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“Life improves the capacity of the environment to sustain life.” 

P. Kynes (F. Herbert 1965) 
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Abstract 

 

Global warming is expected to cause a severe decrease in precipitation over the 

Mediterranean Basin that might exceed the tolerance range of annual plant species in 

this region and cause local extinctions. Therefore, the ability of species to adapt to 

high rates of environmental changes is important for the persistence of populations 

under stress. We studied the ability of a set of common annual species to adapt within 

few generations to changes in precipitation in situ. 

 

In a unique long-term rain manipulation experiment which was conducted in a semi-

arid and a Mediterranean site in Israel, we simulated rainfall variation that 

corresponded to predictions by climate change models for the East Mediterranean 

Basin. The treatments included 30% reduction of rain by shelters, an unaltered 

control, and a 30% increase of rain by irrigation, without changing the frequency and 

seasonal distribution of rain events. We evaluated the direct impact of precipitation 

changes on the phenotypic variation of life-history traits and survival after eight years 

of rain manipulations in the field. To distinguish between plastic response to the 

immediate environment and adaptation due to a shift in genotypic composition, we 

raised the offspring of the individuals measured in the field over two generations under 

similar greenhouse conditions. We measured life-history traits such as phenology, 

plant size, above-ground biomass and reproduction related traits since they are an 

important indication for the future persistence of a population. We used the trends in 

trait variation between sites as a proxy to predict adaptive responses of life-history 

traits to the rain manipulation treatments within sites. We expected that a reduction in 

precipitation will lead to earlier flowering associated with smaller plant size, and 

reduced above-ground biomass but higher reproductive allocation at the end of the 

growth cycle. 

 

Our results showed that survival in the field was barely affected by the rain 

manipulation treatments. Opposite to our expectations, the wet-treatment in the 

Mediterranean site had a greater negative impact on survival than the dry-treatment in 

the semi-arid site. Also, the observed trait responses to the treatments within sites did 

not resemble the trends between sites and could be attributed to stress tolerance 

strategies. 
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In contrast to our findings in the field, in the second greenhouse generation we found 

inherited trait shifts in five out of eight studied species. Decreasing water availability in 

the field caused adaptive shifts in the onset of flowering, a reduction in plant height, 

each in one species and an increase of reproductive allocation in two species. 

Furthermore, we found inherited shifts in growth related traits that indicate an 

adaptation to higher plant density caused by the wet-treatment. Our results also 

showed that the selection on life-history traits which was caused by increased drought 

was greater in relation to additional irrigation in the semi-arid site and vice versa in the 

Mediterranean site. 

 

Among the two species that were examined under a greenhouse irrigation gradient, 

Biscutella didyma demonstrated that higher reproductive allocation and smaller 

diaspores contributed to higher fitness under drought. Although Biscutella plants 

originating from the semi-arid site had a significantly higher survival rate in relation to 

plants of Mediterranean origin under drought in the greenhouse gradient, survival was 

not affected by the rain manipulation history. Therefore, the observed adaptive shifts 

improved fitness but did not contribute survival in this species. We could also show 

that in Hymenocarpos circinnatus the range of plasticity was sufficient to cope with 

increased drought. 

 

In this thesis we present evidence that in situ adaptation to precipitation changes after 

few generations is possible. We were able to show for the first time that these 

adaptive processes are a rather common response to precipitation change, by 

subjecting species to rain manipulations within their communities. Further, we could 

demonstrate that the range of plasticity covered the range of environmental changes. 

Our experiment provides a tool to distinguish between genetic response, plastic 

response as a successful strategy, and plastic response due to a lack of the ability to 

adapt. It is possible to assess the ability of species to persist under environmental 

change and therefore, to evaluate the actual risk of biodiversity loss under climate 

change. 
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Synopsis 

 

Introduction 

 

Climate change is considered to be a threat to species (Pitelka 1997, Neilson et al. 

2005, Araújo and Rahbek 2006) because climatic conditions change in a rapid pace 

(IPCC 2007, 2012, Loarie et al. 2009) resulting in a strong impact on species, 

communities and their biotic interactions (Walther et al. 2002, Defila and Clot 2005, 

Menzel et al. 2006, Parmesan 2006, Cleland et al. 2007, Jenouvrier and Visser 2011). 

Plant species are limited in their options to migrate to more favourable climatic 

conditions due to geological and anthropogenic barriers, limitations of dispersal 

abilities and already occupied habitats (Pitelka 1997, Neilson et al. 2005, Siewert and 

Tielbörger 2010, Corlett and Westcott 2013). As an alternative to migration, 

physiological adjustment to the changed conditions in situ can occur either by plastic 

response or adaptation which involves genetic changes (Davis et al. 2005, Gienapp et 

al. 2008). If the environmental changes are severe enough to cause differences in 

survival and fitness that are associated with different phenotypes and consequently 

genotypes, the result will be a shift in the genotypic composition favouring the better 

adapted genotypes (Fox 1990, Franke et al. 2006, Rathcke and Lacey 2007). 

Regarding the rate of global warming, the question is whether the rate of evolution can 

keep pace with the rapidly changing environment (Bradshaw and McNeilly 1991, 

Burger and Lynch 1995, Etterson and Shaw 2001, Berteaux et al. 2004, Rice and 

Emery 2008). Therefore, this thesis aims to answer the question: Are annual plants 

able to genetically adapt within few generations to changes in precipitation or is the 

response plastic? 

 

Recent studies that dealt with the velocity of migration of plant populations were not 

able to answer the question whether the observed time lag of migration in response to 

climate change is due to a lack in ability or a lack in nescessity to migrate (see review 

by Corlett and Westcott 2013). So far only few studies addressed in situ adaptation as 

an alternative option to migration and presented controversial findings, indicating that 

adaptive response is species-specific and depends on many additional factors 

(Billington and Pelham 1991, Etterson and Shaw 2001, Franks et al. 2007, Bradshaw 

and Holzapfel 2008). The rate of adaptation can be slowed down by antagonistic 
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genetic correlations between traits (Etterson and Shaw 2001), and by insufficient 

genetic variation in too small populations (Reznick and Ghalambor 2001, Jump et al. 

2009). Other factors like biotic interactions and plasticity of species directly affect 

survival and fitness, and thus influence genetic variation, though the influence on 

evolvability is ambiguous. Plasticity contributes to survival which increases the 

chances of a population to persist (Lande 2009, Chevin et al. 2010) and can 

simultaneously decrease the selection pressure which in turn might slow the actual 

rate of adaptation (de Jong 2005, West-Eberhard 2005). 

 

A precondition for selection to occur in the first place is genetic variation in the 

respective trait, as well as a difference in fitness and/or survival, caused by the 

changed phenotype (Falconer 1981, Lande 1982, Lande and Arnold 1983, Mousseau 

and Roff 1987). Therefore, the study of fitness-related traits was the focus of this 

thesis. Promising trait candidates for adaptation to a decreasing precipitation include 

phenology, growth and reproduction related traits. The response of such traits to 

drought is an important indication for the future persistence of a species, because 

growth is a limit to the development and the developmental timing is tightly connected 

with reproductive success. There is evidence that with a shortening of the growing 

season the development to reproductive phase accelerates (Aronson et al. 1992, 

1993, Volis et al. 2002, Petrů et al. 2006, Franks et al. 2007, Kigel et al. 2011) and the 

reproductive allocation increases (Aronson et al. 1990, Petrů et al. 2006). Greenhouse 

experiments for multiple species have shown that these characteristics can be 

adaptive (Aronson et al. 1992, Peñuelas et al. 2004, Petrů et al. 2006, Volis 2006, 

Liancourt and Tielbörger 2009, Kigel et al. 2011). 

 

Our study systems are located in the East Mediterranean Basin for which climatic 

projections predict a continued decrease in precipitation for the next decades (Cruz et 

al. 2007, Gao and Giorgi 2008). The unpredictability of rain events is a major factor 

determining these ecosystems, in which annuals are the dominating life-form (Zohary 

1937). Under these conditions of great environmental variation species evolved a wide 

range of plasticity (Bradshaw 1965, Aronson et al. 1990). However, the range of 

plasticity might be insufficient to maintain population persistence in the case of sudden 

and high selection intensity (Relyea 2002, Valladares et al. 2007). Consequently, 
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these ecosystems might experience a loss of biodiversity because of climate change 

(Sala 2000). 

 

An artificial selection experiment was set in situ to compare the phenotypic response 

to the actual environmental change and to test whether these responses were genetic 

or plastic. To simulate the projected climate change over the Mediterranean Basin, 

precipitation was manipulated over a period of eight consecutive years in a 

Mediterranean and a semi-arid field site in Israel. The trends in phenotypic variation 

between the two field sites were used as a proxy to predict the phenotypic shifts 

caused by the rain manipulation treatments within sites. The rain manipulation in the 

field sites included dry-treatments in which rain-out shelters kept off approximately 

30% of the precipitation, unaltered control-treatments, and wet-treatments in which 

additional irrigation increased the precipitation after each rain event by ca. 30%. The 

frequency, and therefore the predictability of rain events and length of the growing 

season, remained unaltered. We manipulated precipitation while leaving the studied 

species within their natural community, therefore evolutionary processes include also 

the effects of changed biotic interactions (Sternberg et al. 2011). This approach is a 

realistic simulation of climate change that allows to gain reliable information regarding 

the evolutionary processes and the impact of changed precipitation on these 

populations. 

 

Although selection acts directly on phenotypes, regardless of their genetic 

background, the adaptive response depends on the heritability of the trait 

characteristics to the offspring generation (Lande and Arnold 1983). In order to 

disentangle plastic from genetic responses, a three generation experiment was used. 

Subsequent to the in situ measurements in the season 2009-2010, the first 

greenhouse generation (G1) of the collected seeds was grown to produce seeds 

under the same optimum conditions in 2010-11. The purpose of this G1 was to 

equalise maternal effects due to which plastic responses to the field conditions can 

persist into the offspring generation (Stratton 1989, Rossiter 1996). In the second 

greenhouse generation (G2) in 2011-12, the remaining differences in the variation of 

life-history traits are assumed to be inherited. Additionally, a greenhouse experiment 

was conducted for two species in the G2 to compare plants from all rain manipulation 

treatments under an irrigation gradient to test whether the selection under the field 
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rain manipulation treatments resulted in differences in survival and fitness under 

drought in the greenhouse. 

 

The main hypotheses were: 

- After 8 years of rain manipulation in situ plants have adapted to the changes in water 

availability and the trends in phenotypic shifts due to the rain manipulation 

treatments resemble those observed along the climate gradient. 

- Shifts in the phenotypic expression of life-history traits due to the rain manipulation 

are inherited and contribute to an enhanced fitness and survival under stress 

conditions. 
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Thesis objectives and organisation 

 

The aim of this thesis was to evaluate the ability of annual plant species to respond 

and to genetically adapt in situ to changes in precipitation within few generations in 

order to assess their potential to persist under climate change. The thesis is 

composed of three chapters, each prepared for publication in international journals, 

and with the folllowing objectives: 

 

(I) To study the direct effects of in situ rainfall manipulations on the phenotypic 

variation of life-history traits and on survival in 16 common annual plant species in 

a semi-arid and a Mediterranean site. We expected the trends in response to the 

rain manipulations to resemble the trends between sites as an indication of an 

adaptive trait shift due to a change in the genotypic composition of the populations 

(Chapter 1). 

 

(II) To assess potential of the species to evolve and adapt to the changed precipitation 

in the field. We tested plants originating from the rain manipulation treatments in 

both field sites for inherited shifts in the life-history traits in the greenhouse under 

similar, well-watered conditions (Chapter 2). 

 

(III) To evaluate whether the adaptive shifts in life-history traits are an adaptation to 

the rain manipulation treatments. We tested plants originating from the rain 

manipulation treatments in both field sites for differences in survival and fitness in 

the greenhouse under different irrigation levels (Chapter 3). 
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Key results 

 

Chapter 1: Phenotypic response to simulated climate change in a long-term rain 

manipulation experiment - a multi-species study 

 

To evaluate the direct impact of water availability on survival and the phenotypic 

variation in life-history traits, we compared populations of common annual plants 

which were subjected to rain manipulation treatments for eight years in a semi-arid 

and a Mediterranean field site. The survival rates of the 16 studied species were 

barely affected by the rain manipulation treatments and overall survival was high. 

Opposite to our expectations, mortality increased in the treatment with the highest 

water availability (Mediterranean wet), but not under increased drought. Trends of 

phenotypic variation within site due to the rain manipulation treatments did not 

resemble trends between sites. Plants in the semi-arid site were more affected by 

drought compared to plants in the Mediterranean site. In the semi-arid site the dry-

treatment had a strong negative effect on plant size and biomass production and 

caused a severe delay in the development, especially in species that flower early in 

the season. In contrast, species in the Mediterranean site benefitted from a reduced 

plant density in the dry-treatment and accumulated more biomass compared to the 

control. The observed response to the treatments within sites was most likely due to 

stress tolerance strategies, and between sites we found stress escape. 

 

 

Chapter 2: Long-term in situ rain manipulation caused adaptive responses in 

life-history traits in a set of common annual plants 

 

We evaluated the inherited intraspecific variation in response to in situ rain 

manipulation treatments to assess the potential impact of changes in precipitation on 

life-history traits. Corresponding to our prediction, decreasing water availability in the 

field caused an acceleration in the onset of flowering, a reduction in plant height, each 

in one species, and an increase of reproductive allocation in three species. Our results 

also showed that the dry-treatment affected trait variation to a greater extent than the 

wet-treatment in the semi-arid site and vice versa in the Mediterranean site. 

 



 13 

Chapter 3: Rain manipulation history affects phenotypic variation and fitness 

under different irrigation levels in annual plants 

 

We found evidence for in situ adaptation after eight years of rain manipulation. The 

rain manipulation treatments in the field led to adaptive shifts in life-history traits, 

altering fitness under drought in the greenhouse. A higher fitness in Biscutella plants 

originating from the semi-arid dry-treatments in relation to plants from the respective 

control-and wet-treatments was observed under all greenhouse irrigation levels. This 

improved fitness under drought was associated to an increase in reproductive 

allocation and a reduction in diaspore weight. Although Biscutella plants originating 

from the semi-arid site had a significantly higher survival rate in relation to plants of 

Mediterranean origin, survival under drought was not affected by the rain manipulation 

history. 
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Discussion 

 

The overall objective of this thesis was to test the ability of annual plant species to 

genetically adapt in situ to changes in precipitation within few generations in order to 

assess their potential to persist under environmental changes due to global warming. 

 

The key finding of this thesis is the evidence that in situ adaptation in response to 

chronically decreased precipitation occurred after only few generations. A higher 

fitness under drought conditions was shown in Biscutella didyma as a result of 

selection under reduced water availability for genotypes that had a higher reproductive 

allocation and produced smaller diaspores (Chapter 3). These drought adapted 

genotypes were able to produce significantly more seeds, not just under resource 

limitation due to drought but also under well-irrigated conditions in the greenhouse. 

This adaptation is likely to be a compensation for fitness loss under decreasing 

amounts of rain. 

 

Furthermore, we found inherited shifts in life-history traits that can result in survival 

and fitness advantages under drought in Aegilops geniculata and Crupina 

crupinastrum (Chapter 2). These inherited trait shifts in response to the dry-treatments 

in the field involved higher reproductive allocation and earlier onset of flowering in 

Aegilops, and shorter plant size at the onset of flowering in Crupina. In contrast to half 

of the other studied species in the semi-arid site, Aegilops had no delayed flowering 

time due to the dry-treatment (Chapter 1). We could show, that the ability to start 

flowering at an earlier stage of development was inherited, and therefore, it is a likely 

mechanism to avoid a delay in the field. In the greenhouse, Aegilops plants of dry-

treatment origin also had a higher reproductive allocation and higher fitness compared 

to Aegilops plants originating from the control- and the wet-treatment, which is likely to 

be associated with an earlier onset of flowering that allowed a longer reproductive 

period under well-irrigated conditions (Chapter 2). In Crupina, the reduction in plant 

height at the onset of flowering was inherited. This finding implies that a reduced 

competition in the dry-treatments favoured genotypes that compensated the resource 

limitation under lower water availability by flowering at a smaller size. We suggest to 

test these shifts in phenology and plant size for a contribution to fitness under drought 

in these two species. 
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While our research aimed to study the effects of reduced precipitation, we also found 

clear signs that an increase of precipitation in the field resulted in adaptive shifts in 

life-history traits (Chapter 2). Hymenocarpos plants from the wet-treatment of the 

semi-arid site of origin produced significantly more biomass, which is likely an 

adaptation to increased competition under the additional irrigation. A similar response 

of a wider instead of taller growth was observed in Aegilops originating from the semi-

arid wet-treatment which can as well be advantagous under conditions of high plant 

density. These findings indicate that competition is an important selective factor, and 

further tests that include this factor are needed to estimate to what extent these 

adaptive shifts can be a fitness advantage. 

