
     

 
 
 
 

Generation and characterization of FRET-based 
cGMP sensor knock-in mice for cGMP imaging  

 
 

 

 

 

 

 

Dissertation 
der Mathematisch-Naturwissenschaftlichen Fakultät 

der Eberhard Karls Universität Tübingen 

zur Erlangung des Grades eines  

Doktors der Naturwissenschaften  

(Dr. rer. nat.) 

 

 

 

 

 

vorgelegt von 

Lai Wen 

aus Jiangxi, China 

 

 

 

Tübingen 

2014 

 

 

 



     

 

 

  

 

 



     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tag der mündlichen Qualifikation: 10.09.2014  

Dekan: Prof. Dr. Wolfgang Rosenstiel 

1. Berichterstatter: Prof. Dr. Robert Feil 

2. Berichterstatter: Prof. Dr. Meinrad Gawaz 

3. Berichterstatter:  Prof. Dr. Moritz Bünemann 

 

  

 

 

mailto:moritz.buenemann@uni-marburg.de


     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



     

Zusammenfassung 
Die molekularbiologischen Vorgänge in einer Zelle sind hochgradig dynamisch und 

können in subzellulären Kompartimenten lokalisiert sein. Cyclisches 

Guanosinmonophosphat (cGMP) ist ein ubiquitär vorkommendes Signalmolekül, das 

viele physiologische Prozesse beeinflusst. Die Biosynthese von cGMP erfolgt durch 

Guanylylcyclasen, welche durch NO oder bestimmte Peptide stimuliert werden. Der 

Abbau von cGMP und die Beendigung der damit verbundenen Signale erfolgt durch 

Phosphodiesterasen (PDEs), die cGMP zu GMP hydrolysieren. cGMP-Signale 

regulieren unter anderem die Relaxation glatter Muskelzellen, die Aggregation von 

Blutplättchen und die neuronale Entwicklung und Plastizität. Allerdings ist die räumlich-

zeitliche in vivo-Dynamik von cGMP-Signalen größtenteils unbekannt. Mittels 

herkömmlicher Detektionsmethoden, wie z. B. Radioimmunassays oder Enzym-

gekoppelten Immunassays, kann cGMP nicht in lebenden Zellen oder Organismen in 

Echtzeit verfolgt werden. Seit Kurzem stehen aber Sensorproteine zur Verfügung, die 

Veränderungen der cGMP-Konzentration anhand ihrer Fluoreszenzänderungen 

messbar machen. Diese Sensoren bieten eine hervorragende Möglichkeit, cGMP in 

lebenden Zellen in Echtzeit mit hoher räumlicher Auflösung „sichtbar“ zu machen und 

zu quantifizieren. 

 

Im Rahmen dieser Arbeit wurden sog. „cGMP-Sensor Knock-in“-Mauslinien erzeugt, 

die es ermöglichen cGMP-Signale in vivo zu visualisieren. Hierzu wurde eine durch 

Cre-Rekombinase aktivierbare Expressionskassette verwendet, über die der 

Fluoreszenz-Resonanzenergietransfer (FRET)-basierte cGMP-Sensor cGi500 

(cGMP-Indikator mit einer EC50 von 500 nM für cGMP) unter Kontrolle des CAG-

Promotors (cytomegalovirus early enhancer/chicken β-actin/β-globin) exprimiert wird. 

Das DNA-Konstrukt wurde mittels homologer Rekombination in embryonalen 

Stammzellen in den murinen Rosa26-Genlocus integriert. Je nachdem welche 

Strategie zur Aktivierung der Sensorexpression verwendet wurde, zeigten die Mäuse 

entweder eine allgemeine oder eine gewebespezifische Expression des Sensors, 

welche die Untersuchung von cGMP-Signalen in vivo ermöglichte. Durch Kreuzung 

der Knock-in-Mäuse mit einer Purkinjezell-spezifischen Cre-Mauslinie (L7-Cre) 

konnten Mäuse generiert werden, welche den cGi500-Sensor spezifisch in den 

Purkinjezellen des Cerebellums exprimieren. In der ubiquitär exprimierenden 

Mauslinie konnte der Sensor in verschiedenen Geweben und Zelltypen nachgewiesen 
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werden. Eine starke und einheitliche Expression des Sensors konnte z. B. in 

Glattmuskelzellen, Blutplättchen und Neuronen nachgewiesen werden, nachdem 

diese Zellen als primäre Zellkulturen aus dieser Mauslinie gewonnen worden waren. 

Mit Hilfe dieser neuen cGMP-Sensormauslinien können cGMP-Signale nun nicht nur 

in vielen Zell- und Gewebetypen, sondern erstmals auch in lebenden Säugetieren 

gemessen werden. 

 

In der vorliegenden Arbeit konnten cGMP-Signale erfolgreich in Echtzeit und mit 

subzellulärer Auflösung visualisiert werden. Es ist zwar bekannt, dass der cGMP-

Signalweg die Bifurkation von Axonen der Neurone in Hinterwurzelganglien (DRGs, 

engl.: “dorsal root ganglion“) während der Embryonalentwicklung reguliert, aber der 

zugrunde liegende molekulare Mechanismus ist nicht vollständig geklärt. Die in dieser 

Arbeit durchgeführten FRET-Untersuchungen von lebenden embryonalen DRG-

Neuronen zeigten, dass nur das natriuretische Peptid Typ C (CNP, engl.: “C-type 

natriuretic peptide“), nicht aber das atriale natriuretische Peptid (ANP) oder NO, die 

Bildung von cGMP stimulierte. Der Abbau von cGMP erfolgte in diesen Neuronen 

hauptsächlich durch PDE1 und PDE2. Die lokale Applikation von CNP am 

Wachstumskegel der embryonalen DRG-Neurone führte zu einer lokal begrenzten 

Produktion von cGMP, was darauf hindeutete, dass der Wachstumskegel cGMP-

Signale unabhängig vom Soma der Zelle generieren kann. Diese lokale Erhöhung von 

cGMP könnte eine wichtige Rolle in der Wegfindung und Verzweigung der Axone der 

DRG-Neurone spielen, wenn diese während der Embryonalentwicklung in die 

Eintrittszone des Wirbelkanals vordringen. 

 

Im letzten Teil der Arbeit wurden cGMP-Signale in murinen Blutplättchen untersucht, 

welche ein klinisch relevantes Modell für die Wirkung von cGMP-erhöhenden 

Pharmaka darstellen. cGMP-FRET-Versuche mit adhärenten Blutplättchen in einer 

Flusskammer zeigten, dass cGMP nach Applikation von NO, nicht aber nach ANP- 

oder CNP-Gabe, erhöht wurde, und dass die PDE2, PDE3 und PDE5 zum Abbau des 

NO-induzierten cGMPs beitrugen. Diese Daten bestätigten frühere Untersuchungen 

zum cGMP-Signalweg in Blutplättchen. Die Gabe von NO-freisetzenden Substanzen 

bewirkte einen schnellen und anhaltenden cGMP-Anstieg. Überraschenderweise 

führte eine Verringerung der Flussrate während der cGMP-Plateauphase zu einem 

schnellen Abfall der intrazellulären cGMP-Konzentration, was darauf hindeutete, dass 

die NO-induzierten cGMP-Signale durch Scherkräfte reguliert werden. Durch die 

gleichzeitige Messung von cGMP und Ca2+ konnte gezeigt werden, dass sich die 

Konzentrationen dieser sog. zweiten Botenstoffe (engl.: “second messenger“) 
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gegenläufig verhalten. In Anwesenheit von NO führte die Scherbeanspruchung zu 

einem Anstieg von cGMP, dem ein Abfall des aggregationsunterstützenden Ca2+-

Signals folgte. Diese Ergebnisse legen den Schluss nahe, dass die 

Scherbeanspruchung als physikalischer Antikoagulationsfaktor die 

Plättchenaggregation reguliert. Dieser neu entdeckte Mechanismus der Scherkraft-

abhängigen Regulation des NO/cGMP-Signalwegs könnte in vivo eine wichtige Rolle 

in der Hämostase und Thromboseentstehung spielen. 

 

Zusammenfassend kann festgestellt werden, dass die im Rahmen dieser Arbeit 

generierten und charakterisierten cGMP-Sensor Knock-in-Mauslinien den großen 

Vorteil bieten, dass nun cGMP-Signale und damit verbundene biologische Vorgänge 

in vivo und in Echtzeit untersucht werden können. In Kombination mit neuen Methoden 

wie der Intravitalmikroskopie, und zusammen mit anderen genetischen Mausmodellen, 

sollten diese Mauslinien ein breites Anwendungsspektrum haben, um cGMP-

abhängige Mechanismen unter physiologischen und pathophysiologischen 

Bedingungen weiter aufzuklären. 
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Summary 
Molecular events in cells are highly dynamic and can occur locally in subcellular 

domains or compartments. Cyclic guanosine monophosphate (cGMP) is a ubiquitous 

molecule modulating a wide range of physiological processes. It is generated by 

guanylyl cyclases which are activated by NO or certain peptides. Phosphodiesterases 

(PDEs) degrade cGMP by hydrolyzing it to GMP, thereby deactivating cGMP-

dependent pathways. Among other functions, cGMP regulates smooth muscle 

relaxation, platelet aggregation, and neuronal development and plasticity. However, 

the spatiotemporal dynamics of cGMP in vivo is largely unknown. Conventional 

methods for cGMP detection, such as radioimmunoassays or enzyme-linked 

immunosorbent assays are not able to monitor cGMP signals in real time in live cells 

or organisms. The recent development of sensor proteins, which detect cGMP via 

changes in fluorescence offers a great opportunity to visualize and quantify cGMP in 

real time and in intact living cells with high spatiotemporal resolution.  

 

In this work, so-called cGMP sensor knock-in mice were generated to enable the 

visualization of cGMP signals in vivo. A Cre recombinase-activatable expression 

cassette of the fluorescence resonance energy transfer (FRET)-based cGi500 sensor 

(cGMP indicator with an EC50 value for cGMP of 500 nM) driven by the 

cytomegalovirus early enhancer/chicken β-actin/β-globin (CAG) promoter was 

integrated into the murine Rosa26 locus by homologous recombination in embryonic 

stem cells. Depending on the strategy to activate sensor expression, these mice 

showed either ubiquitous or tissue-specific sensor expression allowing for delineation 

of cGMP signaling in vivo. Upon crossbreeding with Purkinje cell-specific Cre (L7-Cre) 

mice, these sensor knock-in mice exhibited tissue-specific expression of cGi500 in 

Purkinje cells in the cerebellum. In the ubiquitously expressing mouse line, global 

cGi500 expression was demonstrated in various tissues and cell types. Primary cells, 

such as smooth muscle cells, platelets, or neurons isolated from the transgenic cGMP 

sensor mice confirmed strong and uniform sensor fluorescence. These new mouse 

lines allowed to robustly measure cGMP not only in multiple cell types and tissues, but 

also for the first time in living mammals. 

 

In the present study, cGMP signals were also successfully visualized in real time with 

subcellular resolution. It is well known that the cGMP signaling pathway regulates 

axonal bifurcation in dorsal root ganglion (DRG) neurons during embryonic 

development, but the underlying molecular mechanism is not completely understood. 
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FRET experiments in live embryonic DRG neurons showed that only C-type natriuretic 

peptide (CNP) but not atrial natriuretic peptide (ANP) or NO stimulated cGMP 

generation. PDE1 and PDE2 were mainly responsible for cGMP degradation in these 

neurons. Local application of CNP to growth cones of embryonic DRG neurons 

increased cGMP only locally, indicating that cGMP can be generated in the growth 

cone independently of the soma. Local cGMP elevation may be critical for DRG 

sensory axon pathfinding and branching when they grow into the dorsal root entry zone 

of the spinal cord during embryonic development. 

 

In the last part of this work, cGMP signals were studied in murine platelets, which 

represent a clinically important model for the action of cGMP-elevating antithrombotic 

drugs. cGMP FRET experiments with adherent platelets in a flow chamber showed 

that cGMP was elevated in response to NO but not ANP or CNP, and that PDE2, PDE3 

and PDE5 contributed to the degradation of NO-induced cGMP. These data are in line 

with previous studies of cGMP signaling in platelets. Application of NO-releasing 

compounds led to a fast increase of cGMP followed by a sustained cGMP level. 

Surprisingly, reduction of the flow rate during this plateau resulted in a rapid decrease 

of the intracellular cGMP concentration, indicating that NO-induced cGMP in platelets 

was regulated by shear stress. Simultaneous measurements of cGMP and Ca2+ 

revealed that the concentration of these two second messengers had an inverse 

relationship. In the presence of NO, shear stress resulted in an increase of cGMP 

followed by a decrease of procoagulant Ca2+ signals. These findings suggest that shear 

stress functions as an anticoagulant physical factor in regulating platelet aggregation. 

This newly discovered shear stress-regulated NO/cGMP signaling pathway might play 

important roles in hemostasis and thrombosis in vivo. 

  

In summary, the cGMP sensor knock-in mice generated and characterized in this work 

offer the unique advantage of imaging cGMP and associated biological events in real 

time in vivo. In combination with advanced microscopic techniques, such as intravital 

microscopy, and other genetic mouse models, these mouse lines should find 

widespread applications in elucidating cGMP-associated mechanisms under both 

physiological and pathophysiological conditions. 
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    Introduction 

1 Introduction 

1.1 cGMP signaling 
 

Cyclic guanosine monophosphate (cGMP) is a ubiquitous intracellular second 

messenger that regulates many physiological processes including smooth muscle 

relaxation, platelet activation, neuronal plasticity and sensory axon bifurcation [1]. Ever 

since its first discovery in rat urine in the 1960s [2],  extensive knowledge about cGMP 

has been gained throughout the whole signaling pathway as well as its physiological 

and pathological outcome [1, 3].  

 

In the history of cGMP research, there were two seemingly isolated studies. In the 

1970s, Murad and coworkers demonstrated that nitrogen-containing compounds like 

nitroglycerin, sodium nitroprusside and azide increase cGMP via soluble guanylyl 

cyclase (sGC), which in turn induces smooth muscle relaxation and vasodilatation. 

Their paper published in 1977 is a milestone of the cGMP and vascular studies. It 

shows that it is gaseous nitric oxide (NO) formed from these compounds that activates 

the sGC [4]. Another study led by Furchgott in 1980 found that the endothelial layer of 

blood vessels releases a substance upon treatment with acetylcholine that causes 

smooth muscle relaxation [5]. This mysterious substance was termed endothelium-

derived relaxing factor (EDRF), because its chemical nature was unknown for many 

years. These two studies were unified with the identification of EDRF as NO [6, 7]. 

Firstly, the effect of EDRF like other nitrovasodilators on vasorelaxation was blocked 

by hemoglobin and myoglobin [8, 9], and in 1987 Ignarro et al. observed a peak shift 

of the absorption spectrum of deoxyhemoglobin from 433 to 406 nm indicating that the 

hemoglobin reacted with NO and formed nitrosyl hemoglobin [6]. These studies led to 

the conclusion that EDRF released from arteries and veins is NO. At the same time, 

another independent group led by Moncada also accounted NO for the biological 

activity of EDRF based on the chemiluminescent product of its reaction with ozone and 

the similarity of NO and EDRF in biological effects [7]. In 1998, the Nobel Prize for 

Physiology or Medicine was awarded to Furchgott, Ignarro and Murad for their 

discovery of NO as a vasodilator.  
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Today it is well known that NO is a gaseous signaling molecule in mammals, which 

activates its receptor sGC over 200-fold [10, 11].  Endogenous NO is synthesized by 

a family of enzymes called nitric oxide synthases (NOS). The NOS in the endothelium 

can be activated by acetylcholine-induced intracellular Ca2+ elevations [12]. NO 

synthesized in endothelial cells diffuses across membranes to target smooth muscle 

cells where it activates sGC, resulting in conversion of guanosine-5’-trisphosphate 

(GTP) to cGMP and thereby smooth muscle relaxation (Figure 1).  

 

 
 
Figure 1. The cGMP signaling pathway. 

NO synthesized by NOS in cell A (e.g., endothelial cells) diffuses across cell borders to a target 
cell B (e.g., smooth muscle cells or platelets). sGC activated by NO generates cGMP, which is 
degraded by PDEs. Local cGMP can also be generated at the plasma membrane by particulate 
guanylyl cyclases such as GC-A or GC-B activated by ANP or CNP, respectively. cGMP exerts 
its function via effector proteins including cGKs, PDEs and CNG channels. NO can also 
undergo oxidation and react with protein cysteine thiols, leading to S-nitrosylation of proteins. 
NOS, nitric oxide synthase. L-Arg, L-arginine. L-Cit, L-citrulline. sGC, soluble guanylyl cyclase. 
ANP, atrial natriuretic peptide. CNP, C-type natriuretic peptide. cGKs, cGMP-dependent protein 
kinases. PDEs, phosphodiesterases. CNG channels, cyclic nucleotide-gated channels. 
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During the isolation of guanylyl cyclases (GCs), it was found that both cytosolic and 

membrane fractions isolated from heart and lung contain GC activity [13, 14]. Later on, 

specific stimulation of guanylyl cyclases in the membrane was first shown in intestinal 

tissue with heat-stable toxin of Escherichia coli [15]. Therefore, two sites of cGMP 

generation exist.  sGC located in the cytosol is activated by NO and particulate guanylyl 

cyclases (pGC) in the plasma membrane respond to natriuretic peptides such as atrial 

(ANP), brain (BNP), and C-type natriuretic peptide (CNP). Accumulating evidence 

suggests that cGMP produced by these two GCs has different functional outcomes, 

indicating the compartmentalization of cGMP signaling in cells [16]. On the other hand, 

cGMP can be removed either by degradation into GMP by phosphodiesterases 

(PDEs) or excreted by nucleotide transporters present in the plasma membrane [17]. 

cGMP exerts its effects through activation of multiple targets, such as cGMP-

dependent kinases (cGKs), cyclic nucleotide-gated (CNG) ion channels, and PDEs 

[1, 18, 19].  

 cGMP generation 

1.1.1.1 Nitric oxide 
Nitric oxide is a heterodiatomic molecule acting as a gaseous signaling molecule in a 

vast variety of organisms. Endogenous NO is synthesized from L-arginine and oxygen 

by NOS enzymes. There are three members of NOS enzymes with different 

abundance in different tissues: neuronal NOS (nNOS, NOS-1), inducible NOS (iNOS, 

NOS-2) and endothelial NOS (eNOS, NOS3) [12]. Both nNOS and eNOS are 

constitutively expressed whereas the expression of iNOS can be induced when 

macrophages, vascular smooth muscle cells, or endothelial cells are exposed to 

lipopolysaccharides or cytokines. The activity of nNOS and eNOS is Ca2+/Calmodulin 

(Ca2+/CaM)-dependent. iNOS was first cloned from macrophages, and is generally 

independent of intracellular Ca2+/CaM [20]. The physiological NO concentration is 

proposed to be ranging from 100 pM (or below) up to ~5 nM [21]. In many 

pathophysiological conditions, iNOS was found to play a prominent role in endotoxic 

shock, host defense and inflammatory disorders, where the NO concentration 

produced is also higher (~µM) as comparing to that generated by eNOS and nNOS 

[22, 23].  

 

NO produced by NOS rapidly diffuses across cell membranes to target cells, where 

sGC gets activated. Because of the oxidizing nature of NO as a free radical, NO in 

physiological fluid has a short half-life of several seconds and it can easily change its 
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redox state. There was skepticism regarding whether the free radical NO or the 

secondary products are the physiologically relevant species [24]. However, among the 

redox forms of NO (NO-, NO., NO+), only the uncharged NO radical (NO.) significantly 

activates sGC [24, 25].  

 

Nitrite and nitrate compounds, such as nitroglycerin, have long been used as clinical 

therapies for angina pectoris, congestive heart failure, acute myocardial infarction and 

other cardiovascular diseases without knowing their mechanism of action [26]. Then it 

became clear that these drugs stimulate cGMP production by donating NO, which 

activates sGC, therefore relaxing the vascular smooth muscle and leading to 

vasodilation [4]. Multiple NO donors are available for research today [27]. NO exerts 

its function predominantly via sGC/cGMP signaling, but it could also react via cGMP-

independent mechanisms, such as nitrosylation, the covalent attachment of the NO 

group to the thiol side chain of cysteine, forming nitrosylated proteins [28].  

1.1.1.2 Soluble guanylyl cyclase  
Soluble guanylyl cyclase (sGC), the only known receptor for NO, is a heterodimer 

consisting of two homologous subunits, an α-subunit and a heme-containing β-subunit 

[29]. The α-subunit has a molecular mass of 73-82 kDa, whereas the β-subunit weighs 

~70 kDa [10, 30].  Although each subunit has two isoforms (α1, α2, β1 and β2), the β2 

isoform, expressed preferentially in kidney does not form functional enzymes [31]. The 

heterodimer α1/β1 is more widely expressed throughout the body, including smooth 

muscle and platelets, while α2/β1 is most abundant in brain, uterus and placenta [32-

35]. Catalytic activity requires both subunits. Single subunit expression of individual α1 

or β1 cDNA in a heterologous cell system did not show NO-sensitive guanylyl cyclase 

activity, but only cotransfection of both α1 and β1 resulted in a marked increase in GC 

activity [36]. The sGC subunits are conserved among eukaryotes. Each subunit 

consists of four distinct regions. The β1 subunit contains an N-terminal heme-binding 

domain, a Per/Arnt/Sim (PAS) domain, a putative amphipathic helix/coiled-coil, and a 

C-terminal catalytic domain. sGC α1 has 30% sequence identity and a similar 

structural organization like β1, except that its N-terminus is of unknown function. The 

heme-binding domain of  β1 is also termed heme-nitric oxide and oxygen binding 

domain (H-NOX) based on the ligand binding properties which are conserved among 

many similar proteins found in prokaryotes and eukaryotes [37, 38]. The rat sGC 

contains 690 and 619 amino acids of α1 and β1 subunit in length, respectively. The 

heme-binding domain is located at the residue 1 to ~194 on the β1 subunit [39, 40]. 

The ferrous heme is ligated to the binding domain via its proximal heme ligand, 
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histidine 105 (His105, rat numbering) [41]. NO binds to the heme moiety and converts 

sGC into an active state leading to over 200-fold activation of the enzyme [11].  

 

Studies with purified protein suggest that sGC is activated in a binary mode [42]. 

Binding of NO to the reduced Fe2+ heme of sGC at a diffusion-controlled rate initially 

forms a 6-coordinate NO-Fe2+-His-complex. Subsequently, the Fe2+-His bond breaks, 

resulting in a 5-coordinate nitrosyl-heme complex. This breakage of the Fe2+-His bond 

is considered a key step, which brings about a conformational change of sGC, and 

finally full activation of the enzyme [37]. A reduced iron (Fe2+) is essential for the 

activation of sGC by NO. Oxidation of heme Fe2+ to Fe3+ state strongly attenuates the 

enzymatic response to NO [25, 43]. 

  

The mechanism of action of several sGC activators supports this binary model of sGC 

activation. Protoporphyrin IX (PPIX) is the iron-free precursor of heme, which cannot 

form the bond to the His105 due to the lack of iron in the porphyrin ring. Therefore, PPIX 

in substitution of heme forms a complex with sGC, where the axial His is unbound, 

resembling the 5-coordinate nitrosyl-heme-complex, which in turn activates sGC [44]. 

In addition to NO, another gaseous molecule, carbon monoxide (CO), can also bind to 

the H-NOX domain of sGC and activate the enzyme weakly, around 2-4 fold [45]. This 

is much lower compared to the potency of NO in sGC activation. The vast difference 

in activation is due to the different reaction between the two diatomic molecules with 

the ferrous heme of sGC. The binding of CO leads to the formation of a 6-coordinate 

Fe2+-CO complex which represents the low-active state of sGC [37].  

  

The importance of the NO/cGMP signaling pathway for cardiovascular physiology and 

diseases has propelled scientists to develop pharmacological compounds capable of 

directly stimulating the cGMP generator, sGC. These agents that target sGC can be 

categorized into heme-dependent sGC stimulators and heme-independent sGC 

activators. The sGC stimulator function relies on the presence of reduced Fe2+ heme 

within sGC, whereas sGC activators activate the enzyme when the heme iron is at its 

oxidized state (Fe3+), or when the heme group is missing [46, 47]. sGC stimulators like 

YC-1 or its derivative Bay 41-2272 are from the indazole family. These compounds 

stabilize the nitrosyl-heme complex and synergize with NO, therefore increase the 

efficacy of NO dramatically [48, 49]. An inhibitory effect of Bay 41-2272 on PDE5 was 

also suggested [50]. On the other hand, sGC activators such as Bay 58-2667 and Bay 

60-2770 selectively activate heme-oxidized or heme-free sGC, most likely by 
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mimicking the heme group to cause conformational changes similar to that elicited by 

NO bound to the heme moiety [47].  

 

Several inhibitors have been found to selectively block NO-induced sGC activity. Out 

of them, the quinoxalin derivative 1H-[1, 2, 4] oxadiazolo[4,3-a]-quinoxalin-1-one (ODQ) 

is widely used due to its potency and selectivity [51]. ODQ does not inhibit membrane-

bound guanylyl cyclase, adenylyl cyclase or PDE activity. NOS and other heme 

proteins are affected only at high ODQ concentrations. ODQ or its analog NS2028 are 

frequently used to obtain sGC-specific inhibition and to distinguish sGC/cGMP-

dependent or -independent effects of NO.  

 

Despite the importance of the NO-cGMP pathway in cardiovascular and neuro-

degenerative diseases, the modulatory mechanisms of sGC are still poorly known [29, 

52]. In particular, desensitization, the attenuated or abolished responsiveness of sGC 

to a second NO stimulation, is an unresolved issue that might underlie clinical NO 

tolerance during the development of oxidative vascular pathophysiology, 

atherosclerosis, and pulmonary hypertension [53, 54]. Similar to other nucleotide-

converting enzymes, conversion of GTP to cGMP by sGC requires the divalent cations 

Mg2+ and Mn2+. The heme domain of sGC is key to its regulation; enzyme stimulation 

by NO depends on the presence of a reduced heme moiety within sGC. Several other 

mechanisms have been suggested for sGC regulation, including phosphorylation, 

nitrosylation, translocation, or protein-protein interaction [37]. 

1.1.1.3 Particulate guanylyl cyclases  
As mentioned above, intracellular cGMP levels can also be elevated through 

membrane-spanning particulate GCs. pGCs are a family of enzymes consisting of at 

least 7 members: GC-A, GC-B, GC-C, GC-D, GC-E, GC-F and GC-G. They share a 

basic topology characterized of an extracellular ligand binding domain, a short single 

transmembrane region, and an intracellular domain that contains the catalytic (GC) 

region at its C-terminal end [55, 56]. A homodimer is the minimal catalytic unit for 

guanylyl cyclase activity of pGCs. The common existence of extracellular binding 

domain implies that these enzymes function as receptors for specific ligands, but to 

date, only ligands for GC-A, GC-B, GC-C and GC-D have been identified. GC-A is the 

receptor for atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP). GC-

B binds C-type natriuretic peptide (CNP), and GC-C mediates the effect of guanylin, 

uroguanylin and heat-stable enterotoxin. Guanylin and uroguanylin are also 

extracellular ligands for GC-D in rodents, whereas GC-D in humans appears to be a 
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pseudogene. GC-E and GC-F are involved in phototransduction in the retina [55]. No 

extracellular ligands have been identified for GC-E, GC-F and GC-G, which are 

therefore presumed orphan receptors [56]. GC-A and GC-B are the best characterized 

membrane guanylyl cyclases. The order of preference of natriuretic peptide-dependent 

activation of GC-A is ANP≥BNP≫CNP, and that of GC-B is CNP≫ANP=BNP [55, 57].  
 

ANP and BNP are cardiac hormones that are produced mainly in the atrium and 

ventricle, respectively, and both are released into the bloodstream [58]. The GC-A 

receptor is expressed in a variety of tissues and activated by circulating ANP and BNP, 

regulating cardiovascular homeostasis. Genetic deficiency of ANP or of its receptor 

GC-A in mice leads to arterial hypertension, hypervolemia and cardiac hypertrophy 

[59-62]. A BNP knock-out does not lead to hypertension or cardiac hypertrophy, but 

increases the susceptibility to cardiac fibrosis [63]. CNP does not circulate in the blood 

in appreciable amounts, rather it has local paracrine functions prominent in bone 

formation and sensory axon bifurcation [64]. Inactivation of GC-B leads to dysfunction 

in endochondral ossification and dwarfism [65]. The CNP/GC-B/cGKII signaling 

pathway is critical in long bone growth [66]. Instead, CNP/GC-B/cGKI is essential for 

sensory axon bifurcation in the spinal cord [67]. 

 cGMP removal  
At least three mechanisms are involved in the removal of intracellular cGMP: 1) The 

conversion of cGMP into GMP. cGMP hydrolysis catalyzed by PDEs represents the 

most prominent cGMP lowering action in cells. 2) Efflux of cGMP into the extracellular 

milieu. Since cGMP was first isolated from urine, it is reasonable that cells might 

extrude cGMP into the extracellular fluid. Indeed, efflux is observed in virtually all cell 

types. Several transporters located in the plasma membrane have been identified for 

the efflux process, including members of the multidrug resistance protein (MRP) family, 

MRP4/5/8 [68]. Although cGMP can be extruded by these transporters, this process is 

comparatively slower and quantitatively minor than the effects mediated by PDEs [17]. 

3) Transit of cGMP through intercellular communication [69]. There are also other 

processes that can lower intracellular cGMP level in particular cells via cell-cell 

communication. cGMP in cumulus cells of ovarian follicle gets transported through gap 

junctions to neighboring oocytes, where cGMP inhibits PDE3 activity in cAMP 

degradation to arrest oocytes in meiosis prophase [70, 71].  

