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Abstract
Service robots have shown an impressive potential in providing assistance and guidance
in various environments, such as supermarkets, shopping malls, homes, airports, and
libraries. Due to the low-cost and contactless way of communication, radio-frequency
identification (RFID) technology provides a solution to overcome the difficulties (e.g.
occlusions) that the traditional line of sight sensors (e.g. cameras and laser range find-
ers) face. In this thesis, we address the applications of using passive ultra high fre-
quency (UHF) RFID as a sensing technology for mobile robots in three fundamental
tasks, namely mapping, path following, and tracking.

An important task in the field of RFID is mapping, which aims at inferring the posi-
tions of RFID tags based on the measurements (i.e. the detections as well as the received
signal strength) received by the RFID reader. The robot, which serves as an intelligent
mobile carrier, is able to localize itself in a known environment based on the existing po-
sitioning techniques, such as laser-based Monte Carlo localization. The mapping process
requires a probabilistic sensor model, which characterizes the likelihood of receiving a
measurement, given the relative pose of the antenna and the tag.

In this thesis, we address the problem of recovering from mapping failures of static
RFID tags and localizing non-static RFID tags which do not move frequently using a par-
ticle filter. The usefulness of negative information (e.g. non-detections) is also examined
in the context of mapping RFID tags. Moreover, we present a novel three dimensional
(3D) sensor model to improve the mapping accuracy of RFID tags. In particular, us-
ing this new sensor model, we are able to localize the 3D position of an RFID tag by
mounting two antennas at different heights on the robot. We additionally utilize negative
information to improve the mapping accuracy, especially for the height estimation in our
stereo antenna configuration.

The model-based localization approach, which works as a dual to the mapping pro-
cess, estimates the pose of the robot based on the sensor model as well as the given
positions of RFID tags. The fingerprinting-based approach was shown to be superior to
the model-based approach, since it is able to better capture the unpredictable radio fre-
quency characteristics in the existing infrastructure. Here, we present a novel approach
that combines RFID fingerprints and odometry information as an input of the motion
control of a mobile robot for the purpose of path following in unknown environments.
More precisely, we apply the teaching and playback scheme to perform this task. During
the teaching stage, the robot is manually steered to move along a desired path. RFID
measurements and the associated motion information are recorded in an online-fashion
as reference data. In the second stage (i.e. playback stage), the robot follows this path
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autonomously by adjusting its pose according to the difference between the current RFID
measurements and the previously recorded reference measurements. Particularly, our ap-
proach needs no prior information about the distribution and positions of the tags, nor
does it require a map of the environment. The proposed approach features a cost-effective
alternative for mobile robot navigation if the robot is equipped with an RFID reader for
inventory in RFID-tagged environments.

The capability of a mobile robot to track dynamic objects is vital for efficiently inter-
acting with its environment. Although a large number of researchers focus on the map-
ping of RFID tags, most of them only assume a static configuration of RFID tags and
too little attention has been paid to dynamic ones. Therefore, we address the problem of
tracking dynamic objects for mobile robots using RFID tags. In contrast to mapping of
RFID tags, which aims at achieving a minimum mapping error, tracking does not only
need a robust tracking performance, but also requires a fast reaction to the movement of
the objects. To achieve this, we combine a two stage dynamic motion model with the
dual particle filter, to capture the dynamic motion of the object and to quickly recover
from failures in tracking. The state estimation from the particle filter is used in a combi-
nation with the VFH+ (Vector Field Histogram), which serves as a local path planner for
obstacle avoidance, to guide the robot towards the target. This is then integrated into a
framework, which allows the robot to search for both static and dynamic tags, follow it,
and maintain the distance between them.
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Kurzfassung
Service-Roboter bergen ein großes Potential bei der Unterstützung, Beratung und Führung
von Kunden oder Personal in verschiedenen Umgebungen wie zum Beispiel Supermärkten,
Einkaufszentren, Wohnungen, Flughäfen und Bibliotheken. Durch die geringen Kosten
und die kontaktlose Kommunikation ist die RFID Technologie in der Lage vorhandene
Herausforderungen traditioneller sichtlinienbasierter Sensoren (z.B. Verdeckung beim
Einsatz von Kameras oder Laser-Entfernungsmessern) zu lösen. In dieser Arbeit beschäftigen
wir uns mit dem Einsatz von passivem Ultrahochfrequenz (UHF) RFID als Sensortech-
nologie für mobile Roboter hinsichtlich drei grundlegender Aufgabenstellungen Kartierung,
Pfadverfolgung und Tracking.

Kartierung nimmt eine wesentliche Rolle im Bereich der Robotik als auch beim Ein-
satz von RFID Sensoren ein. Hierbei ist das Ziel die Positionen von RFID-Tags anhand
von Messungen (die Erfassung der Tags als solche und die Signalstärke) zu schätzen.
Der Roboter, der als intelligenter mobiler Träger dient, ist in der Lage, sich selbst in ein-
er bekannten Umgebung auf Grundlage der bestehenden Positionierungsverfahren, wie
Laser-basierter Monte-Carlo Lokalisierung zurechtzufinden. Der Kartierungsprozess er-
fordert ein probabilistisches Sensormodell, das die Wahrscheinlichkeit beschreibt, ein
Tag an einer gegebenen Position relativ zur RFID-Antenne (ggf. mit einer bestimmten
Signalstärke) zu erkennen.

Zentrale Aspekte dieser Arbeit sind die Regeneration bei fehlerhafter Kartierung statis-
cher RFID-Tags und die Lokalisierung von nicht-statischen RFID-Tags. Auch wird die
Verwendbarkeit negativer Informationen, wie z.B. das Nichterkennen von Transpon-
dern, im Rahmen der RFID Kartierung untersucht. Darüber hinaus schlagen wir ein
neues 3D-Sensormodell vor, welches die Genauigkeit der Kartierung von RFID-Tags
verbessert. Durch die Montage von zwei Antennen auf verschiedenen Höhen des einge-
setzten Roboters, erlaubt es dieses Modell im Besonderen, die 3D Positionen von Tags
zu bestimmen. Dabei nutzen wir zusätzlich negative Informationen um die Genauigkeit
der Kartierung zu erhöhen.

Dank der Eindeutigkeit von RFID-Tags, ist es möglich die Lokalisierung eines mo-
bilen Roboters ohne Mehrdeutigkeit zu bestimmen. Der modellbasierte Ansatz zur Lokalisierung
schätzt die Pose des Roboters auf Basis des Sensormodells und den angegebenen Posi-
tionen der RFID-Tags. Es wurde gezeigt, dass der Fingerprinting-Ansatz dem modell-
basierten Ansatz überlegen ist, da ersterer in der Lage ist, die unvorhersehbaren Funkfre-
quenzeigenschaften in der vorhandenen Infrastruktur zu erfassen. Hierfür präsentieren
wir einen neuen Ansatz, der RFID Fingerprints und Odometrieinformationen für die
Zwecke der Pfadverfolgung in unbekannten Umgebungen kombiniert. Dieser basiert auf
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dem Teaching-and-Playback-Schema. Während der Teaching-Phase wird der Roboter
manuell gelenkt, um ihn entlang eines gewünschten Pfades zu bewegen. RFID-Messungen
und die damit verbundenen Bewegungsinformationen werden als Referenzdaten aufgeze-
ichnet. In der zweiten Phase, der Playback-Phase, folgt der Roboter diesem Pfad au-
tonom. Der vorgeschlagene Ansatz bietet eine kostengünstige Alternative für die mobile
Roboternavigation bei der Bestandsaufnahme in RFID-gekennzeichneten Umgebungen,
wenn der Roboter mit einem RFID-Lesegerät ausgestattet ist.

Die Fähigkeit eines mobilen Roboters dynamische Objekte zu verfolgen ist entschei-
dend für eine effiziente Interaktion mit der Umgebung. Obwohl sich viele Forscher mit
der Kartierung von RFID-Tags befassen, nehmen die meisten eine statische Konfigura-
tion der RFID-Tags an, nur wenige berücksichtigen dabei dynamische RFID-Tags. Wir
wenden uns daher dem Problem der RFID basierten Verfolgung dynamischer Objekte
mit mobilen Robotern zu. Im Gegensatz zur Kartierung von RFID-Tags, ist für die Ver-
folgung nicht nur eine stabile Erkennung notwendig, es ist zudem erforderlich schnell
auf die Bewegung der Objekte reagieren zu können. Um dies zu erreichen, kombinieren
wir ein zweistufiges dynamisches Bewegungsmodell mit einem Dual-Partikelfilter. Die
Zustandsschätzung des Partikelfilters wird in Kombination mit dem VFH+ (Vektorfeld
Histogramm) verwendet, um den Roboter in Richtung des Ziels zu leiten. Hierdurch ist
es dem Roboter möglich nach statischen und dynamischen Tags zu suchen, ihnen zu
folgen und dabei einen gewissen Abstand zu halten.
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Chapter 1

Introduction

1.1 Motivation

Over the past few decades, service robots with the capability of providing assistance and
guidance have been widely developed and applied in many fields, such as shopping assis-
tance, health care, environmental monitoring, and entertainment. During the operation,
the robots have to deal with various types of objects in order to effectively interact with
their environments. The traditional ways of identifying objects with line of sight sensors
(e.g. cameras or range-based sensors) face the problem of occlusions from the environ-
ment and are usually computationally expensive. Radio-frequency identification (RFID)
technology, which exchanges the information between the reader and the tags without
contact, provides a solution to overcome these difficulties.

Recent documents show an increasing application of employing passive UHF RFID
tags in various industrial environments as well as everyday life. The prices of these tags
are very low, for example the cost of one passive tag is between 0.07 $ and 0.15 $ de-
pending on the volume of one’s order. RFID tags can be attached to goods or items
easily and thus further automate the traditional way of object identification. In the field
of robotics, the RFID technology brings both opportunities and challenges. On the one
hand, the mobile robot which carries an on-board RFID reader is able to traverse the
environment and collect RFID measurements autonomously. In this case, the positions
of RFID tags can be inferred by the detections of a mobile robot at different positions.
Moreover, each RFID tag provides a unique ID, which can be used as a landmark for
the robot localization or navigation. On the other hand, RFID does not provide any in-
formation about the position of the tag, i.e. neither distance nor bearing of the tag is
reported by the reader. The reader only gives a positive detection and potentially the sig-
nal strength if the tag is detected. Moreover, the propagation of the radio signal is hard to
predict. There are many factors that have high influence on the signal propagation, such
as materials nearby, occlusions, and interferences from other radio devices. From this
point of view, employing RFID as a sensing technology for mobile robots is challenging.

This thesis addresses three fundamental problems for mobile robots using RFID, namely
mapping, path following, and tracking. A common setup, which is employed in many
industrial environments, is to use a static configuration of RFID readers. In contrast, the
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scenario considered in this thesis aims at exploring the mobility of the mobile robot for
the perception of the environment (i.e. mapping of RFID tags) and improving the auton-
omy as well as the efficiency of the mobile robot to interact with the environment (i.e.
path following and object tracking). For these purposes, we built up a mobile robot plat-
form with the on-board RFID reader based on a commercial robot platform to perceive
the RFID measurements in the environment.

The robot is able to localize itself in a known environment based on a laser-based
Monte Carlo localization approach. Based on the measurements (the detections and the
signal strength) perceived by the RFID reader equipped on the robot, we are able to
infer the positions of the RFID tags. Although RFID-based mapping is a well studied
topic, little attention has been paid to the particle deprivation problem, due to the impact
of many environmental factors on the radio signal propagation. Therefore, this thesis
addresses the problem of recovering from mapping failures of static RFID tags and lo-
calizing non-static RFID tags which do not move frequently. Moreover, we present a
novel 3D sensor model to improve the mapping accuracy and localize RFID tags in 3D
by mounting two RFID antennas at different heights on the robot.

Each RFID tag provides a unique ID, which can serve as the landmark for the robot
localization or navigation. The fingerprinting-based approach achieves superior accuracy
as compared to the model-based approach, since it can capture the unpredicted features
of the existing RFID-equipped infrastructures. Therefore, we present a novel approach
that combines RFID fingerprints and odometry information into the motion control of a
mobile robot for the purpose of path following in unknown environments. Particularly,
our approach needs no prior information about the distribution of the tags nor does it
require a map of the environment. Our approach features a cost-effective alternative for
the navigation of mobile robots in RFID-equipped infrastructures.

Previous research mainly focused on a static configuration of RFID tags, whereas the
tags can be dynamic in some applications. For example, in the human robot interaction
scenario, the tags are affixed to human beings for the purpose of identification or tracking.
Therefore, we address the problem of tracking dynamic objects for mobile robots using
RFID tags. In contrast to mapping of RFID tags, which aims at achieving a minimum
mapping error, tracking does not only need a satisfactory and robust pose estimation, but
also requires a fast reaction to the movements of the objects.

1.2 Contributions
In this thesis, we exploit the applications of the UHF RFID using mobile robots, espe-
cially in the field of mapping and path following as well as tracking. More precisely, we
highlight the contributions of this thesis as follows:

• We present the adaptive particle filter, which is able to recover from mapping fail-
ures of static RFID tags and localize non-static RFID tags. Furthermore, although
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negative information is usually considered to be less informative than positive in-
formation, we exploit the usefulness of negative information for RFID-based map-
ping. We show that a careful examination of the negative information improves
the mapping accuracy and helps to recover from mapping failures, and may re-
localize non-static RFID tags. Additionally, we compare the particle filter-based
approach to our previous grid-based Markov localization approach. This work has
been published at the 13th International Conference on Intelligent Autonomous
Systems (Liu and Zell (2014)).

• We present a novel three-dimensional (3D) probabilistic sensor model of RFID an-
tennas for mapping passive UHF RFID tags using mobile robots. The proposed 3D
sensor model characterizes both detection likelihood and received signal strength.
Compared to 2D-sensor model based approaches, the 3D sensor model gains a
higher mapping accuracy for 2D position estimation. Especially, with this sensor
model, we are able to localize tags in 3D by integrating the measurements from
a pair of RFID antennas mounted at different heights on the robot. Furthermore,
by integrating negative information (i.e. non-detections), the 3D mapping accu-
racy can be improved. Additionally, we utilize the KLD-sampling to reduce the
number of particles for our specific application, so that our algorithm can be per-
formed online. This work has been published at the 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems (Liu et al. (2013)).

• We present a novel approach incorporating a combination of UHF RFID and odom-
etry information into the motion control of a mobile robot for the purpose of path
following in unknown environments. Our method utilizes RFID measurements as
landmarks and enables the mobile robot to autonomously follow a path that was
previously recorded in a manual training phase. In particular, we apply the teach-
ing and playback scheme to perform this task, which has already been successfully
used in different navigation systems with various sensors. Concretely, the robot is
manually controlled to move along a desired path during the teaching stage. At
the same time, RFID measurements and the associated motion information are
recorded as reference data. In the second stage (i.e. playback stage), the robot
follows this path autonomously. We compare the current RFID measurement to
the previously recorded reference data to estimate the robot’s relative position to
the desired path. As a result, motion control commands are generated by fusing
the position and the reference motion data to steer the robot. Our approach needs
no prior information about the RFID sensor models, the distribution and the po-
sitions of the tags nor does it require a map of the environment. Particularly, it is
adaptive to different reader power levels and various tag densities, which have a
major impact on the RFID sensing performance. This work resulted in two con-
ference publications: one was presented at the 19th International Conference on
Software, Telecommunications and Computer Networks (Liu et al. (2011)), and
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another one was presented at the 2012 IEEE/RSJ International Conference on In-
telligent Robots and Systems (Liu et al. (2012)).

• We address the problem of tracking dynamic objects with a mobile agent using
the signal strength from the tags attached to objects. Our solution estimates the
position of an RFID tag under a Bayesian framework. More precisely, we com-
bine a two stage dynamic motion model with a dual particle filter to capture the
dynamic motion of the object and quickly recover from failures in tracking. This
work resulted in a publication at the 2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems (Liu et al. (2014)).

Overall, we present probabilistic approaches for localizing RFID tags in 2D and 3D as
well as an approach for path following of mobile robots in RFID-equipped environments.
Moreover, we introduce an approach that utilizes the signal strength for perceiving and
tracking dynamic objects equipped with RFID tags. All of our proposed approaches are
validated with a service robot in different RFID-tagged environments.

1.3 Outline
The outline of this thesis is described as follows:

• In Chapter 2, we introduce some background knowledge about RFID technology
and present the models of the robot and the approaches for state estimation as well
as the way to learn the RFID sensor models.

• In Chapter 3, we present the Bayesian framework for mapping RFID tags . In order
to recover from mapping failures and localize non-static RFID tags, we propose
an adaptive particle filter. Furthermore, the usefulness of negative information is
examined in this chapter.

• In Chapter 4, we present the applications of 3D sensor models for the RFID-based
mapping, which consist of 3D mapping of RFID tags by our stereo antennas setup
and the improvement of 2D mapping accuracy using 3D sensor models.

• Chapter 5 introduces a novel approach that combines RFID fingerprints and odom-
etry information of a mobile robot for the purpose of path following in unknown
environments. The proposed approach requires a teaching stage to record mea-
surements along a desired path. These measurements, which serve as reference
landmarks, are then used to guide the robot to follow a previously recorded path.

• For a service robot, the ability to track dynamic objects is essential to effectively
provide assistance in its environment. In Chapter 6, we address the problem of
tracking dynamic objects with a mobile agent using the signal strength from the
RFID tags attached to objects.
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• We finally summarize this thesis and show several possible extensions of this thesis
in Chapter 7.

1.4 Experimental Platform

1.4.1 Experimental Environment

To conduct our experiments, we setup different indoor environments in our department
(i.e. Department of Cognitive Systems) located at Sand 1, Tübingen. This department
is part of the Wilhelm-Schickard-Institute for Computer Science of the University of
Tübingen. For the localization of the robot, we built up 2D occupancy grid maps of the
indoor environments (see Figure 1.1) through Vasco1 which was already implemented
in Carmen (Montemerlo et al. (2003)). The color of the cell in Figure 1.1 gives the
probability that the cell is occupied by obstacles. For example, black means the cell is
occupied, white means it is free, and blue means the occupancy of this cell is unknown.
The artifacts of the maps have been cleaned by hand. More precisely, our experimental
environments consist of the hallways (see Figure 1.1a) on the second floor of our in-
stitute as well as the library (see Figure 1.1b) on the first floor of our institute. These
environments were also used for part of our AmbiSense project (Kooperation autonomer
mobiler Systeme unter Berücksichtigung ambienter Sensoren), which was funded by the
Baden-Württemberg Stiftung. We briefly describe our experimental environments as fol-
lows:

• Hallway Environment: The hallway environment mainly consists of a computer
museum, several corridors, and a robot lab. A shelf with a size of 1× 2 m2 and
made of metal is placed in the middle of the robot lab. On the shelf, we placed
approximately 400 empty product packages labeled with RFID tags (Alien Tech-
nology Squiggle, ISO/IEC 18000-6C) at different heights. We also installed 71
permanent RFID tags on the furniture and the walls in the robot lab with differ-
ent heights and 47 permanent tags in the corridor adjacent to the robot lab with
the same height to the antenna (i.e. 0.8 m). This environment was also used by
Schneegans et al. (2007), Vorst and Zell (2008), Schairer et al. (2008), Vorst et al.
(2008b), Vorst et al. (2009), Rohweder et al. (2009), Vorst and Zell (2009), Vorst
and Zell (2010b), Vorst et al. (2011), Vorst and Zell (2010a), Vorst et al. (2011),
and Vorst (2011) for evaluating RFID-based applications using mobile robots.

• Library Environment: The library environment consists of wooden shelves, cor-
ridors, tables, and chairs. In the library, we labeled approx. 7000 books with both
UHF and HF (High Frequency) RFID tags. These books are distributed at different

1http://carmen.sourceforge.net/doc/
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80 m

50 m

(a) The hallway environment

18 m

8 m

(b) The library environment

Figure 1.1: The occupancy maps of the environments used for our experiments.

(a) The artificial supermarket (b) The real library

Figure 1.2: Snapshots of the environments used for our experiments.
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omni-directional camera

Laser range finder

On-board computer

Differential drive and sonar sensors

Touchscreen and Microphone

robot head

RFID antennas

RFID reader

Figure 1.3: The experimental platform used in this thesis and the main sensors equipped
on the robot.

heights (from 0.1 m to 2.3 m) on different shelves. This environment was origi-
nally set up for our third AmbiSense Workshop in November 20112. The library
is considered to be a densely tagged environment and a good scenario of testing
RFID-related applications. For the experiments in Chapter 5 and Chapter 6, the
robot has to travel through one narrow corridor with a width of only 1.1 m in the
library.

In this thesis, some experiments are performed only in part of the environments listed
above (e.g. mapping in Chapter 3 and Chapter 4) and some experiments are validated in
both environments (e.g. path following in Chapter 5 and tracking in Chapter 6). Addi-
tionally, the setups of the antennas may differ from various applications. These variances
are mentioned in the experimental parts of different chapters.

1.4.2 Robot Platform

We utilize a Scitos G5 service robot from MetraLabs (see Figure 1.3) as our experimental
platform. The robot is powered by two lead-acid batteries, which can last for about 12
hours of normal usage at full charge. The main hardware of the robot is described as
follows:

2http://www.wsi.uni-tuebingen.de/forschung/forschungsprojekt-ambisense/veranstaltungen/workshop-
2011.html
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• Embedded Computer System: The robot uses a Mini-ITX motherboard with
an Intel CoreTM 2 Duo 2.16 GHz and 2 GB RAM. The computer is installed with
Linux operating systems (Fedora with kernel 2.6.32.10-90 and Ubuntu 12.04). The
robot is also equipped with a bluetooth dongle for the remote control.

• Motion Module: The motion of the robot is achieved by a differential drive. The
robot is able to move at a maximum speed of 1.1 m/s and provide a payload of up
to 50 kg. The position encoders embedded in the motors detect the movements of
the robot and provide basic measurements to the odometry.

• RFID System: The robot is equipped with a Gen. 2 UHF RFID reader (Imp-
inj Speedway R1000) as well as two circularly polarized RFID antennas (Laird
Technologies SS8688P). The reader features a maximum reading range up to 10
meters. Additionally, the reader is able to measure the received signal strength of
the detected tag. The RFID system works as a mono-static mode, which means
the same antenna is used for transmitting and receiving the signals. We are able to
specify the reader transmitting power level (from 20 dBm to 30 dBm) through the
API (application programming interface) provided by the RFID driver.

• Laser Range Finder: The robot is equipped with a laser range finder (SICK S300
with an angular resolution of 0.5◦ in 270◦ field of view) for measuring the distance
from the objects. The laser range finder is essential for some high level modules
of the robot, e.g. localization and navigation as well as obstacle avoidance.

In addition, the robot is equipped with various sensors, which are not used in this the-
sis, such as sonar sensors for obstacle avoidance, a touchscreen for human robot inter-
face, and a head with movable eyes for human robot interaction, a bumper for emergency
stop, a wireless LAN (IEEE 802.11a/b/g) for communication, and an omni-directional
camera for object detection.

The work conducted throughout this thesis is based on Carmen (Carnegie Mellon
Robot Navigation Toolkit)3, which provides the basic navigation, mapping, path plan-
ning, and obstacle avoidance functions for the robot. Recently we have been exporting
our software into ROS (Robot Operating System)4.

1.5 Notation
Table 1.1 summarizes the important terms and symbols used throughout this thesis. Bold-
face fonts are used for vectors in this thesis. Table 1.2 summarizes the abbreviations used
throughout this thesis.

3http://carmen.sourceforge.net/
4http://www.ros.org/
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Table 1.1: Some notations used in this thesis.

Symbol Meaning

t current time index
v, ω the translational and the rotational velocity of the robot
W , R the world coordinate frame and the robot coordinate frame
A, L the number of antennas equipped on the robot and the number of

RFID tags in the environment
Ai, L j the coordinate frame of antenna i and the coordinate frame of tag

j
l j the position of tag j
Cr

a the transformation between antenna a and the robot
x the state vector. In the 2D localization of a mobile robot, x =

(x,y,θ)
z the measurement perceived by the sensor on the robot
u control input of the robot
p(x) probability density function
p(z|x) the sensor model or the observation model
N the number of particles in the particle set
b baseline of our the stereo antennas setup
N (µ,σ2) Normal distribution with mean µ and standard deviation of σ
σs, σ f slow motion and fast motion parameters for tracking RFID tags
α , β the number of particles drawn from the dual particle filter and the

fast motion parameter respectively
sim(gt , f j) the similarity between the current fingerprint gt and the reference

fingerprint ft

et,θ index difference between the left (i(0)t ) and the right (i(1)t ) antenna
et,d the weighted average over the RSS differences between the cur-

rent fingerprint and the K most similar reference fingerprints
dt(gt , f jk) difference of the received signal strength between the current fin-

gerprint gt and the reference fingerprint f jk
Ft RFID fingerprint with the odometry information, i.e. Ft = (ft ,mt)

ft RFID measurement at time t
mt odometry measurement at time t, i.e. mt = (vt ,ωt)

i(0)t , i(1)t the antenna index of the left and the right antenna in the reference
fingerprints respectively

Km, K f parameters used for controlling the path following approach
Ko, Kr PID parameters for controlling the robot to follow the desired path
K the parameter used for smoothing the signal strength for path fol-

lowing
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Table 1.2: Some abbreviations used in this thesis.

Abbreviation Meaning

AMCL Adaptive Monte Carlo localization
COS Cosine similarity
EKF Extended Kalman filter
EM Electromagnetic
ESS Effective sample size
GPS Global positioning system
GSM Global system for mobile communications
HF High frequency

KDE Kernel density estimation
KLD Kullback-Leibler distance
KNN K-nearest neighbors

LF Low frequency
MCL Monte Carlo localization

PF Particle filter
RF Radio frequency

RFID Radio-frequency identification
RSS Received signal strength

RTLS Real-time location system
SIR Sequential importance resampling
SIS Sequential importance sampling

SMC Sequential Monte Carlo
UHF Ultra high frequency
UKF Unscented Kalman filter
VFH Vector field histogram

WKNN Weighted k-nearest neighbors
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Chapter 2

Foundations
In this chapter, we introduce some foundations of RFID technology and probabilistic
approaches for state estimation as well as modeling of the UHF RFID. The rest of this
chapter is organized as follows. The background of the RFID technology and the models
of the robot are described in Section 2.1 and Section 2.2, respectively. Afterwards, sev-
eral state estimation approaches are introduced in Section 2.3. This is followed by the
semi-autonomous approach used to generate the sensor model in Section 2.4. Finally, we
summarize the chapter in Section 2.5.

2.1 Long Range Passive UHF RFID

2.1.1 Introduction
Radio-frequency identification (RFID) uses electromagnetic fields to automatically iden-
tify the tags affixed to objects without line of sight. There are two main components of an
RFID system, namely interrogator or reader and transponder or tag. The reader commu-
nicates and exchanges information with the RFID tags via radio waves. The tag, which
consists of an antenna and an integrated circuit, carries the identification information to
be transmitted. The biggest advantage of RFID over bar code technology is that the tag
does not need to be placed within line of sight of the interrogator. RFID technology now
is used in many industrial applications, such as inventory management, asset tracking,
and access control. For example, RFID tags can be placed on vehicles and provide access
control services in parking lots without stopping the vehicles.

