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1 Summary 

The TAR DNA binding protein of 43kDa (TDP-43) is the major component of insoluble 

protein aggregates in amyotrophic lateral sclerosis (ALS) and a subgroup of fronto-

temporal lobar degeneration (FTLD-TDP). Within these pathological aggregates TDP-

43 is phosphorylated, ubiquitinylated and fragmented. The nucleic acid binding pro-

tein TDP-43 participates in mRNA splicing, stability, and transport as well as miRNA 

biogenesis. Therefore, this protein is part of distinct complexes whose functions are 

not fully understood.  

This study aimed to identify novel TDP-43 protein interactors, which may allow to get 

further insights into the functions of this protein. To this end, a yeast two-hybrid 

screen was performed utilizing as bait a C-terminal fragment (CTF) that is comprised 

of the RNA recognition motif 2 (RRM2) and the protein binding glycine-rich domain, 

and a human adult brain cDNA library. Ten positive clones with partial cDNAs were 

found, of which seven full length cDNAs could be cloned. Their interactions with full-

length TDP-43 and CTF were confirmed with coimmunoprecipitation and colocaliza-

tion in human embryonic kidney (HEK293E) cells.  

TDP-43 is ubiquitinylated in pathological inclusions. Therefore, the roles of the class 

III E2 ubiquitin-conjugating enzyme UBE2E3 and the ubiquitin isopeptidase UBPY in 

ubiquitinylation of TDP-43 were further investigated. The inhibition of the protea-

some in HEK293E cells resulted in the ubiquitinylation and a shift of TDP-43 into in-

soluble fractions. The three class III E2 enzymes UBE2E1, UBE2E2 and UBE2E3 can 

enhance the ubiquitinylation of TDP-43 upon overexpression, whereas the catalyti-

cally inactive UBE2E3 C145S failed to promote TDP-43 ubiquitinylation. Conversely, 

silencing of UBE2E3 reduced the amount of ubiquitinylated TDP-43. Additionally, the 

overexpression of UBPY reduced the ubiquitinylation of CTF and a nuclear import 

impaired TDP-43 mutant. This was dependent on the peptidase activity of UBPY, 

since two catalytically inactive mutants failed to reduce the ubiquitinylation of TDP-

43. In this study the ubiquitinylation pattern of 15 out of 48 known pathogenic TDP-

43 mutants was investigated. Only the TDP-43 K263E mutant was excessively ubiq-

uitinylated. The ubiquitinylation of TDP-43 K263E was further enhanced upon pro-

teasomal inhibition as well as UBE2E3 expression, but it was decreased by UBPY 

overexpression or UBE2E3 silencing. In Drosophila melanogaster, UBPY silencing in 

the eye enhanced a neurodegenerative TDP-43 phenotype and levels of insoluble 

higher molecular weight TDP-43 and ubiquitin were increased.  



2  1 Summary 

In summary, UBE2E3 and UBPY regulate TDP-43 ubiquitinylation, solubility and pos-

sibly neurodegenerative effects. As such, UBPY might participate in decreasing patho-

logical levels of aggregation-prone ubiquitinylated TDP-43. 

 



 

Zusammenfassung 

Das TAR DNA bindende Protein 43 (TDP-43) ist die Hauptkomponente unlöslicher 

Proteineinschlüsse in amyotropher Lateralsklerose (ALS) und einem Teil der 

frontotemporalen Lobärdegeneration (FTLD-TDP). Innerhalb dieser pathologischen 

Einschlüsse ist TDP-43 phosphoryliert, ubiquitinyliert und fragmentiert. Das Nuklein-

säure-bindende Protein TDP-43 ist an verschiedenen Schritten des RNA-Meta-

bolismus beteiligt, indem es mit unterschiedlichen Proteinkomplexen interagiert. Die 

Aufgaben, die TDP-43 innerhalb dieser Komplexe erfüllt, sind noch immer unklar. 

Das Ziel dieser Arbeit war die Identifizierung neuer Protein-Interaktoren von TDP-43, 

um dessen Funktionen besser zu verstehen. Zu diesem Zweck wurde ein Hefe-2-

Hybrid Screen durchgeführt. Hierfür wurden ein C-terminales Fragment (CTF) von 

TDP-43, welches die Protein-bindende Domäne enthält, sowie eine cDNA Bibliothek 

verwendet, welche aus Gehirnmaterial eines erwachsenen Menschen gewonnen wur-

de. Zehn positive Treffer wurden entdeckt, die partielle cDNAs enthielten. Die voll-

ständigen cDNAs von sieben Treffern wurden kloniert und deren Interaktionen mit 

TDP-43 und CTF mit Hilfe von Immunopräzipitation und Kolokalisation in humanen 

embryonalen Nierenzellen (HEK293E) bestätigt. 

TDP-43 liegt in pathologischen Einschlüssen ubiquitinyliert vor. Deshalb wurde die 

Beteiligung des Klasse III E2 Ubiquitin-konjugierenden Enzyms UBE2E3 und der Ubi-

quitin-Isopeptidase UBPY an der Ubiquitinylierung von TDP-43 genauer untersucht. 

Die Hemmung des Proteasoms führte zur Anreicherung von unlöslichem, 

ubiquitinyliertem und auch fragmentiertem TDP-43. Die Überexpression der drei be-

kannten Klasse III UBE2E Enzyme UBE2E21, UBE2E2 und UBE2E3 verstärkte die 

Ubiquitinylierung von TDP-43, wohingegen die katalytisch inaktive UBE2E3 Mutante 

C145S dies nicht vermochte. Umgekehrt verminderte die Herunterregulierung von 

UBE2E3 mittels RNA-Interferenz die Ubiquitinylierung von TDP-43. Weiterhin wurde 

die Ubiquitinylierung von 15 pathogenen TDP-43 Mutanten untersucht, die sich je-

doch größtenteils wie wild-typisches TDP-43 verhielten. Auffallend war die TDP-43 

K263E Mutante, welche stark ubiquitinyliert war. Dies wurde durch die Inhibierung 

des Proteasoms und die Überexpression von UBE2E3 weiter verstärkt. Umgekehrt 

verminderte sowohl RNA-Interferenz von UBE2E3 als auch die Überexpression von 

UBPY die Ubiquitinylierung der K263E Mutante. Weiterhin konnte gezeigt werden, 

dass UBPY die Ubiquitinylierung von K263E, CTF und einer zytoplasmatischen TDP-

43 Mutante reduziert. Dies erfolgte jedoch nicht durch zwei katalytisch inaktive UBPY 

Mutanten. Schließlich wurde der neurodegenerative Phänotyp von humanem TDP-43 



4  1 Summary 

im Auge eines Drosophila melanogaster Toxizitätsmodels durch die 

Herunterregulierung von UBPY verstärkt. Weiterhin führte die UBPY RNA-Interferenz 

im Fliegenauge zu einer Anreicherung von unlöslichem und höher molekularem TDP-

43.  

Diese Arbeit zeigt, dass UBE2E3 und UBPY an der Regulierung der Ubiquitinylierung, 

Löslichkeit und möglicherweise an neurodegenerativen Effekten von TDP-43 beteiligt 

sind. Somit könnte UBPY an der Verminderung der pathologischen Menge von zur 

Aggregation neigendem TDP-43 beteiligt sein.  

 



 

2 Introduction 

2.1 TDP-43 proteinopathies 

Many neurodegenerative diseases share the presence of insoluble protein aggregates, 

which are - if localized intracellularly - often ubiquitinylated and abnormally phos-

phorylated. The two seemingly distinct neurodegenerative diseases amyotrophic lat-

eral sclerosis (ALS) and a subgroup of frontotemporal lobar degeneration (FTLD-

TDP) exhibit inclusions positive for the TAR DNA-binding protein of 43kDa (TDP-43) 

(Arai et al., 2006; Neumann et al., 2006). In the last decade it became apparent that 

both distinct diseases represent the ends of a disease spectrum with overlapping 

symptoms, which are now summarized as TDP-43 proteinopathies. Noteworthy, TDP-

43 pathology is also observed in 20-60% of Alzheimer’s disease and Lewy body dis-

orders, in Guamanian ALS-parkinsonism-dementia complex, in some cases of hippo-

campal sclerosis, in Huntington’s disease and in the rare Perry syndrome 

(summarized in Baloh, 2011; Geser et al., 2010; Mackenzie et al., 2010b). However, in 

these diseases the amount and distribution of TDP-43 pathology is limited and differ-

ent when compared to ALS and FTLD-TDP cases. Therefore, only ALS and FTLD will 

be introduced here. 

2.1.1 ALS - clinical characteristics and pathology 

ALS, also known as Lou Gehrig’s disease, is the most common adult onset motor neu-

ron disease (MND). It was first described by Jean-Martin Charcot in the 1870s and is 

characterized by progressive muscle wasting (atrophy) due to degeneration of lower 

motor neurons in the spinal cord and their axons, and of upper motor neurons in the 

motor cortex (lateral sclerosis). Further symptoms are muscle spasticity, and difficul-

ties in speaking, swallowing and breathing (dysarthria, dysphagia, dyspnea). Within 

3-5 years after disease onset patients typically die due to respiratory failure. The 

prevalence for ALS among Caucasians ranges from 1.2-4.0 per 100000 person/year, 

with males affected slightly more often than females (Gordon, 2013). To date, ALS 

cannot be cured and the only live-prolonging treatment is with the anti-glutamatergic 

agent Riluzole that might reduce exitotoxicity in ALS (Bensimon et al., 1994). Other 

therapies aim to reduce symptoms and improve the quality of life of the patients.  

The pathology of ALS includes Bunina bodies and skein-like or Lewy-body-like ubiq-

uitin-positive inclusions (Okamoto et al., 2008), mainly in lower motor neurons and 

less frequently in upper motor neurons (Cairns et al., 2007). Other cellular abnormali-
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immunoreactivity for components of the ubiquitin-proteasome system (FTLD-UPS) is 

still pathologically unidentified (Halliday et al., 2012). Additionally, rare cases with-

out inclusions are designated FTLD-ni (no inclusions). 

2.1.3 FTLD-MND 

ALS and FTLD are not two distinct conditions but the ends of a disease spectrum with 

overlapping clinical, pathological and genetic features (Figure 2.2). In ALS, cognitive 

and behavioural impairment is observed in half of the patients and about 15% meet 

criteria for FTLD (Ringholz et al., 2005; Wheaton et al., 2007). Also, 10-15% of FTLD 

cases are accompanied by MND, mostly in patients with bvFTD (Hodges et al., 2003), 

thus manifesting an overlap of ALS with FTLD. FTLD-MND patients can first show 

symptoms of either FTLD or ALS and additional symptoms develop upon disease pro-

gression, usually within 6-12 months (Bak and Hodges, 2001). Generally, the survival 

time of FTLD-MND is shorter than of pure ALS or FTLD (Hodges et al., 2003). 

2.2 Genetic causes of ALS and FTLD 

ALS and FTLD are not only linked clinically and pathologically. Common genetic mu-

tations confirm the connection of both diseases. The majority of ALS cases are spo-

radic (sALS), while only 5-10% have a familial background (Leblond et al., 2014; Ling 

et al., 2013). The mutations in C9ORF72, SOD1, TARDBP and FUS account for over 50% 

of familial ALS (fALS), and they are rarely detected in sALS. About 50% of the FTLD 

cases are genetically linked. Mutations in MAPT and GRN contribute to approximately 

20% of FTLD cases. However, mutations in TARDBP and FUS are rarely observed in 

FTLD. Further mutated genes have also been reported for rare cases of ALS, but the 

causes of the remaining cases of fALS and the majority of sALS and FTLD are still un-

known. In Figure 2.2 the major mutated genes are plotted according to the ratio of 

known mutations that give rise to ALS and FTLD. All known mutated genes involved 

in ALS, FTLD and FTLD-MND are summarized in Table 2.1. 

 

Figure 2.2 Clinical and genetical overlap of ALS and FTLD. ALS and FTLD represent the outer ends 
of a spectrum of neurodegenerative disorders with overlapping symptoms. The major genetic causes 
for both diseases are plotted according to the ratio of known mutations that lead to ALS or FTLD. Modi-
fied from Ling et al. (2013). 



 

Table 2.1 Genetics and pathology of ALS and FTLD modified from Ling et al. (2013). 

 Diseases Locus Mutated gene (protein) 
Protein  

function 
Heredity fALS sALS FTLD 

Patholog. 

inclusions 
References 

T
y

p
ic

a
l 

A
L

S
 

ALS1 21q22.1 SOD1 

(superoxide dismutase 1) 
Detoxification 
enzyme 

AD 10-
20% 

2% - SOD1 Rosen et al. (1993) 

ALS6, FTLD 16-11.2 FUS 

(Fused in sarcoma) 
RNA processing AD, AR 5% <1% <1% FUS Kwiatkowski et al. (2009); 

Vance et al. (2009) 
ALS10, FTLD 1p36.22 TARDBP (TAR DNA-binding 

protein of 43kDa) 
RNA processing AD 3% 1.5% <1% TDP-43 Kabashi et al. (2008); 

Sreedharan et al. (2008); Van 
Deerlin et al. (2008) 

ALS9, PD 14q11.2 ANG (Angiogenin) Angiogenic 
activity 

AD    TDP-43 Greenway et al. (2006) 

ALS11, 
CMT4J 

6q21 FIG4 (phosphoinositide 5-
phosphatase) 

Lipid  
metabolism 

AD     Chow et al. (2009) 

ALS12, 
POAG, PDB 

10p15-
p14 

OPTN (Optineurin) Multifunction AD, AR 4% <1% - TDP-43 Maruyama et al. (2010) 

ALS14, FTLD, 
IBMPFD 

9p13.3 VCP (Valosin-containing 
protein) 

Protein  
quality control 

AD 1% 1% 1% TDP-43 Johnson et al. (2010); Watts et 
al. (2004) 

 12q24 DAO (D-amino acid oxidase) Amino acid 
metabolism 

AD     Mitchell et al. (2010) 

 17p13.2 PFN1 (Profilin) Cytoskeleton AD     Wu et al. (2012) 

ALS13, SCA2 12q24.12 ATXN2 (ataxin-2) RNA processing Risk 
factor 

   TDP-43 Elden et al. (2010) 

MSP 5q13.2 HNRNPA1 (hnRNPA1) RNA processing AD     Kim et al. (2013) 

MSP 12q22.11 HNRPA2B1 (hnRNPA2/B1) RNA processing AD     Kim et al. (2013) 

PDB 5q35.3 SQSTM1 
(p62/sequestosome-1) 

Protein  
degradation 

AD     Fecto et al. (2011); Teyssou et 
al. (2013) 

 21q12.2 EWSR1 (Ewing sarcoma 
break region 1) 

RNA processing AD     Couthouis et al. (2012) 

 17q12 TAF15 (TATA box binding 
protein associated factor) 

RNA processing AD     Couthouis et al. (2011) 

ALS3 18q21 unknown unknown AD     Hand et al. (2002) 

ALS7 20p13 unknown unknown AD     Sapp et al. (2003) 



 

 Diseases Locus Mutated gene (protein) 
Protein  

function 
Heredity fALS sALS FTLD 

Patholog. 

inclusions 
References 

A
ty

p
ic

a
l 

A
L

S
 

ALS2, infan-
tile-onset 
HSP 

2q33.1 ALS2 (Alsin) Vesicle  
trafficking 

AR     Hadano et al. (2001) 

ALS5, HSP 15q15-
21 

SPG11 (Spatacsin) Axonal  
transport 

AR     Daoud et al. (2012) 

ALS4, AOA2 9q13.3 SETX (Senataxin) RNA processing AD     Chen et al. (2004) 

ALS8, late-
onset SMA 

20q13.3 VAPB (VAMP-associated 
protein) 

Vesicle  
trafficking 

AD     Nishimura et al. (2004) 

F
T

L
D

-M
N

D
 

FTLD-MND 9q21-22 C9ORF72 (C9ORF72) Unknown AD 12-
25% 

6-
7% 

10-50% 
(fFTLD), 
5-7% 
(sFTLD) 

TDP-43 DeJesus-Hernandez et al. 
(2011); Renton et al. (2011) 

FTLD-MND 9p13.3 SIGMAR1 (Non-opioid recep-
tor 1) 

Signal  
transduction 

AD, AR     Luty et al. (2010) 

FTLD-MND-X Xp11.21 UBQLN2 (Ubiquilin-2) Protein  
degradation 

XD <1%  >1% TDP-43, 
FUS 

Deng et al. (2011b) 

F
T

L
D

 

FTLD-Tau 17Q21 MAPT (Microtuble-
associated protein tau) 

Cytoskeleton AD   10% Tau Hutton et al. (1998) 

FTLD-TDP 17q21.31 GRN (Progranulin) Inflammation AD   10% TDP-43 Baker et al. (2006); Cruts et al. 
(2006) 

FTLD-UPS 3p11.2 CHMP2B (Charged multive-
sicular protein 2B) 

Vesicle  
trafficking 

AD <1%  <1% p62 Parkinson et al. (2006); 
Skibinski et al. (2005) 

FTLD-TDP 7p21.3 TMEM106B (Transmem-
brane protein 106B) 

Lysosome  
function 

Risk 
factor 

    Van Deerlin et al. (2010) 

Abbreviations: AD - autosomal dominant; AR - autosomal recessive; XD - X-linked dominant; AOA2 - ataxia-ocular apraxia-2; CMT4J - Charcot-Marie-Tooth disease 
type 4J; HSP - hereditary spastic paraplegia; IBMPFD - inclusion body myopathy with Paget’s disease of the bone; MSP - multisystem proteinopathy; PD - Parkinson’s 
disease; PDB - Paget’s disease of the bone; POAG - primary open angle glaucoma; SCA2 - spinocerebellar ataxia type 2; SMA - spinal muscular atrophy 
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2.2.1 Genetic implications for altered RNA metabolism in ALS and FTLD 

Many of the disease-causing mutations were identified in genes encoding proteins 

with functions in RNA metabolism, among them TDP-43, the three FET proteins 

Fused in sarcoma (FUS), Ewing sarcoma break region 1 (EWSR) and TATA box bind-

ing protein associated factor (TAF15), angiogenin, senataxin, ataxin-2, and the het-

eronuclear ribonucleoproteins hnRNPA1 and hnRNPA2/B1. Moreover, a hexanucleo-

tide repeat expansion in the C9ORF72 gene supports RNA mediated toxicity. Thus, 

aberrant RNA processing might play an important role in the pathogenesis of ALS and 

FTLD. Next, a short overview of ALS, FTLD and FTLD-MND genetically associated pro-

teins partitioning in RNA metabolism is given. The contributions of TDP-43, FUS and 

C9ORF72 are of high interest.  

TARDBP/ TDP-43 

Mutations in TARDBP, which encodes for the DNA/RNA binding protein TDP-43, ac-

count for 3% of fALS cases, and are rarely observed in sALS and FTLD (Lattante et al., 

2013). 48 mutations are known to date, of which 47 lead to the change of a single 

amino acid (Lattante et al., 2013). Most mutations are located in the C-terminus of 

TDP-43 that is important for protein-protein interactions (see below). TDP-43 will be 

introduced in detail in chapter 2.3. 

FUS/ Fused in sarcoma 

The DNA/RNA binding protein FUS is predominantly localized in the nucleus and has 

functions in transcriptional regulation, splicing and transport of RNAs to the cyto-

plasm (Lagier-Tourenne et al., 2010; Ling et al., 2013). FUS is also recruited to stress 

granules and is detected in dendritic RNA granules and spines in neurons (Bentmann 

et al., 2012). Thus, FUS shares functional homology with TDP-43 (see below). The so 

far 58 known mutations are clustered in the RNA binding domain at the C-terminus of 

FUS or in the central glycine-rich domain (GRD), and were identified in 5% of fALS, in 

less than 1% of sALS and in rare cases of FTLD (Kwiatkowski et al., 2009; Lattante et 

al., 2013; Vance et al., 2009). Several ALS-linked mutations lead to a redistribution of 

FUS to the cytoplasm, pointing towards loss of nuclear function of the protein. FUS 

positive inclusions are rarely detected in ALS, but in most cases of FTLD patients with 

ubiquitin-positive and TDP-43 negative inclusions (Figure 2.1). It is noteworthy that 

ALS-linked mutations were identified in the genes encoding EWSR and TAF15 

(Couthouis et al., 2012; Couthouis et al., 2011). Together with FUS, these proteins 

comprise the FET proteins that are similar in function and structure (Tan and Manley, 

2009). Moreover, EWSR and TAF15 are also detected in FTLD-FUS inclusions 
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(Mackenzie and Neumann, 2012). However, the mutations in EWSR and TAF15 re-

main to be proven causative for ALS. 

C9ORF72/ C9ORF72 

Recently, a GGGGCC hexanucleotide repeat expansion in the first intron between the 

first and second non-coding exon of the C9ORF72 gene on chromosome 9 was identi-

fied in sporadic and familial ALS and FTLD (DeJesus-Hernandez et al., 2011; Gijselinck 

et al., 2012; Renton et al., 2011). This mutation is the most common genetic cause for 

familial ALS and FTLD (12-25% and 10-50%, respectively), and is also found in many 

patients of these diseases with no familial background (6-7% in sALS and 5-7% in 

sFTLD) (Heutink et al., 2014). Hexanucleotide repeat expansions were also detected 

in rare cases of Alzheimer’s disease and in corticobasal and ataxic syndromes (Harms 

et al., 2013; Kohli et al., 2013; Lindquist et al., 2013), though the identification in some 

Alzheimer’s disease patients could also point towards a false diagnosis. Indeed, some 

of the Alzheimer’s disease cases were post mortem diagnosed with FTLD (Kohli et al., 

2013) 

C9ORF72 is translated into two proteins of 222aa and 481aa that share the same N-

terminus, but the longer protein exhibits an expanded C-terminus. The function of the 

C9ORF72 transcript is unknown. A differentially expressed in normal and neoplastic 

cells (DENN) domain was identified in the N-terminus of both C9ORF72 proteins. This 

domain is also present in GDP-GTP exchange factors that activate Rab GTPases, sug-

gesting a role of the C9ORF72 transcript in Rab GTPase-dependent membrane traf-

ficking (Levine et al., 2013; Zhang et al., 2012). The subcellular localization of the pro-

tein is not well studied, since only few specific antibodies are available. One report 

showed that the overexpressed C9ORF72 protein is located in the nucleus and cyto-

plasm and, additionally, is secreted (Farg et al., 2014). 

Three hypothesises are considered about the pathogenic mechanism of the hexanu-

cleotide repeat expansion (reviewed in Heutink et al., 2014). First, a reduced expres-

sion of the C9ORF72 transcript due to the repeat expansion suggests a loss-of-

function. This finds support from the analysis of C9ORF72 mRNA and protein level in 

patient derived induced pluripotent stem (iPS) cell lines and lymphoblasts as well as 

in post mortem brain tissue (Belzil et al., 2013; Ciura et al., 2013; DeJesus-Hernandez 

et al., 2011; Donnelly et al., 2013; Gijselinck et al., 2012; Waite et al., 2014). Second, 

the RNA transcripts of the repeat could form toxic nuclear RNA foci. These repeat-

containing RNA aggregates were detected in brains from patients and in iPS cell lines, 

and were shown to disrupt the RNA metabolism through the sequestration of RNA 

binding proteins and other RNAs (DeJesus-Hernandez et al., 2011; Donnelly et al., 

2013; Lagier-Tourenne et al., 2013; Mizielinska et al., 2013; Sareen et al., 2013). 
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Third, it was suggested that repeat associated non-ATG initiated (RAN) translation 

takes place within the repeat expansion. This is followed by the aggregation of the 

toxic dipeptide repeat proteins. In support of this hypothesis, dipeptide repeat pro-

teins were detected with specific antibodies in post mortem brains, that are consis-

tently characterized by TDP-43 pathology, and patient derived iPS cells (Ash et al., 

2013; Donnelly et al., 2013; Mori et al., 2013). However, the dipeptide repeat proteins 

were found in brain regions not affected by TDP-43 inclusions and poorly correlate 

with the clinical phenotypes (Mackenzie et al., 2014). Interestingly, RAN-translated 

proteins from another non-coding repeat expansions disease, fragile X-associated 

tremor ataxia syndrome, are also associated with cellular toxicity (Todd et al., 2013).  

All three hypothesises are plausible, but none of them is conclusively established yet. 

It is also conceivable that two or a combination of all three mechanisms are involved 

in the disease pathogenesis, though this is unclear at the moment.  

HNRNPA1 and HNRNPA2B1/ hnRNPA1 and hnRNPA2B1 

Recently, missense mutations in the prion-like domains of the two hnRNPA1 and 

hnRNPA2B1 were identified in families of multisystem proteinopathy (MSP) and in 

one case of fALS (Kim et al., 2013). Usually, the prion-like domains in hnRNPs are im-

portant for their assembly in RNA granules (Kato et al., 2012). The identified muta-

tions enhance the fibrillization of hnRNPA1 and hnRNPA2B1and promote their in-

corporation into stress granules (Kim et al., 2013). Thus, it is possible that mutations 

in other RNA-binding proteins with prion-like domains will be identified, that might 

also contribute to neurodegenerative proteinopathies. Indeed, TDP-43, FUS, EWSR1 

and TAF15 also harbour prion-like domains (King et al., 2012; Neumann et al., 2011). 

2.2.2 Further genetically associated proteins 

MAPT/ tau 

Under physiological conditions, alternative splicing of the MAPT gene generates sev-

eral tau proteins that stabilize microtubules and are most abundant in neurons. Tau-

positive, but ubiquitin and TDP-43 negative inclusions of great variability are de-

tected in 45% of FTLD patients, and 44 different mutations in MAPT also genetically 

link tau to FTLD (http://www.molgen.ua.ac.be/). However, tau depositions are de-

tected in several other neurodegenerative diseases, such as Alzheimer’s disease or 

progressive supranuclear palsy that are summarized as tauopathies. 
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GRN/ progranulin 

Progranulin is a glycoprotein that contains 7.5 repeats of the highly conserved 12 cys-

teine granulin motif (Bateman and Bennett, 2009). After secretion and the removal of 

the signal peptide, the mature granulin can be cleaved into active 6kDa granulin pep-

tides (granulin A-G) by many extracellular proteases (Kessenbrock et al., 2008; Suh et 

al., 2012). The multifunctional progranulin was implicated in the regulation of cell 

division, migration, tissue repair, inflammation as well as in cancer (Bateman and 

Bennett, 2009; He and Bateman, 2003; He et al., 2002). 63 mutations in GRN are 

known, which account for approximately 20% of fFTLD and 1-5% of fFTLD (Gijselinck 

et al., 2008). The pathogenicity of some mutants is unknown, but for most mutations 

a loss-of-function was described. They introduce premature terminations of the 

mRNA, which is subsequently degraded via nonsense-mediated RNA decay, or lead to 

the loss of mRNA by nuclear degradation due to mutations within the Kozak sequence 

(Baker et al., 2006; Cruts et al., 2006). Additionally, one mutation in the N-terminal 

signal peptide inhibits the secretion of progranulin (Mukherjee et al., 2006). How mu-

tated progranulin and TDP-43 are related in FTLD-TDP remains to be established. 

SOD1/ superoxide dismutase 1 

The superoxide dismutase (SOD1) dissipates free superoxide radicals in the cell. Over 

170 mutations in the SOD1 gene are the most frequent cause of fALS, accounting for 

approximately 20% of fALS cases (Abel et al., 2012). SOD1 positive inclusions in ALS 

are negative for TDP-43 (Tan et al., 2007), thus a different pathogenesis is likely. 

However, it is not well understood how SOD1 mutations contribute to ALS patho-

genesis. A toxic-gain-of-function was suggested, because many mutants still exhibit 

their enzymatic activity. Moreover, misfolded wild-type (wt) SOD1 was recently sug-

gested to contribute to sALS pathogenesis (Rotunno and Bosco, 2013). 

2.2.3 Genetic implications for altered protein homeostasis in ALS and FTLD 

Furthermore, mutations in genes which encode for proteins involved in the protein 

degradation or the maintenance of protein homeostasis contribute to ALS, FTLD and 

FTLD-MND. These proteins are ubiquilin-2 (UBQLN2), valosin-containing protein 

(VCP), vesicle-associated membrane protein-associated protein B/C (VAPB), 

p62/sequestosome-1 (SQMST1), optineurin (OPTN), FIG4 homolog SAC1 lipid phos-

phatise domain containing protein (FIG4) and charged multivesicular body protein 2b 

(CHMP2B). Ubiquilin-2, p62, optineurin and VCP are directly associated with the deg-

radation of proteins, while CHMP2B and FIG4 participate in the maturation of auto-

phagosomes.  
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UBQLN2/ ubiquilin-2 

Ubiquilin-2 binds polyubiquitinylated proteins and guides them to the proteasome 

for degradation (Ko et al., 2004). Ubiquilins are also associated with autophagy 

(Rothenberg et al., 2010). Rare mutations in UBQLN2 cause a small subset of ALS and 

FTLD-MND, whereas ubiquilin-2 positive depositions, that also co-localize with TDP-

43, FUS and p62, are a common pathological feature among many cases of ALS, FTLD-

MND and FTLD (Deng et al., 2011b). Interestingly, the expression of ubiquilin-2 with 

ALS-linked mutations was shown to impair the overall protein degradation in cells 

(Deng et al., 2011b).  

SQSTM1/ p62 

The ubiquitin and LC3 binding protein p62/ sequestosome-1 targets also polyubiquit-

inylated proteins for degradation either by the proteasome or by autophagy. p62 is 

detected in pathological depositions in many neurodegenerative diseases, among 

them fALS, sALS and FTLD. Partial coimmunoreactivity with TDP-43 or ubiquilin-2 

was also reported (Brettschneider et al., 2012; Teyssou et al., 2013). Missense and 

deletion mutations in SQSTM1 were identified in about 1% of ALS and FTLD (Fecto et 

al., 2011; Kwok et al., 2014; Le Ber et al., 2013; Rubino et al., 2012; Teyssou et al., 

2013).  

VCP/ valosin-containing protein 

VCP is a highly expressed member of the type II ATPase associated with diverse cellu-

lar activities (AAA) superfamily. VCP was shown to bind polyubiquitinylated proteins, 

and subjected them to multiple protein degradation pathways like autophagic and 

proteasomal clearance, or recycling pathways like endosomal sorting (Meyer et al., 

2012). Mutations in VCP account for about 1% of fALS and sALS cases (Johnson et al., 

2010; Koppers et al., 2012), though they were first identified as a cause for the rare 

inclusion body myopathy with Paget’s dieseas of bone and frontotemporal dementia 

(IBMPFD) (Watts et al., 2004). A reduction of cellular ATP production was mediated 

by VCP mutants via mitochondrial uncoupling, which enhances the vulnerability of 

cells to cytotoxicity (Bartolome et al., 2013). 

OPTN/ optineurin 

The multifunctional protein optineurin binds polyubiquitinylated proteins and serves 

in analogy to p62 as an autophagy adapter protein (Wild et al., 2011). However, one 

study suggested that optineurin has a function in autophagic clearance of protein ag-

gregates in an ubiquitin independent manner (Korac et al., 2013). Deletion, nonsense 

and missense mutations in OPTN are associated with ALS, but not FTD (Del Bo et al., 
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2011; Maruyama et al., 2010). Optineurin-positive depositions were described for 

many neurodegenerative diseases (Osawa et al., 2011). However, optineurin pathol-

ogy in ALS is controversial. In one study optineurin depositions were detected in all 

SOD1-negative subjects (Deng et al., 2011a). In another report optineurin was de-

tected in inclusions immunoreactive for TDP-43 or SOD1 and in a case with mutated 

optineurin (Maruyama et al., 2010), but a third study did not detect optineurin pa-

thology in cases with OPTN mutations (Ito et al., 2011). 

VAPB/ vesicle-associated membrane protein-associated protein B/C 

VAPB is an integral membrane protein of the endoplasmatic reticulum (ER) and in-

teracts with the outer mitochondrial membrane protein tyrosine phosphatase-

interacting protein-51 (PTPIP51) (De Vos et al., 2012), thus regulating ER-

mitochondria associations (Stoica et al., 2014). Moreover, unfolded protein response 

is activated upon elevation of VAPB level (Chen et al., 2010; Kanekura et al., 2006). 

The expression of neither wt nor mutant VAPB in the nervous system of mice induces 

a neurodegenerative phenotype, but cytoplasmic accumulations immunoreactive for 

ubiquitin, p62 and TDP-43 develop in motor neurons of the spinal cord in 18-month 

old mice (Qiu et al., 2013; Tudor et al., 2010). Mutations in VAPB are rare and were 

initially identified in a Brazilian family with atypical ALS (Nishimura et al., 2004). 

However, the deletion variant S160 was also detected in healthy controls at low fre-

quency (Landers et al., 2008). Moreover, a recent study detected VAPB mutations in 

Swedish, Portuguese and Icelandic patients with fALS or sALS, but also in healthy 

adult relatives (Ingre et al., 2013). Thus, it is questionable whether mutations in VAPB 

contribute to the pathogenesis of ALS.  

FIG4/ phosphoinositide 5-phosphatase 

FIG4 is translated into a phosphoinositide 5-phosphatase that plays an indirect role in 

autophagy and in retrograde membrane trafficking from the lysosome and late en-

dosome to the Golgi apparatus (Rutherford et al., 2006; Suzuki and Ohsumi, 2007; 

Zhang et al., 2007a). Mutations in FIG4 were first detected as a cause for Charcot-

Marie-Tooth disease type 4J, an autosomal resessive motor and sensory neuropathy 

(Chow et al., 2007). Later, one study identified several FIG4 missense and truncation 

mutations in 2% of ALS and in primary lateral sclerosis cases from a cohort of Euro-

pean ancestry, with truncation mutations leading to a loss of phosphatase activity 

(Chow et al., 2009). Interestingly, brains from FIG4 knockout mice exhibit disruption 

of autophagy in neurons and glial cells (Ferguson et al., 2009). However, further stud-

ies are not available to prove the importance of FIG4 mutations in ALS. 
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CHMP2B/ charged multivesicular body protein 2B 

CHMP2B is a component of the endosomal sorting complex (ESCRT)-III that is impor-

tant for the formation of the multivesicular bodies (MVBs). It is involved in protein 

sorting and turnover. Rare mutations in CHMP2B were first identified in a large Dan-

ish family with autosomal dominant FTLD (Skibinski et al., 2005), and later confirmed 

in some ALS cases (Cox et al., 2010; Parkinson et al., 2006). CHMP2B mutations are 

the only cause of the rare FTLD-UPS with pathological inclusions positive for p62 and 

ubiquitin (Mackenzie et al., 2010a), and lead to C-terminal truncation of the protein. 

Interestingly, one study showed that the gene knockout or the overexpression of 

CHMP2B wt in mice has no phenotype, whereas expression of a C-terminally trun-

cated mutant CHMP2B causes progressive neurological decline, axonal pathology and 

early death of the animals (Ghazi-Noori et al., 2012). This indicates a toxic gain-of-

function. Moreover, the expression of CHMP2B mutants led to the inhibition of auto-

phagic clearance and an increase of ubiquitin-positive inclusions (Filimonenko et al., 

2007). 

Summary and conclusion 

In conclusion, mutations in UBQLN2, VCP, SQSTM1, OPTN and CHMP2B may point to-

wards an altered protein homeostasis with a deficiency in the clearance of proteins as 

an important factor of the pathogenesis of ALS, FTLD and FTLD-MND. Additionally, 

many of the proteins encoded by these genes are often detected in aggregates of non-

mutation carriers and patients suffering from other neurodegenerative diseases like 

Alzheimer’s or Parkinson’s disease. This supports a more general role of aberrant 

protein clearance or protein homeostasis in neuronal degeneration. On the other 

hand, the genetic evidence of VAPB and FIG4 as genes involved in ALS is not fully con-

vincing. Only one or a few reports of single pedigrees or cases were published, and 

VAPB mutations were also detected in healthy controls, suggesting minor roles of 

these proteins. 

However, the molecular mechanisms how all these proteins contribute to the patho-

genesis of neurodegenerative diseases - regardless whether their functions point to-

wards failure of proper protein degradation or altered RNA metabolism - remain 

poorly understood and require further investigations. Of great interest is TDP-43, 

since it is detected in pathological depositions in 45% of FTLD patients and almost all 

cases of ALS that are FUS and SOD1 negative. Moreover, there is a strong genetic link-

age of TDP-43 and ALS. Thus, unravelling the role of TDP-43 in these diseases likely 

contributes to the understanding the pathogenesis of ALS and FTLD. 
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with a UG-rich RNA oligonucleotide of 12 bases revealed that both RRMs bind ten nu-

cleotides, of which six are recognized sequence specifically (Lukavsky et al., 2013). A 

central guanine residue in the oligonucleotide was shown to be crucial for the binding 

of RNA through the stabilization of both RRMs. A classical RRM domain is comprised 

of four β-strands (β2-β3-β1-β5), but RRM2 contains an additional β4-strand next to 

β5 that is involved in protein-protein interactions, especially in the dimerization of 

TDP-43 (Kuo et al., 2009). RRM1 also plays an important role in the binding of TG-

rich DNA sequences, which is supported by RRM2 (Kuo et al., 2014). 