 

There are 21 genes known that encode cyclic nucleotide phosphodiesterases (PDEs), 

and they were grouped into 11 gene families based on amino acid sequences, 
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regulatory properties, and catalytic characteristics [69]. These PDEs catalyze the 

hydrolysis of the phosphodiester bond in cAMP and cGMP, producing 5`-AMP or 5`-

GMP. PDEs 4, 7, 8 are highly specific for cAMP, PDEs 5, 6, 9 are highly specific for 

cGMP, and the remaining five families (PDEs 1, 2, 3, 10, and 11) hydrolyze both cGMP 

and cAMP, although with different affinities and efficiencies (Table 1) [69]. 

 

PDEs contain three functional domains, including a N-terminal regulatory domain, a 

conserved catalytic core and a C-terminus. The catalytic domain containing 

approximately 270 amino acids is highly conserved (18-46% sequence identity) within 

all mammalian PDEs. The amino acid sequences outside of this region differ 

significantly, which accounts for distinct regulatory features. PDEs 2, 5, 6, 10, 11 have 

tandem GAF domains. GAFs have been shown to function as allosteric cGMP binding 

sites (PDEs 2, 5, 6, 11), cAMP binding sites (PDE10),  dimerization contacts (PDEs 2, 

5, 6) and regulators of the catalytic site (PDEs 2, 5). These regulatory domains provide 

negative feedback and/or crosstalk between cGMP, cAMP, and Ca2+ in intact cells.  

For example, PDE2 is cGMP-stimulated cGMP/cAMP-specific; binding of cGMP to the 

allosteric site promotes the hydrolysis of cGMP or cAMP. Similarly, PDE10 is cAMP-

stimulated cGMP/cAMP-specific. However, PDE3 is a cGMP-inhibited cGMP/cAMP-

specific PDE; it has similar affinities for cGMP and cAMP, while the reaction rate for 

cGMP is ~10% that of cAMP. Thus, cGMP exerts competitive inhibition of cAMP 

hydrolysis and PDE3 is usually referred as “cGMP-inhibited” PDE. In the case of PDE1, 

the Ca2+/CaM binding domain can be modulated by intracellular Ca2+ levels.  

  

PDE5 and PDE6 have similarities in domain organization. Both enzymes contain 

tandem GAF domains, and GAF A is responsible for high-affinity allosteric cGMP 

binding. PDE5 has also subdomains including a single phosphorylation site (Ser92, 

bovine; Ser102, human) that can be phosphorylated by cGKI [72]. cGMP also increases 

its PDE5-dependent degradation by direct activation of the PDE5 enzyme through 

binding to GAFs [73]. PDE5 is highly expressed in smooth muscle [74], platelets [75], 

cerebellar Purkinje cells [76], gastrointestinal epithelial cells [77] and endothelial cells 

[78]. Because of its specificity for cGMP degradation, PDE5 has been targeted for drug 

development. For instance, PDE5 inhibitors like sildenafil (Viagra) are used for 

treatment of erectile dysfunction and pulmonary hypertension. PDE6 is highly 

concentrated in the outer segment of retina photoreceptors. PDE6 shares similar 

domain organization with PDE5, whereas the regulation of PDE6 is unique in the 

context of rod and cone photoreceptors. In darkness, the cGMP level is relatively high, 

keeping the cGMP-gated ion channels in the plasma membrane open. Light excitation 
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of the visual pigment, rhodopsin, activates the photoreceptor G-protein, transducin. 

Activated transducin translocates from the outer segment to the inner segment, where 

it binds to PDE6 and displaces the PDE6 inhibitory γ subunit from the catalytic site. 

The resulting PDE6 activation leads to a subsecond drop in cGMP concentration, 

closure of CNG channels and membrane hyperpolarization [79].  

 
Table 1. Characteristics of cGMP phosphodiesterases 

Phospho-
diesterase 

Regulatory 
feature 

Substrate 
specificity    Structural organization 

PDE1 Ca2+/Calmodulin-
stimulated  

cGMP/ 
cAMP 

       

PDE2 cGMP-stimulated  cGMP/ 
cAMP  

PDE3 “cGMP-inhibited”  cGMP/ 
cAMP  

PDE5 cGMP-activated cGMP  

PDE6 Pγ-regulated cGMP 
 

PDE9  cGMP                      

PDE10 cAMP-stimulated cGMP/ 
cAMP  

PDE11  cGMP/ 
cAMP  

CaM, Calmodulin binding domain. GAF, domains from cGMP-binding PDEs, Anabaena 
adenylyl cyclase, and Escherichia coli FhlA. Pγ, protein γ subunit. P indicates the position of 
phosphorylation sites. 
 

The various PDE isozymes with distinct expression, localization, and regulation 

constitute a functionally diverse superfamily, which highlights the importance of cGMP 

and its crosstalk with other second messengers in signal transduction. The balance 

between cGMP synthesis and degradation is crucial to the regulation of a broad range 

of physiological functions. 

 cGMP signaling in embryonic DRG neurons 
Neurons are highly specialized cells. Some landmarks of neuronal development 

include the genesis and differentiation of neurons from neuronal stem cells, 

polarization of axon and dendrites, axon guidance, axonal and dendritic branching and 

morphogenesis.  Each neuron extends only one axon. However, each axon can further 

branch to connect to multiple targets, providing the anatomical basis for parallel 

information processing. At the tip of the growing axon is the highly motile structure 

termed growth cone. Axonal growth cones navigate through developing tissues to 
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reach the target areas, where they make synapses and create neural circuits in the 

body. During development, different modes of axonal branch formation are observed: 

1) Splitting branching can occur at the growth cone by splitting or bifurcation of the 

growth cone into two daughter branches far apart, 2) outgrowth of collaterals from the 

axon shaft in a process called interstitial branching, 3) axonal terminals in the target 

region form tree-like arbors, designated as terminal branching or arborization [80, 81].  

  

All three types of axonal branching can be found during the development of dorsal root 

ganglion (DRG) sensory neurons (Figure 2A). DRG sensory neurons reside in the 

dorsal root of the spine and project into the dorsal horn of the spinal cord. Unlike the 

majority of neurons found in the central nervous system, DRG neurons are pseudo-

unipolar cells, unique among peripheral neurons in that they project one axonal branch 

to the periphery and another into the central nervous system during development. The 

afferent axons enter the spinal cord at the dorsal root entry zone (DREZ) between 

embryonic days 10-13 (E10-E13) in mice. The growth cones of the axons split into two 

daughter branches, displaying a pattern of T- or Y- shaped bifurcation (splitting 

branching). The resulting daughter axons grow over several segments in rostral or 

caudal directions, respectively, while remaining in the dorsolateral margin of the cord. 

Only after a waiting period, the collaterals sprout from these stem axons and penetrate 

into the gray matter (interstitial branching). At the termination zones, the collateral 

branches can further arborize (terminal branching) and connect with the target [80]. 

DRG neurons enable the body to sense touch, temperature, pain, limb movements 

and limb spatial position [82]. 

 

Axonal branching is tightly controlled in order to establish functional neural circuits. It 

has been shown that the CNP/GC-B/cGMP signaling pathway is involved in DRG 

neuron development [80]. CNP expression has a very specific timing and spatial 

confinement during DRG neuron development. It starts to get expressed at E9 during 

mouse development. It is at first more widely distributed in the whole quarter of the 

spinal cord at E10-11.5, when most of the DRG sensory neurons start to approach and 

grow into the spinal cord through the DREZ. At E12.5-E13.5, when DRG neurons have 

accomplished bifurcation, CNP becomes more concentrated in the dorsal-medial part 

and in cells located adjacent to the dorsal part of the central canal, where CNP might 

serve other functions [83]. Upon arrival of DRG neurons at the DREZ, secreted CNP 

activates GC-B on the membrane of DRG neurons [67]. Activated GC-B leads to a rise 

of intracellular cGMP, which has multiple effectors. cGKI is one of the major 

downstream targets activated by cGMP. Mammals express cGKI in two isoforms, 
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termed α and β, that differ in their N-terminal domains. In embryonic DRG neurons, 

cGKIα is highly expressed by sensory axons, with a similar localization pattern as GC-

B, whereas most other neurons in the spinal cord are negative for cGKI. Furthermore, 

sensory axons at the DREZ express high levels of cGKI. cGKI expression is not only 

spatially restricted to DRG neurons, but also temporally confined to early 

developmental stages [84]. 

 

 
Figure 2. Axonal branching in DRG neurons. 
A. Afferent axons of DRG neurons project into the DREZ of the embryonic spinal cord and at 
first display bifurcation at the growth cone. Secondly, the newly generated daughter branches 
form collaterals from the axon shaft after a waiting period by interstitial branching. Thirdly, the 
collaterals enter the dorsal grey matter and further arborize to form synaptic contacts. B. CNP-
deficient mice show bifurcation defects. Figure modified from Schmidt H., et al., 2011 [85]. 
 

The deficiency of any one of the pathway components such as the ligand CNP, the 

receptor GC-B (also known as Npr2), or the cGMP-dependent protein kinase Iα (cGKIα) 

leads to identical axonal bifurcation defects of DRG sensory neurons in vivo [80]. In 

contrast to the wild type, the sensory neurons do not bifurcate but turn only in one 

direction, either rostral or caudal without preference (Figure 2B). However, the 

interstitial branching of collaterals from single stem axons remains unaffected. 

Therefore, the CNP/GC-B/cGMP signaling pathway is critical for bifurcation, but not for 

interstitial branching. Distinct molecular mechanisms are therefore accounted for 

bifurcation and interstitial branching [67, 83, 84]. In vitro experiments also supported 

the conclusion that the CNP/GC-B/cGMP/cGKIα pathway is important in axonal 

branching. Treatment of dissociated DRG neurons in culture with CNP, cGMP analogs 

and overexpression of cGKIα all promoted branch formation. Interestingly, CNP was 

also shown to attract growth cone turning [86, 87]. DRG neurons represent an 

important model for studying axon branching and wiring of the nervous system.  
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 cGMP signaling in platelets 
Platelets are anucleate cell fragments that are derived from megakaryocytes, a 

hematopoietic precursor cell residing in the bone marrow, and circulate in the blood 

stream. Many reports have shown the involvement of platelets in various physiological 

and pathological processes, such as hemostasis and thrombosis, atherosclerosis, and 

immune responses [88]. The primary task of platelets is to form a thrombus to prevent 

blood loss upon vascular injury. Normal endothelium, which provides a non-adhesive 

surface for thrombus formation, contains mainly three thromboregulators: NO [6, 7], 

prostacyclin (prostaglandin I2) [89], and ectonucleotidase CD39 [90]. 

 

Platelet aggregation occurs in emergent response to vascular injury, which causes the 

extracellular matrix proteins underneath the endothelium to be exposed. Exposed 

collagen triggers platelet adhesion and activation [91]. Multiple platelet membrane 

receptors for collagen exist.  Initial platelet tethering to the vessel wall is considered to 

occur via interaction of the platelet glycoprotein GPIa-IIa receptor (integrin α2β1) with 

collagen, which allows further binding to collagen via the GPVI receptor. The platelets 

adhered to the vessel wall are subjected to frictional force resulting from blood flow. 

Shear stress is important in platelet adhesion and activation [92]. At high shear rates, 

as found in arteries and arterioles, GPVI and collagen interaction is not sufficient to 

initiate binding to collagen, and binding of the GPIb-IX-V receptor to von Willebrand 

factor (vWF) that is mobilized on collagen becomes critical for platelet arrest [92, 93]. 

Platelet adhesion initiates their subsequent activation. Multiple signaling events occur 

after activation and converge into common signaling pathways, resulting in platelet 

shape change and granule secretion. Activated platelets release ADP, thrombin and 

thromboxane A2, which have prothrombotic properties, i.e. they stimulate the 

activation of new platelets as well as increase platelet aggregation by activation of the 

glycoprotein complex GPIIb/IIIa (integrin αIIbβ3, fibrinogen receptor) in the platelet 

membrane. Circulating ligands, including fibrinogen and vWF bind to these receptors 

on adjacent platelets, further strengthening and expanding platelet aggregation and 

thrombus formation. Concomitantly, exposed tissue factor in the endothelium initiates 

a second pathway to generate thrombin, which activates platelets but also converts 

fibrinogen to fibrin, stabilizing platelet-platelet aggregate formation [91]. 

 

The two sides of the same coin are hemostasis and thrombosis; platelets participate 

in hemostasis at sites of vascular injury in physiological conditions, while excessive or 

overstimulated platelets lead to pathological consequences, like thrombosis, 
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myocardial infarction, and stroke [91]. Thus, thrombus formation, an otherwise 

beneficial function in preventing blood loss, may lead to artery or vein occlusion 

causing life-threatening disease conditions. Therefore, the mechanisms regulating 

platelet activation and inhibition are of essential interest to preclinical and clinical 

research.  

 

It is commonly accepted that the cyclic nucleotides cGMP and cAMP play an inhibitory 

role in the regulation of platelet activation, representing two of the most important 

physiological pathways to limit thrombus formation. The intact endothelium produces 

NO and prostacyclin, which binds to sGC and Gs-protein-coupled prostacyclin 

receptors in circulating platelets, respectively. Activation of sGC leads to cGMP 

synthesis, whereas prostacyclin leads to adenylyl cyclase (AC) stimulation resulting in 

cAMP generation [94]. PDEs take part in the regulation of cyclic nucleotide 

concentrations. So far, three PDE subtypes have been identified in platelets, cGMP-

stimulated cGMP/cAMP-degrading PDE2, “cGMP-inhibited” cGMP/cAMP-degrading 

PDE3, and cGMP-stimulated, cGMP-degrading PDE5. These PDEs regulate platelet 

cGMP and cAMP levels and contribute to the crosstalk between cGMP and cAMP 

signaling [95, 96]. Elevated cyclic nucleotide levels then activate the corresponding 

cGMP- and cAMP-dependent protein kinases, respectively.  

 

Human platelets express only cGKIβ, whereas both cGKIβ and a small amount of 

cGKIα was found to be expressed in mouse platelets [97, 98]. Many cGKI substrates 

including vasodilator-stimulated phosphoprotein (VASP) and IP3 receptor-associated 

cGMP kinase substrate (IRAG) are also abundantly expressed in platelets. Mice 

deficient for cGKI, VASP, or IRAG showed impaired NO-cGMP dependent inhibition of 

platelet aggregation in vivo. cGKI inhibits intracellular Ca2+ release in platelets through 

regulation of IRAG and the inositol-1,4,5-trisphosphate (IP3) receptor. Intracellular Ca2+ 

transients in platelets were not affected by NO or cGMP in IRAG-deficient platelets 

[98-100].    

 

As mentioned above, it is generally accepted that the NO-cGMP signaling pathway 

inhibits platelet activation [101]. NO donors and cGMP analogs exhibit a strong 

inhibitory role in platelet activation in vitro. sGC total knock-out mice show a prominent 

reduction in bleeding time, suggesting an inhibitory role of sGC [102]. However, a 

stimulatory role of the NO/cGMP signaling pathway has also been proposed [103, 104]. 

Dating back to the 1970s, many platelet agonist such as collagen, vWF and thrombin 
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have been shown to promote cGMP generation in platelets during aggregation with 

stirring [104, 105]. Recently, Li et al. showed GPIb stimulation activates cGKI, leading 

to activation of extracellular-related kinase, which is required for platetelet integrin 

αIIbβ3 activation [104]. Moreover, sGC knock-out in megakaryocytes showed prolonged 

bleeding times, indicating that sGC plays a stimulatory role [103]. X. Du and colleagues 

therefore proposed biphasic roles of NO/cGMP signaling in platelet thrombus 

formation. Low concentrations of NO synthesized by platelet NO synthase during 

platelet activation may be stimulatory, whereas high concentrations of NO supplied by 

exogenous vascular cells result in a second phase of inhibition in platelet aggregation, 

through inhibition of store Ca2+ release by cGMP/cGKI [98, 99] as well as through 

possible inhibition of cAMP degradation by elevated cGMP [103, 104]. The biphasic 

role of the NO/cGMP pathway might therefore fine-tune activation and inhibition to 

stimulate robust hemostatic thrombus formation upon vascular injury while inhibiting 

overgrowth of the thrombus. 
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1.2 cGMP measurement and FRET imaging 

 Conventional methods  
Since the isolation and identification of cGMP, rapid progress has been made due to 

the development of quantitative biochemical assays for cGMP detection. Conventional 

biochemical methods to determine the cellular cGMP concentration include 

radioimmunoassays (RIA) or non-radioactive approaches such as enzyme-linked 

immunosorbent assays (ELISA or EIA) [106-108].  

   

RIA has been used for quantification of total cGMP concentrations in various cells and 

tissues. This cGMP detection method is based on the competition of an unknown 

amount of unlabeled cGMP for the sample to be assayed and a defined amount of 

tracer-labeled (usually 125I-labeled) cGMP for binding to an anti-cGMP antibody. 

Increasing amounts of unlabeled cGMP from samples compete and displace 125I-

labeled cGMP and the radioactive signal decreases proportional to the unlabeled 

cGMP in a sample. Thus, by drawing a calibration curve, the amount of cGMP in a 

sample can be determined.  

 

The drawbacks of RIA related to handling of radioactive compounds led to 

development of the non-radioactive EIA. EIA is based on the competition between free 

cGMP and a non-radioactive cGMP tracer (cGMP conjugated with enzymes such as 

alkaline phosphatase or acetylcholinesterase). The cGMP-bound antibody complex 

further binds to a secondary antibody that has been previously attached to a plastic 

well. Because the concentration of the cGMP tracer is held constant, the amount of 

cGMP tracer that is able to bind to the antibody will be inversely proportional to the 

cGMP concentration in the sample. A colored product generated by the conjugated 

enzyme is detected, and the amount of cGMP concentration can be determined with 

the help of a calibration curve.  

 

Besides the direct detection of cGMP as described above, an indirect and simple 

approach utilizing the western blot of VASP phosphorylation by cGKs has been also 

practiced in many cell and tissue samples [99, 109, 110]. Immunohistology using 

antibodies against cGMP has also been applied in fixed cells or tissue sections [111, 

112]. Both RIA and EIA are highly sensitive and specific in detecting cGMP, with almost 

no cross-reaction with other nucleotides, including cAMP. However, all these 

biochemical methods are endpoint assays requiring large amounts of cells or tissues. 
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The necessity of cell disruption causes the loss of spatial-temporal dimensions. Thus, 

these methods are not well suited to study dynamic cGMP signals within a living cell. 

To overcome these limitations in real-time analysis of cGMP dynamics at a subcellular 

level, methods to visualize cGMP in live cells have been developed [113].  

 Optical imaging and FRET-based cGMP biosensors  
Knowledge of the in vivo concentrations, distribution and mobilization of ions, signaling 

molecules and metabolites is critical for understanding how the body functions in both 

healthy and diseased states. Live cell imaging is one of the areas that has deepened 

our view on the dynamic regulation of signaling networks in living cells. This is largely 

pushed forward by the advancement of microscopic techniques as well as by the 

discovery of green fluorescent protein (GFP) [114].  

  

Before various fluorescent protein-based indicators were available, simple organic 

dyes had been used for live cell imaging. One prominent member for optical imaging 

is Fura-2. Fura-2 is a fluorescent dye, which allows ratiometric measurements of the 

intracellular Ca2+ concentration [115]. It was the first widely used dye for Ca2+ imaging, 

and is still in popular use nowadays. The compound is an aminopolycarboxylic acid 

containing an 8-coordinate tetracarboxylate chelating site with stilbene chromophores. 

Fura-2 has two different fluorescent states depending on Ca2+ binding. When Fura-2 

is free of Ca2+, it has an absorption maximum at 380 nm. Once bound with Ca2+, its 

maximal absorption shifts to 340 nm. However, the emission maximum for both forms 

is the same at ~515 nm.  Upon Ca2+ elevation in the cells, the fluorescence intensity 

at 515 nm during excitation at 340 nm (F340) increases, whereas the fluorescence 

intensity at 515 nm during 380 nm excitation (F380) decreases. Thereby, ratiometric 

imaging is possible, and the ratio (R=F340/F380) is taken as a measure of intracellular 

Ca2+ levels. The brighter fluorescence and selectivity for Ca2+ over other divalent 

cations makes Fura-2 a useful indicator for Ca2+ imaging. 

  

The discovery and subsequent molecular engineering of GFP and its variants (Figure 
3) has revolutionized many areas of biology. The principal advantage of fluorescent 

protein-based sensors over simple organic dyes is that they can be genetically 

expressed and, thus, they can be tagged with signaling peptides, fused with other 

proteins, targeted to subcellular compartments and even introduced into a wide variety 

of tissues and intact organisms. GFP has been successfully used for many years as a 

reporter for gene expression, protein trafficking and localization [114]. Recently, the 

various sensors utilizing GFP and its variants has been successfully developed [116]. 
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These sensors can be used to monitor complex processes, including concentrations 

of second messengers [117], protein dynamics (e.g., protein-protein interactions [118], 

G-protein [119] and protein kinase activation [120]), as well as biophysical parameters 

(e.g., membrane potential [121] and molecular tension [122]). 

 

 
Figure 3. Overlap of the excitation and emission spectra of donor and acceptor. 
A. Crystal structure of GFP. The protein consists of 11 β strands forming a hollow cylinder, and 
a single α-helix, which bears the chromophore and runs along the axis. GFP variants, including 
cyan or yellow fluorescent protein (CFP or YFP) have a similar structure. B. Excitation (dotted 
line) and emission (solid line) spectra of CFP and YFP are shown. To allow FRET to occur, 
donor (CFP) emission and acceptor (YFP) excitation spectra must overlap, as highlighted by 
the grey box. Figure adapted from R. Tsien's website (http://www.tsienlab.ucsd.edu). 
 

In the last decades, the development of optical imaging based on fluorescent proteins 

and fluorescence resonance energy transfer (FRET) microscopy has become a 

powerful tool for analysis of live cells. FRET is a distance-dependent quantum 

mechanical phenomenon characterized by radioactiveless transfer of energy from a 

donor fluorophore to an acceptor fluorophore through dipole-dipole coupling [114]. For 

FRET to occur, several parameters must be met: 1) a proper spectral overlap of the 

donor and the acceptor. There must be a substantial overlap (>30%) between donor`s 

emission spectrum and acceptor’s excitation spectrum, but both excitation spectra 

should be separated enough to allow independent excitation (Figure 3B); 2) the donor 

and acceptor fluorophores need to be in a favorable spatial orientation and close 

proximity, usually at a distance <10 nm (Figure 4). CFP and YFP is such a pair of 

donor and acceptor of popular choice [123]. 
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Förster calculated that the efficiency of the FRET process (E) depends on the inverse 

sixth power of the distance between donor and acceptor, 

E = 1/(1 + r6/ R0
6) 

with R0 (Förster distance)  being the characteristic distance at which 50% of the energy 

is transferred (typically 2-6 nm) and r being the actual distance between donor and 

acceptor. R0 is dependent on the extent of spectral overlap, the quantum yield of the 

donor and the relative orientation of donor and acceptor [114, 124]. Because of the 1/r6 

dependence, the FRET efficiency is very sensitive to r. For example, if the donor-

acceptor distance r is half R0, then the FRET efficiency is 98.5%, close to maximal; if 

r=R0, then E=50%; note that for distances greater than R0, the efficiency drops sharply 

close to zero. Since FRET relies on the distance of the acceptor and donor, it has been 

widely used to investigate molecular interaction, for example, protein-protein 

interactions. Another successful area has been the engineering of FRET-based 

indicators for second messengers, including Ca2+, cAMP and cGMP [116]. 

 

A variety of cGMP biosensors, either based on FRET or non-FRET techniques, have 

been developed. One type of biosensors is built on CNG channels [125, 126]. CNG 

channels are non-selective cation channels in the plasma membrane activated by both 

cGMP and cAMP [127]. Increase of cGMP at the plasma membrane can be indirectly 

monitored by electrophysiological recordings of cation currents, or by measuring Ca2+ 

influx through CNG channels with fluorescent dyes [125, 126]. However, the low 

selectivity for cGMP over cAMP limits their application. 

  

Other non-FRET sensors for cGMP include bioluminescence resonance energy 

transfer (BRET)-based sensors, and the single fluorescent protein-based sensor 

FlincG. A resonance energy transfer can also occur between a bioluminescent protein 

(a donor enzyme such as luciferease) and a fluorescent protein (e.g., a GFP derivative). 

In contrast to FRET, energy is transferred from a non-fluorescent donor in BRET [128]. 

One recent BRET cGMP sensor is derived from the GAF-A domain of PDE5 [129]. 

Although signals from BRET pairs are generally weaker and require supply with 

appropriate chemical substrates, the donor does not require any excitation light, which 

has the advantage of eliminating the concern of autofluorescence as well as possible 

light interference in some tissues, such as the retina. Another non-FRET-based single 

fluorescent sensor for cGMP is called FlincG, which comprises the cGMP-binding 

domain of cGKI fused to a circularly permutated GFP. With this sensor, cGMP is 

monitored by single fluorescence intensity changes caused by conformational changes 

upon cGMP binding [130]. FlincG has a high cGMP sensitivity. But it is not ratiometric 
18 

 



    Introduction 

imaging, therefore making the data interpretation difficult, especially considering the 

detrimental influence of pH on the sensor [131] and potential artifacts caused by tissue 

movement during intravital imaging.  

 

Most FRET-based cGMP sensors are unimolecular proteins derived from either 

partially truncated cGKI containing the cGMP-binding domain, or from the PDE GAF 

domain, flanked by the donor and acceptor fluorophores, typically CFP and YFP. 

These sensors differ in kinetic properties, sensitivity and selectivity for cGMP (Table 
2). The first FRET-based cGMP sensor called CGY-Del1 is based on the cGKIα, with 

47 amino acids truncated on the N-terminus to prevent dimerization. The 

conformational change of cGKI upon binding of cGMP to the binding domain results in 

the separation of the flanked CFP and YFP, thereby changing the FRET efficiency. 

However, the selectivity of CGY-Del1 for cGMP over cAMP is rather low [132]. Efforts 

had been undertaken to improve different versions of cGMP sensors. The GAF 

domains from PDE2 or 5 were also fused to CFP and YFP by Nikolaev et al. to 

generate cGMP FRET sensors [133, 134]. For example, cGES-DE5 shows high cGMP 

selectivity, fast kinetics and good FRET signal amplitude. However, the sensitivity to 

cGMP is still quite low (cGMP EC50=1.5 µM) [113, 135, 136]. 

 
Table 2. Characteristics of FRET-based biosensors for cGMP imaging 

Sensors Donor-
Acceptor 

Sensitivity Selectivity ΔFRET, max,% Ref. 

cGMP EC50 
(µM) 

cAMP EC50 (µM) cGMP EC50 
cAMP EC50 

  

CGY-Del1 CFP-YFP 0.020 0.152 7.5 24 [132] 
Cygnet-2 CFP-YFP 1.9 185 100 40 [137] 
cGi500 CFP-YFP 0.5 >100 >200 77 [138] 
cGi3000 CFP-YFP 3 >100 >30 72 [138] 
cGi6000 CFP-YFP 6 >1,000 >166 57 [138] 
cGES-cGKIB CFP-YFP 5 485 100 30 [133] 
cGES-DE5 CFP-YFP 1.5 630 420 40 [133] 
RedcGES-
DE5 

Sapphire/RFP 0.04 >100 >1,000 15 [134] 

 
 
The recently generated cGMP sensors cGi500, 3000 and 6000 (cGis, cGMP indicator 

with an EC50 of 500 nM, 3,000 nM or 6,000 nM, respectively) by Russwurm et al. show 

great promise for real-time imaging of cGMP by displaying fast kinetics and high 

selectivity for cGMP over cAMP [138]. cGi500 shows a higher affinity and greater 

dynamic range than most other cGMP FRET sensors that have so far been described 

[138]. cGis consist of the tandem cGMP-binding domains of cGKI sandwiched by CFP 

and YFP. Upon cGMP binding, FRET decreases. The measured FRET efficiency can 

therefore be taken as evaluation of the cGMP level (Figure 4).  
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Figure 4. Working principle of the FRET-based biosensor cGi500. 
cGi500 is a cGMP indicator consisting of the engineered cGMP-binding domain of cGKI 
sandwiched by CFP and YFP. Without cGMP binding, CFP and YFP are close to each other, 
FRET occurs from excited CFP to YFP. Upon cGMP binding, cGi500 undergoes a 
conformational change leading to separation or reorientation of CFP and YFP. The FRET 
efficiency is reduced. Thereby, light emission from YFP at 535 nm gets reduced, while emission 
from CFP at 480 nm gets increased. The ratio of emission at 480 nm and 535 nm (F480/F535) 
can be taken as a measure of FRET efficiency, which represents the cGMP level.  
 

Multiple FRET microscopy techniques are available. In the simpler case, a FRET 

microscope can be built from an epifluorescence microscope. FRET multiphoton 

microscopy permits intravital imaging with deep tissue penetration and represents an 

emerging area of in vivo analysis of signaling events under physiological conditions 

[139]. 
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1.3 Gene targeting and mouse generation 
Mice play an important role in biomedical research. As a model organism, the mouse 

is genetically similar to the human species, and most human genes and signaling 

pathways are conserved in the mouse. Thus, the mouse offers an exceptional tool to 

understand genotype-phenotype relationships that are relevant for revealing the 

biologic role of these genes in humans. Since the first trial of transgenic mouse 

generation by R. Jaenisch in 1974 [140], the landscape of biological research has 

changed enormously. Genomic modification in mice has been made possible by 

random transgenesis or gene targeting. This has been achieved by the development 

of several technologies:  1) transgenic mice, 2) pluripotent embryonic stem (ES) cell 

culture, 3) knock-out mice, 4) tissue- and time-specific knock-outs, and 5) inducible 

gene expression systems.  

