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1. Introduction

According to observational epidemiological studies, cancer is the second leading 

cause of death in developed countries after cardiovascular diseases [1], [2] and 

represents a major public health problem worldwide.

In terms of incidence and mortality, lung cancer is the most common cancer 

worldwide, in both men and women [3]. 

Because of the poor prognosis of this type of cancer (only 15.7% of patients survive 

more than five years) [3], it is very important to understand the risk factors, 

pathogenesis and treatment of this disease. 

In most cases, lung cancer develops silently and asymptomatically. Therefore only in

rare cases can it be treated at an early stage. Consequently, the tumor mass 

continues to progress until it interferes with vital processes and functions in the lungs 

and in metastasized organs. In these situations, most therapeutic options are 

ineffective and treatment remains strictly palliative [4],[5].

Therefore, early diagnosis, effective treatment and adherence to the treatment are 

the most important goals to prevent lung cancer evolution in the advanced stages. 

Because most cases are diagnosed late, research efforts in this area of cancer are 

divided not only into prevention and early detection, but also into new therapeutic 

strategies for the advanced stages. 

According to histological classification, there are two forms of lung cancer. The first 

form, Small-cell lung cancer (SCLC), includes only 12.95% of all patients and is 

associated with the worst prognosis of all types of lung cancer [6], [7]. 

The second category, Non-small-cell lung cancer (NSCLC), comprising 85% of all 

cases [8], includes various histological subtypes (squamous cell carcinoma, large cell 

carcinoma and adenocarcinoma). 

Due to the high incidence of this type of lung cancer, we proposed in our study to 

present a role for siRNA as a potential therapeutic option for the treatment of 

advanced NSCLC with chemoresistant cell lines. 

Generally, treatment can be curative when the disease is diagnosed at an early stage 

[9], but most patients benefit from a multimodal therapy based on chemotherapy, 

radiotherapy and surgery, even if their initial surgery is potentially curative [10], [11].

For patients diagnosed late, chemotherapy and radiotherapy remain the main 

therapeutic options. The response of the tumor cells to different therapeutic agents is 

a widely studied topic. Some authors consider that the resistance to current 
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chemotherapeutics (e.g. Gefitinib) represents one of the most significant barriers to 

improving long-term outcomes for this vulnerable patient group [12]. 

1.1. Aim

Due to the poor prognosis of lung cancer, we consider it absolutely essential to 

discover and study new drugs with beneficial effects in cancer treatment. On the 

other hand, the increased chemoresistance enountered in the last decade and the 

impact of siRNA in the treatment of lung cancer are certainly two topics still 

insufficiently researched. Therefore, the aim of our work is to emphasize the effect of 

siRNA silencing of six crucial molecules involved in the pathogenesis of lung cancer 

(Survivin, E2F1, HIF 1, HIF 2, STAT 3 and SRF) and demonstrate that siRNA is a 

promising alternative in the treatment of chemoresistant NSCLC. To understand the 

pathways involved and the effect of siRNA on the tumor cells, we will first emphasize 

some information about the pathogenesis, epidemiology and risk factors associated 

with this type of cancer. 

1.2. Lung cancer

1.2.1. Definition

According to the formal definition of the National Cancer Institute, lung cancer 

represents a disease characterized by uncontrolled cell growth in tissues of the lung, 

usually in the cells lining air passages (bronchi, bronchioles and alveoli). 

1.2.2. Risk factors

Risk factors include cigarette smoking, occupational exposure to various toxic agents 

(Arsenic, Nickel, Polycyclic aromatic hydrocarbons, Radon), radiation therapy, 

chronic obstructive pulmonary disease and a positive family history. Cigarette 

smoking is the most important cause of lung cancer, accounting for about 85% of 

cases. Smoking-associated lung cancer risk differs according to age, smoking 

intensity and smoking duration [13], [3]. Interestingly, even nonsmokers can develop 

lung cancer; several mutations detected in the epidermal growth factor gene (EGFR) 

[14] appear to be the responsible agents in these situations.
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1.2.3. Etiology

The hypothesis that lung cancer has a genetic component is supported by two 

mechanisms. These two mechanisms are the activation of dominant oncogenes, on 

the one hand, and the inactivation of tumor suppressor or recessive oncogenes, on 

the other. 

For example, mutation of the K-ras gene has a determinant role in adenocarcinoma 

of the lung [15], whereas overexpression of the EGFR protein or amplification of the 

EGFR gene has been found with an incidence rate of 26.3% [16]. Other oncogenes 

involved in this process are BRAF, PIK3CA, c-myc, bcl-2, Her-2/neu and ERBB3 [17], 

[18]. In addition, the inactivation of several tumor-suppressor genes such as TP53,

RB1, RASSF1A, SEMA3B, SEMA3F, FUS1, p16, LKB1 (STK11), CDKN2AlB, RARβ,

and FHIT appear to be involved in lung cancer pathogenesis [19].

1.2.4. Epidemiology

According to international epidemiological data, lung cancer (15%) is the second 

most common type of cancer in men after prostate cancer (25%). In women, lung 

cancer is the second most common cause of cancer after breast cancer (26%). In 

both men and women, lung cancer represents the leading cause of cancer mortality 

worldwide [20], [21]. 

According to the German Cancer Research Institute, in 2008 lung cancer affected

34,000 men and 15,500 women, and approximately 29,500 men and 13,000 women

died from it. Thus, lung cancer certainly represents the most common cause of 

cancer death in men (26%) and the third leading cause of cancer death among 

women (13%) in Germany.

Since 1990, the incidence of lung cancer has increased among women (by 30%), 

whereas the rate among men has steadily declined. In 2012 a very slight decrease in 

the incidence of lung cancer among men was noted (from 33,960 patents in 2008 to 

33,700 patients in 2012). On the other hand, the number of lung cancer cases among 

women increased from 15570 to 17700 [21].

1.2.5. Classification 

There are two methods of classifying lung cancer. The first is based on the histology 

of the tumor cells and the second is based on a mutational analysis. 



4

1.2.5.1. Histological classification of lung cancers

According to the classification proposed by the National Cancer Institute, there are 

two types of lung cancer: Small-cell Lung Cancer (13–15%) and Non–small-cell Lung 

Cancer (85–87%) [3]. The second category includes Squamous cell or Epidermoid 

carcinoma (30–35%), Adenocarcinoma or Bronchoalveolar carcinoma (25–35%) and 

Large cell or Anaplastic carcinoma (10–15%). 

I) Small-cell lung cancer is often centrally located (submucosa of airways/ primary 

and secondary bronchi, perihilar mass). The main risk factor for this type of cancer is 

smoking. This cancer has a rapid growth and is associated with a very early

metastasis. In most cases (70–80%), the cancer already has peripheral filiae at 

presentation and thus treatment options are very limited (palliative intent). Therefore, 

when diagnosed late, Small-cell lung cancer has the worst prognosis of all types of 

lung cancer [6], [7]. According to histopathological data, the cancer cells contain 

different molecules (neuroendocrine hormones such as ACTH, Calcitonin, and ADH, 

and antibodies against muscle cells or neurons: Anti-Hu onconeural antibodies), 

which may explain some of the early signs and symptoms of Small-cell lung cancer 

[22]. 

When diagnosed early, Small-cell lung cancer is sensitive to chemotherapy 

(Etoposid/ Irinotecan/ Topotecan plus Carboplatin/ Cisplatin) and radiation therapy 

[23]. However, many studies find that radiotherapy and chemotherapy are effective

only in the first years due to a rapid increase in chemoresistance, whereas surgery is 

ineffective or only slightly effective in the context of multimodal therapy [24].

II) Adenocarcinoma (25-35%) is commonly located peripherally. It is the most

common form of cancer in nonsmokers and in women due to a mutation in the 

Epidermal growth factor receptor (EGFR) [3], [25]. Although adenocarcinoma evolves

slowly compared to Small-cell lung cancer, it tends to form metastases widely at an 

early stage. 

In early stages, the treatment options include surgery (pneumonectomy or 

lobectomy) with or without adjuvant chemotherapy [26], [27]. In late stages surgery is 

ineffective and therefore replaced with palliative chemotherapy or radiation therapy 

[27]. 
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In our study, we demonstrate that siRNA silencing of various proteins involved in lung 

carcinogenesis (in particular in lung adenocarcinoma) can induce a decrease in 

tumor cell proliferation in chemoresistant adenocarcinoma cell lines treated 

previously with Gemcitabine, Vinflunine, Vinorelbine and Methotrexate. 

III) Squamous cell carcinoma (30–35% of all lung cancers) is centrally located and 

commonly associated with different paraneoplastic syndromes. Most frequently, it 

can be identified by an ectopic production of parathyroid hormone-related protein

(PTHrP), resulting in hypercalcemia. Major risk factors are smoking (85%) as well as 

environmental and occupational exposures to asbestos, radiation and radon (15%). 

Therapeutic strategies include surgery in the early stages and radiotherapy or 

chemotherapy in advanced stages [28]. 

IV) Large cell carcinoma is also located peripherally and represents 10–15% of all 

types of lung cancer. This form of carcinoma is associated with tobacco smoking over

30–40 years. This tumor is very aggressive and metastasizes in its early stages. 

Therefore, most epidemiological studies consider that the prognosis of large cell 

carcinoma is very poor, even in the early stages of the disease. The five year 

Survival Rate (all stages) is estimated at 11%. Because most therapeutic options 

including surgery, chemotherapy and radiation therapy are ineffective, novel 

therapeutic approaches in this area need to be established [29].

1.2.5.2 Molecular classification of lung cancer

Recently, a new classification scheme for lung cancer based on molecular

heterogeneity and responsiveness to treatment has been proposed [30]. Each

subtype is characterized by individual aberrations in various oncogenes/ tumor 

suppressor genes, and thereby each subtype has personalized treatment guidelines. 

There are nine molecular subtypes, including three primary and six secondary 

subtypes. 

In the first category the most common pathway is the EGFR pathway. The three most 

important mutations are EGFR sensitizing mutations/ EGFR resistance mutations, K-

ras mutations and EML4-ALK mutations. All these aberrations are common in 

adenocarcionoma cell lines. Treatment is represented by a combination of various

chemotherapeutic agents (dual EGFR/ HER 2 TKI, c-MET inhibitors +/− 1st or 2nd
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generation EGFR TKIs, Hsp90 inhibitors, dual MET/ VEGFR 2 inhibitors or Chk1 

inhibitors) [30].

The second category includes mutations in other six important oncogenes/ tumor 

suppressor genes involved in lung carcinogenesis (c-MET, PI3KCA, PTEN, VEGFR, 

Bcl-2, ROS1, IGF). Each of these subtypes has an individualized treatment with c-

MET inhibitors, dual Met/ VEGFR2 inhibitors, ALK/ MET inhibitors, PI3K, AKT, mTOR 

inhibitors, VEGFR inhibitors, BCL-2 inhibitors, ROS1 inhibitors, and IGF1R 

monoclonal antibodies, respectively [30]. 

1.2.6. Signs and symptoms 

In 75% of all cases, lung cancer expresses a very aggressive clinical behavior. The 

most common symptoms include cough, dyspnea, wheezing, chest pain, hemoptysis, 

shoulder pain, dysphagia and recurrent infections. In advanced stages, neurological 

symptoms due to brain metastasis, pathologic fractures due to bone metastasis, as 

well as jaundice due to liver metastasis may occur. Furthermore, some endocrine 

paraneoplastic syndromes may occur due to the inappropriate secretion of various 

hormones (e.g. hypercalcemia, syndrome of inappropriate antidiuretic hormone 

secretion, hypertrophic pulmonary osteoarthropathy, migratory superficial 

thrombophlebitis, myasthenia). 

1.2.7. Diagnosis and Staging

Because of the poor prognosis and aggressive clinical behavior of lung cancer, early 

diagnosis is crucial. According to the diagnostic scheme proposed by the German 

Cancer Society (S3 Guidelines, 2010), an accurate diagnosis includes the initial 

evaluation of the patient (patient history, physical examination) and laboratory testing 

(complete blood count, electrolytes, calcium, hepatic transaminases and alkaline 

phosphatase). In the follow-up, the diagnosis must be completed via chest x-ray, CT 

or PET–CT. If a mediastinal spread is suspected, cytopathology of pleural fluid or 

sputum, bronchoscopy-guided biopsy, fine-needle aspiration or open lung biopsy via 

thoracoscopy or mediastinoscopy are required. If the mediastinum is normal 

configured, thoracoscopy or mediastinoscopy are usually needed to confirm the 

diagnosis. Through these procedures a very accurate staging of lung cancer can be 

obtained. The actual edition of TNM classification is based on the AJCC Cancer 
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Staging Manual published in 2010 [31] and includes new criteria based on the 

prognosis and the efficiency of the treatment. Details are shown in the following table. 

Table 1: The 7th edition of the TNM staging system for lung cancer 2010 (Modified after S3 Guidelines 
of Lung cancer and UyBico S. J. et al. Radiographics 2010; 30:1163-1181, Radiological Society of 
North America).

