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1 INTRODUCTION 

1.1 PARKINSON´S DISEASE (PD) 

 
Although Parkinson´s disease (PD) was already known in ancient India under the Name of 

“Kampavata”, the syndrome was first described and documented in 1817 in an article “essay 

on the shaking palsy” by the British physician James Parkinson (Kempster et al., 2007). His 

work was unrecognized for decades, until the neurologist Jean Martin Charcot recognized 

the importance of Parkinson´s work and named the disorder as “maladie de Parkinson” 

(Parkinson´s disease). 

PD is the second most common neurodegenerative disorder, after Alzheimer´s disease, 

affecting approximately 1% of the population above the age of 55 years (Nussbaum and 

Ellis, 2003; Lees et al., 2009). In addition to age gender may also influence the incidence of 

PD as several studies show evidence of a higher incidence in men compared to women (de 

Lau and Breteler, 2006). The main characteristics of PD are tremor, rigidity, bradykinesia, 

and postural instability; though the motor symptoms can be accompanied by nonmotor 

symptoms such as olfactory deficits, sleep impairments and psychiatric problems. However 

these motor symptoms do not become apparent until 50-60% of the dopaminergic neurons in 

the substantia nigra pars compacta (SNc) have undergone degeneration (Fearnley and Lees, 

1991). This disease is also characterized by a profound loss of dopamine (DA) in the 

striatum and the presence of intracytoplasmic protein inclusions called Lewy bodies (LB) 

which mainly consist of alpha-synuclein and ubiquitin (Forno, 1996).The progression of this 

disease is irreversible. Presently there is no treatment to arrest or retard the progression of 

neurodegeneration. The available methods of pharmacological or surgical treatment can 

alleviate some of the symptoms, but can lead to serious side effects (Schapira, 2007). 

Because of these reasons, PD has been the subject of intense investigation to understand its 
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origin and pathophysiology and to develop new therapeutic strategies or preventive 

measures based on reliable biomarkers.  

1.1.1 PD: CLINICAL SIGNS AND SYMPTOMS 

  

Classically, motor dysfunction is used as the clinical diagnosis of PD. PD is characterized by 

bradykynesia, rigidity, tremor, and postural instability with an asymmetric onset spreading to 

become bilateral with time. Tremor at rest is one of the most prevalent characteristic of the 

disease and it occurs in 70% of the PD patients (Hoehn and Yahr, 1967). Rigidity is a motor 

sign, detected as a resistance to passive movement of the limbs. Bradykinesia refers to a 

slowness and paucity of movement; examples are loss of facial expression and involuntary 

movements such as arm swinging when walking. Bradykinesia is not due to limb rigidity and 

can be observed in the absence of rigidity during treatment. Postural instability is the 

relevant, because it can lead to falls with resulting injury (Lang and Lozano, 1998). 

Other motor features are abnormal gait and posture that manifest as rapid shuffling steps 

with a forward-flexed posture when walking or freezing (also referred to as motor block, 

speech and swallowing difficulties, and a mask like facial expression (Jankovic, 2008). But 

more recently PD has been recognized as a complex disorder with both motor and nonmotor 

symptoms (NMS), such as depression, sleep disturbance, sensory abnormalities, autonomic 

dysfunction, and cognitive decline (Langston, 2006). NMS affect all PD patients independent 

of the disease course and may even precede the motor manifestations (Chaudhuri and 

Schapira, 2009). Although the causes of motor dysfunctions are quite well understood, the 

cause of few NMS in PD is known such as nucleus basalis of Meyenrt (NBM) degeneration is 

correlated with Dementia, smell loss with olfactory bulb pathology, depression with locus 

coeruleus and raphe nucleus degeneration and constipation is correlated with dorsal nucleus 

of the vagus and enteric plexus neurons (Tolosa and Pont-Sunyer, 2011).   
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1.1.2 RISK FACTORS FOR DEVELOPING PD 

 

Age represents the strongest risk factor for PD and the majority of cases develop the illness 

at late onset. However, it’s still unclear whether it is chronological age or the aging process 

that is responsible for PD (Kempster et al., 2010). There is also evidence for sex being one 

of the risk factor for PD, since more men have PD compared to women (at an approximate 

ratio 1.5-2:1). There is also evidence that early menopause, hysterectomy, or removal of the 

ovaries increases the risk in women and even loss of estrogen production in women with age 

may remove a protective effect (Ragonese et al., 2004; Popat et al., 2005).  

The role of environmental factors in PD came into focus with the discovery that exposure to 

the neurotoxic ion of the synthetic heroin analogue MPTP (MPP+) lead to Parkinsonism in 

humans (Langston et al., 1983). There are some other chemicals which are known to cause 

Parkinsonism in some animals such as the pesticides paraquat and rotenone (Tanner et al., 

2011). Both MPP+ and paraquat/rotenone are mitochondrial toxins since they inhibit complex 

I of the respiratory chain (Schapira, 2010). MPTP is converted into the active neurotoxin 

MPP+ once it has crossed the blood brain barrier (BBB) by the outer mitochondrial membrane 

enzyme monoamine oxidase (Heikkila et al., 1990). Other environmental causes include 

solvent exposure (n-hexane, methanol), carbon monoxide poisoning, hydrogen sulfide 

intoxication, and perhaps manganese, which lead to striatal cell degeneration (Kenborg et 

al., 2012).  

Genetic factors play an important role in PD and to date account for approximately 15% of all 

cases – this concept came into focus when many investigators recognized that PD could 

occasionally be identified in families (Golbe et al., 1990). Genetic causes (discussed in detail 

later) are coming more into picture as important underlying causes and they collectively 

account for about 30% of the familial and 3%-5% of the sporadic cases.(Klein and 

Westenberger, 2012).  
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1.1.3 PD AND NEUROPATHOLOGY 

 

Neuronal loss in the substantia nigra pars compacta (SNpc) and subsequent loss of striatal 

dopamine content are considered as being responsible for the classical motor features of 

PD. The neuropathological diagnosis of PD requires the detection of marked dopaminergic 

neuronal loss in the SNpc and the appearance of Lewy bodies, eosinophilic inclusions 

consisting of a dense core surrounded by a pale-staining halo of radiating filaments (Dickson 

et al., 2009). Though not all PD cases have Lewy bodies for example Parkin mutation cases 

of PD do not generally reveal Lewy bodies although they show substantial loss of 

dopaminergic neurons in the substantia nigra pars compacta that underlies their movement 

disorder (Pramstaller et al., 2005). However, the neuropathological features of PD are known 

to be more widespread for many decades, with many non-dopaminergic nuclei affected, 

including the locus coeruleus, reticular formation of the brain stem, raphe nucleus, dorsal 

motor nucleus of the vagus, basal nucleus of the Meynert and amygdala (Jellinger, 2012). All 

these nuclei degenerate with Lewy body pathology, suggesting a common pathogenic 

process as that occurring in the SNpc (Witt et al., 2009). There is also evidence for the 

presence of Lewy bodies in peripheral tissues that take the pathology associated with PD to 

another level (Braak et al., 2006; Fujishiro et al., 2008). From the above findings, it has been 

suggested that pathology in PD may not start in the SNpc, but rather Lewy body pathology 

and the deposition of alpha-synuclein are proposed to originate in the olfactory bulb and 

lower brain stem, from where they spread in stages to involve the midbrain and then 

spreading to cortical regions (Braak et al., 2003). Although it is recognized that not all PD 

cases exactly follow this pattern of spread (Kalaitzakis et al., 2008), it is widely accepted that 

spreading of pathology can occur in PD (Dunning et al., 2012). 
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1.2 MECHANISMS OF NEURODEGENERATION IN PD 

1.2.1 OXIDATIVE STRESS IN PD 

 

Since the 1980´s there have been various evidences in the literature that implicate reactive 

oxygen species (ROS) as a step to causing neuronal cell death. Starting from the concept of 

free radical production as a result of increased chemical and enzymatic oxidation of DA 

(Fahn and Cohen, 1992) through the mechanism of action of toxins such as 6-

hydroxydopamine (6-OHDA) (Heikkila and Cohen, 1973) to evidence from postmortem and 

clinical investigations (Dexter et al., 1989b; Spina and Cohen, 1989; Dexter et al., 1994), 

oxidative stress and the resulting oxidative damage have emerged as the major role player in 

PD. The source of the oxidative stress is always a matter of debate but one obvious 

contributor is increased free radical formation originating from mitochondria. Mitochondria are 

resonsible for the production of energy in the form of adenosine triphosphate (ATP). It 

involves the transport of protons across the inner mitochondrial membrane by means of an 

electron transport chain. Electrons are passed through a series of proteins or enzymes with 

various oxidation-reduction reaction by the production of an electron gradient. At the last step 

of energy ATP generation oxygen is reduced to water. However in the case of mitochondrial 

dysfunction, oxygen can be prematurely and incompletely reduced to generate the highly 

damaging superoxide radical (.O2-) (Li et al., 2013).  

1.2.2 MITOCHONDRIAL DYSFUNCTION IN PD 
 
Impairment of mitochondrial function has been implicated in neurodegeneration in PD for a 

long time (Obeso et al., 2010). Alterations of the electron transport chain enzyme complex I 

appear to be particularly relevant to PD. In fact mitochondrial dysfunction in relation to PD 

first came into focus with the discovery of mitochondrial complex I deficiency in the 

substantia nigra of some PD patients (Schapira et al., 1989). Post-mortem brains of PD 
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patients showed deficient staining for complex I in the substantia nigra (Schapira et al., 1989) 

and subsequently this deficiency was also seen in the skeletal muscle and platelets (Mizuno 

et al., 1989). MPTP and rotenone neurotoxins, used to generate PD models, both disrupt 

mitochondrial function, inhibiting complex I activity (Shulman et al., 2011). However recently 

it has been reported that the mitochondrial deficiency is not present in all PD patients, either 

in the brain, platelets, or other tissues. In average there is a reduction in activity in about 35%  

of the patient group (Schapira, 2008). It has been reported that the complex I defect in PD 

patients reduces the threshold of apoptosis mediated by the mitochondria through lowering 

ATP production and generation of free radicals and render cells to the proapototic protein 

Bax (Perier et al., 2005). 

Mitochondrial dynamics can be affected in several ways, including depolarization as a result 

of mitochondrial toxins, disturbance in fission-fusion homeostasis, alteration of damaged 

mitochondrion disposal through mitophagy and reduced functionality as a result of inherited 

or somatic mutations in the mtDNA (Schapira and Gegg, 2011). The construction of cybrids 

(hybrid cell lines), obtained from the fusion of cells that lack mtDNA with platelet mtDNA from 

PD patients has demonstrated an example of a mitochondrial coding defect complex I 

(Ghosh et al., 1999).  

Finally, recently interest in the role of mitochondria in PD has originated from the genetic 

investigations in familial PD. Mutations in Parkin, Pink1, DJ-1 and LRRK2 are associated 

with altered mitochondrial function (Schapira, 2008, 2011; Schapira and Jenner, 2011). 

HtrA2 is a mitochondrial protease and its role in neuroprotection was first known when knock 

out mouse model of HtrA2 showed behavioral deficits, specifically Parkinsonism with striatal 

damage (Martins et al., 2004). Later several mutations (discussed in detail later) were found 

associated with PD (Strauss et al., 2005; Bogaerts et al., 2008; Lin et al., 2011). Mutations in 

Parkin, the gene encoding for the ubiquitin ligase, have been reported to be the most 

common cause of PD in people younger than 40 years (Kitada et al., 1998; Lucking et al., 

2000), although mutations have been rarely found in Parkin patients with typical late-onset 
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(Farrer et al., 2001; Lohmann et al., 2003). Parkin KO flies were reported to have muscle 

pathology, mitochondrial dysfunctions and apoptosis (Greene et al., 2003). Pink1 is another 

mitochondrial protein localized to the outer mitochondrial membrane (Silvestri et al., 2005), 

and mutations in Pink1 have been implicated for autosomal recessive PD (Valente et al., 

2004). Removal of Drosophila homologue of Pink1 leads to male sterility, defects in 

mitochondrial morphology and increased sensitivity to multiple stresses (Clark et al., 2006). 

Pink1 mutants show indirect flight muscle and dopaminergic neuronal loss accompanied by 

locomotor defects. Transgenic expression of Parkin in Pink1 mutants rescued all Pink1 loss 

of function phenotypes in Drosophila but Pink1 expression couldn´t rescue Parkin mutant 

Drosophila phenotypes (Park et al., 2006b). Recently Parkin and Pink1 have also been 

linked to mitophagy, which is implicated in the pathogenesis of PD (Narendra et al., 2008; 

Geisler et al., 2010). DJ1 is another mitochondrial protein and mutations in this protein are 

reported to cause rare autosomal recessive PD (Bonifati et al., 2003). Moreover GWAS, 

laser-captured human dopaminergic neuron studies and SNpc transcriptome studies have 

revealed a deficit in the mitochondrial electron transport chain in PD (Elstner et al., 2011). 

1.2.3 ALTERED PROTEOLYSIS IN PD – PROTEASOMAL AND 

LYSOSOMAL  
 
The presence of multiple proteins in Lewy bodies, with alpha-synuclein being the most 

abundant, led to the idea that the catabolism of waste, damaged or mutated proteins might 

be disturbed in PD which leads to cellular aggregation and neuronal death (Spillantini et al., 

1998; Shashidharan et al., 2000). To investigate this hypothesis, the role of the ubiquitin-

proteasome system (UPS) and lysosomes in pathogenesis of PD were well studied. Many 

studies confirmed an important role of proteins involved in the UPS such as UCHL1 (Gong 

and Leznik, 2007) and the E3 ligase, Parkin (Shimura et al., 2000). Several studies found 

that there is a reduction in proteasomal enzyme activity in the SN of PD patients (McNaught 

et al., 2003) and that there are alterations in the expression of proteasomal subunits and in 
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their regulatory caps in PD patients (McNaught et al., 2001; McNaught et al., 2002a; 

McNaught et al., 2002b). Furthermore, depletion of 26S proteasomes in mice leads to 

neurodegeneration with Lewy body-like inclusions (Bedford et al., 2008). Recently the 

attention was turned to an alternative degradation pathway and therefore focused on the role 

of lysosomes and autophagy in neurodegeneration in PD. There are several studies which 

suggest that dysfunctional lysosomes provide an important link to the pathogenesis in PD 

and are clearly linked to the events that occur in mitochondria and lead to oxidative stress 

(Schapira and Jenner, 2011). HtrA2 has been reported to be a positive regulator of 

autophagy and might be important in the quality control mechanisms involved in 

neurodegenerative diseases (Li et al., 2010). Pink1 and Parkin have also been functionally 

linked with the selective autophagy of mitochondria which is implicated in the pathogenesis 

of PD (Geisler et al., 2010). 

1.2.4 INFLAMMATORY CHANGE 

 

There is a role of reactive microgliosis in PD, which leads to inflammatory change. In 

postmortem studies of ‘PD patients, alterations have been found in the cytokines in both the 

SN and the CSF (Hirsch and Hunot, 2000; Hunot and Hirsch, 2003) who also showed 

inducible nitric oxide synthase to be present in activated microglia and that this can be linked 

to increased 3-nitrotyrosine immunoreactivity, indicative of peroxynitrite attack on proteins 

(Hirsch et al., 2003). Activated microglia have also been detected in the brain of MPTP-

treated monkeys and drug addicts many years after toxin exposure, suggesting that once 

initiated, glial cells may play a role in progressive neuronal loss over long period of time 

(Langston et al., 1999; McGeer et al., 2003; Barcia et al., 2004) .  
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1.2.5 EXCITOTOXIC MECHANISMS 

 

Excitotoxicity is included as a pathogenic mechanism that is thought to contribute to cell 

death in PD (Dexter and Jenner, 2013). The major contributor is overactivity of the 

subthalamic nucleus (STN), which releases glutamate and which innervates the SNpc and 

the internal segment of the globus pallidus (Bevan et al., 2002; Steigerwald et al., 2008). The 

recent technique deep brain stimulation (DBS) can correct the overactivity of the STN, 

producing the clinical benefit in PD, Moreover, the recent investigations utilizing DBS in PD 

have associated it with a lack of progression of motor symptoms (Tagliati et al., 2010). 

According to the current view PD is not a single disease but rather a syndrome of multiple 

causes and manifestations. There are several examples which explain this view – such as 

the general absence of Lewy bodies in SNpc in PD cases with Parkin and only 30% of 

sporadic PD patients have complex I defect (Dexter and Jenner, 2013) and iron 

accumulation is also not seen in all postmortem nigral tissue of PD patients. But it becomes 

increasingly obvious that pathologic events occurring in SNpc may not originate in the brain 

but may be a result of peripheral events that propagates itself  through synucleinopathy to 

eventually reach the brain (Dexter and Jenner, 2013). 
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Figure 1.1 Key molecular mechanisms that are widely accepted to contribute to the neurodegenerative 

process in dopaminergic neurons in the substantia nigra in PD. Blue double-headed arrows indicate molecular 

mechanisms that may not only be toxic in their own right but importantly may also influence other molecular 

mechanisms known to be features in PD. Double helix structures identify some of the common gene mutations 

found in familial PD and brown and green arrows indicate where the altered protein may interfere with cell 

function and overlap with known mechanisms of cell death in sporadic PD. ROS, reactive oxygen species. Green 

arrow shows the probable role of protein in PD (adapted from (Dexter and Jenner, 2013). 

1.3 PD AND SYNUCLEIN OLIGOMERS 

1.3.1 ALPHA-SYNUCLEIN AGGREGATION 

Lewy bodies are one of the pathological hallmarks of PD. But not all PD patients have Lewy 

bodies and in no mouse model Lewy body structures have been noticed to date. These facts 

have led to the study of alpha-synuclein aggregation in more detail and recently a concept of 

alpha-synuclein oligomer mediated toxicity has come into focus, though the function of alpha-

synuclein in relation to PD is still unclear. 

Alpha-synuclein is a 14kD neuronal protein from a family of structurally related proteins that 

are highly expressed in the brain (Ueda et al., 1993; Jakes et al., 1994). The main 

physiological form of alpha-synuclein in the brain appears to be an unfolded monomer 
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(Fauvet et al., 2012). Aggregation of two or more monomers leads to the formation of soluble 

oligomeric species, which are also called as protofibrils (Walsh et al., 1997). There are 

evidences for endogenous alpha-synuclein oligomers in brain extracts from rodent models 

(Mazzulli et al., 2011; Winner et al., 2011). Initially the alpha-synuclein oligomers were 

detected in the brain extracts from post-mortem samples (Sharon et al., 2003). There are 

various factors that are thought to promote the cascade of alpha-synuclein aggregation such 

as missense mutations in the alpha-synuclein gene (SNCA) such as A53T (Polymeropoulos 

et al., 1997), A30P (Kruger et al., 1998), E46K (Zarranz et al., 2004), G51D (Lesage et al., 

2013), and H50Q (Appel-Cresswell et al., 2013; Proukakis et al., 2013) associated with rare 

familial autosomal dominant forms of PD (Polymeropoulos et al., 1997; Conway et al., 1998; 

Kruger et al., 1998; Greenbaum et al., 2005), post-translational modifications of alpha-

synuclein (Fujiwara et al., 2002; Neumann et al., 2002), and dysfunction of cellular 

machinery that includes chaperone networks (that regulate protein folding and refolding) and 

the ubiquitin-proteasomal system (UPS) and autophagy-lysosomal pathway (ALP) which are 

responsible for elimination of harmful proteins (Tyedmers et al., 2010; Hartl et al., 2011). 

Examination of human postmortem tissue has demonstrated that components of UPS and its 

activity, as well as the ALP constituents, are reduced in the substantia nigra of PD patients 

compared to controls (Chu et al., 2009).  

It could not be proven until now that the insoluble alpha-synuclein-containing inclusions alone 

are responsible for the PD. Lewy bodies are also observed at autopsy of aged individuals 

without clinical features of PD, constituting approximately 12 % of a series of >1,200 

consecutive autopsy cases (Saito et al., 2004). Mice expressing human A53T mutant alpha-

synuclein under the control of the prion-related protein promotor is one of the PD transgenic 

animal models with one of the most severe phenotypes to date and displays 

neurodegeneration with fibrillary alpha-synuclein inclusions but also shows a range of alpha-

synuclein species, including insoluble aggregates and soluble oligomeric forms (Giasson et 

al., 2002; Lee et al., 2002). All the above findings demonstrate that Lewy pathology alone 
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cannot be responsible for alpha-synuclein mediated neuronal cell death. There must be a 

different form of oligomeric alpha-synuclein that leads to toxicity and leading to cell death. 

1.3.2 ΑLPHA-SYNUCLEIN OLIGOMER TOXICITY  

An emerging hypothesis proposes that there are toxic oligomeric species of alpha-synuclein 

(Kalia et al., 2013). Studies using protein-fragment complementation assays have shown that 

alpha-synuclein oligomers are associated with increased toxicity in cell culture models as 

measured by release of adenylate kinase from damaged cells, adenosine triphosphate levels 

or caspase 3/7 activity (Outeiro et al., 2008; Danzer et al., 2011). Various studies have also 

been conducted in animal models to examine the role alpha-synuclein oligomers to cell 

toxicity. Various alpha-synuclein mutants have been designed to show different aggregation 

properties. Addition of one or more missense mutations that involve specific alanine residues 

(for example A56P or triple mutant A30P/A56P/A76P) that participate in alpha-synuclein 

amyloid fibril formation produces mutant forms of alpha-synuclein with decreased capacity to 

form fibrils but increased propensity to form soluble oligomers (Karpinar et al., 2009). These 

designed mutants were expressed in Drosophila melanogaster and Caenorhabditis elegans 

(nematode worm). In both the models it was observed that there was increased loss of not 

only dopaminergic neurons but also other neuronal populations. The loss of non-

dopaminergic neurons along with dopaminergic neurons in these models once again 

supported the hypotheses that PD is a multisystem disorder affecting many non-

dopaminergic neurons systems (Winner et al., 2011). These findings support a role for alpha-

synuclein oligomers in mediating both dopaminergic and non-dopaminergic neurons. Further 

there are findings in which there is the observation that higher oligomer levels are associated 

with disease. The amount of alpha-synuclein oligomers were found higher in transgenic mice 

expressing A53T mutant alpha-synuclein compared to transgenic mice expressing wild type 

alpha-synuclein and in mouse models of Gaucher disease versus wild-type mice (Tsika et 

al., 2010). Moreover the levels of alpha-synuclein oligomers are increased in the cerebral 
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cortex of patients with idiopathic PD, compared to age-matched normal controls (Paleologou 

et al., 2009) . All the above findings point at a link between endogenous alpha-synuclein 

oligomers and neurodegeneration of PD. 

1.4 PD GENETICS 

 
Although most patients with idiopathic or late-onset PD do not appear to have inherited the 

disease, a positive family history is associated with a high risk of having PD. Through the 

study of rare large families with clearly inherited Parkinsonism, several genes have been 

identified and implicated for the disease. Our understanding of the underlying mechanisms 

for the initiation and progression of PD began with the identification of mutations in the gene 

encoding alpha-synuclein (SNCA) and by the demonstration that alpha-synuclein is the major 

component of Lewy bodies (Polymeropoulos et al., 1997; Spillantini et al., 1997). Since then, 

18 loci, named as PARK1 to PARK18, and 11 genes have been associated with inherited 

forms of Parkinsonism (TABLE 1.1). Genetic research during the last decade, has revealed 

that PD is not a single clinical entity, but rather a heterogenous group of clinical 

manifestations and symptoms (Corti et al., 2011). Some familial forms carry atypical clinical 

features, such as young-onset with dystonia, or the early occurrence of dementia or 

dysautonomia. Around 5-10% of patients with clinical signs of PD carry a mutation in one of 

the known genes that cause autosomal dominant recessive forms of the disease (Corti et al., 

2011). Although this percentage is less, there is evidence that the same genes may play a 

prominent role in common sporadic form of the disease (for example the presence of 

mutations in LRRK2 gene both in the familial form and with late-onset autosomal dominant 

Parkinsonism) (Paisan-Ruiz et al., 2004). 
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Table 1.1 Parkinson´s genes (Corti et al., 2011)  

 
The lack of a clear family history in monogenic PD forms can result from recessive 

inheritance, reduced penetrance, or either the disorder may be the result of genetic 

predisposition to environmental toxins or to a combination of several genes that each 

increases the risk of the disease to a limited extent (Corti et al., 2011). Genes involved in PD 

can be inherited in an autosomal dominant or recessive way. Dominant genes are usually 

identified by positioning large number of members from the generations. Disease causing 

mutations in these genes are mostly missense variations, whose pathogenicity can be 

supported by several lines of evidence: the mutation clearly segregates with the disease in 

family studies; the mutation is located in an important domain of the encoded protein; the 

mutation is highly conserved across different species; and there is in-vitro and in-vivo proof 

that the mutation causes dysfunction or increases cell death (Hampe et al., 2006). Though 
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these dominant mutations may be found in clinically unaffected individuals, a phenomenon 

referred to as reduced penetrance (Sharma et al., 2012). Dominant mutations can act either 

through toxic gain of function or a loss of function mechanism (Kobayashi et al., 2003). To 

date, only three genes, alpha-synuclein, VPS35 and LRRK2, have been clearly shown to 

cause autosomal dominant PD.  

