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Abstract

In the present work, we use concepts of Bayesian statistics to infer the three-dimensional
structures of proteins from experimental data. We thus build upon the method of inferen-
tial structure determination (ISD) as introduced by Rieping et al. (2005). In line with their
probabilistic approach, we factor the probability of a three-dimensional protein structure
given the experimental data, into a prior distribution that captures the protein-likeness of
a structure and the likelihood that describes how likely the experimental data were gene-
rated from a given three-dimensional structure. In this Bayesian framework, we attempt
to develop structure calculation from NMR experiments into a highly accurate, objective
and parameter-free process.

We start by focusing on integrating new types of data, as ISD currently does not entail
a mechanism to incorporate chemical shifts in the calculation process. To alleviate this
shortcoming, we propose a hidden Markov Model that captures the relationship between
protein structures and chemical shifts. Based on our probabilistic model, we are able to
predict the secondary structure and dihedral angles of a protein from chemical shifts.

Another means to high quality structures involves improving the potential functions
that form the core of ISD’s prior distributions. Although potential functions are designed to
approximate physical forces, there are still parameters, such as force constants and tem-
peratures, that are set on an ad hoc basis and can bias the structure calculation. As an
alternative, we propose an algorithm based on Bayesian model comparison to determine
these parameters from the data. Further, we demonstrate that optimal data-dependent
parameters lead to improved accuracy and quality of the final structure, especially with
sparse and noisy data. These findings dismiss the notion of a single universal parameter
and advocate the estimation of free parameters based on experimental data instead.

Third, we focus on the estimation of new potential functions to include even more prior
information in the structure calculation process. Currently, only a few methods allow the
estimation of potential functions from a database of known structures. Our method provi-
des a sound mathematical solution of this problem, which is also known as the inverse
problem of statistical mechanics.We demonstrate the effectiveness of our approach on
the examples of simple fluids and a coarse-grained protein model.

iii





Zusammenfassung

Im Rahmen dieser Arbeit stellen wir neue Ansätze, basierend auf der Bayes’schen Stati-
stik, zur Interpretation von experimentellen Daten in der NMR-Spektroskopie vor. Dabei
bauen wir auf den Ergebnissen von Rieping et al. (2005) auf, die das Prinzip der inferen-
tiellen Strukturbestimmung (ISD) eingeführt haben. Ihr probabilistischer Ansatz beruht
auf der Faktorisierung der A-posteriori-Verteilung in die A-priori-Verteilung, welche die
Proteinähnlichkeit einer möglichen Struktur bewertet, und die Likelihood-Funktion, wel-
che die Übereinstimmung mit den experimentellen Daten beschreibt. Ziel dieser Arbeit
ist es, die Qualität, aber auch die Vergleichbarkeit der Strukturberechnung in der NMR-
Spektroskopie zu verbessern.

Zuerst beschäftigen wir uns mit der Integration neuer experimenteller Datentypen in
die Strukturrechnung. Dazu schlagen wir ein Hidden-Markov-Modell vor, das beruhend
auf der chemischen Verschiebung die Dihedralwinkel und Sekundärstruktur vorhersagt.

Eine Alternative zur Integration zusätzlicher experimenteller Information ist die Ver-
besserung der A-priori-Verteilung. In ISD beruht die A-priori-Verteilung auf einer Po-
tentialfunktion, welche die frei Energie approximiert. Dennoch gibt es freie Parameter
in Potentialfunktionen, wie die Temperatur oder doe Kraftkonstante, die festgelegt wer-
den müssen. Wir benutzen Bayes’sche Hypothesentests, um die freien Parameter ob-
jektiv und beruhend auf den experimentellen Daten zu bestimmen. Die Anwendung der
Bayes’schen Hypothesentests ermöglicht es uns, verschiedene Potentialfunktionen zu
kombinieren, um aus verrauschten und unvollständigen Daten noch exakte Strukturen
zu bestimmen. Weiterhin zeigen unsere Studien, dass für statistische Potentiale keine
allgemeingültige Kraftkonstante existiert und diese anhand der experimentellen Daten
bestimmt werden sollte.

Im dritten Teil dieser Arbeit führen wir eine Methode ein, um neue Kraftfelder aus

Strukturdatenbanken zu erlernen und damit die A-priori-Verteilung noch weiter zu ver-

bessern. Dieses nichtlineare Problem ist auch als inverses Problems der statistischen

Mechanik bekannt, das wir durch eine Generalisierung des Konzepts der Configuratio-

nal Temperature lösen. Wir benutzen unsere Methode, um die Potentialfunktionen von

vereinfachten Moleküldynamik Kraftfeldern zu rekonstruieren.
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1
Introduction

The aim of structural biology is to analyse the structure and function of biological
macromolecules. This discipline looks back on more than 50 years of history.
Throughout these years, X-ray crystallography has remained the method of choice
for the elucidation of protein structures. Over time, nuclear magnetic resonance
spectroscopy (NMR) and cryo-electron microscopy (cryo-EM) were added to the
repertoire of experiments that provide structural insights. What has changed are
the means to analyse and interpret the experimental data. While Kendrew and Per-
utz, the first to solve protein structures, used manually adjusted wire-frame models
to explain the diffraction pattern, most of the analysis and interpretation today are
performed by computer algorithms that require little to no human interaction. The
solution of a new structure has become a routine task and we are able to elucid-
ate many biological reactions in atomic detail. As the number of known structures
keeps growing at an increasing pace, more and more questions on the molecular
principles of many biochemical pathways can be answered.

One of the main contributor and, at the same time, beneficiary of structural bio-
logy is the pharmaceutical industry. Knowledge of the atomic detail of a receptor or
enzyme is of great help in the search for specific and strong binders. A prominent
example is the HIV protease, an enzyme that is represented by several hundred
structures in public databases, most of which are complexes with potential drugs
and inhibitors. There are probably hundreds more in the databases of pharma-
ceutical companies. Overall, this makes the virus protein one of the best-studied
structures. This immense structural knowledge allowed researchers to develop
highly effective inhibitors that are able to significantly slow the progression of the
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1 Introduction

virus. Despite such success stories, however, structural biology offers many open
challenges that can be addressed computationally.

One of these challenges is the application of NMR spectroscopy to large bio-
logical macromolecules. NMR spectroscopy is a powerful technique that provides
insights into the functionally important motions and transient interactions of protein
structures. An important limitation of this technique is molecule size; typically NMR
is restricted to small proteins with less then 50 kDa. But, eukaryotic cells depend
on the function of many large complexes, some of which are composed of more
than a hundred different proteins. Special labelling techniques are used to gather
structural and functional information on proteins of sizes up to 1 MDa (Sprangers
et al., 2007). The downside of these labelling techniques is that they result in a
sparse set of distance restraints that can prove difficult to solve by conventional
methods.

New approaches are required to derive meaningful ensembles from sparse data.
One solution are hybrid approaches that integrate different structural information at
different levels of resolution. An alternative are methods that complement sparse
structural information with precise potential functions. In this work, we pursue both
routes using Bayesian statistics.

Predicting structural information from chemical shifts

The integration of chemical shift data provides additional information that can guide
structure calculation. Chemical shifts have become increasingly important in struc-
ture calculation, as the chemical shift of an atom depends on important structural
factors, like backbone conformation, secondary structure and the position of aro-
matic rings (Wishart and Case, 2001; Wüthrich, 1986). Recently, progress was
made by Cavalli et al. (2007); Shen et al. (2008); Thompson et al. (2012), who use
this information to determine the structure of proteins accurately.

Encouraged by their success, we focus on extracting structural data from chem-
ical shifts. While the problem has received a lot of previous attention (Mielke and
Krishnan, 2009; Cornilescu et al., 1999; Shen et al., 2009), almost all previous al-
gorithms are ad hoc. Too often, scientists only look at the output behaviour of a
complex algorithm, treating it like a ”black box”, but what is inside the box is also
very important. To alleviate this issue, we present a principled, clean, and transpar-
ent algorithm based on hidden Markov models (HMMs) for solving this extensively

2



studied problem. The predicted secondary structure can be incorporated as dis-
tance restraints into the structure calculation process.

Our second approach is concerned with the prediction of dihedral angles from
chemical shifts. The predicted dihedral angles can also serve as restraints in struc-
ture calculation. We propose an HMM, based on a discrete representation of pro-
tein structure by Boomsma et al. (2008), to infer the dihedral angles from chemical
shifts.

Objective priors for structure calculation

The Bayesian methodology introduced by Rieping et al. (2005) provides an elegant
and powerful approach to structure calculation. Instead of relying on energy minim-
ization, Rieping et al. generate samples from a probability distribution, which is the
product of the prior distribution that captures the protein-likeness of a structure, and
the likelihood, which captures the goodness-of-fit to the experimental data. Within
this framework it is possible to elegantly determine additional model-parameter,
that previously were choose empirically (Habeck et al., 2006). However, there are
still parameters that that cannot be estimated from the data, yet need to be ad-
justed like the temperature of the potential function. Bayesian inference stipulates
determining such parameters based on the model evidence. This is challenging
because the model evidence cannot be calculated analytically, not even for small
proteins. So far, all methods to approximate the evidence rely on assumptions re-
garding the functional form of either the likelihood or the prior (MacKay, 1992; Li,
2009; Pryce and Bruce, 1995; Zhou et al., 1997), which makes them unsuitable
in the context of structure calculation. We introduce a replica-exchange Monte
Carlo (REMC) scheme that allows us to estimate the model evidence through use
of multiple histogram reweighting for a large number of problems in Bayesian data
analysis.

Combination of prior information

In the case of sparse and noisy data, we need to rely on the potential function to
guide structure calculation towards the native conformation and resolve the inher-
ent ambiguity of the experimental data. There have been two different approaches

3



1 Introduction

to the construction of potentials: physics-based potentials, that are inspired by
physical laws, and knowledge-based potentials, that are derived from databases.
A fusion of data-driven and physics-based approaches, which are often comple-
mentary, should increase the accuracy of potential functions (Pande, 2011). We
propose a method based on our earlier results on Bayesian model comparison,
to combine different potentials in the context of structure determination. The res-
ulting potential functions, optimized for a particular protein and experimental data
set, lead to more accurate structures. Our results argue against the existence of a
transferable combination of physics-based potentials and knowledge-based poten-
tials.

Estimating new potential functions

The apparent incompatibility of physics-based and knowledge-based potentials mo-
tivated us to investigate new techniques to estimate potential functions, whereby
physical interactions are used as prior knowledge but the model is then estimated
from a database of known structures. The simplest strategy is to collect database
statistics for certain geometric descriptors, such as distances and dihedral angles,
and compute a statistical potential by inversion of the histogram (Sippl, 1995). But
the resulting energy functions are, at best, potentials of mean force and generally
differ from the potential energy function as they do not take the multiplicity into ac-
count and tend to neglect correlations (Ben-Naim, 1997; Shortle, 2003). Rather
than compute statistical potentials, we aim to extract force field parameters directly
from configurations that are drawn from the canonical ensemble, which amounts to
solving the inverse problem of statistical mechanics. We propose an extension of
the configurational temperature that allows us to infer a parameterized approxima-
tion of the potential function. It turns out that our approach is a generalization of
Score Matching Hyvärinen (2005) and the generalized Yvon-Born-Green (gYBG)
equations (Mullinax and Noid, 2009, 2010).

1.1 Structure of the Thesis

This thesis is divided into seven chapters. Following this introduction, the biological
and mathematical background are introduced in Chapter 2. In Chapter 3, we intro-
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1.1 Structure of the Thesis

duce a probabilistic model to calculate secondary structure elements and dihedral
angles from chemical shifts with the aim of using this information for structure calcu-
lation. In order to incorporate the new potential functions into the structure calcula-
tion process, we need to estimate the influence of the potential function in the light
of the experimental data. A general answer to this question is provided in Chapter
4, where we introduce a method to weight the prior information in Bayesian data
analysis. Subsequently, in Chapter 5, we use the results from the previous chapter
to find an optimal combination of different potentials for structure calculation. In
Chapter 6, an extension to the configurational temperature is presented, which al-
lows us derive new force fields from ensembles of structures. Chapter 7 provides
a general conclusion to the work presented here.
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2
Background

2.1 Protein structure

Proteins are fundamental to all living organisms. They are simple linear polymers
composed of 20 different α amino acids. Each gene of an organism encodes
the amino acid sequence of at least one protein. A gene is first transcribed into
RNA and then translated at the ribosome to produce a protein, where it folds it-
self into a three-dimensional structure. The folding process is driven by the physio-
chemical properties of the individual amino acids and thus the structure of a protein
is uniquely defined by its sequence. Over billions of years, driven by selection pres-
sure, the sequence of amino acids evolved, to adopt the distinct three-dimensional
conformation that we observe today and to carry out a vital function in the organ-
ism. These functions range from digesting nutrients and providing scaffolding for
the cell to transferring signals and killing pathogens.

Each amino acid has the same basic composition: a central carbon atom, called
Cα, to which a hydrogen atom, a carboxyl group (COOH) and an amino group
(NH2) are attached. They differ only in the fourth substituent of the central car-
bon. The 20 different substituents that make up the naturally occurring amino acids
are diverse and range from single hydrogen atoms to complex aromatic ring sys-
tems. During synthesis of the protein at the ribosome, a peptide bond between the
carboxyl group of one amino acid and the amino group of the next one is formed.
This reaction, which is called condensation, covalently links the two amino acids
and thereby releases a water molecule. The reaction creates electron delocaliza-
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2 Background

tion along the newly formed peptide bond, rendering it planar; thus the amino acid
occurs only as cis or trans isomer. As a result, the angles of rotation around the
N − Cα and Cα − C ′ bond, called the φ and ψ angles, are the only degrees of
freedom of the protein backbone. As such, the conformation of the backbone can
be completely described by all φ and ψ angles. Typically, the φ and ψ angles are
visualized by the Ramachandran plot (Ramachandran et al., 1963).

The structure of proteins is organized into primary, secondary, tertiary and qua-
ternary structure. Each level of this hierarchy adds more information. The lowest
level, the primary structure, refers to the sequence of amino acids along the poly-
peptide chain. The primary structure includes no three-dimensional information,
but allows us to deduce the evolutionary relation between proteins. Two proteins
of common decent are called homologous to each other and will often show a high
similarity in their sequence and structure.

The concatenation of local repetitive elements along the protein chain stabilized
by backbone hydrogen bonds is called the secondary structure. The most common
secondary structure elements are the α helix and the β strand. The protein back-
bone of an α helix forms a right-handed spiral, where the CO group of each residue
is hydrogen-bonded to the backbone NH group of the fourth residue along the chain.
Thus, all residues of the α helix, except the first and the last, are connected by two
hydrogen bonds. One turn of an α helix comprises 3.6 residues and is about 5.4 Å
in height. An average helix in globular proteins comprises about three turns or 10
residues. The α helix is associated with φ, ψ angles pairs of around −50◦ − −60◦

each.

The polypeptide chain in a β strand adopts an extended conformation, which is
stabilized by though-space backbone hydrogen bonds with another β strand. Two
or more parallel or anti-parallel aligned β strands form a β sheet. Figure 2.1b
shows an anti-parallel β sheet. In terms of geometry, parallel and anti-parallel β
sheets have a characteristic hydrogen-bond pattern. The φ,ψ angles for a β strand
are less well-defined than those of α helices and the angles potentially occupy the
upper left part of the Ramachandran plot.

Most proteins are made up of either β strands or α helices joined loosely by
structured loop regions of various lengths and shapes. Loop regions, in general,
do not form hydrogen bonds and comprise charged and polar residues, as they are
often exposed to the solvent. Besides these common secondary elements, there
exist rare variants like the 3− 10 helix, the π-helix and collagen.

The tertiary structure refers to the atomic coordinates of the folded structure of

8



2.1 Protein structure

(a) Polypeptide synthesis (b) Secondary structure

(c) Tertiary structure

Figure 2.1. Protein structure synthesis and organization. Panel 2.1a shows the
condensation reaction that forms the peptide bond. The upper right Panel 2.1b shows
an α helix and the arrangement and hydrogen bond pattern of an anti-parallel β sheet.
The lower Panel 2.1c shows a cartoon representation of the tertiary structure and
highlights the secondary structure elements. Figure taken from Brown (2002)
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2 Background

a protein. Tertiary structures are often composed of one or multiple autonomously
folding substructures, which are called domains. Each domain fulfils a specific
function within the tertiary structure. Despite the wide range of known domains, it
is possible to classify them according to taxonomic levels (e.g. subfamily, family,
superfamily).

A large number of proteins are unable to function on their own and form larger
assemblies stabilised by non-bonded interactions. The quaternary structure refers
to this assembly. It is not uncommon that the assembly consists of identical sub-
units. The largest multi-protein complexes like the nuclear pore complex can have
a mass of up to ≈ 125 MDa.

Upon synthesis, proteins fold themselves into the final, functional, three-
dimensional conformation. Hydrophobic side chains are buried in the core of the
protein while the polar/charged side chains are left accessible to the solvent. Sec-
ondary structure elements are formed through hydrogen bonds and are further
stabilised by disulphide bridges, charged interactions and hydrophobic interactions.
These stabilising interactions are opposed by entropic contributions. In the end,
the sum of stabilising effects outweighs the destabilising ones and proteins adopt
their three-dimensional structures. The folding process itself is viewed as the path
of the folding protein chain through an energy landscape, which funnels the form-
ing protein towards the native state. Within this energy landscape, multiple folding
pathways and metastable intermediates exist on the route to the native state.

2.2 Nuclear magnetic resonance

Nuclear magnetic resonance (NMR) can be used to determine the three-
dimensional structure of proteins Wüthrich (1986). In addition, NMR can be used
to investigate time-dependent biochemical phenomena like reaction kinetics and
molecular dynamics (Cavanagh et al., 1996). The effects underlying NMR spec-
troscopy depend on the nuclear spin and were first reported by Bloch et al. (1946)
and Purcell et al. (1946). NMR soon developed into a standard technique for the re-
search on small molecules, and Bloch and Purcell were awarded the nobel price in
physics in 1952 "for their discovery of new methods for nuclear magnetic precision
measurements and discoveries in connection therewith".

The correlations between protein structures and NMR spectra were realized
quickly. Yet de novo structure calculations seemed out of reach until Ernst et al.
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2.2 Nuclear magnetic resonance

(1990) introduced the use of the Fourier transformation and pulsed frequency ra-
diation. This advancement was awarded the Nobel Prize in Chemistry in 1991.
These discoveries paved the way for multidimensional NMR spectroscopy, which
led to the solution of the first protein structure by NMR spectroscopy by Williamson
et al. (1985). This feat also led to Kurt Wüthrich being awarded the Nobel Prize in
Chemistry in 2002.

Nuclear resonance

The theory of NMR revolves around a quantum mechanical property of the atomic
nucleus called spin (Sakurai et al., 1995; Levitt, 2001). The spin s is the quantum
mechanical analogue of the angular momentum and it is intrinsic to all element-
ary particles. It describes the magnetic field surrounding the nucleus. Due to its
quantum mechanical nature, the spin is quantized (i.e. it may only be a discrete
value) and can be characterized by the spin quantum number I, which is a multiple
of 1

2 . The spin quantum number is connected to the norm of the spin ‖s‖ by

‖s‖ =
√
I (I + 1)h̄ (2.1)

, where h̄ is the reduced Planck constant. It is defined as the Planck constant h
divided by 2π. Since NMR relies on the existence of the magnetic field, only nuclei
with a spin quantum number greater than or equal to 1

2 are NMR active.

The magnetic moment of a nuclei µ is given by

µ = γs , (2.2)

where γ denotes gyromagnetic ratio specific to each nucleus. Given an arbitrary
direction z, defined by an external magnetic field, the spin z-projection is given by

sz = mzh̄ with mz ∈ {−I,−I + 1, . . . , I − 1, I} . (2.3)

Thus, there are 2I + 1 different values of sz. Nuclei with spins greater than 1
2 are

typically not considered in NMR as the greater number of spin states complicates
the later analysis of spectra. The most important nuclei with spin 1

2 is that of hydro-
gen 1H, as it has high natural abundance. Many other common nuclei, such as 12C
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2 Background

∆E

anti-parallel (β)
mz = −1/2

parallel (α)
mz = 1/2

x

z

y

Figure 2.2. Energy level diagram reflecting the alignment of a 1/2 spin nuclei in an
external magnetic field.

and 14N, are NMR inactive. The isotopes of these elements, 13C and 15N, are used
to make them visible to NMR.

In the absence of an external magnetic field, the energy levels of each orient-
ation mz are equal. If a magnetic field B0 is applied to a probe, each orientation
of the spin has a different energy. It depends on the direction of the spin relative
to the external field, the strength of the external magnetic field, and the strength of
the intrinsic magnetic moment γ of the nucleus. The energy is given by

E = −µz‖B0‖ = −mγh̄‖B0‖. (2.4)

It should be noted that the energy is quantitized as well. Orientations along the
magnetic field have lower energy and, following Boltzmann’s law, are more highly
populated. There exist two distinct energy levels for a nucleus with spin 1

2 (see
Figure 2.2), α with m = 1/2, and β with m = −1/2 . In the α state, the spin is
oriented parallel to the external field. The spin in the β state is oriented anti-parallel
to the external field, thereby resulting in a higher energy. The energy difference ∆E

between the two levels again depends on the strength of the magnetic field and is
given by:

∆E = γh̄‖B0‖. (2.5)

If an electromagnetic wave is applied to the probe and the energy of that wave is
exactly ∆E, spins on level α are able to change to state β and a strong absorption
occurs, which can be measured. The frequency at which the absorption occurs is
called the resonance frequency of the nucleus. The resonance frequency of a pro-
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2.2 Nuclear magnetic resonance

ton is in the range of several hundred MHz for commonly used NMR spectrometer.
As described by Equation 2.3, only the z component of the angular momentum is
quantitized, while the vector is free to rotate as shown in Figure 2.2. The resulting
motion, which is called precession, is similar to that of a gyroscope. The frequency
of the motion is named after Joseph Larmor. The Larmor frequency fLarmor is
identical to the resonance frequency of the nucleus.

Chemical shift

How does the nuclear resonance give us any information about the probe? Why
is it that not all hydrogen atoms in a protein have the same absorption frequency?
To answer all these questions, we need to have a closer look at the magnetic field.
The magnetic field is not homogenous; it differs locally. Every nucleus induces a
weak magnetic field. Therefore, the magnetic field at a particular nucleus depends
on its surrounding and only rarely will two nuclei experience the same field and
have the same resonance frequency. The deviation of a resonance frequency from
that of a reference nucleus is called the chemical shift. The chemical shift δ is usu-
ally measured in parts per million [ppm] and does not depend on the spectrometer
used. It is defined as

δ =
ν − ν0

ν0
(2.6)

where ν is the measured resonance frequency and ν0 is the resonance frequency
of a reference. For example, tetramethylsilane (TMS) is used as a reference for
hydrogen atoms and 13C. The exact computation of chemical shifts from first prin-
ciples is only possible for small molecules. In the case of larger system, the com-
plexity of the interactions is prohibitive. Nevertheless, it is possible to arrive at a
good empirical approximation for proteins.

Fourier Transform NMR

We still need to answer the question of how NMR can be used to elucidate a protein
structure. The goal of NMR is to obtain the intensity of the resonance as a function
of the frequency. In the early experiments, a frequency sweep was used to collect a
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Figure 2.3. The discrete Fourier transform of a square wave of frequency 2π truncated
after 20 coefficients. The square wave can be seen as the combination of different
wavelengths. The image on the left depicts the Fourier transform of a square wave up
to the 20th Fourier coefficient. In the he middle image we show 20 individual waves
that comprises the truncated Fourier transform. The image on the right shows the
corresponding Fourier coefficients.

spectrum, which means that each possible frequency was probed individually. The
downside of this procedure is that it suffers from a poor signal-to-noise ratio and
long measurement times.