TNM staging system for lung cancer 2010

Stage IA Stage IB Stage IIA Stage IIIB
T1a T1b T2a T2b T3 T4 Primary tumor 

(T)
<2cm >2cm, 

<3cm
>3cm
<5cm

>5cm
<7cm

>7cm Any a.Size

No invasion proximal 
to lobar bronchus

Main bronchus 
(>2cm, distal to the 

carina)

Main 
bronchus 

(<2cm, distal 
to the 

carina)

- b.Endobronchial 
Location

Surrounded by lung or 
visceral pleura

Visceral pleura Chest wall/ 
diaphragm/ 
mediastinal 

pleura/ 
parietal 

pericardium

Mediastinum/ 
trachea/ Heart 
/great vessels 
/ esophagus/ 

vertebral body 
/carina

c.Local invasion

Atelectasis/ 
obstructive 

pneumonitis that 
extends to the hilar 
region  but does not 

involve the entire 
lung

Atelectasis/ 
obstructive 

pneumonitis  
of entire 

lung; 
separate 

tumor 
nodule(s) in 
ipsilateral 
primary 

tumor lobe

Separate 
tumor 

nodule(s) 
within the 

ipsilateral lung 
but different 
lobe as the 

primary mass

d.Other

TNM
Staging 
2010

Supra
clavicular

Scalene Contra
mediastinal

Ipsi
mediastinal

Sub
Carinal

Contra
hilar

Ipsi
hilar

Peri
Bronchial

(ipsilateral)
N0 - - - - - - - -
N1

- - - - - - + +

N2 - - - + + -
N3 + + + +
Metastatic (M)
M1a: local intrathoracic spread

-Malignant pleural /pericardial effusion
-Separate tumor nodule(s) in the 
contralateral lung

M1b: Disseminated (extrathoracic) disease
-Liver, bone, brain, adrenal gland, etc.
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1.2.8. Therapy

1.2.8.1. Algorithm for Therapy of Non-small-cell lung cancer

The therapeutic strategies for Non-small-cell lung cancer depend on the histological

and molecular type of cancer. According to the S3 Guidelines for NSCLC, surgery 

with or without adjuvant chemotherapy is the first-line therapy in early stages (Stage I 

and II). For stage IIIA there are many therapeutic options (surgery with or without 

adjuvant therapy or concurrent chemotherapy/ radiation therapy, surgery with 

chemotherapy plus radiation therapy, chemotherapy with surgery, or chemotherapy 

plus radiation therapy). For stage III B, surgery remains ineffective. In this situation, 

radiation therapy with or without chemotherapy represents the first line therapy. For 

stage IV, platinum derivatives in combination with the best supportive care remain the 

recommended therapy [32].

Table 2: Algorithm for Therapy of Non-small-cell lung cancer (modified after S3 Guidelines for Lung 
cancer published by German Respiratory Society and German Cancer Society) [33].

Algorithm for Therapy of Non-small-cell lung cancer

Stage Standard Management Therapeutic alternatives Survival rate
IA and IB Surgical Resection Adjuvant therapy 

(chemotherapy/ 
radiation or 
Chemoradiotherapy)

Stage I A: 75%
Stage I B:  55%

II A and IIB Surgical Resection Adjuvant therapy 
(chemotherapy/ 
radiation or 
Chemoradiotherapy)

Stage II A:  50%
Stage II B: 40%

IIIA Chemoradiotherapy
(and) Surgical 
Resection in selected 
patients

Neoadjuvant combined 
modality:
Therapy to downstage 
primary tumor  

Stage III A:10-35%

IIIB Chemoradiotherapy Neoadjuvant combined 
modality: Therapy to 
downstage primary 
tumor  

Stage III B: 5%

IV Chemotherapy 
(Cisplatin)
Surgical resection if 
solitary metastatic 
lesion with resectable 
primary tumor

More efficacious single-
agent and 
combination 
chemotherapy

Stage IV: <5%

As presented in this table, radiotherapy can be given before and after surgery with 

curative intent or in advanced stages with palliative intent. 

The actual regimens must be given for a period of six weeks. Nowadays, the 

common procedures include External beam radiation therapy (2D, 3D, Intensity 

Modulated Radiation Therapy or stereotactic radiation therapy in clinical trials) as well 
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internal radiation (brachytherapy) [34],[35]. The same study showed that the 

proportion of NSCLC cases that ever require radiotherapy is stage dependent (Stage 

I: 41.0% +/- 5.5%; Stage II: 54.5% +/- 6.5%; Stage III: 83.5% +/- 10.6%; Stage IV 

65.7% +/- 7.6%) [34]. 

A recent study demonstrated the beneficial role of adjuvant radiotherapy after radical 

surgical treatment for metastatic lung cancer (N2), leading to a statistically significant 

increase in 5-year overall survival from 14.7 to 19.7% [36].

Another crucial component in the treatment of NSCLC is chemotherapy. The drugs 

commonly used are platinum derivatives (Cisplatin, Carboplatin), anthracyline 

antibiotics (Adriamycine), taxanes (Paclitaxel, Docetaxel), vinca alkaloids 

(Vinorelbine, Vincristine), nitrogen alkylating agents (Cyclophosphamide), glycosid

derivatives (Etoposid) or semisynthetic analogues (Irinotecan, Topotecan) [37]. 

1.2.8.2. Novel regimens for the management of advanced NSCLC

Recent studies emphasize the beneficial role of monoclonal antibodies as 

personalized treatment according to the classification of NSCLC into nine molecular 

subtypes. The most common monoclonal antibodies used are Cetuximab (EGFR), 

Panitumumab (EGFR), Matuzumab (EGFR), Pertuzumab (EGFR-ERB B2), MDX 214 

(EGFR), Trastuzumab (Her 2), Bevacizumab (VEGF), Erlotinib (EGFR-TK), Gefitinib 

(EGFR-TK), Lapatinib (EGFR, ERB B2 -TK), Canertinib (EGFR, ERB B2, ERB B3 -

TK), and HKI 272 (EGFR, ERB B2 -TK). 

Table 3: Novel agents/ regimens under development for the management of advanced NSCLC.

Novel agents/ regimens under development for the management of advanced NSCLC 

(2013)

Agent Class Mechanism Phase 

of study

References/ study 

identifiers

Publication 

Date

Amrubicin Synthetic 

anthracycline

inhibitor of 

topoisomer-

ase II

II Harada T. et al [38] 2013

Calcitriol Vitamin D Calcium 

metabolism

I/II Ramnath N. et al [39] 2013
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Selumetinib (AZD6244)

Investigatio-

nal drug

selective 

MEK1 and 2 

inhibitor

I Metro G. et al [40] 2013

Fostamatinib Investigatio-

nal prodrug

multi-kinase 

inhibitor

II Park SR. et al [41] 2013

Bevacizumab Monoclonal 

antibody

tyrosine 

kinase 

inhibitors 

(TKI)

III Schmid-Bindert G. et 
al. [42]

2013

Crizotinib Aminopyri-

dine

multi-kinase 

inhibitor (ALK, 

c-MET)

II , III Casaluce F. et al, 

[43]

2013

Matuzumab Monoclonal 

antibody

Target: EGFR II Pirker R. et al, [44] 2013

Panitumumab Monoclonal 

antibody

Target: EGFR II Pirker R. et al, [44] 2013

Necitumumab Monoclonal 

antibody

Target: EGFR III Pirker R. et al, [44] 2013

1.2.8.3. Chemoresistance in NSCLC 

As presented in the S3 Guidelines of NSCLC, the current therapeutic regimen is 

nowadays an individualized, multidisciplinary concept. In addition, chemotherapy 

represents an important component of treatment for all stages of the disease [37].

According to epidemiological studies, more than half of patients (55%) have stage IV 

at diagnosis [37]. 

According to the S3 Guidelines, for most of these patients, chemotherapy becomes 

the gold standard. As presented in the following table, for the majority of the patients 

diagnosed in advanced stages, chemoresistance might represent the most important 

obstacle to an effective treatment.

Table 4: Prevalence of extreme chemotherapy resistance in vitro in resected NSCLC
(Modified after D’Amato TA et al, Ann Thorac Surg 2006, [45])

Chemotherapy agent Prevalence of extreme chemoresistance of 
resected NSCLC in vitro

Carboplatin 68%
Cisplatin 63%
Doxorubicin 75%
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Etoposide 63%
Gemcitabine 72%
Vinorelbine (Navelbine) 42%
Paclitaxel 40%
Docetaxel (Taxotere) 52%
Topotecan 31%

A recent study shows that the chemotherapeutics utilized in the treatment of NSCLC 

could only modestly increase the overall survival (2 months per decade) and quality 

of life of the investigated patients because of an increase in chemoresistance [46].

The resistance can be acquired via alterations in drug influx or efflux, detoxification 

through glutathione conjugation, alterations in DNA repair capacity and cell cycle 

control [37], [47].

In addition, some studies consider that chemoresistance may be genetically

conditioned; the major contributors are the multi-drug-resistant- MDR1 gene and 

multidrug-resistance protein 1- MRP1 [48]. According to the same author, P-

glycoprotein (P-gp) in peripheral CD56+ cells can represent a predictive biomarker 

for the identification of chemoresistance in Non-small-cell lung cancer [48].

Mutations in mitochondrial Complex-I subunit ND2 (MT-ND2) as well as mutations in 

the NRF2 protein or Kelch-like ECH-associated protein 1 (KEAP1) were also found to 

be responsible for adaptive chemoresistance in the A549 Non-small-cell lung cancer

cell line [49],[50].There are four possible mechanisms involved in chemoresistance to 

cisplatin in NSCLC:

(1) pathways preceding the binding of cisplatin to DNA (pre-target resistance), 

(2) pathways that directly relate to DNA-cisplatin adducts (on-target resistance), 

(3) mechanisms concerning the lethal signaling pathway(s) elicited by cisplatin-

mediated DNA damage (post-target resistance) 

(4) mechanisms affecting molecular circuits that do not present obvious links with 

cisplatin-elicited signals (off-target resistance) [51].

As observed above, the causes of chemoresistance are multifactorial. To prevent 

chemoresistance it is particularly important to explore and propose new therapeutic 

alternatives (e.g. gene therapy, molecular therapy, radiotherapy), all of which should 

be embedded in an individualized treatment according to the molecular and genetic

variant of the subtype of cancer on the one hand, and the clinical severity of the 

disease on the other.
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The current trend is to promote a range of tumor biomarkers (beta III-tubulin, ERCC1, 

K-ras, RRM1, Tau) that can predict the tumor stage early and accurately [37], to 

identify new targets in the pathogenesis of lung cancer and to develop individual

therapies based on the genetic pathways of chemoresistance (e.g. siRNA). 

Due to the increased chemoresistance and consequent decrease in treatment 

effectiveness, it is absolutely necessary to find and study new therapeutic 

alternatives (e.g. siRNA). Recent studies emphasize the role of siRNA as a promising 

concept in the chemosensitization of various chemoresistant tumor cell lines 

(hepatocellular carcinoma [52], breast cancer [53], lung cancer [54], colorectal cancer 

[55]). 

According to this concept, we described a potential therapeutic strategy for the 

treatment of chemoresistant lung cancer via siRNA silencing of six crucial molecules 

involved in lung carcinogenesis. 

1.3. siRNA

1.3.1. Definition

Small interfering RNAs (siRNA), also referred to as short interfering RNA or silencing 

RNA, are double-stranded RNA molecules containing 20–25 nucleotides with a very 

important role in the RNA interference (RNAi) pathway [56]. RNA interference (RNAi) 

represents a process found in many eukaryotes that regulates the expression of 

specific genes with complementary nucleotide sequences. Its two most important

roles are in innate immunity (against parasitic nucleotide sequences or various 

viruses) and in regulating gene expression [56], [57].

The discovery of its mechanism, structure and some possible therapeutic implications 

brought the researchers Andrew Fire (Professor of Pathology and Genetics at the 

Stanford University School of Medicine) and Craig C. Mello (Professor of Molecular 

Medicine at University of Massachusetts Medical School in Worcester) the Nobel 

Prize in Medicine in 2006 [58], [59].

1.3.2. Pathways

In eukaryotes, double-stranded RNA (dsRNA) molecules are cleaved into short 

fragments of ~20 nucleotides (siRNAs) by an endoribonuclease called Dicer [60]. The 

resulting siRNAs are composed of two single-stranded (ss) RNAs. Each ssRNA 

contains a passenger strand and a guide strand. 
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The passenger strand, also known as the anti-guide strand, has a thermodynamically 

stable 5' end, whereas the guide strand has a less thermodynamically stable 5' end. 

While the passenger strand is recognized by R2D2 protein and subsequently 

degraded, the guide strand plays a crucial role in post-transcriptional gene silencing 

[61]. 

After degradation of the passenger strand, the guide strand forms the RNA-induced 

silencing complex (RISC) [60]. The less thermodynamically stable 5' end of the guide 

strand is recognized by a catalytic protein called argonaute. This protein is located in 

specific regions of the cytoplasm called P-bodies or GW bodies and plays a critical 

role in transcriptional silencing [62], [63].The guide strand incorporated in the RISC 

complex has the ability to recognize, bind (strong divalent cationic binding) and 

catalyze different complementary messenger RNA (mRNA) molecules via argonaute 

protein. As a result, a considerable reduction in protein translation and gene 

expression occurs. This mechanism is called the dsRNA cleavage pathway. 

Figure 1: siRNA pathway. 
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1.3.3. Technological applications 

siRNA is frequently used in experimental biology to knockdown a target gene and 

consequently to inhibit synthesis of the protein encoded by the target gene and its 

function. The RNA interference pathway may only knockdown the target genes 

(decrease the expression of the genes) and not knockout the genes, which indicates 

gene destruction and complete elimination of their functions [64]. 

More recently, due to advanced genetic engineering processes, siRNA molecules

can be produced with a high affinity for the target gene, thereby reducing cross

reactivity and off target effects [64]. 

1.3.4. Therapeutic strategies

I) Inhibition of oncogenesis in different types of cancer, e.g. lung cancer [65], 

hepatocellular carcinoma [66], colon cancer [67], pancreatic cancer [2], and mantle

cell lymphoma [68]).