 

Our results also showed that the selection on life-history traits which was caused by 

increased drought, was greater in relation to additional irrigation in the semi-arid site 

and vice versa in the Mediterranean site. Interestingly, the additional irrigation in the 

wet-treatment in the Mediterranean site affected survival more than low water 

availability in the dry-treatment in the semi-arid site (Chapter 1). The biotic interactions 

are a stronger selective force in relation to the amount of precipitation in this 

environment (Petrů et al. 2006, Schiffers and Tielbörger 2006, Liancourt and 

Tielbörger 2009). This implies for more mesic areas that climate change projections 

need to be viewed in the light of possible interactions with biotic factors. 

 

Plasticity is a successful strategy to cover the range of environmental changes, and 

allowed to survive until the reproductive stage in the studied species, but not 

necessarily to maintain fitness. The assumption that plasticity ensured survival was 

endorsed by the stable survival rates, under the dry-treatments in the field (Chapter 

1). An additional support is the finding that survival rates under drought in the 

greenhouse irrigation gradient did not differ due to adaptation in relation to the rain 

manipulation treatment origin in the two examined species (Chapter 3). An indication 

that plasticity failed to prevent fitness loss could be shown in Biscutella that 

demonstrated how adaptive trait shifts contributed to fitness under drought in the 

greenhouse irrigation gradient. The finding of adaptive shifts in more than half of the 

studied species is a clear sign that plasticity alone can not maintain the population 

size under decreasing precipitation in these species. 
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In contrast to the cases described above, we could show for Hymencarpos (Chapter 

3) that plasticity maintained survival and fitness. The lack of inherited trait shifts in 

response to the rain manipulation treatments in the other studied species (Chapter 2) 

can imply that there is no need to adapt, but it can also indicate that such species are 

too slow or unable to genetically adapt. The studied species were found in a state, 

where the selection pressure by increased drought was still eased by plasticity, but 

selection already resulted in shifts in the genotypic composition. Species that can not 

genetically adapt to decreasing precipitation and compensate the fitness loss will face 

local extinction under future decrease in precipitation. 

 

 

Conclusion 

 

We present evidence that eight years of precipitation change alone already led to 

adaptive responses that improve fitness under stress. Rapid in situ adaptation to 

precipitation changes after few generations is possible. We were able to distinguish 

between genetic and plastic responses and found inherited trait shifts in five out of 

eight studied species. Our experiment also allows to distinguish between plastic 

response as a successful strategy and plastic response due to a lack of the ability to 

adapt. Therefore, it provides a mean to assess the ability of species to persist under 

increasing drought, and estimate, until which degree of stress plasticity is a successful 

strategy and when increased mortality and fitness loss lead to either genetic 

adaptation or local extinction. By subjecting species to rain manipulations within their 

communities, we could show for the first time that these adaptive processes are a 

common response to precipitation change, and this approach can be an important tool 

to evaluate the actual risk of biodiversity loss under climate change. 
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Chapter 1: Phenotypic response to simulated climate change in a long-term 

rain manipulation experiment - a multi-species study 

 

Abstract 

 

Species are threatened by the rapid change in precipitation due to global warming. To 

maintain fitness and prevent local extinction, populations need to genetically adapt to 

the changing conditions. We tested 16 annual species within their natural communities 

for phenotypic responses of life-history traits to long-term drought. Therefore, we 

simulated the predicted change in annual rainfall in a Mediterranean and a semi-arid 

field site (+/- 30% of rain) and compared survival, phenology and growth related traits 

between sites and between treatments within sites. Under the assumption that, after 

eight years under rain manipulation, species have adapted to the changed precipitation, 

we hypothesised that the trends of trait response within sites resemble the trends 

between sites. The climatic difference between the sites resulted in a clearly distinct 

expression of life-history traits. With decreasing precipitation we found an accelerated 

phenology, and a reduced size and biomass production of plants. Survival rates were 

lower in the semi-arid site compared to the Mediterranean site. Within-site comparisons 

showed species-specific responses and contradicted our predictions. Opposite to our 

expectations, mortality increased in the treatment with the highest water availability 

(Mediterranean wet), but not under increased drought. Drought affected life-history traits 

the most in the semi-arid site. Here, the dry-treatment had a strong negative effect on 

plant size and biomass production, and resulted in a delayed phenology, especially in 

early flowering species. In contrast, species in the Mediterranean site benefitted from a 

reduced plant density in the dry-treatment and accumulated more biomass compared to 

the control. The phenotypic shifts between sites can be attributed to stress escape 

strategies, while differences in trait response within sites were expressions of plastic 

dehydration tolerance. In addition, we suggest that competition for light had a stronger 

impact on individual persistence than precipitation in the Mediterranean site. We found 

strong support that plasticity covered the here applied range of environmental changes 

in the studied set of common species. However, the impact of climate change will likely 

be larger if not just the amount but also the frequency of rain events decreases. 

Nevertheless, a decoupling of factors is a necessary and important contribution toward 

an understanding of the processes that affect and change these ecosystems. 
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Introduction 

 

Climate is a major factor, shaping the genetic architecture in natural populations (Linhart 

and Grant 1996, Joshi et al. 2001). Thus, the recent climate change is an important 

driver of selection processes (Walther et al. 2002, Hoffmann and Willi 2008). 

Furthermore, it can alter biotic interactions, de-stabilize communities and drive major 

biome shifts (Parmesan and Yohe 2003). The evidence for global warming and its 

effects on species distribution, abundance and phenotypes is numerous and increasing 

(Walther et al. 2002, Menzel et al. 2006, Parmesan 2006, Cleland et al. 2007, 

Jenouvrier and Visser 2011). Climate change is considered to be a threat to species, 

especially if the possibilities of migration are limited or slowed down by dispersal 

capacities, geographical barriers and already occupied habitats (Pitelka 1997, 

Thompson 1998, Neilson et al. 2005, Corlett and Westcott 2013). Plant populations 

have been shown to migrate only partly or not at all (Corlett and Westcott 2013). 

Additionally, the environmental tolerances of plant species might evolve too slowly 

(Bradshaw and McNeilly 1991, Etterson and Shaw 2001, Berteaux et al. 2004). 

 

Predictions of the climatic changes in a region and how plants there already cope with 

recent climatic conditions allow us to draw conclusions about the future persistence of 

these populations. Climatic projections for the next decades predict a continued 

decrease in precipitation over the Mediterranean Basin (Cruz et al. 2007), with larger 

changes in the east-Mediterranean region (Gao and Giorgi 2008). This region is already 

experiencing increasing winter dryness for the last decades (Mariotti and Struglia 2002). 

Especially where water is limited, the increasing intensity and number of drought events 

is expected to have a strong negative impact on natural populations (Ackerly et al. 

2000, Knapp et al. 2002, Chaves et al. 2003). In arid ecosystems water availability is a 

major constraint for species distribution and persistence, and therefore plant 

communities are dominated by ephemeral life forms (Noy-Meir 1973). Plants can 

withstand drought by combining several strategies, among them drought escape, 

dehydration avoidance and dehydration tolerance (Levitt 1972, Blum 2005). The 

distinction between plastic and adaptive responses is an important tool in the evaluation 

of a populations future persistence under changing environmental condition. Plasticity 

allows plants to tolerate drought periods at the cost of postponed reproduction and 

reduced growth rate, but increased survival rates, and is therefore particularly important 
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in unpredictable environments (Schlichting 1986). When resource limitation becomes a 

chronic condition which does not allow a compensatory growth, the reliance on plasticity 

to survive can result in fitness loss and decreasing population size as the threshold of 

the plastic range is approached and crossed (DeWitt 1998, Chevin et al. 2010). 

Therefore, it is necessary to shift reaction norms according to the new environment by 

genetic changes in order to maintain fitness under such circumstances. In this light, 

studies assessing the capacity of in situ adaptation are of increasing importance. Here, 

we tested if annual species are able to cope with decreasing precipitation in situ and 

whether the responses to short-term changes in precipitation resemble adaptations to 

long-term differences in precipitation. 

 

As a consequence of a distribution over a wide range of climatic conditions species can 

vary considerably in the phenotypic expression of life-history traits (Bradshaw 1965, 

Schlichting 1986, Rathcke and Lacey 2007, Bolnick et al. 2011). These fitness related 

traits are widely used to compare intraspecific variation between differing climate 

regions, and to assess the adaptive potential of species (Aronson et al. 1990, 1992, 

1993, Sultan 2000, Etterson and Shaw 2001, Volis et al. 2002a). They also allow us to 

evaluate the direct effects of changes in precipitation regime on natural populations. 

Therefore, we studied life-history traits such as phenology, vegetative growth, and 

reproductive allocation. Short-lived annuals in more arid environments flower and 

complete their life-cycle earlier compared to conspecific populations in more mesic 

environments, which enables them to escape the risk of death due to drought events 

toward the end of the growing season (Fox 1990a, Aronson et al. 1992, Peñuelas et al. 

2004, Petrů et al. 2006, Volis 2006, Liancourt and Tielbörger 2009, Kigel et al. 2011). 

Drought escape by shortened life-cycle and developmental plasticity is a strategy that is 

selected for when the growing season is shortening or the predictability of rainfall events 

decreases (Heschel and Riginos 2005). A reduction in water availability over the whole 

growing season might select for physiological adjustments to enhance dehydration 

tolerance rather than escape (Stanton et al. 2000, Chaves et al. 2003, Chaves and 

Oliveira 2004, Franke et al. 2006, Franks 2011). 

 

In annual plants fitness-related life-history traits are well studied and allow us to make 

specific predictions about their response to changing climatic conditions. There is 

evidence that with the shortening of the growing season the development to 
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reproductive phase accelerates (Aronson et al. 1992, 1993, Volis et al. 2002a, Petrů et 

al. 2006, Franks et al. 2007, Kigel et al. 2011). Selection for smaller plant size might, 

directly or indirectly, also result in early flowering and seed set under the assumption 

that competition for light decreases with decreasing water availability (Petrů et al. 2006, 

Schiffers and Tielbörger 2006, Liancourt and Tielbörger 2009). If selection pressure is 

strong enough, changes in the genotypic composition due to selection for better 

adapted genotypes can result in shifts of the mean phenotype of a population (Fox 

1990b, Franke et al. 2006, Rathcke and Lacey 2007). Greenhouse experiments for 

multiple species have shown that the phenotypic shifts observed between sites can be 

adaptive (Aronson et al. 1992, Peñuelas et al. 2004, Petrů et al. 2006, Volis 2006, 

Liancourt and Tielbörger 2009, Kigel et al. 2011). Additionally, the short life cycle of 

annuals and their tendency to autogamy (Aarssen 2000, Snell and Aarssen 2005) 

increases the probability of a shift in allele frequencies because individuals that can not 

successfully reproduce are excluded from the population (Hoffmann and Willi 2008). 

 

For the purpose of testing the effects of chronically altered precipitation on the 

phenotypic response of a set of abundant annual species, a rain manipulation 

experiment was set up in a Mediterranean and a semi-arid site in Israel. Climate change 

was simulated in situ by reducing or increasing rainfall events, without changing the 

frequency of rain events, nor the duration of the rainy season. Thus, the complex and 

dynamic ecological interactions were maintained as a whole, and only the amount of 

rain was manipulated in each site (Sternberg et al. 2011). The chosen range of rain 

manipulation corresponds to the predictions for the Mediterranean Basin (Cruz et al. 

2007). We consider the trends in the conspecific phenotypical differences which were 

previously observed across aridity gradients as a proxy for an adaptive response to 

climate change and test whether these trends can be found within sites. 

 

We assume that the trait responses after eight years of exposure to the rain 

manipulation treatments are adaptive. Therefore, we predict a resemblance of the 

trends within climate stations due to the rain manipulation treatments with the trends 

observed between stations. As a result of reduced precipitation we expect: 

- Shorter plants and reduced biomass 

- Earlier onset of flowering and seed maturation 

- The effect of decreased precipitation is greater in the semi-arid site 
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Methods 

 

Study sites and rain manipulations 

Our study was conducted in a Mediterranean and a semi-arid site which are located 

along a steep North-South climate gradient, in the transition zone between the mesic 

Mediterranean and the desert regions of Israel (Holzapfel et al. 2006, Metz et al. 2010, 

Sternberg et al. 2011). Both sites are situated on the same limestone bedrock, at a 

similar altitude, and on south exposed slopes (Petrů et al. 2006). The soil in the semi-

arid site is a stony Loess soil and Terra Rossa in the Mediterranean site. The long-term 

rainfall averages are 300 mm for the semi-arid and 540 mm for the Mediterranean site 

(Sternberg et al. 2011). 

 

The experimental set-up to simulate the expected changes in precipitation was 

established in 2001, and rainfall manipulations were initiated in the 2002/3 growth 

season. The measurements for this study were taken in the 2009/10 growth season. 

The treatments were: 1) control - exposed to natural rainfall, 2) dry-treatment - 

simulating the long-term predicted decrease in the amount of annual precipitation, using 

rain-out shelters reducing natural rainfall by 30%, and 3) a contrasting wet-treatment, 

with additional 30% irrigation after each rain event. The frequency of rain events 

remained unaltered. Each treatment was replicated by five plots (10 × 25 m²) in both 

sites. 

 

The germination inducing rain event occurred at the end of October 2009 in the 

Mediterranean site and 2 months later in the semi-arid site. The total precipitation of the 

study season was with 246 mm in the semi-arid site and 530 mm in the Mediterranean 

site slightly lower than the long-term average. The rainy season ended in late March 

2010 in both sites, spanning 3 and 5 months in the semi-arid sites and in the 

Mediterranean, respectively. 

 

Study species 

A total of 16 winter annual species were selected in both sites (Tab 1). Criteria for 

selection were: high seedling abundance, ability to identify species at the seedling 

stage, different taxonomic and functional groups and ideally occurrence at both sites. 
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Yet, due to the large differences in climate between sites, the latter criteria could be 

realized only for four species. 

 

Tab. 1) Study species. (Zohary 1966, 1972, Feinbrun-Dothan and Zohary 1978, 1986) 

The species’ occurrence in the two sites are indicates by “+”, (+) means that not all of the traits 

could be measured. 

Species Family 

Occurrence in the 

study sites 

Semi-arid Medit.  

Aegilops geniculata  ROTH Poaceae +  

Anagallis arvensis  L. Primulaceae + (+) 

Atractylis cancellata  L. Asteraceae +  

Avena sterilis  L. Poaceae  + 

Biscutella didyma  L. Brassicaceae + + 

Crupina crupinastrum (MORIS) VIS. Asteraceae  + 

Helianthemum salicifolium (L.) MILL. Cistaceae + + 

Hymenocarpos circinnatus  (L.) SAVI Fabaceae + + 

Linum corymbulosum  DESF. Linaceae  + 

Linum strictum  PALL. Linaceae +  

Onobrychis crista-gallis  (L.) LAM. Fabaceae +  

Plantago afra  L. Plantaginaeae  + 

Scorpiurus muricatus  L. Fabaceae  + 

Torilis tenella  (DELILE) RCHB. Apiaceae  + 

Trifolium stellatum  L. Fabaceae  + 

Urospermum picroides  (L.) SCOP. EX F.W.SCHMIDT Asteraceae  + 

 

Sampling 

A total of 50 seedlings per species were randomly chosen in open patches in each of 

the three treatments, in both sites. Shortly after the first effective rain event seedlings 

were labelled (Nov - Dec 2009 in the Mediterranean site, and Jan 2010 the semi-arid 

site). We started with a total of 2760 individuals. Of these 2348 survived until flowering 

and 1888 until seed-set. Phenological, morphological and reproduction related traits 

were measured until the end of the growth season in the beginning of May 2010. 
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Trait measurements 

The onset of flowering was recorded as the time between germination inducing event 

until the first flower at anthesis. In the case of grasses, anther emergence indicated the 

begin of anthesis. Diaspores and fruits were defined as fully mature, when dry and fully 

grown, and easily dehisce or detach from the plant. Time to maturation was recorded as 

the day to first mature diaspore or fruit by using the first effective rain event as a 

reference point. Phenology traits were measured every third day. Plant height (length if 

prostrate) was measured from the ground to the tip of the plant at first flower. 

Labelled plants were individually harvested in paper bags after seed dispersal. Plants 

were oven dried at 70°C and weighed. Plant biomass at this late stage was not 

complete due to losses during the growth season, but we assume that relative losses 

were similar among individuals of the same species. We refer to vegetative biomass as 

all above-ground biomass except for biomass of diaspores or fruits, because these 

could not be completely collected for most species. Plant fitness was assessed from the 

number of diaspores produced per individual. Diaspore production was statistically 

analysed only in species that had not dispersed their seeds before harvesting. 