Particularly, long range passive ultra-high frequency (UHF) RFID system offers the
identification of objects over a long reading range (e.g. 10 meters) without any additional
power supply of the tag. Owing to their cheap price, these tags can be affixed to items
or assets to automate the inventory process in retail stores, warehouses, and libraries. In
this case, a person carrying the RFID device is able to identify items from a far distance,
which avoids the traditional way of manual counting of assets and eliminates the error
in inventory records. The labor cost of the inventory can be further reduced by using a
mobile robot. The positions of the tags can be determined if the mobile robot is able to
solve the self-localization problem, which is a well developed topic in robotics. More-
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Table 2.1: The operating frequencies and the reading ranges of passive UHF RFID.

Frequency range Typical frequency Reading range Tag Price

Low Frequency (LF) 125-134kHz <0.5 m 1 $
High Frequency (HF) 13.56 MHz <1.0 m 0.5 $

Ultra High Frequency (UHF) 865-928 MHz 1-10 m 0.15 $

over, each RFID tag carries a unique identifier. This makes RFID technology crucial in
robotics, since it trivially solves the self-localization problem of the robot.

2.1.2 RFID Systems
Depending on their power sources, RFID tags can be categorized into passive and active
tags. Active tags need a battery for the power supply and thus have a long reading range
(up to 100 meters or more), while passive RFID tags do not need any battery and have
to rely on electromagnetic waves transmitted from the reader to energize themselves and
thus have a short reading range (up to 10 meters). Active tags are mainly used for tracking
valuable items in real-time location systems (RTLS) and monitoring the environment,
whereas passive tags are frequently used for inventorying assets using mobile readers or
fixed readers in the environment. Due to their large size, short tag life, and high price,
active tags are not suitable for tagging objects in everyday application. This is why we
prefer passive RFID tags in this thesis.

There are many factors that have impact on the reading range of passive UHF RFID:
the transmitting power of the reader, the frequency of reader, and the interference from
the environment. With regard to the frequency of the reader, a comparison of passive
RFID technologies is listed in Table 2.1. The LF or HF communication is based on mag-
netic induction or near field coupling. LF works at a low frequency band (e.g. 134 kHz)
and thus has a short reading range. However, LF tags are not very sensitive to the in-
terference from the environment and can be used in challenging environments including
water or metal objects. Therefore, these tags can be implanted into animals for tracking
or used in factories for data collection.

HF tags typically operate at 13.56 MHz and have a longer reading range than LH
tags, whereas they are more sensitive to the environmental interference than LF tags. HF
tags are usually used for payment, luggage tracking at the airport, ticketing, and asset
tracking.

UHF RFID tags provide an even longer reading range (up to 10 meters) and are
cheaper than LF or HF tags. UHF RFID tags obtain energy from the electromagnetic
waves propagated by the antenna connected to the RFID reader. UHF RFID has a higher
data transmission rate than LF and HF RFID. These features of UHF RFID make it
suitable for many industrial applications, such as contactless payment, inventory man-
agement, access control or goods tracking. The performance of UHF RFID tags rapidly
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Figure 2.1: The communication mechanism of long range passive UHF RFID system.

deteriorates in proximity to metal, water or occlusions. The frequency of UHF RFID
tags depends on the regulations and restrictions of the region. For example, Europe op-
erates at 865-868 MHz and the USA typically operates at 902-928 MHz. In the UHF
band, the most popular standard used currently is EPC C1G2, which is the abbreviation
for EPCglobal UHF Class 1 Generation 2. EPCglobal (see EPCglobal (2013)), which
was formed in 2003, mainly aims at establishing the standards as well as specifications
for the worldwide adoption of passive RFID in the supply chain management. In this
thesis, we focus on the long range passive UHF RFID, which is based on the EPC C1G2
standard. More details of the RFID system can be found at Weis (2007), Finkenzeller
(2003), and Want (2006).

2.1.3 Long Range Passive RFID

The principle of UHF RFID operation is shown in Figure 2.1. In general, UHF RFID
systems use radio waves for transmitting energy and communication. In contrast to the
induction based near-field RFID, long range passive UHF RFID, which is also called
far-field RFID, relies on backscatter modulation.

More precisely, the RFID antenna propagates an electromagnetic field generated from
the reader, and only a small amount of energy reaches the tag’s antenna, due to free
space attenuation. The incident power absorbed by the tag from the electromagnetic
wave is used for two purposes: one part of the energy is used to provide the power
for the circuitry inside the tag; the rest of energy is reflected. The information (i.e.
identity) of the tag is encoded inside the signal backscattered by the tag through a way
of modulation, i.e. varying the amplitude or the phase of the signal by changing the
impedance inside the tag. The reader is designed to capture this signal and decode it.
Besides the identity of the tag, the new generation of RFID readers is able to provide
the signal strength, which indicates the strength of a tag’s reply. For example, some
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Figure 2.2: Forward and backward link of a passive UHF RFID system.

readers provide signal strength in dBm (Impinj Speedway) and some readers report the
signal strength unitless (ThingMagic Mercury5e). Figure 2.2 shows a typical forward
and backward link of an RFID system. In this example, the reader emits electromagnetic
waves with a power of 30 dBm (1 W). The antenna additionally contributes a gain of 6
dBi. The propagation of electromagnetic wave is similar to Radar system. Therefore the
Friis equation commonly used in the Radar system can be applied to trace the power of
the RFID system. Theoretically, the relationship of the power at the transmitted antenna
Pt and received antenna Pr can be simply described as follows (see Levis (2001)):

Pr = GrGt

(
λ

4πR

)2

Pt , (2.1)

where λ is the wavelength of the radio signal and R is the distance between two antennas.
Gr and Gt are the antenna gains of the receiver and transmitter respectively. It is impor-
tant to note that this equation only holds under certain conditions (see Balanis (2005) for
more detail). It assumes an ideal signal propagation in unobstructed environments, which
is not suitable for real-world environments, where multi-path, distortion, reflection, and
deflection exist. Moreover, this equation only holds in the far-field area (i.e. R� λ ): it
is not applicable if the receiver is too close to the transmitter (i.e. R < λ ). Although in
practice the situation will be much more complex, the Friis equation gives a first insight
into the relationship between the receiver power and the transmitter power.

Quite different from active tags, passive tags do not send the signal to the reader ac-
tively, since they have to rely on the electromagnetic field propagated by the reader for
power supply during reader interrogation periods. The incident power received by the tag
is very small based on the inverse square law as shown by the Friis equation in Equation
(2.1), i.e. the power received at the tag is inversely proportional to the square of distance
from the reader to the tag. In order to successfully read a passive UHF RFID tag, two
requirements must be satisfied: the tag must receive sufficient energy from the reader to
power up the circuitry inside and the reader must be sensitive enough to hear the tag’s
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response. The detail about the backscatter modulation is described in Lehpamer (2007)
and Karmakar (2011).

EPC Class 1 Generation 2 makes a major step towards the standardization in the field
of UHF RFID and defines the protocols about the physical and logical requirements
of the tag and reader in an RFID system. The new EPC Gen 2 standard brings many
new features compared to the old protocols. For example, dense reader mode allows
multiple readers to work together in one area without synchronization, which avoids the
interference problem that was faced in the old protocols. During the scanning of the
environment, the RFID reader has to differentiate between the tags when more than one
tag are within its range. With the help of singulation, which is based on the Q algorithm
(a variant of the Slotted Aloha algorithm), the reader is able to identify a specific tag
among a number of tags without jamming each other (see Maguire and Pappu (2009)).
Through this way, a typical reader is able to achieve a maximum reading rate of 1200
unique tags with 96 bits EPC numbers per second.

Moreover, EPC Gen 2 has a new feature called sessions, which allows multiple readers
to simultaneously communicate with one tag without interference. Each tag has four
sessions. The reader and the associated tag operate in only one of the four sessions
during an inventory round. The concept of sessions allows a tag to keep tracking of its
inventoried status based on the corresponding inventoried flag maintained by the tag and
eliminates interference.

Another technique used to prevent RFID readers from interfering with each other is
frequency hopping. During the operation, the frequency of the reader is chosen randomly
(or in a predefined sequence) according to the frequency hopping table defined by the
regulatory region. This strategy reduces the chance of possible interference (i.e. two
readers attempt to interrogate the same tag at the same frequency). In non-frequency-
hopping regions, this field is ignored. For example, the operating frequency of UHF
RFID reader is between 902 and 928 MHz in the USA and thus the actual frequency of
the RFID reader during the operation jumps randomly between these bands.

Passive UHF tags can be interrogated from a long reading range up to several meters.
The reading range can be different, depending on the frequency of the reader, the power
of the reader, the impact of the environment, and the antenna and tag characteristics,
which are detailed as follows:

• Reader Power: According to the Friis equation, the incident power obtained by
the receiver is proportional to the power emitted from the transmitter. The ideal
reading range of the RFID is proportional to the square root of the reader power.
A higher reader power gives a longer reading range. The maximum transmitted
power of the reader is restricted by the hardware design as well as the regulation
of the region. For example, for the Impinj RFID reader used in this thesis, the
maximum reader transmitted power is 30 dBm (1 W). Additionally, we are able
to adjust the reader power from 20 dBm (100 mW) to 30 dBm through the API
provided by the driver.
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Figure 2.3: Examples of passive UHF RFID tags. Top (from left to right): OMNI-ID
large tag, OMNI-ID small tag, and Alien Technology Squiggle tag. Bottom (from left to
right): Impinj Jumping Jack tag, Impinj propeller tag, and NXP pulse tag.

• Reader Frequency: The Friis equation also predicts that the incident power ab-
sorbed by the tag is proportional to the square of the wavelength (i.e. inverse of
the frequency). As mentioned before, the frequency of the reader depends on the
regulation of the region. As a result, for a given transmitted power, different re-
gions may have different RFID reading ranges: for example, the readers used in
Germany (865.6-867.6 MHz) have longer reading ranges than the ones used in the
USA (902-928 MHz).

• Impact from the Environment: The radio signal from the RFID system may
be distorted or interfered by the materials nearby. Particularly, water and metal
objects can greatly affect the readability of a tag. Metal reflects the radio waves
and water absorbs the radio waves and thus prevents the tag from receiving energy
from the reader and results in a low reading rate of the tag. Moreover, multi-path
problems frequently happen in indoor environments, due to reflections of the radio
signal by walls, grounds, and ceilings. Signals received at the antenna come from
a variety of paths due to the reflections of the environment. In this case, the overall
signal received at the antenna is a sum of the signals over all paths. Sometimes
these signals will interfere with each other and result in the signal fading.

• Reader Antenna and Tag Characteristics: Besides the 2D relative displacement
of the tag to the antenna, the tag’s orientation has a small influence on its read-
ability. Moreover, depending on the manufacture of the RFID tags, tags may have
slightly different characteristics.
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2.1.4 Passive RFID Reader and Tag

For a specific application, it is important to purchase the right antenna. In general, there
are two types of antennas: linearly polarized antenna (dipole antennas) and circularly po-
larized antenna, e.g. patch, helix, and crossed dipole antenna. The propagations of linear
and circular antennas are different. Linear polarization (or plane polarization) propagates
the electromagnetic wave along a given plane vertically or horizontally. Hence, the an-
tenna and the tag must be placed with a fixed configuration in order to achieve a good
performance of the reading rate. This kind of propagation gives the best performance
when the tag orientation is known.

Circularly polarized antennas propagate electromagnetic waves along two planes in
a circular spiral pattern. Due to the continuous emission of radio waves from the an-
tenna, the electromagnetic waves are able to cover the tag with any orientation in the
environment. Therefore, circular polarization is the best choice if the orientation of the
tag is unknown or not fixed. With the same antenna gain, a linearly polarized antenna has
longer reading range than circularly polarized antenna, since the energy (i.e. electromag-
netic wave) is propagated in two separated planes for the circularly polarized antenna.

In practice, in order to achieve the best readability of the tag, one has to take into ac-
count the distribution of the tags in the environment. For example, if all tags are located
on the same plane and the same orientation, a linearly polarized antenna is advantageous
over a circular one. On the other hand, if one is not able to fix the tags’ poses, most
likely one needs to use a circularly polarized antenna. In our RFID-equipped scenario,
tags are placed at different heights of the shelves and the robot has to detect a tag at
different views to obtain a grain-fined position estimation of the tag. Therefore, we use a
circularly polarized reader antenna throughout this thesis, e.g. the SS8688P from Laird
Technologies. For the tag antenna, we choose the dipole antennas (Alien Technology
Squiggle), which are commonly used in the related literature of robotics. Several exam-
ples of passive UHF RFID tags are shown in Figure 2.3.

An overview and a comparison of the performance between different passive UHF
RFID tags are given in Chawla et al. (2013).

2.2 Modeling of the Robot
In this section, we introduce some basic knowledge about the coordinate frames of the
robot system as well as its motion models. These concepts will be used for the mapping,
path following, and tracking in the later chapters.

2.2.1 Introduction

There are many sensors on our service robot, for example a camera, an RFID reader,
sonar sensors, a laser range finder and odometry. Among these sensors, three important
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Figure 2.4: The coordinate frames used in this thesis.

sensors are involved in this thesis, i.e. the odometry, the RFID reader, and the laser
range finder. Localization plays a vital role in building up a fully autonomous mobile
robot. The odometry achieves the estimation of the robot’s position relative to a starting
location by means of dead reckoning, i.e. by integrating velocity measurements over
time. It accumulates errors and therefore has to rely on other sensors (i.e. cameras or
laser range finders) to eliminate the error. A widely used approach is to utilize visual
features from lasers or cameras for the localization of the robot in the environment. In
this case, the robot has to acquire a spatial representation of the environment (e.g. grid-
based or topological map). Many techniques use probabilistic approaches to handle the
uncertainty during the localization, for example particle filters and Kalman filters. In this
thesis, we utilize GMapping (Grisetti et al. (2005)) to learn the occupancy grid maps of
the environments from raw laser range data and odometry measurements. Afterwards,
the robot applies adaptive Monte Carlo localization, which takes the map, laser scans, and
odometry measurements as inputs for its localization. For an overview of the mapping for
mobile robots, we refer the reader to Thrun (2003), Thrun et al. (2005), Roewekaemper
et al. (2012), and Sprunk et al. (2014).

Before introducing the model of the robot and its sensors, it is important to describe the
coordinate system used for our mobile robot (shown in Figure 2.4). The world coordinate
frame (W ) serves as the reference frame of the environment. R is the coordinate frame
of the robot, whose origin is the center of the robot and locates in the ground plane of
the world coordinate frame. The positive x-axis of the robot coordinate frame extends
to the heading of the robot; the z-axis is parallel to the z-axis of the world frame; the
y-axis obeys the right-hand rule. Ai is the coordinate frame of antenna i and L j is the
coordinate frame of tag j. The origins of Ai and L j are the center of the antenna and
the tag respectively. The x-axis of Ai is perpendicular to the antenna plane and points
towards the direction of the maximum antenna gain; the y-axis locates in the antenna
plane and is parallel to the ground plane; the direction of the z-axis is vertically upward.
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2.2 Modeling of the Robot

Here we assume that the tag is rectangular. The z-axis of the tag lies inside the rectangle
and is parallel to the longer side of the rectangle; x-axis points towards the direction of
the maximum antenna gain; the y-axis again follows the right-hand rule.

To simplify the notation, we denote the position of the robot as x, the pose of the
antenna i as ai and the location of tag j as l j. Since reader antennas are fixed on the robot
throughout this thesis, the transformation matrix between the antenna and the robot (i.e.
CR

a ) is known. For the mapping of RFID tags in Chapter 3 and Chapter 4, the robot
is steered by manual control and the position of the robot is provided by a laser-based
Monte Carlo localization approach. In contrast to the mapping, for the path following in
Chapter 5 and the tracking in Chapter 6, the movement of mobile robot is controlled by
the signal strength and the pose estimation of the tag.

2.2.2 Robot Motion

Since our robot only moves in two dimensions, the pose of the robot at time t is denoted
as xt = (xt ,yt ,θt). xt and yt are the coordinates of the robot with respect to the world
coordinate frame and θt is the global heading of the robot. The movement of the robot is
considered to be a rigid-body transformation in 2D space. Given the true translation4dt
and rotation 4θt of the robot at time t, the kinematic model of the robot is described as
(see Roy and Thrun (1999)):

xt+1 = xt +4dt sin(θ +4θt/2) (2.2)
yt+1 = yt +4dt cos(θ +4θt/2) (2.3)
θt+1 = θt +4θt (2.4)

The true movement of the robot is typically provided by the odometry. However, odom-
etry accumulates errors mainly from two sources: systematic error (unequal design of
two wheels, limited encoder sampling rate, and installing error) and non-systematic er-
ror (traveling on uneven terrain and wheel-slippage) (Borenstein et al. (1996)). To deal
with the uncertainty of the odometry, the true movement of the robot is usually modeled
by adding Gaussian noise with zero mean to the odometry measurement. It is important
to note that the equation above only holds if the turning velocity during the given time
is constant and the robot always moves along the direction it faces. The error can be
ignored if the turning velocity is very small. Eliazar and Parr (2004) proposed a better
model which takes into account various speed turns and does not depend on the starting
and ending orientations of the robot.

For a differential drive robot used in this thesis, two independent wheels equipped
with their own motors are placed on both sides of the robot body. An additional wheel
is usually installed to balance the robot. Shaft encoders are able to provide information
about the motion of the shafts, which can be converted into the speed of the wheels or
the distance the wheels travel. The kinematic model of a differential drive robot is shown
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Figure 2.5: The kinematics of a differential drive robot.

in Figure 2.5. The point around which the robot rotates is known as the instantaneous
center of curvature (ICC) (see Dudek and Jenkin (2000) for more information). This
point has nearly zero velocity during a short period of time. The movement of the robot
is achieved by varying the velocity of two motors. If both wheels rotate with the same
speed and in the same direction, the robot moves straight. Otherwise, depending on the
velocities of two wheels, the robot follows respective motion.

Since the rotational velocities ω of the left and right wheels around ICC are the same,
we can write the following equation:

vl = ω(R−L/2) (2.5)
vr = ω(R+L/2) (2.6)

where L represents the distance between two wheels, which is a known parameter; vl and
vr are the velocities of left and right wheel, respectively, and R is the distance from the
ICC to the center of the robot. At any time interval4t, the distance4d and orientation
4θ that the robot performs can be expressed as:

4θ = ω4 t =
vr− vl

L
4 t (2.7)

4d = Rω4 t =
L
2

vr + vl

vr− vl

vr− vl

L
4 t =

vr + vl

2
4 t (2.8)

This means the movement of the robot can be fully determined by the velocities of two
wheels. Sometimes, we prefer to transform the action space. Let v= vr+vl

2 and ω = vr−vl
L .
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Here v is regarded as an action of translation executed by the robot and ω means rotation.
Therefore, the velocities of two wheels can be represented as functions of v and ω:

vr =
2v+ωL

2
(2.9)

vl =
2v−ωL

2
(2.10)

The low level velocities (i.e. vr and vl) are then used to control the motors inside two
wheels with two independent PID controllers. Precisely, the control is achieved by a
feedback from the motor encoder to the power of the motor.

2.3 State Estimation
State estimation from the noisy sensor measurements and motion data is a key step to-
wards implementing a reliable and real-time control system in the field of mobile robots.
However, the state of the system is usually not directly observable. In the context of
mobile robots, state estimation addresses the problem of inferring the state of the world
(i.e. position of the robot, or the positions of the objects in its environment) based on the
actions performed by the robot and the measurements perceived by the sensors on the
robot. In this thesis, we want to estimate the position of the tag and the pose of the robot
along a predefined path.

The robot has to rely on its sensors and other sources to acquire the information about
the state. Due to sensor limitations or the influence of the environment, the measure-
ments from the sensors are usually corrupted by noise, which introduces a large amount
of uncertainty to the state estimation. Probabilistic state estimation algorithms deal with
the uncertainty in robot perception and action and compute the belief distribution over
all possible states. In the rest of this section, we introduce the recursively probabilistic
framework which is able to efficiently and incrementally estimate the state of the world
by integrating the actions and the sensor measurements during the operation of the robot.
We also describe three popular implementations of this framework, namely Kalman fil-
ters, histogram filters, and particle filters. Particularly, we describe the details of particle
filters in Section 2.3.4, which are used in this thesis, due to their popularity, efficiency,
and applicability in robotics.

2.3.1 Bayesian Framework
Recursive Bayesian estimation is a general probabilistic framework for recursively es-
timating the probability density function over a state, given the past measurements re-
ported by the sensor and the actions performed by the robot. Formally, we want to
estimate the state of a dynamic system x1:t at discrete time steps 1 : t, given the actions
u1:t executed by the robot and the measurements z1:t received by the sensor. We denote
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xt-1 xt xt+1
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Figure 2.6: The dynamic Bayesian framework under the Markov assumption.

the posterior probability density function (belief) to be estimated as:

be f (xt) = p(xt |z1:t ,u1:t) (2.11)

For example, in the context of 2D robot localization, xt is the position and the heading
of the robot, zt is the measurement from the laser range finder and ut is the odometry
information (i.e. velocity of the robot). The derivation of the Bayesian framework used
in this thesis is based on the assumption that the system follows a Markov model, i.e. the
state is complete. This means that the current state xt only depends on the value on the
previous state xt−1; the states before t−1 do not have any influence to the current state.
Similarly, the observations at different time steps are independent, i.e. the observation at
time t only depends on the state xt . Since the state is not directly observable, the system
is considered to be a hidden Markov model, which is the simplest case of a dynamic
Bayesian network (Friedman et al. (1998)). Figure 2.6 is the graphical representation of
a Bayesian network under the Markov assumption. Applying the Bayes rule, Equation
(2.11) can be factorized into:

p(xt |z1:t ,u1:t) =
p(zt |xt ,u1:t ,z1:t−1)p(xt |u1:t ,z1:t−1)

p(zt |ut ,z1:t−1)
(2.12)

= η p(zt |xt ,u1:t ,z1:t−1)p(xt |u1:t ,z1:t−1), (2.13)

where η = 1/p(zt |ut ,z1:t−1) is constant given the state of xt . The Markov assumption as-
sumes that the future measurements or actions are independent of the past measurements
or actions given the current state, which implies that:

p(zt |xt ,u1:t ,z1:t−1) = p(zt |xt ,ut) (2.14)

Therefore, Equation (2.13) can be simplified as:

p(xt |z1:t ,u1:t) = η p(zt |xt ,ut)p(xt |u1:t ,z1:t−1), (2.15)
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By applying the theorem of total probability to the rightmost part of the Equation (2.15),
we obtain:

p(xt |z1:t ,u1:t) = η p(zt |xt ,ut)
∫

p(xt |xt−1,u1:t ,z1:t−1)p(xt−1|z1:t−1,u1:t)dxt−1. (2.16)

Again we use the Markov assumption to simplify p(xt |xt−1,u1:t ,z1:t−1) as:

p(xt |xt−1,u1:t ,z1:t−1) = p(xt |xt−1,ut) (2.17)

Moreover, we notice that ut can be safely removed from the conditional variables in
p(xt−1|z1:t−1,u1:t), since the future action ut does not give any information to the current
state estimation xt−1. Finally, we obtain the recursive version of Bayesian estimation:

p(xt |z1:t ,u1:t) = η p(zt |xt ,ut)
∫

p(xt |xt−1,ut)p(xt−1|z1:t−1,u1:t−1)dxt−1. (2.18)

In general, the Bayesian framework computes the posterior probability density func-
tion of the state xt given the measurements z1:t and the actions u1:t up to time t. Two
conditional densities are essential to implement a Bayesian framework: the state transi-
tion probability p(xt |xt−1,ut), which is also called motion model, and the measurement
probability p(zt |xt ,ut), which is also known as sensor model or perception model. The
later sections in this chapter will give a detailed description about the modeling of these
density functions in the field of RFID.

In practice, in order to achieve a robust approximation of the target distribution, the
continuous state space has to be represented in an efficient way. We introduce some
popular representations of the Bayesian filter in the following sections.

2.3.2 Kalman Filters
Kalman filtering, which is named after Rudolf E. Kalman (Kalman (1960)), addresses
the problem of recursively estimating the state of a linear dynamical system with nor-
mal distributions. For a good tutorial of Kalman filters, the reader is advised to follow
Welch and Bishop (1995). The Kalman filter is considered to be one of the simplest im-
plementation of the Bayesian framework. It has been successfully used in a wide range
of applications, particularly in control, localization, and navigation of autonomous vehi-
cles. Kalman filters are built on the assumption that all error terms and measurements
are normally distributed. More precisely, the normal distribution is represented as a mul-
tivariate Gaussian with a covariance. A drawback of Kalman filters is that the derivation
of the equation is based on the linear difference equation, i.e. the state transition and
the observation model must be linear. In practice, the system can be very complex and
non-linear, which limits the application of basic Kalman filters.

To deal with the non-linear systems, several extensions of the basic Kalman filter have
been developed, such as the extended Kalman filter (EKF) and the unscented Kalman
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filter (UKF). The EKF linearizes the state transition and the observation model using the
first-order Taylor series expansion. The performance of the EKF is especially poor if the
state transition and the observation model are highly non-linear, since the linearization
of the nonlinear system is achieved by propagating Gaussian random variables analyti-
cally. To solve this problem, the UKF uses a deterministic sampling technique (unscented
transform) to choose a minimum set of sample points to represent the state distribution
(i.e. mean and covariance) (Wan and Van der Merwe (2000) and Julier and Uhlmann
(1997)). These points are then propagated through the true non-linear function. As com-
pared to the EKF, the UKF captures the posterior state distribution to the third order
Taylor series expansion, while the computational complexity is same as that of the EKF.
Although these extensions are sufficient to deal with nonlinearities in the system, the
nature of Gaussian representation confines these filters to the applications where the pos-
terior probability can be approximated as a Gaussian. This drawback is addressed by the
non-Gaussian filters, such as histogram filters introduced in Section 2.3.3 and particle
filters described in Section 2.3.4.

2.3.3 Histogram Filters

Histogram filters, which are also called grid-based Markov approaches, decompose the
state space into fine-grained and grid-based regions. The posterior probability in this case
is represented by a histogram. This approach has been widely used in robot localization
(see Russell and Norvig (2003) and Burgard et al. (1997)). Rather than representing
the belief with the Gaussian as followed in the Kalman filter, histogram filters maintain
a probability distribution over all possible states. This representation is able to repre-
sent complex, arbitrary, non-Gaussian, and multi-modal distributions. This approach is
shown to have a good accuracy if the discretization of the states is reasonably high. The
drawback is that we have to maintain a huge number of grid cells, which requires a high
memory consumption. Moreover, updating the states of all grid cells is computation-
ally expensive. Thus, this approach is not efficient in many real-time applications. To
overcome this difficulty, some researchers proposed the selective updating, which only
updates the likely cells (Fox et al. (1999)) and the tree-based representation, which is
able to change the resolution of the grid dynamically (Burgard et al. (1998)). In our
early research (Liu et al. (2013) and Rohweder et al. (2009)), we also used a grid-based
representation for mapping RFID tags.