Experiments conducted in our laboratory generated promising results regarding the

effect of siRNA in lung tumors using chemoresistant cell lines. The targets (SRF, 

E2F1, Survivin, STAT 3, HIF 1 and HIF 2) as well the primary mechanisms involved 

(specific siRNA gene silencing) will be discussed in the next Chapter (Material and 

Methods). 

II) Innate immunity

One of the most important roles of siRNA is in antiviral defense. siRNA molecules 

can induce knockdown of different classes of viruses (Influenza A virus [69], 

Herpesvirus [70], Rotavirus [71], Hepatitis B and C virus, HIV, Dengue Virus, 

Coxsackievirus B3, and Metapneumovirus [72]). The inhibition of this wide range of 

viruses can be achieved both in vitro and in vivo [73]. Generally, the primary 

mechanism consists of precise identification of the target genes, followed by specific 

binding to the target receptor and strong suppression of key genes in viral replication. 

III) Suppression of atherosclerosis in vein grafts and prevention of intravascular 

obliteration via siRNA eluting stents

Recent studies demonstrate that siRNA silencing of c-myc can inhibit endothelial cell 

proliferation [74], whereas the silencing of STAT 3 may attenuate neointimal 

formation in both in vivo and in vitro models [75], suggesting that early administration 
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of siRNA nanoparticles may be an effective approach to prevent vein graft restenosis 

and neointimal formation. 

On the other side, recent studies have emphasized a role for siRNA eluting stents in 

preventing myocardial infarction. With an efficiency of up to 70% in vitro, this new 

siRNA stent model may be a very important platform for developing new minimally 

invasive technologies [76]. 

All the studies mentioned above emphasize the importance of target molecule 

selection. Once the target molecule is established, a combination of PCR, Flow-

cytometry or Western Blotting can be used to determine the efficiency of the covalent

binding between the siRNA and the target molecule, on the one hand, and the 

efficiency of siRNA silencing of the target gene, on the other.

In our study we will discuss the importance of six target molecules (SRF, E2F1, 

Survivin, HIF 1, HIF 2 and STAT 3) in lung adenocarcinoma using various 

chemoresistant cell lines. 

1.4. Critical molecules involved in the carcinogenesis of NSCLC

1.4.1. Serum response factor (SRF)

SRF is a transcription factor that belongs to the MADS (MCM1, Agamous, Deficiens 

and SRF) superfamily and regulates apoptosis, cell growth and cell differentiation. 

The gene is located on chromosome 6 (Location: 6p21.1) and represents an 

important target for many pathways (e.g. the mitogen-activated protein kinase 

pathway/ MAPK). Therefore, SRF plays a critical role in cell cycle regulation. During 

embryogenesis, it plays a crucial role in developing mesoderm and thereby in the 

formation of the skeletal and muscle systems [77], [78]. 

SRF is also a very accurate nuclear repressor of tumor growth factor beta1 (TGF-

beta1) and consequently an inhibitor of cell proliferation in different types of cancer: 

breast cancer [79], prostate cancer [80], lung cancer [81], hepatocellular carcinoma 

[82] and ovarian cancer [83]. 

1.4.2. E2F1

E2F1 transcription factor plays an important role in cell proliferation and regulation of 

the cell cycle as well as in the functioning of some tumor suppressor proteins [84]. 

E2F1 is a strong inducer of apoptosis in response to DNA damage [85], through its 

capacity to activate p53/p73 death pathways. New studies demonstrate that aberrant 
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E2F1 expression may be associated with carcinoma recurrence, metastasis and 

resistance to anti-neoplastic agents [86]. The same study demonstrates that the

E2F1-p73/DNp73-miR-205 axis is a crucial mechanism for chemoresistance and, 

thus, a target for metastasis prevention.

Related to the involvement of E2F1 in the pathogenesis of lung cancer, Duan HY et 

al. demonstrated that this transcription factor may induce G2/ M Arrest and Apoptosis 

in the A549 and H1299 lung cell lines [87]. On the other side, E2F1 is a very potent 

promoter of cell differentiation and tumor growth in lung cancer; therefore, siRNA 

silencing of this gene has been related to effective suppression of tumor growth in 

NSCLC [81]. 

In addition, our study using various chemoresistant adenocarcinoma cell lines 

demonstrates that E2F1 might play a potential role in suppression of gene expression 

in multiresistant NSCLC.

1.4.3. Survivin

Survivin is a protein encoded by the BIRC 5 gene (baculoviral inhibitor of apoptosis 

repeat-containing 5) and is a member of the inhibitor of apoptosis (IAP) family. 

Inhibiting Survivin may suppress caspase activation and consequently decrease 

tumor cell differentiation and proliferation in the G2-M phase. There have been 

multiple demonstrations implicating this molecule in the inhibition of carcinogenesis 

by different mechanisms. As an oncogene, Survivin has been identified in 60 different 

human tumor lines [88]. Furthermore, downregulation of Survivin has been shown to 

play a crucial role in suppressing human hepatocellular carcinoma cells [89], breast 

cancer [90], hormone refractory prostate cancer [91], different oral cancer cell lines 

[92] and NSCLC [93], [81].

Most studies have emphasized that aberrant overexpression of Survivin may facilitate 

the acquisition of resistance to chemotherapeutic drugs. Thus, Survivin plays a 

crucial role in lung tumors in different chemoresistant cell lines. Recent experiments 

show that the silencing of Survivin sensitized H292 lung cancer cells in combination 

with Cisplatin therapy can efficiently inhibit angiogenesis, suppress tumor cell 

proliferation and consequently reduce tumor volume by approximately 83.13% [94]. 

Moreover, by knocking down AKT, CREB, Bcl-xL, Survivin and Bcl-2 molecules, a 

prompt reduction in NSCLC colony formation and an increase in the chemosensitivity 

of NSCLC can be achieved [95]. 
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1.4.4. HIF1 and HIF 2 (Hypoxia-inducible factor)

HIF 1 and HIF 2 are two heterodimers that respond to changes in available oxygen in 

the cellular environment (e.g. hypoxia/ hyperoxia). As a response to hypoxia, the HIF 

family promotes the formation of blood vessels and consequently the formation of the 

vascular system in embryos and different types of tumors. 

On the other side, HIF1 stimulates collagen production and bone development and 

thereby allows chondrocytes to maintain their function as professional secretory cells 

in the hypoxic growth plate [96]. Recent studies demonstrate that chronic intermittent 

hypoxia disrupts the balance between HIF-1-dependent pro-oxidant and HIF-2-

dependent anti-oxidant activities, and this loss of redox homeostasis can facilitate the 

pathogenesis of autonomic morbidities [97]. 

Moreover, HIF may play an important role in hypoxia-regulated control of 

macrophages and, thus, in various inflammatory processes and tumor cell 

development. 

Some clinical studies have demonstrated that downregulation of HIF 1 may stimulate 

TGF-β1 gene expression, thereby promoting crucial pathways in carcinogenesis (e.g. 

angiogenesis, recruitment of mesenchymal stem cells into hypoxic area of solid 

tumors and metastasis) [98],[99]. 

The role of HIF 1 and HIF 2 in carcinogenesis is discussed by various authors in 

different types of cancer: neuroblastoma [100], esophageal carcinoma [101], breast 

cancer [102], laryngeal carcinoma [103] and NSCLC [104]. 

1.4.5. STAT 3

STAT 3 (Signal transducer and activator of transcription 3) belongs to the STAT

protein family and is an important transcription factor that plays a crucial role in cell 

growth and apoptosis. Interestingly, STAT 3 protein appears in early stages of cell 

development and may modulate the differentiation and growth of embryonic stem 

cells (ESCs).

Recently, the role of STAT 3 was demonstrated in inflammation [105]. The pathways 

invoked include new proinflammatory molecules (e.g. Resistin) that play an important 

role in the suppression of cytokine signaling (SOCS). Thus, siRNA silencing of STAT 

3 might modulate the action of Resistin-induced SOCS, and consequently pro-

inflammatory processes [106]. Recent studies demonstrate the role of STAT 3 in 

carcinogenesis. siRNA silencing of STAT 3 may induce G0/ G1 arrest and 
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subsequently an effective reduction in cell differentiation and cell proliferation in 

bladder cancer [107], hepato-carcinoma [108] and lung adenocarcinoma [109]. 

In our study, we demonstrate that siRNA specific silencing of STAT 3 can induce 

inhibition of gene expression in various A549 chemoresistant cell lines in vitro in a 

concentration-dependent manner. 

Taken together, the aim of our study is to point out that silencing SRF, E2F1, 

Survivin, HIF 1, HIF 2 and STAT 3 can significantly decrease cell differentiation and 

tumor growth in multiresistant adenocarcinoma cell lines, thereby inducing effective 

results in the treatment of NSCLC. The mechanisms and pathways responsible for

these effects will be presented in the next chapter (Material and Methods).
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2. Materials and Methods

2.1. Cell culture and primary cell isolation

In order to reproduce the siRNA transfectability in vitro and to facilitate a similarity to 

in vivo situations, we examined the chemoresistance of four different chemotherapy 

agents on the A 549 cell lines (adenocarcinomic alveolar basal epithelial cells). This 

cell line, first described in 1972 by D. J. Giard, has many practical advantages. The 

cells grow as monolayer cells, may easily be suspended in a solution in vitro and 

contain high level of desaturated fatty acids, with a crucial role in the membrane 

stability [110]. The A 549 cell lines belonging to the German Collection of 

Microorganisms and Cell Culture (Braunschweig, Germany) were cultured under 

standard conditions, at 37 °C, in a humidified atmosphere containing 5% CO2. 

Table 5: Description of A 549 cell line

Name of 

cell line

Tissue-type Manufacturer Basal 

medium

A 549 Lung adenocarcinoma

(adenocarcinomic alveolar

basal epithelial cells)

University Medical Centre, Hematology 

Department, Tübingen, Germany

DSMZ (Braunschweig, Germany)

DMEM-

high 

glucose

In order to support the growth of adenocarcinoma cells, the cells were cultured in 

DMEM-high glucose medium (PAA, Cölbe, Germany). 

Table 6: Description of culture medium

Description of culture medium Product code Manufacturer

DMEM-high glucose medium PAA E15 -009 PAA Laboratories, Pasching, 

Austria

PAA, Cölbe, Germany

The advantage of this medium is that it contains four times the concentration of 

amino acids and vitamins in comparison to other media. To ensure an optimal growth 

of the cells, the selected medium was supplemented with 100 U Penicillin (PAA, 

Cölbe, Germany), 20 µg Streptomycin (PAA, Cölbe, Germany), 2 nM L-Glutamine 

(PAA, Cölbe, Germany) and 10 % conditioned fetal bovine serum/ FBS (PAA, Cölbe, 

Germany).
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In order to develop the chemoresistance similar to in vivo situations, the A549 cells 

were treated repeatedly with low doses of the desired chemotherapeutics 

(Methotrexate 50 ng, Gemcitabine 100 ng, Vinflunine 500 ng, Vinorelbine 200 ng).

Dead cells that responded to chemotherapy were removed from the medium, 

whereas the surviving cells were treated gradually with repeated low doses of the 

same agent, until they developed the desired chemoresistance against the agent. 

These chemoresistant cells were obtained with the courtesy of Mr. Prof. Martin 

Michaelis (University of Kent, Canterbury, UK) and Mr. Prof. Dr. Jindrich Cinatl 

(Department of Pediatric Cancer and Virus Research, Frankfurt am Main, Germany). 

Table 7: Description of used materials

Description of consumables Product code Manufacturer

0,5 ml DNA LoBind Tube 0030 108.035 Eppendorf AG, Hamburg, 

Germany

1,5 ml DNA LoBind Tube 0030 108.051 Eppendorf AG, Hamburg, 

Germany

12 Well Plate 3512 Corning Incorporated 

Costar, New York, USA

15 ml Cellstar Tube (Falcon) 188271 Greiner Bio-One 

International AG, 

Kremsmünster, Germany

50 ml BD Falcon 352070 BD Biosciences, 

Heidelberg, Germany

Multiply pro Gefäß 0,2 ml 72.737.002 Sarsted AG&Co, 

Nümbrecht, Germany

PCR microseal ‚B’ MSB 1001 Bio Rad Laboratories, 

Munich, Germany

Safe Lock Tubes 1,5 ml 0030120.086 Eppendorf AG, Hamburg, 

Germany

Pipette tips Dualfilter, 

(PCR clean, steril)

10 µl M, 20 µl, 100 µl, 1000 µl

0030077.512

0030077. 539

0030077. 547

0030077. 571

Eppendorf AG, Hamburg, 

Germany

Twin.tec real time PCR plate 

96

0030132.718 Eppendorf AG, Hamburg, 

Germany
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Cellstar cell culture flasks 660175 Greiner Bio- one GmbH, 

Frickenhausen, Germany

UVette, 220-1600 nm 0030106.300  Eppendorf AG, Hamburg, 

Germany

Cell culture bottle 75 cm2 430641 Corning Incorporated, 

Corning, New York, USA 

2.2. Transfection of siRNAs

In order to demonstrate the effectiveness of siRNA treatment in comparison to the 

control group, 100.000 A 549 cells were seeded 24 hours before transfection with 

specific siRNA in 12 well plates for qRT-PCR. Another 20.000 A549 cells were 

seeded 24 hours prior transfection to facilitate the CASY analysis. 

