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Chapter 1

Introduction

This dissertation addresses liquidity and aggregate liquidity shocks in over-the-

counter markets. Liquidity, in this context, is related to the time delay of a trade

due to search frictions.1 Lower search frictions lead to a more liquid market and

reduce trading time. As a result, search frictions influence prices.

Aggregate or systemic liquidity shocks are associated with a sudden shift in

agents’ preferences towards asset holding, which affects a large fraction of in-

vestors simultaneously. Investors experience a sudden decrease in their liquid-

ity, like an unexpected need for cash or consumption, which leads to a forced

withdrawal of assets. A liquidity crisis results, during which asset prices either

decrease and recover over time, or asset prices become temporarily nonexistent

because the market breaks down.

1.1 Motivation

The 2007–2009 financial crisis drew attention to over-the-counter markets and

their shortcomings.2 Many assets at the core of the crisis, such as collateralized

debt obligations, credit default swaps, and a lot of other derivatives, are generally

traded over-the-counter (OTC). Various other more well-known assets, such as

corporate and government bonds, blocks of equity shares, currencies, real estates,

or fine art, are commonly traded OTC as well.3

1 Commonly, liquidity is also associated with asymmetric information, transaction or inven-
tory costs, or immediacy, which do not apply in this dissertation.

2 See Acharya, Engle, Figlewski, Lynch, and Subrahmanyam (2009), p. 251.
3 See Duffie (2010), p. 2.

1



Chapter 1. Introduction 2

The most notable characteristic of an OTC market is its decentralized structure.

No central trading device such as a stock exchange with floor and electronic trad-

ing, limit-order books, or an auction, is available. Investors intending to trade in

an OTC market must search for each other in order to locate a trading partner and

to learn about prices. Search frictions lead to trading delays, which implies that it

takes time to find a suitable trading partner. For example, the sale of a residential

house takes 111–135 days on average.4 Similarly, it takes, on average, between

half a day and one week for an investor to find a dealer for trading a bond.5

Prices are commonly bargained bilaterally in OTC markets, leading to both coun-

terparty risk and a general lack of transparency.6 Agents are usually unaware of

comparable trades and the associated prices bargained elsewhere in the market.

Due to this opacity, Duffie (2010) designates this kind of market a “dark market”.7

Market frictions, such as the search and bargaining properties of an OTC market,

affect the liquidity level of the assets traded in these markets, which influences

asset prices. Brunnermeier and Pedersen (2009, p. 2201) distinguish between “an

asset’s market liquidity (i.e., the ease with which it is traded) and traders’ funding

liquidity (i.e., the ease with which they can obtain funding)”. A high funding

liquidity implies the possibility of easily raising capital. High market liquidity

implies the easy location of a trading partner, that is, low search frictions. Kyle

(1985) introduces a specification of market liquidity that is generally accepted

by both academics and practitioners: (1.) market tightness, which accounts for a

trader’s loss due to turning around an asset within a short time period—reflected

by bid-ask spreads, (2.) market depth, describing the impact on prices through

trading, and (3.) resiliency, denoting price recovery time after a decline.8

During the 2007–2009 financial crisis, it became apparent that market and fund-

ing liquidity are valuable but scarce market features in times of financial distress.

In some OTC markets, liquidity was reduced on short notice or even disappeared

entirely. For example, the market for structured investment vehicles for rolling

over short-term debt to finance long-term debt nearly broke down, because in-

vestors were unwilling to lend for the short term. As a result, structured in-

4 This selling time refers to the market in the United States of America (USA) during the pe-
riod 1992–2002 for single-family homes. See Levitt and Syverson (2008), pp. 602.

5 Feldhütter (2012, pp. 1165–1173) estimates this range for “noncallable, nonconvertible,
straight coupon bullet bonds with maturity less than thirty years [...] [for] the period from
October 1, 2004, to June 30, 2009”.

6 See Acharya, Engle, Figlewski, Lynch, and Subrahmanyam (2009), p. 251.
7 See Duffie (2010), ch. 1.
8 See Brunnermeier (2009), p. 92 and Kyle (1985), pp. 1316.



Chapter 1. Introduction 3

vestment vehicles faced the risk of low funding liquidity.9 Market and funding

liquidity are highly interconnected, possibly causing so-called ‘liquidity spirals’:

Difficulties in funding can lead to a general reduction both in holding assets and

in investors’ ability to fund trading if many agents who usually provide liquidity

are affected, which, in turn, influences market liquidity, and leads to a decrease

in prices. Since the value of agents’ remaining positions decreases, funding diffi-

culties may worsen.10

This effect explains another example from the 2007–2009 financial crisis: The

“Quant Meltdown”, as Khandani and Lo (2011, p. 1) called it. It is a good exam-

ple of a systemic liquidity shock with short recovery time. In August 2007, hedge

funds were forced to unwind large asset positions at short notice, probably due

to margin calls or in order to reduce risk. These huge selling positions induced

losses to others and led to a “deadly feedback loop”11 by reducing prices of col-

laterals. After a few days, prices had mostly recovered.12 This price recovery is

in line with theory, because price drops due to liquidity shocks have a tendency

to revert, whereas price drops due to changes in fundamentals do not rebound in

general.13

The analytical modeling of OTC markets, and the pricing of assets therein, is still

in the early stages compared to asset pricing in centralized markets.14 Neverthe-

less, the total volume of OTC derivatives alone was $346.4 trillion at year-end

2012,15 which is not negligible. Due to the pioneering and inspiring work of

Duffie, Gârleanu, and Pedersen (2005, 2007), research in this area has progressed

in recent years.

My objective is to shed light on the models of Duffie, Gârleanu, and Pedersen

(2005, 2007). To this end, the next section reviews related literature and section

1.3 outlines the structure of my thesis.

9 See Brunnermeier (2009) and Acharya, Gale, and Yorulmazer (2011) for a detailed analysis.
10 See Brunnermeier and Pedersen (2009), pp. 2204 and Brunnermeier (2009), pp. 77.
11 Khandani and Lo (2011), p. 3.
12 See Khandani and Lo (2007, 2011).
13 See Pedersen (2009), p. 196.
14 See Duffie (2010), p. xiii.
15 This is the volume of cleared transactions, excluding foreign exchange contracts. See Inter-

national Swaps and Derivatives Association (ISDA) (2013), p. 2.
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1.2 Related Literature

Duffie, Gârleanu, and Pedersen (2005) model search frictions in a single-asset

over-the-counter market leading to illiquidity. Potential sellers must search for

potential buyers or market makers, and vice versa. After meeting an appropriate

counterparty, price bargaining takes place and the trade is executed upon agree-

ment.

There are various extensions of the basic Duffie, Gârleanu, and Pedersen (2005)

model. The first are from Duffie, Gârleanu, and Pedersen (2005) themselves and

the accompanying paper by Duffie, Gârleanu, and Pedersen (2007): Duffie, Gâr-

leanu, and Pedersen (2005) analyze both the impact of monopolistic market mak-

ers and the effect of heterogeneous types of investors—sophisticated and unso-

phisticated ones—on the bid-ask spread. Additionally, they study endogenous

search by market makers and the influence of market makers on welfare. Duffie,

Gârleanu, and Pedersen (2007) examine risk-aversion and conclude that their ba-

sic risk-neutral model is a good first-order approximation to the risk-averse one.

Their second contribution analyzes the negative implication of aggregate liquid-

ity shocks on prices. Both extensions of Duffie, Gârleanu, and Pedersen (2007)

are conducted without market makers.

Vayanos and Wang (2007), Vayanos and Weill (2008), and Weill (2008) extend

the Duffie, Gârleanu, and Pedersen (2005) model to consider various asset mar-

kets, which differ by the extent of the prevailing search friction. They find cross-

sectional differences in asset returns. Vayanos and Weill (2008) additionally con-

sider short sellers to explain liquidity premia. Weill (2008) discusses the impact of

a general matching function. Bélanger, Giroux, and Moisan-Poisson (2013) study

an OTC market in line with Duffie, Gârleanu, and Pedersen (2005), but allow for

several traded assets. Gârleanu (2009) and Lagos and Rocheteau (2007, 2009a) let

agents hold a different amount of assets, compared to 0 or 1 in Duffie, Gârleanu,

and Pedersen (2005). They find that search frictions influence the structure of

an investor’s portfolio in a negative way. Lagos and Rocheteau (2009a) consider

general preference types. Afonso (2011) alters the framework of Duffie, Gârleanu,

and Pedersen (2005) with an endogenous entry of investors in order to model a

congested market. In her model, Afonso (2011) finds that reducing search fric-

tions does not necessarily increase market liquidity.

Empirical analysis of search frictions are carried out by Ashcraft and Duffie

(2007), who utilize the OTC characteristics of the federal funds market, and by
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Gavazza (2011), who studies the effect of search costs in the commercial aircraft

market in the USA.

Feldhütter (2012) builds on Duffie, Gârleanu, and Pedersen (2007) but restricts

his model to trade intermediated by market makers. He considers only a sin-

gle systemic liquidity shock. In his appendix, he extends his model to multiple

aggregate liquidity shock à la Duffie, Gârleanu, and Pedersen (2007) but limits

his analysis to severe shocks. Weill (2007, 2011), Lagos, Rocheteau, and Weill

(2011), and Chiu and Koeppl (2011) present an extension of Duffie, Gârleanu,

and Pedersen (2007) in which market makers can accumulate inventories after

a shock. In Weill (2007, 2011) and Lagos, Rocheteau, and Weill (2011), market

makers use their inventory to overcome a single aggregate liquidity shock, while

trading is also restricted to intermediation by market makers. Under various re-

strictions and settings, they study the effect of market makers “leaning against

the wind”16. In Chiu and Koeppl (2011), market makers use their inventory to

respond to an adverse shock to asset quality leading to a market freeze. Biais,

Hombert, and Weill (2013) utilize much of the spirit of the Duffie, Gârleanu, and

Pedersen (2007) model with aggregate liquidity shocks. However, search fric-

tions are replaced with agents who infrequently observe their own preferences.

While they consider a centralized limit order market, the focus of this thesis is

OTC markets.

Duffie, Gârleanu, and Pedersen’s (2005, 2007) work and my work are both re-

lated to several strands of literature. First, the work is related to search theory.

Search frictions have been implemented into labor market models since at least

Stigler (1961). The major contributions come from Diamond (1982a,b), Mortensen

(1982a,b), and Pissarides (1984a,b, 1985), who received the Nobel Prize for their

work in 2010. A good overview of the literature on the application of search fric-

tions in many different research areas is provided by the scientific background

article for the 2010 Nobel Prize, prepared by The Royal Swedish Academy of Sci-

ences (2010). Monetary search literature, for example, began applying a compa-

rable model in the 1990s. Known representatives are Kiyotaki and Wright (1993)

and Trejos and Wright (1995). Yet, the seminal contributions of Duffie, Gârleanu,

and Pedersen (2005, 2007) were the first to integrate search frictions into a model

of financial markets in order to depict liquidity. They laid the foundation for this

new and promising strand of research on liquidity in over-the-counter markets.

16 Weill (2007).
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Second, Duffie, Gârleanu, and Pedersen’s (2005, 2007) work and also my work

are related to bargaining theory. The model by Duffie, Gârleanu, and Pedersen

(2005, 2007) relies on the general Nash bargaining solution, introduced by Nash

(1950, 1953). The alternating-offer bargaining game, introduced by Rubinstein

(1982) and specified by Binmore, Rubinstein, and Wolinsky (1986), is considered

in Duffie, Gârleanu, and Pedersen (2007) as well. The present thesis addresses

the latter only briefly.

This thesis is also related to the general strand about pricing illiquid assets. The

seminal contributions by Kyle (1985) and Glosten and Milgrom (1985), who study

asymmetric information, paved the way for the liquidity theory in finance. Apart

from asymmetric information, illiquidity can be due to many reasons, such as

transaction or inventory costs, immediacy, or search frictions. Amihud, Mendel-

son, and Pedersen (2005) provide a good survey of the vast literature and discuss

these aspects. The present thesis is only related to the type of illiquidity due to

search frictions.

Fourth, this thesis complements the literature on liquidity shocks. Pedersen

(2009, p. 177) discusses a liquidity shock and “the dangers of rushing to the exit”

in order to not be forced to sell at the lowest price. He finds that asset prices are re-

duced due to liquidity risk. Brunnermeier and Pedersen (2009) analyze liquidity

shocks in connection with the restricted funding of investors. They find that the

liquidity of a market can suddenly run dry. Coval and Stafford (2007), Mitchell,

Pedersen, and Pulvino (2007), Duffie (2010), Duffie and Strulovici (2012), and

Acharya, Shin, and Yorulmazer (2013) address the slow movement of capital af-

ter a liquidity shock, leading to a slow market recovery. Although their model

setups are different, the results of this thesis are essentially in line with theirs:

Prices are reduced due to liquidity shocks but can recover over time. There are

also empirical analyses of liquidity shocks. Feldhütter (2012) estimates a variant

of the liquidity shock model of Duffie, Gârleanu, and Pedersen (2007) with corpo-

rate bond market data, with the aim of identifying selling pressure. Albuquerque

and Schroth (2013) empirically study the pricing implications of liquidity shocks

and search frictions on investors who hold blocks of shares.

Finally, this thesis is related to the strand of literature that analyzes a market

freeze or a market breakdown. Longstaff (2009) considers an exogenous black-

out period in which an illiquid asset cannot be traded while a liquid one can. His

findings are extreme portfolio allocations and a negative price impact on the illiq-

uid asset. Ang, Papanikolaou, and Westerfield (2013) study optimal asset alloca-

tion, where some illiquid assets can only be traded at exogenous random times.
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Bruche and Suarez (2010) and Heider, Hoerova, and Holthausen (2009) consider a

market freeze in the interbank money market due to counterparty risk. Acharya,

Gale, and Yorulmazer (2011) study the market freeze for short-term debt that

is repeatedly rolled over. This effect appeared in the 2007–2009 crisis, as noted

above. Chiu and Koeppl (2011), Camargo and Lester (2013), and Camargo, Kim,

and Lester (2013) analyze a market for lemons à la Akerlof (1970), and how it

freezes and thaws. In their studies, market freeze is due to asymmetric informa-

tion, whereas market freeze in the present thesis is related to search frictions and

liquidity risk, i.e. the risk of future liquidity shocks.

1.3 Structure of the Thesis

My thesis is organized as follows: Chapter 2 lays the foundations of search,

matching, and bargaining theory for the models of Duffie, Gârleanu, and Ped-

ersen (2005, 2007).

The purpose of chapter 3 is to introduce the basic steady state equilibrium

model of Duffie, Gârleanu, and Pedersen (2005) for asset pricing in an illiquid

over-the-counter (OTC) market. Illiquidity frictions are modeled by two-side

search and bilateral trading. The intention of this chapter is to discuss the effects

of search frictions on market liquidity, influencing asset prices, bid-ask spreads,

and asset allocation in an OTC market. Since this model is taken as a basis for the

following chapters, I refer to this model as the ‘basic model’.

The objective of chapter 4 is the discussion of aggregate liquidity shocks. This

is the extension developed by Duffie, Gârleanu, and Pedersen (2007) to the ba-

sic model of chapter 3, although Duffie, Gârleanu, and Pedersen (2007) do not

take market makers into account. The focus of chapter 4 is the reaction of

prices to aggregate liquidity shocks in connection to the dynamics out of and

towards steady state. I explicitly derive a semi-analytical solution to the result-

ing linear time-varying (LTV) system of differential equations, including market

makers. The implications of a sudden selling pressure on both asset prices and

the bid-ask spread out of and towards steady state, as well as the market recovery

pattern, are studied therewith.

Chapter 5 discusses the implications of aggregate liquidity shocks on the basis

of a numerical example. I adopt the example of Duffie, Gârleanu, and Pedersen

(2007) to analyze their results. To study bid-ask spreads, I extend their example
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to include market makers.

Chapter 6 and 7 constitute the core of my thesis. In chapter 6, I discuss the exis-

tence of a Nash bargaining solution, which ensures the feasibility of the models

in chapter 3 and 4. The nonexistence of a Nash bargaining solution would result

in no gains from trade but forced trading instead of an endogenously induced

market freeze. I analyze both the basic model and the aggregate liquidity shock

model with respect to gains from trade. Further, I examine the impact of the level

of search frictions on the risk of no gains from trade. Voluntarily trading in any

case can be implemented into the aggregate liquidity shock model through some

model modifications.

The reason for a market freeze is addressed in chapter 7. Because the model of

chapter 4 includes the possibility of further shocks, I discuss the effects of an

additional aggregate liquidity shock occurring shortly after an initial one. This

possibility gives flexibility to the aggregate liquidity shock model but causes in-

consistency within the model. I complete the aggregate liquidity shock model to

fix both issues: no gains from trade and inconsistency.

Chapter 8 summarizes the results and concludes my thesis.



Chapter 2

Search and Bargaining

This chapter gives a short introduction to the fundamentals of search and bar-

gaining models. First, I introduce the economics of search and matching theory

in chapter 2.1. I review some methods of probability theory in section 2.1.2, since

search and matching models rely on these techniques. Section 2.1.3 describes

the relevance of matching functions for search theory. The appropriate matching

function for the OTC market considered in this thesis is derived as well. Chap-

ter 2.2 deals with bargaining theory. It is commonly applied to the negotiation

of trading conditions after search is completed and individuals are matched suc-

cessfully. I give a short introduction to the basics of game theory, and bargaining

theory in general, and Nash bargaining and an alternating-offer bargaining game

in particular.

Most of these concepts are by now standard in economics and finance and have

been treated in detail in several textbooks. For further reading, I recommend (1)

McCall and McCall (2008) and Pissarides (2000) for a basic treatment of search

and matching theory; (2) Rachev, Höchstötter, Fabozzi, and Focardi (2010) and

Schönbucher (2003) for a thorough discussion of probability theory; (3) Osborne

and Rubinstein (1990, 1994) and Myerson (1991) for a detailed examination of

bargaining theory.

2.1 Search and Matching Theory

2.1.1 Search Theory

Neoclassical economics considers a centralized market for exchange in which all

kinds of information are perfectly available to all individuals. Walras (1874) in-

9
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troduces a centralized auction to find a market clearing price that matches supply

and demand in a perfect market.17 But usually, as Stigler (1961) notes in the early

literature about search theory, there is no centralized market, no facility for a per-

fect and costless allocation of resources, and no benevolent Walrasian auctioneer

matching supply and demand:

“Prices change with varying frequency in all markets, and, unless

a market is completely centralized, no one will know all the prices

which various sellers (or buyers) quote at any given time. A buyer (or

seller) who wishes to ascertain the most favorable price must canvass

various sellers (or buyers)—a phenomenon I shall term ‘search’.”18

One implicit assumption derived from this specification is that trade should not

be modeled between buyer / seller and ‘the market’ but directly between buyer

and seller, in order to account for the time-consuming search for a trading part-

ner. Of course, search is not restricted to just markets for goods or to financial

markets, though these are the most obvious. Other examples are the labor mar-

ket, housing market, or even the marriage market.19 The central idea of search

theory is summarized by Pissarides (2001, p. 13760) as follows:

“The economics of search study the implications of market frictions

for economic behavior and market performance. ‘Frictions’ in this

context include anything that interferes with the smooth and instan-

taneous exchange of goods and services.”

Search frictions result in the expenditure of time, money, and other resources in

order to learn about opportunities. For example, if individuals have incomplete

information about the location of an item or a trading partner, potential buyers

must search for the needed item and potential sellers cannot easily locate a poten-

tial buyer for the item on sale. As a result, prices are influenced by such frictions,

which cannot be eliminated with price adjustments. Trade is delayed and mar-

kets do not clear at all times.20

The characterization of search in a financial market can be taken further by re-

garding it as a substitute for modeling liquidity. Harris (2003, p. 395) defines

liquidity as follows:

17 See Neus (2013), pp. 85.
18 Stigler (1961), p. 213.
19 See Diamond (1984), pp. 1.
20 See Pissarides (2001), pp. 13760 and Diamond (2011), pp. 1045.
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“Liquidity is the object of bilateral search. In a bilateral search, buyers

search for sellers, and sellers search for buyers. When a buyer finds

a seller who will trade at mutually acceptable terms, the buyer has

found liquidity. Likewise, when a seller finds a buyer who will trade

at mutually acceptable terms, the seller has found liquidity.”

Market liquidity has many different dimensions. The three dimensions estab-

lished by Kyle (1985, p. 1316) are commonly stated: “[...] ‘tightness’ (the cost of

turning around a position over a short period of time), ‘depth’ (the size of an or-

der flow innovation required to change prices a given amount), and ‘resiliency’

(the speed with which prices recover from a random, uninformative shock).”21

Kyle (1985, pp. 1316) himself refers to Black (1971, pp. 29), who describes the bid-

ask spread as a measure for market tightness. Kyle (1985, p. 1317) summarizes

the definition of “a liquid market as one which is almost infinitely tight, which is

not infinitely deep, and which is resilient enough so that prices eventually tend

to their underlying value.”

Sometimes a fourth dimension, ‘immediacy’ (referring to the time a trade takes),

is added.22 Harris (2003, p. 399) defines “liquidity [as] the ability to quickly trade

large size at low cost.” The key issue of liquidity is the ability to trade, which is

the core element of search and matching theory. Harris (2003, p. 399) continues by

characterizing liquidity as a function, stating “the probability of trading a given

size at a given price, given the time we are willing to put into [.] search.” Search

models imply a natural—though slightly different—liquidity measure. The cost

of a time lag due to delayed trade can be measured by the expected time it takes

to find a trading partner. Liquidity in this setting is characterized by the speed of

finding a trading partner.23

The following passage provides a short overview of important contributions to

the research on search theory:

Stigler (1961) is one of the first to formally model the behavior of buyers in a com-

modity market—from which the ‘fixed sample rule’ became known: First, a buyer

chooses the optimal number of sellers to search for and then decides in favor of

the seller quoting the lowest price. This model paved the way for the ‘optimal

stopping rule’, and can be traced back to a model of labor markets by McCall

(1970): First, a reservation price is specified, and the buyer then buys from the

21 Market ‘width’ is another name for ‘tightness’. See Harris (2003), pp. 398.
22 See Harris (2003), pp. 398 and Black (1971), p. 30.
23 See Vayanos and Wang (2007), p. 75.
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first seller quoting a price equal to or less than the reservation price. Therefore,

search intensity and time depend on the reservation price. An exogenous price

distribution is assumed within this model and a partial equilibrium problem, i.e.

one-sided search with a take-it-or-leave-it price, is solved.24

The next stage of development in search theory was reached by Diamond

(1982a,b), Mortensen (1982a,b), and Pissarides (1984a,b, 1985). Their contri-

butions are threefold: (1) They replaced the assumption about an exogenous

price distribution with Nash bargaining, (2) they introduced two-sided search

by means of an exogenous matching function, and (3) they considered the flow

of agents to model a general equilibrium problem.25

Search theory extends the classical, i.e. deterministic, theory of exchange by con-

sidering uncertainty.26 The matching function accounts for this uncertainty; it

describes how individuals come into contact through search. One input parame-

ter is the arrival rate of trading partners within a short time interval, modeled as a

stochastic process. The simplest form describing these contacts is the first arrival

time τ of a Poisson process with a constant mean arrival rate λ. This arrival rate

λ is denoted as ‘search intensity’, which is usually costly to increase. In general,

it has the following properties: λ → ∞ in a world with no frictions, λ > 0 in a

market with search frictions, and λ = 0 with no search at all.27

An equilibrium model is characterized by a search process that persists over time.

This flow of ‘new’ agents searching for trading partners can be modeled by either

exogenous inflows, wherein matched agents leave the market, or, as in the model

considered in chapter 3–7, by exogenous and independent idiosyncratic shocks

to a fraction of the population. These shocks induce search and trading impulses

and are commonly driven by a Poisson process.28

The following section gives a short introduction to probability theory, with the

aim of modeling uncertainty in search theory. Thereafter, matching functions,

particularly with regard to the model discussed subsequently, are presented. Bar-

gaining is introduced in chapter 2.2.

24 See Pissarides (2001), pp. 13761, McCall (1970), pp. 114, and McCall and McCall (2008), pp.
11.

25 See Mortensen and Pissarides (1999a), p. 1173, The Royal Swedish Academy of Sciences
(2010), p. 3, and McCall and McCall (2008), pp. 9 and 12.

26 See McCall and McCall (2008), p. 10.
27 See Diamond (1984), p. 9, Pissarides (2001), p. 13761, and Pissarides (2000), p. 127.
28 See Pissarides (2001), p. 13762.
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2.1.2 Basics of Probability Theory

This section starts with basic definitions of distributions and density functions.

From the set of all possible distribution functions, the exponential distribution is

explicitly presented, since it is of particular interest. The concepts for stopping

times, hazard rates, and point processes are provided. The section concludes

by defining the Poisson process and highlighting its relevance to the rest of this

thesis.

First, a probability space (Ω,F , P) with an information filtration Ft : t ≥ 0 is

defined. Ω is the set of all possible states in the world, F describes the informa-

tion structure of the setup, and the probability measure P attaches probabilities

to the events in Ω. Notations and definitions in this section are based on Rachev,

Höchstötter, Fabozzi, and Focardi (2010, Part II), Schönbucher (2003), and Duffie

and Singleton (2003).

Distribution and Density Function

The distribution function F(x) expresses the probability that a random variable

X is equal to or less than x. It is defined as follows:

F(x) = P (X ≤ x) .

For a continuous random variable X, the distribution function is defined by its

(probability) density function f (x), with

F(x) =
x∫

−∞

f (t) dt,

where the element of probability dF(x) = f (x) dx describes the probability

that the random variable X is within the infinitesimal interval (x, x + dx), i.e.

f (x) dx = P (x ≤ X ≤ x + dx). Another notation for the distribution function is

F(x) =
∞∫

−∞

1{A}(t) f (t) dt,

where 1{A}(X) is an indicator function. The indicator function has the value 1 if

the event A is true, i.e. the random variable X is an element of a set A; the value
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is 0 for all X that are not in A. Formally,

1{A}(X) =





1, X ∈ A

0, otherwise.
(2.1)

Application of an indicator function is suitable for modeling first stopping times,

indicating if an event has already occurred or not.

The expected value of a function of X, g(x), in terms of the (probability) density

function f (x), is

E [g(X)] =

∞∫

−∞

g(x) f (x) dx.

Multivariate Probability Distribution

The multivariate distribution is the distribution of a multivariate random variable

or the joint distribution of more than one random variable. It is calculated by

integrating over the multivariate or joint density function

F(x1, . . . , xn) = P(X1 ≤ x1, . . . , Xn ≤ xn)

=

x1∫

−∞

. . .
xn∫

−∞

fx1,...,xn(t1, . . . , tn) dt1 . . . dtn,

where fx1,...,xn(t1, . . . , tn) is the joint density function. The random variables xi are

called independent if the joint density is

f (x1, . . . , xn) = ∏
i

fxi(x1, . . . , xn).

Exponential Distribution

Of special interest are the density f (x) and the distribution function F(x) of an

exponential distributed random variable. The density is defined as follows:

f (x) =





λe−λx, x ≥ 0

0, x < 0.
(2.2)
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The distribution function F(x), i.e. the probability that the random variable X is

equal to or less than x, is the result of integrating over the density function f .

Hence,

F(x) =
x∫

0

λe−λt dt

= 1 − e−λx. (2.3)

Stopping Times

The contact between two investors, possibly modeled by random search and

matching, is called an ‘event’ that occurs at the random time τ ≥ 0. To define

a stopping time, it is necessary that it is known at every time t if the event has

already occurred (τ ≤ t) or not (τ > t), given the information in Ft. This means

that

{τ ≤ t} ∈ Ft , ∀t ≥ 0,

which defines the random time τ as a stopping time. It can be stated with a

stochastic process using an indicator process that is defined by a switch from

zero to one at the stopping time τ. This is

Nτ(t) = 1{τ≤t}.

Hazard Rate

Let F(t) = P(τ ≤ t) denote the distribution function and let f (t) = dF(t)/dt de-

scribe the density function of a stopping time τ. The hazard rate is defined with

h(t) =
f (t)

1 − F(t)
, (2.4)

where S(t) = 1 − F(t) = P (τ > t) is called the survivor function: The probability

that an individual survives beyond time t. Translated to the concept of random

search and matching, S(t) is the probability of no contact between two investors.

The hazard rate h(t) can be interpreted as the local arrival (also: leaving, escape,

defaulting) probability per unit of time of the stopping time τ or the instanta-
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neous arrival rate of a contact at time t. This means that

h(t) = lim
∆t→0

1
∆t

P (τ ≤ t + ∆t|τ > t) ,

where P (τ ≤ t + ∆t|τ > t) describes the probability of changing the current state

within the short interval (t, t + ∆t), conditional on surviving up to the beginning

of the period in t.29 This probability implies, for the random search and matching

concept, that P (τ ≤ t + ∆t|τ > t) is the probability of a contact within the inter-

val (t, t + ∆t), given that no meeting has occurred up to time t. Approximately

for a small ∆t,

P (τ ≤ t + ∆t|τ > t) ≈ h(t)∆t.

The conditional hazard rate at time T, as seen from time t ≤ T, is defined as

h(t, T) =
f (t, T)

1 − F(t, T)
, (2.5)

where F(t, T) = P(τ ≤ T |Ft ) = P(τ ≤ T |τ > t ) is the conditional distribution

function of the stopping time τ and f (t, T) is the corresponding conditional den-

sity function, both conditioned on the information Ft available at time t ≤ T.

Hence,

h(t, T) = lim
∆t→0

1
∆t

P (τ ≤ T + ∆t| {τ > T} ∧ Ft) ,

where P (τ ≤ T + ∆t| {τ > T} ∧ Ft) describes the conditional default probability

over the interval (T, T + ∆t) as seen from time t ≤ T.

Since d(1 − F(t))/dt = − f (t) and d(1 − F(t, T))/dT = − f (t, T), the hazard rate

of equation (2.4) and the conditional hazard rate of equation (2.5) can be written

as

h(t) = −d ln (1 − F(t))
dt

,

and

h(t, T) = −d ln (1 − F(t, T))
dT

.

Integrating and using F(0) = 0 and F(t, t) = 0, the unconditional probabilities

29 See McCall and McCall (2008), p. 117.
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F(t) and f (t) as well as the conditional probabilities F(t, T) and f (t, T) can be

reconstructed with

F(t) = 1 − e−
∫ t

0 h(x) dx,

f (t) = h(t) e−
∫ t

0 h(x) dx,

and

F(t, T) = 1 − e−
∫ T

t h(t,x) dx,

f (t, T) = h(t, T) e−
∫ T

t h(t,x) dx.

In many standard cases, there is a constant hazard rate, i.e. h(t) = h. This con-

stant hazard rate leads to the distribution function F(t) = 1 − exp(ht), which is

equal to an exponential distribution. Hazard rates, however, can change (even

stochastically) over time, in which case the distribution F(t) need not be an ex-

ponential one. Other possibilities are, for example, the Weibull distribution or a

log-logistic distribution.30

Point Processes

A stopping time only describes one single event, whereas a point process is a se-

quence of multiple events, like a random collection of different stopping times:

{τi, i ∈ N} = {τ1, τ2, . . . , τN}. A counting process is a stochastic process that de-

scribes this collection of (random) numbers of points in time. This means that

N(t) = ∑
i

1{τi≤t},

where N(t) accumulates the number of time points that are located in an interval

[0, t]. For all τi > 0, N(t) is a step function starting at zero and having a step size

of one. Each step occurs as soon as the next τi is attained.

The Poisson process is the most prominent representative of a counting process.

Its definition is presented in the next passage.

30 See McCall and McCall (2008), pp. 118–120.
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Homogeneous Poisson Process

Let (X(t))t≥0 be a stochastic process and this process is called Poisson process if

it has the following properties:31

(i.) X0 = 0.

(ii.) Xt has independent increments: For 0 ≤ t0 < t1 < . . . < tn < ∞ and any

n ∈ N, the random variables Xt1 − Xt0 , Xt2 − Xt1 , . . ., Xtn − Xtn−1 are

stochastic independent.

(iii.) The stochastic process Xt is homogeneous: The random variables Xt+h − Xt

and Xs+h − Xs are identically distributed for any s ≥ 0, t ≥ 0, and h > 0.

(iv.) Let X(t, t + ∆t) be the number of events in an interval (t, t + ∆t]. As

∆t → 0+:

P{N(t, t + ∆t) = 0} = 1 − λ∆t + o(∆t), (2.6)

P{N(t, t + ∆t) = 1} = λ∆t + o(∆t), (2.7)

P{N(t, t + ∆t) > 1} = o(∆t), (2.8)

with λ (λ > 0) as the expected number of events per unit time, also called

the rate of occurrence.

From properties (i.)–(iii.) it follows that the probability distribution of the random

variable X(t) is a Poisson distribution with parameter λt and

P (X(t) = k) = e−λt (λt)k

k!
, k = 0, 1, ...