The bipartite NLS and a NES in RRM2 allow TDP-43 to shuttle between the nucleus 

and the cytoplasm, though the protein is predominantly localized in the nucleus 

(Ayala et al., 2008b; Winton et al., 2008a). The deletion of NLS or NES induces cyto-

plasmic or nuclear TDP-43 aggregation, respectively (Ayala et al., 2008b; Winton et 

al., 2008a; Zhang et al., 2013), which seems to be an important aspect of disease 

pathogenesis (see chapter 2.3.4). The import of TDP-43 into the nucleus is mediated 

by the classical karyopherin-dependent nuclear import pathway (Nishimura et al., 

2010).  

The C-terminal GRD of TDP-43 is less conserved among species. The whole C-terminal 

domain is involved in protein-protein-interactions, RNA processing, transcriptional 

regulation, and influences solubility and cellular localization of TDP-43 (Abhyankar et 

al., 2007; Ayala et al., 2008b). TDP-43 interacts with other hnRNPs via its C-terminus 

(see below). The identification of an RNA-binding arginine-arginine-glycine (RGG) 

sequence in the GRD suggests that the C-terminus participates also in protein-RNA 

interactions (Ou et al., 1995). Interestingly, the C-terminus of TDP-43 exhibits a 

glutamine/asparagine (Q/N)-rich region with prion-like properties (aa345-366) 

(Fuentealba et al., 2010; King et al., 2012; Wang et al., 2004b).  

TDP-43 forms physiologically active homodimers via the N-terminus, RRM2 and the 

Q/N-rich C-terminal region (Kuo et al., 2014; Kuo et al., 2009; Shiina et al., 2010; 

Wang et al., 2013; Zhang et al., 2013). The first ten amino acid residues are necessary 

for proper homodimerization (Zhang et al., 2013). Furthermore, homodimerization 

happens independently of DNA or RNA binding of TDP-43 (Zhang et al., 2013). Under 

oxidative stress, TDP-43 can be cross-linked via cysteine oxidation and disulphide 

bond formation (Cohen et al., 2012). This leads to decreased solubility, and a possibly 

non-active TDP-43 dimer. 
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2.3.2 Subnuclear localization of TDP-43 

Nuclear TDP-43 is concentrated in euchromatin regions of the nucleoplasm, including 

perichromatin fibrils, which are sites of transcription and cotranscriptional splicing. 

However, TDP-43 is absent in the nucleolus, where rRNA transcription takes place, 

and in transcriptionally silent heterochromatin (Casafont et al., 2009). An overex-

pressed short mouse TDP-43 variant was detected in a novel type of nuclear bodies 

that were termed T-bodies. These T-bodies overlapped with Cajal bodies (CBs), pro-

myelotic leukaemia nuclear bodies (PML-NBs), Gemini of coiled bodies (GEMs) and 

SC35 speckles, but TDP-43 is not a component of these nuclear bodies (Wang et al., 

2002). The overlap of GEMs with T-bodies was proposed to be mediated by the inter-

action of TDP-43 and the survival of motor neuron (SMN) protein (see also below). 

However, another study that investigated the localization of endogenous TDP-43 in 

rat neurons did not observe a localization of TDP-43 in CBs (Casafont et al., 2009). It 

was suggested that T-bodies link different nuclear bodies, forming a network for the 

processes of transcription and splicing (Wang et al., 2002).  

The nucleus contains several nuclear bodies with distinct functions in transcription 

and splicing. CBs contain proteins important for mRNA biogenesis and, thus, exhibit 

several functions in the RNA metabolism. These are assembly and recycling of small 

nuclear ribonucleic particles (snRNPs), pre-mRNA splicing, histone mRNA processing 

and maintenance of telomerases (Handwerger and Gall, 2006). The signature protein 

of CBs is coilin. CBs associate with GEMs through the interaction of coilin with the 

GEM protein SMN protein and they function together in assembly and recycling of 

snRNPS, though they do not contain snRNPs (Cioce and Lamond, 2005). PML-NBs 

contain the PML protein and are associated with several cellular functions, as they 

transiently store and release proteins, among them transcription factors and tran-

scriptional regulators. It is not established how transcription is regulated by PML-NBs 

(Bernardi and Pandolfi, 2007). SC35 speckles are rather indirectly involved in tran-

scription and splicing, as they store and modify factors of the pre-mRNA processing 

machinery and are located in proximity to active transcription sites (Lamond and 

Spector, 2003). 

The localization of TDP-43 within multiple discrete subnuclear structures that are 

involved in the regulation of transcription and splicing is consistent with the role of 

TDP-43 in transcription and splicing (see below). 
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2.3.3 Cellular functions of TDP-43 

Transcriptional regulation 

TDP-43 was first characterized for its role in DNA binding and transcriptional regula-

tion of human immunodeficiency virus 1 (HIV) (Ou et al., 1995). TDP-43 as a DNA 

binding protein functions in the transcriptional repression of the spermatid-specific 

mouse gene SP-10 in somatic tissues (Abhyankar et al., 2007). The role of TDP-43 in 

transcriptional regulation is further supported by its interaction with proteins in-

volved in transcription, such as methyl CpG-binding protein 2 (MeCP2) (Freibaum et 

al., 2010; Sephton et al., 2011).  

RNA binding properties of TDP-43 

The regulatory functions of TDP-43 in RNA metabolism are much better investigated. 

TDP-43 preferentially binds UG-rich repeats, for which RRM1 is important (Ayala et 

al., 2011b; Ayala et al., 2005; Buratti and Baralle, 2001). However, TDP-43 also binds 

to poly(A)n, GC-rich or poly-pyrimidine rich sequences, and a (UG)nUA(UG)m sequence 

(Narayanan et al., 2013; Sephton et al., 2011; Xiao et al., 2011). Several high through-

put studies were conducted to identify RNAs that are bound and regulated by TDP-43 

in mouse and human brain as well as in neuronal cell lines (Colombrita et al., 2012; 

Narayanan et al., 2013; Polymenidou et al., 2011; Sephton et al., 2011; Tollervey et al., 

2011; Xiao et al., 2011). It was shown that TDP-43 binds over 6000 RNA species in 

mouse brain, representing 30% of the total mouse transcriptome and highlighting 

that TDP-43 is involved in the regulation of multiple cellular processes. The preferen-

tial binding sites of TDP-43 were in long introns (>100kb), in 3’ untranslated regions 

(UTRs) of mRNAs, near exon-intron junctions, but also in intronic regions far away 

(>2kb) from exons, and in long non-coding RNAs (ncRNAs). These studies also em-

phasise the role of TDP-43 for the regulation of splicing in the brain. They show that 

TDP-43 probably mediates alternative splicing of many transcripts encoding proteins 

that regulate neuronal development, synaptic function and RNA metabolism or have 

been implicated in neurological diseases (Polymenidou et al., 2011; Tollervey et al., 

2011). Thus, alterations of TDP-43 level in disease likely affect the transcription, sta-

bility and splicing of many RNAs.  

mRNA splicing and regulation of mRNA stability 

TDP-43 preferentially binds sequences with at least 6 UG-repeats in proximity of 5’ 

and 3’ splice sites of pre-mRNAs, which promotes inclusion or skipping of exons 

(Buratti and Baralle, 2012). More specifically, TDP-43 mediates skipping of the hu-

man cystic fibrosis transmembrane conductance regulator (CFTR) exon 9, the apoli-

poprotein A2 (ApoA2) exon 3, the eukaryotic translation termination factor 1 (ETF1), 
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the retinoid X receptor gamma (RXRG), and a breast cancer 1 (BRCA1)- mutated sub-

strate (Ayala et al., 2006; Buratti et al., 2001; Mercado et al., 2005; Passoni et al., 

2012). On the other hand, TDP-43 is involved in the inclusion of the SMN2 exon 7 and 

of the exon junction complex component ribosomal S6 kinase 1 (S6K1) Aly/REF-like 

target (SKAR) exon 3 (Bose et al., 2008; Fiesel et al., 2012; Shiga et al., 2012). It is 

noteworthy that aberrant splicing of CFTR exon 9 produces a non-functional CFTR 

protein, which is observed in cystic fibrosis patients. TDP-43 binds a (UG)m(U)n regu-

latory repeat in the 3’splice site of CFTR intron 8 (Buratti et al., 2001), and mutations 

in this repeat are associated with cystic fibrosis. 

Besides its modulation of splicing, TDP-43 also regulates the turnover and stability of 

mRNAs. TDP-43 binding stabilises the mRNAs of histone deacetylase 6 (HDAC6), hu-

man low molecular weight neurofilament (NFL), autophagy-related protein 7 (ATG7) 

and Futsch, which is the Drosophila homologue of microtubule-associated protein 1B 

(MAP1B) (Bose et al., 2011; Fiesel et al., 2010; Godena et al., 2011; Strong et al., 2007; 

Volkening et al., 2009). The knockdown of TDP-43 leads to an destabilization of 

HDAC6 mRNA, which impairs neurite outgrowth of differentiated human neuroblas-

toma cells (Fiesel et al., 2011). In line, TDP-43 inhibits an unproductive splicing of the 

serine/arginine-rich splicing factor 2 (SC35) mRNA, thus indirectly stabilizing the 

SC35 mRNA (Dreumont et al., 2010). Contrary, the mRNAs of cyclin-dependent kinase 

6 (CDK6), progranulin and vascular endothelial growth factor A (VEGF-A) are destabi-

lized in the presence of TDP-43 (Ayala et al., 2008a; Colombrita et al., 2012; Fiesel et 

al., 2010). 

TDP-43 autoregulation  

Importantly, TDP-43 autoregulates its own mRNA levels via a negative feedback loop, 

and thus controls its protein expression (Avendano-Vazquez et al., 2012; Ayala et al., 

2011b; Polymenidou et al., 2011; Tollervey et al., 2011). Therefore, TDP-43 binds to 

an extended binding region in its own 3’ UTR, which contains several non-UG se-

quences. When nuclear levels of TDP-43 are low the most efficient polyadenylation 

site pA1 of the TDP-43 mRNA is used, whereas high nuclear TDP-43 level result in the 

use of the suboptimal splice sites pA2, pA3 and pA4 (Avendano-Vazquez et al., 2012). 

This leads to a fast degradation of the TDP-43 mRNA, resulting in constant TDP-43 

levels within cells. Consistently this autoregulation was also shown in TDP-43 trans-

genic mice (Igaz et al., 2011; Xu et al., 2011). Since TDP-43 can form aggregates in 

disease (see chapter 2.3.4) this autoregulation may be important. Aggregate forma-

tion could lead to reduced level of free nuclear TDP-43, which then may stimulate an 

increased TDP-43 production. This could further enhance the formation of aggre-

gates, which might lead to cell stress or even cell death. The reduced level of free nu-
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clear TDP-43 could also have serious consequences on processing and stability of 

many RNAs (Budini and Buratti, 2011). 

TDP-43 and microRNA biogenesis 

Beside its role in mRNA pathways and transcription regulation, an interaction of TDP-

43 with components of the microRNA (miRNA) processing complexes Drosha and 

Dicer was reported (Fukuda et al., 2007; Gregory et al., 2004; Kawahara and Mieda-

Sato, 2012; Ling et al., 2010). Additionally, TDP-43 localizes to the perichromatin fi-

bres in which miRNA biogenesis is thought to occur (Casafont et al., 2009). A func-

tional role of TDP-43 in miRNA biogenesis was demonstrated, as TDP-43 knockdown 

alters the level of distinct miRNAs, such as let-7b, miR-663, miR-132 and mir-143 

(Buratti et al., 2010; Kawahara and Mieda-Sato, 2012). These small non-coding RNA 

molecules regulate the transcriptional and posttranscriptional expression of genes. 

Cytoplasmic localization of TDP-43: Stress granules and other RNA granules 

Although TDP-43 is predominantly nuclear, it can shuttle to the cytoplasm, where it 

colocalizes with other RNA binding proteins in RNA granules. These can be RNA 

transport granules in axons, stress granules and processing bodies (P-bodies), which 

contain the RNA decay machinery (Alami et al., 2014; Dewey et al., 2011; Dewey et al., 

2012; Fallini et al., 2012; Moisse et al., 2009; Volkening et al., 2009; Wang et al., 

2008). In the cytoplasm of primary motor neurons TDP-43 associates with SMN in 

axonal RNA transport granules, together with further axonal mRNA-binding proteins 

such as fragile X mental retardation protein (FMRP), IMP1, Hu-antigen D (HuD) and 

Staufen (STAU1) (Fallini et al., 2012; Wang et al., 2008). A direct interaction with 

IMP1 and HuD was also reported. This suggests a function for TDP-43 in axonal 

transport of RNAs and regulation of axonal growth.  

Under conditions of oxidative and osmotic stress, TDP-43 redistributes from the nu-

cleus to the cytoplasm into reversible stress granules. These RNA-protein complexes 

transiently store non-translating mRNAs, translation initiation components, and 

many additional proteins that affect the function of mRNAs. Thus, stress granule for-

mation allows the selective translation of stress-response proteins, such as heat-

shock proteins (Buchan and Parker, 2009). Specifically, direct interactions of TDP-43 

with the stress granule markers T cells restricted intracellular antigen-1 (TIA-1), 

eIF3, and with polyadenylate-binding protein 1 (PABPC1) were shown (Freibaum et 

al., 2010; Liu-Yesucevitz et al., 2010). The incorporation of TDP-43 into stress gran-

ules is dependent on its ability to bind RNAs with RRM1 (Freibaum et al., 2010).  

In stress granules, TDP-43 is probably involved in the trafficking or the stabilization 

of mRNAs (Colombrita et al., 2009; Dewey et al., 2011; Freibaum et al., 2010; Liu-
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Yesucevitz et al., 2010; McDonald et al., 2011). Interestingly, TDP-43 was shown to 

directly interact with FUS, another RNA-binding protein that is implicated in ALS and 

FTLD (Freibaum et al., 2010; Kim et al., 2010; Ling et al., 2010). FUS is also recruited 

into stress granules and other RNA granules (Bentmann et al., 2012). Thus, it is possi-

ble that FUS and TDP-43 function in a similar pathway. 

The protein interactome of TDP-43 

TDP-43 usually functions as a part of multiple complexes. This became most apparent 

in a global proteomic screen which detected 261 TDP-43 interacting proteins that 

either cluster a nuclear network that regulates RNA splicing and other aspects of nu-

clear RNA metabolism, or in the cytoplasm, which regulate mRNA translation, stabil-

ity and transport (Freibaum et al., 2010). They showed that TDP-43 interaction with 

some proteins is dependent on TDP-43 interaction with RNA, whereas other interac-

tions are RNA-independent. A list of approximately 30 until now validated TDP-43 

protein interactors can be found in Budini et al. (2014). Some of the interactions 

might be relevant in the development of ALS or FTLD. Thus, for a better understand-

ing of its functional roles, it is important to study protein interactions of TDP-43. 

The first published interactor of TDP-43 was the murine SMN protein that co-

localizes with TDP-43 in nuclear GEMs (Tsuiji et al., 2013; Wang et al., 2002). Thus, 

TDP-43 may act as a scaffold for nuclear bodies through the interaction with SMN 

(Wang et al., 2002). As an hnRNP family member, the GRD of TDP-43 mediates inter-

action with several other hnRNP proteins, specifically hnRNPs A1, A2/B1, C1/C2, and 

A3, (Buratti et al., 2005; D'Ambrogio et al., 2009). Further interactors of this protein 

family were identified in proteomic screens (Freibaum et al., 2010; Jeronimo et al., 

2007; Ling et al., 2010), confirming a role of TDP-43 in hnRNP complexes which regu-

late mRNA splicing and other steps of gene expression (Buratti and Baralle, 2010).  

Furthermore, TDP-43 interacts RNA-dependently with ataxin-2, a polyglutamine pro-

tein that is mutated in spinocerebellar ataxia type 2, and also a risk factor for ALS 

(Elden et al., 2010). It was reported, that ataxin-2 enhances TDP-43 toxicity in yeast 

and Drosophila (Elden et al., 2010). Moreover, enhanced levels of ataxin-2 impair the 

assembly of TDP-43 and also of FUS, into RNA granules (Nihei et al., 2012). This leads 

to an aberrant cytoplasmic distribution of both proteins, which might impair the RNA 

quality control. The interaction of TDP-43 with ubiquilin-2, another transcript of an 

ALS-linked gene (see chapter 2.2), suggests that ubiquilin-2 is involved in the clear-

ance of TDP-43 (Cassel and Reitz, 2013). It was proposed that aberrant clearance of 

TDP-43 and its C-terminal fragments might play a role in neurotoxicity mediated by 

TDP-43. 
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2.3.4 Pathology of TDP-43 in FTLD-TDP and ALS 

The presence of abnormal protein aggregates in the cytoplasm of neurons is charac-

teristic for many neurodegenerative diseases. In 2006, TDP-43 was identified as the 

hallmark protein in pathological inclusions of most ALS and half of FTLD patients 

(Arai et al., 2006; Neumann et al., 2006). In neurons and glia cells of these patients, 

TDP-43 is ubiquitinylated, hyperphosphorylated, mislocalized, aggregated and 

cleaved into C-terminal fragments (CTFs) (see Figure 2.4).  

Moreover, the identification of mutations in TARDBP mainly in ALS patients, but also 

in some rare FTLD cases, further emphasizes the role of TDP-43 in the pathogenesis 

of these neurodegenerative diseases. The underlying mechanistic pathogenicity of 

these modifications remains poorly understood. The next section gives an overview 

of known pathological modifications of this protein. 

Mislocalization and nuclear clearance of TDP-43 

In ALS and FTLD-TDP, TDP-43 mislocalizes to the cytoplasm in form of aggregates, 

accompanied by nuclear clearance of TDP-43 in surviving neuronal cells (Neumann et 

al., 2006). Some nuclear mislocalization was also described in form of aggregates with 

lenticular morphology (see Figure 2.4F) (Davidson et al., 2007; Mackenzie et al., 

2011). Nuclear clearance is an early event, as it is observed in cells with pre-

inclusions. These cells do not contain inclusions but exhibit diffuse cytoplasmic and 

ubiquitin negative TDP-43 staining (Brandmeir et al., 2008; Geser et al., 2008; 

Giordana et al., 2010). The clearance of nuclear TDP-43 is thought to disrupt the nor-

mal nuclear function of TDP-43 as knockdown in human cell lines induces morpho-

logical nuclear defects, altered neurite outgrowth, dysregulation of the cell cycle and 

an increased cell death (Ayala et al., 2008a; Iguchi et al., 2009).  

The localization of TDP-43 can be influenced by several factors. The redistribution of 

TDP-43 into stress granules can be induced by stressors, like oxidative and osmotic 

stress and axotomy, which increases cytoplasmic TDP-43 reversible in a time-

dependent manner (Moisse et al., 2009; Sato et al., 2009). Further, it was demon-

strated in a human neuroblastoma cell line and in Drosophila that disease associated 

VCP mutations cause a redistribution of TDP-43 into the cytoplasm (Gitcho et al., 

2009; Ritson et al., 2010). Cytoplasmic inclusion bodies of TDP-43 was also observed 

in myofibrils and frontal cortex of a VCP knock-in mouse (Badadani et al., 2010). Also, 

a polymorphism, which lies between the bipartite NLS of TDP-43 (A90V), results in an 

increased cytoplasmic localization (Winton et al., 2008b). The downregulation of en-

dogenous TDP-43 homologues was observed in a few mice, Drosophila and C. elegans 

transgenic animal models that overexpressed human TDP-43 variants (see the 

overview of all current TDP-43 animal models in Liu et al., 2013). However, it is not 



2 Introduction  25 

known if autoregulation of TDP-43 level contributes to nuclear clearance in diseased 

human brain.  

TDP-43 insolubility and aggregation 

Insoluble protein aggregates are observed in most neurodegenerative diseases. How-

ever, in most cases it is unknown whether these inclusions are either harmful, protec-

tive or both. The localization of sarkosyl-insoluble TDP-43 positive aggregates differs 

in ALS and FTLD-TDP. In ALS, TDP pathology is detected in neurons and glia cells of 

the primary cortex, brainstem motor nuclei, spinal cord and the associated white mat-

 

Figure 2.4 Pathological features of TDP-43 in ALS and FTLD-TDP. A+B Immunohistochemistry of 
TDP-43 in ALS motor neuron tissue shows skein-like (A) and round (B) inclusions. C-F The four dis-
tinct morphological subtypes of FTLD-TDP pathology adapted to the new classification system 
(Mackenzie et al., 2011): type A with compact neuronal cytoplasmic inclusions and short dystrophic 
neurites that are characteristic for GRN mutations (C); type C with long dystrophic neurites and few 
neuronal cytoplasmic inclusions (D); type B with compact and granular neuronal cytoplasmic inclu-
sions (E); and type D with numerous lentiform neuronal intra-nuclear inclusions (see insert) is charac-
teristic for FTLD-TDP with VCP mutations (F). G+H Staining of hippocampus from FTLD-TDP brain 
tissue with an anti-phospho S409/410 TDP-43 antibody shows pathologic inclusions (G), whereas an 
antibody raised against the C-terminus of TDP-43 shows numerous cytoplasmic inclusions and nuclear 
staining of non-inclusion bearing cells (H). Scale bars: 40µm (D), 20µm (A, C), 15µm (E, F), and 10µm 
(B, G, H). Nuclear depletion of TDP-43 in cells with cytoplasmic inclusions is indicated with arrows. I 
Biochemical analysis of urea fractions from control or FTLD-TDP brain tissues show pathological 
bands of 25kDa (*) and 45kDa (**, probably phospho-TDP-43), and a high molecular-weight smear 
(***, probably ubiquitinylated TDP-43) in FTLD-TDP brain but not in control tissue. The arrow indi-
cates unmodified TDP-43 wt. Phosphorylated TDP-43 is detected with anti-phospho TDP-43 
(S409/410) specific antibody. Modified from Mackenzie et al. (2010b) (A-F, I) and Neumann et al. 
(2009) (G+H). 
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ter tracts (Mackenzie et al., 2007; Neumann et al., 2006). The morphology of inclu-

sions is variable and includes small round granules, compact Lewy body-like inclu-

sions, ubiquitinylated and non-ubiquitinylated skeins and diffuse cytoplasmic inclu-

sions (see Figure 2.4A+B) (Mackenzie et al., 2010b; Neumann et al., 2006; Strong et 

al., 2007). The accumulations of TDP-43 in FTLD-TDP are widespread in the brain. 

They are found in the frontotemporal neocortex and in dentate granule cells of the 

hippocampus. In FTLD-MND inclusions were additionally observed in the brainstem 

and the spinal cord (Arai et al., 2006; Davidson et al., 2007; Neumann et al., 2006). 

Four neuropathological subtypes of FTLD-TDP (type A-D) are described and present a 

variety of cytoplasmic, neuritic and intranuclear inclusions (see Figure 2.4C-F) 

(Mackenzie et al., 2011).  

In vitro, purified recombinant TDP-43 exhibits rapid self-aggregation-properties in 

suspension, which look like depositions in degenerating neurons of ALS and FTLD-

TDP (Johnson et al., 2009). The aggregation of TDP-43 in vitro and in vivo is increased 

by some pathogenic mutations and relies on RRM2 and the C-terminus, in which a 

potential prion-like domain was identified (Cushman et al., 2010; Guo et al., 2011; 

Johnson et al., 2008; Johnson et al., 2009). The prion-like character is supported by a 

study which showed that in vitro preformed recombinant TDP-43 fibrils can be taken 

up by TDP-43 overexpressing HEK293T cells and triggers formation of intracellular 

aggregates (Furukawa et al., 2011). Furthermore, the C-terminus shows protease K 

resistance, which is a marker for prions (Guo et al., 2011). However, the pathogenic 

TDP-43 deposits in ALS and FTLD do not exhibit amyloid character like aggregated 

proteins in most other neurodegenerative diseases, since they are not stained with 

amyloid-specific dyes, such as thioflavin T and Congo red (Kwong et al., 2008). 

TDP-43 aggregation is very complex and can be modified by many internal and exter-

nal factors. Overexpression of human TDP-43 induces rare aggregate formation in 

many animal models, such as rodents (reviewed in Cohen et al., 2011; Wegorzewska 

and Baloh, 2011) and fly (reviewed in Romano et al., 2012). However, a correlation 

was not observed between the number of inclusions and neurodegeneration (Igaz et 

al., 2011). Furthermore, aggregates are seldom seen upon overexpression of TDP-43 

full-length (FL) in cell culture, but TDP-43 with mutated NLS or CTFs form many cy-

toplasmic inclusions, which are often phosphorylated and ubiquitinylated (Arai et al., 

2010; Igaz et al., 2009; Nonaka et al., 2009a; Voigt et al., 2010; Winton et al., 2008a; 

Yang et al., 2010; Zhang et al., 2009). This cytoplasmic aggregation of TDP-43 is in-

creased upon knockdown of the nuclear transport protein karyopherin-β1 or cellular 

apoptosis susceptibility proteins (Nishimura et al., 2010). 

Several external factors might also enhance aggregation propensity of TDP-43. 

Among them are interaction with polyglutamine protein ataxin-2, overexpression of 
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ubiquilin-1, mutations within ubiquilin-2 or inhibition of extracellular signal-

regulated kinase (ERK)1/2 (Ayala et al., 2011a; Deng et al., 2011b; Elden et al., 2010; 

Kim et al., 2009). Furthermore, heat shock response seems to play a role in aggregate 

formation, as upregulation of molecular chaperones increases solubility and reduces 

toxicity of TDP-43, especially of CTFs (Crippa et al., 2010; Gregory et al., 2012). A key 

role in TDP-43 aggregation seems to be played by the proteasomal as well as the 

autophagic machinery, since aggregate formation is reduced by p62/ sequestosome-1 

overexpression or inhibition of the deubiquitinylation enzyme USP14 (Brady et al., 

2011; Lee et al., 2010). Consistently, the inhibition of the proteasome in cell culture 

systems increases levels of endogenous TDP-43 and phospho-TDP-43 positive aggre-

gates, while it blocks degradation of overexpressed CTFs, and enhances toxicity 

(Nonaka et al., 2009a; van Eersel et al., 2011; Winton et al., 2008a; Zhang et al., 2010). 

The possible toxicity of TDP-43 aggregation is controversially discussed. On the one 

hand, overexpression of TDP-43 in yeast is only toxic upon aggregation (Johnson et 

al., 2008). Toxicity also depends on RNA binding properties of TDP-43 (Elden et al., 

2010; Ihara et al., 2013; Johnson et al., 2008; Voigt et al., 2010). On the other hand, 

overexpression of TDP-43 was shown to be toxic without the formation of aggregates 

(Arnold et al., 2013; Wegorzewska et al., 2009), indicating that in vivo aggregation is 

possibly not an absolute requirement for TDP-43 mediated neurodegeneration. 

Recently, the hypothesis was introduced that aggregates of TDP-43 or other neuropa-

thological proteins, arise from stress granules (Dewey et al., 2012; Dormann et al., 

2010; Li et al., 2013; Wolozin, 2012). These are normally reversible, but the disrupted 

RNA granule formation in disease or prolonged stress might result in insoluble aggre-

gates (Parker et al., 2012). Thus, stress granules might be the initial core for further 

aggregation. However, the exact process of TDP-43 aggregation and their function 

remains poorly understood. 

C-terminal fragments of TDP-43 

Different CTFs of TDP-43 are found in inclusions in diseased brain and they show dis-

tinct patterns in ALS and FTLD-TDP (Hasegawa et al., 2008; Tsuji et al., 2012). The 

predominant species of truncated TDP-43 is of 25kDa (Hasegawa et al., 2008; Igaz et 

al., 2008; Inukai et al., 2008; Neumann et al., 2006). However, a 35kDa fragment was 

found in lymphoblastoid cell lines, which were derived from TDP-43 mutation carri-

ers (Kabashi et al., 2008; Rutherford et al., 2008). This fragment is also variably pre-

sent in human brain lysates from ALS and FTLD-TDP, but does not correlate with dis-

ease status (Lee et al., 2012). Interestingly, CTFs are found in FTLD-TDP (see Figure 

1.4H+I) and ALS brain, while inclusions in spinal cord exhibit predominantly full-

length TDP-43 (Igaz et al., 2008; Neumann et al., 2009). This argues for a distinct 
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TDP-43 species composition in brain versus spinal cord cells and may indicate that 

TDP-43 truncation might not be necessary for TDP-43 mediated neurodegeneration. 

CTFs were also found in TDP-43 overexpressing rodent animal models. It was consis-

tently shown that the amount of CTFs increases during disease progression (Stallings 

et al., 2010; Tsai et al., 2010; Wils et al., 2010; Xu et al., 2010). 

CTFs of TDP-43 are probably generated by proteolytic cleavage of TDP-43 FL. It is 

also possible that they originate from alternative splice variants or cryptic transcrip-

tion start sites (Nishimoto et al., 2010). A potential TDP-43 processing protease is 

caspase 3, which generates 25kDa and 35kDa fragments of TDP-43 in vitro and in cell 

culture (Dormann et al., 2009; Nishimoto et al., 2010; Zhang et al., 2007b). In addition, 

the Ca2+-dependent cysteine protease calpain is also able to cleave TDP-43 in its C-

terminal region, thus generating 33, 34 and 36kDa N-terminal fragments (Yamashita 

et al., 2012). The exact amino acid sequence of all CTFs is still unknown. N-terminal 

sequencing of truncated TDP-43 from FTLD-TDP brain lysates identified arginine 208 

as one specific cleavage site (Igaz et al., 2009), whereas Nonaka and colleagues identi-

fied D219 and D247 as possible cleavage sites (Nonaka et al., 2009b). Interestingly, 

these and other CTFs expressed in various cell lines behave in the same manner as 

pathological CTFs as they form ubiquitinylated and phosphorylated aggregates (Igaz 

et al., 2009). 

The toxicity of truncated TDP-43 is not well understood. CTFs were shown to be ag-

gregation prone and toxic when overexpressed in various cell lines (Fallini et al., 

2012; Igaz et al., 2009; Nonaka et al., 2009b; Zhang et al., 2009), and impair neurite 

outgrowth during differentiation of cultured rodent neurons (Yang et al., 2010). Con-

trary, one study showed that the de novo intranuclear cleavage of TDP-43 FL does not 

generate aggregating CTFs (Pesiridis et al., 2011). Instead they are translocated and 

rapidly degraded, and aggregation only takes place when a “second hit” was present, 

such as misfolded CTFs. Moreover, in Drosophila models of TDP-43 overexpression, a 

toxic-gain-of function of TDP-43 FL rather than of CTFs was demonstrated, probably 

due to the RNA binding properties of TDP-43 FL (Li et al., 2010; Voigt et al., 2010).  

A few studies showed that nuclear TDP-43 is depleted and mislocalized into cyto-

plasmic inclusion upon overexpression of CTFs (Caccamo et al., 2009; Igaz et al., 

2009; Nonaka et al., 2009b; Yang et al., 2010), though this observation is not consis-

tent in the literature. The mislocalization of TDP-43 also caused the downregulation 

of NFL mRNA, indicating that CTFs are sufficient to impair TDP-43 mediated NFL sta-

bilization (Caccamo et al., 2009). Additionally, truncated TDP-43 also impairs splicing 

activity of TDP-43, illustrated by decreased skipping of CFTR exon 9 (Igaz et al., 2009; 

Nishimoto et al., 2010; Nonaka et al., 2009b; Zhang et al., 2009). Thus, the roles of 
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CTFs in TDP-43 proteinopathies are not entirely clear. Open questions regarding their 

procession, modification and of their possibly mediated toxicity remain. 

Phosphorylation and ubiquitinylation of TDP-43  

In contrast to normal conditions, TDP-43 is phosphorylated and ubiquitinylated in 

diseased tissue (see Figure 2.4G+I). It is still uncertain whether these modifications 

cause neurodegeneration or are secondary to the formation of aggregates. 

The phosphorylation of TDP-43 likely occurs before ubiquitinylation in disease, as 

TDP-43 ubiquitin-negative but phospho-positive pre-inclusions were described 

(Hasegawa et al., 2008; Neumann et al., 2009). This modification is found at serine 

residues 379, 403/404 and 409/410 (see Figure 2.3) of pathological but not normal 

nuclear TDP-43 in FTLD-TDP and ALS (Hasegawa et al., 2008; Inukai et al., 2008). Up 

to date, phosphorylation in particular at serine 409/410 is the best pathological 

marker of abnormal TDP-43 inclusion in FTLD-TDP (Figure 2.4I) and ALS (Hasegawa 

et al., 2008; Inukai et al., 2008; Neumann et al., 2009). CTFs are more phosphorylated 

than TDP-43 FL in diseased brain, whereas phosphorylated TDP-43 FL is found pri-

marily in spinal cord of ALS patients (Hasegawa et al., 2008; Neumann et al., 2009). 

TDP-43 is possibly phosphorylated by the casein kinase-1 (CK1) and CK2, and the cell 

division cycle kinase 7 (CDC7) (Hasegawa et al., 2008; Inukai et al., 2008; Liachko et 

al., 2013). The phosphorylation seems to promote oligomerization or fibril formation 

of TDP-43, at least in vitro. In line, the Drosophila homolog of CK1ε, doubletime, medi-

ates the in vivo formation of TDP-43 oligomers that results in cellular toxicity (Choksi 

et al., 2014). 

While data suggest that phosphorylation modulates solubility, aggregation and toxic-

ity of TDP-43 in disease (Braak et al., 2010; Igaz et al., 2009; Liachko et al., 2010; 

Zhang et al., 2010), other results demonstrate that mutation of phosphorylation sites 

does not affect aggregation, toxicity, cell survival and cleavage of TDP-43 (Dormann 

et al., 2009; Nishimoto et al., 2010; Zhang et al., 2009). Interestingly, studies in C. ele-

gans indicate that blocking of TDP-43 phosphorylation improves neurodegeneration 

of ALS-associated mutants, though TDP-43 wt neurotoxicity is not attenuated 

(Liachko et al., 2010). However, in Drosophila hyperphosphorylation of human CTFs 

reduces aggregation and toxicity and is proposed as a compensatory defence mecha-

nism to prevent the aggregation of pathogenic TDP-43 (Li et al., 2011). 

The ubiquitinylation of TDP-43 might take place after phosphorylation, but before the 

formation of insoluble inclusions (Giordana et al., 2010; Urushitani et al., 2010). In 

diseased brain and spinal cord of TDP-43 proteinopathies both cytoplasmic and nu-

clear TDP-43 inclusions are often positive for ubiquitin (Arai et al., 2006; Neumann et 

al., 2006). However, ubiquitin-negative pathologies are observed in some cases of 
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cytoplasmic inclusions in glia cells, in neurons with pre-inclusions and in neurons in 

the CA1 region (Brandmeir et al., 2008; Hatanpaa et al., 2008; Neumann et al., 2007).  

The causation for aggregation of abnormally modified TDP-43 remains unknown. It is 

suggested that a failure in depletion of TDP-43 occurs in TDP-43 proteinopathies. The 

pathogenic inclusions of TDP-43 are positive for ubiquilin-2 and p62/ sequestosome-

1, which target other proteins for degradation (Arai et al., 2003; Deng et al., 2011b). 

Furthermore, mutations in UBQLN2, SQSTM1 and VCP are associated with ALS and 

FTLD-TDP (see also chapter 2.2) (Deng et al., 2011b; Fecto et al., 2011; Johnson et al., 

2010; Watts et al., 2004). In addition, pathogenic TDP-43 mutants were also shown to 

be more stable than TDP-43 wt (Ling et al., 2010). Thus, it is likely that impairment of 

the UPS and reduced degradation of TDP-43 contribute to the disease. 

Usually, ubiquitinylation targets proteins towards either degradation by the protea-

some or by autophagy (see chapter 2.4). Therefore, the ubiquitinylated form of TDP-

43 in ALS and FTLD-TDP cannot distinguish which pathway is involved in disease 

pathogenesis. Controversially, some reports indicate that TDP-43 is degraded by the 

proteasome (Kabashi et al., 2008; Rutherford et al., 2008; Tashiro et al., 2012; van 

Eersel et al., 2011; Winton et al., 2008a; Zhang et al., 2010), while others point to-

wards autophagic clearance (Caccamo et al., 2009; Filimonenko et al., 2007; Wang et 

al., 2012) or the involvement of both pathways (Brady et al., 2011; Scotter et al., 

2014; Urushitani et al., 2010; Wang et al., 2010). 