Table 8: Recommended number of cells to seed for different culture formats 24 hours before 
transfection

Culture format Suggested number of adherent cells to seed (day before transfection)

24-well plate 4.0 – 8.0 x 104

12-well plate 0.8 – 2.0 x 105

6-well plate 1.5 – 4.0 x 105

Before transfection, media containing basal medium (PAA, Cölbe, Germany) 

interferinTM (Polyplus, Illkirch, France) and different concentrations of siRNA were 

prepared. For experiments using qRT PCR, the cells were treated with 300 µl of 

transfection medium containing 25 nM or 100 nM siRNA. For CASY analysis a siRNA 

concentration of 50 nM was used. 

The interferinTM served as lipid cation in order to form the transfection complexes. 

This transfection method is based on lipofection, a highly efficient, lipid-mediated 

DNA-transfection procedure, which uses lipid cations as transporter molecules for the 

siRNA. 

Table 9: Standard Concentrations for the production of siRNA transfection approach

Concentration siRNA (20 µM) InterferinTM Basal medium

25 nM 0,4 µl 1,17 µl 318,0 µl

50 nM 0,8 µl 1,75 µl 317,5 µl

100 nM 1,6 µl 1,75 µl 316,7 µl
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To facilitate the formation of transfection complexes, all reagents were incubated for 

20 minutes at room temperature. Cells were incubated with the respective 

transfection medium for 2 hours at 37°C. Afterwards, the complexes were replaced 

by 1 ml fresh cell culture medium containing 100 U Penicillin (PAA, Cölbe, Germany), 

20 µg Streptomycin (PAA, Cölbe, Germany), 2 mM L-Glutamine (PAA, Cölbe, 

Germany) and 10 % conditioned fetal bovine serum/ FBS (PAA, Cölbe, Germany). 

Figure 2: Clinical implementation of transfection procedure in our laboratory

To analyze the results, we have isolated and studied for each target molecule three 

different groups of cells: 

Group I: non-siRNA or control nonsense-siRNA represented by chemoresistant A549 

cells treated previously with Gemcitabine, Vinflunine, Vinorelbine and Methotrexate 

and transfected with nonsense-siRNA. Nonsense-siRNA was purchased from Qiagen 

(Hilden, Germany).
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According to the transfection protocol proposed by Qiagen, the transfection reagent 

enables a high transfection efficiency with low cytotoxicity in the presence of serum. 

On the other hand, Qiagen does not provide the sequence of their nonsilencing 

siRNAs, but ensures that they have no homology to any known mammalian gene. 

These nonsilencing siRNAs are validated by using Affymetrix GeneChip arrays as 

well a variety of cell-based assays and have been shown to ensure minimal 

nonspecific effects on gene expression and phenotype.

Group II: the siRNA control group, entitled also SCR-siRNA (scrambeld), represented 

by chemoresistant A549 cell lines treated with nonspecific siRNA. In order to

demonstrate that the transfection is concentration dependent, we have used two 

different concentrations (25 nM and 100 nM SCR-siRNA). The SCR-siRNA was 

provided from Qiagen (Hilden, Germany). 

Group III: specific siRNA group, represented by chemoresistant A549 

adenocarcinoma cells treated previously with Gemcitabine, Vinflunine, Vinorelbine or 

Methotrexate and transfected with specific siRNA targeting SRF, E2F1, Survivin, HIF

1, HIF 2 or STAT 3. 

Table 10: Description of used reagents

Description of used reagents Product code Manufacturer

10000 U Penicillin/10000 µg 

Streptomycin (Pen/Strep)

P11-010 PAA Laboratories, Pasching, 

Austria

PAA, Cölbe, Germany 

CASYton® 05651808001 Roche Diagnostics GmbH, 

Mannheim, Germany

FCS 10500-064 Gibco Life Technologies

Interferin/

InterferinTM

04INF1309F8 PEQ LAB, Erlangen, Germany/

Polyplus, Illkirch, France

L-Glutamine (200 mM) M11-004 PAA Laboratories, Pasching, 

Austria

PAA, Cölbe, Germany

Dulbecco´s PBS, 1x, with  

Ca2+/Mg2+

H15-001 PAA Laboratories, Pasching,

Austria

TNS (0,05% Trypsin Inhibitor, 

0,1% BSA)

C-41120 Promo Cell, Heidelberg, Germany

0,04% Trypsin / 0,03% EDTA C-41020 Promo Cell, Heidelberg, Germany



24

2.3. siRNA sequences

In order to facilitate a high transfection efficiency, the specific targets were 

characterized by a sense sequence and an antisense sequence, as it follows: 

I)E2F1-siRNA (validated by Eurofins): sense 5’-GACGUGUCAGGACCUUCGU-3’; 

antisense 5’-ACGAAGGUCCUGACACGUC-3’.

II)SRF-siRNA: sense 5’-GAUGGAGUUCAUCGACAACAA-3’; antisense 5’-

GUUGUCGAUGAACUCCAUCUU-3’ [111]; 

III)Survivin-siRNA (BIRC5): sense 5’-GGACCACCGCAUCUCUACA-3’; 

antisense 5’-UGUAGAGAUGCGGUGGUCC-3’;

IV)HIF1- siRNA: sense 5’-AGAGGUGGAUAUGUGUGGG-3’; antisense 5’-

CCCACACAUAUCCACCUCU-3’;

V)HIF2- siRNA: sense 5’-AGAUUCCUCGUUAUUGUUG-3’; antisense 5’-

CAACAAUAACGAGGAAUCU-3’; 

VI)STAT3-siRNA: sense 5’-GCCUCUCUGCAGAAUUCAA-3’; antisense 5’-

UUGAAUUCUGCAGAGAGGC-3’;

Both SRF-siRNA sense and antisense sequences were previously characterized by 

Werth et al [111]. The E2F1-siRNA sense and antisense sequences were validated 

by Eurofins. All these siRNA specific sequences were synthesized by Eurofins MWG 

Operon, Ebersberg, Germany.

Table 11: Characterization of the sense and antisense sequences for the targeted molecules

Name Sequence Target gene Provider
E2F1 Sense: 5´GACGUGUCAGGACCUUCGU3´ 

Antisense: 5´ ACGAAGGUCCUGACACGUC3´ 
E2F1 gene,
Chromosome 
20 (human)

Eurofins 
MWG 
Operon, 
Ebersberg, 
Germany

Survivin Sense: 5´GGACCACCGCAUCUCUACA3´ 
Antisense: 5´UGUAGAGAUGCGGUGGUCC3´ 

BIRC5 gene,
Chromosome 
17 (human)

Eurofins 
MWG 
Operon, 
Ebersberg, 
Germany

STAT3 Sense: 5´GCCUCUCUGCAGAAUUCAA3´ 
Antisense: 5´UUGAAUUCUGCAGAGAGGC3´ 

STAT3 gene,
Chromosome 
17 (human)

Eurofins 
MWG 
Operon, 
Ebersberg, 
Germany

HIF 1A Sense: 5´AGAGGUGGAUAUGUGUGGG3´ 
Antisense: 5´CCCACACAUAUCCACCUCU3´ 

Chromosome 
14, q21-q24 
(human)

Eurofins 
MWG 
Operon, 
Ebersberg, 
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Germany
HIF 2A Sense: 5´AGAUUCCUCGUUAUUGUUG3´ 

Antisense: 5´CAACAAUAACGAGGAAUCU3´
Chromosome 
2, p21-p16 
(human)

Eurofins 
MWG 
Operon, 
Ebersberg, 
Germany

SRF Sense: 5´GAUGGAGUUCAUCGACAACAA3´ 
Antisense:5´GUUGUCGAUGAACUCCAUCUU3´ 

Chromosome 
6 (human)

Eurofins 
MWG 
Operon, 
Ebersberg, 
Germany 

SCR 
siRNA

Not published Qiagen, 
Hilden, 
Germany

2.4. Quantitative real-time polymerase chain reaction (qRT-PCR)

This technique is used to amplify and simultaneously quantify a targeted DNA

molecule. In order to identify and quantify different levels of messenger RNA (mRNA) 

and non-coding RNA in cells, qRT-PCR was combined with reverse transcription. 

Therefore, 24 hours after transfection, total RNA from cells was extracted using the 

AurumTM total RNA mini-kit delivered from Bio-Rad (Hercules, CA, USA). 

Table 12: Description of the used kits

Kit description Product code Manufacturer

AurumTM Total RNA Mini Kit 732-6820 Bio-Rad Laboratories 

GmbH, Munich, Germany

iQTM SYBR® green 172-5006CUST Bio Rad Laboratories 

GmbH, Munich, Germany

iScript cDNA Synthesis Kit 170-8891 Bio Rad Laboratories  

GmbH, Munich, Germany

Afterwards, 200 ng RNA of each sample was reverse transcribed by using iSkriptTM

cDNA Synthesis Kit (Bio-Rad, Hercules, CA, USA). The primer sequences were 

design using a special software developed by Premier Biosoft International. 

The synthesized primers are necessary for the elongation process and serve as a 

starting point for the polymerase chain reaction. The elongation process occurs at 

about 72°C and is repeated up to 40 times until a detectable amount of DNA is 

present and can be evaluated. In order to facilitate the qRT-PCR, a green fluorescent 

substrate (SYBR ® Green) was used. This substrate can be identified during the 
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elongation phase in the double-stranded DNA, thus producing an increase in 

fluorescence. Therefore, the fluorescence can increase proportional to the amount of 

DNA produced. 

At a certain value (Ct value), the fluorescence level was exceeded, and this obtained 

value can be used for the quantification of gene expression. To compare the 

efficiency of gene expression, the comparative delta Ct method was used. According 

to these measurements, the average value was calculated and the standard 

deviation was determined. 

Calculation of relative expression using Ct values: 

relative expression= 2-delta Ct

delta Ct= Ct,q- Ct,cb

whereas Ct,q is value for the target molecule and Ct,cb is the endogenous reference 

relative to a calibrator [112]. 

After reverse transcription of the RNA samples via iSkriptTM Bio Rad, individual 

primer sequences for each target molecule were synthesized by Eurofins MWG 

Operon (Ebersberg, Germany). The sequences targeted by the siRNAs are as 

follows: 

I) SRF forward 5’-AGTGCAGGCCATTCAAGT-3’; reverse 5’-

ACGGATGACGTCATGATGGTG-3’; 

II) Survivin (BIRC5) forward 5’-CTTTCTTGGAGGGCTGC-3’; reverse

5’-TGGGGTCGTCATCTGGC-3’; 

III) E2F1 forward 5’-ACCATCAGTACCT

GGCCGAGAGC-3’; reverse 5’-ATAGCGTGACTTCTCCCCCGGG-3’; 

IV) HIF1 forward 5’-TGCAGAATGCTCAGAGAAAGCGAA-3’; reverse 5’-

GCTGCATGATCGTCTGGCTGCT-3’.

V) HIF2 forward 5’-TGTCAGGCATGGCAAGCCGG-3’; reverse 5’-

GCACGGGCACGTTCACCTCA-3’; 

VI) STAT3 forward 5’-CGGAGAAACAGTTGGGACCCCT-3’; reverse 5’-

GAGCTGCTCCAGGTACCGTGT-3’; 

VII) GAPDH forward 5’-TCAACAGCGACACCCACTCC-3’; reverse 5’-

TGAGGTCCACCACC-CTGTTG- 3’; 
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In all PCR reactions, a standardized mixture containing IQTM SYBR® Green 

Supermix (Bio Rad, Hercules, CA, USA), 400 nM forward and reverse primer and 2 

ng of cDNA in a total volume of 15 µL was used. 

For the evaluation of qRT-PCR, cells were cultured and transfected in duplicates. For 

the validation of PCR reactions, GAPDH (Glycerinaldehyd-3-phosphat-Dehydro-

genase) was used as reference gene. This gene was found to be the most suitable 

housekeeping gene for expression studies in reticulocytes. It encodes the GAPDH 

glycolysis enzyme and is equally expressed under different environmental conditions 

in every mammalian cell [113]. 

Table 13: Characterization of the forward and reverse sequences for the target molecules

Name Sequence Provider
E2F1 forward 5’-ACCATCAGTACCTGGCCGAGAGC-3’

reverse 5’-ATAGCGTGACTTCTCCCCCGGG-3’
Eurofins MWG 
Operon 
(Ebersberg, 
Germany).

Survivin forward 5’-CTTTCTTGGAGGGCTGC-3’
reverse 5’-TGGGGTCGTCATCTGGC-3’

Eurofins MWG 
Operon 
(Ebersberg, 
Germany).

STAT 3 forward 5’-CGGAGAAACAGTTGGGACCCCT-3’
reverse 5’-GAGCTGCTCCAGGTACCGTGT-3’

Eurofins MWG 
Operon 
(Ebersberg, 
Germany).

HIF 1 forward 5’-TGCAGAATGCTCAGAGAAAGCGAA-3’
reverse 5’-GCTGCATGATCGTCTGGCTGCT-3’

Eurofins MWG 
Operon 
(Ebersberg, 
Germany).

HIF 2 forward 5’-TGTCAGGCATGGCAAGCCGG-3’
reverse 5’-GCACGGGCACGTTCACCTCA-3’

Eurofins MWG 
Operon 
(Ebersberg, 
Germany).

SRF forward 5’-AGTGCAGGCCATTCAAGT-3’; 
reverse 5’-ACGGATGACGTCATGATGGTG-3’;

Eurofins MWG 
Operon 
(Ebersberg, 
Germany).

GAPDH forward 5’-TCAACAGCGACACCCACTCC-3’; 
reverse 5’-TGAGGTCCACCACC-CTGTTG- 3’

Eurofins MWG 
Operon 
(Ebersberg, 
Germany).