From property (iv.) it follows that during a small time interval of length ∆t an

event occurs with probability λ∆t (equation (2.7)). With probability 1 − λ∆t no

event arrives (equation (2.6)), and the probability of more than one event during

the time interval [t, t + ∆t] is negligible (equation (2.8)). The Poisson distribution

has an expected quantity of jumps per time unit, that is

E [X(t)] = λt,

where the parameter λ is called ‘intensity’.

31 The definition follows the one in Bening and Korolev (2002), p. 69 and Cox and Miller (1965),
p. 6 and pp. 146.
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Assume that τn (with n ≥ 1) are the times when the jump of a Poisson process

occurs. Then, the distribution of the random variable τn − τn−1, i.e. the time

interval between two jumps, is exponential distributed with

F(t, T) = 1 − e−λ(T−t), (T ≥ t).

The probability density function is

f (t, T) = λe−λ(T−t), (T ≥ t).

Stated differently, inter-arrival times of a Poisson process are constituted by an

exponential distribution. One of the advantages of an exponential distribution

is its property of memorylessness. It ensures the tractability of the search and

matching models described in chapters 3 to 7. To predict the mean time until

the next event occurs, one does not need any information about the time that has

elapsed since the last event took place. The expected time until the next event

occurs is 1/λ.

The conditional survival probability S(t, T) is defined as the probability that no

event takes place between time t and T, given both Ft and no occurrence until

time t. Hence,

S(t, T) = 1 − F(t, T) = e−λ(T−t).

The conditional hazard rate is

h(t, T) = λ

for a constant intensity λ.

As time passes, new information is revealed and the occurrence rate of events

might change over time. Such changes can be driven by an underlying state vari-

able, which varies with the business cycle or other economic parameters. The

following passage generalizes the Poisson process by considering time depen-

dence.

Inhomogeneous Poisson Process

When the intensity parameter of the Poisson process is a (deterministic) function

of time λ(t) (λ(t) ≥ 0, ∀t), the process is called an inhomogeneous Poisson pro-
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cess. The properties of homogeneous and inhomogeneous Poisson processes are

similar: Properties (i.) and (ii.) must hold, and property (iv.) is restated with

P{N(t, t + ∆t) = 0} = 1 − λ(t)∆t + o(∆t), (2.9)

P{N(t, t + ∆t) = 1} = λ(t)∆t + o(∆t), (2.10)

P{N(t, t + ∆t) > 1} = o(∆t). (2.11)

It follows that the increments in (ii.) are Poisson distribution for 0 ≤ t ≤ T with

P (X(T)− X(t) = k) = e−
∫ T

t λ(s) ds

(∫ T
t λ(s) ds

)k

k!
, k = 0, 1, ...

Hence, the inter-arrival time has an exponential distribution. The distribution

function, probability density function, and survival probability of the first stop-

ping time, given no event has occurred since time t, are

F(t, T) = 1 − e−
∫ T

t λ(s) ds, (T ≥ t),

f (t, T) = λ(T)e−
∫ T

t λ(s) ds, (T ≥ t),

S(t, T) = e−
∫ T

t λ(s) ds, (T ≥ t).

The hazard rate is

h(t, T) = λ(T).

The superposition process of N independent Poisson processes is again a Poisson

process. It is defined with

∫ t

0
Λ(s)ds =

N

∑
i=1

∫ t

0
λi(s) ds, (2.12)

where the intensity Λ(s) is the sum of the individual processes.

2.1.3 Matching Function

The core element of search and matching theory is the matching function. It facil-

itates the modeling of frictions within a framework that is easily tractable. If there

are no search frictions, random matches occur instantaneously and the rationed

side determines the amount of matches. But in a world with search frictions, in-
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dividuals must spend time, money, and other resources on the search for each

other. All these frictions are captured in a matching function of reduced-form,

reflecting the degree of mismatch in a market.32

“The matching function summarizes a trading technology between

agents [. . . ] that eventually bring[s] them together into productive

matches.”33

Different matching technologies are possible. For example, a linear matching

technology is applied if the probability of a match within a short time interval

does not rely on the amount of unmatched agents. A quadratic matching tech-

nology is characterized by a proportional relationship to potential matching part-

ners.34 The most basic definition for a matching function is

M = m
(
µi, µj

)
,

where M is the output of a matching function. It states the number of success-

ful matches per unit of time—the flow rate of matches. It is the instantaneous

matching rate in continuous time. The matching function depends on the num-

ber of agents µi and µj voluntarily searching for each other, i.e. the inputs into

a matching function. The action of one agent of, say, type i, inevitably influ-

ences the matching probability of all other agents of type i and of type j, since the

matching rate is affected. It is assumed that the matching function is nonnega-

tive, homogeneous of degree one, increasing, and concave in both its arguments.

This characterization implies that search frictions decrease with the amount of

agents. Individuals must be located on both sides of a market for a successful

match, i.e. m
(
0, µj

)
= m (µi, 0) = 0. If the matching function is multiplied with

a scaling parameter, the argument is multiplied by this scaling parameter with

power one—due to homogeneity of degree one. Without frictions, the matching

function is M = min
(
µi, µj

)
in discrete time, and goes to infinity in continuous

time.35

Commonly, the matching function is declared as a “black box that gives the out-

come of the search process in terms of the inputs into search”36. The kind of meet-

ing process eventually determines the specific matching function. The matching

32 See Stevens (2007), p. 847, Petrongolo and Pissarides (2001), p. 390, and Pissarides (2000), p.
22.

33 Petrongolo and Pissarides (2001), p. 391.
34 See Mortensen (1982b), p. 235.
35 See Petrongolo and Pissarides (2001), p. 392.
36 Pissarides (2001), p. 13762.
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function usually applied in the empirical labor market literature is of a Cobb–

Douglas form, given by

M = m0ν1−αuα,

where α is the elasticity parameter (0 < α < 1), u is the measure of unemployed

agents, ν is the measure of job vacancies, and m0 is a scaling parameter (m0 > 0).

There is empirical evidence for this function37, though the exact matching pro-

cess generating it is not known, i.e. there are no microfoundations supporting a

Cobb–Douglas form.38 The matching function commonly applied in the theoret-

ical labor market literature is of an exponential form with

M = ν
(

1 − e−λu/ν
)

, for λ > 0,

with λ describing the search intensity of workers. The motivation of this match-

ing function is based on the “assumption of uncoordinated random search”39.

For an infinitesimal period of time dt, the number of matches is ν
(
1 − e−λu dt/ν

)
.

This leads to a Poisson matching rate M = λu with dt → 0. Two-sided search

reveals a linear and symmetric matching technology: M = λu + γv, where γ

represents the rate of recruitment.40

The crucial point is finding the particular matching function that best fits an OTC

market with search frictions. In general, an OTC market is characterized by bi-

lateral trade negotiations between a potential buyer and a potential seller, two-

sided search for a counterparty, and search frictions. These properties are best de-

scribed by a symmetric, quadratic matching technology, i.e. simultaneous search

by potential buyers and potential sellers and dependence on the fraction of poten-

tial matching partners.41 Hereafter, I follow the modeling of a random matching

process presented by Duffie (2012, ch. 3.1 and 3.2). Notations and definitions are

primarily based on his presentation.

First, some mathematical preliminaries are specified: A probability space, as de-

fined in chapter 2.1.2, and a measure space (G,G, µ) of agents are fixed. G is the

37 See Blanchard and Diamond (1989).
38 See Mortensen and Pissarides (1999b), pp. 2575, Petrongolo and Pissarides (2001), p. 392, and

Stevens (2007), p. 848.
39 Pissarides (2001), p. 13762.
40 See Stevens (2007), pp. 848.
41 See Stevens (2007), pp. 848, Mortensen and Pissarides (1999b), pp. 2575, and Duffie (2012),

ch. 3.2.
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set of agents, which could be, e.g., G = [0, 1], i.e. a uniform distribution over the

unit interval. It is assumed that the measure µ is nonatomic and the set of agents

is a continuum, i.e. there is an infinite amount of agents and no agent has a pos-

itive mass. The set µ(G) is the total amount of agents, which is positive and can

be normalized to 1. The amount of agents in a measurable subset A is described

by µ(A).

The random matching process is now defined: Starting point is the specification

of two representative agents, agent I and agent I I, picked from the subsets A

and B, respectively. Random matching assigns agent I to one single other agent

at the most and agent I is not matched with himself. When agent I is matched

with agent I I, agent I I is inevitably assigned to agent I. Let us assume that the

probability of being matched to anyone is based on a Poisson process with arrival

rate λI for agent I and λI I for agent I I. The probability of agent I being matched

with anyone of a measurable subset B is λIµ(B)/µ(G), i.e. proportional to the

amount µ(B) of agents in this subset. For subset A and B, being disjoint, the

matching function is derived as follows:

E
[∫

I∈A
1{I,B} dµ(I)

]
+ E

[∫

I I∈B
1{A,I I} dµ(I I)

]

=
∫

I∈A
E
[
1{I,B}

]
dµ(I) +

∫

I I∈B
E
[
1{A,I I}

]
dµ(I I)

= µ(A) λI
µ(B)
µ(G)

+ µ(B) λI I
µ(A)

µ(G)
,

with

1{I,B} =
∫

I I∈B
1{I,I I} dµ(I I),

1{A,I I} =
∫

I∈A
1{I,I I} dµ(I),

where 1{I,I I} is an indicator function, which has the value 1 for agent I being

matched to agent I I and 0 otherwise. The random variable 1{I,B} is measuring the

event wherein agent I is matched to anyone of subset B and 1{A,I I} is measuring

the event wherein agent I I is matched to anyone of subset A. This matching

function describes the overall expected amount of matches between agents in the

subset A and agents in the subset B. For the special case that λI = λI I = λ and

µ(G) is normalized to 1, the matching function describing the search technology
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in this OTC market is

M = 2λµ(A)µ(B). (2.13)

This matching function has the property wherein meetings increase by more than

two if the measure of agents in subset A and B are doubled. This feature leads to a

reduction in search time.42 With the matching function defined in equation (2.13),

an agent of subset A contacts agents of subset B with Poisson arrival intensity

M/µ(A) = 2λµ(B).

The characteristic of an independent random matching—as defined by Duffie

(2012)—is an independent matching result for agent I and agent I I. It states that

the described correlation of agent I being matched to agent I I and the inevitable

match of agent I I to agent I goes to zero in a continuum population.43 With

this property being valid, the exact law of large numbers, defined and proved in

Duffie and Sun (2007, 2012), can be applied. It states that

“with independence, the empirical distribution is almost surely the

same as the average probability distribution. [. . . ] [The] task is

dramatically simplified if agents correctly assume that the empirical

cross-sectional distribution of matches is not merely approximated by

its probability distribution but is actually equal to it.”44

The matching function in equation (2.13) best describes the process of an inde-

pendent random matching in an OTC market with a continuum population. It

depicts the stochastic process that brings together potential buyers and potential

sellers to undertake transactions.

In most of the literature, it is assumed that agents start to bargain over the terms

of trade, i.e. the division of the trading surplus, immediately after being success-

fully matched to a partner. That means they bargain over the trading price.45

Accordingly, Mortensen (1982b, p. 234) defines:

“The divisions of the surplus attributable to the existence of a match

is by nature a bilateral bargaining problem. A particular solution to

this problem determines the value of the match to each member of a

pair.”

42 See Vayanos and Wang (2007), p. 70.
43 Duffie and Sun (2007, 2012) constitute the mathematical foundation for this independent

random matching in a continuum population.
44 Duffie (2012), p. 30.
45 See Rubinstein and Wolinsky (1985), p. 1133.
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The next section gives an introduction to bargaining theory for modeling the di-

vision of the matching surplus.

2.2 Bargaining Theory

As bargaining theory belongs to the field of game theory, I start with a short

excursion. The basic concept of game theory is to mathematically describe situa-

tions in which a conflict of agents’ interests prevails. This is a situation wherein

one player’s choice depends on the choice of others. In other words: each player

must take the decisions of others into consideration. Agents are usually called

‘players’ in game theory, so I will follow this practice. A player is not a gambler,

but a rational decision maker and may be an individual (like a sales manager) or a

group of individuals (like governments and companies). Game theory provides

analytical tools for describing and analyzing the interactions of these decision

makers, with the aim of better understanding the situation.46

Game theory distinguishes between cooperative and non-cooperative games:

Players of non-cooperative games cannot collaborate and cannot put up bind-

ing rules with which all players must comply. They usually play against each

other, like in military decisions. Both players care only about their own advan-

tage. In cooperative games, however, players do not have completely contrary

nor perfectly identical interests. They can arrange the terms of game and can

jointly put up binding and authentic agreements or strategies before the game is

actually played. Players voluntarily participate in the solving of the conflict. The

negotiated agreement results in a gain in utility for both players, in contrast to

the status quo alternative.47

Bargaining situations are usually characterized as games. In his seminal paper,

Nash (1950) defines a bargaining situation as follows:48

“A two-person bargaining situation involves two individuals who

have the opportunity to collaborate for mutual benefit in more than

one way.”49

Bargaining situations can be found in all modes of daily life. Typical examples

46 See Myerson (1991), pp. 1 and Osborne and Rubinstein (1994), pp. 1 and 117.
47 See Osborne and Rubinstein (1994), pp. 2 and Nash (1953), p. 128.
48 See Binmore, Osborne, and Rubinstein (1992), p. 181.
49 Nash (1950), p. 155.



Chapter 2. Search and Bargaining 26

include wage bargaining, discussions about the evening TV program, or trade

negotiations. Bargaining theory offers ideas for mathematical solutions to these

situations. There are diverse analytical frameworks for these solutions. The focus

of the present thesis is on both the axiomatic approach, the strategic approach,

and their interconnections, since these are addressed by Duffie, Gârleanu, and

Pedersen (2005, 2007).

Section 2.2.1 presents the axiomatic approach of Nash’s bargaining solution, com-

monly stated as the framework for cooperative bargaining. The discussion fol-

lows Osborne and Rubinstein (1990, ch. 2). Section 2.2.2 briefly states two other

bargaining solutions to cooperative games. The strategic approach of Rubinstein

(1982) is typically used for solving non-cooperative bargaining games. A short

introduction to this, following Myerson (1991, ch. 8.7) and Osborne and Rubin-

stein (1990, ch. 3), is given in section 2.2.3. Section 2.2.4 establishes a connection

between the axiomatic and the strategic approach, based on Coles and Wright

(1994, ch. 3) and Osborne and Rubinstein (1990, ch. 4).

2.2.1 An Axiomatic Approach: Nash’s Solution

In his seminal 1950 and 1953 articles, Nash introduces the following framework

for studying bargaining situations: In general, there are i rational players, but the

set is usually restricted to two, i.e. i = 1, 2. When both players start bargaining,

they can either come to an agreement in an arbitrary set A, or the disagreement

event D occurs. It is assumed that all players have complete and symmetric in-

formation. Each player can put up a preference order for all possible outcomes

of the game, i.e. over the set A ∪ D. Players evaluate the outcome of the game

with a utility function ui. Based on these definitions, the set S of all utility

pairs resulting from bargaining is a payoff vector in a two dimensional space,

i.e. S = {[u1(a), u2(a)] ⊂ R2 : a ∈ A}, for an agreement. In the case of failure

to reach an agreement, the disagreement point (or threat point, status quo) is

d = [u1(D), u2(D)]. In accordance with Nash (1950), a bargaining problem is de-

fined as a pair 〈S , d〉. It is assumed that S is closed, bounded, and convex, that

d ∈ S , and for some s ∈ S there exist si > di, for i = 1, 2. This implies the exis-

tence of a strictly better agreement allocation than the disagreement distribution

for both players, i.e. bargaining is attractive.

The aim is to find a solution to this bargaining problem. Let the function f (S , d)

be defined as the unique outcome of every bargaining problem 〈S , d〉, with
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f (S , d) ∈ S . In his axiomatic approach, Nash (1950) sets up some properties

that the bargaining solution should meet, instead of explicitly constructing a so-

lution. Then, he seeks solutions complying with these properties. The properties

are stated within the following four axioms:50

A1 Scale Invariance to equivalent utility representations: If the bargaining prob-

lem 〈S ′, d′〉 is the result of a transformation of 〈S , d〉 with s′i = αisi + βi and

d′i = αidi + βi, with αi > 0 for i = 1, 2, then fi(S ′, d′) = αi fi(S , d) + βi.

A2 Symmetry: The bargaining problem is symmetric if d1 = d2 and (s1, s2) ∈ S
is equivalent to (s2, s1) ∈ S . Then, it follows that f1(S , d) = f2(S , d).

A3 Independence of irrelevant alternatives: If (S , d) and (S∗, d) are two bar-

gaining problems with the properties S ⊂ S∗ and f (S∗, d) ∈ S , then

f (S , d) = f (S∗, d).

A4 Pareto efficiency: Let 〈S , d〉 be a bargaining problem with s ∈ S and ŝ ∈ S . If

ŝi > si for i = 1, 2, then f (S , d) 6= s.

Axiom A1 states that if S ′ is attained from S by an affine utility transformation,

then the same transformation to the solution f (S , d) should lead to the solution

f (S ′, d′). Axiom A2 specifies that, if the positions of both players are indistin-

guishable in the bargaining problem, the solution should allocate the utility sym-

metrically. Axiom A3 determines that the bargaining solution should not change

due to the elimination of irrelevant alternatives. These alternatives would not

have been chosen and therefore should not influence the solution. Axiom A4

states, there should be no bargaining outcome that can be improved in such a

way that both players can reach a higher utility. This leads to an instant agree-

ment.

Nash (1950) proves that a unique solution f (S , d) to the bargaining game, which

satisfies all four axioms, does exist. It is the utility pair that maximizes the prod-

uct of the players’ increase in utility over the disagreement outcome, given by

f (S , d) = arg max
(d1,d2)≤(s1,s2)∈S

(s1 − d1) (s2 − d2) , (2.14)

with maximization over s ∈ S and the constraint si ≥ di, for i = 1, 2. The solution

f to this maximization problem is called the Nash bargaining solution. Occasion-

ally, it is also characterized as ‘splitting the surplus’ or ‘splitting the pie’. The

50 See Osborne and Rubinstein (1990), pp. 11–17.
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product on the right-hand side of equation (2.14) is called the ‘Nash product’.51

Axiom A4 can be replaced by the following axiom, A5, as shown by Roth (1977):

A5 Strong individual rationality: For every bargaining problem 〈S , d〉, the solu-

tion f fulfills the condition f (S , d) > d.

It states that no player should accept a bargaining solution that is lower or equal

to the guaranteed payoff in disagreement. Consequentially, bargaining is volun-

tary.

Harsanyi and Selten (1972) derive the so-called generalized (or asymmetric) Nash

bargaining solution by dropping axiom A2 (Symmetry) but retaining the other

three.52 It is specified by

fq(S , d) = arg max
(d1,d2)≤(s1,s2)∈S

(s1 − d1)
q (s2 − d2)

1−q , (2.15)

where q ∈ [0, 1]. Usually, q is referred to as the bargaining power of player 1,

though bargaining power is basically characterized by the disagreement points

d1 and d2.53 Another interpretation of q is that it is a relative measure of bargain-

ing power. Different values for q can, e.g., arise if one trading partner is more

patient than the other or has a different opinion about the probability of a dis-

agreement.54

The differences s1 − d1 and s2 − d2 are the surpluses from the game and the gen-

eralized Nash solution maximizes the surpluses’ weighted geometric mean.

2.2.2 Other Bargaining Solutions to Cooperative Games

Other bargaining solutions to cooperative games are the utilitarian and the egali-

tarian approach. However, both the utilitarian and the egalitarian solution violate

the axiom of scale invariance (axiom A1).55

The egalitarian solution states that in a two-person game both players must ex-

perience the same increase in utility. For the bargaining problem 〈S , d〉, the egal-

51 A proof can be found in Osborne and Rubinstein (1990), pp. 13.
52 Kalai (1977) formalized the so-called ‘nonsymmetric’ solution in the spirit of Nash’s axioms.
53 See Pissarides (2001), p. 13764 and Binmore, Rubinstein, and Wolinsky (1986), p. 186 for an

analysis.
54 See Pissarides (2000), p. 16 and Binmore, Rubinstein, and Wolinsky (1986), p. 179.
55 See Neus (2013), pp. 80–83 and Myerson (1991), pp. 381.
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itarian solution s ∈ S satisfies the condition of equal gains

s1 − d1 = s2 − d2,

where s is weakly efficient in S .

The utilitarian approach states that the player with the highest usage should get

the ‘surplus’, independent of any disagreement point. A utilitarian solution f (S)
to the bargaining problem 〈S〉 in a two-person game is any solution function that

chooses an allocation s ∈ S with

f (S) = arg max
(s1,s2)∈S

(s1 + s2) .

2.2.3 A Strategic Approach: Alternating-Offer Bargaining Game

Rubinstein (1982) introduces a strategic approach by explicitly modeling an infi-

nite horizon, two-person alternating-offer bargaining game: The order of moves,

the time preference, and the conditions of an agreement are all well-defined. It

is assumed that both players have complete information regarding the other’s

preferences. The rules for the game are as follows:

A ‘pie’ of size one is the bargaining basis for two players (i = 1, 2) and time runs

forever with t ∈ T for T = {0, 1, 2, . . .}. Upon agreement, player 1 gets the share

x1 and player 2 receives x2. The set containing all possible agreements is

X =
{
(x1, x2) ∈ R2 : x1 + x2 = 1 and xi ≥ 0 for i = 1, 2

}
.

At time t = 0, one player (say 1) makes an offer x1, which the other player can ac-

cept or reject. Accepting the offer leads to an end to the game and the agreement

is realized with the payoff (x1, x2). If the offer is rejected, the game continues in

period t + 1 = 1. At this time, player 2 makes an offer and player 1 can decide

whether to accept or reject the proposal, and so on. In theory, this back and forth

offering can continue endlessly, since the number of periods is not limited. This

endless path is generally called ‘disagreement’, since all offers are rejected. It is

denoted with D, where the payoff is d = (0, 0). Additionally, time is valuable.

The payoff upon agreement depends on the offer in that period and on the time

of agreement, not on the path leading to it. When reaching an agreement in pe-

riod t, the outcome for player 1 is ϑtx1, whereas it is ϑt (1 − x1) for player 2, with

the discount factor ϑ ∈ [0, 1].
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The players’ preferences are as follows:

A1 Disagreement is the worst outcome: Agents prefer xi ∈ X at t ∈ T over D.

A2 Pie is desirable: Agents prefer xi ∈ X at t ∈ T over yi ∈ X at t ∈ T, if xi > yi.

A3 Time is valuable: Agents prefer xi ∈ X at t ∈ T over xi ∈ X at s ∈ T, if t < s.

A4 Continuity: Assume there are sequences {xn}∞
n=1 at t ∈ T and {yn}∞

n=1 at

s ∈ T. Both sequences are contained in X. Furthermore, limn→∞ xn = x as

well as limn→∞ yn = y hold. Then, x at time t is preferred over y at time s if

xn at time t are preferred over yn at time s for all n.

A5 Stationarity: If any agent prefers xi ∈ X at t = 0 over yi ∈ X at t = 1, then he

also prefers xi at t over yi at t + 1 for any time t ∈ T.

Rubinstein (1982) proves the uniqueness of a subgame perfect equilibrium56 for

this bargaining game. It is characterized as follows: Player 1 always offers

(x1,t1 , x2,t1) and accepts any offer by player 2 with x1,t2 ≥ x1,t2 . Player 2 always

offers (x1,t2 , x2,t2) and accepts any share x2,t1 ≥ x2,t1 . The shares x1,t2 and x2,t1 are

called ‘reservation value’, where t1 = 0, 2, 4, . . . and t2 = 1, 3, 5, . . . Player 1 will

always offer player 2’s reservation value and player 2 will always offer player 1’s

reservation value. As a result, player 1 proposes x2,t1 in period t = 0 to player 2,

player 2 accepts immediately, and the game ends. The payoff upon agreement is(
x1,t1 , x2,t1

)
= (1/(1 + ϑ), ϑ/(1 + ϑ)). This game contains a first-mover advan-

tage for ϑ < 1.

2.2.4 Connection between Axiomatic and Strategic Approach

Binmore, Rubinstein, and Wolinsky (1986) consider special modifications in order

to establish a connection between Nash’s general bargaining solution and the

result of a subgame perfect equilibrium of an alternating-offer bargaining game. I

follow Coles and Wright (1994, ch. 3), who integrate the modifications of Binmore,

Rubinstein, and Wolinsky (1986) and some other generalizations into one model.

The setup is as follows: Consider a discount factor for agent i with i = 1, 2, which

is specified by ϑi = 1/(1 + ri∆), and with the discount rate ri. Agent i assumes

that an exogenous breakdown occurs with Poisson arrival rates λi. In the case

56 “A strategy pair is a subgame perfect equilibrium of a bargaining game of alternating offers
if the strategy pair it induces in every subgame is a Nash equilibrium of that subgame.”
(Osborne and Rubinstein (1990), p. 44).
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of an exogenous breakdown, the utility is bi. Assume further that agent i can

meet a new bargaining partner with Poisson arrival rate αi. Let pi be the proba-

bility with which agent i will make the next proposal, given that no breakdown

occurred. And p1 + p2 = 1. Let the average offer be x1 = p1x1,t2 + p2x1,t1 and

agents cannot derive any utility while bargaining is in progress.57 Then, the

alternating-offer bargaining game approaches the generalized Nash bargaining

solution with threat points58

di = bi for i = 1, 2,

and the bargaining power

q =
p1 (r2 + α2 + λ2)

p1 (r2 + α2 + λ2) + p2 (r1 + α1 + λ1)
.

Rubinstein and Wolinsky (1985) implement this generalized alternating-offer bar-

gaining game into a search, matching, and bargaining model, which is compara-

ble to the model developed in Duffie, Gârleanu, and Pedersen (2005, 2007). A

breakdown in such a model arises upon arrival of a new partner. This connection

implies that the arrival rate for agent 1 is equal to the breakdown rate for agent 2

and the arrival rate for agent 2 is equal to the breakdown rate for agent 1: α1 = λ2

and α2 = λ1. Additionally, if r1 = r2, the bargaining power q of Nash’s general

bargaining solution equals the probability that agent 1 makes the first offer, that

is

q = p1.

57 See Coles and Wright (1994), p. 14.
58 See Coles and Wright (1994), p. 21.
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The Basic Model

In this chapter, I introduce the basic model of Duffie, Gârleanu, and Pedersen

(2005) for asset pricing in an illiquid over-the-counter market. Illiquidity fric-

tions in this OTC market are modeled by two-side search and bilateral trading

between agents. As a result, trade does not happen instantly. First, I describe

the model setup of Duffie, Gârleanu, and Pedersen (2005). In the second step,

I present equilibrium masses of investor types. These masses are the basis for

steady state equilibrium prices, which are discussed in section 3.3. Due to illiq-

uidity frictions, these prices are lower than in a perfect market. The numerical

example in section 3.4 illustrates the results of the basic model. The appendix 3A

contains the derivation of some results from section 3.3.

3.1 Model Setup

A probability space (Ω,F , P) and an information filtration Ft : t > 0 in a risk-

neutral world with continuous time (t ≥ 0) are fixed in advance. Ω is the set of

all possible states in the world. F is the filtration of sub-σ-algebras. It describes

the revealing of information to investors over time. P is the probability measure

on F . It is assumed that probability space and the information filtration satisfy

the usual hypotheses as defined by Protter (2005, p. 3).

Let us assume the economy is populated by two kinds of agents—investors and

market makers—who are both risk-neutral and live infinitely. All agents have

a constant and known time preference rate r > 0, with which they discount the

future. A single nonstorable consumption good, consumed by all agents (e.g.

32
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‘cash’), is used as a numéraire.59 All agents have access to a (risk free) bank

account offering interest rate r, and to the OTC market for a special asset. The

bank account is comparable with a liquid security, which can be traded without

frictions. To avoid unlimited borrowing, the value Wt of the bank account is

bounded from below. The asset traded in the OTC market is illiquid, as it can

only be traded when a potential buyer and a potential seller can find each other.

The illiquid asset pays a constant dividend rate D of consumption per time unit

(e.g. one year), like a consol bond.60 Time runs forever. Each agent can only hold

a maximum of (illiquid) assets at a time, which is normalized to one. As the utility

function of risk-neutral agents is linear, asset holding corresponds to either zero

or one unit in equilibrium. Initially, a fraction s of all investors is endowed with

one unit of this asset, implying a fixed asset supply. Short selling is not allowed.

The population of investors is segmented into four different groups: Investors

can either own the asset (o), or not (n), and they all have either an intrinsic type

that is high (h) or low (l). These intrinsic types can be interpreted as the investor’s

marginal utility from the asset. Duffie, Gârleanu, and Pedersen (2005, pp. 1818.)

give some possible explanations for low-type investors: “(i) low liquidity (that

is, a need for cash), (ii) high financing costs, (iii) hedging reasons to sell, (iv) a

relative tax disadvantage, or (v) a low personal use of the asset.” The full set of

investor types is Γ = {ho, hn, lo, ln}.

The intrinsic type of an investor is modeled as a Markov chain. A low investor

receives an exogenous idiosyncratic preference or funding shock causing a type

switch from low to high with an intensity λu > 0. A high investor who suffers

such a preference (or funding) shock switches from high to low with intensity

λd > 0. The switching processes are random and are assumed to be pairwise in-

dependent for any two investors. Type switches generate a need for change in

asset holdings, since investors’ valuation, i.e. marginal utility, towards the asset

changes over time and depends on investor’s type. Because only low-type own-

ers want to sell their asset, whereas high-type non-owners want to buy one in

equilibrium, type switches generate trade. Ln agents and ho agents do not trade.

Consequently, low owners (lo) are called potential sellers and high non-owners

(hn) are called potential buyers.

High owners who are affected by an idiosyncratic preference shock switch to a

59 See Weill (2007), p. 1332.
60 Duffie, Gârleanu, and Pedersen (2005, 2007) normalize this dividend to D = 1.



Chapter 3. The Basic Model 34

low intrinsic type. Those low-type agents are exposed to a holding cost for the

asset of δ per unit of time, with δ > 0, leading to a utility flow of D − δ. Holding

costs only occur for low-type investors owning the asset, as it reflects the negative

impact of an idiosyncratic liquidity shock. Since there can be gains from trade

due to different utility and due to costs of holding assets, low owners want to sell

their asset.

Duffie, Gârleanu, and Pedersen (2005) define a unit mass continuum of investors

with measure normalized to one. Then, µσ(t) denotes for each σ ∈ Γ the fraction

at time t of type-σ investors in the total population. These fractions must add up

to one at any time and must be nonnegative, leading to

µlo(t) + µhn(t) + µln(t) + µho(t) = 1, (3.1)

µσ(t) ≥ 0. (3.2)

By assumption, only a fraction s ∈ [0, 1] of investors owns one unit of the asset.

This prerequisite defines the market clearing condition, which implies for every

time t that

µlo(t) + µho(t) = s. (3.3)

Agents who want to trade in an OTC market must search for each other, since

no central trading device is available. Assume λ ∈ [0, ∞) is the exogenous and

constant intensity of a homogenous Poisson process. This intensity λ describes

the random contact of one investor with a counterparty, and reflects search abil-

ity or efficiency in the OTC market. The search technology in this market is as

follows: Assume that any agent, which is chosen from the set of all agents, is of

type σ1. The probability for being of type σ1 is equal to µσ1(t). The probability

of any agent, which is not of type σ1, being matched with an agent of type σ1 is

then λµσ1(t). All agents of, say, a set σ2, where set σ2 is distinct from set σ1, search

for agents of set σ1 with λµσ1(t)µσ2(t). Simultaneously, agents of set σ1 search for

agents of set σ2. The matching function derived in equation (2.13) models exactly

this independent search and matching process for potential buyers and sellers.61

With application to the prevailing notation, the appropriate matching function

is Mλ(t) = 2λµlo(t)µhn(t), where M(t) is the number of successful matches per

unit of time. As soon as two agents meet, they start bargaining over the price,

61 The law of large numbers is assumed to hold throughout. See Duffie and Sun (2007, 2012)
and footnote 43.
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according to a bargaining process described in chapter 2.2. After completing the

transaction, the lo agent (seller) becomes an ln agent, the hn agent (buyer) be-

comes an ho agent, and both part ways.

This search model contains, according to Vayanos and Wang (2007, p. 75), a natu-

ral liquidity measure. As investors are prevented from immediate trading, costs

of delay accrue. These costs can be measured by the expected time it takes until

an investor finds an adequate counterparty. This expected time is nothing else

but the inverse of the measure of liquidity. An hn agent (potential buyer) meets

lo agents (potential sellers) at the rate 2λµlo(t). The average time it takes until

a potential buyer meets potential sellers is thn(t) = 1/ (2λµlo(t)). In the same

way, the expected meeting time for a potential seller to meet potential buyers is

tlo(t) = 1/ (2λµhn(t)).62

Additionally, it is assumed that there are independent nonatomic market makers

in this OTC market who are of unit mass and who maximize their profit. In-

vestors and market makers search for each other and meet with exogenous and

constant intensity ρ ≥ 0. It is the sum of investors’ intensity of searching for mar-

ket makers and market makers’ intensity of searching for investors. This intensity

captures the availability of market makers in the market. Investors and market

makers also start bargaining over the price as soon as they meet. It is assumed

that market makers have no inventory but immediately unload their asset on a

frictionless interdealer market. Without bearing any inventory risk, market mak-

ers are matchmakers. They ration either the buy side or the sell side, depending

on which one is higher. The matching function is Mρ(t) = ρ min{µlo(t), µhn(t)}.