TDP-43 has 20 lysine residues, which are possible targets for ubiquitinylation. Most 

of them are located in the N-terminal region and only five in RRM2 and the C-term-

inus, of which most CTFs consist (see Figure 2.3). Four potential ubiquitinylation sites 

were identified in RRM1 (K102, K114, K145 and K161) in a 33.5kDa N-terminal splic-

ing variant of TDP-43, comprised of amino acids 1-277 (Dammer et al., 2012). Thus, 

these lysine residues cannot be the ubiquitinylation sites of the highly ubiquitinylated 

25kDa CTFs found in ALS and FTLD-TDP inclusions. Moreover, inactivation of these 

four lysine residues by mutation in TDP-43 wt also did not alter the amount and solu-

bility of ubiquitinylated TDP-43, emphasizing that other lysine residues of TDP-43 wt 

or CTFs are conjugated with ubiquitin (Dammer et al., 2012). TDP-43 can be polyubi-

quitinylated via K48- and K63-linked ubiquitin-chains, pointing to proteasomal or 

autophagosomal degradation (Hebron et al., 2013; Urushitani et al., 2010). Up to date, 

it remains unknown which enzymes participate in ubiquitinylation of TDP-43. It was 

suggested that the contributing E3 ubiquitin ligase(s) are located in the cytoplasm 

(Urushitani et al., 2010). One likely candidate ubiquitin ligase is parkin, since it ubiq-

uitinylates TDP-43 in vitro (Hebron et al., 2013). To understand these posttransla-

tional modifications of TDP-43, it is important to identify other enzymes that are in-

volved in the ubiquitinylation and/or phosphorylation of TDP-43 FL or CTFs. 
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Pathogenic mutations of TDP-43 in ALS and FTLD 

The identification of 48 missense mutations and of one nonsense mutation in TDP-43 

in patients provides additional evidence for a role of TDP-43 in ALS, FTLD-TDP and 

FTLD-MND (summarized in Lattante et al., 2013). Interestingly, most of the patho-

genic TDP-43 mutations are clustered in exon 6, which encodes for RRM2 and the 

aggregation-prone C-terminus (see Figure 2.3). This might imply altered protein-

binding properties of the mutants. Moreover, the mutations were predominantly de-

tected in patients with classical ALS in terms of age and site of disease onset and 

without cognitive decline (Kabashi et al., 2008). Only rare cases of mutant TDP-43 

were described in FTLD, ALS patients with dementia or Parkinsonism (Lattante et al., 

2013). The current prevalence for TDP-43 mutations is ~3% in fALS and ~1.5% in 

sALS patients (Lattante et al., 2013). However, the TDP-43 pathology from sALS cases 

with mutations is indistinguishable from the pathology of most sALS cases 

(Pamphlett et al., 2009; Van Deerlin et al., 2008). 

Up to date, many studies did not provide evidence for altered functions of TDP-43 

mutants, such as splicing activity, mRNA binding and processing and protein binding 

(D'Ambrogio et al., 2009; Fiesel et al., 2010; Freibaum et al., 2010; Watanabe et al., 

2013). Only one study found slightly enhanced splicing activity of mutant TDP-43 

Q331K for some RNA targets, but a loss-of-function against other RNA targets (Arnold 

et al., 2013). On the other hand, the overexpression of some ALS associated mutants 

increased the truncation and formation of insoluble aggregates and enhanced toxicity 

(Arai et al., 2010; Barmada et al., 2010; Guo et al., 2011; Johnson et al., 2009; Kabashi 

et al., 2010; Nonaka et al., 2009b; Sreedharan et al., 2008). Motor neurons generated 

from iPS cells that were derived from M337V mutation carriers exhibit increased 

level of soluble but also detergent-resistant TDP-43, decreased survival and enhanced 

vulnerability (Bilican et al., 2012).  

Moreover, some TDP-43 mutants further accumulate upon proteasomal inhibition 

(Kabashi et al., 2008; Rutherford et al., 2008). Controversial, two studies showed that 

pathogenic mutants of TDP-43 exhibit enhanced half-lives which correlate with an 

acceleration of disease onset (Ling et al., 2010; Watanabe et al., 2013), yet another 

study recently reported that two of the mutants, which were analysed in the previ-

ously mentioned studies, are less stable than TDP-43 wt (Araki et al., 2014). Thus it 

still needs to be shown whether pathogenic mutants enhance or decrease the stability 

of TDP-43. The disease associated mutants might also facilitate stress granule forma-

tion (Dewey et al., 2011; Liu-Yesucevitz et al., 2010), though a disruption of stress 

granule assembly the by the R361S mutation was observed (McDonald et al., 2011).  
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The available data from transgenic animals overexpressing human TDP-43 with 

pathogenic mutations are controversial. While some reports demonstrate increased 

neurodegeneration and toxicity of TDP-43 pathogenic mutants compared to TDP-43 

wt in rodents (Arnold et al., 2013; Swarup et al., 2011; Zhou et al., 2010), others did 

not observe this effect in mice (Stallings et al., 2010; Xu et al., 2011). Thus, it was sug-

gested that TDP-43 toxicity is rather depending on the level of overexpression than 

on distinct properties of mutant and wt TDP-43 (Li et al., 2010; Stallings et al., 2010; 

Wils et al., 2010; Xu et al., 2013). A severe phenotype was observed in a rat model 

overexpressing the M337V mutation, which developed progressive weakness, early 

death and widespread neurodegeneration most severe in the spinal cord (Zhou et al., 

2010). However, in the cortex of these animals a diffuse TDP-43 localization and only 

some aggregates were detected. The progressive motor abnormalities and wide-

spread neurodegeneration were also observed in A315T transgenic mice, in which 

ubiquitin immunoreactive neuronal aggregates were negative for TDP-43 

(Wegorzewska et al., 2009). This possibly points to altered DNA/RNA-binding prop-

erties of TDP-43 mutants instead of a toxic-gain-of-function of aggregated TDP-43 as 

disease promoting feature. One functional alteration of pathogenic mutant TDP-43 

was seen in axonal trafficking of TDP-43 granules in motor neurons derived from ALS 

patients with TDP-43 mutations and in Drosophila motor neurons (Alami et al., 2014).  

In summary, most pathogenic mutants are indistinguishable to TDP-43 wt in terms of 

localization and function, but some exhibit altered properties in the formation of CTFs 

and aggregates, and in toxicity. 

Concluding remarks on the pathogenesis of TDP-43 

Many studies have been conducted to identify the molecular and cellular mechanisms 

by which TDP-43 contributes to the pathogenesis of ALS and FTLD. However, the im-

pact of the cleavage, phosphorylation, ubiquitinylation and aggregation of TDP-43 as 

well as the nuclear depletion on the disease pathogenesis remain poorly understood. 

These alterations are the subject of many studies and discussions, of which two main 

hypotheses are emerging. 

It is conceivable that nuclear loss-of-functional TDP-43 causes alterations in RNA 

pathways, since TDP-43 seems to be a global player in the regulation of RNAs and 

interacts with many different RNAs. A general dysfunction of RNA homeostasis in ALS 

and FTLD is supported by the identifications of mutations in further proteins that 

possess distinct function in the regulation of RNAs - transcription, mRNA splicing, 

translation, RNA transport, and formation of ribonucleoprotein particles. Among 

them are FUS, ataxin-2, sentaxin and hnRNPs. The large number of TDP-43 RNA tar-

gets makes it difficult to identify distinct RNAs that might contribute to the patho-
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genesis of ALS or FTLD, especially when TDP-43 is nuclear depleted or aggregated. 

TDP-43 is probably of great importance in disease development, because its levels are 

tightly regulated through autoregulation, and knockout of TDP-43 in mouse or fly is 

lethal. Furthermore, the identification of the molecular mechanisms by which hex-

anucleotide repeat expansions in C9ORF72 are involved in ALS and FTLD might pro-

vide important information for the understanding of the disease pathogenesis. 

On the other hand, the insoluble aggregates or the aberrant modifications might con-

fer a toxic gain-of-function. Though some pathogenic mutants of TDP-43 exhibit en-

hanced aggregation propensities, it is TDP-43 wt that is deposited in the majority of 

TDP-43 proteinopathies, implicating that other unknown factors account for its mis-

localization and aggregation. A rather general failure of protein degradation in ALS 

and FTLD is supported by mutations in genes encoding proteins with distinct func-

tions in protein homeostasis, among them ubiquilin-2, p62, VCP, optineurin, CHMP2B, 

VABP, and FIG4. However, it is also possible that the aggregates are not toxic, as sev-

eral animal models exhibit neurodegenerative phenotypes but not neuronal aggre-

gates. Furthermore, the nuclear depletion of TDP-43 is also observed in cells with a 

diffuse cytoplasmic TDP-43 staining, the pre-inclusions. This might indicates that the 

toxic forms are soluble or oligomeric, and the formation of aggregates is rather an 

attempt of the cell to protect itself from the toxic oligomers. 

The mechanisms that underlie the aberrant cleavage, phosphorylation and ubiquiti-

nylation of TDP-43 are not well understood. Therefore, it is important to understand 

how and by which TDP-43 interactors these modifications are regulated. It is possible 

that both - a loss-of-function with implications for altered RNA regulations as well as 

a toxic gain-of-function of TDP-43 that is promoted by dysfunctions in the protein de-

gradation pathways - contribute to disease initiation and progression. 

2.4 The cellular ubiquitin system 

The posttranslational modification of cellular proteins with the highly conserved 76 

amino acid protein ubiquitin is involved in the regulation of many processes in the 

cell. This so called ubiquitinylation is a dynamic process and modulates protein activ-

ity and stability, ubiquitin-dependent signalling pathways, gene transcription, protein 

localization, and degradation of proteins.  

The ubiquitinylation of proteins occurs in three steps mediated by three enzymes: the 

ubiquitin-activating enzyme (E1), a ubiquitin-conjugating enzyme (E2) and a ubiq-

uitin ligase (E3) (Figure 2.5A). First, ubiquitin is activated at its C-terminus by the E1 

enzyme in an ATP dependent manner, forming a thioester bond with the E1. This ac-

tivated ubiquitin is transferred in a second step to the active site cysteine of an E2 
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enzyme, of which 31 functional enzymes are known in human (van Wijk and 

Timmers, 2010). In a third step an E3 ligase mediates the formation of an isopeptide-

bond between the activated ubiquitin and, usually, the ε-amino group of a lysine resi-

due of the substrate protein. Rather unusual ubiquitinylations of the N-terminus of 

proteins and of other nucleophilic amino acids like threonine, serine and cysteine 

have also been described (Cadwell and Coscoy, 2005; Ciechanover and Ben-Saadon, 

2004; Ishikura et al., 2010; Shimizu et al., 2010; Tait et al., 2007). 

There are more than 600 E3s in mammalian cells that provide as distinct E2-E3 pairs 

specificity of the ubiquitinylation (Metzger et al., 2012). Most E3 ligases belong either 

to the homologous to E6-AP carboxy-terminus (HECT) domain or the really interest-

ing new gene (RING) finger domain family. Further RING-related E3s express U-box 

domains (UBD), plant homeodomains (PHDs) or leukemia associated protein (LAP) 

finger (Deshaies and Joazeiro, 2009). The HECT E3 ubiquitin ligases actively take up 

E2-bound ubiquitin via thioester linkages and then transfer the ubiquitin to the sub-

strate, whereas RING E3s mediate ubiquitin transfer from E2s directly to the sub-

strate without forming a thioester bond with ubiquitin (Metzger et al., 2012).  

 

Figure 2.5 The (de-)ubiquitinylation reaction and types of ubiquitin linkage. A The ubiquitin-
ylation occurs through the sequential action of three classes of enzymes. The E1 ubiquitin-activating 
enzyme transfers an activated ubiquitin to an E2 ubiquitin-conjugating enzyme. An E3 ubiquitin ligase 
mediates the ubiquitinylation of the target substrate or the elongation of a polyubiquitin chain. The 
enzymatic removal of ubiquitin is performed by deubiquitinating enzymes (DUBs). B The different 
types of ubiquitinylation and their supposed cellular functions. 
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After the initial ubiquitinylation, further ubiquitin molecules can be conjugated to one 

of the seven lysine residues, but also to the C-terminal carboxyl group, of the ubi-

quitin molecule which is already attached to the substrate (Komander and Rape, 

2012). Thus, different types of polyubiquitin chains are formed, which are associated 

with different cellular and developmental processes and protein functions (Figure 

2.5B).  

The K48 polyubiquitinylation targets proteins to degradation by the proteasome 

(Pickart, 1997). The K63-polyubiquitinylation of proteins is usually associated with 

autophagic clearance of the conjugated protein or organelle, whereas functions of the 

other mono- and polyubiquitinylations are less well understood. Monoubiquitinyla-

tion does not usually lead to proteolytic degradation, but regulates cellular localiza-

tion, trafficking and transcriptional activity of a protein (Komander and Rape, 2012). 

A proteolytic breakdown is essential for maintenance of proper protein folding, pro-

tein turnover, cell cycle, development, regulation of gene expression, signal transduc-

tion, antigen processing and further processes in cells. There are two major degrada-

tion pathways for misfolded or no longer required proteins and organelles in eu-

karyotic cells: the UPS and the autophagy-lysosomal pathway (Clague and Urbe, 

2010). In macroautophagy - usually referred to as autophagy - cytoplasmic organelles 

or components are enclosed by a double membrane to form an autophagosome, 

which then fuses with the lysosome. In another form of autophagy called microauto-

phagy cytoplasmic material is directly endocytosed by the lysosome.  

The majority of misfolded and short-lived proteins are degraded by proteasomes, for 

which they are usually tagged with ubiquitin. The mammalian 26S proteasome is a 

multi-protein complex located in the cytoplasm and as well in the nucleus (von 

Mikecz, 2006). It is comprised of a barrel shaped 20S core protein and two flanking 

19S regulatory caps. The 19S regulatory caps recognize polyubiquitinylated proteins 

as substrates for the 20S proteasome. The recognition requires at least a chain of four 

K48-linked ubiquitin molecules attached to the substrate is sufficient, though the pro-

teasome has the capacity to degrade certain unfolded or damaged proteins which are 

non-ubiquitinylated (Goldberg, 2003). The ubiquitin chain is removed from the pro-

tein by a deubiquitinating enzyme (DUB) before it enters the 20S proteasome for di-

gestion into peptides. These are further degraded to amino acids by peptidases in the 

cytoplasm. 

Ubiquitinylations are dynamic posttranslational modifications. For the maintenance 

of ubiquitin homeostasis, ubiquitin has to be recycled once the ubiquitinylated sub-

strate reaches its destinations for breakdown or fulfils its physiological function. Im-

portantly, monomeric ubiquitin is generated from linear polymers of ubiquitin as 
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they emerge from ribosomes. DUBs ensure selectivity of these processes. About 90 

DUBs are encoded in the human genome, of which 79 are predicted to be active 

(Clague et al., 2012). They are grouped into two classes, containing a total of five fami-

lies. The first class of papain-like cysteine proteases comprise four distinct DUB fami-

lies: ubiquitin-specific proteases (USPs), ubiquitin-C-terminal hydrolases (UCHs), 

ovarian tumor domain proteases (OTUs) and members of the Josephin domain (MJD) 

family. The second class and the fifth family are the JAB1/MPN/MOV34 Zn2+ depend-

ent metalloproteases (JAMM) (Komander et al., 2009). The substrate specificity of the 

distinct DUBs is dependent on the subcellular localization, the specific binding inter-

actions and the linkage preference of the catalytic domain. DUBs recognize ubiquitin 

via low affinity interactions by various ubiquitin-binding domains, including UIM, 

CUE, NZF as well as certain VHS and SH3 domains (Dikic et al., 2009). Thus, DUBs con-

trol membrane trafficking and protein quality control, signalling pathways, transcrip-

tional activity and DNA repair (reviewed in Clague et al., 2012). 

2.5 The class III UBE2E ubiquitin-conjugating enzymes 

2.5.1 Characterization of the class III UBE2E enzymes 

The E2 ubiquitin conjugating enzymes can be divided into four classes (Figure 2.6B). 

E2 enzymes are comprised either solely of a highly conserved ubiquitin-conjugating 

(UBC) domain of about 150 amino acids (class I), the UBC domain with a C-terminal 

or an N-terminal extension (class II and class III) or both extensions (class IV) (van 

Wijk and Timmers, 2010). Additionally to the catalytic cysteine, the UBC domain also 

contains conserved features which are required for the interaction with both E1 and 

E3 enzymes (Wenzel et al., 2011b). 

The three human class III UBE2E ubiquitin-conjugating enzymes are called UBE1E1 

(UbcH6), UBE2E2 (UbcH8) and UBE2E3 (UbcH9) (Figure 2.6A). They are 100% iden-

tical to their mouse orthologs UbcM3, Ube2e2 and UbcM2, and are highly conserved 

in animals (Ito et al., 1999; Matuschewski et al., 1996). The three enzymes share a 

conserved UBC fold with over 93% identity. Including their N-terminal extensions, 

the overall homology between the UBE2E enzymes is 78-85% (Figure 3.15), suggest-

ing a functional overlap of these E2 enzymes (Mirza et al., 2010). 

UBE2E3 is highly expressed in murine brain and retinal cells (Mirza et al., 2010) and 

in human skeletal muscle (Ito et al., 1999), though low levels were detected in many 

other tissues (Ito et al., 1999; Mirza et al., 2010). The three UBE2E enzymes are nu-

clear localized and their importin-II mediated nuclear import is triggered by charging 

of the E2s at their catalytic cysteine residue with ubiquitin (Plafker et al., 2004). Con-
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further cullins, it was suggested that the E2 can regulate the activity of cullin-based 

E3 ligase complexes (Plafker et al., 2009).  

UBE2E enzymes are functional in different events. UBE2E1 is involved in the ubiquit-

inylation of the SCA1 gene product ataxin-1 even in absence of an E3 ligase (Hong et 

al., 2008). It was also shown that UBE2E1 regulates the transcriptional repression 

activity of ataxin-1 (Lee et al., 2008). Surprisingly, UBE2E2 can catalyze the conjuga-

tion of the ubiquitin like protein ISG15 to the influenza A NS1 protein (Zhao et al., 

2004; Zhao et al., 2010). UBE2E3 is involved in human immunodeficiency virus type 1 

(HIV-1) replication (Dziuba et al., 2012). Moreover, UBE2E3 has a role in develop-

ment, as the E2 is required for proliferation of retinal pigment epithelial (RPE) cells, 

regulating the balance between RPE cell proliferation and differentiation (Plafker et 

al., 2008). Notably, UBE2E3 enhances the stability and transcriptional activity of the 

transcription factor nuclear factor E2-related factor 2 (Nrf2), by forming a complex 

upon alkylation of the non-catalytic cysteine 136 in UBE2E3 (Plafker et al., 2010). 

Thus, the constitutively degraded Nrf2 is stabilized, can shuttle to the nucleus and 

activates the transcription of detoxifying genes. Moreover, the functional homologues 

of UBE2E3, Ubc4 and Ubc5, mediate the degradation of misfolded and oxidatively 

damaged proteins (Matuschewski et al., 1996; Medicherla and Goldberg, 2008; 

Seufert and Jentsch, 1990).  

2.6 The ubiquitin isopeptidase Y 

2.6.1 Structure and localization of UBPY 

The ubiquitin isopeptidase Y (UBPY) is a cysteine protease of the USP family, also 

known as USP8. UBPY is comprised of a conserved cysteine box and a histidine box in 

its C-terminal region (Figure 2.7) (Gnesutta et al., 2001). UBPY exhibits an N-terminal 

microtubule interacting and transport (MIT) domain and a Rhodanese-like domain 

(Gnesutta et al., 2001; Row et al., 2007). The MIT domain is essential for the binding 

to the MVB proteins CHMP1B, CHMP1B, CHMP7 and CHMP4C (Row et al., 2007). Ad-

ditionally, the E3 ligase Nrdp1 interacts with UBPY via the Rhodanese-like domain 

(De Ceuninck et al., 2013; Wu et al., 2004). The DUB also contains two non-classical 

Src homology 3 (SH3) domain binding motifs in the central region (Kato et al., 2000). 

These are important for the binding to other proteins, among them the signal trans-

ducing adaptor molecule 2 (STAM2) (Gnesutta et al., 2001; Harkiolaki et al., 2003; 

Kaneko et al., 2003; Kato et al., 2000).  

UPBY is conserved in eukaryotes. The cytoplasmic DUB is expressed weakly in most 

mouse tissues, but highly expressed in mouse testis and brain neurons (Bruzzone et 
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al., 2008; Gnesutta et al., 2001). UBPY was detected in gray and white matter of 

mouse spinal cord, more precisely, in the cell body, axonal microtubules and synaptic 

terminals of neurons, but not in glia cells (Paiardi et al., 2014). Thus, UBPY might ex-

hibit special functions in neuronal tissue. 

2.6.2 Regulation of UBPY activity 

UBPY is a growth regulated protein, which accumulates upon growth stimulation in 

human fibroblasts, but decreases when cells undergo growth arrest by contact inhibi-

tion (Naviglio et al., 1998). This suggested a possible role in the control of mammalian 

cell proliferation. Furthermore, phosphorylation of S680 in a predicted 14-3-3 bind-

ing motif induces 14-3-3ε binding, which maintains UBPY in the cytosol and reduces 

DUB activity, whereas dephosphorylation during M-phase enhances DUB activity in 

dividing cells (Ballif et al., 2006; Mizuno et al., 2007). The mutation of serine 680 to 

alanine resulted in a constitutively active UBPY (Mukai et al., 2010). An Akt-

dependent phosphorylation at threonine 907 stabilizes the activity of UBPY (Cai et al., 

2010; Cao et al., 2007), suggesting that Akt-mediated growth and survival signals 

might use UBPY as a downstream effector. A reciprocal regulation of UBPY and the E3 

ligase Nrdp1 was demonstrated, where UBPY stabilizes Nrdp1 by deubiquitinylation 

and UBPY is destabilized by Nrdp1 mediated ubiquitinylation (De Ceuninck et al., 

2013). Thus, UBPY expression and activity is tightly regulated. 

2.6.3 Cellular functions of UBPY 

UBPY is a functionally active DUB, which hydrolases K48- and K63-linked ubiquitin-

chains as well as (multi-)monoubiquitinylations of receptor tyrosine kinases in vitro 

(Row et al., 2006). The best studied function of UBPY is the regulation of post-

internalisation trafficking of several plasma membrane receptors in a substrate spe-

cific way, thus indirectly affecting downstream signalling. Therefore, UBPY interacts 

with the ESCRT-0 complex, comprised of hepatocyte growth factor-regulated tyrosine 

kinase substrate (Hrs) and STAM, and with several CHMP proteins of the ESCRT-III 

complex (Berlin et al., 2010a; Berlin et al., 2010b; Mizuno et al., 2005; Row et al., 

 

Figure 2.7 Domain structure of UBPY. Depicted is a schematic view of the human UBPY with the 
microtubule interacting and transport (MIT) domain, Rhodanese-like domain, two Src homology 3 
(SH3) binding domains, the catalytic cystein C786, and the cysteine box (CYS, amino acids 778-796) 
and histidine box (HIS, amino acids 1061-1070) in the C-terminal ubiquitin-specific protease (USP) 
domain. 
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2007). Hrs is deubiquitinylated and hence stabilized by UBPY, protecting the ESCRT-0 

complex from degradation (Kato et al., 2000; Niendorf et al., 2007; Row et al., 2006; 

Zhang et al., 2014). The depletion of UBPY results in increased overall ubiquitinyla-

tion and endocytic swelling accompanied by the accumulation of ubiquitinylated spe-

cies on endosomes (Naviglio et al., 1998), emphasizing the important role of the pro-

tein in endosomal sorting.  

UBPY directly mediates stabilization, recycling or degradation of cell surface recep-

tors. For example, the DUB directly deubiquitinylates the two G-protein coupled re-

ceptors protease-activated receptor 2 (PAR2) and δ-opioid-receptor (DOR), targeting 

these proteins for lysosomal trafficking and degradation (Hasdemir et al., 2009; 

Hislop et al., 2009). Contrary, deubiquitinylation of the wingless/Wnt pathway recep-

tor frizzled and the hedgehog pathway component smoothened protects these recep-

tors from lysosomal turnover, thus prolonging signalling of the morphogens wing-

less/Wnt and hedgehog, respectively (Li et al., 2012; Mukai et al., 2010; Xia et al., 

2012). Conflicting results have been observed for the role of UBPY in lysosomal tar-

geting of the epithelial growth factor receptor (EGFR). Some reports showed that 

EGFR deubiquitinylation by UBPY stimulates lysosomal turnover of the receptor 

(Alwan and van Leeuwen, 2007; Bowers et al., 2006; Row et al., 2006). More convinc-

ingly, UBPY protects EGFR from degradation by direct deubiquitinylation, thus pro-

moting recycling of the receptor (Berlin et al., 2010b; Cai et al., 2010; Mizuno et al., 

2005; Niendorf et al., 2007). Thus, UBPY functions are closely related to the ESCRT 

dependent trafficking of various receptors. 

UBPY knockout mice and flies are embryonic lethal, probably due to decreased cell 

proliferation (Mukai et al., 2010; Niendorf et al., 2007). Thus the in vivo functions of 

UBPY are barely known. The conditional inactivation of UBPY in adult mice causes a 

severe liver failure with progressive loss of growth receptors and enlarged en-

dosomes (Niendorf et al., 2007). The UBPY deficiency in flies also showed an accumu-

lation of membrane proteins in enlarged endosomes (Zhang et al., 2014). In addition, 

the knockdown of UBPY in zebrafish embryos resulted in abnormal CNS development 

(Tse et al., 2009). Remarkably, the Wobbler mouse, a model for a motor neuron de-

generation disorder, exhibited in oligodendrocytes an unusually heavy immunoreac-

tivity for UBPY, and neurons displayed aggregates of UBPY and Vsp54, a member of 

the Golgi-associated retrograde tethering complex (Paiardi et al., 2014). Thus, an in-

fluence of UBPY on the neuron-oligodendrocytes interaction in neurodegenerative 

disorders was proposed. Since UBPY knockdown in mice and flies is embryonic lethal, 

cellular models of UBPY overexpression or silencing have to be used to learn more of 

the functions and regulation of UBPY. 
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2.7 Objectives 

The RNA/DNA binding protein TDP-43 is found in pathological, ubiquitin-positive 

inclusions in a wide spectrum of neurodegenerative diseases, including ALS and 

FTLD-TDP. How TDP-43 contributes to the pathogenesis of these TDP-43 protei-

nopathies remains unknown. There are two hypothesises that are widely discussed:  

A toxic-gain-of-function might be caused by the predominantly cytoplasmic inclusions 

that are comprised of insoluble, ubiquitinylated and hyperphosphorylated TDP-43 as 

well as C-terminal fragments. This accumulation also suggests that the processing, 

modification and degradation of TDP-43 is impaired or misregulated. A possible loss-

of-function due to the nuclear depletion and mislocalization of TDP-43 in cells with 

inclusions was suggested. Since the main functions of TDP-43 are in the regulation of 

transcription, mRNA splicing, RNA transport, translation and miRNA biogenesis, this 

loss-of-nuclear-function possibly affects the TDP-43 dependent RNA metabolism.  

TDP-43 is supposed to execute its functions as part of protein complexes. At the be-

ginning of this study only a few interacting proteins of TDP-43 were known. The iden-

tification of novel protein interactors of TDP-43 allows the better understanding of 

the physiological roles of TDP-43, and therefore also of the pathogenicity of this pro-

tein. To this end, a yeast two-hybrid screen was performed with an adult human 

cDNA library as prey and a C-terminal fragment of TDP-43 as bait. Ten novel interac-

tors were identified. Some of them are proteins associated with several steps of the 

RNA metabolism, while another group of target proteins regulates cellular ubiquiti-

nylation reactions.  

Here the focus was set on the investigation of the regulation of TDP-43 ubiquitinyla-

tion by the class III E2 ubiquitin-conjugating enzyme UBE2E3 and the ubiquitin 

isopeptidase UBPY. Five specific questions were investigated in this study.  

1) Is the ubiquitinylation of TDP-43 regulated by UBE2E3 and UBPY? 

2) Is the ubiquitinylation of TDP-43 a signal for proteolytic breakdown by the 

proteasome or autophagy? 

3) Does the ubiquitinylation of TDP-43 alter its stability and turnover, solubility 

and aggregation, and functional activity? Can this be regulated by UBE2E3 and 

UBPY? 

4) Are pathogenic mutants of TDP-43 differentially ubiquitinylated compared to 

TDP-43 wt?  

5) Does silencing of the Drosophila orthologs of UBPY or UBE2E3 - dUBPY and 

UbcD2 - alter a neurotoxic phenotype in TDP-43 transgenic flies?  
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(BD) or the activation domain (AD) of the Gal4 transcription factor were cultivated on 

selective medium plates lacking leucine and tryptophane (-LT), on -LT supplemented 

with X-alpha-Gal (XαGal) or the yeast antibiotic Aureobasidin A (AbA, Figure 3.2A). 

After three days, we found that both BD-TDP-43 FL and CTF193-414 grew on -LT plates, 

but not on -LT+Aba. Furthermore, yeast colonies did not turn blue on -LT+XαGal 

plates, showing that BD-FL and - CTF193-414 did not autoactivate the Gal4-reporter sys-

tem.  

The expression of TDP-43 in yeast was shown to be toxic (Johnson et al., 2008), but 

the Y2H system was used in other studies that successfully identified novel TDP-43 

protein interactors (Kim et al., 2009; Lehner and Sanderson, 2004; Stelzl et al., 2005). 

To exclude TDP-43 toxicity in our Y2H system, it was analyzed whether AD- or BD-

fused TDP-43 FL and CTF193-414 expression decrease growth of yeast in liquid selec-

tive medium (Figure 3.2B+C). Yeast cells expressing any of the four fusion proteins 

did not grow considerably slower than control yeast (Figure 3.2B+C, AD- and BD-Ø). 

The observed growth differences were rather due to slightly varying starting OD600. 

Another toxicity assay was performed, in which the size and number of yeast colonies 

expressing the BD- or AD-fused bait proteins were compared to control yeast. Yeast 

colonies expressing TDP-43 or control vectors did not differ in size and number, sup-

porting the non-toxicity of TDP-43 in Y2HGold (data not shown). Thus, both TDP-43 

FL and CTF193-414 are suitable to be used as bait proteins in a Y2H system, at least con-

cerning autoactivation and toxicity. 

 

 
Figure 3.2 Autoactivation and toxicity of TDP-43 FL and CTF193-414 in Y2HGold. A No autoactiva-
tion of TDP-43 FL and CTF193-414 in Y2HGold. BD-TDP-43 FL or CTF193-414 was co-transformed 
with AD-Ø in Y2HGold. A 1/100 dilution of transformed yeast was plated onto selective medium plates: 
-LT (selecting for co-transformed yeast), -LT + X-α-Gal (blue color indicating autoactivation) and -LT + 
80ng/ml Aureobasidin A (-LT + AbA, growth indicating autoactivation). The yeast colonies were 
counted after 3d at 30°C. B+C No toxicity of TDP-43 FL and CTF193-414 in yeast. Y2HGold trans-
formed with TDP-43 FL or CTF193-414 fused to either AD or BD of Gal4 transcription factor were cul-
tivated in liquid yeast medium lacking leucine (B) or tryptophane (C) for 10h. Growth of yeast cells was 
tracked via measurement of optical density at 600nm (OD600) every second hour until stationary 
growth phase was reached. A-C Each experiment was performed once. 
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Identifying novel protein interactors of TDP-43 in a Y2H screen requires a positive 

control of TDP-43 protein interaction and shows that TDP-43 can interact with a 

known partner in the yeast enviroment. Therefore, we wanted to confirm the known 

interactions of TDP-43 FL, as well as two C-terminal fragments (CTF172-414 and CTF193-

414) with SMN1 (Wang et al., 2002) and hnRNPA2 (Buratti et al., 2005) in our Y2H 

system (Fig. 3.3). Additionally, the reported dimerization of TDP-43 was examined 

(Kuo et al., 2009). Only yeast grown on selective medium plates lacking leucine, 

tryptophane and adenine (-LTA) were definied as minimal stringency for an adequate 

interaction, because too much background yeast growth on -LTH plates was 

observed. 

The interactions of TDP-43 FL and CTF with SMN1 or hnRNPA2 in yeast were not 

appropriate to serve as positive controls. BD-SMN1 showed a weak interaction with 

CTF172-414 on -LTA selective medium plates, and none with TDP-43 FL or CTF193-414, as 

either very few or no colonies grew. Few colonies of BD-hnRNPA2 and AD-TDP-43 FL 

expressing yeast on -LTA selective medium plates were found. Thus, the interaction 

of the two considered positive control proteins with TDP-43 was weak (Figure 3.3). 

The inverse interaction of AD-hnRNPA2 with BD-TDP-43 was not detected at all. 

However, the dimerization of TDP-43 FL as well as the dimerization among CTFs was 

strong even on the highest stringency plates (-LT+AbA). The strongest interaction 

observed was the binding of the AD-SV40 large T antigen with BD-p53 that served as 

a positive control for a working Y2H system (Figure 3.3). Additionally, the expression 

of AD- and BD-TDP-43 (FL, CTF172-414 and CTF193-414), SMN1 and hnRNPA2 in Y2HGold 

was verified with western blot analysis (Figure 3.4). All proteins were expressed at 

 

Figure 3.3 TDP-43 dimerization is a suitable positive control for TDP-43 protein interaction in 

yeast. To identify interactors of TDP-43 suitable as positive controls in yeast, 6x104 cells of the yeast 
strain Y2HGold, expressing AD- and BD-TDP-43 FL, CTF172-414, CTF193-414, SMN1, hnRNPA2 or 
control (Ø) constructs in different combinations, as indicated, were spotted onto the following selec-
tive medium plates and incubated for 4d at 30°C: -LT (selecting for co-transformed yeast), -LT + X-
alpha-Gal (-LT + XαGal), - leucinge/ - tryptophane/ - histidine (-LTH), - leucine/ - tryptophane/ - ade-
nine (-LTA), and -LT + AbA (80ng/ml). The interaction of AD-SV40 large T antigen and BD-p53 (Ø T-Ag 
+ p53) served as a control of a working Y2H. The experiment was performed twice. 
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sufficient levels, ruling out that some interactions could not be detected because of 

low protein expression. Therefore, dimerizations of TDP

considered as positive TDP-43 interactions and confirm interactions in yeast. 

3.1.2 The Y2H screens 
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the product of the HIS3 gene, 2,5mM 3-Amino-1,2,4-triazole (3-AT). This prevents 

background growth of yeast in which transcription of the HIS3 reporter gene is not 

activated, as this reporter can be leaky. 

The second Y2H screen with TDP-43 FL yielded 35 primary positive clones. The mat-

ing efficiency was 1.25% and 1.75x106 cDNA library clones were screened. Thus, only 

half of the library clones were covered, though a number of 1x106 screened inde-

pendent clones is considered as sufficient, according to the manufacturer. As in the 

first screen, only one hit could be confirmed upon retransformation. The already pub-

lished interaction of karyopherin alpha 4 (KPNA4) was not further validated 

(Nishimura et al., 2010). Sequencing of the cDNA library plasmids of all primary posi-

tive hits revealed that almost all contained 3’UTRs instead of protein-coding se-

quences, implying that protein sequences were expressed in the Y2H screen which 

are probably not encoded in the human genome. 

Since the initial attempts to identify novel interactors of TDP-43 FL did not yield any 

novel results, another screen was performed using CTF192-414 as bait. This construct 

contains RRM2 and the protein binding domain GRD, and is from now on referred to 

as CTF. The subset of interactors binding to N-terminally TDP-43 could not be cov-

ered. For this screen -LTHA + 2.5mM 3-AT selective medium plates were chosen. This 

was a higher stringency than compared to the second screen, trying to reduce the 

number of false positive hits. The mating efficiency of 5% was high and approxi-

mately 5.76x106 cDNA clones were screened, representing 1.8-fold coverage of the 

 

Figure 3.5 Interaction of TDP-43 with EXOSC10 in yeast. The spotting of 6x104 Y2HGold cells co-
expressing full-length EXOSC10 and TDP-43 FL, CTF172-414, CTF192-414 or TDP-43 lacking the gly-
cine-rich domain (aa1-273, ΔGRD) was performed in dublicates on selective medium plates: -LT (se-
lecting for co-transformed yeast), -LTH, -LTH + 3-AT in increasing concentrations, -LTHA, -LTHA + 3-
AT in increasing concentrations, -LT+AbA (80ng/ml) and -LTHA+X+AbA. Yeast was cultivated at 30°C 
for 11d. Depicted is one spot of two for each condition. This experiment was performed once. 
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brain cDNA library. 75 primary positive clones were found after 7d growth at 30°C 

and additional ~500 after 11d, of which a total number of ~230 were further ana-

lyzed (for a detailed description of analysis see chapter 5.2.5). Out of these 230 ten 

novel primary clones were found and the whole sequences were identified (Table 

3.1). Some of them were represented repeatedly among all positive hits in this screen. 

Since the indentified cDNA FLJ57086 shares 98% homology with the Mediator of RNA 

polymerase II transcription sub-unit 6 (MED6), this protein was assumed as positive 

interactor. Also in this third screen most of the identified primary positive TDP-43 

interactors were either translated 3’UTRs that were often very short (<20aa), or very 

short translated genomic sequences. 

In summary the two Y2H screens with TDP-43 FL yielded the known interactors 

EXOSC10 and KPNA4, while in the Y2H screen using CTF ten novel binding partners 

of TDP-43 were found (Table 3.1). 

3.1.3 Confirmation of TDP-43 FL and CTF interactions with the novel targets in yeast 

The interactions of BD-CTF with the primary positive hits were confirmed upon re-

transformation in yeast (Figure 3.6), with all targets growing at least at intermediate 

stringency -LTHA + 5mM 3-AT. UBPY was the only target showing weak interaction 

with TDP-43 FL. It is also noteworthy that UBPY is the only confirmed interactor from 

among the 7d primary positive clones, and all other hits were identified from yeast 

colonies which grew after 11d post-mating. 

The full-length cDNAs of seven of the ten hits could be cloned. The growth of yeast 

retransformed with full-length LSM6, MED6 or RACK1 confirmed the interaction with 

CTF, but not TDP-43 FL (Figure 3.7). An interaction of RBM45 was detected both with 

CTF and FL. On the other hand, yeast expressing AD-full-length-UBPY or -UBE2E3 and 

BD-TDP-43 FL or CTF did not grow on any stringency beside selection for cotrans-

formation (-LT). In case of UBPY the C-terminal part (aa876-1118) identified form the 

cDNA library is much smaller than the full-length protein, assuming that folding of 

full-length UBPY hides the interaction site of TDP-43 FL and CTF. Interestingly, 

RACK1 occurred as an interactor of TDP-43 FL in a global proteomic approach 

(Freibaum et al., 2010) and interaction of the TDP-43 fly ortholog TBPH with RACK1 

was found in a protein interaction map of Drosophila melanogaster (Giot et al., 2003). 