In order to demonstrate the efficiency of siRNA delivery, no significant sequence 

homology with other human genes was found for any of these target molecules. 
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2.5. CASY cell confirmation

The remaining cells after specific transfection with siRNA targeting E2F1, Survivin, 

STAT 3, HIF 1, HIF 2 and SRF were counted with a CASY®.Cell Counter System

(Schärfe System, Reutlingen, Germany). The measurements were made three days 

after transfection. The principle of CASY technology is based on electric current 

exclusion and pulse area analysis. The difference between dead cells and viable 

cells is given by the lower resistance and broken cellular membrane of dead cells, 

whereas living cells have intact membranes and do not conduct the electric current, 

under the influence of an electric field. To facilitate an accurate differentiation 

between dead and viable cell populations, the studied cells were detached by using 

500 μl Trypsin/ EDTA (PromoCell, Heidelberg, Germany), subsequently inhibited with 

500 μl TNS (PromoCell, Heidelberg, Germany) and afterwards counted by CASY. 

Practically, 50 μl suspension treated with 10 ml CASYton® was placed in the 

analyzer. The program no. 2 for Human Embryonic Kidney Cells was used for the 

practical implementation (Capillary: 150 μm, sample volume: 400 μl, X-axis: 50 μm, 

cycles: 3, dilution: 1:200, evaluation cursor: 11.25 μm-50 μm, normalization cursor: 

7.5 μm-50 μm). The number of non-transfected cells was set to 100% and the 

number of living cells per ml was used for further calculation. 

2.6. Statistical analysis

All data were expressed as mean±standard error of mean (S.E.M.). Experiments 

were carried out three-six times independently with different A 549 chemoresistant 

cell populations. Each single experimental approach was executed in duplicates for 

quantitative real time PCR and quadruplicates for CASY cell confirmation. A special 

statistical software (GraphPad Prism, La Jolla, USA) was used. 



29

3. Results

As presented in the previous chapter, we studied the response of different 

chemoresistant adenocarcinoma cell lines to Gemcitabine, Vinflunine, Vinorelbine 

and Methotrexate after siRNA mediated silencing of six crucial molecules implicated 

in cell differentiation, cell proliferation and tumor growth (SRF, E2F1, Survivin, STAT 

3, HIF 1 and HIF 2). 

Figure 3: Study design

To analyze the results, we isolated and studied three different groups of cells for 

each target molecule: 

Group I: the non-siRNA control group, represented by chemoresistant A 549 cells 

treated with Gemcitabine, Vinflunine, Vinorelbine or Methotrexate. 

Group II: the siRNA control group, also called SCR-siRNA (scrambled-siRNA), 

represented by A 549 cell lines treated with nonspecific siRNA. In order to 

demonstrate that the response after specific silencing is concentration dependent, we 

used two different concentrations (25 nM and 100 nM SCR-siRNA). 

Group III: the specific siRNA group represented by A 549 adenocarcinoma cells 

resistant to Gemcitabine, Vinflunine, Vinorelbine or Methotrexate and transfected with 

specific siRNA targeting SRF, E2F1, Survivin, HIF 1, HIF 2 or STAT 3. 
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The A 549 cell lines were cultured under standard conditions, whereas the 

transfection of all six different target molecules was performed in a non-viral manner. 

In order to demonstrate that the response was concentration dependent, we used 

two different concentrations (25 nM and 100 nM of specific siRNA). 

In all these groups we then measured reductions in intracellular mRNA levels via 

qRT-PCR. The remaining A 549 cells after transfection and the proliferation of A 549 

cells in the control groups (Group I and II) were counted with a CASY cell counter 3 

days after transfection. 

3.1. Quantitative Real Time - PCR (qRT- PCR)

3.1.1. Gemcitabine-chemoresistant A549 cell lines 

In the Gemcitabine-resistant A549 cell line, transfection with E2F1 siRNA led to a 33–

37% reduction in gene expression. As seen in Figure 4, the concentration of the 

siRNA (25 nM and 100 nM) played only a minor role in the siRNA silencing of E2F1. 

In this situation, our experiments demonstrate that transfection with 25 nM siRNA 

was slightly more effective than with 100 nM siRNA (37% with 25 nM and 33% with

100 nM, respectively). Furthermore, in the siRNA control group, SCR-siRNA 

transfection did not decrease the expression of E2F1. The expression of E2F1 was

increased 1.19 fold with 25 nM SCR-siRNA and 1.14 fold with 100 nM SCR-siRNA.

Taken together, due to siRNA silencing of E2F1, a moderate suppression of 

Gemcitabine-resistant A549 cells can be achieved, with an efficiency of up to 37%. 

Transfection of A549 cells with HIF 1 siRNA led to a 3–9.4% reduction in gene 

expression. In this experiment, the results were concentration dependent (3% 

reduction in gene expression at 25 nM siRNA compared with a 9.4% reduction in

gene expression at 100 nM siRNA).

Compared with the control group, the results proved very similar. With 25 nM, the 

SCR-siRNA transfection facilitated a 6% reduction in gene expression in 

Gemcitabine-resistant tumor cells. In conclusion, siRNA silencing of HIF 1 in A549 

Gemcitabine-resistant cells plays only a minor role in reducing gene expression and 

consequently in inhibiting tumor growth.

Transfection of A549 cells with HIF 2 siRNA led to a 35–73% reduction in gene 

expression. In this experiment, we achieved better results at a lower siRNA 

concentration (a 73% reduction in gene expression with 25 nM siRNA, whereas with

100 nM siRNA we achieved only a 35% reduction in gene expression). These results 
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were significantly better in comparison to the control group. The SCR-siRNA 

transfection did not result in decreased gene expression of HIF 2.

Furthermore, the expression of HIF 2 increased 1.05 fold with 25 nM SCR-siRNA and 

1.15 fold with 100 nM SCR-siRNA. According to these results, we can postulate that 

siRNA silencing of HIF 2 can induce a reduction in the proliferation of Gemcitabine-

resistant A549 cell lines, with an efficiency of 35–73%. 

Similar results were found in the SRF group. Transfection of A549 cells with SRF led

to a 47–69% reduction in gene expression. The efficiency of the gene inhibition 

achieved was also concentration-dependent. With 25 nM we obtained a 47% 

reduction in gene expression, whereas with 100 nM we obtained significantly better 

results (69% suppression of gene expression). In the control group we found that

SCR siRNA did not play a significant role in modulating gene expression (2–7%).

Transfection of A549 cells with STAT 3 siRNA led to a 38–53% reduction in gene 

expression. In this experiment, we achieved better results at a lower concentration of 

siRNA (a 53% reduction in gene expression with 25 nM siRNA but only a 38% 

reduction with 100 nM siRNA). Compared with the control group, these results were 

significantly better. As shown in Figure 4 E, SCR-siRNA transfection did not result in 

a decrease in STAT 3 gene expression.

We found that the expression of STAT 3 increased 1.62 fold with 25 nM SCR-siRNA 

and 1.09 fold with 100 nM SCR-siRNA. Also, in this experiment we demonstrated that 

siRNA silencing of STAT 3 could induce a 38–53% reduction of gene expression in 

Gemcitabine-resistant A549 cell line.

Transfection of A549 cells with Survivin led to a 53–62% reduction in gene 

expression. Similar to the results obtained in the SRF group, the efficiency of the 

gene knockdown was concentration-dependent. With 25 nM siRNA we obtained a 

53% reduction in gene expression, whereas with 100 nM siRNA a 62% reduction was 

noted.

In the control group we found that SCR siRNA plays only a minor role in modulating

gene expression (3–8%). Taken together, similar to the results obtained with the SRF 

group (Figure 4D, 4F), the silencing of Survivin leads to a significant reduction in 

gene’s level of expression in the Gemcitabine-resistant A549 cell line in a 

concentration-dependent manner (53–62%).
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3.1.2. Vinflunine-chemoresistant A 549 cell lines 

The transfection of Vinflunine-resistant A549 cells (Figure 5) with E2F1 led to a 43-

80% reduction in gene expression in a concentration-dependent manner. In this 

experiment we achieved better results with a higher siRNA concentration: 43% 

reduction of gene expression with 25 nM siRNA and significantly better results with

100 nM (80% reduction in gene expression). 

Compared to the results obtained in the control group, SCR-siRNA transfection of 

E2F1 did not result in a decrease in gene expression. Interestingly, the expression of 

E2F1 increased 1.21 fold after transfection with 25 nM SCR-siRNA.

According to these results, we can postulate that siRNA silencing of E2F1 induced a 

reduction in the proliferation of Vinflunine-resistant A549 cell lines up to 80% in a 

concentration-dependent manner. 

Transfection of Vinflunine-resistant A549 cells with HIF 1 led to a 31% reduction in

gene expression only with 25 nM siRNA. Contrary to the results obtained with 25 nM 

siRNA-HIF1, we found that the gene expression increased 1.30 fold after siRNA 

silencing of HIF 1 using 100 nM siRNA. The artifacts obtained with 100 nM siRNA 

targeting HIF 1 were possibly caused by transfection toxicity induced by the 

transfection reagent.

In the control group we achieved a 3% reduction in gene expression with 25 nM SCR 

siRNA and a 7% reduction in gene expression with 100 nM SCR siRNA.

In conclusion, siRNA silencing of HIF 1 in A549 Vinflunine-resistant cells induced a 

moderate (31%) reduction in gene expression with 25 nM siRNA.

Transfection of A549 cells with siRNA-HIF 2 led to a significant reduction in gene 

expression (up to 74% with 25 nM and 76% with 100 nM). In this experiment, we 

achieved similar results using different siRNA concentrations.

Furthermore, SCR-siRNA transfection did not result in decreased gene expression of 

HIF 2. Similar to the HIF 2 group treated with Gemcitabine, the expression of HIF 2 

increased 1.17 fold with 25 nM SCR-siRNA and 1.08 fold with 100 nM SCR-siRNA. 

According to these results, we can postulate that siRNA silencing of HIF 2 was able 

to induce a reduction in the gene expression in Vinflunine-resistant A549 cell lines 

with an effectiveness up to 76% at both siRNA concentrations.

Transfection of Vinflunine-resistant A549 cells with siRNA-SRF led to a significant 

reduction in gene expression (74–85%) in a concentration-dependent manner. In this 

experiment we obtained slightly better results at the higher siRNA concentration: a 
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74% reduction in gene expression with 25 nM siRNA and an 85% reduction in gene 

expression with 100 nM siRNA. In comparison to these results, SCR-siRNA 

transfection of SRF did not decrease the gene expression significantly (only 3% with

100 nM SCR siRNA). 

Taken together, siRNA silencing of SRF induced an effective reduction in the

proliferation of Vinflunine-resistant A549 cells (up to 85%) in a concentration-

dependent manner. 

Because of the similar results achieved in the A549 resistant cell lines treated with 

Gemicitabine, we postulate that SRF is a highly predictive transcription factor in the 

process of lung carcinogenesis.

Transfection of A549 cells with siRNA-STAT 3 led to an effective reduction in gene 

expression in a concentration-dependent manner (62% with 25 nM siRNA-STAT 3 

and 85% with 100 nM siRNA-STAT 3), with significantly better results in comparison 

to the control group. As shown in Figure 5 E, SCR-siRNA transfection did not result in 

decreased gene expression of STAT 3. 

Similar to A549 Gemcitabine group transfected with siRNA STAT 3, we found that the 

expression of STAT 3 increased 1.65 fold at 25 nM SCR-siRNA and 1.01 fold at 100 

nM SCR-siRNA. 

According to these results, we demonstrated that the siRNA silencing of STAT 3 can 

reduce the gene expression in Vinflunine-resistant A 549 cell lines with an efficiency 

of 62-85%, in a concentration-dependent manner.

The transfection of Vinflunine-resistant A 549 cells with siRNA-Survivin leads to a 

significant reduction of gene expression with similar results at both 25 nM siRNA and 

100 nM siRNA (84% and 85%, respectively). We found that SCR siRNA plays only a 

minor role in modulation of gene expression (5-23%). Taken together, similar to the 

results obtained in the HIF 2 group (Figure 5 C), the silencing of Survivin leads to a 

significant reduction of Vinflunine resistant A 549 cell lines in a concentration-

independent manner.

3.1.3. Vinorelbine-chemoresistant A 549 cell lines

In Vinorelbine-resistant A 549 cell lines (Figure 6), the transfection of A 549 cells with 

E2F1 leads to a moderate reduction of gene expression up to 58% at 25 nM. In the 

siRNA control group SCR-siRNA transfection does not decrease the gene expression 
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of E2F1. Furthermore, the expression of E2F1 increased 1.32 fold at 25 nM SCR-

siRNA and 1.39 fold at 100 nM SCR-siRNA. 

The transfection of A 549 cells with HIF 1 leads to a minimal reduction of gene 

expression (15%) at 25 nM. In conclusion, the siRNA silencing of HIF 1 in A 549 

Vinorelbine-resistant cells, plays only a minor role in reduction of gene expression 

and consequently in inhibition of tumor growth. 

The transfection of A 549 cells with HIF 2 leads to a 45-63% reduction of gene 

expression. In this experiment, we achieved better results at a lower siRNA 

concentration (63% reduction of gene expression at 25 nM siRNA in comparison to 

45% at 100 nM siRNA). These results are significantly better than those obtained in 

the control group. 

Furthermore, the expression of HIF 2 increased 1.03 fold at 100 nM SCR-siRNA. 

According to these results, we can postulate that the siRNA silencing of HIF 2 might 

induce a moderate reduction of gene expression in Vinorelbine-resistant A549 cell 

lines with an efficiency of 45-63%. 

We found similar results in the SRF group. The transfection of A 549 cells with SRF 

leads to a 48-71% reduction of gene expression. The efficiency of gene inhibition is 

achieved in a concentration-dependent manner. At 25 nM we obtained a 48% 

reduction of gene expression, whereas at 100 nM we obtained significantly better 

results (71% inhibition of gene expression). 