 Random transgenesis versus gene targeting 
Mutant mice are traditionally generated by either using random mutagenesis [141] or 

gene targeting methods [142] (Figure 5). Random transgenesis is typically used for 

overexpression of specific proteins or reporter systems. Classically, an exogenous 

DNA fragment (transgene) is introduced into fertilized oocytes via pronuclear 

microinjection [143-145]. The transgene will integrate randomly into the genome and 

may be transmitted through the germline to the offspring (Figure 5A). It could happen 

that either a single copy or more commonly, multiple numbers of copies are randomly 

inserted into primarily one site of the genome. Gene expression varies with the location 

of transgene integration due to the chromosomal accessibility and the copy number 

[146]. Although random transgenesis gained wide applications in creating gain-of-

function mutations thanks to its lower technical requirements, random insertion may 

cause unwanted effects, such as inactivation of host genes, which complicates the 

analysis.  

 

By contrast, gene targeting modifies the genome at a defined locus [147-149]. It has 

become a well-established technique to create animal models for human diseases or 

study gene function at the level of the whole animal. Mouse generation by gene 

targeting takes advantage of the in vitro culture system of pluripotent ES cells. Genetic 

modification can be introduced into ES cells via a DNA targeting vector. The targeting 

vector is usually designed to carry selectable markers and 2 homologous arms flanking 

the targeted genomic sequence (Figure 5C). In that way homologous pairing occurs 

between the targeting vector and the genomic sequence, and a homologous 
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recombination event replaces the genomic sequences with vector sequences 

containing additional modifications (e.g., the neomycin resistance (neoR) gene). The 

frequency of homologous recombination is low, approximately 1 in 1,000 cells that are 

transfected with the targeting vector [142]. The targeted ES cells can be enriched 

following a positive-negative selection protocol based on two selection markers: A 

positive selection marker, such as neoR gene is used to select for cells that have 

integrated the targeting vector, while a negative marker, such as the cell-toxic 

diphtheria toxin fragment A (DTA) gene, eliminates cells carrying the transgene at non-

homologous sites [142, 150]. By injecting targeted ES cells into blastocysts, chimeric 

mice can be generated, which transmit the mutant gene to their progeny.  

 

 
Figure 5. Genomic modification by random transgenesis and gene targeting. 
A. Schematic representation of random transgenesis. Gene of interest driven by promoter (P) 
integrates into the genome at a random site. B. Strategies for targeted transgenesis. Germline 
knock-out: the knock-out allele replacing one or more exons with a selectable marker is carried 
in every cell through germline to adulthood. Tissue-specific knock-out: the knock-out allele is 
introduced in somatic cells of a specific tissue. Tissue- and time-specific knock-out: the knock-
out allele is inducible in a specific tissue; inactivation occurs at a specific time upon induction. 
The specific tissue in which the gene is mutated is shown in grey. C, D. Genomic engineering 
of a germline knock-out or conditional (tissue- and time-specific) knock-out. E. Conditional 
knock-in, as exemplified by reporter knock-in, is a variation of conditional knock-out, whereby 
the transgene is inserted into a locus with or without an exogenous promoter. Transgene 
expression is conditionally activated upon Cre-mediated excision of a floxed STOP cassette. P, 
promoter; HR, homologous recombination; Cre, Cre recombinase; NeoR, Neomcycin resistance 
gene; DTA, diphtheria toxin A; Filled triangles, loxP sites; Empty triangles, FRT (Flp 
recombinase target) sequences. 
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Gene targeting in ES cells was most commonly used to disrupt a chosen gene in the 

mouse, termed gene knock-out. Conventional germline knock-out deletes genes in all 

cells throughout all developmental stages (Figure 5B and C). Inactivation of many 

genes leads to lethality in embryonic or early postnatal stage, which makes the 

investigation of gene function in adulthood impossible [151]. Also, a null mutant in the 

whole body can sometimes make the interpretation difficult. For example, it could be 

hard to tell if a phenotype of the heart is linked to the gene ablation in the heart per se 

or in the brain indirectly. In combination with a designated site-specific DNA 

recombination system, such as Cre-loxP or Flp-FRT, gene targeting can be used to 

generate mutations in a way that allows separate evaluation of a gene`s function in 

specific tissues (conditional knock-out) (Figure 5B and D) [152]. The most commonly 

used site-specific recombinase Cre catalyzes recombination between two 34 

bp loxP recognition sites [153, 154]. The FLP-FRT recombination system works 

similarly to the Cre-loxP system [155]. The conditional knock-out practically relies on 

the crossing of two mouse strains, one strain carrying the loxP- or FRT-flanked target 

gene and an additional strain expressing the site-specific recombinase Cre or Flp. 

Tissue-specific Cre expression will catalyze the excision of DNA flanked by directly 

repeated loxP recognition sites (floxed), therefore deleting the target gene in a spatially 

confined manner, resulting in tissue-specific knock-outs [156, 157]. Time- and tissue-

specific knock-outs or inducible tissue-specific knock-outs were reported by R. Feil et 

al. [158], and others [159]. This is achieved by the induction of recombination with a 

ligand-dependent Cre recombinase, so called CreER and its evolved version CreERT2, 

a fusion of Cre recombinase to a mutated ligand-binding domain of the human 

estrogen receptor [158, 160]. This fusion protein, CreERT2, can be activated by 

synthetic 4-hydroxytamoxifen, but not endogenous estradiol. The cytoplasmic CreERT2 

translocates into the nucleus upon the administration of tamoxifen, resulting in 

tamoxifen-induced Cre recombination of loxP sites [161]. Combining tissue-specific 

expression of a CreERT2 recombinase with time-specific delivery of tamoxifen, the 

excision of floxed chromosomal DNA can be controlled both spatially and temporally 

[162]. Many transgenic mice expressing the Cre or CreERT2 recombinase with different 

spatial and temporal patterns have been generated. Genetic engineering including 

conditional and inducible gene targeting provides a powerful tool to analyze gene 

functions. 

 Reporter knock-in 
Besides knock-out generation, gene targeting can also be used to manipulate any 

chosen mouse gene locus in any desired manner, ranging from point mutations to large 
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fragment replacements [142]. The knock-in approach allows precise insertion of an 

exogenous reporter gene into the genome, so that the expression of the reporter 

acquires the transcriptional regulation of the targeted gene locus. Reporter knock-ins 

allow for analysis of gene expression patterns, detection of Cre or Flp activity, labelling 

specific cell types and tracking cell fate, or reporting other molecular events such as 

the concentration dynamics of second messengers [163]. 

  

A reporter knock-in is actually a variation of standard knock-out strategy. The knock-in 

introduces an exogenous DNA fragment, meanwhile it typically results in disruption of 

the endogenous gene. Although losing one copy of most genes does not necessarily 

cause a detectable phenotype, this is not always the case. One strategy to circumvent 

this is to use an internal ribosomal entry site (IRES) so that the endogenous and the 

reporter gene can be expressed bicistronically from the same mRNA [164]. However, 

the expression levels for the open reading frames before and after the IRES often vary 

drastically. Another promising strategy is to link self-cleaving 2A peptide between open 

reading frames of the endogenous and the reporter gene. The posttranslational self-

cleavage of the peptide results in equal levels of two proteins [163, 165].   

 

The Gt(ROSA)26Sor (Rosa26) locus has been established as the preferred integrating 

site for expression of exogenous transgenes without giving rise to any detectable 

phenotypic effect [166]. The ubiquitous transcriptional activity of the locus suggests 

that the genomic region maintains an open and permissive chromatin configuration, 

therefore allowing generalized expression of the inserted transgene in any tissue 

throughout the embryonic stage to adulthood. Many reporter genes have been knocked 

into the Rosa26 locus, and Rosa26-LacZ is the first of this kind. The Cre-activatable 

lacZ gene was introduced into the first intron of the Rosa26 locus forward transcript. 

The presence of a strong splice acceptor allows for transgene expression to be driven 

by the endogenous ubiquitous Rosa26 promoter [166]. Simulating the original 

promoter trap insertion, other reporter genes including enzyme markers (for example, 

alkaline phosphatase [167], luciferase [168]), and fluorescent proteins (for example, 

YFP [169]) have also been integrated into the Rosa26 locus. Expression of the reporter 

genes is usually blocked by a loxP-flanked STOP fragment placed before the 

expression cassette and after the Rosa26 promoter. When used in conjunction with a 

Cre recombinase-expressing line, successful Cre-mediated excision is indicated by 

reporter expression in Cre-expressing tissues and their descendants (Figure 5E). 

These mice serve as useful Cre reporter strains. LacZ expression is especially useful 

due to its high adaptability as well as simple detection methods for beta-galactosidase 
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using antibodies (e.g., [170]) or biochemical reactions [166]. However, expression of 

reporters directly from transgenes driven by the endogenous Rosa26 promoter is weak 

in the adult [171]. Many studies utilizing these lines require the aid of histochemical 

methods, or immunostaining of the reporter protein. An efficient way to achieve higher 

universal expression for in vivo visualization, in particular in adult mice, is to introduce 

a strong exogenous promoter such as the CAG (Cytomegalovirus early 

enhancer/chicken β-actin/rabbit β-globin) promoter together with the exogenous 

reporter expression cassette into the Rosa26 locus [171].  

 

Nowadays, numerous transgenes have been integrated into the Rosa26 locus to 

achieve cell type-specific expression for in vivo imaging. For instance, optogenetic 

proteins targeted to this locus allow for precise manipulation of neuronal activity [172]. 

More and more Rosa26 transgenic mouse lines with sophisticated transgene design 

serve for multiple purposes, such as labeling different cell types as well as genetic fate 

mapping. Several recent mouse lines represent the current advance of reporter knock-

ins. The Mosaic Analysis with Double Markers (MADM) method in mice is used for 

sparse marking of genetically defined neuron populations [173]. The Rosa26-mT/mG 

mouse allows for double marker labeling by switching from one fluorescent protein to 

another. It labels not only cells after Cre-mediated recombination but also non-

recombined cells with green or red fluorescent proteins targeted to the cell membrane, 

respectively [174]. The R26R-Confetti mouse is very useful in labeling cells in the brain 

as well as other organ systems through stochastic Cre-mediated activation of one out 

of four fluorescent proteins [175]. Another category of reporter systems based on 

fluorescent proteins has been developed to detect molecular signaling events, such as 

Ca2+ mobilization, and many of them have also been knocked into the Rosa26 locus 

[176]. Genetically encoded Ca2+ indicators allow time lapse imaging of Ca2+ in defined 

cell types and even subcellular compartments by targeting the indicators to subcellular 

domains [177]. Imaging with these sensor proteins has greatly improved our 

knowledge of Ca2+ in physiology and neuroscience. A transgenic mouse approach with 

tissue-specific sensor expression enabled Ca2+ imaging virtually in all kinds of cell 

types [176], which has been especially useful to pinpoint the function of particular cell 

types in the nervous system. More than two decades after the first targeted transgenic 

mouse and over one decade after the discovery of the Rosa26 locus, the field of gene 

targeting including reporter knock-in is still expanding.  
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1.4 Aim of the work 
The role of cGMP as a second messenger in a broad range of (patho-)physiological 

processes is widely appreciated. In concert with other second messengers such as 

cAMP, Ca2+ and phophoinositides, cGMP plays a central role in maintaining 

homeostasis in numerous cells and tissues in response to changing physiological 

conditions. Unlike proteins, which can be simply tagged with other fluorescent proteins 

for in vivo tracking, small molecules like cGMP have mainly been detected by 

conventional destructive methods like RIA or EIA, which generate only end point data 

and lack spatial resolution. Instead, in vivo imaging can capture quantitative 

information in real time at subcellular resolution and do so noninvasively and 

repeatedly in the same living cells or in an intact organism where the physiological 

circuit functions, offering insights that cannot be revealed using in vitro approaches. 

  

Thus, the major objective of this work was to generate and characterize for the first 

time transgenic mice expressing the FRET-based cGMP indicator cGi500 ubiquitously 

or in a Cre-activatable tissue-specific fashion, so that cGMP could be visualized in vivo. 

Prior to our publication in 2013 [178], there had been no reports about the generation 

of transgenic mice that express cGMP sensors. 

 

With these newly generated cGi500-expressing mouse lines, we aimed to perform 

robust cGMP imaging in a broad range of cell types, and prove the functionality of 

these sensor mice. Characterization of our new cGMP sensor mice should 

demonstrate that cGi500 sensor expression could be activated in a Cre-dependent 

manner and was sufficient to monitor physiological cGMP signals in live cells. 

Specifically, platelets and neurons were of main interest for the present study. cGMP 

imaging had already been performed in isolated primary cells such as smooth muscle 

cells by transfecting these cells with cGMP biosensors. However, transfection might 

generate unwanted side effects and many cell types including neurons and platelets 

cannot easily be transfected. Moreover, cGMP signals can change very rapidly, for 

example, as measured in platelets by RIA [75, 179]. cGMP sensor-expressing primary 

cells would allow repeated quantification of cGMP in real time in the same living sample 

with subcellular resolution and under relatively native conditions.  

 

The CNP/GC-B/cGMP/cGKI signaling pathway is fundamental for DRG sensory axon 

bifurcation when projecting into the DREZ during nervous system development. 

However, the molecular mechanism underlying this process are not completely 
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understood. We hypothesized that the growth cone alone can detect CNP and elevate 

cGMP locally and independently from the soma. cGMP activates cGKI and potentially 

triggers cytoskeleton remodeling, such that the growth cone travels along the DREZ 

and bifurcates to form two branches. The test of this hypothesis requires subcellular 

imaging of cGMP at higher resolution, which could potentially be performed with our 

novel cGMP sensor-expressing mice. The aim was, therefore, to establish a local drug 

application system, which would mimic the local CNP exposure of the axonal growth 

cone, and to analyze the spatiotemporal cGMP dynamics at the same time. 

 

To image cGMP signals in platelets, we wanted firstly to establish a flow chamber 

system, so that cGMP could be measured in platelets under flow. With the established 

imaging system, the present work aimed to answer the following questions: Are cGMP 

signals in platelets affected by flow/shear stress? Does flow/shear stress regulate Ca2+? 

What are the relationships between the two second messengers, cGMP and Ca2+? etc. 

Answers to these questions should provide new insights into platelet biology under 

flow conditions. 

  

Overall, our aim has been to understand cGMP biology under (patho-)physiologically 

relevant conditions. With these newly generated cGMP sensor mice, we can now 

watch cGMP by intravital FRET imaging in the context of a living complex mammalian 

organism.  
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2 Materials and Methods 

2.1 Materials  

 Common chemicals, reagents and antibodies 
0.4% Trypan blue Life Technologies 
10×Trypsin/EDTA Life Technologies 
100×Penicillin/Streptomycin 
(Pen/Strep) 

Life Technologies 

2-propanol Carl Roth 
37% Hydrochloric acid (HCl) Carl Roth 
Agarose  Biozym Biotech 
Boric acid Carl Roth 
Bovine serum albumin (BSA) Carl Roth 
Chloroform/isoamyl alcohol Carl Roth 
D-Glucose Carl Roth 
DMEM GlutamaxTM Life Technologies 
Dimethyl sulfoxide (DMSO) Carl Roth 
Diethylether Carl Roth 
Ethanol Carl Roth 
Fetal Bovine Serum (FBS) Life Technologies 
F12 culture medium Life Technologies 
Glutamine Life Technologies 
Horse Serum Life Technologies 
Hoechst 33258 Sigma-Aldrich 
KpnI New England Biolabs 
N-Lauroylsarcosine sodium Sigma-Aldrich 
Paraformaldehyde (PFA)  Carl Roth 
Phenol/chloroform/isoamyl alcohol Carl Roth 
  
Antibodies  
Alexa 555, Goat anti-Mouse  Life Technologies 
Alexa 488, Goat anti-Rabbit  Life Technologies 
Mouse anti-mouse β-III-Tubulin   Promega 
Rabbit anti-mouse cGKI Customized [180] 

 Common buffers and solutions 
0.5 M EDTA pH 8.0  
Dissolve 186.1 g disodium ethylenediaminetetraacetic acid dihydrate (Na2EDTA·2 H2O) in 800 
mL H2O, add NaOH pellets until the solution reaches pH 8.0 and EDTA is dissolved. Adjust 
volume to 1 L. Autoclave and store at room temperature (RT). 
 
1×Trypsin/EDTA 
10×Trypsin/ETDA (0.5% / 0.2%, Life Technologies) 3 mL, add 27 mL PBS, store at 4 °C. 
 
10×TE pH 8.0 
100 mM Tris-Cl (100 mL/L 1 M Tris-Cl pH 8.0), 10 mM EDTA (20 mL/L 0.5 M EDTA, pH 8.0), 
autoclave and store at RT. 
 
10×RT buffer 
10×RT-buffer (pH 8.0) contains 500 mM KCl, 100 mM Tris, 15 mM MgCl2 and 2 mM dNTP-
mixture. Store at −20°C. 
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10×Reaction buffer S  
10×Reaction buffer S (PEQLAB) contains 100 mM Tris-Cl pH 8.8, 500 mM KCl, 0.1% Tween-
20, 15 mM MgCl2, store at −20°C. 
 
1,000×Hoechst 33258 
Dissolve Hoechst 33258 (Sigma-Aldrich) at 1 mg/mL in H2O, store 1 mL aliquots at −20°C. 
 
1 kb ladder DNA marker 
Add 250 μL 1 kb ladder (Life Technologies) to 8.25 mL 1×DNA loading dye, store 500 μL 
aliquots at 4°C. 
 
1 M Tris-Cl pH 6.8/7.4/8.0 
Dissolve 121.14 g tris(hydroxymethyl)aminomethane (Tris) in 1 L H2O, adjust pH to 6.8/7.4/8.0 
with concentrated HCl. Autoclave and store at RT. 
 
20% SDS 
Dissolve 200 g sodium dodecyl sulfate (SDS) in 1 L H2O at 60°C in a water bath. Store at RT. 
 
3 M NaOAc pH 5.5  
Dissolve 40.83 g CH3COONa·3 H2O in 100 mL H2O, adjust pH to 5.5 with acetic acid. Autoclave 
and store at RT. 
 
5×TBE 
Make 450 mM Tris-borate, 10 mM EDTA by weighing 54 g Tris and 27.5 g boric acid and 
dissolving both in approximately 900 mL H2O. Add 20 mL of 0.5 M EDTA (pH 8.0) and adjust 
the solution to a final volume of 1 L. Store at RT. 
 
5 M NaCl 
Dissolve 292.2 g NaCl in 1 L H2O. Autoclave and store at RT. 
 
6×DNA loading dye 
30% glycerol, 10% 10×TE, 0.05% bromophenol blue, 0.05% xylene cyanol. Store at 4 °C. 
 
70% Ethanol 
Mix 70 mL ethanol (analytical grade) and 30 mL H2O, store at −20°C. 
 
Ethidium bromide  
Prepare 10 mg/mL in H2O, store at 4°C, light protected. 
 
Proteinase K  
Prepare 50 mg/mL proteinase K in 1×TE, store at −20°C. 
 
PBS Buffer 

Component Final conc. Volume/weight 
NaCl 135 mM 40 g 
KCl 3 mM 1 g 
Na2HPO4·2H2O 8 mM 7.1 g 
KH2PO4 2 mM 1.2 g 
H2O  ad 10 L 

            Adjust pH to 7.4, aliquot, autoclave and store at RT 
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2.2 Generation of transgenic mice by gene targeting 
Transgenic mouse generation by gene targeting in mouse embryonic stem (ES) cells 

is now a well-established technique. The protocol varies from lab to lab. But in general, 

it includes the construction of a targeting vector, ES cell culture, electroporation of the 

targeting vector into ES cells, drug selection of ES clones, and PCR or Southern 

screening and identification of correctly targeted ES clones. After their identification, 

the ES cells are expanded so that they can be injected into mouse blastocysts to 

generate chimeric mice. Breeding steps are needed to achieve germline transmission 

of the mutant allele to the progeny (Figure 6). The whole procedure follows standard 

protocols from the Feil lab as also described by S. Feil [181] and M. Thunemann [182]), 

and by others [183, 184]. 

 Gene targeting in ES cells 

2.2.1.1 Construction and preparation of targeting vector 
The construction of pR26-CAG-cGi500(L2) from pROSA-mT/mG [174] was performed 

by A. Vachaviolos, B. Birk and M. Thunemann, and described in detail in A. 

Vachaviolos` diploma thesis [185] and M. Thunemann`s PhD thesis [182]. Here the 

methods part starts with the preparation of targeting vector DNA for electroporation 

into ES cells. 

1) Linearize about 100 µg of targeting vector DNA with the restriction enzyme 

KpnI according to the manufacturer’s instructions. 

2) Precipitate linearized DNA with 1/10 volume 3M NaOAc pH 5.5 and 2.5 

volumes absolute ethanol. Wash twice with 70% ethanol. Aspirate 70% ethanol 

and leave the pellet for drying under sterile conditions in a tissue culture hood. 

Resuspend the DNA pellet at 1 µg/µL in sterile PBS. Store the linearized 

targeting vector at –20°C. 

2.2.1.2 Preparation of irradiated MEFs as feeder cells 
Murine embryonic fibroblasts (MEFs) as feeder cells produce leukemia inhibitory factor 

(LIF) and many other factors, which are necessary to support ES cells at their 

pluripotent state [186]. Before every step of ES cell seeding, MEF feeders should be 

prepared. The feeder cells should also be resistant to neomycin-related G418 so that 

they can survive the drug selection during gene targeting. NeoR-expressing MEFs used 

here were derived from embryos of the SMIβ rescue mouse [110].  
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MEF medium 

Component Final conc. Volume/weight 
DMEM 90% 450 mL 
FBS 10% 50 mL 

           Store at 4 °C for up to 1 month. 
  

1) Set up matings with 2-4 males carrying the neomycin resistance gene (neoR-/-, 

SMIβ rescue here) and separate plug-positive females in the next morning (0.5 

day post coitum, dpc).  

2) Sacrifice 1-2 pregnant female mice at 13.5 dpc. Spray the abdomen with 70% 

ethanol. Open the abdominopelvic cavity and collect the uterine horns and 

transfer them into a 10-cm Petri dish with ice-cold PBS. 

3) Make a longitudinal incision of the uterine wall with small, straight scissors and 

cut away each amniotic sac from the placenta and collect the embryos in a new 

Petri dish with ice-cold PBS. 

4) Decapitate the embryos; remove tail, limbs and blood-containing inner organs.  

Wash the carcasses 2 times in PBS.  

5) Transfer the carcasses into the opening of a 50-mL falcon tube. Thoroughly 

mince each carcass with sterile scissors. 

6) Suspend minced embryos in 1×trypsin/EDTA (1 mL per embryo). Incubate the 

tube in a 37°C water bath for 10 min. Shake the tube at 2 min intervals 

vigorously. 

7) Add MEF medium (2 mL per embryo) and spin in a tabletop centrifuge 

(Eppendorf 5417C/R) for 5 min at 300 g. 

8) Resuspend the cell pellet into 10 mL MEF medium and transfer the suspension 

to two 175-cm2 flasks per embryo, filling each flask with a total of 20 mL medium.  

9) Leave the cells at 37°C and 6% CO2 (Innova-170 CO2 incubator, New 

Brunswick Scientific). The next day, cultures should be 30-50% confluent. 

When the flasks become 90-100% confluent (4-6 days after initial seeding), 

expand the cultures.  

10) Wash twice with PBS and add 5 mL trypsin/EDTA. After 5 min at 37°C, 

resuspend the cells in 6 mL MEF medium. Take out 9 mL from every flask to a 

50 mL tube. Add 18 mL to the flask with the remaining 2 mL cell suspension.  

Leave it to grow until 100% confluent. 

11) Centrifuge down the cells in the 50-mL tube (1,000 rpm, 5 min). Resuspend 

cells with MEF medium (4 mL per 175-cm2 flask).  
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12) Leave cells to settle down and irradiate them with a dose of 5,000 Rad (50 Gray) 

using a Gammacell 1000 device (Nordion) in the institute of cell biology, 

University of Tübingen. 

13) Centrifuge the cells at 1,000 rpm, 5 min. Resuspend cells in 3 mL freezing 

medium (90% MEF medium+10% DMSO) per flask. Distribute equally into 3 

cryogenic vials (1 mL/vial). Place them at –80°C. The next day, store vials in 

liquid N2. 

14) Repeat the procedure for up to 6 passages for each embryo preparation. 

2.2.1.3 ES cell culture 
ES cell gene targeting can be used to generate transgenic mice, because these cells 

are pluripotent and can contribute to the germline so that the mutant allele is passed 

to the progeny. The maintenance of ES cell pluripotency during culture is of critical 

importance for the success of mouse generation. ES cell culture contains several 

handling steps including thawing, passaging, and freezing. The general guideline for 

optimal ES cell culture is that undifferentiated colonies should have uniform 

appearance with well-defined edges, owing to 3-dimensional growth. Constant 

monitoring of cells under a microscope every day is key to maintain undifferentiated 

ES cell culture, and thereby germline competence of ES cells.  

 
ES-FBS 
ES cell culture-tested FBS (Life Technologies, Cat. no. 10270-10), heat inactivated (30 min at 
56°C water bath, shake every 10 min), store in 50 mL aliquots at −80°C. 
 
500×LIF 
Stock, 0.5x106 U/mL: dilute 1 mL (1×107 U) mouse leukemia inhibitory factor (LIF; Millipore 
GmbH) with 19 mL MEF medium, store in 1 mL aliquots at 4°C. 
 

 
  
Figure 6. Transgenic mouse generation through gene targeting in ES cells. 
A. ES cell culture during gene targeting. R1 ES cells with 129/Sv background are thawed at 
low passage to 25-cm2 flask (T25) and passaged once to 75-cm2 flask (T75). Cells dissociated 
from a T75 flask are electroporated with linearized targeting vector and plated at low density 
on ten 10-cm dishes, followed by G418 drug selection. ES clones are picked into 96-well plates, 
and 2 replica (plate A and B) are prepared. Plate A is frozen at 60-80% confluence and store 
in a -80°C freezer. Plate B is further passaged to 3 plates as replica (plate B, C and D). They 
can be used for DNA extraction and Southern blot screening. Identified targeted ES cell clones 
are thawed from plate A into a 24-well plate. Further expansion and freezing is necessary 
before the ES cells can be used for blastocyst injection. B. Generation of gene targeted mouse. 
Targeted ES cells are injected into blastocysts from wild type C57BL/6 mice and re-implanted 
into CD1 surrogate mothers, which give birth to chimeric mice with cells contributed from the 
ES cells (+/-, appearing as agouti fur) and the host embryo (+/+, appearing as black fur). 
Chimeras are further crossed with C57BL/6 mice. Germline transmission is expected to occur 
in agouti-colored offspring and is genotyped with a PCR reaction. The animals carrying the 
transgene are established as a new targeted mouse line. 
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500×β-Mercaptoethanol (β-ME) 
Stock, 50 mM: add 70 μL 2-mercaptoethanol (β-ME) to 20 mL PBS, sterilize by filtration, store 
in 1 mL aliquots at −20°C. 
 
100×G418  
Stock, 40 mg/mL: dissolve 1.6 g Geneticin®/G418-Sulfate in 40 mL PBS, sterilize by filtration, 
and store in 5 mL aliquots at −20°C. 
 
ES cell culture medium (ES medium) 

Component Final conc. Stock Volume/weight 
DMEM 80%  400 mL 
FBS 20%  100 mL 
LIF 1,000 U/mL 500× 1 mL 
β-ME 0.1 mM 500× 1 mL 

           Store at 4 °C for up to 1 month. 
 

Table 3. Specification, medium and trypsin volume for cell culture vessels 

Flask Surface Area Medium Trypsin 

T25 25 cm2 5 mL 2 mL 

T75 75 cm2 15 mL 5 mL 

T175 175 cm2 20 mL 8 mL 

10-cm dish 55 cm2 10-15 mL 5 mL 

6-well plate 6x9 cm2=54 cm2 2-3 mL 1 mL 

12-well plate 12x3.5 cm2=42 cm2 1-1.5 mL 0.5 mL 

24-well plate 24x2.3 cm2=55 cm2 0.5-1 mL 0.3 mL 

96-well plate 96x0.32 cm2=29 cm2 100-200 µL 50 µL 

 

General requirements and procedures for cell culture include:  

 Cell cultures are throughout incubated at 37°C and 6% CO2. All media, PBS and 

1×trypsin/EDTA should be pre-warmed to 37°C before use. 

 Feeder cells should be thawed and plated 6-24 hours before ES cell seeding, 

and conditioned with LIF-containing ES medium for ≥1 h.  

 Cell thawing: place immediately the frozen stocks in a water bath at 37°C; 

transfer the cell suspension into 4 mL ES medium, centrifuge for 5 min at 1,000 

rpm, and resuspend the pellet in ES medium. Plate the cells onto culture vessels. 

Recommended medium volumes for various culture vessels are given in Table 
3. 

 Medium change: every day or every other day, depending on the culture density. 

 ES cell culture used for mouse generation should always be subconfluent 

(~70%). It should be avoided to have the ES cells overgrown, as indicated by 

the yellowish color of the medium. 
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 ES cell passaging: wash the cells once with PBS and dissociate with 

1×trypsin/EDTA for 3-5 min. Pipette up and down several times to obtain single 

cells. Stop trypsinization by addition of 1-2 volumes ES medium. Insufficient 

dissociation will result in cell clumps after reseeding. Over-trypsinization leads 

to cell death or loss of pluripotency. Centrifuge at 1,000 rpm for 5 min. Replate 

cells at a dilution of 1:3 to 1:6. Note down the passage number. 

 Cell freezing: dissociate cells with 1×trypsin/EDTA, stop trypsinization with ES 

medium, centrifuge down cells and resuspend in freezing medium (90% ES 

medium+10% DMSO). Distribute cells from a culture area of 12.5 cm2 to each 

cryogenic vial (1 mL/vial). Place them in a Styrofoam box at –80°C. The next 

day, store vials in liquid N2. 

 

Low passage (P14) of R1 ES cells (genetic background: 129/Sv x 129/Sv-CP, [187]) 

was used in this study. 

