responds by binding to the effector 

molecules ATP-Mg and 2-OG. 

A) 

 

B) 

  

           One site binding 
 1 mM 2-OG 

 
2 mM 2-OG 

Ka 1.10 E4 M-1 1.09 E4 M-1 
Kd 90.00 µM 91.70 µM 

 
Figure 19. Binding of 2-OG to Delta C Cr PII. The upper panel in the figure shows the raw data in the form of 
heat effect during the titration against the ligand. The lower panel shows the binding isotherm and the best-fit 
curve. A) Binding of 1 mM 2-OG to Delta C Cr PII B) Binding of 2 mM 2-OG to Delta C Cr PII. 

 

10.4.3  Binding of glutamine to Cr PII and Delta C Cr PII  

Titration of Cr PII (in the presence of 1 mM ATP-Mg) against glutamine resulted in Kd values 

in mM range. The data is not shown as the points were scattered and it was difficult to fit the 

curve. As a negative control, Delta C Cr PII was also titrated against glutamine which resulted 

in no significant isothermal change.  
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10.5 Multi-Angle Light Scattering (MALS) 

 

Proteins are composed of complex polypeptides linked together to form arbitrary coils which 

fold into its characteristic and functional three dimensional structure. These structures are held 

together due to various forces acting on them such as hydrophobic interactions, Van der 

Waals forces and intermolecular hydrogen bonding.  

 

The molecular structure of a protein is adapted based on the solution it is subjected and this 

determines the size of protein. Monitoring the size of a protein is essential to determine the 

folded state in native conditions. Multiple-Angle Light Scattering (MALS) is a technique that 

calculates the molar mass of a protein based on the light scattered. They are often used in 

conjunction with Size Exclusion Chromatography (SEC). Due to complexities in determining 

the molar mass of proteins with their interaction partners, cross-linking technique was 

employed to determine the protein-protein interactions. The cross-linked proteins were passed 

through SEC column and molar mass of the protein was determined using MALS technique. 

This technique enables the determination of absolute molecular weight, size and conformation 

of proteins in solution. 

 

Cross-linking method:  

The proteins were dialyzed overnight in a buffer containing 10 mM potassium phosphate pH 

7.5, 100 mM NaCl, 2 mM MgCl2 and 10% glycerol. The reaction mixture consisted of 500 to 

1000 μg of dialyzed proteins, which were mixed together in the presence of 2 mM ATP, 2 

mM ADP, 10 mM Gln, 20 µM Arg and 1 mM 2-OG as required. The interacting proteins in a 

total volume of 1 ml were treated with 50 μl of 2.3% freshly prepared solution of 

glutaraldehyde for 2 to 5 minutes at 37 ºC. The reaction was stopped with the addition of 100 

µl of 1 M Tris pH 8.0. 

 

Light scattering procedure: 

A precision column Superdex 200, PC 3.2/30 (GE Healthcare, code no: 17-1089-01) was used 

for SEC. This column was coupled to a triple-angle light scattering detector from Wyatt 

Technology corporation: miniDAWN™ TREOS® machine. The experiments were performed 

at room temperature. To determine a wavelength suitable for the measurement of protein 

complexes subjected to cross-linking, a protein scan of Cr NAGK and Cr PII was performed 

over a range of 200 to 300 nm. The scanning data was analysed and it was determined that at 
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a wavelength of 238 nm both the proteins had similar absorbance independent of the 

extinction coefficient. At this wavelength, which corresponds to the close absorption maxima 

of peptide bonds, the oligomeric constitution of the interacting proteins could be determined 

effectively.  

 

The cross-linked sample was concentrated and centrifuged to remove any sediment and 

injected into a 10 μl loop. The running buffer consisted of 10 mM Tris pH 7.8, 300 mM NaCl, 

1 mM DTT, 2 mM MgCl2, 20 µM Arg, 0.02% NaN3 and 2% glycerol. The protein, Bovine 

serum albumin (BSA) was used to validate the technique. The machine was calibrated and the 

calibration constant was determined to be 5.4e-5 and the UV extinction coefficient for proteins 

was set to 1.45e+3 at 238 nm. The λ1, λ2 and λ3 were set to 238, 280 and 215 nm respectively. 

The light scattering data was processed and analysed with the Astra software-5.3.4.20 (Wyatt 

Corp., Santa Barbara, CA) to determine the oligomeric state and molar mass of proteins. The 

measured polydispersity of the sample was low indicating that the samples were majorly 

monodisperse. 

 

10.5.1 Analysis of Cr NAGK and Cr PII  

 

The oligomerization states of Cr NAGK and Cr PII (in the presence of 2 mM ATP-Mg) in 

combination with effector molecules 2 mM ADP, 10 mM Gln and 2 mM 2-OG were 

determined after cross-linking.  

 

The Cr PII protein eluted at approximately 1.6 ml and the average molar mass was estimated 

to be 48.3 kDa from four different measurements (Fig. 20 and Table 1). The molar mass 

estimated was accurate in comparison to the expected theoretical value of 51 kDa 

(corresponding to a trimer). The Cr NAGK eluted as two species at approx. 1.25 ml and 1.15 

ml, which had molar mass of 212.9 kDa (hexamer) and 403.9 kDa (dodecamer) respectively. 

The NAGK exists majorly as a hexamer in solution which correlates well with the theoretical 

value of 201.36 kDa. The polydispersity of the solution was low implicating the presence of 

highly monodisperse species. Strikingly in solution, Cr PII seems to interact with Cr NAGK 

even in the absence of glutamine. This probably could be due to the ability of the cross-linker 

glutaraldehyde to occupy the glutamine binding site and thereby stabilising the PII proteins to 

form a complex with NAGK.    
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Figure 20. Gel filtration profile for cross-linked Cr NAGK and Cr PII 
 

 

 

 
 
 

Table 1. Molar mass determined for Cr NAGK and Cr PII. 
[N6: NAGK hexamer, I: Intermediate species of PII trimer, P3: PII trimer] 

 

Sample  
[cross-linked] 

MW kDa 
[theoretical] 

MW kDa [light scattering]  
Polydispersity (%) 

Interpretation 

Cr PII P3: 51.00 206.8 (9%) 
45.42 (4%) 

I = 4(P3) 
P3 

Cr NAGK  N6: 201.36 403.9 (4%) 
212.9 (3%) 

2(N6) 
N6 

Cr NAGK+Cr PII 
 

N6: 201.36 
P3: 51.00 
 
N6+P3: 252.36 
N6+2(P3): 303.36 

294.3 (5%) 
95.35 (13%) 
47.69 (9%) 

N6+2(P3) 
I = 2(P3) 
P3 

Cr NAGK+Cr PII,  
10 mM Gln 

264.3 (3%) 
94.60 (10%) 
45.86 (8%) 

N6+P3 
I = 2(P3) 
P3 

Cr NAGK+Cr PII,  
10 mM Gln,  
2 mM 2-OG 

258.5 (3%) 
166.4 (17%) 
46.42 (5%) 

N6+P3 
I = 3(P3) 
P3 
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10.5.2  Analysis of WT Se NAGK and WT Se PII 

 
NAGK and PII proteins from WT S. elongatus were studied for oligomerization capabilities 

in the presence of 2 mM ATP (except for conditions with ADP), 2 mM MgCl2 and 2-OG (Fig. 