2.3.4 Particle Filters

Particle filters (Pitt and Shephard (1999) and Doucet et al. (2000)), which are also known
as Sequential Monte Carlo (SMC) approaches, represent the probability density function
with a finite number of random particles or samples (Arulampalam et al. (2002)). As a
non-parametric implementation of Bayesian framework, the particle filter approximates
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the distribution with a collection of samples and makes no assumption about the distribu-
tion of the density function, therefore it can represent a much wider range of distributions
than the parametric approaches, such as Gaussian filters.

Particularly, we represent the belief by a weighted set of particles St = {xi
t ,w

i
t}, i =

1, ..,N, where N is the number of particles. Each particle consists of the state hypothesis
xi

t and the associated weight wi
t , which represents the importance of that particle. The

sum of the weights has to satisfy that

N

∑
i=1

wi
t = 1 (2.19)

The target posterior distribution to be estimated can be approximated as:

p(xt |z1:t ,u1:t)≈
N

∑
i=1

wi
tδ

(
xt−xi

t
)

(2.20)

where δ (xt −xi
t) is the Dirac delta function centered at xi

t . The basic version of the par-
ticle filter is called sequential importance sampling (SIS). One important theory behind
SIS is the importance sampling. Instead of generating particles according to the target
distribution directly, the importance sampling generates particles from a different distri-
bution, which is called proposal distribution. This is because in practice it is usually very
hard to draw samples directly from the distribution we want to estimate, while it is much
easier to sample according to the proposal distribution. To compensate for the mismatch
between the target and proposal distributions, the particles have to be weighted by the
perception model given the measurement received by the sensors on the robot. To sum-
marize, the key idea of SIS is to draw particles according to the proposal distribution and
weight them, so that they can correctly approximate the posterior probability at the next
time step.

The algorithm is shown in Algorithm 1. SIS recursively executes the prediction and
the update in the following ways:

1. As shown in Line 3 in Algorithm 1, the prediction step is used to integrate the
action information into the Bayesian framework. In particular, a new state hypoth-
esis xi

t is generated based on the current state xi
t−1 and the control input ut . To

implement this step, one has to construct the transitional probability p(xt |xt−1,ut).
It is obvious that the proposal distribution q(t) is:

q(t) = p(xt |xt−1,ut)p(xt−1|z1:t−1,u1:t−1) (2.21)

2. After an action performed by the robot, a new measurement zt is perceived by the
sensor on the robot. The correction step is executed to incorporate a new measure-
ment into the Bayesian framework, as shown in Line 4 in Algorithm 1. More pre-
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cisely, the importance weight wi
t is updated according to the sensor model p(zt |xi

t)
given the measurement zt .

3. The weights of the particles are normalized to ensure that the sum of the weights
over the entire sample space is one:

wi
t =

wi
t

∑N
i=1 wi

t
(2.22)

Algorithm 1: Sequential Importance Sampling
Input: previous state: St−1 = {xi

t−1,w
i
t−1}1≤i≤N , control input: ut , measurement:

zt
Output: new set of particles: St
St ← φ ,η ← 01

for i=1 to N do2

xi
t ∼ p(xt |xi

t−1,ut), //draw particle according to the motion model3

wi
t ← p(zt |xi

t), //update the weight according to the sensor model4

St = St +{xi
t ,w

i
t},5

η ← η +wi
t6

end7

//normalize St ,8

for i=0 to N do9

wi
t =

wi
t

η10

end11

return St12

The way to build up p(xt |xt−1,ut) and p(zt |xt) is application specific. In the con-
text of robot localization, which cares about the position of the robot in an environment,
p(xt |xt−1,ut) is modeled as a combination of the odometry and the error models to deal
with the uncertainty (i.e. zero-centered Gaussian distributions). The sensor model can be
different depending on the way how the likelihood of the current measurement is com-
puted. Fox et al. (1999) proposed a beam-based proximity model, which computes the
density of a measurement from a laser scanner by integrating the densities of individual
beams given the pose of the robot. In the case of RFID-based applications addressed in
this thesis, both models (i.e. motion model and sensor model) are straightforward and
will be described in the later chapters.

2.3.5 Resampling
The sequential importance sampling (SIS) introduces a phenomenon called particle de-
generacy. Most of the particles have small weights close to zero, only a few particles
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have high weights. Since the particles with small weights have no or little contribution
in the estimation of the posterior, more particles are required to get a good posterior
estimation, which needs more computational resources.

An approach to avoid this problem is resampling. In resampling, the particles with
small weights are replaced by the ones with higher weights. The resampling is typically
performed in a probabilistic way. Precisely, the particles are drawn with probabilities
proportional to their weights. After this step, the weights of all particles are set to 1/N.
This finally leads to the sequential importance resampling (SIR), which is also referred
to as the plain particle filter. The SIR is same as SIS, but with an additional resampling
step. It forces the particles to be set to the areas with high posterior probability and thus
focuses on the regions of high interest.

The resampling introduces a problem called particle impoverishment. The particles
with high importance weights are selected many times, therefore the diversity of the
particles is reduced. In the worst case, all particles might converge into a single particle
which leads to the case that the entire distribution is represented by a single particle.
Obviously, this violates the original idea of particle filters which aims at estimating the
posterior probability density function with a set of distinct samples. In practice, the
resampling should not be executed very frequently. It is necessary to find a criterion
when resampling should be performed. On the one hand, if one resamples too often, the
particle set may lose its diversity. On the other hand, if one resamples infrequently, we
might have the degeneracy problem, since too many particles may be wasted in the low
probability regions as mentioned before. A typical approach to decide if the resampling
is necessary is to check the variance of the weights of the particles. A good measurement
of this is the effective sample size (ESS), which is proposed by Liu (1996):

Ness =
1

∑N
i=1

(
wi

t
)2 (2.23)

Ness measures how well the particle set approximates the posterior. The worse the ap-
proximation is, the larger is the variance of the weights, hence a smaller Ness and more
degeneracy. The effective sample size is a useful indicator to determine whether resam-
pling is required or not. As suggested in Doucet et al. (2000), the resampling should be
executed, if Ness drops below a threshold, e.g. N/2.

In the literature, three resampling algorithms have been widely used, which are sys-
tematic resampling, residual resampling (or remainder resampling), and multinomial re-
sampling. We use residual resampling throughout this thesis. The choice of the resam-
pling approaches is based on the comparison of different resampling approaches as given
in Douc and Cappe (2005).

Another problem that the particle filter brings is particle deprivation. After resampling,
there are no samples around the true state. This might be due to the reason that the sample
size is too small to cover all possible regions of the state or the motion model is poor
to place the particles in the right positions. Solutions to this problem include adding
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random particles into the particle set, based on the latest measurements (Lenser and
Veloso (2000)), the adaptive particle filter (Gutmann and Fox (2002)), and the mixture
MCL (Thrun et al. (2000)).

2.4 Modeling of the Characteristics of the UHF RFID
The design of the probabilistic sensor model p(z|x) which features the likelihood of
receiving a measurement z given the state x of the system plays an important role in
Bayesian state estimation as described in Section 2.3.1. In this section, we survey the
related work centered on the modeling of RFID and describe an approach to learn the
sensor model. The RFID measurement gives two sources of information z = {d,s}:
a binary value d which indicates if the tag is detected or not; and the received signal
strength s in case the tag is detected. The state x is the position of the tag we want to
estimate, which can be either 2D or 3D. A proper design of the sensor model will give a
better estimation and prevent it from diverging. For the path following in Chapter 5, an
explicit sensor model is not required.

2.4.1 Related Work
Researchers have developed many techniques to model RFID from different perspectives.
In this section, we briefly summarize these approaches based on various criteria. The
related work presented here provides a survey of the related techniques used to model
passive UHF RFID, but also covers some aspects of active ones.

The most important criterion to distinguish these models is the model variables. De-
pending on the RFID readers, the model can characterize the detection likelihood or
received signal strength or both. Since the early RFID readers did not provide any sig-
nal strength information, only detection likelihood is considered into the sensor model
(Hähnel et al. (2004), Alippi et al. (2006), Liu et al. (2006), Vorst and Zell (2008), and
Vorst et al. (2008b)). The new generation of RFID readers does provide signal strength
measurement of a detected tag, therefore some researchers integrate the signal strength
into the sensor model to gain a more accurate representation of the sensor model (Hodges
et al. (2007), Milella et al. (2008), Joho et al. (2009), Deyle et al. (2009), Liu et al.
(2011), and Liu et al. (2013)).

Sensor-centric models (Hähnel et al. (2004), Vorst and Zell (2008), Joho et al. (2009),
Deyle et al. (2009), and Liu et al. (2013)) only consider the characteristics of the tags
in the antenna frame, i.e. the likelihood of a measurement given the displacement of
the tag with respect to the antenna. However, due to the influence of the environment
(see Section 2.1.4), the radio signal propagation highly depends on the location of the
tag in a global environment. Therefore, many researchers focus on location-dependent
representations (i.e. snapshots or fingerprints) of the sensor model (Schneegans et al.
(2007), Vorst et al. (2008b), Liu et al. (2011), and Liu et al. (2012)). Both approaches
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have their own advantages and disadvantages. The location-dependent approaches are
able to capture the environmental factors that sensor-centric models are not able to cover,
such as the materials the tags are attached to, the orientations of the tags relative to the
antenna, or the obstacles that reflect or absorb electromagnetic waves. But location-
dependent approaches require a time-consuming process of data recording and are also
computationally expensive due to the comparison of these measurements. Therefore, for
mapping or tracking of RFID tags, we prefer to use a sensor-centric model as detailed in
Chapter 3, Chapter 4, and Chapter 6, while for the path following task in Chapter 5, we
choose the location-dependent representation (i.e. fingerprints).

Another criterion to classify the approach of modeling RFID is the dimensionality.
Some researchers used a 1D sensor model, which gives the likelihood of a measurement
given the distance (Hightower et al. (2000), Ramadurai and Sichitiu (2003), Kloos et al.
(2006), Whitehouse et al. (2006), and Schmid et al. (2011)) or the bearing to the tag (Kim
et al. (2007), Zhang et al. (2007), Milella et al. (2009), Deyle et al. (2009), and Germa
et al. (2010)). By integrating the measurements from multiple antennas, one is able to
infer the 2D or 3D locations of the RFID tags. Other researchers have focused on a 2D
sensor model which characterizes the x and y displacement of the tag with respect to the
antenna (Kantor and Singh (2002), Hähnel et al. (2004), Ferris et al. (2006), Vorst and
Zell (2008), Deyle et al. (2008b), Milella et al. (2008), and Joho et al. (2009)). 3D sensor
models additionally consider the heights of RFID tags to better characterize the behavior
of radio signal propagation and thus are able to improve the mapping accuracy of RFID
tags as well as the localization accuracy of the robot (Mallinson et al. (2006), Hodges
et al. (2007), Gerold (2007), and Liu et al. (2013)). Some researchers also consider the
configurations of the reader as the parameters of the models, i.e. power level (Alippi et al.
(2006), Deyle et al. (2008a), Chawla et al. (2010), and Lee et al. (2013)) or attenuation
(Ota et al. (2008), Alghamdi and van Schyndel (2012), and Alghamdi et al. (2013)).

The sensor models can be notably different, depending on the way of deriving them.
Some models in the literature are designed through the theoretical analysis of the signal
propagation (Deyle et al. (2008b) and Mallinson et al. (2006)), while some researchers,
including us, aim at empirically building up the model from the measurements collected
through the environment (Hähnel et al. (2004), Joho et al. (2009), and Vorst and Zell
(2008)). Typically, the derivation of the theoretical model is based on the theory of
Friis equation, as described in Section 2.1.3. Some techniques that heuristically combine
both approaches are also investigated in the literature (Milella et al. (2008) and Ota et al.
(2008)). The advantage of the theoretical model is the mathematical representation of the
sensor model, which can be easily transplanted into other systems without much revision.
Moreover, only a small number of parameters are needed to represent the theoretical
model, therefore less memory is required as compared to the empirical model. However,
the propagation of the radio signal is highly influenced by many environmental factors
and it is difficult to consider all aspects into a simple theoretical model. Thus, empirical
models are much more efficient to capture these features in practice. Yet a large amount
of prior training data is required to build up the empirical model.
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Moreover, the model can be represented either deterministically or probabilistically.
One example of a deterministic model is a proximity model, which represents the pres-
ence of an object in the close region to the antenna. This region is typically represented
by a combination of arced regions (Mehmood et al. (2008), Raoui et al. (2009), and
Germa et al. (2010)). Here we prefer a probabilistic sensor model (Hähnel et al. (2004),
Milella et al. (2008), Vorst and Zell (2008), Joho et al. (2009), and Liu et al. (2013)) due
to the noisy nature of RFID, as stated in Section 2.1.3.

2.4.2 Sensor Model

The sensor model is essential for the mapping or tracking of RFID tags. As concluded
in Section 2.1.3, the most relevant parameter of the sensor model is the displacement of
the tag in the antenna frame. Formally, we want to know the likelihood of receiving a
measurement z at the relative position of the tag x in the antenna coordinate frame. Early
RFID readers only provide a binary variable d which indicates if the tag is detected or
not. This results in the so called tag detection sensor model.

p(z|x) = p(d|x)︸ ︷︷ ︸
detection likelihood

(2.24)

The tag detection likelihood p(d|x) is approximated as the ratio of positive detections
(n+) to total read attempts, i.e. a sum of positive detections and negative detections (n−),

p(d|x) = n+

n++n−
(2.25)

Since the new generation of RFID readers also provides the signal strength information,
it is straightforward to incorporate both sources of information (i.e. the detection and the
signal strength) into the sensor model, which leads to the combined sensor model. The
additional treatment of the signal strength gives a significant improvement of mapping
and localization accuracy as shown by Joho et al. (2009). To be precise, in the combined
sensor model, the likelihood of a measurement is formalized as:

p(z|x) = p(d|x)︸ ︷︷ ︸
detection

p(s|d,x)︸ ︷︷ ︸
RSS

(2.26)

We further assume that the signal strength distribution is Gaussian, with a mean µx
and a standard deviation σx:

s∼N (µx,σx). (2.27)

Therefore, the likelihood of receiving a signal strength s given the relative tag pose x in
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the antenna coordinate frame is computed as:

p(s|d,x) = 1√
2πσx

exp
(
−(s−µx)

2

2σ2
x

)
. (2.28)

An alternative to the Gaussian-based approach is the histogram-based approach (Ladd
et al. (2005)), which is also commonly used for modeling the signal strength in the re-
lated literature. Precisely, in the case of the histogram-based approach, the distribution
of the signal strength is represented by normalizing the histogram intensity of the radio
signal in the training data. The advantage of the histogram-based approach is the capa-
bility of modeling the non-Gaussian features of the radio signal due to various impacts
from the environment. But the Gaussian models seem to provide the same accuracy
as the histogram-based approach (see Ladd et al. (2005) and Haeberlen et al. (2004)).
Moreover, the Gaussian-based models have the following advantages. First, the memory
needed for storing a Gaussian-based model is much less in contrast to the histogram-
based model. We only need two parameters to represent the Gaussian-based model,
while the number of parameters required for storing a histogram is equal to the num-
ber of the entire signal strength values. Second, building up a histogram-based model
requires a large amount of training data, while fitting a Gaussian only requires a small
number of samples.

2.4.3 Semi-autonomously Learning of the Sensor Model

In order to generate the perception model (i.e. sensor model), some researchers used
supervised approaches to record the measurements by varying the relative pose of the
antenna and the tag. For example, Hähnel et al. (2004) rotated the robot in front of a tag
affixed to a box. By repeatedly doing this at various distances to the tag and counting
the reading rate at discrete grids, they obtained a grid-based representation of the sensor
model.

The disadvantage of the supervised approach is that the recording phase takes a lot of
time if only one tag is involved in the experiment. Moreover, this approach is based on
the assumption that all tags have the same characteristic and the data is usually recorded
under a rather controlled environment (i.e. without occlusions and other tags around)
which is certainly not the case in practice, due to many influencing factors from the
environment.

We utilized the semi-autonomous approach proposed by Vorst and Zell (2008) to learn
the sensor model from empirical measurements. The idea behind this approach is to
utilize the fact that the mobile robot can be localized by a rather accurate localization
mechanism, for example laser-based Monte Carlo algorithm, and thus it can explore
the environment and meanwhile collect the RFID measurements. This approach has
been extended by Joho et al. (2009) in a fully unsupervised fashion. To build up the
sensor model, a list of reference tags, whose positions are known, must be installed in the
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environment beforehand. The sensor model, therefore, is learned by means of averaging
the characteristics of tags across the entire database. Note that, in order to achieve a good
position estimation in the mapping stage, the arrangement of the reference tags should
be similar to the target scenario.

More precisely, the robot has to collect the measurements by traversing the environ-
ment either autonomously or manually in an exploration stage. During this stage, the
RFID detections and the positions of the robot as well as the odometry data are stamped
and recorded. Particularly, the position of the robot is estimated by a laser-based Monte
Carlo localization algorithm. Based on the recorded measurements, an off-line stage is
performed to generate the sensor model following the steps described below:

• Data Preprocessing: At each time step, the relative positions of the reference tags
in the antenna coordinate frame are computed, given the global pose of the robot
and the positions of the tags as well as the transformations between the antennas
and robot. In this way, each tag produces a sample, which consists of the position x
in the antenna coordinate frame and a measurement z = {d,s}, which tells whether
or not the tag is detected (i.e. d = 1 if the tag is detected, otherwise d = 0) along
with its signal strength s. Let us denote the maximum reading range of the RFID
reader to be D. We further constrain the dimensions of our sensor model to be
[-2:D][-D/2:D/2] for x and y respectively. The samples whose positions are out
of this range are ignored. The x-coordinates are allowed to be negative, since the
antenna sometimes is able to detect the tags behind it. The choice of the y range is
due to the symmetrical nature of the sensor model around the x-axis.

• Model Generation: We use these raw samples to compute the conditional prob-
ability density function p(z|x) of perceiving a measurement z given the relative
position of the tag and antenna. This function is used as a representation of the
sensor model and applied to the correction step of the particle filter for mapping
and tracking of RFID tags. Throughout this thesis, we used a grid-based represen-
tation of the sensor model. The entire space of the model is discretized into two
dimensional grids. For each grid (x,y), we count the positive detections n+

(x,y) and
the negative detections n−

(x,y) and thus the detection likelihood is modeled as:

p(d|(x,y)) =
n+
(x,y)

n+
(x,y)+n−

(x,y)
(2.29)

Similarly, we compute the statistics of the signal strength for each grid (x,y), which
is represented by a Gaussian with mean µ(x,y) and standard deviation σ(x,y).

• Model Storage: For each grid cell, we pre-compute the likelihood of receiving
a positive detection with all possible signal strength values according to Equation
(2.28) and store them as a look-up table. In this case, the memory required for
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Figure 2.7: (a) Histograms of the signal strength under different power levels; (b) His-
tograms of the signal strength at different distances. Note the histograms visualized here
are normalized.

storing the model is proportional to the band of the signal strength and the grid
size used for discretization. The grid size has to be chosen carefully: a large grid
size may not be able to describe the details of the probability density function,
while a too small grid size may lead to the overfitting problem, since small number
of samples are not enough to give a good estimation of the probability density
function in a given grid.

2.4.4 Experiments

We used the approach described in Section 2.4.3 to evaluate the reader characteristics
under various configurations. The goal here is to obtain the sensor model for the purposes
of mapping and tracking RFID tags based on the empirical measurements collected by
the robot. The data was collected with our Scitos G5 service robot as shown in Section
1.4.2. We equipped the robot with two antennas at a height of 0.8 m and at angles of
±45◦ towards the forward moving direction of the robot.

To establish the sensor model, we placed 47 UHF RFID (Alien Technology Squiggle)
tags at the height of the antennas with known positions on the walls of the corridor,
which is adjacent to the robot lab (see Section 1.4.1) with a traversable area of approx.
90 m2. In order to evaluate the influence of the environmental factors, we also placed
tags on a bottle of water and on a metal box. The robot was manually steered at different
trajectories with a maximum forward velocity of 0.3 m/s. The frequency of the reader
was set to 2 Hz. The robot traveled approx. 2 km and 9 log files were recorded at the
same time using the full reader power configuration (30 dBm). Each log file consists of
at least 600 RFID measurements and the true positions of the robot. We also recorded
three log files with the middle power level (i.e. 27 dBm) and three with the low power
level (i.e. 22 dBm) to evaluate the model variances under the influence of different power
levels.
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Figure 2.8: Detection likelihood under different power levels.
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Figure 2.9: Mean signal strength under different power levels.
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Figure 2.10: Likelihood of receiving a measurement with a specific signal strength.

Detection Characteristics with Different Power Levels

To understand the tag detection characteristics under the impact of different reader power
levels, we first compared the tag detection model and the mean signal strength with
respect to different reader power levels. Only Alien Technology Squiggle tags placed
on the walls were used to generate the sensor model in this series of experiments. The
grid size of the sensor model was set to 0.1 m. The distributions of the signal strength
over various power scales are visualized in Figure 2.7a. As one can see in Figure 2.7a,
with a higher reader power level, the reader is able to provide a wider range of the signal
strength (see [-72 dBm:-38 dBm] for the high power level and [-68 dBm:-38 dBm] for the
low power level), since the tag requires a minimum power to energize its circuitry (see
Section 2.1.3), which leads to a change of the signal strength distribution in accordance
with the changes of the reader power. The distributions of the signal strength at different
distances are visualized in Figure 2.7b. One can infer that the distribution of the signal
strength can be fitted with a Gaussian very well. Moreover, the signal strength with
a large distance is smaller than the one with a small distance. For example, the mean
signal strength at 4 meters is about -62 dBm, as compared to -57 dBm at 2 meters.

The detection likelihood and the mean signal strength with reference to different reader
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(c) OMNI-ID small

Figure 2.11: Detection likelihood of different types of RFID tags.
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Figure 2.12: Mean signal strength of different types of RFID tags.

power levels are visualized in Figure 2.8 and Figure 2.9, respectively. As shown in
Figure 2.8, the detection range with a high power level is larger than the one with a
low power level. Additionally, one can notice that the propagation of the radio wave
is highly directional, since the detection mainly happens in the positive x-axis. The
reader sometimes is able to detect the tag beyond 6 meters at the full reader power level.
Detections in the negative x-axis, i.e. behind the antenna, happen rarely. Moreover, the
detection region does not follow a strict confined shape: there is a transitional region from
high detection probability to low detection probability. Combining the signal strength
model (i.e. mean signal strength as shown in Figure 2.9 and the standard deviation which
is not shown here) and the tag detection model (see Figure 2.8), we are able to compute
the combined sensor model, as shown in Figure 2.10, which visualizes the likelihood
of detecting a tag with a given signal strength. As can be seen in Figure 2.10, a higher
signal strength provides a strong belief about the position of the tag, while a lower signal
strength introduces uncertainty about the position of the tag.
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(b) Tag attached to a water bottle
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(c) Tag attached to a metal box

Figure 2.13: Detection likelihood under the influence of different materials.

Detection Characteristics of Different Types of Tags

Different types of tags may have various characteristics. In order to show this, we gen-
erated sensor models of another three types of RFID tags, namely OMNI-ID large tag,
OMNI-ID small tag, and Impinj Jumping Jack tag. These models are generated with the
full reader power level, as shown in Figure 2.11 (detection likelihood) and Figure 2.12
(mean signal strength). As shown in Figure 2.11 and Figure 2.12, the characteristics of
different types of tags can be drastically different. OMNI-ID small tags have the shortest
reading range, and OMNI-ID large tags have the largest reading range. Impinj Jumping
Jack tags have a smaller reading range as compared to Alien Technology Squiggle tags
(see Figure 2.8c) and the OMNI-ID large tags, while they provide a larger reading range
than OMNI-ID small tags. The statistics of the signal strength are also different as can
be seen in Figure 2.12. The OMNI-ID large tags seem to be able to provide a higher
signal strength value than other types of RFID tags, while the OMNI-ID small tags give
a relatively lower signal strength value. Evaluating the behavior of different RFID tags
is helpful in achieving good mapping results, as shown in Chawla et al. (2013). We
usually choose the tags that have larger reading range, since this tends to give more tag
detections, which will lead to better inventory performance and mapping results.

Detection Characteristics of Tags Affixed to Different Objects

Up to now, all of the RFID sensor models are generated in a relatively ideal or controlled
environment (i.e. the tags are affixed to walls without any interference of the material
nearby). It is reasonable to apply this sensor model in controlled infrastructures. How-
ever, in practice, the mobile robot has to deal with the tags affixed to any kind of objects.
For example, metal shelves, which are commonly used for many industrial environments
due to the low price and mobility, may have a high influence on the readability and the
signal strength of RFID tags. Many products, which contain water also challenge the
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Figure 2.14: Mean signal strength under the influence of different materials.

readability of the tags. To show the variance of the sensor models, we fixed the tags to
two different objects, namely a bottle of water and a metal box. The resulting tag de-
tection model and the mean signal strength are shown in Figure 2.13 and Figure 2.14,
respectively. One can see the deviation of these sensor models is quite significant. The
reading ranges in both cases become smaller, while the signal strength is quite different:
the average signal strength of the tag affixed to a water bottle gets lower due to the ab-
sorptions of the water, while the signal strength in the case of metal box becomes higher
due to the reflections of the metal.

Unfortunately, the literature related to the mapping of UHF RFID tags paid very little
attention to the problems of the model variances. Most of the experiments in the related
work were conducted in controlled environments. This is one reason why the traditional
particle filters have the problem of mapping failures under uncontrolled environments,
which is addressed in the next chapter. Obviously, one could think of designing a sensor
model for individual RFID tags, since each tag provides a unique identifier; however, the
huge effort involved in this process prevents its usage in extensive applications.

Memory Storage and Time Consumption

The time used to generate the sensor model and the memory required to store the sen-
sor model under different grid sizes are compared in Table 2.2. The experiments were
conducted based on processing nine log files recorded at full power level using an Intel
Core i5-2410M@2.3 GHz CPU, with 4 GB RAM. As seen in Table 2.2, storing a model
with a smaller grid size requires more memory than a larger grid size. Moreover, com-
puting the sensor model with a smaller grid size obviously takes more time than a larger
grid size. Since the sensor model is generated in an off-line fashion, the computational
time is not an issue in our case.
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Table 2.2: Analysis of the time used for computing the sensor model and the memory
required for storing the sensor model under different grid sizes.

Grid size [m] 0.01 0.05 0.1 0.2 0.5
Time consumption [s] 874.47 36.67 8.75 1.43 0.22

Memory consumption [MB] 98.65 8.28 2.82 0.85 0.15

2.5 Conclusions

In this chapter, various RFID sensing technologies were introduced for the identification
of tags through radio waves. The techniques can be different based on the radio frequen-
cies and the sources of power supply. Particularly, the passive UHF RFID, which is used
in many industrial environments nowadays, provides a way of identification without line
of sight. We discussed the opportunities and challenges of using UHF RFID as a sensing
technology for mobile robots. On the one hand, RFID tags can be affixed to items and
automate the traditional inventory process. From the perspective of mobile robots, these
tags can be additionally used as landmarks for the localization or navigation. On the
other hand, the long range passive UHF RFID faces some challenges: the radio signal is
hard to model, since it is extremely sensitive to reflections, diffractions, or absorptions
of the environment.