The transfection of A 549 cells with STAT 3 leads to a 57-88% reduction of gene 

expression. In this experiment, the results are also concentration dependent (57% 

reduction of gene expression at 25 nM siRNA and 88 % reduction of gene expression 

at 100 nM siRNA). Compared to the control group, these results are significantly 

better. As shown in the figure 6 E, the SCR-siRNA transfection did not lead to a 

decrease of gene expression. We found that the expression of STAT 3 increased 

0.99 fold at 25 nM SCR-siRNA and 1.27 fold at 100 nM SCR-siRNA. Taken together, 

we can postulate that siRNA silencing of STAT 3 might induce an effective reduction 

of gene expression in Vinorelbine-resistant A549 cell lines with an efficiency by up to 

88%. 

The transfection of A549 cells with Survivin leads to a 77-83% reduction of gene 

expression. We obtained better results at 25 nM siRNA (83% reduction of gene 

expression), whereas at 100 nM SiRNA we obtained a 77% reduction of gene 

expression. In the control group we found that SCR siRNA plays only a minor role in 
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modulation of gene expression (1-6%). Taken together, similar to the results obtained 

in the SRF group (Figure 6 D, 6 F), the silencing of Survivin leads to a significant 

reduction in gene expression in Vinorelbine-resistant A 549 cell lines with slightly 

better results at 25 nM siRNA.

3.1.4. Methotrexate-chemoresistant A 549 cell lines

The transfection of A549 cells with HIF 2 leads to a 63% reduction of gene 

expression. In this experiment, we achieved significantly better results at 25 nM

siRNA (Figure 7). 

These results obtained at 25 nM are significantly better in comparison to the control 

group. The SCR-siRNA transfection did not result in a decreased gene expression of

HIF 2. 

Similar to the HIF 2 group treated with Gemcitabine, the expression of HIF 2 

increased 1.74 fold at 25 nM SCR-siRNA and 1.56 fold at 100 nM SCR-siRNA. 

According to these results, we can postulate that the siRNA silencing of HIF 2 might 

induce at 25 nM a significant reduction in the viability of Methotrexate resistant A549 

cell lines with an efficiency of exactly 63%. The marginal results at 100 nM siRNA-

E2F1, 100 nM siRNA-HIF 1 and 100 nM siRNA-HIF 2 could be caused due to the 

possible toxicity induced by the high concentration of transfection reagent.

The transfection of Methotrexate resistant A 549 cells with siRNA-SRF leads to a 

significant reduction of gene expression (70-84%). In this experiment, we obtained 

slightly better results at a lower siRNA concentration: 84% reduction of gene 

expression at 25 nM siRNA and 70% reduction of gene expression at 100 nM siRNA. 

In comparison to these results, the SCR-siRNA transfection of SRF did not result in a 

decrease of gene expression. We observed that the expression of SRF increased 

1.37 fold at 25 nM SCR-siRNA and 1.39 fold at 100 nM SCR-siRNA. 

According to these results, we demonstarted that SRF is a very predictive 

transcription factor, whose inhibition may effectively regulate the process of lung 

carcinogenesis.

The transfection of A 549 cells with STAT 3 leads to a 68-74% reduction of gene 

expression, with slightly better results at lower concentration. As shown in the figure 

7 E, the expression of STAT 3 increased 1.44 fold at 25 nM SCR-siRNA and 1.83 

fold at 100 nM SCR-siRNA. According to these results, we demonstrated that the 
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siRNA silencing of STAT 3 might reduce the viability of Methotrexate-resistant A 549 

cell lines with an efficiency up to 74% in a concentration-independent manner. 

The transfection of Methotrexate-resistant A 549 cells with Survivin leads to a 

moderate reduction of gene expression with slightly better results at lower 

concentration (at 25 nM siRNA 53% and at 100 nM siRNA 47%). In comparison to 

these results, the expression of Survivin increased 2.37 fold at 25 nM SCR-siRNA 

and 2.68 fold at 100 nM SCR-siRNA. 

Taken together, the siRNA silencing of Survivin might induce a moderate reduction of 

gene expression up to 53% in Methotrexate-resistant A549 cells in a concentration-

independent manner.

3.2. Cell quantification

The proliferation potential of A 549 adenocarcinoma cell lines treated with Vinflunine 

Gemcitabine, Vinorelbine or Methotrexate was analyzed with a CASY cell counter 3 

days after transfection.

As shown in the Figures 8 and 9, we compared the control group (non siRNA) and 

siRNA nonspecific group (SCR-siRNA) with siRNA specific group (siRNA-SRF, E2F1, 

Survivin, STAT 3, HIF 1 and HIF 2).

3.2.1. Gemcitabine-chemoresistant A 549 cell lines

In Gemcitabine group (Figure 8 A) we obtained a moderate reduction of A 549 tumor 

cells (cells remaining in the control group 100% cells, SCR group 61%, SRF group 

65%, E2F1 group 48.3%, Survivin group 59%, STAT 3 group 49%, HIF 1 group 

42.6% and HIF 2 group 39,3%, respectively).

3.2.2. Vinflunine-chemoresistant A 549 cell lines

In the A 549 cell lines treated with Vinflunine (Figure 8 B) we identified different 

results compared to the Gemcitabine-resistant A549 cells (cells remaining after 

transfection, analyzed with the CASY counter: control group 100%, SCR group 

77.33%, SRF group 57.33%, E2F1 group 50.33%, Survivin group 55.33%, STAT 3 

group 28.33%, HIF 1 group 41.33%, and HIF 2 group 51.66%).
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3.2.3. Vinorelbine-chemoresistant A 549 cell lines

In Vinorelbine group (Figure 9 A) we found a very potent reduction of A 549 tumor 

cells (cells remaining in the control group 100%, SCR group 70%, SRF group 34%, 

E2F1 group 37%, Survivin group 23%, STAT 3 group 36%, HIF 1 group 28%, and 

HIF 2 group 39%). 

3.2.4. Methotrexate-chemoresistant A 549 cell lines

In Methotrexate group (Figure 9 B) we achieved a very potent reduction of A 549 

tumor cells (cells remaining in the control group 100%, SCR group 95%, SRF group 

43%, E2F1 group 46%, Survivin group 24%, STAT 3 group 40%, HIF 1 group 18%, 

and HIF 2 group 43%).

Taken together, in Gemcitabine group we obtained a moderate reduction of 

adenocarcinoma chemoresistant cell lines, whereas in the Vinflunine, Vinorelbine and 

Methotrexate group we achieved a very effective suppression of cell lines with a 

consecutive reduction of tumors cells by up to 82%.



38

Figure 4: Relative E2F1 (A), HIF1 (B), HIF 2 (C), SRF (D), STAT 3 (E) and Survivin (F) expression of 

Gemicitabine-resistant A 549 adenocarcinoma cells 24 hours after transfection with corresponding 

siRNAs. The X-axis describes the different concentrations of the used siRNAs, whereas the Y-axis 

represents the relative expression of the silenced genes with untransfected cells set to one.



39

Figure 5: Relative E2F1 (A), HIF1 (B), HIF 2 (C), SRF (D), STAT 3 (E) and Survivin (F) expression of 

Vinflunine-resistant A 549 adenocarcinoma cells 24 hours after transfection with corresponding 

siRNAs. The X-axis describes the different concentrations of the used siRNAs, whereas the Y-axis 

represents the relative expression of the silenced genes with untransfected cells set to one.
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Figure 6: Relative E2F1 (A), HIF 1 (B), HIF 2 (C), SRF (D), STAT 3 (E) and Survivin (F) expression of 

Vinorelbine-resistant A 549 adenocarcinoma cells 24 hours after transfection with corresponding 

siRNAs. The X-axis describes the different concentrations of the used siRNAs, whereas the Y-axis 

represents the relative expression of the silenced genes with untransfected cells set to one.
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Figure 7: Relative E2F1 (A), HIF 1 (B), HIF 2 (C), SRF (D), STAT 3 (E) and Survivin (F) expression of 

Methotrexate-resistant A 549 adenocarcinoma cells 24 hours after transfection with corresponding 

siRNAs. The X-axis describes the different concentrations of the used siRNAs, whereas the Y-axis 

represents the relative expression of the silenced genes with untransfected cells set to one.
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Figure 8: Percentage of cells 3 days after transfection with specific siRNA targeting E2F1, HIF 1, HIF 

2, SRF, STAT 3 and Survivin, compared with untransfected cells, set to 100% in A 549 cell lines 

treated with Gemcitabine (A) and with Vinflunine (B).
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Figure 9: Percentage of cells 3 days after transfection with specific siRNA targeting E2F1, HIF 1, HIF 

2, SRF, STAT 3 and Survivin, compared with untransfected cells, set to 100% in A 549 cell lines 

treated with Vinorelbine (A) and with Methotrexate (B)
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To summarize all our in vitro results regarding the relative expression of the studied 

molecules after specific siRNA transfection, we create a diagramm (Figure 10) with 

the molecules with the strongest effect after transfection. 

Figure 10: Relative expression of specific siRNA targeting E2F1, HIF 1, HIF 2, SRF, STAT 3, and 

Survivin 24h after transfection. 

(-)   modest reduction of gene expression     (0-33%), 

(--)  moderate reduction of gene expression (34-66%), 

(---) very potent reduction of gene expression   (67-100%).
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4. Discussion 

4.1. Clinical implications 

Lung cancer is the second leading cause of death worldwide after cardiovascular 

diseases and the leading cause of death among all types of cancers. NSCLC 

accounts for 85% of all lung cancer cases in the United States and, due to its poor 

prognosis, it represents a major public health problem [8].

According to epidemiological studies, the overall 5-year survival rate for stage I is 60–

80%, 40–50% for stage II, 23% for stage IIIA, 10% for stage IIIB and less than 10% 

for Stage IV. Furthermore, the median survival rate of metastatic NSCLC is about 

eight months [8]. More than 40% of patients with NSCLC show metastases in another 

part of the body at presentation [114],[37]. For all these patients, the recommended 

therapy according to the S3 guidelines for lung cancer is an individualized multimodal 

concept based on radiation, chemotherapy and surgery. Thus, chemotherapy 

represents an important component of treatment for all stages of the disease.

Therefore, the effectiveness of the selected chemotherapeutic agents is decisive for 

the success of treatment. Unfortunately, in recent years an increased 

chemoresistance to commonly used drugs has been observed (up to 60% for 

platinum derivatives, up to 70% for Gemcitabine and Doxorubicine and up to 40% for 

Paclitaxel and Docetaxel) with negative consequences on the effectiveness of 

treatment and consequently on the survival rates [115].

Due to the development of chemoresistance, chemotherapeutics are only able to 

modestly increase overall survival (2 months per decade) and the quality of life [46].

Therefore, the multifactorial etiology of chemoresistance (modification of the drug 

target, mutations in mitotic checkpoints, drug sequestration, detoxification of cytotoxic 

agents) represents the most important obstacle to effective treatment [37]. 

For this reason, it is particularly important to explore and suggest new therapeutic 

multimodal concepts (e.g. gene therapy, molecular therapy, radiotherapy) according 

to the molecular subtype of NSCLC, on the one hand, and the clinical severity of the 

disease on the other. 

One of the most intensively studied recent treatment alternatives in the last few years 

is based on siRNA posttranscriptional silencing. 

Recent studies have emphasized the role of siRNA as a multimodal concept in 

radiosensitizing various carcinomas (e.g. colon cancer [27], prostate cancer [116]) 
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and chemosensitizing various chemoresistant tumor cell lines (hepatocellular 

carcinoma [52], breast cancer [53], lung cancer [54]). 

According to this concept, we proposed a new in vitro model for the treatment of 

chemoresistant lung cancer via siRNA silencing of six crucial molecules involved in 

lung carcinogenesis. 

Our in vitro model is based on the A549 adenocarcinoma cell line. According to 

histological data, these squamous alveolar cells allow the diffusion of water and 

electrolytes through the membrane due to their high permeability. Therefore, medium 

supplementation with Glucose, L-Glutamine and FCS (fetal calf serum) favors cell 

growth under very similar conditions to the in vivo situation. Growing in a single layer,

these squamous cells may easily be suspended in an in vitro solution. On the other 

hand, A549 cells exhibit good membrane stability in vitro due to their increased levels

of desaturated fatty acids [110]. In order to facilitate optimal tumor growth, the A 549 

cell lines were cultured on DMEM-high glucose medium. The advantage of this 

medium is that it contains 4-fold higher levels of amino acids and vitamins in 

comparison to other media. These differences favor tumor growth similar to in vivo 

conditions.

A second important point is the transfection protocol and the reagents used. 

Basically, transfection protocols are frequently used to introduce foreign DNA, RNA,

or protein molecules into eukaryotic cells. In our laboratory, we used a transient

transfection protocol and not a long-term protocol in order to facilitate short-term

modifications in the relative expression of targeted molecules. To improve

transfection effectiveness and create optimized in vitro conditions as close as

possible to the in vivo situation, we adopted a special transfection protocol according

to the original publications of T. Walker, A. Nolte and H.P. Wendel [117],[81]. This 

transfection method is based on lipofection, a highly efficient, lipid-mediated DNA-

transfection procedure that uses lipid cations as transporter molecules for the siRNA 

via cellular membrane. As result, no cellular toxicity to the neighboring healthy cells

was observed [117], [81].