Furthermore, RBM45 colocalized with TDP-43 in pathological inclusions of ALS and 

FTLD-TDP-43 patients (Collins et al., 2012). Thus, our Y2H screen was suitable to 

identify known interactors as well as new binding partners of TDP-43. 

 

 



 

Table 3.1 Overview of positive Y2H hits. The UniProt accession number, similarity of cDNA library with homologous sequence, size of proteins, and strength of inter-
action with TDP-43 FL and CTF upon retransformation of the positive hits are shown. MED6 was assumed as a positive interactor, because its first 121 amino acids 
share 98% homology with cDNA FLJ57086. Strength of interaction: + weak, ++ moderate, +++ strong. aa - amino acids; a Partial cDNA sequences from Y2H hits were not 
sequenced till stop codon; b cDNA sequence ends with stop codon, though reference sequence has later stop codon; n.d. - not determined 

Symbol Name 

Accession Number 

(translated amino 

acids in Y2H) Identities 

Protein 

size [aa] 

Homologous 

hit 

Strength of interac-

tion in Y2H with 

TDP-43 

FL CTF 

BEX2 Brain-expressed X-linked protein 2 Q9BXY8 (aa1-128) 118/128 (92%) 128 
 

- +++ 

CTAGE5 Cutaneous T-cell lymphoma-associated antigen 5 O15320 (aa442-615)b 132/174 (75%) 804 
 

- +++ 

GPR137B Integral membrane protein GPR137B O60478 (aa292-399) 108/108 (100%) 399 
 

+ +++ 

LSM6 U6 snRNA-associated Sm-like protein LSm6 P62312 (aa62-80) 19/19 (100%) 80 
 

- ++ 

cDNA 
FLJ57086 

cDNA FLJ57086, highly similar to RNA poly-
merase transcriptional regulation mediator, sub-
unit 6 homolog 

B4DTY4 (aa1-128) 128/128 (100%) 128 MED6 - +++ 

MED6 
Mediator of RNA polymerase II transcription 
subunit 6 

O75586 (aa1-121) 119/121 (98%) 246 
 

  

RACK1 
(GNB2L1) 

Receptor for Activated C Kinase 1 P63244 (aa78-290)a 213/213 (100%) 317 
 

- +++ 

RBM45 RNA-binding protein 45 Q8IUH3 (aa59-284)a 214/226 (94%) 476 
 

n.d. +++ 

RNF2 E3 ubiquitin-protein ligase RING2 Q99496 (aa276-336) 61/61 (100%) 336 
 

- ++ 

UBE2E3 Ubiquitin-conjugating enzyme E2 E3 Q969T4 (aa126-207) 82/82 (100%) 207 
UBE2E1, 
UBE2E2 

- ++ 

UBPY (USP8) Ubiquitin isopeptidase Y 
P40818 (aa877-
1088)* 

212/212 (100%) 1118 
 

+ +++ 
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Figure 3.6 Confirmation of TDP-43 interactions with the primary positive Y2H clones. A+B AD-
library plasmids that were isolated from primary positive clones and contained partial cDNAs, were 
retransformed into Y2HGold together with BD-TDP-43 FL, CTF or control (Ø) plasmids. To confirm the 
interactions of the candidate-AD-prey with BD-TDP-43 FL and CTF, 6x104 yeast cells were spotted in 
duplicates onto the following selective medium plates and incubated for 7d at 30°C: -LT (selecting for 
co-transformed yeast), -LTHA, -LTHA + 3-AT in increasing concentrations, as indicated, and -LTHA + X 
+ AbA (80ng/ml). The dimerization of TDP-43 FL or CTF was used as a positive control. One yeast spot 
for each transformation is shown. The experiments were performed once. 

 

Figure 3.7 Confirmation of Y2H interaction of TDP-43 FL or CTF with full-length interactors. AD-
UBPY, -LSM6, - MED6, -UBE2E3, -RACK1 or -RBM45 were co-transformed with BD-TDP-43 FL or CTF 
or control vector (Ø) into Y2HGold cells. 6x104 co-transformed yeast cells were spotted in duplicates 
onto the indicated selective medium plates and cultivated for 7d at 30°C. This experiment was per-
formed twice and one of two spots per condition is shown. When this experiment was done, RNF cDNA 
was not cloned, yet. 
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3.1.4 Interaction and colocalization of TDP-43 with the new targets in HEK293E cells 

Further verifications of the interaction of TDP-43 with the targets identified in the 

Y2H screen were carried out in human embryonic kidney (HEK293E) cells. Coim-

munoprecipitation experiments were performed using mCherry-tagged TDP-43 FL 

and CTF, and tagged LSM6, MED6, UBE2E3, UBPY, RACK1, RNF2 and RBM45 (Figure 

3.8A-E). The binding of LSM6, MED6, UBPY, RNF2 and RBM45 with CTF was stronger 

than with TDP-43 FL, which reflects the findings in yeast (compare Figure 3.8A, B, D 

and E with Figure 3.6). On the other hand, mCherry-TDP-43 FL and CTF bound to 

RACK1 with the same intensity (Figure 3.8C). Coimmunoprecipitation of CTF with 

UBE2E3 was just slightly above background, and could not be detected for mCherry-

TDP-43 FL at all. Interestingly, overexpressed myc-UBE2E3 was able to bind to im-

munoprecipitated Flag-tagged TDP-43 FL (Figure 3.8F). The interaction of overex-

pressed UBPY and TDP-43 was also confirmed in this setup (Figure 3.8G). This might 

indicate that the N-terminal mCherry-tag interferes with the binding of UBE2E3 to 

TDP-43. Nevertheless, the weak interaction of TDP-43 with UBE2E3 could still be 

functionally relevant, as binding of E2 enzymes with their targets is transient. 

The Y2H interactions could be verified in a mammalian overexpression system. Next 

we analyzed the sub-cellular localization of the targets and their colocalization with 

endogenous (Figure 3.9A) or overexpressed (Figure 3.9B) Flag-TDP-43 with dual-

labelled immunofluorescence staining. Therefore, myc-tagged targets were overex-

pressed in HEK293E. TDP-43, either endogenous or Flag-tagged, was mainly localized 

in the nucleus, but some cytoplasmic staining was also observed upon longer expo-

sure (not shown). MED6, RBM45 and RNF2 were exclusively detected in the nucleus, 

showing overlap with nuclear TDP-43. LSM6 showed a nuclear as well as a cytoplas-

mic distribution. UBE2E3 was found in both the nucleus and the cytoplasm, mainly 

depending on the strength of overexpression. Cells with weak or moderate level 

showed nuclear staining for myc-UBE2E3, whereas strongly expressed UBE2E3 was 

found in comparable levels in both compartments. Overexpressed RACK1 and UBPY 

were localized in the cytoplasm. All nuclear localized targets showed signal-overlap 

with endogenous and exogenous TDP-43 in the nucleus. The cytoplasmic colocaliza-

tion of TDP-43 and UBPY could only be detected upon longer exposure of cytoplasmic 

TDP-43 staining (see Figure 3.24A). 
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Figure 3.8 Coimmunoprecipitation of TDP

co-transfected with mCherry-TDP
Flag-tagged LSM6, MED6, UBE2E3 (A), UBPY (B), RBM45 (D), RNF2 (E), or HA
was followed by lysis and immunopreciptiation with anti
beads (C). Western blotting of total cell lysates (Input) and immunoprecipitates (Flag
performed. The proteins were detected with antibodies ag
and UBPY, as indicated. The endogenous TDP
TDP-43 and myc-UBE2E3 (F) or 
immunoprecipitated from cell lysates with anti
immunoprecipitated proteins (Flag
stained: UBE2E3 (F), UBPY (G), myc, TDP

 

 

immunoprecipitation of TDP-43 with the Y2H interactors. A-E HEK293E cells were 
TDP-43 FL, CTF or control vector (ctrl) along with control vectors (Ø), 

tagged LSM6, MED6, UBE2E3 (A), UBPY (B), RBM45 (D), RNF2 (E), or HA-tagged RACK1 (C). This 
followed by lysis and immunopreciptiation with anti-Flag (A,B,D,E) or anti-HA coupled sepharose 

beads (C). Western blotting of total cell lysates (Input) and immunoprecipitates (Flag
performed. The proteins were detected with antibodies against TDP-43, dsRed (mCherry), Flag or HA, 
and UBPY, as indicated. The endogenous TDP-43 bands (arrows) confirm even input loading. F+G Flag

UBE2E3 (F) or -UBPY (G) were co-expressed in HEK293E cells. TDP
lysates with anti-Flag affinity gel. Total protein (Input) and (co

immunoprecipitated proteins (Flag-IP) were analyzed by western blot. The following proteins were 
stained: UBE2E3 (F), UBPY (G), myc, TDP-43, Flag and GAPDH, as indicated. 
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IP) were analyzed by western blot. The following proteins were 



3 Results  53 

 

Figure 3.9 Colocalization of endogenous or Flag-TDP-43 wt with Y2H targets. A HEK293E cells 
were transfected with myc-MED6, -RBM45, -RNF2, -LSM6, -RACK1, -UBE2E3 or -UBPY. After 96h cells 
were fixed, permeabilized and stained for endogenous TDP-43 (rabbit-anti-TDP-43, green) and the 
indicated myc-tagged interactors (mouse-anti-myc, red). The cells expressing moderate levels of myc-
UBEE3 are indicated with asterisks (*). B The same myc-tagged interactors as in (A) were co-
expressed with Flag-TDP-43 wt in HEK293E cells and dual-labeled for overexpressed TDP-43 (rabbit-
anti-Flag, green) and myc-interactors (mouse-anti-myc, red). Merged images include nuclear counter-
staining with Hoechst 33342 (blue). Scale bars correspond to 10μm. 

Most interactions of the targets with TDP-43 were stronger with the mainly cyto-

plasmic CTF than with the predominantly nuclear TDP-43 FL, both in yeast and in co-

immunoprecipitation. Thus the colocalization of the targets with EGFP-tagged TDP-43 

FL and CTF were investigated. Since CTF is rapidly turned over, the introduction of an 

EGFP- or mCherry-tag stabilizes this construct. EGFP-TDP-43 FL was nuclear local-

ized, as seen for endogenous and Flag-tagged TDP-43, while EGFP-CTF was also found 

to a great extend in the cytoplasm. We asked if a colocalization of the targets could be 

seen with CTF by overexpressing EGFP-tagged CTF and whether this co-expression 

may cause changes in the subcellular localization of the interactors (Figure 3.10). The 

cytoplasmically distributed Y2H targets colocalized only with EGFP-CTF, while nu-

clear targeted proteins colocalized with EGFP-TDP-43 FL and the nuclear portion of 

CTF. However, the cellular localization of all targets was unaffected upon co-

expression with EGFP-CTF (Figure 3.10). 
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Figure 3.10 Colocalization of EGFP-TDP-43 FL or CTF with Y2H interactors. A+B Flag-tagged 
MED6, RBM45, RN2, LSM6, UBE2E3 or UBPY were co-expressed either with EGFP-TDP-43 FL (A) or 
CTF (B) in HEK293E cells. Interactors were stained with mouse-anti-Flag (red). C+D HEK293E cells 
transfected with EGFP-TDP-43 FL (C) or CTF (D) and myc-RACK1 were labeled with mouse-anti-myc 
(red). A-D Merged images include nuclear counterstaining with Hoechst 33342 (blue). Scale bars cor-
respond to 10μm. Cells that express moderate levels of myc-UBEE3 are indicated with asterisk (*). 

Since LSM6, RACK1 and UBPY are localized partly or exclusively in the cytoplasm, we 

asked whether a nuclear import impaired TDP-43 NLS mutant (NLSmut) was able to 

colocalized with or bind stronger to these Y2H targets. Therefore, the colocalization 

and coimmunoprecipitation of LSM6, RACK1 and UBPY with a nuclear import im-

paired TDP-43 NLSmut was examined (Figure 3.11). In an immunofluorescence ap-

proach, TDP-43 NLSmut was localized mostly in the cytoplasm (Figure 3.11A). The 

targets exhibited signal overlap with NLSmut in the cytoplasm, as all overexpressed 

proteins were evenly distributed over the whole cytoplasm. In the coimmunoprecipi-

tation experiments, Flag-TDP-43 NLSmut bound much stronger than wt to cytoplas-

mic UBPY (Figure 3.11B). An interaction of LSM6 was only detectable with NLSmut 

but not with TDP-43 wt (Figure 3.11C), indicating that the interactions of UBPY and 

LSM6 are possibly taking place in the cytoplasm. Unexpectedly, RACK1 immunopre-

cipitated equal amounts of TDP-43 wt and NLSmut. 
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Figure 3.11 Colocalization and coimmunoprecipitation of wt and nuclear impaired TDP-43 with 

UBPY, LSM6 and RACK1. A Cytoplasmically localized myc-LSM6, -RACK and -UBPY were co-expressed 
with nuclear import impaired Flag-TDP-43 (NLSmut). Targets were stained with mouse-anti-myc (red) 
and NLSmut with rabbit-anti-Flag (green). Merged images including nuclear counterstaining with 
Hoechst 33342 (blue) are to the right. Scale bars, 10μm. B+C HEK293E cells were transfected with 
Flag-TDP-43 wt, nuclear impaired NLSmut and myc-UBPY (A), -LSM6, -RACK1 (both B) or empty vec-
tors (Ø). The cells were lysed and myc-immunoprecipitation was performed. Total protein (Input) and 
eluates (myc-IP) were analyzed with western blot for TDP-43, Flag, UBPY (only A), myc and GAPDH. 

In summary, the interaction of all identified targets was confirmed in HEK293E cells 

at least with CTF, but for most also with TDP-43 FL. Moreover, a nuclear overlap for 

all targets localized in this compartment was observed, whereas the cytoplasmic in-

teractors colocalized with EGFP-CTF and a nuclear import impaired NLS mutant. 

LSM6, RACK1 and UBPY also bound these cytoplasmic TDP-43 variants. 

3.2 Characterization of TDP-43 ubiquitinylation 

TDP-43 positive inclusions in the brain and spinal cord of FTLD and ALS patients also 

contain ubiquitin (Arai et al., 2006; Neumann et al., 2006). Furthermore, accumula-

tions of TDP-43 and ALS-linked mutations in proteins that participate within degra-

dation pathways implicate failure of clearance of TDP-43 as a primary disease 

mechanism. Three of the identified and confirmed interactors are involved in ubiquit-

inylation events within the cell: the class III E2 ubiquitin-conjugating enzyme 

UBE2E3, the E3 ubiquitin ligase RNF2 and the ubiquitin-isopeptidase UBPY. The 

ubiquitinylation and degradation of TDP-43 is not well understood and might play an 

important role in inclusion formation. Therefore, the contributions of these three en-

zymes to the TDP-43 ubiquitinylation were investigated more thoroughly in this 
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study. The ubiquitinylation and degradation of TDP
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Figure 3.12 TDP-43 is ubiquitinylated upon proteasomal inhibition. 

ed with the lysosomal inhibitor bafilomycin A1 (Baf, 20nM), the proteasomal inhibitor MG
both or DMSO for 2h, 6h or 24h, as depicted. The cells were subjected to sequential extraction with 
RIPA buffer and urea buffer. The lysates were subjected to western blot analysis and probed with ant
bodies against TDP-43, ubiquitin, and LC3. GAPDH served as loading control. Asteri
bands. B TDP-43, HEK293E cells overexpressing Flag
control (-) were treated for 3h with MG
DMSO. Ni-NTA-purification for 6xHis
uble protein lysates. Western blots of total protein lysates (Input) and purified Ni
(6xHis-Pulldown) were probed with antibodies against TDP
indicated. Arrows (bold) point towards mono

 

y. The ubiquitinylation and degradation of TDP-43 is controversial. Some reports 

43 is degraded by the proteasome (Kabashi et al., 2008

van Eersel et al., 2011; Winton et al., 2008a; Zhang et al., 2010
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bilized CTFs or N-terminal fragments of TDP-43. Bafilomycin A1 alone had no effect 

on TDP-43 higher molecular weight smear formation and fragment appearance. Fur-

thermore, the combinational inhibition of lysosomal and proteasomal function did 

not increase the MG-132 induced effects on TDP-43.  

Next, it was confirmed that the higher molecular weight smear is ubiquitinylated 

TDP-43. Therefore, Flag-TDP-43 and 6xHis-ubiquitin were overexpressed in 

HEK293E cells, lysed with 8M urea buffer and a pulldown of 6xHis-ubiquitin-

conjugated proteins was performed with Ni-NTA agarose (Figure 3.12B). TDP-43 was 

slightly ubiquitinylated under basal conditions which was dramatically increased af-

ter MG-132 treatment, while blocking of lysosomal function had no effect. Thus, pro-

teasomal inhibition increased ubiquitinylated TDP-43 and was used as a model for 

further studies of TDP-43 ubiquitinylation. 

Next, it was asked if MG-132 or bafilomycin A1 had an influence on the localization of 

endogenous and Flag-tagged TDP-43. (Figure 3.13A+B). The treatment of HEK293E 

cells with MG-132 for up to 18h did not alter nuclear TDP-43 localization. Within this 

timeframe no TDP-43 accumulation or aggregates were observed. The cells started to 

detach from the coverslips after 20h proteasomal inhibition with 10µM MG-132 and 

treatment longer than 24h was toxic. Thus, TDP-43 localization could not be moni-

tored much longer than in this immunofluorescence experiment. In summary, no 

prominent relocalization of TDP-43 was observed upon proteasomal inhibition. 

 

Figure 3.13 Effect of proteasomal inhibition on the localization of endogenous and exogenous 

TDP-43. A+B Non-transfected (A) or Flag-TDP-43 overexpressing (B) HEK293E cells were treated 
with 10µM MG-132 or DMSO control for 2 and 18h, respectively. The cells were labeled with rabbit-
anti-TDP-43 antibody (A, green) or mouse-anti-Flag (B, green) and nuclei were counterstained with 
Hoechst 33342 (blue). Scale bars accord to 10µm.  
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3.3 Regulation of TDP-43 ubiquitinylation by UBE2E ubiquitin-conjugating 

enzymes 

3.3.1 The localization of UBE2E1, UBE2E2 and UBE2E3 in HEK293E 

UBE2E3 has a high similarity with its two class III E2 enzyme family members 

UBE2E1 and UBE2E2. The C-terminal fragment of UBE2E3, which was translated 

from the partial cDNA found in the Y2H screen, shares 97% homology to the C-

termini of UBE2E1 and UBE2E2 (Figure 3.15). Therefore, it is possible that all three 

E2s can (functionally) interact with TDP-43.  

The subcellular localization of endogenous and overexpressed UBE2E1, UBE2E2 and 

UBE2E3 was investigated in immunofluorescence staining of HEK293E cells (Figure 

3.16). Both endogenous UBE2E1 and UBE2E3 were nuclear, whereas all three exoge-

nous myc-tagged E2 enzymes were additionally detected in the cytoplasm, depending 

on the extent of overexpression. The localization of endogenous UBE2E2 could not be 

investigated as the antibody did not recognize endogenous UBE2E2 in immunofluo-

rescence. Furthermore, all E2 enzymes showed nuclear overlap with endogenous 

TDP-43, and the overexpression of the E2s did not alter the localization of TDP-43.  

 

 
 

Figure 3.15 Alignment of the amino acid sequence of the class III E2 ubiquitin-conjugating en-

zymes and the translated cDNA found in the Y2H screen. The sequences sharing homology with the 
Y2H prey protein are in black, the residual N-terminal sequences are in grey, while not-conserved ami-
no acids in the prey protein homologous sequence are in red. The red arrow indicates the start of the 
core UBC domain with high homology. The homologies between the E2s are 83% for E1:E2, 78% for 
E1:E3 and 85% for E2:E3. The alignment was performed with ClustalW2 (Larkin et al., 2007). 

UBE2E3   MSSDRQRSDDESPSTSSGSSDADQRDPAAPEPEEQEERKPSATQQKKNTKLS-SKTTAKLSTSAKRIQKELAEIT 74 
UBE2E2   MSTEAQRVDD-SPSTSGGSSDGDQRESVQQEPE-REQVQP----KKKEGKIS-SKTAAKLSTSAKRIQKELAEIT 68 
UBE2E1   MSDDDSRAST---SSSSSSSSNQQTEKETNTPK------------KKESKVSMSKNSKLLSTSAKRIQKELADIT 60 
         ** : .* .    *:*..**. :* :     *:            **: *:* **.:  *************:** 

                                                          � 
Y2H cDNA                                                    KVTFRTRIYHCNINSQGVICLDIL 

UBE2E3   LDPPPNCSAGPKGDNIYEWRSTILGPPGSVYEGGVFFLDITFSSDYPFKPPKVTFRTRIYHCNINSQGVICLDIL 149 
UBE2E2   LDPPPNCSAGPKGDNIYEWRSTILGPPGSVYEGGVFFLDITFSPDYPFKPPKVTFRTRIYHCNINSQGVICLDIL 143 
UBE2E1   LDPPPNCSAGPKGDNIYEWRSTILGPPGSVYEGGVFFLDITFTPEYPFKPPKVTFRTRIYHCNINSQGVICLDIL 135 
         ******************************************:.:****************************** 
 
Y2H cDNA KDNWSPALTISKVLLSICSLLTDCNPADPLVGSIATQYLTNRAEHDRIARQWTKRYAT 

UBE2E3   KDNWSPALTISKVLLSICSLLTDCNPADPLVGSIATQYLTNRAEHDRIARQWTKRYAT 207 
UBE2E2   KDNWSPALTISKVLLSICSLLTDCNPADPLVGSIATQYMTNRAEHDRMARQWTKRYAT 201 
UBE2E1   KDNWSPALTISKVLLSICSLLTDCNPADPLVGSIATQYMTNRAEHDRMARQWTKRYAT 193 
         **************************************:********:********** 
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Figure 3.16 Different sub-cellular localization of endo- and exogenous UBE2E ubiquitin conju-

gating enzymes. HEK293E cells, either overexpressing myc-UBE2E1, -UBE2E2 or -UBE2E3 or non-
transfected, were immuno-labled for endo- and exogenous UBE2E enzymes with rabbit-anti-UBE2E1 
or rabbit-anti-UBE2E2 and mouse-anti-TDP-43, or mouse-anti-UBE2E3 (clone 7E8) and rabbit-anti-
TDP-43, as indicated. Rabbit-anti-UBE2E2 did not detect endogenous UBE2E2 in this application. Nu-
clei were stained with Hoechst 33342 (blue). Merged images are to the right, scale bars apply to all 
images and accord to 10μm. Asterisks label nuclear localized myc-UBE2E cells. 

Additionally, the specificity of the antibodies against the E2 enzymes was analyzed to 

rule out cross reactivity with other UBE2E enzymes (Figure 3.17). Therefore, UBE2E1 

and UBE2E3 were knocked down with three or four different siRNAs, respectively, 

and immunofluorescence staining of both E2s was performed with the cells (Figure 

3.17A+B). The rabbit-anti-UBE2E1 and the mouse-anti-UBE2E3 (clone 7E8) antibod-

ies specifically recognised their target. UBE2E1 silenced cells exhibited almost no 

staining with the rabbit-anti-UBE2E1 antibody, whereas UBE2E3 silenced cells were 

equally stained (Figure 3.17). Likewise, a UBE2E3 signal was almost not detectable in 

cells silenced for UBE2E3, but it was found in cells silenced for UBE2E1. Since the 

UBE2E2 antibody did not recognize endogenous E2 in the immunofluorescence ap-

proach, its specificity in immunofluorescence could not be verified. The TDP-43 levels 

were not altered in cells silenced for these E2 enzymes. Furthermore, specificity of 

the antibodies was verified in western blot analysis (Figure 3.17C). Three out of the 

four tested antibodies - rabbit-anti-UBE2E1, mouse-anti-UBE2E3 (MABS17) and 

mouse-anti-UBE2E3 (clone 7E8) - recognized their cognate endogenous E2 as well as 

their myc-tagged protein, but not the other E2 enzymes. Only the rabbit-anti-UBE2E2 

antibody stained besides the myc-UBE2E2 protein also very weakly the overex-

pressed UBE2E1 and UBE2E3, but not the endogenous UBE2E1 and UBE2E3. There-

fore, the UBE2E2 antibody worked well in western blot, but not in immunofluores-

cence. The higher molecular weight smears of myc-tagged E2 enzymes probably rep-

resent the ubiquitin-bound E2 proteins. Thus, the used antibodies detected specifi-

cally their cognate UBE2E enzyme and showed minimal or no cross reactivity. 
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Figure 3.17 Specificity of the UBE2E enzyme antibodies. A+B UBE2E1 and UBE2E3 antibody speci-
ficity in an immunofluorescence approach. The expression of endogenous UBE2E1 (A) and UBE2E3 (B) 
in HEK293E cells was downregulated with three and four different siRNAs, respectively. The cells were 
double-stained for rabbit-anti-UBE2E1 and mouse-anti-TDP-43 (A) or mouse-anti-UBE2E3 (7E8) and 
rabbit-anti-TDP-43 (B). Merged images including nuclear counterstaining with Hoechst 33342 (blue) 
are to the right. Asterisks mark E2 silenced cells. Scale bars accord to 10μm. C Specificity of antibodies 
against UBE2E enzymes in western blot analysis. RIPA-lysates of HEK293E cells overexpressing myc-
UBE2E1, -UBE2E2 or -UBE2E3 and non-transfected control cells were analyzed with western blot. The 
membranes were stained with anti-myc-HRP, mouse-anti-GAPDH and either rabbit-anti-UBE2E1, rab-
bit-anti-UBE2E2, mouse-anti-UBE2E3 (MABS17) or mouse-anti-UBE2E3 (clone 7E8). The arrowheads 
(>) label myc-tagged E2 enzymes. Because MABS17 detected endogenous UBE2E3 in western blot 
analysis better than clone 7E8, this antibody was chosen for further western blot analysis. MABS17 did 
not work in immunofluorescence approaches. Therefore, 7E8 was used in immunofluorescence. Aster-
isks label endogenous E2 enzymes. These experiments were performed once. 
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3.3.2 UBE2E ubiquitin-conjugating enzymes enhance TDP-43 ubiquitinylation 

Next, it was investigated if the above shown nuclear signal overlap of UBE2E3 with 

TDP-43 as well as the limited binding of both proteins has a functional consequence. 

It was asked whether this E2 enzyme is involved in ubiquitinylation of TDP-43 

(Figure 3.18). In addition, we examined if other closely (UBE2E1, UBE2E2) or more 

distantly (UBE2N, UBE2C) related E2 enzymes are able to ubiquitinylate TDP-43. 

Therefore, the E2 enzymes were co-expressed with Flag-TDP-43 and 6xHis-ubiquitin 

in HEK293E cells. The proteasome was inhibited for 2h to increase TDP-43 ubiquiti-

nylation and ubiquitinylated proteins were isolated with Ni-NTA agarose pulldown. 

The overexpression of the E2 enzymes for 48h did not alter the steady state level of 

endogenous or Flag-TDP-43. Upon overexpression of UBE2E3, TDP-43 was strongly 

ubiquitinylated (Figure 3.18A, pulldown lane 5+6), whereas co-expression of the 

catalytically impaired UBE2E3 C145S failed to increase ubiquitinylation of TDP-43 

(lane 7+8). UBE2E1 and UBE2E2 overexpression also increased TDP-43 ubiquitinyla-

tion (lane 9+10 and 13+14, respectively). The more distantly related UBE2N and 

UBE2C only slightly increased the level of ubiquitinylated TDP-43 (lane 11+12 and 

15+16, respectively), though they were expressed at comparable levels like the other 

E2 enzymes. Interestingly, the inhibition of the proteasome did not further stabilize 

the ubiquitinylation of TDP-43 by UBE2Es. Only weak increase of ubiquitinylated 

TDP-43 upon UBE2N or UBE2C overexpression was observed (compare even with 

uneven lane numbers). 

Since a decrease of mCherry-TDP-43 FL and CTF upon UBE2E3 overexpression was 

observed in HEK293E cells, the influence of the ubiquitinylation by UBE2E3 on the 

solubility of TDP-43 was investigated. Therefore, HEK293E cells were separated into 

NP-40 soluble and insoluble urea fractions. UBE2E3 overexpression had no effect on 

TDP-43 steady-state level in the NP-40 fraction, but induced a strong increase of TDP-

43 in the insoluble urea fraction (Figure 3.18B). Ubiquitinylated TDP-43 species were 

exclusively detected in the insoluble urea fraction. Interestingly, UBE2E3 C145S co-

expression also led to an accumulation of non-conjugated TDP-43 in the urea fraction, 

indicating that the UBE2E3/TDP-43 complex might be less soluble and therefore dif-

ficult to detect with coimmunoprecipitation. 

Post mortem brain with TDP-43 positive inclusions also showed phosphorylation of 

this protein. Therefore, the phosphorylation status of ubiquitinylated TDP-43 was 

estimated. Pulldown samples from insoluble urea fractions of HEK293E cells co-

expressing Flag-TDP-43 and myc-UBE2E3 were analyzed, because these contained a 

high amount of ubiquitinylated TDP-43, that might also be phosphorylated. However, 

only a weak phosphorylation of ubiquitinylated TDP-43 at S409/410 was detected 

(Figure 3.18C).  
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Figure 3.18 UBE2E enzymes enhance TDP
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UBE2E enzymes enhance TDP-43 ubiquitinylation and insolubility.
enhanced ubiquitinylation of TDP-43. HEK293E cells were triple-transfected for 48h with Flag

vector control (-) or 6xHis-ubiquitin (+) and myc-tagged E2 enzymes UBE2E3, catalyt
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cally inactive UBE2E3 C145S, UBE2E2, UBE2N, UBE2E1 or UBE2C or myc-vector control (-). The cells 
were treated with MG-132 (10µM) or DMSO for 2h prior to the lysis with urea buffer. The 6xHis-
ubiquitin-conjugated proteins were pulled down from the cell lysates. The total protein lysates (Input) 
and Ni-NTA agarose eluates (6xHis Pulldown) were subjected to western blotting using antibodies 
agains TDP-43, Flag, ubiquitin, 6xHis, myc-tagged E2 enzymes and GAPDH. B Flag-TDP-43 was overex-
pressed with 6xHis-vector control (-) or 6xHis-ubiquitin (+) and myc-vector control (-) or myc-
UBE2E3 wt or C145S in HEK293E cells. The proteasome was inhibited with MG-132 for 2h and a se-
quential extraction of NP-40 soluble and urea soluble proteins was performed. The 6xHis-ubiquitin 
conjugated proteins were isolated from both fractions and western blots of total cell lysates and 
pulldown eluates were stained for TPD-43, Flag, ubiquitin, 6xHis, myc and GAPDH. The amount of ana-
lyzed insoluble protein corresponded to approximately one twentieth (5%) of soluble protein concen-
tration. C Analysis of phosphorylation of ubiquitinylated TDP-43. HEK293E cells were transfected and 
lysed as in B (without UBE2E3 C145S overexpression). The pulldown of ubiquitinylated proteins was 
subjected to western blot analysis and stained for total TDP-43, phosphorylated TDP-43 (S409/410), 
myc and GAPDH. The arrows indicate monoubiquitinylated TDP-43 (see Figure 3.1). 

The overexpression of UBE2E3 as well as long proteasomal inhibition, was usually 

accompanied by the appearance of an approximately 55kDa TDP-43 band, both in 

western blot analysis of total protein lysates and 6xHis pulldown eluates. Upon longer 

exposure this band was also detectable without MG-132 treatment or E2 overexpres-

sion (see Figure 3.12B). To prove that this band represents a monoubiquitinylated 

TDP-43 form, 6xHis-tagged TDP-43 was isolated from HEK293E cells in the presence 

of endogenous ubiquitin (Figure 3.19). The pulldown of 6xHis-tagged TDP-43 en-

sured the enrichment of ubiquitinylated protein. Only after overexpression of 

UBE2E3, the 55kDa band was detected with two different antibodies (MAB1510 and 

UO508). These antibodies detect mono- and polyubiquitin moieties. On the other 

hand an antibody which specifically detects only polyubiquitinylated proteins (clone 

FK1) failed to detect the 55kDa band. Thus, TDP-43 was found to be mono- and 

polyubiquitinylated after overexpressing UBE2E3. It remains to be shown whether 

TDP-43 can also be multi-monoubiquitinylated. 

The results of this section show that UBE2E enzymes participate in the ubiquitinyla-

tion of TDP-43 and that ubiquitinylated TDP-43 is insoluble. Furthermore, TDP-43 is 

shifted into insoluble urea fractions upon UBE2E3 expression. Additionally, the TDP-

43 monoubiquitinylation is increased by UBE2E3 overexpression. 
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Figure 3.20 Effect of UBE2E3 on TDP
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43 was investigated. Therefore, HEK293E cells were transientliy 

silenced with four siRNAs targeting UBE2E3 (Figure 3.21). Silencing of UBE2E3 with 

43 overexpression and proteasomal inhibition, strongly 

decreased ubiquitinylation of TDP-43 (Figure 3.21A). However, transfection of the 
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Figure 3.21 One out of four UBE2E3 siRNAs decreases level of ubiquitinylated TDP-43. A Silenc-
ing of UBE2E3 with si1 reduces ubiquitinylated TDP-43 level. HEK293E cells were silenced three times 
with scrambled (scr) or one out of four UBE2E3-directed siRNAs (si1-4) over 72h. 4h after the last 
silencing, the cells were transfected with Flag-TDP-43 and 6xHis-ubiquitin or vector control (-). After 
additional 24h protein overexpression, the proteasome was inhibited with MG-132 (10μM) for 2h and 
the urea soluble cell lysates were prepared. The pulldown of 6xHis-ubiquitin-conjugated proteins was 
performed and the total cell lysates (Input) and the pulldown eluates (6xHis Pulldown) were subjected 
to western blotting and stained with antibodies against TDP-43, ubiquitin, 6xHis, UBE2E3 and GAPDH, 
as indicated. The arrow labels monoubiquitinylated TDP-43. B HEK293E cells were transfected with 
scrambled siRNA or si1-4 UBE2E3 and the RNA was isolated. The levels of UBE2E3, UBE2E2, UBE2E1 
mRNA and of the housekeeping gene hPBGD were analyzed by sqRT-PCR. C Relative E2 enzyme mRNA 
levels (from B) were normalized to hPBGD. This experiment was done 3 times with the same trend. D 
Alignment of si1-4 with UBE2E E2 enzyme sequences. Alignments with full length sequences of the E2 
enzymes were performed with ClustalW2 (Larkin et al., 2007). Sequences complementary to siRNAs 
are depicted. Non-siRNA-complementary bases are marked in red.  

An alignment of the siRNA target sequences with mRNA of the E2 enzymes revealed, 

that the si1 target sequence is more similar to UBE2E1 and UBE2E2 mRNA than the 

si2-4 target sequences (Figure 3.21D). Therefore, it is likely that si1 could also affect 

the levels of UBE2E1 and UBE2E2 mRNA or at least inhibit the compensatory upregu-

lation of UBE2E1 and UBE2E2. 

Next, we confirmed the specificity of the decreased TDP-43 ubiquitinylation upon 

UBE2E3 downregulation by reintroduction of myc-tagged UBE2E3 wt or the catalyti-

cally inactive mutant. Therefore, UBE2E3 was silenced three times with si1 in 

HEK293E cells, followed by overexpression of Flag-TDP-43, 6xHis-ubiquitin and myc-
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UBE2E3 wt or C145S for 24h and proteasomal inhibition with MG-132 for 2h (Figure 

3.22A). Indeed, pulldown showed that UBE2E3 wt overexpression rescued the re-

duced ubiquitinylation level of TDP-43 (compare 6xHis pulldown lane 7+8 with 

9+10), whereas the catalytically inactive C145S UBE2E3 mutant failed (compare 

6xHis pulldown lane 7+8 with 13+14). UBE2E3 could not fully rescue TDP-43 ubiquit-

inylation (compare 6xHis pulldown lane 5+6 with 9+10). A reason for that could be 

that overexpressed myc-UBE2E3 is also downregulated by UBE2E3 siRNA (Figure 

3.22A input).  

Thus, a si1 resistant UBE2E3 was cloned by changing seven nucleotides in the siRNA 

binding site without altering the amino acid sequence. While non mutated myc-

UBE2E3 wt was silenced by UBE2E3 si1 to 80%, the overexpression of the si1 resis-

tant myc-UBE2E3 si1mut resulted only in a downregulation of 40% (Figure 3.22B). In 

one out of three repetitions, UBE2E3 si1mut could rescue TDP-43 ubiquitinylation 

upon UBE2E3 silencing with si1 completely (Figure 3.22C), whereas in the two other 

experiments, ubiquitinylated TDP-43 level were comparable with the ones observed 

with UBE2E3 wt (Figure 3.22A).  