1) Thaw feeder cells prior to ES cell culture to a 25-cm² flask (T25); each vial of 

feeder cells can be thawed to an area of 50-100 cm². 

2) Thaw R1 ES cells onto the feeder cells in the T25 flask. Let the ES cells grow 

to 60–80 % confluence. 

3) Passage cells to a 75-cm² flask (T75), let them grow to 60–80 % confluence. 

4) Wash cells twice with PBS, detach them with 3 mL 1×trypsin/EDTA, resuspend 

in a 15-mL tube, and add 7 mL ES medium. 

5) Centrifuge for 5 min at 1,000 rpm, resuspend in 10 mL PBS. 

6) add 10 µL trypan blue to an aliquot of 10 µL cells in PBS, count cells in a 

hemocytometer (vitality should be greater than 95%, and cell yields from a T75 

flask are 1-2×107). 

7) Centrifuge again for 5 min at 1,000 rpm and resuspend cells in PBS to a density 

of 0.5−1×107/mL. 

2.2.1.4 Electroporation 
1) Mix 1 mL ES cell suspension with  20-50 µg targeting vector and transfer 800 

µL cells into an electroporation cuvette (d = 4 mm, Bio-Rad). Remove potential 

air bubbles. 

2) Electroporate at 230 V and 500 µF with Gene Pulser Xcell Electroporation 

System (Bio-Rad). The time constant should be between 5-8 ms. 

3) Leave cells for 5 min in the cuvette at RT. Transfer cells to 9 mL ES medium, 

resuspend and plate cells onto ten 10-cm dishes with pre-seeded feeder cells. 
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2.2.1.5 Selection 
1) 24 h after electroporation, change to ES medium with 300 µg/mL G418 

(ES/G418 medium) for selection. 

2) Change the medium every day or every other day for the first week depending 

on the amount of cell death. 

3) 7-9 days after electroporation, pick the colonies.  

2.2.1.6 Isolation of drug-resistant ES clones 
Most of the ES clones will die, and drug-resistant ES cells will appear after 3-4 days of 

selection with G418.  7-9 days after electroporation, ES clones will be ready for picking. 

Picking of ES cell colonies can be done in 1-2 days, and 100-400 clones can be 

isolated per day. Suitable ES clones should have a sharp-edged morphology due to 

their three dimensional structure, while the center of the clone is relatively darker. The 

colonies are picked into round-bottomed 96-well plates for dissociation and then 

distributed to two flat-bottomed 96-well plates (replica A and B), one growing for 

freezing and another for further passaging. Avoid cross-contamination of the wells. 

A. Picking of ES clones 
1) 1 day prior to colony picking, thaw feeder cells to two 96-well plates in 100 µL 

ES/G418 medium. 

2) Prepare a round-bottomed 96-well plate with 50 µL PBS. 

3) Place a stereomicroscope (Stemi 2000C with transmitted-light unit S, Carl 

Zeiss Microscopy GmbH) inside a tissue culture hood. Set a 20 µL pipette to 2-

3 µL. 

4) Scan for a suitable colony under the stereomicroscope and interrupt the feeder 

monolayer around the colony using a 200-µL tip. Detach the colony and draw 

it with as little as possible ES medium. Transfer the colony to a well of the PBS-

filled round-bottom 96-well plate. Repeat this step until 96 colonies are isolated 

(assuming the picking time is less than 1 hour). 

5) Add 50 μL 2×trypsin/EDTA, incubate for 10 min at 37°C, pipette up and down 

~10 times with a multichannel pipette to disaggregate the ES cells. Add 100 μL 

ES/G418 medium. Resuspend, and transfer 90 μL cell suspension to each 

replica of the two 96-well plate (A and B) seeded with feeder cells. Place the 

plate back to the incubator. 

6) Change medium the next day. 

7) ~3 days after plating, freeze plate A at 60-80% confluence. ~4 days after plating, 

passage plate B at 90-100% confluence to plate B, C and D. 
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B. Freezing 
1) Remove medium from plate A, wash once with 180 μL PBS, incubate with 30 

μL 1×trypsin/EDTA at 37°C, add 180 μL freezing medium (90% ES Medium + 

10% DMSO) and resuspend. 

2) Seal the plate tightly with autoclave tape, and freeze cells slowly at −20°C for 

1-3 h. Store the plate at −80°C for up to 2 months. 

C. Passaging 
1) Add 150 μL ES/G418 medium to two new 96-well plates without feeder cells  

2) Remove medium from plate B, wash once with 180 μL PBS, incubate with 50 

μL trypsin/EDTA at 37°C for 10 min, add 100 μL ES medium and resuspend. 

3) Transfer 50 μL of the cell suspension from plate B to the plates C and D each, 

then add another 150 μL ES/G418 medium to plate B.  

4) Grow cells to 100% confluence (~4 days). Remove the medium, wash the cells 

twice with 150 μL PBS and allow the cells to dry. Store dried cells at −20°C or 

continue with isolation of genomic DNA, 

2.2.1.7 Screening and identification of targeted ES clones 
 
A. Extraction and digestion of genomic DNA from ES cells in a 96-well plate 
 
DNA lysis buffer 

Component, final conc. Stock Volume/weight 
10 mM NaCl 5 M 1 mL 
10 mM Tris, pH 7.4 1 M 5 mL 
10 mM EDTA 0.5 M  10 mL 
0.5% Sarcosyl  2.5 g 
H2O  ad 500 mL 

         Store at RT. Add 0.25 mg/mL proteinase K before use. 
 
Ethanol/NaCl 
For one 96-well plate, add 150 μL 5 M NaCl to 10 mL ethanol (pre-chilled to −20°C). 

1) Defreeze a 96-well plate stored in -20°C for ~5 min at RT. 

2) Add 50 μL DNA lysis buffer with proteinase K to each well of 96-well plates 

with a multichannel pipette.  

3) Seal the plate tightly with saran wrap. Incubate the plate overnight at 55°C in 

a box with water-soaked tissue towels. 

4) The next day, cool down the plate to RT, and then add ice-cold 100 μL 

ethanol/NaCl, and precipitate the DNA for ≥1 h at RT. Then, precipitated DNA 

37 

 



    Materials and Methods 

will stick to the plastic surface of the 96-well plate. DNA strings can be checked 

under a microscope with lower-power magnification.  

5) Discard ethanol by inverting the plate onto paper towels. The DNA should 

adhere to the plate. Wash the precipitated DNA 2-3 times with 100 μL 70% 

ethanol (pre-chilled to −20°C), air dry the DNA for 1 h at RT. Screen wells for 

complete evaporation of ethanol to prevent the interference of remaining 

ethanol with restriction digestion. The plate with dried DNA can be stored at 

−20°C. 

6) Prepare the restriction digest mixture (per well), 

Restriction enzyme buffer (NEB1/2/3/4) 5 μL 
100×BSA 0.5 μL 
Restriction enzyme 1 μL (20 U) 
H2O 43.5 μL 
Total 50 μL 

7) Add the digestion mixture to the dried genomic DNA in the 96-well plate (50 

μL/well) with a multichannel pipette, tap the plate to ensure the surface of each 

well is covered with the mixture.  

8) Wrap the plate tightly with saran wrap, and incubate overnight at 37°C. The 

next day, store DNA at −20°C or continue with gel electrophoresis and 

Southern blot. 

B. Southern blot 
0.2 M HCl 
Add 20 mL 37% HCl to 980 mL H2O. 
 
0.5 M NaOH/1.5 M NaCl  
Dissolve 20 g NaOH and 87.5 g NaCl in 1 L H2O. 
 
0.5 M Tris/3 M NaCl pH 7.4  
Dissolve 60.58 g Tris, 175.3 g NaCl in 1 L H2O, adjust pH to 7.4 with HCl. 
 
10×Labeling buffer with octadeoxyribonucleotides (NEB), store at −20°C. 
 
1 M Na2HPO4: Dissolve 177.99 g Na2HPO4 in 1 L H2O. 
 
1 M NaH2PO4: Dissolve 137.99 g NaH2PO4 in 1 L H2O. 
 
2×SSC, 0.1% SDS 
100 mL/L 20×SSC, 5 mL/L 20% SDS. 
 
20×SSC 
Dissolve 175.3 g NaCl, 88.2 g trisodium citrate dihydrate in 1 L H2O. 
 
50×TAE 
400 mM Tris-acetate (242 g/L Tris, 57.1 mL/L acetic acid), 50 mM EDTA (100 mL/L 0.5 M EDTA 
pH 8.0). 
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Church buffer 
1% BSA, 0.5 M phosphate buffer, pH 7.2 (193.5 mL 1 M Na2HPO4 and 56.3 mL 1 M NaH2PO4), 
7% SDS, 50 mM EDTA, H2O to 500 mL. Store in 50 mL aliquots at −20°C. Preheat and add 
ssDNA to a final concentration of 0.1 mg/mL (10 μL/mL 10 mg/mL ssDNA) before use. 
 
dCTP, α32P (3000 Ci/mmol, 10 mCi/mL, EasyTide; Perkin-Elmer, Rodgau, Germany), store at 
4°C. 
 
dNTP mixture 
Mix equal parts of 200-fold dilutions of 100 mM dATP, dGTP and dTTP (PEQLAB), store in 25 
μL aliquots at −20°C. 
 
Filter paper: Whatman 3MM gel blotting paper, 0.34 mm×460 mm×570 mm. 
 
Klenow Fragment: 3´→5´ exo-Klenow fragment (5,000 Units/mL; NEB), store at −20°C. 
 
LSC: Liquid scintillator cocktail UltimaGold (Perkin-Elmer). 
 
Hybond N+ Membrane: 20 cm×3 m (GE Healthcare). 
 
NICK columns: illustra NICK™ columns with sephadex G-50 (GE Healthcare). 
 
RNase: Prepare 10 mg/mL RNase H in 1×TE, store in 1 mL aliquots at −20°C. 
 
ssDNA: Prepare 10 mg/mL salmon sperm DNA (Roche), store in 1 mL aliquots at −20°C. 
Denature for 5 min at 99°C to obtain single-stranded DNA (ssDNA) before use. 

1) Take out the plates from the incubator and add 10 μL 6×loading dye to each 

well of the 96-well plate. Leave them at 4°C until electrophoresis or at −20°C 

for longer storage.  

2) Prepare 0.8% agarose gels with four rows á 26 lanes in 500 mL 1×TAE without 

ethidium bromide. 

3) Load 50-55 μL of the digested genomic DNA onto the agarose gel. 

4) Run the gel at 80-100 V until the diagnostic wild type and mutant band are 

adequately segregated.  

5) Stain the gel for 15 min with ethidium bromide (0.01 mg/mL in 1×TAE).  

6) Destain the gel for 10-20 min in H2O. 

7) Photograph the gel together with a ruler. 

8) Perform depurination by soaking the gel in 0.2 M HCl for 10 min on a shaking 

platform (color change of bromophenol blue from blue to yellow). Wash with 

H2O. 

9) Perform denaturation with 0.5 M NaOH/1.5 M NaCl for 45 min. Wash with H2O. 

10) Perform neutralization for 0.5 M Tris/3 M NaCl pH 7.4 for 30 min. Wash with 

H2O. 

11) Cut a Hybond N+ nylon membrane for each gel piece while gels are incubating. 
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12) Southern transfer was built up as follows (from bottom to top): 
Buffer reservoir (2 L 10×SSC) in black tank with gel tray (tray is upside down),     
Filter paper on top of the gel tray, filter paper dips into the buffer reservoir, 
Agarose gel (upside down), 
Hybond N+ membrane (pre-wetted with 10×SSC), 
Parafilm around the membrane (no contact between filter papers above and 
below the membrane), 
Filter paper (six sheets), 
Two stacks of paper towels, 
Gel chamber lid with ~1 kg weight on top. 
 

13) The next day, disassemble the Southern blot, label pockets and the membrane. 

14) Dry the membrane for 3 h at 80°C.  

15) Cut the membrane to the correct size to remove lanes with DNA markers to 

prevent from background hybridization of marker DNA. 

16) Store the membrane in saran wrap at 4°C. 

C. Hybridization  
Hybridization was carried out in a roller bottle in a hybridization oven (OV1, Biometra) 

at 60°C. The ROSA26-5` probe was an EcoRI digestion product of ‘pCR-II-Rosa5` 

probe’ (gift of R. Kühn). Radioactive DNA probes were labelled with α[32P]dCTP by 

random primed reaction.   

1) Transfer the membrane into a hybridization tube with the membranes 

separated with nylon spacer mesh (Biometra GmbH). Add 10×SSC into the 

tube and roll until the membranes get spread onto the tube wall. 

2) Meanwhile, denature ssDNA at 99°C for 5 min, and chill on ice. 

3) Replace the 10×SSC solution with 20 mL pre-warmed Church buffer containing 

10 μL/mL denatured ssDNA. Prehybridize the membrane in the oven for ≥60 

min at 60°C.  

4) During prehybridizaiton, label the DNA probe. Dilute 100 ng of the probe 

template DNA in 33 μL H2O. Denature the probe for 5 min at 99°C, chill on ice 

(2-5 min), and spin down. Perform the labeling reaction: 
10×labeling buffer    5 μL 
dNTP mixture   6 μL 
α[32P]dCTP   5 μL 
Klenow fragment   1 μL (5 U) 
denatured probe 33 μL 
Total 50 μL 

             Incubate for ≥60 min at 37°C. 

5) About 10 min before the labeling reaction is done, remove storage buffer from 

NICK columns, wash once with 3 mL 1×TE, and pass through another 3 mL 

1×TE to equilibrate the column. 
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6) Take a 1 μL aliquot from the labeling reaction to 10 mL LSC. Add 30 μL 1×TE 

to the remaining labeling reaction (~50 μL), load the dilution on the NICK 

column and collect fractions upon buffer addition, 

Fraction 1: 320 μL 1×TE (death volume, no radioactivity), 

Fraction 2: 500 μL 1×TE (with labeled probe), 

Fraction 3: 800 μL 1×TE (with free α[32P]dCTP). 

7) After mixing and centrifugation of the fractions, measure the radioactivity of 1 

μL aliquots in 10 mL LSC of each fraction and the labeling reaction in a liquid 

scintillation analyzer (2500 TR, Packard). 

8) Denature the probe (fraction 2) for 5 min at 99°C. Chill for 2-5 min on ice. 

9) Discard the prehybridization buffer, add new pre-warmed Church buffer with 

the labeled, denatured probe and hybridize overnight at 60 °C. 

10) The next day, remove hybridization buffer. Wash twice with pre-warmed 

2×SSC, 0.1% SDS at 60°C for 10 min; twice with 0.4×SSC, 0.1% SDS;  

11) Detect the activities above the unwrapped membranes with a scintillation 

counter. Wash until each membrane of 40-80 Bq is detected. Wash with 

0.4×SSC, 0.1% SDS at 70°C, if necessary. 

15) Wrap membranes with Saran foil. Place the membrane inside an exposition 

cassette with the DNA facing a cleared phosphor screen. Expose the screen 

for 3-7 days. 

12) Read the phosphor screen in the Bioimaging Analyzer System (in the institute 

of cell biology, University of Tübingen). 

2.2.1.8 Expansion of targeted ES clones 
The targeted ES clones identified by Southern blot should be thawed and expanded 

as soon as possible. Multiple frozen stocks should be prepared for each clone. The 

expanded targeted clones are re-verified by Southern blot.  

1) The 96-well plate that contains the targeted ES clones are taken out from the  

-80°C freezer and wrapped with plastic foil (to prevent from water leaking into 

the plate) and placed into a 37°C water bath to thaw the cells.  

2) Transfer suspension of the targeted ES clone into a 24-well plate with feeder 

cells and ES medium (without G418). Change medium after 1-2 days. 

3) At 60-80% confluence, passage the ES cells to a 6-well plate.  

4) At 60-80% confluence, freeze a part of the cells (3-4.5 cm²/vial) and passage 

the remaining cells again to a 6-well plate. Expand the cells for a secondary 

targeting or use them for blastocyst injection.  
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2.2.1.9 Cre-mediated excision in ES cells 
To obtain Cre-activated transgene expression in both ES cells and mice, Cre excision 

is performed in ES cells by transiently expressing Cre in targeted ES cells. Therefore 

another round of electroporation of a Cre-expressing plasmid (i.e. pIC-Cre [157]) is 

performed with the targeted ES cells. The ES cells are plated at low densities with 

different dilutions, so that single clones can be isolated as described in 2.2.1.6. 

1) Prepare 20-50 µg Cre-expressing plasmid. 

2) Expand a targeted ES clone to a T75 flask. 

3) Harvest ES cells at 60-80% confluence and perform electroporation with a Cre-

expressing plasmid as described in 2.2.1.4. Plate cells onto 10-cm dishes at 

dilutions of 1:100 and 1:1,000.  

4) 5-7 days later, pick ES clones and prepare replica plates as described in 2.2.1.6.  

5) Verify Cre recombination in ES clones by Southern blot as described in 2.2.1.7. 

 Blastocyst injection 
Pluripotent ES cells can contribute to all three germ layers including the germ line, 

through which the transgene is transmitted so as to establish a new transgenic mouse 

line. The production of knock-in or knock-out mice usually involves tetraploid 

aggregation or blastocyst injection. Blastocyst injection is the most common method 

carried out for the generation of chimeric mice from genetically modified ES cells. ES 

cells of lower passage (<P25) are more likely to have higher potential for germline 

transmission and should be kept for injection. ES cells are injected into the morula- or 

blastocyst-stage embryos. These embryos are reimplanted into the uterus of 

pseudopregnant mothers, which are expected to give birth to chimeric mice. Three 

mouse lines are required, C57/Bl6 for donating host embryos, CD1 females (aged ≥8-

12 weeks) as foster mothers, and vasectomized FVB/N male mice (≥10 weeks). The 

ES cell injection and reimplantation were performed by Dr. S. Feil.  

 
Analgesia: carprofen (4 mg/kg). 
 
Narcosis antidote: naloxon (1.2 mg/kg), flumazenil (0.5 mg/kg), atipamezol (2.5 mg/kg). 
 
Narcosis: fentanyl (0.05 mg/kg), midazolam (5.00 mg/kg), medetomidin (0.50 mg/kg). 
 
Holding pipette: VacuTip holding capillary (Eppendorf). 
 
Injection pipette: TransferTip ES (Eppendorf). 
 
Transfer pipette: 1.5 mm O.D. ×1.17 mm I.D, made from glass capillaries (Clark 
Electromedical Instruments, Warner Apparatus) 
 
M2 medium (Sigma-Aldrich). 
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Mineral oil: light oil (neat), suitable for mouse embryo cell culture (Sigma-Aldrich). 
 
Surgical suture: Ethicon Vicryl P-3/5-0 (Johnson & Johnson Medical GmbH). 
 

2.2.2.1 Mouse and blastocyst preparation 
1) To obtain 3.5 dpc host embryos for microinjection, mate 30 male C57BL/6 with 

two C57BL/6 females each in the evening four days before injection. Check 

females for the appearance of copulation plugs in the next morning (0.5 dpc) 

and separate plug positive females for blastocyst collection at 3.5 dpc. 

2) 2.5 days before injection, mate CD1 females to vasectomized FVB/N male mice 

to obtain pseudopregnant mothers for reimplantation of blastocysts injected 

with ES cells. 

3) On the day of injection, sacrifice 3.5 dpc donor female mice, harvest uterine 

horns in PBS, flush them using a syringe  filled with DMEM in a syringe with a 

bended 22G injection needle, wash once with DMEM and collect the embryos 

with an embryo transfer pipette under a stereomicroscope. Transfer the 

embryos to a micro drop of M2 medium in a 35 mm Petri dish and place the 

dish in an incubator at 37 °C, 10% CO2.  

2.2.2.2 Preparation of ES cells for injection 
1) Thaw one vial of ES cells (typically containing cells frozen from 3-4.5 cm2; P21 

for primary targeted, and P28 for Cre-recombined ES cells) to 6-well plate. 

2) Passage once at dilutions of 1:3, 1:10, and 1:20 to ensure the availability of ES 

cells with appropriate confluence on the day of injection. Freeze the remaining 

ES cells (3-4.5 cm²/cryovial). 

3) On the day of injection, choose the best undifferentiated cells with 60% 

confluence for dissociation. Resuspend cells in 3-5 mL of ES medium. Divide 

1-1.5 mL for injection and the remaining for DNA isolation and Southern blot. 

4) Centrifuge down the ES cells in a 1.5-mL tube at 1,000 rpm for 5 min. 

Resuspend in 50 µL ES medium.  

2.2.2.3 Injection of ES cells into blastocysts 
1) Prepare an injection chamber (80 mm × 25 mm) with a glass coverslip (24 mm 

× 60 mm) attached at the bottom by Vaseline. The injection chamber on the 

microscope stage is cooled to 10°C with a circulating water bath. Add two drops 

of M2 medium covered with mineral oil. One drop is used for injection needle 

cleaning, and the other larger drop for placing the blastocysts and ES cells.  
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2) Transfer all (e.g., 30) blastocysts and ~10 μL of the ES cell suspension into the 

larger drop.  

3) Tune the holding and injection pipette starting at 5x objective to be aligned in a 

line and adjust the pipette tips in parallel to the surface of the plate. 

4) At 100× magnification, move the tip of the injection pipette to round and healthy-

looking ES cells and load the pipette with cells, avoid larger fibroblast cells. 

5) At 100× magnification, orient the blastocyst with the help of the injection pipette 

so that the inner cell mass is facing against the injection pipette, hold the 

blastocyst with the holding pipette by aspirating gently.  

6) At 100× or 200× magnification, eject ~10 ES cells into the blastocoel cavity. 

The blastocyst cavity will collapse right after injection. 

7) Move the injected blastocyst to the upper side of the drop.  

8) After repeating the whole injection procedure, transfer all injected embryos to 

a dish with ES medium, and incubate for 1-6 h at 10% CO2 and 37°C. 

2.2.2.4 Embryo re-implantation  
The uterine transfer of injected blastocysts into E2.5-day-old pseudopregnant 

recipient females would allow embryos to develop to term.  

1) Anesthetize a 2.5 dpc pseudopregnant foster mouse.  

2) Disinfect the skin in the back of the mouse. Make a small ~1 cm incision in the 

skin on the back about 1 cm away from the thigh area of the hind limb under a 

stereomicroscope. Cut through the muscle underneath until reaching 

peritoneal cavity. 

3) Gently pull out the ovary by the nearby fat pad and lay the ovary oviduct and 

upperpart of uterus out onto the back for surgery. With a 22G gauge needle 

attached to a 1-cc syringe make a hole in the uterus. 

4) Load the transfer pipette with injected blastocysts. 

5) Insert the transfer pipette through the hole and place the embryos inside the 

uterus. Place the ovary and uterus back into the body. 

6) Close the wound and inject antidote and analgesia. Place the mouse on a 

37°C slide warmer until it wakes up.  

7) Place the mouse in a cage allow it for further recovery. Chimeras are expected 

to be born in around 20 days.  

 Mouse breeding and husbandry 
The chimeric mice can be determined by the coat color of the progeny mice. R1 ES 

cells are derived from a 129/Sv mouse strain with agouti-colored fur (Aw/Aw genotype), 
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while C57BL/6 mice have black fur (a/a genotype). Therefore, blastocyst injection 

should result in chimeras with both the host wild type cells (black, a/a) and ES cell-

derived cells (agouti, Aw/Aw). Coat color and percentage of agouti pattern can be 

determined about 1 week after birth. A higher degree of chimerism is more likely but 

not a guarantee to have ES cell-derived gametes and vice versa. Chimeras are mated 

to C57BL/6 to achieve germline transmission. Germline transmitted offspring can be 

identified by the agouti coat color. Black pups can only be derived from the wild type 

C57BL/6 host embryos. Since the genetically modified ES cells are heterozygous for 

the transgene, half of the resulting agouti-colored first generation pups are expected 

to be tested positive by genotyping PCR (see 2.3.1). To transfer the modified allele to 

a standard inbred strain, mice are further backcrossed to C57BL/6N animals. 
 

All mouse lines are housed in a conventional mouse facility in the Interfaculty Institute 

for Biochemistry at 22°C and 50-60% humidity in a 12 h light/12 h dark cycle with free 

access to standard rodent chow and tap water. Adult male and female mice are used 

for experiments. The mouse lines generated in this work are the cGi500 sensor knock-

in mice, namely R26-CAG-cGi500(L2) and R26-CAG-cGi500(L1) on a mixed 

129Sv/C57BL6N genetic background. 
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2.3 Characterization and analysis of transgenic mice 

 Identification of germline transmission and genotyping 
Germline transmission of the targeted alleles was identified by PCR analysis of 

genomic DNA isolated from transgenic mice. PCR-based genotyping of ear biopsies 

was done with primers ROSA10 (5’-CTCTGCTGCCTCCTGGCTTCT), ROSA11 (5’-

CGAGGCGGATCACAAGCAATA), and ROSA4 (5’-TCAATGGGCGGGGGTCGTT) 

[173]. ROSA10 and ROSA11 amplify a 330-bp fragment of the wild type ROSA26 locus, 

while ROSA10 and ROSA4 amplify a 250-bp fragment of the R26-CAG-cGi500(L2) or 

R26-CAG-cGi500(L1) allele (see also Figure 8A, page 63). 

 

When R26-CAG-cGi500(L2) was crossed with Cre mouse lines  (e.g., L7-Cre mouse 

[188]), primer pairs Cre800 (5’-GCTGCCACGACCAAGTGACAGCAATG) and 

Cre1200 (5’-GTAGTTATTCGGATCATCAGCTACAC) were used for genotyping PCR 

of Cre transgene. Cre800 and Cre1200 amplify a fragment of 402 bp. 

2.3.1.1 DNA extraction from mouse tissue for genotyping PCR 
1) Prepare proteinase K digestion mix: 

Proteinase K (50 μg/μL, Roth) 1 μL 
10×Reaction Buffer S (Peqlab) 5 μL 
H2O 44 μL 
Total 50 μL 

2) Incubate ear punch tissue samples in 50 μL digestion mix, 55 °C, overnight. 

3) Centrifuge at 12,000 rpm for 5 min.  

4) Transfer the supernatant into a new 0.5 mL PCR tube. 

5) Inactivate proteinase K activity and denature DNA for 15 min at 95°C. 

6) Use 2 μL of the supernatant for PCR and store the remaining at −20°C. 

2.3.1.2 Genotyping PCR  
PCR reaction: 

A.  for R26-CAG-cGi500(L2) or (L1),             B. for Cre transgene,             
Taq polymerase 0.3 μL  Taq polymerase 0.3 μL 
10×RT buffer  2.5 μL  10×RT buffer  2.5 μL 
Rosa10（25 μM） 0.3 μL  Cre800（25 μM） 0.3 μL 
Rosa11（25 μM） 0.3 μL    
Rosa4  （25 μM） 0.3 μL  Cre1200（25 μM） 0.3 μL 
DNA 2.0 μL  DNA 2.0 μL 
H2O 19.3 μL  H2O  19.6 μL 
Total 25 μL   Total 25 μL 

 

 

46 

 



    Materials and Methods 

PCR program: 

A. for R26-CAG-cGi500(L2) or (L1),             B. for Cre transgene,             
94°C, 5 min 

94°C, 10 s 

65°C, 30 s           35 cycles 

72°C, 30 s 

72°C, 5 min 

94°C, 5 min 

94°C, 10 s 

58°C, 30 s           35 cycles 

72°C, 30 s 

72°C, 5 min 

2.3.1.3 Agarose gel electrophoresis: 
1) Prepare 2% agarose gels with ethidium bromide. 

2) Add 5 µL of 6× loading dye to the PCR product.  

3) Load 15 µL of the mixture to the wells and run the gel at 120-150 V in 1×TBE 

buffer for ~45 min. 

4) Photograph the gel under a UV detection system. 

 Confirmation of correct targeting by Southern blot 

2.3.2.1 Preparation of DNA samples from small mouse tissue samples or 
ES cell pellets 

 
DNA lysis buffer for tissue samples or ES cell pellets 

Component, final conc. Stock Volume/weight 
20 mM Tris-Cl, pH 8.0 1 M, pH8.0 1 mL 
5 mM EDTA 0.5 M, pH 8.0 5 mL 
1% SDS 20% 25 mL 
400 mM NaCl 5 M 40 mL 
H2O  ad 500 mL 

         Store at RT. Add 0.4 mg/mL proteinase K before use. 
 

1) Collect dissociated ES cells or tissue samples. Tissue samples can be 2 mm 

of tail biopsies or about 100-200 mg tissue from a sacrificed mouse.  

2) Add 1 mL/55 cm2 cells or 4 mL/100 mg tissue of DNA lysis buffer, and incubate 

at 55 °C with agitation in a water bath overnight.  

3) Add the same volume of phenol/chloroform/isoamyl alcohol; shake for 30 min 

on a shaker.  

4) Centrifuge at 13,000 rpm, 5 min at RT. 

5) Transfer the upper aqueous phase to a new tube. Add the same volume of 

chloroform/isoamyl alcohol. Shake for 30 min on a shaker.  

6) Centrifuge at 13,000 rpm, 5 min at RT.  
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7) Transfer the upper aqueous phase to a new tube. Add the same volume of 

chloroform/isoamyl alcohol. Shake for 15 min on a shaker.  

8) Transfer the upper aqueous phase to a new tube. Add the same volume 2-

propanol. Shake for 30 min on a shaker.  

9) Centrifuge for 10 min at 10,000 rpm and 4°C. 

10) Wash the DNA twice with 70% Ethanol.  

11) Dry the DNA pellet under vacuum (Eppendorf Concentrator 5301) for 10 min at 

40°C. 

12) Re-dissolve in 50 µL (tail tip biopsy, small tissue samples, ES cell pellets) up 

to 300 µL (larger tissue samples). 

13) Estimate DNA concentration with a final dilution of 1:100 by UV spectroscopy. 

Store DNA at –20°C. 