Today, almost all NMR spectrometers use pulsed Fourier-transformed NMR,
which does not suffer from the shortcomings of the frequency sweep. In this tech-
nique, a radio frequency square pulse is used to excite the probe. This pulse
contains contributions of all nearby wavelengths as depicted in Figure 2.3, and is
able to excite all resonance frequencies at once. As a result, the net magnetization
of the probe is no longer aligned with the external field and starts tumbling. The
tumbling magnetic field induces a periodic current in a pick-up coil that is meas-
ured over time. The overall tumbling is caused by the precession of the individual
spins. The resulting signal contains contributions from all resonance frequencies
and is called a free induction decay (FID). By applying a Fourier transform to the
FID signal, a frequency-domain NMR spectrum can be obtained.

Protein NMR

A protein of typical size will easily contain several thousand protons. Although it
is theoretically possible to measure a unique signal for each of the shifts, in prac-
tice, one will encounter many overlapping signals. The difference in the resonance
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2.2 Nuclear magnetic resonance

frequency between two protons cannot be resolved by a spectrometer. Multidimen-
sional NMR techniques that result in two- or more-dimensional spectra are used to
ameliorate this problem (Ernst et al., 1990). The peaks along the main diagonal
of the spectra correspond to the one-dimensional experiment. The off-diagonal
peaks can reveal interactions through-space or through-sequence. Depending
on the applied radio pulses and relaxation times between the pulses, different
interaction types can be revealed. Correlation spectroscopy (COSY), a common
two-dimensional experiment, gives off-diagonal peaks for nuclei which are cova-
lently linked via one or two atoms. The Nuclear Overhauser effect spectroscopy
(NOESY) reveals through space contacts between nuclei (Neuhaus and William-
son, 2000). The information collected by NOESY is paramount to revealing the
three-dimensional structure of a protein. As there is no simple relation between the
recorded peaks and the sequence of the polypeptide chain, these experiments do
not disclose a congruence of peaks and nuclei in a protein. Sequential assignment
is used (Cavanagh et al., 1996) to discover these relationships. The assignment
process for all the Nuclear Overhauser effect (NOE) peaks is the most tedious
and time-consuming step in NMR structure determination and might take several
months, if not years, in the worst case.

There is an upper limit to the size of protein structures solvable by NMR. In part,
this is due to an increase in overlapping peaks and to a faster loss of magnetiz-
ation in larger macromolecules. As a consequence of the loss of magnetization,
there is less time to measure the signal, which prohibits many multidimensional
spectroscopy experiments. Ultimately, this lead to broad peaks in a crowded spec-
tra with many overlapping peaks, making assignment impossible. A remedy is to
use selective labelling, for example it is possible to make only the methyl groups of
cystine residues NMR active while ignoring all other nuclei. But this introduces a
new problem: using conventional methods, it is no longer possible to solve these
structures based on such sparse data sets.

Finally, at the end of the assignment process, it is possible to arrive at a list of
pairwise distance constraints from the NOE peaks. These serve as the most im-
portant information for structure calculation. Other common types of experimental
data for structure calculation are J-couplings and residual dipolar couplings (RDC).
J-couplings, which is also known as indirect dipole dipole couplings, are used to
define angular restraints along the main chain rotational degrees of freedom. Us-
ing RDCs, it is possible to derive restraints on the orientation of bonds relative to
the external magnetic field. The careful combination of sufficient restraints allows
the computation of a protein structure with atomic resolution.
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2.3 Bayesian Inference

Few theorems in statistics are as controversial as the one named after the 18th-
century Reverend Thomas Bayes (Bayes, 1763). Bayes was the first to describe a
special case of what is today known as Bayes’ theorem in his posthumously pub-
lished assay “An Essay towards Solving a Problem in the Doctrine of Chances”. It
was actually Pierre Simon Laplace (Laplace, 1774), who introduced the theorem in
today’s general form,

p(x | D) =
p(D |x) p(x)

p(D)
(2.7)

where x denotes the variable of interest, D the data we have collected on x, and
p a probability measure. The controversy surrounding this theorem lies not in the
formula itself, as it is derived from the very rules of probabilistic calculus, but in the
interpretation of probability as a “degree of belief” instead of the frequency of oc-
currence of x. Based on this interpretation, Bayes’ theorem allows us to update the
initial degree of belief in x, also called the prior p(x) to arrive at the probability of x
after we have observed D, which is called the posterior. The likelihood p(D |x) is a
function of the parameter x and expresses how probable the data are if we assume
x to be true. Within this framework we can easily update our assessment on x as
new information arrives. It allows us to quantify the confidence in the inference
through the posterior distribution.

Let us illustrate the Bayesian probability through a simple example inspired by
Sivia and Skilling (2006). Suppose we face the task of estimating the probability
θ that a coin will come up heads if tossed. In this case, the likelihood is the bi-
nomial distribution, which gives us the probability of observing h heads out of n
trials p(h|θ, n) =

(
n
h

)
θh (1− θ)n−h. We are less restricted in the choice of prior. Any

proper and improper probability distribution on the interval [0., 1.] that encodes our
assumptions about that coin is possible. If we assume a uniform prior, then the
posterior will be proportional to the likelihood. A uniform prior encodes our initial
ignorance about the coin: all probabilities are equal. But does a uniform prior really
reflect our everyday experience with coins? Would it not be more sensible to as-
sume that even heavily biased coins are never below θ = 0.3 or above θ = 0.7?
On the other hand, we might be more cautious and assume that this is a loaded
coin from the start. Such a prior would locate most of the probability mass around
θ = 0.0 and θ = 1.0. Figure 2.4 shows the effect of these prior distributions and
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Figure 2.4. A coin toss example. This example demonstrates Bayes’ Theorem at
work. Each column details the inference process with a different prior distribution.
The broken line shows the position of the true value of θ. The leftmost column uses
a uniform prior. The prior used in the middle column assume that a reasonably fair
coin is used. The rightmost column uses a prior that assumes a loaded coin; thus
it emphasizes the extreme probabilities of 0.0 and 1.0. The effect of the prior is best
observed for only a few rolls. The non-uniform prior keeps us from drawing excessively
rash conclusions after seeing heads thrice, while the other posterior distributions are
already fairly convinced that we are dealing with a loaded die. After 500 trials, the
influence of the prior distribution is diminishing against the overwhelming evidence of
the data and the posteriors are centred close to the true value.

how the posterior distribution evolves as more and more data is collected. When
the volume of data is small, the posteriors provide quite different estimates of θ.
As we observe more outcomes, the posteriors become more sharply peaked and
converge towards the same conclusion.
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Today, the Bayesian view of probability is well accepted within the statistics
community. For a long time over the course of history the field of Bayesian statist-
ics was perceived as being absurd (Gelman and Robert, 2011). The ideas of the
early Bayesians like Laplace were abandoned by mainstream statistics in favour of
Fisher’s new randomization methods, sampling theory and tests of significance. It
was Jeffreys (1939), Cox (1946), Good (1950) and De Finetti (1970) who again ad-
vocated for the use of the Bayesian interpretation of probability for scientific deduc-
tions. Furthermore, Cox showed that the Bayesian probability theory can be seen
as an extension of Aristotelian logic to the realm of events under uncertainty. Their
publications sparked a heated debate over the usefulness of the Bayesian inter-
pretation of probability. Today, these quarrels between Bayesians and Frequentists
have been settled and ideas from both statistical disciplines are used side by side.

The most important factor in the renaissance of Bayesian methods was the
discovery of Markov chain Monte Carlo methods (Metropolis et al., 1957). These
methods, together with the advent of powerful computers, made it possible to solve
problems that resisted a Bayesian treatment because they were too complex to be
tackled using only pencil and paper. Recently, probabilistic models and machine
learning methods based on Bayesian principles were adopted in the field of struc-
tural bioinformatics and phylogeny, and led to the solution of challenging problems
(Hamelryck, 2009a).

Bayesian methods are not restricted to drawing inferences on x. It is possible
to compare several competing hypotheses on the basis of the evidence in favour
of each one after having observed D Jeffreys (1939); Kass and Raftery (1995).
Suppose we wish to compare which prior in our coin toss example reflects the ob-
served data better. In this case, each choice of prior implies a different hypothesis
H1 . . .Hn. Recalling the Bayes’ principles, we will to evaluate the posterior after
having observed some data D. Thus the posterior p(Hi|D) is given by

p(Hi|D) =
p(Hi)p(D|Hi)

p(D)
(2.8)

The prior p(Hi) allows us to express a preference for a hypothesis. This allows ac-
counting for the notion that extraordinary claims require extraordinary proof. Thus,
a critical statistician might assign a low prior probability to a hypothesis that seems
unusual or unexpected. For example, a hypothesis claiming life on Mars would be
assigned a much lower prior probability than would its opposite. But, it is usually
assumed, that all hypotheses share the same prior probability. Moreover, p(D)

can be ignored as we compare all the hypotheses on the same set of data; thus,
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2.4 Inferential Structure Calculation

p(D) is a constant. This leaves us with only one term, which is usually called the
model evidence p(D|Hi). As an intuition, the evidence can be seen as the overlap
between the prior and the posterior of the model for the data. More formally, this
can be expressed as an integral over all parameters of the model underlying the
hypothesis.

p(D|Hi) =

∫
dx p(D |x, Hi) p(x, Hi) (2.9)

An alternative way of describing the evidence can be seen as the probability of
generating the observed data from the model p(D |x, Hi) whose parameters were
drawn from the prior.

The evidence also includes a trade-off between model complexity and
goodness-of-fit. An example for this intrinsic property of Bayesian inference is ex-
plained in Figure 2.5. Hence, it will select the simplest hypothesis that fits the facts.
As the probability mass is limited, a hypothesis with high evidence will have its
mass concentrated around the observed data. A more complex model will be able
to explain a more varied data set, but at the expense of spreading its mass over a
larger area of data set space. In contrast, for a very simple model the probability
mass will have a sharp peak, but this mass will have little overlap with the observed
model. These concepts have been used successfully in the field of phylogenetics
(Huelsenbeck et al., 2001), where different evolutionary examples need to be com-
pared.

2.4 Inferential Structure Calculation

Magnetic resonance data is usually not sufficient to determine a macromolecular
structure by itself. The final structure depends on a number of subjective choices,
which make the assessment of the quality of the structure difficult. This is also
mirrored in the algorithmic structure calculation process, where typically a hybrid
energy Ehybrid = Ephys +wdataEdata is minimized. Here, Ephys describes how physic-
ally plausible a structure is, Edata captures the goodness of fit of the data, and wdata

is the weight of the data chosen ad hoc. However, the formulation of structure cal-
culation as minimization is an ill-posed inverse problem, as there is no guarantee
of a unique answer to this question. Moreover, within this framework it is unclear
how to estimate auxiliary parameters like wdata. Typically, these parameters are set
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Figure 2.5. Schematic illustration of model evidence. This illustration shows how
Bayesian model comparison includes a trade-off between model complexity and good-
ness of fit. For each hypothesis, we plot the model evidence against the space of
all observable datasets. Bayesian reasoning stipulates to choose the most probable
hypothesis, given the observed data D0. But as the posterior p(Hi|D) is a probability
measure, it must assign a mass of one to the entire probability space. Hypothesis 3 is
very flexible and can support most data sets. But its probability mass is limited; hence
the mass associated with the observed data D0 is small. In contrast, Hypothesis 1 is
very specialized and can only explain a small subset of all observations. This allows H1

to allocate a lot of probability mass to relatively few data sets. The actual observation
D0 is only weakly supported by H3 and H1. Ergo we select Hypothesis 2, which is the
middle ground between H1 and H3, as the most probable one.
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2.4 Inferential Structure Calculation

beforehand, thereby adding a possible source of bias, or need to be estimated via
cross-validation.

To alleviate these problems, Rieping et al. (2005) developed a new approach
called inferential structure determination ISD. The novelty of their approach is that
they treat structure determination as a Bayesian inference problem. As discussed
earlier, the use of probability theory allows reasoning in the presence of uncertainty.
In the framework of ISD probabilities depend only on the observed data D and all
relevant prior information H. Hence, the probability of a conformation x is given by
the posterior probability p(x|D,H). Using Bayes’ theorem, the posterior is factored
into

p(x|D,H) ∝ p(x |H) p(D |x,H). (2.10)

The components of the posterior bear some similarity to the hybrid energy.

The prior p(x |H) describes how well a conformation x matches our expecta-
tions of protein structures. More formally it is defined as a Boltzmann distribution,
which is determined by a physical force field Ephys and the inverse temperature of
the system wphys

p(x |H) =
1

Z(wphys)
exp [−wphysEphys(x)] , (2.11)

where Z(wphys) is the partition function. As Z(wphys) =
∫
dx exp [−wphysEphys(x)]

only depends on the temperature and not on x, it is typically not computed.

The likelihood p(D |x,H) captures how likely it is to observe the data for a given
conformation. The calculation of the likelihood involves a forward model that calcu-
lates idealized observations from the conformation. Furthermore, an error model
is employed to assess the deviations between prediction and observation.

The ideas of ISD are best explained using a simple example. Let us assume a
structure with just a single angular degree of freedom ϕ (see Figure 2.6). Let us
further assume that we have measured the three-bond scalar coupling constants
(J-coupling) for this angle. The theory put forward by Karplus (1963) allows us to
relate the J-coupling to the torsion angle ϕ through:

J(ϕ) = A cos2(ϕ+D) +B cos(ϕ+D) + C (2.12)

To complete the forward model, we assume for the sake of simplicity that A,B,C
and D are known. The resulting function is not injective, as shown in Figure 2.6a.
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Figure 2.6. In Figure 2.6a, we show the Karplus curve for our example measurement
as given in Equation 2.12. The measured values J(ϕ) is indicated by a dashed cyan
line. The correct angle is indicated by a red dashed line (ϕ = −91.36°). The structure
of our toy example is shown in 2.6b. 2.6c shows the likelihood resulting from a scalar
coupling measurement in grey and the combined prior in red. 2.6d shows the posterior
probability (i.e. the product of the likelihood and the prior) in black.
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If we assume a measurement of J(ϕ) = 10.0Hz generated by the true angle
ϕ = −91.36°, there are two exact solutions: ϕ = −91.36° and ϕ = −28.64°. If
we also take a Gaussian distributed error of the measurement into account, we
can compute the likelihood function depicted in Figure 2.6c. The likelihood func-
tion features three modes: two at the locations of the exact solutions and a third
at lower probability for which J could not be exactly reproduced. In the absence
of additional information, we cannot resolve the ambiguity. This information is en-
coded in a physical force field that is the base for the prior distribution shown in
Figure 2.6c. In the prior distribution, the angles leading to steric clashes are now
masked out. Hence, in the posterior, the product of prior and likelihood, the only
regions to remain are those where both distributions show significant probability
mass (see Figure 2.6d). Moreover, the resulting posterior has only one mode at
the true solution.

On paper, it seems relatively straightforward to write down the posterior distribu-
tion. But in practice, exploring the posterior distribution can easily become the real
problem. For the one-dimensional example, it is still possible to enumerate all val-
ues of the posterior, however in the case of more than a few variables enumeration
is infeasible.

ISD employs an elaborate sample scheme Habeck et al. (2005a) to draw infer-
ence from the posterior. Sampling offers several advantages over minimization, as
it gives estimates on the uncertainty of the inference results. Furthermore, many
quantities of interest are defined as high-dimensional integrals and sampling, if
done correctly, can provide a good approximation of these integrals. Still, sampling
is no silver bullet. Many algorithms are quickly trapped in local modes and will only
explore a very small part of solution space. To overcome this problem, ISD uses
Replica Exchange Monte Carlo (REMC) sampling Swendsen and Wang (1986).
The concept of REMC borrows from statistical physics and expands simulated an-
nealing Kirkpatrick et al. (1983). Multiple copies of the system, which are called
replicas, are sampled in parallel. These systems do not interact and are simulated
at different temperatures of a temperature ladder. Higher temperatures flatten the
probability distribution from which samples are generated. States are exchanged
between neighbouring replicas according to the Metropolis criterion Metropolis et al.
(1957). This mechanism prevents states from being trapped in local modes, as they
are always able to diffuse to higher temperature.

ISD uses a variation of this method, that involves two temperature-like para-
meters controlling the shape of the prior and likelihood independently. While the
likelihood is scaled by a temperature, a Tsallis transform Tsallis (1988) is used for
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the prior. The Tsallis ensemble is controlled by a parameter q > 1 and its energy is
given by

Eq(x) =
q

β (q − 1)
log
{

1 + β (q − 1) (E(x)− Emin)
}

+ Emin (2.13)

where Emin ≤ E(x) must hold for all configurations x. For q = 1 it holds Eq=1(x) =

E(x). The transform becomes smoother for q > 1, which enhances sampling and
facilitates the crossing of energy barriers.

For local sampling within a replica hybrid Monte Carlo (HMC) sampling Duane
et al. (1987) is used. This is an adaptation of the well known Metropolis–Hastings
algorithm, where new states are not generated by random sampling but by a short
MD simulation. So far, ISD has been successfully employed in a wide range of
structure determination projects. Besides structure calculations from NMR data,
applications include the combination of of NMR and X-ray data(Bayrhuber et al.,
2008; Honndorf et al., 2012), and the solution of structures from solid state NMR
(Shahid et al., 2012).
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3
Predicting secondary structure from

chemical shifts

First, we try to extract structural information from chemical shifts. Assigned chem-
ical shifts are available relatively easily and early on in the NMR structure elucid-
ation process. Hence, any information gained at this stage will benefit all further
steps of structure elucidation. In the best case, the structural information is suffi-
cient to determine the structure themselves.

In the following, we introduce and evaluate the methods that we have developed.
Parts of this chapter have been published in Mechelke and Habeck (2013b).

3.1 Introduction

In Chapter 2.2 we introduced protein chemical shifts and explained that they de-
pend not only on the nucleus itself, but also its immediate surrounding. So, why
not use this subtle information about the local chemical environment of nuclear
spins to draw first inferences about the protein structure in question? One of the
problems is that the relationship between the three-dimensional structure and the
local shift information is very complex. Despite the obvious problems, there has
been growing interest in the recent years to access this information and utilize it for
biomolecular structure determination (Case, 1998; Wishart and Case, 2001). The
recent progress by Cavalli et al. (2007); Shen et al. (2008) in combining chemical
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shifts with protein structure prediction programs shows that it is possible to obtain
structures in atomic detail from chemical shift information alone.

The prediction of secondary structures is a simpler, but still a worthwhile task.
The connection between secondary structure and chemical shifts has been known
for a long time (Markley et al., 1967; Williamson and Madison, 1990; Pastore
and Saudek, 1990; Wang and Donald, 2004). Secondary structure elements are
defined by a characteristic hydrogen-bonding pattern and geometry (see Chapter
2.1). These regular patterns have a notable influence on the chemical shifts that
can be detected. This correlation is used at all stages of NMR analysis including
chemical shift assignment and structure calculation. The direct application is com-
plicated as it is theoretically involved and computationally demanding to describe
the connection between shifts and secondary structure on a fundamental physical
level. Therefore, empirical computational methods have been proposed that aim
to quantify this correlation and exploit it to predict secondary structure from mainly
backbone chemical shifts (for a recent review see Mielke et al.(Mielke and Krishnan,
2009)).

Over the past years, the use of chemical shifts to predict secondary structure
elements has been the subject of many studies. The first technique to employ
chemical shifts to predict secondary structure was the chemical shift index (CSI)
(Wishart and Sykes, 1994). CSI uses the deviation of the secondary chemical shift,
a normalized transformation of the chemical shift, as an indicator for secondary
structure. CSI is easy to implement and performs well despite its simplicity. Wang
and Jardetzky (2002) introduced a probabilistic approach, probability-based sec-
ondary structure identification (PSSI). This method relies on univariate Gaussian
distributions to approximate the distribution of chemical shifts for a given amino
acid and secondary structure. The posterior probability for a particular secondary
structure assignment is computed as the combination of the probabilities of several
nuclei. The predictions are smoothed to arrive at more ’protein-like’ predictions us-
ing a five-residue window. PLATON Labudde et al. (2003) uses a homology-based
approach to predict secondary structure and compares the observed chemical shift
patterns with those of a reference database. The retrieved reference patterns are
then used to calculate probabilities for the secondary structure classes.

PsiCSI (Hung and Samudrala, 2003) uses the combination of an extended ver-
sion of CSI and PsiPred (Jones, 1999), a homology-based secondary structure
prediction algorithm. The final prediction of PsiCSI is generated by a neural net-
work that uses the output of CSI and PsiPred as input. PECAN (Eghbalnia et al.,
2005) combines sequence information and residue-specific statistical potentials to
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yield energetic secondary structure scores. The approach by (Wang et al., 2007a),
which is called 2DCSi, clusters all possible pairs of chemical shifts and secondary
structure elements from a database and applies a nearest-neighbour classifier to
derive the predictions. The scores of all possible chemical shift pairs are combined
into a final prediction. Two very successful programs are TALOS (Cornilescu et al.,
1999) and TALOS+ (Shen et al., 2009). These use a homology-based search to
predict primarily dihedral angles from chemical shifts but also provide secondary
structure predictions. The method DANGLE (Cheung et al., 2010) is a probabilistic
homology search that also provides secondary structure predictions. Among the
above-mentioned methods, PsiCSI and DANGLE seem to be the most accurate
methods (Cheung et al., 2010) with prediction accuracies of more than 80%. Most
of the recent methods use neural networks or complex statistical learning methods,
which involve many parameters that are difficult to interpret and that obscure the
relationship between secondary structure and chemical shift. Too often biologists
and biophysicists consider only the output behavior of a complex algorithm, treat-
ing it like a "black box". But what is inside the box is equally important. In this
chapter, we are interested in simple and transparent probabilistic models that cap-
ture the connection between secondary structure and protein chemical shifts. Our
approach is based on hidden Markov models (HMMs) with continuous emission
probabilities for the chemical shifts of CA, HA, C, CB, and N nuclei. The HMM
architecture accounts for the sequential nature of a protein’s secondary structure.
Multivariate Gaussian probability distributions model the observed chemical shifts
and their distribution for particular amino acids and secondary structures. This ap-
proach has several advantages over existing methods: (i) it is highly accurate and
competitive with leading methods such as DANGLE, TALOS+ and PsiCSI; (ii) it
provides probabilistic output, i.e. a full distribution over secondary structure states;
(iii) it can deal with missing data; (iv) it can incorporate predictions by PSIPred or
other background information.

3.2 Generative model for chemical shifts

We employ a generative model to relate secondary structure and chemical shifts.
In contrast to a discriminative model, a generative model entails a description of
how the observed data was generated from the hidden labels. Furthermore, gener-
ative models can more easily deal with missing data and need fewer training data
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to reach their asymptotic error rate (Jordan and Ng, 2002). We chose an HMM to
explain the sequential data. An HMM needs two components: first an output distri-
bution that models the probability of observing the data conditioned on the hidden
states and second, a distribution to model the transitions between the hidden states.
The hidden states, our objects of interest, are the secondary structure types (helix
(H), extended (E) and coil (C)). This allows us to state a posterior probability distri-
bution over the hidden states and search for the most probable sequence of hidden
states or sample from the distribution of hidden states.