Possibly, not all of the exogenous UBE2E3 wt or si1mut is catalytically active. Levels 

of overexpressed UBE2E3 are much higher than endogenous UBE2E3. Therefore, it is 

conceivable that exogenous UBE2E3 accumulated, decreasing the amount of catalyti-

cally active E2 enzyme. 
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Figure 3.22 Decrease of ubiquitinylated

UBE2E3 overexpression. A Rescue of UBE2E3 silencing with UBE2E3 wt overexpression. HEK293E 
cells were silenced three times with scrambled (scr) or UBE2E3
cells were triple-transfected with Flag
UBE2E3 wt or catalytically inactive C145S mutant 4h after the third silencing. The proteins were ove
expressed for 24h, followed by 2h proteasome inhibition with MG
lysates were prepared, the pulldown of 6xHis
total cell lysates (Input) and pulldown eluates (6xHis Pulldown) were subjected to western blotting 
using antibodies against TDP-43, ubiquitin, 6xHis, UBE2E3, myc and GAPDH, as indicated. 
resistance of UBE2E3 si1mut against UBE2E3 silencing with si1. Silencing of UBE2E3 with si1, followed 
by overexpression of myc-UBE2E3 wt or si1mut, showed an 80% reduction of UBE2E3 wt, but only 
40% reduction of si1mut. C UBE2E3 si1mut can rescue TDP
UBE2E3 with si1. Silencing and rescue of UBE2E3 was performed as in (A) without UBE2E3 C145S. 
arrows point to monoubiquitinylated TDP

 

Decrease of ubiquitinylated TDP-43 upon UBE2E3 silencing can be rescued with 

Rescue of UBE2E3 silencing with UBE2E3 wt overexpression. HEK293E 
cells were silenced three times with scrambled (scr) or UBE2E3-directed (E3) siRNA over 72h. The 

transfected with Flag-TDP-43, 6xHis-ubiquitin or vector control (
UBE2E3 wt or catalytically inactive C145S mutant 4h after the third silencing. The proteins were ove
expressed for 24h, followed by 2h proteasome inhibition with MG-132 (10µM). The urea soluble cell 
lysates were prepared, the pulldown of 6xHis-ubiquitin-conjugated proteins was performed and the 
total cell lysates (Input) and pulldown eluates (6xHis Pulldown) were subjected to western blotting 

43, ubiquitin, 6xHis, UBE2E3, myc and GAPDH, as indicated. 
nce of UBE2E3 si1mut against UBE2E3 silencing with si1. Silencing of UBE2E3 with si1, followed 

UBE2E3 wt or si1mut, showed an 80% reduction of UBE2E3 wt, but only 
UBE2E3 si1mut can rescue TDP-43 ubiquitinylation upon silencing of 

UBE2E3 with si1. Silencing and rescue of UBE2E3 was performed as in (A) without UBE2E3 C145S. 
ubiquitinylated TDP-43. B+C These experiments were performed twice.
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ylation upon silencing of 
UBE2E3 with si1. Silencing and rescue of UBE2E3 was performed as in (A) without UBE2E3 C145S. The 

43. B+C These experiments were performed twice. 



70  3 Results 

3.3.5 Regulation of the ubiquitinylation of CTFs by UBE2E3 

The interaction of UBE2E3 with TDP-43 was identified in a Y2H screen using CTF. 

However, the regulation of TDP-43 ubiquitinylation was investigated so far with TDP-

43 FL, though very weak interactions of UBE2E3 and endogenous CTF or mCherry-

CTF were detected. Therefore the ubiquitinylation of two differentially tagged CTFs 

and the regulation of UBE2E3 on the ubiquitinylation was investigated (Figure 

3.23A+B). 

First, we asked whether UBE2E3 can ubiquitinylate the 25kDa Flag-CTF and if this 

might stabilize this fragment from degradation (Figure 3.23A). The Flag-CTF con-

struct exhibits typically fast turnover and is therefore detected in very small amounts. 

Thus, proteasomal inhibition with MG-132 was applied for up to 6h to increase the 

stability of this fragment. This time was sufficient to stabilize endogenous 35kDa 

fragments of TDP-43 in a previous experiment (Figure 3.12A). However, the Flag-CTF 

signal was very weak upon proteasomal inhibition or UBE2E3 expression. Thus, it 

was not stabilized, and ubiquitinylated CTF was below the detection level. Flag-TDP-

43 FL ubiquitinylation was observed upon MG-132 treatment for 2h and was even 

further enhanced when the proteasome was inhibited for 6h. As was already shown 

above in Figure 3.18, the UBE2E3 overexpression also increased the amount of ubiq-

uitinylated Flag-TDP-43 FL. 

Next, the ubiquitinylation of mCherry-tagged TDP-43 FL and CTF was analysed in 

HEK293E cells with a pulldown experiment. We found that UBE2E3 enhances the 

ubiquitinylation of mCherry-TDP-43 FL (Figure 3.23B), which is in agreement with 

our previous results. Additionally, proteasomal inhibition with MG-132 slightly en-

hanced the ubiquitinylation of mCherry-TDP-43 FL. Surprisingly, mCherry-CTF was 

strongly ubiquitinylated and co-expression of the E2 decreased the amount of the 

ubiquitinylated CTF (Figure 3.23B), though steady-state levels were not affected. The 

inhibition of the UPS did not alter the amount of ubiquitinylated CTF, likely because of 

the already saturated ubiquitinylation of CTF (see the strong ubiquitinylation level of 

mCherry-CTF in Figure 3.23B). The co-expression of the strongly ubiquitinylated 

mCherry-CTF and the ubiquitin-conjugating enzyme UBE2E3 might have induced an 

upregulation of DUBs, which subsequently deubiquitinylated the CTF. 

In this section it was demonstrated that TDP-43 colocalized with endogenous UBE2E 

enzyme. TDP-43 is ubiquitinylated upon overexpression of these proteins, whereas 

silencing of the UBE2E3 enzyme with one out of four siRNAs reduced ubiquitinylated 

TDP-43. This was rescued by UBE2E3 overexpression. Furthermore, co-expression 

with UBE2E3 led to a solubility shift of TDP-43. Thus, UBE2E ubiquitin-conjugating 

enzymes participate in the ubiquitinylation of TDP-43. 
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expression does not lead to a detectable stabilization or ubiquitinylation of 
CTF. HEK293E cells were triple-transfected with Flag-TDP-43 FL or CTF, myc

ubiquitin (+) or vector control (-). The proteasome was inhibited with MG-132 (10µM) for 2 or 6h to 
ubiquitin-conjugated proteins were pulled down from urea lysates. Western 

rotein (Input) and pulldown eluates (6xHis Pulldown) were stained with antibodies 
43, Flag, ubiquitin, 6xHis and myc. GAPDH served as loading control.
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myc-UBE2E3 (+) and 6xHis-ubiquitin or vector controls (-). The cells were treated with MG-132 
(10µM) for 2h, followed by harsh lysis with urea buffer. 6xHis-ubiquitin-conjugated proteins were 
isolated with Ni-NTA agarose. Western blots of total protein (Input) and eluates (6xHis Pulldown) 
were probed with anti-TDP-43, -living colors dsRed (mCherry), -ubiquitin, -6xHis, -myc and -GAPDH. 
The experiments were repeated twice. 

3.4 The regulation of TDP-43 ubiquitinylation by UBPY 

In the Y2H screen we also identified a deubiquitinylation enzyme, UBPY. Thus, ubiq-

uitinylation of TDP-43 may possibly be regulated in both directions: attachment and 

proteolytic cleavage of ubiquitin-chains. The next part investigated the influence of 

UBPY on the ubiquitinylation status of TDP-43. 

3.4.1 The ubiquitin isopeptidase Y 

UBPY is known as an ESCRT-0 complex associated DUB that regulates the endosomal 

transport, sorting, and degradation of several plasma membrane receptors (see chap-

ter 2.6). In this study, UBPY was identified as a TDP-43 binding protein. The subcellu-

lar localization of UBPY and colocalization with TDP-43 was studied in HEK293E cells 

(Figure 3.24). Endogenous UBPY was distributed in vesicle-like structures in the 

whole cytoplasm, which did not colocalize with the early endosomal marker EEA1 or 

the lysosomal marker LAMP-1 (Figure 3.24B+C). Interestingly, the more dense local-

ization of UBPY in proximity of the nucleus was also positive for the cis-Golgi marker 

GM130 (Figure 3.24D). Some of the UBPY-positive punctae also colocalized with en-

dogenous, cytoplasmic TDP-43 upon longer exposure (Figure 3.24A). After cellular 

stress, TDP-43 can be incorporated into stress granules in the cytoplasm (see chapter 

2.3.3). Therefore, it was investigated whether UBPY also colocalizes with stress gran-

ules, since these might be a cytoplasmic interaction site of TDP-43 and UBPY. After 

the induction of stress granule formation with arsenite treatment for 30min, no colo-

calization of UBPY with the stress granule marker eIF3 was detected (Figure 3.24E), 

while TDP-43 positive stress granules were clearly observed (Figure 3.24F). 

3.4.2 Effect of UBPY overexpression on TDP-43 ubiquitinylation 

UBPY is localized in the cytoplasm, but TDP-43 is mostly found in the nucleus. To 

study the impact of UBPY on TDP-43 ubiquitinylation two cytoplasmic localized TDP-

43 constructs were used: mCherry-CTF, which is distributed in the whole cell and 

very strongly ubiquitinylated (see Figure 3.10B for EGFP-CTF, and Figure 3.23B), and 

the nuclear import impaired TDP-43 NLSmut (Figure 3.25). UBPY bound stronger to 

the more cytosolic NLSmut than to nuclear TDP-43 wt as was shown above (Figure 

3.11B), possibly indicating that the interaction is taking place in the cytoplasm. As 
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UBPY is a deubiquitinylating enzyme, a decrease of ubiquitinylated TDP-43 was ex-

pected upon overexpression of the DUB. 

The overexpression of UBPY wt resulted in a strong decrease of ubiquitinylated 

mCherry-CTF, regardless of the proteasomal activity (Figure 3.25A). The ubiquitinyla-

tion of Flag-TDP-43 NLSmut was reduced likewise in cells transfected with UBPY wt 

(Figure 3.25B, compare pulldown lane 7+8 with 9+10). In addition, reduced ubiquiti-

nylation of Flag-TDP-43 wt was also observed after MG-132 treatment in this experi-

ment (compare lane 3 with 5). The catalytically inactive UBPY mutant C786S and an 

UBPY variant that lacks the C-terminus where the active site cysteine is located (ΔC), 

did not decrease the ubiquitinylation of mCherry-CTF and Flag-TDP-43 NLSmut. This 

indicates that only catalytically active UBPY is able to deubiquitinylate CTF variants of 

TDP-43. The steady-state levels of the TDP-43 proteins were also not altered. 

Furthermore, the solubility of ubiquitinylated mCherry-CTF upon UBPY overexpres-

sion was analyzed (Figure 3.25C). HEK293E cells that overexpressed mCherry-CTF 

and UBPY were separated into a NP-40 soluble and an insoluble urea fraction. The 

ubiquitinylated mCherry-CTF was mainly detected in the insoluble urea fraction. 

These levels were reduced when UBPY wt was overexpressed, but co-expression of 

UBPY C786S and ΔC even increased amount of ubiquitinylated TDP-43, suggesting a  

 

Figure 3.24 Characterization of UBPY subcellular localization in HEK293E cells. A Colocalization 
of endogenous UBPY and TDP-43. The cells were stained with rabbit-anti-UBPY (red) and mouse-anti-
TDP-43 antibodies (green). B-D Cytoplasmic localization of endogenous UBPY. The cells were dual-
labeled with antibodies against UBPY (red) and the early endosomal marker EEA1 (A, green), the 
lysosomal marker LAMP-1 (B, green) or the cis-golgi marker GM130 (C, green). E+F No colocalization 
of UBPY with stress granules. Stress granule formation was induced with 500µM arsenide treatment 
for 30min. Endogenous UBPY was stained with a rabbit-anti-UBPY antibody (E, green), endogenous 
TDP-43 with a mouse-anti-TDP-43 antibody (F, green, longer exposure) and stress granules were la-
beled with a goat-anti-eIF3 antibody (red). A-F, merged images including nuclear counterstaining with 
Hoechst 33342 (blue) are to the right. The arrows point towards TDP-43 positive stress granules. Scale 
bars correspond to 10µm. 
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Figure 3.25 Exogenous UBPY 

deubiquitinylates mCherry-TDP-43 CTF independently of proteasomal activity. mCherry
43 CTF was overexpressed with 6xHis
tant C786S or UPBY lacking the ubiquitin C
HEK293E cells for 48h. After proteasomal inhibition with MG
Ni-NTA purification of 6xHis-ubiquitin
put) and the pulldown eluates (6xHis Pulldown) were western blotted and stained with antibodies 
against TDP-43, mCherry, ubiquitin, 6xHis, myc and GAPDH. 
localized TDP-43 NLSmut. The experiment was performed as in (A), but Flag
were overexpressed. Western blots were probed with antibodies for TDP
myc and GAPDH. C Pulldown of ubiquitinylated mCherry
HEK293E cells were transfected with 6x
vector (Ø), and myc-UBPY wt, C786S or 
sequential extraction, yielding a NP
were isolated with Ni-NTA purification. Total protein (Input) and pulldown eluates (6xHis Pulldown) 
were analyzed by western blotting. The membranes were stained for TDP
6xHis, myc and GAPDH. The arrows mark mono

 

Exogenous UBPY deubiquitinylates TDP-43 CTF and NLSmut. 

43 CTF independently of proteasomal activity. mCherry
43 CTF was overexpressed with 6xHis-ubiquitin (+) and myc-UBPY wt, the catalytically inactive m
tant C786S or UPBY lacking the ubiquitin C-terminal hydrolase domain (ΔC), or vector controls (
HEK293E cells for 48h. After proteasomal inhibition with MG-132 (10µM) for 2h, cells were lysed and 

ubiquitin-conjugated proteins was performed. The total cell lysates (I
put) and the pulldown eluates (6xHis Pulldown) were western blotted and stained with antibodies 

43, mCherry, ubiquitin, 6xHis, myc and GAPDH. B UBPY deubiquitinylates cytosolically 
LSmut. The experiment was performed as in (A), but Flag-TDP

were overexpressed. Western blots were probed with antibodies for TDP-43, Flag, ubiquitin, 6xHis, 
Pulldown of ubiquitinylated mCherry-CTF from soluble and insolubl

HEK293E cells were transfected with 6x-His-ubiquitin (+), mCherry-TDP43 CTF or mCherry
UBPY wt, C786S or ΔC. After 48h protein expression, the cells were subjected to 

sequential extraction, yielding a NP-40- and urea-soluble fraction. 6xHis-ubiquitin-conjugated proteins 
NTA purification. Total protein (Input) and pulldown eluates (6xHis Pulldown) 

were analyzed by western blotting. The membranes were stained for TDP-43, mCherry, ubiquitin, 
The arrows mark monoubiquitinylated TDP-43. 
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dominant-negative effect of the two catalytically inactive DUB mutants. UPBY wt co-

expression did not alter the portion of mCherry-CTF level in the soluble and insoluble 

fraction, like UBE2E3 co-expression did for Flag-TDP-43 wt (see Figure 3.18). The 

mCherry-tag alone was not ubiquitinylated in the insoluble fraction. Thus, the ubiq-

uitinylation of the mCherry-CTF construct reflects the ubiquitin formation on the CTF. 

Of note, the overexpression of UBPY decreased the total levels of ubiquitinylated and 

6xHis-ubiquitin conjugated proteins. It is likely that UBPY is capable to deubiquiti-

nylate many substrates. 

Thus, exogenous UBPY can decrease the ubiquitinylation of TDP-43. In particular, 

cytoplasmic Flag-TDP-43 NLSmut and mCherry-CTF were deubiquitinylated to a 

greater extent than TDP-43 FL. It remains to be shown whether UBPY deubiquiti-

nylates soluble TDP-43 FL or if the DUB can also remove ubiquitin-chains from al-

ready insoluble TDP-43 FL. 

3.4.3 Silencing of UBPY 

Since overexpression of the DUB strongly reduced the ubiquitinylation of TDP-43, we 

next asked whether a reduction of UBPY protein level by siRNA treatment increases 

the TDP-43 ubiquitinylation. Therefore, HEK293E cells were silenced with specific 

siRNAs against UBPY. Unfortunately, siRNAs from Qiagen as well as from Ambion 

failed to reduce UBPY protein levels to a sufficient amount. In addition, some toxic 

effects were observed in HEK293E cells (Figure 3.26A+B). 

Next, five lentiviral transduced shRNAs were used to stably silence UBPY in HEK293E 

cells (Figure 3.26C). Most of them efficiently silenced UBPY, but when these stably 

silenced cells were used for subsequent pulldown experiments, in which Flag-TDP-43 

and 6xHis-ubiquitin were overexpressed, the silencing efficiency vanished and there-

fore, a possible reduction of TDP-43 ubiquitinylation was not observed (Figure 

3.26D). Finally, we obtained the mamma carcinoma cell line MCF-7 from C. Carraway 

(Cao et al., 2007), which was stably silenced for UBPY (Figure 3.26E-G). Silencing of 

UBPY was moderate in western blot and sqRT-PCR analysis (Figure 3.26E+F), but 

obvious in immunofluorescence (Figure 3.26G). Nonetheless, these cells were not 

used for further investigations of UBPY knockdown on TDP-43 ubiquitinylation, be-

cause of an odd TDP-43 staining: all cells which displayed a nuclear TDP-43 signal 

also exhibited a strong cytoplasmic staining, whereas other cells seemed to be de-

pleted of TDP-43 completely. This was not an effect of UBPY silencing as the odd TDP-

43 staining pattern was also observed in control MCF-7 cells. Due to this difficulties it 

could not be investigate how silencing of UBPY affects TDP-43 ubiquitinylation in cell 

lines. However, we were able to knockdown UBPY in Drosophila melanogaster (see 

chapter 3.8, below). 
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Figure 3.26 Different approaches to silence UBPY. A HEK293E cells were silenced three times with-
in 72h for UBPY with four different siRNAs (si1, 2, 3 and 5, 10nM each, Qiagen) or with scrambled con-
trol (scr). 24h after the third siRNA transfection protein and RNA were isolated. Equal amounts of pro-
tein were analyzed by western blot for levels of UBPY, TDP-43 and GAPDH. The cDNA was reverse 
transcribed from mRNA and a sqRT-PCR was performed for UBPY, TDP-43 and hPBDG. B The knock-
down of UBPY in HEK293E cells was done with an siRNA from Ambion. The cells were transfected 
twice in 48h intervals with 10 or 40nM UBPY or scrambled siRNAs. RIPA lysates were prepared, sub-
jected to western blot and stained for UBPY and GAPDH. C UBPY was stably silenced in HEK293E with 
five different lentivirally transduced shRNAs. A non-mammalian shRNA served as control. Two weeks 
after viral transduction efficiency of UBPY knockdown was assessed on protein level with western blot 
and on mRNA level with sqRT-PCR. Western blots were stained for UBPY, TDP-43 and GAPDH, and PCR 
products were analyzed for levels UBPY, TDP-43 and hPBDG, as indicated. D Stably silenced HEK293E 
cells from (C), once frozen at -170°C and were thawed and double-transfected with Flag-TDP-43 and 
either 6xHis-ubiquitin or control (-). The urea cell lysates were used for pulldown of 6xHis-ubiquitin-
conjugated proteins with Ni-NTA agarose. Western blotting was performed with total protein lysates 
(Input) and pulldown eluates (6xHis Pulldown). Membranes were stained for TDP-43, Flag, ubiquitin, 
6xHis, UBPY and GAPDH. E-G Characterization of UBPY expression levels in stable UBPY knockdown 
MCF-7 cells. E Protein lysates of MCF-7 control (scr) or UBPY knockdown (UBPY kd) cells were sub-
jected to western blot analysis together with lysates from HEK293E, HeLa and SH-SY5Y cells. HEK293E 
cells overexpressing myc-UBPY (and Flag-TDP-43) served as control. Western Blots were stained for 
UBPY, TDP-43 and GAPDH. F UBPY knockdown efficiency in MCF-7 cells was determined by sqRT-PCR. 
G Immunofluorescence staining of endogenous UBPY (red) and endogenous TDP-43 (green) in MCF-7 
control (scr, left) or UBPY knockdown (UBPY kd, right). Nuclei were stained with Hoechst 33342 
(blue). Scale bars correspond to 10µm. 
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3.4.4 Effect of UBPY on CTF accumulation 

In post mortem brain of ALS and FTLD-TDP patients, ubiquitinylated TDP-43 is de-

tected in pathological inclusions. Therefore, it was investigated whether the UBPY co-

expression alters the accumulation of the aggregation-prone mCherry-CTF in 

HEK293E cells (Figure 3.27). The proteasomal activity was inhibited with MG-132 up 

to 14h to induce accumulation of mCherry-CTF. In transfected cells few mCherry-CTF 

positive accumulations were observed after 0h, 2h and 6h MG-132 treatment (Figure 

3.27). After proteasomal inhibition for 14h, about 85% of the transfected cells con-

tained accumulated mCherry-CTF. This was not affected by UBPY co-expression 

(Figure 3.27A,C+D). The control mCherry-protein alone hardly accumulated upon 

MG-132 treatment up to 6h, whereas accumulations were found in 60% of trans-

fected cells after 14h proteasomal inhibition. However, these accumulations were 

much smaller than mCherry-CTF (compare Figure 3.27A+C with B, 14h). 

 
Figure 3.27 UBPY overexpression does not alter mCherry-CTF accumulation upon proteasomal 

inhibition. A-C Myc-UBPY and mCherry-CTF (red) or vector controls (Ø) were overexpressed in 
HEK293E cells for 72h. MG-132 (10µm) was applied for up to 14h, as indicated, to inhibit proteasomal 
function. Overexpressed UBPY was stained with mouse-anti-myc (green) and nuclei were counter-
stained with Hoechst 33342 (blue). D Quantification of mCherry accumulation upon UBPY overexpres-
sion. At least 100 (double-) transfected cells per condition were analyzed for mCherry-positive accu-
mulations. Two independent experiments were quantified. Error bars represent standard deviation. 
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3.5 Regulation of TDP-43 ubiquitinylation by the E3 ligase RNF2

Beside the two new TDP-43 interaction partners UBE2E3 and UBPY, the E3 ligase 

RNF2 was found as a positive hit in the 

coimmunoprecipitate with TDP

nucleus. Therefore, we examined whether RNF2 is involved in the ubiquitinylation of 

TDP-43. HEK293E cells were co

gether with 6xHis-ubiquitin constructs (

ubiquitin-conjugated proteins showed, that ubiquiti

altered after RNF2 overexpression and proteasomal inhibition. 

It was reported that RNF2 mediates mono

ing a central role in histone code and gene regulation. Moreover, as a member of t

polycomb-group genes RNF2 modifies epigenetic silencing of target genes 

and van Lohuizen, 2006; Wang et 

RNF2 must not necessarily alter ubiquitinylation of TDP

pression. It is also possible, that the int

E2 enzyme is not expressed in HEK293E cells. In addition, an internal control of RNF2 

reactivity was missing in this system. Therefore, the functional interaction of TDP

with RNF2 was not further investigat

dated. 

Figure 3.28 RNF2 does not increase TDP

transfected with Flag-TDP-43, 6xHis
by proteasomal inhibition with MG
6xHis-ubiquitin-conjugated proteins were isolated with Ni
put) and the pulled down proteins (6xHis Pulldown) were subjected to western blot analysis with a
tibodies detecting TDP-43, Flag, ubiquitin, 6xHis, myc and GAPDH, as indicated. Depicted is one repr
sentative experiment out of two. 

 

43 ubiquitinylation by the E3 ligase RNF2

43 interaction partners UBE2E3 and UBPY, the E3 ligase 

RNF2 was found as a positive hit in the Y2H screen. As shown above RNF2 is able to 

coimmunoprecipitate with TDP-43 FL and CTF, and colocalizes with TDP

nucleus. Therefore, we examined whether RNF2 is involved in the ubiquitinylation of 

43. HEK293E cells were co-transfected with Flag-TDP-43 and myc

ubiquitin constructs (Figure 3.28). The pulldown of 6xHis

conjugated proteins showed, that ubiquitinylation of Flag

RNF2 overexpression and proteasomal inhibition.  

eported that RNF2 mediates monoubiquitinylation of histone H2A, thus pla

ing a central role in histone code and gene regulation. Moreover, as a member of t

genes RNF2 modifies epigenetic silencing of target genes 

Wang et al., 2004a). Thus, the interaction of TDP

RNF2 must not necessarily alter ubiquitinylation of TDP-43, but might alter gene e

pression. It is also possible, that the interaction is non-functional or that the cognate 

E2 enzyme is not expressed in HEK293E cells. In addition, an internal control of RNF2 

reactivity was missing in this system. Therefore, the functional interaction of TDP

with RNF2 was not further investigated in this study and remains to be further eluc

 

RNF2 does not increase TDP-43 ubiquitinylation. HEK293E cells were triple
43, 6xHis-ubiquitin and myc-RNF2 or vector controls (Ø) for 48h, followed 

by proteasomal inhibition with MG-132 (10µM) for 2h. The cells were lysed with urea buffer and 
conjugated proteins were isolated with Ni-NTA agarose. The total protein lysates (I

put) and the pulled down proteins (6xHis Pulldown) were subjected to western blot analysis with a
43, Flag, ubiquitin, 6xHis, myc and GAPDH, as indicated. Depicted is one repr

3 Results 

43 ubiquitinylation by the E3 ligase RNF2 

43 interaction partners UBE2E3 and UBPY, the E3 ligase 

Y2H screen. As shown above RNF2 is able to 

43 FL and CTF, and colocalizes with TDP-43 in the 

nucleus. Therefore, we examined whether RNF2 is involved in the ubiquitinylation of 

43 and myc-RNF2 to-

). The pulldown of 6xHis-

nylation of Flag-TDP-43 is not 

ubiquitinylation of histone H2A, thus play-

ing a central role in histone code and gene regulation. Moreover, as a member of the 

genes RNF2 modifies epigenetic silencing of target genes (Sparmann 

. Thus, the interaction of TDP-43 and 

43, but might alter gene ex-

functional or that the cognate 

E2 enzyme is not expressed in HEK293E cells. In addition, an internal control of RNF2 

reactivity was missing in this system. Therefore, the functional interaction of TDP-43 

ed in this study and remains to be further eluci-

HEK293E cells were triple-
RNF2 or vector controls (Ø) for 48h, followed 

132 (10µM) for 2h. The cells were lysed with urea buffer and 
al protein lysates (In-

put) and the pulled down proteins (6xHis Pulldown) were subjected to western blot analysis with an-
43, Flag, ubiquitin, 6xHis, myc and GAPDH, as indicated. Depicted is one repre-



3 Results  79 

3.6 Regulation of the ubiquitinylation of pathogenic TDP-43 mutants by 

UBE2E3 and UBPY 

Up to date 48 pathogenic mutations in the TARDBP gene were identified, most of 

them in patients with familial or sporadic ALS, but some are linked to FTLD (Lattante 

et al., 2013). Here, 15 pathogenic TDP-43 mutants were analyzed regarding their 

ubiquitinylation status affected by proteasomal inhibition, UBE2E3 and UBPY. These 

studies were performed together with the master student Jennifer C. Strong (JCS) un-

der guidance of F. Hans (FH). First, the localization and distribution of the overex-

pressed TDP-43 mutants was investigated by immunofluorescence staining in 

HEK293E cells (Figure 3.29). All mutants were detected mainly nuclear and displayed 

a weak granular distribution in this compartment. No obvious differences in the local-

 

Figure 3.29 Localization of pathogenic TDP-43 mutants. HEK293E cells overexpressing Flag-tagged 
TDP-43 wt or mutants, as indicated, were immunolabeled with mouse-anti-Flag antibody (red). 
Merged images show nuclear counterstaining with Hoechst 33342 (blue). Scale bars correspond to 
10µm. The experiments were performed by JCS and were analyzed by FH and JCS. 
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the proteasomal inhibition experiment (Figure 3.30A), an ubiquitinylation of D169G 

was hardly detected, even upon UBE2E3 overexpression. The total amount of this 

mutant was much lower than TDP-43 wt and the other mutants, suggesting a faster 

turnover and instability. 

Since the K263E mutant is heavily ubiquitinylated, its regulation of the ubiquitinyla-

tion by UBE2E3 and UBPY was investigated in detail (Figure 3.32). First, it was con-

firmed that both proteasomal inhibition and UBE2E3 overexpression enhance K263E 

and TDP-43 wt ubiquitinylation (Figure 3.32A). Consistent, the catalytically inactive 

UBE2E3 variant C145S did not increase the amount of ubiquitinylated K263E or TDP-

43 wt. The already strong ubiquitinylation of K263E in the presence of UBE2E3 was 

not further enhanced upon proteasomal inhibition. Furthermore, the silencing of 

UBE2E3 with si1 decreased the K263E and TDP-43 wt ubiquitinylation (Figure 

3.32B). Consistent with the above observation, the UBPY wt co-expression decreased 

the Flag-K263E ubiquitinylation, while the UBPY variants C786S and ΔC did not the 

alter ubiquitinylation of the mutant.  

Next, it was asked if K263E was able to bind stronger to UBPY and UBE2E3 compared 

to TDP-43 wt. Therefore, coimmunoprecipitation of Flag-TDP-43 wt or K263E with 

HA-tagged UBE2E3 or UBPY was performed (Figure 3.32D). Both TDP-43 wt and 

K263E were coimmunoprecipitated with E2 and DUB. We found a stronger binding of 

Flag-TDP-43 K263E to UBPY and UBE2E3. However, the K263E mutant seemed to be 

more abundant in the total protein lysates. Thus, it cannot be estimated if UBE2E3 

and UBPY bound more efficiently to the mutant or TDP-43 wt. Nonetheless, these re-

sults demonstrate that the heavily ubiquitinylated K263E is regulated by UBE2E3 and 

UBPY in a comparable manner to TDP-43 wt and that the mutant can bind the E2 and 

DUB. The question why K263E showed an elevated ubiquitinylation pattern remains 

to be solved. 
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3.7 Specificity of the UBE2E3 and UBPY regulated TDP
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Figure 3.33 Effect of UBE2E3 and UBPY overexpression on ubiquitinylation of ataxin
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3.8 UBPY knockout enhances TDP-43 neurotoxicity in flies 

Based on the results obtained for TDP-43 ubiquitinylation in cell culture studies the 

effect of the downregulation of the fly ortholog of UBPY was investigated in an estab-

lished Drosophila model of TDP-43 neurotoxicity from our collaborator A. Voigt, 

RWTH Aachen (Voigt et al., 2010). In Drosophila the UAS/Gal4 system from S. cere-

visiae enables the expression of any transgenic protein or RNAi in a time-dependent 

manner in any tissue, cell type or even distinct groups of cells of the fly. We used a 

model where TDP-43-GFP was specifically expressed in the fly eye, induced by the 

eye specific GMR-Gal4 driver. Two different fly lines were used: a TDP-43-GFP high 

and a low expression line, #14 and #10, respectively. The high expresser line #14 

exhibited a progressive rough eye phenotype (REP) with depigmentation and merged 

ommatidia (Figure 3.34A, TDP-43 #14). The REP was already observed in one day old 

flies, which worsened over time, whereas the control GMR-Gal4 driver line displayed 

at any time point only some ommatidial disorganisation. The low expression line #10 

did not develop a REP within 20 days, our latest monitoring time (Figure 3.34A, TDP-

43 #10). Normal ommatidial organization is depicted in Figure 3.34C for comparison. 

The UBPY fly ortholog dUBPY (CG5798) exhibits an overall amino acid sequence iden-

tity of 28% to hUBPY. It also contains the catalytic core with cysteine- and histidine-

boxes, the MIT and Rhodanese-like domains as well the SH3-binding motifs (Komada, 

2008; Mukai et al., 2010). We had difficulties to knockdown UBPY in mammalian cell 

cultures (see chapter 3.4.3). However, in flies the actin-driven ubiquitous expression 

of dUBPY RNAi resulted in a 55% downregulation in Drosophila larvae (Figure 3.34B). 

The ubiquitous knockdown of dUBPY was lethal in adult flies, which is in agreement 

with previously published reports of UBPY knockout in mice and flies (Mukai et al., 

2010; Niendorf et al., 2007). 

The effect of dUBPY downregulation by RNAi on the TDP-43 REP was studied. Our 

collaborator A. Voigt has already identified dUBPY in a modifier screen as a weak ge-

netic interactor of the TDP-43 neurotoxicity phenotype in the Drosophila model. Here, 

the expression of dUPBY RNAi alone resulted in a very mild REP, but without depig-

mentation (Figure 3.34A, -dUBPY). Interestingly, silencing of dUBPY in flies worsened 

the REP in the TDP-43-GFP high expresser line (Figure 3.34A, TDP-43 #14 -dUPBY). 

The depigmentation was increased, black lesions were observed and almost all flies 

died within ten days. This strong phenotype was never observed in the TDP-43-GFP 

high expresser line or when GMR-dUBPY RNAi was expressed alone. In contrast, 

dUBPY RNAi had no visible effect on the structure and pigmentation of the eyes of the 

low expresser line, even after 20 days of expression (Figure 3.34A, TDP-43 #10 

-dUBPY).  
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Figure 3.34 UBPY deficiency enhances TDP-43 neurotoxicity in D. melanogaster. A Light micro-
scope eye images of 1, 3, 10 and 20d old male flies expressing TDP-43-GFP (line #14 high expression, 
line #10 low expression), dUBPY RNAi (-dUBPY) or both under control of the eye-specific driver GMR-
Gal4. The driver line is shown for comparison (GMR-Ø). B dUBPY silencing under control of the act-
Gal4 driver was lethal. The silencing efficiency was confirmed in third instar larvae expressing dUBPY 
RNAi. C White (w[1118] or w;+;+) eyed flies were used as control for ommatidial organization. 

Next, the modifier effect of dUBPY RNAi on TDP-43 was investigated biochemically. 

We asked whether a dUBPY downregulation in the fly eye influences the TDP-43 

solubility or ubiquitinylation. Therefore, fly head proteins were sequentially ex-

tracted into a soluble RIPA fraction and an insoluble urea fraction (Figure 3.35). The 

dUBPY knockdown in the TDP-43 high expresser line #14 led to a shift of TDP-43-GFP 

into the insoluble fraction in one and three days old flies (Figure 3.35A). The higher 

molecular TDP-43-GFP smear, likely ubiquitinylated TDP-43, was stronger in dUBPY 

silenced fly heads, especially in the insoluble fraction. A strong decrease of TDP-43 

steady state levels within ten days was also detected, probably reflecting the progres-

sive degeneration of the fly eye (Figure 3.34A). Furthermore, total ubiquitin levels 

were increased in dUBPY deficient control and TDP-43 transgenic flies, particularly in 

the insoluble fraction. This indicates that dUBPY might be a more general DUB in fly.  

In addition, the effects of dUBPY knockdown on TDP-43-GFP were analyzed in the 

low expresser line #10 (Figure 3.35B), although no REP was observed upon dUBPY 

silencing in this line (Figure 3.34A). TDP-43-GFP and a higher molecular weight TDP-

43-GFP were increased in the insoluble fraction of one till ten days old UBPY silenced 
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3.9 Functional implications of altered TDP-43 ubiquitinylation 

Finally, the question arose if the altered ubiquitinylation status of TDP-43 may have 

implications on the function of this protein. We assumed that ubiquitinylated and/or 

insoluble TDP-43 might be non-functional, because the ubiquitinylation might inter-

fere with an incorporation of TDP-43 into functional complexes.. TDP-43 regulates 

splicing and stability of many mRNAs (see chapter 2.3.3). Two TDP-43 mRNA targets 

were described and functionally validated in our group before: HDAC6 and SKAR. The 

HDAC6 mRNA is stabilized by TDP-43 (Fiesel et al., 2010) and SKAR is alternatively 

spliced upon TDP-43 knockdown, resulting in decreased SKARα and increased SKARβ 

isoform (Fiesel et al., 2012).  

The HDAC6 and SKAR mRNA and protein levels were investigated after the increase 

of ubiquitinylated TDP-43, which was mediated by the overexpression of UBE2E en-

zymes and an additional proteasomal inhibition for 6h. Two independent repetitions 

of the same experiment (n=3 in total) are depicted due to the mRNA level variations 

among them (Figure 3.36A+B). Alternative splicing of SKAR was not observed on 

mRNA and protein level. The TDP-43 steady-state levels were also unchanged, as was 

observed above.  The protein levels of HDAC6 were not altered. However, some varia-

tions of the HDAC6 mRNA amount were detected, but these were not consistent 

among the three repetitions of this experiment.  

The portion of ubiquitinylated, insoluble and potentially not active TDP-43 is very 

small compared to total protein level of TDP-43, because TDP-43 higher molecular 

weight smear was usually not detected in western blot analysis of total protein. For 

the detection of effects on mRNA stability of HDAC6 or alternative splicing of SKAR, 

the amount of TDP-43 has to be downregulated quite strongly. Thus, the decrease of 

the possibly non-functional TDP-43 from the active pool by ubiquitinylation was 

probably too small for the detection of altered HDAC6 or SKAR within 48h of UBE2E 

E2 enzyme overexpression. However, it could be possible that over a longer period of 

time enough functional TDP-43 is withdrawn from the active pool by ubiquitinylation. 