Recessive genes are identified by linkage studies in nuclear families in which the same 

chromosomal segments inherited from a common ancestor are transmitted through both 

maternal and paternal lineages. Most of these recessive alleles lead to absence of encoded 

protein or an inactive protein and hence resulting in the loss of function (Wang et al., 2009). 

Mutations in the recessive genes Parkin, Pink1 and DJ1 are undoubtedly associated with 

heritable and early onset Parkinsonism. However penetrance can be reduced in rare cases 

as observed in 56-year old unaffected carrier with heterozygous mutations in Parkin (Deng et 

al., 2006). 

Though the pathogenicity of several loci and genes associated with PD has not been 

confirmed, the mitochondrial serine protease HtrA2 is one such candidate whose role in the 

pathogenesis of PD has been supported by in-vitro and in vivo studies, but there are several 

studies which have given conflicting results. G399S and A141S mutations identified in PD 

patients in some studies but also found in controls in some other studies (Simon-Sanchez 

and Singleton, 2008). So the firm evidence for the causative role of HtrA2 mutations is still 

debated. This is discussed in detail in the next section. 

1.5 HTRA2 – A MITOCHONDRIAL PROTEIN 

1.5.1 GENERAL INTRODUCTION 

HtrA2 is a mitochondrial serine protease with a great extent of homology to bacterial high 

temperature requirement A protease (HtrA) (Faccio et al., 2000). The bacterial HtrA family 

members are characterized by the combined presence of a trypsin-like protease domain and 

one or two C-terminal PDZ domains and they have been implicated in stress tolerance and 
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pathogenicity (Pallen and Wren, 1997). Bacterial HtrA acts as a chaperone at normal 

temperature while at increased temperatures it acts as a protease to remove denatured 

proteins and allows for cell survival after heat shock or stress (Pallen and Wren, 1997). 

There are four paralogues of HtrA present in humans and mice identified to date namely 

HtrA1 (Zumbrunn and Trueb, 1996), HtrA2 (Faccio et al., 2000), HtrA3 (Nie et al., 2003), and 

HtrA4 (Clausen et al., 2002). HtrA2 resides in the mitochondrial intermembrane space (IMS), 

while its paralogues HtrA1, 3 and 4 are targeted to the secretory pathway (Vande Walle et 

al., 2008). While HtrA2 is the most well studied member of this protease family (discussed in 

detail later), much less information is available on HtrA1 which has been found to be 

associated with several diseases such as arthritis, cancer, and Alzheimers´s disease (Grau 

et al., 2005; Milner et al., 2008; Chien et al., 2009; Hara et al., 2009). However, even less 

information on HtrA3 and very little on HtrA4 are currently available (Bhuiyan and Fukunaga, 

2009). HtrA3 is the closest homologue of human HtrA1 and is correlated with ovarian cancer 

and is implicated to play a role as a tumor suppressor (Bowden et al., 2010). 

1.5.2 STRUCTURE 

Human HtrA2 is derived from an eight-exon gene located on chromosome 2q13, has an 

open reading frame encoding 458 amino acids and is ubiquitously expressed in human 

tissues (Gray et al., 2000). It is expressed as a 49-kDa proenzyme that is targeted to the 

mitochondrial intermembrane space (IMS) (Gray et al., 2000), although a fraction of 

endogenous HtrA2 is also found in the nucleus (Kuninaka et al., 2007). HtrA2 protein has a 

transmembrane domain (TM), a trypsin-like catalytic domain, and a PDZ domain, located 

among amino acids 105-121, 182-330 and 390-445, respectively (Fig 1.2). The IAP binding 

motif binds to IAPs and relieves its inhibitory effect on caspases (Faccio et al., 2000). The 

PDZ and protease domain play important roles in HtrA2 activation and specificity. The TM 

domain anchor behind the N-terminal mitochondrial localising sequence (MLS) most likely 

attaches the precursor protein into the mitochondrial inner membrane, where it undergoes 
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proteolytic maturation (Martins et al., 2002). During maturation, the first 133 aminoacids from 

N-terminus are cleaved thus exposing an inhibitor of apoptosis protein (IAP)-binding motif 

(IBM) (Lin et al., 2011).  

 

 

Figure 1.2 Structure of HtrA2 (A) schematic view of HtrA2 domains.- Mitochondrial localising sequence (MLS), 

transmembrane (TM), inhibitor of apoptosis protein (IAP)-binding motif (IBM), serine protease and PDZ domain 

(B) Tertiary structure of HtrA2(Lin et al., 2011)  C) Proposed working model for HtrA2 (Yun et al., 2008) 

Thus the fully processed protein which is 36-kDa having a short N-terminal domain, well 

defined serine protease and PDZ domains (van Loo et al., 2002). 

HtrA2 exists as a trimer (See Fig.1.2B). Trimerization creates a pyramid-shaped structure, 

with the N-terminal IAP-binding sequences on top and the PDZ domains at the bottom. The 

access to the active site of the serine protease is restricted by the C-terminal PDZ domain, 

which packs against the protease domain through van der Waals contacts (Yun et al., 2008) 

In the basal state, the PDZ domains keep the protease activity of HtrA2 in check. Upon 

binding to the substrate, the PDZ domain open up to expose the substrate-binding site of the 

protease domains, resulting in the cleavage of specific substrates (Yun et al., 2008). 

  

A B 
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1.5.3 FUNCTION 

It is well known that human HtrA2 executes essential roles in the mitochondria and 

contributes to apoptosis (Zhang et al., 2007). HtrA2 has been found to be involved in both 

caspase-dependent and independent apoptosis. On receiving apoptotic stimuli, HtrA2 is 

released in the cytosol, where it interacts with IAP´s through its N-terminal tetrapeptide motif 

and relieves inhibition on upstream caspase-9 (Martins et al., 2002).  

 

Figure 1.3 HtrA2 mediated apoptosis 

Furthermore, it cleaves several anti-apoptotic proteins such as XIAP, Pea-15 and Hax-1 in a 

caspase-independent manner (Cilenti et al., 2004; Trencia et al., 2004). The other known 

HtrA2 substrates include WARTS (Kuninaka et al., 2007), APP (Park et al., 2006a) and 

cIAP1 and cIAP (Srinivasula et al., 2003). Three more mitochondrial substrates of HtrA2 

have been discovered namely PDHB, IDH3A and HSPA8, which implicated HtrA2 in a novel 

mechanism relating to mitochondrial metabolism (van Loo et al., 2002). 

Besides from its proapototic functions, HtrA2 has been implicated in neurodegenerative 

disorders such as Parkinson’s and Alzheimer’s disease (Jones et al., 2003) because of its 

neuroprotective role inside mitochondria. Recently HtrA2 has also been implicated as a 

positive regulator of autophagy facilitating the degradation of mutant proteins involved in 

neurodegenerative diseases (Li et al., 2010). Here it has been reported that HtrA2 activates 

autophagy through digestion of Hax-1, which suppresses autophagy in a Beclin-1-dependent 

pathway. Moreover, HtrA2 induced autophagy also lead to degradation of p62, which 

assemble the autophagic machinery for efficient degradation of impaired mitochondria (van 

Loo et al., 2002). The proteolytic activity of HtrA2/Omi is also markedly up-regulated in 
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response to heat shock or stress (Gray et al., 2000). Whether HtrA2 is a mitochondrial 

chaperone it is contradictory (Vande Walle et al., 2008). Although the literature suggests that 

HtrA2 might be upregulated in the case of unfolded protein response (Papa and Germain, 

2011) further studies are needed to confirm its role as a mitochondrial chaperone. 

1.5.4 PD AND HTRA2 

The mitochondrial protease HtrA2 is localized in the mitochondrial intermembrane space and 

is an ATP-dependent enzyme structurally and functionally related to the bacterial quality 

control proteases DegP and DegS (Clausen et al., 2011). Its loss leads to accumulation of 

unfolded proteins in the mitochondria, oxidative stress, and defective mitochondrial 

respiration which suggests that like its bacterial homologs HtrA2 also functions as a quality 

control protease (Moisoi et al., 2009). 

Mice lacking HtrA2 function (protease activity) or expression (HtrA2 knockout mice) exhibit 

early onset neurodegeneration and motor impairments similar to PD (Martins et al., 2004) 

(Jones et al., 2003). Through these studies, first time HtrA2 was thought to have protective 

role in neurons that requires its protease activity and was correlated with the homologous 

bacterial stress-adaptive proteins DegP and DegS (Martins et al., 2004). The importance of 

HtrA2 mouse models is discussed in detail in section 1.7. XIAP is a well-known substrate of 

HtrA2 and inhibits active caspases, and the characterization of XIAP-deficient mice showed 

no phenotype giving a clue for neuroprotective role of HtrA2 (Harlin et al., 2001). Further it 

has been shown that the neurodegeneration and early death in mnd2 mice is rescued by a 

neuron targeted human HtrA2 transgene which further explains the neuroprotective role of 

HtrA2 (Kang et al., 2013). HtrA2 has been found to be one of the constituent of alpha-

synuclein containing inclusions in the brains of patients with PD, dementia or multiple-system 

atrophy (Strauss et al., 2005; Kawamoto et al., 2008). Moreover some mutations and 

polymorphisms in HtrA2 have been associated with sporadic cases of PD (Strauss et al., 

2005; Bogaerts et al., 2008; Lin et al., 2011) in German, Belgian and Taiwanese population 
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respectively (Fig 1.5). Though most of these sites of mutations are conserved sites, but one 

of these nucleotide positions where the mutation has been found – position 399, G is highly 

conserved. 

 

Figure 1.4.Schematic view of the HtrA2 protein indicating the localization of mutations in HtrA2 associated 

with PD. 

However some of these mutations were also found in the control patients in the later studies, 

though the mutation carriers in controls (not clinically investigated) were younger than the 

expected age at onset (Simon-Sanchez and Singleton, 2008), but soon after this study 

Bogaerts published one more HtrA2 mutation,  Arg404Trp in PD patients predicted to freeze 

HtrA2 in an inactive form (Bogaerts et al., 2008). And recently another missense mutation 

Pro143ala in HtrA2 was identified in Taiwanese PD patients. So the mutations in HtrA2 are 

inconsistently associated with a risk of PD and so still debated.   

Interestingly the mutations in HtrA2 which are associated with PD lie next to p38 and CDK5 

phosphorylation sites (Plun-Favreau et al., 2007; Fitzgerald et al., 2012).  Mutations in the 

serine protease domain - A141S (Strauss et al., 2005), P143A (Lin et al., 2011) and the PDZ 

domain - G399S (Strauss et al., 2005) and R404 (Bogaerts et al., 2008) are shown in figure 

1.5 and along with that the phosphorylation sites are also indicated. 

 



INTRODUCTION 

 

25 

  

 

Figure 1.5 Phosphorylation sites adjacent to S141 polymorpghism and G399 mutation in HtrA2 (Desideri and 

Martins, 2012) 

Except the R404W mutation, all other mutations lie exactly just one position next to the 

phosphorylation sites. Both A141S (Strauss et al., 2005), P143A (Lin et al., 2011) are 

adjacent to Serine 142 and G399S (Strauss et al., 2005) and R404 (Bogaerts et al., 2008) 

are adjacent to and near to the Serine 400 phosphorylation site (Fig 1.5) respectively. 

The function of HtrA2 has also been linked to Pink1 in relation to PD. It was found that HtrA2 

was phosphorylated upon activation of the p38 pathway in a Pink1-dependent manner, and 

there was an increase in phosphorylated HtrA2 in the brains of sporadic PD patients and 

decreased in Pink1 mutated patients (Plun-Favreau et al., 2007). It is also reported that 

HtrA2 is phosphorylated at S400 by Cyclin-dependent kinase-5 (Cdk5) in a p38-dependent 

manner (Fitzgerald et al., 2012). Here it’s also reported that phosphorylation of HtrA2 at 

S400 is involved in maintaining mitochondrial membrane potential under stress conditions 

and hence important for mitochondrial function. Activation of similar pathway is also involved 

in the phosphorylation of another site, S142, which is also located adjacent to the site of 

mutation, found in PD patients and is phosphorylated in a p38 and Pink1-dependent manner 

(Plun-Favreau et al., 2007). HtrA2 is also reported to be phosphorylated at S212 by Akt 

which reduces its protease activity (Yang et al., 2007).  

Recently PARL and HtrA2 interaction has been linked to intricate ischemic neuronal 

apoptotic process starting within mitochondria (Hsu, 2013). It has also been shown that down 

regulation of PARL after ischemia is an important step in ischemic neuronal injury and it 
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increases neuronal vulnerability by decreasing HtrA2 processing (Yoshioka et al., 2013). Goo 

et al showed that mitochondrial DNA conformational stability is related to HtrA2 and its 

deficiency causes mtDNA damage through reactive oxygen species and mutation, which 

may lead mitochondrial dysfunction and trigger cell death in ageing cells. All the above 

studies show the importance HtrA2 in maintenance of mitochondrial homeostasis and 

regulation of cellular apoptosis in relation to PD.  

1.5.5 ANIMAL MODELS OF HTRA2 IN RELATION TO PD 

The HtrA2 came into focus in relation to PD, when mnd2 (motor neuron degeneration 2) 

mutation found in mouse was identified as a homozygous missense mutation (Ser276Cys) in 

the protease domain of the nuclear-encoded mitochondrial serine protease HtrA2 (Yacobi-

Sharon et al., 2013). The mnd2 was identified in 1990 as a spontaneous, recessively 

inherited mutation that arose on the C57BL/6J inbred background (Jones et al., 1993). The 

earliest symptoms observed in these mice were altered gait and cessation of normal weight 

gain, followed by ataxia, repetitive movements and akinesis. Striatal neurons were most 

susceptible in these mice, but other neurons in the central nervous system, brain stem and 

spinal cord, including motor neurons were affected at later stages (Rathke-Hartlieb et al., 

2002). Both the features of necrosis and apoptosis were observed in these mice. Early 

degeneration of mitochondria was also noted (Rathke-Hartlieb et al., 2002; Jones et al., 

2003). This finding about mnd2 mice was followed by another important finding in which 

homozygous deletion of HtrA2 gene lead to similar phenotype as mnd2 mice with early death 

resulting from the loss of striatal neurons. These mice die within 30 days due to a 

Parkinsonian phenotype. These mice did not show degeneration of TH-positive dopaminergic 

neurons in the substantia nigra though the loss of neurons as well as TH-positive fibers was 

observed. The exact nature of cell death in these mouse lines is unclear, however, the 

reduced mitochondrial membrane potential and abnormal shape of mitochondria in electron 

microscopy certainly points towards mitochondrial dysfunction mediated cell death in these 
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mice. This suggested that while the serine protease activity of HtrA2 knockout mice have a 

protective function, the IAP binding motif does not have an obvious nonredundant 

proapoptotic role (Martins et al., 2004).  

To address this issue XIAP (a well-known substrate of HtrA2) knock out model has also been 

generated which showed no phenotype (Harlin et al., 2001). So, though it can´t be proved 

clearly, since HtrA2 might have some important substrates which are unknown still, but from 

the above models and results one can speculate a significant protective function of HtrA2 

that requires its protease activity. More recently it has been shown that transgenic 

expression of human HtrA2 in the central nervous system of mnd2 mice rescues them from 

neurodegeneration and prevents their premature death (Kang et al., 2013), which confirmed 

the neuroprotective role of HtrA2. In addition Liu and colleagues (2007) as an attempt to 

examine the biological relevance of wild type HtrA2 overexpression in mice, investigated the 

phenomenological data of organ weights, hair phenotype or pregnancy abnormalities, but 

found no defect. No cell death or behavioral evaluation was performed in this study. So with 

this limited approach the acquired results did not show an effect on overall phenotype.  

A neuroprotective role of HtrA2 has also been shown in Drosophila HtrA2 mutant model 

(Tain et al., 2009). Tain and colleagues showed in this study that Drosophila HtrA2 null 

mutants are viable but exhibit mild mitochondrial defects, loss of flight and climbing ability, 

male infertility and sensitivity to oxidative stress and mitochondrial toxins. These data were 

consistent with findings in mice and humans and suggest that HtrA2 is indispensable for 

mitochondrial integrity. It was also confirmed that HtrA2 is not required for developmental or 

stress-induced apoptosis in Drosophila. But similar studies on Drosophila could not replicate 

previous findings (Yun et al., 2008). The loss of function study by Yun and colleagues 

suggested that HtrA2 does not play an essential role in regulating mitochondrial integrity in 

the Pink1/Parkin pathway in Drosophila. Recent studies in mice also showed similar results 

where neurodegeneration in the HtrA2 mutant mice could not be rescued by overexpression 

of Parkin (Yoshida et al., 2010).  
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From the above findings it can be concluded that the role of HtrA2 in relation to PD is still not 

clear and established. Hence further studies need to be conducted to explain the role of 

HtrA2 in PD.  
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1.6 AIMS 

 

Neurological disorders can be modeled in animals so as to generate specific pathogenic 

events and behavioral phenotypes. PD is the second most common neurodegenerative 

disease, affecting 1 % of the population above the age of 55 years (Lees et al., 2009). There 

are several proteins and mutations in these proteins which have been implicated to play role 

in PD but much of this process still remains a mystery. The mitochondrial protease, 

HtrA2/Omi is localized to the mitochondrial intermembrane space and has a pro-apoptotic 

function when released in the cytosol. Its role in neuroprotection was initially demonstrated 

by neurodegeneration and mitochondrial dysfunction in the mice lacking HtrA2/Omi 

expression or function (Jones et al., 2003; Martins et al., 2004) Furthermore PD - associated 

variants in the HtrA2/Omi has been discovered in German, Belgian and Taiwanese PD 

patients (Strauss et al., 2005; Bogaerts et al., 2008; Lin et al., 2011). Although several 

studies have pointed to the importance of a mitochondrial role for HtrA2/Omi, the mechanism 

of neuroprotection and the relevance of mutations in relation to PD are still not clear.  

Therefore we sought to further understand the relevance of HtrA2/Omi and HtrA2/Omi 

mutations by generating transgenic (TG) mice overexpressing human wild type (TG HtrA2 

WT) and G399S (TG HtrA2 G399S) mutant HtrA2. Transgenic mouse lines overexpressing 

human HtrA2 WT and human HtrA2 G399S mutant were generated in our laboratory. 

The data obtained will be presented according to the following specific aims: 

Firstly to assess the expression of transgenic HtrA2 in the different brain regions of mice, 

using biochemical methods and then confirming it by immunohistochemical methods. Second 

aim was to determine the implications of overexpressing human WT and G399S HtrA2 in 

mice in relation to PD. As PD is characterized by motor and learning impairments and in 

some cases also by anxiety levels, we analyzed our HtrA2 mouse lines using behavioral 

assays such as rotarod, challenging beam walk and OF to assess PD phenotype. And then 
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finally investigate the mechanism underlying any behavioral or pathological phenotype 

observed in these mouse lines. This was also assessed by using various biochemical and 

immunohistochemical methods.  
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2 MATERIALS AND METHODS 

2.1 MATERIALS 

2.1.1 REAGENTS 

Unless mentioned otherwise, general chemicals were purchased from: Roche (Basel, 

Switzerland), Sigma (Steinheim, Germany), Invitrogen Life Technologies (Karlsruhe, 

Germany), Merck (Darmstdt, Germany). 

Specialized reagents Source 

1 Kb DNA ladder plus (#SM 1331/2/3) 

PageRuler Plus pre-stained protein ladder (#26619) 

Fermentas 

Invitrogen 

ECL Western blotting detection reagent (#RPN2109) GE Healthcare 

Complete protease inhibitor cocktail tablets 

(#04693116001) 

Roche 

Phosphatase inhibitor cocktail tablet (#04906845001) Roche 

Zeocin (#R250) Invitrogen 

GoTaq DNA Polymerase (#M8305) Promega 

Vectashield mounting medium for fluorescence (#H-1000) Vector laboratories 

Effectene transfection reagent (#301425)  Qiagen  

Hoechst stains (#62249) Thermo Scientific 

Mitotracker Green (#M-7514) Molecular Probes, Invitrogen  

Jung tissue freezing medium® (#020108926) Leica microsystems Nussloch 

GmbH 

Acetyl-Asp-Glu-Val-Asp-7-amido methyl coumarin (#A 

1086) 

Sigma 

Table 2.1 Specialized reagents  
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2.1.2 BUFFERS AND SOLUTIONS  

All buffers and solutions were prepared in distilled water unless otherwise stated.  

Buffer/Solution name Ingredients 

Phosphate buffered saline 

(PBS) 10X 

1370 mM NaCl, 27mM KCL, 81mM Na2HPO4 and 14.7mM 

KH2PO4 in dH2O, pH 7.4  

TENS buffer 100mM Tris pH 8.5, 5mM EDTA, 0.2%SDS (w/v), 200mM 

NaCl 

Proteinase K 20µg/ml water 

Homogenising buffer 50mM Tris, 150mM NaCl, 5mM EDTA 

Tris buffered saline 10X (TBS)  0.5M Tris-HCl, 1.5M NaCl, pH7.2 

Tris buffered saline –Tween 

(TBS + Tween) 

1x TBS, 0.05% TWEEN 20 (v/v) 

4% Paraformaldehyde Paraformaldehyde (w/v) in PBS was dissolved by boiling. 

The solution was cooled down on ice and filtered using filter 

paper 

Running buffer 124 mM Tris, 960mM Glycin, 0.005% SDS (w/v) 

Transfer buffer 2.5mM Tris, 19.2 mM Glycin , 20 % Methanol(v/v) 

5X- Laemmli-buffer 62.5 mM Tris-HCl pH 6.8, 5% ß-Mercaptomethanol (v/v), 2% 

SDS (w/v), 10% Glycin (w/v), 0.05% Bromophenolblue (v/v) 

Blocking solution 5% non-fat milk (w/v) in TBS for Western Blot (WB) 

5% normal goat serum in PBS for histology 

Complete protease inhibitor 

cocktail tablets solution 

1 tablet was dissolved in 2 ml of water. 

Phosphatase inhibitor cocktail 

tablet solution 

1 tablet was dissolved in 2 ml of water 

TAE buffer 40mM Tris, 0.05% acetic acid (v/v), 1mM EDTA in water, pH. 
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7.5-8.0 

Permeabilisation solution 0.2 % Triton-X-100 in PBS 

Assay buffer for caspase 3 

activity 

20mM HEPES, 0.1% (w/v) CHAPS, 5mM DTT and 2mM 

EDTA, pH 7.4  

Lysis buffer for caspase 3 

activity 

50mM HEPES, 5mM CHAPS, 5mM DTT, pH 7.4  

Table 2.2 Buffers and solutions  

2.1.3 KITS  

 
Kit Purpose Source 

Genopure plasmid midi kit Plasmid isolation Roche 

Quick change site directed 

mutagenesis kit 

Mutagenesis Strategene, 

FD NeuroSilver™ Kit II Silver staining for protein 

aggregates 

FD Neurotechnologies,inc, 

USA 

In Situ cell death detection 

kit, TMR red /TUNNEL KIT 

Apoptotic cell death Roche diagnostics, Basel, 

Switzerland 

LightCycler 480 SYBR 

Green I Master  

Quantitative real time pcr 

(qRT-PCR) 

Roche 

Table 2.3 Kits used  
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2.1.4 ANTIBODIES 

For Western blotting (WB) primary antibodies were diluted to the desired concentration in 5% 

milk (w/v) in 5 ml TBS-T. The mixture was stored at 4°. Primary Antibodies used for 

immunofluorescence were diluted in 5% (w/v) BSA. 

2.1.4.1 PRIMARY ANTIBODIES 

 
Antibody Species Dilution Source Special conditions 

WB IH/IF 

HtrA2/Omi (#AF1458) Rabbit 1:3000 1:500 R & D 

systems, 

 

Actin (#A5316) Mouse 1:5000  Sigma  

FLAG M2 - peroxidase 

(HRP) clone M2 

(#A8592) 

mouse 1:1000  Sigma  

LC3B (#2775) Rabbit 1:1000  Cell signaling 

laboratories 

PVDF membrane, wet 

blotting, antibody 

dilution in 5% BSA 

Complex IV (#MS404) Mouse 1:1000  Millipore Loading samples 

heated at 37°C 

VDAC (#AB10527) Mouse 1:10,000  Millipore  

PhosphoS400 HtrA2 

Generous gift from Dr. 