 

Statistics 

The statistical software package Jmp7.1 (SAS) was used to carry out all analyses. The 

treatment effect on survival was tested per site by using a generalised linear model for 

Poisson distributed data and a log-link function. The analysis was based on the number 

of individuals that did not survive until seeding time. For within-site evaluations of 

treatment and species effects on trait variation, we used generalised linear models with 

Poisson error distribution and log-link function for phenology and with exponential error 

distribution and reciprocal link function for all other traits. These models were run for 

each site separately. Between-site comparisons of survival as well as life-history traits 

were carried out only for Biscutella, Helianthemum and Hymenocarpos, which occurred 

in both sites, using a full factorial generalised linear model with species, site and 

treatment as fixed factors. For these three species a two-sided t-test was used to 

compare trait means between the respective control populations in each species. For all 

other species, treatment effects within species and sites were analysed using 

generalised linear models with a posteriori pairwise likelihood ratio test using Holm’s 

sequential Bonferroni test (Rice 1989) to correct the alpha. The significance levels used 

in all analyses are 0.05 (*), 0.01 (**) and 0.001 (***). 
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Results 

 

Survival analysis 

We compared survival rates until the time of seed-set within each site in all studied 

species to determine the effect of rain manipulation treatments on mortality. The 

treatments had over all only a marginally significant effect on survival (Tab. 2a). Most 

notably, separate comparisons within sites of each the dry- and the wet-treatment to the 

control-treatment revealed a significantly reduced survival rate in the Mediterranean 

wet-treatment (p=0.0216, Chi²=7.673). Within species, a negative effect was found for 

both Biscutella and Avena (Tab. 2c). Linum corymbulosum had even an increased 

survival rate in the dry-treatment. While the average survival rate in the semi-arid wet-

treatment was highest, it was lowest in the Mediterranean wet-treatment. 

 

We tested the effect of site on survival rates in the species which occurred in both sites 

(Tab. 2b), and found that the survival rate in the semi-arid site was lower compared to 

the Mediterranean, though the difference was only marginally significant. The trends of 

survival under the rain manipulation treatments differed between the two sites. 

 

Tab. 2a) Treatment effect on survival over all species per site. 

Source of variation Semi-arid 

Chi²              p 

 

d.f. 

Mediterranean 

Chi²               p 

 

d.f. 

Species 42.738 <.0001 6 59.702 <.0001 10 

Treatment 5.333 0.0695 2 4.866 0.0878 2 

Treatment*Species 12.979 0.3706 12 10.113 0.9661 20 

 

Tab. 2b) Effect of species, site and treatment on survival for species that occurred in both sites. 

Survival Source of variation Chi²         p d.f. 

Species 8.436 0.0147 2 

Site 3.626 0.0569 1 

Treatment 1.623 0.4442 2 

Site*Species 2.124 0.3458 2 

Treatm.*Species 4.436 0.3502 4 

Treatm.*Site 6.935 0.0312 2 

Treatm.*Site*Species 4.551 0.3365 4 
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Tab. 2c) Effect of rain manipulation treatments on the proportion of surviving individuals in the 

Mediterranean or the Semi-arid site, and in both sites (in gray), respectively. 

Survival ( in % ) 

        Semi-arid site          Mediterranean site 

Species Dry Contr. Wet Av. Species Dry Contr. Wet Av. 

Bis 34.0 55.6 57.1 48.9 Bis 70.6 70.6 54.6* 65.2 

Hel 63.6 60.0 87.1* 70.3 Hel 68.6 89.4 73.2 77.0 

Hym 69.1 75.5 72.6 72.4 Hym 64.0 78.9 66.0 69.6 

Aeg 63.8 73.8 72.0 69.9      

Ana 80.4 86.5 84.0 83.4      

Atr 52.1 43.6 42.6 46.1      

Li str 74.5 71.4 72.6 72.8      

Ono 62.3 73.2 73.6 69.7      

     Av 86.2 98.2 72.9** 85.8 

     Cru 81.8 70.9 77.6 76.8 

     Uro 56.0 54.0 50.0 53.3 

     Li co 78.4* 63.2 60.9 67.5 

     Sco 51.1 58.3 50.0 53.1 

     Pla 92.0 88.0 88.2 89.4 

     Tor 55.8 62.0 53.7 57.2 

     Trif 78.6 82.8 65.8 75.7 

Average 62.5 67.5 70.2  Average 71.2 74.2 64.8  

 

 

Fitness 

As a measure of fitness we compared the number of mature diaspores between rain 

manipulation treatments within sites of those species that had not dispersed before 

harvesting. The rain manipulation treatments affected the number of diaspores in both 

sites (Tab. 3), though the responses were species-specific (Fig. 1). The dry-treatment 

reduced diaspore production of Linum str. in the semi-arid site, and increased it in 

Linum co. and Anagallis in the Mediterranean site, compared to the controls. On the 

other hand, the wet-treatment led to a lower number of diaspores in Atractylis in the 

semi-arid site. Additional irrigation had no effect in the Mediterranean site on the 

diaspore production in the analysed species. 
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Fig. 1) Mean number of diaspores (+/- standard error) in the Semi-arid (a) and the 

Mediterranean (b) site. Different letters above the error bars indicate significantly different 

means. 

 

 

Phenology 

We found species-specific significant differences between the rain manipulation 

treatments in time to flowering and time to seed maturation in both the semi-arid and the 

Mediterranean site (Tab. 3). In the semi-arid site the dry-treatment led to a significant 

delay in the onset of flowering in 4 of the 8 species examined. The early flowering 

species were more affected than later flowering species (Fig. 2a). In contrast, the wet-

treatment had no significant effect on the flowering of both the early and late flowering 

species. Similar trends were observed for time to seed maturation (data not shown). 

In the 11 species from the Mediterranean site trends were weaker and less consistent. 

Here, the dry-treatment led to advanced flowering in Torilis, Hymenocarpos and Linum 

co. (Fig. 2b). Seed maturation occurred in Mediterranean site at about the same time for 

most species, independently of their flowering time, except for Biscutella in which had 

an accelerated seed maturation in the dry-treatment (not shown). 

 

Differences in the response of phenological traits between sites were analysed in the 3 

species occurring in both sites (Tab. 4a). Flowering of Biscutella, Helianthemum and 

Hymenocarpos occurred earlier in the semi-arid site. The time to seed maturation 
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differed between stations and species. Biscutella and Hymenocarpos had an earlier 

seed maturation in the semi-arid site, while Helianthemum developed seeds faster in 

the Mediterranean site. 

 

  

 

  

Fig. 2) Onset of flowering (+/- standard error) in the Semi-arid (a) and the Mediterranean (b) 

site. 

 

a) Semi-arid 

b) Mediterranean 
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Plant size and biomass 

Response of plant size at the onset of flowering to the rain manipulation treatments was 

significant and species-specific in both sites. In the semi-arid site we found a significant 

reduction of plant size in the dry-treatment in two species (Fig. 3a). In the 

Mediterranean site, three species showed an increased size at the onset of flowering in 

the dry-treatment, while the wet-treatment did not result in an increased size (Fig. 3b). 

 

The above-ground vegetative biomass was significantly affected by the treatments in 

both sites. In all but two (Hymenocarpos and Anagallis) species, biomass production in 

the semi-arid site was highest in the control-treatments (Fig. 4a). In the Mediterranean 

site, four species produced significantly more vegetative biomass in the dry-treatment 

compared to the control (Fig. 4b). 

 

A comparison between sites showed that plants from populations in the Mediterranean 

site were significantly taller (at both the flowering and seed-set stages) than their 

counterparts in the semi-arid site. Biomass production differed significantly between 

stations, though the differences were species-specific. Hymenocarpos and Biscutella 

produced more biomass in the Mediterranean site, though this difference was significant 

only in Hymenocarpos (p<0.0001, Chi²=26.181). 
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Fig. 3) Log-transformed plant size at the onset of flowering (+/- standard error) in the Semi-arid 

(a) and the Mediterranean (b) site. 

 

 

 

a) Semi-arid 

b) Mediterranean 
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Fig. 4) Log-transformed above-ground vegetative biomass (+/- standard error) in the Semi-arid 

(a) and the Mediterranean (b) site. 
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b) Mediterranean 
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Tab. 3) Results of generalised linear models for each trait including all species per site. 

Trait Source of 

variation 

Semi-arid 

Chi²              p 

 

d.f. 

Mediterranean 

Chi²               p 

 

d.f. 

Number of 

diaspores 

 

Species 134.03 <.0001 2 423.36 <.0001 2 

Treatment 20.09 <.0001 2 14.67 0.0007 2 

Treatm.*Spec. 18.784 0.0009 4 12.54 0.0138 4 

Time to onset 

of flowering 

 

Species 1264.01 <.0001 7 1306.24 <.0001 10 

Treatment 42.71 <.0001 2 0.57 0.7539 2 

Treatm.*Spec. 85.18 <.0001 14 62.93 <.0001 20 

Time to onset 

of seed 

maturation 

Species 526.89 <.0001 4 2021.59 <.0001 10 

Treatment 13.03 0.0015 2 0.46 0.7944 2 

Treatm.*Spec. 21.24 0.0065 8 47.82 0.0005 20 

Plant size 

at onset of 

flowering 

Species 977.81 <.0001 7 1325.11 <.0001 10 

Treatment 10.37 0.0056 2 15.69 0.0004 2 

Treatm.*Spec. 46.63 <.0001 14 47.45 0.0005 20 

Vegetative  

biomass 

 

Species 454.48 <.0001 7 1401.00 <.0001 11 

Treatment 27.70 <.0001 2 5.45 0.0655 2 

Treatm.*Spec. 34.74 0.0016 14 44.60 0.0030 22 
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Tab. 4) Results of full factorial generalised linear model for species occurring in both sites. 

Tab. 4a) 

Source of variation 

Onset of 

flowering 

Chi²            p 

d.f. Seed 

maturation 

Chi²            p 

d.f. 

Species 20.26 <.0001 2 340.29 <.0001 2 

Site 1010.49 <.0001 1 253.54 <.0001 1 

Treatment 43.20 <.0001 2 14.50 0.0007 2 

Site*Species 8.49 0.0143 2 904.21 <.0001 2 

Treatm.*Species 7.75 0.1012 4 12.94 0.0116 4 

Treatm.*Site 23.22 <.0001 2 14.43 0.0007 2 

Treatm.*Site*Species 29.27 <.0001 4 10.48 0.0331 4 

 

Tab. 4b) 

Source of variation 

Height at flower 

Chi²                 p 

 

d.f. 

Vegetative biomass 

Chi²           p 

 

d.f. 

Species 167.44 <.0001 2 134.95 <.0001 3 

Site 108.87 <.0001 1 24.39 <.0001 1 

Treatment 3.63 0.163 2 16.02 0.0003 2 

Site*Species 5.68 0.0585 2 26.33 <.0001 3 

Treatm.*Species 5.93 0.2043 4 31.31 <.0001 6 

Treatm.*Site 2.719 0.2568 2 17.17 0.0002 2 

Treatm.*Site*Species 5.52 0.238 4 19.90 0.0029 6 
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Discussion 

 

Our results show that the observed pattern in phenotypical changes within sites does 

not resemble the trends found between sites. This implies that the plastic response to 

the immediate environment determined the phenotype rather than an adaptive response 

to long-term treatments. 

We found in response to both rain manipulation treatments a trend toward a decreased 

fitness in the semi-arid site, while in the Mediterranean site fitness tended to increase 

compared to the respective controls. A significantly higher mortality was found only in 

the Mediterranean site, and surprisingly not due to the reduced water availability but 

under additional irrigation. This finding indicates the importance of other factors than 

drought, such as competition, that limit survival in this environment (Metz et al. 2010). 

An example is the increasing survival rate in response to lower water availability in 

Linum corymbulosum (Mediterranean site). It is likely, that this species benefitted from 

lower competition, which implies a higher dominance of this species under decreasing 

precipitation in the wake of climate change. A significantly higher mortality in the 

Mediterranean wet-treatments, is an indication that Biscutella and Avena are under 

selection and adaptive trait shifts in response to increase competition might be found. 

 

As predicted, the trends found between sites were an earlier onset of flowering, and a 

reduction in plant size and biomass with decreasing precipitation. We assumed these 

trends to indicate an adaptive response to the decreasing water availability within sites. 

In the semi-arid site, the trend in onset of flowering contradicted the prediction. The 

finding of a delayed flowering was supported by the results of similar drought 

experiments (Fox 1990b, Blum 1996, Stanton et al. 2000, Peñuelas et al. 2004) and can 

be attributed to a severe growth limitation. In the Mediterranean site, on the other hand, 

two species showed an accelerated onset of flowering as a response to the dry-

treatment. It is possible that this earlier flowering is an adaptive response in the course 

of a drought escape strategy (Geber and Dawson 1990, Stanton et al. 2000, McKay et 

al. 2003, Sherrard and Maherali 2006, Franks 2011). However, under a more mesic 

Mediterranean climate the vegetation is typically denser, and under higher levels of 

competition for light within the vegetation, the flowering time starts late compared to 

semi-arid sites (Petrů et al. 2006). In this context, the earlier onset of flowering as found 
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in the Mediterranean site in the dry-treatment is most likely a plastic response to a less 

competitive environment. 

 

The response of growth differed greatly between the two sites. In the semi-arid site, the 

dry-treatment caused a reduction in plant size and vegetative biomass. Combined with 

the delayed flowering time, this reduction in growth can be interpreted as a plastic 

response to tolerate drought, and therefore contradicts our prediction. A lower plant 

productivity is a common result of reduced water availability (Grime et al. 2008, Miranda 

et al. 2009). Nevertheless, plant size and biomass production are known to show an 

inherited differentiation between the climatically differing sites along aridity gradients 

(Aronson et al. 1992, Volis et al. 2002b, Petrů et al. 2006, see also this thesis chapters 

2 and 3). In the Mediterranean site, on the other hand, the dry-treatment caused plants 

to grow taller and produce more biomass compared to the control, whereas phenology 

was barely affected. This trend is again opposite to our expectations. We suggest for 

these findings in the Mediterranean site that the lower precipitation in the dry-treatment 

had a negative effect on the shrub cover over the years of manipulation. As a 

consequence, annual plants were able to benefit from the lower competition level. 

 

The way life-history traits respond to drought gives an important indication for the future 

persistence of species, because growth is a limit to the development and the 

developmental timing is tightly connected with reproductive success. One of the most 

important features of vegetative growth traits is their wide range of plasticity, which 

enables plants to adjust according to their immediate environment (Bradshaw 1965, 

Schlichting 1986, Aronson et al. 1990). As long as the environmental changes are within 

the plasticity range a plant population can survive unfavourable periods without shifts in 

its genotypic composition. A passive dehydration tolerance has the benefit of survival at 

the cost of a reduced growth and a delayed onset of flowering, both of which might 

severely impair reproduction. Under a long-term decrease in precipitation, however, 

species need to adapt and accelerate the flowering and reproduction time in order to 

maintain high survival rates and simultaneously produce high numbers of offspring. A 

high biomass production is positively correlated to the reproductive output (Cohen 1971, 

1976, Bazzaz et al. 1987, Schmid et al. 1995). Therefore, high biomass production is 

favoured in any environment. In this light, a plastic response to tolerate drought, such as 

pausing growth, can be a disadvantage because it results in the delay of reproduction 
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and limits the reproductive output. Even before climate change causes the 

environmental conditions to exceed the plasticity range a mere plastic response might 

result in severe fitness loss. 

 

Our results lead us to three possible explanations for the phenotypic responses which 

opposed our predictions: Firstly, the environmental change was within the range of the 

species’ plasticity. Secondly, we were not able to detect shifts that can be interpreted as 

adaptive response because the variation caused by the environment disguised such 

trends. And thirdly, these species are not able to adapt in so few generations or might 

not be able to adapt at all. An important hint was given by the result of the survival 

analysis. The survival rates have not been negatively affected by the dry-treatment, 

which confirms the first option. However, it does not necessarily negate the second or 

the third. To test the second option, to disentangle the genetic from the environmental 

influence on phenotypic variation, an additional experiment is needed. Whether the 

observed differences in the phenotypic reaction norms are inherited, can be tested by 

comparing plants derived from seeds which were produced under the same conditions 

to see if these differences persist (see Chapter 2). 

 

We expected a larger impact of decreasing precipitation in the semi-arid site, because 

the limitation of water is stronger there. The extent to which the dry-treatments affected 

trait variation was indeed greater in the semi-arid site. However, the decreased 

precipitation had no significant negative effect on survival in the species in our study. 

Regarding the high between year fluctuations in precipitation recorded for these sites 

(see Fig. 7 in the Appendix and Metz et al. 2010), it can be argued that the studied 

species still persist within their tolerance limits and the stress applied by the treatments 

was not strong enough to exceed the impact of these fluctuations. 

 

Regarding the future of this region, we expect the impact of climate change to be 

stronger compared to changes in precipitation alone. According to the predictions for 

the study region (Cruz et al. 2007, Gao and Giorgi 2008), it is likely that the variability of 

precipitation will increase in the wake of climate change. Increased rain fall variability 

and a change in frequency can have a strong impact on species composition and 

consequently on ecosystem functioning (Knapp et al. 2002, Fay et al. 2011). Our 
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approach to decouple these factors allowed an evaluation of the impact of a chronic 

resource alteration. 