21 and Table 2). NAGK from S. elongatus has been already shown to form hexamer and the 

complex between S. elongatus NAGK and PII has been determined (Llácer et al, 2007) where 

NAGK forms a toroid and two PII trimers involve in a tight interaction on either side of the 

toroid in the crystal structure. The determination of oligomeric state of complex in the 

solution would be helpful to compare and interpret the data obtained from the crystal 

structure. 

 

 
                     Figure 21. Gel filtration profile for cross-linked WT Se NAGK and WT Se PII 
 

 
Table 2. Molar mass determined for WT Se NAGK and WT Se PII. 

[N6: NAGK hexamer, P3: PII trimer, 50% P3: 50% occupancy of PII trimer] 

Sample  
[cross-linked] 

MW kDa 
[theoretical] 

MW  kDa [light scattering] 
Polydispersity (%) 

Interpretation 

WT Se NAGK N6: 206.7 206.6 (3%) N6 
WT Se NAGK+ 
Se PII 

N6+P3: 247.4 
N6+2(P3): 288.1 
 

267.2 (2%) 
54.39 (6%) 

N6+(P3+50% P3) 
P3 

WT Se NAGK+ 
Se PII, 2 mM 2OG 

226.0 (2%) 
56.96 (7%) 

N6+(50% P3) 
P3 

WT Se NAGK+  
Se PII, 2 mM ADP 

228.7 (6%) 
48.64 (4%) 

N6+(50% P3) 
P3 
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10.5.3  Complex formation between At NAGK and Cr PII 

A hetero complex of At NAGK and Cr PII was subjected to cross-linking reaction in the 

presence and absence of glutamine. A. thaliana NAGK forms a hexamer which fits well with 

the theoretical MW of 200.28 kDa. One trimer of Cr PII (average MW: 51 kDa) binds to the 

At NAGK toroid in solution resulting in the molecular weight of the complex to be approx. 

259.2 kDa (Fig. 22 and Table 3). The ability of PII from one organism to form a complex with 

NAGK from another organism has been already studied in A. thaliana and S. elongatus 

system (Beez et al, 2009). Similarly, the PII from C. reinhardtii can form a complex with A. 

thaliana NAGK in solution in the presence of glutamine as determined below. 

 

 
Figure 22. Gel filtration profile for cross-linked At NAGK and Cr PII 

 
 

 
Table 3. Molar mass determined for At NAGK and Cr PII. 

[N6: NAGK hexamer, I: Intermediate species of PII trimer, P3: PII trimer] 
 

Sample  
[Cross-linked] 

MW kDa 
[theoretical] 

MW  kDa [light scattering] 
Polydispersity (%) 

Interpretation 

At NAGK N6: 200.28 193.5 (5%) N6 
At NAGK+Cr PII 

N6+P3: 251.28 
N6+2(P3): 302.28 
 

259.2 (3%) 
98.99 (3%) 
53.01 (7%) 

N6+P3 
I = 2(P3) 
P3 

At NAGK+Cr PII, 
10 mM Gln 

253.5 (3%) 
97.84 (7%) 
50.68 (7%) 

N6+P3 
I = 2(P3) 
P3 
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10.5.4  Overlay of PII from Cr, Delta C Cr and WT Se 

 

The gel filtration profiles of PII from C. reinhardtii, Delta C Cr and WT Se are overlaid to 

compare the elution peak and molar mass of these proteins. Cr PII elutes at approx. 1.60 ml, 

followed by the Delta C Cr PII at 1.62 ml and Se PII at 1.67 ml (Fig. 23). The calculated MW 

of these proteins with the light scattering experiment is in agreement with the theoretical 

values (Table 4). All the PII proteins described below run as a trimer in the SEC column.  

 

 

 

 

 

 
Figure 23. A comparison of gel filtration profile for Cr PII, Delta C Cr PII and WT Se PII 

 

Sample MW kDa 
[theoretical] 

MW kDa [light scattering]  
Polydispersity (%) 

Interpretation 

Cr PII  P3: 51.00 51.90 (4%) P3 
Delta C Cr PII  P3: 46.95 49.64 (15%) P3 
WT Se PII  P3: 40.77 44.37 (2%) P3 

 
Table 4. Molar mass determined for PII proteins from Cr, Delta C Cr and WT Se. 

[P3: PII trimer] 
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10.6 Structure determination of proteins 

 
10.6.1 C. reinhardtii PII apo form  

The Cr PII protein at a concentration of 3 mg/ml in a buffer containing 10 mM Tris pH 7.5, 

100 mM NaCl, 2 mM ATP, 2 mM MgCl2, 5 mM Gln and 10% glycerol was setup for 

crystallization with sitting drop method. The protein crystals were formed in a ground 

solution containing 0.15 M di-ammonium sulfate, 0.1 M Hepes pH 7.0 and 20% w/v PEG 

4000. The crystals (appeared in 30 days) were picked and flash frozen in liquid nitrogen. 

 

 

Fig 24: Cr PII protein structure in the apo form. A) Top and B) side view of the crystal structure of PII trimer 
bound to four sulphate molecules. The chains forming a trimer are coloured in salmon, slate and pale green. C) 
Superimposition of Cr PII apo form (slate) over the S. elongatus PII protein (yellow) bound to 2-OG (PDB: 
2XUL- excess of 2-OG).  D) Superimposition of sulfate molecule (yellow) bound to Cr PII (apo form) over the 
ATP-Mg and 2-OG bound form of S. elongatus (PDB: 2XUL). 
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The structure was solved as described in section 10.6.7. The superimposition of Cr PII in the 

apo form bound to four sulfate molecules over the structure of S. elongatus PII in complex 

with 2-OG (PDB: 2XUL-excess of 2-OG) was performed employing the program PyMOL 

which resulted in a RMSD of 0.729 Å (Fig. 24C). The sulfate molecule, which is apparently 

derived from the crystallization ground solution, occupies the same position as the gamma 

phosphate of ATP molecule.  

 

10.6.2 C. reinhardtii PII bound to 2-OG 

 

 
Figure 25. Cr PII protein structure in 2-OG bound state. A) Top view of Cr PII bound to ATP, Mg2+ and 2-OG. 
The crystal structure of PII trimer is represented with nothing bound in position one, with ATP and Mg2+ bound 
to position two and ATP, Mg2+ plus 2-OG occupying position three. B) Side view of the crystal structure 
representing ATP-Mg2+ and 2-OG in the inter subunit cleft. C) Superimposition of Cr PII with 2-OG bound form 
over S. elongatus PII with excess of 2-OG (PDB: 2XUL). D) Closer view of ATP-Mg2+ and 2-OG in the above 
superimposed structures. The coordination formed between ATP, Mg2+, 2-OG and Q39/Q56 is represented. 
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The crystals containing apo-Cr PII (same condition) were subjected to a soaking experiment 

in the presence of 10 mM ATP, 10 mM MgCl2 and 10 mM 2-OG. The crystals were picked 

up over an interval of 1-8 hrs. The cryo condition consisted of 20% glycerol and crystals were 

flash frozen in liquid nitrogen. The best data were obtained from crystals soaked for 1 hr.  