In Section 2.2, the key coordinate frames used in this thesis are clarified and the mo-
tion model of the robot is described. We presented three popular probabilistic estimation
approaches, namely histogram filters, Kalman filters, and particle filters, for the state
estimation. Different approaches have their own advantages and disadvantages, but all
of them are designed to deal with the uncertainty and derived under the Bayesian proba-
bilistic framework. Especially, we described the particle filter in detail, which is chosen
and mainly used in this thesis.

In Section 2.4.3, we described the semi-autonomous approach to learn the sensor
model. The sensor model is generated by the empirical measurements collected by the
mobile robot during an exploration phase. We conducted extensive experiments to study
the behavior of RFID under different reader power levels, various tag types, and different
materials that the tags are attached to.

Based on the measurements collected by the robot, the semi-autonomous approach is
able to reduce the human intervention for the model generation. Yet, the positions of the
reference tags have to be measured in advance. Joho et al. (2009) proposed a fully un-
supervised approach to learn the sensor model based on a coarse detection sensor model
without having any information about the true tag positions. They also showed that their
sensor model is comparable to the one produced by the semi-autonomous approach.

In some applications, it is necessary to generate the sensor models with respect to
different reader configurations (i.e. reader power levels). For example, integrating the
measurements from different reader power levels helps to quickly localize RFID tags
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(Lee et al. (2013) and Deyle et al. (2008a)). However, learning the models with different
reader parameters is significantly hard and time-consuming, since each configuration
requires a large number of measurements to be recorded by the robot. A simple idea
for saving human effort is to downscale the sensor model at full read power level or
interpolate the sensor models for different power levels.

In the subsequent chapters, we are going to use the techniques described in this chapter
for the purpose of mapping RFID tags, path following for the mobile robot, and tracking
dynamic RFID tags.
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Mapping of RFID Tags
In this chapter, we address the problem of mapping RFID tags, particularly in 2D using
a probabilistic framework with a mobile robot. The rest of this chapter is organized as
follows. After an introduction in Section 3.1, we review the related work in Section
3.2. Then, we describe the Bayesian framework for localizing RFID tags in Section
3.3. The implementation of a particle filter is presented in Section 3.4 and Section 3.5.
We introduce a sensor resetting technique in Section 3.6 and present how to integrate
negative information in Section 3.7. Finally, we show the experimental results in Section
3.8 and summarize this chapter in Section 3.9.

3.1 Introduction
Robot-assisted applications in commercial surroundings such as supermarkets, ware-
houses, and logistics centers have drawn more and more attention. For these environ-
ments, there is an increasing use of UHF RFID tags for labeling products, assets, or
equipments. If a robot is equipped with an RFID reader in such environments, an auto-
mated inventory becomes possible. Compared to the traditional inventory process, the
products can not only be itemized but also be localized by a sequence of RFID readings
(Hähnel et al. (2004), Joho et al. (2009), and Vorst (2011)) from a mobile RFID reader.
Although RFID technology solves the object identification problem trivially due to the
unique identifier of the tag, it does not provide any location information about the object.
The RFID-based mapping aims at acquiring a spatial arrangement of the RFID tags in
the environment. The resulting map gives the location information about the tags, which
can help the user to find the missing objects or reason about which object is relocated.
Moreover, it can also serve as a reference for the robot localization (Hähnel et al. (2004)
and Vorst et al. (2011)) or navigation (Kulyukin et al. (2004)).

However, mapping of RFID tags is quite challenging. On the one hand, the mea-
surements (e.g. tag detection or signal strength) of the UHF RFID highly depend on
the relative position of the tag to the antenna. On the other hand, the propagation of
radio waves is hard to model due to the influence of many environmental effects (e.g.
reflection, diffraction, or absorption). The RFID reader may report rather different re-
ceived signal strength values, even if the relative pose between the tag and the antenna is
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Figure 3.1: The scenario where the robot was collecting RFID measurements in an RFID-
tagged corridor environment. (a) A snapshot of the environment and the robot. Several
post boards, made of metal, are placed on the walls of the corridor. (b) The detection
events (blue vectors) of one tag. The lengths of the vectors are scaled according to the
values of the signal strength. The true tag position is marked with a red circle.

constant.
As can be seen in Figure 3.1b, which depicts the detection events obtained by our

robot (see Figure 3.1a) of one tag in a corridor environment. Since the tag locates very
close to the metal board, we observed many ghost detections (marked with yellow box).
If these ghost detections are integrated into the particle filter at first, after performing
resampling, there will be no particles around the true position of the tag. Therefore, the
particle filter converges to the wrong positions (the yellow circle) and the normal particle
filter is not able to recover from these failures. Another reason that may lead to mapping
failures is that the robot stays at one local area and continuously makes measurements
inside that area (see Deyle et al. (2008b) for more information).

Therefore, in this chapter, we use the adaptive particle filter (also called adaptive
Monte Carlo localization (AMCL)) to recover from mapping failures of static RFID tags
and localize non-static RFID tags. We distinguish non-static tags from dynamic ones in
this chapter, since dynamic tags are always moving, whereas this chapter focuses on non-
static ones, whose positions do not change frequently. Our work is motivated by the fact
that in the future the robot is able to continuously perform inventory in RFID-equipped
infrastructures (e.g. libraries or supermarkets): the robot has to map the positions of
all tags attached to the items on-line; meanwhile the items may be moved (re-located)
by the customers. For human-robot interaction, the robot is asked to find specific items
or missing items during its operation. We also incorporate the negative information into
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AMCL to improve the mapping accuracy and accelerate the speed of recovery from map-
ping failures and relocalizations of non-static RFID tags. Additionally, we compare the
particle filter-based approach to our previous grid-based Markov localization approach.
This chapter is based on our IAS publication (Liu and Zell (2014)).

3.2 Related Work
Mapping RFID tags with a mobile robot, which is addressed in this thesis, is a special
way of localizing RFID tags by means of a number of measurements perceived by a mo-
bile reader with known positions in an environment. For many industrial environments,
a common and cheap way for localizing RFID tags is to install multiple RFID readers
at different positions in the environment (Chawla et al. (2010), Azzouzi et al. (2011b),
Azzouzi et al. (2011a), and Shirehjini et al. (2012)). The smart shelf is an example of
this case (Lau et al. (2008), Medeiros et al. (2008), and Choi et al. (2012)).

3.2.1 Mapping with Fixed Antenna Configurations
The coarse position of the RFID tag can be determined through a way called proximity:
the detection of a tag from an antenna with a known position tells that the tag is nearby
without any tag ambiguity. By using the measurements from several RFID antennas,
whose detection regions intersect, the positions of the tags can be further refined. Alippi
et al. (2006) proposed a method for localizing passive RFID tags based on Bayesian
approach by installing several RFID readers in the environment. Particularly, the tags
are localized by scanning each angular sector at different power levels with an RFID
reader. The mean mapping error of this approach is approx. 0.65 m with four readers
transmitting at 0.1-3 W in an environment with a size of 5 m×4 m.

Bahl and Padmanabhan (2000) proposed a system called RADAR, based on radio-
frequency (RF) to locate and track users inside buildings. RADAR achieves the localiza-
tion of an object by triangulating the signal strength from multiple base stations based
on the empirical measurements and the signal propagation models. Their system is able
to localize the target with an accuracy of 2 to 3 meters. LANDMARC presented in Ni
et al. (2003) is a location sensing system which aims at locating RFID tags affixed to
objects in indoor environments. In order to improve the overall localization accuracy,
a large number of reference tags are utilized with a configuration of a grid array. The
position of the tag is determined by fusing the positions of its four nearest neighbored
tags. This system has to rely the signal strength to approximate the distance from the
tag to the reader. However, the RFID reader in their experiments is not able to provide
any measure about the signal strength; therefore, in order to estimate the signal strength
of a tag, they have to perform a scan with various reader power levels, which requires
approximately one minute each time. The unnecessary scanning time can be eliminated
using the new generation of RFID readers which reports the signal strength directly. As
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reported by the author, with four readers installed in a lab with a size of 4 m×7 m and
one reference tag per square meter, they are able to localize the objects with a mean error
of 1 meter and the worst error of 2 meters.

Chawla et al. (2010) proposed a multi-antennas framework that allows to quickly and
precisely localize static as well as mobile tags. By varying the power levels of the anten-
nas, the positions of tags are determined via the empirical power-distance relationships,
which are calibrated using reference tags with known positions. They also used multi-
tags to reduce the uncertainty of the estimation. They are able to localize the tags with
an accuracy of 15 cm in a few seconds. Their experiments were only conducted in a
limited environment (a rectangular region with an area of 6 m2) and the application of
their approach in cluttered environments needs to be investigated.

Choi et al. (2012) proposed an approach to localize the objects tagged with passive
UHF RFID tags on a smart shelf using a single RFID reader antenna. Their approach
also needs to rely on the reference tags for the position estimation. But in contrast to
the previous k-nearest neighbors (KNN) algorithm, they infer the presence of a neigh-
boring tag using the changes of a tag’s readability. According to their experiments with
nine box-level objects on two wooden shelves with a total size of 91 cm×152 cm, they
achieved a mean accuracy of 18.48 cm, which gives an approx. 70% improvement as
compared to the previous KNN algorithm.

3.2.2 Mapping with Mobile Antenna Setups
Rather than placing multiple RFID antennas at fixed positions to infer the positions of
RFID tags, many researchers, including us, prefer to map RFID tags by moving a mobile
robot carrying an on-board RFID reader to various positions in an environment. The
position of the robot is usually determined by another positioning system, such as laser-
based Monte Carlo localization. In this case, the locations of the tags are inferred by
integrating several observations at different positions.

A number of approaches have been proposed to locate (i.e. map) the RFID tags using
mobile RFID readers. These approaches mainly differ based on how the sensors are
modeled (see Section 2.4) or which approach is used to infer the positions of the tags
(i.e. histogram filters, Kalman filters, or particle filters). However, the problems of
mapping tags under uncontrolled environment are rarely addressed.

Hori et al. (2008) proposed a multi-sensing-scheme to locate an RFID tag using a
mobile RFID reader. In particular, they used a probabilistic framework to integrate the
measurements from a reader by varying its sensing range. Combining with different
movements of the robot, the estimation error of the tag can be reduced. However, the
experiments were only conducted in computer simulations.

Some researchers (Kleiner et al. (2006) and Kleiner et al. (2007)) utilized RFID tech-
nology for search and rescue tasks in disaster areas. They proposed an approach which
enables the robot to solve the problem of simultaneous localization and mapping (SLAM)
based on RFID tags distributed in the environment. Additionally, they showed that RFID
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tags can be used to coordinate the exploration of a team of robots. In their work, they
assume the tag detections are within a range of 1 m in order to provide a good posi-
tioning accuracy. Therefore, only HF RFID tags (Ario RFID chips from Tagsys and a
Medio S002 reader that provides a maximum reading range of 30 cm) were used in their
experiments. For an extension of this approach to UHF RFID tags, one can refer to Vorst
and Zell (2010b) and Forster et al. (2013).

Ferret and Sherlock are two systems that are proposed in Liu et al. (2006) and Nem-
maluri et al. (2008) for the localization of static as well as nomadic tags (tags that do
not change locations frequently) in a room or an office environment. The first system
utilized the mobility of a user who carries a hand-held RFID reader to produce several
readings from multiple perspectives. The location of the object can be inferred by re-
fining the coverage regions at these views. The second system aimed at localizing the
objects by scanning the environment with steerable RFID reader antennas at fixed posi-
tions. However, the localization time took so long that it limits the further applications
of these approaches. For example, Ferret needs approx. 2 minutes to localize an object,
while Sherlock requires about 1 minute to perform a fast scan.

Hähnel et al. (2004) utilized a probabilistic sensor model to estimate the positions of
RFID tags with a mobile robot, whose poses were determined by a laser-based Fast-
SLAM approach in a known environment. Joho et al. (2009) improved the mapping ac-
curacy by modeling the characteristics of both signal strength and tag detection events.
Milella et al. (2008) estimated the positions of RFID tags by a fuzzy logic using a fuzzy
RFID antenna model. Rather than designing the models from empirical data, Deyle et al.
(2008b) derived the model based on radio signal propagation using the Friis equation for
the localization of RFID tags. The signal strength there was approximated by switching
the reader power between nine different values. Moreover, some researchers also fused
the measurements from other sensors to improve the mapping accuracy, which will be
detailed in Chapter 6.

Ehrenberg et al. (2007) designed a system called LibBot, which utilized a mobile robot
equipped with an RFID reader for the purpose of inventory in a library, where all books
were equipped with HF RFID tags. The proposed system can be used to localize the
books and detect the misplaced books. Since HF sensors have a short reading range (i.e.
approx. 15 cm for the reader used by the authors), the misplaced tags can be detected
reliably. As reported by the authors, they are able to localize the books with a mean error
of 0.9 cm on a wood shelf and 1.3 cm on a metal shelf.

Although the sensor model of RFID is shown to be highly non-Gaussian, Miller et al.
(2010) used Kalman filters to track assets with RFID tags for inventory management.
According to their experiments in an indoor environment with a size of 48 m×14 m, the
assets can be localized with a mean error less than 80 cm.

Patil et al. (2005) presented an automatic location sensing system for tracking RFID
tags affixed to assets in indoor environment. The robot periodically moves in the working
space and perceives the measurements of the tags installed on the ceiling of the indoor
building. The position of the robot is estimated by a Wifi positioning system with a
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mean accuracy of about 1 m. Their experiments showed that the tagged objects can be
estimated with an accuracy of 1.5 m.

3.3 Bayesian Framework for Mapping RFID Tags

In this thesis, the positions of the tags are estimated by a Bayesian inference similar to
Hähnel et al. (2004), Joho et al. (2009), and Vorst and Zell (2008). Formally, we denote
the number of RFID tags around the environment by L. The measurements gathered
by the mobile robot at positions x1:t = {x1,· · · ,xt} until time t are represented as f1:t =
{f1,· · · , ft}. Here ft consists of the measurement queried by the RFID antennas at time t:
ft = {f(1)t ,· · · , f(A)t }, where A is the number of antennas attached to the RFID reader. The
measurement f(a)t is expressed as a sequence f(a)t = { f (a)t,1 ,· · · , f (a)t,L }, where f (a)t, j represents
the measurement (i.e. received signal strength) of tag j observed from antenna a at time
step t. In addition, let δ (a)

t denote the position of the tag with reference to antenna a’s
coordinate system at time t. In this chapter, we only consider the 2D position of the
RFID tag and thus δ (a)

t = (x,y). We can compute δ (a)
t by simply transforming the robot

coordinates with a fixed transformation matrix Cr
a, since the antennas are fixed on the

robot, as shown in Figure 3.1a.
To estimate the location l j of tag j at time t, we need to know the posterior probability

p(l j|f1:t ,x1:t). In our case, we consider the position of the tag in two dimensions and thus
l j = (x j,y j). According to the Bayesian theory and the Markov assumption (see Section
2.3), p(l j|f1:t ,x1:t) can be rewritten as:

p(l j|f1:t ,x1:t) = η1...t

t

∏
i=1

p(fi|l j,xi)p(l j) (3.1)

= η1...t

t

∏
i=1

A

∏
a=1

p( f (a)i, j |l j,xi)p(l j) (3.2)

= η1...t

t

∏
i=1

A

∏
a=1

p( f (a)i, j |δ
(a)
t )p(l j) (3.3)

The formulas above allow us to iteratively estimate the position of a tag by applying the
sensor model based on the measurements observed by the robot. ηt is a normalizer. The
most important part in Equation (3.3) is p( f (a)i, j |δ

(a)
t ), which is called sensor model. It

characterizes the likelihood of receiving a measurement fi given the current state estima-
tion. The formulas above are derived under the following assumptions (cf. Hähnel et al.
(2004) and Vorst (2011)): the current observation ft is independent of previous observa-
tions f1:t−1; the observation of one tag is independent of other tags in the environment;
only the relative displacement between the tag and the antenna is relevant to our sensor
model.
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Certainly, these assumptions are too strict in practice. First, the readability and signal
strength of a tag are influenced by the neighboring tags (Choi et al. (2012)). Further-
more, location-specific factors, such as the materials the tags are attached to, obstacles
in the environment, orientation between the tag and the antenna or other radio devices in
the environment, have high influence on the signal propagation. Thus, many authors ap-
plied location-fingerprinting techniques to improve the localization accuracy of a mobile
agent (Vorst et al. (2011) and Ni et al. (2003)). These approaches estimate the position
of a mobile agent from a set of pre-collected observations. They showed a slight im-
provement to the model-based approaches (Vorst et al. (2011)). However, the concern of
this chapter is mapping of RFID tags, which requires an explicit sensor model and it is
almost impossible to take all environmental factors into account.

3.4 Particle Filters-based Mapping

Many implementations of recursive Bayesian filters have been proposed in the literature,
as described in Section 2.3. Among them, Kalman filters, which are built on the as-
sumption that the system is linear and all error terms obey Gaussian distributions, have
numerous applications in a variety of areas. However, the Gaussian assumption does not
hold for our sensor model, as visualized in Figure 2.8 and Figure 2.9.

In this chapter, the position of each RFID tag is estimated by an individual particle
filter. Each particle filter consists of N samples of position hypotheses with reference to
the world coordinate frame and associated weights wi. In this chapter, we only consider
the 2D pose estimations of RFID tags, therefore xi = (xi,yi). The position of the tag is
computed by a weighted mean among all particles:

l j =
N

∑
i=1

wixi (3.4)

The particles are initialized uniformly around the area of the antenna position, at which
the tag is first detected. Specifically, x and y coordinates are restricted by the maximum
reading range of the RFID reader.

The previous RFID-based mapping strategy utilized a static configuration of the par-
ticle filter (see Hähnel et al. (2004) and Vorst (2011)): we neither use motion informa-
tion to predict the particles nor apply resampling, since we assume the tags to be static.
Therefore, this approach is considered to be identical to a histogram filter or a grid-based
Markov localization approach. Obviously, in this case, a good and robust position es-
timation is usually supported by a large number of particles, which requires expensive
computational cost and high memory storage. Also additional resources need to be al-
located for other modules (e.g. localization, path planning, and obstacle avoidance) that
provide autonomous behavior of a mobile robot.

This chapter, in contrast, utilizes a standard particle filter, which additionally incor-
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porates an injection strategy and negative information. In general, the particle filter is
executed recursively with the following three steps:

1. Prediction: we draw a particle for each particle according to the motion model of
the tag. Since we do not have any information about the movement of the tag, we
represent the motion model by a random walk: xi

t = xi
t−1 +N (0,σ2).

2. Correction: we assign each particle xi
t with a new weight wi

t according to the sensor
model when a new measurement ft arrives.

3. Resampling: we generate a set of new samples as a replacement of the old sam-
ple set. In general, the probability that a particle appears in the new particle set
depends on its weight.

3.5 Perturbation of the Particles
Following Liu and West (2001), we realize the perturbation after resampling, which is
also used by Joho et al. (2009) and Vorst (2011) for RFID-based mapping. This strategy
is used to prevent the loss of information and solve the sample attrition problem. Partic-
ularly, let xt−1 and Vt−1 be the mean and covariance of all particles. The new position of
particle i is determined by perturbing the position of this particle according to a Gaussian
distribution with a mean αxi

t−1 +(1−α)xt−1 and a standard deviation h2Vt−1:

xi
t ∼N (αxi

t−1 +(1−α)xt−1,h2Vt−1), (3.5)

where h and α are two parameters that determine the scale of perturbation, which only
rely on ρ ∈ (0,1]:

h =

√
1−

(
3ρ−1

2ρ

)2

and α =
√

1−h2, (3.6)

here ρ is used control the degree of perturbation. A large ρ gives a low degree of pertur-
bation, while a small ρ provides a high degree of perturbation. As suggested by Liu and
West (2001), a good ρ is usually between 0.95 and 0.98. We fix ρ to 0.95 for the rest of
this chapter.

3.6 Dealing with Mapping Failures
Normal MCL algorithms have the problem that they are not able to recover from the
kidnapped robot problem (mapping failures or tag relocations in our case). Lenser and
Veloso (2000) showed that this problem could be solved by a sensor-resetting strategy
(i.e. adding random particles at each sensor update). In this chapter, we choose an
adaptive MCL (A-MCL), since it provides an elaborate way to determine the number
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Figure 3.2: Entropy of the particle set with and without the negative information.

of particles required to be injected. For a comparison of different sensor-resetting ap-
proaches, one can refer to Gutmann and Fox (2002). The main idea of AMCL is to keep
tracking the long- and short-term average of particle weights (wl and ws) over time and
determine the number of particles to be added at each sensor update.

wl = wl +αl(wa−wl)

ws = ws +αs(wa−ws),
(3.7)

where wa is the average weight of the current particle set after evaluating a sensor mea-
surement:

wa =
1
N

N

∑
i=1

wi (3.8)

The ratios αs and αl (0 ≤ αl � αs ≤ 1) are two parameters that control the smoothness
of the average likelihood. At each sensor update, AMCL randomly adds particles with a
probability of:

max
(

0,1− ws

νwl

)
(3.9)

The newly added particles are sampled using the sensor model according to the current
measurement. The value ν is used to control the level of injection. Concretely, ws < νwl
indicates there is a sudden decrease of the estimation quality and a set of additional
samples is required to be injected.
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3.7 Integrating Negative Information

In this chapter, negative information (e.g. non-detection) means the absence of a detec-
tion when a tag is expected to be detected. Generally, negative information is usually
considered to be less useful than positive information (see Hoffmann et al. (2005)). For
example, detecting a tag provides much more information than not observing a tag, since
there are many possible positions where the robot is not able to detect the tag. Only us-
ing negative information, the particle filter is not able to converge in our case, as shown
in Figure 3.2. There, we plotted the entropy of the particle distribution (see Stachniss
et al. (2005) for details) using negative information and without using negative informa-
tion during the mapping of one tag. As can be seen, only with negative information, the
entropy is not able to drop below 1.0. Whereas it is clear that negative information accel-
erates the convergence process, which can be seen at t = 10 s in Figure 3.2. Moreover,
negative information provides a measure about the quality of the estimation and thus it
can be incorporated into AMCL and the system is able to recover from mapping failures
quickly.

The detection and the non-detection are regarded as mutually exclusive events in this
chapter, therefore the non-detection model p(d|(x,y)) is computed as:

p(d|(x,y)) = 1− p(d|(x,y)) (3.10)

To save computational time, we propose the following two techniques to integrate
negative information: First, we check the distance between the non-detection pose and
the estimated pose. If it is above a distance threshold, which is set to five meters in this
chapter, this measurement is ignored. This is because a non-detection, which is far away
from an estimated pose, does not have any impact on the current particle set. Second, we
measure the utility of the negative information by:

U =
1
N

N

∑
i=1

p(ft |xi
t−1). (3.11)

If U is larger than a threshold ϑU , we reject this measurement. The idea of this is
straightforward: a larger U means that this measurement is less informative to the cur-
rent particle set than a smaller U , since the weights of all particles stay the same if this
measurement is integrated. This allows us to filter out most negative information. How-
ever, computing Equation (3.11) requires as much time as the prediction step. To further
reduce the computational burden, we only measure the utility of the mean xt−1, which is
already computed at the perturbation step (see Section 3.5).
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(b) Mapping failure
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(c) Injection without negative information
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(d) Successfully localize the tag
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(e) Injection without negative information
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(f) Final state of a particle filter

Figure 3.3: Visualization of mapping failure, tag relocation and recovery from failure
without negative information. The blue arrows represent the poses of the antennas with
maximum signal strengths of the latest observations. (a) After processing 132 RFID mea-
surements, the particle filter converges to a wrong position, which is approx. 1.7 meters
away from the true position and no particles are close enough to the tag’s true position.
(b) Normal MCL is not able to recover from this mapping failure. After processing all
measurements, the final localization error is 1.64 m without AMCL. (c) AMCL decides
to inject particles after processing 243 measurements. (d) The tag is successfully local-
ized using AMCL. At the same time, the tag is relocated to another position by hand, as
indicated by the red arrow. (e) After processing 450 measurements, AMCL decides to
inject particles. (f) The tag is relocalized successfully.
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(a) Particle injection with negative information
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(b) Particle injection with negative information

Figure 3.4: Recovery from mapping failure and tag relocalization with negative informa-
tion. (a) With negative information, after processing 236 measurements, AMCL decides
to inject particles. (b) With negative information, after processing 431 measurements,
AMCL decides to inject particles.

3.8 Experimental Results

3.8.1 Setup
We used a Scitos G5 mobile robot from Metralabs (see in Section 1.4.2) as our exper-
imental platform. We used the log files recorded at Section 2.4.4 at full reading power
level. For the evaluation of the mapping performance, our experiments were performed
by validating one tag in one log file using the sensor model learned from the rest of tags
in all log files. This process was repeated 40 times to capture the random features of the
particle filter. The values of αl and αs were set to 0.005 and 0.1, respectively.

3.8.2 Performance Evaluation without Negative Information
A preliminary experiment was conducted to show the ability of our system to recover
from mapping failures and localize non-static RFID tags. We set N = 200 for this series
of experiments. In the case of AMCL, we used ν = 0.7. Figure 3.3 shows an example
of mapping failure (see Figure 3.3a and Figure 3.3b) using normal particle filters and
recovery from this failure (see Figure 3.3c and Figure 3.3d) using AMCL. It is clear that
the normal MCL, with a final localization error of 1.64 m, failed to localize the tag, as
can be seen in Figure 3.3b. Our explanation for this, which is based on the examination
of the related literature, is the problem of particle depletion: the particle filter, which
works as a way of stochastic approximation, converges so fast to the region with highest
belief that there are no samples surviving nearby the true position.

It is worth to mention that Figure 3.3 is only one case of mapping failures, in practice,
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this may happen quite often due to the harsh characteristics of radio signals in dynamic
environments or robot trajectories. Using AMCL, as can be seen in Figure 3.3c, the
robot detected an inconsistency between the measurement and the current sample set
and thus started to add random particles. After injection, the particles converged to the
true position gradually (see Figure 3.3d), with a final error of 0.35 m. Moreover, to
demonstrate the capability of our system to localize non-static RFID tags, the tag was
moved to a different place by hand, as shown by the red arrow in Figure 3.3d. As can be
seen in Figure 3.3e and Figure 3.3f, our system is also capable of localizing non-static
RFID tags.

In the following experiments, we evaluated the impact of the parameter ν on the over-
all mapping accuracy of static RFID tags without using negative information. Different
noise levels (i.e. σ ) were tested, but we only present the results of σ = 0.01 in this chap-
ter due to the limited space. We fixed N = 200 for all experiments. Figure 3.5a plots the
mean and standard deviation of mapping error under different values of ν without using
negative information. In general, the choice of ν = 0.7 achieved best results for our ex-
periments. A too large or too small ν obviously resulted in worse results. For example,
as compared with ν = 0.0 (i.e. without AMCL) and ν = 0.7, the mapping error was
reduced from 0.365 m to 0.342 m, which is an improvement of 6.3 %. This is because
a small ν (e.g. ν ≤ 0.1) is not able to sense a mapping failure correctly; while a large
scale of injection (i.e. higher ν values) sometimes decides to inject particles even when
the tag is well localized, which results in an overall decrease of the mapping accuracy.