 

 

Conclusion 

 

We found strong support that plasticity covered the range of environmental changes in 

the studied set of common species. The phenotypic shifts between sites can be 

attributed to stress escape strategies, while differences within sites are due to stress 

tolerance which is likely to be a plastic response and not due to genetic adaptation. 

 

On the one hand, our results imply that, especially in ecosystems with unpredictable 

conditions, species might be underestimated in their abilities to cope with increased 

stress. But on the other hand, the implication of a strictly plastic response for the long-

term persistence of these species under decreasing precipitation levels might be an 

inability to maintain population size and finally local extinction. If these species are not 

able to accelerate their development and flower and reproduce earlier, the delay due to 

the dehydration tolerance strategy might prove to be fatal when late rain does not come. 

If there is no genotype that can reproduce in time, this population will go extinct. We 

wish to point out that rare species might be affected to a greater extent, and interfering 

factors such as competition might restrict phenotypic variation in a way that intervenes 

with the response to drought. 
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Appendix and supplemental material 

 

Tab. 5) Multiple comparisons (GLM) of the mean onset of flowering (a), plant size (b) 

and vegetative biomass (c) per species and site with rain manipulation treatment as 

fixed factor. Given are the number of observations (n), mean trait values and standard 

error per species and rain manipulation treatment for each site. 

Tab. 5a) Onset of flowering  

 Semi-arid site Mean  StErr   Mediterranean site Mean  StErr 

  p <0.0001 Dry 61.8 ± 1.6     p 0.0018 Dry 104.2 ± 2.1 
Bis Chi² 27.733 Con 48.8 ± 1.9  Bis Chi² 12.65 Con 102.7 ± 1.9 
  n 85 Wet 54.7 ± 1.9   n 135 Wet 94.9 ± 2.0 

      Dry 60.3 ± 3.0         Dry 114.0 ± 2.8 
Hel   ns Con 58.2 ± 1.9  Hel   ns Con 104.7 ± 2.4 
  n 48 Wet 56.5 ± 1.6     n 81 Wet 111.4 ± 2.7 

  p <0.0001 Dry 61.2 ± 1.3     p 0.0232 Dry 102.2 ± 1.5 
Hym Chi² 45.163 Con 51.9 ± 1.3  Hym Chi² 7.527 Con 105.0 ± 1.3 
  n 142 Wet 49.2 ± 1.3     n 125 Wet 108.0 ± 1.5 

  p 0.0245 Dry 65.8 ± 1.5        Dry 97.3 ± 1.7 
Ana Chi² 7.418 Con 62.6 ± 1.3  Pla   ns Con 99.0 ± 1.5 
  n 140 Wet 60.2 ± 1.3    n 141 Wet 100.0 ± 1.5 

  p 0.0019 Dry 65.4 ± 1.2       Dry 115.1 ± 1.2 
Ono Chi² 12.575 Con 59.9 ± 1.2  Sco   ns Con 114.1 ± 1.1 
  n 128 Wet 60.4 ± 1.2    n 111 Wet 115.8 ± 1.2 

      Dry 78.2 ± 1.0        Dry 120.9 ± 2.1 
Li str   ns Con 77.3 ± 0.9  Tri   ns Con 115.1 ± 2.3 
  n 130 Wet 77.9 ± 0.9    n 93 Wet 116.0 ± 1.8 

      Dry 88.0 ± 1.4    p 0.0337 Dry 125.5 ± 0.8 
Aeg   ns Con 88.8 ± 1.0  Tor Chi² 6.780 Con 128.4 ± 0.8 
  n 144 Wet 88.7 ± 1.6    n 116 Wet 126.5 ± 0.8 

     Dry 101.1 ± 1.2        Dry 129.0 ± 1.3 
Atr   ns Con 102.5 ± 1.0  Av   ns Con 128.8 ± 1.2 
  n 105 Wet 100.1 ± 1.2    n 152 Wet 128.3 ± 1.3 

             Dry 135.8 ± 1.9 
        Uro   ns Con 139.7 ± 1.8 
          n 90 Wet 139.4 ± 2.1 

          p 0.0280 Dry 136.7 ± 1.3 

        Li co Chi² 7.154 Con 140.3 ± 1.3 
          n 80 Wet 141.3 ± 1.2 

             Dry 140.6 ± 1.8 
        Cru   ns Con 140.9 ± 1.9 
          n 71 Wet 140.1 ± 1.9 
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Tab. 5b) Plant size  

 Semi-arid site Mean  StErr   Mediterranean site Mean  StErr 

      Dry 60.7 ± 5.5     p 0.0639 Dry 98.5 ± 7.1 
Bis   ns Con 67.9 ± 6.0  Bis Chi² 5.5 Con 91.3 ± 4.9 
  n 83 Wet 62.2 ± 5.3   n 134 Wet 79.8 ± 5.0 

      Dry 76.9 ± 16.4         Dry 113.8 ± 7.9 
Hel   ns Con 96.1 ± 11.0  Hel   ns Con 108.3 ± 6.8 
  n 48 Wet 79.0 ± 6.2     n 79 Wet 106.8 ± 8.5 

      Dry 44.2 ± 2.4         Dry 69.0 ± 4.3 
Hym   ns Con 38.2 ± 1.9  Hym   ns Con 62.6 ± 2.9 
  n 141 Wet 38.9 ± 1.8     n 124 Wet 68.0 ± 4.4 

  p 0.0707 Dry 63.7 ± 2.7    p 0.0772 Dry 82.2 ± 4.3 
Ana Chi² 5.298 Con 56.5 ± 2.8  Pla Chi² 5.123 Con 68.6 ± 3.9 
  n 141 Wet 55.2 ± 2.1    n 139 Wet 73.5 ± 4.2 

     Dry 78.8 ± 7.0    p <0.0001 Dry 97.4 ± 4.7 
Ono   ns Con 81.4 ± 3.1  Sco Chi² 20.781 Con 85.1 ± 3.1 
  n 128 Wet 77.7 ± 3.7    n 111 Wet 72.8 ± 3.0 

    0.0005 Dry 111.6 ± 8.5        Dry 101.1 ± 8.9 
Li str   15.1 Con 180.5 ± 11.5  Tri   ns Con 79.7 ± 7.2 
  n 127 Wet 158.4 ± 9.0    n 89 Wet 88.4 ± 4.8 

  p 0.0903 Dry 187.3 ± 9.7       Dry 95.5 ± 7.7 
Aeg Chi² 4.8 Con 210.7 ± 11.4  Tor   ns Con 107.1 ± 9.4 
  n 144 Wet 191.9 ± 8.1    n 116 Wet 113.2 ± 8.2 

  p 0.0779 Dry 75.4 ± 5.2    p 0.0474 Dry 341.1 ± 20.2 
Atr Chi² 6.078 Con 81.6 ± 5.6  Av Chi² 6.099 Con 285.7 ± 13.5 
  n 111 Wet 96.6 ± 5.7    n 151 Wet 306.6 ± 14.6 

          p 0.0192 Dry 159.9 ± 10.4 
        Uro Chi² 7.909 Con 203.8 ± 13.7 
          n 87 Wet 144.6 ± 10.0 

          p 0.0004 Dry 287.3 ± 18.7 
        Li co Chi² 15.555 Con 189.9 ± 13.6 
          n 87 Wet 214.9 ± 14.8 

             Dry 440.6 ± 30.9 
        Cru   ns Con 427.5 ± 38.5 
          n 73 Wet 366.0 ± 27.6 
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Tab. 5c) Vegetative biomass  

 Semi-arid site Mean  StErr   Mediterranean site Mean  StErr 

  p <0.0001 Dry 0.019 ± 0.005         Dry 0.045 ± 0.008 
Bis Chi² 45.62 Con 0.044 ± 0.004  Bis   ns Con 0.042 ± 0.008 
  n 35 Wet 0.010 ± 0.005   n 81 Wet 0.038 ± 0.008 

      Dry 0.056 ± 0.029     p 0.0731 Dry 0.074 ± 0.015 
Hel   ns Con 0.084 ± 0.019  Hel Chi² 5.23 Con 0.069 ± 0.012 
  n 39 Wet 0.074 ± 0.014     n 68 Wet 0.113 ± 0.015 

      Dry 0.092 ± 0.014         Dry 0.157 ± 0.016 
Hym   ns Con 0.089 ± 0.012  Hym   ns Con 0.143 ± 0.015 

  n 82 Wet 0.080 ± 0.013   n 89 Wet 0.125 ± 0.016 

  p  Dry 0.107 ± 0.013     p 0.0015 Dry 0.111 ± 0.011 
Ana Chi² ns Con 0.078 ± 0.013  Ana Chi² 13.05 Con 0.075 ± 0.009 
  n 97 Wet 0.074 ± 0.011     n 112 Wet 0.059 ± 0.009 

  p 0.0102 Dry 0.129 ± 0.028       Dry 0.054 ± 0.006 
Ono Chi² 9.18 Con 0.219 ± 0.020  Pla   ns Con 0.047 ± 0.006 

  n 111 Wet 0.156 ± 0.023    n 107 Wet 0.038 ± 0.006 

  p 0.0008 Dry 0.065 ± 0.011    p 0.0197 Dry 0.258 ± 0.027 
Li str Chi² 14.2 Con 0.118 ± 0.010  Sco Chi² 7.857 Con 0.167 ± 0.025 
  n 109 Wet 0.096 ± 0.010    n 89 Wet 0.162 ± 0.030 

  p 0.0068 Dry 0.350 ± 0.040        Dry 0.062 ± 0.007 
Aeg Chi² 99.93 Con 0.390 ± 0.042  Tri   ns Con 0.050 ± 0.006 
  n 105 Wet 0.233 ± 0.037    n 94 Wet 0.047 ± 0.006 

     Dry 0.429 ± 0.049       Dry 0.019 ± 0.003 
Atr   ns Con 0.518 ± 0.053  Tor   ns Con 0.024 ± 0.003 
  n 114 Wet 0.366 ± 0.055    n 100 Wet 0.019 ± 0.003 

          p 0.0244 Dry 0.489 ± 0.054 
        Av Chi² 7.43 Con 0.458 ± 0.051 
          n 105 Wet 0.336 ± 0.057 

             Dry 0.432 ± 0.077 
        Uro   ns Con 0.441 ± 0.075 
          n 47 Wet 0.392 ± 0.082 

          p 0.0002 Dry 0.146 ± 0.015 
        Li co Chi² 16.825 Con 0.064 ± 0.017 
          n 69 Wet 0.093 ± 0.015 

          p 0.0154 Dry 0.442 ± 0.050 

        Cru Chi² 8.347 Con 0.279 ± 0.048 
          n 119 Wet 0.259 ± 0.048 
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Fig. 7: Annual fluctuation of the amount of rainfall in the Semi-arid (SA) and the 

Mediterranean (M) site plotted as deviation from the long-term mean (1977-2008). 
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Chapter 2: Long-term in situ rain manipulation caused adaptive responses 

in life-history traits in a set of common annual plants 

 

Abstract 

 

The potential of species to adapt in situ to environmental changes plays a key role for 

the future of biodiversity under global change. Climatic models predict a severe de-

crease in precipitation in the Mediterranean Basin that might exceed the tolerance 

range of annual plant species in this region and cause local extinctions. In this chapter, 

we evaluated the inherited intraspecific variation in response to in situ rain manipulation 

treatments to assess the potential impact of changes in precipitation on life-history 

traits. Semi-natural plant communities in a semi-arid and a Mediterranean site in Israel 

were subjected to increased or decreased natural rainfall (30%) for eight years. We col-

lected seeds from each rain manipulation treatment and grew plants under similar con-

ditions in a greenhouse for two generations to equalise maternal effects. The second 

greenhouse generation was used to test for inherited phenotypic shifts caused by the 

different rain manipulation treatments in the field. In this chapter we present evidence 

for contemporary adaptation in five out of eight studied species in response to the field 

rain manipulation. Corresponding to our prediction, decreasing water availability in the 

field caused an acceleration in the onset of flowering, a reduction in plant height, each 

in one species and an increase of reproductive allocation in three species. Our results 

also showed that the dry-treatment affected trait variation to a greater extent than the 

wet-treatment in the semi-arid site and vice versa in the Mediterranean site. Many spe-

cies have the potential to adapt, but the potential for antagonistic developments might 

increase with the number of selective factors involved. 
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Introduction 

 

Plant species are known to have a wide range of plastic response to stress, which en-

ables them to inhabit a great variety of environments (Bradshaw 1965, Aronson et al. 

1990). However, the impact of long-term decreasing precipitation, as predicted by cli-

matic models for the Mediterranean Basin (IPCC 2012), might be beyond their capacity 

of plastic response and cause local extinctions by reducing reproductive success and 

increasing mortality (Visser 2008, Cahill et al. 2012). Additionally, the projected rate of 

climate change is likely to outpace the migration rate of many plant species (Davis and 

Shaw 2001, Corlett and Westcott 2013), and therefore, the potential of species to rap-

idly adapt in situ to the changes plays a key role for the future of biodiversity under 

global change (Walther et al. 2002, Schiffers et al. 2013). Assessing the potential to 

quickly adapt to climate change does not only allow a better understanding of evolution-

ary processes, but is of high importance for predicting species habitat ranges, improving 

management strategies in the conservation of species and, ultimately, to confront biodi-

versity loss. 

 

Despite the wide consent regarding the negative impact that climate change might have 

on species diversity, evidence of the ability to quickly evolve to tolerate the new condi-

tions has been reported by only a small number of studies and with contradicting find-

ings. The most concrete example of rapid adaptation was the acceleration of the onset 

of flowering in response to drought after seven generations found in a population of 

Brassica rapa (Franks et al. 2007). In Fumana thymifolia, an indirect evidence was 

found for genotypic shifts due to drought and warming treatments (Jump et al. 2008). 

On the other hand, in birch (Betula pubescens) the rate of change in spring bud burst 

has been shown to be relatively slow compared to the rate of global warming (Billington 

and Pelham 1991). Similarly, antagonistic genetic correlations between traits have been 

shown to slow rate of evolutionary response in Chamaecrista fasciculata (Etterson and 

Shaw 2001). There is an obvious lack of studies that involve more species in various 

environments. 

 

The inherited shifts in fitness related traits in response to a rain manipulation treatment 

provide information about the potential of species to quickly adapt to the changes in 

precipitation. Genotypes that allow a maximisation of fitness under the new conditions 
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are favoured and can become dominant in the population (Endler 1986). Adaptive evo-

lution resulting from a shift in the genotypic composition of a population is a likely con-

sequence if the environmental changes are severe enough and the genetic variation in 

the respective traits is high (Fox 1990, Franke et al. 2006, Rathcke and Lacey 2007). 

The chances to measure evolutionary differentiation already after a short time is high, 

because evolution has been shown to happen in the first few generations after the envi-

ronment changed (Wu et al. 1975, Kinnison and Hendry 2001, Bone and Farres 2001). 

The direction of adaptive shifts in response to changing precipitation can be predicted 

on the basis of trends in the variation of life-history related traits along rainfall gradients 

(Etterson and Shaw 2001, Volis et al. 2002, Franke et al. 2006, Petrů et al. 2006, 

Lampei and Tielbörger 2010, Kigel et al. 2011). 

 

These trait variations along the gradient reveal general strategies of adaptation to the 

clinal change in precipitation as well as to the change in predictability of rain events. 

Adaptations to a shortening of the growing season under more arid conditions involve 

an earlier switch from vegetative to reproductive phase (Cohen 1976). Earlier flowering 

reduces the potential to greater biomass which could support the production of more 

seeds (Blum 1996). This obvious disadvantage is a drought escape strategy in more 

arid environments where resource limitation can cause early mortality (Levitt 1972). An 

acceleration of the development might also be the result of decreasing precipitation be-

cause the decreasing competition for light allows a shorter plant size and a higher re-

productive allocation. In arid environments early flowering has been shown to be corre-

lated to smaller plant size (Aronson et al. 1992). Additionally, theory predicts that higher 

reproductive allocation is favoured in less predictable environments to compensate for 

low reproductive output in occasionally occurring favourable seasons (Levins 1963). A 

higher reproductive allocation in arid populations compared to Mediterranean popula-

tions was found for a number of annual species (Aronson et al. 1990, Volis et al. 2002, 

Petrů et al. 2006). 