Helene Plun-Favreau (UCL 

Institute of Neurology, 

London, UK) 

Rabbit  1:500   

α-Synuclein (#S5566) Mouse  1:100 Sigma  

XIAP (#AF8221) Goat 1:1000  R & D  
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systems 

Trap1 (#612344) Mouse 1:1000  BD 

Transduction 

laboratories 

Loading samples 

heated at 37°C 

FLAG M2 monoclonal 

antibody (#F1804) 

Mouse   1:100 Sigma  

Cleaved caspase-3 

(D175) (#9661) 

Rabbit  1:1000 1:200 Cell signaling 

laboratories 

 

Cleaved caspase 9 

(#9509) 

Rabbit 1:1000  Cell signaling 

laboratories 

 

Ubiquitin (# MAB1510) Mouse 1:4000  Millipore  

Table 2.4 Primary Antibodies 

2.1.4.2 SECONDARY ANTIBODIES 

 
Antibody Dilution Source 

WB IH/IF 

Anti-mouse HRP 1:5000  GE Healthcare 

Anti-rabbit HRP 1:10,000  GE Healthcare 

Anti-goat HRP 1:5000  GE Healthcare 

Anti-Mouse Alexa Fluor 488  1:1000 Invitrogen 

Anti-Rabbit Alexa Fluor 546  1:1000 Invitrogen 

Αnti-Mouse Alexa Flour 546   1:1000 Invitrogen 

Table 2.5 Secondary Antibodies 
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2.1.5 SPECIALIZED INSTRUMENTS 

 
Instrument Source 

Fluorescence Microscope Zeiss 

Live Cell MicroscopeAxiovert 2000 plus Zeiss 

incubator XL 

Zeiss  

Leica VT1000S vibrating Blade Microtom Leica  

Cryostat Leica  

iBlot system Invitrogen 

Light Cycler Roche 

Perfusion pump ISMATEC 

NanoDrop Nanodrop 

T10 basic ULTRA TURREX homogeniser IKA®-Werke GmbH & Co. KG, Staufen 

Table 2.6 Instruments used 

2.1.6 MOUSE LINES USED 

 
I. C57BL/6 Black 6 wild-type mice used for breeding and maintenance of 

transgenic lines (Charles River, Germany) 

II. Transgenic (TG) 

HtrA2 WT 

Black 6 mice overexpressing human wild type (WT) HtrA2            

III. Transgenic (TG) 

HtrA2 G399S 

Black 6 mice overexpressing human HtrA2 with G399S 

mutation  
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2.2 METHODS 

2.2.1 MODELS  

2.2.1.1 MICE 

2.2.1.1.1 BACKGROUND ABOUT MOUSE LINES 

 

The TG HtrA2 WT and TG HtrA2 G399S DNA constructs were created by Nicole Kieper and 

Dr. Mira Lang (previous PhD students in our laboratory) and the mouse lines were generated 

by standard pronuclear injection (Dr. Thomas Ott, IZKF-Service Transgene Tiere). 

Subsequent breeding and husbandry were carried out in the animal facility of the Hertie -

Institute.  

I. GENETICS 

 

Full length FLAG-tagged WT HtrA2 cDNA was cloned into a pCMV-Tag4A vector (cloning 

and description in Strauss et al., 2005). Then the pCMV-Tag4A vector was digested with 

EcoRV and KpnI and cloned into the pBluescript II KS (-) vector (Agilent Technologies, 

#212208). The mouse Prp promoter was a kind gift from Kathrin Grundmann (University of 

Tubingen) and was also cloned into the pBluescript vector in front of the HtrA2 cDNA. A poly 

A tail was finally cloned after the HtrA2 DNA (Fig. 2.1) 

 

Figure 2.1 Cloning sites in pBluescript II KS (-) vector used to generate TG mouse lines. Arrows represent PCR 

primers. 
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II. SELECTION 

 

Potential transgenic founder mice were identified by using conventional PCR. DNA from ear 

skin was isolated by isopropanol precipitation and a PCR was performed. The following 

primers for HtrA2 were used: 5’-GTTAGCTCTGCTCAGCGTTCCAG-3’ as forward primer in 

the HtrA2 cDNA and 5’CGTCGTCATCCTTGTAATCCTCG-3’ as reverse primer starting in 

the FLAG-tag sequence. If the transgenic construct is present, a 576 bp PCR product can be 

detected. Positive male founders F1 were bred with 8 week old C57BL/6N females (Charles 

River, Germany). Animals from the F2 generation were used for analysis of the organ 

specific expression of the recombinant protein. 

2.2.1.1.2 BREEDING STRATEGY FOR MICE 

 

Heterozygous (Het´) mice were crossed with each other and the resulting homozygous 

(Hom´) mice were identified by quantitative RT PCR (qRT-PCR). These homozygous mice 

were crossed with C57BL/6 (NonTG) mice to generate heterozygous mice. 

 

Figure 2.2 Breeding strategy where Het´ ‘= heterozygous mice, Hom´= homozygous mice and Non-TG= non-

transgenic mice. 
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2.2.1.1.3 NOMENCLATURE USED OF MICE BRAIN REGIONS: 

 

For WB and immunohistochemical studies the different brain regions were assigned the 

following names. 

 

Figure 2.3 Assigned regions of mice brain used for WB and immunohistochemical studies (image adapted 

from Gensat ADULT_ATLAS; http://www.gensat.org/atlas/ADULT_ATLAS_09.jpg) 
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2.2.1.2 CELLS 

� SH-SYSY 

� MEF’s 

2.2.1.2.1 CELL CULTURE 

I. Thawing of SH-SY5Y cells and MEF cells 

 

Cell culture of SH-SYSY cells and MEF cells involved similar media and procedures. Cells 

stored in liquid nitrogen were thawed quickly in a 37°C pre-warmed water bath and 

transferred into 5 ml of pre-warmed medium. After centrifugation for 5 min at 1000 rpm, the 

cell pellet was resuspended in 10 ml of pre-warmed medium and added to 75 cm2 flasks. 

II. Cell culture routine 

 

Cells were split every 2-3 days according to their confluency. For this, cell culture medium 

was removed and cells were washed once with 7 ml PBS. To detach cells from the flask, 2ml 

of pre-warmed trypsin was added and incubated at 37° for 3-5 min. After adding 10 ml pre-

warmed medium, all the cells were tried to be retrieved into the medium and in order to break 

clusters the media was pipetted up and down for 3-4 times. Later the whole cell suspension 

was spun down for 5 min at 1000 rpm and the resulting cell pellet resuspended in 10 ml 

culture medium. Cells were split 1:4 in a new flask to a final volume of 10 ml. 

2.2.1.2.2 TRANSFECTION OF CELLS 

 

MEF cells and SH-SYSY cells were transfected with effectene transfection reagent, using the 

protocol provided by the company. On the day before transfection, cells were plated at an 

adequate density to give 60% confluency on the following day (200,000 cells per well of a 6-

well plate). For each well 1 µg/µl concentrated DNA was used for transfection using the 
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protocol. Cells were harvested for protein lysates or used for immuncytochemistry after two 

days of incubation at 37°C and 5% CO 2. 

2.2.1.2.3 LIVE CELL IMAGING MICROSCOPY IN MEF CELLS 

 

Live cell imaging was assessed to study colocalisation of mitochondria with lysosomes in 

MEF cells. Cells were cultured in Lab-TekHII chambered coverglasses (#155382; Nalge 

Nunc International). Analysis of the colocalisation of mitochondria with lysosomes was 

carried out for MEF cells by staining mitochondria with 100 nM Mito Tracker Green FM 

(Invitrogen, USA) and 100 nM Lysotracker Red DND-99 (Invitrogen, USA) for 15 minutes. 

Hoechst 33342 was used to stain nuclei. 

Live cell imaging analysis was performed using an inverted Zeiss Axiovert microscope (Zeiss 

Plan-Apochromat 63x/1.4) with an incubation chamber temperature at 37°C, a humidified 

atmosphere, and 5% CO2. Stacks of the images were taken with an AxioCamMRm camera 

(Zeiss, Germany) with distances 0.240 µm per stack. For each image, three to five stacks 

were taken. The series of images were saved uncompressed and analysed with AxioVision 

software (Zeiss, Germany).  

2.2.2 MOLECULAR BIOLOGICAL EXPERIMENTS 

2.2.2.1 GENOTYPING  

 

In order to isolate DNA, skin of mice was used. For this an ear biopsy was performed from 

each mouse. This skin was then used for DNA isolation.  

2.2.2.1.1 DNA ISOLATION 

 

200µl TENS buffer and 10µl of proteinase K was added to the skin and then left overnight at 

55° C on a shaker. To this 87 µl of 5M NaCl was add ed and left on ice for 10 minutes. Then 

the mixture was centrifuged at 14000 rpm for 20 minutes at room temperature (RT). The 
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supernatant was aspirated and the pellet was discarded.  Then 200µl of 100 % isopropanol 

was added to this supernatant and left at RT for 10 minutes. The mixture was centrifuged 

again at 14000 rpm for 20 minutes and the supernatant was discarded and the pellet was 

stored. The pellet was washed with 70% (v/v) ethanol solution for 10 minutes at 14000 rpm. 

Then the supernatant was discarded and the DNA pellet was left for drying for two hours at 

RT. The DNA pellet was then mixed with 30 µl of water and used for Polymerase Chain 

Reaction (PCR). 

2.2.2.1.2 QUANTITATIVE RT–PCR (QRT-PCR)  

 

In order to identify homozygous mice from the mixed population of mice, qRT-PCR was 

used. A LightCycler I and SyberGreen (both provided by Roche) were used for the qRT-

PCR. The amount of produced PCR product was detectable with SyberGreen. This dye 

intercalates in the DNA and gives fluorescence which is then read by the light cycler and 

gives a reading in the form of arbitrary values. A standard curve was made for a house-

keeping gene (mouse ß-actin) and for the gene of interest (hHtrA2) of a heterozygous 

animal. The results of the PCR with unknown samples were compared with the standard 

curve. In each run a negative control (DNA of non-transgenic animal) and a positive control 

(DNA of heterozygous animal) was included. The ∆Ct value of the positive control was set to 

1. The ∆Ct value of qRT-PCR with unknown samples was compared to the values of positive 

control.  

qRT-PCR Conditions: 

95° C – 10´ 

95° C – 30´´ 

65° C – 10´´ 

72° C – 20´´ 

72° C – 3´ 

8° C- infinity ∞  

45X cycles 
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� Acquisition of data at every cycle + melting curve. 

ß-Actin was used as a house keeping gene.  

Gene Forward primer Reverse  

HtrA2 5´CCAAGCTTTCCCGATGTTCAGCA3´ 5´-CGTCGTCATCCTTGTAATCCTCG-3´ 

ß-Actin 5´GATCTGGCACCACACCTTCT 5´TCTTCTCCCGGTTAGCTTTG3´ 

Table 2.7 Primer combination used for qRT PCR 

2.2.2.1.3 CONVENTIONAL PCR 

 

In order to determine the expression of transgenic human HtrA2 gene in mice, the HtrA2 

gene was amplified using conventional PCR and was run on a 1% agarose gel. For this the 

primers flanking the exogenous gene were used and if the exogenous gene was present in a 

particular sample it was amplified, while in case of the absence of exogenous gene (Non-TG 

mice) there was no amplification.  

Conventional PCR conditions: 

95° C        5´ 

95°C……..30´´ 

55°C         30´´ 

72°C……45´´ 

72°C      3´ 

8°C     infinity ∞ 

Gene Forward primer Reverse  

HtrA2 5´ GTTAGCTCTGCTCAGCGTTCCAG-3´ 5´-CGTCGTCATCCTTGTAATCCTCG-3´ 

Table 2.8 Primer combination used for conventional PCR 

  

25X Cycles 
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Components Amount 

DNA 2-3µl of ear biopsy lysate 

Reaction buffer (5X) 5µl 

dNTP´s (2mM) 1,0µl 

Primer forward (10mM) 2,0µl 

Primer reverse (10mM) 2,0µl 

Betaine (1M) 0,5µl 

GoTaq polymerase 0,3µl 

Water 13,0µl 

Table 2.9 Components of typical PCR reaction 

2.2.2.1.4 AGAROSE GEL ELECTROPHORESIS 

 

Agarose gel electrophoresis was performed to separate and analyze DNA: The DNA was 

visualized by adding 0.2 µg/ml ethidium bromide to the molten agarose before casting it. 

DNA strongly binds to ethidium bromide by intercalating between the bases and is 

fluorescent, absorbing UV light and transmitting the energy as visible light. Samples were 

diluted in 5X loading dye before loading and 1 kb molecular weight ladders were used to 

analyze the size of the DNA. Gels were run at 100 V in TAE buffer. 

2.2.2.2 PREPARATION OF PLASMID-DNA FROM BACTERIA 

 
Bacteria having the plasmid of interest were grown in 2 ml of antibiotic-free LB-medium at 

37°. On the next day 200 µl of the bacterial cultur e was inoculated into 200 ml LB-medium 

containing an appropriate antibiotic and grown to an OD600 of 0.5. The culture was 

centrifuged at 3500 rpm for ten minutes, the resulting pellet was resuspended in the buffer 

provided in the Genopure plasmid midi kit and the proceeding plasmid-DNA purification 
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procedure was performed using the Genopure plasmid midi kit protocol. DNA concentration 

was measured using NanoDrop. 

2.2.2.3. IN-VITRO MUTAGENESIS 

 
In-vitro mutagenesis was performed using Quick change site directed mutagenesis kit 

according to the protocol stated by the company was followed except that instead of 

PfuTurbo DNA polymerase that was provided with the kit, GoTaq polymerase was used for 

the PCR reaction. For designing the primers for mutagenesis Stratagene´s web based 

QuickChange primer design program available online at 

http://www.stratagene.com/qcprimerdesign was used. 

2.2.2.4 TRANSFORMATION OF COMPETENT BACTERIA  

 
For transformation of competent bacteria, these were slowly thawed on ice. Meanwhile 2µl 

DNA was added to the bacterial aliquot (100µl) and incubated on ice for 20 minutes. After 

this bacteria were given heatshock at 42°C followed  by 2 min. incubation on ice. To this 

bacterial suspension, 250-500µl of prewarmed LB-medium was added and the mixture was 

incubated for 1 hour at 37° C under continuous shak ing (300 RPM).Bacteria were then spun 

down for 2 min at 1000 rpm and the resulting pellet was resuspended in 100µl LB-medium. 

10µl and 90µl of the bacterial solution were plated on LB agar plates with the corresponding 

antibiotics. Incubation was performed in inverted position at 37°. On the next day, single 

bacteria clones were picked and inoculated in 2ml LB-medium. After 8-10 hours growth at 

37° and 250 rpm, 200µl of this culture was inoculat ed in 200 ml LB-medium with antibiotics 

and grown at 37°.  
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2.2.2.5 PREPARATION OF GLYCEROL STOCKS 

 
One colony of bacteria was picked up from the agar plate by a pipette tip and put into 2 ml of 

LB broth media with the respective antibiotic. And the bacteria were allowed to grow in this 

media overnight. Next day, out of the bacterial suspension obtained, 700 µl was added in the 

freezing tube containing 500 µl of autoclaved 50 % glycerol (v/v) and the aliquot was frozen.  

2.2.3 BIOCHEMICAL METHODS 

2.2.3.1 PREPARATION OF PROTEIN LYSATES FROM MOUSE TISSUE 

 
Organs and different regions of brain were dissected from mice in ice-cold conditions and 

transferred into 1.5 ml reaction tube and washed with PBS, and then transferred immediately 

into liquid nitrogen. After preparation of all tissue samples, these were lysed by adding 

homogenizing buffer containing 4% complete protease inhibitor cocktail solution (v/v) and a 4 

% phosphatase inhibitor cocktail solution (v/v) in each 1.5 ml reaction tube and then 

homogenized using a T10 basic ULTRA TURREX homogenizer. The resulting homogenate 

was centrifuged at 14000 rpm for 30 min at 4°C and the supernatant was transferred into a 

new ice-cold reaction tube. The same step was followed two times in order to remove the 

impurities. Next 10% (v/v) of Igepal® CA-630 was added to each supernatant and vortexed 

and left on ice for 10 minutes. Again the mixture was centrifuged at 14000 rpm for 30 min. at 

4°C. The protein lysate achieved as a supernatant w as then transferred into a new 1.5 ml 

reaction tube and was frozen.  
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2.2.3.2 PREPARATION OF PROTEIN LYSATES FROM CELL CULTURE 

 
Cells cultivated on 6-well plates, were washed once with ice-cold PBS. PBS was removed 

completely and 200 µl lysis buffer (1% triton in PBS) was added to each well. This was 

followed by 5 min incubation on ice and scrapping off the cells using a cell-scrapper. Cell 

lysates were transferred into a reaction tube on ice and homogenized manually and then 

centrifuged for 30 min at 4° C at 14000 rpm. The su pernatant obtained was stored and the 

pellet was discarded. And then the protein was estimated using a Bradford method described 

in section 2.2.5.2. 

2.2.3.3 PROTEIN ESTIMATION (BRADFORD METHOD) 

 
In order to load equal amounts of proteins on gel, protein lysates were estimated by Bradford 

method. Seven protein standards were used for the standard curve 0, 2, 4, 6, 8, 10, 12µg/µl. 

From each standard 50µl was added to a 96 well plate in triplicates. Similarly 1µl of unknown 

lysate plus 49 µl of water was added in triplicates to this similar plate. Now to this 150 µl 

Bradford solution (1:5 Bradford in water) was added and the protein estimation was done 

using protmr program in the Elisa reader.  

2.2.3.4 WESTERN BLOT (WB) 

2.2.3.4.1 SDS-POLYACRYLAMIDE-GEL ELECTROPHORESIS (SDS PAGE)  

 

This method is used to separate proteins based on their size. Therefore SDS, which has a 

negative charge, binds to all the proteins and converts the charge of each individual protein 

to a negative charge. The separation of proteins then depends only on their molecular 

weights. Composition of the separating and the stacking gel is given in the tables below. 

50µg of protein was used for loading on the gel after adding 5X Laemmli buffer to a final 

concentration of 1X and boiling at 95° or 37° for 7  minutes. As a standard, 6µl marker was 
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used for loading. Electrophoresis was started with 80 V, and after 30 minutes was increased 

to 120 V. 

2.2.3.4.2 ELECTRO BLOTTING 

 

Unless otherwise stated in results section, after the SDS-PAGE proteins were transferred on 

a nitrocellulose membrane in case of semidry blotting for which iblot apparatus was used 

following the user manual. 

 In case of wet blotting polyvinylidenfluorid (PVDF) membrane was used. Therefore PVDF 

membrane was activated for 1 min in 100% methanol and equilibrated in transfer buffer 

together with the gel, 6 Whatman papers and the sponges. The blotting apparatus was 

assembled in the following sequence: 

 

Transfer was performed in a 4° room for overnight a t 15 volts. Then the membrane was 

incubated in a blocking solution for 1 hour at room temperature on the shaker. After that the 

membrane was incubated with the primary antibody for overnight at 4°. Next day membrane 

was washed for 3 X 6 min with the TBS-T and then incubated in secondary antibody for 1 

hour followed by 3 X 6 min washing steps with TBS-T. Detection was performed with a 

chemiluminescent hyperfilms (Amersham). 
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2.2.3.4.3 COMPOSITION OF POLYACRYLAMIDE GELS 

Stacking gel 4% 

Acrylamide 0.33 ml 

ddH2O 1.15 ml 

0.5M Tris (pH=) 0.5 ml 

10% (w/v) SDS 0.02 ml 

TEMED 0.002 ml 

10% (w/v) APS 0.02 ml 

Table 2.10 Stacking gel 

Separating gel 7.5% 10% 12% 

Acrylamide 2.5 ml 1.7 ml 2 ml 

ddH2O 4.85 ml 2 ml 1.7 ml 

1.5M Tris (pH=) 2.5 ml 1.3 ml 1.3 ml 

10% SDS 0.10 ml 0.05 ml 0.05 ml 

TEMED 0.003 ml 0.002 ml 0.002 ml 

10% APS 0.05 ml 0.05 ml 0.05 ml 

Table 2.11 Separating gel 

2.2.3.5 CASPASE-3 FLUOROGENIC ASSAY 

 

Caspase-3 activity was assessed in the different regions of brain using a fluorescence-based 

assay. For this Ac-DEVD-AMC was used as a substrate for cleaved caspase 3. Different 

brain regions of mice (cortex, basal ganglia and cerebellum) were isolated and homogenized 

using lysis buffer (1ml for cortex region, 500µl for cerebellum and basal ganglia). The 

homogenized samples were left on ice for 20 minutes and then centrifuged at 200g at 4°C for 

5 minutes to remove tissue and cell debris. The assay was prepared in triplicate. 30 µl of 

lysate was transferred to a black 96-well plate and made up to 80µl with assay buffer. 
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Reaction was initiated by adding Ac-DEVD-AMC to a final concentration of 400 µM in a total 

reaction volume of 100µl. Fluorescence was measured (excitation 360 nm and emission 450 

nm) every 5 min for 3 h at 37°C. Data was normalize d for protein content, which was 

measured by Bradford method and expressed as ∆ fluorescence units/min/µg total protein. 

2.2.4 BEHAVIORAL EXPERIMENTS 

The three mouse lines were characterized using different behavioral methods for motor and 

coordination effects and anxiety effects. 12 females from each mouse line were used for 

behavioral studies. 

2.2.4.1 ROTAROD 

 

Figure 2.4 Rotarod apparatus   

Rotarod is a motor impairment test for the rodents. It consists of wheels rotating with an 

increasing acceleration from 4 to 40 rpm for seven minutes. The length of time that a given 

mice stays on this rotating wheel is a measure of their balance, coordination and motor 

impairment (Jones and Roberts, 1968). The mouse which rides on the wheel for a shorter 

time is assessed as motorically impaired. 

Mice were trained in one day by three trials, each separated by 30 minutes minimum. 

1 Training day:  

First trial:        3 minutes at 8 rpm 

Second trial:   3 minutes at 16 rpm 
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Third trial:       3 minutes at 20 rpm) 

Mice falling before 30 seconds are brought on the rotarod again (3 times maximum) 

4 Testing days: 

First trial:  7 minutes acceleration 4 to 40 rpm  

Second trial: 7 minutes acceleration 4 to 40 rpm 

Third trial: 7 minutes acceleration 4 to 40 rpm 

The test was done in the dark phase and was repeated every 8 weeks starting from 6 

months until the age of 14 months. The weight of the mice was taken at every time point, 

before the test in order to monitor the health of the mice and to assess if the phenotype 

observed is not the result of weight gain. 

2.2.4.2 CHALLENGING BEAM TRAVERSAL (MOTOR PERFORMANCE AND 

COORDINATION TEST) 

 

Figure 2.5 Challenging beam walk apparatus 

Motor performance was measured with a novel beam test adapted from the traditional beam-

walking test (Carter et al., 2001; Fleming et al., 2004). The beam was constructed from 

Plexiglas (Plastics Zone, Woodland Hills, CA) and consisted of four sections (25 cm each, 1 

m total length), each section having a different width. The beam started at a width of 3.5 cm 

and gradually narrowed to 0.5 to 1 cm increments. Underhanging ledges (1 cm width) were 

placed 1.0 cm below the upper surface of the beam. Animals were trained to traverse the 

length of the beam starting at the widest section and ending at the narrowest, most difficult 

section. The narrow end of the beam led directly into the animal’s home cage.  
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Animals were given two days of training before testing, and all training was performed 

without the mesh grid. On the first day, animals were given two assisted trials, which involved 

placing the animal on the beam and positioning the home cage in close proximity to the 

animal. This encouraged forward movement of mice along the beam. After two assisted 

trials, animals were able to traverse the entire length of the beam unassisted. Day one of 

training ended after all animals completed one unassisted run across the entire length of the 

beam. On the second day of training, animals were required to run two trials.  

To make the test more difficult for mice, on the day of the test, a mesh grid (1 cm squares) of 

corresponding width was placed over the beam surface leaving a 1 cm space between the 

grid and the beam surface. The underhanging ledges provided a support or “crutch” for the 

animal to use when a limb slipped on the grid (Hua et al., 2002) and permits assessment of a 

deficit chronically so that the mice do not need to use compensatory motor strategies to 

complete the task (Hua et al., 2002) Animals were then videotaped while traversing the grid-

surfaced beam for a total of three trials. 

Videotapes were viewed and rated in slow motion for errors in steps made by each animal, 

and time to traverse across 3 trials. An error was counted when, during a forward movement, 

a limb (forelimb or hindlimb) slipped through the grid and was visible between the grid and 

the beam surface. An individual animal could make a maximum of four slips per step. Slips or 

time of movement was not counted if the animal was not making a forward movement or 

when the animal’s head was oriented to the left or right of the beam. Errors per trial and time 

to traverse the whole beam were calculated for Non TG and TG HtrA2 mice across all three 

trials and averaged. 
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2.2.4.3 OPENFIELD 

The Openfield (OF) test was developed by Calvin S. Hall to test emotionality of rodents (Hall 

CS et al. 1932). It is a commonly used qualitative and quantitative measure of general 

locomotor activity and exploratory behavior in rodents (Stanford, 2007). It is also used to 

assess anxiety by including additional measures of time taken to reach the center (latency) of 

the field, defecation and the first five minutes of activity (Prut and Belzung, 2003) 

 

Figure 2.6 Field of OF test  

OF consists of a table with surrounding walls. The field is marked in a grid and square 

crossings as shown in the figure. The mouse is deposited at one corner of the table and left 

alone in the room and the movement of the mice is traced for 10 minutes by the camera 

attached to the computer which consists of OF software. The results obtained by OF 

software were converted into the excel sheets and then these results are used to assess 

different parameters for example - total time of movement of mice, time taken by each mice 

to come to the center from periphery and the speed of mice.  