For tractability, it is assumed that all described Poisson processes are indepen-

dent. The flow diagram in figure 3.1, which is in the style of Chiu and Koeppl

(2011, p. 7), illustrates search and bargaining in the just-specified OTC market.

62 See chapter 2.1.3, Vayanos and Wang (2007), p. 75, and Duffie, Gârleanu, and Pedersen (2007),
p. 1878.
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Figure 3.1: Flow diagram.

3.2 Equilibrium Masses of Investor Types

This section discusses both the dynamic and steady state equilibrium masses of

investor types. The starting point is the flow equations of masses µσ(t), which

are stated as follows:

µ̇lo(t) = − (2λµhn(t)µlo(t) + ρ µm(t))− λuµlo(t) + λdµho(t), (3.4)

µ̇hn(t) = − (2λµhn(t)µlo(t) + ρ µm(t)) + λuµln(t)− λdµhn(t), (3.5)

µ̇ho(t) = (2λµhn(t)µlo(t) + ρ µm(t)) + λuµlo(t)− λdµho(t), (3.6)

µ̇ln(t) = (2λµhn(t)µlo(t) + ρ µm(t))− λuµln(t) + λdµhn(t), (3.7)

with µm(t) = min{µlo(t), µhn(t)} and µ̇σ(t) = dµσ(t)/dt. The first term in the

brackets of equations (3.4)–(3.7) describes mass changes based on random search,

bargaining, and trade between two investors, i.e. between lo and hn agents. Bar-

gaining theory states that trade is executed immediately, when gains from trade
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can be acquired. These flow equations implicitly assume that all meetings be-

tween a potential buyer and a potential seller result in a trade. For the sake

of simplicity, potential sellers and potential buyers are designated ‘seller’ and

‘buyer’ when the presumption that all meetings result in a trade is fulfilled. The

total change of masses based on these lo-hn-meetings accounts for 2λµhn(t)µlo(t),

i.e. the matching function Mλ(t) between investors. Upon completion, when an

lo agent and an hn agent successfully trade with each other, the lo agent changes

his type to an ln agent and the hn agent changes his type to an ho agent.

The second term in the brackets illustrates mass changes due to meetings be-

tween investors and market makers: lo agents meet market makers at the con-

tact rate ρµlo(t), whereas hn agents meet market makers at the contact rate

ρµhn(t). As long as more hn investors meet market makers than lo agents do,

i.e. µlo(t) ≤ µhn(t), all lo agents can sell their assets to the market makers and all

lo investors change to ln investors. The hn investors get rationed. It follows that

ρµlo(t) is the matching function between investors and market makers. In case

there are less hn agents than lo ones, there are more investors who are required to

sell their asset than to buy one. But in equilibrium, supply and demand must be

balanced and market makers are matchmakers. If µlo(t) > µhn(t), trade between

investors and market makers takes place at the intensity ρµhn(t). The lo investors

get rationed.

The last two terms of equations (3.4)–(3.7) state the intrinsic type changes: lo and

ln investors mutate to high-type investors with intensity λu, whereas ho and hn

investors mutate to low-type investors with intensity λd. Masses change due to

these mutations.

The flow equations (3.4)–(3.7) of equilibrium masses µσ(t) are combined to two

ordinary differential equations (ODEs) by defining µl(t) = µlo(t) + µln(t) and

µh(t) = µho(t) + µhn(t). The ODEs are

µ̇l(t) = −(λu + λd)µl(t) + λd,

µ̇h(t) = −(λu + λd)µh(t) + λu.

With the initial conditions µl(t0 = 0) and µh(t0 = 0), the solution to these ODEs
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are63

µl(t) = µl(0)e
−(λu+λd)t +

λd

λu + λd

[
1 − e−(λu+λd)t

]
, (3.8)

µh(t) = µh(0)e
−(λu+λd)t +

λu

λu + λd

[
1 − e−(λu+λd)t

]
. (3.9)

From any feasible starting condition µσ(0), equations (3.8) and (3.9) converge

monotonically to lim
t→∞

µl(t) = λd/ (λu + λd) and lim
t→∞

µh(t) = λu/ (λu + λd), re-

spectively.

From here on, chapter 3 deals with steady state equilibria. This condition im-

plies a constant mass distribution over time. The steady state solutions to equa-

tions (3.1)–(3.7) are derived as follows: Start with equation (3.4) and express

all µσ(t) in terms of µlo(t) by using equations (3.1), (3.3), and the definition

µl(t) = µlo(t) + µln(t). It can be seen that equation (3.8) is independent from

µlo(t) for t → ∞. Hence, equation (3.4) can be written as

µ̇lo(t) = − [2λ (1 − s − µln(t)) µlo(t) + ρ µm(t)]− λuµlo(t) + λd (s − µlo(t))

= − 2λ [1 − s − (µl(t)− µlo(t))] µlo(t)

− ρ min {µlo(t), 1 − s − µl(t) + µlo(t)} − λuµlo(t) + λd (s − µlo(t))

= − 2λ(µlo(t))
2 − [2λ(1 − s − µl(t)) + λu + λd] µlo(t)

+ ρ max {−µlo(t),−1 + s + µl(t)− µlo(t)}+ λds.

The following solution function results with µ̇lo(t) = G(µlo(t), µl(t)):

G(µlo(t), µl(t)) = − 2λ(µlo(t))
2 − [2λ(1 − s − µl(t)) + λu + λd + ρ] µlo(t)

+ ρ max {0, s + µl(t)− 1}+ λds.

(3.10)

63 A general solution to an arbitrary first-order linear differential equation of the form
ẋ(t) = −a(t)x(t) + b(t) is

x(t) = ce
−
∫ t

t0
a(τ) dτ

+ e
−
∫ t

t0
a(τ) dτ

∫ t

t0

b(y)e
∫ y

t0
a(τ) dτ

dy,

with an arbitrary constant c. The initial condition x(t0) = x0 specifies this constant. See
Polyanin and Zaitsev (2003), p. 4.
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For the steady state equilibrium, consider lim
t→∞

µ̇σ(t) = 0, i.e. masses are constant

in steady state, and denote lim
t→∞

µσ(t) = µσ(ss). This steady state equilibrium im-

plies, for equation (3.10), that

0 = 2λ(µlo(ss))2 + [2λ(y − s) + ρ + λu + λd] µlo(ss)− λds − ρ max[0, s − y],

(3.11)

where

y = lim
t→∞

µh(t) =
λu

λu + λd
(3.12)

is the probability of being a high-type agent in steady state.64 I state the solution

to equation (3.11), which is the steady state equilibrium mass of low owners, by

solving the quadratic formula

µlo(ss) =
−b ±

√
b2 − 4ac

2a
,

with a = 2λ,

b = 2λ(y − s) + ρ + λu + λd,

c = −ρ max[0, s − y]− λds.

(3.13)

There is one negative and one positive solution for equation (3.13). For economic

reasons, the negative solution is excluded, since µσ(t) ∈ [0, 1] must hold for all t.

The positive solution in [0, 1] is assured with G(µlo(ss) = 0, µl(ss) = 1 − y) > 0

and G(µlo(ss) = 1, µl(ss) = 1 − y) < 0 of equation (3.10).

In steady state, the other three equilibrium masses result as follows:

µhn(ss) = y − s + µlo(ss), (3.14)

µho(ss) = s − µlo(ss), (3.15)

µln(ss) = 1 − y − µlo(ss). (3.16)

Duffie, Gârleanu, and Pedersen (2005, pp. 1836) prove the uniqueness of the

constant steady state solution stated in equations (3.13)–(3.15). For t → ∞, the

mass distribution µσ(t) always converges by means of equations (3.4)–(3.7) to

this steady state solution, whatever the starting conditions µσ(t = 0), satisfying

(3.1) and (3.3), may be.

64 Duffie, Gârleanu, and Pedersen (2005, pp. 1836) state this result only for s < y.
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3.3 Equilibrium Prices

Steady state equilibrium masses of investor types, derived in section 3.2, provide

the basis for steady state prices. The interinvestor price P(ss), determined by bar-

gaining between two investors, is calculated in the following passage. Likewise,

both the bid price B(ss), which an investor receives when selling to a market

maker, and the ask price A(ss), which an investor has to pay when buying from

a market maker, are derived. First, investors’ utilities of lifetime consumption are

calculated.

3.3.1 The Value Function

Each rational investor chooses an asset holding strategy that maximizes his ex-

pected utility (i.e. present value) of his lifetime consumption. Since each indi-

vidual lives infinitely, a continuous and infinite consumption process has to be

modeled by considering a search and matching process. At an arbitrary time

t, the investor’s utility depends only on his current type, σ(t) ∈ Γ, and wealth

or money Wt, which he has in his bank account. The infinite horizon expected

utility-maximization problem for all investor types, who are risk-neutral and

measure their lifetime consumption with a utility function, can be derived by

means of dynamic programming. The optimal value function J(·), the optimum

value of the utility-maximization problem, is stated as follows:65

J(Wt, σ(t), t) = sup
C,θ

Et




∞∫

0

e−rv dCt+v


 , (3.17)

given the dynamics

dWt = rWt dt − dCt + θt(D − δ1{σθ(t)=lo}) dt − P̂(t) dθt, (3.18)

with the expectation Et, conditioned on Ft. An investor can freely decide over

his consumption and asset holding, so that the two control processes are: (1)

a cumulative consumption process Ct, and (2) a feasible asset holding process

65 In general, it is not clear that the maximum actually exists for these processes until it is
known that J(Wt, σ(t), t) is bounded. Therefore, the supremum for a precise formulation of
the utility-maximization problem is applied first. Verification that the maximum is actually
attained follows in a second step, i.e. the verification that the value function is bounded. If
a value function is unbounded, it can go to infinity, but it can never attain it. In such a case,
the supremum is suitable. See Bellman (1954), p. 507.
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θt ∈ {0, 1}. The other input parameters are: (i) σθ, the type process induced by

θ, and (ii) P̂(t) ∈ {P(t), A(t), B(t)} which is the trade price at time t, dependent

on the agent’s counterparty. J(Wt, σ(t), t) is called a value function or indirect

utility function. It differs from a normal utility function as it always implies an

optimization process.

The core of the dynamic programming theory is Bellman’s ‘principle of optimal-

ity’:

“An optimal policy has the property that whatever the initial state and

initial decisions are, the remaining decisions must constitute an opti-

mal policy with regard to the state resulting from the first decisions.”66

A recursive application of Bellman’s ‘principle of optimality’ on equation (3.17)

leads to an iterative optimization problem

J(Wt, σ(t), t) = sup
C,θ

Et




∞∫

t

e−r(k−t) dCk




= sup
C,θ

Et




t+dt∫

t

e−r(k−t) dCk + J(Wt + dWt, σ(t) + dσ(t), t + dt)


 ,

(3.19)

with k = t+ v. Dynamic programming approaches a dynamic optimization prob-

lem by a recursive solution technique, translating a problem composed of multi-

stages into a sequence of separate states.67 This recursive solution implies the

consideration of all possible states within a final period by weighting the corre-

sponding payoffs with the probability of their occurrence. Working backward in

time leads to the optimal equilibrium path.

The first part of equation (3.19) can be approximated by the mean value the-

orem of integral calculus. The second part can be derived by a Taylor se-

ries expansion of function J(·) around the point (Wt, σ(t), t) to approximate

J(Wt + dWt, σ(t) + dσ(t), t + dt). Inserting both parts into equation (3.19), sub-

tracting J(Wt, σ(t), t) on both sides, dividing everything by dt, and letting dt → 0,

leads to the Hamilton–Jacobi–Bellman (HJB) equation. The optimal value func-

tion in continuous time dynamic programming is the solution to the HJB equa-

tion, which is in general a partial differential equation. This equation acts as a

66 Bellman (1954), p. 504.
67 See Bellman (1954), p. 503.
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necessary and sufficient condition to ensure optimality.68

Since agents are risk-neutral by assumption, the value function (3.17) describing

investors’ lifetime utility is a linear function in wealth Wt. I show this by inserting

equation (3.18) into equation (3.17), leading to

J(Wt, σ(t), t) = sup
θ∈{0,1}

Et




∞∫

t

e−r(k−t) ·
[

rWk dk − dWk

+ θk

(
D − δ1{σθ(k)=lo}

)
dk − P̂(k) dθk

]]

= sup
θ

Et




∞∫

t

e−r(k−t) ·
(

rWk dk − dWk

dk
dk
)


+ sup
θ

Et




∞∫

t

e−r(k−t) ·
(

θk(D − δ1{σθ(k)=lo}) dk − P̂(k) dθk

)



︸ ︷︷ ︸
Vσ(t)

= sup
θ

Et




∞∫

t

re−r(k−t)Wk dk −
[
e−r(k−t)Wk

]∞

t
−

∞∫

t

re−r(k−t)Wk dk




+ Vσ(t)

= Wt + Vσ(t).

Since the value function J(Wt, σ(t), t) is linear in wealth, it is sufficient to solve

the following maximization problem:

Vσ(t) = sup
θ∈{0,1}

Et




∞∫

t

e−r(v−t)
(

θv

(
D − δ1{σθ(v)=lo}

)
dv − P̂(v) dθv

)

 . (3.20)

The utility-maximization problem is thus changed from deciding over both op-

timal consumption and optimal asset holding to only choosing the optimal as-

set holding. The transversality condition (also called the no-bubble condition)

lim
x→∞

Et [e−rx max {P(x), A(x), B(x)}] = 0 ensures that the value function is well

defined.

Relating this finding to continuous time dynamic programming, the value func-

tion Vσ(t) can be calculated by applying Bellman’s ‘principle of optimality’ and

focusing on a particular agent at a particular time t. Since agents are risk-neutral

68 See Schöbel (1995), ch. 3.3 and Björk (2009), ch. 19.
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by assumption and the value function J(Wt, σ(t), t) is linear in holding cash Wt,

the HJB equation happens to be a system of ordinary differential equations, and

is derived in the following passage.

Duffie, Gârleanu, and Pedersen (2005, p. 1837) define τl as the next stopping time

when an agent changes his intrinsic type, τi as the next stopping time when a

search and bargaining between two investors is successfully completed, τm as the

next stopping time when trade occurs between an investor and a market maker,

and τ = min{τl, τi, τm}. The optimal value functions result with

Vlo(t) = Et

[ τ∫

t

e−r(u−t)(D − δ) du + e−r(τl−t)Vho(τl)1{τl=τ}

+ e−r(τi−t)(Vln(τi) + P(τi))1{τi=τ}

+ e−r(τm−t)(Vln(τm) + B(τm))1{τm=τ}

]
,

(3.21)

Vhn(t) = Et

[
e−r(τl−t)Vln(τl)1{τl=τ} + e−r(τi−t)(Vho(τi)− P(τi))1{τi=τ}

+ e−r(τm−t)(Vho(τm)− A(τm))1{τm=τ}

]
,

(3.22)

Vho(t) = Et




τl∫

t

e−r(u−t)D du + e−r(τl−t)Vlo(τl)


 , (3.23)

Vln(t) = Et

[
e−r(τl−t)Vhn(τl)

]
, (3.24)

where the expectation is with respect to τl, τi, τm and is conditional on Ft. The

first term of asset owners’ value functions [Vlo(t), Vho(t)] gives the dividend flow,

possibly reduced by holding costs. The second term of owners’ value functions

[Vlo(t), Vho(t)] and the first of non-owners’ value functions [Vln(t), Vhn(t)] de-

scribes the discounted value of an intrinsic type switch, given the random stop-

ping time is τ = τl. The second last term of potential buyers’ and potential sellers’

value functions [Vlo(t), Vhn(t)] is the discounted value of trading with an investor,

given that the random stopping time is τ = τi. And the last part of potential buy-

ers’ and potential sellers’ value functions [Vlo(t), Vhn(t)] describes the discounted

value of trading with a market maker, given that the random stopping time is

τ = τm. As a result, investor’s utility depends on his current expected utility, e.g.

from holding the asset, and on his prospective expected utility.
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I state the explicit equations for (3.21)–(3.24) and the derivation of the HJB equa-

tions in appendix 3A. These HJB equations, which are solved by the value func-

tions Vσ(t), are69

V̇lo(t) = rVlo(t)− λu (Vho(t)− Vlo(t))− ρ (Vln(t) + B(t)− Vlo(t))

− 2λµhn(t) (Vln(t) + P(t)− Vlo(t))− (D − δ),
(3.25)

V̇hn(t) = rVhn(t)− λd (Vln(t)− Vhn(t))− ρ (Vho(t)− A(t)− Vhn(t))

− 2λµlo(t) (Vho(t)− P(t)− Vhn(t)) ,
(3.26)

V̇ho(t) = rVho(t)− λd (Vlo(t)− Vho(t))− D, (3.27)

V̇ln(t) = rVln(t)− λu (Vhn(t)− Vln(t)) . (3.28)

The first part on the right hand side of equations (3.25)–(3.28) corresponds to

opportunity costs. The second element characterizes value changes based on ex-

pected changes in intrinsic types. For buyer (hn) and seller (lo), the third and

fourth element is due to trade between investors and trade intermediated by

market makers, respectively. The last term for asset owners (lo, ho) accounts for

dividends and holding costs of the asset.70

In order to consider steady state equilibria, the value changes have to be zero:

V̇σ(t) = 0. I write lim
t→∞

Vσ(t) = Vσ(ss) for steady state value functions. Since only

steady state equilibria are considered, prices are time independent as well. Upon

setting equations (3.25)–(3.28) to zero and rearranging them, the value functions

in steady state are

Vlo(ss) =
λuVho(ss) + (2λµhn(ss) + ρ)Vln(ss) + 2λµhn(ss)P(ss) + ρB(ss) + D − δ

r + λu + 2λµhn(ss) + ρ
,

(3.29)

Vhn(ss) =
λdVln(ss) + (2λµlo(ss) + ρ)Vho − 2λµlo(ss)P(ss)− ρA(ss)

r + λd + 2λµlo(ss) + ρ
, (3.30)

Vho(ss) =
λdVlo(ss) + D

r + λd
, (3.31)

Vln(ss) =
λuVhn(ss)

r + λu
. (3.32)

69 Duffie, Gârleanu, and Pedersen (2005, pp. 1839) show optimality by verifying that under
complete information any agent always trades at the stated equilibrium strategy, provided
others do so. Trades are always executed at proposed equilibrium prices if gains from trade
are possible with the agent in contact.

70 There is a typing error in Duffie, Gârleanu, and Pedersen (2005, p. 1823), equation (10). The
Poisson arrival intensity for a buyer (hn) contacting sellers (lo) is 2λµlo(t).
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Equation system (3.29)–(3.32) still depends on bargaining prices. The next section

states the bargaining conditions for deriving these prices.

3.3.2 Bargaining over the Price

Until now, not much has been said about the structure of the price, except that

(i) trade occurs only between lo-type investors who want to sell and hn-type in-

vestors who want to buy, and (ii) they start bargaining over the price as soon as

they meet each other.71

It is clear from equation (3.25) that an lo-type investor will only accept a price that

is higher than or equal to ∆Vl(t) = Vlo(t)− Vln(t), i.e. Vln(t) + P(t)− Vlo(t) ≥ 0.

This means that the price has to compensate the investor for the change in his

utility when selling the asset. Otherwise it would be advantageous for him to

keep the asset. ∆Vl(t) is the reservation value or participation constraint of a

potential seller. At this point, a potential seller is indifferent to trading.

Equation (3.26) shows that an hn-type investor will only purchase an asset

for a price which is lower than or equal to ∆Vh(t) = Vho(t)− Vhn(t), that is

Vho(t)− P(t)− Vhn(t) ≥ 0. Otherwise he would be better off without the asset.

∆Vh(t) is the reservation value or participation constraint of a potential buyer.

If these two types of investors, low owner and high non-owner, start bargaining

over the price, the result is located somewhere between these two reservation

values ∆Vl(t) and ∆Vh(t).

It is assumed that all agents have complete and symmetric information, and,

under this assumption, bargaining theory states that trade happens instantly.

Assume further that an lo-type investor (potential seller) has bargaining power

q ∈ [0, 1]. The generalized Nash solution, defined in equation (2.15), applies with

f P
q (t) = arg max

P(t)
[Vln(t) + P(t)− Vlo(t)]

q [Vho(t)− P(t)− Vhn(t)]
1−q , (3.33)

subject to (s. t.)

0 ≤ Vln(t) + P(t)− Vlo(t), (3.34)

0 ≤ Vho(t)− P(t)− Vhn(t), (3.35)

71 An introduction into bargaining theory is given in section 2.2.
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for all t.72 The agreement point for a potential seller (lo-type) is Vln(t) + P(t),

which is the value of a seller if an agreement is reached. The agreement point

for a potential buyer (ln-type) is Vho(t)− P(t), which is the value of a buyer if

an agreement is reached. In absence of an agreement, the seller keeps the asset

and stays with the value Vlo(t), which is his disagreement or threat point. The

situation is analogous for the buyer: He remains without an asset and stays with

the value Vhn(t) if they fail to reach an agreement. The bargaining situation of

buyers and sellers depends on their outside options, which are equal to their

threat points in this setting.73 These outside options depend on the availability of

suitable counterparties over time,74 since outside options are the expected value

of waiting for a new trading partner—unless an intrinsic type switch occurs in

the meantime.

The maximization of the argument in (3.33) is carried out over the price P(t) and

is subject to both Vln(t) + P(t) ≥ Vlo(t) and Vho(t)− P(t) ≥ Vhn(t). When there

are gains from trade, the first order condition is

0 = q[Vln(t) + P(t)− Vlo(t)]
q−1 [Vho(t)− P(t)− Vhn(t)]

1−q

− [Vln(t) + P(t)− Vlo(t)]
q (1 − q)[Vho(t)− P(t)− Vhn(t)]

(−q).

As a result, the price function is

P(t) = (1 − q) [Vlo(t)− Vln(t)] + q [Vho(t)− Vhn(t)] , (3.36)

s. t. Vlo(t)− Vln(t) ≤ P(t) ≤ Vho(t)− Vhn(t). (3.37)

An intuitive interpretation for inequality (3.37) is that the reservation value of a

buyer should be higher than a seller’s reservation value. The buyer is of high

intrinsic type, whereas the seller is a low-type. Because the buyer has no holding

costs, the flow of dividends has a higher value for the buyer than for the seller.

When the buyer switches to a low valuation type some day, he has the same

trading possibilities—in steady state—as the seller had at that time. As a result,

trade should be efficient.75

72 The alternating-offer bargaining model of Rubinstein (1982) (see section 2.2.3) leads to a com-
parable result. The probability of the seller making the first offer equals the bargaining power
q if there is a positive probability of a breakdown while waiting for a counteroffer. See Duffie,
Gârleanu, and Pedersen (2007), pp. 1871 and the model of Rubinstein and Wolinsky (1985).

73 See Binmore, Shaked, and Sutton (1989) for a discussion about disagreement points and
outside options.

74 See Duffie, Gârleanu, and Pedersen (2005), p. 1820.
75 See Vayanos and Wang (2007), p. 73.
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When investors and market makers bargain over the price, bid or ask prices re-

sult. An investor sells to the market maker at the bid price B(t) and buys from

the market maker at the ask price A(t), with A(t) ≥ B(t). Both prices can be

calculated analogously to the bargaining between two investors. Bid and ask

prices depend both on buyers’ and sellers’ outside options, i.e. the availability of

suitable counterparties over time. Market makers can trade the asset in the inter-

dealer market, so that their outside option is to trade at the interdealer price M(t).

The bargaining power of market makers is defined with z ∈ [0, 1]. To specify the

ask price, the generalized Nash solution is

f A
z (t) = arg max

A(t)
[A(t)− M(t)]z [Vho(t)− A(t)− Vhn(t)]

1−z , (3.38)

subject to

0 ≤ A(t)− M(t), (3.39)

0 ≤ Vho(t)− A(t)− Vhn(t). (3.40)

The generalized Nash solution for the bid price is

f B
z (t) = arg max

B(t)
[M(t)− B(t)]z [Vln(t) + B(t)− Vlo(t)]

1−z , (3.41)

subject to

0 ≤ M(t)− B(t), (3.42)

0 ≤ Vln(t) + B(t)− Vlo(t). (3.43)

Maximization of the argument in (3.38) over A(t) and in (3.41) over B(t) results

in the following ask A(t) and bid B(t) prices, where

A(t) = (1 − z)M(t) + z[Vho(t)− Vhn(t)], (3.44)

s. t. M(t) ≤ A(t) ≤ Vho(t)− Vhn(t), (3.45)

and

B(t) = (1 − z)M(t) + z[Vlo(t)− Vln(t)], (3.46)

s. t. Vlo(t)− Vln(t) ≤ B(t) ≤ M(t). (3.47)

Equilibrium requires that supply and demand of the asset are balanced. This con-
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dition affects the interdealer price M(t): It depends on whether market makers

meet an equal number of buyers and sellers (µlo(t) = µhn(t)), or whether there is

an imbalance between potential sellers and potential buyers (µlo(t) ≶ µhn(t)).

In the case that µlo(t) < µhn(t), more potential buyers than potential sellers meet

market makers. Not all potential buyers have the possibility to buy an asset. Since

not all potential buyers are able to trade, market makers and buyers must be in-

different to trading. The interdealer price M(t) must be equal to buyers’ reserva-

tion value Vho(t)− Vhn(t) and is therefore set equal to the ask price M(t) = A(t).

In the case µlo(t) > µhn(t), more potential sellers than potential buyers meet mar-

ket makers. Hence, market makers and potential sellers must be indifferent to

trading. The interdealer price M(t) must be equal to sellers’ reservation value

Vlo(t)− Vln(t), implying M(t) = B(t).

In the rare event that the buy and sell side is balanced, i.e. µlo = µhn, the inter-

dealer price is located somewhere between the bid and ask price.

As a result, the general interdealer price can be stated as follows:

M(t) = (1 − q̃(t)) [Vlo(t)− Vln(t)] + q̃(t) [Vho(t)− Vhn(t)] , (3.48)

with

q̃(t)





= 1 if µlo(t) < µhn(t)

= 0 if µlo(t) > µhn(t)

∈ [0, 1] if µlo(t) = µhn(t),

(3.49)

where the case q̃(t) ∈ [0, 1] if µlo(t) = µhn(t) denotes that, initially, q̃(t) can arbi-

trarily be chosen from [0, 1], but is then a constant for all cases µlo(t) = µhn(t).76

3.3.3 Steady State Value Functions and Prices

To derive steady state prices, insert the price equations (3.36), (3.44), and (3.46)

into equations (3.29)–(3.32) and assume that there are always gains from trade.

In the first step, the following general steady state equilibrium value functions

76 See Duffie, Gârleanu, and Pedersen (2005), p. 1824 and Feldhütter (2010), p. 14.
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result:

Vlo(ss) =
D
r
− δ

r
(r + λu + λd + 2λµlo(ss)(1 − q) + ρ(1 − z)(1 − q̃(ss)))(r + λd)

γ(ss)
,

(3.50)

Vhn(ss) =
δ

r
(2λµlo(ss)(1 − q) + ρ(1 − z)(1 − q̃(ss)))(r + λu)

γ(ss)
, (3.51)

Vho(ss) =
D
r
− δ

r
(r + λu + λd + 2λµlo(ss)(1 − q) + ρ(1 − z)(1 − q̃(ss)))λd

γ(ss)
,

(3.52)

Vln(ss) =
δ

r
(2λµlo(ss)(1 − q) + ρ(1 − z)(1 − q̃(ss)))λu

γ(ss)
, (3.53)

with

γ(ss) = (r + λd + λu) (r + λd + λu + 2λµhn(ss)q + 2λµlo(ss)(1 − q) + ρ(1 − z)) .

(3.54)

Inserting equations (3.50)–(3.53) into equations (3.36), (3.44), and (3.46), the gen-

eral steady state equilibrium prices are77

P(ss) =
D
r
− δ

r
r(1 − q) + λd + 2λµlo(ss)(1 − q) + ρ(1 − z)(1 − q̃(ss))

r + λd + λu + 2λµhn(ss)q + 2λµlo(ss)(1 − q) + ρ(1 − z)
, (3.55)

A(ss) =
D
r
− δ

r
λd + 2λµlo(ss)(1 − q) + (ρ + r)(1 − z)(1 − q̃(ss))

r + λd + λu + 2λµhn(ss)q + 2λµlo(ss)(1 − q) + ρ(1 − z)
, (3.56)

B(ss) =
D
r
− δ

r
λd + 2λµlo(ss)(1 − q) + r − (1 − z)q̃(ss)r + ρ(1 − z)(1 − q̃(ss))

r + λd + λu + 2λµhn(ss)q + 2λµlo(ss)(1 − q) + ρ(1 − z)
.

(3.57)

All three prices bear resemblances to each other: The prices consist of the present

value of the stream of dividends (D/r), also called the fundamental value of the

asset, less an illiquidity discount.

Sensitivity analysis shows the following effects on prices (ceteris paribus and in-

dependent of the rationed trading side, i.e. independent of the relation of s and y

to each other):78

77 The pricing formulas (14)–(16) in Duffie, Gârleanu, and Pedersen (2005, p. 1824) are nested
in equations (3.55)–(3.57), with q̃(ss) = 1 and D = 1.

78 Proofs are in Duffie, Gârleanu, and Pedersen (2007), pp. 1872, 1894, and Afonso (2011), ap-
pendix B.
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Prices decrease with an increase in

- holding costs: ∂P(ss)/∂δ < 0,

- the fraction of asset owners: ∂P(ss)/∂s < 0 (with ∂µlo(ss)/∂s > 0 and

∂µhn(ss)/∂s < 0),

- the frequency of downward preference or funding shocks: ∂P(ss)/∂λd < 0

(with ∂µlo(ss)/∂λd > 0 and ∂µhn(ss)/∂λd < 0).

Prices increase with an increase in

- the bargaining power of the seller: ∂P(ss)/∂q > 0,

- the frequency of upward preference or funding shocks: ∂P(ss)/∂λu > 0

(with ∂µlo(ss)/∂λu < 0 and ∂µhn(ss)/∂λu > 0).

The bid-ask spread is the difference between the ask price for selling the asset to

a market maker and the bid price for buying the asset from a market maker. It

is the fee a market maker gains for buying the asset from an lo agent and selling

it to an hn agent. The bid-ask spread offers an incentive for market makers to

care about market liquidity. In this model, bid and ask prices reflect the outside

options of investors, which depend on the availability of suitable counterparties:

both other market makers and other investors. Thus, the bid-ask spread, denoted

with

A(ss)− B(ss) =
δz

r + λd + λu + 2λµhn(ss)q + 2λµlo(ss)(1 − q) + ρ(1 − z)
, (3.58)

is the compensation for market makers’ cost of searching and matching. It is en-

sured that market makers’ gains from trade are nonnegative, since the numerator,

with holding cost δ and the market makers’ bargaining power z, is always equal

to or greater than zero. The denominator is always greater than zero, since all

coefficients are positive.

3.3.4 Walrasian Equilibrium

In a perfect competitive market, supply equals demand and agents can sell and

buy instantly. The result is a so-called Walrasian equilibrium79, which can be

obtained by eliminating search frictions, i.e. λ → ∞ (and (ρi) is any sequence)

79 See Walras (1874) and Neus (2013), pp. 85.
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or ρ → ∞ (and (λi) is any sequence). The bid-ask spread then tends to zero (for

z < 1). Three cases are distinguished:80

If there are more buyers than sellers in steady state, i.e. s < λu/(λu + λd), all

sellers can sell immediately and buyers are rationed. High-type investors are

the marginal asset owners. The Walrasian price is PW∗
(ss) = D/r, which is

the present value of the asset’s dividends. The proof for λ → ∞ results with

λµhn −−−→
λ→∞

∞ and λµlo is bounded if 0 < q. Steady state equilibrium masses of

investors are

µW∗
lo (ss) = 0,

µW∗
hn (ss) =

λu

λu + λd
− s,

µW∗
ho (ss) = s,

µW∗
ln (ss) = 1 − λu

λu + λd
.

(3.59)

For ρ → ∞, the results converge to the ones stated in (3.59) if z < 1.81 The same

results occur with λu → ∞, i.e. when recovering from a low state is easy.82

If there are more sellers than buyers in steady state, i.e. s > λu/(λu + λd), all

buyers can buy immediately and sellers get rationed. Low-type investors are the

marginal asset owners. The Walrasian price is then PW∗∗
(ss) = (D − δ)/r. This

price corresponds to the reservation value of a marginal asset owner, who expects

to stay a low owner forever. The proof for λ → ∞ results with λµlo −−−→
λ→∞

∞ and

λµhn is bounded if q < 1. Steady state equilibrium masses of investors are

µW∗∗
lo (ss) = s − λu

λu + λd
,

µW∗∗
hn (ss) = 0,

µW∗∗
ho (ss) =

λu

λu + λd
,

µW∗∗
ln (ss) = 1 − s.