 

The crystal structure consisted of a trimer with nothing bound in the 1st site, the 2nd site 

contained ATP-Mg and the 3rd site was occupied with ATP-Mg along with 2-OG (Fig. 25A). 

The binding pocket without any ligand could possibly be due to the crystallographic clashes 

with the symmetry related molecules leading to unfavourable binding of any effector 

molecule. The crystal structure of Cr PII bound to 2-OG was superimposed to 2-OG bound 

PII from S. elongatus (PDB: 2XUL) resulting in a RMSD of 0.665 Å representing a high 

degree of similarity between the superimposed structures. The binding pocket supports the 

fact that 2-OG binding is anti-cooperative as shown previously in S. elongatus. It has been 

already determined that the affinity of 2-OG binding to a site is dependent on the occupancy 

status of the neighbouring site.  
 

 
Figure 26. Comparison of three binding sites in Cr PII bound to 2-OG crystal structure. A) The R43 residue is 
highlighted in all three subunits. B) Superimposition of the monomers within the protein structure sheds light on 
different orientations of R43 (corresponding to R104 in Fig. 26C-highlighted in red) residue. C) Multiple 
sequence alignment of N-terminal PII sequences from bacteria, cyanobacteria, green algae and plants. The 
residues highlighted in blue are involved in interaction with ATP (represented with A on top) and 2-OG 
(represented with O on top).  
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The superimposition of subunits within the protein structure with different ligand occupancies 

was performed to determine any conformational changes adopted by these protein monomers. 

The residue R43 was found to adopt different conformational states as shown in the Fig. 26B. 

A multiple sequence alignment shows clearly that the residue R43 (highlighted in red-

corresponding to R104 in Fig. 26C) is highly conserved only in plants. The highly conserved 

residues (in bacteria- highlighted in blue) R and K involved in interaction with ATP and 2-OG 

are not well conserved in green algae and plants. These residues form backbone interactions 

with the ligands and are preferentially replaced with another aminoacid in higher organisms. 

 

10.6.3 C. reinhardtii PII bound to Cadmium 

 

 
 
Figure 27. Cr PII structure - bound to Cadmium. A) Side view and B) top view of three Cadmium ions 
bound per monomer unit of Cr PII. C) Close view of the polar contacts made by Cd-1, Cd-2 and Cd-3 with 
neighbouring aminoacids and water molecules (W).  
* Polar contacts made by Cd-3 with the symmetry related molecules.  
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The protein buffer contained 10 mM Tris pH 7.5, 150 mM NaCl, 5 mM MgCl2, 1 mM DTT 

and 5 mM ADP.  The crystals were formed in a condition with the ground solution composed 

of 0.05 M Cadmium sulfate, 0.1 M Hepes pH 7.5 and 1 M Sodium acetate. The crystals were 

formed within 7 days and were directly frozen in liquid nitrogen. Cr PII crystal structure 

consisted of three Cadmium ions (Cd-1, Cd-2 and Cd-3) bound per subunit resulting in a total 

of 9 Cadmium ions per PII trimer (Fig. 27A, B). Cadmium is a toxic component and there has 

been an extensive study on bio-remediation of Cd from wastes (Xu et al, 2008, Du et al, 2012, 

Tao et al, 2013, Jamers et al, 2009). The relative high number of Cadmium binding sites in Cr 

PII protein raises a possibility to employ Cr PII proteins as a cadmium sensor inside the cells.   
 
 
10.6.4 C. reinhardtii PII and A. thaliana NAGK complex 

 

Figure 28. Complex of Cr PII and At NAGK. A) Top view of the complex representing a Cr PII trimer (slate) 
bound to At NAGK (green). B) Surface model of the complex (300 kDa) with Cr PII and At NAGK highlighting 
the unique extended C-terminus of Cr PII. C) The side view of the complex with the effector molecules ATP-Mg 
and Gln bound to the Cr PII.  
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The proteins Cr PII (2 mg/ml) and At NAGK (2 mg/ml) were mixed in the molar ratio of 1:2 

in a buffer containing 10 mM Tris pH 7.8, 100 mM NaCl, 40 mM Arg, 10 mM Gln, 2 mM 

MgCl2, 2 mM ADP, 10 mM NAG and 5% glycerol. The crystals started to form after 7 days 

in a ground solution containing 0.2 M NaCl, 0.1 M Na/K phosphate pH 6.2 and 50% v/v PEG 

200. The crystal was flash frozen in liquid nitrogen. The complex structure consists of a 

hexamer of At NAGK forming the shape of a toroid. Two trimers of Cr PII are bound on 

either side of the NAGK toroid structure (Fig. 28B, C) as seen before in the previous 

structures from S. elongatus and A. thaliana (Llácer et al, 2007; Mizuno et al, 2007). No ATP 

was added during purification and crystallization steps, the presence of ATP in the crystal 

structure is possibly due to tight binding of ATP derived from PII protein expression in E. coli 

cells. 

 

 
Figure 29. Close view of Cr PII in the complex structure. A) Zoomed out view of the binding pocket of 
glutamine with the C terminus colored in orange. B) Top view of the Cr PII trimer in the complex structure. C) 
Polar contacts formed by glutamine with the neighbouring residues (side chain contacts: blue, main chain 
contacts: black). 
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C. reinhardtii has a long C-terminus in comparison to its bacterial counterparts. In the crystal 

structure, this unique C-terminus faces outwards and acts as a plug to hold the glutamine 

molecule intact in the binding pocket (Fig. 29A). The glutamine occupies a site close to the 

ATP binding pocket, however it is located opposite to the 2-OG binding site. Three molecules 

of glutamine are bound to the Cr PII trimer. The glutamine majorly makes a contact with the 

backbone of the neighbouring residues R43, G44, V82, M132, M136, and E137; and the side 

chain interactions involve the residues Q87 and E130 (Fig. 29C). The numbering of residues 

corresponds to the Cr PII and At NAGK aminoacid sequences without signal peptide.   
 

 

Figure 30. Interaction between Cr PII (slate) and At NAGK (green). A) At NAGK interacts with Cr PII by 
establishing a contact with the help of T-loop. B) A close view of the interaction interface and the residues 
(forming polar contacts) involved in aiding the kinked T-loop conformation are highlighted.   
 
 
Due to the binding of glutamine to the C-terminal extension, a polar contact can be formed 

between the backbones of G57 and E133 (C-terminus) from the adjacent PII monomer (Fig. 