To model the chemical shift distributions, we use continuous multivariate prob-
ability distributions p(x|a, s) that describe the simultaneous measurement of C, CA,
CB, HA, N shifts stored in the five-dimensional vector x conditioned on a given
amino acid a and secondary structure s. Often, signal overlap and/or considerable
missing resonance assignments lead to incomplete chemical shift measurements.
These missing values can be dealt with by analytically integrating out unobserved
chemical shifts. Thus, we can analytically derive partial chemical shift distributions
for patterns of missing measurements and eliminate the need to estimate chemical
shift distributions for all possible patterns.

The distributions p(x|a, s) can be combined with prior distributions for amino
acids p(a|s) to obtain joint probabilities for the co-occurrence of x and a, given
s: p(x, a|s) = p(x|a, s) p(a|s). The propensities p(a|s) are estimated by counting
co-occurrences of amino acids and secondary structure types in the PDBSelect25
(Griep and Hobohm, 2010).

We consider a multivariate Gaussian (MG) distribution to model the emission
of chemical shifts x p(x|a, s). The probability density function of a multivariate
Gaussian distribution for a d-dimensional measurement x is given by

p(x|µ,Σ) =
1

(2π)
d

2 |Σ| 12
exp

{
−1

2
(x− µ)′Σ−1(x− µ)

}
(3.1)

where µ is a five-dimensional mean vector and Σ the covariance matrix quantifying
correlations between the chemical shifts of different nuclei. We choose a Gaussian
because quantities that are subject to a large number of additive and independent
effects follow a Gaussian distribution. Even for data that are not strictly Gaussian,
a Gaussian distribution can provide a reasonably good approximation. Moreover,
Gaussian distributions allow for an analytical calculation of marginal distributions
that is valuable when dealing with missing measurements. The parameters µ and
Σ are estimated by maximum likelihood. Essentially, µ and Σ are the sample mean
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3.2 Generative model for chemical shifts

shifts and covariances. We explore the importance of correlation between nuclei
by comparing different correlated and uncorrelated Gaussians. We use the symbol
“UG” to denote an uncorrelated Gaussian distribution, in which set all covariances
to zero (Σij = 0 for i 6= j). This representation is equivalent to modeling the shift of
each nucleus with a univariate Gaussian. We denote the model with full covariance
matrix MG or multivariate Gaussian. UG comprises 10 free parameters that need
to be estimated, while MG has 20 parameters.

For estimation of the Gaussian distributions, we extracted the experimental
chemical shifts from the VASCO database (Rieping and Vranken, 2010), a curated
database of chemical shifts referenced with regard to their three dimensional struc-
ture. The corresponding secondary structure states were assigned using DSSP
(Kabsch and Sander, 1983), which classifies residues into eight secondary struc-
tures classes: α helix (H), π helix (I), 310 helix (G), β sheet (E), β bridge (B),
hydrogen-bonded turn (T), bend (S) and loops. We group these types into three
larger states and map H, I, G to helix (H), E and B to extended (E), and all other
states to coil (C). We filter the chemical shifts before the estimation of the chemical
shift distributions and use only residues with measurements for all nuclei(C, CA,
CB, HA, N). Chemical shifts flagged as outliers by VASCO were removed. Table
3.1 provides a detailed list of the number of training examples broken down into the
amino acid and secondary structure states.

Table 3.1. Number of training examples broken down into amino acid and secondary
structure state.

AA H E C AA H E C

ALA 3675 1405 3254 LEU 4395 2829 3441
ARG 2030 1319 2387 LYS 3158 1671 3877
ASN 1234 616 2902 MET 887 505 856
ASP 1821 842 4364 PHE 1524 1640 1448
CYS 455 595 1006 PRO 552 424 3264
GLN 1985 840 2004 SER 1743 1260 3975
GLU 4005 1703 3885 THR 1323 1893 3114
GLY 872 955 5992 TRP 458 495 460
HIS 772 567 1163 TYR 1066 1376 1203
ILE 2236 2591 1880 VAL 2200 3856 2597
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3 Predicting secondary structure from chemical shifts
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Figure 3.1. Normalized AIC values for chemical shift distributions fitted with univariate
and multivariate Gaussian distributions and the MNIG distributions.

We estimated univariate and multivariate Gaussian distributions conditioned on
secondary structure and amino acid type by maximum likelihood. To evaluate the
quality of the emission probabilities, we applied Akaike’s information criterion (AIC)
(Akaike, 1974). The AIC is used for model selection, to balance the goodness-of-
fit and complexity of the model. A lower AIC value, indicates a favourable model.
We computed AIC values for the estimated univariate and multivariate Gaussian
distributions (Figure 3.1). In all cases, the multivariate Gaussian model achieves a
lower AIC than does the univariate model, which is not flexible enough to model the
correlated chemical shift distributions accurately. Examples of the estimated mul-
tivariate Gaussian distributions are shown in Figure 3.2. The AIC values and visual
inspection indicate that the distributions of sheet and coil shifts are not Gaussian
but often skewed and heavy-tailed.

3.3 Hidden Markov models

The distributions that we have estimated do not capture the sequential nature of
proteins and assume that neighbouring shifts are unrelated. In practice, this as-
sumption does not hold (Wang et al., 2007b). For example, sheets and helices
occur in segments joined by stretches of unstructured coiled regions and loops. To
model these sequential correlations, we use a hidden Markov model (HMM) (Ra-
biner, 1989) to introduce dependencies between adjacent amino acids. An HMM
is a probabilistic model, which assumes that a sequence of unobserved hidden
states generated the observations. HMMs are a special case of Markov random
fields (MRF), which have been applied before in both computational structural bio-
logy and in algorithms for biomolecular NMR (Zeng et al., 2011; Donald, 2011).

30
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Figure 3.2. Chemical shift distributions for Alanine. Both panels show the observed
CA and CB chemical shifts for the three secondary structure classes (H black, E red
and C blue) as well as the fitted multivariate Gaussian (upper panel) and univariate
Gaussian (lower panel) densities as contour lines.
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3 Predicting secondary structure from chemical shifts

Figure 3.3. Architecture of the first- and the second-order HMM. A: Architecture of
the first-order HMM. This is a fully connected model in which all transitions are possible.
Every node emits chemical shifts conditioned on its secondary structure state and
amino acid type. B: Architecture of the second-order HMM. We use a first order HMM
with composite states to mimic the behaviour of a second-order HMM. Every node is
labelled by the last and current state. Transitions are possible only if the current state of
a node is the last state of the next node.

The hidden states are generated by a Markov process. In an Lth-order Markov
process, the probability of the next hidden state depends only on the L last states.

In our specific application, we model the secondary structure types (H, E, C)
as hidden states, which generated chemical shifts and amino acids with probability
p(x, a|s). We use continuous multivariate Gaussians (Equation 3.1) as emission
probabilities of the chemical shifts and discrete propensities p(a|s) for the amino
acids. Thus, the joint probability of a sequence of secondary structure elements
{s1, . . . , sN} can be written as:

p({(xi, ai, si)}) =
∏
i

p(xi|ai, si) p(ai|si) p(si|si−1, . . . , si−L) (3.2)

where p(si|si−1, . . . , si−L) are the transition probabilities of the Markov chain. The
architectures of the first- and the second-order HMM for secondary structure pre-
diction are shown in Figure 3.3.

As we can assign the hidden states for the proteins in our training set, we do not
need to use unsupervised training (Rabiner, 1989) and can estimate the emission
and transition probabilities independently. We estimate the transition probabilities
between the hidden states from PDBselect25 (Griep and Hobohm, 2010) by count-
ing all secondary structure transitions in that database.

Many published methods for secondary structure prediction from chemical
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3.4 Incorporation of PsiPred predictions

shifts use stretches of up to five consecutive residues to make predictions for the
central residue. This motivated us to use a second-order HMM, whose transition
probabilities depend on the last two states. A second-order HMM offers a more pre-
cise model of the transitions between secondary structure state. We mapped the
second-order to a first-order architecture by introducing composite states, which al-
lows us to use the same algorithm irrespective of the order of the HMM. Again, the
transition probabilities of the second order HMM are extracted from PDBselect25,
thereby completing the HMM.

To infer the hidden states from chemical shifts, i.e. the unknown sequence of
secondary structure types, we consider two options. The first option is the max-
imum a posteriori (MAP) estimate, which chooses a secondary structure sequence
maximizing the joint probability (Equation 3.2) for given chemical shifts and amino
acid sequence. The MAP sequence is obtained using the Viterbi algorithm (Ra-
biner, 1989). An alternative approach is to calculate the marginal probability of
observing secondary structure si at position i:

p(si|{xi, ai}) =

∑
s1,...,si−1,si+1,...,sN

p({(xi, ai, si)})∑
s1,...,sN

p({(xi, ai, si)})
(3.3)

We use the forward-backward (FB) algorithm (Rabiner, 1989) to calculate the mar-
ginal posterior probabilities (Equation 3.3).

3.4 Incorporation of PsiPred predictions

The use of evolutionary information, is available in the form of sequence pro-
files, has a long history in secondary structure prediction. A popular method is
PsiPred (Jones, 1999), which as an intermediate step predicts secondary struc-
ture propensities ψ. To combine the output of PsiPred with chemical shifts, we
treat the PsiPred propensities for each residue as uncertain observations.

We describe the probabilities p(ψ|s, a) through a Dirichlet distribution that is
estimated by maximum likelihood from a database of known structures The condi-
tional distribution of observing the predicted secondary structure score vector ψ is
given by

p(ψ|a, s) =

∏3
i=1 Γ(αi(a, s))

Γ
(∑3

i=1 αi(a, s)
) 3∏
i=1

ψ
αi(a,s)−1
i (3.4)
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3 Predicting secondary structure from chemical shifts

with parameters αi(a, s) measuring the uncertainty of the PsiPred prediction. Since
closed form maximum likelihood estimates for αi(a, s) are not known, we use a
fixed-point iteration method (Minka, 2000) to learn αi(a, s) for all sixty combinations
of amino acid and secondary structure.

3.5 Secondary structure prediction

We tested our HMMs by performing a 10-fold cross-validation on the VASCO data-
base. The accuracy of our prediction is assessed by the Q3-score, which is defined
as the percentage of correctly predicted secondary structure across all residues of
a protein. To gain insights into which aspects contribute most to the prediction
performance, we tested various models of varying complexity. The prediction per-
formance is shown in Table 3.2.

The conceptually simplest model neglects the correlations between chemical
shifts of different nuclei and neighbouring positions in sequence. Despite these sim-
plifications, the model predicts 72.5% of secondary structures found in the VASCO
database correctly. This confirms that chemical shifts by themselves are a good
predictor of secondary structure. In the next step, we impose sequential correl-
ations and use first- and second-order HMMs. We can use two inference meth-
ods in the context of the HMM. First, the Viterbi algorithm provides the maximum
likelihood solution. Second, the FB algorithm optimizes the marginal likelihood
(Equation3.3). The first-order HMM, independent of the type of inference, predicts
approximately 80% of all residues correctly. The second-order HMM does not im-
prove the accuracy further. It seems that the boundary regions between secondary
structure elements, which should be improved by the second order HMM, are not
important for the prediction accuracy. The boundaries between secondary struc-
tures are, as previously noted by Rost and O’Donoghue (1997), difficult to define
and often ambiguous. For this reason, we did not consider the use of a higher-order
HMM.

The multivariate Gaussian distribution with a full covariance matrix provides a
better approximation of the chemical shift distributions. It achieves a prediction
accuracy of 74.7% if sequential correlations (L = 0) are ignored and rises above
82% if the multivariate Gaussians are embedded in a first- or second-order HMM.

The influence of the inference algorithm is small, although the marginal decod-
ing of the first-order HMMs using the forward-backward algorithm leads to a minor
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3.5 Secondary structure prediction

Table 3.2. Summary of secondary structure predictions on the VASCO database using
10-fold cross-validation. The table shows the prediction accuracies (in percentages)
obtained with 10-fold cross-validation as measured by Q3-score and SOV for all emis-
sion probabilities, all HMM architectures (order L = 0, 1, 2) and both inference methods
(MAP using the Viterbi algorithm and the forward-backward algorithm, FB). The abbrevi-
ations, UG and MG denote uncorrelated univariate Gaussian emissions and correlated
multivariate Gaussian emissions, respectively. We ran DANGLE and TALOS+ on the
same data set. Columns headed by H, E, and C report the Q3-score for individual
secondary structure types. The overall Q3-score is listed in the “All” column.

Order Emission
Method H E C All SOV

L p(x|a, s)

0 UG MAP 83.9 75.5 63.2 72.5 58.8
1 UG MAP 86.0 79.1 75.2 79.5 74.4
1 UG FB 85.9 76.1 78.1 80.1 74.7
2 UG MAP 86.1 80.1 74.8 79.1 74.1

0 MG MAP 84.7 77.7 66.3 74.7 61.4
1 MG MAP 86.0 78.7 80.6 81.6 77.8
1 MG FB 86.4 75.1 84.1 82.3 79.3
2 MG MAP 86.1 80.3 80.0 81.9 78.8

1 PsiPred only FB 72.6 77.9 80.0 76.9 69.2
1 MG + PsiPred MAP 82.2 81.7 85.8 83.7 81.1
1 MG + PsiPred FB 82.2 78.8 87.9 84.0 81.5
2 MG + PsiPred MAP 83.0 82.8 85.2 83.9 82.0

DANGLE 90.9 75.7 77.2 80.7 72.8

TALOS+ 79.3 71.1 83.4 78.5 68.1

PsiPRED 82.9 77.2 81.3 80.5 77.6

improvement in Q3-score to 80.1% and 82.3% for univariate and multivariate Gaus-
sian emissions, respectively. In the case of the second-order models, where some
transitions are not allowed, the marginal decoding does not necessarily generate
a valid path through the graphical model. Thus, we do not use decoding for the
second-order HMMs.

Although the Q3-score score has a long tradition in secondary structure pre-
diction, it suffers from several shortcomings (Zemla et al., 1999). The Q3-score
only reports the average per-residue accuracy and does not take the segmentation

35



3 Predicting secondary structure from chemical shifts

of the sequence into account. A high Q3-score can be misleading, because it is
biologically more relevant to predict the correct number of secondary structure seg-
ments. This problem is addressed by the segment overlap (SOV) score, which has
been developed to provide a more realistic assessment of the prediction accuracy
by focusing on the correct prediction of secondary structure segments.

Table 3.2 reports average SOV scores for our models. In the absence of se-
quential correlations, we achieve an SOV of roughly 60%. The introduction of first-
order correlations leads to an increase in SOV to 79.3%, thereby confirming the
previous observations regarding the importance of sequential correlations. As we
already observed for the Q3-score, the additional higher-order sequential correla-
tions have no effect on the SOV score. The prediction accuracy differs between
secondary structure elements, while all methods are able to predict helices reliably
they struggle when it comes to sheets and coils. This observation is supported by
confusion matrices (see Table 3.3); most misclassifications are between sheet and
coil. To some extent, this can be ameliorated by including sequential correlations
through HMMs.

The distribution of Q3-score accuracy values for the entire VASCO database is
shown in Figure 3.5 and it clearly highlights that an HMM leads to more accurate
predictions.

3.6 Detection of residual secondary structure

We analysed the results in detail and found that some of the less accurate predic-
tions stem from structures that, according to DSSP, are largely unstructured ,while
our method clearly predicts regions of ordered secondary structure. It is not un-
common for disordered regions in proteins to exhibit residual secondary structure
that can be implicated in molecular recognition. Based on the three examples stud-
ied by (Camilloni et al., 2012), we demonstrate that our HMM can detect weak
secondary structure elements on the basis of chemical shifts. The predictions are
presented in Figure 3.4.

The HMM prediction for the C-terminal domain of the sendai virus nucleopro-
tein comprises an α-helical region (Figure 3.4(a)) that is consistent with the ex-
perimental finding of a transient α-helical element with a core between residues
479–484 (Jensen et al., 2008). The C-terminus of the TFIIF-associating CTD
phosphatase exhibits a 16-residue-long helical region that forms upon binding.
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3.7 Influence of individual chemical shifts on the prediction accuracy

Figure 3.4. Detection of residual secondary structure. Secondary structure prob-
abilities calculated using the forward-backward algorithm for (a) C-terminal domain of
the sendai virus nucleoprotein (brmb 15123). (b) C-terminus of the TFIIF-associating
CTD phosphatase (brmb 16296). (c) N-terminal region of p53 (brmb 17760).

Lawrence et al. (Lawrence et al., 2011) show that even in the disordered state,
residues 945–955 form a nascent α-helical structure. Our HMM detects a strong
α-helical signal in the same region (Figure 3.4(b)). The terminal domain of p53 con-
tains a nascent helical turn between residues 18–25 (Wells et al., 2008) for which
we observe a weak helix signal (Figure 3.4(c)).

3.7 Influence of individual chemical shifts on the prediction ac-

curacy

For experimental reasons, chemical shifts are often incomplete. We test the influ-
ence of incomplete observations by systematically removing measurements. To
this end, we extracted proteins with more than 90% complete measurements from
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3 Predicting secondary structure from chemical shifts

the VASCO database. This resulted in 1,121 proteins comprising 123,327 residues,
from which we systematically removed selected nuclei and predicted the second-
ary structure using a first-order HMM with multivariate Gaussian emissions and
Viterbi decoding. The results are presented in Table 3.4 (for the complete results,
see Table A.1 of the Appendix).

For the complete set of chemical shifts, we achieve a prediction accuracy of
84.8%, which is close to the theoretical limit of the secondary structure prediction
accuracy of 88 − 90% (Rost, 2001). The systematic absence of a single chemical
shift causes a small drop in prediction accuracy that ranges from 0.6% for missing
C or CB shifts to 1.1% for missing CA or HA shifts. The accuracy of a single meas-
ured shift per residue depends largely on the nucleus and ranges between 80.1%
for CA and 67.6% for N only, rendering the N shift the least informative. The HMM is
not intended to work only on sequences, resulting in an accuracy of 49.5%, which
is just slightly above chance. We reran the same analysis with correlated Gaussi-
ans as the model for chemical shifts, excluding sequential correlations and amino
acid preferences p(a|s). The results are shown in Table 3.4 (for the complete res-
ults, see Table A.1 of the Appendix). This analysis provides further support for
our previous finding that the CA shifts are the most informative, while the N shifts
are the least informative (Cheung et al., 2010). Moreover, the gain though the use
of sequential information depends on the completeness and ranges from 5.% for
complete measurements to 10.% for residues with only a single observed nuclei.

3.8 Incorporation of evolutionary information

Secondary structure prediction from sequences and multiple alignments is a long-
standing problem in bioinformatics that has benefited from the inclusion of evol-
utionary information (Rost and Sander, 1993). To capture the evolutionary pref-
erence of a protein for secondary structures, we incorporate the predictions of
PsiPred as a Dirichlet distribution conditioned on the secondary structure as addi-
tional emissions in our HMM. Thereby, we achieve a Q3-score of up to 84% and a
SOV score of up to 82%. Again, there is no benefit of using a second-order HMM.
It should be noted that our HMM requires chemical shifts and that the prediction
accuracy drops below that of PsiPred if no shifts are provided.
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3.9 Comparison with other secondary structure prediction methods
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Figure 3.5. Impact of evolutionary information on the prediction accuracy. The
left panel shows the accuracy as measured by Q3-score; the right panel shows SOV.
The grey histogram represents the FB-HMM with shift information only. The black line
indicates the improvement when using the PsiPred output as additional information.

3.9 Comparison with other secondary structure prediction

methods

To compare our results with other approaches, we made predictions for the VASCO
database using DANGLE (Cheung et al., 2010) and Talos+, both of which are
based on fragments. Since the fragment libraries are relatively small, we ignore
that some VASCO entries will also contribute to the fragment libraries and com-
pare the results directly to the cross-validated results obtained with our HMMs.

The methods differ most in SOV. Our first- and second-order HMMs achieve
a significantly higher average SOV than do DANGLE and Talos+ (see Table 3.2).
The higher accuracy can be traced to smoothing through the sequential correlation
of the HMM. The difference in Q3-score is less pronounced, for which DANGLE
achieves an accuracy of 80%. In summary, correlations between neighbouring
secondary structure states introduced by the HMM help to remove local artefacts
and increase the accuracy compared to existing methods.
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3 Predicting secondary structure from chemical shifts

3.10 Analysis of prediction errors

The combination of chemical shift and evolutionary information leads a prediction
accuracy of 84%. Although a promising result, it does not reach the theoretical
upper limit of 90% as proposed by Rost and O’Donoghue (1997).

Table 3.3. Confusion matrices obtained with multivariate Gaussian emissions using a
zero- and first- order HMM. Each row specifies the predicted secondary structure class
and each column the actual class.

0th order HMM 1st order HMM
Actual H E C H E C

Inferred
H 65274 1242 16801 66678 160 8682

E 1292 43895 21545 167 44441 13536

C 10616 11314 76286 10337 11850 92414

Total: 77182 56451 114632 77182 56451 114632

With this result in mind, we set out to analyze the prediction errors. The bound-
ary of secondary structure elements, which often cannot be defined unambiguously,
is an obvious source of errors. To analyse this further, we excluded the residue pre-
ceding and following a change in secondary structure in the calculation of Q3-score.
If we include the PsiPred prediction in the inference we obtain an accuracy of 91.4%

excluding the boundary regions. For the same regions, we still achieve a Q3-score
of 89.6% based on chemical shifts alone. Thus, a large number of prediction er-
rors can be traced to the boundaries of secondary structures, where it is difficult to
assign exact secondary structures.

Another source of errors are the DSSP assignments themselves. An example
for which the DSSP assignment is misleading, is the budworm anti-freeze pro-
tein (PDB code 1N4I). Although the solution structure of this protein has a clearly
defined beta-helix fold as shown in Figure 3.6, only four, very short strands out of
the 10 present are found by DSSP. This discrepancy is also reflected in the pre-
dictions from the chemical shifts; the percentage of correctly predicted secondary
structure depends on the assignments and ranges from 47.7% (DSSP assignment)
to 80% (author assignment). For the same structure, there exists a crystal struc-
ture. The secondary structures predicted from chemical shifts agree in 84.7% of
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3.11 Prediction of ϕ/ψ angles from chemical shifts

Figure 3.6. Comparison of assigned and predicted secondary structure. The left
panel shows our secondary structure prediction as well as DSSP and author secondary
structure assignments for budworm anti-freeze protein. The upper part of the left panel
presents the marginal probabilities of the three secondary structure classes shown as
stacked bars. The right panel is a cartoon representation of the NMR solution structure
1N4I.

residues, again showing that our approach is able to capture some of the second-
ary structure that DSSP fails to detect.

3.11 Prediction of ϕ/ψ angles from chemical shifts

We have so far demonstrated that we are able to extract secondary structure inform-
ation from chemical shifts. Previous studies Cornilescu et al. (1999) have shown
that it is also possible to predict dihedral angles from chemical shifts reliably. But
expanding the existing hidden Markov models to predict dihedral angles poses sev-
eral problems. Instead of the discrete secondary structure categories, the hidden
states would be two continuous, angular variables. The inference in an HHMM
with continuous hidden variables is intractable, except in the special case of Gaus-
sian distributed states (Roweis and Ghahramani, 1999; Bishop, 1995). Even more
severe, is the lack of a distribution that would allow us to model the five-dimensional
chemical shifts conditioned on two angular variables.