3.8.3 Influence of Negative Information
In the next series of experiments, we evaluated the ability of our system to recover from
mapping failures and tag relocations by integrating negative information. Again, we
ran our algorithm on the same log files taken at Section 3.8.2 by incorporating negative
information (ϑU = 0.2). As shown in Figure 3.4a and Figure 3.4b, evaluating negative
information helps to accelerate the recovery process. For example, for recovery from
mapping failure using negative information, the injection happened after receiving 236
measurements (see Figure 3.4a), which is earlier than the case without utilizing negative
information (243 measurements, see Figure 3.3c). For the case of localizing non-static
RFID tags, the injection took place at the 431th update (see Figure 3.4b) with negative
information, as opposed to the 450th without negative information (see Figure 3.3e).

We analyzed the influence of negative information on the mapping accuracy for static
RFID tags in the following experiments, as illustrated in Figure 3.5b. We compared
the mapping results between a grid-based approach (N = 2000) and AMCL (ν = 0.0,
ν = 0.3, ν = 0.5, ν = 0.7 and ν = 0.9) by adding different levels of negative information.
We set N = 200 for AMCL. As can be seen in Figure 3.5b, for the grid-based approach,
the mapping accuracy got worse by incorporating negative information. The reason for
this can be found in Vorst’s dissertation (Vorst (2011)). On the contrary, for AMCL
the mapping error is not an increasing function with reference to the levels of negative
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Figure 3.5: Evaluation of the mapping accuracy under the impact of different parameters.
(a) Mapping accuracy under the impact of the parameter ν without the integration of
negative information (i.e. ϑU = 0). (b) Mean mapping error under the influence of
parameter ν with the integration of different scales of negative information. For a better
visualization, we do not show the standard deviation of the mapping error here.
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information integrated. As can be seen in Figure 3.5b, the choice of ϑU = 0.2 performed
best for AMCL, with an improvement of approx. 3.5 %, as compared to ϑU = 0.0 (from
0.342 m to 0.329 m). That is to say, negative information is not able to improve the
mapping accuracy of a well mapped tag (e.g. no improvement for grid-based approach),
whereas it can be used to measure the decrease of the quality of the estimation for a badly
localized tag, therefore improves the average mapping accuracy (e.g. the improvement
by integrating proper amount of negative information using AMCL). Moreover, as can
be seen in Figure 3.5b, with too much negative information (e.g. ϑU > 0.4), the mapping
error was increased. The reason for this is that negative information with large utility
introduces more uncertainty than the information it yields, since we use a Gaussian noise
model with fixed standard deviation in our prediction step. Thus, in the future research,
it is interesting to see if the mapping accuracy can be improved by using more precise
motion models.

3.8.4 Comparison to a Grid-based Markov Approach
In the next experiments, we compared the particle filter-based approach to the previous
grid-based Markov localization approaches (Hähnel et al. (2004), Liu et al. (2013), and
Vorst (2011)), which utilized a static configuration of the particle filter: we neither use
motion information to predict the particles nor apply resampling, since we assume the
tags to be static. For the particle filter-based approach, we used ν = 0.7 and integrated
negative information (ϑU = 0.2). As can be seen in Figure 3.6, with N = 200 for the
particle-based approach, we got a mean mapping error of 0.329 m, which can only be
achieved by N > 2000 for the grid-based approach. Moreover, we obtained nearly the
same mapping results with N > 500 for the particle filter-based approach. For the grid-
based approach, we achieved a mean mapping error of 0.302 m with N > 4000, which is
approx. two centimeters smaller than the best accuracy we achieved from AMCL (e.g.
0.318 m with N = 4000). Our explanation for this is that the grid-based approach repre-
sents the belief with discretized grids (histograms), while particle filters only use a set of
samples to represent the most relevant region of the belief, which more or less lose some
information during the execution. However, the disadvantage of the grid-based approach
is that the number of particles required has to be scaled with the size of the estimation
space: for example, if the range of the RFID reader becomes larger in the future, we need
more particles to get a good position approximation. Another drawback of the grid-based
approach is that it is not able to deal with non-static RFID tags, since the poses of the
particles are fixed.

3.8.5 Time Complexity
As listed in Table 3.1, we evaluated the running time of different approaches based on
processing nine log files, which consist of 85235 RFID detections and 360591 non-
detections with distance filtering. All algorithms were run on an Intel Core i5-2410M

55



Chapter 3 Mapping of RFID Tags

Table 3.1: Total time consumption (in seconds) of different approaches.

Method
Number of particles (N)

100 200 500 1000 2000 4000
Grid-based 8.2 14.8 32.8 66.2 121.7 241.1

AMCL, ϑU = 0.0 21.4 34.7 92.3 162.7 327.5 661.5
AMCL, ϑU = 0.2 22.6 38.4 98.9 192.3 375.23 733.2
AMCL, ϑU = 0.8 30.4 50.8 124.6 238.0 467.3 937.7
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Figure 3.6: The comparison of a grid-based approach and a particle filter-based approach.

@2.3 GHz CPU, with 4 GB RAM. As can be seen in Table 3.1, with the same number of
particles, AMCL consumes more time due to the additional resampling and perturbation
steps, but achieves better mapping accuracy, as compared to the grid-based approach.
For example, with N = 200 and ϑU = 0.2, AMCL took nearly three times as long as
the grid-based approach (38.4 s for AMCL versus 14.8 s for grid-based approach). But
at the same time, AMCL gave a better mapping accuracy (0.329±0.22 for AMCL and
0.557±0.25 for grid-based approach respectively), as can be seen in Figure 3.6. In prac-
tice, it is fast enough to use AMCL with 200 particles, which only needs approx. 0.45 ms
for one filter update, to deal with hundreds of RFID detections per second in densely
tagged environments. Moreover, as can be seen in Table 3.1, evaluating negative infor-
mation slightly requires more computational time. With the best parameter choices for
N = 200 (i.e. ϑU = 0.2 and ν = 0.7), the computational time is only increased by 5 %
(from 21.4 s to 22.6 s), as compared to the test without negative information (ϑU = 0.0).
At the same time, we got an improvement of 3.5 % for the mapping accuracy (from
0.342 m to 0.365 m, see Section 3.8.3).
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3.9 Conclusions and Future Work
In this chapter, we showed how to use the probabilistic framework for the localization
of RFID tags. Since the propagation of radio signals is hard to predict, the traditional
particle filters face the problem of mapping failures. We addressed this problem by
measuring the quality of the estimation and adding random particles if it is necessary.
We summarize the contributions of this chapter as follows:

• We investigated AMCL, which is able to solve the problem of mapping failures
and relocalizations of RFID tags.

• We examined the usefulness of negative information in the context of RFID-based
mapping and showed that negative information helps to improve the mapping ac-
curacy and quickly recover from mapping failures.

• We compared a particle filter-based mapping approach to our previous grid-based
Markov localization approach and pointed out their advantages and disadvantages.

Extensive experiments with a Scitos G5 service robot were conducted to verify the
effectiveness of our approach. Compared to normal MCL, with 200 number of particles,
AMCL improves the mapping accuracy by 6.3 % (from 0.365 m to 0.342 m) without
further examination of negative information. By integrating negative information, the
mapping accuracy is improved by 3.5 % (from 0.342 m to 0.329 m). As compared to
our previous grid-based Markov approach, we are able to save approx. 70 % of the com-
putational cost (from 121.7 s using the grid-based approach with N = 2000, to 38.4 s
using AMCL with N = 200 and ϑU = 0.2) and approx. 90 % of memory storage (from
2000 particles to 200 particles), while the mean mapping accuracy only decreases by two
centimeters.

There are several possible extensions of this work: One direction could be the inte-
gration of an outliers-removal approach, which deals with the ghost detections of RFID
tags due to environmental effects on radio signal propagation, to improve the mapping
accuracy. Furthermore, it would be interesting to fuse visual information (e.g. features,
shapes, and textures) from cameras for object recognition or object detection.
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Chapter 4

Mapping of RFID Tags with a 3D
Sensor Model
In this chapter, we address the problem of mapping RFID tags using a 3D sensor model
based on the work presented in the previous chapter. Compared to the 2D sensor model
based approaches, the 3D sensor model achieves a higher mapping accuracy for the 2D
position estimation. In particular, with this sensor model, we are able to localize the tags
in 3D by equipping the robot with two antennas at different heights. Furthermore, by
integrating negative information (i.e. non-detections), the 3D mapping accuracy can be
improved. Additionally, we utilize KLD-sampling (KLD is short for Kullback-Leibler
distance, see Cover and Thomas (1991)) to reduce the number of particles for our specific
application, so that our algorithm can be performed online.

The rest of this chapter is organized as follows. After a short introduction in Section
4.1, we review the related work in Section 4.2. Then, we describe how to localize a
tag in 3D with our stereo antennas setup in Section 4.3. Section 4.4 explains how to
use KLD-sampling to adapt the particle set. In Section 4.5, we describe how to apply
non-detections to improve the mapping accuracy. Finally, we present our experimental
results in Section 4.6 and conclude this chapter in Section 4.7.

4.1 Introduction
In Chapter 3, we presented a Bayesian approach to localize RFID tags in 2D based on
2D sensor models. There we assume that the detection characteristics of RFID tags
highly depend on the 2D relative position between the antenna and the tag. However,
the behavior of RFID tags (detection likelihood and received signal strength) does not
only depend on the 2D displacement of the tag with reference to the antenna coordinate
frame, but also highly relies on the heights of the tags. We observe in Figure 4.1 that the
measurements (detection counts and mean received signal strength) from RFID readers
vary with regard to the heights of the tags. Therefore, the extension of the sensor model
into 3D is useful and straightforward, particularly in the environments in which the tags
are distributed at different heights. To our knowledge, no study about mapping RFID
tags using a 3D sensor model has been published before.
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Therefore, we propose a 3D RFID sensor model for mapping RFID tags in this chapter.
Unlike the existing 2D sensor models, our 3D sensor model characterizes the detection
behavior of the RFID antenna with respect to the 3D position of an RFID tag. The con-
tribution of this chapter is threefold. First, by applying our 3D sensor model, the 2D
position estimation of RFID tags can be improved in comparison to our previous 2D
sensor model. Since the positions of the antennas are fixed on the robot for our applica-
tion, by using only one antenna or multiple antennas mounted at the same height on the
robot, we are not able to determine the height of an RFID tag unambiguously due to the
symmetrical radiation property of RFID antennas. Therefore, as a second contribution,
we show how the ambiguity can be resolved and the mapping error can be reduced by
a pair of RFID antennas installed at different heights on the robot. Third, we show that
the 3D position estimation can be further improved by incorporating non-detections for
our specific stereo antennas configuration. Finally, we employ KLD-sampling to reduce
the number of particles. This enables our algorithm to perform the mapping task in real-
time. This chapter is based on our publication (Liu et al. (2013)), which was presented
at IROS 2013.

4.2 Related Work
A variety of approaches concerning mapping RFID tags using mobile robots have been
proposed in the literature. A comprehensive review of the related work about RFID
mapping is presented in Section 3.2. Many researchers focus on mapping UHF RFID
tags using 2D sensor models (Hähnel et al. (2004), Vorst and Zell (2008), Joho et al.
(2009), Deyle et al. (2008b), Rohweder et al. (2009), and Germa et al. (2010)), yet few
address the issue of localizing RFID tags with 3D sensor models.

Several researchers have proposed to fuse the measurements from other sensors, like
laser range finders, or visual sensors with RFID measurements, to determine the 3D po-
sitions of RFID tags. Germa et al. (2010) combined RFID measurements with visual
information to track people with a mobile robot in a crowded environment by fusing the
data from the camera and the RFID reader using a particle filter. They also proposed
several mechanisms to make the tracker more robust against occlusions and target losses
than vision-based systems. Moreover, they designed a control policy based on multi-
sensor data to follow a person. Although the experiments were only performed with
a color camera, the extension to a depth camera (RGB-D camera) is straightforward.
Deyle et al. (2009) generated an image representation, which characterizes the spatial
distribution of signal strength for an RFID-tagged object. In particular, the RSS image
is constructed by measuring the RSS value at each bearing while panning and tilting an
RFID antenna. By aligning the RSS image with the measurement from a color camera
and a 3D laser scanner, they are able to localize the RFID tags in 3D. Particularly, this ap-
proach is developed for the manipulation of a mobile robot in home environments. Their
approach enables the robot to discover the objects of interest, estimate their positions,
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Figure 4.1: Visualization of the detection counts (left) and mean RSS values (right) of an
RFID antenna with reference to different heights of RFID tags at full reader power level.
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Figure 4.2: (a) The mobile robot used for our 3D mapping experiments and the annotation
of the bottom antenna’s coordinate system (marked with pink). The xy-plane is parallel
to the ground plane and the z-axis is perpendicular to the xy-plane. (b) Antenna setup of
our Scitos G5 robot. Vertical (left) and side view (right).

approach them, and grasp them. All approaches proposed in the literature depend on the
fusion of measurements from additional sensors, e.g. cameras and laser range finders,
i.e. none of them addresses the problem of 3D pose estimation of tags solely based on
RFID measurements.

The idea of estimating the 3D poses of tagged objects with a pair of antennas is similar
to the idea of stereo vision. Stereo vision aims at extracting the 3D position of an object
by comparing the images from two different views on a scene taken from two cameras
(Mountney et al. (2010)). Two cameras are typically placed in a horizontal plane and
are usually separated by a distance called baseline. The distance from the object to the
camera system is inversely proportional to the disparity of the object which is computed
by a stereo matching algorithm. In our stereo antennas setup, we place two antennas at
different heights on the robots (see Figure 4.2) in order to determine the 3D position of a
tag by integrating the measurements from both antennas.

4.3 Mapping RFID Tags in 3D
We derived the Bayesian framework for estimating the positions of RFID tags in 2D
space given the measurements perceived by the robot in Section 3.3. Theoretically, Equa-
tion (3.3) also allows us to estimate the 3D positions of RFID tags by integrating several
detections at different 3D positions. There are two aspects we want to point out for lo-
calizing a tag in 3D. First, since our mobile agent only moves in the xy plane and the
antennas are fixed on the robot, it is impossible to determine the 3D position of an RFID
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(c) After 30th update with our stereo setup.

Figure 4.3: Visualization of 3D mapping using only the top antenna and the stereo anten-
nas setup. Particles with too small weights are neglected in our visualization. (a) After
processing 20 detections with only the top antenna, there is high uncertainty about the
position of the tag: the estimation of z is ambiguous, but the xy estimation is quite good,
as can be seen from the projections of the particles. (b) After the 30th update, it is more
clear that the particle filter converges to two regions that are symmetrical to the xy plane
of the top antenna. (c) By integrating measurements from a pair of antennas, after 30
measurements, the particles converge to one region and the ambiguity is resolved.
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tag by only a 2D sensor model. Second, we are not able to unambiguously determine
the height of an RFID tag using a 3D sensor model if the mobile robot carries only one
antenna or several antennas mounted at the same height. As shown in Figure 4.3, the
posterior probability density representation over the height of an RFID tag obeys a bi-
modal distribution due to the symmetrical characteristics of the antenna. However, by
integrating the measurements from a second antenna at a different height, this ambiguity
can be resolved, as shown in Figure 4.3c. Particularly, we employ a pair of RFID anten-
nas, which we call stereo antennas configuration in this chapter, since the two antennas
only differ in the z-coordinate and span a distance of b (called baseline), as shown in
Figure 4.2.

As in Section 3.4, we utilize a particle filter to estimate the 3D position of an RFID
tag. Here each particle xi consists of the three-dimensional coordinates of the tag, i.e.
xi = (xi,yi,zi). For the initialization of the particle filter, the x and y coordinates are
restricted by the maximum range of the RFID reader and the z coordinate is limited by
the maximum height of the tags (e.g. 3 m) in the environment.

In our implementation, the positions and weights of particles are expressed as double
values and kept in memory without compression. In the case of 2D pose estimation using
2D sensor models (see Chapter 3), we use N = 1000 particles, which takes approx. 1 ms
for each measurement update (cf. Section 4.6.4), to achieve a good mapping accuracy.
Therefore the algorithm can be run in real time in densely tagged-environments, where
the RFID reader may receive hundreds of detections per second. Approx. 45.7 MB
of memory are required to localize 2000 RFID tags in a store on-line. However, 3D
position estimation requires a larger number of particles, due to the additional dimension.
In order to get a good position estimation, we have to utilize a particle filter with 10000
samples. Hence, time complexity and memory consumption increase due to the increased
number of particles. To reduce the running time of our mapping module, we utilize KLD-
sampling to adapt the number of particles, as detailed in Section 4.4.

Since we assume the tags to be static in this chapter (i.e. tags do not change their
positions while the robot traverses the environment), we used a grid-based Markov lo-
calization approach for mapping RFID tags, i.e. we neither utilize motion information
to predict the movement of the particles nor execute resampling. This strategy is also
deployed by Hähnel et al. (2004) and Rohweder et al. (2009). For a comparison and
discussion of the particle filter related resampling/pertubation approaches, we refer to
Chapter 3, Joho et al. (2009), and the dissertation of Vorst (2011).

4.4 Adapting the Number of Particles
Fox (2003) first used the KLD-sampling to adapt the particle size for robot localization.
KLD-sampling is able to choose the number of particles dynamically with reference to
the current state of approximation. At each update step, it determines the number of par-
ticles required for a good approximation, in order to guarantee that with a probability of
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1−δ the error between the true posterior and the particle-based estimation is limited by a
predefined threshold ε . More precisely, the desired number of particles nχ is determined
by:

nχ =
1

2ε
χ2

k−1,1−δ (4.1)

here χ2
k−1,1−δ is the 1− δ quantile of the Chi-Square distribution with k− 1 degrees of

freedom. According to the Wilson-Hilferty transformation (see Johnson et al. (1995)),
χ2

k−1,1−δ is approximated as:

χ2
k−1,1−δ = (k−1)

{
1− 2

9(k−1)
+

√
2

9(k−1)
z1−δ

}3

here z1−δ is the 1−δ quantile of the standard normal distribution. Typical values of
z1−δ could be found at a prestored statistics table. k stores the number of support bins or
non-empty bins which is tracked at each sampling step of the particle filter. For the im-
plementation of the bins, one can use a fixed, multi-dimensional grid, or a more efficient
tree structure (see Koller and Fratkina (1998) and Moore et al. (1997)). Details about the
computation of χ2

k−1,1−δ can be found in Fox (2003) and Johnson et al. (1995).
We use a specialized version of the KLD-algorithm. In our application the tags are

assumed to be static, and we therefore neglect resampling and prediction. As a result of
this, the importance weights of the particles in the predictive distribution are not uniform
after the application of updates. Therefore, after sampling a particle from the predictive
belief, we keep tracking of the already chosen samples to not integrate them multiple
times into the adapted distribution, which otherwise would lead to a corruption of the
posterior. For that reason, the number of sampled particles nχ differs from the actual
number of particles kχ that are selected for the adapted distribution, since duplicate par-
ticles are skipped. To keep the diversity in our distribution, we introduce another param-
eter kχmin as a minimum threshold for the desired number of particles. As a result, we get
a static Monte-Carlo based representation of our target domain, where particle numbers
adapt to the current state of the estimation.

4.5 Utilizing Negative Information

Negative information has been successfully applied to object tracking (Koch (2007)) and
localization (Hoffmann et al. (2005)) of mobile robots. Similar to Chapter 3, we treat
non-detections as negative information for our stereo antennas configuration to improve
3D mapping accuracy.

As described in Section 3.7, non-detections are evidence that a tag is absent from a
certain area, which may be useful to infer the potential location of the tag. However, it
is difficult to balance detections and non-detections in practice. This is because, on the
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one hand, the particles often converge to a region with low detection likelihood due to
false negatives of non-detections, which is shown by Vorst (2011); on the other hand,
incorporating non-detections requires more computational time. To compensate for that,
we only consider non-detections when the specific tag is detected by at least one antenna
in our stereo antennas setup. Particularly, if antenna a+ detects the tag while a− does
not, we additionally apply the non-detection sensor model for antenna a−. The idea of
this is straightforward. Applying negative information may devalue the particles with
high likelihood due to false negatives, but by integrating the non-detection model only in
case of a detection, we minimize the false negative count.

4.6 Experimental Results

4.6.1 Setup
We use a Scitos G5 mobile robot (see Figure 5.1a) as the experimental platform. Our
stereo antennas configuration is shown in Figure 4.2b, which is different from the setup
used in Chapter 3. The experiments were conducted in an indoor environment with an
area of approx. 60 m2. We placed 64 UHF RFID tags (Alien Technology Squiggle) on
the furniture and the walls of the lab at different heights, ranging from 0.2 to 2.5 meters.
The positions of all tags were measured manually beforehand to provide the ground truth
for our experiments.

We manually steered the robot at different trajectories through the lab with a maxi-
mum velocity of 0.2 m/s. The robot traveled around 1.5 km with a duration of approx.
three hours and seven log files were recorded at the same time with a wide baseline stereo
antennas configuration (b = 1.1 m). Each log file consists of at least 2000 RFID mea-
surements and the associated true position of the robot. In total, approx. 438762 RFID
detections were recorded for the wide baseline configuration. The mean mapping accu-
racy was averaged by validating one tag using the sensor model learned from the rest
of the tags. In addition, we recorded three log files for a middle baseline configuration
(b = 0.7 m) and another three for a small baseline configuration (b = 0.3 m) to compare
the impact of various baselines on mapping accuracy. The three different configurations
of baseline width were obtained by fixing the bottom antenna and only moving the top
antenna, as visualized in Figure 4.2b.

4.6.2 Evaluation of 2D Mapping Accuracy
The 2D mapping accuracy using different sensor models was evaluated by the first series
of experiments. We used a particle number of 1000 for 2D sensor models. These particles
were spread uniformly in the xy plane with a fixed height z, e.g. z = 1.0 m. For 3D
sensor models, we equally distributed 13000 particles at various heights ranging from
0 to 2.4 meters with an interval of 0.2 m. Thus, the experimental results under various
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Table 4.1: Mean and standard deviation (mean± std.dev) of 2D mapping errors (in cen-
timeters) under the influence of different sensor models and various antenna setups.

Antenna setup Model dim. Detection likelihood model Combined model

Bottom
2D 39.0± 20.8 35.7± 24.4
3D 39.1± 21.8 33.1± 20.8

Top
2D 38.2± 18.6 40.1± 22.5
3D 36.2± 17.2 35.3± 17.2

Both
2D 32.6± 13.9 26.2± 16.1
3D 38.4± 18.6 23.4± 15.6

sensor models are considered to be comparable, since the xy density of particles for
the 3D sensor model is identical to the 2D sensor model. We neither performed KLD-
sampling nor incorporated negative information in the experiments. The results are listed
in Table 4.1, in which we combined different sensor models and antenna configurations.
Obviously, using both antennas achieves better results than only one antenna for both
2D and 3D sensor models. We also observed that for all experiments conducted with the
combined model, the 3D sensor model clearly improves mapping accuracy. For example,
with only the top antenna in use, the mean mapping error is reduced from 0.401 m to
0.353 m by applying the 3D sensor model. This gives us an improvement of 12.0 %
compared to the 2D sensor model.

As a comparison, we evaluated the approach presented by Joho et al. (2009). In case
of a single antenna, the mean mapping error (i.e. 0.357 m for bottom antenna only) is
higher than the error (0.29 m) obtained by Joho et al. (2009). The reason is that in our
work the tags are distributed at different heights, while the tags are located roughly at the
same height in Joho et al. (2009). However, with a pair of antennas and the 3D sensor
model, we achieve a mean error of 0.234 m for 2D pose estimation, which is equivalent
or even slightly better than the results in Joho et al. (2009).

4.6.3 Influence of Negative Information

The influence of negative information on mapping accuracy was investigated in further
experiments. The algorithm was tested using a fixed number of particles (N = 13000)
without KLD-sampling. As can be seen in Figure 4.4a which visualizes the mapping
results with and without integrating negative information, utilizing negative information
improves the mapping accuracy. For example, the mean height error is reduced from 0.38
m to 0.28 m, which is an improvement of approx. 26.3 %. This is due to the fact that
we can exploit the stereo setup of our antennas by incorporating negative information: if
both antennas detect a tag, we can infer that the tag is probably between the two antennas;
otherwise, if only the top antenna detects the tag, it is likely that the tag’s location is in
the region closer to the top antenna.
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Figure 4.4: Performance evaluation under different parameters. (a) Mapping error with
and without negative information; (b) Mean and standard deviation of absolute mapping
error versus mean computational time of each detection event under different numbers
of particles.
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4.6.4 Evaluation of 3D Position Estimation

As a third series of experiments, we varied the number of particles N to evaluate the
performance of 3D position estimation, as depicted in Figure 4.4b. We incorporated
negative information in these experiments but did not perform KLD-sampling. Our al-
gorithm was tested on an Intel Core i5-2410M @ 2.3 GHz CPU, with 4 GB RAM. As
can be seen in Figure 4.4b, we obtain nearly the same mapping results for N ≥ 13000,
but at the same time the computational time increases drastically. With N = 96000, we
obtain a mean absolute 3D mapping error of 0.40 m. As expected and shown in Figure
4.4b, the mapping errors increase for smaller N. Additionally, we noticed that the error
in height estimation is usually larger than the error in the xy-plane in all experiments.
For example, with N = 13000, the mean height error is approx. 0.28 m, which is much
larger than the mean error of x or y: 0.23√

2
≈ 0.16 m. This can be explained as follows: x

and y positions of the tags are estimated through various measurements collected by the
mobile robot that moves in the xy plane, while z is only determined by the difference of
two RFID antennas. Thus the deviation of measurements in xy direction is much higher
than in the z direction. As a result, we do not get a good z-estimation due to the lack of
distinct detection samples in the z-axis. We can also see in Figure 4.4b the computational
time required for 3D mapping is quite high: we need approx. 52 ms (for N = 48000) to
process one tag detection and thus it is impossible to run the algorithm in real time for
densely tagged environments, where the robot may receive hundreds of RFID readings
per second. However, as shown in Section 4.6.6, by applying KLD-sampling to adapt
the number of particles, we are able to run our algorithm online, meeting the real-time
requirements.