30). This bond favours the communication between T-loop and the C-terminus. The polar 

interaction between the residues R62 and E67 of Cr PII with the residues E201 and R145 of 

At NAGK helps the T-loop to adopt a conformation which can insert into the NAGK toroid. 

Delta C Cr PII was unable to bind to NAGK in the presence of ATP-Mg and glutamine, 

which might be due to the absence of the residue E133 which helps to stabilize the structure 

of the T-loop that fits into NAGK.  
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Figure 31. Multiple sequence alignment of PII protein sequences (including signal peptide) from red algae, 
bacteria and Viridiplantae. The PII signature (I and II) residues known to be involved in interaction with NAGK 
are highlighted in red. The important residues from Cr PII protein that aid the formation of a kinked T-loop [G57 
(G118), E133 (E194), R62 (R123), E67 (E128)] that enables to establish a contact with At NAGK are indicated 
with an arrow (residues in bracket correspond to numbering of sequence with the signal peptide). The residues 
forming a polar contact with the glutamine molecule are represented in blue. [Pp: Porphyra purpurea, Py: 
Pyropia yezoensis, Rc: Ricinus communis, Sl: Solanum lycopersicum, At: Arabidopsis thaliana, Ec: E. coli, Ab: 
Azospirillum brasiliensis, Se: Synechococus elongatus, Cr: Chlamydomonas reinhardtii]. 
 
 

In order to understand the conservation of residues involved in the complex formation 

between Cr PII and At NAGK, a multiple sequence alignment of PII proteins from red algae, 

bacteria and plants was performed (Fig. 31). The T loop residue E67 is highly conserved 

across different organisms and the residue R62 is conserved in cyanobacteria, green plants 

and red algae but absent in other bacterial PII proteins. The residue G57 is conserved in green 

plants whereas Rhodophyta, cyanobacteria and other bacteria have a Lysine residue. 

Intriguingly, the residue E133 which is involved in initiating the complex formation seems to 

be unique for Cr PII. 

 

10.6.5 C. reinhardtii PII and A. thaliana NAGK complex (2-OG soaking)  

Cr PII and At NAGK proteins at a concentration of 2 mg/ml were mixed in a stoichiometric 

molar ratio of 1:2. The buffer consisted of 10 mM Tris pH 7.8, 100 mM NaCl, 40 mM Arg, 

10 mM Gln, 2 mM MgCl2, 2 mM ADP, 10 mM NAG and 5% glycerol. Diffraction quality 

crystals were obtained in a ground solution consisting of 0.1 M MES pH 6.5, 30% v/v PEG 

400. The crystals were formed in 7 days and were subjected to a soaking experiment. The 

soaking solution contained the ground solution along with a mixture of NAG, ADP, 2-OG and 

PEG 400. The crystals diffracted up to 3.3 Angstrom and belonged to the same space group (P 

Pp ---------------------------------------------MKKIEAIIRPFKLNEVKLALVKGGIGGMTVVKVSGFGRQKGQ 42
Py ---------------------------------------------MKKIEAIIRPFKLNEVKLALVKEGIGGMTVIKVSGFGRQKGQ 42
Rc ELRHSRFSHFNT-----AVKR-VRYAPVVPVINAQSSPDYIPDAKFYKVEAILRPWRVSQVSSALLKIGIRGVTVSDVRGFGAQGGS 113
Sl TVVQPKFFPSQL-----TFKR-CQNAPSFPIIRAQNSPDFVPDAKFYKVEAILRPWRIQQVSSALLKMGIRGVTVSDVRGFGAQGGL 112
At GFRHSRPSCLDL-----VTKSPSNNSRVLPVVSAQISSDYIPDSKFYKVEAIVRPWRIQQVSSALLKIGIRGVTVSDVRGFGAQGGS 115
Ec ---------------------------------------------MKKIDAIIKPFKLDDVREALAEVGITGMTVTEVKGFGRQKGH 42
Ab ---------------------------------------------MKKIEAIIKPFKLDEVKEALHEVGIKGITVTEAKGFGRQKGH 42
Se ---------------------------------------------MKKIEAIIRPFKLDEVKIALVNAGIVGMTVSEVRGFGRQKGQ 42
Cr AARPARRASVAVRASDENGSVSVRRAPYAELESIQCDLSAFPGVKFFRIEAIFRPWRLPFVIDTLSKYGIRGLTNTPVKGVGVQGGS 120(59)

: :::**.:*:::  *  :* : ** *:*   . *.* * *

Pp TERYKGSEYSID-IIDKIKIEIIVSDDKVNSITEIIIKTAKTGEIGDGKIFISDVEQVIRIRTNDLNSAAL---------------- 112
Py TERYKGSEYSID-IIDKIKIEIIISDDKVEKIVETIIKASKTGEIGDGKIFISSIERVIRIRTNDLNFEAL---------------- 112
Rc TERQGGSEFSEDKFVAKVKMEIVVSKDQVEDVIEKIIEEARTGEIGDGKIFLLPVSDVIRVRTGERGDKAERMTGGRSDMSTSA--- 197
Sl TERQAGSEFSEDTFVAKVKMEIVVSKDQVEGVIAKIIEEARTGEIGDGKIFLTPISDVIRVRTGERGEKAERMMGGHADMSSALSTS 199
At TERHGGSEFSEDKFVAKVKMEIVVKKDQVESVINTIIEGARTGEIGDGKIFVLPVSDVIRVRTGERGEKAEKMTG---DMLSPS--- 196
Ec TELYRGAEYMVD-FLPKVKIEIVVPDDIVDTCVDTIIRTAQTGKIGDGKIFVFDVARVIRIRTGEEDDAAI---------------- 112
Ab TELYRGAEYVVD-FLPKVKIEVVMEDSLVERAIEAIQQAAHTGRIGDGKIFVTPVERIVRIRTGEKGGDAI---------------- 112
Se TERYRGSEYTVE-FLQKLKLEIVVEDAQVDTVIDKIVAAARTGEIGDGKIFVSPVDQTIRIRTGEKNADAI---------------- 112
Cr RERYAGTEFGPSNLVDKEKLDIVVSRAQVDAVVRLVAASAYTGEIGDGKIFVHPVAEVVRIRTAETGLEAEKMEGGMEDMMKKKK-- 205(144)

*   *:*:  . :: * *:::::    *:     :   : **.*******:  :   :*:** : .  *

I II

C loopB loopT loop

T loop
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21 3-Cubic) as the Cr PII-At NAGK complex mentioned above. The asymmetric unit consisted 

of two NAGK monomers and two PII monomers. The three fold symmetric axis of the cubic 

crystal lattice contained At NAGK hexamer sandwiched between two Cr PII trimers. The 

effector molecules ATP-Mg and glutamine bound to PII, ADP-Mg and NAG bound to NAGK 

were resolved in the binding pocket. B-factor plot comparison of the native and soaked 

structures revealed higher B factor for one of the PII trimers (soaked structure) showing an 

elevated flexibility to displace from NAGK toroid (Fig. 32B). This result displays an 

interesting snapshot of displacement of Cr PII trimer from At NAGK in the presence of an 

antagonist 2-OG.  