  

  

 

Periphery 

Center 3  

 

 

Center 1 

Center 2 
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2.2.5 HISTOLOGY 

2.2.5.1 IMMUNOCYTOCHEMISTRY 

For Immunocytochemical staining of cells, culture medium was removed completely and cells 

were washed once with pre-warmed PBS. Cells were fixed in 100 % ice-cold methanol for 10 

min followed by three times washing with PBS and permeabilization for 10 min in 0.2% 

Triton-X-100/PBS. 

After three times washing with PBS, cells were blocked for 30 min in 5% BSA (v/v) and 

primary antibodies applied for 2 hours at RT. Afterwards, cells were washed three times with 

PBS and were incubated in secondary antibody solutions for 1 hour. Cells were washed 

three times again in PBS and stained for nuclei with Hoechst for 5 min at RT. Finally, cells 

were washed once in PBS and then the coverslips containing cells were mounted on the 

slides using a mounting medium. 

2.2.5.2 PREPARATION OF TISSUE SAMPLES FOR HISTOLOGY 

2.2.5.2.1 PERFUSION OF MICE: 

 

Since the blood vessels present in the brain could interfere with the staining procedures, 

animal was perfused and fixed before the brain was used for stainings.  

The following equipment and chemicals were prepared in advance before starting the 

perfusion procedure: 

Equipment Chemicals 

Peristaltic pump 1X PBS 

1 large needle 

4 small needles 

For EM analysis: 2.5% (w/v) Glutaraldehyde in 4 % 

(w/v) paraformaldehyde solution.  

Scissors 

Scalpel 

For fluorescence stainings: 4 % (w/v) 

paraformaldehyde solution 
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Forceps Isofluorene 

Container for mouse 

Butterfly needle 

 

The heavily anesthetized animal was placed on its back on a rack or paraffin block over a 

sink. To ensure the mouse is properly sedated after lethal anesthesia, the toes were 

punched to judge its level of response to painful stimulus. Once the mouse was sedated, the 

abdomen was made wet with Ethanol. The mouse was placed on a corked surface with 

abdomen facing up. Using the small needles, the four paws were secured to the surface 

spreading them as wide as possible. Then the skin was grabbed with forceps at the level of 

the diaphragm, and was cut to expose the liver. The skin was cut laterally and then up, 

cutting through the ribs. Flap was lifted and the cutting was continued until the heart was 

easily accessible. The chest flap was secured to a corked surface with larger needle. The 

butterfly needle was injected into the left ventricle, and the pump was turned on with a flow 

no higher than 0.8 ml/min of PBS. Then immediately the right atrium was cut. Pumping was 

continued in buffer until the liver became a light coffee color and the skin turns white instead 

of red. At this point, pumping was started by using a fixative for 15 mins. The tail flexibility 

was tested as an indication for the animal being fixed. The pump was turned off and again 

switched on to pump buffer. Pump was allowed to flow until air bubbles were expelled out 

and that only buffer is in the line. After this the pump was turned off.  

Now the brain was isolated from the perfused mice and kept overnight in 4% (w/v) PFA 

solution followed by 2-3 days incubation in 30% (w/v) sucrose solution. And then was kept at 

frozen conditions. 

2.2.5.2.2 CRYOSECTIONING:  

 

The freezed brains were kept at minus 80 for least 48 hours before preparing cryosections. 

The brain was cut half and then from this half brain, sequential sagittal sections of 6 µm 

thickness were prepared using a cryostat. Three consecutive sections were mounted onto 



MATERIALS AND METHODS 

 

56 

 

the SuperFrost Plus slides (Fisher Scientific) and were freezed after drying at room 

temperature for 2 hours. 

            

Figure 2.7 Examples of sagittal sections from Allen mouse brain atlas 

2.2.5.3 IMMUNOHISTOCHEMICAL METHODS 

 

Unless otherwise stated, immunohistochemistry on cryosections was performed using the 

following procedure: 

The cryosections were kept at 37° C for 30 min. and  then washed with water and PBS for 10 

min. respectively. For detection of proteinase K (PK) resistant alpha-synuclein, an extra-step 

including digestion of sections for 30 min (10mM tris/HCL pH 7.8, 100 mM NaCl, 0.1% 

Nonidet p-40, 20µg/ml PK, 37°C) was incorporated. T he sections were then washed with 

PBS for 3 times 10 min each. The sections were then covered with the blocking solution (5 % 

BSA) and incubated for 1 hour at RT. Then the sections were incubated overnight in the 

primary antibody solution in blocking solution. Next day the slides were washed 3 times with 

PBS each 10 min and then incubated in 1:1000 secondary antibody solutions for 1-2 hours at 

RT followed by 3 washings with PBS each 10 min. In order to stain nuclei Hoechst 33342 

was used in 1:5000 dilutions in PBS and the sections were incubated in this solution for 10 

min. followed by washing in PBS for 10 min. The sections were mounted using Vectashield 

mounting medium for fluorescence and kept at 4° C t ill the pictures were taken with the 

fluorescence microscope. 
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The TUNNEL staining and silver staining was performed according to user manual provided 

with the TUNNEL KIT and FD NeuroSilver™ Kit II respectively. 

2.2.6 DATA ANALYSES AND STATISTICS  

 
All the behavioral was analyzed using GraphPad Prism 5. For statistical analyses a one-way 

analysis of variance (ANOVA) was performed. Statistical significance was determined by a 

following "Tukey's Multiple Comparison Test" with *, ** and *** indicating p≤0.05, 0.01 and 

0.001, respectively. In bar charts, calculated with Excel, error bars show standard deviation.  

All Immunohistochemical pictures were taken using axion software. For colocalisation studies 

ImageJ software was used. Counting in TUNEL staining was done manually. Statistics were 

done using Microsoft excel and statistical significance was determined by paired t test with *, 

** and *** indicating p≤0.05, 0.01 and 0.001, respectively 

All densitometry analysis of WB was done using ImageJ software (Burbulla et al., 2010). 

 

 

 
 



 

58 

 

 
  



RESULTS 

 

59 

  

3 RESULTS 

3.1 MICE EXPERIMENTS 

3.1.1 BIOCHEMICAL & IMMUNOHISTOCHEMICAL 

CHARACTERIZATION OF HUMAN HTRA2 TRANSGENIC MOUSE 

LINES 

 
The G399S mutation in HtrA2 has been found in some PD patients (Strauss et al., 2005) but 

its role in this disease is unknown. To determine the relevance of the G399S mutation in PD 

we engineered mice overexpressing either human wild type HtrA2 (referred to as TG HtrA2 

WT line for this thesis) or human G399S mutant HtrA2 (referred to as TG HtrA2 G399S line 

for this thesis). C57BL/6 mice from the same genetic background were used as non-

transgenic controls (referred to as Non-TG line for this thesis).  

The mice were firstly characterized in terms of expression of the transgenic HtrA2 through 

several biochemical and immunohistochemical methods. In this section, the expression of 

the transgenic WT HtrA2 and G399S HtrA2 in the transgenic lines at mRNA, and protein 

level are presented. 

3.1.1.1 GENOTYPING 

 

Homozygous mice were generated by crossing two heterozygous mice from each line. qRT 

PCR was carried out to identify homozygous mice from the mixed population which were 

then further used for breeding with Non-TG mice to obtain large numbers of transgenic 

heterozygous mice to be used for the planned behavioral (12 mice from each line), 

biochemical (20 mice from each line) and immunohistochemical characterization experiments 

(20 mice from each line). 
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qRT-PCR was performed, as described in the materials and methods section (chapter 2). In 

each PCR, a negative control (DNA from a non-transgenic animal) and a positive control 

(DNA from a heterozygous animal) were included. The ∆Ct values of the heterozygous 

positive controls ranged from 0.8 to 1 in the case of the TG HtrA2 WT line and from 2.5 to 3 

for the TG HtrA2 G399S line. The ∆Ct values of the unknown samples were compared to the 

values of heterozygous controls of the corresponding lines. The ∆Ct values of homozygous 

mice were double that of the heterozygous controls i.e. 2 and 6 for TG HtrA2 WT and TG 

HtrA2 G399S line respectively. 

 

Figure 3.1qRT PCR identification of homozygous mice from the mixed population of transgenic mice. DNA 

was isolated from the ear skin biopsies and used as template for qRT PCR. The reference for homozygous mice 

was DNA from heterozygous mice for the house-keeping gene (mouse ß-actin) and for the gene of interest 

(hHtrA2). Ct values of the samples were compared with a standard curve made from the different 

concentrations of DNA ranging from 0 to 20ng from 5 combined samples of heterozygous mice to calculate ΔCt. 

The ΔCt value of the mean average heterozygous positive controls was set to 1. 5-6 homozygous mice were 

recognized for each line from approximately 60 mice in total. Here are shown in the graph the group of 

homozygous mice found in each line along with the heterozygous controls. 

 

Identified homozygous mice were then bred with Non-TG mice to generate heterozygous 

mice. The heterozygous mice were subsequently identified using conventional PCR followed 

by agarose gel electrophoresis. Owing to the high homology (95%) of the mouse and human 

cDNA sequence, only primer pairs mapping to the C-terminal end and FLAG-tag were unique 

to transgenic animals. As a result the 576 bp DNA product could be seen on the agarose gel 

only in the case of transgenic mice. No band could be seen in the case of Non-TG mice. 

Heterozygous animals were identified by the presence of a 576bp band on the agarose gel. 
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Figure 3.2Conventional PCR identification of transgenic mice. Integration of the insert (576bp) detected in the 

isolated DNA by conventional PCR using forward primer in the upstream region of the insertion and a reverse 

primer in the HtrA2-FLAG cDNA sequence downstream of the insertion. DNA was isolated from the ear skin 

biopsies. The arrow indicates the 576bp DNA PCR product on 1% agarose gel (M= DNA marker). 

3.1.1.2 EXPRESSION OF THE HUMAN HTRA2 TRANSGENE IN DIFFERENT 

BRAIN REGIONS OF TG HTRA2 WT AND TG HTRA2 G399S MICE 

 
Lysates were prepared from five different brain regions of non-transgenic and both 

transgenic mouse lines. Lysates were prepared from tissue of cortex (CTX), basal ganglia 

(BG), cerebellum (CBM), brain stem (BS) and olfactory bulb (OB). Several Western blots 

from different mice, for each line were probed with a rabbit HtrA2 antibody which recognizes 

both the endogenous and the transgenic HtrA2. Fig. 3.3 below shows examples of HtrA2 

protein expression in Non-TG and transgenic mice. Since the expressed transgenic human 

HtrA2 was tagged with FLAG, it resolves very slightly higher (the FLAG sequence consists of 

8 amino acids and has a predicted weight of ῀1 kDa. 

The same blots were probed for ß-actin or GAPDH as a loading control. The Human HtrA2 

WT and G399S constructs were overexpressed in the mice under the Proline-rich-protein 

(Prp) promoter. As expected, the transgenic HtrA2 was overexpressed in different brain 

regions in both the mouse lines as seen in figure 3.3A, with most pronounced expression 

levels in the cerebellum for the HtrA2 WT overexpressing mice. The expression looked 

similar in cortex, basal ganglia and olfactory bulb region of two transgenic mouse lines in the 

figure 3.3 (A). In the cerebellum the expression was more pronounced in TG HtrA2 WT mice, 

compared to TG HtrA2 G399S mice (Fig 3.3A-B). But at the same time we see that the 

loading control is not equal in figure 3.3A. In order to quantify and compare expression levels 
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in two transgenic mouse lines densitometry was performed on the three individual mice from 

each line for cortex, basal ganglia and cerebellum which confirmed that the HtrA2 

overexpression is greater in TG HtrA2 WT mice compared to TG HtrA2 G399S mice in 

cerebellum, basal ganglia and cortex. In the cerebellum, the expression of total HtrA2 in TG 

HtrA2 WT mice is almost three times more than TG HtrA2 G399S mice and five times more 

than Non-TG mice, while in the cortex and basal ganglia the expression of total HtrA2 in TG 

HtrA2 WT mice is ῀ 30% more than Non-TG and around ῀ 10 % more than TG HtrA2 G399S 

mice, though the expression of HtrA2 in the basal ganglia of TG HtrA2 G399S mice varied. 

Overall both WT HtrA2 and the G399S mutant HtrA2 were overexpressed compared to NT 

controls but the overexpression of WT HtrA2 was greater than that of the G399S mutant 

HtrA2. 

 

 

Figure 3.3 Identification of brain region specific HtrA2 overexpression in TG HtrA2 WT and TG HtrA2 G399S 

mice: (A) Western blot analysis with HtrA2 antibody showing HtrA2 overexpression in different brain regions of 

two transgenic mouse lines (B) Western blot analysis in cortex, basal ganglia and cortex regions with HtrA2 

A 

B 

C 
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antibody in triplicate mice from transgenic and non-transgenic mouse lines. HtrA2 antibody detects both the 

endogenous and transgenic HtrA2. 50µg of protein was loaded from lysates of each region. Arrows indicate 

both endogenous HtrA2 and transgenic HtrA2 respectively; CTX= Cortex, BG=Basal ganglia, CBM= Cerebellum, 

BS= Brain stem, OB= Olfactory bulb. (C) Densitometry analysis from individual triplicate mice from each mouse 

line for three different regions – cortex, basal ganglia and cerebellum. a.v. = Absolute value. 

 

 

 

Figure 3.4 Identification of organ specific human (h) HtrA2 overexpression in TG HtrA2 WT and TG HtrA2 

G399S mice: (A) Western blot analysis with HtrA2 antibody showing HtrA2 overexpression in different organs 

of two transgenic mouse lines. HtrA2 antibody detects both the endogenous mouse and transgenic human 

HtrA2. ß-actin antibody was used as a loading control. 50µg of protein was loaded from lysates of each region. 

Arrows indicate both endogenous HtrA2 and transgenic HtrA2 respectively; + Control = SH-SY5Y cells 

overexpressing HtrA2 WT; - Control= Non-TG cortex. (B) Quantification of total HtrA2 overexpression in 

different organs of TG HtrA2 WT and TG HtrA2 G399S mice from the blot shown in Fig.3.4A. The total HtrA2 

band intensity was calculated in relation to ß-actin level. a.v. = absolute value.  

A 

B 
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Figure 3.4A shows the expression of transgenic HtrA2 in different organs from both 

transgenic mouse lines. The transgenic HtrA2 is overexpressed in lung, kidney, liver and 

heart but not in spleen. The figure 3.4B shows the densitometry analysis of total HtrA2 

protein normalized to ß-actin. The total HtrA2 levels in kidney, spleen and heart of two 

transgenic mouse lines was almost similar though it was half in lung and liver of TG HtrA2 

G399S mice compared to TG HtrA2 WT mice. HtrA2 could not be detected in intestine but at 

the same time ß-actin band is also absent, so no conclusions can be drawn on expression 

levels in this region.  

3.1.1.3 IMMUNOHISTOCHEMICAL INVESTIGATION OF HUMAN HTRA2 IN 

THE BRAIN OF TG HTRA2 WT AND TG HTRA2 G399S MICE 

 
To complement the Western blot analysis of HtrA2 protein levels in the brains of our 

transgenic lines, immunohistochemical stainings on 6 µm cryosections were performed. The 

sections were co-stained with an anti-FLAG antibody to detect the transgenic HtrA2 and an 

anti-HtrA2 antibody to detect the total endogenous and transgenic HtrA2. Fluorescent 

images were acquired using a Zeiss Axio Imager Z1 microscope. As seen in the figures (Fig. 

3.5 A-C) the green signal represents FLAG-HtrA2 (transgenic HtrA2), the red signal depicts 

total HtrA2 (both endogenous and transgenic HtrA2) while the blue staining represents the 

nucleus stained with DAPI. The merged red and green signal in yellow illustrates the 

colocalisation of endogenous and transgenic HtrA2. Images were acquired from three 

different brain regions – cerebellum (A), cortex (B) and basal ganglia (C). All regions showed 

expression of transgenic human WT and G399S HtrA2 respectively. 
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A 

B 
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Figure 3.5 Immunohistochemical analysis of HtrA2 expression by HtrA2 or FLAG staining in different brain 

regions. Degree of HtrA2 and FLAG colocalisation and FLAG signal alone represents the level of overexpression. 

(A) In the cerebellum region high degree of FLAG and HtrA2 colocalisation and high level of FLAG signal was 

observed in TG HtrA2 mice compared to TG HtrA2 G399S mice. (B) In the basal ganglia region similar degree of 

FLAG and HtrA2 colocalisation and similar level of FLAG signal was found in both the transgenic mouse lines (C) 

In cortex region similar degree of FLAG and HtrA2 colocalisation and similar level of FLAG signal was found in 

both the transgenic mouse lines.  Except of few unspecific dots and green background in FLAG staining there is 

ninety percent colocalisation of FLAG signal with HtrA2 staining in each region. Stainings were performed in the 

12 months old female mice in 6 µm sagittal cryosections. Sections were incubated in HtrA2 and FLAG antibody 

solution at 1:500 dilutions in 2% BSA solution overnight, after 1 hour of incubation in 8% BSA solution. Blue 

staining represents nuclei, red staining represents both endogenous and transgenic HtrA2 and the green 

staining represents FLAG or transgenic HtrA2. Arrows indicate the colocalisation of HtrA2 and FLAG staining. 

Scale bar =10µm. 
 
The expression of transgenic HtrA2 seemed similar in the cortex and basal ganglia region of 

both the transgenic mouse lines from the immunohistochemical analyses. This is evident 

from the green (FLAG) and red (endogenous and transgenic HtrA2) co-localization signal 

(Fig. 3.5 A-B). The FLAG signal alone provides an evidence for overexpression of HtrA2 in 

both the transgenic mouse lines. Corresponding to the WB analyses the expression 

appeared higher in cerebellum region of TG HtrA2 WT mouse line compared to TG HtrA2 

G399S as is visible from the representative images (Fig.3.5 A) of transgenic and non-

transgenic mouse lines. 

In order to confirm the reliability of the antibodies to detect recombinant human HtrA2 in 

immunohistochemistry the colocalisation of total HtrA2 with the ectopic human FLAG-tagged 

HtrA2 was revisited in SH-SH5Y cells transiently transfected with FLAG-tagged HtrA2. As 

seen in figure 3.5D red signal (total HtrA2) colocalises with the green signal (FLAG-HtrA2).  
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Figure 3.5D Cytochemical staining using HtrA2 and FLAG antibody. HtrA2 /FLAG co-staining was performed on 

fixed SH SH-5Y cells. SH-SH5Y cells were transfected with FLAG-HtrA2, using the Effectene (Qiagen) transfection 

reagent according to the manufacturer’s instructions and left 48h before fixation with formaldehyde. These 

cells along with the control cells (without transfection) were co-stained with total HtrA2 and FLAG antibodies. 

Blue signal represents nuclei, where cells were stained with DAPI. Red signal represents both the endogenous 

and transgenic HtrA2 and the green signal represents the transgenic FLAG-HtrA2. White arrows indicate 

examples of colocalisation of HtrA2 and FLAG-HtrA2 staining. Scale bar =10µm. 

 

             The next step was to check specifically the expression of the transgene in neurons of 

the HtrA2 transgenic mice. For this, cryosections of brains from the Non-TG, TG HtrA2 WT 

and TG HtrA2 G399S were co-stained with FLAG antibody (transgenic HtrA2) and NeuN 

(neurons).  Images were acquired from the cortex, basal ganglia and cerebellum region. As 

seen in the figures 3.6 A-D, red FLAG signal colocalises with green neuronal signal, 

illustrating that transgenic HtrA2 is expressed in neurons in these three brain regions. But 

since the FLAG-GFAP co-staining was not reliable for technical reasons. The expression in 

glial cells cannot be confirmed. 

 

A 
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Figure 3.6 Immunohistochemical staining using FLAG and NeuN antibodies in (A) cerebellum (B) Cortex (C) 

Basal ganglia region. (D) Representative image at higher magnification. Stainings were performed in the 12 

months old female mice in 6 µm cryosections three times. Here is shown the representative image of each 

section. Blue staining represents nuclei, red staining represents transgenic hHtrA2 and green staining 

C 

B 

D 
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represents neuron specific staining. Merged picture represents colocalisation of NeuN and transgenic HtrA2. 

Scale bar=10µm. 

3.1.2 BEHAVIORAL CHARACTERISATION OF HTRA2 TRANSGENIC 

MOUSE LINES 
 
The aim of this set of experiments was to investigate the potential effects of overexpression 

of human WT HtrA2 and human G399S HtrA2 on the behavior of transgenic mice compared 

to non-transgenic littermates. To assess the role of overexpressed human WT HtrA2 and 

G399S mutant HtrA2 in mice, various behavioral studies were conducted on each mouse 

line,  Non-TG, TG HtrA2 WT and TG HtrA2 G399S, respectively, at different ages. For each 

study 12 female mice from each line was used. The following behavioural studies were 

chosen:       

� Rotarod  

� Challenging Beam Walk 

� Openfield Test 

Animal experiments were performed according to the following schedule: 

 

Figure 3.7 Schedule for behavioral experiments in mice 
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3.1.2.1 ROTAROD 

 

The rotarod test is an efficient and well recognized test to investigate both learning and motor 

defects in rodents (Jones and Roberts, 1968). Rotarod was performed on the three mouse 

lines every 8 weeks from the age of 6 months until the age of 14 months. Within each 

experiment the mice ability on the rotarod was tested for 4 days continuously (three trials 

each day).  

.  

Figure 3.8 Behavioral Characterisation of TG HtrA2 lines on Rotarod (over a four day assessment period). (A) 

Rotarod 6 months (B) Rotarod 8 months (C) Rotarod 10 months (D) Rotarod 12 months (E) Rotarod 14 months. 

Overexpression of HtrA2 WT in mice leads to motor impairments. (A-F) At each time point the rotarod test was 

performed 4 days continuously and each day 3 trials per mice were done. Here the mean values of 3 trials for 

each day at 6, 8, 10, 12 and 14 months are indicated for each line. TG HtrA2 WT line showed continuous motor 

deficits and a weak learning impairment over the 4 days at each time point of experiment. Data is presented as 

the mean +/- SD, n=12 where n denotes the number of mice from each mouse line; *p<0.05, **p<0.01 and 

***p< 0.001, two-way ANOVA, Statistical significance was determined by a following "Tukey's Multiple 
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Comparison Test“. Significance level was achieved comparing Non TG and TG HtrA2 WT (green * stars) and TG 

HtrA2 WT and TG HtrA2 G399S (red * stars). There was no significant difference between Non-TG and TG HtrA2 

G399S. 

According to the protocol the mice were kept on the accelerating rotating wheel (4-40 rpm) 

and the riding time for each mouse was noted at each trial. Figure 3.8 shows the rotarod data 

over the training period of four days at each age tested. 

It is expected that the riding time of each mice would increase over the four days of rotarod 

test and the difference in the riding time over these four days for each set of mouse lines 

could define the learning. As seen in figure 3.8 A the Non-TG line and TG HtrA2 G399S mice 

showed a learning trend over the 4 days of experiment, while TG HtrA2 WT mice were not 

able to ride on the rotarod as the acceleration increased and over the four days they showed 

only a weak learning trend i.e. there was not much difference in the riding time of this mouse 

line between first day and the last day of rotarod. The latency to fall from the rotarod was less 

for TG HtrA2 mice compared to Non-TG and TG HtrA2 G399S mice. A similar trend for 

latency and learning was observed over the four days at the age of 8 months, while after 8 

months, Non-TG and TG HtrA2 G399S mice showed a weak learning trend while TG HtrA2 

WT line were devoid of any learning trend as there was no difference in the riding time 

between each day of the four days rotarod schedule (Fig 3.8 B-D). At the age of 14 months 

Non-TG and TG HtrA2 G399S showed no learning while TG HtrA2 WT showed a weak trend 

of depletion in learning ability as each day the riding time of this set of mice became less 

over the four days on the rotarod (Fig 3.8 E). 
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Figure 3.9 Rotarod over-all. Rotarod was followed every 8 weeks, each time 4 days, 3 trials a day with each 

mouse. Here the mean of all the trials at each time point is represented. TG HtrA2 WT line showed continuous 

motor impairments over the different time points. Data is presented as the mean +/- SD, n=12 where n denotes 

the number of mice from each lines; *p<0.05, **p<0.01 and ***p< 0.001, Statistical significance was 

determined by a two-way ANOVA following "Tukey's Multiple Comparison Test“. Significant differences were 

observed between Non TG and TG HtrA2 WT (green * stars) and TG HtrA2 WT and TG HtrA2 G399S (red * 

stars). 