2.3.2.2 Enzymatic restriction of genomic DNA 
5-10 µg of DNA are digested at 37°C overnight. The digestion reaction is 

Restriction enzyme buffer (NEB1) 5 μL 
100×BSA 0.5 μL 
KpnI 1 μL (20 U) 
DNA + ad H2O 43.5 μL 
Total 50 μL 

 
      Southern blot with the digested DNA is performed as described in 2.2.1.7B.  

 Histology  
For the analysis of fluorescence in organs, mice are anesthetized with isoflurane and 

sacrificed by cervical dislocation. Organs are isolated in ice-cold PBS and whole-

mounts are observed with a fluorescence stereomicroscope with a EGFP filter set 

(Discovery, Carl Zeiss Microscopy GmbH, kindly provided by MPI Tuebingen). Organs 

are further processed for sectioning; mounted sections are detected under an epi-

fluorescence microscope with a YFP filter set (excitation filter 497/16 nm, 516 nm 

dichroic mirror, and emission filter 535/22 nm) or a mT red fluorescence filter set 

(excitation filter 543/22 nm, 565 nm dichroic mirror, and emission filter 610/75 nm).  
 
10×TBS 
1 M Tris, 1.5 M NaCl; dilute 1:10 for 1×TBS, adjust pH7.4, store at RT. 
 
30% Sucrose 
Dissolve 30 g sucrose in 100 mL PBS, store at 4°C. 
 
4% PFA 
Work inside a fume hood. Weigh 4 g paraformaldehyde (PFA) in 100 mL PBS. Heat while 
stirring to 55-57°C until the PFA gets dissolved. Allow the solution to cool down and aliquot into 
5-10 mL in 15-mL tubes. Store at -20°C. Thaw it at 37°C before use. 
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Mounting medium 
Shandon ImmuMount (ThermoFisher HealthCare) 
 
Normal goat serum  
(NGS; Axxora, Enzo Life Sciences GmbH), store in 1 mL aliquots at 4°C 
 
SuperFrost Plus glass slides (Thermo Fisher) 
 
Tissue-Tek 
Tissue-Tek O.C.T. compound (Sakura Finetek GmbH). 
 
 

1) Fix the dissected tissue with precooled 4% PFA, 4°C for 16-24 h. 

2) Dehydrate with 30% sucrose ≥16 h at 4°C (until the tissue sinks to the bottom 

of the tube). 

3) Embed organs in TissueTek O.C.T. compound. Freeze the embedded samples 

in liquid nitrogen, and store them at −20°C. 

4) Cut cryosections (e.g., 10 µm) on a cryostat (Microm, Thermo Fisher, AG 

Jansen). Mount the sections on SuperFrost Plus glass slides. Dry them briefly 

at RT. Continue with next steps or store them at -20°C. 

5) Encircle the slides with a hydrophobic pen. 

6) Rinse slides in 1×TBS for 3 times, 15-30 min each.  

Steps 7-12 are optional for immunostaining of sections. 

7) Rinse slides in 1×TBS-T (0.25% Triton X-100 in TBS) once, 15 min. 

8) Block with 3% normal serum (varied with species of secondary antibody) in 

TBS-T for at least 60 min at RT. 

9) Incubate with primary antibodies in 3% normal serum/TBS for 24-72 h, at RT. 

10) Rinse in TBS for 3 times, 15 min each. 

11) Incubate with secondary antibodies in 3% normal serum/TBS for 60 min at 4°C. 

12) Rinse in TBS for 3 times, 15 min each. 

13) Wash once with H2O. 

14) Mount with mounting medium and cover with a glass coverslip. 

 Isolation of primary cells 

2.3.4.1 Smooth muscle cells 
Smooth muscle cells (SMCs) were isolated from aorta (vascular SMCs, VSMCs), and 

colon (colonic SMCs, CSMCs). Aortic or colonic smooth muscle tissue was digested 

into single cells and plated to glass coverslips. Cells were grown at 37°C and 6% CO2 

for 5-7 days and serum-starved for 24 h before microscopic/FRET analysis. 
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10 mg/mL Collagenase 
Dissolve 100 mg collagenase (Sigma-Aldrich) in 10 mL Ca2+-free medium, aliquot to 0.5 mL 
and store at −20°C. 
 
10 mg/mL Hyaluronidase 
Dissolve 100 mg hyaluronidase (Sigma-Aldrich) in 10 mL Ca2+-free medium, aliquot to 0.5 mL 
and store at −20°C. 
 
100 mg/mL BSA 
Dissolve 0.5 g BSA in 5 mL Ca2+-free medium, sterilize by filtration, aliquot to 0.5 mL and store 
at −20°C. 
 
100 mg/mL DTT 
Dissolve 0.5 g dithiothreitol (DTT) in 5 mL Ca2+-free medium, sterilize by filtration, aliquot to 0.5 
mL and store at −20°C. 
 
7 mg/mL Papain 
Dissolve 100 mg papain (Sigma-Aldrich) in 14.29 mL Ca2+-free medium, aliquot to 0.5 mL and 
store at −20°C. 
 
SMC culture medium  

Component Final conc. Volume/weight 

DMEM 90% 445 mL 

FCS 10% 50 mL 

Pen/Strep  5 mL 

 
Ca2+ free medium 

Component Final conc. 
(mM) 

 Volume/weight 

Na-Glutamate 
Monohydrate (Merck) 

85  15.91 g 

NaCl 60  3.5 g 
HEPES 10  2.38 g 
KCl 5.6  0.42 g 
MgCl2·6H2O 1  0.2 g 
H2O   ad 1 L 

 
Enzyme solution A 

Component Final conc. 
(μg/μL) 

Stock 
(μg/μL) 

Volume/weight 
 

Papain  0.7  7  100 μL 
BSA  1  100  10 μL 
DTT 1  100  10 μL 
Ca2+-free medium   ad 1 mL 

  
  Enzyme solution B 

Component Final conc. 
(μg/μL) 

Stock 
(μg/μL) 

Volume/weight 

Hyaluronidase  1  10  100 μL 
Collagenase  1  10  100 μL 
BSA  1  100  10 μL 
Ca2+-free medium   ad 1 mL 
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1) Dissect aorta and colons from mice and wash with 1×PBS.  

2) Isolate the smooth muscle tissue under a stereomicroscope. Clean aorta of 

adjacent fatty tissue, cardiac tissue, lung tissue and blood in PBS under a 

stereomicroscope. For colon, remove remaining feces from the colon by 

flushing with PBS using a syringe with a bended needle. Remove remaining 

mesenteries, fat, and blood vessels. Peel off the smooth muscle layer from the 

enteric tissue. 

3) Cut aorta/colon into small pieces. 

4) Incubate tissues for 45 min with enzyme solution A in a water bath at 37 °C, 

use 1 mL for 1-4 aorta; 1.5 mL for 1-4 colons.  

5) Invert every 10 min during incubation. 

6) Centrifuge for 2 min at 200 g at RT. 

7) Remove and discard supernatant carefully. 

8) Treat tissues with enzyme solution B, use same volume as in step 4. 

9) Incubate in the water bath at 37 °C again for 5-10 min, depending on age of 

the mice and quality of enzymes. Resuspend after 5 min every 2-3 min using a 

pipette until a turbid suspension is formed. 

10) Add 10 mL culture medium to the aorta cell suspension in a 15-mL tube to stop 

the digestion. 

11) Spin down the cells in a centrifuge for 7 min at 200 g at RT.  

12) Remove supernatant, resuspend the cell pellet with 0.5 mL culture medium per 

aorta. 

13) Count cells and control viability with trypan blue, 1-2.5×105 cells can be 

expected per aorta, the viability should be higher than 90%; and a higher yield 

for colon. 

14) Dilute cells at 6×104 VSMCs/mL, 3×104 CSMCs/mL. Seed cells at densities of 

1.8×104 VSMCs/cm2, and 0.9×104 CSMCs/cm2. For example plate 1.0 mL of 

each cell suspension to 20 mm coverslips in 12-well plates. 

15) Grow cells at 37 °C with 6% CO2 in a cell culture incubator. 

16) After 3-4 days, check attachment of the cells in a microscope and change 

culture medium. After 5-7 days, cells reach ≥70% confluence and are ready for 

analysis. 

2.3.4.2 Tail tip fibroblasts 
The tail tip fibroblasts were obtained from adult mouse tail. The mouse tail was skinned, 

minced and plated onto a 12-well plate with glass coverslips. Cells were maintained 

for 7-10 days in DMEM containing 10% FBS before microscopic/FRET analysis. 
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1) Cut the tail from an adult mouse and wash with PBS. 

2) Incise the tail dermis lengthwise with an injection needle, peel off the superficial 

dermis and cut the tail into 1 cm pieces. 

3) Place 1-2 pieces into a 12-well plate with coverslips and 500 µL culture medium 

containing 10% FBS. 

4) Incubate at 37 ℃, 6% CO2 for 5 days without movement. 

5) Remove the tail piece and change with 1 mL culture medium.   

2.3.4.3 Isolation of DRG neurons  
DRG neurons reside in the dorsal root ganglion. The mouse spinal cord consists of 8 

pairs of cervical, 13 pairs of thoracic and 4 pairs of sacral DRGs totaling to 60 ganglia. 

In E10-E13, the afferent axons reach the DREZ of the spinal cord and display a 

stereotyped pattern of T- or Y-shaped bifurcation. E12.5 DRG neurons are suitable for 

the analysis of axonal branching [85]. Normally, cells from one E12.5 embryo are 

sufficient for plating 6 wells of a 6-well plate.  
 
Ethanol (96%)        
Use 96 mL of absolute Ethanol, make volume with H2O to 100 mL. 
 
1 M HCl (3.2%)       
Add 4.1 mL 37% HCl to 45.9 mL H2O. Prepare freshly under a fume hood.  
 
150 mM Borate buffer       
Dissolve 1.67 g Boric acid in 180 mL H2O, adjust to pH 8.3 with NaOH and store at 4°C. 
 
1 mg/mL Poly-D-lysine 
Dissolve 10 mg poly-D-lysine (PDL, Sigma-Aldrich) in 10 mL H2O and shake thoroughly. Aliquot 
to 0.5 mL and store at -20°C. 
 
Horse serum  
Life Technologies, heat-inactivated (30 min at 56°C). Aliquot to 50 mL and store at −20°C. 
 
Laminin (20 µg/mL)          
Sigma-Aldrich, dilute 1mg in 50 mL PBS. Aliquot to 2 mL and store at -20°C. 
 
0.4 g/mL Glucose         
Dissolve 4 g D-glucose in 10 mL DMEM at 37°C for 30 min, filter sterilize and store at 4°C.  
 
NGF (50 µg/mL) 
Dissolve 5 µg NGF (Alomone labs) in 100 µL PBS. Aliquot to 20 µL and store at -80°C  
 
DRG culture medium 

Component Final conc. Stock Volume/weight 
DMEM+F12 medium 80%  4.5 mL+4.5 mL 
Horse serum  10%  1 mL 
2 mM Glutamine 1x 100x, 200 mM 100 µL 
Pen/Strep 1x 100x, 100 µL 
Glucose 8 mg/mL 4 g/mL 20 µL 
NGF 50 ng/mL 50 µg/mL  10 µL 

           Prepare freshly before dissection of DRGs, store at 4°C. 
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A. Pretreatment of glass coverslips 
1) Dissolve 4 pellets of NaOH in 10 mL H2O. 

2) Add 35 mL ethanol 96%. 

3) Fill a 250 mL plastic container with this solution and agitate 25-50 coverslips 

overnight on a shaker. 

4) Wash 5-10 times with H2O. 

5) Agitate overnight in 1 M HCl. 

6) Wash 5-10 times with H2O. 

7) Store the clean coverslips (e.g., Ø30 mm) in 96% ethanol or dry it before use. 

 

B. Coating of coverslips 
One day before dissection, coat the coverslips with poly-D-lysine (PDL), and 

change to laminin the next morning. 

1) Remove the desired number of sterile coverslips, drip off superfluous ethanol. 

Place coverslips in a 6-well plate under a sterile hood. 

2) Dilute 1:10 from 1 mg/mL PDL to 100 μg/mL with 150 mM Borate buffer and 

pipet 150 μL onto one coverslip. Alternatively, add 100 μL of 100 μg/mL PDL 

onto one coverslip and cover with another.  

3) Put the plate into the incubator at 37°C for 4 hours. 

4) Wash 3 times with autoclaved water and dry for 30 min. 

5) Pipet 150 µL laminin (20 µg/mL) onto a coverslip and incubate at 37°C over 

night. Alternatively, pipette 100 μL of laminin onto one coverslip and cover with 

another. 

6) The next day, before use, wash 2 times with sterile H2O and once with PBS. 

Do not let laminin dry. 

 

C. Dissection of embryonic DRGs 
1) Mate 4-6 C57BL/6N females with 2-3 either wild type C57BL/6N or sensor 

transgenic male mice, and separate plug-positive females at 0.5 dpc.  

2) On the day of DRG neuron preparation (12.5 dpc). Prepare an ice box with ice 

and cold PBS, a 2 mL-tube with 900 μL PBS. 

3) Sacrifice pregnant mouse by cervical dislocation. Open the abdominopelvic 

cavity, isolate the bilateral uterine horns and transfer them into a 10-cm Petri 

dish with ice-cold PBS. 
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4) Incise the uterine wall lengthwise with small, straight scissors and peel away 

amniotic sac from the placenta and cut the umbilical cord. Transfer the 

embryos in a new Petri dish with ice-cold PBS. 

5) If sensor transgenic mice are used, identify genotype with a LED lamp (gift of 

Dr. L. Jaffe) by detecting the sensor fluorescence. 

6) Decapitate the embryos; Remove tail, limbs. Wash the carcasses 2 times in 

PBS. Transfer the torsi to a sheet of PBS-wet filter paper in a lid of Petri dish 

with its dorsal side up on the paper. 

7) Working under a dissecting stereoscope with a magnification of 10-16x, 

carefully pinch the skin of the embryo above the spinal cord with a pair of fine 

tipped forceps and gently tear it apart; beginning in the middle, proceed first 

towards the tail and then resuming from the middle towards the anterior side. 

8) Wet the embryo from time to time with two or three drops of PBS to prevent it 

from drying. 

9) Detach the DRGs and the spinal cord from the surrounding cartilaginous 

vertebral column by horizontal sliding movements with the blade of a fine 

forceps with inside-polished tips; Transfer the spinal cord to a new Petri dish 

with cold PBS. 

10) Rip off the DRGs and transfer to the 2-mL tube with ice-cold PBS. 

 

D. Dissociation of embryonic DRGs 

1) Add 100 µL 10×trypsin/EDTA (0.5/0.2%, Life technologies) to the 2-mL tube 

with DRGs and incubate 20 min at 37°C; flick tube from time to time; triturate 

10 times with a 1 mL pipette at the end of trypsinization. 

2) Add 1 mL DRG culture medium without NGF. 

3) Centrifuge 4 min at 200 g at RT. 

4) Carefully remove supernatant and resuspend in 1.2 mL DRG culture medium 

5) Count cells and adjust the cell number to 20,000 cells/mL. 

 

E. Embryonic DRG neuron culture 
1) Plate 200 µL cell suspension per 30 mm coverslip in a 6-well plate. 

2) Incubate at 37°C and 6% CO2. 

3) Optional: after 4 hours (when cells have attached to the substrate), carefully 

add 800 µL DRG medium if culture for overnight. 

4) Take cultures after 4-16 h for analysis. 
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F. Isolation of adult DRG neurons. 
1) Sacrifice mouse of an age of 6-20 weeks by cervical dislocation. 

2) Dissect the spine from the back of the mouse and transfer it into a Petri dish.  

3) Coarsely free the spine from surrounding muscle tissue. 

4) Cut the spine with appropriate scissors with the spinal cord longitudinally in 

two halves. 

5) Under a stereomicroscope, carefully pull out the spinal cord from the spine to 

see the DRG attached to the spinal cord. 

6) Pick with forceps a DRG and cut through the dorsal root above and below the 

DRG. 

7) Transfer the DRG to 1 mL ice-cold PBS. Repeat for remaining DRGs. 

8) Add 10 µL collagenase to the tube with DRGs and incubate 20-30 min at 37°C. 

9) Centrifuge 200 g for 2 min. 

10) Carefully aspirate supernatant. 

11) Add 1 mL 1×trypsin/EDTA and incubate for 20 min at 37°C; flick tube from time 

to time; Triturate 10 times with a 1 mL pipette at the end of trypsinization. 

12) Add 1 mL DRG culture medium without NGF. 

13) Centrifuge at 200 g for 4 min. 

14) Remove supernatant and resuspend in 1.2 mL DRG culture medium. 

15) Plate about 200 µL cell suspension onto a 30 mm coverslip in a 6-well plate. 

16) Incubate at 37°C and 6% CO2. 

17) Take culture after 16-24 hours for analysis. 

 Transfection of primary cells  
Isolated R26-CAG-cGi500(L2) primary cells were subjected to Cre excision by 

transfection of a Cre-expressing plasmid to validate a functional L2 allele. 

Lipofectamine 2000 (Life Technologies) was used for transfection.  

1) Grow cells to a confluence of 80% or higher. 
2) Change the medium to 500 µL DMEM prior to transfection. 
3) Prepare two 1.5-mL tubes as follows:  

                for one well of a 24-well plate: 
 OptiMEM DNA (pSG5-Cre) Lipo 2000 
Tube A 50 µL 0.8 µg  
Tube B 50 µL  2.0 µL 

                 
                for one well of a 6-well plate: 

 OptiMEM DNA (pSG5-Cre) Lipo 2000 
Tube A 250 µL 4.0 µg  
Tube B 250 µL  10 µL 
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4) Within 5 min, mix Tube B into Tube A; gently mix by tapping the tube. 
5) Incubate for 20-30 min, not longer, 
6) Add the 100 µL mixture to the cells with 500 µL DMEM, 
7) Change medium next morning. Cells are analyzed 48 h after transfection. 

 Thrombus formation in a flow chamber 
Collagen is an important agonist for platelet activation and adhesion in vivo. Collagen-

induced thrombus formation has been elicited in flow chamber assays. Native blood 

drawn from an organism flows over immobilized collagen fibrils coated on a coverslip 

positioned in a parallel-plate perfusion chamber [189]. 

 

Murine blood was perfused through a collagen-coated glass coverslip (24 × 60 mm), 

which forms the bottom of an ibidi flow chamber (ibidi GmbH) with 0.2 mm height. The 

thrombi formed on the coverslip were used for further imaging analysis (Figure 7). 
 
10×Tyrode platelet buffer 

Component Volume/weight 
NaCl 80 g 
NaHCO3 10.15 g 
KCl 1.95 g 
H2O ad to 1 L 

          Store at 4°C. 
 
1×Tyrode platelet buffer 
Prepare freshly from 10×Tyrode platelet buffer in a dilution of 1:10, supplement with 0.1% 
glucose, and 0.1% BSA, adjust pH to 7.4 with HEPES.  
 
1% BSA 
Dissolve 1 g BSA in 100 mL H2O. Filter sterilize and store at 4 °C. 
 
Heparin (20 U/mL in TBS) 
Dissolve 20 U/mL heparin in TBS, containing 20 mM Tris/HCl; 137 mM NaCl; pH 7.3.  
 

1) Coat a coverslip (24 × 60 mm) with 200 µg/mL fibrillar type I collagen (Nycomed) 

overnight at 4°C. 

2) Block with 1% BSA solution for at least 30 min at RT. 

3) Anesthetize mice by diethylether inhalation. 

4) Collect ~700 μL of blood from the retroorbital plexus of each mouse and collect 

into a tube containing 300 μL of 20 U/mL heparin. 

5) Mix 2 parts of blood with 1 part of Tyrode buffer and fill a 1-mL loop using a 1-

mL syringe. 

6) Flow whole blood over the flow chamber at 15 mL/h with a syringe pump. 
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Figure 7.  Flow chamber system for cGMP and Ca2+ visualization. 

The thrombus is formed on a coverslip attached to an ibidi flow chamber and superfused with 
Tyrode buffer using a syringe pump. Two FPLC injection valves are connected between the 
syringe pump and flow chamber for drug application. Sample loops (loop1 and 2) are attached 
to injection valve 1 and 2, respectively, and can be loaded with drugs at the same time. By 
changing the valve position from loading to injection, the drug solution can be delivered 
continuously to the cells. Note that adherent cells like VSMCs can also be grown on coverslips 
and attached to the ibidi chamber before measurement under a microscope.  

 FRET measurement in primary cells 
The imaging setup was based on an inverted Axiovert 200 microscope (Carl Zeiss 

Microscopy GmbH) equipped with LD Plan NeoFluar 20×/0.40 air or Plan NeoFluar40× 

/1.30 oil objectives and optional 1.6× Optovar magnification, a light source with 

excitation filter switching device (Oligochrome, TILL Photonics GmbH), a DualView 

beam splitter with 516 nm dichroic mirror and CFP and YFP emission filters (480/30 

nm and 535/40 nm) (Photometrics), and a CCD digital camera (Retiga 2000R, 

QImaging).  

 

To set up the field of view, cGi500 fluorescence was observed through a YFP filter set 

(excitation filter 497/16 nm, 516 nm dichroic mirror, and emission filter 535/22 nm). 

FRET measurements were performed with a CFP excitation filter (445/20 nm) and a 

470 nm dichroic mirror as well as the beam splitter device, where emission 

wavelengths were separated with a 516 nm dichroic filter and 480/30 nm and 535/40 

nm emission filters for CFP and YFP fluorescence, respectively. The system was 

computer-controlled by Live Acquisition software (TILL Photonics GmbH) and imaging 

data was recorded with arivis Browser 2D (arivis GmbH). 
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For cGMP imaging of platelet thrombi formed in a flow chamber, or VSMCs grown on 

a coverslip for shear stress experiments, the cells were superfused with Tyrode platelet 

buffer at room temperature using a syringe pump (B-Braun) at 15 mL/h with 2-mL and 

7-mL sample loops connected in series to apply drugs. For cGMP imaging of primary 

cells including DRG neurons, adult tail tip fibroblasts and smooth muscle cells, cells 

were grown on glass coverslips. A coverslip was attached into a custom-built 

superfusion imaging chamber [135]. Samples were superfused with Tyrode imaging 

buffer at room temperature using a FPLC pump (Pharmacia P-500, GE Healthcare 

Europe GmbH) set to 60 mL/h and two injection valves (Pharmacia V-7, GE 

Healthcare). The solution in the imaging chamber was continuously removed by 

aspiration with a vacuum pump (Laboport N86, KNF Neuberger). 
 
Tyrode imaging buffer 

Component Final conc. Volume/weight 
NaCl 140 mM 40.91 g 
KCl 5 mM 1.86 g 
MgCl2·H2O 1.2 mM 1.22 g 
CaCl2 2.5 mM 1.39 g 
Glucose 5 mM 4.5 g 
HEPES 10 mM 11.92 g 
H2O  ad to 5 L 

         The native pH is ~5.3. Adjust pH to 7.4 with NaOH. Autoclave and store at 4°C. 

100 μM ANP 
Dissolve 0.1 mg ANP (1-28, rat; Sigma-Aldrich) in 0.327 mL H2O, aliquot to 50 μL and store at 
−20°C. 
 
100 μM CNP 
Dissolve 0.5 mg CNP (Sigma-Aldrich) in 2.275 mL H2O, aliquot to 50 μL and store at −20°C. 
 
100 mM DEA/NO 
Dissolve 50 mg 2-(N,N-diethylamino)-diazenolate-2-oxide diethylammonium salt (DEA/NO, 
Axxora) in 2.42 mL ice-cold 10 mM NaOH, aliquot to 50 μL and store at −20°C. 
 
100 mM Spermine/NO 
Dissolve 25 mg (Z)-1-[N-[3-aminopropyl]-N-[4-(3-aminopropylammonio)butyl]-amino]diazen-1-
ium-1,2-diolate (Spermine/NO, Axxora) in 0.95 mL ice-cold 10 mM NaOH, aliquot to 50 μL and 
store at −20°C. 
 
10 mM DETA/NO 
Dissolve 50 mg (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate 
(DETA/NO, Axxora) in 0.61 mL ice-cold 10 mM NaOH, aliquot to 50 μL and store at −20°C. 
 
10 mM EHNA 
Dissolve 10 mg erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA, Axxora) in 3.19 mL DMSO, 
aliquot to 100 μL and store at −20°C. 
 
10 mM BAY 41-2272 
Dissolve 5 mg BAY 41-2272 (Santa Cruz) in 1.39 mL DMSO, aliquot to 100 μL and store at 
−20 °C.  
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10 mM BAY 60-7550  
Dissolve 1 mg BAY 60-7550 (Santa Cruz) in 0.21 mL DMSO, aliquot to 50 μL and store at 
−20°C. 
 
10 mM Milrinone  
Dissolve 10 mg Milrinone (Santa Cruz) in 4.73 mL DMSO, aliquot to 500 μL and store at −20°C. 
 
10 mM Zaprinast 
Dissolve 20 mg Zaprinast (Santa Cruz) in 7.37 mL DMSO, aliquot to 500 μL and store at -20°C. 
 
10 mM Pyr3 
Dissolve 5 mg Ethyl-1-(4-(2,3,3-trichloroacrylamide)phenyl)-5-(trifluoromethyl)-1H-pyrazole-4-
carboxylate (Pyr3, Sigma-Aldrich) in 1.1 mL DMSO, aliquot to 200 μL and store at -20°C. 
 
20 mM ODQ 
Dissolve 10 mg 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, Axxora) in 2.67 mL DMSO, 
aliquot to 100 μL and store at −20°C. 
 
30 mM Sildenafil 
Dissolve 50 mg Sildenafil (Santa Cruz) in 25 mL H2O, aliquot to 1.5 mL and store at −20°C. 
 
5 mM Vinpocetine 
Dissolve 20 mg Vinpocetine (Biomol) in 11.41 mL DMSO, aliquot to 1.5 mL and store at −20°C. 
 
50 mM Tadalafil 
Dissolve 50 mg Tadalafil (Santa Cruz) in 2.57 mL DMSO, aliquot to 150 μL and store at -20°C. 
 
500 mM IBMX  
Dissolve 1.0 g 3-isobutyl-1-methylxanthine (IBMX, Sigma-Aldrich) in 9.0 mL DMSO, aliquot to 
1.5 mL and store at −20°C. 

 Simultaneous measurement of Ca2+ and cGMP 
For independent Ca2+ measurement, adherent cells or thrombi formed on a coverslip 

attached with the ibidi flow chamber were loaded with Fura-2, AM. The optical system 

including the inverted microscope and a CCD digital camera was the same as the one 

for FRET measurement as described before (2.3.7). For Fura-2 dual excitation ratio 

imaging, a filter switching device based on a galvanometer driven mirror (Oligochrome, 

TILL Photonics) was equipped with two narrow band pass excitation filters, one 340/26 

nm and one 387/11nm filter. A 440 nm long pass emission filter was used to attenuate 

shorter wavelengths than 440 nm and transmitting longer wavelengths. A 410 nm 

DCLP dichroic mirror was used. Therefore, emission fluorescence was recorded above 

440 nm while switching excitation at 340 nm and 380 nm.  

 

For simultaneous Ca2+ and cGMP measurement, whole blood from R26-CAG-

cGi500(L1) mice was used to form thrombi on a coverslip and then loaded with Fura-

2, AM. A combination of filter and mirror sets were used to allow capture of Fura-2 and 

FRET images simultaneously. A filter switching device with one 340/26 nm and one 

387/11 nm narrow band pass filter for Fura-2 excitation, and a CFP excitation filter 

(445/20 nm) for FRET excitation were used. For both Fura-2 and FRET emission, a 
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470 nm dichroic mirror and the DualView beam splitter containing a 516 nm dichroic 

mirror and CFP and YFP emission filters (480/30 nm and 535/40 nm) were used. In 

every measurement cycle, cells were excited at  340 nm, 380 nm and 445 nm and 

emitted light was recorded at 480 nm and 535 nm, therefore in total 6 images were 

captured (Table 4). Image 2 was defined as F340, image 4 as F380 for Fura-2 

measurement, and image 5 as F480 and image 6 as F535 for FRET measurement.  

 
Table 4. Image acquisition for simultaneous measurement of Fura-2 and FRET 

Excitation (Ex.) filter Emission (Em.) filter Image No. 

340/26 nm CFP emission filters (480/30 nm) 1 

YFP emission filters (535/40 nm) 2 

387/11 nm CFP emission filters (480/30 nm) 3 

YFP emission filters (535/40 nm) 4 

445/20 nm CFP emission filters (480/30 nm) 5 

YFP emission filters (535/40 nm) 6 

 
Fura-2, AM Tyrode solution 

Mix 2.5 μL Fura-2, AM (1 mM in DMSO, Calbiochem) with 1 mL Tyrode buffer. Vortex vigorously 
to disperse Fura-2, AM in solution. Prepare freshly and avoid light exposure. 
 

1) Load 1 mL Fura-2, AM to the cells in the flow chamber using a 1-mL syringe.  

2) Incubate for 45 min at RT in the dark. 

3) Wash cells by perfusion with Tyrode buffer for 5 min. 

4) Perform imaging with excitation and emission wavelength as required for 

independent Ca2+ imaging or simultaneous Ca2+/cGMP imaging. Generally, 

record images at 2 s or 5 s interval. 

 Local application of compounds 
DRG neurons were grown on 30 mm coverslips for 4 to 16 h. Each coverslip to be 

assayed was transferred to a customized superfusion chamber. Local CNP application 

to compartments of DRG neurons, such as growth cones, was achieved by ejection 

from a CNP-loaded glass pipette with 10 μm bore width (Biomedical Instruments), 

which was connected to a microinjector (Femtojet, Eppendorf, kindly provided by Prof. 

Dr. Gabriele Dodt). 

 

1) Load a glass pipette with CNP solution diluted in Tyrode buffer (100 nM-1 µM). 

2) Connect the glass pipette to a Femtojet microinjector. 