To ameliorate these problems, we decided to use the probabilistic representa-
tion of the backbone angles put forward by Boomsma et al. (2008), and termed
TorusDBN. Boomsma et al. represent local protein structure as a Markov model.
The statistical model comprises 55 states that capture the local protein structure.
Each state is associated with a distinct emission distribution over dihedral angles,
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3 Predicting secondary structure from chemical shifts

Table 3.4. Impact of incomplete chemical shift assignments on the prediction accuracy.
In this experiment, we investigated the effect of incomplete chemical shift assignments
on a subset of VASCO. We report in the leftmost column the observed chemical shift(s).
The right columns show the result for a first order HMM using multivariate Gaussian
emissions and Viterbi decoding. The left columns report Q3-score when using only the
conditional emission probabilities p(x|a, s) thereby neglecting sequential correlations
and amino acid preferences. Each residue is classified by assigning the secondary
structure state that maximizes p(x|a, s). Only proteins with more than 90% chemical
shift completeness were used for testing.

emission only first order HMM
Observed H E C All H E C All

C 76.5 65.4 63.6 67.6 84.2 65.5 77.4 76.9
N 62.8 50.2 52.7 54.9 85.6 57.8 61.9 67.6
CA 83.4 68.5 61.7 68.7 85.4 68.9 81.5 80.1
CB 78.7 67.2 41.3 58.3 84.8 73.0 66.1 73.3
HA 80.3 74.4 52.4 65.6 85.2 74.1 75.9 78.3
CA+CB 85.6 76.3 59.1 71.0 81.2 86.2 76.8 81.7
C+N+CA+CB+HA 88.0 83.6 68.7 79.1 88.6 84.2 82.1 84.8

amino acids and secondary structure. The states are connected by a transition
matrix. Boomsma et al. demonstrated that this model captures the local se-
quence–structure preferences of proteins.

Thus, we can use the discrete TorusDBN states instead of backbone angles and
use the mean torsion angles of each state as prediction. Now, instead of finding
the most likely backbone angles, we need to find the most likely TorusDBN state
given the observed chemical shift. To adapt our HMM to the new situation, we
estimate the chemical shift distribution conditioned on the TorusDBN state. A differ-
ence to the secondary structure distributions is that the new emission distributions
are no longer conditioned on the amino acid, because the TorusDBN states emit
an amino acid. This poses a problem as the value of the chemical shift depends
on the amino acid. To correct for the difference in chemical shift between amino
acids, we use secondary shifts to predict the TorusDBN states. Secondary shifts
are the differences between chemical shifts and their corresponding random coil
values. We use the training set from the previous application and assign to each
residue of the proteins within this set the corresponding TorusDBN state. Based
on this training, set we use the standard estimators for the Gaussian distribution
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3.11 Prediction of ϕ/ψ angles from chemical shifts

to infer p(X̄|t), where X̄ denotes the secondary shift and t one of the 55 Torus-
DBN states. In structure space, the states are well defined and share little overlap.
To check weather this is still true with respect to the chemical shifts, we show the
distance matrix based on the chemical shift distributions in Figure 3.7. As the dis-
tance measure between two probability distributions p(x), q(x) we use the Hellinger
distance H(p, q) given by

H2(p, q) = 1−
∫

dx
√
p(x)q(x). (3.5)

The Hellinger distance for two multivariate Gaussians with means µp,µq and cov-
ariance matrices Σp,Σq can be calculated analytically as

H2(p, q) = 1− |Σp|
1

4 |Σq|
1

4

|12Σp + 1
2Σq|

1

2

exp

{
−1

8
uT
(

1

2
Σp +

1

2
Σq

)−1

u

}
(3.6)

where u = µp−µq. The distance matrix in Figure 3.7 reveals three large blocks and
several smaller ones. The large blocks correspond to the three main secondary
structure states. The smaller blocks represent special amino acids, like proline
and glycine. The high similarity of some distributions suggests that the number
of states is not optimal and that some states, although different in structure, are
indistinguishable in their chemical shift profiles.

The transition matrix of our HMM is taken directly from TorusDBN. Testing of the
algorithm proceeded as before by tenfold cross-validation on the VASCO test-set.
A prediction was deemed correct if both angles where within 30.0◦ of those of the
reference structure, as proposed by Cornilescu et al. (1999). We compared both in-
ference algorithms, the Viterbi algorithm and the forward-backward algorithm. We
use TALOS+ as a reference, which is able to identify 61.0% of all angles correctly.
The results of the tests can be seen in Figure 3.8. Using the Viterbi algorithm,
we are able to predict 66.8% of all angles correctly. The Forward-Backward al-
gorithm achieves an accuracy of 62.4%. Although the HMM is an improvement over
TALOS+, we were still surprised by the low accuracy. This is particularly evident if
we compare our results with those published by Cornilescu et al. (1999) and Shen
et al. (2009). The distribution of the per protein accuracy is also striking, TALOS+
produces a large number of structures for which it is unableto predict any residue
correctly, but for the reminder it bests the HMM. One major difference between this
work and previous publications is that we do not exclude any residues from the
final assessment and restrict ourselves to highly resolved structures. Furthermore,
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Figure 3.7. Hellinger Distance matrix. The figure shows the distance matrix between
TorusDBN states clustered by their chemical shift emission distributions. The distance
matrix contains three blocks 1–13, 17–39 and 40–54 that correspond to helices, coil
regions and β sheets respectively.
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Figure 3.8. Comparison of dihedral angle prediction accuracy with TALOS. We
show histograms accumulated from the individual prediction accuracy per protein on
the VASCO test set. The panels 3.8a and 3.8b show the HMM based prediction based
on MAP and FB inference respectively, compared to the results of TALOS+. Panels
3.8c and 3.8d depict the results on those residues that are predicted to be reliable by
TALOS+.

TALOS+ does not report a secondary structure for all residues that were identified
as unreliable by the neural network. To exclude this as a possible source of bias,
we calculated the accuracy again, but excluded the unreliable residues. The results
on a per protein basis are shown in Figures 3.8c and 3.8d. The filtering done by
TALOS+ leads only to a very minor improvement of about 2% for all algorithms. FB,
MAP and TALOS now achieve an accuracy of 68.5%,64.0% and 62.7% respectively.
The exclusion did not abolish the peculiar failures in the predictions of TALOS+. A
more thorough inspection of the proteins in question reveals that they often miss a
large number of chemical shift measurements or feature long unstructured patches,
both of which lead to spurious matches in the TALOS+ database.
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3 Predicting secondary structure from chemical shifts

To conclude we can remark, that although the HMM performs better on aver-
age on our test set, TALOS+ remains the better choice for many reasonably well
behaved proteins. Moreover, the prediction of dihedral angles is not as successful
as the prediction of secondary structures. In particular, the large variance of the
dihedral angle prediction – we considered in our test a divergence of up to 30.0◦

as a correct prediction – makes the result unsuited for use in structure calcula-
tion, where small deviations in the dihedral angles can lead to large deviations in
atomic positions. One reason for the failure could be that a Gaussian is not flexible
enough to describe the chemical shift distributions of the TorusDBN states. It is
also uncertain, whether the TorusDBN states are an optimal representation of the
structure space, but again learning the hidden states in an unsupervised fashion is
computationally not feasible.

3.12 Conclusions

We introduced probabilistic models for secondary structure prediction from protein
chemical shifts. Our model uses hidden Markov models with continuous emis-
sion probabilities to capture the connection between chemical shifts and secondary
structure. We fit multivariate Gaussian probability densities to experimental chem-
ical shifts of five nuclei (C, CA, CB, HA and N). Benchmark calculations show that
first- and second-order HMMs achieve prediction accuracies of up to 82.3% and
are competitive with current state of the art. Our findings suggest that higher-order
sequential correlations are not able to improve the prediction accuracy substan-
tially. The addition of evolutionary information can lead to an accuracy of up to
84.0%. This level of accuracy is on par with more complex approaches that tend
to obscure the relationship between chemical shifts and secondary structure. Oc-
cam’s razor, which states that we should prefer the more elegant, algorithmically
parsimonious solution if it can describe the observations equally well, argues in
favour of our approach, where the chemical shift of a nucleus depends on the sec-
ondary structure of that residue and the secondary structure only depends on the
preceding one.

Our probabilistic formulation allows us to deal with missing chemical shift meas-
urements gracefully by integration over the unobserved variables, which results in
a distribution for the observed pattern of chemical shifts.

Another consequence of using an HMM is that we can calculate the probability
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of each secondary structure for every residue. This full distribution over the second-
ary structure states provides us with a more realistic view of the dynamic nature
of protein structures to the point where we are able to identify transient secondary
structure elements in disordered regions.

Furthermore, we used an HMM to predict dihedral angles, where we used dis-
crete states to model the torsion angles. Although the accuracy of our approach is
comparable to competing approaches, there is still room for improvement.

Future work will focus on learning chemical shift distributions that discriminate
better between secondary structure states and finding a more appropriate repres-
entation of dihedral angles. We will also focus of integrating the predicted second-
ary structure in the structure calculation process of ISD. Preliminary experiments
indicate that using secondary structure can lead to improvement in structure calcu-
lation.
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4
Weighting priors in Bayesian data

analysis

In this chapter, we return to the topic of structure calculation from NMR. All NMR
data are indirect measurements and, unlike X-ray densities, NMR data sets are
insufficient for determining the structure on their own. They need to be interpreted
in the light of an energy function to arrive at a set of three-dimensional structures.
The resulting ensemble should be compatible with the energy function as well as
with the observed data. But how do we know that the energy function is compat-
ible with the data? And how can we quantify and adjust the compatibility? In this
chapter, we will answer these questions within a Bayesian framework. To adjust the
compatibility, we assign a linear weight to the energy function that can be increased
if data and energy are compatible and decreased if not.

From a Bayesian point of view, each value of the weight can be seen as a
different hypothesis. Bayesian inference stipulates determining the weight of an
energy function based on the model evidence (see Chapter 2.3). This is challen-
ging because the model evidence, a ratio of two high-dimensional normalization
integrals, cannot be calculated analytically. All of the current approximations make
assumptions of the functional form of the underlying problem. Here, we outline
a replica-exchange Monte Carlo (REMC) scheme that allows us to estimate the
model evidence through use of multiple histogram reweighting for a general class
of data-analysis problems. The method is illustrated for examples in protein struc-
ture determination. The work presented here has been published in (Mechelke and
Habeck, 2012).
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4 Weighting priors in Bayesian data analysis

4.1 Introduction

Let us have a more formal look at the theoretical problem. Recall that ISD (see
Chapter 2.4) incorporates the energy function as Boltzmann prior, a trait shared
with many complex data analysis problems. The Boltzmann prior π(x|β) is defined
as:

π(x|β) =
1

Z(β)
e−βE(x) (4.1)

where microstate x is the parameter of interest (for example, a protein structure),
and E is an energy function that encodes our prior knowledge and guides the pre-
dictions towards plausible configurations. We assume, without loss of generality,
that the energy is always greater than zero (E > 0). Z(β) is the normalization con-
stant or partition function, and is used to ensure that π(x|β) is a proper probability
distribution (

∫
dxπ(x|β) = 1). The hyperparameter β ≥ 0 is reminiscent of the in-

verse temperature in physical systems. It describes the influence of π(x|β) on the
analysis and how strongly the degrees of freedom x are coupled. Even a Gaussian
prior with a known mean can be interpreted as a special case of a Boltzmann prior.
β than takes to role of the precision that controls the spread of the prior distribu-
tion. In ISD, the prior distribution is a simplified force field. Aside from ISD, prior
distributions of the above type occur often in image analysis, where Ising models
and Markov random fields are popular priors (Geman and Geman, 1984; Bishop,
1995).

In many data analysis problems, it is often unclear how much influence, con-
trolled by the weight or inverse temperature β, the prior probability should have. If
the system is at thermal equilibrium and the energy is an accurate description of the
entire system, then β = (kBT )−1, where kB is the Boltzmann constant and T the
system’s temperature. For protein structure determination, we would choose the
temperature at which the sample was measured. However, the temperature might
not always be known and not all force fields have a physical basis to choose the
hyperparameter β. Unless there is a physically justifiable reason to set β, Bayesian
reasoning dictates that we should treat it as a free parameter that is estimated from
the data. Hence, it should be to be chosen depending on the quality of the data,
the amount of data, and the type and size of the system.

An alternative view of β is that it is a regularization parameter controlling the
flexibility of the model (Bishop, 1995). By increasing β, we increase the rigidity of
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the model, which prevents overfitting of the data. Therefore, our Bayesian method
of choosing β can be viewed as a probabilistic approach for determining the optimal
strength of the regularizer in a consistent and data-driven way.

Such problems are encountered in many disciplines. For example, MacKay
(1992) has pointed out the need to estimate hyperparameters in the context of
Bayesian interpolation. To infer the strength of the prior he developed the “evidence
framework”. His framework relies on the assumption that the posterior distribution
can be approximated by a Gaussian distribution around the maximum a posteriori
estimate. But it also has a very severe shortcoming, as it is applies to only a very
specific set of prior distributions.

Besides from the general insights of MacKay this problem has received some
attention in the field of image analysis. So, we will proceed to review some of the
more important work in image restoration and reconstruction. Here many common
priors are intractable to the “evidence framework”. At the same time, wrong prior
assumptions and parameters can cause distortions (Li, 2009). A typical approach
is to chose β by visual inspection, trial and error, or in the best case, by cross-
validation (Johnson et al., 1991). Geman and McClure (Geman and McClure, 1987)
developed a Bayesian approach to determine β. They use an expectation maxim-
ization algorithm to determine β iteratively in image restoration problems. This
algorithm was later improved through the use of mean-field approximation (Pryce
and Bruce, 1995; Zhou et al., 1997). Inoue and Tanaka (2002) and, more recently,
Kiwata (2012) introduced methods that focus on temperature estimation for Ising
and Potts model priors. But what all these methods have in common, is that they
make some assumptions about the functional form of the prior and the likelihood
function. Unfortunately, none of these approaches are applicable in the context of
ISD.

We present in this chapter a general algorithm to select β that makes no as-
sumptions on the form of prior distribution, likelihood function or configuration
space. Another difference to existing approaches is that the method does not give
a point estimate of β. Rather, following Bayesian reasoning, it infers the full pos-
terior distribution of the hyperparameter. The full posterior allows us to characterize
the uncertainty in our estimate. We illustrate our method on different data analysis
problems. First, we make a short detour to image restoration, in order to demon-
strate that this method is universally applicable, before we return to the original
problem of protein structure determination.
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4.2 Methods

Inverse temperature calibration by maximization of the model evidence

Let us recall Chapter 2.3, where we introduced Bayesian statistics. In Bayesian
data analysis, the observed data D are interpreted by a likelihood function and
combined with the data-independent prior distribution (4.1) that captures our prior
knowledge. The likelihood function is a function of the configuration x, which we
denote by

L(x) = Pr(D|x) (4.2)

to simplify the notation. The likelihood is the probability of observing the data D
under the assumption that x is true. Bayes’ theorem (Equation 2.7) states, that we
can solve the inverse problem of estimating x from the observation D by multiply-
ing the prior probability π(x|β) and the likelihood function to obtain the posterior
probability:

Pr(x|β,D) =
1

Pr(D|β)
L(x)π(x|β). (4.3)

There is one caveat to this: the posterior Pr(x|β,D), on which we base our estim-
ate of x, assumes that we know the true value of the hyperparameter β. As pointed
out earlier, this assumption does not hold in many interesting application.

The model evidence or marginal likelihood (Equation 2.8), introduced in chapter
2.3 as

Pr(D|β) =

∫
L(x)π(x|β) dx, (4.4)

allows us to quantify the probability of the data for one particular value of β. An
optimal value of β will scale the prior distribution (4.1) in such a way that models
that are consistent with the observed data are more likely. We obtain the marginal
posterior probability distribution of β by multiplying the evidence by a prior probab-
ility for β. In the following, we assume β to be uniformly distributed between 0 and
a preset maximum βmax.

The idea of using the model evidence to estimate hyperparameters is well estab-
lished (Bishop, 1995). The real difficulty is the evaluation of the integral in Equation
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4.4. In the case large systems like proteins, it is impossible to evaluate the integral
directly. One of the main goals of this chapter is to arrive at a good approximation
of this integral. To this end, we first introduced the quantity:

cλ(β) =

∫
[L(x)]λ e−βE(x) dx. (4.5)

This allows us to express Pr(D|β) as Pr(D|β) = Pr(D,β)/Pr(β) = c1(β)/c0(β).
Now the model evidence is given as the ratio of two high-dimensional integrals,
which we later try to approximate. The nominator is the partition function of the
ensemble at a given temperature. This integral measures the probability mass of
the posterior. It is dominated by those configurations that are consistent with the
prior as well as with the likelihood. The denominator is the partition function of the
prior. Its volume increases with decreasing β. In the limit of β → 0, the volume of
c0(β) converges towards the total volume of the configuration space.

The behaviour of denominator and nominator becomes Occam’s razor and op-
timally balances the complexity against the power of the model. The value of the
nominator is highest when prior and data are consistent, emphasizing a small re-
gion of configurational space, while the denominator is low for prior models that are
focused on a small subspace of configurational space. Thus, they can be seen as
opposing forces that balance at an optimal β. The two integrals thus select a value
of β that does not suffer from overfitting, yet has an positive effect on the inference
process.

Still, the question of how we can evaluate the integrals, c1(β) and c0(β), re-
mains. A feasible approach is to sample from cλ(β) and approximate the marginal
likelihood from these samples. We use the ensemble for sampling

p(x|λ, β) =
1

cλ(β)
[L(x)]λ e−βE(x) (4.6)

where we have two inverse temperatures, one for the prior probability and another
for the data. If we set λ = 1, we obtain the posterior probability p(x|λ = 1, β) =

Pr(x|D,β). If we set λ = 0, we obtain the prior distribution p(x|λ = 0, β) = π(x|β).
Values of λ between zero and one allow us to smoothly bridge between the prior
and the posterior distribution.

We are interested in the β for which the model evidence Pr(D|β) is maximal.
Instead of working with the model evidence directly, we take its logarithm, calculate
the derivative and set it to zero:
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∂ log Pr(D|β)

∂β
=
c′1(β)

c1(β)
− c′0(β)

c0(β)

!
= 0.

Thus, we arrive at

−∂ log cλ(β)

∂β
= −c

′
λ(β)

cλ(β)
= 〈E〉x|λ,β

where 〈·〉x|λ,β denotes an average over the extended ensemble (4.6). Therefore,
the optimal prior weight, β̂, is determined by the equality (Geman and McClure,
1987; Zhou et al., 1997):

〈E〉x|λ=1,β=β̂ = 〈E〉x|λ=0,β=β̂. (4.7)

To put it simply, for an optimal choice of β according to Equation 4.7, the average
energy of an ensemble generate from the prior (λ = 0) is the same as the average
energy of a posterior ensemble (λ = 1). The result is intuitive. It states that for an
optimal choice of β, the arrival of new data does not change the expected interac-
tion energy. In the example of a protein, we would expect to sample energies close
to those of the native ensemble from prior and posterior.

But how many maxima of the marginal probability can we expect? Is there at
least one maximum? Let us first look at the expected interaction energy Uλ(β) =

〈E〉x|λ,β. By taking the first derivative

∂Uλ(β)

∂β
=
〈
[E − Uλ]2

〉
x|λ,β ≥ 0 (4.8)

into account, it is easy to see that the expected interaction energy is monotonic-
ally decreasing in β. Furthermore, we have U0(0) ≥ U1(0). If we choose β = 0,
the prior becomes completely flat and configurations are drawn at random. The
posterior, without the influence of prior, collapses to the maximum likelihood solu-
tion. Thus, all samples drawn from the posterior will scatter around the maximum
likelihood estimate. We would expect any sensible energy function to assign an
on-average lower energy to the maximum likelihood configuration, than to a config-
uration drawn at random from configurational space. Therefore, it is safe to assume
that U0(0) ≥ U1(0).

Let us now take a closer look at the low temperature regime (β → βmax). There,
the prior will only sample from its ground state, as the prior has collapsed to a sharp
peak. The situation is different for the posterior. Only if posterior and prior perfectly
coincide, we have U0(βmax) = U1(βmax) (a rare case, since a perfect prior precludes
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the need to collect any data). Otherwise, the posterior will still feel some influence
of the data, and seek a consensus between posterior and likelihood, thereby lead-
ing to higher average interaction energy. Therefore, U0(βmax) ≤ U1(βmax). If we
combine these results with the fact that Uλ(β) is monotonically decreasing in β for
all λ, we expect that both curves, U1(β) and U0(β) will cross at least once. Thus,
there exists at least one β that satisfies our optimality criterion (Equation 4.7).

Replica-exchange Monte Carlo and multiple histogram reweighting

So far, we have presented only theoretical considerations on how to estimate β.
On the more applied side, we need to solve how to sample from the distribu-
tions and, more importantly, approximate the high-dimensional integrals. For the
sampling, we use replica-exchange Monte Carlo (REMC) (Swendsen and Wang,
1986; Habeck et al., 2005a) of the extended ensemble p(x|λ, β) as implemented in
ISD and introduced in Chapter 2.4. REMC, which is also known as “parallel tem-
pering” (Geyer, 1991), is a variant of the Monte Carlo algorithm by Metropolis et
al. (Metropolis et al., 1957), that simulates the joint distribution

∏R
r=1 p(xr|λr, βr)

of multiple configurations at different inverse temperatures (λr, βr). Configurations
can be exchanged between neighbouring systems according to the Metropolis cri-
terion (Metropolis et al., 1957). For the prior (λ = 0) and the posterior (λ = 1. ), we
run two independent REMC simulations. The replicas in each of the simulations,
p(xr|λr, βr), are chosen in such a way that they bridge between the target distri-
bution, e.g. p(x|λ = 1, β), and a flattened version of the energy landscape, which
is more suitable for sampling, e.g. p(x|λ = 0, β = 0). We experimented with run-
ning only one, very long REMC simulation that bridges between p(x|λ = 1, β) and
p(x|λ = 0, β). This has the downside that convergence time of a REMC simulation
depends quadratically on the length of the chain, leading to a very slow conver-
gence of the long chain. Furthermore, p(x|λ = 1, β) and p(x|λ = 0, β) often sample
different regions of conformation space. It is more efficient to run two REMC sim-
ulations, one for the prior and the other for the posterior expectation. This has
another advantage as the expectation of the prior only needs to be estimated once,
as it is transferable between similar data sets (Geman and McClure, 1987).

A free parameter is the maximum inverse temperature βmax. Both replica sim-
ulations will only explore U0(β) and U1(β) up to βmax In the REMC simulation of
the prior ensemble p(x|λ=0, β) we chose replicas ranging from β : 0 → βmax. The
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Figure 4.1. Example of an REMC Simulation. The left panel shows the diffusion of the
Markov chains over time. The right panel shows corresponding replica parameters to
simulate the posterior distribution

samples from all replicas are kept and used to estimate the expected interaction
energy 〈E〉x|λ=0,β that we need to solve Equation 4.7. We proceed differently for
the second REMC, which simulates the ensemble p(x|λ=1, β). Here, we vary both
λ and β in the REMC simulation to improve convergence. Figure 4.1 shows the
evolution of the replica parameters. We start with λ = 0.0 and β = 0.0. At first,
we switch on the data λ: 0 → 1, but keep the prior switched off (β = 0). This is
necessary to ensure proper sampling, as a Markov chain generated from the likeli-
hood function alone is very likely to get stuck in a local mode. The additional heat
baths allow a stuck system to escape from a local mode by diffusion to a higher
temperature replica. If you look a the Markov chain of a particular replica, this will
be visible as a “tunnelling” effect (see Figure 4.1). In a second step, we start in-
creasing β : 0 → βmax to study the influence of the Boltzmann prior. We use all
samples of this simulation to estimate the expected interaction energy 〈E〉x|λ=1,β.
Instead of specifying a βmax it is also possible to update βmax interactively until a
crossing of the interaction energies is found.