(3.60)

For ρ → ∞, the results converge to the ones stated in (3.60) if z < 1.

80 Proofs and detailed information on equilibrium masses of investors and prices are in Duffie,
Gârleanu, and Pedersen (2005), pp. 1826 and Afonso (2011), p. 350.

81 Duffie, Gârleanu, and Pedersen (2005, pp. 1826) show that eliminating search frictions for a
monopolistic market maker, i.e. z = 1, does not result in a Walrasian price.

82 See Duffie, Gârleanu, and Pedersen (2007), p. 1873.
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If there are as many sellers as buyers in steady state, i.e. s = λu/(λu + λd), all

buyers and sellers can trade immediately and none of the investors get rationed.

As a result, the quantity of buyers and sellers has to be zero for λ → ∞ or ρ → ∞.

The Walrasian equilibrium is attained with PW∗∗∗
(ss) = (D − δ(1 − q))/r. Steady

state equilibrium masses of investors are

µW∗∗∗
lo (ss) = 0,

µW∗∗∗
hn (ss) = 0,

µW∗∗∗
ho (ss) = s,

µW∗∗∗
ln (ss) = 1 − s.

(3.61)

3.4 Numerical Example

In this section, the main implications of search frictions on liquidity and asset

prices are explained by means of an example. I adopt the input parameters from

the example in Duffie, Gârleanu, and Pedersen (2007, pp. 1883–1887), to provide a

benchmark case for chapters 5–7. Interpretations follow, to a large extent, Duffie,

Gârleanu, and Pedersen (2005, 2007).

Parameter Value
Fraction of investors owning an asset s 0.75
Holding / illiquidity cost δ 2.5
Constant dividend rate D 1
Interest rate r 0.1
Intensity of switching to a high preference type λu 2
Intensity of switching to a low preference type λd 0.2
Investors’ meeting intensity λ 125
Market makers’ meeting intensity ρ 125
Seller’s bargaining power (between investors) q 0.5
Market makers’ bargaining power z 0.8

Table 3.1: Input parameters for the numerical example.83

All parameters are stated per period, where one period equals one year. I follow

Weill (2007, p. 1334) by assuming 250 trading days per year and 10 trading hours

per day.

83 Feldhütter (2012, p. 1173) finds in an empirical estimation for a comparable model (with
λ = 0) that ρ lies between 40 (Feldhütter calls it a very unsophisticated investor) and 372 (for
a highly sophisticated investor), z = 0.97, λd = 0.33, and λu = 3.25. I chose ρ = 125, since
market makers are not considered in the example of Duffie, Gârleanu, and Pedersen (2007,
pp. 1883–1887).
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The switching intensities imply that an investor is, on average, a high-type in-

vestor y = λu/(λu + λd) = 90.91% of the time. He stays a high-type for 1/λd = 5

years on average. A low-type investor is, on average, of low-type 9.09% of

the time and stays low for 1/λu = 0.5 years on average. The meeting intensity

λ = 125 states that each investor locates other investors every other day on aver-

age. He can expect to interact with one investor every day, since 2λ/250 = 1.

Equilibrium Masses

Based on equations (3.13)–(3.16), the steady state equilibrium masses µσ(ss) for

the four investor types are calculated first. Table 3.2 displays the results.

Parameter Fraction
Fraction of lo-type investors µlo(ss) 0.0009
Fraction of hn-type investors µhn(ss) 0.1600
Fraction of ho-type investors µho(ss) 0.7491
Fraction of ln-type investors µln(ss) 0.0900

Table 3.2: Steady state equilibrium masses.

With the chosen input values, 74.91% of all investors are high-type investors own-

ing an asset. 16% are of high-type but do not own an asset, and are thus potential

buyers. Only 0.09% of investors are up to selling their asset in this steady state

equilibrium. There are considerably more buyers than sellers, so all lo-type in-

vestors meeting a market maker are able to sell their asset to him. On the other

hand, not all of the hn-type investors can buy an asset when they meet a market

maker. Thus, buyers are rationed.84

Both the rationing of buyers by market makers and search frictions have a

direct impact on liquidity, measured in trading time. On average, it takes

about [2λµlo(ss) + ρ min{µlo(ss), µhn(ss)}]−1 = 2.9724 years to buy an asset, but

only [2λµhn(ss) + ρ min{µlo(ss), µhn(ss)}]−1 = 0.0249 years (or 6 trading days)

to sell an asset. The percentage asset turnover per year, calculated with

(2λµlo(ss)µhn(ss) + ρ min{µlo(ss), µhn(ss)}) /s = 19.8%, is low in this steady

state equilibrium. This low asset turnover is partly due to a low rate of asset

misallocations to low-type investors. Only µlo(ss)/s = 0.12% of the total asset

supply s is owned by sellers.

84 If search frictions are eliminated with λ → ∞ or ρ → ∞, then the mass distribution would be
µW∗

lo (ss) = 0, µW∗
hn (ss) = 0.1591, µW∗

ho (ss) = 0.75, µW∗
ln (ss) = 0.0909.



Chapter 3. The Basic Model 54

Value Function

The optimal values in steady state are as expected: Asset owners expect a higher

present value of payoffs than non-owners, whereas agents with a high prefer-

ence for this asset attain a higher level of expected utility than agents with a low

preference. Table 3.3 states the values in steady state.

Parameter Value
Value function of lo-type investors Vlo(ss) 9.8341
Value function of hn-type investors Vhn(ss) 0.0540
Value function of ho-type investors Vho(ss) 9.8894
Value function of ln-type investors Vln(ss) 0.0514

Table 3.3: Value functions.

The value functions of asset owners, Vlo(ss) and Vho(ss), increase with increas-

ing meeting intensities ρ and λ, because search frictions decrease and agents are

matched faster. Their expected utility increases since agents do not get stuck in an

undesired position for a long time upon switching to a low state. In general, the

value functions of asset non-owners, Vhn(ss) and Vln(ss), increase with increasing

meeting intensity ρ and λ. This general result is influenced by the interrelation of

Figure 3.2: Steady state value functions as functions of λ and ρ.

λ and ρ. In the prevailing situation, potential buyers are rationed by market mak-

ers. Hence, trading opportunities between investors are more valuable to buyers

than meetings with market makers. I illustrate the effects of the varying meeting

parameters on steady state value functions in figure 3.2.
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Prices

Without search frictions, the competitive, Walrasian market price would be

lim
λ→∞

P(ss) = lim
ρ→∞

P(ss) = 10, since s < λu/(λu + λd). The bid-ask spread would

converge to zero. With the parameters given in table 3.1, the price is not Wal-

rasian. The steady state ask price A(ss), the bid price B(ss), the interinvestor

price P(ss), and the bid-ask spread are stated in table 3.4.

Parameter Value
Interinvestor price P(ss) 9.8090
Ask price A(ss) 9.8354
Bid price B(ss) 9.7932
Bid-ask spread A(ss)− B(ss) 0.0422

Table 3.4: Steady state equilibrium prices.

Since s < λu/(λu + λd), the interdealer price M(ss) is set equal to the ask price

A(ss), which implies q̃(ss) = 1. The interinvestor price P(ss) reveals that the

illiquidity discount due to search frictions is approximately 2%. Illiquidity due to

search frictions can also be stated in terms of the yield spread between liquid and

illiquid asset: The yield of the illiquid asset is 1/9.8090 = 0.1019. This exceeds

the yield of the liquid security, i.e. the interest rate, by 19 basis points.

Figure 3.3: The bid-ask spread (left panel) and the interinvestor prices (right
panel) with different values for λ and ρ.

The left panel of figure 3.3 shows that the steady state bid-ask spread rises sharply

for very low meeting rates between investors as well as between investors and

market makers. It converges to zero for very high meeting rates, i.e. when search

frictions diminish. This fact can also by verified if λ → ∞ or ρ → ∞ is consid-

ered in equation (3.58), i.e. lim
λ→∞

(A(ss)− B(ss)) = 0 or lim
ρ→∞

(A(ss)− B(ss)) = 0

for z < 1. The right panel of figure 3.3 reveals a rapidly dropping steady state

interinvestor price P(ss) with decreasing λ and ρ. For increasing λ or ρ, the inter-

investor price converges to the price in a Walrasian market.
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Figure 3.4: Steady state prices as a function of λu.

The Walrasian price is also attained with λu → ∞, as denoted in section 3.3.4.

Bid-ask spreads then tend to zero. Figure 3.4 shows the steady state interinvestor

price P(ss), the ask price A(ss), and the bid B(ss) price as a function of λu.

Negative Interinvestor Prices

The model by Duffie, Gârleanu, and Pedersen (2005) permits negative equilib-

rium prices.85 A simple variation of the parameters stated above—with λd = 0.7

and ρ = 0—leads to a steady state equilibrium price of P(ss) = −2.3619. This

negative price implies that the seller has to pay the buyer a fee to get rid of the

asset. Since s > λu/(λu + λd) holds, this small change in λd (and ρ) alters the

whole steady state equilibrium. There are more sellers than buyers in steady

state and the marginal investor is of low-type. A low-type investor is of low-type

25.93% (instead of 9.09%) of the time and stays low for 1.43 (instead of 0.5) years,

on average. Investors anticipate this longer period of time by implying that it

will be difficult to sell the asset in the future.

Another crucial factor is the holding cost δ, measured in units of consumption.

With δ = 2.5, the holding cost is higher than the dividend of 1 per unit of con-

sumption, which the asset is paying. Investors anticipate that they are probably

exposed to a situation in which they will lose consumption for a relatively long

time if their preference type switches from high to low. In this case, a seller is

willing to pay the buyer in order to not lose consumption any longer.

Using equation (3.55), the condition for a strictly positive interinvestor price

85 To the best of my knowledge, this has not been addressed before.
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P(ss) > 0 is

D
r + λd + λu + 2λµhn(ss)q + 2λµlo(ss)(1 − q) + ρ(1 − z)
r(1 − q) + λd + 2λµlo(ss)(1 − q) + ρ(1 − z)(1 − q̃(ss))

> δ.

This condition shows the sensitivity of the model’s parameters on prices.

3.5 Conclusion

This chapter introduces the basic search and bargaining model for asset pricing

in an illiquid OTC market, developed by Duffie, Gârleanu, and Pedersen (2005).

Illiquidity is modeled by search frictions, which imply that trade does not happen

instantly. Asset prices are directly bargained between agents. In the initial step,

dynamic and steady state equilibrium masses of investor types are discussed.

Investors’ utility is calculated in the second step. Finally, I present asset prices

and bid-ask spreads for the steady state equilibrium. By deriving them in a gen-

eral case, the pricing formulas in Duffie, Gârleanu, and Pedersen (2005, p. 1824)

are nested therein. As a result of the basic model, prices for assets are lower—

compared to prices in a perfect market—due to search frictions. The more chal-

lenging it is to find a trading partner, the higher this illiquidity discount becomes.
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3A Appendix: Derivation of the Value Function

In this appendix, I derive the value functions (3.21)–(3.24) stated in section 3.3.86

I start with the value Vho(t) of high owner, as stated in equation (3.23), and the

value Vln(t) of low non-owner, as stated in equation (3.24), since these two are

the easiest ones. Then, the values Vhn(t) and Vlo(t) of agents who trade with each

other—as stated in equations (3.22) and (3.21), respectively—are determined.

Value Function of ho-Type Agents

I begin by restating equation (3.23)

Vho(t) = Et




τl∫

t

e−r(u−t)D du


+ Et

[
e−r(τl−t)Vlo(τl)

]
,

where

Et




τl∫

t

e−r(u−t)D du


 = Et

[
D
r

(
1 − e−r(τl−t)

)]
.

Since the random variable τl is the stopping time when an agent changes his

intrinsic type from high to low, its density function is

f (τl) =





λde−λd(τl−t) for τl ≥ t

0 for τl < t,

where λd is the switching intensity from high to low. Hence, the expectation can

be replaced, so that

Et




τl∫

t

e−r(u−t)D du


 =

∞∫

t

D
r
(1 − e−r(x−t)) · λde−λd(x−t) dx

=
D

r + λd
.

86 The derivation of the value functions is in line with Feldhütter (2012), pp. 1183–1186 and the
comparable model therein.



Chapter 3. The Basic Model 59

Analogously,

Et

[
e−r(τl−t)Vlo(τl)

]
=

∞∫

t

e−r(x−t)Vlo(x)λde−λd(x−t) dx.

Differentiating with respect to t, the HJB equation is derived with

V̇ho(t) =
∂

∂t
Et




τl∫

t

e−r(u−t)D du


+

∂

∂t
Et

[
e−r(τl−t)Vlo(τl)

]

=
∂

∂t

[
D

r + λd

]

︸ ︷︷ ︸
=0

+
∂

∂t




∞∫

t

Vlo(x)λde−(r+λd)(x−t) dx


 .

Leibniz’s integration rule states that for an arbitrary integral I(t), with

I(t) =

a(t)∫

b(t)

f (t, x) dx,

that

∂I(t)
∂t

= f (t, a(t)) · ∂a
∂t

− f (t, b(t)) · ∂b
∂t

+

a(t)∫

b(t)

∂ f
∂t

(t, x) dx

holds. Here, a(t) → ∞, ∂a
∂t = 0, b(t) = t, ∂b

∂t = 1, f (t, x) = Vlo(x)λde−(r+λd)(x−t).

With Leibniz’s integration rule, the derivative of the value function Vho(t) with

respect to t is

V̇ho(t) = −λdVlo(t)e
−(r+λd)(t−t) +

∞∫

t

λd(r + λd)Vlo(x)e−(r+λd)(x−t) dx

= −λdVlo(t) + (r + λd)

∞∫

t

λdVlo(x)e−(r+λd)(x−t) dx

= −λdVlo(t) + (r + λd)

[
Vho(t)−

D
r + λd

]

= rVho(t)− λd (Vlo(t)− Vho(t))− D.
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Value Function of ln-Type Agents

To derive the optimal value function of low non-owners, I take the derivative of

equation (3.24) to obtain the HJB equation with

V̇ln(t) =
∂

∂t
Et

[
e−r(τl−t)Vhn(τl)

]

=
∂

∂t

∞∫

t

e−r(x−t)Vhn(x)λue−λu(x−t) dx

= −λuVhn(t) + (r + λu)

∞∫

t

λuVhn(x)e−(r+λu)(x−t) dx

︸ ︷︷ ︸
=Vln(t)

= rVln(t)− λu(Vhn(t)− Vln(t)).

Value Function of hn-Type Agents

To derive the optimal value function of high non-owners, I start by taking the

derivative of equation (3.22) to obtain the HJB equation with

V̇hn(t) =
∂

∂t
Et

[
e−r(τl−t)Vln(τl)1{τl=τ} + e−r(τi−t)(Vho(τi)− P(τi))1{τi=τ}

+ e−r(τm−t)(Vho(τm)− A(τm))1{τm=τ}
]
.

All three events,

i. intrinsic type change (λud ∈ [λd, λu]) with its first stopping time τl,

ii. trade between two investors (2λµσ(t) ∈ [2λµlo(t), 2λµhn(t)]) with its first

stopping time τi,

iii. trade between investor and market maker (ρ) with its first stopping time τm,

are assumed to be mutually independent and the superposition theorem, defined

in equation (2.12), applies.

Each event has an exponential density function with

fτl (t, τ) = λude−λud(τ−t) for τ ≥ t,

fτi (t, τ) = 2λµσ(τ)e−
∫ τ

t 2λµσ(u) du for τ ≥ t,

fτm (t, τ) = ρe−ρ(τ−t) for τ ≥ t,
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and τ = min{τl, τi, τm}. The corresponding distribution functions are

Fτl (t, τ) = 1 − e−λud(τ−t) for τ ≥ t,

Fτi (t, τ) = 1 − e−
∫ τ

t 2λµσ(u) du for τ ≥ t,

Fτm (t, τ) = 1 − e−ρ(τ−t) for τ ≥ t.

The probability that the first event occurs between (τ, τ + dτ), and that this event

is an intrinsic type change, is the element of probability gτl (τ) dτ, with87

gτl(τ) =
dFτl (t, τ)

dτ
· [1 − Fτi (t, τ)] · [1 − Fτm (t, τ)]

= fτl (t, τ) ·
[
e−
∫ τ

t 2λµσ(u) du
] [

e−ρ(τ−t)
]

= λude−
∫ τ

t (λud+2λµσ(u)+ρ) du,

for τ ≥ t and τ = min{τl, τi, τm} = τl. Comparable functions can be derived for

both the trade between two investors

gτi(τ) = fτi (t, τ) · [1 − Fτl (t, τ)] · [1 − Fτm (t, τ)]

= 2λµσ(τ)e−
∫ τ

t (λud+2λµσ(u)+ρ) du,

for τ ≥ t and τ = min{τl, τi, τm} = τi, and the trade between investor and market

makers

gτm(τ) = fτm (t, τ) · [1 − Fτl (t, τ)] · [1 − Fτi (t, τ)]

= ρe−
∫ τ

t (λud+2λµσ(u)+ρ) du,

for τ ≥ t and τ = min{τl, τi, τm} = τm.

The derivative of equation (3.22) can be written as

V̇hn(t) =
∂

∂t

∞∫

t

e−r(x−t)Vln(x)λde−
∫ x

t (λd+2λµlo(y)+ρ) dy dx

+
∂

∂t

∞∫

t

e−r(x−t)(Vho(x)− P(x))2λµlo(x)e−
∫ x

t (λd+2λµlo(y)+ρ) dy dx

+
∂

∂t

∞∫

t

e−r(x−t)(Vho(x)− A(x))ρe−
∫ x

t (λd+2λµlo(y)+ρ) dy dx

87 Freund (1961) and Duffie (2011), pp. 10.
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= − λdVln(t)− 2λµlo(t)(Vho(t)− P(t))− ρ(Vho(t)− A(t))

+ (r + λd + 2λµlo(t) + ρ)Vhn(t)

= rVhn(t)− λd(Vln(t)− Vhn(t))− 2λµlo(t)(Vho(t)− P(t)− Vhn(t))

− ρ(Vho(t)− A(t)− Vhn(t)).

Value Function of lo-Type Agents

To derive the HJB equation for the value functions of low owners, I use equation

(3.21) so that

V̇lo(t) =
∂

∂t
Et

[ τ∫

t

e−r(u−t)(D − δ) du + e−r(τl−t)Vho(t)1{τl=τ}

+ e−r(τi−t)(Vln(t) + P(t))1{τi=τ} + e−r(τm−t)(Vln(t) + B(t))1{τm=τ}

]

=
∂

∂t
Et

[ τ∫

t

e−r(u−t)(D − δ) du

]

+
∂

∂t

∞∫

t

λuVho(x)e−
∫ x

t (r+λu+2λµhn(y)+ρ) dy dx

+
∂

∂t

∞∫

t

2λµhn(x)(Vln(x) + P(x))e−
∫ x

t (r+λu+2λµhn(y)+ρ) dy dx

+
∂

∂t

∞∫

t

ρ(Vln(x) + B(x))e−
∫ x

t (r+λu+2λµhn(y)+ρ) dy dx.

The superposition of independent Poisson processes is again a Poisson process

(see equation (2.12)), implying that its intensity is the sum of the individual in-

tensities. The probability that an event occurs within the infinitesimal interval

(τ, τ + dτ) is gτ(τ) dτ, with

gτ (τ) = (λud + 2λµσ(τ) + ρ) e−
∫ τ

t (λud+2λµσ(y)+ρ) dy,

for τ ≥ t, where this event is either an intrinsic type change (λud), or interinvestor

trade (2λµσ(τ)), or trade intermediated by market maker (ρ).
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The remaining expectation is

Et

[ τ∫

t

e−r(u−t)(D − δ) du

]
=

∞∫

t

(D − δ)
1
r

(
1 − e−r(x−t)

)
(λu + 2λµhn(x) + ρ) e−

∫ x
t (λu+2λµhn(y)+ρ) dy dx.

The derivative of the value function Vlo(t) with respect to t is

V̇lo(t) =
∂

∂t

∞∫

t

D − δ

r

(
1 − e−r(x−t)

)
(λu + 2λµhn(x) + ρ) e−

∫ x
t (λu+2λµhn(y)+ρ) dy dx

− λuVho(t)− 2λµhn(t)(Vln(t) + P(t))− ρ(Vln(t) + B(t))

+ (r + λu + 2λµhn(t) + ρ)

[ ∞∫

t

λuVho(x)e−
∫ x

t (r+λu+2λµhn(y)+ρ) dy dx

+

∞∫

t

2λµhn(x)(Vln(x) + P(x))e−
∫ x

t (r+λu+2λµhn(y)+ρ) dy dx

+

∞∫

t

ρ(Vln(x) + B(x))e−
∫ x

t (r+λu+2λµhn(y)+ρ) dy dx

]

= (r + λu + 2λµhn(t) + ρ) · Et

[ τ∫

t

e−r(u−t)(D − δ) du

]
− (D − δ)

− λuVho(t)− 2λµhn(t)(Vln(t) + P(t))− ρ(Vln(t) + B(t))

+ (r + λu + 2λµhn(t) + ρ)


Vlo(t)− Et

[ τ∫

t

e−r(u−t)(D − δ) du

]


= rVlo(t)− λu(Vho(t)− Vlo(t))− 2λµhn(t)(Vln(t) + P(t)− Vlo(t))

− ρ(Vln(t) + B(t)− Vlo(t))− (D − δ).



Chapter 4

Aggregate Liquidity Shocks

In chapter 4, I discuss the aggregate liquidity shock model introduced by Duffie,

Gârleanu, and Pedersen (2007). They expand the basic search and bargaining

model of chapter 3 by modeling a sudden decrease in aggregated liquidity. This

model enables us to analyze the dynamics out of and towards steady state of

prices and return reactions after aggregate liquidity shocks, whereas chapter 3

discusses only steady state equilibria. However, Duffie, Gârleanu, and Pedersen

(2007) do not consider market makers.88

The outline of this chapter is as follows: Section 4.1 starts with a short introduc-

tion to aggregate liquidity shocks. Section 4.2 introduces the Duffie, Gârleanu,

and Pedersen (2007) model setup. Aggregate liquidity shocks are implemented

in section 4.3. At this point, I reintroduce market makers. One essential exten-

sion to the analysis in Duffie, Gârleanu, and Pedersen (2007) is section 4.4, where I

show a semi-analytical solution for this model. The solution method is presented

in appendix 4A, while the derivation of the explicit results is stated in appendices

4B and 4C. Numerical examples are deferred to chapter 5.

4.1 Introduction

An aggregate liquidity shock hitting either the whole market, like a systemic liq-

uidity shock, or a class of investors or assets, has negative effects on investors’

88 Duffie, Gârleanu, and Pedersen (2007) consider only trade between investors (i.e. ρ = 0).
Feldhütter (2012) allows only for trade between investors and market makers (i.e. λ = 0) in
a setting closely related to the one applied by Duffie, Gârleanu, and Pedersen (2007). I use
the framework from chapter 3, with trade between two investors (λ 6= 0) and between in-
vestors and market makers (ρ 6= 0), to model aggregate liquidity shocks that are comparable
to Duffie, Gârleanu, and Pedersen (2007).

64
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preference towards asset holdings. All investors, or a fraction of them, experi-

ence a sudden decrease in their liquidity. To recover from the shock, investors

are either forced to liquidate their current asset position or to withdraw from the

buy side. The forced liquidation leads to an abnormally high fraction of poten-

tial sellers immediately after the aggregate liquidity shock. A selling pressure

results. The withdrawal from the buy side decreases the fraction of potential

buyers. Combining both effects inevitably leads to prices that are under pres-

sure. Khandani and Lo (2011) and Pedersen (2009) provide an example for an

aggregate liquidity shock with short recovery time: In August 2007, one or more

hedge funds were forced to unwind large asset positions at short notice, probably

due to margin calls or to reduce risk. These huge selling positions induced losses

to others, leading to a “deadly feedback loop”89 by reducing prices of collater-

als. After a few days, prices mostly recovered. In general, a price drop due to a

liquidity shock leads to a price reversal.90 Coval and Stafford (2007) find similar

results for mutual funds suffering a liquidity shock, which is usually due to the

poor performance of the fund. Price reversals are slower, though.

The aggregate liquidity shock model presented in this chapter describes a general

scenario of systemic liquidity shocks. It addresses the effects of a sudden selling

pressure on prices, bid-ask spreads, market recovery, and the impact that the risk

of further shocks has on long term equilibrium prices.

4.2 Model Setup

Duffie, Gârleanu, and Pedersen (2007) begin with the assumptions that an aggre-

gate liquidity shock occurs once in a while, is randomly timed, and affects many

investors at the same time. The occurrence is modeled by a Poisson arrival pro-

cess with mean arrival rate ζ. For tractability, the shocks’ independence from all

other random variables is assumed.

Agents are affected in different ways and to different extents. A randomly chosen

fraction of high-type agents experiences a sudden external force to liquidate their

asset position, or to withdraw from standing ready to buy, since their intrinsic

types simultaneously jump to a low status. Their preference towards asset hold-

ings is decreased due to the aggregate preference shock. Duffie, Gârleanu, and

Pedersen (2007) introduce the notation µσ(0), that is µho(0) for the ho agents’ and

89 Khandani and Lo (2011), p. 3.
90 See Pedersen (2009), p. 196.
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µhn(0) for the hn agents’ post-shock distribution, i.e. the distribution immediately

after the shock. Time t is rescaled as the time that has elapsed since the last shock;

and it is reset to t = 0 upon occurrence of another shock. For example, µho(t) is

the fraction of high owners t units of time after the most recent liquidity shock.

A necessary simplification for tractability is the assumption that prior shocks do

not influence the post-shock distribution by any aftereffects. This assumption

leads to a fixed post-shock distribution, on which the fraction of high-type agents

changing to a low state depends: An ho agent switches to an lo agent with prob-

ability

πho(t) = 1 − µho(0)
µho(t)

, (4.1)

and remains an ho agent with probability 1 − πho(t). An hn agent switches to an

ln agent with probability

πhn(t) = 1 − µhn(0)
µhn(t)

, (4.2)

and remains an hn agent with probability 1 − πhn(t). Assume that the shock

occurs when the system is in steady state (ss). The post-shock distribution µσ(0)

of high-type agents’ intrinsic type is calculated with

µho(0) = (1 − πho(ss)) µho(ss), (4.3)

µhn(0) = (1 − πhn(ss)) µhn(ss), (4.4)

where µho(0) < µho(ss) and µhn(0) < µhn(ss). The conditions 0 ≤ πho(ss) ≤ 1

and 0 ≤ πhn(ss) ≤ 1 for a probability holds. Whenever a shock occurs, the type

distribution jumps to the post-shock fractions specified in (4.3) and (4.4). These

equations show that the probability of high agents switching to a low state upon

occurrence of a shock in steady state, i.e. πho(ss) and πhn(ss), directly affects the

severity of a shock.

From equations (4.3), (4.4), and (3.1) it is clear that low-type agents are affected as

well, though in an indirect way. The fractions πho(ss)µho(ss) and πhn(ss)µhn(ss)

of high-type agents change to low-type agents. The post-shock distribution of

low-type agents increases by these amounts, with

µlo(0) = µlo(ss) + πho(ss)µho(ss), (4.5)

µln(0) = µln(ss) + πhn(ss)µhn(ss). (4.6)
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The type distribution µσ(t) has to satisfy constraints (3.1)–(3.3) for all t and evolve

after the shock according to the system of ordinary differential equations defined

in equations (3.4)–(3.7). On the condition that no additional shock occurs in the

meantime, these equations converge continuously to the steady state equilibrium

for any starting condition.91

4.3 Implementing Aggregate Liquidity Shocks

Aggregate liquidity shocks—in the style of Duffie, Gârleanu, and Pedersen

(2007)—are integrated into the indirect utility functions Vs
σ(t) (where the super-

script ‘s’ denotes ‘shock’). I focus again on a particular agent at a particular time

t and assume that the value functions Vs
σ(t) are well defined, i.e. bounded. The

stopping times τl, τi, τm are defined as in chapter 3.3.1. Additionally, set τζ as the

stopping time for occurrence of an aggregate liquidity shock. The value functions

are as follows:

Vs
lo(t) = Et

[ τ∫

t

e−r(u−t)(D − δ) du + e−r(τl−t)Vs
ho(τl)1{τl=τ}

+ e−r(τi−t)(Vs
ln(τi) + Ps(τi))1{τi=τ}

+ e−r(τm−t)(Vs
ln(τm) + Bs(τm))1{τm=τ} + e−r(τζ−t)Vs

lo(0)1{τζ=τ}

]
,

(4.7)

Vs
hn(t) = Et

[
e−r(τl−t)Vs

ln(τl)1{τl=τ} + e−r(τi−t)(Vs
ho(τi)− Ps(τi))1{τi=τ}

+ e−r(τm−t)(Vs
ho(τm)− As(τm))1{τm=τ}

+ e−r(τζ−t) ((1 − πhn(τζ)
)

Vs
hn(0) + πhn(τζ)V

s
ln(0)

)
1{τζ=τ}

]
,

(4.8)

Vs
ho(t) = Et

[ τ∫

t

e−r(u−t)D du + e−r(τl−t)Vs
lo(τl)1{τl=τ}

+ e−r(τζ−t) ((1 − πho(τζ)
)

Vs
ho(0) + πho(τζ)V

s
lo(0)

)
1{τζ=τ}

]
,

(4.9)

Vs
ln(t) =Et

[
e−r(τl−t)Vs

hn(τl)1{τl=τ} + e−r(τζ−t)Vs
ln(0)1{τζ=τ}

]
, (4.10)

where τ = min{τl, τi, τm, τζ}. The first terms are identical to equations (3.21)–

(3.24). The last summand is due to the possibility of an aggregate liquidity shock.

Since all low-type agents stay low, they only jump to the respective states Vs
lo(0)

91 See Duffie, Gârleanu, and Pedersen (2005, pp. 1836) for the proof of convergence.
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and Vs
ln(0) immediately after the shock upon occurrence, i.e. in t = 0. High-type

agents stay high with probabilities (1 − πho(τζ)) and (1 − πhn(τζ)) for ho agents

and hn agents, respectively. They jump to the respective states Vs
ho(0) and Vs

hn(0)

immediately after the shock, i.e. in t = 0. With probabilities πho(τζ) and πhn(τζ),

ho agents and hn agents, respectively, switch to low-type agents in t = 0.

Along the lines of appendix 3A, the growth rate of the value functions with liq-

uidity shocks, satisfying the proper transversality condition, are

V̇s
lo(t) = (r + λu + 2λµhn(t) + ρ + ζ)Vs

lo(t)− λuVs
ho(t)

− (2λµhn(t) + ρ)Vs
ln(t)− 2λµhn(t)Ps(t)− ρBs(t)

− ζVs
lo(0)− (D − δ) ,

(4.11)

V̇s
hn(t) = (r + λd + 2λµlo(t) + ρ + ζ)Vs

hn(t)− λdVs
ln(t)

− (2λµlo(t) + ρ)Vs
ho(t) + 2λµlo(t)Ps(t) + ρAs(t)

− ζ (1 − πhn(t))Vs
hn(0)− ζπhn(t)V

s
ln(0),

(4.12)

V̇s
ho(t) = (r + λd + ζ)Vs

ho(t)− λdVs
lo(t)− ζ (1 − πho(t))Vs

ho(0)

− ζπho(t)V
s
lo(0)− D,

(4.13)

V̇s
ln(t) = (r + λu + ζ)Vs

ln(t)− λuVs
hn(t)− ζVs

ln(0). (4.14)

The bargaining prices are similar to equations (3.36)–(3.48), implying

Ps(t) = (1 − q) (Vs
lo(t)− Vs

ln(t)) + q (Vs
ho(t)− Vs

hn(t)) , (4.15)

As(t) = (1 − z) Ms(t) + z (Vs
ho(t)− Vs

hn(t)) , (4.16)

Bs(t) = (1 − z) Ms(t) + z (Vs
lo(t)− Vs

ln(t)) , (4.17)

Ms(t) = (1 − q̃(t)) (Vs
lo(t)− Vs

ln(t)) + q̃(t) (Vs
ho(t)− Vs

hn(t)) , (4.18)

with

q̃(t)





= 1 if µlo(t) < µhn(t)

= 0 if µlo(t) > µhn(t)

∈ [0, 1] if µlo(t) = µhn(t),

(4.19)

and subject to

Vs
lo(t)− Vs

ln(t) ≤ Ps(t) ≤ Vs
ho(t)− Vs

hn(t), (4.20)

Vs
lo(t)− Vs

ln(t) ≤ Bs(t) ≤ As(t) ≤ Vs
ho(t)− Vs

hn(t). (4.21)
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Again, it is assumed that a meeting between two agents results in a trade.92

Equations (4.11)–(4.21) depend on each other. I follow Duffie, Gârleanu, and Ped-

ersen (2007) by restating them as a system of linear (time-varying) differential

equations:

V̇s
σ(t) = A1(µ(t))Vs

σ(t)− A2 − A3(µ(t))Vs
σ(0), (4.22)

with

Vs
σ(t) =




Vs
lo(t)

Vs
hn(t)

Vs
ho(t)

Vs
ln(t)




, µ(t) =




µlo(t)

µhn(t)

µho(t)

µln(t)




,

A1(µ(t)) = (4.23)




(
r+ζ+2λµhn(t)q
+λu+ρ(1−z)q̃(t)

) (
2λµhn(t)q

+ρ(1−z)q̃(t)

) ( −λu−2λµhn(t)q
−ρ(1−z)q̃(t)

) ( −2λµhn(t)q
−ρ(1−z)q̃(t)

)

(
2λµlo(t)(1−q)

+ρ(1−z)(1−q̃(t))

) ( r+ζ+λd
+2λµlo(t)(1−q)
+ρ(1−z)(1−q̃(t))

) ( −2λµlo(t)(1−q)
−ρ(1−z)(1−q̃(t))

) ( −λd
−2λµlo(t)(1−q)
−ρ(1−z)(1−q̃(t))

)

−λd 0 r + λd + ζ 0

0 −λu 0 r + λu + ζ




,

A2 =




D − δ

0

D

0




, (4.24)

92 Chapter 6 shows that this assumption is not fulfilled in general.
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and

A3(µ(t)) =




ζ 0 0 0

0 ζ (1 − πhn(t)) 0 ζπhn(t)

ζπho(t) 0 ζ (1 − πho(t)) 0

0 0 0 ζ




. (4.25)

For t → ∞, matrices A1(µ(t)) and A3(µ(t)) converge to constant, time-invariant

matrices, given that no additional shock has occurred.