3) Attach the Femtojet microinjector pipette holder to a micromanipulator. 
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4) Set up the superfusion chamber with cells, connect the global perfusion system 

with Tyrode buffer. 

5) Search for a neuron for imaging. Position the glass pipette that it is ~50 μm away 

from the growth cone at an angle of ~45°. The distance can be measured with 

the FRET Live Acquisition software. 

6) Draw regions of interest (ROIs) in the soma, axon and growth cone. Start FRET 

measurement. 

7) Eject CNP from the glass pipette by an air pulse of 20-30 hPa with the 

microinjector for 20-30 s. Superfuse Tyrode buffer in the same or reverse 

direction of the glass pipette in order to remove the agonists immediately.  

 Data analysis and statistics 
Live Acquisition software (TILL Photonics) was used for image acquisition and online 

analysis. Offline image analysis was performed with arivis Browser 2D software (arivis 

GmbH) or ImageJ [190]; for further data evaluation, Microsoft Excel (Microsoft Corp.), 

Sigmaplot (Systat Software, Inc.), and Microcal Origin (OriginLab Corp.) were used. 

1) Select regions of interest. Cell-free regions were selected as background.  

2) Background correction: for FRET measurement, background-corrected F480 and 

F535 signals were used to calculate the F480/F535 ratio, R. 

3) Baseline normalization: ∆F480/F480, ∆F535/F535, and ∆R/R traces from single cells 

or thrombus were obtained by normalization to the baseline recorded for 2-5 

min at the beginning of each experiment. 

4) Optionally, for ∆R/R peak area estimation, the Peak Analyzer Module of Origin 

was used; single cell traces were corrected for baseline drifts by subtracting a 

linear baseline, and peak borders were manually defined.  

5) FRET signal ∆R/R at different time points was reconstructed by ImageJ and 

represented by pseudocolor. 

For Ca2+ imaging or simultaneous Ca2+ and cGMP imaging, F340 and F380 from Fura-2 

excitation or fluorescence emission of CFP (F480) and YFP (F535) were subjected to 

similar evaluation, respectively. 

 

Statistical differences between two groups were determined using the two-tailed 

Student`s t test. Statistical differences among more than two groups were analyzed by 

one-way ANOVA followed by Tukey's multiple comparison test. P values <0.05 were 

considered significant. For example, in PDE inhibitor studies, peak areas before and 

after inhibitor application, and after washout were compared using one-way ANOVA 

followed by Tukey's multiple comparison test in SigmaPlot 11. 
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3 Results 

3.1 Generation and characterization of cGMP sensor 

knock-in mice 
We used the recently developed FRET-based cGMP sensor, cGMP indicator with an 

EC50 of 500 nM (cGi500), to generate transgenic mice for cGMP imaging. cGi500 is an 

improved cGMP FRET sensor, which excels in terms of relatively high affinity, exquisite 

selectivity for cGMP over cAMP and fast cGMP binding and dissociation kinetics [138]. 

To allow for tissue-specific imaging of cGMP, the Cre-loxP system was used. cGi500 

within a Cre recombinase-activatable cassette driven by the ubiquitous CAG promoter 

was targeted into the Rosa26 locus.  

 

The targeting strategy is illustrated in Figure 8A. The targeting vector pR26-CAG-

cGi500(L2) was constructed by replacing the mG sequence of pRosa26-mT/mG 

(Addgene plasmid 17787) [174] with the cGi500 coding sequence [138]. The resulting 

mT/cGi500 cassette (CAG-loxP-mT-loxP-cGi500) was preceded by the CAG promoter, 

which drives the expression of a loxP-flanked membrane-targeted tandem-dimer 

Tomato (mT, red) before and cGi500 (green) after Cre-mediated recombination, 

respectively.  

 

To perform gene targeting in ES cells, the targeting vector pR26-CAG-cGi500(L2) was 

linearized by the restriction enzyme KpnI, and 42 µg of purified linear vector was 

electroporated into ~1.0x107 R1 ES cells (genetic background: 129/Sv x 129/Sv-CP) 

[187]. 24 hours after electroporation, selection with 300 µg/mL G418 was applied to 

the ES cell culture. After 8 days of G418 selection, 200 clones were isolated and 

expanded. Genomic DNA from colonies were isolated in 96-well plate and subjected 

to EcoRV digestion and Southern blot analysis with a 5’ probe that binds to the Rosa26 

promoter region (Figure 8A and C). Three correctly targeted ES cell clones carrying 

the Cre-activatable L2 allele were identified. To generate ES cells with the ‘excised’ 

R26-CAG-cGi500(L1) allele, targeted R26-CAG-cGi500(L2) ES cells were transiently 

transfected with a Cre-expressing plasmid (pIC-Cre) [157] by electroporation to 

remove the floxed mT cassette. ES cell clones before Cre excision showed strong mT 

fluorescence, whereas expression of cGi500 was activated after mT removal, as 

revealed by YFP fluorescence detection (Figure 8B). Isolated ES cells underwent 

Southern blot analysis, showing a band shift from 20.2 kb (L2 allele) to 17.8 kb (L1 
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allele), which further confirmed excision of the mT DNA fragment (Figure 8C). 

Therefore, ES cells with targeted insertion of either the R26-CAG-cGi500(L2) allele or 

the R26-CAG-cGi500(L1) allele were successfully generated.  

 
Figure 8. Generation of R26-CAG-cGi500 mice.  
A. Schematic representation of the gene targeting strategy to insert a conditional cGi500 
construct into the murine Rosa26 locus (+ allele) in the intron between exon 1 and 2 (grey 
boxes). The targeting construct included the CAG promoter (PCAG) followed by the loxP-flanked 
(black arrowheads) membrane-targeted tandem-dimer Tomato (mT, red) and cGi500 (green). 
PCAG drives the expression of mT before and cGi500 after Cre-mediated recombination. 
Expression cassettes encoding a FRT-flanked (white arrowheads) neomycin resistance gene 
(Neo) and diphtheria toxin A (DTA) served as positive and negative markers for selection of ES 
cell clones. Homologous recombination between the targeting construct and the “+ allele” 
results in a “L2 allele” with two loxP sites, and Cre-mediated excision of mT results in the “L1 
allele” with one loxP site. Primers P1, P2, P3 (half arrows) in the diagram correspond to primers 
ROSA10, ROSA11, ROSA4 used for PCR genotyping of mice described in the text, respectively. 
The 5` probe and DNA restriction fragments used for Southern blot analysis of ES cell clones 
are also indicated. EV, EcoRV restriction sites. B. Targeted ES cells (+/L2) were transfected 
with a Cre-expressing plasmid resulting in recombined (+/L1) ES cell clones. Shown is a 
merged image of ES clones after electroporation excited with a YFP or mT filter set. Scale bar, 
100 μm. C. Southern blot of EcoRV-digested genomic DNA from wild type (+/+), targeted (+/L2) 
and Cre-recombined (+/L1) ES cell clones. The expected positions of the DNA fragments 
originating from the respective alleles are indicated on the left.  
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R26-CAG-cGi500(L2) ES cells carry the silenced but Cre-activatable “L2 allele”, 

whereas R26-CAG-cGi500(L1) ES cells carry the permanently activated “L1 allele” of 

the cGi500 sensor transgene. Both L2 and L1 ES cell clones were injected into 3.5 dpc 

C57BL/6N blastocysts to generate chimeric mice. Chimeras were crossed with wild 

type mice for germline transmission. Male chimeras were mated to C57BL/6N females 

to obtain heterozygous R26-CAG-cGi500(L2) mice [B6;129-Gt(ROSA26)Sortm1(ACTB-

tdTomato,-cGi500)Feil ] or R26-CAG-cGi500(L1) mice [B6;129-Gt(ROSA26)Sortm1.1(ACTB-

cGi500)Feil] on a mixed 129Sv/C57BL6 genetic background. Mice were further 

backcrossed to C57BL/6N animals. Note that the L2 and L1 mouse lines for further 

experiments were derived from ES cell clone A9 and A7G6, respectively (Table 5). 
 
Table 5. Overview of blastocyst injection and chimeric progenies 

Clone/ 
passage 

Blastocysts 
reimplanted Progeny Chimera gender (grade of chimerism and GLT) 

A9/P22 31 14 8♂ (80-90%, GLT, ☆), 2♂ (60-70%), 1♂ (30%),1♀ (70%) 
A9/P24 21 4 (†) no 
G12/P23 25 no no 
H10/P24 20 4 no 
A3/P22 16 no no 
A7/P23 27 9 no 
A7/P23 36 11 2♂ (60-80%), 1♂ (50%)  
F1/P23 32 12 1♂ (10%), 1♂ (60%), 1♀ (60%) 
A7G6/P29 26 6 1♂ (50%, GLT), 1♀ (50%) 

Grade of chimerism, an estimation of agouti coat color. GLT, germ-line transmission. ☆, 3 chimeras were 
examined for GLT and all showed GLT.  

 

 
Figure 9. Verification of targeted mouse lines. 
A. PCR genotyping of wild type (+/+), targeted (+/L2) and Cre-recombined (L1/L1) mice with 
genomic DNA from heart tissues. M: 1 kb plus ladder DNA marker. B. Southern blot of EcoRV-
digested genomic DNA of wild type (+/+), targeted (+/L2) and Cre-recombined (L1/L1) mouse 
heart tissue. The expected positions of the DNA fragments derived from the respective alleles 
are indicated on the left.  
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PCR-based genotyping of ear biopsies was done with primers ROSA10 (P1), ROSA11 

(P2), and ROSA4 (P3) [173]. ROSA10 and ROSA11 amplified a 330-bp fragment of 

the wild type ROSA26 locus, while ROSA10 and ROSA4 amplified a 250-bp fragment 

of the R26-CAG-cGi500(L2) or R26-CAG-cGi500(L1) allele (Figure 8A and 9A). 

Germline transmission of the targeted alleles was further verified by Southern blot 

analysis of tail, liver and heart DNA of germline transmitted progeny (Figure 9B, shown 

for heart DNA). Both R26-CAG-cGi500(L2) and R26-CAG-cGi500 (L1) mice were 

healthy and fertile. 

 

  
Figure 10. Global expression of cGi500 in R26-CAG-cGi500(L1) mice.  
cGi500 sensor fluorescence using an EGFP or YFP filter set was detected  in (A) live whole 
mounts (upper panel) and fixed cryosections (lower panel) of various organs from a 6-week-old 
transgenic mouse, (B) transgenic embryos (12.5 dpc), and (C) primary aortic VSMCs or (D) tail 
tip fibroblasts from adult animals. Stars indicate the positions of control samples from non-
transgenic littermates. Scale bars, 100 μm.  
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Next, we examined the labeling of mT and cGi500 in both L2 and L1 mouse lines by 

analysis of live whole mounts and paraformaldehyde-fixed cryosections. In L1 mice, 

global and robust cGi500 sensor expression was widely detected in organs and tissues 

of adult mice and in embryos, as well as in primary cells derived from them (Figure 10, 

and data not shown). At the single cell level, the fluorescence was homogeneously 

distributed in the cytoplasm, without nuclear labeling. Moreover, live visualization of 

primary neurons isolated from R26-CAG-cGi500(L1) mice showed strong labeling of 

cell bodies as well as their fine processes (e.g., Figure 14B), which enables cGMP 

imaging at subcellular fine structures like dendrites, axons and growth cones. The red 

fluorescence of R26-CAG-cGi500(L2) mice showed a similar pattern (upper panel of 

Figure 12, and data not shown), except that mT (a membrane-targeted red fluorescent 

protein) localized to the cell membrane (Figure 13). 

  

FRET-based cGMP imaging was performed with primary VSMCs isolated from 

heterozygous R26-CAG-cGi500(L1) mice with an epifluorescence microscope. 

Stimulation of cells with the cGMP-elevating drug CNP led to an increase in CFP 

fluorescence intensity (F480), and a decrease in YFP fluorescence intensity (F535), as a 

result of FRET reduction upon cGMP binding to the sensor protein. Overall, the 

increase of the F480/F535 ratio represents intracellular cGMP signals. The cGMP signal 

was robust; 50 nM CNP induced a ratio change (ΔR/R) up to ~40% in VSMCs, which 

corresponded to a peak concentration of >3 µM cGMP (Figure 11).  

 
Figure 11. cGMP FRET imaging in primary VSMCs from R26-CAG-cGi500(L1) mice. 

Stimulation for 2 minutes with CNP (50 nM) in VSMCs led to a reversible cGMP increase. Cyan, 
yellow, and black traces correspond to CFP emission (F480), YFP emission (F535), and the 
CFP/YFP emission ratio (F480/F535), respectively. Emission intensities and ratios were 
normalized to averaged baseline signals and given as ΔF/F and ΔR/R, respectively. Data 
shown are mean ± SEM; n=5 VSMCs. The scale bar of cGMP concentrations was derived from 
in-cell calibration of the cGi500 sensor [135].  
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To demonstrate that the L2 allele can be converted into a L1 allele by Cre-mediated 

recombination in vivo, resulting in tissue-specific expression of cGi500, R26-CAG-

cGi500(L2) mice were crossed to various Cre mouse lines (e.g., L7-Cre, Pf4-Cre, and 

SM22-Cre). The L7-Cre line has already been shown to label Purkinje cells in the 

cerebellum [188, 191, 192]. As expected, R26-CAG-cGi500(L2)+/-; L7-Cretg/+  mice 

showed clear labeling of Purkinje cells and axons with cGi500, while mT was 

complementarily expressed in the surrounding tissue (Figure 12).  

 
 
Figure 12. Cell-type specific expression of cGi500.  
Sagittal cerebellar sections prepared from 9 week-old R26-CAG-cGi500(L2)+/- ; L7-Cre+/+ (upper 
panel, control) or R26-CAG-cGi500(L2)+/- ; L7-Cretg/+ (lower panel) mice. Specific labeling of 
cGi500 in Purkinje neurons and mT labeling in the surrounding tissue demonstrated the 
conversion from mT to cGi500 depending on tissue-specific expression of Cre. Fixed 
cryosections of both genotypes were processed in the same way and images were taken under 
the same condition. Scale bars, 100 µm.   
 

Different cell types (VSMCs, CSMCs and tail tip fibroblasts) were isolated from R26-

CAG-cGi500(L2) mice and transfected by lipofection with a Cre-expressing plasmid, 

pSG5-Cre [160]. As early as 12 hours after transfection, green fluorescent cells were 

detected with a YFP filter set. 30-60% of cells showed green fluorescence 48 hours 

after transfection (Figure 13), indicating the excision of mT and activation of cGi500 

expression. Single-cell level detection confirmed mT localization in the plasma 

membrane, while cGi500 was homogeneously distributed in the cytoplasm without 

nuclear localization. A small proportion of cells also showed double-labeling of mT and 

cGi500 (yellow cells; Figure 13). In these cells, Cre-mediated recombination caused 

rapid onset of cGi500 expression, while mT protein was still retained. Overall, these 

data showed that cGi500 expression in the R26-CAG-cGi500(L2) mouse line was Cre-

dependent, and could be conditionally activated in a tissue-specific manner. 
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To validate the functionality of cGi500 after activation from the conditional L2 allele, 

the recombined cells were subjected to FRET cGMP imaging. Application of cGMP-

elevating drugs resulted in robust FRET changes (up to 40%) and, therefore, cGMP 

elevation in green cells (Figure 13). Isolated VSMCs were superfused for 2 min with 

CNP, which activates membrane-bound guanylyl cyclase, GC-B. Rapid and reversible 

CFP/YFP ratio changes indicate CNP-induced cGMP signals in the cells. Similar 

results were obtained with tail tip fibroblasts stimulated with CNP, and CSMCs 

stimulated with the NO-releasing compound, DEA/NO. DEA/NO did not induce FRET 

changes in fibroblasts, indicating the lack of sGC in these cells.  

 

 
Figure 13. Validation of a functional L2 allele in cells from R26-CAG-cGi500(L2) mice.  
VSMCs, fibroblasts, and CSMCs were isolated from R26-CAG-cGi500(L2) mice and then 
transfected by lipofection with a Cre-expressing plasmid. The detection of green fluorescent 
cells confirmed that Cre-mediated excision of the mT cassette enables cGi500 expression in 
all analyzed cell types (left panels). Sustained expression of mT is evidenced by the presence 
of double-labeled (yellow) cells. FRET imaging (right panels) was performed to test the sensor 
functionality in cGi500-positive cells. Cells were stimulated with CNP or DEA/NO (VSMCs with 
50 nM CNP, fibroblasts with 100 nM CNP followed by 100 nM DEA/NO, and CSMCs two times 
with 100 nM DEA/NO). Data shown are mean±SEM. The number of analyzed VSMCs, 
fibroblasts, and CSMCs was 8, 10, and 8, respectively. Scale bars, 100 µm.  
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Taken together, cGMP sensor knock-in mice with global or tissue-specific expression 

of cGi500 were successfully generated. The widespread sensor expression and robust 

FRET cGMP signals facilitate cGMP imaging and delineation of the cGMP signaling 

pathway in various cell types, intact tissues and living mice. 
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3.2 cGMP imaging in embryonic DRG neurons 
Axon branching is critical for the formation of neuronal connectivity. To understand the 

function of cGMP in sensory axonal guidance and bifurcation, we utilized our newly 

generated cGi500 sensor knock-in mice to image cGMP signals in embryonic DRG 

neurons. C57BL/6 female mice were mated with the cGi500 sensor knock-in mice 

(+/L1 or L1/L1) to obtain E12.5 embryos, from which embryonic DRG neurons were 

isolated (Figure 14A and B).  

 

 
Figure 14. CNP but not ANP or NO stimulates cGMP in embryonic DRG neurons. 
A. E12.5 DRG neurons were isolated and grown on glass coverslips coated with 100 µg/mL 
PDL and 20 µg/mL laminin. Cells were visualized under a phase-contrast microscope. Scale 
bar, 50 µm. B. cGi500 sensor expression was detected in E12.5 DRG neurons from R26-CAG-
cGi500(L1) with a YFP filter set. Scale bar, 20 µm. C. cGMP imaging in a E12.5 DRG neuron 
with global perfusion of drugs in the following order: 100 nM DEA/NO, 100 nM ANP, and 100 
nM CNP for 2 min each. The region of interest (ROI) for analysis was selected at the soma. 
 
In vivo, DRG neurons are initially bipolar with two axons, one afferent axon projecting 

into the spinal cord and one efferent axon growing into the periphery (skin, muscles, 

etc.). Later, the proximal parts of the two axons fuse to form one axon and therefore 

DRG neurons are called pseudo-unipolar cells. Beside this, DRG neurons are special 

in that they do not have dendrites [81]. However, in vitro cultures of dissociated DRGs 

display unipolar, bipolar and even sometimes multipolar morphology. This is due to the 

differences between the two-dimensional in vitro culture and the in vivo situation. Apart 

from neurons, DRGs contain also non-neuronal cells (glia and cells from the 

vasculature). In contrast to post-mitotic neurons, these cells are still dividing. Therefore, 

anti-mitotic supplements are often used in long-term cultures of DRGs to prevent the 

non-neuronal cells from overgrowing the neurons. We have seen neurite outgrowth 

70 

 



    Results 

within 2 hours. In 4 hours, the neurons on the coverslips can already be analyzed. In 

this study, FRET measurements were performed in DRG neurons after overnight 

culture. During this short period, we hardly found any non-neuronal cells (Figure 14A 
and 16, upper panel). High expression levels of cGi500 were detected throughout the 

soma, axon and growth cones of embryonic DRG neurons under an epifluorescence 

microscope (Figure 14B). This strong sensor fluorescence enables cGMP FRET 

imaging in DRG neurons. Superfusion of the cells with DEA/NO (100 nM) or ANP (100 

nM) did not cause any detectable elevation of the intracellular cGMP. In contrast, CNP 

(100 nM) increased cGMP robustly (Figure 14C). This suggests that embryonic DRG 

neurons express the CNP receptor, GC-B, while the ANP receptor, GC-A, and the NO 

receptor, sGC, are not present in embryonic DRG neurons. This is also in line with 

previous studies that GC-B is the only protein responsible for cGMP generation in DRG 

neurons, whereas no sGC or GC-A transcripts have been detected [67].   

 

The next question we asked is how cGMP in embryonic DRG neurons is degraded. 

PDEs are important components of the cGMP signaling pathway. They hydrolyze 

cGMP to GMP, and therefore lower intracellular cGMP levels. By applying different 

PDE inhibitors, it is possible to specify the PDE subtypes in embryonic DRG neurons. 

To evaluate the augmentation of cGMP transients by PDE inhibitors, CNP was applied 

for 2 or 3 times to DRG neurons (Figure 15). After the first stimulation, cells were 

incubated with PDE inhibitors for 5 min and then stimulated again with the same 

concentration of CNP in the presence of the inhibitor. In addition, in some cases a third 

application of CNP alone was performed after washing away the respective PDE 

inhibitor. To evaluate the effect of PDE inhibition on cGMP levels in response to CNP, 

the peak area of each cGMP transient was taken as a measure and all areas were 

normalized to the area of the first peak. IBMX is a non-specific PDE inhibitor. 

Preincubation with 100 µM IBMX significantly potentiated CNP-induced cGMP signals 

in DRG neurons (Figure 15A). Then we started to investigate which PDE subtypes are 

critical for degradation of CNP-derived cGMP. In the presence of the PDE1 inhibitor 

vinpocetine, cGMP elicited responses ~3 times larger compared to the stimulation 

without inhibitors. Inhibition of PDE2 with EHNA led to a ~4-fold cGMP increase of that 

caused by CNP alone. Similarly, another specific PDE2 inhibitor, Bay 60-7550, 

potentiated cGMP signals by ~4 fold. In contrast, inhibition of PDE3, 5, and other PDEs 

by milrinone, sildenafil and zaprinast, respectively, did not significantly change the 

CNP-induced cGMP transients in comparison to the control stimulations (Figure 15). 

We therefore conclude that PDE1 and PDE2 but not PDE5 or other PDEs catalyze the 

hydrolysis of cGMP in embryonic DRG neurons.  
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Figure 15. PDE1 and PDE2 are mainly responsible for CNP-derived cGMP degradation in 
embryonic DRG neurons. 
A. PDE inhibition with IBMX potentiates the CNP-induced cGMP responses. Cells were first 
superfused with 100 nM CNP, and once again in the presence of the PDE inhibitor IBMX. After 
washing, a third application of CNP was performed. ROIs for analysis were selected at the 
soma. A summary of CNP-induced cGMP signals before, during and after incubation with IBMX 
is shown in the bar chart. Peak areas were evaluated and taken as a measure of the cGMP 
response and normalized to the first peak of each experiment. B-G. Similar experiments were 
performed with different inhibitors: IBMX, 100 µM; Vinpocetine, 5 µM; EHNA, 10 µM; Bay 60-
7550, 10 nM; Milrinone, 10 µM; Sildenafil, 20 µM; Zaprinast, 20 µM. **p<0.01, *p<0.05, n=3 
cells from 3 independent measurements.  
   

To ask the question what other signaling components are involved in CNP-derived 

cGMP signaling in embryonic DRG neurons, immunostaining was performed to detect 

the important cGMP downstream effector, cGKI. Indeed, cGKI was detcted in the soma, 

axons and growth cones of embryonic DRG neurons (Figure 16, upper panel). The 

growth cones were strongly labelled, indicating the importance of the cGMP signaling 

pathway in this compartment. The expression of cGKI is also in line with the in vivo 
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situation, in which cGMP should get elevated firstly in the growth cones, when the DRG 

sensory axons approach to the DREZ and get exposed to CNP locally. cGKI was also 

expressed in adult DRG neurons (Figure 16, middle panel). 

 
Figure 16. Expression of cGKI in DRG neurons.  

Wild type E12.5 DRG neurons (upper panel) were cultured overnight and stained for cGKI 
(green), β-III-tubulin (red), and with Hoechst 33258 (blue). The same antibodies were used for 
staining of adult DRG neurons from wild type (WT) or cGKI deficient (-/-) mice cultured for 48 h 
(middle and lower panel). The inset in the upper left picture shows another tip of the same 
neuron. Arrowheads indicate the growth cones. β-III-tubulin was used as a marker for neurons. 
Scale bars, 20 µm.  
 

In order to mimic the in vivo situation of embryonic DRG neuron development, CNP 

was locally applied to the growth cones with a glass pipette, while cGMP levels were 

monitored by FRET measurements. In one experiment, E12.5 DRG neurons from R26-

CAG-cGi500(L1) mice were isolated and cultured overnight (Figure 17A). A fine glass 

pipette with 10 µm bore width was orientated at a 45˚ angle to the axon and positioned 

~50 µm away from the growth cone. The reagent ejected from the pipette was removed 

immediately by superfusion with Tyrode imaging buffer in the same direction. The 

pipette was pre-loaded with 1 µM CNP and ejected by an air pulse of 20 hPa for 20 s, 

resulting in cGMP transients only in the axonal tip but not in the soma (Figure 17B). 

As the pressure or pulse duration increases, the reagents ejected from the pipette 
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spread over to a larger area [193, 194]. At 20 hPa for 30 s, cGMP production was also 

detected in the soma. Therefore, by finely orientating the glass pipette and adjusting 

the air pulse, we were able to achieve the local delivery of CNP to a subcellular region 

like the growth cone. In another FRET measurement, embryonic DRG neurons were 

isolated from R26-CAG-mcGi500(L1) mice expressing a version of cGi500 targeted to 

the plasma membrane (Thunemann et al., unpublished results). The DRG neurons 

with plasma membrane-targeted cGi500 exhibited reduced differences in fluorescence 

intensity between the soma, axons and growth cones (Figure 17C), and allowed for 

monitoring of cGMP in these compartments with less noise. A glass pipette loaded with 

150 nM CNP was firstly positioned at the growth cone. Applications of CNP at 20 hPa 

for 20 s reproducibly resulted in cGMP transients at the growth cone (ROI7) but not at 

the soma (ROI1) or the proximate part of the axon (ROI3) (Figure 17C and D). Local 

elevation of cGMP in the growth cone reveals the local distribution of the cGMP 

production machinery in the growth cone. Subsequent global bath application of 100 

nM CNP led to a global increase of cGMP among the whole DRG neuron including the 

soma, the axon and the growth cone. The glass pipette was further moved towards the 

soma. Application at the soma increased cGMP at the soma, but also at the axon and 

slightly at the growth cone (Figure 17C and D). This may be because the CNP 

application was not confined to the soma, as CNP might flow over to the downstream 

growth cone. Note that the flow directions of pipette ejection and superfusion were 

opposite to each other in this experiment. Another possibility was that the cGMP 

generated at the soma could be immediately transported along the axon down toward 

the growth cone. Further investigation is needed to unravel this question. Visualization 

of local or global cGMP elevation is also illustrated in Figure 17E, F, and G.  

 
  
Figure 17. Generation of cGMP in the growth cone independently of the soma. 
A, B. Local application of drugs can be achieved by a glass pipette positioned at the tip of a 
DRG neuron (R26-CAG-cGi500(L1)). 1 µM CNP was ejected at 20 hPa for 20 s or 30 s by the 
pipette. Tyrode imaging buffer was superfused to remove the drug immediately, as indicated 
with “flow”. ROIs were outlined as shown in A and evaluated for cGMP signals. Only the axon 
close to the pipette but not the soma responded to CNP applied for 20 s, and cGMP increased 
in the whole DRG neuron including the soma and axon after longer application, for 30 s. C, D. 
A DRG neuron from R26-CAG-mcGi500(L1) mice with a clear soma and growth cone was 
chosen for FRET imaging. ROIs as outlined in C were evaluated for cGMP responses. 150 nM 
CNP was applied with a glass pipette positioned first at the growth cone (position 1) and later 
at the soma (position 2). The signal shift due to the movement of the pipette from position 1 to 
2 is indicated by asterisks. The red bars 1), 2), 4) indicate the local application at the growth 
cone, and 5), 6), 7) at the soma, and the bar 3) indicates global bath application of 100 nM CNP 
for 2 min.  Local application of 150 nM CNP resulted in cGMP increase at the region of growth 
cone but not at the soma and the proximate part of the axon. Shown are also the CFP/YFP 
emission ratio (F480/F535) images representative of cGMP levels at different time points 
(indicated in D), before and after drug application locally at the growth cone (E), globally (F), 
and at the soma (G). Scale bars, 20 µm.  
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Since sensory neurons are able to sense mechanical force, one question arising from 

the drug application with air pressure was whether the cGMP was elevated due to the 

pressure. Therefore, we tried similar measurements under the same condition with 

PBS as controls. However, no cGMP elevations were detected (data not shown). Also, 

because the pipette was located ≥50 µm away from the cell, the pressure reached 

there would be much lower than 20 hPa. Moreover, in an effort to test the possible 

induction of cGMP in response to touch, we also tried to poke the embryonic DRG 

neurons with glass pipettes. However, we did not detect cGMP changes (data not 

shown), indicating that mechanical force did not interfere with cGMP FRET imaging in 

embryonic DRG neurons. 

 

Altogether, with our newly generated cGMP sensor knock-in mice, we were able to 

monitor cGMP at the subcellular level. In embryonic DRG neurons, cGMP is produced 

in response to CNP but not to ANP or NO, and degraded mainly by PDE1 and PDE2. 