4.6.5 Influence of the Baseline of the Stereo Antennas System

In the next series of experiments, we examined the mapping accuracy under various
baselines of our stereo antennas configuration. We did not perform KLD-sampling, but
negative information was utilized in these experiments. Due to the physical and technical
limitations of our robot, we are not able to set the baseline of the antennas wider than 1.1
m. As can be seen in Figure 4.5, wider baselines result in better mapping results. With
small baselines, the mapping error is notably worse. For example, the mapping error
of height with the smallest baseline (0.3 m) is nearly twice as high as the error of the
widest baseline (1.1 m). This is because our stereo antennas setup degrades to a single
antenna for small baselines, since the difference in the measurements is dominated by
the characteristic noise from RF-propagation. In contrast, if the baseline is chosen too
wide, there is no overlap between the two RF-fields, and the arrangement degrades to a
simple antenna-array with two distinct (single) antennas. Since the possible height on
the robot is limited, the second case is of no concern to us under the given configuration
(i.e. full reader power level).
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4.6.6 Performance Evaluation of KLD-sampling

To examine the performance of KLD-sampling, we conducted the last series of exper-
iments by varying the values of ε and kχmin. This technique is also recommended by
Fox (2003). We used a bin size of 0.5 m ×0.5 m×0.5 m and fixed δ and nχmax to 0.01
and 300000 respectively. Furthermore, we initialized the particle filters with N = 13000
and integrated negative information for all experiments. Figure 4.6 plots the number of
particles as a function of KLD-sampling iterations and ε . As can be seen, the number of
particles is reduced below nχmin (e.g. 1000) after several updates of the measurements.
Moreover, with a larger ε , the number of required particles drops faster than for a smaller
ε . For our experiment, the number of particles is reduced below kχmin (e.g. 1000) after
several updates (e.g. five or ten) of the measurements.

Figure 4.7 illustrates the 3D mapping accuracy under various ε and kχmin. A smaller
ε yields better results, while a larger ε leads to worse mapping accuracy. Moreover, it is
obvious that a larger kχmin leads to better results for all ε values. However in practice, we
need to consider the trade-off between the time complexity and the mapping accuracy.
Mapping with a larger kχmin results in a good position approximation. On the contrary,
utilizing too many particles requires more computational time. For example, the differ-
ence of 3D mapping error between kχmin = 1000 and kχmin = 5000 for ε 5 0.01 is less
than two centimeters, which is relatively low as compared to the previous mean absolute
mapping error of approx. 0.4 m, while the time consumption is doubled at the same
time. Hence, it is reasonable for us to choose kχmin = 1000 rather than kχmin = 5000
for ε 5 0.01 considering the balance between efficiency and accuracy. In addition, for
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kχmin = 1000 and ε 5 0.01, KLD-sampling only uses approx. 7 % of particles of the
fixed sampling approach, but yields nearly the same good mapping accuracy.

4.7 Conclusions and Future Work
In this chapter, we presented a novel 3D sensor model, which considers both detection
likelihood and signal strength for localizing UHF RFID tags with a mobile agent. The
contributions of this chapter are summarized as follows:

• We pointed out that our 3D sensor model can be used to determine the 3D position
of RFID tags by mounting two antennas at different heights on the robot.

• We demonstrated that 2D mapping accuracy can be improved by applying the 3D
sensor model.

• We utilized the negative information to further improve the mapping accuracy and
employed the KLD-sampling to perform the mapping task in real-time.

By using our stereo antennas setup and incorporating negative information, we are able
to localize RFID tags with a mean absolute localization error of 0.24 m in 2D and 0.40 m
in 3D with 0.28 m error for height. As compared to the existing 2D sensor model based
approaches, our 3D sensor model improves the 2D mapping accuracy by approx. 12.0 %
(from 0.401 m to 0.353 m). Additionally, utilization of negative information reduces the
mean absolute mapping error by approx. 26.3 % (from 0.38 m to 0.28 m) for height.
Moreover, with the KLD-sampling, we are able to save approx. 90 % computational
time, while the mean mapping error increases by two or three centimeters.

There are several possible extensions of this work. First, due to the limitation of
our hardware, we only used two antennas for our experiments, therefore it would be
interesting to see if the 3D mapping accuracy can be improved by rotating our stereo
antennas or installing more RFID antennas on the robot. Second, for 3D mapping of
RFID tags, we only applied the grid-based approach; hence it is interesting to investigate
if the same accuracy can be obtained by the particle filter based approach.
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Chapter 5

Path Following with RFID Tags in
Unknown Environments
In this chapter, we present a novel approach incorporating a combination of RFID and
odometry information into the motion control of a mobile robot for the purpose of path
following in unknown environments. Our method utilizes RFID measurements as land-
marks and makes the robot autonomously follow a path that was previously recorded
during a manual training phase. This chapter is organized as follows. After an introduc-
tion in Section 5.1, we review the related work in Section 5.2. Afterwards, we describe
our path following approach in Section 5.3. Then, the details of the motion control al-
gorithm are explained in Section 5.4. Finally, we present experimental results in Section
5.5 and draw conclusions in Section 5.6.

5.1 Introduction
Autonomous navigation of a mobile agent along a predefined path has many applications,
such as environmental surveillance, service, and security. Traditional methods usually
use a map or landmarks to represent the environment. The robot estimates its position
by matching the sensor data with the map or the landmarks and determines its path to
follow. This has been studied extensively for indoor robots with laser range finders by
scan matching (Lu and Milios (1997), Surmann et al. (2003), and Hähnel et al. (2003))
or by comparing the similarities of visual features from the camera images (Furgale and
Barfoot (2010) and Tang and Yuta (2002)). However, these methods require a significant
amount of sensing and processing power.

Due to its simple, reliable, and contactless way of identifying products, RFID has be-
come an emerging technology and thus has been used in many industrial environments,
like warehouses, stores or libraries. Given the present infrastructures, RFID navigation
features a cost-effective method if the robot is equipped with an RFID reader for inven-
tory tasks. Therefore, we propose a new method employing a combination of RFID and
odometry measurements for path following purpose.

In particular, we apply the teaching and playback scheme to perform this task, which
has already been successfully used in different navigation systems with various sensors
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(see Tang and Yuta (2002)). Precisely, during the teaching stage, the robot is manually
controlled to move along a desired path. RFID measurements and the associated mo-
tion information are recorded in an online-fashion as reference data in this phase. In
the second stage, the robot shall follow this path autonomously. Therefore, we compare
the current RFID measurements to the previously recorded reference data to estimate the
robot’s relative position with respect to the reference path. As a result, motion control
commands are generated by fusing the measured position and the reference motion data
to steer the robot. Our approach needs no prior information about RFID sensor models,
the distribution and positioning of the tags, and a map of the environment. Particularly, it
is adaptive to different reader power levels and various tag densities, which have a major
impact on the RFID performance. Extensive experiments with a Scitos G5 robot in dif-
ferent environments like a library, a supermarket, and hallways confirm the effectiveness
of our approach.

This work was presented at the 2012 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS 2012) (Liu et al. (2012)). Furthermore, this work
represents an extension of our previously published approach on path following using re-
ceived signal strength (RSS) only (Liu et al. (2011)), which received the best paper award
within the Symposium on RFID Technologies and Internet of Things at the 19th Interna-
tional Conference on Software, Telecommunications and Computer Networks (SoftCOM
2011). Through the integration of odometry data, the robot is able to navigate along more
complex paths, as opposed to following a straight route in a hallway in Liu et al. (2011).
Odometry, on the one hand, may be used to get quite accurate estimates of the change
in position over short periods of time, but on the other hand, is very sensitive to accu-
mulative error over long distances. Therefore, we utilize a combination of RFID as well
as odometry information embedded into a particle filter to compensate for the errors of
both and generate a new and reliable navigation system.

5.2 Related Work
Radio-based positioning systems have been widely researched in the literature. The
global positioning system (GPS), which was developed in the 1970s, provides the po-
sition information of an object in outdoor environments with an accuracy of several me-
ters. Other wireless devices, such as Bluetooth, Wifi, and RFID, are able to localize the
objects inside buildings with an accuracy ranging from several meters to centimeters. For
a comparison of different indoor positioning approaches, we refer to Vorst et al. (2008a).

Each RFID tag provides a unique identifier and thus can be used as the landmark
for the robot localization as well as navigation. However, the RFID reader does not
provide any information about the tag’s pose, therefore a number of model-based or
fingerprinting-based techniques have been proposed for the localization of mobile robots.

Radio frequency (RF) location fingerprinting approaches use the radio signal from
RFID readers, WiFi access points, GSM (global system for mobile communications), or
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(a) (b)

Figure 5.1: (a) RFID-tagged library scenario; (b) High frequency (HF, red) and ultra high
frequency (UHF, blue) tags attached to the books. Only the passive UHF tags are used
throughout our experiments - more information on the environment as well as the project
(AmbiSense) can be obtained from http://www.ambisense.org.

other RF-based sensors to represent the observations. The actual location of an agent
is estimated by matching the current observations with the recorded measurements in a
database. These approaches do not rely on an explicitly predicted model of the sensor’s
behavior. Instead, an a priori set of fingerprints, which expresses the sensor’s output at
sampled locations in the global frame, has to be recorded in advance. Fingerprinting-
based approaches are therefore assumed to be more accurate and robust with regard to
location-specific distortions; for this reason, we use fingerprints in our path-following
approach.

5.2.1 Model-based Localization
Locating a mobile agent using a model-based approach is usually considered to be the
inverse process of mapping, as described in Chapter 3 and Chapter 4. Hähnel et al. (2004)
utilized a probabilistic sensor model, which describes the likelihood of a tag detection
event, to localize mobile robots given the mapped tags. They also showed that a fusion
of the RFID and the laser data makes the global localization of a robot faster than the
laser data alone. The average positioning error reported by the authors is approx. 0.5 m.
Joho et al. (2009) incorporated the signal strength into the sensor model to improve the
localization accuracy of a mobile robot. The combined sensor model achieves an average
localization accuracy of about 0.35 m, which is an improvement of 30% as compared to
the previous tag detection model.

Miller et al. (2010) fused the RFID measurements with the LIDAR data into a Rao-
Blackwellized particle filter to simultaneously localize the vehicle and map RFID tags
attached to the assets. A combination of RFID and LIDAR measurements enables the
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mobile robot to reliably localize itself in large and symmetric environments. To re-
duce the computational cost introduced by particle filters, Boccadoro et al. (2010) used
Kalman filters for the localization of a mobile robot. Their experiments showed that,
on the one hand, for the environment with low tag densities, the Kalman filter achieves
the same localization accuracy as the particle filter, while the Kalman filter gives worse
results in the environment with high tag densities; on the other hand, the computational
time for the particle filter increases with the number of tags in the environment, whereas
it is constant for the Kalman filter.

Some researchers employed RFID tags in a special scenario, called smart floor, for
the localization and navigation of the mobile robot. A large number of RFID tags have
to be installed under the floor to provide the position information of the robot. HF tags
are usually chosen for this scene and in most case the tags must be assigned with some
prior information about their global positions. Some representative works are done by
Kämpke et al. (2008), Senta et al. (2010), Johansson and Saffiotti (2009), Kodaka et al.
(2008), and Park and Hashimoto (2009).

Recent research also explores the application of UHF RFID for navigation and path
following purposes using mobile robots. In most of the applications, a precise mapping
of the RFID tags is not required. Kulyukin et al. (2006) used RFID labels as landmarks
for the navigation of visually impaired people in structured indoor environments. The
RFID tags are deployed in the environment and serve as topological nodes for the navi-
gation of the robot. The robot is able to navigate itself based on the laser data and execute
different actions (i.e. follow-hallway, make-u-turn, turn-left, and turn-right) according to
the information stored in the tags. Gueaieb and Miah (2009) utilized the phase difference
of RFID signals for the navigation task. The mobile agent is able to follow virtual paths
that link the tags’ orthogonal projections to the ground. Kim et al. (2007) developed
an automated location sensing and docking system by estimating the direction of arrival
signals via a dual directional RFID antenna.

5.2.2 Fingerprinting-based Localization
Radio fingerprinting-based approaches show a huge advantage over model-based ap-
proaches, since they are able to capture the unpredicted features in the existing radio
infrastructures. In general, radio fingerprints represent a specific location by the signal
strength information from multiple wireless sensors. The position estimation of the ob-
ject is achieved by matching the observed measurement with the collected samples in the
database. Fingerprinting technology is based on the fact that the radio signal propaga-
tion is hard to predict in practice due to the impact of many environmental factors. A
thorough survey on radio fingerprinting techniques can be found at Kjærgaard (2007).

Bahl and Padmanabhan (2000) introduced a fingerprinting-based system (RADAR) to
localize and track mobile agents. By observing the signal strength from several 802.11
access points, they are able to locate a laptop in an office building. They also evalu-
ated the tracking accuracy between a fingerprinting-based approach and a propagation
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model-based approach. They showed that the propagation model-based approach pro-
vides a cost-effective way to track objects, since it does not require any empirical mea-
surements to generate the map of the fingerprints (i.e. the signal strength map). However,
the fingerprinting-based approach achieves better tracking results than the propagation
model-based approach, since it is able to characterize the location-dependent factors in
the existing radio infrastructures.

Several distribution-based extensions have been proposed (e.g. Youssef et al. (2003)
and Ladd et al. (2005)) to achieve a better localization accuracy of the object. For exam-
ple, Youssef et al. (2003) improved the tracking accuracy by modeling the noisy features
of the radio signals with probabilistic distributions. They reduced the computational cost
by searching the radio map with a technique called joint clustering (JC). Ladd et al.
(2005) used a sensor fusion approach embedded in a Bayesian framework to track a
moving object (i.e. a robot or a laptop). They showed that they are able to track mobile
devices reliably, with an error less than 1.5 meters, which is a significant improvement
to the original RADAR system (with a mean tracking error of 2.5 meters). Otsason et al.
(2005) utilized wide GSM-based signal strength as a representation of the fingerprint
for indoor localization in large multi-floor buildings. They used k-nearest neighbors
algorithm for the localization and achieved a median accuracy of 5 meters in their exper-
iments.

In the field of RFID-based fingerprints, Lim and Zhang (2006) developed an indoor
positioning system based on RFID fingerprints. In their approach, a set of measurements
(i.e. samples of RFID reading patterns) are first collected at discrete locations in the
environment by a mobile RFID reader. Afterwards, the location of a moving carrier
(i.e. a human or a robot) is determined by a pattern recognition algorithm. The mean
localization error is less than one meter. The proposed approach is expected to be able to
solve the positioning problems of mobile devices in industrial environments where RFID
tags are employed, since this approach does not rely on the tag distributions as well as
the reader configurations.

The data recording process can be further automated using a mobile robot due to its
autonomy and mobility. In this case, the fingerprints are annotated with the locations of
the robot in the global world frame. Furthermore, the odometry provided by the robot
can further facilitate the localization of the robot. This approach is comprehensively
evaluated by Schneegans et al. (2007), Vorst and Zell (2010a), Vorst et al. (2011), and
Vorst et al. (2011). They localized the robot with a particle filter by matching the current
fingerprints with the pre-collected samples using vector space similarity measures and
weighted k-nearest neighbors (WKNN). The experiments in a laboratory and a corridor
environment with a total size of 125 m2 showed that they are able to localize the robot
with a mean error of about 0.2 m.

Gaussian processes, which work as a non-parametric approach for probabilistic model-
ing, have been widely used for modeling the signal strength in the context of radio-based
localizations (Schwaighofer et al. (2004), Ferris et al. (2006), and Seco et al. (2010)).
Among these works, Schwaighofer et al. (2004) presented an approach to estimate the
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position of a mobile user using the signal strength obtained from a cellular network. They
used a Gaussian process model, which represents the distribution of signal strength, for
the position estimation. An advantage of the Gaussian process model is that it can be built
up based on a small number of pre-collected measurements. The mean tracking accuracy
reported in their experiments in a large hall environment with a size of 250 m×180 m
is 7.5 meters. Ferris et al. (2006) extended this work by using a Bayesian filter. More
precisely, they constrained the motion of the user by modeling the environment with a
mixed graph. The average tracking error in a three floors building with 54 rooms and 75
access points is about 2.1 meters. This approach is further implemented and evaluated
by Seco et al. (2010) for the active RFID network. Their experiments with 71 tags in
a building with an area of approx. 1600 m2 achieved a median localization error of 1.5
m. They also showed that the Gaussian process model gives a better performance than
parametric-based models.

5.3 Algorithm Overview

5.3.1 Data Recording During the Teaching Stage
During the teaching stage, the robot is manually controlled to move along a desired path
in an RFID tagged environment. While traversing the environment, arrays of RSS values
ft of the detected tags (see Section 3.3 for more detail) as well as odometry observations
mt are gathered on the fly and stored as reference fingerprints Ft at each time step t: Ft =
(ft ,mt). Here mt = (vt ,ωt), with vt being the translational velocity and ωt the rotational
velocity respectively. The resulting set of fingerprints M = (F1,F2, ...) expresses the
desired path in the spatial domain as pairs of RFID and odometry observations. In our
configuration, the robot has two antennas, so A = 2. The reference fingerprints are sorted
ascending over time and each fingerprint has a unique index i ∈ {1, ..., I}, where I is the
total number of reference fingerprints.

5.3.2 Navigation of the Robot in the Playback Stage
The goal of this stage is to make the robot autonomously follow a previously defined
path represented by fingerprints only. Firstly, the robot’s initial position shall not be
constrained to the start position of the recording, and additionally, the mobile agent shall
be able to compensate for small relative offsets to the recorded path. Using odometry
only, an offset to the reference path would obviously lead to a bad result. Therefore,
we utilize RSS as well as index differences between two antennas by comparing the
current RFID observations with the reference fingerprints for position corrections, as
detailed later (see Section 5.3.4 and Section 5.3.5). As a result, the robot can adjust its
position and movement in this stage based on the RFID measurements and deal with the
cumulative error of the odometry.
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(a) (b)

Figure 5.2: Index estimation: (a) Robot following path with two antennas (orange, pur-
ple), RFID tags (green), reference fingerprints (blue), and the closest reference finger-
prints (red box). (b) Respective similarities of left and right antenna, which are used to
estimate the index difference as well as the overall weighted similarity.

5.3.3 Similarity Measures

The similarity function sim(a,b) returns a positive scalar value, describing the similarity
between two vectors a and b. In our approach, we individually compute the similari-
ties between the current RFID measurement gt and the reference fingerprint f j for each

antenna sim
(

g(a)t , f(a)j

)
. The overall similarity sim(gt , f j) of the current observation to a

reference fingerprint is calculated by weighting the individual similarities with the num-
ber of tags detected at the respective antennas.

sim(gt , f j) =
A

∑
a=1

sim
(

g(a)t , f(a)j

) n
(

g(a)t , f(a)j

)
∑A

a=1 n
(

g(a)t , f(a)j

) (5.1)

Here, n
(

g(a)t , f(a)j

)
is the maximum number of detected tags in g(a)t as well as in f(a)j .

In our experiments, we use the cosine similarity (COS) which has also been utilized for
trajectory estimation and localization purposes in Vorst and Zell (2009) as well as Vorst
and Zell (2010a).

sim
(

g(a)t , f(a)j

)
=

∑L
l=1 g(a,l)t f (a,l)j√

∑L
l=1

(
g(a,l)t

)2
√

∑L
l=1

(
f (a,l)j

)2
(5.2)
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where g(a,l)t and f (a,l)j mean the measured values (signal strength in our case) of tag l in

g(a)t and f(a)j respectively. For a comparison of different similarity measures, we refer to
Vorst et al. (2011).

5.3.4 Orientation Estimation with Particle Filters
We approximate the angular deviation of the robot with respect to the expected path as
the index difference between the left (i(0)t ) and the right (i(1)t ) antenna (see Figure 5.2):

et,θ = i(0)t − i(1)t (5.3)

An estimate for the index of the current fingerprint in the reference fingerprints can be
calculated by a mean of the indices over both antennas:

it =
i(0)t + i(1)t

2
(5.4)

Each antenna’s index is estimated by using independent particle filters. More precisely,
the state of each antenna is represented by N samples (particles), that are updated after
receiving new RFID observations. Each particle consists of a hypothesis index x(n,a)t

and an appropriate weight w(n,a)
t . The estimated index of the antenna is calculated by a

weighted mean over all particles:

i(a)t =
N

∑
n=1

x(n,a)t w(n,a)
t (5.5)

Particle filters perform three central steps iteratively:

1. Prediction: The position of each particle at time step t is predicted by its previous
state and an uncertainty or noise model:

x(n,a)t = x(n,a)t−1 +N (µ,σ2) (5.6)

Here, N (µ,σ2) is Gaussian random noise added to the control input, with mean
µ and standard deviation σ :

µ =
vt

vt,e(K f )

In our case, the particles’ positions are actually expressed in the reference finger-
prints’ index-frame and represented by 1D scalar values (e.g. if a particle’s position
is between f5 and f6, xt ∈ [5,6]). µ is computed from the current velocity (based
on the control input mt) and the estimated reference velocity (as explained in more
detail in Section 5.4).
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2. Correction: The weights of the particles are updated according to the observation
model p(g|x,M), i.e. the likelihood of measurement gt given the current sample
set xt and the M reference fingerprints:

w(n,a)
t = η(a)

t w(n,a)
t−1 p

(
g(a)t |x

(n,a)
t ,M

)
(5.7)

Here η(a)
t is a normalizing factor which ensures that ∑N

n=1 w(n,a)
t = 1 and M is the

representation of the desired path (as explained in Section 5.3.1).

In our method, the observation model p(gt |x(n,a)t ,M) represents the likelihood of
observing the fingerprint gt from the sample position x(n,a)t given the M reference
fingerprints and is computed individually for each antenna. Let f j1, ..., f jK be the K
most similar reference fingerprints compared to gt (according to Equation (5.1)).
We extract those by comparing the current measurement gt to the K +1 reference
fingerprints centered around fit , i.e. {f j1, ..., f jK} ∈ [fit−K, fit+K]. This improves the
robustness and reduces the computational cost if the number of reference finger-
prints is large.

p(g(a)t |x
(n,a)
t ,M) =

K

∑
k=1

sim(g(a)t , f jk)exp(−1
2

d2(x(n,a)t ,x jk)) (5.8)

where d2(·) is a distance measure applied to the indices of the respective finger-
prints g and f

d2(x(n,a)t ,x jk) =
(x(n,a)t − x jk)

2

δd
(5.9)

and δd is the bandwidth parameter of the translational displacement component.
As a result, the particles close to the similar reference fingerprints will get awarded
by the observation model using Equation (5.8).

3. Resampling: If the effective sample size (ESS) falls below a predefined threshold,
e.g. N/2, resampling is performed and all degenerated particles are replaced.

5.3.5 Estimation of the RSS Difference

The distance of the robot to the recorded path is expressed as the weighted average over
the RSS differences between the current fingerprint and the K most similar reference
fingerprints:

et,d =
1

∑K
k=1 sim(gt , f jk)

K

∑
k=1

sim(gt , f jk)dt(gt , f jk) (5.10)
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Where dt(gt , f jk) is the RSS difference of the fingerprints gt and f jk . The idea of using
the K most similar reference fingerprints is to obtain a robust estimation of the RSS
difference. We use this difference as an approximation for the distance of the robot to
the reference path. Since in our setup (see Figure 5.1a) the two antennas span an angle
of 180◦, dt(gt , f jk) can be expressed as:

dt(gt , f jk) =
L

∑
l=1

A

∑
a=1

(−1)a(g(a,l)t − f (a,l)jk ) (5.11)

5.4 Control Algorithm

Both the odometry and the RFID measurements are used for the navigation of the robot.
The movement of the robot is divided into two independent components: translational (v)
velocity and rotational velocity (ω). Let Km and K f be two manually set scalar parame-
ters describing the number of the closest reference fingerprints taken for the estimation
of v and ω , respectively. Then the estimated velocities vt,e and ωt,e can be computed as
the weighted average over the K ∈ {Km,K f } closest reference fingerprints:

ωt,e(K) =
1

∑it+K
k=it sim(gt , fk)

it+K

∑
k=it

sim(gt , fk)ωk (5.12)

vt,e(K) =
1

∑it+K
k=it sim(gt , fk)

it+K

∑
k=it

sim(gt , fk)vk (5.13)

The parameter Km is used to control the translational speed vt . It reduces the current
speed of the robot to prepare for a turn. The translational velocity vt is computed as
follows: {

vt = vt,e(Km), ωt,e(Km)>
ωmax
Km

vt = vmax, else
(5.14)

ωmax is the maximum rotation speed among all reference fingerprints. K f determines
whether the robot should rely on the RSS measurements during the navigation stage and
determines the rotational speed ωt . The rotational velocity ωt is defined as:{

ωt = ωt,e(K f ), ωt,e(K f )>
ωmax
K f

ωt = ωt, f , else
(5.15)

ωt, f is the PID controller component, that combines the orientation et,θ as well as the
RSS difference et,d to ensure that the robot follows the reference path. Precisely, we use
two proportional coefficients (P= [Ko,Kr]), as shown in Equation (5.16), to combine the
orientation and RSS difference together to make the robot follow the trajectory recorded
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(a) (b)

Figure 5.3: The two experimental environments. (a) A library (9 m×20 m) with shelves
(red boxes) of books tagged with RFID labels. (b) Hallway environment (50 m×80 m)
which consists of an artificial supermarket laboratory (red box), a computer museum
(green box), and corridors (orange boxes). Especially the corridor (dashed orange box) is
used to evaluate the performance of our approach under different parameters like various
tag densities.

at the teaching stage:

ωt, f = P · [et,θ ,et,d]
T = Ko · et,θ +Kr · et,d (5.16)

Since in our case, the RFID sample frequency is 2 Hz and the robot needs a certain time
to decelerate from a high speed, we constrain Km to be larger than K f , otherwise the robot
would deviate from its tracking path. For further details we refer to our earlier work (Liu
et al. (2011)).
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Table 5.1: Description of the experimental data: ranges (min.-max.), mean values (∅)

Environment
Power
Level
(dBm)

Trajectory
length

(m)

Duration
(s)

Number of Tags
detected per

inquiry

Number of
unique tags

detected

Library 30.0 50.76 538 10-144, ∅: 50.0 3313
Library 27.0 52.86 536 5-136, ∅: 33.6 2397
Library 24.0 53.12 533 3-70, ∅: 17.5 1363
Hallway 30.0 140.73 1455 0-210, ∅: 21.2 725

5.5 Experimental Results

5.5.1 Setup

The experiments were carried out with a Scitos G5 service robot from MetraLabs, as
shown in Figure 5.1. The laser scanner is used throughout our experiments to provide
the ground truth. RFID does not provide any obstacle information. To achieve obstacle
avoidance, one needs to utilize other sensors, such as laser range finders, optical sensors,
or sonar sensors. Note that the focus of this chapter is not obstacle avoidance, for which
we employ a laser range finder. One may argue that if one already has a laser range
finder installed on a mobile robot, it is unreasonable to use much less precise RFID
measurements for path following. However, this chapter shows it is possible to use
RFID fingerprints alone for path following in RFID tagged environments and this can
be done without knowing a precise map of the environment. In our experimental setup,
two antennas are installed with a height of 0.8 m and span an angle of 180◦, which
is different from the configurations used for mapping of RFID tags in Chapter 3 and
Chapter 4.

We carried out our experiments in two kinds of environments: a library and a large
indoor environment consisting of mainly hallways, as depicted in Figure 5.3. Firstly, we
tested our approach in a single corridor environment under various tag densities to obtain
an optimal set of parameters. In a final stage, we evaluated and verified the effectiveness
and robustness of our method in a large hallway environment and a library environment
(Figure 5.3b and Figure 5.3a).