Matrix A1(µ(t)) is time-dependent and non-diagonal. These properties imply

that the system of differential equations in (4.22) cannot be solved with a textbook

formula. In order to solve equation (4.22), I present a solution technique for these

systems of ordinary differential equations. To focus on the primary objectives, i.e.

aggregate liquidity shocks, I defer the comprehensive discussion of this solution

technique to appendix 4A. The next section sketches the approach and presents

the solution to equation (4.22).

4.4 Prices after Aggregate Liquidity Shocks

To solve the target system of linear (time-varying) differential equations in (4.22),

I apply the solution technique introduced in appendix 4A: Assume there exists a

(Lyapunov) transformation T(t) with

Vs
σ(t) = T(t)V∗

σ(t),

and the derivative

V̇s
σ(t) = Ṫ(t)V∗

σ(t) + T(t)V̇∗
σ(t),

to diagonalize the matrix A1(µ(t)). This transforms the equation (4.22) with

Ṫ(t)V∗
σ(t) + T(t)V̇∗

σ(t) = A1(µ(t))T(t)V∗
σ(t)− A2 − A3(µ(t))T(0)V∗

σ(0),

⇔
V̇∗

σ(t) =
[
T(t)−1A1(µ(t))T(t)− T(t)−1Ṫ(t)

]
V∗

σ(t)

− T(t)−1A2 − T(t)−1A3(µ(t))T(0)V∗
σ(0).

(4.26)
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Define:

Λ(µ(t)) = T(t)−1A1(µ(t))T(t)− T(t)−1Ṫ(t), (4.27)

A∗
2(t) = T(t)−1A2, (4.28)

A∗
3(µ(t)) = T(t)−1A3(µ(t))T(0), (4.29)

with A2 and A3(µ(t)) as stated in equations (4.24) and (4.25), respectively. Matrix

Λ(µ(t)) is a diagonal matrix, which is the aim of this transformation. Inserting

equations (4.27), (4.28), and (4.29) into equation (4.26), I obtain the transformed

system with

V̇∗
σ(t) = Λ(µ(t))V∗

σ(t)− A∗
2(t)− A∗

3(µ(t))V
∗
σ(0). (4.30)

Since Λ(µ(t)) is still time-dependent but also a diagonal matrix, the solution to

the transformed system (4.30) is

V∗
σ(t) =

∞∫

t

e−
∫ x

t Λ(µ(τ)) dτ [A∗
2(x) + A∗

3(µ(x))V∗
σ(0)] dx. (4.31)

Set t = 0 and rearrange this equation to solve for V∗
σ(0), with

V∗
σ(0) =

∞∫

0

e−
∫ x

0 Λ(µ(τ)) dτ [A∗
2(x) + A∗

3(µ(x))V∗
σ(0)] dx

=

∞∫

0

e−
∫ x

0 Λ(µ(τ)) dτA∗
2(x) dx +

∞∫

0

e−
∫ x

0 Λ(µ(τ)) dτA∗
3(µ(x)) dx V∗

σ(0)

=


I4 −

∞∫

0

e−
∫ x

0 Λ(µ(τ)) dτA∗
3(µ(x)) dx




−1

×



∞∫

0

e−
∫ x

0 Λ(µ(τ)) dτA∗
2(x) dx


 ,

(4.32)

where I4 is the identity matrix of dimension four. Inverse transformation com-

pletes the solution process

Vs
σ(t) = T(t)V∗

σ(t).

Based on this transformation method, I derive the semi-analytical solution for
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calculating investors’ optimal lifetime consumption with

Vs
σ(t) =

∞∫

t

T(t) e−
∫ x

t Λ(µ(τ)) dτ T(x)−1 [A2 + A3(µ(x))Vs
σ(0)] dx, (4.33)

where

Φ(t, x) = T(t) e−
∫ x

t Λ(µ(τ)) dτ T(x)−1 (4.34)

is the state transition matrix. With the Riccati transformation method introduced

in appendix 4A.5, the solution for the matrices T(t) and Λ(µ(t)) is straight for-

ward. Matrix T(t) contains the dynamic eigenvectors νi(t) (for i = 1, 2, 3, 4) of

matrix A1(µ(t)) on its columns, whereas matrix Λ(µ(t)) contains the dynamic

eigenvalues λi(t) of matrix A1(µ(t)) on its main diagonal. The explicit results,

which I derive in appendices 4B and 4C, are

T(t) =




1 1 − λu
λu+λd

q41(t)

1 2 λd
λu+λd

q42(t)

1 1 λd
λu+λd

q43(t)

1 2 − λu
λu+λd

q41(t) + q42(t)− q43(t) + 1




, (4.35)

with

q4(t) =
[
q41(t) q42(t) q43(t)

]T
,

= − λd

λu + λd

t∫

0

e
∫ t

x λ̂1(τ) dτ
(

2λµhn(x)q + ρ(1 − z)q̃(x)
)

dx




1

1

1




+
1

λu + λd

t∫

0

e
∫ t

x λ̂2(τ) dτ
(

2λµhn(x)q + ρ(1 − z)q̃(x)
)

dx



−λu

λd

λd




−
t∫

0

e
∫ t

x λ̂1(τ) dτ
(

λd + 2λµlo(x)(1 − q) + ρ(1 − z)(1 − q̃(x))
)

dx




0

1

0


 ,

(4.36)

and

λ̂1(t) = − (λu + λd + 2λµhn(t)q + 2λµlo(t)(1 − q) + ρ(1 − z)) , (4.37)
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λ̂2(t) = − (2λµhn(t)q + 2λµlo(t)(1 − q) + ρ(1 − z)) . (4.38)

Matrix Λ(µ(t)) is obtained with

Λ(µ(t)) =




r + ζ 0 0 0

0 r + ζ 0 0

0 0 r + ζ + λd + λu 0

0 0 0
( r+ζ+λd+λu

+2λµlo(t)(1−q)+2λµhn(t)q
+ρ(1−z)

)




. (4.39)

I calculate price paths with price equations (4.15)–(4.19) and the value function

stated in (4.33), so that

Ps(t) =
[
(1 − q) −q q −(1 − q)

]
Vs

σ(t), (4.40)

As(t) =




(1 − z)(1 − q̃(t))

−(1 − z)q̃(t)− z

(1 − z)q̃(t) + z

−(1 − z)(1 − q̃(t))




T

Vs
σ(t), (4.41)

Bs(t) =




(1 − z)(1 − q̃(t)) + z

−(1 − z)q̃(t)

(1 − z)q̃(t)

−(1 − z)(1 − q̃(t))− z




T

Vs
σ(t). (4.42)

I show (see appendix 4B) that the assumed transversality or no-bubble condition

lim
x→∞

Et [e−rx max {Ps(x), As(x), Bs(x)}] = 0 holds, i.e. the value functions Vs
σ(t)

are actually well defined, if λ, ρ, λd, λu < ∞.

The extension of the basic model of chapter 3 for aggregate liquidity shocks im-

plies that there is no closed form steady state solution that can easily be calcu-

lated. Detailed analysis cannot be given analytically anymore, since coefficients

are time-dependent and there is no closed form, out-of-steady-state solution for

the mass dynamics µσ(t). I discuss general characteristics of the aggregate liq-

uidity shock model on the basis of a numerical example in chapter 5.



Chapter 4. Aggregate Liquidity Shocks 74

4.5 Concluding Remarks

This chapter analyzes the dynamics out of and towards the steady state of prices

and of return reactions after aggregate liquidity shocks, initially discussed in

Duffie, Gârleanu, and Pedersen (2007). Aggregate liquidity shocks are associ-

ated with a sudden shift in agents’ preferences towards asset holding, affecting a

large fraction of investors simultaneously. Several investors experience a sudden

decrease in their liquidity, leading to a forced withdrawal of assets: The market

is hit by a selling pressure.

I develop a semi-analytical solution for the resulting linear time-varying (LTV)

system of differential equations, including market makers. With this solution,

my analysis reveals weaknesses in the presentation of the solution in Duffie, Gâr-

leanu, and Pedersen (2007), which I address next. I use their numbering, whereas

the label in squared brackets refers to the equations in my thesis.

First, Duffie, Gârleanu, and Pedersen (2007) do not give the exact contents of

A1(µ(t)), A2, and A3(µ(t)), except for stating equations (26) [4.11–4.15] (without

market maker, i.e. ρ = 0). When comparing solution (28), that is

V(t) =
∞∫

t

e−
∫ s

t A1(µ(u)) du (A2 + A3(µ(s))V(0)) ds,

where V(t) = Vs
σ(t), with my transformed solution in [4.31] and the final solution

in [4.33], some differences do attract attention:

If equation (28) solves the transformed system [4.31], then A1(µ(t)) would be

equal to Λ(µ(t)) and the ansatz exp(−
∫ s

t A1(µ(u)) du) is correctly applied.

However, A2 is then time-dependent and A1(µ(t)) in equation (27) [4.22] and

A1(µ(t)) in (28) must be different. Hence, V(t) is not the desired solution, but

the solution to the transformed system.

If equation (28) solves system [4.33], then A1(µ(t)) should be equal in both equa-

tions. However, the ansatz exp(−
∫ s

t A1(µ(u)) du) is incorrect (see section 4A.3).

For a solely numerical result, one might propose the Magnus–expansion: Magnus

(1954) suggests a function Ω(t), which depends on the coefficient matrix A1(µ(t)

of the differential equation V̇(t) = A1(µ(t)V(t), such that V(t) = exp (Ω(t)).

Therefore, there must be differences between A1(µ(t)) in equation (27) [4.22] and

A1(µ(t)) in (28).

Consequently, equation (28) is not a solution to (27) [4.22] and (26) [4.11–4.15].
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4A Appendix: Linear Systems of Ordinary Differential

Equations

Linear systems of ordinary differential equations (ODEs) are commonly sub-

divided into linear time-invariant (LTI) and linear time-varying (LTV) systems,

since solution techniques differ between both. This section first reviews some

basic theory about linear systems of ODEs in 4A.1 and then shows the solution

approach for LTI systems in 4A.2. Both topics are treated in depth in standard

textbooks about differential equations: Boyce and DiPrima (2009), Adrianova

(1995), Birkhoff and Rota (1978), and Coddington and Levinson (1955). Then,

I give a short introduction to LTV systems in 4A.3, following Chen (1999), Wu

(1980, 1981), and Zadeh and Desoer (1963). Sections 4A.4 and 4A.5 show the so-

lution technique for LTV systems derived in Abou–Kandil, Freiling, Ionescu, and

Jank (2003), van der Kloet and Neerhoff (2001, 2004), and van der Kloet, Neerhoff,

and de Anda (2001), which I utilize in this thesis.

4A.1 Basic Theory about Systems of Ordinary Differential

Equations

Consider the system of differential equations

ẋ(t) = A(t)x(t) + b(t), (4.43)

with a known coefficient matrix A(t) ∈ R
n×n, a known vector b(t) ∈ R

n×1, and

an unknown vector variable x(t) ∈ R
n×1, which are all time-dependent in gen-

eral cases. System (4.43) is called linear inhomogeneous. If b(t) = 0, system (4.43)

is called linear homogeneous, i.e.

ẋ(t) = A(t)x(t). (4.44)

First, a solution to the homogeneous system in (4.44) is considered. The gen-

eral solution to the inhomogeneous system in (4.43) can then be found with the

method of variation of parameters.

Assume that x1(t), . . . , xn(t) constitute a set of n linearly independent solutions

of system (4.44), which forms a fundamental set of solutions. The fundamental

matrix X(t) contains the n linearly independent solutions X(t) = [x1(t), . . . , xn(t)]
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as its columns, so that X(t) solves the system in (4.44) with

Ẋ(t) = A(t)X(t). (4.45)

The general solution to the homogeneous system in (4.44) is

x(t) = X(t)c, (4.46)

where c is a vector of constants. Let t = t0 be the starting time of system (4.46).

Then, the constant vector can be calculated with c = X(t0)
−1x(t0). System (4.46)

can therewith be stated in the form

x(t) = X(t)X(t0)
−1x(t0) (4.47)

= Φ(t, t0)x(t0), (4.48)

where Φ(t, t0) = X(t)X(t0)
−1 is called the state transition matrix. It has the fol-

lowing properties:

1. Φ(t, t) = I,

2. Φ(t, v) = Φ(v, t)−1,

3. Φ(t1, t2) = Φ(t1, t0)Φ(t0, t2),

4. dΦ(t, v)/dt = A(t)Φ(t, v).

The general solution to the inhomogeneous system in (4.43) can be found by ap-

plying the method of variation of parameters:

x(t) = X(t)X(t0)
−1x(t0) + X(t)

∫ t

t0

X(v)−1b(v) dv (4.49)

= Φ(t, t0)x(t0) +
∫ t

t0

Φ(t, v)b(v) dv. (4.50)

The crucial part of finding a solution to system (4.44) consists in finding a fun-

damental matrix X(t) or a state transition matrix Φ(t, v). Section 4A.2 deals with

a solution technique for a constant coefficient matrix A. Section 4A.3 derives a

(general) technique when the matrix A(t) is time-dependent. Usually, the state

transition matrix must be calculated numerically for time-varying systems, since

an analytic solution is generally not available.93

93 See Zadeh and Desoer (1963), p. 369.
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4A.2 Linear Time-Invariant (LTI) Systems

Let the matrix A(t) in system (4.44) have constant coefficients. The homogeneous

system under consideration is then

ẋ(t) = Ax(t). (4.51)

In the scalar case with n = 1, the general solution is c exp(tA). It can be shown

that this approach is also applicable for an arbitrary (but finite) n. The fundamen-

tal matrix is

X(t) = eAt, (4.52)

and the state transition matrix is

Φ(t, t0) = eA(t−t0),

where exp(At) is the exponential of a matrix. It is defined as follows:

eAt =
∞

∑
j=0

tj

j!
Aj. (4.53)

Differentiating element-wise shows that (4.52) is indeed a fundamental matrix:94

d
dt

eAt = AeAt = eAtA.

The definition of the matrix exponential in (4.53) clarifies that the calculation

of exp(At) is not an easy task in general. However, if the coefficient matrix is

a diagonal matrix, the calculation of the matrix exponential is as follows: Let

Λ = diag(λ1, . . . , λn), then exp(Λ) = diag(exp(λ1), . . . , exp(λn)). For this prop-

erty, assume a linear coordinate transformation of system (4.51) with

x(t) = Tz(t), (4.54)

that maps the coefficient matrix A of system (4.51) into the diagonal matrix Λ.

The transformed system is

ż(t) = Λz(t), (4.55)

94 See Boyce and DiPrima (2009), pp. 416.
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which consists of n decoupled ODEs, since matrix Λ is a diagonal matrix. The

general solution is

z(t) = eΛtc.

Inverse transformation leads to the solution of system (4.51), which is

x(t) = TeΛtc, (4.56)

where X(t) = T exp(Λt) is the fundamental matrix. After combining (i.) equa-

tion (4.54), (ii.) equation (4.51), (iii.) the derivative of equation (4.54), and (iv.)

equation (4.55), the coordinate transformation reads

AT = TΛ, (4.57)

since only non-trivial solutions for z(t) are considered. In the following, matrix

T = (ν1, . . . , νn) is treated as a system of column vectors. The entries on the di-

agonal matrix Λ are λ1, λ2, . . . , λn. Hence, system (4.57) can be stated with

(A − λiI) νi = 0,

for i = 1, 2, . . . , n, and with the identity matrix I. This linear system of equations

has a solution if

det (A − λiI) = 0,

which is called the characteristic equation of A. It is of order n and has n roots

defining all λi for i = 1, . . . , n. The vectors νi are called eigenvectors and λi are

the corresponding eigenvalues. As a result, equation (4.56) solves the system

in (4.51), with the columns of matrix T = (ν1, . . . , νn) consisting of n linearly

independent eigenvectors of A. The elements on the main diagonal of matrix

Λ = diag(λ1, . . . , λn) are the corresponding eigenvalues of A.

4A.3 Linear Time-Varying (LTV) Systems

Let the matrix A(t) in system (4.44) have time-dependent coefficients. An ap-

proach comparable to equation (4.52) with Φ(t) = exp(
∫

A(τ) dτ) is misleading,
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since the derivative of a time-dependent matrix exponential exp(H(t)) is95

d
dt

eH(t) =

1∫

0

e(1−u)H(t)Ḣ(t)euH(t) du.

The chain rule for the exponential matrix function exp(
∫ t

t0
A(τ) dτ) only holds

for the special case where
∫ t

t0
A(τ) dτ and A(t) commute for all t,96 i.e.

[
e
∫ t

t0
A(τ) dτ

]
A(t) = A(t)

[
e
∫ t

t0
A(τ) dτ

]
, ∀t, ∀t0.

Then, exp(
∫ t

t0
A(τ) dτ) is a state transition matrix to the system (4.44). This

property of commutativity applies to constant matrices A and to diagonal time-

varying matrices A(t).97 Therefore, the task is to diagonalize A(t), which is car-

ried out by means of a time-varying coordinate transformation

x(t) = T(t)z(t) (4.58)

to the homogeneous system (4.44). This transforms matrix A(t) into a diagonal

matrix Λ(t). The new LTV system

ż(t) = Λ(t)z(t) (4.59)

consists of n decoupled ODEs. The general solution is straight-forwardly

z(t) = e
∫

Λ(τ) dτc.

Inverse transformation leads to the solution of the system (4.44), which is

x(t) = T(t)e
∫

Λ(τ) dτc,

and X(t) = T(t) exp(
∫

Λ(τ) dτ) is the fundamental matrix. After combining (i.)

equation (4.58), (ii.) equation (4.44), (iii.) the derivative of (4.58), and (iv.) equa-

tion (4.59), the time-varying coordinate transformation reads

A(t)T(t) = T(t)Λ(t) + Ṫ(t), (4.60)

95 See Snider (1964), p. 1587 and Wilcox (1967), p. 964.
96 There are some special cases for which the chain rule holds without commutativity. See Ma

and Shekhtman (2010).
97 See Coddington and Levinson (1955), p. 76.
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since only non-trivial solutions for z(t) are considered. Consequently, matrix

A(t) and Λ(t) are related to each other. This connection is called kinematic sim-

ilarity.98 Again, treat matrix T(t) = (ν1(t), . . . , νn(t)) as a system of column vec-

tors. The entries on the diagonal matrix Λ(t) are λ1(t), λ2(t), . . . , λn(t). Hence,

system (4.60) can be stated as

[A(t)− λi(t)I] νi(t) = ν̇i(t),

for i = 1, 2, . . . , n, and with the identity matrix I. In this context, vectors νi(t)

are called dynamic eigenvectors and λi(t) are called the corresponding dynamic

eigenvalues.99, 100 The crucial part is to find matrix T(t) and diagonal matrix

Λ(t). Van der Kloet and Neerhoff (2001, 2004) and van der Kloet, Neerhoff, and

de Anda (2001) suggest a transformation algorithm to obtain the matrices T(t)

and Λ(t) or, equivalently, the modal form for n linearly independent solutions

for the system (4.44)101

xi(t) = e
∫

λi(τ) dτ
νi(t), for i = 1, 2, . . . , n.

Vectors xi(t) are called mode-vectors.102 Before this solution technique is intro-

duced in the following sections, some comments on the transformation matrix

T(t) are given.103

Lyapunov Transformation

Assume system (4.44) has bounded coefficients and transformation (4.58) should

not alter the class of the system. Then, some additional restrictions on the trans-

formation matrix T(t), besides non-singularity and continuity for t ≥ t0, are nec-

essary:

Matrix T(t) is called a Lyapunov matrix if T(t), T(t)−1, and Ṫ(t) are bounded for

all t. Hence, transformation (4.58) is called a Lyapunov transformation.

Adrianova (1995, pp. 43–45) states some characteristics of Lyapunov transforma-

98 See Adrianova (1995), p. 44.
99 Dynamic eigenvectors and dynamic eigenvalues are also denoted as “eigenvector” and

“eigenvalue”(see Wu (1980)) or as extended eigenvector (or x–eigenvector) and extended
eigenvalue (or x–eigenvalue) (see Wu (1984)).

100 Dynamic eigenvalues λ(t) and dynamic eigenvectors ν(t) are not unique. See Wu (1980,
1981) for an introduction into dynamic eigenvalues and dynamic eigenvectors.

101 See Wu (1984).
102 See de Anda (2012).
103 See Adrianova (1995), pp. 43–45.
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tion:

1. The inverse T(t)−1 is a Lyapunov matrix if T(t) is a Lyapunov matrix.

2. Two successive Lyapunov transformations constitute a Lyapunov transfor-

mation as well, i.e. T(t) = P(t)Q(t), if P(t) and Q(t) are Lyapunov matri-

ces.

It follows that a Lyapunov transformation does not alter the stability characteris-

tics of the system (4.44).104

4A.4 Riccati Transformation

It is well known that there is a close connection between linear systems of or-

dinary differential equations and the Riccati105 differential equation: A system

of linear differential equations can be (partially) decoupled by a transformation

called Riccati transformation.106, 107

The starting point for the matrix Riccati transformation is the following n–dimen-

sional homogeneous system of ODEs

ẋ(t) = A(t)x(t), (4.61)

with the time-dependent system matrix A(t) ∈ R
n×n and x(t) ∈ R

n×1. First, par-

tition matrix A(t) with

A(t) =

[
A11(t) A12(t)

A21(t) A22(t)

]
, (4.62)

and A11(t) ∈ R
a×a, A12(t) ∈ R

a×b, A21(t) ∈ R
b×a, A22(t) ∈ R

b×b, and a + b = n.

Transform system (4.61) with

x(t) = P(t)y(t), for P(t) ∈ R
n×n, (4.63)

104 See Chen (1999), p. 139.
105 Riccati (1724).
106 See Abou–Kandil, Freiling, Ionescu, and Jank (2003), pp. 90–97, Smith (1987), Reid (1972),

and for an early source Radon (1928), pp. 288–299.
107 The notation and presentation of section 4A.4 are based on Abou–Kandil, Freiling, Ionescu,

and Jank (2003, pp. 90–97).
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where

P(t) =

[
Ia 0

K(t) Ib

]
, (4.64)

and the identity matrices Ia and Ib of dimension a and b, respectively. Trans-

formation (4.63) converts system (4.61) in a form with an upper block triangular

matrix B(t) with

ẏ(t) = B(t)y(t) (4.65)

iff K(t) ∈ R
b×a is a solution to the matrix Riccati differential equation108

K̇(t) = −K(t)A11(t) + A22(t)K(t) + A21(t)− K(t)A12(t)K(t). (4.66)

With the connection

B(t) = P(t)−1A(t)P(t)− P(t)−1Ṗ(t), (4.67)

matrix B(t) reads as follows:

B(t) =

[
A11(t)− A12(t)K(t) A12(t)

0 K(t)A12(t) + A22(t)

]
. (4.68)

The subsequent second transformation

y(t) = Q(t)z(t), for Q(t) ∈ R
n×n, (4.69)

converts system (4.65) into a block diagonal matrix C(t) with

ż(t) = C(t)z(t) (4.70)

and

Q(t) =

[
Ia −L(t)

0 Ib

]
(4.71)

108 See Reid (1972, ch. 2) for solving Riccati differential equations.



Chapter 4. Aggregate Liquidity Shocks 83

iff L(t) ∈ R
a×b is a solution of the Sylvester109 differential equation

L̇(t) = [A11(t)− A12K(t)] L(t)− L(t) [A22(t) + K(t)A12(t)]− A12(t).

(4.72)

The block diagonal matrix C(t) reads

C(t) =

[
A11(t)− A12(t)K(t) 0

0 K(t)A12(t) + A22(t)

]
, (4.73)

and the transformation is complete. The order of system (4.61) is reduced by a

partial decoupling.

Finally, it must be ensured that the stability properties of system (4.61) do not

change due to the Riccati transform: Matrices P(t) and Q(t) must be Lyapunov

matrices. This characteristic implies that K(t), K̇(t) and L(t), L̇(t) must be

bounded for all t.

4A.5 Solution for Systems of Linear Time-Varying Differential

Equations

The two steps of the Riccati transformation, presented in section 4A.4, form the

basis for the transformation algorithm provided by van der Kloet and Neerhoff

(2001, 2004) and van der Kloet, Neerhoff, and de Anda (2001). The diagonal-

ization of system (4.61) is performed by use of these two consecutive coordinate

transformations, applied (n − 1) times. A lower order of Riccati and Sylvester

differential equations have to be solved in each of the (n − 1) transformation

rounds. In principle—i.e. if analytic solutions to the Riccati and Sylvester differ-

ential equations can be derived—an analytic solution to system (4.61) is feasible.

The final result of this procedure is the fundamental matrix X(t), with n linearly

independent solutions.

The following passage presents in detail the transformation algorithm for the two

consecutive coordinate transformations. The first step transforms matrix A(t) in

an upper block triangular matrix, the second step in a block diagonal matrix.

Each transformation round disentangles one dynamic eigenvalue and the corre-

109 Sylvester (1884).
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sponding dynamic eigenvector, hence a mode vector. As a result, matrix A(t) is

diagonalized.

1. Transformation Step: Upper Block Triangular Matrix

Specify the LTV system, which is defined in equation (4.61), with

ẋk(t) = Ak(t) xk(t), for k = n, n − 1, . . . , 2, (4.74)

where k indicates the dimension of system matrix Ak(t) ∈ R
k×k and where

xk(t) ∈ R
k×1 is the state vector. The first transformation round starts with k = n.

Each transformation round reduces k by one, until k = 2.110

The first transformation step is carried out via the relation that is equivalent to

equation (4.63), but specified for k = n, . . . , 2, so that

xk(t) = Pk(t)yk(t). (4.75)

The transformation matrix Pk(t) ∈ R
k×k, also called Riccati matrix, is comparable

to matrix (4.64), but specified for the transformation algorithm as follows: The

dimensions of the identity matrices Ia and Ib are a = k − 1 and b = 1, respectively.

Consequently, matrix K(t) is a row vector of dimension 1 × (k − 1). For clarity, I

specify and redefine K(t) = pT
k (t). Hence,

Pk(t) =

[
Ik−1 0

pT
k (t) 1

]
, (4.76)

with the subvector

pk(t) =




pk,1(t)

pk,2(t)
...

pk,k−1(t)




, (4.77)

and the scalar functions of time pk,i(t) for i = 1, 2, . . . , k − 1. The submatrix

0 ∈ R
(k−1)×1 is a zero (column) vector. The key aspect of the first transforma-

tion is calculating vector pk(t) ∈ R
(k−1)×1. This is obtained by partition matrix

110 If k = 1, system (4.74) is a scalar differential equation, which need not be diagonalized.
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Ak(t) of equation (4.74) first, comparable to the matrix in (4.62), so that

Ak(t) =

[
A

〈k〉
11 (t) a

〈k〉
12 (t)

[a
〈k〉
21 (t)]

T a〈k〉22 (t)

]
, (4.78)

with matrix A
〈k〉
11 (t) ∈ R

(k−1)×(k−1), vectors a
〈k〉
12 (t), a

〈k〉
21 (t) ∈ R

(k−1)×1, and the

scalar a〈k〉22 (t). Superscript 〈k〉 indicates affiliation to the k–dimensional system

(4.74). The first transformation (4.75) converts system (4.74) into an upper block

triangular form, comparable to the transformation (4.65) in connection with ma-

trix (4.68), where

ẏk(t) =

[
A

〈k〉
11 (t) + a

〈k〉
12 (t)[pk(t)]T a

〈k〉
12 (t)

0T λk(t)

]
yk(t) (4.79)

iff pk(t) is any solution of the system of Riccati differential equations

ṗk(t) = −pk(t) [a
〈k〉
12 (t)]

T pk(t)− [A
〈k〉
11 (t)]

T pk(t)

+ pk(t) a〈k〉22 (t) + a
〈k〉
21 (t), (4.80)

while λk(t) is called dynamic eigenvalue and is calculated with

λk(t) = a〈k〉22 (t)− [pk(t)]
T a

〈k〉
12 (t). (4.81)

At the end of the first transformation step, it is important to emphasize that any

solution of the Riccati equation (4.80) transfers equation (4.74) into the upper

block triangular matrix of (4.79), since dynamic eigenvalues and -vectors are not

unique.

2. Transformation Step: Block Diagonal Matrix

The second coordinate transformation converts equation (4.79) into a block diag-

onal form. This is obtained via the relation that is equivalent to equation (4.69)

but specified again for k = n, . . . , 2, so that

yk(t) = Qk(t)zk(t). (4.82)

The transformation matrix Qk(t) ∈ R
k×k is comparable to matrix (4.71) but spec-

ified for the transformation algorithm as follows: The dimensions of the identity

matrices Ia and Ib are further on a = k − 1 and b = 1, respectively. Consequently,
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matrix L(t) is a column vector of dimension (k − 1)× 1. Again, for clarity, I spec-

ify and redefine −L(t) = qk(t). Hence,

Qk(t) =

[
Ik−1 qk(t)

0T 1

]
, (4.83)

where

qk(t) =




qk,1(t)

qk,2(t)
...

qk,k−1(t)




, (4.84)

and the scalar functions of time qk,i(t) for i = 1, . . . , k − 1. The submatrix

0T ∈ R
1×(k−1) is a zero (row) vector. This transformation ensures that equation

(4.79) goes into the following block diagonal form, comparable to the transforma-

tion (4.70) in connection with matrix (4.73), where

żk(t) =

[
A

〈k〉
11 (t) + a

〈k〉
12 (t) [pk(t)]T 0

0T λk(t)

]
zk(t) (4.85)

iff qk(t) is any particular solution of the system of differential equations

q̇k(t) =
(

A
〈k〉
11 (t) + a

〈k〉
12 (t) [pk(t)]

T − λk(t)Ik−1

)
qk(t) + a

〈k〉
12 (t). (4.86)

The combination of the two consecutive transformations results in

xk(t) = Pk(t)Qk(t)zk(t),

which is called Riccati transform. The second transformation step completes the

first round of transformations.

Second Transformation Round

In order to decouple the whole system (4.74), these two transformation steps must

be applied (n − 1) times in total. As a result, each round decouples an additional

row in equation (4.85). The next transformation round starts with an order re-

duction of system (4.74) by one (i.e. k := k - 1), leading to the starting system of the
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second transformation round with

ẋk(t) = Ak(t)xk(t), for k = n − 1, (4.87)

where the updated system matrix in (4.87) is

Ak = A
〈k+1〉
11 (t) + a

〈k+1〉
12 (t) [pk+1(t)]

T. (4.88)

Dynamic Eigenvalues and the State Transition Matrix

After completing (n − 1) transformation rounds, the dynamic eigenvalue λ1(t) is

still pending. It can be calculated via the connection

λ1(t) = trace [An(t)]−
n

∑
i=2

λi(t), (4.89)

since the Riccati transform possesses the property of preserving the trace.111 Dy-

namic eigenvalues “are invariant under any algebraic transformation.”112

The results of the two transformation steps, which are performed (n − 1) times,

are (n − 1) P-matrices and (n − 1) Q-matrices. Van der Kloet and Neerhoff (2001,

2004) combine these matrices to form one transformation matrix T(t) ∈ R
n×n.