Figure 3.9 shows that over a 14 month period, NT mice are able to stay on the rotarod for 

less time and can be considered due to normal ageing. The TG HtrA2 G399S mice behaved 

in a similar way to the non-TG mice. However, TG HtrA2 WT mice performed worse on the 

rotarod test after 6 month and continued to exhibit a decline with age in their ability to stay on 

the rotarod. This data suggests that there are motor defects in mice which overexpress 

human WT HtrA2 independent of initial learning deficits. 

In order to check that the rotarod results observed are not the effect of constitutional 

differences, the mice were weighed at every experimental time point.  
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Figure 3.10 Weight over-all. Mice were weighed at each time point of the experiment. There was no difference 

in the average weights of different mouse lines over time. 

Figure 3.10 show that there were no significant differences in the average weight of animals 

between the different mouse lines over time. These data add support to the rotarod results 

and confirm a behavioral phenotype is not an artifact of changes in weight. 

3.1.2.2 CHALLENGING BEAM WALK 

The challenging beam walk is a motor balance and coordination test which was performed 

with the behavioral set of 12 mice from each group (Non-TG, TG HtrA2 WT and TG HtrA2 

G399S) at the age of 15 months. Mice were made to walk along a wire mesh beam 

consisting of 4 sections (25 cm each, 1 m total length) of different width (3.5 cm to 0.5 cm by 

1 cm increments) and leading to the animal’s home-cage. The number of times the mouse´s 

limbs slipped through the wire walkway and the time taken to get to the end point was noted. 

Mean average values of three trials, for each mouse are expressed. 
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Figure 3.11 Behavioral Characterisation of TG HtrA2 lines by challenging beam walk test for motor balance 

and coordination. Mice were made to walk on a 1 meter long mesh beam and the number of slips through the 

plexiglas beam and the time taken to traverse the plexiglas beam were noted for each mouse. Three trials were 

made by each mouse at the age of 15 months. (A) Number of slips made by each mouse at each trial by TG 

HtrA2 WT mice was increased, compared to Non-TG and TG HtrA2 G399S mice.  (B) From the distance 

traversed by mice and time taken, the average speed was calculated per trial. No significant difference was 

found between the speed of two transgenic mouse lines. Data are presented as the mean +SD n=12 where n is 

the number of mice used for each mouse line; *p<0.05, **p<0.01 and ***p< 0.001, one-way ANOVA, Statistical 

significance was determined by a following the "Tukey's Multiple Comparison Test“.  

The results show that the TG HtrA2 WT mice made significantly more (῀40%) slips compared 

to Non-TG and TG HtrA2 G399S mice (Fig. 3.11A). The TG HtrA2 WT mice were slightly 

slower to traverse the wire walkway compared to Non-TG controls but the difference was not 

statistically significant. This implies that the TG HtrA2 WT mouse line was impaired in motor 

balance and coordination but not the Non-TG and TG HtrA2 G399S mouse line compared to 

NT controls. 

3.1.2.3 OPENFIELD (OF)  

The OF Test was performed with a set of 12 mice from each of the different lines (Non-TG, 

TG HtrA2 WT and TG HtrA2 G399S) at the age of 6 months to investigate the general 

locomotor activity and exploratory behavior of the animals. Additional measures were also 

included such as time taken to reach the center of the field (latency) in order to assess the 

anxiety level of the mice. 

A B 
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Figure 3.12 Raw data generated by the OF test. The overall movement traces of different mice from TG HtrA2 

WT and TG HtrA2 G399S lines in the OF during the 10 minute test. 

The data was automatically saved by the OF software connected to the camera tracing the 

mouse movements. The data obtained was converted to a Microsoft Excel sheet to be 

analyzed and from this data different parameters were analyzed. The general locomotor 

activity was assessed by measuring the total time of movement of each mouse in the OF. 

This was calculated for all the mice from each mouse line and from the average data from 

the three mouse lines, a graph was generated by plotting the total time of movement against 

different mouse lines (Fig 3.13 A).  
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Figure 3.13 Openfield test (OF) for general locomotor activity and anxiety levels. Mice were left at the 

periphery of the field and different measures such as the total time of movement, the time taken to reach the 

center (latency), the speed at the center and the amount of time spent in the center by different mouse lines 

was calculated to check different parameters for example general locomotor activity and anxiety levels. Both 

transgenic lines took longer time to reach the different centers compared to non-transgenic controls, though 

the values were not significant. (A) Total time of movement (B) Time spent in corners (C) Latency for the center 

(D) Time spent in the center (E) Speed in different regions of OF. 

 

A B 

C D
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There was no difference in the time of movement of the three different mouse lines which 

implied no difference in general locomotor activity of the different mouse lines. Graphs were 

generated for other parameters including anxiety. Anxiety can be assessed by measuring the 

time the mice spend in the corners (B), latency for the center (C), Time spent in the centers 

(D), Speed in the different regions of OF (E). From figure 3.13 B it can be seen that individual 

mice from the TG HtrA2 WT line spent less time at the corners compared to animals of the 

other two lines, although the difference was not significant. There was a tendency towards 

more latency (῀10% for center 1, ῀50% for center 2 and 3) for the two transgenic mouse lines 

compared to Non-TG mouse line. Similarly the speed of transgenic mouse lines (E) in the 

different centers was less (῀20 % for center 1 and ῀15 % for center 2) compared to Non-TG 

mouse line. From the figure 3.13 D it can be seen that the two transgenic lines spent more 

time in the center (῀50% for center 1, ῀40% for center 2 and 25% for center 3) compared to 

Non-TG mouse lines, but these data were statistically insignificant.  

3.1.3 INVESTIGATION OF POTENTIAL MECHANISMS 

UNDERLYING THE BEHAVIORAL PHENOTYPE OF HTRA2 

OVEREXPRESSING MICE 
 
In order to define a potential mechanism underlying the behavioral phenotype of motor 

impairments in the TG HtrA2 WT mouse was subsequently investigated using various 

biochemical and immunohistochemical analyses as discussed in the following section. 
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Figure 3.14 Hypotheses.  (1). Disturbed mitochondrial homeostasis. Since HtrA2 is involved in mitochondrial 

homeostasis, one expected reason for motor phenotype in WT HtrA2 overexpressing mice could be 

mitochondrial dysfunction due to toxic gain of function of HtrA2 protein which can be addressed by assessing 

the steady-state levels of mitochondrial encoded proteins or by performing Electron microscopy. (2). 

Aggregate formation can be the second hypothesis which lead to behavioral pathology and could be assessed 

by alpha-synuclein staining, ubiquitin staining or silver staining. (3). Apoptosis. The third hypothesis for motor 

phenotype could be apoptotic cell death which might be investigated by various assays such as the TUNEL 

assay, expression levels of cleaved caspases and HtrA2 substrates like XIAP (discussed in detail later).  

 

We speculated a motor phenotype in our TG HtrA2 WT mice as result of a toxic gain of 

function which might be the result of several pathologies. The first expected pathology could 

be mitochondrial dysfunction, since HtrA2 is a mitochondrial serine protease whose complete 

knock out in mice leads to PD symptoms and mitochondrial dysfunction (Martins et al., 2004) 

and so its overexpression might also have effect on mitochondria. Another pathology could 

be protein aggregation in the brain regions of mice which might lead to motor impairments, 

for it has already been shown in the literature that widespread accumulation of HtrA2 may 

occur in Lewy bodies or pathologic alpha-synuclein-containing inclusions in brains with PD, 

DLB, or MSA and that HtrA2 may be associated with the pathogenesis of alpha-

synucleinopathies (Kawamoto et al., 2008). The protease activity of HtrA2 is important not 

only for mitochondrial quality control but also for promoting to apoptosis once HtrA2 is in the 

cytosol. Therefore, an additional hypothesis was increased cell death due to a direct increase 

in protease activity of the overexpressed protein (HtrA2) or binding of HtrA2 to the inhibitor of 
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apoptotic proteins (IAP´s) like XIAP (X-linked inhibitor of apoptotic proteins, a known 

substrate of HtrA2) leading to cell death. 

3.1.3.1 ANALYSIS OF MITOCHONDRIAL PATHOLOGIES IN BRAINS OF 

HTRA2 TRANSGENIC MICE 

 

Impairment of mitochondrial function has been long implicated in neurodegeneration in PD 

(Obeso et al., 2010). Alterations of the electron transport chain enzyme complex I appear to 

be particularly relevant to PD. In fact mitochondrial dysfunction in relation to PD first came 

into focus with the discovery of mitochondrial complex I deficiency in the substantia nigra of 

some PD patients (Schapira et al., 1989). Reduced levels of other mitochondrial proteins 

have also been reported in PD patients (Arthur et al., 2009). In order to investigate whether 

our TG HtrA2 mice have dysfunctional mitochondria, mitochondrial encoded complex IV 

subunit I (MTCO1), steady state levels were measured in the cerebellum, cortex and basal 

ganglia region of Non-TG, TG HtrA2 WT and TG HtrA2 G399S mouse lines. Anti-MTCO1 

antibody is generally used as a mitochondrial marker but is also interesting because this 

subunit of complex IV is coded for by the mitochondrial genome. 
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 Figure 3.15 Targeted analyses of mitochondria. Complex IV subunit I protein levels in (A) Cerebellum (B) 

Cortex and (C) Basal ganglia of Non-TG, TG HtrA2 WT and TG HtrA2 G399S mice. (D-F) Densitometry analysis of 

complex IV subunit I level in different regions of the brain (D) Cerebellum (E) Cortex (F) Basal ganglia. No 

significant differences observed in the expression of Complex IV subunit I in cerebellum and basal ganglia 

region although significant increase in Complex IV subunit I was observed in TG HtrA2 G399S mice compared to 

TG HtrA2 WT mice. Data are presented as the mean +SD of three independent blots from three independent 

mice from each mouse line for cerebellum and cortex and from six mice for basal ganglia, *p<0.05, **p<0.01 

and ***p< 0.001, one-way ANOVA, Statistical significance was determined by following "Tukey's Multiple 

Comparison Test“.  

No significant differences were observed in complex IV subunit I (MTCO1) between the 

different mouse lines in the cerebellum and basal ganglia. Significant upregulation of 

complex IV subunit I expression was observed in the cortex of TG HtrA2 G399S mice 

compared to TG HtrA2 WT mice though no significant difference was observed in TG HtrA2 

WT mice compared to Non-TG mice. The expression levels of anti-porin (VDAC), a 

mitochondrial membrane protein, was assessed to correct for the mitochondrial mass in the 

respective regions of all three mouse lines. ß-actin was used as a loading control. 

As a next step to assess mitochondria in these mouse lines, we performed electron 

microscopy in mouse brain to assess morphology at the organellar level in collaboration with 

Prof. Dr. Hartwig Wolburg at the Universitätsklinikum Tübingen, Institute for Pathology. 

Electron microscopy was performed in the cortex, basal ganglia and cerebellum of three 

different mouse lines – Non-TG, TG HtrA2 WT and TG HtrA2 G399S. The mitochondria were 

revealed to have a normal shape in each of the mouse lines. If the mitochondrial morphology 

were affected, they could be swollen, fragmented or elongated for example. But here 

mitochondrial shape was observed similar in each mouse line. Moreover also other 

D E F 
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subcellular structures like nuclei, endoplasmic reticulum and vacuoles appeared normal. So 

in general no significant ultra-structural differences were observed in any of the investigated 

regions of brain from three different mouse lines as shown in the figure 3.16A-C.  
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Figure 3.16 Targeted analyses of mitochondria. Electron microscopy (A) Non-TG (B) TG HtrA2 WT (C) TG HtrA2 

G399S (A-C) Overexpression of HtrA2 WT and HtrA2 G399S in mice leads to no ultra-structural differences in 

Electron Microscopy. Electron microscopy was performed in the brain slices of Non-TG (A), TG HrA2 WT (B) and 

TG HtrA2 G399S (C) mice.  

HtrA2 has been reported to be a positive regulator of autophagy and might be important in 

the quality control mechanisms involved in neurodegenerative diseases (Li et al., 2010). 

Microtubule-associated protein 1A/1B-light chain 3 (LC3) is well known autophagy marker. It 

exists in two forms and its cytosolic form LC3-I is conjugated to phosphatidylethanolamine to 

form LC3-II which is recruited to autophagosomal membranes. These autophagosomes fuse 

to lysosomes to be degraded. Thus lysosomal turnover of the LC3-II reflects the autophagy 

status and could be detected by immunoblotting (Tanida et al., 2008). So to check for a 

potential impairment of autophagy, in mice overexpressing human HtrA2, LC3-II levels were 

assessed by WB from lysates of the cerebellum, cortex and basal ganglia of the three mouse 

lines. No significant differences were observed in LC3-II levels normalized to ß-actin, 

between any of the three mouse lines as shown in figure 3.17.  
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Figure 3.17 Assessment of autophagy markers in transgenic HtrA2 mouse lines by Western blot. LC3-II levels 

were measured in cerebellum (A), cortex (B) and basal regions (C) of the three different mouse lines. (D-F) 

Densitometry analysis of LC3-II level normalized to ß-actin levels in different regions of the brain (D) 

Cerebellum (E) Cortex (F) Basal ganglia. . No differences in expression of LC3-II level (normalized to ß-actin 

level) were observed. Data are presented as the mean +/- SEM; n=6 for basal ganglia, n=3 for cortex and 

cerebellum where n is the number of mice analysed for each line. 

There is a trend of reduced LC3-II levels in cortex and basal ganglia of transgenic mice. But 

since this difference is not significant further investigations need to be done in this direction 

by analyzing other autophagy markers such as WIPI or p62 for example to find the 

autophagy status in our mouse lines. 
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3.1.3.2 ANALYSIS FOR PATHOLOGICAL PROTEIN AGGREGATES 

3.1.3.2.1 SYNUCLEIN STAINING 

 

One of the major hallmarks of PD is the presence of Lewy bodies. Alpha-synuclein is one of 

the major constituents of Lewy bodies along with ubiquitin and ubiquitinated proteins 

(Dickson et al., 2009). Therefore to examine whether there are alpha-synuclein aggregates in 

the respective brain regions - cortex, cerebellum and basal ganglia of each mouse line, 

stainings were performed in the 6µm brain cryosections of 12 month old mice.  

The alpha-synuclein staining was performed using an immunoflourescent method as 

discussed in section 2.2.5.3. Images were acquired from the three different brain regions of 

three different mouse lines (three individual mice from each line), on the Zeiss Axio Imager 

Z1 microscope using two fluorescent channels – blue for nuclei and green for alpha-

synuclein staining as shown in figure 3.18 (A-C). Interestingly alpha-synuclein aggregates 

were found in all the three brain regions of TG HtrA2 WT mice and to a lesser extent were 

also observed in TG HtrA2 G399S mice, however, no aggregation was found in the Non-TG 

control mice.  

As seen in figures 3.18, compared to the homogenous cytoplasmic alpha-synuclein staining 

in the Non-TG mice, in the transgenic mice there are bright green cytoplasmic dots that are 

reminiscent of aggregated alpha-synuclein in all the three regions. The green background in 

all the alpha-synuclein stainings is due to the fact that mouse brains have been perfused with 

paraformaldehyde (PFA) which itself gives green autoflourescence. 
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Figure 3.18 Overexpression of human WT HtrA2 in mice leads to alpha-synuclein aggregation. 6 µm 

cryosections from TG HtrA2 WT, TG HtrA2 G399S and Non-TG mice were stained with an alpha-synuclein 

antibody. Alpha-synuclein aggregates were observed in cerebellum (A), cortex (B) and basal ganglia (C) region 

of TG HtrA2 WT mice. Green staining represents alpha-synuclein staining, blue represents nuclei staining and 

merged picture represents colocalisation of alpha-synuclein and nuclei. White arrows indicate alpha-synuclein 

aggregates. Scale bar=10µm. 

3.1.3.2.2 PROTEINASE K (PK) DIGESTION 

 

To confirm that alpha-synuclein puncta observed in figure. 3.18 correspond to alpha-

synuclein aggregates in the TG HtrA2 WT mouse line proteinase K (PK) digestion was 

performed on the 6µm cryosections on the – Non-TG, TG HtrA2 WT and TG HtrA2 G399S, 

as discussed in section 2.2.5.4. Proteinase K digests soluble proteins and has been 

established as a reliable method to define the presence of insoluble aggregates both in vitro 

and in vivo (Neumann et al., 2002). Following PK digestion, the cryosections were stained 

with an alpha-synuclein antibody and imaged using the same settings and 

immunoflourescent method as described previously. Representative images are shown in 

figure. 3.19 after PK digestion.  
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Figure 3.19 Alpha-synuclein staining following PK digestion. Green staining represents alpha-synuclein 

staining, blue represents nuclei staining and merged picture of alpha-synuclein and nuclei. Scale bar=10µm. 

In the case of the TG HtrA2 WT mice, some alpha synuclein aggregates were still observed 

after PK digestion while no alpha-synuclein staining remained in the TG HtrA2 G399S mice 

and Non-TG controls. These data indicate the presence of insoluble alpha-synuclein 

aggregates in TG HtrA2 WT mice, but not in Non-TG or G399S transgenic mice. From the 

literature there is evidence for alpha-synuclein oligomer toxicity in a mammalian model leads 

to cell death (Winner et al., 2011). However, we did not assess the oligomer status of alpha-

synuclein in our TG HtrA2 models. 

3.1.3.2.3 UBIQUITINATION  

 

Ubiquitination is a post translational modification where ubiquitin is attached to a substrate 

protein. The addition of ubiquitin can affect proteins in many ways: it can signal for their 

degradation via the proteasome, alter their cellular location, affect their activity and promote 

or prevent protein interactions (Glickman and Ciechanover, 2002; Schnell and Hicke, 2003). 
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Ubiquitination plays an important role in aggregate formation and proteins intended for 

proteasomal degradation and Lewy bodies typically contain ubiquitinated alpha-synuclein 

(Ubl et al., 2002). So in order to  further investigate protein aggregation in the TG HtrA2 lines, 

unboiled whole lysates from the cerebellum region (chosen for highest expression of the 

transgenic HtrA2) from each mouse line, were run on an SDS-PAGE gel and after WB 

probed with a ubiquitin antibody that detects both monomeric and poly-ubiquitin chains. 

There was more ubiquitination in lysates from the cerebellum of the TG HtrA2 WT mouse 

line, compared to Non-TG and TG HtrA2 G399S mouse lines. The ubiquitination was 

observed as a smear or ladder and indicates the presence of proteins with different size (Fig. 

3.20). This again points to the fact that there might be accumulation of different proteins in 

TG HtrA2 WT mice. And since this ubiquitination was also detected more in TG HtrA2 G399S 

mice compared to Non-TG mice, though less compared to TG HtrA2 WT mice, this shows 

that there may be also a tendency of protein accumulation in TG HtrA2 G399S mice. This 

tendency of protein accumulation in TG HtrA2 G399S mice was also observed in alpha-

synuclein staining (Fig.3.19A). 

                    

Figure 3.20 Ubiquitin levels. (A) Unboiled whole lysates from cerebellum were loaded on to the gel (50µg in 

each well). And probed with Ubiquitin antibody (MAB1510 from Millipore) at dilution of 1:4000 in 5% BSA. TG 

WT mice showed more ubiquitination in the cerebellum region compared to TG G399S and Non-TG mice. (B) 

Densitometric analysis of ubiquitin at a size of around 37 kD. Data are presented as the mean +SD; n=3, where 

n denotes the number of mice from each mouse line.*p<0.05, **p <0.01 and ***p < 0.001, one-way ANOVA, 

Statistical significance was determined by following "Tukey's Multiple Comparison Test“.  

Here in our results we see more ubiquitinated proteins in TG HtrA2 WT line compared to NT 

controls and TG HtrA2 G399S lines, which suggests that there is an increased amount of 
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proteins ubiquitinylated for either degradation or other signaling pathways in this line. Further 

work is required to understand the mechanism and pathways by which HtrA2 modulates 

ubiquitinylation and how this might relate to the E3 ligase or ubiquitin proteasomal system. 

3.1.3.2.4 INVESTIGATION OF ALPHA-SYNUCLEIN AGGREGATES ON WB 

 
In order to further confirm the presence of alpha-synuclein aggregates, the whole lysates 

(including both soluble and insoluble fractions) from cortex, cerebellum and basal ganglia 

region were probed on WB. Similar results were observed in each region. Here example 

Western blots from the cortex region are shown. 

 
 

Figure 3.21 Alpha-synuclein aggregation in TG HtrA2 WT and G399S mice. Alpha-synuclein at low exposure (I) 

and at high exposure (II), investigated on WB by loading whole lysates from the cortex region of TG HtrA2 WT, 

G399S and Non-TG mice and subsequent staining for alpha-synuclein. The monomeric alpha-synuclein was 

observed at the band size of 19kD. 3 individual mice were analyzed from each mouse line. ß-actin was used as a 

loading control. Here S = soluble fraction, I = Insoluble fraction. Green arrow indicates the monomeric alpha-

synuclein. Red arrow indicates proposed toxic alpha-synuclein oligomer. 

As indicated in figure 3.21 at the size of around 70 kD there are bands which can be seen 

only in transgenic lines but not in the non-transgenic line. Out of the three mice analyzed 

from each line, two mice from TG HtrA2 mice while one mice from TG HtrA2 G399S mice 

showed these bands in cortex, basal ganglia and cerebellum . In the literature bands at 

similar size have been observed in alpha-synuclein staining which have been referred to as 

toxic oligomeric species (Arduino et al., 2012). But still it can´t be confirmed with these 
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results that the oligomers or aggregates which we see in our mouse lines are soluble or 

insoluble. For assessing this, as a prospective experiment, the TBS soluble and Urea 

insoluble fractions from the transgenic lines can be analyzed on WB by alpha-synuclein.  

3.1.3.3 TARGETED ANALYSIS FOR CELL DEATH 

Our next step was to investigate whether overexpression of WT or G399S mutant human 

HtrA2 results in cell death in the brain and therefore may contribute to the observed 

behavioral phenotypes. This was achieved using the following methods: 

3.1.3.3.1 TUNEL ASSAY 

 

Cleavage of genomic DNA during apoptosis may yield double-stranded, low molecular 

weight DNA fragments (mono- and oligonucleosomes) as well as single strand breaks 

(“nicks”) in high molecular weight DNA. These DNA strand breaks can be identified by 

labeling 3´-OH termini with modified nucleotides in an enzymatic reaction. In TUNEL staining 

labeling of DNA strand breaks is accomplished by Terminal deoxynucleotidyl transferase 

(TdT) which catalyzes polymerization of labeled nucleotides to free 3´-OH DNA ends in a 

template-independent manner. The TUNEL reaction preferentially labels DNA strand breaks 

generated during apoptosis in comparison to necrosis, therefore discriminating apoptosis 

from necrosis and from primary DNA strand breaks induced by antitumor drugs or radiation.  

TUNEL staining was performed in 6µm cryosections of 12 months old mouse lines as 

discussed in the material methods section 2.2.5.3. In TUNEL staining red dots represent 

fragmented, apoptotic nuclei and the amount of apoptotic nuclei allow to assess the amount 

of apoptotic cell death. Images were acquired from three different regions of the brain, 

cerebellum, cortex and basal ganglia, respectively, as shown in the figure 3.22 A-C. 

Microscope images were analyzed manually by counting the total number of nuclei and then 

counting the number of nuclei which showed red TUNEL staining. Around 700 cells were 

counted in each region of 3 independent mice from each line. From this the percentage of 
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apoptotic nuclei was calculated and graphs were made and statistical analysis was 

performed using prism software (Fig.3.22D-F).  

As shown in the figure 3.22 (A-C) the relative amount of apoptotic nuclei was increased in 

the cerebellum, cortex and basal ganglia region of TG HtrA2 WT mice compared to Non-TG 

and TG HtrA2 G399S mice. The statistical analysis (Fig.3.22D-F) reveals that there were 

significantly more apoptotic nuclei in the TG HtrA2 WT mouse line compared to Non-TG and 

TG HtrA2 G399S mouse lines. 
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Figure 3.22 Overexpression of WT HtrA2 in mice promotes apoptotic cell death. TUNEL staining revealed 

apoptosis in the (A) cerebellum, (B) cortex and (C) basal ganglia region of all mice aged 12 months. Scale 

bar=10µm. (D-F) Quantification of TUNEL-positive cells in the (D) cerebellum, (E) cortex and (F) basal ganglia. 

More TUNEL positive cells were detected in the basal ganglia of age- and sex- matched TG HtrA2 WT mice 

compared to Non-TG and TG HtrA2 G399S mice. Whereas in the cortex and cerebellum of TG HtrA2 WT and TG 

HtrA2 G399S mice   a significant amount of TUNEL positive cells were found compared to Non-TG mice. 6µm 

cryosections were used for staining. Data is presented as the mean average +SD; n=3 where n denotes the 
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number of mice from each mouse line; *p<0.05, **p<0.01 and ***p< 0.001, one-way ANOVA, Statistical 

significance was determined by following "Tukey's Multiple Comparison Test“.  