In summary, this study demonstrated that the ubiquitinylation of TDP-43 wt and of 

pathogenic mutants can be regulated by the class III E2 enzymes UBE2E1, UBE2E2 

and UBE2E3 as well as by the ubiquitin isopeptidase UBPY. Furthermore, the ubiquit-

inylation of the pathogenic and heavily ubiquitinylated TDP-43 mutant K263E was 

also regulated by UBE2E3 and UBPY. Finally, the silencing of dUBPY enhanced a neu-

rotoxic eye phenotype in a TDP-43 Drosophila model and the accumulation of insolu-

ble TDP-43 species. However, the consequences of the ubiquitinylation on the func-

tion of TDP-43 remain to be shown. 



3 Results 

Figure 3.36 Altered ubiquitinylation of TDP
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4 Discussion 

Inclusions positive for ubiquitinylated, fragmented and phosphorylated TDP-43 are a 

common feature of most cases of ALS and of all FTLD-TDP cases. Under physiological 

conditions, TDP-43 is thought to function as a part of several multi-protein complexes 

that are involved in transcription and multiple steps in the RNA metabolism. How 

TDP-43 is implicated in disease pathogenesis is still unclear. To gain a better insight 

into the normal and pathological functions, we screened for novel protein interactors 

of TDP-43. In the three Y2H screens performed in this study, a total of twelve interac-

tors were identified. Seven interactors of the third screen with TDP-43 CTF were con-

firmed as true TDP-43 binding proteins in HEK293E cells. As TDP-43 is found ubiquit-

inylated in pathological inclusions in TDP-43 proteinopathies, we focused on the 

functional validation of two hits which take part in ubiquitinylation reactions: the E2 

ubiquitin-conjugating enzyme UBE2E3 and the ubiquitin isopeptidase UBPY. 

4.1 Yeast two-hybrid screening for TDP-43 interactors 

At the beginning of this work, only a few protein interactors of TDP-43 were known 

that were identified with several screening approaches. Three protein-protein asso-

ciation studies that used high-throughput techniques identified interactors of TDP-43, 

among them two proteomic studies utilizing Y2H systems (Lehner and Sanderson, 

2004; Stelzl et al., 2005). The third study used an affinity-capture mass spectrometry 

approach with a HEK293 derived cell line (Jeronimo et al., 2007). The only so far pub-

lished Y2H screen with TDP-43 as bait used a human fetal brain cDNA library, discov-

ering an interaction of TDP-43 with ubiquilin-1 (Kim et al., 2009). In the beginning of 

this study a global approach was published, identifying several hundred TDP-43 co-

immunoprecipitated proteins from HEK293 cell lysates (Freibaum et al., 2010). In 

addition, two studies identified potential TDP-43 interactors in HeLa cells, among 

them hnRNPs, FUS and components of the Drosha microprocessor complex (Buratti 

et al., 2005; Ling et al., 2010) 

In all these studies TDP-43 binding proteins were identified from either non-neuronal 

cell lines, in Y2H screens with specific baits and preys, or using a fetal brain cDNA 

library. Here, we identified several novel, and also confirm known protein interactors 

of TDP-43 in an Y2H screen, using for the first time a cDNA library generated from 

adult brain mRNAs. Importantly, this library represents the gene expression profile of 

the brain of people at an age when they might be affected from a neurodegenerative 

disease. Thus, the novel interactions are likely to take place in the aging brain, and 

misregulation of some of them might be involved in the development of ALS or FTLD.  
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The screening for novel protein binding partners with a Y2H system has several ad-

vantages, but also some disadvantages. One advantage over classical biochemical or 

genetic methods is that Y2H is an in vivo approach and provides an important first 

hint for the identification of interaction partners. These interactions take place in a 

cellular context and not in optimized buffer conditions. In addition, Y2H screens are 

rather cheap, require no specialized equipment and results are obtained fast. More-

over, also weak and transient interactions can be detected, which is often not possible 

with other techniques like coimmunoprecipitation or pulldown. Finally, the use of 

different screening stringencies also allows first conclusions about the strength of 

interaction.  

However, the Y2H system has several disadvantages that are discussed in this section 

in the context of the screens performed in this study. First, the bait protein might 

autoactivate the reporter genes, which response to transcriptional activation, espe-

cially when the bait protein is a DNA/RNA binding protein like TDP-43. However, we 

showed that TDP-43 FL and CTF do not exhibit autoactivation activity in the used Y2H 

system (see Figure 3.2A). Second, some protein interactions may not happen in yeast, 

because of missing posttranscriptional modifications such as phosphorylation, disul-

fide bridge formation, or proper folding with the help of certain chaperones that are 

not present in yeast. In this study, wrong folding or masking of interaction sites with 

the Gal4-AD- or BD might account for the weak interactions of TDP-43 FL, CTF172-414 

and CTF with the known interactors SMN1 and hnRNPA2 (see Figure 3.3). Moreover, 

this might explain at least partially why the two screens with TDP-43 FL yielded only 

one true positive interactor each.  

Third, only nuclear interactions can activate the reporter genes. Therefore, the bait- 

and prey-fusion proteins are targeted to the nucleus. Thereby interactions of proteins 

might be detected which are naturally not located in the same compartment or ex-

pressed in the same tissue. TDP-43 is a mainly nuclear protein, where also most of the 

confirmed interactors are localized. Still, TDP-43 is also shuttled to the cytoplasm, 

where it is associated with several RNA granules (Alami et al., 2014; Dewey et al., 

2011; Dewey et al., 2012; Fallini et al., 2012; Moisse et al., 2009; Volkening et al., 

2009; Wang et al., 2008). The cytoplasmic Y2H hits UBPY and RACK1 and the partially 

cytoplasmic LSM6 were shown to bind cytoplasmic TDP-43 (see Figure 3.11). There-

fore these interactions could still be functionally meaningful, as confirmed for the role 

of UBPY in TDP-43 deubiquitinylation. It should also be noted that there is the rather 

unlikely, but still possible event that a third protein mediates the interaction of bait 

and prey. This might be an endogenous yeast protein homologous to a mammalian 

protein, or an exogenous protein from another co-expressed library vector. However, 

the later was ruled out in this study with the retransformation of the isolated library 
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plasmids and TDP-43 into yeast, which confirmed the interactions (see Figure 3.6). If 

an interaction is mediated by a third protein in yeast it can be difficult to confirm this 

interaction in mammalian cells with current methods.  

Furthermore, overexpression of both bait- and prey-proteins and targeting them to 

the nucleus could be toxic for yeast, especially when unnatural protein concentrations 

are reached. We did not observe toxicity of TDP-43 FL or CTF when they were ex-

pressed as AD- or BD-fusion proteins (see Figure 3.2). In literature, toxicity of TDP-43 

in yeast was reported in several studies from the same group (Armakola et al., 2012; 

Elden et al., 2010; Johnson et al., 2008; Johnson et al., 2009). However, they used 

other yeast strains than we did, and expressed TDP-43 variants under the control of a 

galactose-inducible promoter that usually yields high overexpression levels and 

might explain their observation of TDP-43 toxicity. Also, yeast strains used for Y2H 

are usually optimized for the identification of protein-protein interactions and not for 

functional validations. Thus, various yeast strains could be differentially affected by 

the same protein. 

Finally, Y2H screens usually yield a high number of false positive hits, which were 

estimated as high as 70% (Deane et al., 2002). The prey protein itself could activate 

the reporter genes, the fusion of the bait or prey proteins with BD- or AD of the Gal4 

transcription factor might induce improper folding that reveals interaction sites 

which are not exposed in mammalian cells, or two proteins could interact, which are 

usually not expressed in the same tissue, compartment, or at the same time in devel-

opment. We identified many false positive hits in the three TDP-43 interactor screens. 

To reduce false positive hits, the screens were performed with several reporter genes 

and with relatively high stringency. Our cDNA library contained many 3’UTRs and 

genomic sequences that showed no or only low similarity to mRNAs. The translation 

of these sequences into actually non-existing proteins was confirmed with western 

blot (see Figure 5.1). Also, many proteins translated from ORFs exhibited autoactiva-

tion activity when they were expressed together with the bait-control vector upon 

retransformation in yeast. Therefore it is important to confirm the identified interac-

tions and separate them from false positive hits with further validations. We have 

done this successfully with additional Y2H experiments with retransfected cDNA li-

brary plasmids and full-length target cDNAs, and especially with coimmunoprecipita-

tion experiments in HEK293E cells.  

There are many aspects why data obtained from Y2H screens should be handled with 

care. However, our screens yielded true positive interactors of TDP-43. RACK1 and 

RBM45, as well as EXOSC10 and KPNA4 were already described before to interact or 

colocalize with TDP-43 (Collins et al., 2012; Lehner and Sanderson, 2004; Nishimura 
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et al., 2010). This proves that our Y2H screening system was able to identify true 

novel interactors of TDP-43. 

4.2 Interactions of the targets are stronger with CTF than TDP-43 FL 

We were able to clone the full-length cDNA of LSM6, MED6, RACK1, RBM45, RNF2, 

UBE2E3 and UBPY, and confirmed their binding to TDP-43 by coimmunoprecipitation 

(see Figure 3.8). Interestingly, most interactions were stronger with mCherry-CTF 

than with TDP-43 FL. This was also observed in the two control experiments with 

Y2H (see Figure 3.6 and Figure 3.7). All ten primary positive hits interacted moder-

ately or strongly with BD-CTF but for most targets no interaction with BD-TDP-43 FL 

was observed upon retransformation of the isolated library plasmids with partial 

cDNAs (see Figure 3.6). Moreover, most full-length targets interacted only weakly 

with CTF, and interactions with TDP-43 FL were hardly detected in yeast (see Figure 

3.7). The only exception was RBM45, showing moderate interaction with TDP-43 FL 

but weak binding to CTF. 

The most successful Y2H screen was performed with CTF, and not TDP-43 FL. There-

fore the stronger interactions of the targets with CTF are easily conceivable. The con-

formation of CTF alone might allow a better access to the binding sites by the interac-

tors. Of course, this could also be true vice versa for the targets that were mostly par-

tially expressed in the screen. It is also possible that the fusion to the 22kDa binding 

and activation domains altered the conformation more strongly of TDP-43 FL, but 

also of the full-length targets, and covered their binding sites. The same might be true 

for the mCherry-tagged TDP-43 FL that was used for coimmunoprecipitation experi-

ments. Coimmunoprecipitation of mCherry-tagged CTF with UBE2E3 was only 

slightly above background and was not observed with mCherry-TDP-43 FL, but myc-

UBE2E3 bound clearly to Flag-TDP-43 (see Figure 3.8). This also indicates that the 

25kDa N-terminal mCherry-tag interferes with binding of UBE2E3 to TDP-43. In sup-

port of this theory, a C-terminal part of EXOSC10 of about 15kDa was identified from 

the first Y2H screen with TDP-43 FL. However, full-length EXOSC10 of about 100kDa 

only bound to two CTFs but not TDP-43 FL in Y2H (see Figure 3.5). 

The weak interaction of UBE2E3 with mCherry-CTF and undetectable interaction 

with mCherry-TDP-43 FL in coimmunoprecipitation can be explained at least par-

tially with decreased solubility of TDP-43 upon co-expression with UBE2E3 (see Fig-

ure 3.18B). This solubility shift makes interaction studies more difficult. It is not pos-

sible to perform coimmunoprecipitation reactions from urea lysates, which also con-

tain the insolubility-shifted TDP-43, because the buffer would denature the antibod-

ies immediately. Moreover, the binding of TDP-43 to some of the targets might be 
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increased by the interaction with additional proteins, as it takes place in protein 

complexes with several subunits. The interactors MED6 and LSM6 are components of 

the Mediator and Lsm complexes, respectively (see below). The discrete interactions 

of TDP-43 FL with these proteins were rather weak, but might be increased by addi-

tionally binding to other proteins or subunits of these complexes. 

Finally, it is conceivable that at least some hits rather interact with C-terminal frag-

ments of TDP-43 than with the whole protein in vivo. This is possible for UBPY and 

UBE2E3 as both TDP-43 FL and CTFs are ubiquitinylated in neurodegenerative dis-

eases. In fact, UBPY coimmunoprecipitated an endogenous 35kDa fragment of TDP-

43, and very weak binding of this fragment with UBE2E3 was also observed (see Fig-

ure). Thus, these interactions could be pathological relevant. However, it is not 

known whether CTFs are cleaved from TDP-43 FL before or after ubiquitinylation. 

4.3 Several disease modifications of TDP-43 were observed upon 

proteasomal inhibition and after UBE2E3 transfection in cell culture 

TDP-43 is ubiquitinylated, fragmented and phosphorylated in pathological inclusions 

in brain and spinal cord of FTLD and ALS patients (Arai et al., 2006; Neumann et al., 

2006). Furthermore, accumulations of TDP-43 and of ALS-linked mutants within deg-

radation pathways implicate a failure of clearance of TDP-43 as a primary disease 

mechanism (Bendotti et al., 2012; Blokhuis et al., 2013; Ling et al., 2013). Moreover, 

ubiquitinylated protein depositions are a common feature of many neurodegenera-

tive diseases, indicating a possible failure of clearance contributes to neurodegenera-

tion. The role of the UPS and autophagy in the clearance of physiological but also 

pathological TDP-43 in patients, animal models and cell lines is widely discussed in 

literature (see chapter 2.3.4). Here we found that insoluble and ubiquitinylated TDP-

43 as well as a 25kDa and especially a 35kDa fragment accumulate upon proteasomal 

inhibition with MG-132, but not with the autophagy inhibitor bafilomycin A1 (see 

Figure 3.12). A shift into the insoluble fraction and increased higher molecular weight 

species of TDP-43 were observed upon UBE2E3 overexpression in HEK293E cells or 

UBPY silencing in TDP-43 transgenic flies (see Figure 3.18 and Figure 3.35). Thus, the 

insolubility, ubiquitinylation and fragmentation of TDP-43 recapitulate key features 

of TDP-43 modification in ALS and FTLD (Arai et al., 2006; Neumann et al., 2006).  

Proteasomal inhibition but not blocking autophagy strongly enhanced level of insolu-

ble, ubiquitinylated TDP-43, We also detected no further increased level of ubiquiti-

nylated TDP-43 upon MG-132 and bafilomycin A1 treatment, which is consistent with 

a recent study from Huang and colleagues (Huang et al., 2014). This indicates that the 

proteasome is participating in TDP-43 degradation in HEK293E cells, which is also 
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supported by many reports that demonstrated a role of the UPS in TDP-43 turnover 

(Brady et al., 2011; Kabashi et al., 2008; Rutherford et al., 2008; Scotter et al., 2014; 

Tashiro et al., 2012; Urushitani et al., 2010; van Eersel et al., 2011; Wang et al., 2010; 

Winton et al., 2008a; Zhang et al., 2010). However, we did not observe an increase of 

steady-state level of endogenous or exogenous TDP-43, even after 24h treatment with 

MG-132. This would be expected if TDP-43 is degraded by the proteasome. TDP-43 

was shown to be a stable protein with a half-life ranging between 34-40h of endoge-

nous TDP-43, 4-40h of overexpressed or induced TDP-43 FL, but only 1.7-11h of CTFs 

or nuclear import impaired TDP-43 (Austin et al., 2014; Ling et al., 2010; Pesiridis et 

al., 2011; Scotter et al., 2014; Watanabe et al., 2013). CTFs were readily stabilized 

upon longer inhibition of the UPS, confirming that these TDP-43 species are cleared 

by the proteasome. Conversely, it was suggested that elevated level of TDP-43 frag-

ments upon proteasomal inhibition arise from increased caspase activity (Rutherford 

et al., 2008). Interestingly, TDP-43 regulates its own expression level via a negative-

feedback loop (Avendano-Vazquez et al., 2012; Ayala et al., 2011b). Thus, inhibiting 

the degradation of TDP-43 probably also induces a decrease in de novo protein syn-

thesis of endogenous TDP-43. It should also be noted, that levels of ubiquitinylated 

TDP-43 compared to total TDP-43 levels were low upon proteasomal inhibition for 

up to 24h. This may indicate that only a small portion of TDP-43 is removed by ubiq-

uitinylation from the pool of free and functional TDP-43.  

Interestingly, TDP-43 is monoubiquitinylated without the inhibition of the UPS. This 

was not reported before. This posttranslational modification can regulate protein 

trafficking, alter protein function, and serve as docking sites for ubiquitin-binding 

proteins (Hicke, 2001). It remains to be shown which of the 20 lysine residues of 

TDP-43 are monoubiquitinylated and what is the functional implication. 

Upon proteasomal inhibition for 6-24h, we detected the stabilization of a 25kDa, but 

more prominent of a 35kDa fragment of TDP-43 (see Figure 3.12A), which are most 

likely C-terminal fragments (Neumann et al., 2006; Zhang et al., 2007b). Studies in cell 

lines and transgenic mice reflect our findings, where usually insoluble 35kDa species 

are detected (Araki et al., 2014; Kabashi et al., 2008; Rutherford et al., 2008; 

Urushitani et al., 2010; van Eersel et al., 2011; Wang et al., 2012; Winton et al., 

2008a), while 25kDa fragments are rarely seen (Caccamo et al., 2009; Rutherford et 

al., 2008; Wang et al., 2012). More specifically, the inhibition of the UPS with 

epoxomicin for 20h, but not inhibition of autophagy, also prevented degradation of an 

insoluble 35kDa CTF (Araki et al., 2014). Furthermore, 35kDa fragments are even 

present in urea soluble and cytoskeleton fractions without the application of inhibi-

tors (Urushitani et al., 2010). However, TDP-43 fragments of about 35kDa are only 

occasionally observed, whereas the 25kDa species are predominant in ALS and FTLD 
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brain tissue (Hasegawa et al., 2008; Igaz et al., 2008; Inukai et al., 2008; Neumann et 

al., 2006). This could mean that the generation of CTFs underlies different mecha-

nisms in cell culture or animal models than in patients. In cell culture, these frag-

ments can be cleaved by caspase 3 (Dormann et al., 2009; Rutherford et al., 2008; 

Zhang et al., 2007b), but which enzymes participate in the generation of TDP-43 

fragments in diseased brain remains to be shown. Another aspect that might contrib-

ute to the different TDP-43 fragment pattern in cell culture models versus patient 

brain tissue is the period of time in which the fragments are generated. In cell culture 

models, the formation of TDP-43 fragments usually occurs within hours upon treat-

ment with various inhibitors of the proteasome or autophagy, while CTFs rather ac-

cumulate over months and years in disease. 

In our cell culture model we could not distinguish if TDP-43 FL, CTFs or even N-

terminal fragments were ubiquitinylated and pulled down. The utilized polyclonal 

anti-TDP-43 antibody recognizes TDP-431-260, thus also including the 25kDa and 

35kDa CTFs. A C-terminal specific antibody would also detect TDP-43 FL. In addition, 

overexpressed TDP-43 FL contains an N-terminal Flag-tag, implying that at least a 

part of the ubiquitinylated TDP-43 recognized with an anti-Flag was TDP-43 FL. It is 

possible that CTFs were generated from Flag-TDP-43, but these cannot be detected 

with anti-Flag antibody. To distinguish between TDP-43 FL and CTFs, a differential N- 

and C-terminal double-tagged TDP-43 has to be used. It is noteworthy, that the com-

position of TDP-43 positive inclusions in ALS and FTLD differs. TDP-43 FL is pre-

dominantly detected in ALS spinal cord, whereas inclusions in ALS and FTLD brain 

tissue are composed of TDP-43 FL and CTFs (Igaz et al., 2008; Neumann et al., 2009). 

We did not observe any aggregate formation, mislocalization and only very weak 

phosphorylation of endogenous or Flag-tagged TDP-43 FL under physiological condi-

tions and upon proteasomal inhibition with MG-132. Only mCherry-CTF accumulated 

after MG-132 treatment for 14h, which was not altered by UBPY (see Figure 3.27). 

Aggregation of exogenous TDP-43 in cell culture systems is usually observed upon 

disruption of nuclear trafficking, or with pathogenic mutants or aggregation-prone 

CTFs (Arai et al., 2010; Brady et al., 2011; Igaz et al., 2009; Nonaka et al., 2009a; 

Nonaka et al., 2009b; Scotter et al., 2014; Wang et al., 2010; Winton et al., 2008a). In 

addition, mislocalization and aggregate formation of overexpressed TDP-43 FL were 

usually seen after a second hit like inhibition of protein clearance pathways (Scotter 

et al., 2014; Urushitani et al., 2010; van Eersel et al., 2011; Wang et al., 2010). In fact, 

enhanced ubiquitinylation and insolubility of TDP-43 upon proteasomal inhibition 

are not necessarily linked to the formation of aggregates (Urushitani et al., 2010). The 

proteasomal inhibition alone did not induce aggregate formation in that study, but 

upon additional blocking of autophagy aggregates were observe. Furthermore, we 
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observed CTF aggregates after 14h of proteasomal inhibition, whereas for most pull-

down experiments of ubiquitinylated TDP-43 the cells were treated for 2-3h. Thus, 

CTFs can be ubiquitinylated after a short period of MG-132 treatment, but might not 

form visible aggregates in this time frame. 

HEK293E cells are immortalized and undergo cell division, which distinguishes them 

from primary neuronal cell cultures. Thus, cell divisions could prevent the formation 

of aggregates or compensate for cell damage. In fact, proteasomal inhibition was 

shown to have much greater effects on the localization and solubility of TDP-43 in 

primary neurons compared to immortalized motor neurons (van Eersel et al., 2011). 

Thus, aggregates may not be visible in the dividing HEK293E cells, or the cells which 

contain aggregates just die due to a possible toxicity of the aggregates. Moreover, we 

only observed a very weak S409/410 phosphorylation of ubiquitinylated TDP-43 

when UBE2E3 strongly increased level of ubiquitinylated TDP-43 (see Figure 3.18C), 

though aggregate formation of CTFs was shown to be phosphorylation dependent 

before (Brady et al., 2011). It should also be kept in mind that inhibition of the pro-

teasome, but also other treatments that lead to TDP-43 pathology in cell culture mod-

els, induce cell death after some time. Thus, there are two possibilities: either patho-

logical alterations of TDP-43 contribute to cell toxicity or TDP-43 pathology arises 

from the induced cell death in the cellular HEK293E model. Moreover, aggregate for-

mation might take weeks or months in in vivo models, whereas in cell lines this proc-

ess occurs within days. Therefore, the mechanisms underlying the accumulation of 

TDP-43 in immortalized cells, but also the composition of the aggregates themselves, 

could be different compared to aggregates detected in TDP-43 transgenic animals. 

In summary, the used HEK293E ubiquitinylation cell model is sufficient to study the 

regulation of TDP-43 ubiquitinylation, but cannot recapitulate all disease specific 

TDP-43 modifications. 

4.4 Ubiquitinylation of TDP-43 by class III UBE2E ubiquitin-conjugating 

enzymes 

We identified for the first time that the class III UBE2E ubiquitin-conjugating enzymes 

participate in ubiquitinylation of TDP-43. Endogenous UBE2E1, UBE2E3 and TDP-43 

are localized in the nucleus, though upon overexpression about 50% of cells show 

additional cytoplasmic staining. We provide evidence for a functional interaction, 

since the UBE2Es enhanced TDP-43 ubiquitinylation. In support of their specificity, a 

catalytically inactive UBE2E3 failed to ubiquitinylate TDP-43, whereas the more dis-

tant UBE2C and UBE2N only slightly increased ubiquitinylated TDP-43. This was 

rather due to the proteasomal inhibition. It is not surprising that all UBE2Es promote 
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TDP-43 ubiquitinylation. They share high homology, especially in their UBC domain, 

which was identified as a TDP-43 CTF interactor in the Y2H screen. Thus it is also 

possible that UBE2E1 or UBE2E2 or all three E2s might contribute in vivo to the ubiq-

uitinylation of TDP-43. However, the expression levels of UBE2E3 are predicted to be 

higher than the other two UBE2Es in many tissues and in various cell lines 

(www.proteinatlas.org).  

Further support for a role of UBE2E3 comes from the decrease of ubiquitinylated 

TDP-43 upon silencing of the E2 enzyme with a specific siRNA. This was rescued by 

overexpression of UBE2E3 wt and a siRNA resistant UBE2E3, but not by C145S (sees 

Figure 3.22). That rules out off-target effects. However, three other siRNAs failed to 

alter the amount of TDP-43 ubiquitinylation, which is mentioned in the results part 

(see chapter 4.3.4). In Drosophila, we could not study the effects of downregulation of 

the ortholog UbcD2, because GMR-driven expression in the eye of UbcD2 RNAi exhib-

ited an eye specific phenotype on its own. We conclude that UBE2E3 seems to be a 

specific E2 for TDP-43, as the ubiquitinylation of two aggregation prone polygluta-

mine-expanded ataxin-3 variants were not further enhanced by the overexpression of 

UBE2E3 in cell culture (see Figure 3.33). Nonetheless, there are open questions re-

garding the interaction of UBE2E3 with TDP-43 and their functional impact. 

Can the E2 enzyme UBE2E3 directly interact with its substrate TDP-43? It is unusual 

that an E2 interacts with a putative substrate. Instead, it is widely believed that an E3 

ligase mediates the ubiquitinylation and therefore is binding the substrate. Hence, 

what might be the cognate E3 ubiquitin ligase? In the ubiquitin conjugating cascade a 

RING finger type E3 ubiquitin ligase can bind simultaneously the substrate and the 

E2, which transfers the activated ubiquitin moiety directly onto the substrate 

(Metzger et al., 2012). In this E2-E3 complex the E2 might influence the substrate 

specificity and type of linkage. In addition, E3 independent in vitro ubiquitinylation by 

E2 enzymes has already been reported (Hoeller et al., 2007). Thus there might be a 

direct interaction of E2s and substrates. The interaction may be transient. However, 

in Y2H also transient and weak interactions can be detected. In this system the con-

tact area of UBE2E3 for TDP-43 might have been exposed, allowing a direct interac-

tion with TDP-43 without an additional E3, and subsequently activated the reporter 

genes. However, it is possible that a homolog of the connecting E3 ligase that medi-

ated the interaction is expressed in yeast. On the other hand, the co-

immunoprecipitation of overexpressed TDP-43 and UBE2E3 from HEK293E cell lys-

ates were barely detectable or non-existing, depending on the tag and TDP-43 vari-

ant, and which of the two proteins was pulled down from the lysates. Since co-

immunorecipitations are performed under optimized conditions it might be that an 

E3 ligase is required for the stabilization of the interaction. 
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The E3 ligase(s) for TDP-43 were suggested to reside in the cytoplasm (Urushitani et 

al., 2010), though TDP-43 is mainly nuclear. A possible candidate ubiquitin ligase is 

parkin, which belongs to the new class of RING HECT hybrid E3s (Riley et al., 2013; 

Wenzel et al., 2011a). Parkin was suggested to ubiquitinylate TDP-43 in vitro (Hebron 

et al., 2013). Conversely, the parkin mRNA levels are also regulated by TDP-43 

(Lagier-Tourenne et al., 2012), and parkin interacts with UBE2E2 (Imai et al., 2000; 

Zhang et al., 2000). As UBE2E2 and UBE2E3 share 85% homology it is possible that 

parkin may also bind to UBE2E3. However, preliminary results from our group indi-

cate that exogenous parkin is not enhancing ubiquitinylation of TDP-43 in 6xHis-

ubiquitin pulldowns from HeLa cells, which do not express endogenous parkin (data 

not shown). Therefore, further investigations are needed to show whether parkin 

mediates UBE2E3 dependent TDP-43 ubiquitinylation.  

We identified the E3 ligase RNF2 as a TDP-43 interactor in the Y2H screen. RNF2 is 

located in the nucleus like TDP-43, but the overexpression did not show effects on 

ubiquitinylation of TDP-43 (see Figure 3.28). This might reflect technical problems 

with the transfection of functional and catalytically active RNF2, or RNF2 is no func-

tional positive interactor. Silencing of the RNF2 ortholog in fly eyes with GMR-driven 

RNAi had already an eye specific phenotype, constricting further investigations in the 

TDP-43 neurotoxicity animal model (not shown observation from Dr. S. Jäckel, our 

group). However, a functional interaction of UBE2E1 with RNF2, which promotes the 

autoubiquitinylation of RNF2, was reported (Buchwald et al., 2006). 

However, there might be other, especially nuclear, E3 ubiquitin ligases that partici-

pate in the ubiquitinylation of TDP-43 by UBE2E3. A comprehensive framework of 

E2–RING E3 interactions revealed interactions of UBE2Es with many E3s, among 

them RNF2 but not parkin (van Wijk and Timmers, 2010). Therefore it was suggested 

that UBE2E ubiquitin-conjugating enzymes are hub E2s, which interact with a large 

number of E3s. 

It is also possible that the ubiquitinylation of TDP-43 by UBE2E3 is a novel example of 

a direct interaction of an E2 with a substrate. In support of this, UBC9 can SUMOylate 

substrate proteins without an E3 ligase, although with lower reaction efficiency 

(Tozluoglu et al., 2010). Moreover, in vitro ubiquitinylation studies showed E3 inde-

pendent ubiquitinylation via E2 enzymes (David et al., 2010; Hoeller et al., 2007). 

Therefore, in vitro ubiquitinylation assays without or with distinct E3s, including 

parkin and RNF2, could give insight to whether UBE2Es need a linking E3 or if they 

can ubiquitinylate TDP-43 in the absence of an E3. Thus, the ubiquitin ligase(s) for 

the UBE2E enzyme/TDP-43 complex still remain to be shown and if UBE2E3 can 

ubiquitinylate TDP-43 in an E3 independent manner. 
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Next, we have to ask why the ubiquitinylation of TDP-43 by UBE2Es does not lead to 

degradation of TDP-43. Instead, the ubiquitinylated TDP-43 species accumulate and 

shift into the insoluble fractions, but do not from aggregates within the observed 

timeframe. We observed that proteasomal inhibition does not further stabilize TDP-

43 ubiquitinylation by UBE2Es. This suggests that ubiquitinylation of TDP-43 by 

UBE2Es is not a straightforward proteasome-targeting signal or leads to a saturation 

of TDP-43 ubiquitinylation that cannot be further enhanced by proteasomal inhibi-

tion. The co-expression of UBE2E3 shifted TDP-43 into more insoluble fractions, and 

UBE2E3 C145S increased the amount of insoluble TDP-43 even stronger. Thus, the 

ubiquitinylation by UBE2E enzymes may change the conformation of TDP-43 slightly 

and direct TDP-43 into protein complexes in distinct subcellular localizations. The 

increased amount of ubiquitinylated TDP-43 might also induce a pathological protea-

somal overload, preventing an effective degradation of ubiquitinylated TDP-43, which 

then becomes too insoluble to be degraded. However, this was not observed for 

UBE2E1, since this enzyme binds and ubiquitinylates ataxin-1 and promotes the deg-

radation of ataxin-1 (Hong et al., 2008). 

The UBE2E3 overexpression did not induce the formation of TDP-43 positive aggre-

gates under physiological conditions. In addition, the aggregate formation of EGFP-

tagged TDP-43 FL and CTF induced by proteasomal inhibition was not further en-

hanced by UBE2E3 overexpression (unpublished data). It is possible that UBE2E3 

induces the formation of microaggregates that are not detectable with immunofluo-

rescence. A longer observation time could allow the formation and, hence, detection 

of these aggregates as they are growing. It was supposed that visible macroaggregates 

might be sinks for the real toxic species of accumulating neurodegenerative disease 

associated proteins (Caughey and Lansbury, 2003; Haass and Selkoe, 2007). These 

are predominantly lower-order oligomers with greater mobility and surface area. 

Hence, they possess an enhanced potential for aberrant interactions. This could mean 

that ubiquitinylated TDP-43 species might be toxic. This interesting assumption 

needs to be further investigated. 

TDP-43 is monoubiquitinylated in the presence of UBE2E3 (see Figure 3.19 ). How-

ever, high background of polyubiquitinylated proteins was detected in this experi-

ment. When 6xHis-ubiquitin was used in pulldowns, a 6xHis-ubiquitin higher molecu-

lar weight smear was only observed when TDP-43 was co-expressed with UBE2E3 or 

upon proteasomal inhibition. This demonstrates the specificity of the pulldown assay 

for 6xHis-ubiquitin-conjugated proteins. 

The type of ubiquitin linkage can give a hint on the function of the ubiquitinylation of 

TDP-43. A K48-linked polyubiquitinylation was detected on TDP-43, indicating a sig-

nal for proteasomal degradation (Urushitani et al., 2010). The three UBE2E enzymes 
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were shown to mediate K11- and K48-linked polyubiquitinylations indicating protea-

somal degradation, as well as K63-linked polyubiquitinylation, which reflects the 

autophagic degradation pathway (David et al., 2010). It is not known which of the 20 

lysine residues of TDP-43 can be ubiquitinylated. Four potential ubiquitinylation sites 

were identified in RRM1 (K102, K114, K145 and K161) of a 33.5kDa N-terminal splic-

ing variant of TDP-43, comprised of amino acids 1-277 (Dammer et al., 2012). Thus, 

these lysine residues cannot be the ubiquitinylation sites of the highly ubiquitinylated 

CTF193-414 used in this study, which contains four lysine residues. Mutagenesis of 

these four lysine residues would further provide evidence of CTF ubiquitinylation. 

We observed low amounts of insoluble, ubiquitinylated TDP-43 compared to the total 

levels. In addition, the insoluble TDP-43 species are considered to be non-functional 

and are only slightly increased upon overexpression of UBE2E enzymes and protea-

somal inhibition for 6h. Thus, the ubiquitinylation of TDP-43 and therefore depletion 

of minimal amounts of active TDP-43 species did not alter levels of HDAC6 and SKAR 

splicing (see Figure 3.36). Splicing alterations are usually just observed when TDP-43 

is strongly downregulated. Nonetheless, the accumulation of ubiquitinylated TDP-43 

in aging human patients could deplete enough active TDP-43 with the resulting ef-

fects becoming noticeable after a long period of time.  

4.5 Deubiquitinylation of TDP-43 by UBPY 

In this work we show that the ubiquitin isopeptidase UBPY binds TDP-43 and 

deubiquitinylates overexpressed TDP-43 wt, nuclear import impaired TDP-43 

NLSmut, and a CTF which was stabilized with a mCherry tag. The two catalytically 

inactive UBPY variants C786S and ΔC did not decrease ubiquitinylation of TDP-43 

(see Figure 3.25), instead these variants occasionally showed a dominant-negative 

effect resulting in increased TDP-43 ubiquitinylation (see Figure 3.25C). This is in 

agreement with a previous report (Alwan and van Leeuwen, 2007). Moreover, our in 

vivo data obtained from a neurotoxicity fly model overexpressing human TDP-43 in 

the eye strengthen the role of UBPY as a DUB for TDP-43. UBPY silencing increased 

the TDP-43 induced neurodegenerative phenotype, and enhanced insolubility and a 

higher molecular weight smear of TDP-43 (see Figure 3.34 and Figure 3.35). 

The knockdown of UBPY in HEK293E cells was not sufficient for appropriate investi-

gations of TDP-43 ubiquitinylation without affecting the cell viability, neither by tran-

sient transfection with siRNA nor in a lentiviral approach (sees Figure 3.26). UBPY is 

a growth regulated protein, which accumulates upon growth stimulation in human 

fibroblasts, but is decreased when the cells undergo growth arrest by contact inhibi-

tion (Naviglio et al., 1998). Additionally, silencing of UBPY enhances the degradation 
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of the EGFR, inducing a proliferation stop (Berlin et al., 2010b; Cai et al., 2010; Mizuno 

et al., 2005; Niendorf et al., 2007). Moreover, the knockout of UBPY in mice is 

embryonic lethal due to the growth arrest (Niendorf et al., 2007). This gives a 

possible explanation for the toxicity of the silencing of UBPY that we attempted. We 

generated stably silenced HEK293E cells, in which UBPY was strongly downregulated. 

However, after a few passages UBPY knockdown efficiency was almost not detectable. 

The strongly silenced cells probably grew much slower than weakly silenced cells, 

resulting in low silencing efficiency after passaging the cells a few times. Therefore, 

the generation of stably silenced cells from single clones could yield a cell line with 

robust downregulation of UBPY, but probably slow growth. Another possibility to 

decrease DUB activity of UBPY is the application of a specific inhibitor or increasing 

phosphorylation of S680, which was shown to reduce UBPY DUB activity through 

enhanced 14-3-3 binding (Ballif et al., 2006; Mizuno et al., 2007). However, specific 

kinases for S680 phosphorylation or inhibitors of UBPY DUB activity were not 

reported so far.  

At the moment it is still not clear whether ubiquitinylated TDP-43 aggregates are 

pathogenic or neuroprotective. Neuroprotective aggregates might serve as a sink for 

probably more toxic TDP-43 lower order oligomeric species. Inhibition of UBPY DUB 

activity might facilitate the formation of the protective aggregates. In the case of 

pathogenic TDP-43 aggregation the deubiquitinylation of TDP-43 could either protect 

from the formation of insoluble pathogenic aggregates or even dissolve them, also 

resulting in increased level of active TDP-43. One hint supporting this view comes 

from a report which showed that inclusions of ubiquitinylated CTF are reversible and 

can be cleared by the proteasome (Zhang et al., 2010). It would be interesting to know 

if UBPY may facilitate this deubiquitinylation and clearance. 

UBPY is highly expressed in neurons of the brain (Bruzzone et al., 2008; Gnesutta et 

al., 2001), and increased level and aggregates of UBPY are also associated with an ar-

tificial neurodegenerative mouse model, the Wobbler mouse (Paiardi et al., 2014). 