According to the actual therapy regimens used for lung cancer (S3 Guidelines), a 

multimodal concept including chemotherapy, radiation therapy and surgery in 

selected patients may increase the effectiveness and survival rate in the treatment of 

NSCLC. In order to study the effectiveness of siRNA-mediated interference, we
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examined the chemoresistance of A549 cells against four different 

chemotherapeutics (Methotrexate, Gemcitabine, Vinflunine and Vinorelbine). 

The chemoresistance was artificially induced in vitro. In order to develop the 

chemoresistance similar to in vivo situations, the A549 cells were treated repeatedly 

with low doses of specific chemotherapy agents until they developed the desired 

chemoresistance against the agent.

The first chemotherapy agent used in our experiments was Methotrexate. It is an 

antimetabolite and acts by inhibiting the metabolism of folic acid. It competitively 

inhibits the synthesis of DNA, RNA, thymidylates and various proteins involved in

carcinogenesis. Furthermore, Methotrexate is a very cytotoxic drug during the S-

phase of the cell cycle and, therefore, it is a very potent agent against rapidly dividing 

malignant cells. Because of its apoptotic effect, it can be used for chemotherapy

alone or in combination with various chemotherapeutics. 

In our study, we obtained a very strong suppression of gene expression in 

Methotrexate resistant A549 cells after transfection with specific siRNA targeting SRF 

(up to 84% at 25 nM) and STAT 3 (up to 74% at 25 nM). These results demonstrate 

that the application of siRNA in combination with Methotrexate might have a 

beneficial role for suppressing tumor growth in NSCLC.

The second drug examined in our study was Gemcitabine. It is a nucleoside analog.

During DNA replication, Gemcitabine replaces a very important nucleoside in 

synthesized RNA, thus inducing apoptosis and consequently suppression of tumor 

growth. Gemcitabine also irreversibly inhibits the enzyme ribonucleotide reductase

(RNR), implicated in DNA replication and DNA repair. Due to its apoptotic effect, it

can be used as a potent drug either alone or in combination with platinum derivatives 

in various types of cancer (NSCLC, bladder cancer, breast cancer). 

The development of chemoresistance against Gemcitabine in NSCLC might induce a 

decrease in the effectiveness of treatment. In this situation, transfection of A549 

resistant cells with specific siRNA targeting HIF 2, SRF, STAT 3 and Survivin was 

able to induce a moderate suppression of tumor proliferation (73% with 25 nM 

siRNA-HIF 2, 69% with 100 nM siRNA-SRF, 53% with 25 nM siRNA-STAT 3 and 

62% with 100 nM siRNA-Survivin). These results demonstrate the beneficial role of 

specific siRNA silencing in the A549 Gemcitabine resistant cell line.

The third drug analyzed was Vinorelbine. It is a semi-synthetic vinca alkaloid that 

binds to tubulin, thereby inhibiting tubulin polymerization into microtubules and 
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resulting in apoptosis of susceptible cancer cells. It is a very effective anti-mitotic

chemotherapy drug, used in breast cancer, ovarian cancer and non-small-cell lung 

cancer.

In our experiments we obtained very strong suppression of Vinorelbine-resistant cells 

in a concentration dependent manner (up to 88% after transfection with siRNA 

specifically targeting STAT 3). According to our in-vitro results, we can postulate that 

siRNA might represent a very potent platform for new drugs in Vinorelbine-resistant 

NSCLC cell lines.

The fourth drug examined in our study was Vinflunine, a novel fluorinated Vinca 

alkaloid synthesized from Vinorelbine. Vinflunine induces G2 and M arrest and 

consequently interferes with the microtubular network in interphase cells in a 

concentration-dependent manner. In comparison to vinorelbine, it is characterized by 

superior in vivo activity in preclinical carcinoma models and inferior tubulin binding 

properties [118]. It can suppress tumor growth in bladder cancer and lung cancer. 

Our experiments demonstrated that transfection of Vinflunine-resistant A549 cells 

with specific siRNA targeting HIF 2, SRF, STAT 3 and Survivin may induce a very 

strong suppression in gene expression, with slightly better results in comparison to 

the Vinorelbine group (76% with 100 nM siRNA-HIF 2, 85% with 100 nM siRNA-SRF, 

85% with 100 nM siRNA-STAT 3 and 85% with 100 nM siRNA-Survivin). These 

results demonstrate the beneficial role of specific siRNA in Vinflunine-resistant cell 

lines. 

Therefore, we can postulate according to our results that siRNA nanoparticles might 

play a beneficial role in advanced stages of lung adenocarcinoma treated previously 

with Vinflunine, Vinorelbine, Gemcitabine or Methotrexate. 

Second, our experiments show for the first time the beneficial role of siRNA in a novel 

in vitro cell model with A549 multiresistant cell lines. 

Similar studies have demonstrated the role of siRNA in different multiresistant cancer 

lines (e.g. multidrug-resistant human breast cancer cells [119], multidrug-resistant 

hepatocellular carcinoma cells [120],[66], multidrug-resistant colorectal carcinoma 

[121]).

Another approach is focused on a combination therapy between various 

chemotherapy agents and siRNA nanoparticles in order to improve the sensitivity of 

the chemotherapy agents (chemosensitization). For example, recent studies have 

emphasized the beneficial role of siRNA in chemosensitizing pancreatic cancer cells 
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previously treated with Gemcitabine, 5-FU, and Oxaliplatin [122]. Another study 

suggested an optimal siRNA combination with Doxorubicine in order to overcome 

doxorubicin (Dox) resistance in a multidrug resistant (MDR) human breast cancer 

xenograft by co-delivering Dox and siRNA [123]. 

Preliminary studies have also emphasized siRNA mediated FoxM1 inhibition as a 

potential strategy in the chemosensitization of NSCLC cells previously treated with 

Cisplatin [124]. 

Our study postulates a role for specific siRNA targeting E2F1, STAT 3, Survivin, HIF 

1, HIF 2 and SRF in chemosensitizing multiresistant adenocarcinoma cell lines. 

According to the S3 Guidelines for lung cancer, most patients have to be treated with 

an intensive combined-modality therapy (surgery, radiotherapy and chemotherapy) 

according to the histology, molecular subtype and clinical stage of the disease. 

In the last few years, the personalized, molecular targeted cancer therapy has 

become the gold standard in lung medicine [125], [126]. For this reason, we not only 

studied four different chemotherapy agents in our laboratory, but also six important 

molecules involved in lung carcinogenesis (E2F1, HIF 1, HIF 2, SRF, STAT 3 and 

Survivin). In order to facilitate an accurate molecular diagnostic, identify predictive 

biomarkers and overcome drug resistance, we examined the effectiveness of specific 

siRNA transfection against all six target molecules for each chemoresistant cell line. 

Interestingly, each of these molecules had individual pathways and mechanisms of 

action, thereby ensuring a very effective multi-targeted knockdown of resistant 

adenocarcinoma cell lines through multiple mechanisms of action. 

The first molecule examined was E2F1, a transcription factor that plays an important 

role in cell proliferation and regulation of the cell cycle [84]. It also acts as a strong 

inducer of apoptosis [85] in response to DNA damage, through its capacity to activate 

p53/p73 death pathways. 

Recent studies have indicated that specific siRNA targeting E2F1 may facilitate an 

effective suppression of tumor growth in NSCLC [81]. In addition, we examined the 

potential role of specific E2F1-siRNA in multiresistant A549 cell lines. 

We obtained a very potent reduction in gene expression in a concentration-

dependent manner in the Vinflunine group (80% with 100 nM siRNA) and a moderate 

reduction in gene expression in the Gemcitabine group (63–67% with both 25 nM 

and 100 nM siRNA). In terms of cells remaining after transfection, we observed 

significantly better results in comparison to the nonspecific siRNA group or the 
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control group (48.3% in the Gemcitabine group, 50.33% in the Vinflunine group, 37% 

in the Vinorelbine group, and 46% in the Methotrexate group, respectively).

The next two molecules examined were HIF 1 and HIF 2. These two heterodimers 

respond to changes in available oxygen in the cellular environment and promote 

angiogenesis in embryos as well as neoangiogenesis in different types of cancer 

(neuroblastoma [100], esophageal carcinoma [101], breast carcinoma [102], 

laryngeal carcinoma [103] and NSCLC [104]). The mechanism of action involves 

aberrant expression of TGF-β1 as a response to hypoxia and subsequent induction 

of carcinogenesis and metastasis into the hypoxic area [98],[99]. 

In our experiments, HIF 1 induced only a modest reduction in gene expression in the 

Vinflunine (31% with 25 nM siRNA) and Gemcitabine groups (9.4% with 100 nM 

siRNA). In comparison to the control group, these results were significantly better in 

the Vinflunine group and slightly better in the Gemcitabine group. 

CASY confirmation of cell viability demonstrated significant survival of 

chemoresistant A549 cells treated with nonspecific siRNA, in comparison with 

specific siRNA targeting HIF 1 (42.6% of cells remaining in the Gemcitabine group, 

41.33% in the Vinflunine group, 18% in the Methotrexate group and 28% in the 

Vinorelbine group, respectively). These results show that HIF 1 might be a very 

important target in order to induce cell death in NSCLC. 

Preliminary data referring to HIF induced chemoresistance in NSCLC cell lines 

treated previously with Gefitinib were published by Minakata K. et al [127]. According 

to this paper, downregulation of HIF might induce an increase in chemosensitivity to

Gefitinib in NSCLC. In comparison with our experiments, this study examined three 

mutant NSCLC cell lines, HCC 827, PC 9, and HCC 2935 and two target molecules 

(TGF beta and HIF). 

The next molecule examined in our experiments was HIF 2. We obtained a 

moderately efficient suppression with the siRNA targeting HIF 2 in the Methotrexate 

and Vinorelbine groups (63% with 25 nM siRNA-HIF 2 in the Vinorelbine group), and 

a strong reduction in gene expression in the Gemcitabine and Vinflunine groups

(73% and 76%, respectively). These results were significantly better in comparison to 

the control group. In terms of cells remaining after transfection, we obtained a 

significant reduction in the number of tumor cells in all four groups (51.66% of cells 

remaining in the Vinflunine group, 39.3% in the Gemcitabine group, 39% in the
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Vinorelbine group and 43% in the Methotrexate group). These results demonstrate 

that HIF 2 might be a very potent target for chemoresistant NSCLC. 

The fourth molecule studied was SRF, a transcription factor that regulates apoptosis

and cell growth as well cell differentiation via the mitogen-activated protein kinase 

pathway (MAPK). It acts as a nuclear suppressor of TGF-beta 1 and consequently as 

an inhibitor of cell proliferation in different types of cancer: breast cancer [79], 

prostate cancer [80], hepatocellular carcinoma [82], and lung cancer [81].

We observed that SRF is a very potent suppressor of gene expression in 

multiresistant A549 cell lines (69% with 100 nM siRNA-SRF in the Gemcitabine 

group, 71% with 100 nM siRNA-SRF in the Vinorelbine group, 84% with 25 nM 

siRNA-SRF in the Methotrexate group and 85% with 100 nM siRNA-SRF in the 

Vinflunine group).

After specific transfection, we observed a moderate survival of A549 tumor cells 

(65% of cells remaining in the Gemcitabine group, 57.33% in the Vinflunine group, 

43% in the Methotrexate group and 34% in the Vinorelbine group). These results also 

suggest that SRF might be a potent target for the treatment of multiresistant NSCLC.

Another molecule examined was STAT 3. STAT 3 is an important transcription factor 

that plays a crucial role in early stages of cell development (G0/G1) in various cancer 

lines (bladder cancer [107], hepato-carcinoma [108] and lung adenocarcinoma [109]). 

Our study emphasizes the beneficial role of specific siRNA targeting STAT 3 in 

multiresistant cell lines derived from lung adenocarcinoma.

We obtained a moderate efficiency of suppression in all examined groups (53% in the 

Gemcitabine group, 74% in the Methotrexate group, 85% in the Vinflunine group and 

88% in the Vinorelbine group). The survival rate yielded significantly better results in 

comparison to the control group (100% of cells remaining in the control group, 49% in 

the Gemcitabine group, 40% in the Methotrexate group, 36% in the Vinorelbine group 

and 28.33% in the Vinflunine group). These results suggest that knockdown of STAT 

3 might be a potent trigger of cell death in multiresistant NSCLC. 

The last target examined was Survivin, a potent suppressor of caspase activity and 

consequently of tumor cell differentiation and proliferation in the G2-M phase. As a 

potent oncogene identified in among 60 different human tumor lines [88], Survivin 

also plays an important role in the development of resistance against various 

chemotherapy drugs. 
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Recent studies have demonstrated the beneficial role of specific siRNA targeting 

Survivin in combination with Cisplatin in the treatment of H 292 lung cancer cells. The 

transfection efficiency was 83.13% [94]. The target molecules responsible for the 

chemosensitization of the chemoresistant H 292 lung cancer cells were AKT, CREB, 

Bcl-xL, Survivin and Bcl-2. In comparison to these studies we cultured different cell 

lines, four different chemotherapy agents and examined six different target molecules 

involved in lung carcinogenesis. Interestingly, we obtained results comparable to 

those published by Tian H. et al [94] (83% transfection efficiency in the Vinorelbine 

group and 85% in the Vinflunine group). These comparable data suggest that the 

transfectability of NSCLC cells by siRNA is reliable and reproducible. 

In terms of survival rate after specific siRNA transfection, we also obtained 

significantly better results in comparison to the control group (100% of cells 

remaining in the control group, 59% in the Gemcitabine group, 55.33% in the

Vinflunine group, 24% in the Methotrexate group and 23% in the Vinorelbine group 

23%). 

Comparable results regarding the downregulation of survivin expression by RNA 

interference were published by Chen XQ et al [128] and Okamoto K et al in Erlotinib-

resistant NSCLC [129].