3.1.3.3.2 MARKERS OF CELL DEATH: CASPASE- EXPRESSION LEVELS AND 

ACTIVITY  

3.1.3.3.2.1 CASPASE 9 EXPRESSION  

 

Well established markers of apoptotic cell death are the activation of caspases such as 

caspase 3 and 9. The caspases can be activated by two pathways- Intrinsic pathway or 

extrinsic pathway. Intrinsic pathway is mitochondrial mediated in which permeabilisation of 

the mitochondria releases cytochrome c into the cytoplasm forming a multi-protein complex 

known as the apoptosome and initiates activation of the caspase cascade through caspase 9 

(Vande Walle et al., 2008). Caspase 3 along with caspase 7 are downstream apoptotic 

executioners which once activated mark the final, irreversible stages of apoptosis (Perry et 

al., 1997; Katunuma et al., 2001). 

Whereas extrinsic pathway is initiated by death receptors on the plasma membrane such as 

tumour necrosis factor receptor 1 (TNFR1) and Fas/CD95. When ligands bind to these 

receptors, the death inducing signaling complex is formed leading to initiation of the caspase 

cascade through caspase 8 (Taylor et al., 2008). 

Based on evidence for increased apoptotic cell death in different brain regions of transgenic 

mice overexpressing human WT or G399S HtrA2 we assessed the expression of cleaved 

caspase 9 in the cerebellum, cortex and basal ganglia from the three mouse lines on the WB 

(Fig. 3.23A-C). Caspase 9 is cleaved for its activation (Guo et al., 2013). Levels of cleaved 

caspase 9 were increased in all investigated brain regions of TG HtrA2 WT mice compared 

to Non-TG control mice. The expression of cleaved caspase 9 was also higher in the G399S 

mouse line in cortex compared to Non-TG mouse lines, which also complies with our TUNEL 

results. 
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Figure 3.23 Overexpression of HtrA2 WT in mice increases levels of cleaved Caspase 9. The expression of 

caspase 9 and the amount of cleaved caspase 9 was determined by WB from the protein lysates of 3 

independent mice from each line. 50 µg of protein mixed with 5X Laemmli was loaded on to the gel, from 

cerebellum, cortex and basal ganglia region of brain of three independent mice from Non-TG, TG HtrA2 WT and 

TG HtrA2 G399S mouse line. The blot was probed for anti-caspase 9 antibody (which detect the cleaved form of 

caspase-9) followed by incubation with ß-actin as a loading control. Here are shown in the figure the blots from 

cerebellum (A), cortex (B), and basal ganglia (C) region of brain. Densitometric analysis was performed using 

imagej. ± S.D, where n=3, where n denotes the number of mice from each mouse line. Significance level was 

checked using the paired t-test, where *p<0.05, **p<0.01 and ***p< 0.001. 
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3.1.3.3.2.2 CASPASE 3 ACTIVITY  

 

Caspase 3 activity was analysed using the Caspase-3 flourogenic assay as described in 

section 2.2.3.5 of the material and methods. The caspase 3 activity was assessed in 

cerebellum, cortex and basal ganglia of each mouse line. Here the results of cortex and 

cerebellum region of brain are shown. Reliable measurement of caspase 3 activity was not 

possible in the basal ganglia due to little total protein and therefore low enzyme activities. 

 

                        

Figure 3.24 Overexpression of HtrA2 WT in mice increases caspase 3 activity. Caspase 3 activity was measured 

in the lysates of cortex (A) and cerebellum (B) regions of brain from three different mouse lines - Non-TG, TG 

HtrA2 WT and TG HtrA2 G399S for 3 h using Acetyl-Asp-Glu-Val-Asp-7-amidomethylcoumarin as a substrate. 

Four independent mice were analysed from each line. Columns indicate the Caspase 3 activity, which was 

expressed as mean FU/min/µg protein ± S.D. Significance level was checked using the paired t-test, where 

*p<0.05, **p<0.01 and ***p< 0.001. 

There was a significant increase in the activity of caspase 3 in the cortex region of TG HtrA2 

WT mice compared to Non-TG and TG HtrA2 G399S mice. Similarly a trend for an increased 

activity of caspase 3 was observed in the cerebellum region of the TG-HtrA2 WT mouse line 

compared to Non-TG and TG HtrA2 G399S mouse lines. This partly corroborates with our 

results on caspase 9 expressions in cerebellum where we saw more amount of cleaved 

caspase 9 in TG HtrA2 WT mice compared to the other two lines and in cortex where more 

amount of caspase 9 was found in TG HtrA2 WT and G399S mice compared to Non-TG 

mice. This means that there is increased activated caspase 3 in TG HtrA2 WT mice which 

indicates more apoptotic cell death in these mice. 
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3.1.3.3.3 EXPRESSION CHECK FOR DOPAMINERGIC NEURONAL MARKER –

TYROSINE HYDROXYLASE (TH) 

 

Tyrosine hydroxylase (TH) or tyrosine 3-monooxygenase is an enzyme responsible for 

catalyzing the conversion of the amino acid L-tyrosine to L-3, 4-dihydroxyphenylalanine (L-

DOPA). L-DOPA is a precursor for dopamine, which is a precursor for the important 

neurotransmitters norepinephrine (noradrenaline) and epinephrine (adrenaline). Tyrosine 

hydroxylase catalyzes the rate limiting step in this synthesis of catecholamines. Tyrosine 

hydroxylase is encoded by the TH gene and the enzyme is present in the central nervous 

system (CNS), peripheral sympathetic neurons and the adrenal medulla (Nagatsu, 1995). So 

TH is an established marker of dopaminergic neurons. And since a consistent abnormality in 

Parkinson's disease is degeneration of dopaminergic neurons in the substantia nigra, leading 

to a reduction of striatal dopamine levels, we wanted to address whether the observed 

apoptotic cell death also refers to dopaminergic neurons in our mice. For this we were 

checking the TH level in our mouse lines. This was determined in our mouse lines using WB. 

The whole lysates from three different brain regions, cerebellum, cortex and basal ganglia, 

respectively, were loaded on a gel and probed for by TH antibody followed by ß-actin as a 

control.  

As we can see in figure 3.25A there was a significant increase in TH level in the cerebellum 

region of TG HtrA2 WT mice compared to Non-TG and TG HtrA2 G399S mice. In addition 

there was a tendency of increased TH levels of TG HtrA2 G399S mice compared to Non-TG 

mice. Though no significant differences were observed in the TH level in the basal ganglia 

region between different mouse lines, a decrease (p=0.09) in TH level was observed in 

cortex region of TG HtrA2 WT mice compared to Non-TG mice. 
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Figure 3.25 TH level expression in (A) Cerebellum (B) Cortex and (C) Basal ganglia region of Non-TG, TG HtrA2 

WT and TG HtrA2 G399S mice. 50 µg of protein was loaded on the WB from these regions of brain from the 

three independent mice from each line. And the blot was probed by TH antibody followed by ß-actin as a 

control. Densitometric analysis was performed using imagej. ± S.D, Significance level was checked using the 

paired t-test, where *p<0.05, **p<0.01 and ***p< 0.001. 

3.1.3.3.4 EXPRESSION OF THE HTRA2 SUBSTRATE X-LINKED INHIBITOR OF 

APOPTOTIC PROTEIN (XIAP) 

 

Since we found more apoptotic cell death in TG HtrA2 WT, we speculated which pathways 

may be influenced via HtrA2 overexpression (explained in detail in introduction part). And 

one these pathways, is cell death via HtrA2-mediated degradation of inhibitors of apoptosis 

(IAP´s such as XIAP). To investigate this pathway leading to cell death the protein 
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expression of the respective substrate was assessed in brain regions where the cell death 

was previously observed (see Fig. 3.22).  

Though several substrates of HtrA2 are known to date, XIAP is one of the best characterized 

substrates of HtrA2. The expression level of XIAP was assessed in the cerebellum, cortex 

and basal ganglia region of the TG and control mouse lines. 

Figure 3.25 XIAP level expression check in (A) Cerebellum (B) Cortex and (C) Basal ganglia region of Non-TG, TG 

HtrA2 WT and TG HtrA2 G399S mice. 50 µg of protein was loaded on the WB from these regions of brain from 

three independent mice from the three different mouse lines. Three technical replicates were performed from 

the same sets of mice lysates. And the blot was probed by XIAP antibody followed by ß-actin as a control. 

Densitometric analysis was performed using imagej. ± S.D, where n=3, where n denotes the number of mice 

from each mouse line. Significance level was checked using the paired t-test, where *p<0.05, **p<0.01 and 

***p< 0.001. 
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As we can see in the figure 3.25A, there was a significant increase in the expression level of 

XIAP in the cerebellum region of TG HtrA2 WT mice compared to Non-TG and TG-HtrA2 

G399S mice. Though this increase was not observed in cortex (Fig.3.25B), there was a 

significant increase in XIAP levels in the basal ganglia region of TG HtrA2 WT and TG HtrA2 

G399S mouse line compared to Non-TG mouse line.  

TUNEL and caspase 9 findings showed consistent results in the cerebellum and cortex of TG 

HtrA2 WT mice while in TG HtrA2 G399S mice findings were consistent in the cortex region. 

Interestingly there was upregulation of XIAP in the cerebellum and basal ganglia of TG HtrA2 

WT mice while in cortex XIAP showed no difference in both the transgenic mouse lines 

compared to controls. So to conclude, TG HtrA2 WT mice showed consistent findings in 

cerebellum region and TG HtrA2 G399S mice exhibited consistent findings in cortex region in 

terms of cell death (TUNEL and caspase 9 markers) even though XIAP levels in these 

regions do not correlate with these results in each mouse line. 

3.1.3.4 TARGETED ANALYSIS FOR PHOSPHOSERINE 400 HTRA2 

COLOCALISATION IN NUCLEUS 

 
Serine 400 HtrA2 is one of the three characterized phosphorylation sites of HtrA2 and is 

located adjacent to G399, which is mutated in some PD patients (Fitzgerald et al. 2012). In 

fact, two important phosphorylation sites on HtrA2, are thought to be involved in the 

regulation of its protease activity (Plun-Favreau et al. 2007, Lin et al. , Fitzgerald et al. 2012) 

and are located adjacent to mutation or polymorphism sites described in PD patients A141S 

(Strauss et al., 2005), P143A (Lin et al., 2011), G399S (Strauss et al., 2005). As an effort to 

define the relevance of Phosphoserine 400 HtrA2, one of our collaborators Prof. Katrin 

Marcus, Proteome Center, Ruhr.University Bochum, found that there is colocalisation of 

phosphoserine 400 HtrA2 with the nuclei of SHSY-5Y cells overexpressing FLAG-HtrA2 (Fig. 

3.26). 
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Figure 3.26 Phospho-HtrA2 S400 and FLAG co-staining in SHSY-5Y cells. Blue signal represents nuclear staining, 

the red signal is for the Phospho-HtrA2 S400 HtrA2 staining, green signal is for the FLAG staining. Where 

Vector= SH-SY5Y cells transfected with empty vector, Wildtype= wild type HtrA2 transfected SH-SY5Y cells, 

G399S, A141S and R404W represent SH-SY5Y cells transfected with different HtrA2 mutants. Performed by 

Katrin Marcus, Proteom center, Ruhr.University Bochum. 

 In order to investigate if this could be confirmed in vivo, phosphoserine 400 HtrA2 stainings 

were performed on 6µm brain sections of 12 months old mice, using immunoflourescent 

protocol. Images were acquired from the cerebellum, cortex and basal ganglia regions of 

Non-TG,  TG HtrA2 WT and TG HtrA2 G399S mice at 40X using blue (for nucleus) and red 

filters (for phospho- S400 staining) as is shown in the figure 3.27 (A-C). 
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Figure 3.27 Nuclear colocalisation of Phospho-HtrA2 S400 in TG HtrA2 WT mice. Microscope images were 

acquired at 40X magnification from the immunohistochemical stainings of phosoho-HtrA2 S400 HtrA2 on 6 µm 

cryosections of 12 month old mice in the cerebellum (A), cortex (B) and basal ganglia (C) region of TG HtrA2 

WT, TG HtrA2 G399s and Non-TG mouse lines. Phospho-HtrA2 S400 HtrA2 Staining (red) were analyzed for 

colocalisation with nuclei (blue) by ImageJ program in the cerebellum, cortex and basal ganglia region of 

different mouse lines. Scale bar=10µm. (D-F) Quantification of colocalisation of phospho-HtrA2 S400 HtrA2 and 

nuclei showed significantly more colocalisation in the basal ganglia and cortex regions of TG HtrA2 WT mice as 

compared to Non-TG and TG HtrA2 G399S mice. Though there was a tendency of less colocalisation in 

cerebellum region of TG HtrA2 WT mice as compared to Non-TG and TG HtrA2 G399S mouse lines. Data are 

presented as the mean ±SD; n=3 where n is number of mice used for each line; *p<0.05, **p<0.01 and ***p< 

0.001, one-way ANOVA, Statistical significance was determined by following "Tukey's Multiple Comparison 

Test“.  

Quantification of nuclear colocalisation of Phosphoserine 400 HtrA2 was performed using 

Image J software using Pearson´s coefficient and then later densitometric analysis was 

performed on 10 images from the cerebellum, cortex and basal ganglia regions of the three 

different mice from each mouse line. There was a significant colocalisation of phosphoserine 

400 HtrA2 with the nucleus in the cortex and basal ganglia regions of TG HtrA2 WT line 
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compared to Non-TG and TG HtrA2 G399S lines. No difference was observed in the 

cerebellum region in all the three mouse lines (Fig 3.27.A). So here in the group of 12 

months old mice we observed that most of the Phosphoserine 400 HtrA2 is colocalised in the 

nucleus.  

To check if the observed nuclear localization of the  phosphoserine 400 HtrA2 staining was 

not an artifact due to the FLAG-tagged overexpressed human HtrA2, and to confirm the 

specificity of the antibody, phosphoserine 400 HtrA2 staining was additionally performed in 

SHSY-5Y cells that were transfected with WT HtrA2 without a FLAG-tag and WT HtrA2 with 

a FLAG-tag. Here we observed nuclear colocalisation of Phosphoserine 400 HtrA2 also in 

cells overexpressing WT HtrA2 without FLAG-tag. 

 

Figure 3.28 Phospho-HtrA2 S400 and FLAG co-staining in SHSY-5Y cells. Blue represents nuclear staining, the 

red signal is for the Phospho-HtrA2 S400 HtrA2 staining, green signal is for the FLAG staining. Scale bar=5µm. 

As we can see in the above figure that there is no difference in the Phosphoserine 400 HtrA2 

colocalisation in all the three group of cells which also confirms that FLAG-tag does not 

influence Phosphoserine 400 HtrA2 staining in terms of its colocalisation with nuclei. 
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3.2 CELL CULTURE EXPERIMENTS 

3.2.1 ROLE OF HTRA2 IN MITOCHONDRIAL MORPHOLOGY 

REGULATION AND MITOCHONDRIAL DEGRADATION 

3.2.1.1 HTRA2 INFLUENCE ON MITOCHONDRIAL AND LYSOSOMAL 

COLOCALISATION 

 
Additional cellular models were employed in order to characterize the physiological role of 

the protein. In order to study the effect of HtrA2 on the mitochondrial and lysosomal 

colocalisation live cell imaging experiments were performed in mouse HtrA2 WT knockout 

embryonic fibroblasts (MEFs), overexpressing HtrA2 WT, HtrA2 mutant S306A (protease 

dead) and an empty vector (EV). This was achieved by staining with mitotracker red (for 

staining mitochondria) and lysotracker green (for staining lysosomes) and taking live cell 

images. The experiment was repeated three times using the same conditions. With the live 

cell images mitochondrial and lysosomal colocalisation study was performed using axiovision 

software (Krebiehl et al., 2010). 5 to 6 images were used for each kind of cells for statistics. 

Here are shown the example pictures from the live cell imaging and graphical representation 

of colocalisation data in figure 3.29. There is more yellow signal, which represents overlap of 

green (lysosomes) and red signals (mitochondria) in EV and HtrA2 mutant expressing cells 

compared to HtrA2 WT expressing cells which means more number of mitochondria are 

degraded by lysosomes in these cell lines. Quantification of the data showed a significant 

increase in lysosomal and mitochondrial colocalisation in HtrA2 KO cells overexpressing 

HtrA2 mutant or empty vector compared to cells overexpressing HtrA2 WT, which means 

that there are more mitochondria reaching the lysosomes for degradation in the absence of 

HtrA2. 

As a control experiment, HtrA2 expression was analyzed on the WB in the HtrA2 KO MEFs 

expressing EV, HtrA2 WT and HtrA2 mutant. There was no HtrA2 expression observed in the 
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HtrA2 KO MEFs expressing EV while WT HtrA2 and Mutant HtrA2 were equally expressed in 

the HtrA2 KO MEFs expressing HtrA2 WT and HtrA2 mutant respectively.  

 

 

 

 

Figure 3.29 HtrA2 influence on Mitochondrial and lysosomal colocalisation. (A) Live cell images from the cells 

stained with lysotracker red, mitotracker green and DAPI. Merged images (yellow signal) represent 

mitochondrial and lysosomal colocalisation. Scale bar=10µm. (B) Quantification of mitochondrial and lysosomal 

colocalisation by Axiovision software. (C) Expression analysis of HtrA2 in HtrA2 KO MEF´s expressing EV, HtrA2 

WT and HtrA2 mutant on WB. Data are presented as the mean ±SD; n=3; *p<0.05, **p<0.01 and ***p< 0.001, 

one-way ANOVA, Statistical significance was determined by following "Tukey's Multiple Comparison Test“. 

Where EV=Mouse HtrA2 WT knock out embryonic fibroblasts (MEFs) overexpressing empty vector, WT=Mouse 

HtrA2 WT knock out embryonic fibroblasts (MEFs) overexpressing HtrA2 WT, and Mut=Mouse HtrA2 WT knock 

out embryonic fibroblasts (MEFs) overexpressing S306 mutant HtrA2.   

3.2.1.2 HTRA2 INFLUENCE ON AUTOPHAGIC ACTIVITY 

 

A marker of autophagy was measured in the HtrA2 MEFs with HtrA2 KO background, 

overexpressing HtrA2 WT, HtrA2 S306A mutant (protease dead) and an empty vector by 

expressing LC3-GFP (for visualisation of autophagosomes) in these cells. Later from the 

images of fixed cells, puncta were counted from at least 10 individual cells from each line 

and later the average number of puncta in each cell per line was calculated. The experiment 
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was repeated three times using same conditions. Here are shown the example images for 

LC3-GFP puncta and graph showing their quantification.  

 

       

Figure 3.30 HtrA2 influence on autophagosome formation (A) Microscopic images from the fixed cells 

transfected with LC3-GFP. Blue signal represents nucleus and green signal represent LC3-GFP puncta. Scale 

bar=10µm. (B) Quantification of LC3-GFP puncta. Data is presented as the mean ±SD; n=3 where n represents 

the number of technical repeats; *p<0.05, **p<0.01 and ***p< 0.001, one-way ANOVA, Statistical significance 

was determined by following "Tukey's Multiple Comparison Test“.  

No differences in LC3-GFP puncta were observed between the different cell lines. Since the 

LC3-GFP punctas are the representative of the number of autophagosomes, these results 

show that there are more number autophagosomes in the absence of HtrA2. 

3.2.1.3 HTRA2 INFLUENCE ON MITOCHONDRIAL MASS 

 

Mitochondrial mass was checked by fluorescence activated cell sorting (FACS) using 

mitotracker green which stains mitochondria and provides a read-out for mitochondrial mass 

(Krebiehl et al., 2010). The data is shown here in graphical form and represents the mean of 

three independent experiments and 50,000 cells were assessed for each line per 

experiment. As can be seen from the graph the mitochondrial mass was significantly reduced 

in the complete absence of HtrA2 (HtrA2 KO cells expressing EV) and in the absence of 

functional HtrA2 (HtrA2 KO cells expressing HtrA2 mutant). 
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Figure 3.31 HtrA2 influence on mitotracker staining measure by FACS. This was performed by staining HtrA2 

KO MEF´s expressing EV, HtrA2 WT and HtrA2 mutant with mitotracker green and then analyzing them with 

FACS based on the difference in their fluorescent intensity as mitotracker green stains all the mitochondria 

present in the cells. Here is shown the quantification of three independent experiments on FACS analysis. Data 

are presented as the mean ±SD; n=3 where n represents the number of independent experiments,*p<0.05, 

**p<0.01 and ***p< 0.001, one-way ANOVA, Statistical significance was determined by following "Tukey's 

Multiple Comparison Test“.  

This data suggest that HtrA2 protease activity is important for normal mitochondrial function 

and its absence leads to less mitochondrial mass. Absence of HtrA2 enhances dysfunctional 

mitochondria which are removed by the cells as a protective mechanism against cell death 

(Kieper et al., 2010). 

3.2.1.4 HTRA2 INFLUENCE ON MITOCHONDRIAL CHAPERONE- TRAP1 

 

It was found that the chaperone TRAP1 is a novel HtrA2 interacting partner by MALDI-TOF 

analysis and later confirmed using co-immunoprecipitation method by colleagues in our 

laboratory (unpublished work). In order to follow this interaction we investigated the 

endogenous levels of TRAP1 in the HtrA2 KO MEF cells expressing (empty vector) EV, 

HtrA2 WT and HtrA2 mutant. TRAP1 levels were assessed by WB in these cells.  
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Figure 3.32 HtrA2 influence on TRAP1 (A) Expression analyses of endogenous TRAP1 in HtrA2 KO MEFs 

overexpressing EV, HtrA2 WT and HtrA2 mutant on WB in four independent experiments. 50µg of protein was 

loaded in each well and probed for TRAP1 followed by ß-actin as a loading control. (B) Quantification of TRAP1 

levels. Data is presented as the mean ±SD; n=4 where n is the number of independent experiments; *p<0.05, 

**p<0.01 and ***p < 0.001, one-way ANOVA, Statistical significance was determined by following "Tukey's 

Multiple Comparison Test“.  

As we can see in the figure 3.32, reintroduction of HtrA2 reduces the levels of TRAP1 

compared to the knockout situation (EV) and reintroduction of protease dead HtrA2.  

So from the above results it could be deduced that the Trap1 levels may be increased in 

HtrA2KO situation (EV) and that expressing the protease-dead mutant HtrA2 has no effect 

but HtrA2 WT levels of HtrA2 reduce Trap1 suggesting that TRAP1 might be a substrate of 

HtrA2 inside mitochondria. 
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4. DISCUSSION 
 
These results provide the first evidence in vivo, linking overexpression of HtrA2 to 

neurodegeneration. Here we show that the overexpression of human HtrA2 in mice leads to 

motor deficits, proposed to be caused by apoptosis in cerebellum, cortex and basal ganglia 

region of brain and paralleled by aggregation of alpha-synuclein. In addition, the G399S 

mutation in HtrA2 was not found to have a toxic gain of function since the mice 

overexpressing human G399S HtrA2 do not manifest a significant motor phenotype or 

neuronal apoptosis. However, low expression levels of transgenic G399S HtrA2 compared to 

WT HtrA2 in the cerebellum, coupled with a mild pathological and behavioral phenotype 

means that the toxic effect of the mutation cannot be ruled out completely.  

4.1 BIOCHEMICAL & IMMUNOHISTOCHEMICAL 

CHARACTERISATION OF THE HUMAN HTRA2 MOUSE 

LINES 

 

Biochemical investigation of our transgenic human HtrA2 mouse models showed similar 

levels of overexpression of the transgene between HtrA2 G399S and WT mice in the majority 

of the brain regions investigated with the exception of the cerebellum, where the 

overexpression of WT HtrA2 protein is higher than that of G399S HtrA2. Using the Prp 

promotor we expected similar levels of overexpression in both lines. However, the 

expression of WT and G399S HtrA2 at the DNA (Fig. 3.2) and mRNA level (Fig.3.1), 

detected by PCR and RT-quantitative PCR respectively is equal. These data suggest that 

there might be some post-transcriptional or post-translational effects occurring due to the 

G399S mutation in HtrA2 which leads to less expression in different brain regions of TG 

HtrA2 G399S mice. So we speculate that G399S mutation in HtrA2 might lead to RNA-

instability and hence less protein expression. Another reason for low expression levels of 
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HtrA2 in TG G399S mice could be that this mutation might lead to protein misfolding and 

hence promoting its degradation, although the above effects were not assessed in our 

mouse lines.  Yet other important facts that might affect the expression level of protein are 

the transgene integration site and the transgene copy number. There are evidences which 

suggest that the randomly integrated transgene is susceptible to “position effect variegation 

(PEV)” that often causes impaired transgene expression and in some cases might lead to 

complete gene silencing (Eissenberg, 1989; Allshire et al., 1994). Though increased copy 

number of transgenes sometimes leads to increased expression, but there are some 

incidences in literature where low or silenced transgene expression is reported in transgenic 

mice with high-copy-number arrays of transgene, and a reduction in the copy number in 

these mice resulted in a significant increase in transgene expression (Garrick et al., 1998). 