 

 
 

Figure 32. Cr PII-At NAGK structure subjected to a soaking experiment (NAG, ADP and 2-OG). A) The native 
complex structure (Cr PII-At NAGK) obtained is represented in ribbon with the effector molecules in stick B) 
Structure of the soaked crystal representing the high B factor values (red) for PII trimer which corresponds to the 
flexible movement of PII from NAGK protein. C) Comparison of the B factor values in the native and soaked 
crystal. The dots, black (native) and green (soaked) represent the B factor values of residues ranging from N to 
C-terminus for NAGK and PII. NAGK in the top and bottom of the toroid ring undergo minor changes in the B 
factor values. The PII trimer (top and bottom) are represented in the right side. An increase in B factor value of 
the PII trimer (bottom) is evident from the movement of green dots (soaked) away from the black dots (native).     
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10.6.6 C. reinhardtii PII-NAGK complex 
 

The purified proteins Cr PII (without strep tag) and Cr NAGK at a concentration of 2 mg/ml 

were mixed together in the ratio of 1:2 in a buffer composed of 20 mM Tris pH 7.5, 150 mM 

NaCl, 1 mM DTT, 2 mM MgCl2, 15% glycerol, 10 mM NAG, 2 mM ADP, 40 mM Arg and 

10 mM Gln. Diffraction quality crystals were obtained within 30 days in a ground solution 

containing 25% v/v ethylene glycol. The crystals were flash frozen and subjected to X-ray 

diffraction technique. 

 

 

Figure 33. Crystal structure of the Cr PII-Cr NAGK complex. 
A) Top and B) side view of the proteins Cr PII (blue) and Cr NAGK (green). The ligands ATP-Mg bound to Cr 
PII; and NAG, Arg bound to NAGK are represented as sticks. The complex consists of one PII trimer bound to 
the NAGK toroid. The previous known complexes of PII-NAGK from S. elongatus and A. thaliana consist of 
two PII trimers sandwiching the NAGK toroid from either sides. 

 
The crystal structure was solved at 2.5 Angstrom resolution (P 63-Hexagonal) and consists of 

one Cr PII trimer bound to the Cr NAGK toroid (Fig. 33). This oligomeric conformation is 

strikingly different from the already known PII-NAGK complex structures. The structure of 

PII-NAGK from S. elongatus and A. thaliana consisted of two PII trimers sandwiching on 

either side of the NAGK toroid (Llácer et al, 2007; Mizuno et al, 2007). The opposite side of 

the NAGK toroid devoid of a PII trimer seems to be destabilized resulting in an extended and 

flexible NAGK ring form. The crystal structure consisted of ATP-Mg bound to PII and the 

effector molecules arginine, ADP and NAG bound to NAGK protein. Further, the T-loop of 

PII proteins was highly disordered in the crystal structure. The structure is in accord to the 

light scattering data which suggests the presence of one Cr PII trimer bound to the Cr NAGK 

toroid in solution. 
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10.6.7 X-ray crystallographic data 

 

The crystallization trials were set up by using the Honeybee 963 robot from Genomic 

Solutions by mixing 500 nL of protein solution with 500 nL of reservoir solution in a 96-well 

sitting drop set up with 50 μL reservoir volume. The crystallization conditions for all crystals 

mentioned in the text above are included along with the soaking conditions where applicable. 

In certain cases, the quality of crystal was improved by screening various conditions with the 

hanging drop set up. All crystals were loop mounted and flash frozen in liquid nitrogen. The 

diffraction data were collected at the beamline X10SA (PXII) at the Swiss Light Source 

(Villigen, Switzerland) under cryo conditions at 100 K and the images were recorded on a 

PILATUS 6M (Dectris) detector (Table 5). Diffraction quality images were processed and 

scaled employing the XDS program suite (Kabsch, 1993, 2010). All the structures were 

solved by molecular replacement using the program MOLREP (Vagin and Teplyakov, 1997). 

Rebuilding and refinement of the structure was performed by using the programs Refmac and 

Coot (Murshudov et al, 1997; Emsley and Cowtan, 2004). The quality of the structure was 

tested by the program Procheck (Laskowski et al, 1993) and the figures were generated using 

PyMOL (www.pymol.org).  

 
Table 5: Data collection and refinement statistics 

 
  

Cr PII (Apo) 
 

Cr PII (2-OG soaking) 
 

Cr PII (Cadmium) 
Data collection    
Space group P 1 21 1 (Monoclinic) P 1 21 (Monoclinic) P 3 2 1 (Trigonal) 
Cell dimensions      
a, b, c (Å) 41.98, 89.78, 45.94 42.03, 90.01, 46.20 81.22, 81.22, 42.60 
α, β, γ  (°)  90.00, 97.09, 90.00 90.00, 96.49, 90.00 90.00, 90.00, 120.00 
Resolution (Å) 37.79-1.60(1.64-1.59) 32.84-1.49(1.53-1.49) 70.34-1.65(1.69-1.64) 
Completeness (%) 100 98.38 94.84 
No. of reflections 42096 51850 17902 
Rwork/Rfree 
Mean B value (overall) 

0.18/0.22 
18.15 

0.17/0.20 
15.53 

0.21/0.26 
18.64 

 
 

  
Cr PII-At NAGK 

 
Cr PII-At NAGK 
 (2-OG soaking) 

 
Cr PII-Cr NAGK 

Data collection    
Space group P 21 3 (Cubic) P 21 3 (Cubic) P 63 (Hexagonal) 
Cell dimensions      
a, b, c (Å) 171.43, 171.43, 171.43 170.38, 170.38, 170.38 121.51, 121.51, 112.84 
α, β, γ  (°)  90.00, 90.00, 90.00 90.00, 90.00, 90.00 90.00, 90.00, 120.00 
Resolution (Å) 39.33-2.85(2.92-2.85) 39.12-3.3(3.38-3.30) 38.48-2.50(2.56-2.49) 
Completeness (%) 99.84 97.90 100.00 
No. of reflections 37303 23176 31040 
Rwork/Rfree 

Mean B value (overall) 
0.21/0.24 

29.52 
0.18/0.23 

79.17 
0.22/0.29 

44.91 
 

 
 

92



 
 

11. Discussion and outlook 
 

The PII signal transduction proteins are highly conserved in 3D structure in spite of their 

occurrence in diverse organisms ranging from methanogenic archaea to heterotrophic bacteria 

and oxygenic phototrophs. They are regarded as the biological CPU due to their intrinsic 

ability to sense, integrate and respond to targets on binding metabolites. The study of PII 

proteins from various oxygenic phototrophs motivates to understand the evolutionary 

adaptation of these proteins. The following research focus was aimed at addressing few 

missing informational gap between the bacterial and plant PII proteins.  