Local cGMP can be generated in the growth cone independently of the soma. The GC-

B/cGMP/cGKI machinery at the growth cone may be critical for DRG neurons to sense 

local CNP in the DREZ of the spinal cord and to bifurcate properly. 
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3.3 cGMP imaging in platelets 

 Characterization of cGMP signals in platelets  
Platelets are 2-3 µm large cell fragments derived from megakaryocytes residing in the 

bone marrow. As cells lacking a nucleus, platelets have no transcription machinery to 

generate mRNA, but can still control protein translation and other cellular processes 

[92]. We first checked whether cGi500 is expressed in platelets of R26-CAG-cGi500(L1) 

mice. Whole blood was perfused through a flow chamber attached to a collagen-coated 

coverslip. Strong sensor fluorescence was observed in single platelets during 

perfusion and was even more obvious in aggregated thrombi formed on collagen 

(Figure 18A). In contrast, another type of anucleate cells in the blood, the erythrocytes 

appeared to be negative for cGi500 as fluorescent erythrocytes were not observed 

during whole blood perfusion (data not shown). The difference may be due to the 

different lifespans of the two cell types. Billions of platelets circulate in mammalian 

blood to prevent blood loss in case of tissue injury. The lifespan of platelets is short, 4-

6 days in mice and 5-9 days in humans [195, 196], which means several million 

platelets have to be produced every hour to maintain their physiological counts to fulfill 

their function. The GFP protein was found to be stable with a half-life of ~1 day [197, 

198], and the half-life of engineered proteins like cGi500 is presumably similar. In 

contrast, mature erythrocytes are anucleate cells with a life span of 40-60 days in mice 

[199], during which time the sensor protein is probably degraded. Reporter expression 

in mature erythrocytes has not been reported in other Rosa26 mouse lines either [200].  

  

The strong cGi500 expression in platelets enables cGMP FRET measurement in these 

cells. FRET imaging of adherent platelets showed that the natriuretic peptides, ANP 

and CNP did not stimulate cGMP production (Figure 18B). Instead, a cGMP elevation 

was seen in response to DEA/NO. This indicates that only the cytosolic sGC rather 

than membrane-bound pGCs (GC-A and GC-B) is present in murine platelets and in 

charge of cGMP production. A response was observed upon application of as low as 

10 nM DEA/NO (Figure 18C), which releases NO at 20°C, pH 7.4 presumably at a 

concentration in the physiological range [21]. To characterize the PDE subtypes that 

are responsible for cGMP degradation in platelets, subtype-specific PDE inhibitors 

were applied. Preincubation with the PDE2, PDE3, and PDE5 inhibitors, Bay 60-7550, 

milrinone, and tadalafil alone, respectively, already led to a small cGMP increase and 

they further potentiated NO-induced cGMP signals (Figure 18D). These data support 
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previous knowledge about the cGMP signaling system in platelets that cGMP is 

synthesized by sGC and degraded by PDE2, PDE3 and PDE5 [101].  

 

 
Figure 18. Characterization of platelet cGMP signals.  
A. Whole blood from R26-CAG-cGi500(L1) was perfused over a flow chamber at 15 mL/h 
(corresponding to a shear rate of ~500 s-1) for 10 min resulting in thrombus formation on a 
collagen-coated coverslip. Sensor fluorescence was detected with a YFP filter set. Scale bar, 
10 µm. B. cGMP FRET imaging was performed with platelet thrombi on the collagen surface 
as shown in A. A representative recording out of three experiments is shown. Superfusion with 
DEA/NO led to a reversible cGMP increase in adhered platelets. Superfusion was performed 
in the following order: 100 nM CNP, 100 nM ANP for 2.5 min each and 100 nM DEA/NO for 1.5 
min. C. DEA/NO concentration-response experiments; original recordings are shown upon 
stimulation for 1.5 min with increasing concentrations of DEA/NO (in nM). D. PDE inhibition with 
10 nM Bay 60-7550, 10 µM milrinone (MIL), or 5 µM tadalafil (TAD) potentiates NO-induced 
cGMP responses. Cells were superfused with 100 nM DEA/NO for 1.5 min before, during, and 
after incubation with the respective inhibitor. All FRET data shown are mean ± SEM (n≥8 
thrombi).   
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 Flow-regulated cGMP signaling 
Strikingly, it was found that NO-induced cGMP production in activated platelets was 

dependent on fluid flow (Figure 19). Superfusing Tyrode buffer containing DEA/NO to 

platelet thrombi formed on a collagen surface led to cGMP elevation due to sGC 

stimulation by NO. Continuous application of DEA/NO at 15 mL/h led to sustained 

cGMP elevation from the basal level to a new plateau. However, upon switching off 

the fluid flow to zero, cGMP immediately decreased although DEA/NO was still present. 

The cGMP decrease in platelets started within 2-5 s, and came down to baseline within 

~30 s. In the presence of DEA/NO, initiation and cessation of flow (‘flow on and off’) 

lead to cGMP increase and decrease, respectively (Figure 19). 
  

 
Figure 19. NO-induced cGMP signals are regulated by flow in platelets. 

Thrombi were formed on a collagen-coated coverslip mounted to a flow chamber by perfusion 
with whole blood from R26-CAG-cGi500(L1) mice. cGMP imaging showed that application of 1 
µM DEA/NO at 15 mL/h led to cGMP increase in platelets. Flow switch-off to 0 mL/h resulted 
in a rapid decrease of cGMP to baseline. Cyan, yellow, and black traces indicate CFP emission 
(F480), YFP emission (F535), and CFP/YFP emission ratio (F480/F535), respectively. Emission 
fluorescence intensities and ratios were normalized to averaged baseline signals and are given 
as ΔF/F and ΔR/R, respectively. Data shown are mean ± SEM; n=11 thrombi. One 
representative experiment out of 5 experiments is shown. The average decay time of cGMP 
levels upon flow off of 5 experiments was 28.3 ± 4.8 s. 
 
Further experiments confirmed that the NO-induced cGMP signals were dependent on 

the flow rate (Figure 20). In the presence of DEA/NO, the higher flow rate (45 mL/h) 

resulted in a higher level of cGMP increase (~15% ∆R/R). When flow is decreased by 

9 times from 45 mL/h to 5 mL/h, cGMP signals decreased by ~5%. Further cessation 

of the flow to zero caused an additional cGMP decrease by 10% to basal levels. This 

whole flow titration was inversely reproducible, meaning increasing flow rates resulted 

in corresponding cGMP increases (Figure 20).  
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Figure 20. NO-induced cGMP is regulated in a flow rate-dependent manner.  

Platelet thrombi on a collagen surface were superfused with 1 µM DEA/NO. The platelets were 
subsequently subjected to superfusion at a changing rate of 45, 5, 0, 5, 45 mL/h in series. Data 
shown are mean ± SEM; n=5 thrombi. 

 

Next, the effect of flow in the absence of NO on cGMP levels was examined. Flow off 

did not cause a change of basal cGMP levels, and cGMP stayed at basal levels after 

subsequent onset of flow (Figure 21). cGMP increased only after superfusing the cells 

with NO. In contrast, cGMP dropped from the NO-induced plateau after switching off 

the flow. Interestingly, washout of DEA/NO caused a more delayed cGMP decrease to 

baseline (~4 min), as compared to that caused by the cessation of flow (~30 s). The 

slow decay of cGMP is generally observed in all experiments performed with DEA/NO 

washout (e.g., Figure 18B, C and D).  

  
Figure 21. No effect of flow alone on intracellular cGMP levels. 
Platelet thrombi on a collagen surface were subjected to flow on and off in the absence or 
presence of 100 nM DEA/NO. DEA/NO was washed out at the end of the experiment. Data 
shown are mean ± SEM; n=10 thrombi. One representative experiment out of 10 is shown. The 
average decay time of cGMP levels upon flow off and upon washout of 5 experiments was 28.3 
± 4.8 s, and 4.4 ± 0.36 min, respectively. 
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To test if the flow-regulated cGMP relies on flow and NO, rather than the NO-releasing 

compound itself or its byproducts, different NO donors with distinct half-lives were used 

for stimulation (Figure 22). The NONOates have widely varying half-lives (1.8 s to 20 

h). For example, DEA NONOate (DEA/NO) dissociates in a pH-dependent, first-order 

process to liberate 2 moles of NO per mole of parent compound with a half-life of 2 min 

and 16 min at 37°C and 22-25°C, pH 7.4, respectively; Spermine NONOate (SPER/NO) 

has a half-life of 39 minutes and 230 minutes at 37°C and 22-25°C, pH 7.4, respectively; 

another NO donor, DETA NONOate (DETA/NO), has a half-life of 20 h and 56 h at 

37°C and 22-25°C, pH 7.4, respectively [201, 202]. The shorter the half-life of the donor, 

the shorter it took to stimulate cGMP production, with the sharpest cGMP response to 

DEA/NO and the slowest to DETA/NO (Figure 22). cGMP decreased to baseline upon 

decrease of flow to zero in the presence of either of the three NO donors, and switching 

on and off the flow led to cGMP increases and decreases.  

 
Figure 22. sGC is responsible for cGMP generation in response to NO in platelets.  

Platelet thrombi on a collagen surface were used for cGMP imaging. Superfusion of cells at a 
flow rate of 15 mL/h with different NO donors (100 nM DEA/NO, 500 nM SPER/NO, and 10 µM 
DETA/NO) resulted in cGMP elevations. Flow switch-on (15 mL/h) and -off (0 mL/h) were 
performed. At the end of each experiment, 20 µM ODQ was applied in the presence of the 
respective NO donor with continuous flow. Data shown are mean ± SEM (n≥8 thrombi). 
Representative results from 3 independent experiments are shown.  
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To further confirm that the FRET signals were caused by cGMP generation catalyzed 

by NO-stimulated sGC, ODQ was used to block sGC. ODQ oxidizes the sGC heme 

iron from Fe2+ to Fe3+, resulting in irreversible inactivation of sGC [25]. As expected, 

application of 20 µM ODQ eliminated cGMP generation completely (Figure 22). Even 

after washout of ODQ, application of NO donors could not increase cGMP production 

any more. Thus, the NO-induced cGMP FRET change was NO- and sGC-dependent. 

Intriguingly, the cGMP decreasing kinetics induced by flow off and that by ODQ were 

very similar (Figure 22). For example, the decay time of DEA/NO-induced cGMP after 

application of ODQ was ~40 s, which was comparable to that caused by flow off (~30 

s), implying that sGC might be desensitized after flow off. 

 

Not only NO, but also several synthetic compounds can activate sGC. To test whether 

the flow-regulated cGMP decrease could also be observed with a NO-independent 

stimulator of sGC, Bay 41-2272 was applied in similar 'flow on and off' experiments 

(Figure 23A). 1 µM Bay 41-2272 resulted in a much slower increase of cGMP levels 

compared to DEA/NO, and increase of the concentration of the stimulator to 5 µM 

caused a faster increase of cGMP. However, cessation of flow resulted in an 

attenuated decrease (~30%) of peak cGMP in a much delayed time (~3 min) as 

compared to the decrease of NO-induce cGMP by flow switch-off (~30 s). Switching 

on and off the flow resulted in reproducible partial increases and decreases of cGMP 

levels. Removal of Bay 41-2272 by washout with Tyrode buffer without a change in the 

flow rate resulted in a relatively slow (5-10 min) return of cGMP to basal levels (Figure 
23A).  

 

The next question we asked was whether sGC or PDEs are regulated by the flow. In 

theory, the decrease of cGMP can be due to desensitization of sGC and/or activation 

of PDEs. However, if PDEs were the only ones regulated by flow, then the decrease 

of Bay 41-2272-induced cGMP upon flow switch-off should have been complete, i.e. 

to the basal level. Therefore, sGC should be at least partially responsible for the 

regulation of cGMP by flow. To further elucidate whether cGMP generation or 

degradation is regulated by flow, we utilized another cGMP-generating cell type, 

VSMCs, in which cGMP can be produced by both sGC in response to NO as well as 

pGC in response to ANP and CNP [178], and CNP-induced cGMP can also be 

degraded by PDE5 (Figure 23B). Similar to platelets, delivery of 100 nM DEA/NO to 

VSMCs resulted in fast cGMP generation, and cGMP decreased after flow switch-off 

(Figure 23C). The decrease from peak cGMP level to baseline took ~2 min, a slower 

decreasing rate compared to that of NO-induced cGMP in response to flow off (~30 s). 
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Therefore, NO-induced cGMP signals in VSMCs were also regulated by flow. In 

contrast, CNP-induced cGMP was not affected by flow switch-off (Figure 23C). 

Considering that PDE5 is involved in degradation of CNP-induced cGMP signals 

(Figure 23B), the lack of a flow effect on CNP-induced cGMP suggests that the cGMP-

degrading PDE5 is not responsible for the flow-induced effect. Together with the fact 

of partial regulation of Bay 41-2272-induced cGMP by flow, these lines of evidence 

point to sGC as the most likely molecule regulated by flow.  

 

 
Figure 23. sGC activity is regulated by flow. 
A. Bay 41-2272-induced cGMP is regulated by flow. Platelets were superfused with the sGC 
activator Bay 41-2272 (1 µM or 5 µM) at a rate of 15 mL/h and subjected to flow on and off, and 
washout. B. PDE5 inhibition with tadalafil potentiated the CNP-induced cGMP response in 
VSMCs. Primary VSMCs were cultured on a coverslip for 7 days and mounted onto the flow 
chamber and used for cGMP imaging. Cells were first superfused with 50 nM CNP for 2 min, 
and once again in the presence of the PDE5 inhibitor, tadalafil. After washout, a third application 
of CNP was performed. A summary of CNP-induced cGMP signals before, during and after 
incubation with tadalafil is shown in the bar chart. Peak areas were evaluated and taken as a 
measure of cGMP response and normalized to the first peak. C. DEA/NO-induced cGMP 
signals in VSMCs were regulated by flow, but CNP-induced cGMP was not changed upon flow 
switch-off. Cells were superfused with Tyrode buffer and later with 100 nM DEA/NO. Data 
shown are mean ± SEM (n≥ 7 thrombi or 5 VSMCs). **p<0.01.  
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Ca2+ is a procoagulant factor in platelets [203]. To assess the physiological relevance 

of the rapid increase and decrease of the intracellular cGMP concentration in response 

to flow, the intracellular Ca2+ level was also probed. CFP, YFP and Fura-2 have distinct 

absorption spectra, which allows simultaneous measurement of cytoplasmic Ca2+ and 

cGMP with cGi500-expressing platelets from R26-CAG-cGi500(L1) mice. 

Simultaneous measurement of cytoplasmic Ca2+ and cGMP was performed by loading 

the thrombi from R26-CAG-cGi500(L1) mice with Fura-2, AM. 

 

As shown before, stimulation of platelets with DEA/NO increased intracellular cGMP, 

whereas a decrease of flow led to a decrease of cGMP (Figure 24A and B). 

Interestingly, Ca2+ signals went opposite of cGMP signals; basal Ca2+ levels in the 

thrombi were comparably high, and DEA/NO application led to a decrease of Ca2+, 

whereas flow off resulted in Ca2+ restoration to the basal level. In both situations, i.e. 

flow on-induced cGMP increase and flow off-regulated cGMP decrease, cGMP signals 

preceded Ca2+ signals (Figure 24C). cGMP signals arised earlier and reached their 

plateau ~5 seconds earlier than Ca2+ signals, and the same was observed for the 

cGMP decrease upon flow off. Thus, cGMP signaling is an earlier event than Ca2+ 

signaling.  Previous studies in knock-out mice have shown that activation of cGKI by 

NO donors or membrane-permeable cGMP analogs leads to phosphorylation of 

downstream IP3 receptor-associated cGKI substrate IRAG protein, which strongly 

inhibits agonist-evoked Ca2+ mobilization from intracellular stores in platelets [98]. 

Although the NO/cGMP signaling pathway has been demonstrated to attenuate 

agonist-induced Ca2+ release [98, 204-206], the present study shows a direct decrease 

of Ca2+ by NO in the presence of flow. Simultaneous visualization of cGMP and Ca2+ 

revealed that cGMP precedes Ca2+ signals, which, coupled with previous findings by 

others [98, 204-207], further confirms that cGMP inhibits intracellular Ca2+ mobilization.  
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Figure 24. Changes of cGMP signals precede changes of Ca2+ signals. 
A. Whole blood from Rosa26-CAG-cGi500(L1) mice flowed over a collagen-coated coverslip 
mounted on a flow chamber and the aggregated thrombi were subsequently loaded with Fura-
2, AM. Simultaneous measurement of cGMP (green trace) and Ca2+ (red trace) showed the 
effect of flow on and off on cGMP and Ca2+ in the presence of 1 µM DEA/NO. Switching on flow 
leads to an increase of cGMP and a decrease of Ca2+. B. Shown are ratio images of platelets 
at different times indicated in A. cGMP was at the basal level at the time point t0, while Ca2+ 
was at its peak. Flow-induced cGMP increase and Ca2+ decrease in the presence of NO (as 
shown at t1). C. The same recordings from A were shown with cGMP (green) and inverse Ca2+ 
signals (red). R=F480/F535 were taken as a measure for the cGMP concentration, and 
R=F340/F380 as a measure for Ca2+. Ratios for both cGMP and Ca2+ were normalized to 
averaged baseline signals and are given as ΔR/R. Data are shown as mean ± SEM; n=8 
thrombi. Results are representative of three independent experiments.  
 
 
In an effort to search for mediators for flow-regulated cGMP signaling, we tested the 

roles of several mechanotranducers that have been implicated either in shear stress 

detection and/or cGMP production. Glycoprotein (GP) Ibα is a platelet membrane 

receptor for vWF [92]. Platelet activation and adhesion under elevated shear stress 

requires the binding of vWF to GPIbα [94]. Another main binding site for vWF is the 

integrin αIIbβ3 [208]. It is believed that the function of vWF is mainly mediated by its 

platelet receptor GPIbα [209]. Interaction of vWF/GPIbα induces cGMP elevation, and 

several groups detected a cGMP increase in response to vWF [104, 210, 211]. Du and 

colleagues suggested that vWF promotes cGMP through the activation of eNOS and 

endogenous NO production in platelets elicited by the interaction of vWF and GPIb 

[94]. Walter et al. did not detect eNOS and found eNOS-independent generation of 
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cGMP by Src kinase-mediated Tyr192 phosphorylation and activation of sGC when 

platelets were treated with vWF/ristocetin [101, 210]. 

 

To determine if GPIbα is mediating flow-regulated cGMP signals in platelets, we 

evaluated cGMP regulation by flow in IL4Rα/GPIbα-tg mice (kindly provided by Dr. H. 

Langer), in which the extracellular domain of GPIbα was replaced by that of the human 

IL-4 receptor [212, 213]. Indirect cGMP imaging was performed by measuring 

intracellular Ca2+ with Fura-2, based on the previous result that Ca2+ is a downstream 

effector of cGMP (Figure 24). Ca2+ measurements were performed in platelets from 

IL4Rα/GPIbα-tg mice and wild type controls, respectively (Figure 25A). However, flow 

on and off-induced Ca2+ decreases and increases in the presence of DEA/NO showed 

similar kinetics in both transgenic mice and wild type controls, suggesting that flow-

regulated cGMP signals were not affected by GPIbα. Of interest is also that activated 

platelets showed robust spontaneous Ca2+ mobilization. In the presence of NO, flow 

on not only decreased Ca2+ but also inhibited Ca2+ mobilization. Flow per se did not 

significantly affect the basal cytoplasmic Ca2+ concentration (Figure 25A). 

 

Multiple ion channels have been suggested as mechanotransducers or molecular 

components of a mechanotransduction complex [214]. Transient receptor potential 

(TRP) channels are a group of ion channels mostly present on the plasma membrane 

of various eukaryotic cells, which can sense taste, hotness, coldness, and shear stress 

[215]. These ion channels are non-selectively permeable to cations including Ca2+, Na+ 

and Mg2+. In a preliminary screening for the possible involvement of different ion 

channels, one member of the TRP channel family, TRPC3 was implied to be involved 

in flow-regulated cGMP signaling (Figure 25B). Pyr3 is a pyrazole compound that 

potently and selectively antagonizes TRPC3 by binding to the extracellular side of the 

receptor [216]. Pyr3 was applied to thrombi from R26-CAG-cGi500(L1) sensor mice. 

In the absence of TRPC3 inhibitor, cGMP peaked rapidly in the continuous presence 

of DEA/NO and returned to basal levels upon flow off. Flow on and off resulted in fast 

increases and decreases of cGMP. However, preincubation with 1 µM Pyr3 led to a 

slower increase of cGMP in response to DEA/NO, while the flow off-induced cGMP 

drop was not significantly affected. Fluid flow might sensitize sGC through TRPC3 

activation, whereas inhibition of TRPC3 by Pyr3 should attenuate the increase of 

cGMP in response to NO. Therefore, these data suggest TRPC3 as a mechano-

transducer in flow-regulated cGMP signaling.  
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Figure 25. Roles of mechanotransducers in flow-regulated cGMP/Ca2+ signals.  
A. Effects of GPIbα on flow-regulated cGMP production. Ca2+ imaging was performed in Fura-
2, AM-loaded platelets from IL4Rα/GPIbα-tg and wild type mice, respectively. Cells were 
superfused with 100 nM DEA/NO and subjected to flow on and off. Shown are representative 
traces of a single thrombus from independent experiments with two IL4Rα/GPIbα-tg and three 
wild type mice, respectively. B. TRPC3 inhibition attenuates NO-induced cGMP production. 
cGMP imaging was performed in platelets from R26-CAG-cGi500(L1) mice. Cells underwent 
flow on and off in the presence of 100 nM DEA/NO. After removal of DEA/NO, platelets were 
preincubated with 1 µM Pyr3, and 100 nM DEA/NO was applied subsequently. Data are shown 
as mean ± SEM; n=7 thrombi. A representative experiment out of three is shown.  
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4 Discussion 

4.1  Generation of cGi500 sensor mice 
The present study discloses new cGMP sensor knock-in mouse lines as novel tools 

for in vivo monitoring of cGMP signals in various cell types and tissues with high 

temporal and spatial resolution. The cGMP sensor mouse lines (R26-CAG-cGi500) 

were generated by targeted integration of a Cre-activatable cGi500 expression 

cassette driven by the ubiquitous CAG promoter into the Rosa26 locus. This strategy 

combines the chromosomal accessibility of Rosa26 locus with the strong and 

ubiquitous CAG promoter, so that cGi500 could be robustly expressed in a broad range 

of tissues and cell types.  

   

The random insertion of genetic elements such as a transgene into the mouse genome 

often leads to the deregulation or misregulation of the expression of endogenous 

genes. At the same time, the transgene expression pattern may often be restricted by 

the integration site due to variegation/position effects (e.g., silencing). The 

unpredictable outcome may result in biased phenotypes. To bypass these limits, we 

designed knock-in models in which cGi500 was introduced into a well-known 

permissive locus, the Rosa26 gene locus [166]. With this strategy, we achieved cGi500 

sensor expression virtually globally in all tissues (Figure 10). On the other hand, it is 

also important that the expression of the indicator is strong enough so that 

fluorescence intensity changes can be detected in vivo. Note that in our first attempt 

to generate the sensor knock-in mice, cGi500 was integrated into the endogenous 

Rosa26 locus (R26-cGi500 mice, data not shown) without the extra CAG promoter, so 

that cGi500 expression was driven by the endogenous Rosa26 promoter after excision 

of a STOP cassette by Cre recombinase. However, cGi500 driven by the endogenous 

Rosa26 promoter exhibited rather low expression levels in adult mice. Nevertheless, 

FRET measurement in cells isolated from this mouse line can still be achieved, 

although requiring much longer exposure time to excite the sensor (data not shown). 

 

Strong cGi500 sensor fluorescence was detected in various tissues, including aorta, 

heart, and brain of R26-CAG-cGi500(L1) mice. Primary cells isolated from these 

tissues showed strong fluorescence, and cGMP imaging was successfully performed 

in various cell types, including smooth muscle cells, neurons and platelets. The uniform 

distribution of cGi500 throughout the cytoplasm enabled detection of robust cGMP 

signals induced by NO in the cytosol or local cGMP signals induced by natriuretic 
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peptides presumably near the plasma membrane. cGMP transients have been 

detected at a concentration as low as 10 nM DEA/NO in platelets, indicating high 

sensitivity of the cGi500 sensor in response to physiological concentrations of NO 

stimulation [21]. The maximal FRET change of 40% was observed in both VSMCs and 

platelets, in line with other studies that were also performed in intact cells, 

corresponding to a saturating concentration for cGi500 of ≥1-3 µM cGMP [135, 138]. 

cGMP imaging in embryonic DRG neurons showed high spatial resolution to 

distinguish signals in the soma, the axon as well as the growth cone, and high temporal 

resolution of cGMP changes within seconds.  

 

Importantly, the R26-CAG-cGi500(L1) mouse line has also been proved as a powerful 

tool to study vascular cGMP signals in isolated tissues and live mice; strong and robust 

cGMP signals in response to DEA/NO were detected in an in vivo model of the 

cremaster muscle. Moreover, using multiphoton FRET microscopy, it was 

demonstrated in a second in vivo model in the L1 mice carrying a dorsal skinfold 

chamber that cGMP signals induced by intravenous injection of DEA/NO were 

associated with vasodilation in  live mice [178].  

 

The expression of transgenes at high levels always poses the question of potential 

toxicity. However, both heterozygous R26-CAG-cGi500(L2) and R26-CAG-cGi500(L1) 

mice are fully viable and fertile without displaying detectable adverse phenotypes, 

suggesting minimal toxicity of both mT and cGi500 expression. This is also the case 

for the homozygous R26-CAG-cGi500(L1) mice kept for longer than one year, in which 

higher levels of cGi500 are expected. No morphological abnormalities were observed 

in these mice or various cell types derived from them. Notably, another question 

concerning the overexpression of cGi500 as a buffer molecule for cGMP had also been 

addressed in the SM22-cGi500 mice (with cGi500 expressed in smooth muscle cells). 

A “classical” function of cGMP is smooth muscle relaxation and blood pressure 

regulation [217-220]. The mean arterial blood pressure of SM22-cGi500 mice as 

measured with a non-invasive tail cuff system was not significantly different from non-

transgenic control littermates [178]. Nonetheless, it will be necessary to continue 

monitoring for potential subtle phenotypes in some specific cell types. In this context, 

the R26-cGi500 mouse line with much lower expression levels of cGi500 and therefore 

potentially less detrimental effects may offer a supplementary tool.   
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Taken together, the newly generated R26-CAG-cGi500(L2) and (L1) mouse lines have 

opened new experimental routes for studying cGMP signaling in multiple cells, tissues 

and even in vivo. The R26-CAG-cGi500(L1) line with permanent and ubiquitous sensor 

expression provides a convenient source for primary cell isolation and subsequent 

cGMP imaging in real time with subcellular resolution. The L1 mouse line may also be 

used for in vivo imaging in tissues and live animals, e.g., to find new cGMP signaling 

sites with conventional or novel cGMP-elevating drugs. The Cre-activatable L2 mice, 

when crossed to Cre mouse lines, switch on cGi500 expression in individual cells in a 

tissue-specific manner, allowing for delineation of cGMP signals in specific tissues or 

cell types of interest. We expect that this L2 mouse line, combined with intravital 

imaging and multiphoton FRET microscopy, will find widespread application for in vivo 

analysis of cGMP in the future. In addition, the double marker labeling strategy with 

R26-CAG-cGi500(L2) mice can also be used for lineage tracing. At a specific time 

point, cells of interest for fate mapping can be labelled with cGi500 upon tissue-specific 

Cre recombination; the recombined cells is labelled with cGi500, while the non-

recombined cells retain with mT expression. The cGi500-positive cell subpopulation 

can later be traced, and directly employed for cGMP imaging, therefore dissecting 

cGMP signaling chronically in physiological conditions or during disease development.   
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4.2 cGMP in DRG neurons 
Connectivity of neurons is established during embryonic and early postnatal 

development. The establishment of a complex, finely organized axon morphology is a 

key step for many neurons to receive and transmit information in a circuit network. 

During the development of the nervous system, the extending growth cones are 

exposed to a complex and changing environment within the developing tissue. A 

variety of physical and chemical factors are likely to take part in influencing the 

direction of nerve growth. Knowledge about how branches get extended from the 

axons and modulated by molecules is very important for understanding the functional 

neural circuits [81]. 

   

CNP, along with its downstream signaling, is the only factor that has been clearly linked 

to the bifurcation process of murine DRG neurons in vivo. If DRG axons lack a 

component of the CNP/GC-B/cGKI pathway, then they no longer bifurcate and    

instead only turn either in a rostral or caudal direction upon entering the spinal cord 

[80]. Our FRET data showed that CNP elevated cGMP in DRG neurons, but ANP had 

no effect. This supports exactly the conclusion that GC-B rather than GC-A is 

expressed in embryonic DRG neurons. GC-B is the only NP receptor expressed in 

DRG neurons of early developmental stage, whereas GC-A is not detected [67, 86]. 

There are also studies suggesting that sGC provides an alternative route for cGMP 

production in DRG neurons, as in vitro cultured DRG neurons showed increased 

branching when being treated with the sGC stimulator YC-1 [87]. However, in our study, 

acute application of DEA/NO did not show any effect on cGMP generation. Thus, we 

conclude that sGC is not present in embryonic DRG neurons. The discrepancy may 

be explained by the lack of specificity of YC-1 as a stimulator of sGC. YC-1 was also 

reported to inhibit PDE activities [221-223]. Furthermore, our study is also in line with 

those by Schmidt et al. [67], who showed no or very weak expression of different 

transcripts of NOS and sGC as revealed by both reverse transcriptase-PCR and in situ 

hybridization. Moreover, no bifurcation errors were found at the DREZ in knock-out 

mice lacking the β1 subunit of sGC, demonstrating that sGC is dispensable for sensory 

axon branching. 

 

FRET cGMP imaging could also specify the PDE subtypes that are involved in cGMP 

degradation by performing experiments with respective PDE inhibitors. Vinpocetine, 

EHNA and Bay 60-7550, milrinone, and sildenafil are relatively specific inhibitors for 

PDE1, PDE2, PDE3, and PDE5, respectively. Bath application of vinpocetine, EHNA 
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and Bay 60-7550 to the DRG neurons showed significant inhibitory effects on CNP-

elicited cGMP in comparison to controls, whereas milrinone and sildenafil did not. 