The transformation matrix T(t) diagonalizes system (4.44), as shown in equation

(4.58), where T(t) is calculated with

T(t) =
(n−1)

∏
i=1

Sn−i+1(t), (4.90)

and

Sk(t) =

[
Pk(t)Qk(t) 0

0T In−k

]
, (4.91)

for k = n, n − 1, . . . , 2. The submatrix 0 is of dimension k × (n − k). As a result,

111 See van der Kloet, Neerhoff, and de Anda (2001), p. 79, and Zhu and Johnson (1991), pp.
204–206.

112 Wu (1980), p. 825.
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matrix T(t) transforms equation (4.44) into the diagonal system

ż(t) =




λ1(t) · · · 0
... . . . ...

0 · · · λn(t)


 z(t),

which is comparable to equation (4.59), via the relation (4.60), that is

Λ(t) = [T(t)]−1 A(t) T(t)− [T(t)]−1 Ṫ(t).

The state transition matrix Φ(t, t0) to system (4.44) results with

Φ(t, t0) = T(t) e
∫ t

t0
Λ(τ) dτ

[T(t0)]
−1 ,

for the initial time t0. Any particular solution to pk(t) and qk(t) is feasible, and

mode-vectors are not unique.

Lyapunov Transformation

Finally, it must be ensured that the stability properties do not change due to the

successive Riccati transforms: Matrices Pk(t) and Qk(t) must be Lyapunov ma-

trices. This condition implies that the chosen solutions to the systems of Ric-

cati differential equations pk(t), ṗk(t) and the chosen solutions to the systems of

Sylvester differential equations qk(t), q̇k(t) have to be bounded for all t.

For the first transformation step, the solutions pk(t) to the matrix Riccati equation

can have the property of blowing up on a finite interval. This phenomenon is

called finite escape time and it arises when there are singularities.113 Since any

solution to equation (4.80) is feasible, one can try to find a bounded solution. This

approach works for the system (4.22), so I do not go into details about non-blow-

up conditions here. Detailed information can be found in Abou–Kandil, Freiling,

Ionescu, and Jank (2003) or Freiling, Jank, and Sarychev (2000).

For the second transformation step, the solution to the systems of differential

equations qk(t) can be unbounded, i.e. unstable. It is well known that the stability

analysis of LTI systems is characterized by its eigenvalues:

“A linear homogeneous system with constant coefficients [like equation (4.51)] is
113 See Abou–Kandil, Freiling, Ionescu, and Jank (2003), p. 91.
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1) stable if and only if all the eigenvalues of the coefficient matrix have non-

positive real parts, and simple elementary divisors correspond to the eigen-

values with zero real part,

2) asymptotically stable if and only if all the eigenvalues of the coefficient ma-

trix have negative real parts.”114 [Emphasis deleted.]

The stability analysis of LTV systems is, in general, not as easy as it is for LTI sys-

tems. Eigenvalues are misleading in the LTV case and the application of dynamic

eigenvalues is not clear yet.115 In general, the characteristics of the state transi-

tion matrix are examined. But, in most cases, the state transition matrix must be

calculated numerically, since an analytic solution is not available. The transfor-

mation algorithm provided by van der Kloet and Neerhoff (2001, 2004) and van

der Kloet, Neerhoff, and de Anda (2001) shows that—in principle116—an analytic

solution can be derived. The transformation algorithm can be applied again to

find a solution of qk(t) in equation (4.86). The stability of qk(t) can be verified by

the corresponding state transition matrix:117

The LTV homogeneous system (4.44) is

1. uniformly stable iff there exists a constant D1 > 0 so that

‖Φ(t, t0)‖ ≤ D1, for 0 ≤ t0 ≤ t < ∞, (4.92)

where ‖·‖ is the matrix norm.118 Uniform stability implies that all solutions

to the homogeneous system remain bounded for t ≥ t0.

2. uniformly asymptotically stable iff two constants D2 > 0, α > 0 (indepen-

dent of t0) exist so that

‖Φ(t, t0)‖ ≤ D2e−α(t−t0), for 0 ≤ t0 ≤ t < ∞. (4.93)

114 Adrianova (1995), p. 84.
115 Van der Kloet, Neerhoff, and Waning (2007) suggest Lyapunov characteristic exponents, cal-

culated by the mean value of the dynamic eigenvalues, to determine the stability of a LTV
system. But the counterexample of de Anda (2012) shows that some more research has to be
done on this topic.

116 An analytic solution for an LTV system is possible if analytic solutions to the Riccati equa-
tions (4.80) and differential equations (4.86) can be derived. This is feasible for 2 × 2 sys-
tems, but it can become challenging for higher order systems. Kolas (2008, ch. 7) develops a
computer algorithm for calculating dynamic eigenvalues. Additionally, it can handle some
singularities.

117 See Zadeh and Desoer (1963), ch. 7 and Adrianova (1995), ch. IV.
118 See the definition for matrix norm in Adrianova (1995), ch. I §2.
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Uniform asymptotic stability implies that all solutions to the homogeneous

system tend to zero as t → ∞. This is equal to

lim
t→∞

‖Φ(t, t0)‖ = 0, ∀t0.

Hence, uniform asymptotic stability includes uniform stability.

The corresponding inhomogeneous LTV system (4.43) is bounded, i.e. stable,

1. iff the corresponding homogeneous system is stable, and

2. iff
∫ t

t0
Φ(t, v) b(v) dv is bounded. Hence, it must be ensured that there exists

a number M1 such that

‖b(t)‖ < M1, (4.94)

i.e. b(t) is bounded ∀t > t0. Additionally, it must be ensured that there are

positive constants M2 and β such that

‖Φ(t, t0)‖I I ≤ M2e−β(t−t0), for 0 ≤ t0 ≤ t < ∞.119 (4.95)

119 Subscript II denotes that the norm ‖A(t)‖I I = max
j

n
∑

i=1

∣∣aij
∣∣ is used. See Adrianova (1995), p.

3 for the definition of matrix norms.
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4B Appendix: Solution of the System of Differential

Equations

In this appendix, I derive the solution presented in section 4.4. Starting point is

the homogeneous part to equation (4.22)

V̇s
σ(t) = A1(µ(t))Vs

σ(t), (4.96)

where A1(µ(t)) ∈ R
4×4 is stated in equation (4.23). For the diagonalization al-

gorithm, I define A1(µ(t)) = A4(t) (cf. equation (4.74)), since the initial matrix

A1(µ(t)) is of dimension four. Three transformation rounds are necessary, which

are presented in the following. Since the individual steps of each round are dis-

cussed in detail in section 4A.5, I keep the presentation of procedures and solu-

tions brief.

First Transformation Round

1. Partition matrix A4(t):

A
〈4〉
11 =




(
r+ζ+2λµhn(t)q
+λu+ρ(1−z)q̃(t)

) (
2λµhn(t)q

+ρ(1−z)q̃(t)

)
−
(

λu+2λµhn(t)q
+ρ(1−z)q̃(t)

)

(
2λµlo(t)(1−q)

+ρ(1−z)(1−q̃(t))

) (
r+ζ+2λµlo(t)(1−q)
+λd+ρ(1−z)(1−q̃(t))

) (
− 2λµlo(t)(1−q)

+ρ(1−z)(1−q̃(t))

)

−λd 0 r + λd + ζ




,

a
〈4〉
12 =




−(2λµhn(t)q + ρ(1 − z)q̃(t))

−(λd + 2λµlo(t)(1 − q) + ρ(1 − z)(1 − q̃(t)))

0


 ,

a
〈4〉
21 =




0

−λu

0


 ,

a〈4〉22 = r + ζ + λu.



Chapter 4. Aggregate Liquidity Shocks 92

2. Find any solution p4(t) to the system of Riccati differential equations:




ṗ4,1(t)

ṗ4,2(t)

ṗ4,3(t)


 = −




p4,1(t)

p4,2(t)

p4,3(t)



[( −2λµhn(t)q

−ρ(1−z)q̃(t)

) ( −λd−2λµlo(t)(1−q)
−ρ(1−z)(1−q̃(t))

)
0
]



p4,1(t)

p4,2(t)

p4,3(t)




−




( r+ζ+λu
+2λµhn(t)q
+ρ(1−z)q̃(t)

) (
2λµlo(t)(1−q)

+ρ(1−z)(1−q̃(t))

)
−λd

(
2λµhn(t)q

+ρ(1−z)q̃(t)

) ( r+ζ+λd
+2λµlo(t)(1−q)
+ρ(1−z)(1−q̃(t))

)
0

( −λu
−2λµhn(t)q
−ρ(1−z)q̃(t)

) ( −2λµlo(t)(1−q)
−ρ(1−z)(1−q̃(t))

)
r + λd + ζ







p4,1(t)

p4,2(t)

p4,3(t)




+




p4,1(t)

p4,2(t)

p4,3(t)


 (r + λu + ζ) +




0

−λu

0


 .

Since any solution to this equation is suitable, it can be shown that

p4(t) =




1

1

−1




is a particular solution to the Riccati equation.

3. Calculate the dynamic eigenvalue λ4(t):

λ4(t) = r + ζ + λu −
[
1 1 −1

] [ −(2λµhn(t)q+ρ(1−z)q̃(t))

−(λd+2λµlo(t)(1−q)+ρ(1−z)(1−q̃(t)))

0

]

= r + ζ + λu + λd + 2λµhn(t)q + 2λµlo(t)(1 − q) + ρ(1 − z).

4. Construct the first transformation matrix P4(t):

P4(t) =




1 0 0 0

0 1 0 0

0 0 1 0

1 1 −1 1




.



Chapter 4. Aggregate Liquidity Shocks 93

5. Construct the second transformation matrix Q4(t):




q̇4,1(t)

q̇4,2(t)

q̇4,3(t)


 =








(
r+ζ+2λµhn(t)q
+λu+ρ(1−z)q̃(t)

) (
2λµhn(t)q

+ρ(1−z)q̃(t)

)
−
(

λu+2λµhn(t)q
+ρ(1−z)q̃(t)

)

(
2λµlo(t)(1−q)

+ρ(1−z)(1−q̃(t))

) (
r+ζ+2λµlo(t)(1−q)
+λd+ρ(1−z)(1−q̃(t))

)
−
(

2λµlo(t)(1−q)
+ρ(1−z)(1−q̃(t))

)

−λd 0 r + λd + ζ




+




−(2λµhn(t)q + ρ(1 − z)q̃(t))

−(λd + 2λµlo(t)(1 − q) + ρ(1 − z)(1 − q̃(t)))

0



[
1 1 −1

]

− [r + ζ + λu + λd + 2λµhn(t)q + 2λµlo(t)(1 − q) + ρ(1 − z)] I3








q4,1(t)

q4,2(t)

q4,3(t)




+




−(2λµhn(t)q + ρ(1 − z)q̃(t))

−(λd + 2λµlo(t)(1 − q) + ρ(1 − z)(1 − q̃(t)))

0


 .

Hence,

q̇4(t) =




( −2λµlo(t)(1−q)
−λd−ρ(1−z)
−2λµhn(t)q

)
0 −λu

−λd

( −2λµlo(t)(1−q)
−λd−λu−ρ(1−z)

−2λµhn(t)q

)
λd

−λd 0
( −2λµlo(t)(1−q)

−λu−ρ(1−z)
−2λµhn(t)q

)




q4(t)

+




−(2λµhn(t)q + ρ(1 − z)q̃(t))

−(λd + 2λµlo(t)(1 − q) + ρ(1 − z)(1 − q̃(t)))

0


 .

(4.97)



Chapter 4. Aggregate Liquidity Shocks 94

A solution to this system of time-dependent differential equations is stated

in appendix 4C. Hence, matrix Q4(t) is

Q4(t) =




1 0 0 q4,1(t)

0 1 0 q4,2(t)

0 0 1 q4,3(t)

0 0 0 1




.

The first transformation round is complete.

Second Transformation Round

The second transformation round starts with an order reduction of one: The sys-

tem matrix A3(t) is of dimension three.

1. Define the (sub-)matrix A3(t):

A3(t) =




(
r+ζ+2λµhn(t)q
+λu+ρ(1−z)q̃(t)

) (
2λµhn(t)q

+ρ(1−z)q̃(t)

)
−
(

λu+2λµhn(t)q
+ρ(1−z)q̃(t)

)

(
2λµlo(t)(1−q)

+ρ(1−z)(1−q̃(t))

) (
r+ζ+2λµlo(t)(1−q)
+λd+ρ(1−z)(1−q̃(t))

)
−
(

2λµlo(t)(1−q)
+ρ(1−z)(1−q̃(t))

)

−λd 0 r + λd + ζ




+

[ −(2λµhn(t)q+ρ(1−z)q̃(t))

−(λd+2λµlo(t)(1−q)+ρ(1−z)(1−q̃(t)))

0

] [
1 1 −1

]

=




r + ζ + λu 0 −λu

−λd r + ζ λd

−λd 0 r + ζ + λd


 .

2. Partition matrix A3(t):

A
〈3〉
11 =

[
r + λu + ζ 0

−λd r + ζ

]
,

a
〈3〉
12 =

[
−λu

λd

]
,

a
〈3〉
21 =

[
−λd

0

]
,
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a〈3〉22 = r + ζ + λd.

3. Find any solution p3(t) to the Riccati differential equation:

[
ṗ3,1(t)

ṗ3,2(t)

]
= −

[
p3,1(t)

p3,2(t)

] [
−λu λd

] [p3,1(t)

p3,2(t)

]
−
[

r+λu+ζ −λd
0 r+ζ

] [p3,1(t)

p3,2(t)

]

+

[
p3,1(t)

p3,2(t)

]
(r + λd + ζ) +

[
−λd

0

]
.

Since any solution to this equation is suitable, it can be shown that

p3(t) =

[
1

0

]

is a particular solution to the Riccati differential equation.

4. Calculate the dynamic eigenvalue λ3(t):

λ3(t) = r + ζ + λd −
[
1 0

] [−λu

λd

]

= r + ζ + λu + λd.

5. Construct the first transformation matrix P3(t):

P3(t) =




1 0 0

0 1 0

1 0 1


 .

6. Construct the second transformation matrix Q3(t):

[
q̇3,1(t)

q̇3,2(t)

]
=

{[
r + λu + ζ 0

−λd r + ζ

]
+

[
−λu

λd

] [
1 0

]

− (r + ζ + λu + λd) I2

}[
q3,1(t)

q3,2(t)

]
+

[
−λu

λd

]

=

[
− (λu + λd) 0

0 − (λu + λd)

] [
q3,1(t)

q3,2(t)

]
+

[
−λu

λd

]
.
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Since any solution to this equation is suitable, it can be shown that

q3(t) =

[
− λu

λu+λd
λd

λu+λd

]

is a particular solution to the ODE. Therefore,

Q3(t) =




1 0 − λu
λu+λd

0 1 λd
λu+λd

0 0 1


 .

The second transformation round is complete.

Third Transformation Round

The third transformation round starts with an order reduction of one: The system

matrix A2(t) is of dimension two.

1. Define the (sub-)matrix A2(t):

A2(t) =

[
r + λu + ζ 0

−λd r + ζ

]
+

[
−λu

λd

] [
1 0

]

=

[
r + ζ 0

0 r + ζ

]
.

2. Partition matrix A2(t):

A
〈2〉
11 = r + ζ,

a
〈2〉
12 = 0,

a
〈2〉
21 = 0,

a〈2〉22 = r + ζ.

3. Find any solution p2(t) to the Riccati differential equation:

ṗ2,1(t) = −p2,1(t) · 0 · p2,1(t)− (r + ζ) · p2,1(t) + p2,1(t) · (r + ζ) + 0

= 0.
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ṗ2,1(t) = 0 means that p2,1(t) is a constant. Since any solution to this equa-

tion is suitable, it can be shown that p2(t) = 1 is a particular solution to the

Riccati equation.

4. Calculate the dynamic eigenvalue λ2(t):

λ2(t) = r + ζ.

5. Calculate the first transformation matrix P2(t):

P2(t) =

[
1 0

1 1

]
.

6. Calculate the second transformation matrix Q2(t):

q̇2,1(t) = {r + ζ + 0 · 1 − (r + ζ)} q2,1(t) + 0

= 0.

q̇2,1(t) = 0 means that q2,1(t) is a constant. Since any solution to this equa-

tion is suitable, it can be shown that q2(t) = 1 is a particular solution to the

ODE. As a result, the second transformation matrix Q2(t) reads

Q2(t) =

[
1 1

0 1

]
.

The third and final transformation round is complete. The dynamic eigenvalue

λ1(t) is calculated with

λ1(t) = trace (A1(µ(t)))−
4

∑
i=2

λi(t)

= r + ζ.

State Transition Matrix

The state transition matrix is composed of the single transformation matrix T(t)

and the diagonal matrix Λ(µ(t)). Matrix T(t), in turn, is calculated via the Riccati

transformations of each transformation round. These Riccati transformations of
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round one, two, and three are calculated first, so that

P4(t)Q4(t) =




1 0 0 q41(t)

0 1 0 q42(t)

0 0 1 q43(t)

1 1 −1 q41(t) + q42(t)− q43(t) + 1




,

P3Q3 =




1 0 − λu
λu+λd

0 1 λd
λu+λd

1 0 λd
λu+λd


 ,

P2Q2 =

[
1 1

1 2

]
.

Matrix T(t), the columns of which consist of dynamic eigenvectors, is calculated

with

T(t) = S4(t) · S3 · S2

=




1 0 0 q4,1(t)

0 1 0 q4,2(t)

0 0 1 q4,3(t)

1 1 −1
(

q4,1(t)+q4,2(t)
−q4,3(t)+1

)







1 0 − λu
λu+λd

0

0 1 λd
λu+λd

0

1 0 λd
λu+λd

0

0 0 0 1







1 1 0 0

1 2 0 0

0 0 1 0

0 0 0 1




.

The following matrix is equal to the transition matrix T(t) stated in equation

(4.35) of section 4.4:

T(t) =




1 1 − λu
λu+λd

q41(t)

1 2 λd
λu+λd

q42(t)

1 1 λd
λu+λd

q43(t)

1 2 − λu
λu+λd

q41(t) + q42(t)− q43(t) + 1




,

where

q4(t) =




q4,1(t)

q4,2(t)

q4,3(t)


 ,

and

q̇4(t) = Â3(t)q4(t) + b̂(t),
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with

Â3(t) =




( −2λµlo(t)(1−q)
−λd−ρ(1−z)
−2λµhn(t)q

)
0 −λu

−λd

( −2λµlo(t)(1−q)
−λd−λu−ρ(1−z)

−2λµhn(t)q

)
λd

−λd 0
( −2λµlo(t)(1−q)

−λu−ρ(1−z)
−2λµhn(t)q

)




,

and

b̂(t) =




−(2λµhn(t)q + ρ(1 − z)q̃(t))

−(λd + 2λµlo(t)(1 − q) + ρ(1 − z)(1 − q̃(t)))

0


 .

A solution to q4(t) =
[
q41(t) q42(t) q43(t)

]T
is derived in appendix 4C.

The diagonal matrix with dynamic eigenvalues is equal to the matrix Λ(µ(t))

stated in equation (4.39) of section 4.4:

Λ(µ(t)) =




r + ζ 0 0 0

0 r + ζ 0 0

0 0 r + ζ + λd + λu 0

0 0 0
( r+ζ+λd+λu

+2λµlo(t)(1−q)+2λµhn(t)q
+ρ(1−z)

)




.

The state transition matrix is:

Φ(t, x) = T(t) · e−
∫ x

t Λ(µ(τ)) dτ · T(x)−1, (4.98)

where



Chapter 4. Aggregate Liquidity Shocks 100

T(x)−1 = (4.99)







1+q41(x)
−q42(x)+q43(x)
+ λu

λu+λd
[−1

+q43(x)−q41(x)]







−1+q41(x)
−q42(x)+q43(x)

+ λu
λu+λd

·
[q43(x)−q41(x)]







1−q41(x)
+q42(x)−q43(x)

+ λu
λu+λd

[1

−q43(x)+q41(x)]




( −q41(x)+q42(x)
−q43(x)− λu

λu+λd
·

[q43(x)−q41(x)]

)

q42(x)−q43(x) 1+q42(x)−q43(x) −1−q42(x)+q43(x) −q42(x)+q43(x)

−1+q43(x)−q41(x) q43(x)−q41(x) 1−q43(x)+q41(x) −q43(x)+q41(x)

−1 −1 1 1




and

det T(t) = 1.

Lyapunov Transformation and Stability

It must be ensured that the stability properties do not change due to the succes-

sive Riccati transforms: Matrices Pk(t) and Qk(t) must be Lyapunov matrices.

This implies that the chosen solutions to the systems of Riccati differential equa-

tions pk(t), ṗk(t) and the chosen solutions to the systems of differential equations

qk(t), q̇k(t) have to be bounded for all t:

1. All pk(t), ṗk(t) are bounded, since all chosen solutions pk(t) are constants.

2. All qk(t) and q̇k(t) are bounded if λ, ρ, λd, λu < ∞: The chosen solutions

q3(t) and q2(t) are constants. The solution q4(t) and q̇4(t) are bounded for

λ, ρ, λd, λu < ∞, as shown in appendix 4C.

This ensures that T(t) is bounded for λ, ρ, λd, λu < ∞. The transformation is of

Lyapunov type, i.e. the stability of the system (4.22) is not altered by the Riccati

transformation. The homogeneous system to (4.22) is uniformly asymptotically

stable, since

T(t) · e−
∫ ∞

t Λ(µ(τ)) dτ · T(∞)−1 = 0, ∀t.
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The inhomogeneous LTV system (4.22) is stable if the corresponding homoge-

neous system is stable and if
∫ ∞

t Φ(t, x) [A2 + A3(µ(x))Vs
σ(0)] dx is bounded for

all t. Obviously, Φ(t, x) is an exponentially decreasing matrix function of time t,

which is clearly bounded for 0 ≤ t ≤ x. Furthermore, the condition

M1 > ‖A2 + A3(µ(t))Vs
σ(0)‖ , ∀t,

for a number M1 implies approximately

M1 > ‖A2‖+ ‖A3(µ(t))‖ · ‖Vs
σ(0)‖ ,

where

‖A2‖ = D,

‖A3(µ(t))‖ = ζ max {|1 − πhn(t)|+ |πhn(t)| , |1 − πho(t)|+ |πho(t)|} ,

‖Vs
σ(0)‖ = max {Vs

lo(0), Vs
hn(0), Vs

ho(0), Vs
ln(0)} .

Matrix A2 is bounded. Matrix A3(µ(t)) is bounded if πhn(t) and πho(t) are

bounded. Therewith, Vs
σ(0) is bounded, since exp(−

∫ x
0 Λ(µ(τ)) dτ) is an ex-

ponentially decreasing matrix function, which can be seen from equation (4.32).

As a result, the value function Vs
σ(t) is bounded for all t if λ, ρ, λd, λu < ∞,

which is required for the boundedness of q̇4(t).
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4C Appendix: Calculating Eigenvector q4(t)

In this appendix, I calculate an arbitrary solution for the dynamic eigenvector

q4(t) defined in equation (4.97). I repeat the linear time-varying system of differ-

ential equations with

q̇4(t) = Â3(t)q4(t) + b̂(t), (4.100)

where

Â3(t) =




( −2λµlo(t)(1−q)
−λd−ρ(1−z)
−2λµhn(t)q

)
0 −λu

−λd

( −2λµlo(t)(1−q)
−λd−λu−ρ(1−z)

−2λµhn(t)q

)
λd

−λd 0
( −2λµlo(t)(1−q)

−λu−ρ(1−z)
−2λµhn(t)q

)




,

b̂(t) =




−(2λµhn(t)q + ρ(1 − z)q̃(t))

−(λd + 2λµlo(t)(1 − q) + ρ(1 − z)(1 − q̃(t)))

0


 ,

and

q4(t) =




q4,1(t)

q4,2(t)

q4,3(t)


 ,

for which a solution is derived. Since the solution technique to solve equation

(4.100) is identical to the one in appendix 4B, I present it in an abridged form.

First Transformation Round

1. Partition of matrix Â3(t):

Â
〈3〉
11 =


−

(
2λµlo(t)(1−q)+λd
+2λµhn(t)q+ρ(1−z)

)
0

−λd −
(

2λµlo(t)(1−q)+λd
+2λµhn(t)q+λu+ρ(1−z)

)

 ,
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â
〈3〉
12 =

[
−λu

λd

]
,

â
〈3〉
21 =

[
−λd

0

]
,

â〈3〉22 = − (λu + 2λµhn(t)q + 2λµlo(t)(1 − q) + ρ(1 − z)) .

2. Riccati differential equations:

[
˙̂p3,1(t)
˙̂p3,2(t)

]
= −

[
p̂3,1(t)

p̂3,2(t)

] [
−λu λd

] [ p̂3,1(t)

p̂3,2(t)

]

+

[
(λd − λu) λd

0 λd

] [
p̂3,1(t)

p̂3,2(t)

]
−
[
−λd

0

]
.

Particular solution:

p̂3(t) =

[
0

1

]
.

3. Dynamic eigenvalue λ̂3(t):

λ̂3(t) = − (λu + λd + 2λµhn(t)q + 2λµlo(t)(1 − q) + ρ(1 − z)) .

4. First transformation matrix P̂3(t):

P̂3(t) =




1 0 0

0 1 0

0 1 1


 .

5. Second transformation matrix Q̂3(t):

[
˙̂q3,1(t)
˙̂q3,2(t)

]
=

[
λu −λu

−λd λd

] [
q̂3,1(t)

q̂3,2(t)

]
+

[
−λu

λd

]
.

Particular solution:

q̂3(t) =

[
1

0

]
.
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As a result,

Q̂3(t) =




1 0 1

0 1 0

0 0 1


 .

6. Riccati transformation:

P̂3(t)Q̂3(t) =




1 0 1

0 1 0

0 1 1


 .

Second Transformation Round

1. Submatrix Â2(t):

Â2(t) =


−

(
2λµlo(t)(1−q)+λd
+2λµhn(t)q+ρ(1−z)

)
−λu

−λd −
(

2λµlo(t)(1−q)+λu
+2λµhn(t)q+ρ(1−z)

)

 .

2. Partition of matrix Â2(t):

Â
〈2〉
11 = −(λd + 2λµhn(t)q + 2λµlo(t)(1 − q) + ρ(1 − z)),

â
〈2〉
12 = −λu,

â
〈2〉
21 = −λd,

â〈2〉22 = −(λu + 2λµhn(t)q + 2λµlo(t)(1 − q) + ρ(1 − z)).

3. Riccati differential equation:

˙̂p2,1(t) = − p̂2,1(t)[−λu] p̂2,1(t)− λd

+ [λd + 2λµhn(t)q + 2λµlo(t)(1 − q) + ρ(1 − z)] p̂2,1(t)

− p̂2,1(t) [λu + 2λµhn(t)q + 2λµlo(t)(1 − q) + ρ(1 − z)] .

Particular solution: p̂2(t) = 1.

4. Dynamic eigenvalue λ̂2(t):

λ̂2(t) = − (2λµhn(t)q + 2λµlo(t)(1 − q) + ρ(1 − z)) .
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5. First transformation matrix P̂2(t):

P̂2(t) =

[
1 0

1 1

]
.

6. Second transformation matrix Q̂2(t):

˙̂q2,1(t) = − (λu + λd) q̂2,1(t)− λu.

Particular solution: q̂2(t) = −λu/(λu + λd). Hence,

Q̂2(t) =

[
1 − λu

λu+λd

0 1

]
.

7. Riccati transformation:

P̂2(t)Q̂2(t) =

[
1 − λu

λu+λd

1 λd
λu+λd

]
.

Final Dynamic Eigenvalue and Transformation Matrix T̂(t)

Dynamic eigenvalue λ̂1(t):

λ̂1(t) = − (λu + λd + 2λµhn(t)q + 2λµlo(t)(1 − q) + ρ(1 − z)) .

Transformation Matrix T̂(t):

T̂ = Ŝ3 · Ŝ2,

T̂ =




1 − λu
λu+λd

1

1 λd
λu+λd

0

1 λd
λu+λd

1


 .

The inverse T̂−1 is then

T̂−1 =




λd
λu+λd

1 − λd
λu+λd

−1 0 1

0 −1 1


 .
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The diagonal matrix Λ̂(t) is obtained with

Λ̂(t) =




λ̂1(t) 0 0

0 λ̂2(t) 0

0 0 λ̂3(t)


 ,

where

λ̂1(t) = − (λu + λd + 2λµhn(t)q + 2λµlo(t)(1 − q) + ρ(1 − z)) ,

λ̂2(t) = − (2λµhn(t)q + 2λµlo(t)(1 − q) + ρ(1 − z)) ,

λ̂3(t) = − (λu + λd + 2λµhn(t)q + 2λµlo(t)(1 − q) + ρ(1 − z)) .

These eigenvalues are equal to λ̂1(t) and λ̂2(t) stated in equations (4.37) and

(4.38) of section 4.4, and λ̂3(t) = λ̂1(t). The state transition matrix Φ̂(t, t0) is

Φ̂(t, t0) = T̂ e
∫ t

t0
Λ̂(τ) dτ

T̂−1.

Solution

The solution can be found with

q4(t) = T̂ e
∫ t

0 Λ̂(τ) dτ c +

t∫

0

T̂ e
∫ t

x Λ̂(τ) dτ T̂−1 b̂(x) dx.

Since any solution for q4(t) is suitable, the starting condition q4(0) can be chosen

such that c = 0.120 Then,

q4(t) =
t∫

0

T̂ e
∫ t

x Λ̂(τ) dτ T̂−1 b̂(x) dx.

This equation is stated explicitly in equation (4.36) of section 4.4, which is similar

to

q4,1(t) = − λd

λu + λd

t∫

0

e
∫ t

x λ̂1(τ) dτ (2λµhn(x)q + ρ(1 − z)q̃(x)) dx

− λu

λu + λd

t∫

0

e
∫ t

x λ̂2(τ) dτ (2λµhn(x)q + ρ(1 − z)q̃(x)) dx,

120 See Wu (1980), p. 826.
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q4,2(t) = −
t∫

0

e
∫ t

x λ̂1(τ) dτ
( λd

λu + λd
(2λµhn(x)q + ρ(1 − z)q̃(x))

+ λd + 2λµlo(x)(1 − q) + ρ(1 − z)(1 − q̃(x))
)

dx

+
λd

λu + λd

t∫

0

e
∫ t

x λ̂2(τ) dτ (2λµhn(x)q + ρ(1 − z)q̃(x)) dx,

q4,3(t) = − λd

λu + λd

t∫

0

e
∫ t

x λ̂1(τ) dτ (2λµhn(x)q + ρ(1 − z)q̃(x)) dx

+
λd

λu + λd

t∫

0

e
∫ t

x λ̂2(τ) dτ (2λµhn(x)q + ρ(1 − z)q̃(x)) dx.

Stability

The state transition matrix Φ̂(t, t0) for system (4.100) is

Φ̂(t, t0) =
1

λu + λd
e
∫ t

t0
λ̂2(τ) dτ× (4.101)




λd e−(λu+λd)(t−t0) + λu 0 λu

(
e−(λu+λd)(t−t0) − 1

)

λd

(
e−(λu+λd)(t−t0) − 1

)
e−(λu+λd)(t−t0) −λd

(
e−(λu+λd)(t−t0) − 1

)

λd

(
e−(λu+λd)(t−t0) − 1

)
0 λu

(
e−(λu+λd)(t−t0) − 1

)




.

Obviously,

lim
t→∞

∥∥∥Φ̂(t, t0)
∥∥∥ = 0, ∀t0. (4.102)

is satisfied, since λ̂1(t), λ̂2(t) < 0. It follows that the homogeneous system to

(4.100) is uniformly asymptotically stable.

The inhomogeneous LTV system (4.100) is stable if the corresponding homoge-

neous system is stable and if
∫ t

t0
Φ̂(t, v) b̂(v) dv is bounded. For this, is must be

ensured that there exists a number M1 such that

∥∥∥b̂(t)
∥∥∥ < M1,
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which is fulfilled for λ, ρ, λd < ∞. Additionally, it must be ensured that there are

positive constants M2 and β such that

‖Φ(t, t0)‖I I ≤ M2e−β(t−t0), for 0 ≤ t0 ≤ t < ∞.

This condition is fulfilled, as seen from

‖Φ(t, t0)‖I I =
1

λu + λd
e
∫ t

t0
λ̂2(τ) dτ×

max
{
(λd − λu) e−(λu+λd)(t−t0) + 2λu,

e−(λu+λd)(t−t0),

λu + λd − (λd + λu) e−(λu+λd)(t−t0)
}

.

The inhomogeneous LTV system (4.100) is stable for λ, ρ, λd < ∞. However,

since Φ̂(t, v) decreases exponentially the faster the higher λ, ρ, λd are, the bound-

edness of b̂(t) does not influence the overall stability. But for q̇4(t) being

bounded, it must be ensured that Â3(t) and b̂(t) are bounded, which is true for

λ, ρ, λd, λu < ∞.



Chapter 5

Numerical Example

(Aggregate Liquidity Shocks)

To demonstrate the effects, implications, and general characteristics of aggregate

liquidity shocks, I utilize an example. First, I adopt the numerical example intro-

duced in Duffie, Gârleanu, and Pedersen (2007, pp. 1883–1887 and p. 1878) for a

thorough investigation. I extend their example in section 5.2 by market makers.