The states sampled by the two replica-exchange simulations are used to estim-
ate the average interaction energies and the model evidence. Instead of focusing
on a single replica, we pool all states of an REMC simulation and use multiple his-
togram reweighting (Ferrenberg and Swendsen, 1989) to estimate the density of
states (DOS), defined as

gλ(E) =

∫
δ(E − E(x)) [L(x)]λ dx (4.9)

where δ is the Dirac delta function. The DOS is a quantity from statistical physics
that describes how many states can occupy a single energy level E. Typically, the
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DOS is estimated using the Wang-Landau algorithm (Wang and Landau, 2001) or
histogram reweighting (Ferrenberg and Swendsen, 1989). The latter was originally
developed for discrete thermodynamic systems such as Ising models. As the name
histogram reweighting suggests, the calculation depends on an iterative update of
energy histograms that tend to the DOS. Histogram reweighting was later refined
into the weighted histogram analysis method (WHAM) to investigate continuous
systems like biomolecules (Kumar et al., 1992). This method is not without a draw-
back, however, as the spacing of the histogram in continuous systems introduces
some arbitrariness and potential artefacts. The histogram methods suffer from poor
scalability in large systems or for multiple energies. Habeck (2012) developed a
nonparametric version of WHAM that eliminates the need to bin the energies. This
algorithm estimates the density of states ĝi associated with the energy of each of
the sampled configurations xi in such a way that g(E) ≈ ∑i ĝi δ(E − E(xi)). To
eliminate the need for binning, Habeck (2012) uses a “infinitely resolved” histogram
H(E) =

∑
i δ(E − Ei). Using the implicit representation of the DOS we have

Z(β) =

∫
dE g(E) e−βE

=

∫
dE

H(E)∑
j Nje−βj(E−fj)

e−βE

=
∑
i

e−βEi∑
j Nje−βj(Ei−fj)

From the above equations, we obtain a nonparametric estimate of the DOS that
does not require binning of the data:

ĝ(Ei) ≡ gi =
1∑

j Nje−βj(Ei−fj)
(4.10)

such that Z(β) =
∑

i gie
−βEi . In the nonparametric version, we perform the follow-

ing iterative updates until convergence to arrive at an estimate of g(E):

g
(t+1)
i =

1∑
j Nje

−βj(Ei−f (t)
j )

f
(t+1)
j = − 1

βj
log

{∑
i

g
(t+1)
i e−βjEi

}

We reconstruct gλ=1 and gλ=0 for both replica simulations. Now the model evid-
ence as a function of β can be expressed as
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Pr(D|β) =

∫
g1(E) e−βE dE∫
g0(E) e−βE dE

. (4.11)

Also the average interaction energies can be obtained from the density of states as

Uλ(β) =

∫
E gλ(E) e−βE dE∫
gλ(E) e−βE dE

. (4.12)

We evaluate these expressions in the log domain to avoid overflows. The samples
from all replicas are combined into the density of states. This allows us to give a
more accurate estimate of the expectations (4.12) and of the model evidence (4.11),
by using an estimate from a single replica. Other methods like Gibbs sampling
(Geman and Geman, 1984) of the posterior and prior distributions, as proposed in
(Geman and McClure, 1987), result in significantly less accurate estimates of the
expectations. But not only are the estimates more accurate, using the density of
states we can quantify the distribution of the model evidence, which allow us to
calculate the uncertainty of the estimate.

4.3 Applications

Calibration of the Ising model in image reconstruction

Our first application will be image reconstruction. We will restrict ourselves to a
simple toy problem, that demonstrates all the complexity of real world applications.
We use the two-dimensional Ising model on a L × L lattice with L = 32 as prior
probability. The prior on a 32× 32 black and white images is given by

π(x|β) =
1

Z(β)
eβ

∑
i∼j xixj

where
∑

i∼j indicates a sum over the neighbours of xi and xi ∈ {−1, 1}. The Ising
model and its generalization, Markov random fields, are common priors in image
analysis (Li, 2009; Wang et al., 2013). The parameter β controls the coupling of
neighbouring pixels; for a small β neighbouring pixels are uncorrelated, whereas
for a high β we observe a strong coupling and the prior emphasizes large patches
of the same colour.
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4.3 Applications

The goal of the inference is to reconstruct a black-and-white image from a series
of noisy observations of the same image. The image we use shows a chequer-
board pattern with (L/K)2 blocks of K2 spins bearing the same colour. We add
noise by flipping each pixel with probability 1 − θ, θ ∈ [0, 1]. This allows us to con-
struct the likelihood of observing yi ∈ {−1, 1}, assuming that the original colour of
the pixel is xi.

Pr(yi|xi, θ) =
1

2

√
θ(1− θ)

(
θ

1− θ

)xiyi/2

. (4.13)

The posterior probability for N observations is then given by

Pr(xi|yi, ) =
1

Z(β)
eβ

∑
i∼j xixj+1/2 log(θ/(1 − θ))

∑N
j=1 xi(yji ). (4.14)

We can rewrite the negative logarithm of the posterior probability, in such a way
that it that is equivalent to the energy function of a standard Ising model (Inoue and
Tanaka, 2002) with a local magnetic field hi

− log Pr(x|β,D) = −β
∑
i∼j

xixj −
∑
i

hixi

where the local external magnetic field is determined by the data

hi = N log(θ/(1− θ)) yi/2

with yi ∈ [−1, 1] referring to the mean value for pixel yi averaged over N observa-
tions. The likelihood function also gives rise to the maximum likelihood estimator
x̂i = sign{hi}.

We generated N = 5 noisy images for K = 4 at θ = 0.65. In Figure 4.2, we
show the true image together with the averaged observations and the maximum
likelihood reconstruction.

An optimal estimate of β would match the inverse temperature of the original
image. Based on the configurational temperature formalism (Rugh, 1997), we can
calculate the inverse configurational temperature of x as

β(x) =
d s(E)

dE

∣∣∣∣
E=E(x)

(4.15)

where s(E) = log g0(E) is the microcanonical entropy and g0(E) the density of
states (4.9). An advantage of the Ising model is that density of states is well
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4 Weighting priors in Bayesian data analysis

true image observed image ML reconstruction

Figure 4.2. Data for image reconstruction with an Ising model. Left: true image;
middle: average observed image with θ = 0.65 averaged over N = 5 observations; right:
maximum likelihood reconstruction.
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Figure 4.3. Estimation of the optimal temperature of the Ising model in image recon-
struction. A: Internal energy with and without data as a function of inverse temperature.
Dashed vertical lines indicate the inverse configurational temperature of the true image
(red) and of the maximum likelihood image (blue), the critical temperature (orange), and
the optimal inverse temperature obtained from Equation 4.7. B: Model evidence as a
function of β. C: Hamming distance of posterior mean images and the true image.

known (Beale, 1996). The true image has an inverse configurational temperature
of β(xtrue) = 0.38. The inverse configurational temperature of the ML estimate is
lower at β(x̂) = 0.13. We apply our approach and ran two replica-exchange Monte
Carlo simulations as outlined above. We explored the temperature up to βmax = 2.
Based on both REMC runs, we estimated the densities of states, g0(E) and g1(E),
by multiple histogram reweighting.

The results are detailed in Figure 4.3. The first panel (Figure 4.3A) shows the
internal energy curve U(β) based on the replica runs with and without data. The
curve obtained from p(x|λ = 1, β) starts at a lower energy, as the data imposes
restrictions beyond the prior energy. As these restrictions are absent for the curve
obtained from p(x|λ=0, β = 0.), it sets in at a higher value. The phase transition of

60



4.3 Applications

β=0.00 β=0.03 β=0.07 β=0.10 β=0.13 β=0.17 β=0.20

β=0.24 β=0.27 β=0.31 β=0.34 β=0.38 β=0.42 β=0.46

β=0.49 β=0.53 β=0.56 β=0.59 β=0.62 β=0.64 β=0.67

β=0.70 β=0.73 β=0.77 β=0.80 β=0.86 β=0.93 β=1.02

Figure 4.4. Posterior mean images for different choices of β. β values between 0.0 and
2.0 were probed during REMC simulation. However, we only show the restored images
for β ≤ 1, because no significant changes are observed for larger β.

the Ising model with its characteristic sigmoidal form occurs at βc ≈ 0.44.

As expected, the Bayesian estimate is somewhere between the two extrema
given by the configurational temperature of the true image and of the maximum
likelihood reconstruction. Indeed, the model evidence peaks at 0.26, with a width
of 0.03 (Figure 4.3B). We measure the accuracy of the reconstruction by the Ham-
ming distance H(x, y) =

∑
xi 6=yi 1.

In Figure 4.3C, we show the Hamming distance between the mean posterior
image and the original image for the whole range of β. According to this metric,
the optimal choice is β = 0.39, near the inverse temperature of the original image
of β = 0.38. Still, the Bayesian estimate of β = 0.26 improves the accuracy con-
siderably compared to the maximum likelihood estimate at β = 0. The plot of the
Hamming distance in Figure 4.3C also demonstrates the risk of emphasizing the
prior too much. A Boltzmann weight greater then 0.6 will lead to a reconstructed
image, whose accuracy is lower than that of the maximum likelihood estimate.

The mean posterior images for all simulated values of β are shown in Figure
4.4. This figure nicely illustrates the phase transition, where we go from speckled
images to reconstructions with large patches of similar colour. The Ising model
allows us to test further the behaviour of the Bayesian inverse temperature estim-
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4 Weighting priors in Bayesian data analysis

Figure 4.5. Model evidence for decreasing noise level θ = 0.6, 0.7, 0.8, 0.9 and in-
creasing amount of data N = 5, 10, 15, 20. The dashed vertical line indicates the
configurational temperature of the true image.
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Figure 4.6. Calibration of the Boltzmann prior in protein structure calculation from NMR
data. An approximate Lennard-Jones potential is weighted for high quality (top row) and
a sparse data set (bottom row). The model evidence (panels A and E) peaks at β ≈ 1.
Panels B and F show the accuracy of the structure ensemble obtained for different
choices of the inverse temperature; the filled region indicates one standard deviation.
Also shown is the compaction of structures in terms of the radius of gyration (panels C
and G); the dashed vertical line marks the critical value β = 0.6 at which the compaction
sets in. Another measure of compactness is the average number of nearest-neighbour
contacts (panels D and H); the dashed horizontal lines indicate the average number of
contacts in the crystal structures 1UBQ and 1SHF, respectively. The radius of gyration
and average number of contacts (black lines) are calculated over samples from the prior
distribution, i.e. without using the data.

ates. If we increase the parameter θ, we decrease the noise in the observations.
Furthermore, we can increase the number of observations N to add more data.
Figure 4.5 shows the distribution of the evidence for all the different combinations
of θ = 0.6, 0.7, 0.8, 0.9 and N = 5, 10, 15, 20. An increase in the number of observed
noisy images N shifts the estimate of β̂ closer to the configurational temperature
of the true image. In the case smaller data sets, β drops and the distribution be-
comes wider. The same observation can be made, when we increase the noise
level (decreasing θ). A lower θ will result in a lower estimate of β. As the quality
and amount of data deteriorates, Bayesian inference tells us to be cautious and to
introduce only weak prior correlations.
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4 Weighting priors in Bayesian data analysis

Optimal weighting of force fields in protein structure calculation

As a second application, we focus on protein structure calculation using NMR dis-
tance measurements. Biomolecular structure calculation by ISD (see Chapter 2.4)
is based on minimalist force fields that are considerably less complex and realistic
compared to modern molecular dynamics force fields (Brünger and Nilges, 1993;
Rieping et al., 2005). Typically, only van der Waal’s contributions are considered as
non-covalent interactions; electrostatic and solvent interactions are ignored (Linge
and Nilges, 1999). In this application, we use the van der Waal’s energy function
from the Rosetta structure prediction software (Kuhlman et al., 2003). The energy

function is a Lennard-Jones potential of the form E(rij) = 4ε

[(
σij

rij

)12
−
(
σij

rij

)6
]

where rij is the distance between atoms i and j, ε denotes the depth of the energy
well and σij is the distance at which the inter-particle potential for these atom types
is zero. To speed up calculation, interactions between atoms that are more than
5.5 Å apart are set to zero.

We will use the algorithm presented earlier to determine the optimal temperat-
ure of this force field. We expect that the modes of the β distributions are close
to 1.0, as the samples were measured at room temperature. The first data set
are high resolution data for ubiquitin (PDB code 1D3Z) (Cornilescu et al., 1998).
Ubiquitin has 76 amino acids and adopts a beta-barrel structure that is closed by
an α helix. The data set for ubiquitin comprises 1,444 NOE measurements that
were converted to distance restraints. As described in the algorithm section, we
simulated two REMC chains and computed the model evidence conditioned on the
inverse temperature. Figure 5.5A depicts the expected prior energies curves as
well as the resulting distribution of the model evidence Pr(D|β). In the case of ubi-
quitin we find that an optimal model evidence is attained at β̂ = 0.87± 0.05, a little
short of the expectation of 1.0 Another encouraging result is that the peak of the
model evidence is within the region of smallest root mean square deviation (RMSD)
from the X-ray structure 1UBQ. The RMSD depending on the inverse temperature
and the distribution of model evidence is shown in Figure 5.5B.

As our second data set, we choose a sparse data set of the Fyn-SH3 domain
(Mal et al., 1998; Rieping et al., 2005), a small beta-barrel domain. This data
set contains only 154 distance measurements for a protein with 54 residues. Of
these only 60 restraints are long-range restraints that are important for defining
the architecture of the protein fold. We use the proposed algorithm to calculate
the inverse temperature. For this protein, we estimated the inverse temperature at
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4.4 Conclusion

β̂ = 1.02±0.09 (Figure 5.5E). The larger variance of β̂ is the effect of fewer data for
SH3 compared to ubiquitin. Again, the model evidence peaks in the β region that
results in the most accurate structures (RMSD to crystal structure 1SHF; Figure
5.5F). The effects of a wrong estimate of β are more severe for the sparse data
set. Already for β = 2., the average RMSD to the crystal structure is 6.0Å. This
highlights the importance of choosing β in a data-driven manner. If we put too
low or too high a weight on the Lennard-Jones potential, the ensemble comprises
multiple conformers, e.g. mirror images of the correct structure, leading to a large
RMSD.

We performed REMC simulations of the prior ensembles of both proteins
without any data. We use these to gain further insights into the properties of the
energy function. One interesting observation is that the prior energy for both pro-
tein chains experiences a phase transition at β ≈ 0.6 The Lennard-Jones potential
favours compact structures and hence we expect to a see an effect of the radius of
gyration Rg. At the critical point, the Rg ≈ 27/22 Å drops to Rg ≈ 10/9 Å for ubi-
quitin/SH3, respectively (Figures 5.5C,G). Experiments with freely jointed polymer
chains indeed indicate that the temperature of this collapse transition is length de-
pendent (Baumgärtner, 1980). We also looked at the average number of contacts
depending on β (Figures 5.5D,H). We define a contact as two, non-neighbouring
Cα atoms, that are closer than 7.5 Å. Figures 4.6D,H show the average number
of contacts depending on the inverse temperature β. The phase transition that we
observed for the radius of gyration and prior energy is also visible for the average
number of contacts. At the critical point, the structures collapse and form densely
packed structures. The contact number of the prior at the estimated inverse tem-
perature almost matches that of the crystal structure of 8.0 (1UBQ) and 8.4 (1SHF)
contacts on average. In contrast to the radius of gyration, the number of contacts
does not plateau; it continues increasing until the structures are on average a lot
denser the crystal structure. Whether the temperature of the Lennard-Jones poten-
tial is universal needs to be elucidated in further studies. Our test on two structures
seems to indicate that the temperature of the Rosetta software is consistent.

4.4 Conclusion

In this chapter, we introduced a new fully Bayesian method to estimate the inverse
temperature of Boltzmann-type priors in data analysis problems. This method is
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4 Weighting priors in Bayesian data analysis

applicable in the absence of a physical foundation that could allow us to determine
the inverse temperature. Our temperature estimates rely on a replica-exchange
Monte Carlo scheme and on nonparametric histogram reweighting to obtain ac-
curate estimates of the density of states, rendering the process independent of
the functional form of prior and likelihood, and permitting widespread application.
Another strength is the probabilistic formulation, as we are able to express the
uncertainty in our estimates.

We demonstrate the usefulness of the method in image analysis and protein
structure determination from NMR data. An interesting result from the latter applic-
ation indicates the existence of a critical temperature, at which a sudden compac-
tion of the structures occurs.

In the next chapter, we will present application in protein structure calculation
as well as generalization to multiple energy terms.
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5
Optimal combination of statistical

potentials in NMR structure
calculation

The main objective of this chapter is to explore further the use of Bayesian model
comparison in structure calculation. In the previous chapter (Chapter 4), we intro-
duced a method to estimate the weight of a Boltzmann prior and used it to estim-
ate the force constant of a potential function. Here, we focus on multiple potential
functions and use our method to find an optimal combination of different potential
functions with the aim of increasing the accuracy of structures from NMR data. In
principle, this would enable us to tailor an optimal energy function for each structure
calculation project. The relevance of the combination of different kinds of energy
functions was highlighted recently by Pande (2011).

We demonstrate that an optimally weighted potential leads to an improvement
in the accuracy and quality of the final structure, especially if the data are incom-
plete or noisy.

5.1 Introduction

An objective of this thesis is to improve the accuracy of the structures calculated
from NMR experimental data. The data collected by NMR spectroscopy are in-
direct and incomplete measurements of the three-dimensional structure. In our
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5 Optimal combination of statistical potentials in NMR structure calculation

Bayesian framework, we combine the experimentally derived, pairwise distances
derived from NOEs with our prior knowledge of protein structures, which is typically
encoded in a potential function. This combination results in ensembles that are con-
sistent with experiments and the laws of physics. A good energy function should
guide us to the high-quality structures and provide an objective representation of
our knowledge about protein structure, but it should not introduce artefacts that
contradict the data. The better that potential function approximates the free energy
of a protein structure, the more it will improve the generated structures. In order
to avoid biasing the calculation process, but also for reasons of computational effi-
ciency, one tends to use minimalist physical force fields that ignore complex effects
such as electrostatic screening or solvent interactions in structure calculation. This
strategy works well with high-quality data. But if we are faced with few experimental
observations, we need expressive potential functions to fill the gaps. Potential func-
tions can be grouped into two different classes (Skolnick, 2006): physics-based
force fields (Ponder and Case, 2003) aim to approximate the underlying physical
laws, whereas statistical or knowledge-based potentials (Sippl, 1995) are extracted
from a structure database and describe the effective forces resulting from all inter-
actions and do not necessarily have a physical basis. For example, the Lennard-
Jones potential introduced in Chapter 4 belongs to the first class. Both approaches
have their unique advantages and disadvantages. While physical approaches are
transferable, the calculation is often time-consuming and it is challenging obtain ac-
curate parameters. On the other hand, statistical approaches are able to capture
interactions that are often difficult to describe using physics-based potentials; but
they are limited by the data used to parameterize the potential, prone to overfit-
ting, and not necessarily transferable (Das, 2011). Therefore, it seems attractive to
combine different potentials.

But how can we combine physics- and knowledge-based potential functions?
Several aspects should be considered when combining different potential functions.
First, there is the risk of double counting interactions, as some facets of statistical
potentials are already captured by physical potentials. For example, aspects of
the Ramachandran plot, which is often employed as potential in structure calcula-
tion, can be explained by Lennard-Jones interactions. Second, knowledge-based
potentials, which are averaged over large structural databases, are not universally
transferable and may not represent the preferences of a particular structure.

To alleviate these problems and objectively combine different potentials we in-
troduce an additional weighting factor to the statistical potentials, akin to the in-
verse temperature. This weight is then estimated by Bayesian model compar-
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ison, as presented in Chapter 4. We demonstrate our methodology on a newly
derived Ramachandran potential and estimate the inverse temperature of the
Ramachandran potential in the presence of a Lennard-Jones potential as a func-
tion of the experimental data.

5.2 Dihedral angle potential

In his renowned paper, Ramachandran et al. (1963) introduced the parameteriz-
ation of the protein backbone using ϕ/ψ angles. The two-dimensional scatterplot
of these angles, which is now called the Ramachandran plot, was first used to
predict the possible conformations of the protein backbone. Ramachandran et al.
postulated, based on hard-sphere interaction in peptides, that some regions of the
ϕ/ψ-space are not accessible to the protein backbone. These predictions, made
just before the publication of the first protein structure, were later validated and
proved to be accurate. Later studies (Hovmöller et al., 2002; Hooft et al., 1997),
supported by crystallographic data, showed that the overall features of the original
plot are correct, but many finer details, like the orientation of the α helix area, differ.

Over time, the Ramachandran plot has become one of the standard tools for
analysing protein structures. Moreover, empirical energy functions for backbone di-
hedral angles derived from structural databases, “Ramachandran potentials”, have
been used in biomolecular structure calculation for almost two decades. Programs
like Procheck (Laskowski et al., 1993), WHATCHECK (Hooft et al., 1996) and Mol-
probity (Davis et al., 2007) use empirical Ramachandran potentials to assess the
quality of experimentally determined structures. The Ramachandran potential also
play an important role in structure prediction (Rohl et al., 2004) and molecular dy-
namics (Buck et al., 2006). Several statistical models have been proposed ranging
from two-dimensional histograms (Gong et al., 2007) to continuous representations
based on linear interpolation, cubic splines and Gaussian mixtures (Mardia et al.,
2007; Boomsma et al., 2008; Ting et al., 2010). These models ignore two fun-
damental aspects of statistical distributions over angular variables, namely their
periodicity and their smoothness, which can result in artefacts during the refine-
ment process (Kuszewski and Clore, 2000). Over the course of this section, we
proceed to derive a parametric description of the distribution of backbone dihedral
angles derived from a structural database, that we use as an energy function to
guide structure calculation.
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5 Optimal combination of statistical potentials in NMR structure calculation

maximum entropy distribution for backbone dihedral angles

We employ a non-parametric approach based on the principle of maximum entropy
(Jaynes, 1957) to estimate the density of the Ramachandran potential. As pro-
posed by Pertsemlidis et al. (2005), we use a Fourier basis to represent the joint
distribution of the ϕ and ψ backbone dihedral angles. This representation is in-
herently smooth and periodic, and has the advantage that it can easily cope with
multi-modality as opposed to the unimodal von Mises or Kent distribution, which
need to be combined into mixtures (Mardia et al., 2007; Boomsma et al., 2008;
Ting et al., 2010) in order to represent the multi-modal Ramachandran plot. The
functional form of the distribution of backbone dihedral angles is given by:

p(ϕ,ψ) =
1

Z(a, b, c, d)
exp{−E(ϕ,ψ)}, Z(a, b, c, d) =

∫
exp{−E(ϕ,ψ)} dϕdψ

(5.1)

where the Ramachandran potential E(ϕ,ψ) is given by:

E(ϕ,ψ) =
k∑
i=0

k∑
j=0

aij cos(iϕ) cos(jψ) + bij cos(iϕ) sin(jψ)

+ cij sin(iϕ) cos(jψ) + dij sin(iϕ) sin(jψ) (5.2)

Z(a, b, c, d) normalizes the dihedral angle distribution; k is the order of the Fourier
expansion; a, b, c, d are the parameters we need to estimate.