The PCR data from our HtrA2 mouse lines suggested that expression at mRNA level was 

similar in both TG HtrA2 WT and TG HtrA2 G399S mouse lines (Fig. 3.2).   

Our immunohistochemical data also showed expression of transgenic HtrA2 using HtrA2 and 

FLAG antibody in all brain regions (Fig.3.5A-C) which complements our biochemical 

investigations. However, HtrA2 has a complex tertiary and quaternary structure and is 

difficult to stain immunohistochemically and perhaps hidden epitopes. However, 

Immunohistochemical analyses confirmed HtrA2 overexpression in the brains of transgenic 

animals and that the expression is ubiquitous in all brain regions and the different body 

organs tested. This is in accordance with the PD pathology since it is evident from the 

literature that PD is a multisystem disorder, affecting many brain regions and peripheral 

nervous system (Braak et al., 2003). Studies have identified early gastrointestinal, olfactory, 

autonomic, and sleep disorders even before the manifestation of motor symptoms. So these 

models which are based on a broadly expressed promotor are advantageous because they 

are likely to reproduce the wide range of abnormal changes associated with PD. In one of the 

first studies conducted on HtrA2 in vivo, a neuroprotective role of HtrA2 was demonstrated in 

a mouse model with complete HtrA2 KO. The motor phenotype in these mice was 
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reminiscent of PD and relevant loss of neurons in the striatum was observed (Martins et al., 

2004). In fact HtrA2 came into focus in relation to PD, when mnd2 (motor neuron 

degeneration 2) mutation found in mouse was identified as a homozygous missense 

mutation (Ser276Cys) in the protease domain. The earliest symptoms observed in these 

mice were altered gait and cessation of normal weight gain, followed by ataxia, repetitive 

movements and akinesis. Striatal neurons were most susceptible in these mice, but other 

neurons in the central nervous system, brain stem and spinal cord, including motor neurons 

were affected at later stages (Rathke-Hartlieb et al., 2002). Both the features of necrosis and 

apoptosis were observed in these mice.  More recently mnd2 mice – a mouse model with 

ubiquitous expression of HtrA2, were used to investigate the rescue potential from the 

neurodegenerative phenotype by reintroduction of WT HtrA2 in these mice. Therefore mnd2 

mice were crossed with a mouse model with transgenic expression of human HtrA2 in the 

central nervous system (Kang et al., 2013). The transgenic expression of human HtrA2 in the 

central nervous system of mnd2 mice rescues them from neurodegeneration and prevents 

their premature death.  This study proved very useful as it not only confirmed the 

neuroprotective role of HtrA2 but also revealed the role of HtrA2 in ageing. Adult transgenic 

mnd2 mice were reported to develop ageing phenotypes, such as weight loss, hair loss, 

reduced fertility, curvature of the spine and death by 12-17 months of age. These mice also 

have elevated levels of clonally expanded mitochondrial DNA deletions in their tissues linking 

mitochondrial protein quality control to mitochondrial DNA deletions and ageing in mammals 

(Kang et al., 2013). As our HtrA2 mouse models also express the transgenes in all brain 

regions they more closely reflect the pathological pattern observed in PD and may be 

advantageous compared to models based on very restricted expression under brain region 

specific promoters such as Thy-1 promoter (Kemshead et al., 1982).  
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4.2 OVEREXPRESSION OF HUMAN HTRA2 WT AND G399S 

MUTANT IN MICE- BEHAVIORAL IMPLICATIONS 

 

It has already been shown that mice lacking HtrA2 expression or function display a 

neurodegenerative phenotype resembling PD and mitochondrial dysfunction also observed 

as one possible pathway involved in molecular pathologies underlying PD (Jones et al., 

2003; Martins et al., 2004). Later several studies found an association of different genetic 

HtrA2 variants with PD (Strauss et al, 2005; Bogaerts et al, 2008; Lin et al, 2007). 

Additionally, recent reports described, that the G at position 399 and P at 143 is highly 

conserved in different species compared to other HtrA2 mutations which again points at the 

importance of these mutation and its further investigation in relation to PD. In a study on 

German PD patients, the G399S mutation was identified in sporadic PD patients based on 

the reported absence of other affected family members. In these carriers, the age at disease 

onset ranged from 49 to 77 years (mean 57.3±SEM 13.3 years). Clinical symptoms included 

the typical features of idiopathic PD including bradykinesia, tremor and muscular rigidity 

without any signs of atypical Parkinsonism (Strauss et al., 2005). We speculated on a 

dominant negative effect of the G399S mutation in relation to PD. Therefore the model of 

G399S HtrA2 overexpression was chosen to demonstrate its pathogenic role in vivo 

compared to overexpression of WT HtrA2 which was expected not to be harmful according to 

this concept. So to investigate the possible implications of overexpression of WT HtrA2 and 

G399S HtrA2 human mutation for PD, behavioral studies were conducted with our HtrA2 

transgenic mouse lines overexpressing WT HtrA2 and G399S HtrA2. 

Motor impairment test – rotarod – was performed in our mice from the age of 6 months until 

the age of 14 months every 8 weeks in order to determine progressive potential motor and 

learning impairment. The advantage of this test is that it creates a discretely measurable 

continuous variable (length of time) that can be used for statistical purposes to quantify the 
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effects of different drugs, overexpressed proteins, conditions and procedures (Rustay et al., 

2003).Testing of genetic mouse models on rotarod may help to determine the role of 

particular mutations in genes or the role of mutated proteins for maintaining balance and 

coordination (Braak et al., 2003; Kalaitzakis et al., 2008). 

TG HtrA2 WT mice showed a motor impairment from the first test at 6 months compared to 

Non-TG and TG HtrA2 G399S animals (Fig.3.8A). These findings persisted over all test time 

points and gradually worsened (Fig.3.8B-E). While Non-TG and TG HtrA2 G399S animals 

showed stable results. Moreover, TG HtrA2 WT showed evidence for a mild depletion in 

learning ability. These results are summarized in figure 3.9. The results for a progressive 

motor impairment were subsequently confirmed on and independent paradigm, the 

challenging beam walk (Fig.3.11). In the literature motor performance alterations were 

described for HtrA2 KO mice on the inclined-platform test (Martins et al., 2004). Inclined-

platform test is also a measure of deficiencies in motor coordination like rotarod and beam 

walk. Poor performance of mice in these tests implies impairments in motor coordination. Our 

findings on HtrA2 Overexpressing mice and the results of HtrA2 KO mouse suggest that 

HtrA2 is a double edged sword which in both the cases, either complete loss or 

overexpression, leads to a PD like phenotype. Rathke-Hartlieb et al. observed symptoms of 

altered gait and cessation of normal weight gain, followed by ataxia, repetitive movements 

and akinesis in a spontaneous recessive inherited mutation of mnd2 in 2002 and this 

essentially is the same phenotype as in the HtrA2 KO mice. Our HtrA2 WT overexpressing 

mice also showed a motor phenotype even though not severe as KO mice.  This gives the 

impression that the HtrA2 gene can lead to similar phenotypes through different pathways. 

The question arising from these motor behavioral results is why the overexpression of HtrA2 

leads to motor defects in mice as does the knockout of the same protein?  

As only TG HtrA2 WT mice showed a PD like phenotype in the rotarod and challenging beam 

walk test, our results point towards a toxic gain of function for overexpression of WT HtrA2. 
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The lack of dominant effect of mutation on motor phenotype in TG HtrA2 G399S mice rather 

argues in favor of haploinsufficieny as a mechanism in humans or could be due to dose 

effect (since the transgene G399S HtrA2 is less expressed in the cerebellum of this line 

compared to TG HtrA2 WT line). Indeed it has been shown that G399S mutant HtrA2 

displays a reduced serine protease activity in vitro following activating stimuli (Strauss et al., 

2005). This supports the notion that the loss of HtrA2 function due to the G399S mutation is 

present, but may not lead to a dominant effect in heterozygous patients. In mice having an 

endogenous background of WT mouse HtrA2 therefore the loss of function variant G399S 

may be without an effect on proper HtrA2 function. 

In another behavioral test – Open Field (OF) – both mouse lines investigated did not show 

significant differences in the pattern of movement in a novel environment compared to NT 

controls (Fig.3.12). The amount of time spent in motion by each mouse line was similar 

(Fig.3.13A) signifying that there is no difference in the general locomotor activity of the TG 

HtrA2 WT mice, TG HtrA2 G399S mice and Non-TG mice. However, there was a tendency of 

increase in the latency for the center for both transgenic lines compared to Non-TG mice, 

giving an impression of anxiety like behavior or hypersensitivity in these transgenic lines, yet 

without statistical significance. Moreover the data showed that the mice from TG HtrA2 WT 

mouse line once reached, spent more time at the center and the  tracing pattern at the center 

as observed from the raw data (Fig. 3.12) was  comparable to Thy1-aSyn mice in OF at the 

age of 4-5 months (Chesselet and Richter, 2011), yet in a lower intensity. 10 of 12 TG HtrA2 

WT mice and 8 of 12 TG HtrA2 G399S mice showed this representative pattern of anxiety 

like behavior or hypersensitivity in contrast to only 6 of 12 mice of the control group. Thus, 

the phenotype is not displayed in every individual of the group, but frequency and thus might 

be anxiety level varies between the three groups. Thy1-Syn mice also showed alpha-

synuclein aggregates in SN and motor defect on challenging beam (Chesselet et al., 2012). 

These parallels between Thy1-aSyn mice and HtrA2 mice points to the fact that the two 
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models may show similarity in terms of anxiety. Although to date, anxiety levels in HtrA2 

G399S mutation carrier PD patients have not been investigated. . 

According to OF data we suggest that there is no general locomotor defect in any of our 

mouse lines in a novel environment. However, there might be some anxiety in the transgenic 

mouse lines, yet these results have to be confirmed by further and alternative experiments to 

confirm any significance. 

Altogether from the behavioral results on HtrA2 overexpressing mice, it can be concluded 

that the overexpression of WT HtrA2 in mice leads to motor and coordination impairments 

with mild effect on anxiety levels. Though overexpression of mutant G399S HtrA2 in mice 

had no implicit effects on motor behavior of the mice, there is tendency of increased anxiety 

in these mice compared to Non-TG mice. 

4.3 MECHANISM UNDERLYING MOTOR PHENOTYPE 

4.3.1 IMPAIRED MITOCHONDRIAL QUALITY CONTROL IN TG 

HTRA2 WT MICE 
 
To find the mechanism underlying the motor phenotype in our TG HtrA2 WT mice, various 

causes were considered. Since most of the earlier HtrA2 mouse models showed 

mitochondrial dysfunction or mitochondria dependent apoptosis, we investigated 

mitochondrial dysfunction including mitochondrial and nuclear encoded mitochondrial 

proteins expression levels (Fig.3.15). As HtrA2 is a mitochondrial protein we expected that 

the toxic gain of function in TG HtrA2 WT mice could be the result of disturbed mitochondrial 

quality control due to overload of protein. And one way to address quality control 

disturbances is to assess the expression levels of mitochondrial proteins. This method of 

assessing the mitochondrial protein expression levels was also applied to decipher 

mitochondrial defects by Moisoi at al., 2009. Complex IV subunit I which is a mitochondrial 

encoded protein showed no significant differences in expression level in the cerebellum and 
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basal ganglia of three different mouse lines though in cortex the Complex IV subunit I 

showed significant higher expression level in TG HtrA2 G399S mice compared to TG HtrA2 

WT mice. There was no difference in VDAC (porin) levels, a nuclear encoded mitochondrial 

protein. Similar results were also described in the HtrA2 KO model with no significant 

differences in the function of any of the mitochondrial enzymes including complex IV 

compared to control mice (Martins et al., 2004). The significant upregulation of Complex IV 

subunit I in cortex of TG HtrA2 G399S mice compared to TG HtrA2 WT mice might be a 

compensatory, protective or even toxic gain of function of mutant HtrA2 in this region, even 

though less expressed compared to TG HtrA2 WT mice. There is evidence in the literature 

that the loss of HtrA2 in mice results in mitochondrial unfolded protein response with 

insoluble mitochondrial protein aggregation in KO mouse brains (Moisoi et al., 2009). This 

might further lead  to mitochondrial unfolded protein response (mtUPR) with insoluble 

mitochondrial protein aggregation as shown in HtrA2 KO mouse brains (Moisoi et al., 2009) 

paralleled by upregulation of several mitochondrial proteins including complex IV subunit I as 

a result mitochondrial stress response. 

From our findings we speculate that HtrA2 G399S overexpression might result in disturbed 

chaperone network and ROS production in these mice.  Increased ROS production has been 

described in in vitro HtrA2 KO condition (Strauss et al., 2005) which can be rescued by 

reintroduction of WT HtrA2 (Kieper et al., 2010). ROS production might damage respiratory 

complexes and other mitochondrial proteins (Kang et al., 2013) resulting in the loss of 

mitochondrial respiratory competence and reduced intracellular ATP levels. This could lead 

to rupture of the plasma membrane and necrotic cell death (Leist et al., 1997). Hence 

assessment of ROS production levels in fibroblasts would have been interesting in our 

mouse lines, but unfortunately the Prp promoter does not result in expression of transgene in 

fibroblasts. 
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4.3.2 IMPAIRED AUTOPHAGY IN TG HTRA2 WT MICE 

 

It has been described in the literature that HtrA2 is involved in autophagy (Li et al., 2010) by 

digestion of proteins such as Hax-1 which is involved in repression of autophagy. HtrA2-

induced autophagy also facilitates the degradation of neurodegenerative proteins such as 

pathogenic A53T alpha-synuclein and endogenous autophagy substrate p62 (Li et al., 2010).  

We obtained non-significant results for LC3-II, a marker for autophagy. So, further 

investigation is needed in this direction. Disturbances in autophagy might lead to diminished 

mitochondrial and organellar quality control in these animals (Li et al., 2010).  

4.3.3 AGGREGATE FORMATION IN TG HTRA2 WT MICE 

 

Alpha-synuclein is the main constituent of Lewy bodies in PD patients. Interestingly, we 

found alpha-synuclein aggregates (Fig.3.18) in cerebellum, cortex and basal ganglia regions 

of brain of TG HtrA2 WT mice, though no aggregates were found in Non-TG mice and a 

tendency to form aggregates was observed in TG HtrA2 G399S mice. The tendency to form 

aggregates in TG HtrA2 G399S mice points to a pathological process that involves alpha-

synuclein accumulation and therefore might involve similar mechanisms as in PD. There are 

findings in literature which suggest a direct relation between alpha-synuclein gene dosage 

and PD disease progression. Genomic triplication of the alpha-synuclein gene has been 

reported to cause hereditary early-onset Parkinsonism with dementia (Singleton et al., 2003) 

On the contrary the clinical phenotype of alpha-synuclein duplication patients closely 

resembles idiopathic PD with neither cognitive decline nor dementia (Chartier-Harlin et al., 

2004). Moreover accumulation of HtrA2 in neuronal and glial inclusions in brains with alpha-

synucleinopathies has been reported (Kawamoto et al., 2008) which shows co-existence of 

HtrA2 and alpha-synuclein pathology and hence support our findings.  

PK digestion in brain slices before staining with alpha-synuclein, confirmed the presence of 

insoluble, PK-resistant alpha-synuclein aggregates in TG HtrA2 WT mice (Fig.3.19). 
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Proteinase K digests soluble proteins and has been established as a reliable method to 

define the presence of insoluble aggregates both in vitro and in vivo (Neumann et al., 2002). 

Alpha-synuclein aggregation in our disease model might be the result of diminished 

autophagy (Dexter et al., 1989a), dysfunction of cellular machinery that includes chaperone 

networks (that regulate protein folding and refolding) (Hartl et al., 2011) or impairment of the 

ubiquitin-proteasomal system (UPS) and autophagy-lysosomal pathway (ALP) which are 

responsible for elimination of harmful proteins (Tyedmers et al., 2010). Similar abnormal 

aggregates observed in the mnd2 mice were linked to decreased basal autophagy in these 

mice (Li et al., 2010). However here in mnd2 mice there is loss of HtrA2 function mechanism 

involved while in our HtrA2 overexpressing mouse lines it might be the result of interference 

of human HtrA2 with mouse HtrA2. Disturbed protein quality control and more defective 

proteins might be the reason for the observed increase in ubiquitinated proteins in TG HtrA2 

WT mice (Fig.3.20). Presence of more ubiquitinated proteins can lead to overload and further 

disturbance in UPS and ALP pathway. The addition of ubiquitin can affect proteins in many 

ways: it can signal for their degradation via the proteasome, alter their cellular location, affect 

their activity and promote or prevent protein interactions (Glickman and Ciechanover, 2002; 

Schnell and Hicke, 2003) Ubiquitination plays an important role in aggregate formation and 

proteins intended for proteasomal degradation and Lewy bodies typically contain 

ubiquitinated alpha-synuclein (Ubl et al., 2002) 

According to the literature, the human genetic data strongly support a causal role for alpha-

synuclein in PD. Whether Lewy bodies are causal or consequential is less clear, but they do 

support the idea that alpha-synuclein represents an important link between sporadic and 

inherited PD (Cookson, 2009). The various lines of evidence identify alpha-synuclein as a 

potentially toxic protein, fulfilling the requirements of a causative agent in PD (Cookson, 

2009). There is evidence from the literature for endogenous alpha-synuclein aggregates and 

oligomers in brain extracts from rodent models (Mazzulli et al., 2011; Winner et al., 2011) as 

observed in our disease model. Unfolded proteins and aggregates were also observed in 
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HtrA2 deficient neuronal cells (Moisoi et al., 2009). Since HtrA2 has been proposed to be a 

mitochondrial chaperone (Gray et al., 2000), overexpression of this protein in mice might 

lead to dysfunction of the chaperone network resulting in alpha-synuclein aggregation. And 

we propose that alpha-synuclein mediated toxicity causes cell death leading to motor 

phenotype in our TG HtrA2 WT mice. 

4.3.4 APOPTOSIS IN TG HTRA2 WT MICE 

 

In order to check whether alpha-synuclein toxicity leads to cell death in our TG HtrA2 WT 

mouse line various cell death assays were conducted in our mouse lines including TUNEL 

assay which has been used in mouse models and is claimed as a reliable method for finding 

apoptotic cell death in mice (Hubener et al., 2011). Significantly higher numbers of apoptotic 

nuclei were observed in TUNEL assay in cerebellum, basal ganglia and cortex region of TG 

HtrA2 WT mice compared to Non-TG and TG HtrA2 G399S confirming more cell death in this 

line (Fig.3.22A-F). The number of apoptotic nuclei was also significantly higher in the 

cerebellum and cortex region of TG HtrA2 G399S mice (Fig.3.22 D, F) compared to Non-TG 

mice but significantly less than TG HtrA2 WT mice, although the number of apoptotic nuclei 

in the basal ganglia region of TG HtrA2 G399S mice was almost similar to Non-TG mice 

(Fig.3.22 E). These results provide an explanation for the motor phenotype observed in TG 

HtrA2 WT mice in contrast to TG HtrA2 G399S mice, which only show increased cell death in 

the cortex and cerebellum region. HtrA2 KO mice (Martins et al., 2004) again show similar 

results with cell death specifically in the striatum, a region in basal ganglia. These findings 

suggest that motor phenotype specifically is related to cell death in basal ganglia region of 

brain.  

Higher amounts of cleaved caspase 9 (Fig.3.23A-B) in TG HtrA2 WT mice compared to the 

Non-TG and TG HtrA2 G399S mice confirmed increased apoptotic cell death in cerebellum 

of this line (Fahn and Cohen, 1992; Perry et al., 1997; Katunuma et al., 2001). Again TG 

HtrA2 G399S mice showed more cell death in cortex region compared to Non-TG mice and 
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TG HtrA2 WT, yet TG HtrA2 WT mice showed more cell death than Non-TG mice. The 

findings in the basal ganglia also confirmed the TUNEL assay with increased cell death only 

being observed in TG HtrA2 WT animals, though not at significant level. Caspase 9 is the 

initiator of apoptotic cell death pathway and hence higher amount of cleaved caspase 9 is the 

marker of cell death (Vande Walle et al., 2008).  Similarly caspase 3 which is the marker of 

the execution phase of apoptosis showed results in line with the findings of caspase 9 in 

activity assay (Fig.3.23). HtrA2 has already been linked to caspase activity in germ cell death 

in Drosophila (Yacobi-Sharon et al., 2013). Further we propose as reported in the literature, 

that induction of mitochondrial permeability pore opening resulting from misfolded and 

aggregated proteins, might lead to release of mitochondrial pro-apoptosis proteins that 

activate the caspase-dependent and independent cell death cascades in our disease model 

(Yacobi-Sharon et al., 2013). Previously, both necrosis and apoptosis were observed in 

mnd2 mice. Early degeneration of mitochondria was also noted (Rathke-Hartlieb et al., 

2002). To investigate specifically the dopaminergic cell death, TH level was also checked in 

three different regions of brain – cerebellum, basal ganglia and cortex - from the three 

different mouse lines (Fig. 3.24 A, B and C respectively). In the cerebellum region TH levels 

are significantly upregulated in both the transgenic mouse lines compared to Non-TG mice. 

There are some Purkinje cells and some neurons in the deep cerebellar nuclei in which TH is 

present (Yew et al., 1995). Similarly there was a trend for an increase in TH levels in the 

basal ganglia of both the transgenic lines, though this tendency was not significant, pointing 

at disturbed protein quality control in both the transgenic mouse lines in dopaminergic 

neurons. It has already been shown that TH is upregulated for example in the case of 

intermittent hypoxia followed by increase in TH activity involving ROS mediated sustained 

increase in TH phosphorylation via downregulation of protein phosphatase 2A and 

upregulation of protein kinases (Raghuraman et al., 2009). As there is also evidence from the 

literature that HtrA2 knock down leads to mitochondrial uncoupling accompanied by altered 

breathing pattern and, on a cellular level, ATP depletion and vulnerability to chemical 
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ischaemia (Plun-Favreau et al., 2012), it could be speculated that the overexpression of 

HtrA2 WT and HtrA2 G399S protein in mice might also have some effect in breathing pattern 

and lead to intermittent hypoxia followed by ROS production and upregulation of TH. Yet no 

experiments to confirm this hypothesis have been conducted in our animal lines. Having 

confirmed increased cell death in TG HtrA2 WT mouse line and to some level also in TG 

HtrA2 G399S mice, we asked which of the two ways to cell death having been described for 

HtrA2 in the literature (Papa and Germain, 2011) (Suzuki et al., 2004) was prevalent in our 

model, 

� Inhibiting inhibitor of apoptotic proteins (IAP´s) or 

� Direct protease activity. 

 

Figure 4.1 HtrA2 mediated cell death 

The levels of XIAP (X chromosome-linked inhibitor of apoptosis protein), one of the well-

known substrate of HtrA2 (Suzuki et al., 2001), were analyzed in the cerebellum, cortex and 

basal ganglia region of HtrA2 mouse lines.  Surprisingly, the levels of XIAP were increased 

rather than decreased in TG HtrA2 WT mice compared to Non-TG controls suggesting that 

increased protein expression of WT HtrA2 does not result in direct degradation of the 

substrate XIAP. Moreover XIAP showed significant upregulation in the basal ganglia of TG 

HtrA2 G399S mice compared to Non-TG mice and also a similar tendency in cortex and 

cerebellum. The increased levels of XIAP could be a compensatory response against 

apoptotic stimuli triggered due to the catalytic activity of HtrA2 by XIAP, but further work on 
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the protease activity of HtrA2 in our models needs to be undertaken. The other possibility is 

that there might be some another substrate than XIAP which is involved in HtrA2 mediated 

cell death in TG HtrA2 WT mice or there could be cross talk between different cell death 

pathways involved in the process. 

4.4 NUCLEAR COLOCALISATION OF PHOSPHOSERINE 400 

HTRA2 IN TG HTRA2 WT MICE 

 
From the literature it is known that two confirmed phosphorylation sites of HtrA2 are adjacent 

to two of the mutation sites of HtrA2 in PD patients. Serine 400 HtrA2 is adjacent to the site 

of the conserved amino acid G399, which has been found to be mutated in some PD patients 

(Strauss et al., 2005). It was found that HtrA2 was phosphorylated upon activation of the p38 

pathway in a Pink1-dependent manner, and there was an increase in phosphorylated HtrA2 

in the brains of sporadic PD patients and decreased in Pink1 mutated patients (Plun-Favreau 

et al., 2007; Zhang et al., 2007). It is also reported that HtrA2 is phosphorylated at S400 by 

Cyclin-dependent kinase-5 (Cdk5) in a p38-dependent manner (Fitzgerald et al., 2012). Here 

it’s also reported that phosphorylation of HtrA2 at S400 is involved in maintaining 

mitochondrial membrane potential under stress conditions and hence important for 

mitochondrial function. Activation of similar pathway is also involved in the phosphorylation of 

another site, S142, which is also located adjacent to the site of mutation, found in PD 

patients and is phosphorylated in a p38 and Pink1-dependent manner (Plun-Favreau et al., 

2007). HtrA2 is also reported to be phosphorylated at S212 by Akt which reduces its 

protease activity (Yang et al., 2007).  