Appendices 5A and 5B discuss special cases, which have not been addressed in

the literature yet. Appendix 5C derives the time of intersection t∗, at which the

selling pressure due to the shock alleviates.

The parameter values for the example are given in table 5.1:

Parameter Value
Fraction of investors owning an asset s 0.75
Holding cost δ 2.5
Constant dividend rate D 1
Interest rate r 0.1
Intensity of switching to a high preference type λu 2
Intensity of switching to a low preference type λd 0.2
Investors’ meeting intensity λ 125
Sellers’ bargaining power (between investors) q 0.5
Market makers’ bargaining power z 0.8
Intensity of a liquidity shock ζ 0.1
Shock-probability of a switch ho → lo πho(ss) 0.5
Shock-probability of a switch hn → ln πhn(ss) 0.5
Market makers’ meeting intensity ρ 0 / 125
Auxiliary variable for µhn(t∗) = µlo(t∗) q̃(t∗) 0.25

Table 5.1: Parameters for the numerical example with aggregate liquidity
shocks. For the market makers’ meeting intensity, ρ = 0 is applied in chapter
5.1 (no market makers) and ρ = 125 in chapter 5.2 (with market makers).

109
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This example treats the case s < λu/(λu + λd), which implies that steady state

is a seller’s market, i.e. µhn(ss) > µlo(ss). The marginal investor is a buyer, be-

cause there is an excess demand for the asset. With πhn(ss) = πho(ss) = 0.5, the

aggregate liquidity shock is severe enough that the market switches to a buyer’s

market after the shock, i.e. µhn(0) < µlo(0). I discuss the other two cases, (1)

s < λu/(λu + λd) with no severe shock and (2) s > λu/(λu + λd), in appendix

5A.

5.1 Example without Market Maker

Duffie, Gârleanu, and Pedersen (2007) start with the assumption that post-shock

masses are calculated on the basis of an aggregate liquidity shock occurring in

steady state. With equations (3.13), (3.16), (3.14), and (3.15), steady state masses

µσ(ss) are calculated first. The results are stated in table 5.2.

Parameter Fraction
Fraction of lo-type investors µlo(ss) 0.0035
Fraction of hn-type investors µhn(ss) 0.1626
Fraction of ho-type investors µho(ss) 0.7465
Fraction of ln-type investors µln(ss) 0.0874

Table 5.2: Steady state masses of agents’ types (without market maker).

An aggregate liquidity shock changes the fraction of investor types. First, there

is a direct impact on both high-type investors hn and ho. When a shock oc-

curs, the probability that an ho agent switches to an lo agent from steady state

is assumed with πho(ss) = 50% and the probability of remaining an ho agent is

1 − πho(ss) = 50%. Similarly, with the probability of πhn(ss) = 50% an hn agent

switches to an ln agent, and he remains an hn agent with the probability of

1 − πhn(ss) = 50%. The post-shock distribution µσ(0) of high-type agents are cal-

culated with equations (4.3) and (4.4). Additionally, there is an indirect impact on

low agents: The fractions πho(ss)µho(ss) = 0.3733 and πhn(ss)µhn(ss) = 0.0813 of

investors switch from high to low-type agents. The post-shock masses for low-

type agents increases by these amounts. The masses µlo(0) and µln(0) right after

the shock are calculated with equations (4.5) and (4.6). Table 5.3 summarizes the

results.

Due to the aggregate liquidity shock, the fraction of potential sellers increases

from 0.35% to 37.68% right after the shock, which corresponds to a jump of
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Parameter Fraction
Fraction of lo-type investors µlo(0) 0.3768
Fraction of hn-type investors µhn(0) 0.0813
Fraction of ho-type investors µho(0) 0.3732
Fraction of ln-type investors µln(0) 0.1687

Table 5.3: Post-shock masses of agents’ types (without market maker).

10.67%. The fraction of potential buyers decreases from 16.26% to 8.13%. This

shock causes an oversupply of potential sellers, who face only few poten-

tial buyers, i.e. µlo(0) > µhn(0). Such an excess of asset supply over demand

characterizes a buyer’s market—in contrast to a seller’s market in steady state

(µhn(ss) > µlo(ss)). The selling pressure does not last forever, however. The post-

shock distribution µσ(0) acts as a starting condition for the system of ODEs in

(3.4)–(3.7). As stated in chapter 3, steady state masses are reached from any start-

ing condition. Agents’ intrinsic type masses converge after an aggregate liquid-

ity shock to the steady state masses, which are stated in table 5.2, given that no

further shock occurs in the meantime. Within this numerical example, it takes

approximately nine years to fully recover from an aggregate liquidity shock, but

a fairly normal level is reached after roughly two years.
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Figure 5.1: Process of mass distribution after an aggregate liquidity shock
and without market makers. The solid line illustrates the fraction of sellers
over time. The dashed line represents the fraction of buyers. Dashed-dotted
and dotted (with plus sign) lines show the fraction of high owners and low
non-owners, respectively.

Figure 5.1 shows this evolution of mass distribution, where time zero means zero

years after the shock. For ho agents, masses start to increase, and for lo agents,

masses decrease immediately after the shock. The situation is different for non-

owners. The fraction of hn agents decreases and the fraction of ln agents increases
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further before they rebound. It takes about t∗ = 0.48 years until the fraction of

potential buyers exceeds the fraction of potential sellers again. Time t∗ is called

the time of intersection, with its calculation being deferred to the appendix 5C.

The market returns to a seller’s market with µlo(t) < µhn(t) for t > t∗ > 0. Hence,

the selling pressure is considerably reduced after 0.48 years.

Value Function

Aggregate liquidity shocks arise every 1/ζ = 10 years on average in this setup.

This risk of future shocks is taken into account by all agents within their value

functions. The impact of these recurring aggregate liquidity shocks on agents’

utility depends on agents’ particular intrinsic type, as seen in equations (4.7)–

(4.10). Table 5.4 presents agents’ utilities immediately and a long time after the

shock, whereas figure 5.2 visualizes them.

Parameter t = 0 t → ∞

Value function of lo-type investors Vs
lo(t) 8.4736 9.1428

Value function of hn-type investors Vs
hn(t) 2.2229 1.1348

Value function of ho-type investors Vs
ho(t) 9.2385 9.2854

Value function of ln-type investors Vs
ln(t) 1.5091 1.1003

Table 5.4: Value functions immediately and a long time after the liquidity
shock (without market makers).

Potential sellers experience a 7% utility loss due to the shock, since trading op-

portunities worsen for quite a while. The fraction of potential sellers increases

excessively and, at the same time, the fraction of potential buyers decreases. It

takes longer after the shock to find a trading partner, which influences search op-

portunities. Once a trading partner is found, the bargaining position of potential

sellers is low. Potential sellers are locked into an unfavorable situation for an un-

usually long time, compared with steady state. Additionally, investors willing to

sell have to pay holding costs, which then accrue for a longer time period. On

the other hand, for a potential seller there is a chance that his intrinsic type will

switch to high owner within 1/λu = 0.5 years in expectation, reducing his utility

loss.

The potential buyers’ utility increases by 95%, because buyers’ trading oppor-

tunities improve due to the shock. They gain a higher bargaining position and

thereby negotiate better prices. The impact of a possible down-switch to an ln-

type is low, since this event happens only every 1/λd = 5 years in expectation.

The selling pressure, however, diminishes after about 0.48 years, i.e. when there
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are again more high-type investors than asset owners. Combining both effects,

a type switch occurs—in expectation—after the selling pressure is considerably

reduced.
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Figure 5.2: Value functions after an aggregate liquidity shock (without mar-
ket makers). The upper panel shows the utility development of asset owners,
the lower panel refers to non-owners.

The impact on high owners is, with a utility drop of about 0.5%, negligible. High

owners stay with their type until they receive an idiosyncratic preference shock,

which happens every 1/λd = 5 years in expectation and upon which they switch

to potential sellers. This impact is minor, since agents anticipate that the market

will return to normality before they become a potential seller.

Low non-owners’ utility increases by 37%. This increase is due to the fact that ln

agents stay ln until they switch to a potential buyer. This switch happens every

1/λu = 0.5 years in expectation. The utility increase is due to the possibility of

switching to a favorable type in the near future.

The utility changes for high-type investors who shift to low-type due to the shock

are analyzed next: High owners who change to low owners receive a 9% drop

in their utility, because they change to the seller’s side. High non-owners who

switch to low non-owners receive a 33% increase in utility, comparing the ex ante

with the post-shock situation. This increase is inferior in comparison to remain-

ing a high non-owner, because potential buyers benefit the most from this shock.

Finally, the steady state values cum aggregate shocks (ζ = 0.1) are compared with

steady state values ex aggregate shocks (ζ = 0), c.p. The utility of owning the

asset decreases with the possibility of aggregate liquidity shocks, since agents

anticipate the risk of being locked into an unfavorable asset position for a while.
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The utility of not owning an asset increases, since these agents can take advantage

of the selling pressure.121

Prices

An aggregate liquidity shock induces a sudden selling pressure, which affects

interinvestor prices in a negative way: The asset price drops from a long run

level of 8.0965 to 6.9901 immediately after the shock. The price is reduced by

13.67%, but recovers gradually from this shock over time. Figure 5.3 shows this

price recovery path, when a shock occurs at t = 0.122

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
7

7.5

8

8.5

9

Calendar time

In
te

rin
ve

st
or

 P
ric

e

 

 

P s(t)
P(ss)
P s(ss)

Figure 5.3: Price recovery after an aggregate liquidity shock (without market
makers). The straight line shows the price path after an aggregate liquidity
shock, which occurred at time t = 0. The dotted line describes the price a
long time after the last shock, while the dashed line illustrates the steady
state price without aggregate liquidity shocks.

The price recovery rate is high immediately after the shock. Half of the loss in

price is even regained within 0.26 years (66 trading days). But recovery slows

down as soon as the selling pressure alleviates. It takes about 1.6 years for the

price to reach a fairly normal level.123 However, the price does not reach the

steady state price level without aggregate liquidity shocks but is reduced by

12.51%.124 This lower price is due to the fact that market participants anticipate

further shocks by factoring severity and frequency of aggregate liquidity shocks

into the price.

121 The exact values for steady state ex aggregate shocks are Vlo(ss) = 9.6129, Vhn(ss) = 0.4331,
Vho(ss) = 9.7419, Vln(ss) = 0.4125.

122 See figure 4 (top panel) in Duffie, Gârleanu, and Pedersen (2007, p. 1885).
123 After 1.58 years, the percentage price change is less than 0.001% per day.
124 The steady state price without aggregate liquidity shocks and without market makers is

P(ss) = 9.2546.
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The time the price takes to recover from an aggregate liquidity shock is influenced

by several factors: (1) Severity of the shock, (2) search frictions, and (3) agents’

individual recovery time. The severity of the shock, determined by πho(ss) and

πhn(ss), has a negative impact on the price. The more severe the shock, the longer

it takes to recover. In particular, the recovery time reacts more sensitively to the

percentage of high owners turning to potential sellers than to potential buyers

turning to low non-owners. Kyle (1985, p. 1316) denotes the recovery time as

“ ‘resiliency’ (the speed with which prices recover from a random [.] shock)”,

which is one of his three dimensions describing market liquidity. Search frictions,

determined by λ, influence market liquidity as well. Higher search frictions lead

to a slower recovery time, since trade is constricted. Agents’ individual recov-

ery time, denoted by λu, describes agents’ “funding liquidity (i.e., the ease with

which they can obtain funding)”125. Duffie, Gârleanu, and Pedersen (2007, p.

1886) specify a long individual recovery time as “slow refinancing”. It measures

the time it takes investors to raise cash or, generally speaking, to adjust their po-

sitions. A faster individual recovery time, in turn, leads to a faster price recovery.

I depict these three effects on the price recovery time in table 5.5, exemplarily and

on a ceteris paribus basis.

(πho(ss); πhn(ss)) (0.3; 0.3) (0.5; 0.8) (0.8; 0.5)
Price recovery time (in years) 1.3 1.6 1.8

λ 20 250 375
Price recovery time (in years) 1.8 1.4 1.3

λu 1 5 20
Price recovery time (in years) 4.1 0.6 0.2

Table 5.5: The price recovery time for different values (c.p.) of the severity of
the shock (πho(ss); πhn(ss)), search frictions λ, and agents’ individual recov-
ery time λu (without market makers). I define the price recovery time as the
time when the percentage price change is less than 0.001% per day.

The annualized realized instantaneous excess return of the illiquid asset over the

interest rate of the liquid one is calculated with

Ṗ(t) + D
P(t)

− r.

125 Brunnermeier and Pedersen (2009), p. 2201.
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Figure 5.4 presents this return.126 Agents buying right after the shock realize an

annualized instantaneous excess return of over 30% for about three months.127

The long run level of the excess return is 1/8.0962 − 10% = 2.35%.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Calendar time

In
st

an
ta

ne
ou

s 
ex

ce
ss

 re
tu

rn

Figure 5.4: The solid line shows the annualized realized instantaneous ex-
cess return after an aggregate liquidity shock (without market makers). The
dashed line shows this excess return in the long run.

5.2 Example with Market Maker

I extend the aggregate liquidity shock model by market makers. First, the frac-

tions of investors in steady state must be determined, which are already stated in

table 3.2. Market makers, the additional trading channel in this section, lead to a

reduction in search frictions (in comparison with section 5.1). In a second step, I

derive the type distribution immediately after the shock by means of equations

(4.3), (4.4), (4.5), and (4.6). Table 5.6 summarizes the solutions.

Parameter t = 0 t → ∞

Fraction of lo-type investors µlo(t) 0.3754 0.0009
Fraction of hn-type investors µhn(t) 0.0800 0.1600
Fraction of ho-type investors µho(t) 0.3746 0.7491
Fraction of ln-type investors µln(t) 0.1700 0.0900

Table 5.6: Masses of agents’ intrinsic types immediately and a long time after
the liquidity shock, with market makers.

126 See figure 4 (bottom panel) in Duffie, Gârleanu, and Pedersen (2007, p. 1885). There, the
annualized realized instantaneous excess return is mismatched with the annualized realized
instantaneous return.

127 This model is too simple to capture the effect of predatory trading to benefit from the shock.
See Duffie, Gârleanu, and Pedersen (2007), p. 1884 and Brunnermeier and Pedersen (2005).
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The evolution of mass distribution—with market makers—is shown in figure 5.5.

A comparison with figure 5.1 (page 111) illustrates some differences: The fraction

of buyers cum market makers decreases after the shock as well but stays at a very

low rate until the intersection time t∗. Hereafter, the fraction of buyers starts to

increase concavely until it reaches its steady state level. In comparison, buyers’

fraction ex market makers does not decrease after the shock as fast and as lowly.

This fraction starts to increase more intensely right after its lowest point, which is

much earlier than the intersection point t∗. Implementing market makers ensures

a second trading channel and therefore better matching conditions. The fraction

of sellers diminishes faster cum market makers, although the selling pressure per

se is not reduced earlier. In both cases, the fraction of sellers slightly decreases

further after the intersection time by means of a convex curve.
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Figure 5.5: Process of mass distribution after an aggregate liquidity shock
and with market makers. The solid line illustrates the fraction of sellers over
time. The dashed line represents the fraction of buyers. Dotted and dashed-
dotted (with plus sign) lines show the fraction of low non-owners and high
owners, respectively.

After an aggregate liquidity shock, market makers contact more potential sellers

than potential buyers, since µlo(0) > µhn(0). Consequently, market makers trade

with all potential buyers and must ration potential sellers. The interdealer price

M(t) is set equal to sellers’ reservation value B(t). It also takes about t∗ = 0.48

years until the amount of potential buyers exceeds the amount of potential sellers,

i.e. µlo(t) < µhn(t) for t > t∗ > 0. With the formula in appendix 5C, it is clear

that this intersection time is not directly affected by meeting intensities λ and ρ.

Implementing market makers influences only slightly the fraction of high-type

agents µh(0). After the intersection point t∗, all sellers can trade when meeting

a market maker, whereas buyers are rationed. The interdealer price M(t) is then

set equal to buyers’ reservation value A(t).
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The higher the meeting intensities, the shorter the average time interval during

which potential buyers and potential sellers meet. The remaining buyers after the

shock are matched more quickly with potential sellers, leading to a lower over-

all fraction of potential buyers shortly after the shock, since all agents mutating

thereafter to a potential buyer are matched faster as well. This market gets one-

sided, with considerably more potential sellers than potential buyers. The effect

of such a market is best explained with ‘congestion’, a term coined by Afonso

(2011, p. 325), who finds a similar result:128

“In a one-sided market with more sellers than buyers, introducing a

measure that improves the efficiency of the search process makes it

easier for one of the few buyers present in the market to acquire the

asset. But when the buyer purchases the asset [...], the proportion of

buyers to sellers falls further and the market becomes more one-sided.

[...] Reducing market frictions in a distressed market thus magnifies

the effect of congestion [...].”

Figure 5.6: Fraction of potential sellers vs. potential buyers, i.e. µlo(t)/µhn(t),
for λ ∈ [200, 600] and ρ = 125, c.p.

Figure 5.6 illustrates the congestion effect of a one-sided market by means of the

fraction of potential sellers versus potential buyers for λ ∈ [200, 600] and ρ = 125.

The higher the value, the more potential sellers in proportion to potential buyers

in the market. The focus lies on the peak immediately after the shock. It increases

considerably with decreasing search frictions. The lower the search frictions, the

higher the imbalance between potential sellers and potential buyers after an ag-

gregate liquidity shock—and the more one-sided this market becomes.

128 Afonso (2011) triggers the congestion effect by an endogenous entry of investors in a steady
state setup. The situation of a one-sided market after an aggregate liquidity shock is compa-
rable.
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Trading Volume and Trading Time

Table 5.6 and figure 5.5 show that after an aggregate liquidity shock, there are

more investors available who are active in searching for a good match; this is

µlo(0) + µhn(0) > µlo(ss) + µhn(ss). The amount of potential successful matches

is increased as well: min{µlo(0), µhn(0)} > min{µlo(ss), µhn(ss)}. As a result, the

trading volume is elevated right after the shock. Afonso (2011) finds a similar

effect: If there are more agents intending to trade, the trading volume increases in

the case that search frictions are not too high. At the same time, a price drop, e.g.

due to a selling pressure, can arise. This price discount is also a measure of market

liquidity. As a result, high trading volume and market illiquidity, measured by

price pressure, are not mutually exclusive.

A suitable illustration of trading volume is by means of average asset turnover,

where

asset turnover = (2λµhn(t)µlo(t) + ρ min{µhn(t), µlo(t)}) /s. (5.1)

It is the fraction of assets bought and sold in proportion to all assets.
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Figure 5.7: The left panel shows the average asset turnover in proportion to
the asset supply. The right panel shows the asset mismatch.

The left panel of figure 5.7 shows the average asset turnover per day in proportion

to the asset supply. Compared with the situation without market makers, this

asset turnover is more than twice as high. The panel to the right shows the asset

mismatch of all assets, defined with

asset mismatch = µlo(t)/s. (5.2)
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It describes the fraction of all assets that are misallocated to investors with low

preferences. As expected, there is a high fraction of asset mismatch at time t = 0,

due to the shock. The increased trading volume following time t = 0 reduces this

misallocation. After the worst part of the shock is over, i.e. when the fraction of

high owners reaches its long run level, the asset mismatch returns to its normal

level. Asset mismatch is therewith a good substitute for reflecting the turning

point when markets start returning to normality.

Another measure describing investors’ situation after an aggregate liquidity

shock is the average time it takes to buy (thn) or sell (tlo) an asset. These mea-

sures are defined with

thn(t) = [2λµlo(t) + ρ min{µhn(t), µlo(t)}]−1 , (5.3)

tlo(t) = [2λµhn(t) + ρ min{µhn(t), µlo(t)}]−1 . (5.4)

Figure 5.8 shows these average trading times.
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Figure 5.8: Average time in years it takes to buy (thn(t), dashed line) or sell
(tlo(t), solid line) an asset over time.

The expected times for buying or selling are almost equal and very short imme-

diately after the shock, i.e. at time t = 0. Since there are more sellers than buyers,

the expected time to buy an asset stays short for a while and then starts to in-

crease as the fraction of sellers decreases. The expected time to sell an asset starts

to increase sharply immediately after the shock, since then the majority of the re-

maining buyers after the shock is matched. The average time to sell gets shorter

slowly thereafter, until the fractions of buyers and sellers are equal. After this

point of intersection, the average time to sell increases for a very short time inter-

val before it drops to its low long run level. This tiny hump-shaped characteristic



Chapter 5. Numerical Example (Aggregate Liquidity Shocks) 121

is due to different recovery patterns for buyers and sellers around the intersection

time: Shortly after the intersection time, the fraction of potential sellers decreases

faster than the fraction of potential buyers increases. This hump-shaped pattern

only appears with market makers, because then both expected trading times de-

pend likewise on the fraction of buyers as well as on the fraction of sellers. As a

result, the shock reduces the average trading time for potential buyers, since the

market is a buyer’s market after the shock. Sellers’ trading time drops to its low

long run level as soon as the market returns to a seller’s market.

Value Function

The indirect utility functions immediately and a long time after the liquidity

shock are stated in table 5.7.

Parameter t = 0 t → ∞

Value function of lo-type investors Vs
lo(t) 8.6339 9.3670

Value function of hn-type investors Vs
hn(t) 1.9854 0.8193

Value function of ho-type investors Vs
ho(t) 9.3982 9.4375

Value function of ln-type investors Vs
ln(t) 1.2454 0.8015

Table 5.7: Value Functions immediately and a long time after the liquidity
shock, with market makers.

The general effect of an aggregate liquidity shock on the value functions is similar

to section 5.1. However, the bargaining position of potential sellers improves due

to facilitated search, whereas the bargaining position of potential buyers deteri-

orates. These effects have a positive impact on ho agents, since their bargaining

situation in the future improves as well. Ln agents are negatively affected, since

their future bargaining situation worsens. As a result, reducing search time due

to market makers favors asset owners and puts non-owners at a disadvantage,

both immediately after the shock and a long time later. This effect can be seen by

comparing table 5.4 (page 112) with table 5.7. The value change due to the shock

is larger with market makers—except for high owners. Figure 5.9 shows agents’

value function as a function of time.

The effect on potential sellers is twofold: On one hand, they benefit from intro-

ducing market makers, since they recover substantially faster after a shock and

reach their long run level earlier; on the other hand, the drop in value function is

bigger. This can be seen by comparing figure 5.2 (page 113) with figure 5.9.
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Figure 5.9: Value functions after an aggregate liquidity shock (with market
makers). The upper panel shows the utility development of asset owners,
the lower panel refers to non-owners.

Prices and Bid-Ask Spread

The percentage price drop due to the aggregate liquidity shock is, at 13.86%,

nearly identical to the situation without market makers. The general price level

is, however, higher, since a trading partner can be located more easily. Table 5.8

states the interinvestor price Ps(t), the bid price Bs(t), the ask price As(t), and

the bid-ask spread immediately after the shock and a long time after.

Parameter t = 0 t → ∞

Interinvestor price Ps(t) 7.4007 8.5918
Ask price As(t) 7.4080 8.6182
Bid price Bs(t) 7.3885 8.5760
Bid-ask spread As(t)− Bs(t) 0.0195 0.0421

Table 5.8: Prices immediately and a long time after an aggregate liquidity
shock, with market makers.

The time it takes for the price to recover from an aggregate preference shock de-

pends on market liquidity, measured by expected search time λ and ρ. If markets

are illiquid, it takes longer to recover.129 With the introduction of market makers,

market liquidity increases. As a result, prices recover faster in comparison to the

model without market makers. Figure 5.10 shows the development of the inter-

investor price Ps(t), the bid price Bs(t), and the ask price As(t) after an aggregate

liquidity shock.

129 See Pedersen (2009), p. 191 and the analysis in table 5.5.
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Figure 5.10: Price after an aggregate liquidity shock, with market makers.
The solid line illustrates the interinvestor price Ps(t). The dashed line repre-
sents the ask price As(t) and the dotted line shows the bid price Bs(t).

Half of the loss in price is regained as well within 0.26 years. However, prices

reach a fairly normal level within 1.1 years, compared with 1.6 years without

market makers.130 Not even an increase of λ in section 5.1 from 125 to 375 (while

ρ = 0), which makes meeting intensities approximately comparable, would ob-

tain this fast recovery time. Furthermore, as appendix 5B shows, for λ = 0 and

ρ = 125, prices reach a fairly normal level within approximately 0.9 years. These

effects imply that market makers provide superior search service.

The components of the bid-ask spread are usually split into two parts: (1) trans-

action costs and (2) adverse selection. Part (1) includes all fixed and variable costs

of a market maker running his business, like compensation for market makers’

time, inventory cost and risk. Part (2) contains a compensation for losses due to

trading with informed investors.131

Market makers in this model are match makers, i.e. they do not hold inventory.

Additionally, there are no information asymmetries. The bid-ask spread simply

captures the return of market makers providing search service, and thereby re-

ducing the search time of buyers and sellers alike. It is not a charge for bearing

inventory risk.132 Thus, the bid-ask spread measures the capability of market

makers locating a suitable trading partner. More precisely, the bid-ask spread

depends on the degree of competition. Market makers must take investors’ out-

side options into account, because bid and ask prices reflect the availability of

130 After 1.08 years, the percentage price change is less than 0.001% per day.
131 See Glosten and Milgrom (1985) and Harris (2003), chapter 14.
132 See Rubinstein and Wolinsky (1987), p. 591 and Grossman and Miller (1988), p. 628 and 620.
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other market makers as well as other investors. These outside options imply that

market makers compete both with each other and with the ability of investors

finding each other in a direct way. Investors bargain bid and ask prices which

reflect the possibility of terminating the bargaining process and finding another

trading partner. If outside options are favorable, bid-ask spreads are tighter.133

The bid-ask spread is calculated as the difference in the surplus of sellers and

buyers over time, weighted with market makers’ bargaining power z. This is

As(t)− Bs(t) = z [(Vs
ho(t)− Vs

hn(t))− (Vs
lo(t)− Vs

ln(t))] . (5.5)

Market makers gain the fraction z of the overall trading surplus, i.e. the difference

between buyers’ and sellers’ reservation value. Figure 5.11 depicts the develop-

ment of the bid-ask spread after an aggregate preference shock.
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Figure 5.11: The solid line shows the bid-ask spread over time after an aggre-
gate liquidity shock. The dashed line shows the bid-ask spread without an
aggregate liquidity shock.

Immediately after the shock, it is easy for a potential buyer to meet potential

sellers. Since there is an oversupply of potential sellers, buyers have a better

outside option compared with steady state. For a potential seller, some potential

buyers are still available. Combining both, the better outside option of potential

buyers overcompensates for the reduction in outside options for potential seller.

A tighter bid-ask spread results immediately after the shock, in comparison with

the long run level. However, and in contrast to figure 5.11, one would expect an

immediately widening bid-ask spread thereafter, since both outside options then

decline. The downward hump is therefore puzzling. I defer further explanations

to chapter 7, where the reason for this confusing effect is addressed.

133 See Feldhütter (2012), p. 1162 and Duffie, Gârleanu, and Pedersen (2005), p. 1816.
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Some final remarks about the bid-ask spreads are feasible, though: Ask and bid

prices, which imply the risk of an aggregate liquidity shock, are clearly lower

than the steady state prices without a shock. The level of long run bid-ask

spreads, however, is nearly equal to the level of bid-ask spreads in steady state

without aggregate liquidity shocks (here: 0.0421 versus 0.0422 without shocks).

5.3 Conclusion

The analysis in section 5.1 highlights general characteristics of repeated aggregate

liquidity shocks: First, an aggregate liquidity shock causes a selling pressure,

which results in an immediate price drop. During the recovery time, selling an

asset is more time-consuming. Second, the market recovers from this shock over

time, whereas the recovery time depends on search intensity. Prices reach a fairly

normal level after a while. Third, this level is lower compared to the steady state

price level without aggregate liquidity shocks. Agents anticipate the risk that a

shock can occur in the future.

My extension of the aggregate liquidity shock model by market makers reveals

additional results: Market makers provide superior search service, since prices

reach their fairly normal level disproportionally faster, and an increase in market

liquidity results. Aggregate liquidity shocks immediately reduce market makers’

bid-ask spread, because investors face better outside options. In the long run,

the bid-ask spread is only marginally affected by the risk of repeated aggregate

liquidity shocks.
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5A Appendix: Seller’s Market vs. Buyer’s Market

The steady state relation of µhn(ss) and µlo(ss) influences post-shock characteris-

tics of the market. Two cases can be distinguished:

Case 1: s < λu/(λu + λd). With this relation, the steady state equilibrium of

investors’ types is characterized by a seller’s market with µhn(ss) > µlo(ss). It

is the situation which Duffie, Gârleanu, and Pedersen (2007) consider. Potential

sellers can trade more easily and faster than potential buyers, because there are

more potential buyers available in steady state than sellers. Therefore, the frac-

tion of potential sellers is very low in steady state. Agents switching from ho-type

to lo-type do not stay in the lo state for a long time, since finding a trading part-

ner is easy for these agents. If πho(ss) and πhn(ss) are chosen in such a way that

µhn(0) < µlo(0), then the market switches temporarily to a buyer’s market. Equa-

tions (3.4)–(3.7) ensure that it returns to a seller’s market over time. This case is

treated in the numerical example in chapter 5.

If πho(ss) and πhn(ss) are chosen in such a way that µhn(0) > µlo(0), the market

stays a seller’s market. The aggregate liquidity shock is not severe, because there

is no surplus of potential buyers over sellers. The market recovers quickly. Figure

5.12 shows the mass distribution of the second example presented in Duffie, Gâr-

leanu, and Pedersen (2007, p. 1886), i.e. πho(ss) = 0.1668 and πhn(ss) = 0.1697.134
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Figure 5.12: The graph shows the process of mass distribution after a small
aggregate liquidity shock (without market makers).

The price drop is only 2.20%, and half of it is regained after 40 days. After one

year, the percentage price change is less than 0.001% per day. The general pattern
134 Duffie, Gârleanu, and Pedersen (2007) state πho(ss) = πhn(ss) = 0.17, which does not

exactly fit the denoted post-shock distribution µlo = 0.1280, µhn = 0.1350, µho = 0.6220,
µln = 0.1150.
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of all other variables are similar to the ones presented in sections 5.2 and 5.1, but

only the values and processes after the intersection time are relevant here.

Case 2: s > λu/(λu + λd). In this case, which has not yet been discussed in the

literature, steady state equilibrium is a buyer’s market with µhn(ss) < µlo(ss).

Potential buyers can trade faster, because there are more potential sellers than

potential buyers available in steady state. Thus, the fraction of potential buyers is

low in steady state. and sellers are marginal investors. Agents switching from ln-

type to hn-type do not stay in the hn state for a long time, since finding a trading

partner is easy for these agents. Since the fraction of potential buyers is low, the

impact of an aggregate liquidity shock on both µhn and µln is low. This market

remains a buyer’s market, independently of πho(ss) and πhn(ss). I illustrate this

case by modifying λd = 0.7 (c.p.).
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Figure 5.13: The graph shows the process of mass distribution after an aggre-
gate liquidity shock in a buyer’s market (without market makers).

A high-type investor stays high for 1/λd = 1.43 years on average, which is con-

siderably shorter than the five years in the initial example. Figure 5.13 shows

the process of masses. The impact of this shock on potential sellers is not minor.

However, there is no intersection time t∗ for which µhn(t∗) = µlo(t∗) is valid.

As highlighted in section 3.4, the price without liquidity shocks is negative for

this scenario, so that it is negative with aggregate liquidity shocks, as well. The

recovery is slow: Half of the price drop is not regained until 106 trading days

have elapsed. After 2.32 years, the percentage price change is less than 0.001%

per day. The patterns of all other variables are similar to the ones presented in

sections 5.2 and 5.1. But there is one exception if market makers are present: The

bid-ask spread.
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Figure 5.14: Bid-ask spread in a buyer’s market (with market makers,
ρ = 125).

Figure 5.14 illustrates the bid-ask spread after an aggregate liquidity shock in

a buyer’s market and with market makers. The bid-ask spread is reduced im-

mediately after the shock and increases monotonically until it reaches its long

run value. There is no hump-shaped pattern. This is due to the fact that all but

buyer’s value functions are barely affected by the shock. Figure 5.15 illustrates

this effect.
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Figure 5.15: Value functions in a buyer’s market (with market makers,
ρ = 125).

Buyer’s value function increases due to the shock, since it is easier for the remain-

ing fraction of buyers to find an appropriate trading partner.
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5B Appendix: Trade Intermediation by Market

Makers

In this appendix, I restrict trade intermediation to market makers (λ = 0, ρ = 125,

c.p.). Some effects are striking and differ from the general treatment in section 5.2:

The expected search time is equal for buyers and sellers, since both are matched

through market makers. In expectation it takes approximately 12.5 days after the

shock until two trading parties are matched. In steady state, however, market

makers find two suitable trading partners after 3.3 years in expectation. Figure

5.16 shows the expected time it takes until a trade is executed via market makers.
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Figure 5.16: Average time in years it takes to buy or sell an asset via market
makers.