The library contains about 7,000 books that are labeled with passive UHF RFID tags
(Alien Technology Squiggle, ISO/IEC 18000-6C), as shown in Figure 5.1b. The books
are distributed on the shelves at different heights reaching from 0.2 m to 3 m. We addi-
tionally placed tags on the walls of the adjacent corridors (at intervals of about 0.5 m and
different heights) to ensure an appropriate tag density in the untagged areas. For the sec-
ond environment, that was partly also used by Vorst et al. (2011) and Vorst et al. (2008b)
(see Figure 5.3b), we additionally placed 250 tags on the walls of the long hallway part
(see solid orange box in Figure 5.3b). These tags were distributed at different densities
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to verify the robustness of our algorithm under various experimental setups.
For the teaching stage, we manually steered the robot in the corridor and recorded ref-

erence log files under four kinds of tag densities, namely highest (23.0 tags per inquiry),
high (14.7 tags per inquiry), middle (7.8 tags per inquiry), and low (6.1 tags per inquiry).
The true positions of the robot, computed with a laser-based Monte Carlo localization
method, were recorded at the same time. For the purpose of comparing the performance
of our approach under similar conditions, the recording of the references was performed
on similar paths. The sample frequency of the RFID reader was set to 2 Hz and the
maximum speed of the robot was limited to 0.1 m/s. In the library, three log files under
different RFID power configurations were also recorded as reference data. As shown in
Table 5.1, approx. 1100 measurements were recorded for each log file, with a distance
traveled of about 50 m and a duration of about 10 minutes. In the hallway environment,
the robot traveled around 140 m and the tag density was slightly lower.

The ideal parameters of the P-controller in our experiments depend on the RFID sam-
ple period and the maximum robot speed that the reference fingerprints were recorded
at. We need several trials to adjust the control parameters (nearly 4 trials, which usually
take 5 minutes) if the configurations of the experiment are different. In our experiments,
the maximum robot speed and RFID sample period are fixed during the teaching phase.
Therefore, we set P = [0.008,−0.06].

5.5.2 Preliminary Results

Distance Estimation

We first did some experiments to observe how the RSS difference changes when the robot
stays at different positions in the corridor. In these experiments, we manually controlled
the robot moving like a cosine function through the corridor. In Figure 5.4, we plotted
out the RSS difference with K = 1 (the case without smoothing, i.e. the original RSS
difference) and K = 5 (the case of smoothed RSS difference) using Equation (5.10). It
can be seen that the position of the robot and the corresponding RSS difference have
some consistency. When the robot moves on the left side of the corridor (i.e. y > 0 in
Figure 5.4a), the RSS difference is positive. Otherwise, when the robot travels on the
right side of the corridor (y < 0 in Figure 5.4a), the RSS difference is negative. It can
also be seen in Figure 5.4 that the RSS difference is nearly proportional to the distance
between the robot and the expected trajectory. This property makes the later navigation
feasible.

Robustness Against Disturbances

We examined the robustness of our approach in the next series of experiments. We
started the robot at the center of the corridor with initial orientations of 45◦ and -45◦

to the expected trajectory. As shown in Figure 5.5, the robot is capable of navigating
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(a) (b)

Figure 5.4: Preliminary results indicate that RSS differences may be used to infer the rel-
ative position of the robot. (a) Actual trajectory of the robot. (b) Original and smoothed
RSS differences.

through the corridor regardless of the initial angles of the robot. To further test the
stability of our algorithm, we added some human disturbances while the robot navigated
through the corridor (see in Figure 5.5). The orientation of the robot was altered with
sudden disturbances at positions A, B, C, and D (nearly 40◦). The results show that the
robot is able to detect the changes of orientation quickly and adjust its heading back to
the expected trajectory. Also, it can be seen that the navigation does not converge due to
the noisy features of the RFID measurements (signal strength). Although a window filter
and a particle filter are used to deal with the uncertainty, the noise still exists.

Different Reader Sampling Frequency

The influence of various RFID sample periods was investigated in the next experiments,
as shown in Figure 5.6. In these experiments, the robot started at nearly the same pose
and moved at a maximum speed of 0.3 m/s. We measured the mean and standard devi-
ations of absolute tracking error (see Figure 5.6b). The results show that lower sample
periods (i.e. higher sample frequencies) lead to smoother trajectories and lower absolute
tracking errors than higher sample periods. This is obvious since the response of the con-
troller at a lower sample period is faster. With a low sample period of 0.2 s, we achieved
a mean absolute tracking error of 0.14 m, as shown in Figure 5.6b.

5.5.3 Impact of Particle Filters

The influence of the number of particles (N) on the tracking accuracy and the run-times
of the navigation was examined in the next series of experiments. The algorithm was
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A B C D

(a)

A B C D

(b)

Figure 5.5: Influence of different initial orientations on the navigation of the robot. (a)
Tracking error. (b) Actual orientation of the robot under different disturbances.

(a) (b)

Figure 5.6: Influence of different sample periods on the navigation of the robot. (a)
Tracking error. (b) Mean and standard deviation of the tracking error.
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Table 5.2: Tracking errors and average run-times for various number of particles in the
hallway environment with a high tag density configuration.

Number of
particles (N)

Mean ± std. dev. of
tracking errors (m)

Max. tracking
errors (m)

Run-times
(s)

50 0.1094±0.0806 0.3486 0.010
100 0.0946±0.0530 0.4412 0.011
500 0.0659±0.0377 0.1748 0.015

1000 0.0577±0.0484 0.1917 0.029
2000 0.0660±0.0554 0.2287 0.041

0 0.05 0.2 0.5 1.0 10.0 100.0 500.0
0
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Figure 5.7: Mean and median tracking errors for various noise scales σ .
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(a) (b)

Figure 5.8: Impact of the number of particles on the performance of the orientation track-
ing. (a) Actual orientation of the robot. (b) Index difference using various numbers of
particles.

running on an Intel Core i5-2410M @ 2.3 GHz CPU, with 4 GB RAM. As shown in Table
5.2, the tracking results get worse with small N (e.g. N=50 or 100). We observed that
the robot could not navigate with smaller N than 20. With N > 100, we achieved nearly
the same navigation accuracy. On the other hand, for larger N, more computational time
is required due to the increased number of particles.

Moreover, we investigate how the number of particles influences the performance of
the orientation tracking in our algorithm. We remotely controlled the robot to rotate
quickly for a certain angle and stopped it for several seconds. We repeated this several
times. Finally, we applied a particle filter with different number of particles to observe
the performance of our algorithm.

The index differences with different numbers of particles and the actual orientation
of the robot are shown in Figure 5.8. It is obvious that the largest number of particles
achieves the best tracking results. A large N is fast at tracking the orientation changes,
but it also costs more run time. The tracking abilities of 100 particles, 500 particles, and
2000 particles do not have so much difference, but the run times increase rapidly (11 ms,
15 ms, and 41 ms for N=100, 500, and 2000 respectively as shown in Table 5.2).

In the next series of experiments, we investigated the stability of our approach for
various noise-levels (σ ) added to the odometry input, as shown in Figure 5.7. For a small
σ (less than 0.2) the result is notably worse, whereas a large σ only decreases the tracking
accuracy slightly. Obviously, too small σ values lead to an underestimation of the actual
odometry error and thus give bad results. On the other hand, if the error is assumed to
be too high, the particles are spread more and the overall particle density becomes lower.
Still the estimation domain is completely sampled and covered with particles, whereas a
lower particle density leads to slightly worse results due to the lower resolution. Finally,

89



Chapter 5 Path Following with RFID Tags in Unknown Environments

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

K

M
ea

n 
an

d 
st

d.
de

v.
 tr

ac
ki

ng
 e

rr
or

s

 

 
highest density
high density
middle density
low density

Figure 5.9: Mean and std. dev. of tracking error for various tag densities.

the best results regarding the experiments were achieved with σ = 1.0, which seems to
give the best estimation of the control input’s error.

5.5.4 Influence of Different Tag Densities

We fixed N = 1000 and σ = 1 and measured the effectiveness of our approach for vari-
ous tag densities and different values of K (the closest reference fingerprints, see Section
5.4). The experiments were carried out in a corridor in front of the supermarket labo-
ratory. The results are shown in Figure 5.9. As can be seen, higher tag densities lead
to better results and increase the precision of our approach. For example, as compared
to the environment with the lowest tag density, the environment with highest tag density
improved the tracking accuracy by approx. 0.5 m (for K = 8). Moreover, we observed
that the robot could not follow the path at a maximum speed greater than 0.2 m/s for
environments providing low tag densities. In case of higher densities, the robot was able
to track the path at a maximum speed of 0.7 m/s.

Generally, the choice of K = 8 produced the best results for high tag densities. Sur-
prisingly, this is not the case if the environment features middle and low tag densities. It
is difficult to explain the direct relationship between the tracking accuracy and K under
middle and low tag densities. Still, an optimization of K generates an enhancement in
navigation precision up to 0.13 m and 0.2 m for environments with middle and low tag
densities respectively and thus has a major impact on the tracking accuracy.
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Figure 5.10: Speed vs. accuracy. (a) Tracking accuracy under different maximum speeds
vmax and Km; (b) Average navigation speed. For Km = 8, the speed of 0.4 m/s was too
high.
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Figure 5.11: Impact of different reader power levels and K f on the tracking error.

5.5.5 Parameter Evaluation
In the next experiments, we investigated the average speed that the robot can travel in
the library under different maximum speeds vmax and Km, as shown in Figure 5.10. We
observed that speed and accuracy always conflict with each other. The largest Km leads
to the best precision, but the average speed slightly decreases. This is because the robot
spends more time to move at a low speed while adjusting its position before making
a turn. On the other hand, a smaller Km results in a higher average speed but higher
tracking errors. In our experiments, the robot lost the path it needed to follow for Km = 8
and vmax = 0.4 m/s. Yet, in the library, the turning activity happens quite often (18 times),
which amounts to 70% of the whole path and thus obviously limits the overall speed of
the robot. In case of large environments with less curves, the average speed would be far
higher.

The hallway environment achieved a slightly lower accuracy with a mean error of
0.2 m (cf. Figure 5.12b), which is due to the lower tag density. At some areas of the
track, the RFID observations consisted of only one or even no tag detection at all. As a
result, the tracking accuracy dropped to 0.6 m, since the measured RFID readings were
not sufficient to compensate for the error that the robot deviated from the desired path.

5.5.6 Impact of the Reader Transmission Power
In the next experiments, we examined the influence of K f under different power configu-
rations in the library. The maximum navigation speed of the robot was set to 0.1 m/s and
the particle filter was running with a fixed number of particles of N = 1000. As can be
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seen in Figure 5.11, a too large or too small K f obviously leads to higher tracking errors.
The reason is that a large K f gives the robot a higher belief in the odometry observations.
Therefore, the robot relies too early on odometry at a turning place and thus wastes time
to adjust its position through RFID observations. On the contrary, a small K f makes the
robot trust the RFID measurements too much and results in a delay for the robot to make
a turn, since RFID observations are used to make up for the error of the odometry and
not to make the robot to turn fast. Overall, K f = 8 and K f = 12 lead to roughly the same
accuracy. At the full reader power level and K f = 8, the robot achieves a mean naviga-
tion accuracy below 0.07 m with a standard deviation of approx. 0.08 m. An example of
an actual trajectory under the full reader power with K f = 8 is shown in Figure 5.12a.
Compared with the mean error of 0.18 m for the raw odometry trajectory, our approach is
more precise. Due to its cumulative characteristic, the localization accuracy of odometry
will even get far worse for longer tracks. This can be seen in the hallway environment
(Figure 5.12b), where the mean error of the odometry grows to 0.9 m.

Figure 5.11 also shows an interesting result for different reader power levels: the track-
ing accuracy remains the same or even improves if the power is reduced from full power
(30 dBm) to 27 dBm. But, if the power is too low (24 dBm), the results get worse. By
reducing the power, the reading range of the RFID reader becomes smaller and less tags
are detected and thus the position uncertainty is lower. On the other hand, a higher trans-
mission power will report more tags per inquiry and a larger band of RSS values. The
additional observations seem to make up for the uncertainty introduced by the higher
reading range.

5.6 Conclusions and Future Work
In this chapter, we presented a novel path following approach for mobile robots in RFID
tagged environments by fusing RFID fingerprints and odometry. Our method is based on
the teaching and playback scheme and does not rely on an explicit map of the environ-
ment. Particularly, during the teaching phase, a reference path is recorded by steering the
robot manually through the environment. Afterwards, the robot is capable of navigating
along that route autonomously. Key parameters were evaluated in a library environment
with thousands of tags. The performance of our approach was validated in a large hall-
way environment with regard to different setups (e.g. the RFID tag density).

At a maximum speed of 0.3 m/s and an RFID sample frequency of 2 Hz, our method
achieved a mean abs. tracking error of approx. 0.07 m in the library. Our algorithm
provides a cost-effective and computationally inexpensive alternative for RFID-equipped
environments utilizing mobile systems. In this chapter, the maximum speed of the robot
is only 0.1 m/s during the teaching stage, which is slightly different to our previous work
in Liu et al. (2011). There, the robot moved along a corridor at a maximum speed of
0.3 m/s during the teaching stage. However, the tag density (about 12 tags per inquiry)
was far lower than the ones in the library, supermarket, and hallway scenarios and thus
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Figure 5.12: Ground truth, raw odometry data, and actual trajectory. (a) Navigation
results in the library (vmax = 0.1 m/s, K f = 8) with a mean tracking error of 0.064 m. (b)
Navigation results in the hallway environment (vmax = 0.2 m/s, K f = 8) with a mean
tracking error of 0.2 m. For a speed of 0.3 m/s or higher, the robot lost its tracking path
at areas with low tag densities.

94



5.6 Conclusions and Future Work

the inquiry frequency was at 5 Hz. If the reader was able to report tags in high density
environments more frequently, the recording speed of the robot could be improved.

In the future, we plan to investigate the impact of tag relocations on our approach.
In addition, we are going to enhance the sample frequency of the RFID reader to im-
prove the recording speed of the robot in order to minimize the efforts in the teaching
stage. We also plan to investigate practical applications of the approach with regard to
topological maps. There, paths between nodes could be used to connect distinct places
through edges. A navigation from a starting node to a goal node could be achieved by
traversing the appropriate edges represented by RFID fingerprints, which would enable
the robot to reach arbitrary predefined places by graph-based path planning in large-scale
environments.
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Chapter 6

Active Perception for RFID Tags
Recent research deals more and more with the applications of UHF RFID on mobile
robots. However, the sensing characteristics between the reader and the tag (i.e. tag
detections and signal strength) are challenging to model due to the influence of environ-
mental effects (e.g. tag density, reflection, diffraction, or absorption). In this chapter, we
address the problem of tracking dynamic objects with a mobile agent using the signal
strength from UHF RFID tags attached to objects. Our solution estimates the positions
of RFID tags under a Bayesian framework. More precisely, we combine a two stage
dynamic motion model with the dual particle filter to capture the dynamic motion of the
object and quickly recover from failures in tracking. This approach is tested on a Scitos
G5 mobile robot through various experiments.

The remainder of this chapter is organized as follows. After an introduction in Sec-
tion 6.1, we review the related work in Section 6.2. Afterwards, we describe how the
Bayesian framework is used to track RFID tags in Section 6.3. In Section 6.4 we present
the combination of a two stage motion model and the dual particle filter. The whole
searching, navigating, and sensing framework is described in Section 6.5. Finally, we
present experimental results in Section 6.6 and draw conclusions in Section 6.7.

6.1 Introduction
For a mobile robot, the ability of object detection and tracking is a key issue to effi-
ciently interact with its environment. Extensive research regarding object tracking has
been done based on vision (Yilmaz et al. (2006)) or range-based sensors (Kluge et al.
(2001)). The goal of object tracking is to acquire the trajectories of an object by local-
izing it at each sensor update, which usually has to solve the object detection and object
tracking issues individually or jointly. Vision-based tracking is challenging, since it has
to deal with occlusions, motion uncertainties, and appearance changes of the environ-
ment. As compared to vision, range-based sensors have longer reading range and are
robust against illumination changes. Still, they have to face the difficulty of occlusions
from the environment.

The usage of UHF RFID technology provides a way to overcome this difficulty, due
to its automatic, contactless, and inexpensive way of identification. The UHF RFID tags
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absorb, modulate, and backscatter the electromagnetic waves emitted from the reader
and thus are able to respond up to a limited range (e.g. 7 m to 10 m). In the scope of this
chapter, we focus on tracking dynamic objects with RFID tags using a mobile platform.
As compared to the traditional vision-based or range-based sensors, passive UHF RFID
features the following characteristics:

1. The RFID reader reports the IDs of the tags attached to objects directly, which does
not require any additional algorithm for object detection. These IDs can be used as
identities of the objects, which further simplify the recognition process involved in
the traditional approaches.

2. The radio signal can pass through the objects as well as obstacles and thus can
deal with occlusions that challenges the field of vision-based or range-based ap-
proaches. Moreover, the feature of communication without line of sight makes the
RFID technology independent on the illumination of the environment, which is a
big problem for vision-based approaches.

3. An RFID detection gives the coarse area about where the object should be. Al-
though the RFID reader is not able to provide the position or the bearing of a tag
directly, this information can be reasoned through a stream of RFID measurements
in the history with a Bayesian filter, as shown in Chapter 3 and Chapter 4.

The new generation of RFID readers is additionally able to report the respective received
signal strength (RSS). However, modeling the characteristics of radio signals is challeng-
ing, due to many influencing factors on the propagation of signals like multi-path effects,
interferences, and occlusions.

In this chapter, an approach that uses radio signals from RFID tags to track dynamic
objects is presented. We use a combination of a two stage dynamic motion model and
a dual particle filter, also known as dual MCL (Monte Carlo localization), to deal with
the uncertainty in the movement of the object and recover from the tracking failures,
respectively. Our approach requires a sensor model to approximate the positions of the
objects, which actually does not need to be too precise. The fast tracking of dynamic
objects is achieved at a cost of the overall mapping accuracy. Low rate estimation from
the RFID reader is used in a combination with the VFH+ (Vector Field Histogram),
which serves as a local path planner for obstacle avoidance and navigation towards the
target. VFH+ also has an integrated speed controller (both for the forward and angular
velocity). This is used for test runs in several RFID-tagged scenarios, one of which
is shown in Figure 6.1. We also compared our approach to the reactive controller in
Deyle (2011), which does not need any explicit sensor models for approaching a tag that
attached to an object. Additional experiments in different scenarios were conducted to
show the effectiveness of our approach. This chapter represents an extended version of
our paper accepted at IROS 2014 (Liu et al. (2014)).

For mapping of RFID tags, we want to obtain a high estimation accuracy of tag posi-
tions in a known environment, therefore a good localization accuracy of the antennas (i.e.
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Figure 6.1: A scenario where our Scitos G5 robot is tracking a human carrying an RFID
tag in a library.

the robot) is required. Unlike mapping of RFID tags, we do not need a precise position
estimation of the robot in the context of tracking RFID tags, since the mapping error of
RFID (e.g. around 0.3 m in ideal environments) is much higher than the accumulative
error of the odometry (see Forster et al. (2013)) over a short distance. This means we can
only rely on the odometry information for approaching a tag without precisely knowing
the location of a robot in an environment. Therefore, we believe our approach can be ex-
tended to navigate mobile robots in unknown environments: the RFID tags can be easily
installed on the walls or furnitures as landmarks (i.e. static nodes) for navigation. If two
adjacent nodes are close enough (i.e. less than 6 meters), the robot can easily navigate
itself between these nodes.

6.2 Related Work
The process of navigating a mobile robot towards a tagged-object is similar to the prob-
lems of source localization. In the field of source (e.g. gas) localization, the typical tasks
that a mobile robot has to perform is to navigate towards an interested source or generate
the concentration map of an environment. For an overview of the source localization
approaches, we refer to Lilienthal et al. (2006). In the context of the radio-based nav-
igation, on the one hand, the signal strength of the tag highly depends on the relative
pose between the tag and antenna. This provides a useful measure of the position or the
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bearing of a tag and thus can be used to navigate the mobile system towards a tagged
object. On the other hand, besides the pose of the tag, many environmental factors (e.g.
materials that the tag affixes to and interferences from the environment) also have signif-
icant impact on the signal strength of a tag. This makes the task of navigating a mobile
robot using radio signals challenging. Although many researchers focus on the mapping
of RFID tags, few of them concentrate on dynamic tags. Germa et al. (2010) fused visual
data with RFID detections to allow a mobile robot to track people in a crowded environ-
ment. This chapter shows that we can rely on RFID alone for object tracking. According
to the literature, the techniques of RFID-based navigation can be categorized into three
classes: behavior-based approach, model-based approach, and sensor fusion-based ap-
proach.

6.2.1 Behavior-based Approach

For the behavior-based approach, the robot gradually corrects its actions according to the
information obtained from the sensors without modeling the internal representation. In
the context of RF-based navigation, Deyle (2011) presented an optimization-based ap-
proach based on a hybrid global-local search algorithm for perceiving RFID tags. For
the global search, the robot has to move in the whole environment and perform a sparse
sampling to obtain the best pose (i.e. the detection with the maximum signal strength),
which serves as the initial pose for navigating towards the tag affixed to the object. For
the local search, the robot is steered towards the object using the difference of the signal
strength from two antennas. The robot stops searching once there are obstacles in front of
it. Gueaieb and Miah (2009) used the phase difference of RFID signals, which allows the
robot to follow the virtual paths that link the tags’ orthogonal projections to the ground.
They also addressed the problem of trajectory tracking for mobile robots using the radio
signal from RFID tags (Miah and Gueaieb (2013)). However, their approach has to rely
on the phase difference provided by a customized RFID system and the configurations of
tags are fixed (i.e. the tags have to be installed on the ceiling of an indoor environment).
Kim et al. (2007) developed an automated location sensing and docking system by uti-
lizing a dual directional RFID antenna, which is able to estimate the direction of arrival
(DOA) of the radio signal. However, the estimation of DOA is done with an active RFID
system with loop antennas and currently it is not available in the market. Liu et al. (2012)
used RFID tags as reference landmarks to let the robot follow a complex path based on
the signal strength and the odometry in unknown environments (e.g. a library or a hall-
way environment). Since this approach has to rely on a fingerprinting-based approach
for position estimation, a large number of tags have to be installed in the environment in
order to get a good navigation accuracy.
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6.2.2 Model-based Approach

In contrast to the behavior-based approach, the model-based approach usually uses well-
calibrated models to localize the tags. The first work about how to localize passive RFID
tags using a mobile system was presented by Hähnel et al. (2004). A model which
characterizes the detection likelihood of a tag with reference to the antenna frame is
used to determine the positions of the tags using a particle filter given several detection
positions from a mobile robot. Vorst and Zell (2008) pointed out that this sensor model
can be learned semi-autonomously during the normal navigation of the robot by placing
several reference tags in the environment. Joho et al. (2009) incorporated the signal
strength into the sensor model to improve the mapping accuracy of RFID tags. In our
previous work (Liu et al. (2013)), we used a 3D sensor model and a pair of antennas to
estimate the 3D positions of the RFID tags. There, we installed two antennas at different
heights on the robot to solve the ambiguity problem of heights estimation that introduced
by antennas placed at the same height. Kanda et al. (2007) obtained people trajectories
with RFID tags attached to humans using a static reader setup, where 20 RFID readers
are distributed in the entire science museum. The position of each person is estimated
by fusing the detections from all readers using a Markov Chain Monte Carlo approach.
As a result, they are able to recognize the visiting patterns of people and analyze how
the space is used from these trajectories. Liu et al. (2006) investigated a mobile system,
which is able to localize nomadic objects (i.e. objects that do move, but not frequently)
with mobile RFID readers using conservative sensor models.

6.2.3 Fusing RFID with Other Sensors

Milella et al. (2009) estimated the bearings of RFID tags with a fuzzy antenna model.
With a combination of visual landmarks, they are able to solve the kidnapped robot prob-
lem. Germa et al. (2010) combined RFID measurements with visual information to track
people using a mobile robot in a crowded environment. In that case, the RFID system
was used to determine the direction of the object and its readings have to be fused with a
vision algorithm to get a better estimation of the position. They also designed a sensor-
based controller to make the robot follow a tagged-person. Based on this work, Mekon-
nen et al. (2013) implemented a mobile system that is able to follow a person wearing
an RFID tag and meanwhile avoid the passer-by by taking their dynamics into consid-
eration. The trajectories of the passer-by and the tagged-person are estimated by the
on-board sensors (i.e. an RFID reader, a camera, and a laser scanner) from the robot and
two cameras mounted on the walls. Rohweder et al. (2009) used the information about
the structure of an environment to improve the position estimation of RFID tags. Based
on the assumption that tags are attached to objects, they fused the pose estimation of an
RFID tag with a 2D occupancy map and showed an improvement of 10%, as compared
to no fusion. Deyle et al. (2009) presented an approach that generated the RSS image of
a tagged-object for manipulation tasks of mobile robots. They constructed this image by
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rotating (i.e. panning and tilting) a mobile antenna and recorded the signal strength at the
same time. The RSS image was then fused with the image from a camera and the point
cloud from a 3D laser scanner to locate the tag in 3D. This approach was demonstrated
on a mobile platform for finding, approaching, and grasping objects equipped with RFID
tags. Schulz et al. (2003) proposed an approach that integrates anonymous sensors (i.e.
laser range finders) and ID sensors (i.e. infrared or ultrasound badge sensors) using a
Rao-Blackwellised particle filter to track people in an environment with a network of
sensors. They are able to accurately track people and determine their identities owing to
the advantages of both sensors.

6.3 Tracking RFID Tags

To estimate the tag position l jt at time t, we need to know the posterior probability
p(l jt |f1:t ,x1:t). According to Bayesian theory and the Markov assumption, p(l jt |f1:t ,x1:t)
can be factorized into:

p(l jt |f1:t ,x1:t) = η · p(ft |l jt ,x1:t)

· p(l jt |l jt−1) · p(l jt−1|f1:t−1,x1:t−1),
(6.1)

where l jt is the 2D position of the tag j that we want to estimate and f1:t are the
measurements gathered by the robot until time t, as detailed in Section 3. p(ft |l jt ,xt) is
the sensor model or the observation model. We refer the reader to Chapter 3 for more
details about the variables in the above equations. In this chapter, only the 2D relative
position of the antenna and the tag is relevant to our sensor model. Similar to Chapter 3
and Hähnel et al. (2004), we apply a particle filter (PF) to track the position of each RFID
tag. Each PF consists of N samples at the 2D position hypotheses xi = {xi,yi}1≤i≤N and
the associated weight wi. In general, the particle filter is performed recursively with the
following three steps:

1. Prediction: generate particles based on the motion model p(l jt |l jt−1), which is
represented by a random walk with different scales of noise, as detailed in Section
6.4.

2. Correction: the weight wi
t of each particle xi

t is adjusted based on the measurement
ft .