 

Adaptive evolution depends on the ecological history of the species. Life-history traits 

can respond differently to an environmental shift when populations from different origins 

are regarded (Lechowicz 1988, Milla et al. 2009). General trends of the macroclimate 

can be masked by factors on the microgeographic scale (Neuffer 2011). The relevance 

of differing trait expressions and their association with habitat heterogeneity is basic 
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knowledge (Grime 2001). Accordingly, it is likely that the hierarchy of trait relevance for 

plant fitness shifts as the abiotic factors and the linked biotic factors vary between mi-

crohabitats (Thompson 1998, Carroll et al. 2007). In a Mediterranean environment the 

main environmental constraint is most likely the density of neighbouring plants, while 

precipitation is the more important factor in the more arid site (Petrů et al. 2006, 

Liancourt and Tielbörger 2009). These contrasting environmental pressures led to op-

posing effects of decreasing water availability on survival, growth and phenology in the 

studied species (first chapter). Based on these paradigms and our observations in the 

field, we expect that a similar relative reduction in precipitation caused a selection on 

the life-history traits that differs in magnitude and even in direction within the same spe-

cies, depending on the selection history experienced in either a semi-arid or a Mediter-

ranean site. Even though the understanding of the role of these ecotypic differentiations 

in the evolutionary process is poor, it can be argued that affiliation to species within a 

community and affiliation to ecotype across differing environments are likely to deter-

mine adaptive processes and was therefore the second focus of this chapter. 

 

In regions where water is already limited, as in the Mediterranean Basin, the increasing 

intensity and number of drought events is expected to have a strong negative impact on 

natural populations (Ackerly et al. 2000, Knapp et al. 2002, Chaves et al. 2003). In the 

Eastern Mediterranean plant communities winter annuals are the dominating life-form 

(Zohary 1937, Noy-Meir 1973). Their short generation time and the tendency to 

autogamy (Aarssen 2000, Snell and Aarssen 2005) increases the probability of a shift in 

the genotypic composition on an ecological time-scale (Hoffmann and Willi 2008). Here, 

we subjected a set of annual species for eight years to in situ rain manipulation experi-

ments in a semi-arid and a Mediterranean site and tested their descendants for inher-

ited phenotypic shifts as an indication of adaptive evolution in response to the changes 

in precipitation. 

 

 

Predictions: 

- The rain manipulations treatments resulted in inherited shifts in trait variation accord-

ing to the trends observed between the two sites along the aridity gradient. 

- In the absence of competition in the greenhouse, we expect the reproductive output of 

dry-adapted genotypes to be increased. 
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- Plants originating from the semi-arid site are expected to be stronger affected by the 

dry-treatment and populations originating from the Mediterranean site are expected to 

show adaptive responses to the wet-, rather than to the dry-treatment. 

 

 

 

Methods 

 

In order to test for an adaptive response, it is necessary to distinguish between the plas-

tic reaction and adaptation. Part of the environmentally caused plasticity can influence 

the offspring generation even under similar growth conditions via maternal effects due 

to differing conditions during seed production (Stratton 1989, Rossiter 1996). To equal-

ise these maternal effects we compared plants derived from seeds that were produced 

under similar greenhouse conditions. 

 

Plant material 

For our experiment we used seeds from eight co-existing annual species (Tab. 1) which 

were subjected to eight years of rain manipulations in both field sites. They were col-

lected in April-May 2010 and kept in a nethouse in Israel for two months during the 

summer to break seed dormancy (Petrů et al. 2006). From these seeds a first green-

house generation (G1) was reared in 2010-11. The seeds/fruits of plants in the G1 were 

mainly produced by selfing. They were harvested in 2011 and sent to Israel for over-

summering as in the previous year. Plants of both generations were grown under 

greenhouse conditions that excluded competition and resource limitation. Plants de-

scending from G1 individuals in the second greenhouse generation (G2) in 2011-12 rep-

resented all of the rain manipulation treatments in the two sites, and were used to 

measure phenotypic variation in life-history traits. 
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Tab. 1) Studied species and Initial samples sizes of the second greenhouse generation (G2), 

collected in the Mediterranean and Semi-arid sites after 8 years of rain manipulations (dry, 

con=control and wet) and grown for two generations under similar conditions in a greenhouse. 

G2  Semi-arid Mediterranean 

Species Family dry con wet dry con wet 

Aegilops geniculata  ROTH Graminae 24 30 33    

Biscutella didyma L. Brassicaceae 19 19 17 28 28 20 

Brachypodium distachyon 

 (L.) P.BEAUV. 

Graminae 49 45 46 47 49 41 

Hymenocarpos circinnatus 

 (L.) SAVI 

Fabaceae 23 24 18 24 22 22 

Avena sterilis L. Graminae    31 35 27 

Crupina crupinastrum 

 (MORIS) VIS. 

Asteraceae    27 30 26 

Plantago afra  L. Plantaginaceae    32 27 28 

Urospermum picroides 

 (L.) SCOP. EX F.W.SCHMIDT 

Asteraceae    16 20 12 

 

Cultivation of the greenhouse generations 

The University of Tuebingen provided the greenhouses for the cultivation of the plants in 

both seasons (2010/11 and 2011/12). During both growth periods the temperature 

ranged from 16°C at night to 22°C during the day, and natural lighting was used. Be-

tween 5 and 20 mature seeds of the 8 species (depending on seed size and availability) 

per mother individual were sown in autumn of the respective year into customary pots 

(90 mm x 90 mm, 100 mm deep) and covered with a thin layer of substrate to prevent 

desiccation. As substrate a mixture of sand and garden soil with low nutrient content 

(1:1) and 100 ml Osmocot Scott® fertilizer (15 % N, 9 % P2O5, 9 % K2O) per 15 l of 

soil/sand mixture was used. In 2010 the day of initial irrigation was the 17 th of Novem-

ber, and in 2011 the 21th of November. Pots were randomised before every other irriga-

tion. After the germination, seedlings were randomly thinned down to one individual per 

pot to avoid competition. 

 

Measurement of life-history traits 

Onset of flowering was the time of first flower opening (anthesis). In the case of Grami-

nae the emergence of the anthers was used as indication of onset of flowering. To keep 
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the measurement of the onset of flowering comparable to the data collected in the field, 

measurements were carried out every 2-3 days. Plant height was measured at the on-

set of flowering. In the case of grasses the size was measured from the soil surface to 

the tip of the plant, after carefully straightening the plants. For all other species we 

measured size from the cotyledonary node to the tip to avoid confounding effects due to 

strong elongation in the hypocotyle in some individuals but not in others, depending on 

the light situation at the time germination. Seeds or fruits were defined as fully mature, 

when they were “well developed” (fully grown), appeared brown and dry, and by care-

fully touching the seeds/fruits to test if they were still firmly attached to the plant or loose 

and easy to remove. 

 

Plants were individually wrapped in organza bags at the start of seed maturation to 

avoid the loss of seeds/fruits. After the peak of seed-set, irrigation was stopped and 

plants were harvested when they were fully dry. Biomass was separated into vegetative 

biomass and mature seeds/fruits. The vegetative biomass was additionally dried at 

70°C for 24 h in a dry oven, and weighted (Kern und Sohn GmbH, d=0.01 g). The seeds 

were not oven dried since they were needed for sowing in the next season. All 

seeds/fruits per individual were weighed (Denver Instruments APX-153, d=0.001 g) to 

assess the total reproductive biomass. Additionally a subsample was weighed and 

counted to calculate the average weight per seed/fruit, which was used to estimate the 

total number of seeds/fruits per individual as a measure of fitness. Reproductive alloca-

tion was calculated as the proportion of reproductive biomass (total mass of all mature 

seeds/fruits) of total biomass. 

 

Statistical analyses 

All statistical analyses were computed with the software package JMP 7.0.1 (SAS). The 

analyses were done for each site separately, using a generalised linear model. For Bis-

cutella, Brachypodium and Hymenocarpos, that occurred in both sites, a full factorial 

model was used including site as a factor. For onset of flowering, the model was based 

on a Poisson distribution and a log-link function. For plant size, total biomass, reproduc-

tive allocation, and number of fruits/seeds, we used an exponential distribution and re-

ciprocal link-function. For correcting the alpha in post-hoc multiple comparisons, Holm’s 

sequential Bonferroni test (Rice 1989) was applied. The significance levels used in all 

analyses are 0.05 (*), 0.01 (**) and 0.001 (***). 
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Results 

 

Fitness 

In all species from the semi-arid site, the number of seeds/fruits was higher in plants 

originating from the dry-treatments compared to the control. However, the difference in 

fitness between rain manipulation treatments, which were calculated as separate model 

per species, was significant in a only in species (Fig. 1). Neither semi-arid nor Mediter-

ranean populations showed a significant effect of the wet-treatment on fitness. 

 

In the semi-arid population of Biscutella the treatment significantly affected seed pro-

duction (p=0.0071, Chi²=9.899). Plants from the dry-treatment produced 15% more and 

the wet-treatment 20% less diaspores compared to the control. In populations from the 

Meditteranean site significant variation in fitness was found in Brachypodium (p=0.0183, 

Chi²=8.001) and Urospermum (p=0.0086, Chi²=9.598). Brachypodium from the dry-

treatment produced 23% more seeds compared to plants from the control-treatment and 

27% more than plants from the wet-treatment. Urospermum from the dry-treatment in-

creased seed production by 41% compared to the control. No significant differences 

between treatments were found in the other species. None of the species studied 

showed significantly differing seed production in the G1. 

 

 

Fig. 1) Number of mature seeds/fruits per plant (+/- Standard Error). The small letters represent 

significant differences in phenotypic variation due to the rain manipulation treatments. 
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Phenotypic variation between the semi-arid and the Mediterranean site 

 

The effect of site on the phenotypic variation of the measured life-history traits was 

tested in the three species occurring in both sites. A clear trend between the sites was 

found in all but the reproduction related traits over all tested species (Tab. 2). Semi-arid 

plants flowered significantly earlier, were shorter and produced less biomass than Medi-

terranean plants. Only Biscutella differed in reproductive allocation between sites: the 

semi-arid plants had a significantly higher reproductive allocation compared to the Medi-

terranean plants. The number of diaspores differed between sites only in Brachypo-

dium: The Mediterranean population produced more seeds than the semi-arid one. 

 

Tab. 2) Intraspecific comparison between plants originating from the semi-arid and the Mediter-

ranean climate station. 

Differences between sites of origin Direction of trend 

Trait Species Chi² p SA - M 

Onset of flowering Bis 41.389 <0.0001 < 

Bra 11.661 <0.0001 < 

Hym 158.782 <0.0001 < 

Plant size Bis 96.147 <0.0001 < 

Bra 3.625 0.0569 < 

Hym 24.305 <0.0001 < 

Total biomass Bis 20.551 <0.0001 < 

Bra 16.925 <0.0001 < 

Hym 9.270 0.0023 < 

Reprod. allocation Bis 7.359 0.0067 > 

Bra ns  

Hym ns  

Number of seeds/fruits 

(fitness) 

Bis ns  

Bra 15.885 <0.0001 < 

Hym ns  
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Phenotypic variation within site origins 

 

Phenology - Onset of flowering 

A significant treatment effect on the onset of flowering was found only in Aegilops 

(p=0.0228, Chi²=7.559). Individuals of Aegilops that originated from the dry-treatment in 

the field had an average acceleration of 6.7 days (5.6%) compared to the control group 

(Fig. 2). The same trend was also measured in G1 (p=0.0009, Chi²=13.967). The direc-

tion corresponded in both generations to the trend which was found between sites for 

other species (Tab. 2). 

 

 

Fig. 2) Time to onset of flowering (+/- Standard Error). Significance level refers to treatment ef-

fect within species by site of origin. 

 

Plant size and total biomass 

The plant size at anthesis differed significantly between treatments, though the effect 

was species-specific (Fig. 3). Significant effects of the rain manipulation treatments on 

plant size were found in two species originating from the semi-arid site: in Aegilops 

(p=0.0186, Chi²=7.969) individuals of the wet-treatment were 42.5 mm (7.6%) shorter at 

the onset of flower and in Hymenocarpos (p=0.0276, Chi²=7.969) plants originating from 

the dry-treatment were shorter by 15.9 mm (7.4%) compared to the control. 
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Among the Mediterranean populations, Crupina was the only species showing variation 

in plant size in the G2 (p=0.0219, Chi²=5.253). Here, plants from the dry-treatment were 

on average 44.5 mm (9.4%) shorter compared to the control which resembled the trend 

that was found between sites in the three species occurring in both sites (Tab. 2). Also, 

in the previous generation this trend was significant (p=0.0038, Chi²=11.127) in Crupina. 

 

 

Fig. 3) Plant size at the onset of flowering (+/- Standard Error). 

 

The effect of rain manipulation history on total biomass remained in the G2 in only two 

species (Fig. 4). In the semi-arid population a significant increase in total biomass 

(p=0.0135, Chi²=8.606) due to the wet-treatment occurred only in Hymenocarpos and 

corresponded to the increase in plant size. The biomass production reached the levels 

of the Mediterranean population with an average 1.4 g more biomass (18.3%) com-

pared to semi-arid control group. The semi-arid population of Brachypodium plants from 

the dry-treatment produced 0.26 g more biomass (16.2%) compared to the control. Al-

though the treatment effect was significant (p=0.0395, Chi²=6.466) the trend over all 

three groups of rain manipulation treatments was inconsistent. 

 

In Brachypodium originating from the Mediterranean site total biomass significantly de-

creased with increasing precipitation in the field treatments (p=0.0230, Chi²=7.548). 

Plants originating from the dry-treatment produced 14.8 g (8%) more and from the wet-
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treatment 0.27 g less biomass (15%) compared to the control. This was in accordance 

with the variation in the reproductive biomass, which significantly increased with de-

creasing water availability in the field treatments (p=0.001, Chi²=10.946). None of the 

studied species varied significantly in biomass production between treatment origins in 

G1. 

 

 

Fig. 4) Total biomass (+/- StErr). 

 

 

Reproductive allocation 

In the three species that exhibited a significant trait variation, reproductive allocation 

increased with decreasing water availability in the field treatments (Fig. 5), which re-

sembled the trend between sites in Biscutella (Tab. 2). Among the species from the 

semi-arid site this trend was found in Aegilops (p=0.0005, Chi²=15.086) and Biscutella 

(p=0.004, Chi²=11.063). In the Mediterranean population a significantly lower reproduc-

tive allocation was found in Hymenocarpos originating from the wet-treatment 

(p=0.0153, Chi²=8.361), whereas all other species were unaffected. 

In Aegilops the trend resembled the findings from the G1 (p<0.0001, Chi²=18.742), 

while in Biscutella and Hymenocarpos the differences the previous generation (G1) 

were nonsignificant. 
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Fig. 5) Reproductive allocation (+/- Standard Error). 

 

Tab. 3) Summary of all affected species per trait and site regarding the rain manipulation treat-

ment, which caused a significant shift compared to the control. The dry-treatment affected more 

traits in more species in the semi-arid site (SA, 4 studied species) in relation to the Mediterra-

nean site (M, 8 studied species). 

Site SA (4) M (8) 

Treatment Dry Wet Dry Wet 

Onset of flowering Aeg    

Plant size Hym Aeg Cru  

Total biomass Bra Hym Bra Bra 

Reproductive allocation 
Bis, 

Aeg 
Aeg  Hym 

Sum 5 3 2 2 
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Discussion 

 

We found evidence for inherited trait shifts in response to eight years of rain manipula-

tion in more than half of the studied species. Phenology was affected only in one spe-

cies from the semi-arid site. A significant effect on growth related traits was found in five 

species from both sites with contrasting trends. Reproductive allocation consistently 

increased with decreasing water availability in two semi-arid and one Mediterranean 

species. These findings confirm assumptions that contemporary evolution occurs fre-

quently (Bradshaw and McNeilly 1991, Reznick and Ghalambor 2001, Carroll et al. 

2007) and show that the effect of rain manipulation on the measured life-history traits 

was species-specific, and the site of origin was an important factor influencing the adap-

tive response to the changes in the precipitation regime. 

 

 

Adaptive responses of the measured life-history traits 

 

We observed an accelerated onset of flowering by 6.7 days in response to decreasing 

precipitation in Aegilops. Phenology shifts are an often observed response to global 

warming (Parmesan and Yohe 2003), and as a drought escape strategy, earlier flower-

ing is associated with a shortening of the growing season or a decreasing predictability 

of rain events rather than the decrease of the amount of rain (Levitt 1972, Franks et al. 

2007). The magnitude of this shift in Aegilops is comparable to the advancement of 8.5 

days which was observed in Brassica rapa after seven generations that experienced a 

series of dry years and shortened growing season (Franks et al. 2007). Since the length 

of the growing season was not manipulated, we assumed that the acceleration of flow-

ering time was an indirect result of accelerated growth due to lower plant densities, 

which might have resulted in a higher number of diaspores. In a more productive region 

as the Mediterranean site, competition for light is a limiting factor to an earlier switch 

from vegetative to reproductive phase (Weiner 1988, Petrů et al. 2006, Holzapfel et al. 

2006). In the Mediterranean site, competition might have selected against shorter plant 

size and decreased biomass production, even under dry-treatment conditions. In this 

light an acceleration of flowering time in more productive environments appears unlikely 

as long as competition is a stronger selective factor. 
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Assuming the possibility of continued vegetative growth after the onset of flowering, ear-

lier reproduction is advantageous as it maximises the reproductive output in preferable 

years, and increases the chances to reproduce in years with little rain. The question 

arises, why this trait shift was observed only in Aegilops. Among the studied species 

Aegilops flowered latest (Fig. 2). The earlier a species flowers the more likely a further 

acceleration of development is limited by the necessity to reach a minimum vegetative 

size rather than competition (Weiner 1988, Blum 1996, Kigel et al. 2011). Other species 

in the semi-arid site might be stronger limited by their vegetative size. 