As shown in section 3.1.3.4 of results, phosphorylated HtrA2 showed increased 

colocalisation with nuclei in TG HtrA2 WT mice, the line with PD like phenotype. This could 

be another quality control phenomenon under stress conditions. There have been 

contradicting theories in terms of phosphorylation of HtrA2 in the literature, some PD patients 

show increased phosphorylated HtrA2, while PINK1 mutant PD patients show the opposite 
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(Plun-Favreau et al., 2007). It has been suggested that phosphorylation of HtrA2 might 

modulate its proteolytic activity (Plun-Favreau et al., 2007). Our analysis of colocalisation of 

phoshpo-HtrA2 in nucleus gave varying results in different regions of the brain of the affected 

line indicating a still unclear role of the protein in quality control mechanisms. The evaluation 

of Phosphoserine 400 HtrA2 in SHSY-5Y cells confirmed that the effect of nuclear 

colocalisation of Phosphoserine 400 HtrA2 is not the effect of FLAG-tag, because most of the 

Phosphoserine 400 HtrA2 was colocalised in nucleus even in untransfected SHSY-5Y cells 

and cells transfected with normal WT HtrA2 construct without a FLAG-tag. Altogether, the 

nuclear colocalisation of phosphoserine 400 HtrA2 could be a signal for the caspase 

activation, markers of execution phase of apoptosis. An alternative explanation could be that 

the amount of nuclear colocalisation of Phosphoserine 400 HtrA2 in-vivo could be one of the 

mechanisms involved in quality control mechanism. It could be interesting to investigate the 

cause for nuclear colocalisation of Phosphoserine 400 HtrA2 as it could be relevant to 

mechanism involved in PD. 

However, the data is mainly obtained from immunohistochemistry and the use of 

Phosphoserine 400 HtrA2 antibody in immunohistochemistry is not confirmed, no 

conclusions can be drawn from the above results.  

4.5 HTRA2 ROLE IN MITOCHONDRIAL MORPHOLOGY 

REGULATION AND MITOCHONDRIAL DEGRADATION 

 
It has already been shown that HtrA2 plays an important role in mitochondrial morphology 

(Kieper et al., 2010). So to further investigate the role of HtrA2 at a functional level we used 

stable MEF cells with KO background expressing EV, HtrA2 WT and HtrA2 protease dead 

mutation (S306), respectively. In live cell imaging results (Fig.3.29) it could be clearly seen 

that in the absence of HtrA2 expression and function (S306 protease dead mutation) there is 

more colocalisation of mitochondria with lysosomes which implies that there is more 

mitophagy. Mitophagy is a mechanism which can be used by cells to remove impaired 
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mitochondria via the lysosomes. It has been already demonstrated that HtrA2 deficiency 

causes an accumulation of reactive oxygen species and reduced mitochondrial membrane 

potential (Martins et al., 2004; Kieper et al., 2010). In HtrA2 KO mouse embryonic fibroblasts, 

as well as in HtrA2 silenced human Hela cells and Drosophila S2R + cells, it has been shown 

by live cell imaging that mitochondria are elongated and here mitochondrial morphology 

alterations were also confirmed by Electron microscopy (Kieper et al., 2010). 

The presence of more LC3-GFP puncta in the absence of HtrA2 expression and function 

showed that autophagy is enhanced when HtrA2 is absent. Furthermore the results from 

FACS analysis showed that there is less mitochondrial mass in the absence of HtrA2 

expression or function confirming the results from live cell imaging. Together these results 

suggest that HtrA2 is indispensible for mitochondrial integrity. 

Being a mitochondrial protease, HtrA2 interacts with several other proteins. One of the novel 

interacting partners of HtrA2 has been found in our lab named as TRAP1 (unpublished 

work). Furthermore we found that the loss of HtrA2 expression and function increases 

TRAP1 expression (Fig.3.32) at endogenous level. Since TRAP1 is a mitochondrial 

chaperone, our findings from the cell culture experiments suggest that absence of HtrA2, 

which is also a mitochondrial chaperone, might lead to disturbed chaperone network or 

upregulation of other chaperones such as TRAP1.  This might be a compensatory 

mechanism to cope up for the loss of HtrA2. Similarly, TRAP1 could be a target of HtrA2 

protease activity within mitochondria and the levels of TRAP1 regulated by HtrA2 may prove 

to be an important quality control mechanism within mitochondria to extend cell survival. 
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5.CONCLUSIONS 

In summary, TG mice overexpressing WT but not G399S HtrA2 have a significant motor 

behavioral phenotype and alpha-synuclein aggregation followed by apoptotic cell death. 

Even though no motor phenotype was observed in TG HtrA2 G399S mice, we observed a 

tendency of alpha-synuclein aggregation and cell death in TG HtrA2 G399 mice compared to 

Non-TG mice though not at the level of TG HtrA2 WT mice. 

All our findings in TG HtrA2 WT mice are quite contradictory to the findings by Liu et al., 2007 

who showed that neuron specific overexpression of human HtrA2 leads to no phenotype and 

that HtrA2 plays a role only in the protection of neurons. However this study showed no 

behavioral or cell death assays and the results were conferred from basic criteria such as 

weight of different organs and mice, hair phenotype or pregnancy abnormalities etc. On the 

other hand, here we show that TG HtrA2 WT mice exhibit a significant motor phenotype in 

rotarod and challenging beam walk test and point towards a toxic gain of function for 

overexpression of WT HtrA2. The lack of dominant effect of the G399S mutation on motor 

phenotype argues in favor of haploinsufficieny as a mechanism in humans or potentially a 

dose effect (since the transgene G399S HtrA2 is less expressed in the cerebellum of this line 

compared to TG HtrA2 WT line). But at the same time the extra-cerebellar pathologies were 

more pronounced in TG HtrA2 WT mice compared to G399S, though expression levels of 

transgene were similar for example in cortex - both alpha-synuclein aggregation, activation of 

apoptotic markers such as caspase 9 and apoptotic cell death based on TUNEL assay was 

observed more in TG HtrA2 WT mice compared to TG HtrA2 G399S mice. Indeed it has 

been shown that G399S mutant HtrA2 displays a reduced serine protease activity in vitro 

following activating stimuli (Strauss et al., 2005). This supports the notion that the loss of 

HtrA2 function due to the G399S mutation is present, but may not lead to a dominant effect 

in heterozygous patients. In mice having an endogenous background of WT mouse HtrA2 

therefore the loss of function variant G399S may not fully exert its effect on HtrA2 function. 



CONCLUSIONS 

 

126 

 

 

Figure 4.2 Conclusions from HtrA2 mouse models. Our findings on HtrA2 overexpressing models –TG HtrA2 WT and TG HtrA2 G399S mice 

and findings from the literature on other HtrA2 KO mice suggest that HtrA2 has important and diverse functions inside and outside of 

mitochondria. Deregulation of HtrA2 can lead to PD like symptoms both in the absence as well as in case of overexpression. The role of the 

G399S HtrA2 mutation could not be fully deduced by our TG HtrA2 G399S mice due to lack of significant pathologies or phenotype. For 

example, there was a tendency for alpha-synuclein aggregation in these increased cell death though this was not as significant overall 

when considering the overall data including behavioral characterization as the TG HtrA2 WT mice compared to Non-TG mice. The exact role 

of G399S human HtrA2 mutation remains unclear and further work is needed to uncover the effect of this mutation in HtrA2 KO 

background. Overexpression of WT HtrA2 on the other hand is significantly detrimental in terms of cell death, protein aggregation and 

motor function of the mice, all phenotypes that are strongly associated with Parkinson’s disease in humans.
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6.SUMMARY AND OUTLOOK  

 

The mitochondrial protease HtrA2 is localized in the mitochondrial intermembrane space and 

has a pro-apoptotic function when released into the cytosol. Its role in neuroprotection was 

initially identified by the demonstration of neurodegeneration and mitochondrial dysfunction 

in the mice lacking HtrA2 expression or function (Jones et al, 2003; Martins et al, 2004). 

Furthermore Parkinson’s disease (PD)-associated variants of HtrA2 have been described in 

German, Belgian and Taiwanese patients (Strauss et al, 2005; Bogaerts et al, 2008; Lin et al, 

2007). Although several studies have pointed to the importance of a protective role for HtrA2 

within the mitochondria, the mechanism of neuroprotection is still not clear. It has been 

shown that G399S mutant HtrA2 displays a reduced serine protease activity in vitro following 

activating stimuli  arguing in favor of a dominant negative effect of the G399S mutation in 

relation to PD(Strauss et al., 2005). Therefore a mouse model of human G399S HtrA2 

overexpression (TG HtrA2 G399S) was chosen to investigate its pathogenic role in vivo 

compared to overexpression of human WT HtrA2 (TG HtrA2 WT). 

We assessed the effect of WT HtrA2 and G399S HtrA2 overexpression in mice using 

behavioral, immunohistochemical and biochemical approaches in order to further define the 

role of HtrA2 in PD. The TG HtrA2 WT mice showed significant motor impairments compared 

to Non-TG mice, while TG HtrA2 G399S mice revealed no difference compared to Non-TG 

mice using rotarod and beam walk test, which was not expected according to our hypothesis. 

As a potential cause for motor impairments, we found a significant increase of apoptotic 

nuclei in the cerebellum, cortex and basal ganglia of TG HtrA2 using TUNEL staining.  

Significant increase in apoptotic nuclei was also found in cerebellum and cortex of TG HtrA2 

G399S mice. Alpha-synuclein aggregates were found in cerebellum, cortex and basal 

ganglia of TG HtrA2 WT mice, which were shown to be PK resistant. Increased amounts of 

ubiquitinated proteins were observed in cerebellum of the TG HtrA2 WT mice which 

represents another hint for impairment in degradation mechanisms and aggregation of 
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insoluble alpha-synculein in this mouse line. Although no obvious change in expression 

pattern of mitochondrial proteins was observed in cerebellum, cortex and basal ganglia, but 

significant upregulation of HtrA2 substrate XIAP in basal ganglia, and cleaved caspases in 

cerebellum and cortex of TG HtrA2 WT and cortex of TG HtrA2 G399S mice were detected. 

Upregulation of XIAP in basal ganglia might be a compensatory mechanism, but also 

pointing to the fact that there might be another substrate involved in the cell death caused by 

HtrA2. Since TG G399S HtrA2 mice do not present with a gain of toxic function, this rather 

argues against a dominant loss of function mechanism of the G399S mutation according to 

the behavioral assays. But if results from the biochemical and immunohistochemical assays 

are taken together we see some non-significant trends in TG HtrA2 G399S mice compared 

to Non-TG mice, which could be a result of unequal expression of the transgene in the 

cerebellum in TG HtrA2 G399S mice compared to TG HtrA2 WT mice. Although, the 

differences in transgene expression cannot completely rule out the differences in phenotype, 

the conclusion remains that the G399S HtrA2 mutation represents a dominant loss of 

function and further experiments in a HtrA2 KO background are required. 

It is well known that human HtrA2 executes essential roles in the mitochondria and 

contributes to apoptosis through its protease activity (Plun-Favreau et al., 2007). Indeed 

protease activity of HtrA2 was previously found to depend on S400 phosphorylation and we 

found a redistribution of phosphoS400 HtrA2 from the cytosol to the nucleus in basal ganglia 

and cortex region of TG HtrA2 WT mice compared to the other two lines. It could be 

interesting to investigate the cause for nuclear colocalization of Phosphoserine 400 HtrA2 as 

it could be relevant to mechanism involved in PD as nuclear colocalization of phosphoserine 

400 HtrA2 could be a signal for the caspase activation, markers of execution phase of 

apoptosis.  

To further investigate the role of HtrA2 in PD the levels of other HtrA2 substrates, such as 

Hax-1, can be checked in our mouse models as recently HtrA2 has also been implicated as a 

positive regulator of autophagy facilitating the degradation of mutant proteins involved in 
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neurodegenerative diseases (Li et al., 2010). Here it has been reported that HtrA2 activates 

autophagy through digestion of Hax-1, which suppresses autophagy in a Beclin-1-dependent 

pathway.  

The bacterial homologue HtrA is known to act as a molecular chaperone participating in 

protein re-folding at low temperatures (Faccio et al., 2000). Whether Omi/HtrA2 exerts similar 

functions in humans is not known, however, together with the known serine protease function 

Omi/HtrA2 may be involved in the control of protein stability (via its chaperone function) and 

turnover (via its protease function) and therefore participate in proteolytic stress response.  

Hence from our findings we speculate that HtrA2 WT and G399S overexpression might result 

in disturbed chaperone network, and the activity of mitochondrial complexes and ROS level 

can be assessed to see mitochondrial dysfunction in these models. Reduced Mitochondrial 

Citrate synthase activity was observed in HtrA2 KO model even though other complexes 

showed normal activity (Martins et al., 2004). Moreover our HtrA2 model has formation of 

endogenous alpha-synuclein aggregates and can be a model to study the pathways leading 

to the formation of alpha-synuclein aggregates, which represent the hallmark of PD as the 

major component of Lewy bodies in humans.  

The lack of dominant effect of mutation on motor phenotype in TG HtrA2 G399S mice rather 

argues in favor of haploinsufficieny as a mechanism in humans. To confirm the implications 

of the G399S mutation in PD, the transgenic mouse line TG HtrA2 G399S could be cross 

bred to HtrA2 KO mice to investigate the effect of the HtrA2 G399S mutation and this 

experiment would confirm the loss of function by failing in rescue experiments. 

Considering the HtrA2 connection with neurodegenerative disorders such as Alzheimer´s, 

Huntington´s and Parkinson´s disease (PD), HtrA2 has gained much importance in recent 

years. And these emerging roles of HtrA2 signify the importance of further research on this 

protein and extending potential findings in PD models to other diseases.  
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6.ZUSAMMENFASSUNG UND AUSBLICK 

 

Die mitochondriale Protease HtrA2 ist im Intermembranraum lokalisiert und hat eine pro-

apoptotische Wirkung, wenn sie in das Zytosol entlassen wird. Ihre neuroprotektive Rolle 

wurde ursprünglich durch Neurodegeneration und mitochondriale Dysfunktion in Mäusen mit 

gestörter Expression bzw. Funktion von HtrA2 gezeigt  (Martins et al, 2004 Jones et al, 2003) 

. Darüber hinaus wurden in deutschen, belgischen und taiwanesischen Patienten Varianten 

von HtrA2 beschrieben, die mit der Parkinson-Krankheit assoziiert sind (Bogaerts et al , 

2008; Lin et al , 2007, Strauss et al , 2005). Obwohl mehrere Studien die Bedeutung einer 

protektiven Wirkung von HtrA2 innerhalb der Mitochondrien gezeigt haben, ist der 

Mechanismus der Neuroprotektion noch unklar. Es hat sich gezeigt, dass die G399S-

Mutation auf aktivierende Reize zu einer reduzierten Aktivität der Serin-Protease in vitro 

führt. Dies würde auf einen dominant negativen Effekt der G399S-Mutation in Bezug auf die 

PD hindeuten ( Strauss et al. , 2005). Um die Rolle von HtrA2 besser zu verstehen haben wir 

Mäuse, die Wildtyp-HtrA2 und G399S- HtrA2 überexprimieren, mit immunhistochemischen 

und  biochemischen Ansätzen sowie Verhaltenstests untersucht. Die transgene HtrA2-Maus, 

die Wildtyp-HtrA2 überexprimiert, zeigte signifikante motorische Defizte im Vergleich zu der 

nicht transgenen Maus, während die transgene  Maus die G229S-HtrA2 überexprimiert 

keinen Unterschied zu der nicht-transgenen Maus im Rotarod-Test und „beam walk test“ 

zeigte. Als möglichen Grund für die motorischen Beeinträchtigungen der transgenen HtrA2-

Maus, fanden wir einen signifikanten Anstieg von apoptotischen Kernen im Cerebellum und 

den Basalganglien mittels TUNES-Färbung. Einen signifikanten Anstieg der Zahl an 

apoptotischen Kernen konnte auch im Cerebellum und Cortex der transgenen G229S-HtrA2 

Maus nachgewiesen werden. Aggregate aus α-Synuklein wurden im Cerebellum, den 

Basalgalien und Kortex der transgenen Wildtyp-HtrA2-Maus gefunden, von denen gezeigt 

wurde, daß sie Proteinkinase-resistent sind. Im Kleinhirn der transgenen Wildtyp-HtrA2-Maus 
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wurde eine erhöhte Menge an ubiquitiertem Protein beobachtet, was einen Hinweis auf eine 

gestörte Aggregation und beeinträchtigtem Abbau von unlöslichem α-Synuklein ist. Obwohl 

keine offensichtlichen Veränderungen im Expressionsmuster von mitochondrialen Proteinen 

im Cerebellum, Kortex und Basalganglien beobachtet werden konnte,  wurde eine 

signifikante Hochregulation von dem HtrA2-Substrat XIAP und gespaltene Caspasen im 

Cerebellum und im Kortex der transgenen Wildtyp-HtrA2-Maus sowie  der transgene G399S-

HtrA2 festgestellt. Die Hochregulation von XIAP in den Basalganglien könnte ein 

kompensatorischer Mechanismus sein, der darauf hindeutet, daß noch ein anderes Substrat 

bei dem Zelltod, der durch HtrA2 verursacht, eine Rolle spielen könnte. Weil die G299S-

HtrA2-Maus keine Zunahme einer pathologischen Funktionsweise in den Verhaltenstest 

zeigt, spricht dies eher spricht dies eher gegen einen dominanten „loss of function“ 

Mechanismus  der G399S Mutation. Aber wenn man die Ergebnisse der biochemischen und 

immunhistochemischen Assays zusammennimmt, dann sieht man  einige nicht-signifikante 

Trends im Vergleich der transgegen HtrA2-G399-Maus im Vergleich zu der nicht-transgenen 

Maus. Obwohl die Unterschiede in der Transgenexpression nicht die Unterschiede im 

Phenotyp ausschließen können, es bleibt die Vermutung, daß die G399S-HtrA2-Mutation 

einen dominanten „loss of function“ darstellt und weitere Experimente mit einem HtrA2-

Knockout-Hintergrund benötigt werden. Es ist bekannt daß HtrA2 eine wichtige Rolle in den 

Mitochondrien und eine wichtige Rolle bei der Apoptose spielt (Plun-Favreau et al., 2007). Es 

konnte bereits gezeigt werden, daß die Proteaseaktivität von HtrA2 in der Tat von der S400-

Phosphorylierung abhängt. In der transgenen Wildtyp-HtrA2-Maus konnten wir –im Vergleich 

zu zwei anderen Linien - eine Umverteilung in den Basalganglien und Kortex  von 

phosphoryliertem S400-HtrA2 vom Zytosol  in den Kern beochbachten. Es wäre interessant, 

die Gründe für die nukleäre Kolokalisation von Phosphoserine  400 HtrA2 näher zu 

untersuchen, da es ein wichtiger Mechanismus bei Parkinson sein könnte, so könnte 

Phosphoserine 400 HtrA2  ein Signal für die Aktivierung der Caspasen sein. Um die Rolle 

von HtrA2 bei Parkinson weiter zu untersuchen könnten in unserem Mausmodell auch die 
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Level von anderen HtrA2-Substraten wie Hax-1, das als positiver Regulator von 

Autophagozytose bei neurodegenerativen Erkrankungen den Abbau von mutierten Proteinen 

erleichtert. (Li et al., 2010). Es wurde berichtet, daß HtrA2 Auophagpzytose  durch Verdau 

von Hax-1, das Autophagozytose über einen Beclin-1-abhängige Pathway unterdrückt. 

Vom dem  bakterielle Homolog von HtrA2 ist bekannt, daß es als molekulares Chaperon ist, 

das insbesondere die  Faltung von Proteinen bei niedrigen Temperaturen ermöglicht. (Faccio 

et al., 2000). Ob Omi/HtrA2 eine ähnliche Funktion beim Menschen ausübt ist nicht bekannt. 

Wie dem auch sei, zusammen mit der bekannten Funktion als Serinprotease könnte 

Omi/HtrA2 an der Kontrolle (als Chaperon)  und am Umsatz (als Proteinkinase) an der 

Stabilität von Proteinen und damit an der proteolytischen Stressantwort beteiligt sein. 

Aufgrund unserer Ergebnisse spekulieren wir, daß die Überexpression von Wildtyp-HtrA2 

und G399S-HtrA2 zu einem gestörten Chaperon-Netzwerk führt. Die Aktivität des 

mitochondrialen Komplexes und ROS-Level könnten näher untersucht werden in diesem 

Modellen. Eine reduzierte Aktivität der Citrat-Synthase wurde in einem HtrA2-Knockout-

Modell beobachtet, während alle anderen Komplexe ein normale Aktivität zeigten (Martins et 

a., 2004).  Unser HtrA2-Modell  zeigt die Bildung von Aggregaten aus α-Synuklein, was eine 

Hauptkomponente der Lewy-Körper bei M. Parkinson sind. Das HtrA2-Modell könnte so dazu 

beitragen, die Signaltransduktion, die zu der Bildung von α-Synuklein führt, besser zu 

verstehen.  

Das Fehlen eines dominanten Effektes der Mutation auf den motorischen Phenotyp in der 

transgenen G399S-HtrA2-Maus spricht als Mechanismus für eine Haploinsuffizienz beim 

Menschen. Um die Bedeutung der G399S-Mutation für Parkinson zu bestätigen könnte die 

transgene Maus Linie G3993-HtrA2  zu einer HtrA2-Knockout-Maus kreuzgezüchtet werden  

um den Effekt der HtrA2 Mutation zu untersuchen. Zudem könnte dieses Experiment den 

Effekt des „loss of function“ nach ergebnislosen Rettungsexperimenten bestätigen.  

Wenn man die Verbindungen von HtrA2 zu neurodegenerativen Erkrankungen wie Alzheimer 

und Parkinson betrachtet, hat HtrA2 in den letzten Jahren an Bedeutung gewonnen. Die 
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herausragende Rolle von  HtrA2 erfordert deshalb weitere Forschung in über dieses Protein 

mit der Möglichkeit, daß sich diese Ergebnisse auch von Parkinson auf andere 

Erkrankungen übertragen lassen. 

 

 

 

 

 

 



 

134 

 

  



 

135 

  

ABBREVIATIONS  

 
Ab Antibody 

Ac-DEVD-AMC Asp-Glu-Val-Asp7-amido4-Methylcoumarin 

ANOVA Analysis of Variance 

BG Basal ganglia 

BS Brain stem 

BSA Bovine serum albumin 

C57BL/6 Black 6 wild type mice 

CBM Cerebellum 

CNS Central nervous system 

CTX Cortex 

DNA Deoxyribonucleic acid 

dNTP´s deoxy nucleotide triphosphates 

ECL Enhanced chemiluminescence 

EV Empty vector 

FACS Flourescence activated cell sorting 

GAPDH Glyceraldehyde 3-phosphate dehydrogenase 

IAP Inhibitor of apoptotic proteins 

IMM 

IMS 

Inner mitochondrial membrane 

Inter mitochondrial space 

KO Knock out 

LB Lysogeny broth 

L-DOPA L-3,4,-dihydroxyphenylalanine 

MALDI-TOF Matrix-assisted laser desorption/ionization time of flight Mass 

spectrometry 

MEF Mouse embryonic fibroblasts 
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Non-TG Non transgenic mice 

OB Olfactory bulb 

OD Optical density 

OF Openfield 

OMM Outer mitochondrial membrane 

PAGE 

PVDF 

Polyacrylamide gel electrophoresis 

Polyvinylidenflourid 

PBS Phosphate buffered saline 

PCR  Polymerase chain reaction 

PD  Parkinson´s Disease 

PFA Paraformaldehyde 

PINK1  PTEN induced putative kinase 1 Phosphatidylinositol (3,4,5)- 

trisphosphate 

qRT-PCR Quantitative real time polymerase chain reaction 

RPM  Revolutions per minute 

SD  Standard deviation 

SDS  Sodium dodecyl sulfate 

SEM Standard error of mean 

SNpc  Substantia nigra pars compacta 

TBS  Tris buffered saline 

TdT Terminal deoxynucleotidyl transferase 

TEMED Tetramethylethylenediamine 

TG HtrA2 G399S Transgenic human HtrA2/Omi G399S  mutant overexpressing 

TG HtrA2 WT Transgenic human HtrA2/Omi wild type overexpressing 

TH Tyrosine Hydroxylase 

TRAP1 TNF receptor-associated protein 

TUNEL Terminal deoxynucleotidyl transferase dUTP nick end labeling 
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VDAC Voltage dependent anion channel 

WB Western blot 

WT Wild type 

XIAP X-Linked inhibitor of apoptotic proteins 
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