3. Resampling: a set of new samples is drawn with probabilities proportional to the
weights.

Following Liu and West (2001), we consider the perturbation after resampling. The
details about the perturbation can be found in Section 3.5.
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6.4 Dynamic Motion Model and the Dual Particle Filter

In the field of tracking, a robust and fast estimation of the object position is very im-
portant, in order to let the robot react quickly to the movements of the objects. Particle
filter-based trackers need to solve the problem of motion uncertainty (e.g. abrupt and
fast motions of the objects). A poor motion model may place a small number of particles
(or no particles at all) around the true pose of the tracked target, which leads to track-
ing failures. However, it is almost impossible to build up an accurate motion model due
to the dynamics of the objects. To deal with this challenge, we utilize a two stage dy-
namic motion model, which is similar to the ideas in Kwon and Lee (2010) and Kristan
et al. (2010). Specifically, this model integrates two basic motion models: a slow motion
model and fast motion model, both of which are modeled as a Gaussian with different
standard deviations, namely σs and σ f for slow and fast motion respectively.

Moreover, the pose estimation accuracy of an RFID tag highly depends on the poses
of the robot and the influence from the environment, as shown by Deyle (2011). The
regular particle filters place a few or no particles around the true position of the tag and
has the problem to recover from the kidnapped robot problem. In regard to this issue,
Lenser and Veloso (2000) showed that this problem can be solved by sensor resetting,
i.e. adding new samples, which are generated according to the current measurement. A
better way to determine the number of particles that need to be added is to utilize two
smoothed estimations of the likelihood (see Gutmann and Fox (2002) for more details).
The generated new samples may cause an inconsistency to the current probability density
function. We solve this problem (i.e. kidnapped robot problem) by using the dual particle
filter (Thrun et al. (2000)), which draws particles from the observations and weighs them
according to the current probability estimation.

In particular, we determine the importance weights of new particles by reconstructing
the belief using kernel density estimation (KDE) (see Thrun et al. (2000) for more in-
formation) based on the current estimation. In our application, it is straightforward to
draw particles based on the current observation, since we have built up a precise sensor
model for the measurements (see Section 2.4). Similar to Gutmann and Fox (2002), these
samples are generated by a 2D grid with a resolution of 20 cm. So, we draw α particles
according to the dual particle filter based on the current measurement, β particles with a
fast motion parameter σ f , and the rest of the particles with a slow motion parameter σs
(0≤ α,β ≤ 1):

l jt+1 ∼ α ·
p(ft |l jt ,xt)

π(ft , l jt ,xt)
+β ·N (l jt ,σ2

f )+(1−α−β ) ·N (l jt ,σ2
s ), (6.2)

where π(ft , l jt ,xt) =
∫

p(ft |l jt ,xt)dl jt . (6.3)
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Figure 6.2: Flowchart representing the whole searching and tracking behavior.

6.5 Active Perception

By integrating the state estimator into a local path planner, we are able to track objects
carrying RFID tags and simultaneously avoid obstacles. The chosen local path planner
is VFH+ (Ulrich and Borenstein (1998)), which was implemented in the Orca-Robotics
project1. It fuses the following behaviors: avoiding obstacles, tracking a target, and
controlling both the forward and the angular velocity. This is then integrated into a
framework, which allows the robot to search for a tag, follow it, and maintain the distance
between them.

The whole searching and tracking behavior is explained as follows (also shown in
Figure 6.2):

1. Exploration: the robot searches for a specific RFID tag with a predefined path until
the tag is detected. To explore the environment, the robot simply follows several
way-points on the map, which are given by hand.

2. Navigation: the robot navigates towards the tagged target using VFH+ based on
the estimation of the target, while the distance between the target and the robot is
smaller than a threshold, i.e. 0.5 m.

1http://orca-robotics.sf.net/

104



6.6 Experimental Results

3. Active sensing: the robot rotates for a certain angle (e.g. ±45◦) to check if the RSS
of the tag is higher than a threshold (e.g. -47 dBm).

4. Success: the robot approaches the tag successfully and switches into the active-
sensing state, once the RSS value is smaller than the RSS threshold.

6.6 Experimental Results

To validate our approach, we implemented the presented system on a Scitos G5 service
robot (see Section 1.4.2). We equipped the robot with a laser range finder for obstacle
avoidance. We configured the RFID reader at the full power level and used the sensor
model generated in Section 2.4.4. The frequency of the reader is set to 2 Hz.

6.6.1 Influence of Various Motion Parameters in the Particle Filter

We did some preliminary experiments to see the influence of different motion parameters
on the estimation accuracy. We set the number of particles N to 200 for all experiments.
The mixture ratio α of the dual particle filter was fixed to 0.1 for all experiments, as
suggested in Thrun et al. (2000). The small motion parameter σs was set to 0.05 and
the fast motion parameter σ f was fixed to 10σs. The robot was static and the tag was
moved backward and forward in front of the robot several times. Figure 6.3a shows the
true distance between the robot and the tag obtained by the laser scanner and also the
estimated distance using various values of β . For different values of β , we get a similar
tracking performance if the tag moves towards the robot, as can be seen in the drops of
the curves in Figure 6.3a, which have the same descending rate. But when the object
moves away from the robot, there is a certain delay of the estimation, as can be seen
from the rise of the curves in Figure 6.3a. This can be explained as follows. The dual
particle filter evaluates the weights of the samples drawn from the observation, in a way
to make them consistent with the belief. If the object is far from the robot, which usually
means high uncertainty in the belief, and is moving closer to the robot, newly drawn
particles will be weighted with higher values, because they coincide with the belief. If
the object is closer to the robot, so that the uncertainty of the belief is small (i.e. we have
a strong belief), and it is moving away from the robot, the newly drawn particles will
be weighted with small values, to preserve the belief. These weights gradually change
with new measurements, which can lead to a certain lag, represented by a slow rise of
the curves in Figure 6.3a. A larger β gives faster tracking as the tag moves away from
the robot, as can be seen in the rise of the curves in Figure 6.3a: those with the larger β
rise faster than ones with the smaller β . However, a larger β introduces more noise into
the motion model, which usually does not give a robust estimation, and leads to a worse
tracking result, as shown in the following experiments.
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Figure 6.3: Impact of parameter β on the tracking accuracy. (a) Ground truth and the
estimated distance from the robot to the tag with different values of β ; (b) Mean and
standard deviation of the tracking error under different values of β .
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To show the overall influence on the tracking performance with different parameters
β , we performed experiments in a hallway environment. In all trials, a person carrying
a tag was moving along the central line of a hallway of 4.5× 28 m2, at a low speed. If
the robot lost its track, the person waited for the recovery. For the local path planning,
VFH+ was used with a maximum forward velocity of 0.3 m/s. Different values of β were
tested and each configuration was repeated six times. The resulting mean and standard
deviation of the tracking error (i.e. the difference between the path of the robot and the
central line in the hallway) is shown in Figure 6.3b. As can be seen in Figure 6.3b, the
choice of β = 0.1 gives the best results. A too large or too small β obviously leads
to a worse result. For example, as compared to β = 0.0 and β = 0.8, β = 0.1 gives
an improvement of 42.9% (from 0.34 m to 0.19 m) and 37.7% (from 0.31 m to 0.19 m),
respectively. This happens, because if β is too small, the robot is not able to react quickly
enough to the changes, while a large β results in an unstable estimation and thus gives
a bad performance, as explained in the first part of this section. Therefore, we chose
β = 0.1 for the rest of experiments.

In Figure 6.5, the mapping error of the robot navigating towards the tag using our
approach is shown. As can be seen in Figure 6.5, the error of the estimation is reduced
gradually during the navigation towards the tag, i.e. the mapping error highly depends on
the distance between the tag and the robot. Figure 6.5 also shows the change of the uncer-
tainty, which is represented by the covariance of the particles here: the uncertainty of the
estimation is reduced when the robot is approaching the tag, since the signal strength in
that case becomes greater. The signal strength at far distances is usually very low (see the
mean signal strength in Figure 2.9) and the sensor model of low signal strength is wider
than the one with higher signal strength, as can be seen from the sensor models with a
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Figure 6.5: Mapping error and the covariance of the particle set during the approaching
of a tag.

low signal strength (s=-62 dBm in Figure 2.10f) and a high signal strength (s=-50 dBm
in Figure 2.10c).

6.6.2 Comparison with the Reactive Controller

A simple and a fast way to navigate a robot towards RFID tags is presented in Deyle
(2011). This approach uses the RSS difference between two RFID antennas and cal-
culates the angular velocity according to that difference. Forward velocity in this case
is constant (it may also be controlled e.g. proportional to RSS). This approach will be
referred to as the reactive controller. To justify the usage of our approach, we compared
it to the reactive controller. The Impinj RFID reader, which we used for the experiments,
gives RSS values from -72 dBm to -38 dBm. If there are no detections, RSS is set to
-70 dBm.

In the implementation of the reactive controller, the forward velocity is fixed to 0.1 m/s
and the proportional factor for the angular velocity control is set to 0.02 rad/dBm·s. In
the implementation of our approach in this case, the forward velocity is also fixed to
0.1 m/s and the estimated position of the target is used to calculate the angle between the
robot and the target. This angle is then used as an error in a proportional controller, with
the proportional gain of 0.4 rad/rad·s. For both approaches, the robot was programmed
to stop in the case of obstacles nearby.

The experiments were conducted for approaching static objects in our laboratory of a
size of 5×8 m2. The robot was placed at different poses and started to move towards the
object, as soon as the tag was detected. Figure 6.4 shows the successful and failed trajec-
tories during the navigation of the robot in several trials. For the reactive controller, the
robot sometimes faced failures (see red dotted lines in Figure 6.4), since the difference
of RSS was so small that the robot couldn’t make a fast turn towards the object. This
weakness was also pointed out in Deyle (2011). In all cases when the reactive controller
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failed, our approach succeeded, since it always had the estimated pose of the object at
its disposal. If the tag is in a good view of the antennas, both approaches show good
results. This experiment is supposed to show the advantages of our approach even in this
special case by setting the conditions for both approaches similar (fixed forward velocity,
proportional control of the angular velocity, and no obstacle avoidance). But usually, our
approach can use both angular and forward velocity control, and also obstacle avoidance.

As mentioned before, another advantage of our approach is an easier integration of the
obstacle avoidance strategy. To our knowledge, in the applications so far, the reactive
controller doesn’t use any obstacle avoidance method. It only stops the robot, if there
is an obstacle very close. Also, one of the biggest advantages of our approach is the
recovery from losing the tag. If a robot is tracking a target carrying a tag, and if the
target suddenly gets out of the RFID antennas range, the reactive controller is not able to
recover, since there is no signal strength anymore. On the other hand, our approach has
the last estimated position, which is, in most cases, enough to recover from the loss.

6.6.3 Impact of Different Antenna and Tag Configurations

In the experiments presented in this section, we evaluated the influence of different an-
tenna configurations and different heights of the tag during the object tracking. Different
angles between the antennas (at the tag height of 0.8 m) were 45◦, 90◦, and 135◦. Dif-
ferent tag heights were chosen to be 0.8 m, 0.3 m, and 1.8 m. The experiments were
conducted in the same way as the ones presented in Section 6.6.1. As it can be seen from
the tracking performance in Figure 6.6a, the best configuration of the antennas is 90◦. A
larger spanning angle between the antennas leads to a worse tracking accuracy. As an
example, the tracking error with a spanning angle of 135◦ is two times larger than the
one with 90◦. A small spanning angle slightly decreases the tracking error (from 0.23 m
to 0.19 m, as compared with the spanning angle of 45◦ and 90◦). The reason for this is
that our antenna configuration deteriorates into a single antenna setup, which is good at
distance estimation but weak at determining the orientation of the object. In contrast, a
wide spanning angle leads to little or no overlapping area between two antennas, such
that it is not able to get a good distance estimation of the object. Moreover, as can be
seen in Figure 6.6b, the heights of the tag also have influence on the tracking accuracy
(0.19±0.15 m for a height of 0.8 m, as compared with 0.27±0.17 m for a height of 0.3 m
and 0.38±0.17 m for a height of 1.8 m), due to the variance between the characteristics
of the tags at different heights pointed out by our previous work (Liu et al. (2013)).

6.6.4 Influence of Different Materials

As we mentioned before, the radio signal is highly influenced by the environmental fac-
tors. The RFID reader has very poor readability when water or metal are present, or
when the tag is occluded. In this experiment, several placements of the tag were chosen:
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Figure 6.6: Mean and standard deviation of the tracking error under the influence of dif-
ferent antenna setups and tag heights. (a) Tracking accuracy under the influence of dif-
ferent antenna setups; (b) Tracking accuracy under the influence of different tag heights.

110



6.6 Experimental Results

0

0.2

0.4

0.6

0.8

1
m

e
a
n

a
n
d

s
td

.
d
e
v
.

o
f

n
a
v
ig

a
ti
o
n

e
rr

o
r

(m
)

outside sweater

inside sweater

outside jeans

water

inside jeans

metal

Figure 6.7: Mean and standard deviation of the tracking error under different materials
the tag attached to.

attached to a bottle full of water, on an iron object, inside and outside jeans, outside and
inside a sweater as a name tag attached to a person at a height of 0.8 m.

For the cases when the tag was attached to the jeans, the robot had to follow the person
from behind. The idea of attaching the tags to jeans is motivated by the fact that more
and more clothing stores will attach permanent tags to the clothes in the future. Again
we conducted experiments in the same way as Section 6.6.1 and showed the mean and
standard deviation of the tracking accuracy in Figure 6.7. We found that the robot lost
the person one or two times during the tracking of the tag attached to a bottle of water
and inside jeans (i.e. the case of heavy occlusion). We observed that the robot was not
able to track a tag attached to a metal object, which can be seen from the high tracking
error (0.7 m) due to many circles that the robot made during the tracking. On the other
hand, water has less influence on the tracking accuracy than metal, as can be seen in
Figure 6.7.

6.6.5 Test in a Library and a Hallway Scenario

We finally tested our approach for person following under two different environments:
a library and a hallway environment. The hallway environment mainly consists of one
lecture room, several corridors, and a robot lab. Approximately 400 products with RFID
tags are placed on a metal shelf in the middle of the robot lab. There are a small number
of tags at the corridor adjacent to the robot lab and no tags in the lecture room and other
corridors. The robot has to enter and go out of the lecture room and the robot lab during
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Figure 6.8: Trajectories of our Scitos robot autonomously following a person in a hallway
(top) and a library environment (bottom).
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6.7 Conclusions and Future Work

Table 6.1: Analysis of the running time (in milliseconds) under the impact of different
number of particles (N).

Number of particles 100 200 500 1000 5000
Running time [ms] 0.52 0.73 1.58 2.95 14.58

the driving in the hallway environment. In contrast, the library is considered to be a
densely tagged environment, where approx. 7000 books are equipped with UHF and HF
RFID tags and placed at different heights on the shelves, as described in Section 1.4.1.
During the tracking, the robot has to use VFH+ to avoid obstacles (e.g. walls, shelves,
tables, and chairs) in the environments. In total, the robot drove a distance of 417.5 m
in 1502.8 seconds in the hallway and 102.1 m in 465.2 seconds in the library, as shown
in Figure 6.8. In the library, the robot lost tracking three times during the test, which all
happened when it faced a sharp turn into one 1.1 m wide corridor, since the robot was
not able to detect the tracking tag in time due to the influence of other tags. We did not
see any failures during the tracking in the hallway environment, although the robot had
to enter the door of the robot lab which is only 1.0 m wide.

6.6.6 Performance Analysis
The mean running time of processing each tag detection is measured by processing six
log files that were recorded in the library and the hallway environment, as listed in Table
6.1. Both parameters α and β were set to 0.1. All of the tests were performed on an Intel
Core i5-2410M@2.3 GHz CPU, with 4 GB RAM. As can be seen in Table 6.1, processing
one detection with N=200 only requires 0.73 ms, which satisfies the requirement of real
time processing. Yet, this time can be ignored as compared to the frequency that the
RFID reader works at (i.e. 2 Hz in our case).

6.7 Conclusions and Future Work
This chapter addressed the problem of tracking dynamic objects with UHF RFID tags
using a Bayesian framework with a mobile robot. We used a two stage dynamic motion
model and the dual particle filter, which is able to capture the dynamic motion of the
object and quickly recover from tracking failures. Integrated into a local path planner,
the robot is able to track moving objects and avoid obstacles at the same time, using only
two UHF RFID antennas and a laser scanner. For dynamic objects tracking with RFID,
it is also possible to choose the approach which uses only the signal strength difference
between the antennas, which we referred to as the reactive controller. This approach
is simple and fast. But the ability of tracking dynamic objects while avoiding obstacles,
even with the low signal strength and the ability of recovery after losing an object, clearly
gives the advantage to our approach. We performed extensive experiments with a Scitos
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G5 service robot to validate the effectiveness of our approach. A video demonstrating our
work can be found at www.cogsys.cs.uni-tuebingen.de/mitarb/liuran/videos/
object_tracking.mp4.

There are several directions into which this work can be extended. First, improving
the tracking performance through a combination of RFID with other sensors would be
promising in the future. A combination with a laser scanner would be especially inter-
esting. Second, heuristic control algorithms need to be investigated to quickly capture
the potential movements of the objects and obtain the maximum information gain at the
same time when the robot approaches the tagged objects.
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Chapter 7

Conclusions

7.1 Summary
In order to effectively interact with the surroundings, service robots with mobility and
autonomy have to deal with various types of objects. RFID technology, which achieves
the communication between the reader and the RFID tags without line of sight, provides
a new way of object identification. Furthermore, each tag carries a unique ID, which can
serve as the landmark for the robot localization or navigation.

In Chapter 2, we introduced the background of RFID technology as well as the funda-
mental theory used in this thesis. Then, in the rest of this thesis (i.e. Chapter 3, Chapter
4, Chapter 5, and Chapter 6), we addressed some fundamental problems in the field of
mobile robots using RFID technology, which consist of mapping, path following, and
tracking. To be precise, the contributions of this thesis are summarized as follows:

• Mapping: Chapter 3 focused on the mapping of RFID tags, which aims at infer-
ring the positions of RFID tags by integrating the measurements from the on-board
RFID reader equipped on the robot. The traditional particle filters face the issue of
mapping failures due to the noisy measurements from the RFID reader. In order
to recover from mapping failures of RFID tags, we presented the adaptive particle
filter in Chapter 3. Compared to the traditional particle filters, the adaptive par-
ticle filter improves the mapping accuracy by 6.3 % without further examination
of negative information. Moreover, the adaptive particle filter is able to relocalize
non-static RFID tags.

We further examined the usefulness of negative information for RFID-based map-
ping. We showed that, the integration of negative information gives an improve-
ment of the mapping accuracy and helps to recover from mapping failures and
relocalize non-static RFID tags. By examining negative information, we are able
to improve the mapping accuracy by 3.5 %. We finally compared the particle filter-
based approach to our previous grid-based Markov localization approach. As com-
pared to the grid-based Markov localization approach, we are able to save a large
amount of computational cost and memory storage, while the mean mapping ac-
curacy is only reduced by two centimeters.
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• Mapping with 3D Sensor Models: In Chapter 4, we presented a novel 3D proba-
bilistic sensor model, which characterizes both tag detection events as well as the
received signal strength. Compared to the 2D-based sensor models, the 3D sen-
sor model achieves a higher mapping accuracy for 2D position estimation. In our
experiments, the 3D sensor model improves the 2D mapping accuracy by approx.
12.0%, as compared to the 2D sensor model. Especially, with this sensor model,
we are able to determine the 3D position of a tag using a stereo antennas configu-
ration, i.e. two antennas mounted at different heights on the robot. We additionally
integrated the negative information (i.e. non-detections) to improve the mapping
accuracy in our special antenna configuration. To summarize, by using our stereo
antennas setup and incorporating negative information, we are able to localize the
RFID tags with a mean absolute localization error of 0.24 m in 2D and 0.40 m
in 3D as well as 0.28 m for height. The negative information gives an additional
improvement of approx. 26.3% for the height estimation. In all experiments, the
mapping error for the height is much larger than the error in the x and y direc-
tion. The reason for this can be explained as follows: the height of the tag is only
estimated by the difference of two RFID antennas, while x and y positions are de-
termined through various measurements perceived by the mobile robot that moves
in the xy plane. As a result, the deviation of measurements in x and y direction is
much higher than in the z direction. Therefore, we do not get a good z-estimation
due to the lack of distinct detection samples in the z-axis. Finally, in order to en-
able our algorithm to perform online, we utilized the KLD-sampling to reduce the
number of particles.

• Path Following: In Chapter 5, we addressed the problem of path following of a
mobile robot using the signal strength from RFID tags in unknown environments.
To be precise, our method utilizes RFID measurements as fingerprints (i.e. land-
marks) and makes the mobile robot to autonomously follow a path that was previ-
ously recorded during a manual training phase. The relative position of the robot to
the desired path is estimated by comparing the current RFID measurements to the
reference measurements. As a result, the robot is steered by the control commands
generated by fusing the position estimation and the reference odometry data.

The proposed approach needs neither an explicit sensor model of RFID nor the
knowledge about the environment (e.g. the distribution of the tags and the map of
the environment). We evaluated the performance of our approach in two different
environments, namely a library and a large hallway environment. Our approach
provides a cost-effective and computationally inexpensive alternative to other nav-
igation approaches for mobile systems in RFID-equipped environments.

Tag density is one factor that has high impact on the accuracy of our approach. In
general, higher tag densities lead to better tracking results. In one of our experi-
ments in the hallway environment with a high tag density configuration, the robot
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was able to navigate along the path at a maximum speed of 0.7 m/s in spite of
the low frequency control commands (i.e. 2 Hz) generated from the RFID reader.
Compared to the library environment, the hallway environment achieved a slightly
lower tracking accuracy due to the low tag density. Sometimes the RFID finger-
print consisted of only one or even no tag detection at all. As a result, the tracking
errors at these positions were increased over 0.6 m, since the RFID measurement
in that case was not sufficient to steer the robot to follow the desired path.

Another factor which plays an important role in our approach, is the power config-
uration of the RFID reader. The tracking accuracy remains the same or even gets
improved if the reader power is slightly reduced, while a too low reader power
obviously gives a worse tracking result. The reason for this can be explained as
follows. On the one hand, a low reader power leads to a short reading range and
thus a low uncertainty about the position of the tag. On the other hand, a higher
reader power provides a larger reading range and a wider band of the received sig-
nal strength. The additional tag detections are able to make up for the uncertainty
introduced by the increased reading range.

Odometry is quite accurate to estimate the change in position over short period
of time. Whereas the odometry has cumulative errors for longer tracks. The path
following approach proposed in this thesis is able to compensate for the error from
the odometry by utilizing RFID fingerprints as landmarks.

• Tracking: The robot has to deal with a large number of dynamic objects during the
interaction with its environment. Since RFID tags can be attached to any objects,
we addressed the problem of dynamic objects tracking with a mobile agent using
the signal strength emitted from RFID tags. Our solution estimates the position of
an RFID tag under a Bayesian framework. More precisely, we combine a two stage
dynamic motion model with the dual particle filter to capture the dynamic motion
of the object and quickly recover from failures in tracking. The state estimation is
then integrated into a local path planner, which allows the robot to track moving
objects and avoid obstacles at the same time using only two UHF RFID antennas
and a laser scanner.

A simple way to track moving objects is a reactive controller, which steers the robot
based on the difference of the signal strength from two antennas. Compared to the
reactive controller, our approach has two main advantages. First, our approach
successfully deals with the situations when the reactive controller fails. Second,
it is easier to integrate the obstacle avoidance into our approach. The reactive
controller implemented so far does not have any obstacle avoidance strategy and
only stops the robot, if there are obstacles nearby.

The tracking performance was examined by affixing the RFID tags to objects with
different materials. We observed that the robot lost the object one or two times
during the tracking in cases when the tag was placed on a water bottle and inside
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jeans due to the absorption of the water or the occlusion of the jeans. Moreover,
the metal has more influence on the tracking accuracy than the water, since in our
experiment the robot was not able to track a tag attached to a metal object.

We implemented and extensively evaluated our approaches with a service robot in
different environments. Several mechanisms were proposed and thoroughly validated to
improve the mapping accuracy and efficiency of RFID tags. The path following approach
proposed in this thesis has been proven to be an efficient and cost-effective solution
for the navigation of mobile robots in RFID-equipped environments. Furthermore, the
tracking solution presented in this thesis enables the mobile agent to track any dynamic
objects equipped with RFID tags, which provides an alternative to the state-of-the-art
object tracking approaches if RFID technology is employed for the sensation of the robot.

7.2 Future Work
Although we presented a cost-effective approach for path following and an efficient so-
lution for tracking dynamic objects as well as some mechanisms to improve the mapping
accuracy, there are a number of possible extensions of this thesis. One promising direc-
tion is the investigation of an outlier-removal approach to improve the mapping accuracy
by removing the ghost detections of RFID tags caused by environmental effects, since
the ghost detections bring a large amount of uncertainty to the state estimation and lead
to mapping failures.

Due to the hardware limitations, only two RFID antennas are utilized for localizing
the 3D positions of RFID tags throughout this thesis. In all experiments, the antennas
are fixed on the robot during the operation. Due to the lack of distinct measurements,
the error of height estimation is usually larger than the estimations in x and y directions.
Therefore, it would be interesting to see if the 3D mapping accuracy can be improved
by fusing the measurements from multiple antennas installed at different heights on the
robot.

The RFID reader only provides a coarse measurement about the position of the tag.
Therefore, the obvious extension of this thesis is the fusion with the metric measurements
obtained from other sensors equipped on the robot, such as cameras or laser range finders,
to improve the mapping accuracy. In this case, the object detection or recognition process
can be further facilitated by taking advantages of both techniques.

For the path following, we assume a static configuration of the environment, i.e. the
RFID tags are affixed to the immobile items or the walls. In practice, the items are not
always static and may be relocated or removed by people. In this context, we plan to test
our path following approach in dynamic environments.

Furthermore, one could combine the work described in Chapter 5 and Chapter 6 for
the navigation of a robot with regard to a topological map in large unknown environ-
ments. The nodes in the topological graph can be represented by a single RFID tag
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or the RFID fingerprint. The tracking solution presented in this thesis allows the robot
to navigate towards static RFID tags as well as dynamic ones and the path following
approach we proposed enables the robot to travel along the path defined by RFID fin-
gerprints autonomously. Both approaches have their weaknesses and advantages. The
advantage of the tracking solution is the capability of coping with dynamic tags and an
easier integration with obstacle avoidance, but suffers from the uncertainty of the tag
position estimation caused by many environmental factors. By means of fingerprints, the
path following approach does not rely on the distribution of the tags and is shown to be
robust against the location-specific distortions that challenge our tracking approach, but
the obstacle avoidance is not yet addressed. Therefore, it is interesting to combine these
two techniques in order to achieve a robust and efficient navigation approach.

Our current strategy chooses the shortest path to the goal, while the robot moves to-
wards the target during the tracking in this thesis. Therefore, an extension of this thesis is
to use heuristic control algorithms in order to quickly move towards the object and mean-
while obtain the maximum information gain (i.e. best reading rate of the tag attached to
the object).

Obviously, the applications of our approaches are not limited to the fields mentioned
in this thesis. Recently, manipulation capabilities of a mobile system have been widely
addressed in industrial environments and everyday life. Moreover, low-cost embedded
mobile RFID devices are popular in the market and the industry nowadays. Therefore,
we believe that the approaches proposed in this thesis can be applied in a broad area of
applications.
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