 

The optimal strategy of vegetative growth is a pivotal element in the life-history of an 

annual plant as it determines competitive abilities and influences phenological and re-

productive traits. An effect of the changed precipitation on biomass production and plant 

size was found in several species originating from both sites, though the trends varied 

between species. The predicted increase of trait values with increasing water availability 

in the field as found in two of the studied species (Crupina, Hymenocarpos semi-arid 

origin) and corresponded to previous findings obtained along the rainfall gradient in the 

region (Aronson et al. 1990, 1993, Petrů et al. 2006). The phenotypic variation in plant 

size in Aegilops was opposite to our predictions and showed a reduction in response to 

the addition of water, whereas biomass production was not different between treat-

ments. Plants from the wet-treatment grew wider instead of taller, as a possible adap-

tive response to increased competition, which remains to be tested. Similar changes in 

architecture were reported previously for Biscutella (Petrů et al. 2006). The increase in 

total biomass production with decreasing water availability in the field treatments in 

Brachypodium from the Mediterranean site was related to an increasing reproductive 

biomass, though reproductive allocation did not vary significantly. 

 

The relative allocation of resources to reproductive biomass increased with decreasing 

water availability in the field, confirming our prediction. This reproductive allocation was 

the most consistently affected trait, however, the comparison between sites of origin 

showed that for this trait a distinct trend between sites remained only in Biscutella. 

Whether responses in reproductive allocation are plastic or adaptive appears to be spe-

cies-specific. Our findings are in line with the controversial nature of previous findings 

(Levins 1963, Hickman 1975, Aronson et al. 1993, Petrů et al. 2006). For Biscutella we 

can state that shifts in reproductive allocation are adaptive, and that the rain manipula-
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tion in the Mediterranean site did not cause an inherited shift in this trait. Also, Hymeno-

carpos plants originating from both sites, exhibited a trend according to the prediction. 

In open habitats, a high number of seeds is an advantage, which compromises the 

competitive ability of a plant to persist under high plant density (Harper 1967). The in-

heritance of the trait shift in the Mediterranean population is an indication for an adap-

tive response, but it is possible that the phenotypic variation in this trait was not fully 

expressed under the nonstressful conditions in the greenhouse. We suggest that in 

Hymenocarpos reproductive allocation decreases as a plastic response to competition 

for light. 

 

 

The effect of site of origin on the adaptive responses 

 

Our results also confirmed the second prediction: the impact of the dry-treatment was 

greater than that of the wet-treatment in the semi-arid site and vice versa in the Mediter-

ranean site (Tab. 3). Some species showed adaptive responses in several traits while 

others did not vary in any trait in the G2. Nonresponding species were exclusively of 

Mediterranean origin (Avena, Plantago, Urospermum). Previous studies showed that 

competition is higher in the Mediterranean site (Petrů et al. 2006, Holzapfel et al. 2006) 

and that it is likely that in the Mediterranean site drought is a less severe selective factor 

compared to competition (Liancourt and Tielbörger 2009). The finding of an increased 

mortality in few species in the wet-treatment of the Mediterranean site (Chapter 1), sup-

ports this conclusion. It is possible that differences due to the rain manipulation history 

are weak under common greenhouse conditions and might be detectable only under 

drought or competition, especially in the case of effects on the ability to survive. Since 

both factors were excluded in the greenhouse, the response to competition and drought 

was not tested. These results are in line with the hypothesis that the impact of decreas-

ing precipitation is higher on populations in regions where water is already limited 

(Knapp et al. 2002). 

 

Selection pressure can differ in its magnitude depending on the history of selection of a 

population, because of differences in the correlation between life-history traits and their 

effects on survival and fitness (Milla et al. 2009). The local environment affects adapta-

tion and in turn, intraspecific trait variation influences abiotic and biotic factors (Hendry 
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et al. 2011, Bolnick et al. 2011). Whether adaptation is promoted or slowed down de-

pends on a number of environmental and biotic factors and their interactions. There is 

consent about the influence of some of these factors like population size, genetic co-

variance between and genetic variation in the traits under selection (Bradshaw and 

McNeilly 1991, Willi et al. 2006, Jump et al. 2009). Others, like phenotypic plasticity, 

maternal effects, dispersal and community dynamics, leave us with many hypotheses 

and questions (Antonovics 1976, Bone and Farres 2001, Davis et al. 2005, Carroll et al. 

2007, Matesanz et al. 2010). The adaptive potential of a population might be higher if 

less selective factors are involved, because the occurrence of dynamics and interac-

tions between abiotic and biotic factors that slow contemporary evolution might be less 

frequent. 

 

 

Conclusion 

 

Our findings support the view that rapid adaptation is not an exception, and instead was 

found in more than half of the studied species. Adaptation can happen on ecological 

timescales, but not all species might respond to the environmental changes with genetic 

differentiation. Climate change is not just decreasing precipitation but also alters com-

munity dynamics in an unpredictable way, which emphasises the need for studying the 

whole community instead of single species. Our study contributes findings for eight 

common species, still it does not allow to draw conclusions how the changes in precipi-

tation affect rare species. The implication for rare species is that the bar for adaptation 

is much higher, because their fitness is already limited by more factors than just chang-

ing precipitation. The variation in magnitude and direction of selection on life-history 

traits was species-specific and depended on the ecological history and the complex in-

teractions of biotic and abiotic factors which are unique in each of the studied sites. This 

shows that results derived from a single habitat are not a reliable basis for predictions 

outside this habitat. We can conclude that many species have the potential to adapt, but 

correlations between traits can restrict adaptation and the potential for antagonistic de-

velopments might increase with the number of selective factors. In situ adaptation might 

be the strategy of choice to ensure the local persistence of a population as long as it 

involves less changing environmental factors than migration. 
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Appendix and supplemental material 

 

Tab. 4) Results of full factorial models (GLM) testing for the effects of species, sites of origin 

and rain manipulation treatment on phenotypic variation in the studied species originating from 

both study sites. Degrees of freedom (d.f.) were the same for all models. 

Tab. 4a) 

Source of variation 

Onset of flower 

Chi²           p 

Size at flower 

Chi²           p 

Total biomass 

Chi²          p 

 

d.f. 

Species 1104.774 <.0001 3493.965 <.0001 2025.915 <.0001 2 

Station 190.242 <.0001 94.983 <.0001 41.117 <.0001 1 

Treatment (Field) 2.942 0.2297 0.573 0.751 5.439 0.0659 2 

Species*Station 75.705 <.0001 84.151 <.0001 16.764 0.0002 2 

Species*Treatment 2.246 0.6907 8.719 0.0685 14.023 0.0072 4 

Station*Treatment 2.757 0.2519 2.984 0.2249 2.865 0.2387 2 

Spec.*Stat.*Treatm. 5.740 0.2194 9.052 0.0598 7.025 0.1346 4 

 

Tab. 4b) 

Source of variation 

Reprod. allocation 

Chi²            p 

Number of diasp. 

Chi²            p 

 

d.f. 

Species 118.113 <.0001 1668.335 <.0001 2 

Station 3.613 0.0573 15.894 <.0001 1 

Treatment (Field) 8.408 0.0149 5.001 0.0821 2 

Species*Station 9.211 0.01 13.985 0.0009 2 

Species*Treatment 8.860 0.0647 7.564 0.1089 4 

Station*Treatment 0.719 0.6982 2.917 0.2326 2 

Spec.*Stat.*Treatm. 8.030 0.0905 8.945 0.0625 4 
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Tab. 5) Results of generalised linear models testing the effects of species and rain manipulation 

treatment on phenotypic variation including all species per site. 

Trait Source of  

variation 

Semi-arid 

Chi²              p 

 

d.f. 

Mediterranean 

Chi²               p 

 

d.f. 

Time to  

1st flower 

 

Species 791.330 <.0001 3 840.336 <.0001 6 

Treatment 1.805 0.4055 2 3.696 0.1575 2 

Treatm.*Spec. 12.155 0.0586 6 10.783 0.5476 12 

Plant size 

 at 1st  

flower 

Species 2604.573 <.0001 3 4681.635 <.0001 6 

Treatment 0.762 0.6832 2 1.315 0.5182 2 

Treatm.*Spec. 18.637 0.0048 6 13.480 0.3351 12 

Total  

biomass 

 

Species 2366.831 <0.0001 3 3232.975 <0.0001 6 

Treatment 4.882 0.0871 2 2.920 0.2322 2 

Treatm.*Spec. 19.469 0.0034 6 17.579 0.1291 12 

Reprod. 

Allocation 

 

Species 
52.686 <0.0001 

3 
567.328 <0.0001 

6 

Treatment 
13.241 0.0013 

2 
0.100 0.9512 

2 

Treatm.*Spec. 
12.793 0.0464 

6 
22.981 0.0279 

12 

Number of 

diaspores 

 

Species 557.371 <.0001 3 
4290.816 <0.0001 

6 

Treatment 12.519 0.0019 2 
0.759 0.6844 

2 

Treatm.*Spec. 10.602 0.1015 6 
24.041 0.0201 

12 

 

Tab. 6) Effects of site of origin and rainmanipulation treatment on phenotypic variation. Given 

are the number of observations (n), the mean trait values per rain manipulation treatment origin 

for each species in each site (SA=semi-arid, M= Mediterranean). 

Tab. 6a)  Number of diaspores 

   Mean ± Standard Error 
Site effect 

Treatment 
effect 

Spec. Site n Dry Control Wet Chi² p Chi² p 

Bis 
SA 40 616 ± 35.4 538 ± 50.4 431 ± 39.1 

ns 
10.611 0.005 

M 44 509 ± 39.6 576 ± 33.4 583 ± 49.6 ns 

Bra 
SA 59 81 ± 8.1 69 ± 2.9 73 ± 4.2 

19.845 <.0001 
ns 

M 55 106 ± 7.7 96 ± 4.7 81 ± 5.3 10.523 0.0052 

Hym 
SA 39 157 ± 19.0 138 ± 14.9 168 ± 18.7 

ns 
ns 

M 38 162 ± 11.6 186 ± 14.1 154 ± 22.3 ns 

Aeg SA 74 30 ± 1.3 26 ± 1.3 27 ± 1.6 - 6.01 0.0495 

Av M 83 48 ± 1.9 49 ± 1.4 53 ± 1.9 - ns 

Cru M 66 59 ± 4.3 60 ± 3.9 56 ± 3.5 - ns 

Pla M 72 504 ± 34.9 500 ± 32.0 458 ± 39.5 - ns 

Uro M 37 1687 ± 390.1 994 ± 104.1 876 ± 112.5 - ns 
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 Tab. 6b)    Onset of flowering [number of days after germination] 

    Mean ± Standard Error 
Site effect 

Treatment 
effect 

Spec. Site n Dry Control Wet Chi² p Chi² p 

Bis 
SA 58 84.9 ± 1.0 86.5 ± 1.1 84.1 ± 2.0 

36.522 <0.0001 
ns 

M 76 90.8 ± 1.1 92.7 ± 1.0 91.8 ± 1.0 ns 

Bra 
SA 140 74.2 ± 0.6 74.8 ± 0.5 74.0 ± 0.5 

15.612 <0.0001 
ns 

M 140 76.5 ± 0.6 76.3 ± 0.7 75.4 ± 0.6 ns 

Hym 
SA 69 65.8 ± 1.4 64.9 ± 1.4 65.3 ± 1.2 

69.513 <0.0001 
ns 

M 71 73.8 ± 1.2 75.0 ± 1.4 75.3 ± 1.2 ns 

Aeg SA 87 112.6 ± 2.0 119.3 ± 1.7 119.0 ± 1.8 - 7.372 0.0251 

Av M 95 98.7 ± 1.5 99.2 ± 0.9 97.6 ± 0.8 - ns 

Cru M 86 96.6 ± 1.0 94.9 ± 1.1 97.4 ± 1.4 - ns 

Pla M 87 99.6 ± 2.1 101.0 ± 2.5 103.7 ± 2.4 - ns 

Uro M 48 101.7 ± 1.7 105.4 ± 1.0 102.1 ± 1.8 - ns 

 

Tab. 6c)  Plant size [mm] 

    Mean ± Standard Error 
Site effect 

Treatment 
effect 

Spec. Site n Dry Control Wet Chi² p Chi² p 

Bis 
SA 59 299 ± 11.3 267 ± 13.4 297 ± 22.2 

43.284 <0.0001 
ns 

M 75 389 ± 20.0 373 ± 15.3 381 ± 17.2 ns 

Bra 
SA 139 564 ± 10.1 586 ± 10.3 577 ± 9.5 

4.609 0.0318 
ns 

M 142 607 ± 12.8 609 ± 11.7 584 ± 11.4 ns 

Hym 
SA 69 199 ± 8.5 215 ± 5.7 202 ± 5.0 

19.83 <0.0001 
ns 

M 71 236 ± 7.4 221 ± 7.4 232 ± 6.1 ns 

Aeg SA 87 562 ± 14.4 562 ± 13.9 519 ± 10.6 - 7.133 0.0282 

Av M 95 888 ± 24.6 899 ± 15.5 882 ± 22.6 - ns 

Cru M 86 430 ± 17.6 474 ± 15.4 496 ± 22.4 - 7.286 0.0262 

Pla M 85 262 ± 6.5 264 ± 7.9 278 ± 8.2 - ns 

Uro M 48 834 ± 21.1 869 ± 27.6 853 ± 46.3 - ns 

 

Tab. 6d)  Total biomass [mg] 

   Mean ± Standard Error 
Site effect 

Treatment 
effect 

Spec. Site n Dry Control Wet Chi² p Chi² p 

Bis 
SA 42 2.77 ± 0.14 2.65 ± 0.24 2.53 ± 0.14 

24.908 <.0001 
ns 

M 43 3.26 ± 0.17 3.22 ± 0.12 3.50 ± 0.18 ns 

Bra 
SA 59 1.52 ± 0.11 1.30 ± 0.04 1.44 ± 0.06 

13.666 0.0002 
ns 

M 58 1.85 ± 0.10 1.76 ± 0.09 1.49 ± 0.09 7.635 0.022 

Hym 
SA 39 6.01 ± 0.34 6.30 ± 0.52 7.70 ± 0.38 

5.750 0.0165 
8.993 0.0111 

M 38 7.33 ± 0.44 7.88 ± 0.53 7.74 ± 0.76 ns 

Aeg SA 72 7.81 ± 0.21 8.28 ± 0.20 7.88 ± 0.22 - ns 

Av M 83 6.19 ± 0.20 6.18 ± 0.11 6.03 ± 0.12 - ns 

Cru M 65 2.87 ± 0.21 3.27 ± 0.16 3.16 ± 0.16 - ns 

Pla M 74 1.79 ± 0.07 1.61 ± 0.10 1.65 ± 0.09 - ns 

Uro M 37 11.40 ± 0.80 12.26 ± 0.85 10.91 ± 0.39 - ns 
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Tab. 6e)  Reproductive allocation 

   Mean ± Standard Error Site effect Treatment effect 

Species Site n Dry Control Wet Chi² p Chi² p 

Bis 
SA 40 0.40 ± 0.01 0.34 ± 0.01 0.34 ± 0.01 

14.79 0.0001 
10.977 0.0041 

M 44 0.31 ± 0.01 0.31 ± 0.01 0.31 ± 0.02 ns 

Bra 
SA 60 0.40 ± 0.02 0.42 ± 0.02 0.41 ± 0.01 

ns 
ns 

M 58 0.44 ± 0.01 0.43 ± 0.02 0.41 ± 0.01 ns 

Hym 
SA 39 0.50 ± 0.02 0.46 ± 0.03 0.44 ± 0.05 

ns 
ns 

M 38 0.47 ± 0.02 0.48 ± 0.02 0.38 ± 0.04 7.166 0.0278 

Aeg SA 73 0.41 ± 0.01 0.37 ± 0.01 0.33 ± 0.02 - 14.976 0.0006 

Av M 83 0.41 ± 0.01 0.40 ± 0.01 0.42 ± 0.01 - ns 

Cru M 66 0.31 ± 0.02 0.32 ± 0.02 0.31 ± 0.02 - ns 

Pla M 73 0.25 ± 0.01 0.30 ± 0.01 0.25 ± 0.02 - ns 

Uro M 37 0.19 ± 0.01 0.18 ± 0.01 0.20 ± 0.01 - ns 
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Chapter 3: Rain manipulation history affects phenotypic variation and 

fitness under different irrigation levels in annual plants 

 

Abstract 

 

In the context of global change, the ability of species to adapt to high rates of 

environmental changes is a key factor, determining whether populations face local 

extinction or can persist. Here we asked: a) does in situ adaptation occur after few 

generations under altered precipitation? And b) does it lead to improved survival and 

fitness under drought? We subjected species to rainfall manipulations in situ within their 

communities, thus providing a realistic scenario for selection processes. We raised 

plants of two winter annuals (Biscutella didyma, Hymenocarpos circinnatus) under an 

irrigation gradient in the greenhouse from seeds produced by mother plants growing 

under different rain manipulation treatments in a Mediterranean and a semi-arid site. 