We fit the expansion coefficients a, b, c, d to pairs of ϕ and ψ angles. During the
optimization procedure, we need to evaluate the normalization constant Z(a, b, c, d).
Since there is no closed form expression for this integral, we evaluate it numerically
using the two-dimensional trapezoidal rule. To circumvent overfitting of the data
and to encourage a sparse solution, we introduce a Gaussian prior probability with
unknown precision λ over the expansion coefficients a, b, c, d:

p(a, b, c, d|λ) =

(
λ

2π

)2k(k−1)

exp

{
−λ

2

k∑
i=0

k∑
j=0

(a2
ij + b2ij + c2

ij + d2
ij)

}
(5.3)

The precision of the prior λ is not known and is estimated simultaneously with the
expansion coefficients. We use an iterative scheme in which we cycle through
conditional updates of the expansion coefficients and of the precision. For fixed
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precision, the log-posterior probability of the expansion coefficients is a convex
function, which we optimize using the Powell minimizer (Press et al., 1989). The
update of the precision for given a, b, c, d can be calculated analytically.

Backbone dihedral angle distributions

We extracted the backbone dihedral angles from the PDBselect25 (Hobohm et al.,
1992), a database of representative protein structures with less than 25% se-
quence identity to estimate the Fourier coefficients in Eqn. 5.3. For reasons of
computational efficiency and to avoid overfitting, we truncate the Fourier series at
order k, which is selected by the Bayesian information criterion (BIC) (Schwarz,
1978). The BIC is an approximation of the marginal likelihood given by

BIC(m) = −2 logLmax +m log n

where Lmax is the maximum of the likelihood of the data set for m parameters
(here m = 4k(k − 1)) and n data points. The BIC curves for all amino acid are
shown in Figure 5.1. After a steep decline, the BIC value of almost all amino acids
plateaus at k = 5. Based on the BIC analysis, we selected the Fourier expansion
with an order of 5 The corresponding distributions are shown in Figure 5.2. They
provide a good fit and capture important features such as the α-helical peak at
ϕ = −60o, ψ = −40o. In addition, the backbone dihedral angle distributions of
glycine and proline, which deviate from the standard Ramachandran plot, are cap-
tured well by the Fourier model. To compare our parametric estimates visually, we
show histograms of the ϕ and ψ angles extracted from the PDBselect25 in Figure
5.3.

5.3 Data-driven weighting of the backbone potential

We would like to use the dihedral angle potential in ISD (Chapter 2.4) to encourage
more protein-like backbone conformations. But integrating an additional potential
into ISD is not completely trivial. How can we add the potential without introducing a
bias? Recall that the combined potential function is E = (wphysEphys +wramaErama),
where wphys = 1/kBT is the reciprocal temperature involving Boltzmann’s constant
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Figure 5.1. BIC analysis to determine the optimal order of the Fourier expansion.
The BIC curves of the backbone dihedral angle distributions of all 20 amino acids
(indicated as one letter codes in the legend) is shown in increasing Fourier order.

kB and the absolute temperature T , and where Ephys is the Lennard-Jones poten-
tial adapted from the Rosetta software (Kuhlman et al., 2003).

Naively, we would set the weight of the backbone potential wrama to one. But
this is problematic because some aspects of the Ramachandran plot are already
captured by the Lennard-Jones potential. To show this dependence, we simulated
tripeptides using the Lennard-Jones potential. Each peptide comprises an amino
acid flanked by two Alanine as termini. From these simulations, we collected the
dihedral angles and estimated the backbone dihedral angle distributions, which
are shown in Figure 5.4. The distributions show an outline that is roughly similar
to the Ramachandran distributions in Figure 5.2, but they differ largely in the finer
details and positions of the modes. The more subtle aspects, such as optimal
hydrogen-bonding geometry (Porter and Rose, 2011) that result in pronounced
peaks, cannot be reproduced by the Lennard-Jones potential alone. We analysed
the connection between both potentials further by plotting the correlation between
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Figure 5.2. Backbone dihedral angle distributions of all amino acids estimated
from high-resolution crystal structures. Heat maps of all ϕ/ψ distributions as ap-
proximated by the maximum entropy distribution outlined in this paper.
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5 Optimal combination of statistical potentials in NMR structure calculation

Figure 5.3. Empirical backbone dihedral angle distributions. Histogram of the
empirical ϕ/ψ distribution extracted from high-resolution crystal structures.
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5.3 Data-driven weighting of the backbone potential

Figure 5.4. Backbone dihedral angle distributions implied by the physical energy.
Heat maps of all ϕ/ψ distributions generated by a physical prior alone approximated by
a maximum entropy distribution.
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5 Optimal combination of statistical potentials in NMR structure calculation

the Ramachandran potential and the Lennard-Jones potential for a ubiquitin en-
semble in Figure 5.5A. To generate this plot, we ran a REMC simulation of ubiquitin
controlled by the Lennard-Jones and Ramachandran potentials. We combined the
samples from different replicas by the weighted histogram analysis method to take
all available information into account and show the likelihood of encountering a
sample with a given combination of energies. Depending on the energy range,
the potentials can be positively and negatively correlated. For the high energy re-
gime we see a positive correlation, as both potentials prefer the same areas of the
Ramachandran plot. But as we get closer to the low energy structures, the differ-
ent potentials cannot be reconciled and we observe a negative correlation. These
observations stress the importance of a careful combination of different potentials.
The difficulty of estimatingwrama stems from its being an ensemble average. Hence,
we need to assess how well entire ensembles agree with the potential, rather than
examine only a single structure. Since we have to deal with ensembles, we need
to use computationally intensive simulations to estimate wrama.

Recall our Bayesian approach to estimate the temperature of a potential based
on the experimental (Chapter 4). To estimate wrama, we need to look at the ex-
pected backbone energy 〈Erama〉, where 〈·〉 denotes an ensemble average. To
obtain this ensemble average, structures are sampled from the combined energy
wphysEphys +wramaErama. It should be noted that this simulation is not influenced by
the experimental data and that the sampled structures are not necessarily close to
the native conformation of the protein. The resulting average 〈Erama〉no data

summar-
izes how the force field and the backbone potential are correlated for a particular
setting of wphys and wrama. This value is contrasted with the expected backbone en-
ergy obtained with data 〈Erama〉data . To calculate this ensemble average, structures
are sampled based on the full energy wdataEdata +wphysEphys +wramaErama where
the cost function Edata assesses the fit with the data. According to the principle of
maximum entropy (Jaynes, 1957), the averages are equal at the optimal wrama

〈Erama〉data = 〈Erama〉no data
. (5.4)

In the previous chapter we devised these rules based on the maximization of the
model evidence, Pr(D|wrama), which is the probability of observing the data for a
particular value of wrama and whose computation involves an ensemble average.
In essence, our procedure of finding wrama involves Bayesian model comparison
(MacKay, 2003) for a continuous family of models that differ in the weight of the
backbone potential. As before, we have Pr(D|wrama) as

76



5.3 Data-driven weighting of the backbone potential

100 150 200 250 300 350 400

backbone potential Erama

−400

−350

−300

−250

−200

−150

−100

fo
rc

e
fie

ld
E

ph
ys

A

0 1 2 3 4 5

Ramachandran weight wrama
av

er
ag

e
ba

ck
bo

ne
po

te
nt

ia
l〈
E

ra
m

a
〉

B

〈Erama〉no data

〈Erama〉data

0 1 2 3 4 5

Ramachandran weight wrama

0.18

0.19

0.20

0.21

0.22

0.23

0.24

R
D

C
Q

fa
ct

or

C

0 1 2 3 4 5

Ramachandran weight wrama

−70

−60

−50

−40

−30

−20

−10

0

10

J-
co

up
lin

g
en

er
gy

D

Figure 5.5. Bayesian weighting of the backbone potential for ubiquitin inferred from
distance data. A: Correlation between backbone potential and non-bonded force field.
Shown is the joint distribution of physics- and knowledge-based contributions in the
absence of any structural data. B: Model evidence Pr(D|wrama) as a function of the
Ramachandran weight wrama. C: Influence of the Ramachandran weight on the av-
erage Q-factor (dashed line) calculated for 11 RDC data sets that were not used in
the structure calculation. The Q-factor reflects the agreement between experimental
and calculated RDCs. D: Influence of the Ramachandran weight on the fit with scalar
coupling measurements (dashed line). Six three-bond scalar coupling data sets are
available for ubiquitin and have not been used in the structure calculation. The grey
distribution indicates the model evidence Pr(D|wrama).
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5 Optimal combination of statistical potentials in NMR structure calculation

Pr(D|wrama) =

∫
Pr(D|θ, α, wrama) Pr(θ|wrama) Pr(α) dθ dα.

where Pr(θ|wrama) ∝ exp{−wphysEphys(θ) − wramaErama(θ)} is the combined prior
probability of conformation θ for a given weight wrama. We can reduce the compu-
tation to a low-dimensional integral by using the density of states as described in
Chapter 4

gλ(Erama) =

∫
δ(Erama − Erama(θ)) [Pr(D|θ, α)]λ

×Pr(α) e−wphysEphys(θ) dθ dα

where δ(·) denotes the Dirac delta function.

We can now express the model evidence as the ratio of two integrals.

Pr(D|wrama) =

∫
g1(Erama)e−wramaErama dErama∫
g0(Erama)e−wramaErama dErama

which requires two densities of states, g0(Erama) and g1(Erama), to describe how the
backbone energy Erama is distributed without and with data, respectively. Estimates
of the density of states are obtained by applying multiple histogram reweighting
(Ferrenberg and Swendsen, 1989; Habeck, 2012) as outlined in Chapter 4. The
replica schedules were also adapted to account for the additional force field and
provide adequate sampling.

5.4 Application to a single degree of freedom

We illustrate the ideas outlined in this article by revisiting the example we used to in-
troduce the concepts of ISD in Chapter 2.4. Recall tbat the goal is to determine this
angle on the basis of a simulated three-bond scalar coupling, J , between atoms
HN-N-CA-HA (see Figure 2.6). Figure 5.6 illustrates the method for that simple toy
system. The Karplus relation (Karplus, 1963) and a Gaussian error model (Habeck
et al., 2005b) result in a trimodal likelihood function for the ϕ angle; one probability
peak is located in the largely disallowed positive domain. Switching only the phys-
ical potential on (wrama = 0) eliminates the positive peak but cannot resolve the
ambiguity in the remaining two modes favouring the wrong solution at ϕ = −144o.
Incorporation of a knowledge-based dihedral angle potential helps to resolve this
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5.4 Application to a single degree of freedom

ambiguity. But it is unclear how strongly the knowledge-based potential should con-
tribute. If the weight is too small (wrama = 0.7), the ambiguity remains unresolved;
if the weight is too large (wrama = 7.0), the posterior distribution peaks at an angle
that is systematically shifted away from the correct value (ϕ = −75o). The optimal
weight is determined by maximizing the overlap between the probability of the data
and of the prior. This choice compromises the data as to the lowest extent pos-
sible, but still tries to utilize of the information contained in the knowledge-based
contribution.

To find the optimal weight, we calculate the marginal likelihood, Pr(D|wrama),
which is the probability of observing the data for a particular value of wrama. We
then choose the weight that is most compatible with the given data by maximizing
Pr(D|wrama). This provides a data-driven way of controlling the influence of the
knowledge-based potential function relative to the physical energy and the data. In
essence, our procedure of finding wrama is Bayesian model comparison (MacKay,
2003) for a continuous family of models that differ in their weight of the statistical
potential.

βstats = 0.0 βstats = 0.0 βstats = 0.7 βstats = 0.7

ϕ

βstats = 7.0

ϕ

βstats = 7.0

ϕ

βstats = 1.6

ϕ

βstats = 1.6

Figure 5.6. Example highlighting Bayesian weighting of the statistical potential.
Shown is the effect of different choices of the weight of the statistical potential, wrama, for
a toy system with one angular degree of freedom ϕ: wrama = 0.0 (no statistical potential),
wrama = 0.7 (too small weight), wrama = 7.0 (too large weight), and wrama = 1.6 (optimal
weight obtained by Bayesian weighting). (For wrama = 7.0, the y-axis has been broken
to show the full posterior distribution.) The left column shows the likelihood resulting
from a scalar coupling measurement in grey and the combined prior in black. The right
column shows the posterior probability (i.e. the product of the likelihood and the prior)
in black. The correct angle is indicated with a red dashed line (ϕ = −75o).
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5.5 Bayesian weighting with high-quality data

We investigate the effect of Bayesian weighting on the example of the ubiquitin
data introduced in the previous chapter (PDB code 1D3Z), comprising 1,444 non-
redundant distance restraints. The available scalar dipolar couplings are not in-
cluded in the calculation. We used the method outlined above to calculate the
model evidence Pr(D|wrama), as shown in Figure 5.5B. The curve shows a clear
peak at 0.94± 0.09. At this weighting, the ensemble averages of prior energies are
equal regardless of whether we include the data or not, thereby satisfying Equation
5.4. The RMSD to the crystal structure is largely unaffected by the choice of β for
this high-quality data set as seen in Figure 5.7A. This is not completely surprising,
as the fold is well defined by the restraints. The residual dipolar couplings and
scalar coupling measurements that were not used as restraints are more sensitive
to the local structure and are used to validate our approach. To assess the agree-
ment with the 11 available RDC sets, we calculated the Q-factor for ensembles of
100 structures obtained from the replica sampling at different values of wrama. The
ensemble averages of the Q-factor in Figure 5.5C show that the Ramachandran
weight, which optimizes the marginal probability, almost achieves the minimum Q-
factor (0.19). FThe picture is slightly different for the scalar couplings; although
the Bayesian choice improves the agreement with the observed RDCs, a setting of
β > 2. would have minimized the RDC energy.

5.6 Bayesian weighting with incomplete data

One focus of this thesis is the calculation of structures from sparse data. The
completeness of the ubiquitin dataset can be reduced to observe the influence of
Bayesian weighting on sparse data. We achieve this effect by using a complete-
ness parameter λ that decreases the influence of the data. This parameter was
introduced by Habeck (2011) to investigate structure calculation from a statistical
mechanics point of view. For example, if we set λ < 1, the effective number of ob-
servations is reduced; for λ = 1 the original dataset is recovered. Based on our ob-
servations in the previous chapter, we expect the marginal likelihood to favour smal-
ler values of β as the number of effective observations is reduced. Figure 5.7 shows
the marginal likelihoods for λ = 1., 0.1, 0.01 and 0.005 with wrama = 0.94 ± 0.09,
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wrama = 1.00 ± 0.09, wrama = 0.92 ± 0.1, and wrama = 0.84 ± 0.15 respectively. For
lower values of λ, the posterior is no longer able to identify the native ensemble.
The Ramachandran potential allows us to decrease further the number of effective
observations per residue that still results in a native ensemble (Habeck, 2011) to
less then 0.1 distances per residue. However, this value should be taken with a
grain of salt it since only decreases the influence of the distances, and not their
actual number. We also analysed the effect of an optimal wrama on the RMSD of
the ensemble to the crystal structure in Figure 5.7. The Bayesian choice of wrama,
which maximizes the marginal likelihood, is constantly located in the region of min-
imal RMSD. Especially at higher values of wrama and increasing sparsity, we ob-
served a detrimental effect of the Ramachandran potential on the average RMSD.

5.7 Impact on structure ensembles from sparse and noisy

NMR data

So far, we have studied how Bayesian weighting of the backbone potential impacts
the conformational ensemble under artificially sparsified data. The sparse data set
of the Fyn-SH3 domain introduced before (Mal et al., 1998; Rieping et al., 2005)
and a set of noisy distance bounds measured by solid-state NMR of the α-spectrin
SH3 domain (Castellani et al., 2002) provide challenging real-world applications.
We show the ensemble average of the backbone energy depending on the choice
of wrama and the resulting marginal likelihood for both datasets in Figure 5.8. The
marginal likelihood peaks at wrama = 0.76 ± 0.11 and wrama = 0.3 ± 0.13 for the
sparse and noisy distances, respectively.

We assess the accuracy of the ensembles by the RMSD to the crystal structure.
The results shown in Figure 5.9 demonstrate that the maximum of the marginal
likelihood is located in regions of low RMSD. Moreover, the RMSD distributions of
the ensembles with optimal wrama show less variance and no additional minima.
We also observe that setting wrama > 2.0 leads to less accurate structures. Fur-
thermore, the average structure of each ensemble is even more accurate than the
individual structures (see Table 5.1). This indicates that the structure ensembles
are better defined when using the backbone potential.

Figure 5.10 shows the structural ensembles of the sparse SH3 data set at dif-
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Figure 5.7. Impact of incomplete ubiquitin data on wrama. Shown is the model evidence
as a function of wrama (grey) and the average RMSD (dots). The sparsity increases
from the top left panel to the bottom right panel.
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Figure 5.8. Bayesian weighting with sparse and noisy NMR data. Shown is the
average backbone energy 〈Erama〉 with (black) and without data (red) for the Fyn-SH3
(left) and α-spectrin SH3 domain (right). The model evidence peaks where the two
curves cross.

ferent values of wrama. A small weight leads an ensemble that has a high variability,
while the introduction of the backbone potential with an optimal weight results in an
regular and accurate ensemble. If we keep increasing wrama, we start to introduce
additional helical regions, that disrupt the structures.

Our observations are supported by the Ramachandran plots as well. For
wrama = 5, the Ramachandran plot becomes artificially narrow and peaks in the
helical region. But the Ramachandran plot of the optimal wrama is very close to that
of the crystal structure.

Often, energy functions are assessed on how well they correlate with the RMSD.
We plot the negative log posterior probability, comprising the Lennard-Jones poten-
tial, the Ramachandran potential and a data-dependent term against the RMSD for
values of wrama. The funnel guiding the simulation towards the native ensemble is
much more pronounced with an optimally weighted Ramachandran potential. We
even observe that RMSD and energy become anti-correlated at a large value of
wrama

5.8 Impact on structure quality

Besides the accuracy, we also analysed the effected of the marginal likelihood
maximization on the quality of the different structures. We assessed the quality
using Procheck (Laskowski et al., 1993) and WhatCheck(Vriend, 1990), and show
the values of several validation criteria in Figure 5.12. A complete assessment by

83



5 Optimal combination of statistical potentials in NMR structure calculation

0 1 2 3 4 5

Ramachandran weight wrama

1.5

2.0

2.5

3.0

3.5

R
M

S
D

[Å
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Figure 5.9. Impact on structure ensembles from sparse and noisy NMR data. Panels
A, C show the results for the sparse Fyn-SH3 data set. Panels B, C show the results
for the solid-state data. The top row displays the RMSD distributions with wrama = 0

(white), wrama = 5 (black) and optimal wrama (grey). The grey distribution shown in the
bottom panels is the model evidence as a function of the weight wrama.

84



5.8 Impact on structure quality

A B C 

D E F 

Figure 5.10. Influence of the weight wrama on the structural ensemble of Fyn-SH3
inferred with sparse NMR data. Shown are the conformations and backbone dihedral
distributions generated with different wrama. Panels A-C display structure ensembles
comprising ten randomly selected conformations (grey) superimposed onto the crystal
structure (red). Panels D-F show in black a maximum entropy distribution fitted to the
backbone torsion angles of the structures generated with ISD. The backbone dihedral
angles of the crystal structure are marked by red dots. Panels A and D show the results
for wrama = 0.0, panels B, E: wrama = 0.76 (optimal weight), panels C and F show
wrama = 5.0 (maximum weight probed during replica-exchange simulations).
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Figure 5.11. Energy funnels obtained with the sparse Fyn-SH3 data at different
Ramachandran weights (left: wrama = 0.0, middle: wrama = 0.76, right: wrama = 5.0).
The full ISD energy (negative log-posterior probability) is plotted against the RMSD to
the Fyn-SH3 crystal structure.

Procheck and WhatCheck can be found in Table 5.1. The values are averages of
100 structures per ensemble. All ensembles, even the high-quality ubiquitin data,
are improved though the addition of the Ramachandran potential. The ensemble
favoured by the marginal likelihood represents a compromise between different val-
idation scores. While the Ramachandran score (RAMCHK) continuously rises, oth-
ers decrease with increasing wrama . In general, however, no score is an accurate
indicator of high accuracy structures; none correlates with the RMSD.

We also examine the goodness of fit with the data. The Ramachandran poten-
tial could introduce bias into the calculation process that increases the model error.
Figure 5.13 shows that the estimated model parameters of the data (Habeck et al.,
2006) are largely unaffected if we incorporate the knowledge-based contribution.
The Bayesian choice of wrama does not increase the model error. At higher values
of wrama, the variance and average model increases due to the bias introduced
through the Ramachandran potential.
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Figure 5.12. Influence of the Ramachandran weight on various quality criteria. Shown
is the impact of wrama on WhatCheck validation criteria. Each column reports the results
for a different data set (left column: ubiquitin, middle column: Fyn-SH3 domain, right
column: α-spectrin SH3 domain). Each row shows the evolution of a quality score
with increasing wrama (each dot marks the average of over 100 structures that were
randomly selected from the ISD ensemble, dashed lines are added to guide the eye).
The first row reports the Ramachandran appearance as assessed by RAMCHK. The
second and third rows show WhatCheck’s packing scores. The last row reports the
regularity of the backbone (BBCCK). The grey distribution indicates the model evidence
Pr(D|wrama) as a function of wrama.
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Figure 5.13. Impact on the estimation of model parameters. The red dots and error
bars indicate the estimated error σ of the distance restraints for the sparse distance
data (left) and the noisy restraints measured with solid-state NMR (right). The model
evidence is shown as grey distribution.

Table 5.1. Quality and accuracy of posterior ensembles. The table shows various
validation scores for ubiquitin, Fyn-SH3 and α-spectrin SH3. PDB entries 1ubq, 1shf
and 1shg serve as reference crystal structures. The reported values are averaged over
100 conformations generated with ISD. In every sub-table, the first four rows show the
Ramachandran appearance (as percentages) performed with Procheck. The next four
rows list the WhatCheck Z-scores assessing the quality of packing, the dihedral angle
statistics and the regularity of the backbone. The accuracy of the ensemble is measured
as Cα RMSD between the crystal structure and individual ensemble members or the
ensemble mean.

wrama = 0.0 wrama = wopt wrama = 5.0 X-ray

ubiquitin (1d3z)

Procheck

Core 79.71± 3.78 90.38± 2.84 97.53± 1.21 95.5

Allowed 19.21± 3.82 9.56± 2.82 2.48± 1.21 4.5

Generous 1.00± 1.10 0.06± 0.29 0.00± 0.00 0.0

Disallowed 0.06± 0.29 0.00± 0.00 0.00± 0.00 0.0

WhatCheck

QUACHK −0.90± 0.25 −0.66± 0.21 −0.10± 0.20 1.19

NQACHK −1.51± 0.34 −1.26± 0.34 −1.33± 0.24 −1.66

RAMCHK 0.59± 0.46 0.85± 0.41 1.88± 0.27 0.85

BBCCHK −3.43± 0.57 −1.25± 0.70 3.16± 0.39 1.91
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5.8 Impact on structure quality

Table5.1 – continued from previous page

wrama = 0.0 wrama = wopt wrama = 5.0 X-ray

Accuracy

RMSD [Å] 0.62± 0.06 0.58± 0.06 0.56± 0.04 −
RMSD (mean) [Å] 0.50 0.43 0.46 −

Fyn-SH3 (1zbj)

Procheck

Core 70.17± 5.36 85.22± 3.67 97.60± 1.74 98.0

Allowed 28.75± 5.37 14.64± 3.61 2.32± 1.64 2.0

Generous 1.07± 1.20 0.14± 0.51 0.06± 0.34 0.0

Disallowed 0.02± 0.20 0.00± 0.00 0.02± 0.20 0.0

WhatCheck

QUACHK −3.28± 0.45 −3.11± 0.39 −3.65± 0.66 −0.81

NQACHK −2.00± 0.54 −2.12± 0.55 −3.08± 0.83 2.52

RAMCHK −0.60± 0.43 −0.47± 0.39 0.34± 0.55 0.22

BBCCHK −2.93± 0.73 −1.95± 0.73 2.33± 0.68 −0.91

Accuracy

RMSD [Å] 1.97± 0.28 1.59± 0.18 3.33± 1.08 −
RMSD (mean) [Å] 1.39 1.05 2.53 −
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Table5.1 – continued from previous page

wrama = 0.0 wrama = wopt wrama = 5.0 X-ray

α-spectrin SH3 (1m8m)

Procheck

Core 32.70± 5.79 64.66± 5.43 97.78± 1.44 95.5

Allowed 43.16± 6.90 33.28± 5.55 2.22± 1.44 4.5

Generous 15.84± 4.48 2.02± 1.56 0.00± 0.00 0.0

Disallowed 8.30± 3.84 0.04± 0.28 0.00± 0.00 0.0

WhatCheck

QUACHK −4.60± 0.46 −4.59± 0.39 −3.50± 0.35 −0.44

NQACHK −2.80± 0.51 −2.95± 0.57 −3.00± 0.40 2.83

RAMCHK −2.11± 0.42 −1.71± 0.45 −0.06± 0.44 −0.90

BBCCHK −6.63± 0.50 −5.60± 0.58 1.96± 0.60 −0.14

Accuracy

RMSD [Å] 2.84± 0.29 2.63± 0.24 3.27± 0.25 −
RMSD (mean) [Å] 2.51 2.16 3.25 −

5.9 Conclusion

In this chapter, we introduced a new method that enables the combination of dif-
ferent potential functions in structure calculation. Our approach builds upon the
Bayesian principles and is an application of the algorithm introduced in the previ-
ous chapter. The Bayesian formalism finds an optimal combination of the different
potentials on the basis of the experimental data, which results in more accurate
structures and does not introduce model bias. An optimal weighted Ramachandran
potential can significantly improve the quality of the calculated ensembles as well
as the similarity to the crystal structure. These advantages are especially import-
ant when dealing with noisy and sparse data, where the positive effects are more
pronounced. We found that no universal weight exists that could be applied to all
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data sets. Instead it is advisable to estimate the weight of a potential in the course
of the structure calculation.