 

11.1 PII-NAGK complex formation (a two-step model) 

 

Depending on the C/N and energy status of the cell, the PII proteins respond to various 

effector molecules such as ATP, ADP and 2-OG. Binding of these metabolites stimulates the 

conformational changes on PII proteins especially in the loop regions. These conformational 

changes dictate the affinity for their target receptors. One of the well-studied receptors is the 

second enzyme in the arginine synthesis pathway, NAGK. The crystal structure of PII-NAGK 

has been solved from S. elongatus and A. thaliana (Llácer et al, 2007; Mizuno et al, 2007). 

Through mutational studies combined with structural information a two-step model for the 

binding of PII to NAGK has been proposed. The NAGK variant R233A has an impaired 

ability to bind to S. elongatus PII proteins. A screening of PII mutants revealed the variants 

I86N and I86T to be able to bind to the NAGK R233A mutant. Interestingly, these PII 

variants showed inability to bind to 2-OG and highlighted the importance of the I86 residue. 

Solving the structure of the I86N mutant resolved the conformation adopted by the T-loop to 

be similar to the PII-NAGK bound form. Based on these data a two-step mechanism of 

binding of PII to NAGK has been proposed. First step involves the formation of an ion-pair 

between the E85 of PII and R233 of NAGK which results in the bent conformation of T-loop. 

The second step involves the insertion of this bent loop into the interdomain cavity of NAGK. 

The first step is initiated through the breaking of ion-pair between the residues R47 (T-loop) 

and E85 (B-loop) of PII which governs the extended form of the T-loop (Fig. 34), followed by 

establishing a firm contact between the residues E85 of PII and R233 of NAGK. Further, the 

crystal structure of PII I86N variant sheds light on the vital ion-pairs R45-E50 and E44-K58 

which stabilize the bent conformation of the T-loop. Thus, the conjoint effort between the B 

and T-loop is essential for the PII interaction with its target receptors.  
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Figure 34. Structure of the PII protein variant I86N. A) Superimposed structure of the free PII (cyan) and the 
I86N (slate) variant shows the extended and bent conformation of the T-loop. B) Close view of the superimposed 
monomer highlighting the important residues for the T loop conformation. [1QY7-Cyan; R47 and E85-red, Xu et 
al., 2003], [2XBP-slate, R47 and E85-orange, Fokina et al, 2010b]. 
 
11.2 Insights into PII mediated 2-OG signalling  

 

Nitrogen depletion condition in cell corresponds to the presence of excess 2-OG. Under these 

situations, PII proteins as a sensor have been shown to strongly respond to 2-OG in the 

presence of ATP-Mg (Maier et al, 2011; Gerhardt et al, 2012; Truan et al, 2010; da Rocha et 

al, 2013). The crystal structures of S. elongatus PII protein in the presence of excess 2-OG 

and limited 2-OG reveals the preferential occupation of this effector molecule in the 

intersubunit cleft. Isothermal titration experiments (ITC) suggested the anti-cooperative 

binding of the 2-OG molecule to the PII trimer. The binding of 2-OG to one site influences 

the binding to neighbouring site by leading to an increase in Kd values. Further, a crystal 

structure of three PII trimers in the asymmetric unit with one trimer containing three ATP, 

one Mg2+ and 2-OG (PIIOG1), the second with three ATP, two Mg2+ and two 2-OG (PIIOG2) 

and the third site with three molecules of ATP, Mg2+ and 2-OG (PIIOG3) were obtained. This 

structure profoundly supported the theory of anti-cooperative binding of 2-OG to PII trimer. 

The 2-OG binding to PII involves the hexagonal coordination formed by Mg2+ between the α, 

β and γ phosphate of ATP, O2 and O5 of 2-OG and OE1 atom of Q39. The ability of PII to 

respond to 2-OG in an anti-cooperative manner suggests the highly evolved intersubunit 

signalling between the PII monomers. The only contrast being the structure from M. 

jannaschii, where the 2-OG molecule binds from the posterior to the tip of T-loop (Yidiz et 

al, 2007). The binding of 2-OG induces the movement of C-terminus towards the ATP 

binding cleft and forces the T-loop to undergo a flexible and extended conformation 
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(disordered in crystal structure). The essential residues K58 and Q39 that are important for 

interaction with 2-OG are found to be highly conserved across organisms. The mutation of 

residues K58M and R9L in the PII protein resulted in impairment to sense the 2-OG 

molecule. The SPR experiments support the ability of 2-OG to disrupt the PII-NAGK 

complex formation. The influence of 2-OG to disrupt the complex formation has also been 

established in AmtB-GlnK, DraG-GlnZ and PII-PipX (Maier et al, 2011; Gerhardt et al., 

2012; Laichoubi et al, 2012). Thus, the role of PII as a 2-OG sensor is essential to maintain 

the N balance inside the cell.  

 

11.3     Conservation and evolution of PII functions from cyanobacteria to plastids 

 

The widespread occurrence of the PII superfamily member GlnK and its genetic linkage to the 

ammonium transporter AmtB lead to the speculation of GlnK as the ancient protein of PII 

family (Thomas et al, 2000; Sant’Anna et al, 2009; Pedro-Roig et al, 2013). The paralogues 

of PII namely GlnB and NifI are probably derived from this ancient protein via gene 

duplication events. These paralogues are involved in control and regulation of nitrogen 

metabolism through diverse pathways. In addition, a distinct group of PII proteins namely PII-

New Group (PII-NG) was found and considered to be involved in the regulation of heavy 

metal efflux pumps (Sant’Anna et al, 2009). Few organisms have been reported to harbour 

more than two PII paralogues, their function needs to be investigated (Jonsson and Nordlund, 

2007). In cyanobacteria and plants the canonical PII protein GlnB, interacts with NAGK to 

regulate the arginine synthesis pathway. Bioinformatics analysis through construction of 

phylogenetic tree and cluster based sequence analysis (CLANS: Frickey and Lupas, 2004) 

have implicated in the coevolution of PII-NAGK from cyanobacteria to plants. CLANS 

analysis have highlighted that the PII sequence clusters from plant and algae share similarity 

with cyanobacteria, which in turn are closer to other bacteria. Whereas, the NAGK sequences 

from cyanobacteria, algae and plants cluster tight together in accordance with the 

endosymbiotic theory. The NAGK sequences show less divergence in comparison to PII 

protein sequences revealing their rigorous evolutionary pressure. Due to changes in 

environmental conditions, organisms have adapted themselves by undergoing stringent 

manipulations in their metabolic network. This suggests that any change in the NAGK 

enzyme would have resulted in corresponding alterations in PII protein to keep the N 

regulation machinery under control.  
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11.4 Role of glutamine in PII-NAGK complex formation: with a focus on C. reinhardtii 

 

Glutamine signalling has been examined in proteobacteria to be mediated through the 

regulation of GS, UTase/UR system and Ntr regulon (Jiang et al, 1997; Forchhammer 2007; 

Jiang et al, 2012). A direct influence of glutamine on the PII proteins has not been reported 

till date. Surprisingly, in the case of C. reinhardtii system, complex formation between PII-

NAGK is completely dependent on the presence of ATP-Mg and glutamine. The activity of 

Cr NAGK alone with a Km of 7.77 mM for NAG drops down significantly to 3.94 mM in the 

presence of Cr PII, ATP-Mg and glutamine, suggesting the activation of Cr NAGK. In 

addition, Cr NAGK is highly susceptible to arginine inhibition and Cr PII relieves this 

inhibition only in the presence of glutamine. Enzyme activity assays display a steady increase 

in the Cr PII-NAGK activity with the addition of up to 10 mM Gln. However, the 

introduction of 2-OG as an antagonist into the system disrupts the enzyme activation process. 