Taken together, the knockdown of all six molecules might induce an effective 

suppression of tumor growth in the selected chemoresistant adenocarcinoma cell 

lines. According to our promising in vitro results, we suppose that the concomitant 

suppression of these six target molecules, involved in different pathways of lung 

carcinogenesis, might be a complex method of preventing the further development of 

chemoresistance.

Interestingly, the analyzed cell lines belong to a heterogeneous group of tumor cells, 

with variable chemoresistance to different pharmacological agents. Furthermore, for 

each molecule tested we obtained individual responses and variable effects in a 

concentration-dependent manner. This is another argument in support of the concept 

of individualized multimodal therapy, according to the molecular subtype involved in 

lung carcinogenesis, the degree of chemoresistance, and the severity of the disease. 

A diagram illustrating all the results regarding the relative expression of the studied 

molecules after specific siRNA transfection (Figure 10) might be an important tool in 

identifying the most effective target molecules in multiresistant NSCLC. The same

concept was published by Raparia K. et al, who suggested molecular profiling in 
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NSCLC as a crucial step toward personalized medicine. The same study emphasized 

that the driver mutations responsible for lung carcinogenesis may serve as "drugable" 

therapeutic targets [130].

Another important aspect to discuss is the in vitro half-life of the siRNA. According to 

the published data, the half-life of mRNA may vary from minutes to days, while the 

half-lives of their protein products can range from a few minutes to several days. 

Therefore, the used nanotechonologies allow sufficient time for the siRNA to 

associate with RISC and deplete mRNA/protein concentrations to desired levels. The 

recommended time course ranges are 12 to 72 hours (in order to efficiently suppress 

the target mRNA) and 24 to 96 hours to adequately knockdown the target proteins 

and assess phenotypic outcomes. In our study we examined the relative expression 

of the target molecules 72 hours after transfection in order to achieve the maximum 

efficiency possible. 

A critical point of the study is that after a single-shot transfection with specific siRNA, 

some residual activity of each target molecule was still observed. The CASY cell 

counter also showed numbers of surviving chemoresistant adenocarcinoma cells 

(39–65% in the Gemcitabine group, 28–57% in the Vinflunine group, 23–39% in the 

Vinorelbine group and 18–46% in the Methotrexate group). According to these 

results we deduce that this therapy alone cannot totally destroy all tumor cells, 

suggesting that this therapy might prove more successful in terms of a multimodal 

concept (siRNA therapy as neoadjuvant/ adjuvant active therapy with chemotherapy, 

radiation therapy and surgery). 

One interesting approach in the future could be a multi-shot transfection strategy in 

the surviving cells. A comparison study between multi-shot versus single-shot 

specific siRNA transfection could clarify the therapeutic efficiency of siRNA even 

more in the future. According to these preliminary in vitro data, new strategies have 

to be established in order to improve siRNA half-life as well as the potency of the 

siRNA in the surviving chemoresistant cells. On the other hand, the short half-life of 

these molecules can be a considerable advantage in terms of cellular toxicity and 

adverse effects. Due to its short half-life and fast elimination by kidney filtration [131], 

siRNA interference can be considered a transient process on the one hand and a 

very protective process with fewer adverse effects for the body on the other.
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Taken together, these preliminary in vitro results obtained in our laboratory suggest 

that siRNA might represent an important platform for new alternative regimens in the 

treatment of NSCLC. 

According to our promising results, we believe that siRNA-based nanotechnology 

might prove a very accurate individualized transient therapy. Similar to the 

experimental data obtained in other carcinoma cell lines, a new concept concerning a 

multimodal therapy in lung cancer that includes siRNA, chemotherapy and 

radiotherapy should be established in order to improve the effectiveness of the 

treatment, patient adherence to the treatment, patient quality of life and the survival 

rate of patients undergoing this severe disease.

4.2. Limitations

Despite of these promising results obtained in our laboratory, siRNA mediated 

interference has various limitations. 

First of all, the results obtained in vitro cannot be directly extrapolated in vivo. The 

most important obstacle limiting the in vivo transfectability of siRNA is delivery of the 

siRNA to its intracellular target. Its large molecular weight, size and plasmatic 

instability (plasma half-life of about 10 minutes) are the main contributors [132], [133], 

[134], [135]. For this reason, current efforts are directed not only at increasing the 

plasma stability of the siRNA by changing the structure of the RNA chain, but also 

toward various multifunctional coating processes. 

Second, its low in vivo stability and rapid renal elimination are two other important 

factors limiting the effectiveness of siRNA transfection in vivo [131]. 

Third, lysosomal endocytosis may diminish the activity of siRNA agents [135], 

suggesting that new coating processes and transfection protocols have to be 

established in order to improve the plasmatic half life and survival rate of siRNA 

nanoparticles. 

Fourth, an RNA interference mechanism may only knockdown the target genes 

(decrease the expression of the genes) and not knockout the genes, which would 

mean completely eliminating their functions. 

Fifth, conventional siRNA have different repetitive sequences, which can potentially 

produce cross-reactivity and consequently substantial off-target effects. As a result of 

advanced genetic engineering processes, siRNA molecules can now be produced 
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with very high-affinity for the target gene, thereby reducing cross reactivity and off

target effects. 

Sixth, at present a single shot transfection with a specific siRNA does not lead to the 

death of all chemoresistant cells, suggesting that a multi shot setting in the context of 

a multimodal therapy (adjuvant chemotherapy, radiation and surgery) should be 

evaluated in order to increase the effectiveness of the siRNA.
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5. Zusammenfassung 

Nach den interdisziplinären S3-Leitlinien für Prävention, Diagnostik, Therapie und 

Nachsorge des nicht-kleinzelligen Bronchialkarzinoms, ist die vielversprechendste 

Behandlungsstrategie aktuell ein individualisiertes und multidisziplinäres Konzept

(Chemotherapie, Strahlentherapie sowie chirurgische Resektion). Darüber hinaus 

stellt die Chemotherapie eine wichtige Komponente der Behandlung aller Stadien der 

Erkrankung dar. Die Entwicklung der Chemoresistenz (bis zu 60% für Platin Derivate, 

bis zu 70% für Gemcitabine und Doxorubicine Derivate, sowie bis zu 40% für

Paclitaxel und Docetaxel) ist aktuell das wichtigste Hindernis für eine effiziente 

Behandlung, insbesondere bei Zweit- und Drittlinientherapien.

Im Rahmen der vorliegenden Arbeit wurde ein mögliches neues Therapieverfahren in 

der Behandlung der chemoresistenten Adenokarzinom-Zelllinien via siRNA Silencing 

von sechs spezifischen Moleküle (SRF, E2F1, Survivin, HIF 1, HIF 2 und STAT 3)

auf Zellkulturniveau bearbeitet.

Um die in vivo Bedingungen zu simulieren, wurde die Chemoresistenz gegen vier 

verschiedenen Chemotherapeutika (Gemcitabine, Vinflunine, Vinorelbine und 

Methotrexate) nach wiederholter lokaler Anwendung der oben genannten Mittel

künstlich induziert. Die resistenten A 549 Adenokarzinom-Zelllinien wurden sodann 

unter Standardbedingungen bei 37°C und 5% CO2 kultiviert. Die Zellen wurden zwei

Stunden bei 37°C mit spezifischen siRNA gegen SRF, E2F1, Survivin, HIF 1, HIF 2 

und STAT 3 transfiziert. Die Effizienz des siRNA silencing sowie die 

suppressionsabhängige Reduktion des spezifischen intrazytoplasmatischen mRNA-

Levels wurden über quantitative Echtzeit-PCR ausgewertet. Die residuellen 

Tumorzellen nach spezifischer siRNA Transfektion sowie das Tumorwachstum 

wurden mit einem CASY Zellzählsystem drei Tage nach der Transfektion analysiert. 

Es konnte gezeigt werden, dass mit siRNA Transfektionen eine 

konzentrationsabhängige Wirkung auf die Viabilität der chemoresistenten Zellinien 

induziert werden konnte. Sowohl bei 25 nM als auch bei 100 nM siRNA, war die 

Unterdrückung der Tumorzellen in allen vier Gruppen wesentlich effizienter als in der 

Kontrollgruppe. Auf der anderen Seite zeigte die CASY Zellanalyse eine moderate 

Reduktion der chemoresistenten Adenokarzinom-Zelllinien in der Gemcitabine 

Gruppe, sowie eine sehr effiziente Unterdrückung der Zelllinien mit einer 
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konsekutiven Reduktion der Tumormasse in der Vinorelbine, Vinflunine und 

Methotrexate Gruppe.

Vor dem Hindergrund dieser ermutigenden in vitro Ergebnisse kann man 

zusammenfassend sagen, dass siRNA eine neue adjuvante Alternative in der 

Behandlung von chemoresistenten Adenokarzinomen sein könnte, durch eine 

spezifische siRNA Transfektion könnte eine sehr effiziente Unterdrückung von 

multiresistenten Zelllinien erreicht werden. 

Diese individualisierte temporäre Therapie (keine Gentherapie) eröffnet 

möglicherweise neue therapeutische Strategien für die Zukunft (z.B. siRNA 

Transfektion in Kombination mit verschiedenen thoraxchirurgischen Eingriffe unter 

Einsatz der Herz-Lungen-Maschine über eine isolierte Lungenperfusion) sowie ggf. 

neue Perspektiven in Bezug auf eine multimodale Therapie des Bronchialkarzinoms. 
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6. Summary

According to the S3 Guidelines for the prevention, diagnosis and therapy of NSCLC, 

the most promising therapeutic regimen is currently an individualized, 

multidisciplinary concept. In addition, chemotherapy represents an important 

component of treatment at all stages of the disease. The development of 

chemoresistance (up to 60% for platinum derivatives, up to 70% for Gemcitabine and 

Doxorubicine) represents the most important obstacle to an effective treatment, 

especially with second-and third-line therapies. 

In the present work, a potential new therapeutic strategy for the treatment of 

chemoresistant adenocarcinoma cell lines via siRNA silencing of six specific 

molecules (SRF, E2F1, Survivin, HIF 1, HIF 2 and STAT 3) was examined in a cell 

culture model. 

In order to accurately simulate in vivo conditions, chemoresistance against four 

different chemotherapeutic agents (Gemcitabine, Vinflunine, Vinorelbine and 

Methotrexate) was artificially induced after repeated application of the above 

mentioned agents. Afterwards, the chemoresistant A549 adenocarcinoma cell lines 

were cultured under standard conditions at 37°C and 5% CO2. These cells were then 

transfected two hours at 37°C with specific siRNA targeting SRF, E2F1, Survivin, HIF 

1, HIF 2 and STAT 3 in a non-viral manner. The efficiency of the siRNA silencing and 

the suppression of specific intracytoplasmic mRNA levels were evaluated via 

quantitative real time-PCR. 

The tumor cells remaining after specific siRNA silencing were analyzed with a CASY 

cell counter system three days after transfection as an accurate predictor of tumor 

growth.

We demonstrated that transfection with specific siRNA had a concentration-

dependent effect on the viability of the chemoresistant cell lines. At both 25 nM and 

100 nM, the suppression of the tumor cells in all four groups was significantly more 

efficient in comparison to the control group. 

The CASY System demonstrated a moderate reduction of adenocarcinoma 

chemoresistant cells in the Gemcitabine group and very effective suppression of 

adenocarcinoma cell lines in the Vinorelbine, Vinflunine and Methotrexate groups.
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According to these promising in vitro results, we conclude that siRNA delivered by 

specific transfection could be a new alternate adjuvant in the treatment of 

chemoresistant adenocarcinomas. Given the specific posttranscriptional gene 

silencing, potent suppression of various chemoresistant cell lines can be achieved. 

Therefore, this individualized temporary therapy (not a gene therapy) might open new 

therapeutic strategies for the future (i.e. siRNA transfection in combination with 

various thoracic surgical procedures using a heart-lung machine on an isolated 

perfused lung) and possibly open new perspectives in terms of a multimodal therapy 

for bronchial carcinoma.
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7. Outlook and future perspectives 

The evolution of technological and therapeutic applications of siRNA since the initial 

description of the interference process published by the two Nobel Prize winners (A. 

Z. Fire and C.C. Melo) in 2006 has been extremely rapid and very productive. 

Over about 8 years, different scientists described many pathways and mechanisms 

of this molecule. The first suggestions of a role for siRNA in immune processes and 

tumor processes were succeeded by further extensive research. 

Currently, at least 15 systemic infections and 10 tumor entities have been described 

in which siRNA mediated interference can play an auspicious role.

In the last few years, promising data regarding the transfection of specific siRNA 

have been published in the medical literature. Research into the involvement of 

siRNA in genitourinary, neurological (e.g. Parkinson’s disease), hematological and 

cardiovascular diseases (siRNA eluting stents, siRNA interference in venous grafts 

during coronary artery bypass graft operations) has recently produced multiple 

productive platforms for new therapeutic options.

In particular in lung pathology, current efforts are focused on the establishment and 

application of siRNA nanoparticles (e.g. liposomes, aptamers) during various thoracic 

surgical procedures utilizing isolated lung perfusion. 

The discovery and clinical implementation of some siRNA specific tumor biomarkers 

might also play a crucial role in cancer screening with major therapeutic implications. 

The interesting preliminary data regarding siRNA mediated chemosensitization and 

radiosensitization of (multi)resistant lung cancer also require extensive research in 

the future. 

Given the difficulties concerning the reproducibility of all these experiments, new 

coatings and plasmatic stabilization processes should be further intensively studied, 

in order to increase the effectiveness of siRNA-mediated specific transfection in vivo. 
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