Therefore, PDE1 and PDE2 are involved in cGMP degradation in embryonic DRG 

neurons. Zaprinast moderately inhibits PDE5 and PDE6 with IC50 values of 0.5-0.76 

and 0.15 µM, respectively [224, 225]. In addition, the commonly as selective 

considered PDE5 inhibitor, sildenafil, inhibits also PDE6 with only 3–10-fold lower 

potency than PDE5 [226]. Our data show that both zaprinast and sildenafil had no 

effect on the CNP-induced cGMP increase. Therefore PDE6 is not involved in the 

degradation of CNP-induced cGMP. Zaprinast also weakly inhibits PDE9, PDE10, and 

PDE11 with IC50 values of 35, 22, and 11-33 µM, respectively [224, 225]. The lack of 

an inhibitory effect of 20 µM zaprinast also suggests the lack of PDE9, PDE10, and 

PDE11, although the inhibition of these PDEs by zaprinast, if there is any, may be 

incomplete. Therefore, PDE1 and PDE2 appear to be the major PDEs responsible for 

the degradation of CNP-induced cGMP in embryonic DRG neurons. Unpublished data 

from our collaborator, Dr. H. Schmidt, also show that PDE2A transcripts are detected 

in these neurons (personal communication). It would be interesting to study cGMP 

signals and the bifurcation phenotype in vivo in PDE1 or PDE2 knock-out and even 

PDE1 and PDE2 double knock-out mice. One could expect a greater amplitude and 

longer duration of cGMP in the growth cone after exposure to CNP in the knock-outs 

compared to the wild type, which may therefore flow over to the whole DRG neuron 

instead of staying locally in the growth cone, potentially causing branching errors. 

 

It is currently well accepted that the cGMP signaling pathway is critical for sensory 

DRG axon bifurcation in vivo [80]. Recently, it has also been shown to be prominent in 

the bifurcation of cranial sensory neurons in the hindbrain [227]. A fundamental 

question remains to be answered is how cGMP signals guide the bifurcation of these 

neurons. Is cGMP signaling sufficient to induce bifurcation? DRG axons deficient in 

cGMP signaling no longer bifurcate and instead only turn in one direction after entering 

the spinal cord. However, bifurcation is observed only in a small proportion of DRG 

neurons in culture and has never been promoted, although addition of CNP leads to 

an increase in axon branching [67, 83, 86]. One possible reason is that the drug 

application in these in vitro culture experiments was not optimal. The global addition of 

CNP or cGMP analogs does not reflect the in vivo scenario, where only the growth 

cone but not the soma is exposed to CNP in the DREZ of the spinal cord during 

embryonic development. To study the compartmentalized CNP/cGMP signaling in 

DRG neurons, we established a method to apply drugs to subcellular domains of DRG 

neurons, such as the axons or growth cones, in combination with cGMP imaging after 
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local stimulation. Local application of CNP revealed that cGMP can be generated in 

the growth cone independently of the soma (Figure 17). These results suggest that 

the growth cone can indeed detect CNP when projecting into the DREZ of the spinal 

cord. The local elevation of cGMP in the growth cone in response to CNP may be 

important for sensory axon bifurcation during embryonic development. 

 

On the other hand, the fact that the sensory axons in the cGMP signaling-deficient 

mice still turn longitudinally suggests that repellent signals exist to force the axons to 

change their growth direction. Filopodia are active protrusions of growth cones, which 

explore the environment and mediate axon pathfinding [228]. Inhibitory cues may also 

set a road map for filopodia of growth cones to travel. Operation of these guidance 

cues is facilitated by subcellular localization of diverse signaling components [229, 230]. 

Slit proteins have been suggested as repulsive cues for DRG neurons. Slit1 and Slit2 

are ligands expressed in the dorsal spinal cord, whereas their receptors Robo1 and 

Robo2 are expressed in the sensory neurons [231]. The bifurcation of sensory neurons 

in Slit1 and Slit2 double knock-out as well as Robo1 and Robo2 double knock-out mice 

was not affected. However, some bifurcated axons of these knock-out mice grew 

prematurely into the central canal of the spinal cord with a slightly changed angle, 

which suggests the Slit proteins as repellent axonal guidance cues [81]. The relatively 

mild phenotypes of the Slit/Robo knock-out mice also imply that Slits are not the only 

inhibitory cues. Netrin-1 and Semaphorin 3A are also inhibitory factors for sensory 

axons [232-234]. These cues may act in concert with cGMP to regulate bifurcation. 

Interestingly, these inhibitory proteins have already been linked to other second 

messengers, especially cAMP and Ca2+ [235]. Optical imaging combined with the 

growth cone turning assay has revealed the importance of spatially asymmetric Ca2+ 

and cAMP elevation in the growth cone in response to different neurotransmitters or 

guidance cues [193, 229].  

  

A network of second messengers decodes the cue-derived information as either 

attractive or repulsive signals that guide the pathfinding of growth cones [235]. With 

the same cues, nerve growth cones can behave oppositely. One prominent example 

is that Netrin-1 can function as a chemoattractant for some classes of axons and as a 

repellent signal for others. The functional difference depends on different levels of 

cytosolic cAMP, in response to different receptor types in different responsive cells 

[236]. On the other hand, in the same neuronal population, guidance cues may also 

have dual roles depending on the cellular level of cAMP and cGMP. Xenopus dorsal 

neurons switch from attraction to repulsion in response to Netrin-1 after up-regulation 
93 

 



    Discussion 

of cAMP, whereas they lose responsiveness after up-regulation of both cAMP and 

cGMP [236]. It has also been shown that the repellent Semaphorin 3A becomes an 

attractant for growth cones when cGMP is increased and activates cGKI, which further 

regulates downstream Ca2+ influx and membrane depolarization [237]. In sum, the 

responsiveness of growth cones to guidance cues is highly complex and depends on 

both the extracellular context and the internal state of the growth cone, which is 

strongly linked to the state of the second messengers, Ca2+, cAMP and cGMP. 

 

It is tempting to propose that cGMP acts in DRG sensory axon bifurcation, in concert 

with cAMP and Ca2+. An inverse correlation between cGMP and cAMP was observed 

in the freely extending growth cone [238]. The intracellular cGMP level is finely tuned 

by both GCs and PDEs. We have shown that PDE1 and PDE2 are responsible for 

cGMP degradation in embryonic DRG neurons. Both PDE1 and PDE2 are implicated 

in crosstalk with other second messengers: PDE1 is a Ca2+/CaM-stimulated enzyme 

that hydrolyzes cGMP and cAMP, and PDE2 is cGMP-stimuated and degrades both 

cGMP and cAMP. The presence of PDE1 and PDE2 implies that an interplay of cGMP, 

cAMP and Ca2+ may occur and could be important in DRG neurons. Intracellular cAMP 

and Ca2+ can also be elevated by various neurotransmitters, or guidance cues [235]. 

If the state of the second messenger network is the intrinsic factor crucial for the 

sensory neuron bifurcation, what can be the external factors? In culture, it has been 

shown that an inhibitory guidance cue can drive the growth cone split [239]. When the 

signal acts in the center of the growth cone, the cytoskeleton retracts in the center and 

the two sides of the growth cone proceed to grow into two branches. Bifurcation can 

be considered as a special kind of axon guidance, when branching occurs at the 

growth cone in DRG neurons [240]. As cGMP is indispensable for axonal bifurcation 

in vivo, it is probably the state of cGMP in DRG neurons that is fundamental for these 

cues to exhibit their function to split the growth cones [83, 241]. In sum, the bifurcation 

of growth cones may require two conditions: 1) an extrinsic repellent signal acts in the 

center of a growth cone; 2) intrinsic levels of second messengers, e.g., of cGMP alone, 

or the cGMP/cAMP ratio or the cGMP/Ca2+ ratio, should be maintained to shape the 

motility of the growth cone.  

 

Bringing all together, a model for DRG neuron bifurcation could be proposed as follows 

(Figure 26). During development, DRG neurons project into the spinal cord at the 

DREZ, where their axons get exposed to a complex environment, containing CNP 

secreted by dorsal horn neurons [83] as well as multiple guidance cues. CNP elevates 

cGMP in the whole growth cone, while multiple cues like Netrin-1 cause higher 
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cAMP/Ca2+ in the front side of the growth cones. cGMP and cAMP levels are fine-tuned 

by PDE1 and PDE2. Additionally, the inhibitory cues set a longitudinal path for the 

axon, preventing the growth cone from premature growth into the central canal by 

elevating local cAMP and/or Ca2+ in the front side of the growth cone. At the same time, 

cGMP elevated by CNP at the filopodia in the dorsal and ventral part of the growth 

cone set a high cGMP/cAMP ratio, which allows the inhibitory cues to steer the growth 

cone to extend in both caudal and rostral directions.  

 
Figure 26. Model for DRG sensory axon bifucation.  

The growth cone encounters various physical and chemical cues in the environment. CNP is 
secreted by cells localized in the dorsal quarter of the spinal cord. Upon arrival at the DREZ, 
local cGMP in the growth cone is generated by GC-B in response to CNP and degraded by 
PDE1 and PDE2. The motility of the growth cone may depends on the ratio of cGMP and other 
second messengers in local domains, especially in the filopodia. CNP increases the motility of 
the growth cone by affecting the cytoskeletal dynamics, e.g., by cGKIα-mediated 
phosphorylation of cytoskeleton-related elements. The repellent signals elicited by repulsive 
proteins, such as Slits and Netrin-1, might act together against the axon extension, probably 
through elevation of other second messengers such as cAMP and Ca2+ (shown in blue). Hence, 
the extension of the axon is only permitted in rostral and caudal directions. High cGMP levels 
are indicated in green. R, rostral direction; C, caudal direction. DREZ, dorsal root entry zone.  
 
To scrutinize this model, it is necessary to simultaneously visualize cGMP together 

with Ca2+ and/or cAMP and analyze their spatiotemporal dynamics in growth cones, 

while CNP and other guidance cues are locally applied. To test this hypothesis, one 

can try to mimic the local CNP activation and elevation of cGMP by applying CNP 

locally to the growth cone with glass pipettes. Another in vitro culture system to study 

axon growth, neurite outgrowth and the guidance properties of these molecules in 

response to different molecules is the stripe assay [242-246]. Active molecules like 

CNP are immobilized on a surface with silicon matrices to produce striped patterns. A 
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stripe coated with CNP would reflect the in vivo location of CNP in the DREZ, therefore 

allowing one to examine the axonal growth and signaling behavior of DRG neurons. 

Moreover, the stripe assay can also be combined with local application with glass 

pipettes to induce axon bifurcation. Along with these local drug application techniques, 

cGMP imaging with subcellular resolution deserves a lot of attention in the future. Our 

sensor mice should also facilitate the time-lapse imaging of cGMP in vivo in tissue 

slices, or even in mouse whole embryo culture, which would hopefully also help resolve 

the mechanisms of axon bifurcation. 
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4.3 cGMP in platelets 
Platelets play a central role in hemostasis and thrombosis. Without a nucleus, platelets 

have no control over transcription, making them also resistant to DNA transfection. We 

established a method for real-time cGMP imaging in activated platelets from cGi500 

sensor knock-in mice with a flow chamber system. Collagen is one of the strongest 

thrombogenic components of the subendothelial matrix responsible for the initiation of 

platelet adhesion. A number of adhesive receptors on the platelet plasma membrane 

interact either directly or indirectly with collagen [92]. By flowing whole blood over a 

collagen-coated coverslip, platelets were activated and arrested on the collagen-

coated surface. Platelet thrombi formed in the flow chamber system were used for 

cGMP FRET imaging. Ca2+ is another important second messenger that has been 

implicated in various cell systems, maintaining physiological homeostasis together with 

cGMP and cAMP. Due to the distinct spectral properties of Fura-2 and the FRET pair 

(CFP and YFP) within cGi500, it is possible to measure Fura-2 and FRET at the same 

time [247, 248].  We describe here a method to visualize cGMP and Ca2+ in platelets 

from R26-CAG-cGi500(L1) mice in parallel. By loading cGMP sensor-expressing cells 

with Fura-2, cGMP and Ca2+ were measured simultaneously. 

 

Characterization of cGMP signaling in platelets with our newly generated R26-CAG-

cGi500(L1) mice has shown that cGMP is generated by sGC in response to NO. Our 

FRET data showed that degradation of cGMP is controlled by PDE2, PDE3 and PDE5. 

These data are in line with previous reports [95]. PDE2 is a cGMP-stimulated enzyme 

specific for both cGMP and cAMP, while PDE3 is cGMP inhibited, and preferentially 

hydrolyzes cAMP, suggesting that fine-tuning of the balance between cGMP and 

cAMP is important for platelet function. PDE5 is specific for cGMP degradation.  

   

Surprisingly, platelets generated cGMP not only in response to NO, but our real-time 

FRET measurements also demonstrated that NO-induced cGMP was strongly 

regulated by flow. This process was very fast; the decrease of cGMP upon flow off 

occurred within 2-5 seconds. The total decreasing time of NO-induced cGMP was ~30 

s. Overall, flow on increased cGMP production, whereas flow off declined cGMP levels 

(Figure 19). Similar results were also observed in VSMCs. However, the decay of 

cGMP in VSMCs upon flow off took about 2 min, which was slower than in platelets, 

indicating a slower response to flow change. This may be explained by the smaller size 

of platelets compared to VSMCs; platelets are cells of 2-3 µm, and a small change in 

molecules or ions induced by shear stress would result in a rapid change in 
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concentrations, thereby regulating cGMP in a fast manner. Moreover, the rapid 

response of cGMP regulation correlates with the functional necessities for platelets to 

respond immediately to vascular trauma to prevent life-threatening blood loss, 

whereas VSMCs do not directly sense fluid shear stress, although stretch is present 

during contraction.  

  

Are sGC and/or PDEs regulated by flow? Intracellular cGMP levels are determined 

by a balance of its generation and degradation. Theoretically, the flow-induced 

increase of cGMP concentration in the presence of NO can be attributed to flow-

activated sGC or flow-inhibited PDEs, or both. The fact that Bay 41-2272-induced 

cGMP was only partially decreased after flow off (Figure 23A) argues against PDEs 

as the major mediators of flow regulation; sGC instead may play a critical role. 

Experiments with VSMCs showed that flow affected NO-induced cGMP signals but not 

CNP-induced cGMP signals (Figure 23C); different cGMP pools induced by DEA/NO 

or CNP had a differential sensitivity to flow reduction, further pointing to sGC as the 

likely molecule to be regulated by flow. Therefore, we propose that in the presence of 

NO, flow on results in sGC sensitization, and cGMP gets elevated. Conversely, flow 

off gives rise to desensitized sGC, leading to fast cGMP degradation by PDEs. 

 

The decay of cGMP upon flow off in the presence of NO is even faster than that upon 

washout of NO (Figure 21), indicating that flow off results in a state of sGC activity 

even lower than the basal activity with flow but without NO. Current knowledge 

suggests a two-step activation of sGC [37]. NO activates sGC through binding to the 

sixth coordination position of the heme, resulting in a 6-coordinate low-output 

intermediate activated state. Further scission of the histidine-iron bond produces a 5-

coordinate NO-Fe2+-heme complex and induces structural changes within the heme 

moiety which is considered to trigger the conformational change required to activate 

the enzyme to a high-output state. Considering the novel mode of cGMP regulation by 

flow, there might be at least four states of sGC activity in vivo: 1) a state with very low 

to lost sGC activity in the absence of flow, at which the integrity of sGC may be 

disrupted, possibly due to an event that separates the two subunits of sGC, 2) a state 

with basal activity of sGC, in the presence of flow, 3) a 6-coordinate NO-heme low 

output state, 4) a 5-coordinate NO-heme high output state. The four states of sGC may 

coexist and are inter-convertible, which can well explain the “flow on and off” 

phenomenon. NO activates sGC to a high output state, resulting in a fast increase of 

cGMP production. After washout of NO, sGC returns to a basal active state in the 

presence of flow, and therefore cGMP signals decrease relatively slowly. In contrast, 
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flow off totally shuts down the sGC activity, while PDE activity is high, leading to a 

sharp decrease of cGMP levels. On the other hand, the indazole derivatives, including 

Bay 41-2272 are NO-independent, heme-dependent sGC stimulators. It is proposed 

that they stimulate sGC by binding to an unknown allosteric site [49]. They also act in 

synergy with NO by stabilizing the NO-heme complex of sGC in its active state [49, 

249]. In our studies, Bay 41-2272-induced cGMP levels only decreased slowly and 

partially upon flow off, which may be accounted for the stabilization of sGC by Bay 41-

2272. Washout of Bay 41-2272 results in the relief of sGC activity back to its basal 

activity again and cGMP returns to basal levels. 

 

Does shear stress increase cGMP in platelets? It is known that NO also has multiple 

cGMP-independent effects. NO as a free radical undergoes oxidation into nitrite and 

nitrate, reacts with the superoxide anion (•O2) to form peroxynitrite (ONOO−), or binds 

to transition metals (NO-M) [250]. Many proteins can be modified by NO through 

converting thiol groups in proteins into S-nitrosothiols [251, 252]. Recently, S-

nitrosylation has been suggested as a mechanism for sGC desensitization [53, 54]. 

Our finding that flow also regulates Bay 41-2272-induced cGMP suggested that sGC 

desensitization by flow reduction is an effect not exerted by NO-mediated nitrosylation 

but rather by fluid shear stress itself.  

 

We showed that NO-induced cGMP was regulated in a flow rate-dependent manner. 

This cGMP change was not linear to the flow rate. In the presence of NO, a 90% 

decrease of flow rate from 45 mL/h to 5 mL/h resulted in ~30% decline of peak cGMP, 

whereas further 10% decrease of flow rate from 5 mL/h to 0 led to ~70% decrease of 

peak cGMP signals to the basal level (Figure 20). In addition, the titration of flow from 

high flow rate (45 mL/h) to intermediate flow rates (between 45 and 5 mL/h) did not 

lead to changes of cGMP levels (data not shown). It seems there is a threshold of flow 

rate for sGC activation; low shear is already sufficient to sensitize the enzyme. This 

supports the hypothesis by Orr et al. that efficient transmission of small forces to the 

mechanosensitive elements enhances sensitivity [253]. In conclusion, regulation of 

sGC activity by shear stress seems to play an important role in flow-regulated cGMP 

levels in the presence of NO.  
 

How do platelets transduce shear stress to sGC? This is a fundamental question 

that remains to be answered and can be split into two questions: firstly, how is sGC 

regulated by shear stress? Secondly, what is the mechanotransducer? It is well known 

99 

 



    Discussion 

that sGC activity can be potentiated tremendously by NO and some synthetic 

compounds that modulate the heme moiety [37]. However, it is barely known how this 

enzyme is regulated in detail. Many mechanisms of receptor sensitization and 

desensitization have been suggested, including protein-protein interaction of sGC with 

Hsp70 [254], PSD95 [255] and PDI [256]. Other mechanisms for regulation of sGC 

include phosphorylation and S-nitrosylation. Phosphorylation of sGC at 

serine/threonine residues by PKC [257, 258] and PKA [259] increases the activity of 

the enzyme, whereas phosphorylation by cGKI [260, 261] leads to inhibition of sGC 

activity and therefore cGMP formation. Both stimulatory [101, 210] and inhibitory [262] 

roles of Src kinase on sGC activity have been suggested. Further work will be needed 

to clarify the role of sGC phosphorylation. Recently, S-nitrosylation, the oxidative 

modification of cysteine residues of sGC was reported to result in a reduction of NO-

stimulated sGC activity, suggesting that the modification of sGC by NO may account 

for NO tolerance and desensitization [53, 54]. Relocalization of sGC has also been 

shown in many studies. Translocation of sGC to the membrane occurs in response to 

a Ca2+ signal in human platelets. This membrane association sensitizes sGC to NO 

[263]. However in our study, shear stress alone did not alter intracellular Ca2+. And in 

the presence of NO, change of shear stress altered cGMP levels before Ca2+ levels 

(Figure 24 and 25A). Ca2+ is more likely downstream of cGMP in response to shear 

stress. Whether shear stress alters translocation and thereby sensitizes sGC 

independently of Ca2+ requires further clarification.  

 

Endothelial cells (ECs) lining the vessel lumen and platelets adhering to the 

endothelium are directly subjected to blood flow. ECs and platelets are the two major 

cell types reported to respond to fluid flow. Mechanotranduction in ECs is more 

extensively investigated, partially due to the easier culture of ECs under flow. Cell-cell 

junctions [264], ion channels [265], integrins [266], caveolae [267], primary cilia [268], 

and glycocalyx [269] have been proposed as putative mechanotransducers in sensing 

flow. Interestingly, many of these proteins or structures that mediate response to shear 

stress in ECs [253, 270] are also found in platelets. For example, platelet endothelial 

cell adhesion molecule (PECAM-1), also known as CD31, is abundantly expressed in 

both platelets and endothelial cells [271]. PECAM-1 transduces the shear response in 

endothelial cells [122, 264, 272] and has an inhibitory role for platelet aggregation [273]. 

Platelets and ECs might share common mechanotransducers that convert physical 

stresses into biochemical signals. Lessons learned from ECs can be applied to 

platelets and vice versa. In platelets, activation and aggregation has been historically 

evaluated in suspended cells activated by agonists in the absence of interactions with 
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immobilized substrates, for example, in an aggregometer, where continuous stirring is 

applied, but the fluid dynamic parameters are poorly defined [92]. Widespread 

application of the flow chamber system and intravital imaging revealed many adhesion 

molecules that are involved in platelet aggregation under flow [92, 273]. However, 

whether and how shear forces are transduced to biochemical signals is still elusive. In 

this context, it seems not so surprising that shear-regulated cGMP/Ca2+ signals were 

normal in GPIb mutant platelets. The elevation of cGMP induced by vWF  [104, 210, 

211] might be an effect mediated by binding of vWF to the GPIb receptor rather than 

an effect of shear stress on GPIb.  

 

Interestingly, preliminary data showed that TRPC3 might affect cGMP generation. 

Although it is still under debate whether TRP channels themselves work as 

mechanosensors to detect flow directly, they are widely accepted as molecular 

components of mechanotransduction [274]. Several TRP channels can also be 

activated by G protein-coupled receptors. These receptors are themselves often 

deemed as flow sensors, which activate phospholipase C, and the synthesized 

diacylglycerol (DAG) mediates TRP channel activation [274]. In this context, shear 

stress may be transduced via mechanotransducers including TRPC3 to sGC. Pyr3 

impairs flow-induced sensitization of sGC and, therefore, slows down NO-induced 

cGMP production after flow on. sGC desensitization by the blockage of TRPC3 

therefore fits well with our model for flow-regulated cGMP signaling (Figure 27).  

 

The attenuating effect of Pyr3 on cGMP generation is an important first step towards 

the understanding of the underlying mechanisms of flow-regulated cGMP signaling. 

However, it is not known how TRPC3 regulates sGC and whether shear stress 

regulates TRPC3 by gating the ion channel activity or affecting its physical interaction 

with sGC. TRPC3 is a non-specific cation channel, allowing influx of Na+ and Ca2+ [274].  

It seems unlikely that TRPC3-derived Ca2+ affects cGMP production, since Ca2+ seems 

to be the downstream signal of cGMP and flow on and off in the absence of NO does 

not change cytoplasmic Ca2+ as revealed by Fura-2 measurements, unless 

compartmentalized Ca2+ is affected. Although Pyr3 is selective in inhibiting TRPC3 

over other TRP channels, it can also have nonspecific effects on other signaling 

pathways [275], such as store-operated Ca2+ entry mediated by Orai channels [276]. 

However, the concentration of Pyr3 (1 µM) used in this study is relatively low, and 

seems not likely to exhibit such non-specific effects. Future work to clarify the role of 

TRPC3 should include: 1) confirmation of the sGC desensitization response by 

measuring the dose response to NO in the presence and absence of Pyr3; 2) 
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simulation of the effect of shear stress on TRPC3 activation through application of 

TRPC3 agonists such as the membrane-permeable DAG analog 1-oleoyl-2-acetyl-sn-

glycerol (OAG) [216]; 3) verification of the role of TRPC3 by studying platelets from 

TRPC3 knock-out mice. Further delineation of the channel activity and its relationship 

with intracellular cGMP should be performed. Further investigation is needed to unveil 

whether and, if so, how TRPC3 affects the cGMP level, for example, via ion regulation 

or physical interaction with sGC.  

 
Figure 27. Model for shear stress-regulated cGMP signaling in platelets. 

Platelet exposure to fluid shear stress leads to cGMP elevation in response to NO. Fluid shear 
stress is sensed probably by platelet membrane proteins and transduced by transducers like 
TRPC3, to sensitize sGC to NO via unknown mechanisms. Acute cessation of flow would result 
in inhibition of TRPC3, and therefore desensitize the NO receptor sGC, resulting in reduced 
cGMP levels even in the presence of NO. Inhibition of TRPC3 by inhibitors such as Pyr3 would 
also inhibit sGC activity, leading to an attenuated cGMP response. cGMP precedes and 
possibly regulates cytoplasmic Ca2+ through inhibition of Ca2+ release from the ER. IP3R, IP3 
receptor; IRAG, IP3R-associated cGKI substrate protein; ER, endoplasmic reticulum. TRPC3, 
transient receptor potential channel 3. 

 

What are the functional implications for cGMP modulation by flow? Cytosolic Ca2+  

is an important prothrombotic factor downstream of most signaling pathways in 

platelets [203]. Platelet agonists such as collagen and thrombin elevate cytosolic Ca2+   

levels during platelet activation. Virtually all agonists induce activation of 

phospholipase C, which generates the second messenger IP3. IP3 binds to the IP3 

receptor, an ion channel in the endoplasmic reticulum, mediating Ca2+ release from 

intracellular Ca2+ stores and subsequent store-operated Ca2+ entry [94, 277]. 

Sustained cytosolic Ca2+ elevation is required for platelet aggregation, and one of the 
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key steps is phosphatidylserine exposure on the platelet plasma membrane [203]. 

Phosphatidylserine exposure speeds up thrombin formation via the coagulation 

cascade, through which fibrinogen is converted into fibrin, thereby stabilizing the 

thrombus. We have shown that high shear stress leads to sensitized sGC activity which 

results in high cGMP levels. cGMP lowers intracellular Ca2+ levels, which counteracts 

with the aggregation process, thereby inhibiting thrombus formation.  

 

During thrombus formation, there is a dramatic change of shear rates of blood flow. 

Shear rates in arteries are in the range of 300-800 s-1, and of 500-1600 s-1 in arterioles, 

whereas that in veins are ten times lower, at 20-200 s-1 [278]. However, during vascular 

stenosis, shear rates can surge up to 10 000 s-1 and even higher [279]. During 

hemostasis, collagen and many other factors at sites of vascular injury trigger platelet 

activation and subsequent thrombus formation to stop life-threatening bleeding. 

However, few details are known how thrombus growth is limited at the right time point 

so that the thrombus gets not too large to occlude the vessels. The growing platelet 

plug during hemostasis results in a decreasing vessel diameter and elevated shear 

stress. It is reasonable to propose that elevated shear stress, together with NO 

supplied by the endothelium, prevents the platelet thrombus from further growth and 

vessel occlusion, possibly by inhibiting the recruitment of new platelets to the already 

formed thrombus. Thus, shear stress may function as a dynamic factor to auto-tune 

the regulation of thrombus growth and stabilization via cGMP signaling.  

 

The novel model of thrombus growth control by shear stress-regulated NO/cGMP 

signaling fits well with recent knowledge about platelet aggregation under dynamic flow 

conditions. Jackson and colleagues showed that platelets preferentially adhere in a 

low-shear zone at the downstream face of the growing thrombus [280]. As high shear 

induces higher cGMP and inhibits platelet aggregation, it makes sense that the 

thrombus grows favorably at the low-shear zone. In the future, it would be desirable to 

understand how the new mode of cGMP regulation by shear stress can be translated 

to in vivo conditions, for example, through cGMP imaging of a thrombus facing different 

shear exposure. Moreover, the shear-dependent mode of cGMP signaling also 

suggests that thrombus formation is not a simple progressive process, starting with 

platelet adhesion and activation, and ending up with the platelet plug at the trauma. 

Future studies should address a more detailed dissection of this process over time in 

an in vivo context, including adhesion and activation, as well as thrombus growth and 

stabilization [281]. 
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As also introduced before, Du et al. proposed biphasic effects of cGMP in platelets, i.e. 

an earlier stimulatory role in platelet activation and a delayed inhibitory role in limiting 

thrombus overgrowth [104]. Our new model supports the inhibitory effect of cGMP on 

thrombus growth, although it does not tell if there is any stimulatory effect during 

platelet activation. For the future, it would be of high interest to monitor cGMP during 

platelet adhesion and activation, in a flow chamber, and eventually in blood vessels of 

live animals with intravital microscopy. Ca2+ imaging with Ca2+ fluorescent dyes in 

single rolling platelets in a flow chamber [282, 283] or in vivo [284] has been described 

by other groups. A recently described FRET-based calcium indicator (‘Twitch’ sensor) 

has also been utilized to image moving T lymphocyte during activation in vivo [285]. 

Therefore, a similar approach based on ratiometric imaging of cGMP with our cGi500 

sensor mouse should be feasible in principle. Considering the controversy about the 

stimulatory or inhibitory role of cGMP in platelet activation, live cell imaging of cGMP 

during thrombus formation may provide new evidence to settle down the dispute. To 

develop a fluorometric aggregometer for real-time monitoring of cGMP during 

aggregation is another potential application to elucidate this question. This method 

should combine a conventional aggregometer that can be used for monitoring of 

platelet aggregation and cGMP by fluorometric FRET measurement. A high throughput 

version of this method may also provide a new route for screening of new cGMP-

modulating drugs under more physiological conditions.  

 

Altogether, we have successfully generated and characterized FRET-based cGMP 

sensor knock-in mice. The mouse lines have already brought us new knowledge about 

cGMP biology, especially from cGMP imaging in live DRG neurons and platelets. The 

novel findings of this work highlight the usefulness of the newly generated transgenic 

mice as important tools for cGMP research. These cGMP sensor mice are expected 

to find widespread applications in the future.  
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