We measured phenology, growth and reproduction related traits and compared survival 

and fitness under drought. We predicted higher survival and higher fitness under 

drought due to adaptive shifts in life-history traits. The trends in these shifts were 

expected to resemble the trends between the Mediterranean and the semi-arid 

population. In Biscutella didyma, eight years of selection under altered water availability 

in the field caused higher seed number under drought in plants originating from the dry-

treatments of the semi-arid site compared to plants from the control and the wet-

treatment. According to our predictions, selection under lower water availability favoured 

smaller diaspores and a higher reproductive allocation. Our results provide a reliable 

indication that some species might be able to cope with rapidly changing environments, 

which confirms that in situ adaptation is an important alternative to migration. 
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Introduction 

 

Under the predicted changes in environmental conditions such as decreasing 

precipitation (IPCC 2007, 2012), species can either migrate in order to track their 

favourable climatic conditions or change their physiology to tolerate the reduced water 

availability. In situ adaptation is widely acknowledged as a key factor for species to 

persist under climate change (Lynch and Lande 1993, Burger and Lynch 1995, Davis 

and Shaw 2001, Thuiller et al. 2005, Jump and Penuelas 2005), but the likelihood of 

plant species to quickly adapt to environmental changes is highly debated (Kinnison and 

Hendry 2001, Reznick and Ghalambor 2001, Etterson and Shaw 2001, Ackerly 2003, 

Franks et al. 2007, Gienapp et al. 2008). Decreasing precipitation as a consequence of 

climate change is likely to increase mortality and reduce the rate of reproductive 

success, and thus, driving evolutionary change (Boyer 1982, Lee and Bazzaz 1986, 

Ackerly et al. 2000, Chaves et al. 2003, Cahill et al. 2012). 

 

Widely distributed species are locally adapted to their immediate environments, which 

increases fitness as costs of plasticity are reduced (DeWitt 1998). Locally adapted 

genotypes have a fitness advantage over transplanted genotypes (Joshi et al. 2001). 

Accordingly, we assume that inherited phenotypic shifts in response to selection under 

drought result in a fitness advantage of the subpopulation that experienced this 

selection over a subpopulation which did not. So far, only two studies tested if such 

phenotypic shifts resulted in improved survival and reproductive success in the altered 

environment and showed that such adaptive processes are possible within few 

generations (Franks et al. 2007), although they might be too slow compared to the rates 

of environmental change (Etterson and Shaw 2001). 

 

Life-history traits are under two opposing selective forces along aridity gradients (Petrů 

et al. 2006, Schiffers and Tielbörger 2006, Liancourt and Tielbörger 2009). At the arid 

end, water limitation causes high mortality and is a major constraint to plant growth and 

reproduction (Boyer 1982, Lee and Bazzaz 1986, Chaves et al. 2003). At the productive 

end, plant density is high and biotic interactions, e.g. competitive exclusion, are the 

major selective force. Biotic interactions play an important role in the partitioning of 

ecological niches and, in addition to adaptation, determine the distribution of species 

and community composition in a given habitat (Herrera 1992, Weiher et al. 1995). The 
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complex dynamics of biotic interactions might affect in situ adaptation (Ackerly 2003, 

Wiens and Graham 2005). Climate change alters these biotic interactions by affecting 

growth and competition (Ayres 1993, Lynch and Lande 1993). Hence, selection can 

occur also due to altered biotic interactions. The direct effect of changed precipitation on 

selective processes might be weakened by biotic interactions at the productive end of 

the gradient. 

 

Fitness related traits such as vegetative growth, timing of the reproductive phase and 

allocation of resources to reproductive organs and diaspores are key traits in the study 

of adaptation to long-term environmental stress (Antonovics 1976, Grime 1977, 

Schlichting 1986, Stearns 1992, Ackerly et al. 2000). Phenotypic variation in these 

traits, that corresponds to the variation in precipitation, has been observed along rainfall 

gradients within a number of species (Aronson et al. 1990, Petrů et al. 2006, Volis 2006, 

Liancourt and Tielbörger 2009, Kigel et al. 2011). 

 

A compensation for higher mortality and fitness loss, either under drought or increased 

competition, can be achieved by a number of physiological and morphological 

adjustments. At the mesic end of the gradient light is a limiting factor due to high plant 

density. Hence, selection favours increased plant size and biomass in order to 

outcompete neighbours and maximise fitness (Cohen 1976, Weiner 1988). Although a 

prolonged phase of vegetative growth is associated with a delay in reproduction, it 

promotes the acquisition resources that are available for reproduction (Antonovics 1980, 

Bazzaz et al. 1987). Toward the arid end, decreasing precipitation reduces the above-

ground competition, and biomass production is limited by water availability. Adaptations 

that minimise water loss include reduced plant height and a slow vegetative growth (Fox 

1990). A higher relative allocation of biomass to diaspore production instead of 

vegetative biomass can maximise the reproductive output (Marshall 1986, Aronson et 

al. 1993, Petrů et al. 2006, Holzapfel et al. 2006, Liancourt and Tielbörger 2009). The 

reduction of vegetative growth has limits since plants have to reach a certain size before 

they are able to reproduce (Holdsworth 1956, Harper and White 1974, Waller 1988, 

Schmid et al. 1995). 

 

The timing of the switch from vegetative to reproductive phase is a crucial element in 

plant life-history as it determines fitness to a great extent (Cohen 1976). Under high 
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competition, an early switch to reproductive phase might be a disadvantage since 

reproduction requires resources that are no longer available for further vegetative 

growth and result in suppression by neighbour plants (Antonovics 1980, Bazzaz et al. 

1987). In arid environments, where fluctuations of the growth season length is high, 

early flowering individuals might able to reproduce while late flowering can lead to 

reproductive failure and exclusion from the population (Rathcke and Lacey 2007). 

Earlier flowering is a drought escape strategy under terminal drought at the end of the 

season, that has been observed in multiple species along aridity gradients (Aronson et 

al. 1992, Heschel and Riginos 2005, Petrů et al. 2006, Volis 2006, Sherrard and 

Maherali 2006, Lampei 2011, Kigel et al. 2011). 

 

Seed size is a trait that influences initial seedling size and, thus, can enhance seedling 

establishment and survival (Marshall 1986, Westoby et al. 1992, 2002, Leishman and 

Westoby 1994). Selection for a high seed number is considered antagonistic to larger 

seed size. Larger seeds can be advantageous under both high competition and 

unpredictable environments, therefore, hypotheses on adaptive response of seed mass 

are ambiguous. At the community level seed mass was found to decrease with 

increasing aridity (Harel et al. 2011). This finding may indicate the direction of selection 

under drought and rain unpredictability. 

 

We studied the effect of selection under different rain manipulation treatments in the 

field, on the survival, reproductive success and life-history traits in the greenhouse, 

under an irrigation gradient. The purpose of the rain manipulations in the field was to 

simulate the predicted change in precipitation in the eastern Mediterranean Basin in the 

wake of global warming (Holzapfel et al. 2006, Sternberg et al. 2011). The experimental 

treatments consisted of reduced natural precipitation by approximately 30% (dry-

treatments), an unaltered control (control-treatment) and, additional irrigation (wet-

treatments) which increased the amount of water by 30% as an contrasting treatment. 

The treatments did not change the frequency of rain events. Plants of two annual 

species were raised from seeds produced by mother plants growing under the rain 

manipulation treatments in both, the semi-arid and the Mediterranean site. Their 

offspring were grown under an irrigation gradient in a greenhouse that simulated and 

exceeded the water availability conditions in the field. This long-term experiment 
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allowed us to show whether inherited phenotypic shifts due to eight years of rain 

manipulation in the field can contribute to fitness under drought. 

 

 

Predictions: 

 

- Survival and fitness 

We predicted that plants originating from the semi-arid site have a higher survival and 

produce more seeds under drought, compared to plants from the Mediterranean site. 

The same trend was expected within each site: Lower water availability in situ selects 

for better adapted genotypes which surpass plants from the control- and wet-treatments 

in survival and fitness under drought. We expected that the rain manipulation treatments 

in the field had a stronger effect on survival and fitness in the semi-arid populations 

compared to the Mediterranean populations. 

 

- Selection on life-history traits 

We predicted that lower water availability in situ selects for earlier flowering, reduced 

plant size, smaller seeds, and higher reproductive allocation. We expected to find that 

the effect of rain manipulation history differs between the sites of origin. Since our 

irrigation gradient experiment excluded biotic interactions, we expect phenotypic shifts 

benefitting fitness under drought to be weaker in the Mediterranean population 

compared to the semi-arid population, because in the Mediterranean environment biotic 

interactions are a stronger selective force. 
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Methods 

 

Study species: 

Biscutella didyma (Brassicaceae) and Hymenocarpos circinnatus (Fabaceae) are 

common winter annuals with a Mediterranean and Irano-Turanian distribution (Zohary 

1937). Diaspores of Biscutella are one seeded, while in Hymenocarpos the dispersal 

unit is a dry legume with two seeds. Both species are abundant in the semi-arid and the 

Mediterranean sites and could easily be cultivated in the greenhouse. To equalise 

maternal effects, the seeds for the experiment were produced under same standard 

conditions in the greenhouse in the previous season (G1), and kept in a nethouse in the 

Faculty of agriculture of the Hebrew University of Jerusalem in Rehovot, Israel for two 

months to break dormancy (Petrů et al. 2006). Full-sibs of each rain manipulation site x 

treatment combination were raised under different irrigation levels in a greenhouse. 

Since the studied species are selfers, we assume that the siblings are genetically 

similar. 

 

Irrigation gradient: 

In order to compare the effect of the field rain manipulations under optimum conditions 

and different levels of water availability, an irrigation gradient was set up in the 

greenhouse of the University of Tuebingen, Germany. The irrigation system was built 

according to the line source irrigation presented by Johnson et al. (1982) and modified 

by Lampei (2011, Thesis unpubl.) to meet the requirements of this experiment. The 

system consisted of seven irrigation levels, which were replicated for each species 8 

times (irrigation gradient units). The amount of irrigation was adjusted using the mean 

annual precipitation measured (+/- 30% for the treatments) and compared to the mean 

annual soil humidity, both of which were recorded over the manipulation period from 

2002 until 2010 (GLOWA Project Database). The range of water supply as well as soil 

humidity exceeded the range of precipitation and soil humidity in the field manipulations 

(Fig. 1). The lowest irrigation level (IL1) caused a high mortality, thus showing that the 

physiological limit of the plants was reached. 
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Fig. 1) Comparison of the mean relative soil humidity in the field sites for the last 7 years of rain 

manipulations, and for the irrigation gradient in the greenhouse (± Standard error). (For 

precipitation/irrigation comparison see Tab. 1b in the Appendix.) 

 

Cultivation: 

As substrate we used a mixture of sand and garden soil with low nutrient content (1:1) 

and 100 ml Osmocot Scott® fertilizer (15 % N, 9 % P2O5, 9 % K2O) per 15 l of soil/sand 

mixture. Ten (Hymenocarpos) or 12 (Biscutella) seeds per mother plant were sown into 

pots (90 mm x 90 mm, 100 mm deep) and covered with a thin layer of substrate to 

prevent desiccation. Seeds of Hymenocarpos had to be manually scarified to ensure 

germination. The day of initial irrigation was the 21th of November 2011. The 

temperature in the greenhouse ranged from 16°C at night to 22°C during the day, and 

natural lighting was used. Pots were randomised before each irrigation within each 

irrigation level and once per month over all eight irrigation gradient units in the 

greenhouse. The relative substrate humidity was measured before every second 

irrigation with a TRIME®-FM2 (IMKO Mikromodul-technik GmbH) in 1 out of 9 pots 

(11%). Whenever the soil humidity in the drought stress level IL2 and 3 was below 5% 

all plants were irrigated. Irrigation time increased with the development of the plants, 
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first from 2 min 30 s every 3-4 days at seedling stage to 3 min 45 s every other day 

when plants were fully grown. 

 

Measurements: 

Fitness was evaluated by the number of mature diaspores produced per plant, as 

calculated from the total diaspore weight per plant and the weight per diaspore. The 

latter was calculated from the weight of 20 randomly chosen diaspores per individual. 

The day of germination was recorded for each plant to obtain a precise time for the 

onset of flowering. At the day of first open flower the plant size (i.e. height/length) was 

measured from the cotyledonary node to the tip of the plant. Since germination spanned 

4 weeks, the hypocotyl length was not included in the assessment of plant size, since it 

varied according to the light conditions during germination and seedling emergence. 

The hypocotyl length could have confounded results, especially in the more stressing 

irrigation levels because of the strong size reduction of these plants. At the end of the 

growth cycle and ensuing plant senescence, plants were harvested. Above-ground 

vegetative biomass was dried at 70°C for 24 h and weighed. Dry diasporas/fruits were 

collected separately, stored under room conditions and weighed. Reproductive 

allocation was calculated as the ratio of the total mass of mature diaspores/fruits from 

total above-ground plant biomass. 

 

Statistics: 

All statistical analyses were computed with the software package JMP 7.1 (SAS). A 

survival analysis was applied to the plants in the irrigation gradient to analyse whether 

the rain manipulation history of the respective groups had an effect on mortality under 

drought conditions. The number of surviving individuals at the time of seed set was 

counted for both species to compare survival. A Poisson distribution and a log link-

function were used in a full-factorial generalised linear model. The model included 

irrigation level, site (semi-arid or Mediterranean origin of the populations), treatment 

(individuals originating from the rain manipulation treatments Dry, Control and Wet) as 

fixed factors, and the parameter “initial number of individuals” as a covariate. 

The significance of the effects on the measured traits was tested with a multiple 

regression model. Trait values were averaged for each site x treatment combination in 

each irrigation level. The independent variables in the model were soil humidity (as a 

continuous variable instead of irrigation levels), site and rain manipulation treatment. 
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For the data of Hymenocarpos we used a log-transformation of relative soil humidity to 

achieve linearity for all variables except total biomass and number of fruits. In the case 

of Biscutella this transformation was used only for the data of plant size. Tukey-tests 

were used for post-hoc multiple comparisons of the means. The significance levels used 

in all analyses are 0.05 (*), 0.01 (**) and 0.001 (***). 

 

 

 

Results 

 

Survival analysis 

The effect of the irrigation levels on survival was similar in both species. Survival of the 

semi-arid population of Biscutella was significantly higher in the most stressed irrigation 

level (IL1 with 3.18% soil humidity) compared to the Mediterranean population. 

Differences in survival due to rain manipulation history were not significant. The survival 

of Hymenocarpos differed only between irrigation levels. 

 

Tab. 1) Results of the survival analysis, testing the effects of irrigation level in the greenhouse 

gradient, and site and treatment origin on survival. 

Source of variation  Biscutella Hymenocarpos 

d.f. Chi² p Chi² p 

Irrigation level (IL) 6 298.246 <.0001 181.992 <.0001 

Site 1 13.249 0.0003 1.626 0.2022 

Treatment (Field) 2 3.592 0.1660 3.015 0.2215 

IL*Site 6 41.175 <.0001 7.180 0.3046 

IL*Treatment 12 5.711 0.9299 14.210 0.2875 

Site*Treatment 2 0.141 0.9138 2.173 0.3373 

IL*Site*Treatment 12 8.039 0.7821 13.536 0.3313 
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Fig. 2) Survival until the time of seed set in Biscutella (a) and Hymenocarpos (b) under seven 

levels of irrigation (from IL1 as the driest level to IL7 with the highest amount of water), 

displayed over mean relative soil humidity. 

 

Fitness 

The number of diaspores per plant was positively correlated to water availability in both 

species (Fig. 3). In Biscutella, no difference in fitness was found between the two sites 

of origin (Tab. 2a), but the increase in diaspore number with soil humidity was 

significantly higher in the Mediterranean population (p=0.0231, F=5.729). No variation in 

fitness was found in relation to the rain manipulation treatments in the Mediterranean 

site. In the semi-arid population, on the other hand, plants originating from the wet-

treatments produced significantly less diaspores (Tab. 2a) compared to plants from the 

control- and dry-treatments. Under drought, they reached 50% and under the highest 

irrigation level 70% of the number of diaspores that was produced by plants from the 

dry-treatment, which had the highest reproductive output. The increase in diaspore 

number with higher water availability was smaller in plants of wet-treatment origin 

compared to plants from the control- and the dry-treatment. In Hymenocarpos, the 

number of fruits changed significantly only in response to water availability in the 

irrigation gradient, but not between sites nor between treatments within sites (Tab. 2b). 

 

a) b) 
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Fig. 3) The variation in mean fitness, measured as number of mature diaspores in Biscutella (a) 

and fruits in Hymenocarpos (b) across all irrigation levels in the greenhouse, displayed as mean 

relative soil humidity. 