Importantly, SPR experiments supported the influence of glutamine in complex formation 

between PII and NAGK. The expulsion of glutamine in the reaction mixture resulted in 

immediate dissociation of the complex. In contrast to the enzyme activity results, the 

antagonist 2-OG did not prevent complex formation even at very high concentrations. This 

might be due to the binding of PII to immobilised NAGK on NTA chip resulting in hindrance 

to access the binding site. However, the enzyme activity tests allow a greater degree of 

freedom in solution for the 2-OG accessibility. Furthermore, in the presence of ADP-Mg and 

glutamine the complex formation was not initiated and hence ADP isn’t capable of replacing 

the function of ATP.  A C-terminal truncated version of Cr PII (Delta C Cr PII) was incapable 

of binding to Cr NAGK even in the presence of ATP, Mg2+ and glutamine. This sheds light 

on the special characteristic feature of the C terminus of Cr PII which aids in binding of 

glutamine. In the SPR experiments, Se PII doesn’t bind Cr NAGK which suggests the unique 

characteristic of Cr NAGK protein to respond only to its native PII protein. No influence of 

glutamine on WT Se PII to initiate complex formation with Cr NAGK was found, suggesting 

the unique feature of Cr PII to respond to glutamine. However, it is notable that Cr PII can 

remarkably activate the WT Se NAGK in the presence of ATP-Mg and glutamine. This 

highlights that the glutamine effect is a novel property of Cr PII protein. The extraordinary 

characteristic of Cr PII to respond to its non-native NAGK protein sheds light on the possible 

adaptation of PII proteins through the evolutionary process.  
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11.5 Novel C-terminus of C. reinhardtii and its role 

 

The effect of glutamine to favour the PII-NAGK complex formation process adds another 

level of complexity to the nitrogen regulation system. This unique feature of glutamine 

signalling has not been detected earlier in other organisms. The effort to determine similar 

effect of glutamine on Se PII and At PII to activate the NAGK failed. This provides insight 

into the extraordinary feature of the C. reinhardtii PII protein. The Cr PII protein consists of a 

unique N and C-terminus and has been found to be localised in the chloroplast. The C- 

terminus is exclusively longer and terminates with a stretch of positive residues. In order to 

study this special effect, a 12 aminoacid truncated version of C-terminus, mimicking the 

bacterial PII protein was constructed. Even in the presence of ATP-Mg and glutamine this 

construct could not activate the complex formation between PII-NAGK in the enzymatic 

assays. Furthermore, the truncated Cr PII protein was subjected to a titration with 2-OG in an 

ITC experiment and was found to respond by binding in the presence of ATP-Mg thereby 

confirming its active state. The influence of C-terminus on the complex formation was further 

investigated and confirmed employing SPR and ITC experiments. Thus, the presence of 

glutamine, ATP-Mg along with C-terminus is a prerequisite for the PII-NAGK complex 

formation in C. reinhardtii. 

 

11.6 Binding of effector molecules to Cr PII 

 

The PII proteins act as a biological CPU, where the signals from the metabolites ADP, ATP 

and 2-OG are integrated leading to allosteric and covalent modifications. These modifications 

result in conformation changes which mediate the varied receptor interactions. The novel trait 

of PII to bind glutamine and thereby activate the complex formation with NAGK is attributed 

to the C. reinhardtii system. This introduces glutamine as a novel metabolite sensed by the PII 

signal transduction family (Fig. 35). The special feature of PII mediated glutamine signaling 

is not associated with S. elongatus or A. thaliana PII proteins. Up to 15 mM Gln is required to 

saturate the PII-NAGK activity in the enzyme assays. Binding of glutamine assists in the 

extended antenna-like framework of the C-terminus which influences the T-loop 

conformation and thereby its interaction with NAGK. In SPR experiments, the presence of 

ATP-Mg alone doesn’t seem to favour the complex formation. Introduction of ADP neither 

favours the PII-NAGK complex formation in the presence of glutamine and Mg2+. This 

suggests the influence and importance of the γ-phosphate of ATP in the complex formation.  
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Figure 35. PII proteins act as a biological CPU. Based on the energy status of the cell, the PII proteins have been 
known to bind the molecules (signal input) ADP, ATP and 2-OG. A new effector molecule glutamine (Gln) has 
been introduced into the signal input pathway. On sensing these metabolites PII proteins undergo covalent and 
allosteric modifications (signal integration) which results in the PII-receptor interaction (signal output).  
 

Addition of 2-OG to enzymatic assay inhibits activation of the enzyme activity. However, 

SPR experiments suggest no influence of 2-OG on complex formation. The fact that 2-OG 

does not prevent complex formation is also supported with the light scattering analysis. It is 

possible that 2-OG affects the PII-NAGK complex in a post-binding step, where the T-loop 

may adopt a different conformation in the presence of 2-OG. With the help of ITC 

experiments the affinity of 1 mM 2-OG for Cr PII was determined to be 39 µM, which is 

similar to that observed in S. elongatus PCC 7942 (Fokina et al, 2011). Binding of 2-OG is 

mediated through ATP-Mg and ADP doesn’t seem to support 2-OG binding. However, in A. 

thaliana 2-OG binding was stimulated in the presence of both ATP and ADP (Smith et al, 

2003).  

 

Further, crystallization of Cr PII containing 0.05 M Cadmium sulfate in ground solution 

resulted in PII protein structures with 9 cadmium ions bound per trimer. Earlier, PII 

paralogues have been speculated to binding heavy metal efflux pumps, and its noteworthy that 

C. reinhardtii have been used in the waste remediation process to sequester heavy metals 

(Sant’Anna et al, 2009; Wei et al, 2011). Hence, it would be worthwhile to analyse the 

affinity and mechanism of heavy metal binding to Cr PII.    
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11.7 Mechanism of glutamine binding to promote the formation of Cr PII and NAGK 

complexes 

 

The structure of Cr PII and At NAGK complex revealed the binding site of glutamine near the 

C-terminus of PII. The PII protein with its unique C-terminus forms an alpha helix that 

extends outward as an antenna from the PII body and captivates the glutamine in the binding 

pocket. The movement of the C-terminus closer to the B-loop is favoured by the backbone 

interaction of G57 (B-loop) and E133 from the C-terminus of neighbouring subunit. This tight 

conformation mediates the T-loop to undergo a kinked conformation which thereby helps to 

contact the interdomain crevice of NAGK. The polar network of interaction between the T-

loop residues E67 and R62 of Cr PII and R145 and E201 of At NAGK helps to favour the 

complex formation. The electrostatic surface potential representation (Fig. 36) gives an 

insight into the positively charged C-terminus of Cr PII protein. These positively charged 

residues play an essential role by aiding in the suitable conformation of C-terminus (displace 

away from the PII body) and thereby plugging the glutamine to the binding socket.  