In the future, we plan to extend our method to weight multiple statistical energy
terms simultaneously in the course of a structure calculation. The final goal is to
design an efficient and unbiased but highly expressive conformational prior distri-
bution that allows the calculation of high-quality ensembles from very sparse data
sets.
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6
Estimating energy functions from

Boltzmann ensembles

In the following, we focus on the estimation of new potential functions. In the previ-
ous chapter, we studied the influence of potential functions on the structure calcula-
tion process, and found that the addition of a single potential significantly improved
structure calculation. Furthermore, we observed that combining different potential
functions does not necessarily lead to improved accuracy.

The latter point motivated us to investigate new techniques to estimate poten-
tials, whereby physical interactions are used to define a model, but then the model
parameters are estimated from a database of known structures. More formally,
given a set of three-dimensional structures, the task is to find the most likely po-
tential function that gave rise to the observed structures. In statistical physics, this
problem is also known as the inverse problem of statistical mechanics. The solu-
tion to this inverse problem is involved as frequently repeated evaluations of the
partition function are needed, where a single evaluations is often intricate. We in-
troduce an extension of the configurational temperature that allows us to infer a
parameterized approximation of the potential function. Parts of this chapter are
published in Mechelke and Habeck (2013a).
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6 Estimating energy functions from Boltzmann ensembles

6.1 Introduction

As outlined in the previous chapters, potential functions are integral to structure
calculation from NMR data. But this hardly the only application. Potential functions
are at the heart of Molecular dynamics and Monte Carlo simulations that allow sci-
entists insights into biomolecular systems at a level of detail unmatched by experi-
mental methods (Lane et al., 2012). But already small inaccuracies in the potential
function can effect the results and bias simulations towards incorrect conformations
(Freddolino et al., 2009; Wroblewska and Skolnick, 2007; Das, 2011).

The construction of new force fields is an art in itself; the final force field com-
prises several different potential functions with hundreds of interdependent para-
meters. Each of the parameters needs to be carefully tuned to arrive at a good
approximation of the physical reality. Some of the difficulties are related to the tight
coupling of the individual force field terms (Wang and Wade, 2006; Best and Hum-
mer, 2009). Often, a change in one parameter makes a readjustment necessary in
several other.

The goal of force field development is to reproduce experimental measure-
ments like vibrational frequencies and spectra of small molecules (Mackerell, 2004).
Quantum mechanical calculations are used to complement the experimental in-
formation, when needed. Regardless of whether quantum mechanical calculations
or experimental measurements are used, there is a discrepancy between the size
of the system on which the force field is estimated and the size of the proteins to
which the force field is later applied. This discrepancy has sparked a debate on
whether molecular dynamics force fields are really universally transferable (Feig,
2008). Only recently has it become possible to compare force fields in terms of
their ability to fold a protein chain to its native state (Lange et al., 2010; Lindorff-
Larsen et al., 2012).

Statistical potentials follow a different strategy, as they aim to exploit the wealth
of information contained in the thousands of experimentally determined protein
structures (Tanaka and Scheraga, 1976; Miyazawa and Jernigan, 1985; Muñoz and
Serrano, 1994). Although the underlying idea is sound, most approaches make the
assumption that individual potential functions are independent. From what we have
learned in the previous chapters this assumption is not realistic. If a Ramachandran
and Lennard-Jones potential show high correlation, it would be naive to assume
that the Lennard-Jones terms between different atom types are not entangled. Non-
etheless, many current approaches rely on this assumption Hamelryck (2009b),
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6.1 Introduction

they collect database statistics for certain geometric descriptors, such as distances
and dihedral angles, and compute a statistical potential by direct inversion of the
histogram. But the resulting energy functions are, at best, potentials of mean force
and generally differ from the potential energy function.

Rather than to compute statistical potentials, we aim to extract force field para-
meters directly from configurations drawn from the canonical ensemble:

p(x|β) =
1

Z(β)
exp {−βE(x)} (6.1)

where x is the configuration of the system, E(x) is the system’s potential energy, β
the inverse temperature and Z(β) the partition function. The problem of estimating
E(x) from a set of configurations is also known as the inverse problem of statist-
ical mechanics. Statistically speaking, we try to estimate a parametric distribution
papprox(x|λ) that approximates the probability density p(x|β). Although density es-
timation is an extensively problem, the partition functions Z(β) and Z(λ) cannot
be computed analytically and a numerical approximation is often intractable for this
class of problems.

Previous approaches to solve the inverse problem of statistical mechanics en-
compass iterative Boltzmann inversion (Reith et al., 2003), Force Matching (Izvekov
et al., 2004a,b) and reverse Monte Carlo (McGreevy and Pusztai, 1988; Soper,
1996; Lyubartsev and Laaksonen, 1995; Savelyev and Papoian, 2010) techniques.
These methods do not work with p(x|β) but wth related quantities like the distri-
bution of pairwise distances or similar correlation functions. They differ in terms
of which distribution is used and how the parameters are changed depending of
the differences. Thus, in every iteration, an ensemble simulation is necessary
to compute the momentary distribution functions. All methods can be seen as
special cases of the relative entropy formalism (Shell, 2008) as they minimize an
entropic divergence between the true and estimated potential function. The gen-
eralized Yvon-Born-Green (gYBG) method developed by Mullinax and Noid (2009)
provides a powerful alternative. It builds upon the works of Yvon (1935) and Born
and Green (1946) for monatomic fluids, and generalizes the theory to arbitrary
potential functions. One advantage of the gYBG method is that it calculates the
potential energy directly from structural correlation functions and does not involve
repeated ensemble simulations. A drawback of gYBG is that this method needs a
large volume of samples to arrive at accurate estimates.

In this chapter, we extend the configurational temperature formalism (Rugh,
1997; Jepps et al., 2000) to derive a potential energy function. We treat the force
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6 Estimating energy functions from Boltzmann ensembles

constants and other force field parameters as generalized temperatures and derive
a system of linear equations to estimate them from a set of molecular configura-
tions. Furthermore, we study different variants of the configurational temperature
equations and discuss means to improve the transferability of the estimated po-
tentials. We demonstrate the efficacy and accuracy of the approach for simple
systems such as Lennard-Jones fluids as well as a coarse-grained protein model
and a non-bonded knowledge-based potential

6.2 Configurational temperature

Rugh (1997) introduced the configurational temperature to express the thermody-
namic temperature of a system. He showed that this measure is related to the
curvature of the energy surface. This means that we can estimate the temperat-
ure of a system without knowledge of the kinetic energy. Jepps et al. (2000) and
Rickayzen and Powles (2001) extended this proof to yield a new expression for the
temperature of a system based on configurations only.

They defined the temperature in terms of a vector field B(Γ):

〈B(Γ) · ∇Γh(Γ)〉Γ = 〈∇Γ ·B(Γ)〉Γ (6.2)

where Γ and ∇Γ denote the vector of phase space variables and their derivatives.
h refers to the reduced Hamiltonian, h(Γ) = − log p(Γ) + const.. This expression
for the temperature (Equation 6.2) is valid for both, the micro- and macrocanonical
ensembles. The requirements for the vector field are fairly relaxed: it has to hold
that 0 ≤ ‖∇Γh(Γ)B(Γ)‖ ≤ ∞ and 0 ≤ ‖∇ΓB(Γ)‖ ≤ ∞.

If we restrict B to vector fields that do not depend on the momenta and are
zero in all directions of the momenta, we arrive at a general formula of Jepps et al.
(2000) for the configurational temperature,

〈B · ∇v〉 = 〈∇ ·B〉 (6.3)

where v(x) is the reduced potential energy, and B(x) is that vector field that only
depends on the configuration and for which the above restrictions apply. The oper-
ator ∇ is the gradient with respect to x and ∇ · B is the divergence of the vector
field. The brackets 〈·〉 denote the configuration average:
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6.3 Estimation of interaction potentials

〈f〉 =
1

Z

∫
f(x) e−v(x) dx where Z =

∫
e−v(x) dx.

If we choose v(x) = βE(x) with β = (kBT )−1 we arrive at the configurational
temperature:(Jepps et al., 2000)

β =
〈∇ ·B〉
〈B ·∇E〉 . (6.4)

Now, the only choice left is the vector fieldB. The typical choice isB(x) = ∇E(x),
which gives the temperature as an average of the configurations independent of
the kinetic energy Jepps et al. (2000)

1

kBTconfig
=
〈∇ ·∇E〉x
〈∇E ·∇E〉x

.

6.3 Estimation of interaction potentials

We now generalize the configurational temperature to estimate potentials. For this
we assume that the configurations follow a Boltzmann distribution:

p(x|λ) =
1

Z(λ)
exp {−v(f(x);λ)− f0(x)} , Z(λ) =

∫
exp {−v(f(x);λ)− f0(x)} dx

(6.5)

with a interaction potential v. We assume that v depends on a configuration x
through K features fk, k = 1, . . . ,K, for example, angles or pairwise distances.
The parameter λ controls the shape of the potential and Z(λ) is the partition func-
tion or normalization constant. The reference potential f0(x) is an arbitrary energy
that we assume to be known; for example, we could let f0(x) be constant, or f0(x)

could be a reference distribution that already accounts for some interactions. Fur-
ther, we assume that the potential function v is a linear combination of the paramet-
ers: v(f(x);λ) = λT f(x) =

∑K
k=1 λkfk(x). Although this choice seems restrictive

at first, it still allows us to include all of the commonly used force field terms. The
canonical ensemble (6.1) is a special case of this formulation with a single feature
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6 Estimating energy functions from Boltzmann ensembles

f that comprises the force field and a scalar λ that represents the inverse temper-
ature.

For this special case, the connection to the configurational temperature formal-
ism is clear. For a vectorial fk and λk Equation 6.3evaluates to the identity.

〈B · ∇(λT f + f0)〉λ = 〈∇ ·B〉λ

where we use the angle brackets 〈·〉λ to denote the ensemble average (6.5) and
the subscript to indicate the dependence on λ. Again, for the choice of vector field
B(x) the same weak conditions apply (Jepps et al., 2000). We choose a series of
vector fields Bk, one for each expansion coefficient λk, to obtain

K∑
l=1

λl 〈Bk · ∇(fl + f0)〉λ = 〈∇ ·Bk〉λ, k = 1, . . . ,K (6.6)

This system of linear equations is a multi-temperature generalization of the config-
urational temperature relation (6.4) and determines the parameters λ by solving:

K∑
l=1

Aklλl = bk with Akl = 〈Bk · ∇fl〉λ, bk = 〈∇ ·Bk −Bk · ∇f0〉λ. (6.7)

We propose thee vector fields Bk to estimate potentials:

Bk(x) = ∇fk(x)/‖∇fk(x)‖n, n = 0, 1, 2 (6.8)

where ‖ · ‖ indicates the Euclidean norm of configuration space vectors. In order to
evaluate the configurational temperature equations (6.7), we need to compute the
divergence of Bk:

∇ ·Bk(x) =
∆fk(x)

‖fk(x)‖n − n
∑

i,j(∂ifk(x)) (∂i∂jfk(x)) (∂jfk(x))

‖∇fk(x)‖n+2
(6.9)

where indices i, j enumerate all configurational degrees of freedom and ∂i indic-
ates a partial derivative along the ith coordinate (i.e. ∂i∂jfk(x) is the Hessian
matrix of the kth feature); ∆ is the Laplace operator. We turn the above equations
into estimators of the force field parameters λ from sampled configurations x(t), by
replacing the ensemble averages in equation (6.7) with sample averages:
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6.3 Estimation of interaction potentials

Akl ≈
1

T

T∑
t=1

Bk(x
(t)) ·∇fl(x

(t)), bk ≈
1

T

T∑
t=1

∇ ·Bk(x(t))−Bk(x(t)) ·∇f0(x(t)

(6.10)

If we chose the vector field Bk = ∇fk, we find similarities to other methods in
statistical physics and machine learning. Equation 6.10 can also be derived from
score matching Hyvärinen (2005). Score matching is a method that allows one to
estimate continuous probability densities with intractable normalization constants.
For the same choice of Bk, the configurational temperature equation (6.7) can be
derived from the gYBG equations ((Mullinax and Noid, 2009, 2010).

Lennard-Jones fluid

We demonstrate the effectiveness of our method on well understood systems. The
first model system is a monatomic Lennard-Jones fluid. The simulation was carried
out using the Molecular Modelling Toolkit (Hinsen, 2000). The system comprises
864 argon atoms that were simulated in an NVT ensemble at 86.0K with peri-
odic boundary conditions. After equilibration, we simulated the system for 2000
timesteps of 10 fs each. For the analysis, we considered every 100th sample to
minimize the correlation between the samples. Recall that all interactions within
this system are described by a Lennard-Jones potential:

EL-J(r) = 4ε

[(
σ

r

)12

−
(
σ

r

)6]
(6.11)

where σ determines the location of the minimum and ε its depth. Thus, the total
potential energy is E(x) =

∑
i<j EL-J(‖xi−xj‖) where xi is position of the ith atom.

We aim to estimate the parameters ε and σ. Using some simple algebra we rewrite
the potential 6.11 and use r−6 and r−12 as basis functions fk

f1(x) =
∑
i<j

‖xi − xj‖−6 and f2(x) =
∑
i<j

‖xi − xj‖−12 (6.12)

with the corresponding parameters:

λ1 = −4βεσ6 and λ2 = 4βεσ12. (6.13)

From λ1, λ2 and the known temperature T , we can compute ε and σ.
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6 Estimating energy functions from Boltzmann ensembles

We estimated the parameters ε and σ from 20 configurations using the outlined
approach. Furthermore, we used each of the configurations to get an estimate
of ε and σ from a single configuration In Figure 6.1A we illustrate the estimated
potentials. The different choices for the vector fields Bk (Equation 6.8) result in
very similar estimates. However, for reasons of clarity, we only show the results for
Bk = ∇fk. The estimate obtained from a single configuration of the system already
provides a good approximation of the potential.

In this experiment we used the same features for simulation and estimation. For
practical purposes it is unrealistic to assume knowledge of the ”correct” set of basis
functions. As solution we propose using a weighted sum of Laguerre polynomials.
These functions form an orthonormal system and constitute a basis for all functions
on the non-negative axis. The Laguerre polynomials Lk(r) are defined as

Lk(r) =
er

k!

dk

drk

(
e−rrk

)
.

We choose

fk(r) = e−r/2 Lk(r)

because then our features are orthonormal
∫∞

0 fk(r) fl(r) dr = δkl.

We truncated the Laguerre polynomials after the first 20 elements K = 20. The
potential energy of a configuration is now expressed by

ELaguerre(x) =

K∑
k=1

λk

{∑
i<j

Lk(‖xi − xj‖) e−
‖xi−xj‖

2

}
(6.14)

We use this representation to estimate the corresponding λ1...20 from the argon
simulation. The estimated Laguerre potentials are shown in Figure 6.1B. Although
the estimated potential show a higher variance, they are still able to approxim-
ate the underlying Lennard-Jones potential accurately. This becomes more visible
for estimates from a single configuration, in which the potential exhibits a higher
spread.

As a reference, we provide the corresponding potential of mean force (PMF)
as proposed by Miyazawa and Jernigan (1985) in Figure 6.1C. The PMF poten-
tial is computed through inversion of the radial distribution function. PMFs are
still commonly used as potential function in biomolecular simulation and prediction
(Miyazawa and Jernigan, 1985; Sippl, 1995). However, PMFs technically represent
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Figure 6.1. Lennard-Jones potential estimated from a simulation of liquid Argon. A:
Configurational temperature estimates using the correct features of the Lennard-Jones
potential. B: Configurational temperature estimate based on a Laguerre representation
of the potential using the 20 first Lagurre polynomials. C: PMF obtained by the inverse
Boltzmann law applied to the radial distribution function. The black solid lines indicate
the true potential used in the simulation of the Argon fluid. In Panels A and B, the grey
dashed curves indicate the potentials recovered from single configurations, the red solid
line is the result based on all 20 structures.

the mean energy of changing a single particle in a multi-particle system (Chandler,
1987).

Impact of simulation temperature

The liquid argon lends itself for further analysis. Next, we wish to investigate
how the fluctuations of the thermal noise influence the prediction accuracy. To
this end, we simulated argon at temperatures starting from 5.0K and increasing
to 140.0K in 5.0K steps. For estimation, we used 20 conformations per temper-
ature. The accuracy of the potential depending on temperature and the choice
of the vector field Bk is show in in Figure 6.2. The three different vector fields
Bk(x) = ∇fk(x)/‖∇fk(x)‖n, n = 0, 1, 2 show a similar accuracy. At higher tem-
perature the error increases, due to thermal noise. Only at very low temperatures,
when we only explore the ground state of the system, does the estimation of the
potential break down.
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Figure 6.2. Prediction accuracy dependence on system temperature. We show the
mean squared error (MSE) between the true potential function in the range of 3 to 10

Å for r−6 and r−12 basis functions. The figure on the right shows the influence of a
regularization term on the accuracy of the Laguerre basis.

Impact of basis functions

We introduced Laguerre polynomials to fit arbitrary distance-dependent potentials.
An important parameter is the number of Laguerre polynomials used. If we use
too many polynomials, the linear equation (Equation 6.7) becomes increasingly ill-
conditioned. Furthermore, it becomes increasingly likely to overfit the data. But
if we break off the series expansion too early, the power of the approximation is
limited. Therefore, we need a rational method to choose the number of Laguerre
polynomials.

Estimating the potential boils down to solving of a system of linear equations
(6.7). We recast this as a least squares optimization problem min ‖A − bλ‖2, for
reasons of numerical stability. This opens new venues, as it is common to use
regularization techniques in least squares problems. Adding a regularization term,
can also be interpreted as imposing a prior probability on λ. Here, we want to
encourage a sparse encoding with as few parameters as possible. Thus, we use a
Gaussian prior, where the variance is inverse proportional on k. The functional we
minimize is

‖Aλ− b‖2 + α
K∑
k=1

k2 λ2
k

where α is the strength of the regularizer. Instead of choosing α ad hoc we use an
iterative scheme (Besag, 1986) in which we cycle through conditional updates of λ
and α. For fixed α we use the LSQR-Algorithm to update λ; for fixed λ we treat α as

102



6.3 Estimation of interaction potentials

the precision of a Gaussian distribution and calculate the update analytically. Fig-
ure 6.2 compares the accuracy of the optimized regularization scheme denoted by
αopt to the arbitrary choice of α = 1. The optimization of α increases the accuracy
with little computational cost.

We test this procedure on the 20 snapshots of the liquid argon simulation. The
accuracy depending on expansion coefficient is shown in Figure 6.2.

The accuracy of the reconstructed Lennard-Jones potential strongly depends
on the maximum number of Laguerre features. In the absence of the regularizer,
the problems quickly become ill-conditioned, while the accuracy with the additional
regularization term is lower on average. Such a trade-off is commonly observed if
a regularization parameter is introduced.

Diatomic fluid

Next, we increase the complexity of the system under investigation by introducing
a second atom species. The system now consists of 432 argon and 432 neon
atoms, whose dynamics are described using Lennard-Jones potentials with differ-
ent parameters for each pair of atom types. All other parameter are held fixed. To
recover these potentials, we need three different interactions (argon-argon, argon-
neon, neon-neon) and two features per interaction r−6 and r−12. The parameters
of the potentials are recovered as before by solving A · λ = b for λ.

The results for diatomaic fluid are illustrated in Figure 6.3. From 50 samples of
the systems, the method is able to recover the parameters of the Lennard-Jones
potentials with good accuracy. A single snapshot gives a rough estimate of the
potential form.

In order to determine the potential function, we solve Aλ = b by least squares
minimization. From a probabilistic perspective, this is similar to fitting a multivariate
Normal distribution with a covariance matrix (AAT )−1. A graphical representa-
tion of this matrix can be found in Figure 6.3D. This matrix represents our initial
assumption that all parameters of this model are interdependent.
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Figure 6.3. Estimated potentials (red broken line) compared to the true potentials
(black line) and estimates from single conformations(grey) for the diatomic fluid. A:
argon-argon potential. B: argon-neon potential. C: neon-neon potential. D: Hinton
diagram where the colour (black/white) indicates the sign (negative/positive) of the
covariance and the area of the rectangles is proportional to the magnitude.

Coarse-grained protein model

The next model system is a simplified protein model that is simulated using a
coarse grained force field (Honeycutt and Thirumalai, 1990; Sorenson and Head-
Gordon, 2002). Each amino acid is represented by a single bead, that is either
hydrophobic (B), hydrophilic (L), or neutral (N). The beads are connected by bonds
that form the protein backbone. An attractive Lennard-Jones potential between the
hydrophobic beads drives compaction of the polypeptide chain, whereas the non-
bonded interaction between all other beads is purely repulsive. To emphasize the
chain geometry a harmonic potential on bond lengths and angles is used. Sec-
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6.3 Estimation of interaction potentials

ondary structure elements are not the result of hydrogen bonds, but depend on
the sequence and are enforced through a dihedral angle potential. The potential
energy E(x) is given by:

E(x) =
∑

r∈ bonds

kbonds(r − r0)2

+
∑

θ∈ bond angles

kangles(θ − θ0)2

+
∑

ϕ∈ dihedrals

[a (1 + cos(ϕ)) + b (1 + cos(3ϕ))]

+
∑

non−bonded rij

4εij

[(
σij
r

)12

−
(
σij
r

)6]

We use a protein with the sequence B9N3(LB)4N3B9N3(LB)5, that forms a barrel-
like tertiary structure. We used the GROMACS 4.0 (Hess et al., 2008; Berendsen
et al., 1995) software to carry out the simulations. All simulations were run using
a stochastic thermostat and a step size of 0.01ns. The system was simulated at
reduced units with all particles having unity mass and a temperature of T = 0.28 As
initial configuration an extended conformation is used. After an equilibration phase
of 50000 steps, we considered every 500th configuration for further analysis.