Thus, UBPY level or localization might also be altered in post mortem brain or spinal 

cord tissue with TDP-43 pathology. A decrease of UBPY might contribute to an en-

hanced formation of ubiquitin-positive inclusions. Therefore it would be interesting 

to study the expression and localization of UBPY in ALS and FTLD affected post mor-

tem brain and spinal cord tissue. We have initially performed histopathological stain-

ings for UBPY of brain tissue in collaboration with M. Neumann at the Neuropathol-

ogy, University Clinics Tübingen. Unfortunately, the available antibodies did not work 

properly in immunohistochemistry. Thus further antibodies need to be tested. 

TDP-43 accumulates in the cytoplasm of cells depleted of ESCRT-I and ESCRT-III 

(Filimonenko et al., 2007). Thus, there might be a faint link between the ESCRT-
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associated UBPY and TDP-43 in FTLD. Interestingly, UBPY interacts with several 

CHMP proteins of the ESCRT-III complex, among them also CHMP2B (Row et al., 

2007). Mutations in CHMP2B are associated with autosomal dominant FTLD-UPS, 

connecting aberrant endosomal sorting with this disease (Skibinski et al., 2005). 

However, inclusions in FTLD-UPS were TDP-43 negative, but ubiquitin positive (Holm 

et al., 2007; Liscic et al., 2008). 

Ubiquitinylated TDP-43 is an interesting new substrate of UBPY. However, it remains 

unclear where the interaction takes place. We showed by a stronger coimmunopre-

cipitation of UBPY with TDP-43 NLSmut or cytoplasmic CTF than with TDP-43 wt that 

a cytoplasmic interaction is most likely (see Figure 3.11). Immunofluorescence stain-

ing suggests an interaction in cytoplasmic vesicles or granules, but not stress gran-

ules, because UBPY did not colocalize with the stress granule marker eIF3 (see Figure 

3.24E). Since UBPY is found to interact with the ESCRT machinery the interaction 

with TDP-43 may take place at endosomes. However, an association of TDP-43 with 

endosomes was not described so far and UBPY did not colocalize with early en-

dosomes. The interaction site has to be further narrowed. Staining of UPBY and other 

RNA granule markers could reveal the place of interaction. Noteworthy, we observed 

a previously unknown localization of endogenous UBPY in HEK293E cells at the Golgi 

network. Both proteins also interact with the 14-3-3 protein that might serve as a 

scaffold for the interaction (Ballif et al., 2006; Volkening et al., 2009) 

UBPY was suggested to be a rather general DUB, as depletion of UBPY results in 

increased overall ubiquitinylation (Naviglio et al., 1998). A similar effect was 

observed in our fly model upon UBPY silencing (see Figure 3.35), whereas 

overespression of UBPY in 6xHis-ubiquitin pulldown experiments decreased the 

amount of polyubiquitinylated proteins (see Figure 3.25). However, a large amount of 

ubiquitinylated proteins in mCherry-CTF overexpressing cells seems to consist of 

ubiquitinylated CTF (see Figure 3.25A). Thus, the deubiquitinylation of mCherry-CTF 

should also be visible in an overall decrease of polyubiquitinylated proteins. 

Moreover, UBPY overexpression slightly decreased the ubiquitinylation of ataxin-3 

with a short or long polyglutamine tract (see Figure 3.33). Interestingly, the C. elegans 

ortholog of UBPY was detected in a screen for suppressors of polyglutamine-protein 

aggregation (Nollen et al., 2004). This might indicate that this DUB can 

deubiquitinylate aggregation-prone proteins in general, making UBPY a promising 

target for many diseases with ubiquitinylated and aggregating proteins.  

UBPY is a possible and interesting new therapeutic target for the treatment of ALS 

and FTLD patients. It could be a potential neuroprotective DUB, which might decrease 

level of accumulated and ubiquitinylated TDP-43 and increase level of free, functional 

TDP-43. It is noteworthy here, that USP10 is another DUB that might interact with 
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TDP-43 (Freibaum et al., 2010). Furthermore, USP21 was previously identified as an 

enhancer of TDP-43 toxicity in a yeast screen (Kim et al., 2014). However, a possible 

neuroprotective role of UBPY in TDP-43 proteinopathies remains to be shown. 

4.6 Ubiquitinylation of pathogenic TDP-43 mutants 

Several missense mutations in TDP-43 are linked to TDP-43 proteinopathies, most of 

them to ALS. A cytoplasmic mislocalization and an elevated half-life are characteristic 

for most of the mutants. The pathogenic mutants exhibit increased aggregation and 

toxicity, and accumulate upon proteasomal inhibition (Kabashi et al., 2008; 

Rutherford et al., 2008). The exact mechanisms how the mutations contribute to dis-

ease development are poorly understood. Therefore, we asked if the ubiquitinylation 

of pathogenic TDP-43 mutants is altered by UBE2E3, UBPY or by the inhibition of the 

UPS. We found that most of the 15 investigated mutants were ubiquitinylated like 

TDP-43 wt after UBE2E3 overexpression or MG-132 treatment (see Figure 3.30 and 

Figure 3.31) within our investigated time frame in transiently transfected HEK293E 

cells. Additionally, all of them predominantly localized diffusely to the nucleus like 

TDP-43 wt (see Figure 3.29). This is in agreement with two reports (Voigt et al., 2010; 

Zhou et al., 2010), while others demonstrated aggregate formation upon overexpres-

sion of pathogenic mutants (Arai et al., 2010; Guo et al., 2011; Johnson et al., 2009; 

Kabashi et al., 2010; Nonaka et al., 2009b; Sreedharan et al., 2008). 

Remarkably, in our system the highly conserved K263E mutant was heavily ubiquiti-

nylated, even in the absence of proteasomal inhibition or UBE2E3 overexpression. 

The ubiquitinylation of this mutant was altered similar to TDP-43 wt by MG-132 

treatment, UBE2E3 overexpression and silencing, and UBPY overexpression, though 

the effects were much more prominent (see Figure 3.32). Ubiquitinylation is often a 

signal for degradation, but the increased protein level of K263E points to an enhanced 

stability, which is in agreement with an elevated half-life (Austin et al., 2014). Despite 

this strong ubiquitinylation, K263E did not form aggregates in HEK293E cells under 

normal conditions within 96h of transient overexpression. It would be of interest 

whether the strong increase of K263E ubiquitinylation upon proteasomal inhibition 

induces aggregate formation. However, it was demonstrated that K263E is resistant 

to aggregation in vitro (Austin et al., 2014). 

The K263E mutation is not located in the GRD domain like most pathogenic muta-

tions, but in the linker region of RRM2 and GRD. The lysine 263 of TDP-43 is part of a 

nucleic acid binding site and intercalates with bound RNA (Lukavsky et al., 2013). 

Therefore, an exchange of this amino acid might alter RNA binding properties and 

even RNA related functions of TDP-43. Since the GRD domain mediates protein-



106  4 Discussion 

protein interactions, the nearby K263E mutation may alter or even disrupt TDP-43 

binding to different physiological complexes, consequently affecting proper TDP-43 

function. We showed in coimmunoprecipitation that it is difficult to compare the 

binding strength of UBE2E3 and UBPY with TDP-43 wt against K263E, because the 

mutant is more stable (see Figure 3.32D). However, this mutation might exhibit a dif-

ferent, yet to be identified pathogenic function.  

What might be the reason for the heavy ubiquitin modification of K263E? It is possi-

ble that the conformation of TDP-43 K263E is altered, so that other lysine residues 

are exposed. It may be that the cell recognizes K263E as misfolded protein, which is 

subsequently ubiquitinylated with the intent of clearance. However, the K263E muta-

tion in a partial mouse TDP-43 variant comprised of amino acids 101-265 does not 

cause conformational changes (Austin et al., 2014). Anyway, this might not be true for 

the full-length human K263E TDP-43. 

The other noticeable mutant regarding ubiquitinylation is D169G, which is like K263E 

not located in the C-terminus, but in RRM1. D169G seemed to be less stable than TDP-

43 wt and the other mutants in some experiments, which is in contrast to a reported 

elevated half-life (Austin et al., 2014). Moreover, D169G was much less ubiquiti-

nylated upon proteasomal inhibition or UBE2E3 overexpression, consistent with a 

previous report (Kim et al., 2009). This report also shows that D169G does not bind 

the ubiquilin-1 UBA domain as strong as TDP-43 wt, possibly due to the reduced 

ubiquitinylation. 

4.7 A model of UBE2E3 and UBPY dependent TDP-43 ubiquitinylation 

The data of this study can be summarized in a model of TDP-43 ubiquitinylation 

(Figure 4.1). We find that TDP-43 is ubiquitinylated upon inhibition of proteasomal 

degradation. Moreover, UBE2E ubiquitin-conjugating enzymes ubiquitinylate TDP-43 

in an unknown E3 ligase dependent or independent manner, that leads to an accumu-

lation and solubility shift instead of degradation of TDP-43. Finally, TDP-43 can be 

deubiquitinylated by UBPY. 

The alterations of localization, ubiquitinylation, solubility, fragmentation, aggregation 

and proteolytic breakdown might all account for the neurotoxicity of TDP-43. The 

proteasome seems to be important for the degradation of accumulating proteins in 

ALS and FTLD in general (Ling et al., 2013). Moreover, proteasomal dysfunction has 

been implicated in several other neurodegenerative diseases like Alzheimer’s or 

Huntington’s disease (Schipper-Krom et al., 2012; Tai and Schuman, 2008; Tanaka 

and Matsuda, 2014). The underlying mechanisms for neurodegeneration in general 

and specifically for TDP-43 are still not very well understood and require further in-
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vestigations. One possibility is that insoluble, ubiquitinylated TDP-43 might form 

neurotoxic aggregates over a longer period of time, and maybe UBPY is a potential 

suppressor of TDP-43 neurotoxicity. 

4.8 Potential functional implications of the novel TDP-43 interactors 

Several RNA-associated proteins were also found in the Y2H screens for TDP-43 in-

teractors. Interestingly, TDP-43, RBM45, LSM6, EXOSC10 and RACK1, as well as FUS, 

were found in mRNA interactomes from HeLa or HEK293 cells (Baltz et al., 2012; 

Castello et al., 2012). Thus, the interactions of TDP-43 with EXOSC10, LSM6, MED6 

and RBM45 further strengthen the role of TDP-43 in the RNA metabolism. What 

might be the functional consequence of TDP-43 interactions with these proteins? 

EXOSC10 is a protein component of the nuclear exosome complex that degrades vari-

ous types of RNA (Allmang et al., 1999). The already known interaction with EXOSC10 

from a study on human mRNA degradation implicates a role of TDP-43 in the degra-

dation of various types of RNA (Lehner and Sanderson, 2004). Indeed, the autoregula-

tion of TDP-43 seems to involve an exosome mediated pathway of mRNA degrada-

tion, as blocking of this complex partially recovers TDP-43 levels (Ayala et al., 2011b). 

The binding of TDP-43 to LSM6 suggest an association of TDP-43 with Lsm complexes 

that are involved in the degradation of mRNA in the cytoplasm or pre-mRNA splicing 

and decay in the nucleus (Tharun, 2009). Thus, the function of TDP-43 in splicing of 

various pre-mRNAs might be dependent on the nuclear Lsm complex. 

MED6 is part of the head molecule of the nuclear Mediator complex, which regulates 

the transcription of RNA polymerase II dependent genes at nearly all stages of tran-

scription (Carlsten et al., 2013). TDP-43 was also shown to interact with further sub-

units of the Mediator complex, more precisely MED10, MED19 and MED29 (Sato et al., 

 

Figure 4.1 A model of the regulation of TDP-43 ubiquitinylation by UBE2E ubiquitin-conjugating 

enzymes and the ubiquitin isopeptidase UBPY. 
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2004). The interaction with MED6 as well as with the other subunits points to an as-

sociation of TDP-43 with the Mediator complex for its transcription regulation func-

tions. It would be interesting to investigate whether TDP-43 can alter the transcrip-

tion of distinct genes via its interaction with MED6 or other Mediator complex sub-

units or if this affects the general transcription of genes. 

RBM45 colocalized with ubiquitin and TDP-43 in pathological inclusions in most ALS 

and all FTLD-TDP human patients tested, with the most abundant pathology in pa-

tients with C9ORF72 expansions (Collins et al., 2012). However, we are the first dem-

onstrating a direct interaction of the two proteins. Moreover, silencing of the RBM45 

ortholog in Drosophila increased the TDP-43 phenotype in the neurotoxicity fly model 

(data not shown, observation by Dr. S. Jäckel). It is of interest whether this interaction 

is RNA dependent as both are RNA binding proteins. The role of this interactions is 

speculative, because the particular functions of RBM45 remain unknown. This RRM-

type RNA-binding protein is developmentally regulated in the nervous system and 

contains structural similarities to TDP-43 and FUS (Collins et al., 2012; Tamada et al., 

2002). 

The lysosomal integral membrane protein GPR137B is highly expressed in brain, 

heart, liver and kidney (Gao et al., 2012), and its mRNA is differentially regulated 

upon TDP-43 silencing in HEK293E and HeLa cells (Ayala et al., 2008a; Fiesel et al., 

2010). 

An interaction of TDP-43 with the multifunctional protein RACK1 was identified in a 

global proteomic approach (Freibaum et al., 2010), and the two proteins associated in 

a global protein interaction map of Drosophila (Giot et al., 2003). Furthermore, RACK1 

was found in a coaggregation proteome of TDP-43, together with several other RNA 

binding proteins that are part of stress granules and participate in translational con-

trol (Dammer et al., 2012). RACK1 interacts with a wide variety of proteins and plays 

a significant role in shuttling proteins around the cell, anchoring proteins at particu-

lar locations and in stabilising protein activity (reviewed in Adams et al., 2011; 

Gandin et al., 2013). More particularly, RACK1 is a component of the 40S ribosome 

near the mRNA exit and recruits activated protein kinase C (PKC) to the ribosome, 

leading to a stimulation of translation (Sengupta et al., 2004). In response to stress, 

RACK1 - like TDP-43 - is sequestered into stress granules and inhibits apoptosis by 

suppressing a stress-responsive MAPK pathway (Anderson and Kedersha, 2006; 

Arimoto et al., 2008). Furthermore, RACK1 is involved in neurite outgrowth (Dwane 

et al., 2014). Recently, RACK1 was associated with miRNA-dependent repression of 

translation in C. elegans and humans through the interaction with the miRISC com-

plex (Jannot et al., 2011). RACK1 also promotes the docking of ribosomes via the as-

sociation with membrane-bound receptors at sites where local protein synthesis is 
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required (Nilsson et al., 2004). Though a role of TDP-43 in the regulation of local 

translation is less well established, RACK1 could act as an adaptor for TDP-43 or TDP-

43 associated RNA granules to distinct subcellular foci. Thus, like TDP-43, RACK1 is 

also associated with stress granule formation, neurite outgrowth, regulation of trans-

lation, and miRNA biosynthesis. Therefore, at certain points of these processes the 

interaction of TDP-43 and RACK1 might play a functional role. It is quite challenging 

to identify the function of this interaction due to the various possibilities where these 

could take place. 

RACK1 was also shown to promote the ubiquitinylation and proteasome mediated 

degradation of the C-type lectin domain family 1 member B and hypoxia-inducible 

factor 1-α (Liu et al., 2007; Ruan et al., 2009). Moreover, RACK1 was suggested to 

form a bridge between Bim proteins and the ElonginB/C-Cullin2-CIS E3 ligase com-

plex, thus promoting the polyubiquitinylation and proteasomal degradation of Bim 

(Zhang et al., 2008). Therefore, a possible RACK1 dependent function in the context of 

TDP-43 ubiquitinylation needs to be further investigated. 

The functional validation of the interaction of TDP-43 with many of the novel interac-

tors can yield important information about the function and regulation of TDP-43. 

Thus, further investigations are required (see below). These might help us to under-

stand the important role of TDP-43 in neurodegenerative diseases. 

4.9 Outlook 

Emerging evidence suggests that the alterations in protein homeostasis and RNA me-

tabolism are two major contributions to the development of ALS, FTLD and FLTD-

MND. We have identified several interactors of TDP-43 that could contribute to TDP-

43 pathogenesis related to one or both of these areas. UBPY and UBE2E ubiquitin-

conjugating enzymes were validated in this study to regulate the ubiquitinylation of 

TDP-43. However, there are open questions regarding the ubiquitinylation of TDP-43. 

The possibly linking E3 ubiquitin ligase for the UBE2E3 mediated TDP-43 ubiquiti-

nylation has to be identified. In a preliminary experiment in HeLa cells we could not 

confirm that parkin is an E3 ligase for TDP-43. Nevertheless, this experiment has to 

be optimized and repeated. Unexpectedly, we did not observe a robust TDP-43 ubiq-

uitinylation in HeLa cells after MG-132 treatment. Additionally, the UBE2E dependent 

ubiquitinylation of TDP-43 in parkin silenced HEK293E cells could be investigated. 

Further TDP-43 and UBE2E3 binding E3 ligases could be identified with mass spec-

trometry from a TDP-43 and/or UBE2E3 coimmunoprecipitated proteome. Thus, fur-

ther TDP-43 interacting E2 and E3 proteins may be identified. However, it should also 

be investigated whether UBE2Es can ubiquitinylate TDP-43 in an E3 independent 
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manner with in vitro ubiquitinylation assays. In this setup a role for parkin in TDP-43 

ubiquitinylation together with recombinant UBE2Es can also be tested. UBE2N and 

UBE2C could serve as negative control, because they do not promote ubiquitinylation 

of TDP-43 in the HEK293E cell model. Subsequently, in vitro ubiquitinylated TDP-43 

could be used as a substrate for recombinant UBPY to further confirm its deubiquiti-

nylation activity on TDP-43. Additionally, the already strongly ubiquitinylated TDP-

43 mutant K263E, can be overexpressed and immunoprecipitated from HEK293E 

cells, followed by in vitro deubiquitinylation with recombinant UBPY. A possible role 

of RACK1 in TDP-43 ubiquitinylation events could be investigated with RACK1 over-

expression and silencing approaches, respectively. Here, RACK1 might be a bridging 

protein for the substrate TDP-43 with a cullin E3 ligase complex. 

The quality of TDP-43 ubiquitinylation is of interest. We showed that TDP-43 is 

monoubiquitinylated, and higher molecular smears were observed among 6xHis-

ubiquitin-conjugated proteins. To identify whether this higher molecular weight 

smear is polyubiquitinylated or multi-monoubiquitinylated TDP-43, specific antibod-

ies which recognize mono- and polyubiquitin chains may be utilized. Furthermore, 

the type of ubiquitin chain linkage on TDP-43 can be identified in cell culture with 

linkage-specific antibodies for K48- and K63-linked polyubiquitin. The overexpres-

sion of various linkage-restricted 6xHis-ubiquitin constructs in the TDP-43 ubiquiti-

nylation pulldown assay, such as K11, K11R, K48, K48R, K63 or K63R may identify 

ubiquitin linkages on TDP-43 in vitro ubiquitinylated TDP-43 wt, but also K263E 

could be subjected to mass spectrometry analysis for the identification of the type(s) 

of ubiquitin-linkage as well as the lysine residues that are conjugated with ubiquitin. 

The location of these lysine residues could give a hint on functions that might be al-

tered upon ubiquitinylation of TDP-43, such as nuclear-cytoplasmic shuttling, RNA 

binding, as well as dimerization, conformational changes and aggregation (see also 

Figure 2.3).  

The regulation and the effects of TDP-43 ubiquitinylation can be studied more thor-

oughly in the TDP-43 neurotoxicity fly model. A positive aspect of the fly model is that 

aggregate formation might be observed due to the longer expression of TDP-43-GFP 

in various tissues or cells. Thus, effects of UBPY silencing or overexpression in neu-

rons, or more specifically in motor-neurons on TDP-43 aggregation may be deter-

mined. Moreover, this would also allow the investigation of movement, behaviour and 

longevity upon UBPY silencing in TDP-43-GFP expressing larvae and adult flies. The 

establishment of a TDP-43 K263E mutant fly disease model would provide in vivo 

insights whether this pathogenic mutant impairs TDP-43 functions in the fly. It was 

shown that pathogenic mutants impair axonal trafficking of TDP-43 granules in motor 

neurons derived from ALS patients with TDP-43 mutations and in Drosophila motor 
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neurons (Alami et al., 2014). Additionally, the effect of parkin knockdown or overex-

pression on the TDP-43 UBPY knockdown phenotype could be investigated. Our col-

laborator A. Voigt, RWTH Aachen identified more modifiers of the TDP-43 phenotype 

in fly. These could be further validated in fly and cell culture.  

Protein homeostasis is likely disrupted in ALS and FTLD. Therefore, it may be promis-

ing to identify targets that prevent, slow down or even reverse the accumulation and 

aggregation of TDP-43 in TDP-43 proteinopathies. Thus, the analysis of the expres-

sion and localization of UBPY, UBE2Es and ubiquitin in post mortem brain and spinal 

cord samples from ALS and FTLD-TDP patients may provide new insights in TDP-43 

pathology. However, first the nature of the TDP-43 toxic functions has to be deter-

mined: What is the toxic function of TDP-43 in neurons and glia cells? Are the inclu-

sions the toxic species or rather a neuroprotective sink for the potential toxic oli-

gomers? Are the observed inclusions only a mere by-product and the loss-of func-

tional nuclear TDP-43 is the cause for neurodegeneration? If TDP-43 inclusions pro-

tect from harmful oligomers, then inhibition of UBPY deubiquitinylation activity 

would be in favour. On the other hand, if ubiquitinylated and aggregated TDP-43 is 

toxic an increase in UBPY function and inhibition of UBE2Es would be beneficial and 

increase the amount of soluble, functional TDP-43. In the end, these investigations on 

the ubiquitinylation and aggregation of TDP-43 may help to understand the regula-

tion of the TDP-43 ubiquitinylation and its possible contribution to neurodegenera-

tion. 

The disruption of RNA homeostasis is also likely contributing to ALS and FTLD pa-

thology. ALS- and FTLD-linked mutations were detected in the RNA-binding proteins 

TDP-43, FUS, EWSR1, TAF15, ataxin-2, hnRNAPA1, and hnRNPA2/B1 and some of 

these proteins are also found in pathological inclusions (see Table 2.1). Thus, the role 

of TDP-43 in RNA metabolism and gene expression needs further investigation. We 

know thousands of RNAs that are bound and a part of them spliced by TDP-43, but for 

most of them we do not know the functional aspect of the interaction. We identified 

several RNA binding proteins in the Y2H screens, some of them linking TDP-43 to 

certain RNA processing complexes. Thus, the analysis of these interactions and espe-

cially of pathogenic mutants may shed some light on TDP-43 RNA functions and 

pathogenesis. As for UBPY and UBE2E enzymes, the staining of RBM45, RACK1, LSM6, 

MED6 and EXOSC10 in post mortem neuronal tissue is an option to determine 

whether levels of these proteins are altered and thus might contribute to ALS and 

FTLD pathogenesis. 

The interaction with LSM6 associates TDP-43 either with nuclear pre-mRNA splicing 

and decay or with cytoplasmic mRNA degradation via the distinct Lsm complexes. 

Thus, the localization of the LSM6-TDP-43 interaction should be detected. If TDP-43 
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associates with the nuclear Lsm complex, a possible role of this complex in TDP-43 

mediated alternative splicing of known targets such as CTFR or SKAR could be inves-

tigated. A cytoplasmic interaction may point towards an involvement of TDP-43 in 

mRNA decay or cytoplasmic splicing. Here, the stabilization of HDAC6 mRNA by TDP-

43 might be dependent on the interaction of TDP-43 with LSM6. 

TDP-43 and FUS are components of stress granules. The main function of stress gran-

ules is the temporal repression of translation and storage of mRNAs during stress. 

When the stress is removed stress granules are dissolved (Anderson and Kedersha, 

2009). It was suggested that upon chronic stress, TDP-43 or FUS positive stress gran-

ules serve as the core of irreversible pathological inclusions (Dewey et al., 2012; 

Dormann et al., 2010; Li et al., 2013; Wolozin, 2012). If stress granules are indeed the 

origin of insoluble protein inclusions, pharmacological treatment which dissolves 

stress granules before they become insoluble aggregates may be beneficial for TDP-

43 proteinopathies. Therefore, the composition and dynamics of TDP-43 or FUS posi-

tive stress granules have to be better investigated.  

RBM45 was found in TDP-43 positive inclusions (Collins et al., 2012). However, the 

functions of RBM45 are unknown. Thus it would be interesting to know if RBM45 or 

RACK1, that was also associated with stress granules, integrate with TDP-43 into 

stress granules upon cellular stress, like arsenide, heat shock or H2O2 treatment. 

Moreover, it could be investigated whether TDP-43 incorporation into stress granules 

might be dependent on RACK1 or RBM45 by knockdown or silencing of these pro-

teins. Eventually, the so far unknown function(s) of RBM45 have to be characterized 

to shed light on the interaction of TDP-43 with RBM45. 

The ultimate goal in studying TDP-43 functions, regulations and toxicity is to identify 

therapeutic targets for the treatment of ALS and FTLD-TDP. However, therefore it is 

important to know when pathological alterations occur. This has not been studied for 

TDP-43 proteinopathies so far. In case of Alzheimer’s or Parkinson’s disease, neu-

rodegeneration starts long before the first symptoms appear. Thus, presymptomatic 

diagnoses likely have to be established for ALS and FTLD, so that a possible causative 

treatment can begin before the onset of symptoms. Screens may identify markers of 

ALS and FTLD-TDP that could be used for diagnosis. However, a challenge is to distin-

guish whether alterations in TDP-43 will cause FTLD-TDP or ALS, as these two dis-

eases might need distinct treatments. 
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5 Material and Methods 

5.1 Material 

All chemicals (analytical grade) were purchased from Applichem, Calbiochem, Fluka, 
Merck, Roth or Sigma, unless otherwise indicated in Table 5.1.  

Table 5.1 Chemicals and reagents 

Chemical Supplier 

40% Acrylamide/ Bis-Acrylamid solution 19:1 Bio-Rad 
Adenine hemisulfate Sigma 
Adenosine-triphosphate (ATP) Sigma 
Agar (for bacterial LB plates) Fluka Analytical 
Agarose Biozyme Scientific 
Ammonium persulfate (APS) Sigma 
Ampicilin (sodium salt) Sigma 
Arsenite Sigma 
Aureobasidin A (AbA) Clontech 
β-mercaptoethanol Roth 
Bacto agar (for yeast medium plates) Becton Dickinson 
Bacto peptone Becton Dickinson 
Bafilomycin A1 (Baf) Sigma 
BigDye Terminator v3.1 Applied Biosystems 
Bovine Serum Albumin (BSA) Roth 
Brompenol blue (sodium salt) Merck 
Collagen Cohesion 
Complete protease inhibitor (also EDTA-free) Roche 
Dimethyl sulfoxide (DMSO) Sigma 
1,4-Dithiothreitol (DTT) Roth 
Drop-out mix (Complete supplement mixture) Formedium 
Dulbecco’s modified Eagle Medium (DMEM) high glucose Biochrom 
DMEM/HAM’s F12 Fermentas 
DNA ladder (1kb) Fermentas 
dNTPs Fermentas 
Ethidium bromide solution (1% in water) Merck 
EZviewTM Red anti-Flag/-HA/-myc affinity Gel Sigma 
Fetal calf serum (FCS) PAA Laboratories 
FCS (tetracycline free) PAA Laboratories 
Fluorescent mounting medium Dako 
FuGene6 Roche 
Herrings sperm carrier DNA Clontech 
Hexadimethrine bromide Sigma 
HiPerFect Qiagen 
Hoechst 33342 Invitrogen 
Imidazol Merck 
Immobiolon Western HRP substrate Millipore 
Kanamycinsulfate Sigma 
Lithium acetate dehydrate (LiOAc) Sigma 
Mate & PlateTM Library (human adult brain cDNA library) Clontech 
3-methyladenine (3-MA) Sigma 
MG-132 Sigma 
N,N,N’,N’-Tetramethylethylendiamine (TEMED) Merck 
nickel-nitrilotriacetic acid (Ni-NTA) agarose Qiagen 
Non-fat dried milk powder Sucofin 
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Chemical Supplier 

Nonident P-40 (NP-40) United States Biological 
Normal goat serum Sigma 
Normal horse serum Invitrogen 
NuPAGE MOPS SDS Running Buffer 20x Invitrogen 
OptiMEM Invitrogen 
PenicillinG/Streptomycin sulphate 100x (Pen/Strep) Biochrom 
Poly-D-lysine (PDL) Sigma 
Precision Plus Protein Standard, prestained Bio-Rad 
Polyethylene glycol (PEG) Sigma 
Puromycin InvivoGen 
Roti®-phenol/chloroform/isoamyle alcohol (25:24:1) Roth 
Sodium azide (NaN3) Sigma 
Sodium dodecyl sulphate (SDS) Sigma 
Sodium pyrophosphate (NaPPi) Sigma 
Triton-X-100 AppliChem 
Trypsin-EDTA (10x) Invitrogen 
Tryptone/peptone Roth 
Tween-20 Merck 
Western Blocking Reagent Roche 
X-tremeGENE 9 Roche 
Yeast extract AppliChem 
Yeast nitrogen base Formedium 

Table 5.2 Devices 

Device Manufacturer 

Agarose gel chamber Peqlab 
AxioImager microscope with ApoTome Imaging System Zeiss 
Blotting chambers, wet (Mini Trans-Blot® Cell, Trans-Blot® Cell) Bio-Rad 
Blotting chambers, semi-dry (PerfectBlue Semi-Dry electroblotter) Peqlab 
Burker chamber Hecht-Assistent 
Developer Fujifilm 
Electroporation cuvettes & device (MicroPulser) Bio-Rad 
Gel documentation system Vilber Lourmat 
Microtiter plate reader Bio-Rad 
Nanodrop (ND1000) Peqlab 
Scanner (Epson Perfection V700 Photo) Epson 
SDS-PAGE gel chamber (PerfectBlue Twin S) Peqlab 
Sequencer (ABI 3100 Genetic Analyzer) Applied Biosystems 
Spectrophotometer (Ultrospec 2100 Pro) Leica 
Thermocycler Applied Biosystems 

Table 5.3 Kits and enzymes 

Material Supplier 

Bicinchoninic acid (BCA) Protein Assay kit Pierce Protein 
Bradford Protein Assay kit Bio-Rad 
Ex Taq DNA Polymerase kit Takara 
GoTaq DNA Polymerase kit Promega 
QIAGEN Plasmid Midi/Maxi kit Qiagen 
QIAprep Spin MiniPrep kit Qiagen 
QIAquick Gel Extraction kit Qiagen 
Restriction enzymes and 10x buffers Fermentas 
RNase A Sigma 
RNeasy Mini kit Qiagen 
Shrimp alkaline phosphatise (SAP) Fermentas 
T4 DNA ligase kit Fermentas 
Transcriptor High fidelity cDNA Synthesis kit Roche 
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Table 5.4 Consumables 

Consumables Supplier 

Amersham Hyperfilm™ ECL High Performance GE Healthcare 
4-12% Bis-Tris NuPAGE Mini/Midi gradient gels Invitrogen 
Coverslips Roth 
Glass beads, acid washed Sigma 
Hybond-P polyvinylidene diflouride (PVDF) membrane Millipore 
Microscope slides Langenbrinck 
Nitrocellulose membrane GE Healthcare 
Whatman paper Schleicher und Scheull 

Table 5.5 Buffer and solutions Chemicals were dissolved in double distilled H2O (ddH2O) and auto-
claved when necessary. 

Buffer/ solution Chemical composition 

Antibody solution, primary 5% (v/v) Western Blocking Reagent, 0.02% NaN3 in TBST 
Antibody solution, secondary and 
HRP-coupled 

5% (w/v) non-fat milk powder in TBST 

Blocking solution for western blot 5% (w/v) non-fat milk powder in TBST 
CoIP buffer 50mM HEPES pH 7.6; 10mM KCl; 50mM NaCl; 1mM EDTA; 

0.5mM EGTA; 1.5mM MgCl2; 10mM NaPPi, 10% glycerol; 0,2% 
NP-40 

HU buffer 200mM Tris pH 6.8; 8M urea; 1mM EDTA; 5% SDS; bromphenole 
blue; 15mM DTT added fresh 

LB medium 1% (w/v) tryptone; 0.5% (w/v) yeast extract; 0.5% (w/v) NaCl 
LB medium plates LB medium with 1.2% (w/v) agar 
LB medium plates with antibiotics LB medium with 1.2% (w/v) agar and 100µg/ml ampicilin or 

25µg/ml kanamycin 
LiOAc/TE  100mM LiOAc; 10mM Tris pH 7.4 in H2O 
LiOAc/PEG  40% (w/v) PEG; 100mM LiOAc; 10mM Tris pH 7.4 in H2O 
NP-40 buffer 50mM NaH2PO4 pH 8.0; 300mM NaCl; 1% NP-40 
NuPAGE transfer buffer 25mM Bicine; 25mM BisTris; 1mM EDTA 
Phosphate buffered saline (PBS) 2.2mM KH2PO4 pH 7.4; 7.8mM Na2HPO4; 150mM NaCl 
RIPA buffer 50mM Tris/HCl pH 8.0; 150mM NaCl; 1% NP-40; 0.5% deoxy-

cholate; 0.1% SDS; 10mM NaPPi 
SDS-PAGE running buffer 25mM Tris, 192mM glycine 
SDS-PAGE separating gel buffer 1.5M Tris pH 8.8; 0.4% (w/v) SDS 
SDS-PAGE stacking gel buffer 0.5M Tris pH 6.8; 0.4% (w/v) SDS 
6x SDS-PAGE sample buffer 
(Laemmli buffer) 

325 mM Tris pH 6.8; 9% (w/v) SDS; 50% glycerol; 9% ß-
mercaptoethanol; 0.03% (w/v) bromophenol blue 

Stripping solution for western blot 62.5mM Tris pH 7.6; 2% (w/v) SDS; 100mM β-mercaptoethanol 
Tris borate buffer (TBE) 45mM Tris pH, 45mM boric acid, 1mM EDTA 
Transfer buffer 25mM Tris, 192mM glycine 
Tris buffered saline (TBS) 50mM Tris pH 7.4; 150mM NaCl 
TBST 50mM Tris pH 7.4; 150mM NaCl, 0.1% (v/v) Tween-20 
8M urea buffer 10mM Tris pH 8.0; 100mM NaH2PO4; 8M urea 
8M urea wash buffer 10mM Tris pH 6.3; 100mM NaH2PO4; 8M urea 
Yeast lysis buffer 10mM Tris pH 8.0; 100mM NaCl, 1mM EDTA, 1% (w/v) SDS, 2% 

(v/v) Triton-X-100 
Yeast selective medium 0.67% (w/v) yeast nitrogen base; 0.083% (w/v) drop-out mix; 

20% (w/v) glucose; pH 5.6 
Yeast selective medium plates Yeast selective medium with 2% (w/v) bacto-agar 
Yeast selective medium plates with 
Aureobasidin A 

Yeast selective medium with 2% (w/v) bacto-agar and 80ng/ml 
Aureobasidin A 

YPAD 1% (w/v) yeast extract; 2% (w/v) bacto-peptone; 0.001% (w/v) 
adenine hemisulfate; 20% (w/v) glucose; pH 6.5 

YPAD plates YPAD medium with 2% (w/v) bacto-agar 
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5.2 Molecular biology 

5.2.1 Production of electro-competent E. coli 

LB medium was inoculated with one colony of the E. coli strain DH5α and grown 

overnight at 37°C. Next day, 500ml of LB medium was inoculated with 10ml of over-

night culture and grown at 37°C until an optical density (OD600) of 0.7 at 600nm was 

reached. Bacteria were cooled down to 4°C and pelleted at 4000xg for 20min at 4°C. 

Bacteria pellet was washed thrice with 500ml and once with 250ml, 125ml and 50ml 

ice-cold ddH2O. The remaining pellet was resuspended in 3ml 10% (v/v) glycerol, 

50µl aliquots were snap frozen in liquid nitrogen and stored at -80°C. Transformation 

efficiency of the electro-competent bacteria was tested by transformation with 10pg 

pUC19 plasmid DNA (Invitrogen).  

5.2.2 Constructs and molecular cloning 

The vectors and the constructs used in this study are listed in Table 5.6 and Table 5.7, 

respectively. Flag-, mCherry and EGFP-tagged TDP-43 wt, CTF172-414, CTF193-414 and 

NLS mutated TDP-43 constructs as well as pGADT7- and pGBKT7-TDP-43 wt and 

CTF172-414, CTF193-414  and most of pathogenic TDP-43 mutants were described before 

in Fiesel et al. (2010) and Fiesel (2010).  

Human cDNA of SMN1, hnRNPA2, LSM6, MED6, RACK1, RBM45, RNF2, UBPY, 

UBPY ΔC, UBE2 enzymes UBE2E1, UBE2E2, UBE2E3, UBE2N and UBE2C were ampli-

fied from HEK293E or SH-SY5Y cell cDNA by polymerase chain reaction (PCR) with 

proofreading DNA polymerase ExTaq (Takara) and specific primers (Table 5.8), 

which also added terminal enzymatic restriction sites to the PCR products. PCR prod-

ucts were separated on 1% agarose (w/v)/TBE gels stained with ethidium bromide 

Table 5.6 Vectors used in this study. Restriction sites of additionally inserted tags are indicated. 