 

 
Figure 36. Electrostatic surface potential representation of Cr PII in the Cr PII-At NAGK complex. A) Top view 
and B) side view of complex highlighting the unique positively charged C terminus of Cr PII protein (Positive 
potentials displayed in blue and negative in red). Figures were generated employing APBS program. 
 
The crystallization of Cr (PII-NAGK) resulted in crystal structures with only one PII trimer 

bound to the NAGK toroid. This is the first reported structure of one PII occupying the 

complex structure. The interaction of Cr (PII-NAGK) seems rather infirm due to the flexible 

movement of the NAGK toroid ring. Further, the oligomeric state of the Cr (PII-NAGK) 

complex in solution was investigated with light scattering experiments. These results as well 

supported the existence of one PII trimer bound to the NAGK toroid in solution.   
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Figure 37. A) Superimposed structures of Cr PII (slate)-At NAGK (green) complex and At PII (yellow)-NAGK 
(cyan) complex (PDB: 2RD5). B) Superimposed structures of PII monomers from Cr PII (slate)-At NAGK 
complex, A. thaliana (PII-NAGK)-green (PDB: 2RD5), S. elongatus (PII-NAGK)-light pink (PDB: 2JJ4). 
 

The superimposition of native At (PII-NAGK) structure with the obtained Cr PII-At NAGK 

resulted in NAGK displaying same 3-D structural configuration in both the structures (Fig. 

37A). Hence, the crystal structure of Cr PII and At NAGK together should display a reliable 

confirmation of the Cr PII protein. The superimposition of PII proteins from known PII-

NAGK complexes of A. thaliana and S. elongatus with Cr PII from Cr PII-At NAGK 

structure is represented in Fig. 37B. The three PII proteins show a high degree of structural 

conservation and the metabolites ATP-Mg are found to occupy the same position in the 

binding cavity. 

 

The influence of glutamine on the PII protein needs to be further examined and explored in 

other organisms. It is possible to envision Cr PII as a potential candidate for a glutamine 

biosensor. This study has allowed the understanding of the role of glutamine in the PII-NAGK 

complex formation process in C. reinhardtii. Further, the unique evolutionary feature of PII 

mediated glutamine signalling for the regulation of N metabolism is evident. This signalling 

has not been found in S. elongatus and A. thaliana PII proteins and it’s tempting to speculate 

that green algae have specially acquired this specific quality which was probably lost in 

higher plants. Further studies need to be performed to bridge the informational gap between 

the evolution of PII proteins from cyanobacteria to plants.   
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13. Abbreviations 
 

Ab 
ABC 
ACCase 
ADP 
AmtB 
Arg  
ATase 
At  
At NAGK  
At PII  
ATP  
Å 
B factor 
C  
°C 
Cd 
Cl-  
CLANS 
CoA 
CPU 
Cr 
Cr NAGK 
Crp 
Cr PII 
DraG 
DTT  
DNA 
Ec/E. coli  
FC1  
FC2  
Fd  
FdxH 
Fig. 
FNR  
Gln  
Glu 
GOGAT  
GS  
GSI 
GSII  
GSIII 
G3P  
HEPES  
IC50 
ITC 
Kcat 
Kd 
Km 
kDa 
MES 
Mg  
MscS 

Azospirillum brasiliensis 
ATP-binding cassette 
acetyl-CoA carboxylase 
adenosine diphosphate 
ammonium transporter 
arginine 
adenylyltransferase 
Arabidopsis thaliana 
NAGK from Arabidopsis thaliana 
PII from Arabidopsis thaliana 
adenosine triphosphate 
angstrom 
temperature factor 
carbon 
degree Celsius 
cadmium 
chloride ion 
cluster analysis of sequences 
coenzyme A 
central processing unit 
Chlamydomonas reinhardtii 
NAGK from Chlamydomonas reinhardtii 
cAMP receptor protein 
PII from Chlamydomonas reinhardtii 
dinitrogenase reductase-activating glycohydrolase 
dithiothreitol 
deoxyribonucleic acid 
Escherichia coli 
flow cell 1 
flow cell 2 
ferredoxin 
[2Fe-2S]-type ferredoxin 
figure 
ferredoxin NADP+ reductase 
glutamine 
glutamate 
glutamine-2-oxoglutarate-amido transferase  
glutamine synthetase 
glutamine synthetase type I 
glutamine synthetase type II 
glutamine synthetase type III 
glyceraldehyde-3-phosphate 
4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 
half maximal inhibitory concentration 
isothermal titration calorimetry 
turnover number 
dissociation constant 
michaelis constant 
kilo-Dalton 
2-(N-morpholino)ethanesulfonic acid 
magnesium 
mechanosensitive ion channel 
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N  
NADPH  
NAG 
NAG-P  
NAGK 
NH4

+  
NiR 
NO2

- 
NO3

-  
NR 
NRI 
NRII  
NTA 
PamA 
PEG  
Pi 
PipX 
Pp 
PP2C  
PSI  
PSII 
Py  
Rc 
RNA 
RU 
Se  
SEC 
Se NAGK  
Se PII  
SigE 
Sl 
SPR  
TCA 
U  
UTase/UR 
Vmax 
W  
WT 
2-OG  
3D 
3-PGA 

nitrogen 
nicotinamide adenine dinucleotide phosphate 
N-acetyl-L-glutamate 
N-acetyl-L-glutamyl 5-phosphate 
N-acetyl-L-glutamate kinase 
ammonium 
nitrite reductase 
nitrite 
nitrate 
nitrate reductase 
nitrogen regulator I 
nitrogen regulator II 
nitrilotriacetic acid 
PII associated membrane protein A 
polyethylene glycol 
inorganic phosphate 
PII interaction protein X 
Porphyra purpurea 
protein phosphatase 2C 
photosystem I 
photosystem II 
Pyropia yezoensis 
Ricinus communis  
ribonucleic acid 
resonance units 
Synechococus elongatus 
size exclusion chromatography 
NAGK from Synechococcus elongatus 
PII from Synechococcus elongatus 
sigma factor E 
Solanum lycopersicum 
surface plasmon resonance 
tricarboxylic acid 
unit 
uridylyltransferase/uridylyl-removing enzyme 
maximum reaction velocity 
water molecule 
wild type 
2-oxoglutarate 
3-dimensional 
3-phosphoglycerate 
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