Even though we use a simplified model, the potential functions have the same
complexity as an all-atom force field. The Honeycutt-Thirumalei model (HT model)
even shows an energy landscape comparable to real proteins Brown et al. (2003).
We will now use our configurational temperature framework to estimate the para-
meters of the HT model. But we must first to rearrange the potential of the HT-
model into the linear features needed for the configurational temperature estim-
ation. We already demonstrated this for the Lennard-Jones model and use two
features, r−6 and r−12 to estimate the parameters of the hydrophobic interactions
and r−12 for all other non-bonded interactions. The gradient of the features is
non-zero only for the correct interaction type, or if the interaction beads are less
then three bonds apart. The bond and bend potentials can be expressed as r2,
r and θ2, θ, respectively. The original parameters are recovered as kbonds = λr2

and r0 = −λr/2λr2 . We use the same rearrangement for kangles and θ0. For the
parameters for the torsion angle potential, a and b, no transformation is necessary;
cos(ϕ) and cos(3ϕ) can directly be used as features.

We generated 5000 conformations of the β-barrel-like structures comprising 76
beads. The estimated and true potential, together with the differences between
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Figure 6.4. Estimated potentials (red broken line) compared to the true potentials (black
line) with insets showing the error.

both, are shown in Figure 6.4. Overall, the estimated potentials provide a very
close fit, with only minimal error in sparsely sampled regions of the torsion potential.

Again, we solve Aλ = b by least-squares minimization. The covariance matrix,
given by (AAT )−1, provides insight into the dependence of the force field terms.
A graphical representation of this matrix can be found in Figure 6.5. It shows that
there is considerable interdependence between the features. In particular, the bond
and bend potentials are coupled tightly with the Lennard-Jones features.

We test the importance of the covariances by a simple experiment; to recover
the individual potentials we use the part of the matrix, that corresponds to the para-
meters of the potential. For example, to estimate the B-B potential we use only the
r−6

B−B and r−12
B−B entries of A and b, which reduces our problem to a system of linear

equations given by a 2× 2-matrix and a vector of size 2. The potential function es-
timated with reduced interdependence shows systematic errors in the non-bonded
potential (Figure 6.5). In addition, the location of the minima of the bond length
and bond angle terms as well as the strength of the dihedral potentials show a
significant error.

Figure 6.6 demonstrates how the number of conformations influences the accur-
acy of the reconstructed potential function. Even with as few as 500 conformations,
we are already able to reconstruct a good approximation of the force field, except
in the case of dihedral potentials that suffer from poor sampling.
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6.3 Estimation of interaction potentials
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Figure 6.5. A: Hinton diagram showing the covariances (AAT )−1 between the force
field terms. The colour (black/white) indicates the sign (negative/positive) of the cov-
ariance, and the area of the rectangles is proportional to the magnitude. The features
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Figure 6.6. Mean squared error of the estimated force field depending on sample size.
Mean error and standard deviation were determined based on five non-overlapping sets
of structures.

Cβ potential for proteins

Next, we employ the configurational temperature method to infer a distance-
dependent potential between the Cβ of proteins. In this practical applica-
tion, we know neither the correct potential nor the basis function. We chose
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6 Estimating energy functions from Boltzmann ensembles

r−4, r−6, r−8, r−10 and r−12 as basis functions fi. This choice is flexible enough
to model functions and quick to implement. Furthermore, we used a r−4, r−6 in-
teraction potential, a variant of the well known Lennard-Jones potential to model
hydrogen bonds (Fabiola et al., 2002). The centre of the interaction is the Cβ
atom of each residue, except for glycine where the Cα atom is used instead. We
exclude all 1-2, 1-3 and 1-4 atom pairs from the interactions. Furthermore, we
use a Lennard-Jones potential as implemented in the Rosetta structure prediction
software (Kuhlman et al., 2003) as reference potential f0. We can estimate four
different potentials, 4 − 6 and 4 − 6 − 8 − 10 − 12 with and without the reference
potential f0.

The potentials are estimated from the PDBselect25 (Griep and Hobohm, 2010)
comprising 3119 chains with 356088 residues. One key assumption that we must
additionally, is that all these structures were generated by the same underlying
energy function at similar temperatures. Whether this assumption is valid is an
ongoing debate Ben-Naim (1997).

The resulting interaction potentials for alanine are shown in Figure 6.7. The
reference potential f0 has only a minor effect on the configurational temperature
potentials; it decreases the depth of the potential slightly. The difference between
the 4− 6 and 4− 6− 8− 10− 12 potentials is more articulated; 4− 6 potentials are
either purely repulsive or unimodal; 4−6−8−10−12 potentials have up to two min-
ima with very steep potential wells. The functional form of some 4− 6− 8− 10− 12

potential seems to mimic the strong anisotropic effects observed in side chain in-
teractions (Buchete et al., 2004). To include the orientation-dependent interaction
a basis set that uses more interaction centres per amino acid is needed. For ex-
ample, the MARTINI force field (Monticelli et al., 2008) uses up to four interaction
centres per amino acid.

The accuracy of statistical potentials is often measured by their ability to identify
the native structure as the lowest energy structure among a set of decoys. We com-
pare our conformational temperature potentials to six all-atom knowledge-based
potentials; the Random walk potential (RW) (Zhang and Zhang, 2010), the RAP-
DAF potential (Samudrala and Moult, 1998), the Dope potential (Shen and Sali,
2006), the HA_SRS potential (Rykunov and Fiser, 2010), the Dfire potential (Zhou
and Zhou, 2002) and the quasi-chemical knowledge-based potential (KBP) (Lu
and Skolnick, 2001). We also include the Lennard-Jones reference potential f0 in
the comparison. We used the CASP decoy set (Rykunov and Fiser, 2010), which
comprises 148 targets collected from previous CASP competitions with 2,628 de-
coys, and the fisa decoy set (Samudrala and Levitt, 2000) with five targets and
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6.3 Estimation of interaction potentials
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−2

−1

0

1

2

3

4 5 6 7 8 9 10

Distance Ala-Cys [Å]
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−2

−1

0

1

2

3

E
ne

rg
y

4 5 6 7 8 9 10
Distance Ala-Ile [Å]
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−2

−1

0

1

2

3

4 5 6 7 8 9 10
Distance Ala-Pro [Å]
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Figure 6.7. Estimated Cβ potentials for Alanine. We show the estimated 4−6 potentials
with (cyan) and without (black) reference potential and 4− 6− 8− 10− 12 potentials
with (red) and without (blue) reference potential.
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Figure 6.8. Performance of the CT potential in the CASP and fisa benchmarks

more than 1,400 decoys as test sets. The results shown in Figure 6.8 illustrate
that the conformational temperature potentials are competitive with the all-atom
knowledge-based potentials. Surprisingly, the 4− 6 potential outperforms the more
flexible 4 − 6 − 8 − 10 − 12 potential. Whether this can be attributed to overfitting
of the 4− 6− 8− 10− 12 potential, shortcomings in the assessment or unjustified
assumption assumptions will have to be investigated in future research. In general,
it seems that decoy discrimination tests, although common in the field, are often un-
able to discern good and bad potential functions, as the decoys differ substantially
from the native protein.

The results on the fisa decoy set highlight the ability of the reference potential
to take additional physics-based interactions into account. In this test set, all de-
coys show severe clashes that are easily detected by the reference force field but
overlooked by the statistical potentials.

6.4 Conclusion

We present an extension of the configurational temperature formalism that allows
us to estimate potential functions from ensemble averages. Our method is applic-
able to a wide range of systems and does not involve additional simulations. It
scales well with the number of configurations and is amenable to standard regular-
ization techniques to avoid overfitting and ill conditioning.

Future research will focus on the derivation of a non-bonded potential for pro-
teins as well as its application to protein simulation and structure determination.
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7
Conclusions

The goal of this thesis was to develop and apply Bayesian methods that facilitate
the interpretation of data obtained from NMR experiments and allow new insights
into protein structures.

In the first chapter, we tackled the prediction of secondary structure elements
from assigned chemical shifts. We tried to avoid the pitfalls of "black box"-like ap-
proaches that obfuscate the relationship between chemical shift and secondary
structure through complex algorithms, and attempted to develop a principled and
transparent algorithm for solving this well-studied problem. Using hidden Markov
models to represent the relationship between shifts and secondary structure, we
are able to predict secondary structure with high accuracy from chemical shifts.
The use of probabilistic models is a natural choice as they are able to deal with
missing chemical shifts, incorporate evolutionary information and still achieve a
higher performance than competing algorithms. We noticed that a second-order
HMM, in which the current state depends on the preceding two states, does not
lead to a higher prediction accuracy. Thus, it seems that the chemical shift of a
residue largely depends on the secondary structure of that residue with very little
interference from neighbouring residues. Aside from regular secondary structure,
the probabilistic nature of our algorithm enables us to identify and quantify transi-
ently forming secondary structure elements in intrinsically unstructured proteins.

Encouraged by this success, we extended the HMM to predict backbone torsion
angles from chemical shifts, but achieved mixed results. Although our approach is
competitive with similar algorithms, predicting approximately 65% of all residues
within 30◦ of the observed dihedral angle, there is a lot of room for improvement. It
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7 Conclusions

is left to future projects to investigate whether more powerful methods like Markov
random fields (Kindermann et al., 1980) or Hilbert space embedding (Song et al.,
2010) are able to solve the problem more satisfactorily. In general, it should be
possible to predict dihedral angles accurately from chemical shifts; for instance,
the approaches of Cavalli et al. (2007) and Shen et al. (2008) can accurately fold
small protein structures close to their native state guided by potential functions and
chemical shifts.

Potential functions are often used in computational structure biology as prior
information to interpret experimental data. But in structure prediction, it is often
unclear what temperature or weight we should assign to the potential function, as
many potential functions lack a physical basis for choosing a temperature. This
motivated us to investigate the general problem of how to assign an optimal weight
to a prior distribution in Bayesian data analysis. Although the prior distribution is
an integral part of Bayesian statistics, the weight of the prior is usually inferred via
cross-validation or set ad hoc. To offer a more objective choice, we introduce a
method to find the optimal weight of the prior in a data-driven way based on rep-
lica exchange Monte Carlo algorithms and histogram reweighting techniques. A
strength of our method is that it makes no assumptions on the functional form of
the prior and likelihood, and is applicable to all data analysis problems in Bayesian
statistics that have a closed form expression of the posterior. Nevertheless, the ver-
satility of the algorithm comes at a price: for our algorithm to work, we need to gen-
erate samples from tempered posterior and prior distributions. The computational
cost of the extended sampling makes the algorithm prohibitive slow for some ap-
plications. The approach could be improved in terms of computational efficiency by
using different sampling algorithms like Hamiltonian annealed importance sampling
(Sohl-Dickstein and Culpepper, 2012) and nested sampling (Skilling, 2004). Des-
pite these hurdles, we applied our algorithm successfully to structure calculation
and image analysis. The latter is an especially interesting topic for further applic-
ations of our algorithm. In particular, it has been show that the prior distribution
in imaging applications can drastically improve reconstruction and superresolution
methods (He et al., 2011).

Another application of this algorithm to structure determination is shown in
Chapter 5, where we infer the weight of a new Ramachandran potential in the pres-
ence of a Lennard-Jones potential. The optimal combination of both force fields
leads to more accurate structures from noisy and sparse NMR data. Furthermore,
our findings suggest that no universally optimal weight exists and that the weight
should be determined based on the experimental data. We found that, in the case
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of low-quality data, the weight of the statistical force field should be decreased be-
cause the forces that guide the ensemble towards the correct structure are weaker
with low-quality data than with high-quality data. Our approach gives the data a
chance to speak for itself and not be overwhelmed by the prior. Although the run-
time requirements make widespread use of Bayesian model comparison difficult,
one should keep these conclusions in mind when dealing with noisy data. Fu-
ture applications will include the combination of additional potentials that model
hydrophobic interactions (Lazaridis and Karplus, 1999; Ferrara et al., 2002) and
hydrogen bonding (Kortemme et al., 2003), both being important forces in protein
folding (Dill, 1990). The optimization of more than one potential is challenging, as
we need to use multidimensional replica-exchange methods (Sugita et al., 2000) to
sample configurations for a predefined set of weights. The sampled energies are
used in a later maximization step that determines the optimal weight. However, in
the case of multidimensional replica-exchange methods the number of ensembles
from which we need to sample grows exponentially with the number of potentials.
A less demanding alternative, that does not suffer from the ”curse of dimension-
ality”, is the exploration of the extended ensemble using different combinations of
techniques like Gaussian Process upper-confidence bounds (Srinivas et al., 2009)
or nested sampling (Skilling, 2004).

Many biological processes take place at different length scales; changes at
a molecular level are propagated upward in scale to effect large biological units.
The analysis of large proteins by accurate physics-based potential function is often
intractable due to the large number of degrees of freedom involved. If we want
to calculate structures of large molecular assemblies with ISD, we need potential
functions that provide an accurate description of biological processes across differ-
ent scales and are based on a reduced set of variables. To this end, we introduced
an extension of the configurational temperature formalism that allows us to estim-
ate coarse-grained and atomic interaction potentials from molecular configurations.
Over the course of this project, we uncovered several interesting connections to
existing methods in machine learning (Hyvärinen, 2005) and coarse graining (Mul-
linax and Noid, 2010) that are special cases of the configurational temperature
formalism we introduced. The comparison with several potentials of mean force
indicates that our method is competitive in accuracy, yet does not suffer from the
idiosyncrasies (Ben-Naim, 1997) of potentials of mean force and leads to analytic-
ally tractable potential functions that can be used in molecular dynamics and ISD.
Based on the configurational temperature formalism, we will further explore the use
of new coarse-grained and atomic-resolution potentials in structure calculation.

113



7 Conclusions

In summary, we hope that our contributions taken together will improve structure
calculation and, ultimately, help biologists to gain new insights into protein structure
and function.
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Appendix A
Chemical shift

A.1 Influence of individual chemical shifts on the prediction

accuracy

Incomplete chemical shift assignments are often encountered in chemical shift lists.
A good prediction method should also work with partial chemical shift assignments.
To study this issue, we systematically removed measurements from a nearly (≥
90%) complete test set and predicted the secondary structure using a zero and
first order HMM with Gaussian emissions. The influence of missing nuclei on the
prediction accuracy is listed in Tables A.1 and A.2.
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A Chemical shift

Table A.1. Influence of missing chemical shifts for all combinations of nuclei on the
prediction accuracy of the zero order HMM.

Observed chemical shift(s) Q3-score H E C

C 67.6 76.5 65.4 63.6
N 54.9 62.8 50.2 52.7
CA 68.7 83.4 68.5 61.7
CB 58.3 78.7 67.2 41.3
HA 65.6 80.3 74.4 52.4
C N 69.4 79.9 69.7 62.9
C CA 73.0 84.9 73.8 66.1
C CB 69.5 83.0 72.3 58.2
N HA 68.8 84.2 79.4 51.3
CA N 71.1 85.7 72.2 62.7
CB N 62.0 83.2 77.9 37.2
C HA 74.5 84.6 77.5 65.7
CA CB 71.0 85.6 76.3 59.1
CB HA 67.4 81.9 77.4 53.3
CA HA 73.5 86.1 75.7 64.4
C CB N 72.0 84.9 79.8 56.2
C N HA 76.3 86.1 81.5 64.9
C CA N 74.9 86.4 77.7 66.7
CA CB N 74.0 87.4 82.4 59.4
C CA HA 76.5 87.1 78.0 67.9
C CB HA 75.1 85.0 78.9 65.8
CB N HA 70.5 84.8 82.4 52.9
C CA CB 73.8 86.5 76.1 63.2
CA N HA 75.9 87.7 80.4 64.4
CA CB HA 74.7 86.1 78.0 65.9
C CB N HA 76.9 86.5 83.3 64.8
C CA CB N 76.4 87.8 82.1 63.0
C CA N HA 78.4 88.1 81.8 68.2
C CA CB HA 77.2 86.9 79.5 68.8
CA CB N HA 77.2 87.7 82.6 66.2
C CA CB N HA 79.1 88.0 83.6 68.7
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A.1 Influence of individual chemical shifts on the prediction accuracy

Table A.2. Influence of missing chemical shifts for all combinations of nuclei on the
prediction accuracy of the first order HMM.

Observed chemical shift(s) Q3-score H E C

- 49.5 91.0 11.4 43.2
C 76.9 84.2 65.5 77.4
N 67.6 85.6 57.8 61.9
CA 80.1 85.4 68.9 81.5
CB 73.3 84.8 73.0 66.1
HA 78.3 85.2 74.1 75.9
C N 78.5 86.3 71.3 77.0
C CA 81.5 86.2 73.4 82.3
C CB 79.5 86.2 75.4 76.8
N HA 80.2 87.9 80.3 74.4
CA N 80.7 87.4 73.4 80.1
CB N 76.6 87.5 81.1 66.0
C HA 81.9 86.4 77.1 81.2
CA CB 81.7 86.2 76.8 81.2
CB HA 79.1 85.1 77.5 76.0
CA HA 83.0 86.9 75.2 84.2
C CB N 81.2 87.8 82.4 75.0
C N HA 83.4 87.8 82.5 80.2
C CA N 82.6 87.5 77.6 82.0
CA CB N 83.1 88.3 83.5 79.0
C CA HA 83.3 87.4 77.3 83.6
C CB HA 82.2 86.5 79.1 80.8
CB N HA 81.2 87.8 83.1 75.1
C CA CB 82.4 87.0 78.3 81.3
CA N HA 84.0 88.6 80.7 82.3
CA CB HA 83.0 86.7 77.6 83.3
C CB N HA 83.7 88.1 84.2 79.7
C CA CB N 83.7 88.4 83.9 79.7
C CA N HA 84.7 88.7 82.6 82.6
C CA CB HA 83.8 87.3 79.4 83.2
CA CB N HA 84.2 88.5 83.0 81.8
C CA CB N HA 84.8 88.6 84.2 82.1

117





Appendix B
Derivations

B.1 Divergence of the test functions Bk in Boltzmann inver-

sions

In Chapter 6 we showed how derive the divergence of Bk = ∇fk, but left the de-
rivation of the divergence of Bk = ∇fk

‖∇fk‖ and Bk = ∇fk
‖∇fk‖2 unanswered. Here,

we quickly demonstrate how to derive these divergences starting starting with
Bk = ∇fk

‖∇fk‖2 .

(∇f)T∇||∇f ||−2 = (∇f)T∇ 1

(∇f)T∇f

= − (∇f)T

[(∇f)T∇f ]2
∇[(∇f)T∇f ]

= −2
(∇f)T

[(∇f)T∇f ]2
(∇∇T f)∇f

= −2
(∇f)T (∇∇T f)∇f

‖∇f‖4

= −2

∑
ij(∂if)(∂i∂jf)(∂jf)

‖∇f‖4

where ∇∇T f is the Hessian of f and ∂if = ∂f
∂xi

. In the third step, we use the fact
that

∇[(∇f)T∇f ] = 2(∇∇T f)∇f
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B Derivations

which follows from the fact that for two vector valued functions F and G (i.e. F (x) =

(F1(x), . . . , Fn(x))T ), we have:

∇(F TG) = (∇F T )G+ (∇GT )F

where ∇F T is the Jacobian matrix with entries ∂iFj .

Yet another feature would be Bk = ∇fk
‖∇fk‖ with divergence:

∇ ∇fk‖∇fk‖
=

∆fk
‖∇fk‖

+ (∇fk)T∇‖∇fk‖−1

=
∆fk
‖∇fk‖

+ (∇fk)T∇[(∇fk)T (∇fk)]−1/2

=
∆fk
‖∇fk‖

− 1

2
(∇fk)T [(∇fk)T (∇fk)]−3/2∇[(∇fk)T (∇fk)]

=
∆fk
‖∇fk‖

− (∇fk)T (∇∇T fk)(∇fk)
‖∇fk‖3

We now consider expansion:

v(x) = λ · f(x) + g(x)

and a series of vector fields

Bk(x) = ∇fk(x), k = 1, . . . ,K.

We obtain the following system of equations:

〈∇fk ·∇(λ · f + g)〉X = 〈∆fk〉X , k = 1, . . . ,K. (B.1)

where ∆ = ∇ · ∇ is the Laplace operator. This is a linear system of equations
determining the expansion coefficients λk:

A · λ = b, Akl = 〈∇fk ·∇fl〉X , bk = 〈∆fk −∇fk ·∇g〉X . (B.2)

Clearly, A is a positive semi-definite K ×K matrix.
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Appendix C
Publications

Ideas and figures have previously appeared in the following publications:

• M. Mechelke and M. Habeck. Robust probabilistic superposition and compar-
ison of protein structures. BMC Bioinformatics. 2010 Jul;11:363.
URL http://www.ncbi.nlm.nih.gov/pubmed/20594332.

• I. Kalev, M. Mechelke, K.O. Kopec , T. Holder, S. Carstens, and M. Habeck.
CSB: a Python framework for structural bioinformatics. Bioinformatics. 2012
Nov;28(22):2996.
URL http://www.ncbi.nlm.nih.gov/pubmed/22942023.

• M. Mechelke and M. Habeck. Calibration of Boltzmann distribution priors in
Bayesian data analysis. Phys Rev E. 2012 Dec;86(6 Pt 2):066705.
URL http://www.ncbi.nlm.nih.gov/pubmed/23368076.

– Text and figures from this manuscript appear in Chapter 3 of this thesis.

• M. Mechelke and M. Habeck. A probabilistic model for secondary structure
prediction from protein chemical shifts. Proteins. 2013 Jun;81(6):984-93.
URL http://www.ncbi.nlm.nih.gov/pubmed/23368076.

– Text and figures from this manuscript appear in Chapter 2 of this thesis.
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• M. Mechelke and M. Habeck. Estimation of interaction potentials through the
configurational temperature formalism. J. Chem. Theory Comput., 2013 Dec;
Epub ahead of print.
URL http://pubs.acs.org/doi/abs/10.1021/ct400580p.

– Text and figures from this manuscript appear in Chapter 5 of this thesis.
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Appendix D
Contributions

Chapter 2 - Predicting secondary structure from chemical shifts

This work is part of a manuscript that has been published Mechelke and Habeck
(2013b). Martin Mechelke and Michael Habeck conceived the project. Martin
Mechelke implemented the algorithms and analysed the results.

Chapter 3 - Weighting priors in Bayesian data analysis

This work is part of a manuscript that has been published Mechelke and Habeck
(2012). Michael Habeck and Martin Mechelke conceived the project. Martin
Mechelke performed the simulations and analysed the results; Michael Habeck
contributed to the Ising model and to the discussion.

Chapter 4 - Optimal combination of statistical potentials in NMR structure calcula-
tion

Martin Mechelke and Michael Habeck conceived the project. Martin Mechelke im-
plemented the Ramachandran potential, performed the simulations and analysed
the results; Michael Habeck contributed to the discussion.
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D Contributions

Chapter 5 - Estimating energy functions from Boltzmann ensembles

This work is part of a manuscript that has been published Mechelke and Habeck
(2013a). Martin Mechelke and Michael Habeck conceived the project, Martin
Mechelke implemented the algorithms and analysed the results; Michael Habeck
contributed to the discussion.
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