 

 

Phenotypic responses to the irrigation gradient 

 

Almost all measured traits in both studied species were affected by differences in water 

availability across the greenhouse irrigation gradient (Tab 2a+b, for the results of the full 

model see tables 3a and b in the Appendix). Under highest irrigation, the onset of 

flowering in Biscutella was earlier by 4-7 days in the semi-arid population and 11-13 

days in the Mediterranean population compared to the level of lowest irrigation (Fig. 4a). 

In Hymenocarpos, the increase of irrigation had the opposite effect on the flowering time 

in plants from the two site origins. The onset of flowering was accelerated by 3-9 days 
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with increasing irrigation in Mediterranean plants, while in semi-arid plants a delay by 1-

3 days was observed (Fig. 4b). In both species the plant size at the onset of flowering, 

biomass production and reproductive allocation increased with increasing irrigation in 

the greenhouse gradient (Figs. 5 and 6, a and b respectively). It is notable, that the 

plastic responses of diaspore weight to variation in water availability differed between 

the two studied species. The response of diaspore weight with increasing irrigation was 

a reduction in Biscutella (Fig. 7a) and an increase in Hymenocarpos (Fig. 7b). 

 

 

Differences between sites of origin 

 

In Biscutella and Hymenocarpos, site origin had a significant effect on all measured 

traits, except for diaspore weight (Tab. 2a+b). In both species, the Mediterranean 

populations flowered later than the semi-arid ones with a difference of approximately 8 

days in Biscutella and 12 days in Hymenocarpos (Figs. 4a+b). The time until the onset 

of flowering in Biscutella, increased with decreasing water availability significantly more 

in the Mediterranean population compared to the semi-arid population (p=0.0329, 

F=5.003). Also in Hymenocarpos, the onset of flowering was significantly more delayed 

in plants from the wet-treatment of the Mediterranean population compared to the other 

two treatments (p=0.0478, F=4.259). In both species, Mediterranean plants were taller, 

produced more biomass and had a higher reproductive allocation compared to those 

from the semi-arid site (Figs. 5,6). The Mediterranean population of Hymenocarpos had 

a significantly greater biomass increase with increasing irrigation compared to the semi-

arid population (p=0.0347, F=4.896). The variation of diaspore weight within the semi-

arid population of Biscutella exceeded the variation of the Mediterranean population. 

Although the Mediterranean population had a significantly higher diaspore weight 

compared to the semi-arid population, the highest weights were measured in plants 

from the semi-arid wet-treatment (Fig 7). In Hymenocarpos, no significant differences in 

mean weight per diaspore were found between sites. 
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Effect of selection history 

 

The effect of the in situ rain manipulation treatments on the measured life-history traits 

was species- and site-specific. The effect of the selection history on flowering time was 

significant only for Biscutella (Tab. 2a). Plants from the control-treatments flowered 

approximately 3-4 days (Mediterranean population) and 2-3 days (semi-arid population) 

later compared to plants from the respective dry- and wet-treatments. The rain 

manipulation treatments had a significant effect on plant size in both species, though 

only on the respective semi-arid population. 

 

In Biscutella, plants from control-treatment were shorter, whereas in Hymenocarpos, 

they were taller at the onset of flowering compared to plants from the dry- and wet-

treatment (Fig. 5, Tab. 2). In contrast to plant size, total biomass was not affected by 

selection history in Biscutella nor in Hymenocarpos. The rain manipulation treatments 

had no effect on reproductive allocation in Hymenocarpos and in the Mediterranean 

population of Biscutella. Biscutella plants from semi-arid dry-treatment origin had a 

significantly higher reproductive allocation compared to those from the control- and the 

wet-treatment (Tab. 2a, Fig. 6). In the semi-arid population of Hymenocarpos the weight 

per seed was highest in plants from the control-treatment (Tab. 2b). Here, plants from 

the wet-treatment had a notable, though nonsignificant seed weight increase with 

increasing water availability in the irrigation gradient (Fig. 7b). A significantly higher 

weight per diaspore was found in plants from the wet-treatment in the semi-arid site of 

Biscutella, which was opposite to the trend in plants from the Mediterranean site where 

the dry-treatment had the highest weight per diaspore (Fig. 7a). 
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Tab. 2) Differences in phenotypic variation in response to the greenhouse irrigation gradient, 

depending on site and rain manipulation treatment origin in a) Biscutella, b) Hymenocarpos. 

Tab. 2a) 

Biscutella 

Response 

to irrigation 

gradient 

Differences 

between 

sites 

Differences between 

treatments within sites 

Semi-arid Mediterranean 

Number of 

diaspores 

p < 0.0001, 

F=734.92 
ns 

p=0.0003, 

F=14.551 
ns 

Onset of 

flowering 

p < 0.0001, 

F=47.348 

p < 0.0001, 

F=128.343 

p=0.0058, 

F=7.405 

p=0.0468, 

F=3.782 

Height at onset 

of flowering 

p < 0.0001, 

F=231.671 

p < 0.0001, 

F=100.128 

p=0.0155, 

F=5.577 
ns 

Total 

biomass 

p < 0.0001, 

F=65.665 

p=0.0037, 

F=9.935 
ns ns 

Reprod. 

allocation 

p < 0.0001, 

F=346.178 

p < 0.0001, 

F=28.838 

p=0.0006, 

F=12.581 
ns 

Weight per 

diaspore 

p < 0.0001, 

F=98.057 

p=0.0427, 

F=4.481 

p=0.0004, 

F=14.040 

p=0.0163, 

F=5.484 

 

Tab. 2b) 

Hymenocarpos 

Response 

to irrigation 

levels 

Differences 

between 

sites 

Differences between 

treatments within sites 

Semi-arid Mediterranean 

Number of 

diaspores 

p < 0.0001, 

F=526.784 
ns ns ns 

Onset of 

flowering 
ns 

p < 0.0001, 

F=260.465 
ns ns 

Height at onset 

of flowering 

p < 0.0001, 

F=533.028 

p < 0.0001, 

F=70.242 

p=0.0044, 

F=7.946 
ns 

Total 

biomass 

p < 0.0001, 

F=983.807 

p=0.0003, 

F=17.145 
ns ns 

Reprod. 

allocation 

p < 0.0001, 

F=26.511 

p < 0.0001, 

F=20.526 
ns ns 

Weight per 

diaspore 

p < 0.0001, 

F=33.077 
ns 

p=0.0141, 

F=5.740 
ns 
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Fig. 4) Onset of flowering under increasing irrigation levels in Biscutella (a) and Hymenocarpos 

(b), plotted over increasing relative soil humidity. 

 

 

Fig. 5) Plant height at the onset of flowering in Biscutella (a) and Hymenocarpos (b). 
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Fig. 6) Reproductive allocation in Biscutella (a) and in Hymenocarpos (b). 

 

 

Fig. 7) Weight per diaspore in Biscutella (a) and per seed in Hymenocarpos (b). 
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Discussion 

 

Our results provide evidence for in situ adaptation after eight years of rain manipulation. 

Changes in the precipitation regime in the field led to adaptive shifts in life-history traits, 

altering fitness under drought in the greenhouse. A higher fitness in Biscutella plants 

originating from the semi-arid dry-treatments in relation to plants from the respective 

control-and wet-treatments was observed under all greenhouse irrigation levels. This 

improved fitness under drought was associated to adaptive shifts in the reproduction 

related traits. 

 

Firstly, the increase in resource allocation to reproductive biomass allowed a higher 

number of diaspores. The observed shifts in reproductive allocation in the semi-arid 

population of Biscutella resembled the trend between sites as predicted, and 

corresponded to previous findings (Petrů et al. 2006). So far, previous studies could not 

decisively show whether responses in reproductive allocation are plastic under low 

water availability and low above-ground competition, as found by Aronson et al. (1993) 

and Hickman (1975), or whether this trait has indeed the potential of a fast adaptive 

response to increasing aridity as suggested by Levins (1963) and Petrů et al. (2006). 

For Biscutella we can show that reproductive allocation is an adaptive trait, quickly 

responding to changes in the amount of precipitation and contributing to improved 

fitness under drought. Secondly, Biscutella of semi-arid wet-treatment origin had an 

adaptive shift in seed weight that negatively influenced fitness in these plants, 

regardless of the water availability in the greenhouse. Increasing water availability 

selected for an increased diaspore weight in the semi-arid population, which 

corresponds to our prediction and is supported by the findings of Harel et al (2011). 

 

Interestingly, short-term selection on diaspore weight under the rain manipulation was 

profoundly affected in Biscutella by the long-term selection history of the two field sites. 

Within the Mediterranean population of Biscutella the trend in response to the rain 

manipulation treatments was opposite to that in the semi-arid population. The diaspores 

produced by plants originating at the dry-treatment were the largest, while the lowest 

weight per diaspore was found in plants originating from the wet-treatment. A decrease 

in seed weight in response to water shortage can maximise the number of seeds (Fox 

1990). An increase in weight, on the other hand, is an investment of limited resources in 
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well-equipped rather than numerous seeds and can improve the survival of the 

seedlings under drought, but also under competition (Marshall 1986, Westoby et al. 

1992, 2002, Leishman and Westoby 1994). Our data from the greenhouse experiment 

gave no indication how larger diaspores influenced growth and phenology and improved 

survival under drought. But maybe the key for understanding the trends in seed weight 

response are seed predation and dispersal, or other biotic factors, which were not part 

of this greenhouse experiment (Thompson 1987, Westoby et al. 1992). 

 

The second characteristic that was measured to assess the occurrence of adaptation 

was survival under drought in the greenhouse. Long-term selection in the semi-arid 

environment resulted in higher survival rates under drought in the greenhouse gradient. 

In concordance to our prediction, the semi-arid population of Biscutella, had a higher 

survival rate under drought and therefore, are better adapted to arid conditions in 

relation to the Mediterranean population. In neither of the two studied species survival 

was affected by the rain manipulation treatments. It is likely that a change in rain 

predictability or the shortening of the season has a severe effect on survival (Franks et 

al. 2007). 

 

We found a lack of adaptive shifts in phenology and growth related traits in Biscutella 

and the absence of any differences in survival or fitness in Hymenocarpos. In both 

species the later flowering of the Mediterranean populations was associated with a 

larger size at this time. Within site of origin, however, neither plant growth nor total 

biomass did vary, or the trends were not consistent. Therefore, and contrary to our 

expectations, no indirect selection on flowering time resulted from shifts in growth 

related traits. 

 

Our findings in the first chapter showed that decreasing precipitation had no effect on 

the survival in the field, which is a sign of adjustment to the environment. Then, it was 

unclear whether this adjustment was caused by a shift in genetic composition or by 

plasticity. Now, the lack of differences in these traits in Biscutella and the absence of 

any effect of drought in the greenhouse irrigation gradient on survival and fitness in 

Hymenocarpos verifies that the phenotypic trait variation in the field was a plastic 

response. The range of physiological plasticity allowed to buffer directional selection 

caused by the rain manipulation treatments on phenology and growth related traits. The 
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strong between year fluctuations of resource limitation and competition in environments 

like in our study sites demand a high plasticity to maximises fitness (Cohen 1971, 1976, 

Bazzaz et al. 1987, Schmid et al. 1995). We suggest that the environmental change and 

consequently the selection pressure was not strong enough to cause an adaptive 

response to the rain manipulation treatments in Hymenocarpos. This interpretation can 

be supported by the lower phenotypic variation between sites of origin in most 

measured traits compared to Biscutella. An additional factor to delay adaptive 

processes in the case of Hymenocarpos is probably the high seed dormancy. This 

might be a bias in our results due to plants that germinated from seeds which were 

produced prior to the rain manipulation period. 

 

Our findings for fitness and survival under drought in the greenhouse imply that the 

studied species can persist under conditions that correspond to the current projection of 

climate change in the region. In relation to the maximum number of fruits/diaspores, 

plants of both species had a fitness loss of up to 95% under drought. Despite 60% 

mortality rate, the Mediterranean population of Biscutella might be able to persist even 

under water availability conditions similar to those in the lowest irrigation level of the 

greenhouse gradient. Regarding the rather stable survival rates we can assume for 

Hymenocarpos that this species has the ability to persist under climate change. 

 

As much as it is important to assess the occurrence and magnitude of adaptation, it is 

also highly relevant to learn about possible reasons why species do not respond to 

altered precipitation. Such species might be either the most or the least sensitive to a 

change in water availability. For example, high seed dormancy can lead to a relative 

lower number of generations under selection compared to non-dormant species, and 

thus constrain evolutionary processes. In this context, a comparative study on adaptive 

response under stress of a large number of species with differing dormancy could 

provide an answer. In species like Biscutella, phenotypic shifts that improve fitness 

under drought might cause a disadvantage due to a possibly reduced competitive ability 

(Grime 1974, Liancourt and Tielbörger 2009). Therefore, future research needs to 

evaluate in experiments that include the complex interaction in the community, whether 

the potential for adaptation matches the rate of environmental change. According to our 

results, adaptation occurs not only under drought conditions, and we might also find 

adaptive trait shifts which contribute to survival and fitness that were caused by 
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selection under the wet-treatments. After all, adaptation to biotic factors may also be 

important in coping with enviromental changes and their impact on plant community 

composition. 

 

 

Conclusion 

 

We show evidence for in situ adaptation in response to changed precipitation, which 

can enable species to persist under climate change. Therefore, adaptation is an 

important alternative to the too low migration rates. The adaptations reported here, may 

provide a way for plants to avoid extinction. Therefore it is highly important to 

understand how frequent this capability is and to assess whether it can allow to 

withstand the future climate change. 
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Fig. 1b) Mean annual amount of water in the field sites for the entire time of rain manipulation 

and the study year (estimated for the dry and wet treatments), and for the irrigation gradient in 

the greenhouse. 
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Tab. 
3a) 

Source of variation 
 Onset of flowering Plant size Total biomass 

d.f. F p F p F p 
B

is
c
u

te
lla

 
Soil humidity (SH) 1 47.348 <.0001 231.671 <.0001 65.665 <.0001 

Site 1 128.343 <.0001 100.128 <.0001 9.935 0.0037 

Treatment 2 8.012 0.0016 1.850 0.1747 0.513 0.6041 

SH*Site 1 5.003 0.0329 9.301 0.0048 2.448 0.1282 

SH*Treatment 2 0.683 0.5127 1.648 0.2093 0.217 0.8065 

Site*Treatment 2 0.736 0.4876 1.764 0.1886 0.412 0.6659 

SH*Site*Treatment 2 0.519 0.6003 0.305 0.7391 0.222 0.8024 

H
y
m

e
n

o
c
a

rp
o

s
 Soil humidity (SH) 1 0.001 0.9796 533.028 <.0001 983.807 <.0001 

Site 1 391.133 <.0001 70.242 <.0001 17.145 0.0003 

Treatment 2 1.639 0.2112 1.566 0.2254 0.528 0.5952 

SH*Site 1 4.259 0.0478 5.146 0.0307 4.896 0.0347 

SH*Treatment 2 0.234 0.7928 1.784 0.1854 2.786 0.0777 

Site*Treatment 2 1.307 0.2857 3.739 0.0355 0.491 0.6171 

SH*Site*Treatment 2 0.210 0.8119 0.007 0.993 1.635 0.2119 

 
Tab. 
3b) 

Source of variation 
 Reprod. Allocation Weight per diasp. Number of diaspores 

d.f. F p F p F p 

B
is

c
u

te
lla

 

Soil humidity (SH) 1 346.178 <.0001 98.057 <.0001 734.923 <.0001 

Site 1 28.838 <.0001 4.481 0.0427 0.308 0.5833 

Treatment 2 4.240 0.0239 3.658 0.0379 3.847 0.0326 

SH*Site 1 0.636 0.4313 0.413 0.5253 5.729 0.0231 

SH*Treatment 2 0.167 0.8467 0.166 0.8479 0.158 0.8544 

Site*Treatment 2 5.100 0.0124 17.056 <.0001 10.234 0.0004 

SH*Site*Treatment 2 0.524 0.5973 0.174 0.841 5.677 0.0081 

H
y
m

e
n

o
c
a

rp
o

s
 Soil humidity (SH) 1 26.511 <.0001 33.077 <.0001 526.784 <.0001 

Site 1 20.526 <.0001 1.030 0.3184 0.972 0.3321 

Treatment 2 0.123 0.885 2.236 0.1244 0.190 0.8282 

SH*Site 1 3.541 0.0696 1.473 0.2343 0.079 0.7811 

SH*Treatment 2 1.997 0.1534 0.021 0.9797 0.382 0.6857 

Site*Treatment 2 0.159 0.8536 3.173 0.0562 0.816 0.4518 

SH*Site*Treatment 2 0.789 0.4636 3.135 0.058 1.177 0.3221 

Tab.3) The results of the full factorial 

model testing the effects of relative soil 
humidity, site and treatment on life 
history traits and number of diaspores 
as a measure for fitness. The degrees 
of freedom (d.f.) were equal for all 

analysed traits. 

9
6
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