Vector 

Tag 

(insertion site) Host system Reference 

pGADT7 5’-HA yeast Clontech 
pGBKT7 5’-myc yeast Clontech 
pcDNA3.1(-)-Flag 5’-Flag 

(NotI/EcoRI) 
mammalian cell culture Invitrogen, (Fiesel et al., 

2010) 
pcDNA3.1(+)  mammalian cell culture Invitrogen 
pcDNA3.1(-)-
mCherry 

5’-mCherry 
(NotI/EcoRI) 

mammalian cell culture Invitrogen, F. Fiesel 

pCMV-3xFlag 5’-3xFlag 
(SfiI/EcoRI) 

mammalian cell culture Clontech, 3xFlag tag cloned 
by C. Thömmes 

pCMV-myc 5’-myc mammalian cell culture Clontech 
pCMV-HA 5’-HA mammalian cell culture Clontech 
pCMV-6xHis 5’-6xHis mammalian cell culture Clontech 
pEGFP-C1 5’-EGFP mammalian cell culture Clontech 
pEGFP-N1 3’-EGFP mammalian cell culture Clontech 
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and purified with QIAquick Gel Extraction kit (Qiagen). Purified PCR products as well 

as the target vectors were digested with specific restriction enzymes (Fermentas), 

followed by ligation into the SAP (Fermentas) dephosphorylated target vectors 

pcDNA3.1(+) or pCMV-myc. Ligation preparation was transformed into E. coli DH5α 

with electroporation. Bacteria expressing plasmids with inserts were identified by 

colony PCR using GoTaq DNA polymerase (Promega). Most of the inserts were shut-

tled into pGADT7, pGBKT7, pCMV-3xFlag, pCMV-myc and pCMV-HA target vectors.  

EXOSC10 was subcloned into pGADT7 and pGBKT7 from pCL-neo-VSV-EXOSC10, a 

kind gift from Ger Pruijn, Nijmegen, Netherlands. For cloning of TDP-43 wt into 

pCMV-6xHis, TDP-43 wt was amplified from pcDNA3.1(-)-Flag with specific primers 

and subcloned into the target vector. Point mutations in UBPY (C786S), UBE2E3 

(C145S) and TDP-43 (K263E, Q331K and N345K) were introduced by two-step-site-

directed mutagenesis of the wt cDNA. The mutation was generated in the first PCR 

step. This step consisted of two parallel PCR reactions, with a primer complimentary 

to the 5’ or 3’ end of the cDNA including restriction sites and specific internal primers 

containing the point mutation (Table 5.9). PCR products of the first step were used as 

template in the second PCR step to obtain the full-length cDNA with the mutation. 

Table 5.7 Constructs generated and/ or used during this work. Constructs were generated during 
this work by Friederike Hans (FH) or by Fabienne Fiesel (FS) and described in Fiesel et al. (2010). 
6xHis-ubiquitin construct was described in Geisler et al. (2010). Ataxin-3 constructs were provided by 
T. Schmidt (TS, Department of Medical Genetics, University Clinics Tuebingen). Y2H control vectors 
pGADT7-T-Ag and pGBKT7-p53 were from Clontech. 
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TDP-43 wt  � � � �    � �  FF 
TDP-43 CTF172-414  � �         FF 
TDP-43 CTF193-414 (CTF)  � � � �     �  FF 
TDP-43 ΔGRD  � �         FF 
TDP-43 NLSmut    �        FF 
TDP-43 mutants (D169G, K263E, 
G287S, G290A, G298S, A315T, 
Q331K, M337V, Q343R, N345K, 
G348C, R361S; A382T, N390D, 
N390S) 

   �        

FF, 
FH 

SMN1 � � �         FH 
hnRNPA2  � �         FH 
EXOSC10  � �         FH 
T-Ag  �           
p53   �          
LSM6 � �    � �     FH 
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MED6 � �    � �     FH 
RACK1  �     � �    FH 
RBM45 � �    � �     FH 
RNF2 �     � �     FH 
UBPY wt � �    � � �    FH 
UBPY C786S, ΔC       �     FH 
UBE2E3 wt  �    � � �    FH 
UBE2E3 C145S, si1mut       �     FH 
UBE2E2       �     FH 
UBE2E1       �     FH 
UBE2C       �     FH 
UBE2N �      �     FH 
Ubiquitin         �    
Ataxin-3-Q15           � TS 
Ataxin-3-Q148           � TS 

Table 5.8 Primers used for molecular cloning (for - forward, rev - reverse) 

Primer Restriction site Sequence (5’�3’) 

EXOSC10 for NdeI ggggcatATGGCGCCACCCAGTACC 
EXOSC10 rev EcoRI cccgaattcCTATCTCTGTGGCCAGTTGTAC 
hnRNPA2 for EcoRI gggggaattcATGGAGAGAGAAAAGGAACAGTTCC 
hnRNPA2 rev XhoI ccccctcgagTCAGTATCGGCTCCTCCCAC 
LSM6 for KpnI/BamHI gggggtaccgggatccggATGAGTCTTCGGAAGCAAACCCCTAG 
LSM6 rev NotI ccccgcggccgcTCACATCCGTCTCTTCTGTGTACTG 
MED6 for KpnI/BglII gggggtaccgagatctggATGGCGGCGGTGGATATCCGAG 
MED6 rev NotI ccccgcggccgcTCACTGAAGTCTCATCCGTTTTTCAGGG 
RACK1 for SfiI ggggccatggaggccATGACTGAGCAGATGACCCTTCGTG 
RACK1 rev SalI ccccgtcgacCTAGCGTGTGCCAATGGTCACC 
RBM45 for KpnI/BamHI gggggtaccgggatccggATGGACGAAGCTGGCAGCTCTG 
RBM45 rev NotI ccccgcggccgcTCAGTAAGTTCTTTGCCGTTTGTTAGATTC 
RNF2 for KpnI/BamHI gggggtaccgggatccggATGTCTCAGGCTGTGCAGACAAACG 
RNF2 rev NotI ccccgcggccgcTCATTTGTGCTCCTTTGTAGGTGCG 
SMN1 for EcoRI gggggaattcATGGCGATGAGCAGCGGC 
SMN1 rev XhoI ccccctcgagTTAATTTAAGGAATGTGAGCACCTTCC 
TDP-43 for SalI ggggtcgacgATGTCTGAATATATTCGGGTAACCG 
TDP-43 rev NotI ccccgcggccgcCTACATTCCCCAGCCAGAAG 
UBE2E3 for KpnI/BglII gggggtaccgagatctggATGTCCAGTGATAGGCAAAGGTCCG 
UBE2E3 rev NotI ccccgcggccgcTTATGTTGCGTATCTCTTGGTCCACTG 
UBE2E2 for KpnI/BglII gggggtaccgagatctggATGTCCACTGAGGCACAAAGAGTTGATG 
UBE2E2 rev NotI ccccgcggccgcCTATGTGGCGTACCGCTTGGTCC 
UBE2E1 for BglII gggggagatctggATGTCGGATGACGATTCGAGGGC 
UBE2E1 rev NotI ccccgcggccgcTTATGTAGCGTATCTCTTGGTCCACTGTC 
UBE2C for BglII gggggagatctggATGGCTTCCCAAAACCGCGACC 
UBE2C rev NotI ccccgcggccgcTCAGGGCTCCTGGCTGGTGAC 
UBE2N for KpnI/BglII gggggtaccgagatctggATGGCCGGGCTGCCCCG 
UBE2N rev NotI ccccgcggccgcTTAAATATTATTCATGGCATATAGCCTAGTCCATGC 
UBPY for KpnI/BamHI gggggtaccgggatccggATGCCTGCTGTGGCTTCAGTTCC 
UBPY rev NotI ccccgcggccgcTTATGTGGCTACATCAGTTACTCGTGG 
UBPY ΔC rev NotI ccccgcggccgcttATGGCTTCCTCTTCTCTTCCTCTTGAATAG 
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Table 5.9 Mutagenesis primers (for - forward, rev - reverse) 

Primer Sequence (5’�3’) 
TDP-43 K263E for CCAATGCCGAACCTGAGCACAATAGCAATAG 
TDP-43 K263E rev CTATTGCTATTGTGCTCAGGTTCGGCATTGG 
TDP-43 Q331K for CCAGGCAGCACTAAAGAGCAGTTGGGGTATG 
TDP-43 Q331K rev CATACCCCAACTGCTCTTTAGTGCTGCCTGG 
TDP-43 N345K for GCCAGCCAGCAGAAGCAGTCAGGCCC 
TDP-43 N345K rev GGGCCTGACTGCTTCTGCTGGCTGGC 
UBE2E3 C145S for GTCAGGGAGTCATCTCTCTGGACATCC 
UBE2E3 C145S rev GGATGTCCAGAGAGATGACTCCCTGAC 
UBE2E3 si1mut for CCTCTGGTTGGAAGTATCGCAACGCAATACCTGACCAACAGAGC 
UBE2E3 si1mut rev GCTCTGTTGGTCAGGTATTGCGTTGCGATACTTCCAACCAGAGG 
UBPY C786S for CGTAACTTAGGAAATACTTCTTATATGAACTCAATATTGC 
UBPY C786S rev GCAATATTGAGTTCATATAAGAAGTATTTCCTAAGTTACG 

All constructs were verified by sequencing using BigDye Terminator v.3.1 kit and an 

ABI 3100 Genetic Analyzer (Applied Biosystems). Sequence analysis was performed 

with Staden Package Software Version 1.6 (Staden et al., 2000). DNA concentrations 

were determined by measuring absorbance at 260nm with a NanoDrop ND-1000 de-

vice (Peqlab). For amplification, plasmids were electroporated into E. coli DH5α, 

grown in overnight cultures and purified with Plasmid Mini/Midi/Maxi kit from 

Qiagen. 

5.2.3 Transformation of yeast with LiOAc/PEG 

Transformation of the S. cereviseae strain Y2HGold with plasmid DNA was performed 

with the lithium acetate polyethylene glycol (LiOAc/PEG) method. Therefore, YPAD 

yeast medium was inoculated with one Y2HGold colony and grown overnight at 30°C. 

Next day, overnight culture was diluted to an OD600 of 0.2 and grown at 30°C until 

OD600 reached 0.7. For five transformations, 50ml of yeast culture was pelleted at 

1100xg for 3min and resuspended in 500µl LiOAc/TE. In 1.5ml tubes 100µl resus-

pended yeast, 1µg plasmid DNA, 500µg LiOAc/PEG and 10µl herrings sperm carrier 

DNA were mixed for 15min on a rotator. 50µl DMSO (100%) was added and the yeast 

were heat shocked at 42°C for 15min. Transformed yeast was pelleted, resuspended 

in ddH2O, plated onto appropriate selective medium plates and incubated at 30°C for 

3d. 

5.2.4 DNA isolation from yeast 

Isolation of chromosomal and plasmid DNA from the S. cereviseae strain Y2HGold was 

performed according to Hoffman and Winston (1987). A 5ml overnight culture of 

Y2HGold in medium lacking leucine (-L) selecting for the to-be-isolated plasmid was 

pelleted at 1100xg for 3min and snap frozen shortly in liquid nitrogen. Then, 0.3g 

glass beads (Sigma), 500µl yeast lysis buffer (10mM Tris pH 8.0; 100mM NaCl, 1mM 

EDTA, 1% (w/v) SDS, 2% (v/v) Triton-X-100) and 500µl Roti®-
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phenol/chloroform/isoamyle alcohol (25:24:1; Roth) were added, mixed by vortexing 

for 2min and centrifuged at for 5min. DNA was precipitated from aqueous phase with 

1ml 100% ethonol/ 10mM NaOAc and dissolved in 50µl ddH2O. To isolate and purify 

the cDNA library plasmid (pGADT7-RecAB), E. coli DH5α was transformed with yeast 

DNA and grown on ampicillin LB-medium plates, as the pGADT7 vector also codes for 

an ampicillin resistance. 

5.2.5 Yeast Two-hybrid screen 

Yeast Two-hybrid is a technique to investigate protein-protein interactions. In this 

system, a bait protein is fused to the binding domain (BD) and a prey protein is fused 

to the activation domain (AD) of the Gal4 transcription factor. The bait protein is usu-

ally a known protein, whereas the prey protein can either be also known or expressed 

from a cDNA library. Both fusion proteins are co-expressed in a genetically engi-

neered yeast strain that cannot biosynthesise certain nutrients. These are usually 

amino acids or nucleic acids. The plasmids coding for BD-bait and AD-prey also en-

code each for one enzyme which enables the yeast to grow on certain selective me-

dium plates. If bait and prey interact, Gal4 transcription factor is indirectly connected 

and therefore functional and can activate the transcription of several reporter genes 

in the yeast genome, allowing the yeast to grow on selective medium plates lacking 

further nutrients. As there are several reporter genes, stringency of the selective me-

dium is variable. Thus, not only an interaction of two proteins can be found, but also 

the strength of interaction can be analyzed. 

Here, a human adult brain cDNA library (Mate & PlateTM Library) containing partial 

cDNAs was used for screening for TDP-43 FL and CTF interactors with the Match-

maker Gold Yeast Two-Hybrid System (both Clontech). The cDNA library plasmids 

(pGADT7) were purchased already transformed into S. cereviseae strain Y187. These 

yeast cells were mated in 2xYPAD medium within 24-28h with S. cereviseae strain 

Y2HGold expressing TDP-43 FL or CTF as bait. The screens were performed on di-

verse selective medium plates, as indicated in the results part. Yeast colonies grown 

after 7-11d (size > 1mm) at 30°C were seen as primary positive clones. These were 

selected for growth on selective medium plates lacking leucine and tryptophane (-

LT), leucine, tryptophane, histidine and adenine (-LTHA) with 2.5mM 3-Amino-1,2,4-

triazole (3-AT), and -LTHA + X-α -Gal + 80ng/ml Aureobasidin A (-LTHA + X + AbA) 

for a first confirmation of interaction. Additionally, yeast extracts of individual clones 

were prepared for western blotting analysis (see 5.5.1) to test for the expression of 

HA-tagged prey proteins (Figure 5.1B). Clones growing on all three selective media 

and expressing a prey protein larger than 25kDa (the size of the HA-tagged activation 
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domain is approx. 22kDa) were chosen for further study. An example of the analysis 

of ten primary positive clones is depicted in Figure 5.1. 

Individual clones were grown in liquid medium lacking leucine to select for cDNA 

library plasmids, which were isolated as described in 5.2.4. DNA samples were ana-

lyzed by PCR with oligonucleotides for cDNA library inserts to assure that each pri-

mary positive clone contained only one library plasmid (Figure 5.1A). Plasmids were 

retransformed into E. coli and re-isolated to obtain pure cDNA library plasmids. This 

was also confirmed by PCR analysis of the isolated plamids (Figure 5.1C). Purified 

library plasmids were co-transformed (0) into yeast strain Y2HGold with the bait vec-

tor pGBKT7-Ø, -TDP-43 FL or CTF (retransformation). 6x104 yeast cells were spotted 

in duplicates on selective medium plates with increasing stringency (Figure 5.1D). 

Yeast were seen as true positive clones when they expressed a prey protein together 

with TDP-43 FL or CTF, but not the bait control vector, and grew at least on -LTHA + 

2.5mM 3-AT. These cDNA library plasmids were sequenced for identification. 

 

Figure 5.1 Example of analysis of ten primary positive hits from the Y2H screen. A PCR analysis 
of ten library plasmids (pGADT7) from yeast-DNA extraction. B Protein expression of the ten primary 
positive hits in Y2HGold. Yeast extract of indicated hits were subjected to western blot. Hits were de-
tected with HA antibody, α-tubulin served as loading control. C PCR analysis of the purified library 
plasmids. The sizes of vector inserts do not correlated with the molecular weight of the expressed pro-
teins, because stop codons could be located all over the cDNAs. D Spotting of the retransformed prima-
ry positive hits. Isolated library plasmids from (C) were retransformed with pGBKT7-CTF or control 
vector (Ø) into Y2HGold. 6x104 yeast cells were spotted onto selective medium plates with increasing 
stringency and grown for 7d at 30°C: -LT (selecting for co-transformed yeast), -LTHA, -LTHA + 3-AT in 
increasing concentrations, as indicated, and -LTHA + X-α-Gal + 80ng/ml Aureobasidin A (-LTHA + X + 
AbA). A-D 54/2 - 58/1 are the internal numbers of the primary positive hits. 
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5.2.6 Extraction of total RNA and semi-quantitative PCR 

For investigations of mRNA level in human cell lines HEK293E and MCF-7, RNA was 

isolated using the RNeasy Mini kit (Qiagen). For RNA isolation from Drosophila 

melanogaster about 10-20 third instar larvae were homogenized in 600µl RNeasy 

Lysis (RLT) buffer and RNA isolation was performed with the RNeasy Mini kit accord-

ing to manufactures instructions for animal tissue. 600ng of total RNA was reverse 

transcribed with anchored oligo-dT primer using the Transcriptor High Fidelity cDNA 

Synthesis kit (Roche). As a template for transcript amplification in a semi-quantitative 

reverse transcription PCR (sqRT-PCR) in a 25µl reaction, 17.9µl cDNA (diluted 1:10 

with DEPC-H2O) was used with 5µl 5x GoTaq buffer, 0.1µl GoTaq DNA polymerase 

(Promega) and 2mM of a primer pair specific for the transcripts. Primer sequences 

are listed in Table 5.10. PCR products were separated by electrophoresis using a 2% 

(w/v) agarose/TBE gel stained with ethidium bromide and photoimaged with a gel 

documentation system (Vilber Lourmat). Quantifications were performed with Im-

ageJ software (version 1.47, National Institute of Health). 

Table 5.10 Human and Drosophila melanogaster specific primers for sqRT-PCR (for - forward, rev 
- reverse) 

Primer Start (bp) Sequence (5’�3’) 

UBE2E3 for 86 CTCCAGAGCCTGAAGAACAAGAGG 
UBE2E3 rev 230 GGATCAAGGGTTATTTCAGCTAGCTCC 
UBE2E2 for 10 GAGGCACAAAGAGTTGATGACAGTCC 
UBE2E2 rev 114 GGGCTGAACTTGTTCTCTTTCTGGTTC 
UBE2E1 for 6 GGATGACGATTCGAGGGCCAGC 
UBE2E1 rev 146 GCGCTGGTGGAGAGGAGTTTGG 
hUBPY for 2616 GCTTCTGTTCCTAATGGATGGTCTCC 
hUBPY rev 2901 GCAATCCTGTAATGTACATTTACTTGTGGATG 
endog. TDP-43 for 693 TGTTACATTTGCAGATGATCAGATTGCG 
endog. TDP-43 rev cDNA + 29 CCCACCATTCTATACCAACCAACCAC 
HDAC6 for 1085 GGTTCGCCCAGCTAACCCACCT 
HDAC6 rev 1692 GGAACTCTCACGGTGCAGCTCC 
SKAR Ex2 for 389 CCTTCATAAACCCACCCATTGGGACAG 
SKAR Ex 2/3 for 437 CCAAAACCATCCAGGTTCCACAGCAG 
SKAR Ex 4 rev 630 GTGGTGGAGAAAGCCGCCTGAG 
hPBDG for 410 TGCCAGAGAAGAGTGTGGTG 
hPBDG rev 514 TGTTGAGGTTTCCCCGAATA 
dUBPY for 2474 CGGTAACACCTAAGACCTACCAGC 
dUBPY rev 2607 CGAGACGACCTGATCGTCGAAC 
dGAPDH for 786 GATCACGACGTGTTACGGTG 
dGAPDH rev 966 CAGGGGGAATTTGTCCTCC 
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5.3 Cell culture 

5.3.1 Maintenance of cells 

All cell lines were maintained under humidified conditions at 37°C and 5% CO2. Hu-

man embryonic kidney cells (HEK293E, Invitrogen) were cultured in Dulbecco’s 

modified Eagle medium (DMEM) with 10% fetal calf serum (FCS). Human mamma 

carcinoma MCF-7 cells were maintained in DMEM with 10% FCS and 1% Pen/Strep. 

Human neuroblastoma SH-SY5Y cells (ATCC) were grown in DMEM/HAM’s F12 with 

10% FCS.  

5.3.2 Transient transfection of cells with DNA and small interference RNA (siRNA) 

HEK293E cells were transfected at approximately 80% confluence. For transient 

transfection with DNA, FuGENE6 or X-tremeGENE9 (Roche) was used following 

manufacturer’s instructions. For immunofluorescence studies, the ratio of 

DNA:transfection reagent was 1:4.5 diluted in OptiMEM, for all other studies the ratio 

was 1:3. Further analysis of the cells was performed 24 - 72h after transfection. 

Transient silencing of UBE2E enzymes was performed with siGENOME siRNAs 

(Thermo Scientific), and UBPY was silenced with GeneSolution siRNA (Qiagen) or Si-

lencer® Validated siRNAs from Ambion (see Table 5.11). A scrambled siRNA was 

used as control (Qiagen). HEK293E cells were transfected thrice in 72h with 5nM 

siRNA, unless otherwise indicated, using HiPerFect (Qiagen), following manufac-

turer’s instructions. Briefly, for silencing in a 6-well, 100µl OptiMEM, 12µl HiPerFect 

Table 5.11 siRNAs used for transient silencing in HEK293E cells 

siRNA target sequence (5’�3’) Catalogue number Supplier 

UBE2E1_1 GCGAUAACAUCUAUGAAUG D-007740-01 

Thermo Scientific 

UBE2E1_2 GGUGUAUUCUUUCUCGAUA D-007740-02 
UBE2E1_4 GAGAGUAAAGUCAGCAUGA D-007740-04 
UBE2E1_5 GUAUGAGGGUGGUGUAUUC D-007740-05 
UBE2E2_1 UCACCAGACUAUCCGUUUA D-031782-01 
UBE2E2_2 ACAAAGAGUUGAUGACAGU D-031782-02 
UBE2E2_3 GCUAAAUUGUCAACUAGUG D-031782-03 
UBE2E2_4 GAGGUCAACUAUAUUGGGA D-031782-04 
UBE2E3_1 GCAUAGCCACUCAGUAUUU D-008845-01 
UBE2E3_2 GCUAAGUUAUCCACUAGUG D-008845-02 
UBE2E3_3 AUAUGAAGGUGGUGUGUUU D-008845-03 
UBE2E3_4 GGAGCUAGCUGAAAUAACC D-008845-04 
Hs_USP8_1 CAGGGTCAATTCAAATCTACA SI00073017 

Qiagen 
Hs_USP8_2 AAGGCTCGTATTCATGCAGAA SI00073024 
Hs_USP8_3 CAGGTTCAGGCAAGCCATTTA SI00073031 
Hs_USP8_5 GAGGATACAGACGATACCGAA SI03103604 
UBPY UUCUGCAUGAAUACGAGCC 105117 Ambion 
control AllStarts negative control 1027280 Qiagen 
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and siRNA in various concentrations were incubated for 10min at room temperature. 

The transfection mixture was added dropwise to the cells, and 4h after the transfec-

tion the medium was changed. 

5.3.3 Lentiviral transduction of HEK293E 

For stable silencing of UBPY in HEK293E cells, specific MISSION shRNA lentiviral 

transduction particles from Sigma were used (Table 5.12). MISSION® pLKO.1-puro 

non-mammalian shRNA control transduction particles were used as negative control. 

The shRNAs were provided in pLOK.1 vector, coding also for a puromycin resistance. 

For viral transduction, HEK293E cells were grown for 24h in 96-well plates before 

the virus was added (multiplicity of infection MOI of 0.5-2). Hexadimethrine bromide 

(8µg/ml) was used to increase the efficiency of the viral transduction. After 24h the 

virus was removed by changing the medium and additional 24h later, puromycin 

(300ng/ml) was added to the medium to select for transduced cells. The antibiotic 

was changed every third day. The cells were amplified over 1.5 weeks and tested for 

UBPY knockdown by western blot and sqRT-PCR. 

5.3.4 Proteasomal and autophagosomal inhibition 

HEK293E cells were treated for the indicated time points with 10µM MG-132 to in-

hibit proteasomal activity and/or with 20nM bafilomycin A1 (baf) or 5mM 3-

methyladenine (3-MA) to inhibit basal autophagy (all Sigma-Aldrich).  

5.4  Maintenance of Flies 

All Drosophila stocks were maintained on standard cornmeal-yeast agar based fly 

food. The experiments were performed at 25°C. The following lines were obtained 

from the Bloomington Drosophila stock center: w[*]; P{w[+mC]=GAL4-ninaE.GMR}12 

Table 5.12 shRNAs for stable silencing of UBPY 

TRC number Sequence Target 

region 

TRCN0000272433 CCGGTCAAGCAACAGCAGGATTATTCTCGAGAATAATCCTGCTG-
TTGCTTGATTTTTG 

CDS 

TRCN0000272486 CCGGCACTGGAACCTTTCGTTATTACTCGAGTAATAACGAAAGGT-
TCCAGTGTTTTTG 

CDS 

TRCN0000272465 CCGGCTCGAAGAATGCAGGATTATCCTCGAGGATAATCCTG-
CATTCTTCGAGTTTTTG 

CDS 

TRCN0000272467 CCGGCCACAGATTGATCGTACTAAACTCGAGTTTAGTACGAT-
CAATCTGTGGTTTTTG 

CDS 

TRCN0000272469 CCGGGCTGTGTTACTAGCACTATATCTCGAGATATAGTGCTAG-
TAACACAGCTTTTTG 

3’UTR 
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(BL1104, GMR-Gal4 in text), y[1] w[*]; P{w[+mC]=Act5C-GAL4}25FO1/CyO, y[+] 

(BL4414, actin-Gal4 in text), and w[1118] (BL3605, white in text). The RNAi lines 

dUBPY (v107623, KK library), and UbcD2 (v31158), RNF2 (v27465), and RBM45 

(v23851, all GD library) were obtained from the Vienna Drosophila Resource Center 

(VDRC, Austria). The GD library lines are generated by random insertion of the 

RNAi’s, whereas the KK library line contains a site specific RNAi. The random inserted 

UAS:TDP-43-GFP GMR-Gal4 driven transgenic lines #14 (high expression) and #10 

(low expression) were a kind gift from Aaron Voigt, RWTH Aachen. UAS:TDP-43-GFP 

insertions were generated by germline transmission (BestGene) and were described 

before (Voigt et al., 2010). Stable TDP-43 expression in the retina was achieved by 

recombination of the GMR-Gal4 driver with the UAS:TDP-43-GFP#14/#10 insertions. 

5.5 Protein biochemistry 

5.5.1 Preparation of yeast extracts for western blot 

Cultures of Y2HGold expressing either AD-, BD-fused proteins or both were grown 

overnight at 30°C. A culture volume according to an OD600 of 2 were pelleted and re-

suspended in 1ml ice-cold ddH2O. Then 150µl 1.85M NaOH/7,5% β-mercaptoethanol 

was added and incubated on ice for 15min. 150µl 55% (v/v) trichloroacetic acid was 

added to this suspension, incubated on ice for 10min and pelleted at 14000xg for 

10min. Pellet was resuspended in 100µl HU buffer + 15mM DTT and boiled at 95°C 

for 10min. Yeast extracts were analyzed by western blot. 

5.5.2 Preparation of cell lysates for western blot 

HEK293E or MCF-7 cells were lysed in RIPA buffer containing 1x Complete protease 

inhibitors for 30min on ice and pelleted at 14,000xg for 15min at 4°C. The concentra-

tion of total protein was determined with bicinchoninic acid (BCA) protein assay kit 

(Pierce) and 10µg were analyzed by western blot. 

5.5.3 Immunoprecipitation 

HEK293E cells were lysed in CoIP buffer containing 1x Complete protease inhibitors 

(Roche) for 30min on ice. Cell debris was pelleted at 14,000xg and 4°C for 15min and 

750µg of total protein lysate, determined with BCA protein assay kit (Pierce), was 

incubated with EZview™ Red anti-Flag, anti-HA or anti-myc affinity Gel (Sigma) for 3h 

or over night at 4°C. The beads were washed three times with CoIP buffer and pro-

teins were eluted in 2x Laemmli buffer at 95°C. 10µg of total protein lysates or one-

fifth of eluated protein was subjected to western blot analysis. 
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5.5.4 Sequential extraction of HEK293E proteins 

HEK293E cells were lysed in RIPA buffer with 1x Complete protease inhibitors for 

30min on ice and pelleted at 14,000xg for 15min at 4°C. The RIPA-insoluble pellets 

were washed with RIPA buffer and lysed in 8M urea buffer. The total protein concen-

tration of RIPA lysates was determined with BCA protein assay kit (Pierce). The total 

protein concentration of urea lysates was determined with Bradford Protein assay kit 

(Bio-Rad). 10µg of RIPA soluble or 5µg of urea soluble lysate was boiled in 1x Laem-

mli buffer at 95°C for 10min and subjected to western blot analysis. 

5.5.5 Pulldown of total ubiquitinylated proteins 

HEK293E cells were co-transfected with the indicated constructs and 6xHis-ubiquitin 

for 24h or 48h. The cells were harvested by scraping, washed twice with PBS and 

lysed with 8M urea buffer containing 10mM imidazole. The DNA was sheared by 

passing the lysate 20 times through a 23-gauge needle. The cell debris was pelleted at 

14,000xg for 15min at 4°C and the protein concentration was determined with Brad-

ford Protein assay kit (Bio-Rad protein assay). 500 - 1000µg of total protein lysates 

were incubated with Ni-NTA agarose beads (Qiagen) for 4h at room temperature. The 

beads were washed thrice with 8M urea wash buffer containing 20mM imidazole and 

the proteins were eluted in 3x Laemmli buffer with 500mM imidazole at 95°C for 

10min. The total protein and one-fifth of eluates were analyzed by western blotting. 

5.5.6 Pulldown of sequentially extracted ubiquitinylated proteins 

HEK293E cells co-transfected with the indicated cDNAs and 6xHis-ubiquitin were 

lysed under native conditions in NP-40 buffer containing 1x Complete protease in-

hibitors (EDTA-free, Roche) and 10mM imidiazole for 30min on ice and pelleted at 

14,000xg for 15min at 4°C. The total protein concentration of the NP-40 soluble frac-

tion was determined with the BCA protein assay kit (Pierce). The NP-40 insoluble 

pellets were washed twice with NP-40 buffer and lysed in 8M urea buffer. The Brad-

ford protein assay kit (Bio-Rad) was used to determine the protein concentration of 

the urea soluble fraction. The pulldown with Ni-NTA agarose beads (Qiagen) was per-

formed with 300μg of the NP-40 and 150μg of the urea lysates for 4h at 4°C (NP-40 

lysates) or room temperature (urea lysates). The beads were washed thrice with ei-

ther NP-40 buffer or 8M urea wash buffer containing 20mM imidazole. The proteins 

were eluted in 3x Laemmli buffer with 500mM imidazole at 95°C for 10min. The total 

protein or one fifth of eluates was subjected to western blot analysis. 
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5.5.7 Sequential extraction of fly head proteins 

Flies were decapitated and the heads were homogenized in RIPA buffer containing 1x 

Complete protease inhibitors (Roche). The cell debris was pelleted at 14,000xg for 

15min at 4°C to obtain the RIPA soluble lysate. The RIPA-insoluble cell pellets were 

washed twice with RIPA buffer and lysed with 8M urea buffer. An equivalent of one 

fly head (RIPA soluble) and of five fly heads (urea soluble) was loaded per lane in 

western blot analysis. 

5.5.8 Western blot analysis 

Denatured proteins were separated on either 7.5%, 10%, 12.5% or 15% SDS-

polyacrylamide gels (SDS-PAGE) or 4-12% Bis-Tris NuPAGE Mini or Midi gradient 

gels (Invitrogen) and were transfered onto Hybond‑P polyvinylidene difluoride 

membrane (Millipore) or nitrocellulose membrane (GE Healthcare), either by wet or 

semi-dry transfer method. The membranes were blocked in 5% non-fat milk/TBST or 

5% BSA/TBST, incubated with primary antibody in 5% (v/v) Western Blocking Re-

agent (Roche)/0.02% NaN3 in TBST at 4°C overnight. This was followed by incubation 

with the horseradish peroxidise (HRP)-conjugated secondary antibodies for 1h at 

room temperature. The incubation of membranes with the primary HRP-coupled an-

tibodies was performed in 5% non-fat milk/TBST for 1h at room temperature or 

overnight at 4°C. The detection of proteins was performed with the Immobilon West-

ern chemiluminescent HRP substrate (Millipore) on Amersham Hyperfilm™ ECL (GE 

Healthcare). 

5.5.9 Immunofluorescence 

HEK293E or MCF-7 cells were seeded on poly-D-lysine (Sigma) and collagen (Cohe-

sion) coated coverslips and fixed with 4% (w/v) PFA/PBS for 20min, permeabilized 

with 1% Triton-X-100/PBS for 5min and blocked 1h with 10% normal goat serum or 

horse serum. The primary antibody incubation was performed in 1% BSA/PBS for 2h 

at RT or overnight at 4°C. The cells were incubated with secondary Alexa Fluor conju-

gated antibodies in the dark for 2h at room temperature. The nuclei were counter-

stained with Hoechst 33342 (2µg/ml/PBS) for 10min at room temperature and cov-

erslips were mounted in fluorescent mounting medium (Dako) onto microscope 

slides. The cells were analyzed with an ApoTome Imaging system using a 63x objec-

tive and the images were processed with AxioVision 4.8.1 software (Zeiss). 
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Table 5.13 Primary antibodies used for western blot (WB) or immunofluorescence (IF). 

Antibody Clone Species 

Dilution Cataloque 

number Supplier WB IF 

αTubulin B512 mouse 1:10000  T-5168 Sigma 
EEA1 14/EEA1 mouse  1:100 610457 Transduction Labo-

ratories 
eIF3  goat  1:500 sc-16377 Santa Cruz 
Flag M2, affinity 

purified 
mouse  1:500 F1804 Sigma 

Flag-HRP M2 mouse 1:1000 - 
1:30000 

 A8592 Sigma 

Flag  rabbit  1:250 #2368 Cell Signaling 
GAPDH 6C5 mouse 1:50000  H86504M Biodesign Interna-

tional 
GM130 35/GM130 mouse  1:500 610822 BD Transduction 

Laboratories 
HA 3F10 rat 1:10000  11867423001 Roche 
HA-HRP 3F10 rat 1:10000  12013819001 Roche 
HDAC6 H-300 rabbit 1:2000  sc-11420 Santa Cruz 
6xHis  mouse 1:3000  27-4710-01 Amersham 
LAMP1 H4A3 mouse 1:1000  H4A3 Hybridoma Bank of 

University of Iowa 
LC3B  rabbit 1:1000  #2775 Cell Signaling 
Living Colours  rabbit 1:5000  63260 Takara/Clontech 
Living Colours 
dsRed 

 rabbit 1:2000  632496 Takara/Clontech 

myc 9E10 mouse  1:500 11667149001 Sigma 
myc-HRP 9E10 mouse 1:10000  11814150001 Sigma 
SKAR α  rabbit 1:1000  3235 Cell Signaling 
SKAR α/β  rabbit 1:1000  3794S Cell Signaling 
TDP-43  rabbit 1:2000 1:1000 BC001487 ProteinTechGroup 
TDP-43 2E2-D3 mouse 1:2000 1:1000 H00023435 Abnova 
phospho-TDP-
43 
(S409/410) 

1D3 rat 1:10   M. Neumann 

UBE2E1  rabbit 1:2000 1:500 ab36980 Abcam 
UBE2E2  rabbit 1:4000 1:500 ARP43437 Aviva Systems Biol-

ogy 
UBE2E3  mouse 1:2000  MABS17 Millipore 
UBE2E3 7E8 mouse  1:150 - 

500 
TA800082 OriGene 

Ubiquitin 
(mono- & 
poly-) 

Ubi-1 mouse 1:4000  MAB1510 Millipore 

Ubiquitin 
(mono- & 
poly) 

6C1 mouse 1:500  U0508 Sigma 

polyubiquitin FK1 mouse 1:500 1:500 PW8805 BIOMOL 
UBPY  rabbit 1:1000 1:500 A302-929A Bethyl Laboratories 
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Table 5.14 Secondary antibodies used for western blot (WB) or immunofluorescence (IF). 

Antibody Species 

Dilution 

Supplier WB IF 

anti-mouse-HRP donkey 1:15000  Jackson ImmunoResearch 
Laboratories anti-rabbit-HRP donkey 1:7500 - 15000 

anti-rat-HRP donkey 1:5000  
anti-goat-Alexa Fluor 568 donkey  1:2000 Invitrogen 
anti-mouse-Alexa Fluor 488/ 568 goat  1:2000 
anti-rabbit-Alexa-Fluor 488/ 568 goat  1:2000 
anti-rabbit-Alexa Fluor 488 donkey  1:2000 

5.6 Statistical analysis 

The yeast experiments were performed once or twice, as stated in the figure legends. 

Spotting of the transformed yeast onto selective medium plates was done in dubli-

cates, of which one representative spot is shown. Each experiment analysed by west-

ern blot or PCR was performed at least three times with similar results unless other-

wise stated in the figure legends, and images of one representative experiment are 

shown. The quantification of mRNA or protein levels was performed with ImageJ 

software (version 1.47, National Institute of Health). The depicted immunofluores-

cence images show representative cells of at least two independent experiments. For 

the quantification of TDP-43 aggregation upon UBPY co-expression, at least 100 cells 

per condition per experiment were counted. The error bars represent the standard 

deviation of the mean. Images of at least five fly eyes per experiment per genotype 

were taken, though additional fly eyes were monitored. These experiments were re-

peated at least three times. 
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