The pattern resembles stairs: The expected trading time is low immediately after

the shock, since there are many potential sellers in the market and there are still

some potential buyers available. Agents are matched fast. After the majority of

remaining buyers are matched, search takes longer (approximately two years),

described by the first stair. Market makers’ search is quite efficient, since agents

switching from ln-type to hn-type are matched quickly. These quick matches lead

to a low level of potential buyers. The second stair is reached after the intersection

time t∗, i.e. when µhn(t∗) = µlo(t∗). After t∗, the fraction of potential sellers drops

quickly to its long run level, which is very low.

The price drop after the shock is almost identical to sections 5.2 and 5.1. Half of

the loss in price is regained within 0.26 years as well. However, prices reach a

fairly normal level within approximately 0.9 years135, which is faster than recov-

135 After 0.88 years, the percentage mid-price change is less than 0.001% per day.
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ery with only interinvestor trade. It is even faster than the recovery time with in-

terinvestor trade and intermediation by market maker. This effect is unexpected:

The market overcomes the shock about 2.5 months earlier by cutting off the in-

terinvestor channel and restricting trade intermediation to market makers. Si-

multaneously, market makers charge a considerably higher bid-ask spread when

interinvestor trade is not permitted. As a result, market makers provide superior

search service, for which they receive a remarkably higher compensation, since

investors’ outside options are reduced.
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Figure 5.17: The solid line shows the change of the bid-ask spread over time
after an aggregate liquidity shock. The dashed line shows the bid-ask spread
without an aggregate liquidity shock.

Figure 5.17 shows the bid-ask spread as a function of time after an aggregate

liquidity shock. The counterintuitive downward hump appears again, the expla-

nation of which I defer to chapter 7. For the sake of completeness, I state prices

in table 5.9.

Parameter t = 0 t → ∞

Ask Price As(t) 7.4750 8.6365
Bid price Bs(t) 7.4235 8.5634
Bid-Ask Spread As(t)− Bs(t) 0.0514 0.0731

Table 5.9: Prices immediately and a long time after the liquidity shock, where
trade is only intermediated by market makers.
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5C Appendix: Time of Intersection t∗

The example discussed in chapter 5 and the cases analyzed in appendix 5A show

that under some circumstances there is a time t∗—after an aggregate liquidity

shock—at which a market switches from a buyer’s market to a seller’s market.

The other direction never occurs after this kind of shock, as the following calcu-

lation shows. I start with the difference between equation (3.4) and (3.5):136

µ̇lo(t)− µ̇hn(t) = −λuµlo(t) + λdµho(t)− λuµln(t) + λdµhn(t)

= (λu + λd) µh(t)− λu. (5.6)

µh(t) is already stated in equation (3.9) with

µh(t) = µh(0)e
−(λu+λd)t +

λu

λu + λd

[
1 − e−(λu+λd)t

]
.

Additionally, the integration of µ̇lo(t)− µ̇hn(t) results in

µlo(t)− µhn(t) = µlo(0)− µhn(0) +
t∫

0

(µ̇lo(τ)− µ̇hn(τ)) dτ. (5.7)

Plug equations (5.6) and (3.9) into (5.7), so that

µlo(t)− µhn(t) = µlo(0) + µho(0)−
λu

λu + λd
−
[

µh(0)−
λu

λu + λd

]
e−(λu+λd)t.

(5.8)

For some starting conditions µσ(0), there is a time t∗ at which equation (5.7)

changes its sign: From + to − if the market changes from a buyer’s market to

a seller’s market. Or from − to +, when the market changes from a seller’s mar-

ket to a buyer’s market. A solution to

0 = s − λu

λu + λd
−
[

µh(0)−
λu

λu + λd

]
e−(λu+λd)t∗ ,

⇔

t∗ = − 1
λu + λd

ln

[ λu
λu+λd

− s
λu

λu+λd
− µh(0)

]
, (5.9)

136 See Feldhütter (2010), pp. 47.
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must then exist and t∗ > 0 must hold, i.e. the argument of the natural logarithm

must be located between 0 and 1. The existence of a solution to equation (5.9) is

ensured by the validity of one of the following two conditions:

µh(0) ≤ s <
λu

λu + λd
, (5.10)

or
λu

λu + λd
< s ≤ µh(0). (5.11)

The condition (5.11) never occurs due to an aggregate liquidity shock: If

λu/(λu + λd) < s holds, then µhn(ss) < µlo(ss) is valid as well. The shock re-

duces µhn and increases µlo. As a result, there are no probabilities 0 ≤ πho ≤ 1

and 0 ≤ πhn ≤ 1, so that s ≤ µh(0), which is equal to µhn(0) > µlo(0), is valid.

The only valid intersection time after an aggregate liquidity shock occurs due to

a change from a buyer’s market to a seller’s market. Condition (5.10) ensures

this intersection time with s < λu/(λu + λd), which is equal to µhn(ss) > µlo(ss).

In addition, this equation controls for the severity of the shock with µh(0) ≤ s,

which is equal to µhn(0) ≤ µlo(0).



Chapter 6

Frozen Market

In this chapter, I show that the aggregate liquidity shock model pretends that

agents would trade despite no gains from trade. Agents are forced to trade when

meeting a trading partner, although a bargaining solution does not exist.

Section 6.1 states the properties for a Nash bargaining solution. For the basic

model, the existence of a Nash bargaining solution is studied in section 6.2. For

the aggregate liquidity shock model, I analyze the existence of a Nash bargaining

solution in section 6.3. The numerical example in section 6.4 illustrates the results

of section 6.3. It shows that there are no gains from trade in some market situa-

tions which should lead to a ‘frozen market’.137 Taking voluntary trading instead

of forced trading into consideration, I suggest some modifications in section 6.5.

Section 6.6 concludes. Appendices 6A and 6B contain the derivation of the results

stated in sections 6.2 and 6.3, respectively. Appendix 6C presents some further

analysis to section 6.3.

6.1 Analyzing the Nash Bargaining Solution

The discussion and analysis so far has implicitly presumed the existence of gains

from trade, i.e. the existence of a Nash bargaining solution. It is assumed that all

meetings intermediated by market makers as well as all meetings between sellers

and buyers result in a trade. Chapter 6 scrutinizes this presumption.

A general bargaining game satisfying the axioms [A1], [A3], and [A4]—defined

in section 2.2.1—has a unique solution f (S , d) if the bargaining problem is well

137 Chiu and Koeppl (2011), Camargo and Lester (2013), and Camargo, Kim, and Lester (2013)
also utilize the term ‘market freeze’ when there is no trading due to no gains from trade.

133



Chapter 6. Frozen Market 134

defined.138 I must validate that the bargaining problems of chapter 3 and chap-

ter 4 are indeed well defined, since the rule of splitting the surplus must then

hold for all points in time. The central definition of Nash (1950, 1953) for a well-

defined bargaining problem is, as stated in Osborne and Rubinstein (1990, p. 10),

as follows:

“A bargaining problem is a pair 〈S , d〉, where S ⊂ R2 is compact (i.e.

closed and bounded) and convex, d ∈ S , and there exists s ∈ S such

that si > di for i = 1, 2. The set of all bargaining problems is denoted

B. A bargaining solution is a function f : B → R2 that assigns to each

bargaining problem 〈S , d〉 ∈ B a unique element of S .”

This definition contains several restrictions which must be controlled for:

(1.) The sets S j for j = P, A, B for the three basic bargaining problems139 stated

in chapter 3.3.2 are defined as follows:

SP = {Vln(t) + P(t), Vlo(t), Vho(t)− P(t), Vhn(t)} ,

SA = {A(t)− M(t), 0, Vho(t)− A(t), Vhn(t)} ,

SB = {M(t)− B(t), 0, Vln(t) + B(t), Vlo(t)} .

The transversality condition ensures the compactness, since Vσ(t) and Vs
σ(t)

have to be bounded.

(2.) The assumption of a convex set S is fulfilled: The set S is convex if it

contains all pure agreements as well as all lotteries over pure agreements.

Player’s utility function can be represented by Von Neumann–Morgenstern

utility functions.

(3.) The disagreement or threat point d, i.e. Vhn(t), Vlo(t), 0, is included in the

sets S . Agents can agree to disagree.

(4.) The condition si > di for i = 1, 2 assures that both agents prefer an agree-

ment over a disagreement, i.e. f (S , d) = {d} is never a bargaining solution

by assumption. Economically stated, this means: If there is nothing on the

table worthy of agreement, there is no bargaining situation at all.

I analyze restriction number (4.) in the remaining sections of chapter 6, since this

is the crucial point: First, I briefly repeat the side conditions stated in inequalities

(3.37), (3.45), (3.47), and (4.21), for which both agents prefer an agreement over a

138 See section 2.2.1 for further details.
139 The sets of the bargaining problems for the aggregate liquidity shock model are alike.
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disagreement, that is

Vlo(t)− Vln(t) ≤ P(t) ≤ Vho(t)− Vhn(t),

Vlo(t)− Vln(t) ≤ B(t) ≤ M(t),

M(t) ≤ A(t) ≤ Vho(t)− Vhn(t).

Combining all three, the following inequality has to hold for a well-defined bar-

gaining problem:

Vlo(t)− Vln(t) ≤ Vho(t)− Vhn(t), ∀t ≥ 0. (6.1)

This inequality states that the reservation value of a potential buyer must be equal

to or higher than the reservation value of a potential seller, since high-type agents

attribute a higher value to the flow of dividends.

6.2 Bargaining in the Basic Model

For the basic model, I start with inequality (6.1) and define the differences

∆Vn(t) = Vhn(t)− Vln(t) and ∆Vo(t) = Vho(t)− Vlo(t). The decisive constraint

(6.1) reads as follows: ∆Vn(t) ≤ ∆Vo(t). Inserting equations (3.25)–(3.28), (3.36),

(3.44), and (3.46), I state the ODEs of ∆Vn(t) and ∆Vo(t) with

∆V̇o(t) = (r + λd + λu + 2λµhn(t)q + ρ(1 − z)q̃(t))∆Vo(t)

− (2λµhn(t)q + ρ(1 − z)q̃(t))∆Vn(t)− δ,

∆V̇n(t) = − (2λµlo(t)(1 − q) + ρ(1 − z)(1 − q̃(t)))∆Vo(t)

+ (r + λd + λu + 2λµlo(t)(1 − q) + ρ(1 − z)(1 − q̃(t)))∆Vn(t).

Combining both, a time-varying system of differential equations results with

[
∆V̇o(t)

∆V̇n(t)

]
=




(
r+λd+λu

+2λµhn(t)q+ρ(1−z)q̃(t)

)
−
(

2λµhn(t)q
+ρ(1−z)q̃(t)

)

−
(

2λµlo(t)(1−q)
+ρ(1−z)(1−q̃(t))

) (
r+λd+λu+2λµlo(t)(1−q)

+ρ(1−z)(1−q̃(t))

)




[
∆Vo(t)

∆Vn(t)

]

−
[

δ

0

]
.

(6.2)
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Based on the derivation stated in appendix 6A, constraint (6.1) is converted into

δ

∞∫

t

e−
∫ x

t (r+λd+λu+2λµlo(τ)(1−q)+2λµhn(τ)q+ρ(1−z)) dτ dx ≥ 0, (6.3)

for all t. There are always gains from trade, since δ > 0 holds by assumption,

i.e. the side condition (6.1) is met and the bargaining problem is well defined.

As correctly assumed in chapter 3, a meeting between agents always induces a

trade.

6.3 Bargaining with Aggregate Liquidity Shocks

The situation with shocks is different: Agents anticipate that a shock can sud-

denly change the asset valuation of all agents and such a shock can occur re-

peatedly. High-type agents are negatively affected by an aggregate liquidity

shock, whereas low-type agents benefit. After a shock, trading conditions are

time-dependent, since agents’ type distribution evolves according to a system of

differential equations. A potential buyer must take into account that the trading

situation may be worse by the time he eventually wants to sell the asset. This

poor trading situation can be the case either due to a low fraction of buyers at

that time or due to a sudden selling pressure, or, at worst, both. Agents factor

these illiquidity risks into the prices they demand and offer.

To verify the existence of a Nash bargaining solution in the aggregate liq-

uidity shock model, I use again the definitions ∆Vs
n(t) = Vs

hn(t)− Vs
ln(t) and

∆Vs
o (t) = Vs

ho(t)− Vs
lo(t). Combining both ∆Vs

n(t) and ∆Vs
o (t), a linear time-

varying system of differential equations is obtained with

[
∆V̇s

o (t)

∆V̇s
n(t)

]
=




(
r+ζ+λd+λu

+2λµhn(t)q+ρ(1−z)q̃(t)

)
−
(

2λµhn(t)q
+ρ(1−z)q̃(t)

)

−
(

2λµlo(t)(1−q)
+ρ(1−z)(1−q̃(t))

) (
r+ζ+λd+λu

+2λµlo(t)(1−q)+ρ(1−z)(1−q̃(t))

)




[
∆Vs

o (t)

∆Vs
n(t)

]

−
[

δ

0

]
−
[

ζ (1 − πho(t)) 0

0 ζ (1 − πhn(t))

] [
∆Vs

o (0)

∆Vs
n(0)

]
.

(6.4)

Appendix 6B derives a solution to the system (6.4). Based on this solution, I
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examine the inequality (6.1). The inequality’s validity ensures that agents trade

voluntarily.

Gains from Trade Immediately after the Shock at t = 0

First, I analyze the inequality ∆Vs
o (0)− ∆Vs

n(0) ≥ 0, which is

δ ζ

Ψ








∞∫

0

e−
∫ x

0 λ
s
2(µ(τ)) dτ (πhn(x)− πho(x)) dx






∞∫

0

e−λ
s
1x (1 + q2(x)) dx




+


1

ζ
−

∞∫

0

e−λ
s
1x [(1 − πho(x)) (1 + q2(x))− q2(x) (1 − πhn(x))] dx


×




∞∫

0

e−
∫ x

0 λ
s
2(µ(τ)) dτ dx







≥ 0,

(6.5)

with

Ψ = ζ2






1

ζ
−

∞∫

0

e−λ
s
1x (1 − πho(x)) (1 + q2(x)) dx


×


1

ζ
−

∞∫

0

e−
∫ x

0 λ
s
2(µ(τ)) dτ (1 − πhn(x)) dx




+




∞∫

0

e−λ
s
1xq2(x) (1 − πhn(x)) dx


×


1

ζ
−

∞∫

0

e−
∫ x

0 λ
s
2(µ(τ)) dτ (1 − πho(x)) dx





 ,

(6.6)

and

q2(t) = −
t∫

0

e−
∫ t

x (2λµhn(τ)q+2λµlo(τ)(1−q)+ρ(1−z)) dτ (2λµhn(x)q + ρ(1 − z)q̃(x)) dx,

(6.7)

λ
s
1 = r + ζ + λu + λd, (6.8)

λ
s
2(t) = r + ζ + λu + λd + 2λµhn(t)q + 2λµlo(t)(1 − q) + ρ(1 − z). (6.9)
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If the inequality ∆Vs
o (0)− ∆Vs

n(0) ≥ 0 holds, trade immediately after the shock is

valuable since there are gains from trade.

Gains from Trade for Time t > 0

However, meeting the condition ∆Vs
o (0)− ∆Vs

n(0) ≥ 0 immediately after the

shock does not ensure that ∆Vs
o (t)− ∆Vs

n(t) ≥ 0 holds for all t > 0 as well. The

condition for gains from trade for t > 0 is

∞∫

t

e−
∫ x

t λ
s
2(µ(τ)) dτ [δ + ζ (1 − πho(x))∆Vs

o (0)− ζ (1 − πhn(x))∆Vs
n(0)] dx ≥ 0.

(6.10)

Gains from Trade a Long Time after the Shock

The constraint a long time after an aggregate liquidity shock, given no additional

shock has occurred, i.e. lim
t→∞

(∆Vs
o (t)− ∆Vs

n(t)) ≥ 0, is

δ ≥ ζ [(1 − πhn(ss))∆Vs
n(0)− (1 − πho(ss))∆Vs

o (0)] . (6.11)

The analysis of inequalities (6.5), (6.10), and (6.11) is deferred to appendix 6C.

This analysis shows that, in general, it is the function πhn(t) which provokes a

market freeze. In the aggregate liquidity shock model, however, Duffie, Gâr-

leanu, and Pedersen (2007) do not take this market freeze into account. Agents

are forced to trade despite no gains from trade. I show the effect and related

impacts of a forced trading in the following section by means of an example.

6.4 Example: No Gains from Trade and Forced

Trading

The existence of a bargaining solution is best highlighted by a numerical example.

To analyze the driving forces, I continue the example of chapter 5. The time it

takes for the price to recover from an aggregate liquidity shock is influenced by

several factors, as I have stated in section 5.2:

(1.) Search frictions, determined by λ and ρ, which measure liquidity,
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(2.) agents’ individual recovery time, denoted by λu,

(3.) the severity of the shock, determined by πho(ss) and πhn(ss).

The interaction of all three parameters—condensed within πho(t) and πhn(t)—

combined particularly with the possibility of further shocks—expressed with ζ—

determines whether the market in this model recovers or whether there are no

gains from trade. These effects are analyzed in the following passage.

Meeting Intensities λ and ρ

The meeting intensities λ and ρ are the input parameters initiating a situation

with no gains from trade in the aggregate liquidity shock model.
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Figure 6.1: Region for gains from trade for λ ∈ [200, 600] and ρ ∈ [0, 125].

Figure 6.1 plots the observation of gains from trade for various combinations of

λ and ρ. If ∆Vs
o (t)− ∆Vs

n(t) ≥ 0 is valid for all t ≥ 0, the value 1 is assigned. The

value 1 reflects a well-defined bargaining problem and gains from trade. Other-

wise, the value 0 is set, i.e. no gains from trade. Figure 6.1 shows that a bargaining

solution does not exist for high meeting intensities λ and ρ. There is a sharp edge

where an increase in ρ must come along with a decrease in λ, so that the condi-

tion (6.1) is met further on. Under fairly normal conditions, increasing meeting

intensities reduces search frictions and therefore reduces illiquidity. But within

the aggregate liquidity shock model, high meeting intensities might result in no

gains from trade. No gains from trade should cause a market freeze with no

trading at all, i.e. infinite search frictions.

The shape over time of the difference ∆Vs
o (t)− ∆Vs

n(t) is shown in figure 6.2.

I keep market makers’ meeting intensity constant and vary investors’ meeting
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intensity with λ = [200, 600]. The left panel is without market makers, i.e. it is

equal to the example of Duffie, Gârleanu, and Pedersen (2007) with ρ = 0. The

right panel is with market makers, i.e. ρ = 125. This figure demonstrates the

presumption of the aggregate liquidity shock model that all meetings result in a

trade—even if there are no gains from trade, i.e. agents are forced to trade. This

forced trading is reflected by values below the black plane. However, the market

should be frozen during this time—which is not considered within this model.

From an economic perspective, this aggregate liquidity shock model is flawed.

ρ = 0 ρ = 125

Figure 6.2: Difference ∆Vs
o (t)− ∆Vs

n(t) for varying λ ∈ [200, 600].

Figure 6.2 shows that situations of no gains from trade but forced trading pre-

vail mainly during the time shortly after the shock, i.e. when the selling pressure

is large, which is the case for 0 ≤ t ≤ t∗. If agents are forced to trade despite

no gains, the market would endogenously return to normal conditions, i.e. with

gains from trade, for sufficiently small values for ζ. Equation (6.11) shows this

effect, too.

Individual Recovery

If agents know that low intrinsic types do not have to stay in this unfavorable

low state for a long time—that means λu is relatively high—then the market re-

covers quickly from an aggregate liquidity shock. Hence, a forced trading in the

aggregate liquidity shock model can be avoided if investors have access to easy

refunding conditions.

Severity of the Shock and the Risk of Further Shocks

The matching functions presume that all meetings actually result in a trade.

These matching functions are contained in the flow equations of masses µσ(t),
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which affect the evolution of probabilities πho(t) and πhn(t). With these probabil-

ities, however, the term ζ (1 − πhn(t))∆Vs
n(0) of inequality (6.10) can temporarily

outweigh the term ζ (1 − πho(t))∆Vs
o (0). No gains from trade result.

The third crucial parameter I have announced above is the severity of a shock,

represented by the probabilities of high agents switching to a low state due to the

shock and based on steady state values, i.e. πho(ss) and πhn(ss). These probabili-

ties control for the starting condition of agents’ masses µσ(0), as seen in equations

(4.3) and (4.4), These starting conditions determine the evolution of masses over

time. The probabilities πho(t) and πhn(t) in turn depend both on the starting con-

ditions of agents’ masses µσ(0) and on the type distribution µσ(t) at time t ≥ 0,

as seen by equations (4.1) and (4.2).

Figure 6.3 shows the probability for a high owner switching to a low owner upon

a shock, i.e. πho(t) as a function of time and meeting intensity λ ∈ [200, 600].

This figure illustrates that the meeting intensity λ has an inferior effect on the

evolution of πho(t). In general, the type distribution of high owners µho(t) mono-

tonically increases after a shock, i.e. µho(0) ≤ µho(t). This effect can be seen in

figure 5.5. The increase in the fraction of ho agents is due to an elevated quantity

of misallocated assets right after the shock. This misallocation alleviates over

time. The change in the fraction of high owners is mainly due to trade and

up-shifts, while down-shifts are a secondary influence. Generally, the condition

0 ≤ πho(t) ≤ πho(ss) holds.

Figure 6.3: Evolution of πho(t) with πho(ss) = 0.5 and ρ = 125.

Figure 6.4 shows the probability for a high non-owner switching to a low non-

owner, i.e. πhn(t) as a function of time and meeting intensity λ ∈ [200, 600]. The

pattern of the probability πhn(t) differs significantly from the pattern of the prob-
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Figure 6.4: Evolution of πhn(t) with πhn(ss) = 0.5 and ρ = 125.

ability πho(t). For high values of λ (and ρ), the value πhn(t) drops sharply be-

low zero shortly after the shock. As a result, πhn(t) loses its characteristic as

a probability. The reason is as follows: The fraction of potential buyers µhn(t)

further decreases immediately after a shock and the market becomes one-sided.

The higher πho(ss) and λ are and the lower πhn(ss) is, the more severe and the

faster the reduction of potential buyers after the shock. This reduction is due to

an immediate absorption of nearly all remaining potential buyers in this buy-

ers’ market, when search frictions are low, i.e. meeting intensities are high—

and when all meetings actually result in a trade, even by force. The matching

functions Mλ(t) = 2λµhn(t)µlo(t) and Mρ(t) = ρ min{µlo(t), µhn(t)} precisely

assume this ensured trade. With this, the fraction µhn(t) temporarily drops al-

most to zero and leads to 0 ≥ πhn(t). Thereafter, µhn(t) recovers and moves to-

wards its long run level, given no further shock occurs. Due to this fact, the term

ζ (1 − πhn(t))∆Vs
n(0) can temporarily outweigh the term ζ (1 − πho(t))∆Vs

o (0)

so that inequality (6.10) can become invalid for high meeting intensities λ (and

ρ).

The next section presents some ideas for preventing the aggregate liquidity shock

model from forcing agents to trade despite no gains from trade.

6.5 Trading Voluntarily

I suggest some modifications to meeting intensities and the characteristics of the

shock for voluntary trading in the aggregate liquidity shock model. The aim is

to control for the existence of a Nash bargaining solution. The first suggestion, a
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temporarily frozen market with no trading (section 6.5.1), leads to frequent and

short market closures as soon as gains from trade vanish. The market reopens im-

mediately when there are gains from trade again. This would be the best model

modification, although difficult to implement. The second suggestion assumes

a severe crisis (section 6.5.2). It is already implemented in the literature, how-

ever the versatility of this model variant is limited. My suggestions are: First, in

section 6.5.3, a complete trading halt which prevails until the selling pressure al-

leviates. Second, in section 6.5.4, the choice of an optimal search intensity so that

there are always gains from trade. The numerical example of section 6.4 is con-

tinued in each section. I use the same parameters but increase meeting intensities

to λ = 500 and ρ = 250 to trigger no gains from trade in the aggregate liquidity

shock model. Other parameter modifications are stated in the particular sections.

6.5.1 Temporarily Frozen Market 1

Chiu and Koeppl (2011, p. 8) suggest including a maximum-function into the

value functions Vs
σ(t), which implies the possibility of investors disagreeing, i.e.

to not buy or sell the asset. Markets get temporarily frozen if there are no gains

from trade in equilibrium. For this case, the meeting intensities between investors

as well as between investors and market makers drop temporarily to zero, since

agents do not trade: λ(t) = 0 and ρ(t) = 0. As soon as there are again gains from

trade, meeting intensities return to their initial value. Equations (6.12) and (6.13)

describe these effects analytically with

λ(t) =





0 for ∆Vs
l (t) > ∆Vs

h (t)

λ for ∆Vs
l (t) ≤ ∆Vs

h (t)
(6.12)

and

ρ(t) =





0 for ∆Vs
l (t) > ∆Vs

h (t)

ρ for ∆Vs
l (t) ≤ ∆Vs

h (t),
(6.13)

for all t ≥ 0. This suggestion seems to be the most elegant one but implemen-

tation is difficult, since masses of investor types µσ(t) depend on the meeting

intensities λ and ρ, which in turn are determined by Vs
σ(t). The feedback from

Vs
σ(t) into the type process µσ(t) is not provided by the Duffie, Gârleanu, and

Pedersen (2005, 2007) models. As a result, either the type process would pretend

further on that all meetings result in a trade, or this model is intractable.
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6.5.2 Severe Crisis

Feldhütter (2012, pp. 1197–1202), and Weill (2007, 2011) assume that all high-type

agents simultaneously suffer a preference shock and switch to a low state upon

an aggregate liquidity shock. These assumptions account for considerable model

restrictions: Right after the shock, there are no potential buyers at all. This form

of aggregate liquidity shock leads to a severe crisis with πho(ss) = πhn(ss) = 1.

Immediately after the shock, the fraction of high-type agents is always zero:

µho(0) = µhn(0) = 0, whereas µlo(0) = s, µln(0) = 1 − s. As a result, this post-

shock type distribution implies constant probabilities πho(t) = πhn(t) = 1 for all

time t ≥ 0. Integrating this result into inequalities (6.11), (6.10), and (6.5) leads to

the single bargaining condition

δ

∞∫

t

e−
∫ x

t λ
s
2(µ(τ)) dτ dx ≥ 0,

which is valid since δ > 0 holds by assumption. Feldhütter (2012) therefore

avoids the issue of invalid bargaining conditions, though he does not address

it. Weill (2007, 2011) considers only a single aggregate liquidity shock, while the

issue of no gains from trade does not arise at all.

Example

The severity of this kind of shock leads to a long lasting crisis. It takes about 0.79

years for the selling pressure to alleviate—compared to 0.48 years in the setting

so far. Figure 6.5 illustrates the effect on mass dynamics.
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Figure 6.5: Process of masses distribution after a severe shock.
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Both the fraction of high owners and the fraction of potential buyers are zero

immediately after the shock. The fraction of potential buyers remains close to

zero, since all ln agents who experience a preference shock are quickly matched

with sellers. After 0.79 years, the market returns to a seller’s market.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

6.5

7

7.5

8

Calendar time

P
ric

e

 

 

P s(t)
As(t)
Bs(t)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.01

0.02

0.03

0.04

Calendar time

B
id

−A
sk

 S
pr

ea
d

 

 

As(t)−Bs(t)
A(ss)−B(ss)

Figure 6.6: Price process (left panel) and bid-ask spread (right panel) after a
severe aggregate liquidity shock.

The severity of this crisis can be seen in figure 6.6. The left panel shows the price

process after a severe aggregate liquidity shock. Prices are considerably lower,

compared to the shock with a fifty-fifty chance for high-type agents mutating to a

low-type—which I have utilized so far. This effect is clear when comparing figure

5.10 (page 123) with the left panel in figure 6.6. Although meeting intensities are

two to four times higher in figure 6.6 than in figure 5.10, prices are considerably

lower right after the shock and a long time after it. This price reduction is due to

the severity of this shock. Half of the loss in price is not regained until after 0.41

years. However, prices reach a fairly normal level after 1.05 years.140

The panel to the right of figure 6.6 shows the development of the bid-ask spread

after a severe aggregate liquidity shock. The bid-ask spread is positive, since

there are always gains from trade.141

6.5.3 Temporarily Frozen Market 2

Afonso (2011, p. 340) suggests “trading halts [...] to slow down trading” as one

feasible reaction to a one-sided market. Longstaff (2009) considers a temporarily

frozen period that he calls ‘blackout’, during which the illiquid asset cannot be

traded.142 I implement both concepts into the aggregate liquidity shock model

140 After 1.05 years, the percentage price change is less than 0.001% per day.
141 There is a special case for this setting: Assume severe aggregate liquidity shocks and trade is

only intermediated by market makers, i.e. λ = 0. Then, the impact on the bid-ask spread is
negligible. It is only a very small parallel shift, compared to a setting without any aggregate
shocks. Feldhütter (2010, p. 17) states a comparable result.

142 This blackout period is the only source of illiquidity in the model of Longstaff (2009).
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in the following way: Assume that the market is characterized by a seller’s mar-

ket a long time after the shock, i.e. µlo(ss) < µhn(ss). Assume further that the

shock leads to a buyer’s market, which implies µlo(0) > µhn(0). There is a single

intersection time t∗, for which µlo(t∗) = µhn(t∗) with 0 < t∗ < ∞ holds. I sug-

gest a trading stop after the shock if there are no gains from trade. At time t∗,

this is when the market returns to a seller’s market again with µlo(t) < µhn(t)

for 0 < t∗ < t, trade reopens and continues with the constant intensities λ and ρ.

Summarizing all presumptions leads to two definitions for the meeting intensi-

ties λ and ρ, which are

λ(t) =





0 for 0 ≤ t < t∗

λ for t∗ ≤ t
(6.14)

and

ρ(t) =





0 for 0 ≤ t < t∗

ρ for t∗ ≤ t.
(6.15)

The aggregate liquidity shock leads to an elevated amount of potential sellers

and a reduced amount of potential buyers—each compared to its steady state.

The only possibility of a type change during a trading halt is an idiosyncratic

preference shock with intensities λu and λd. As a result, the remaining mass of

potential buyers does not soak up the surplus of potential sellers, because trade

is impossible. Instead, the mass of potential buyers increases monotonically and

the mass of potential sellers decreases monotonically during the frozen period.

The proof for the latter proposition is as follows: The mass dynamics of µ
f
hn(t)

and µ
f
lo(t) are

µ̇
f
lo(t) = − [λu + λd] µ

f
lo(t) + λds, for 0 ≤ t ≤ t∗, (6.16)

µ̇
f
hn(t) = − [λu + λd] µ

f
hn(t) + λu(1 − s), for 0 ≤ t ≤ t∗, (6.17)

where superscript ‘ f ’ assigns the ODEs (6.16) and (6.17) to the frozen time period

0 ≤ t ≤ t∗. The solutions to equations (6.16) and (6.17) are

µ
f
lo(t) = µlo(0)e

−(λu+λd)t +
λds

λu + λd

[
1 − e−(λu+λd)t

]
, for 0 ≤ t ≤ t∗, (6.18)

µ
f
hn(t) = µhn(0)e

−(λu+λd)t +
λu(1 − s)
λu + λd

[
1 − e−(λu+λd)t

]
, for 0 ≤ t ≤ t∗. (6.19)
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It is clear from equations (6.18) and (6.19) that µ
f
lo(t) and µ

f
hn(t) converge mono-

tonically. Since the relation µlo(ss) < µhn(ss) and µlo(0) > µhn(0) hold by as-

sumption, µlo(0) > µ
f
lo(t

∗) = µ
f
hn(t

∗) > µhn(0) must then hold as well. This con-

nection completes the proof.

As soon as µlo(t∗) = µhn(t∗), the market reopens again. At this time, there are

equally as many potential buyers as potential sellers in the market. Nearly all

potential buyers and potential sellers are rapidly matched to each other, since

meeting intensities are relatively high by assumption. The fraction of potential

buyers are not close to zero at time t∗. With reference to equations (3.4) and

(3.5), type changes due to trading generally dominate type switches then. As a

result, a sharp drop of fractions µlo(t) and µhn(t) towards zero can be observed

immediately after time t∗. Thereafter, masses start to converge monotonically to

their long run values.

The evolution of probability πhn(t) reacts on the altered type evolution of poten-

tial buyers discussed above. Since µ
f
hn(t) is increasing until time t∗, the proba-

bility πhn(t) is greater than zero for 0 ≤ t ≤ t∗. Function πhn(t) drops sharply

below zero right after time t∗. But this time, it is only a short peak, since µhn(t)

immediately starts to increase towards its steady state level after the sharp drop.

Nevertheless, the higher the meeting intensities λ and ρ are, the more intense this

peak is, because trade takes place quickly.

Example

Figure 6.7 illustrates the effect of this modification on mass dynamics.
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Figure 6.7: Process of mass distribution in a temporarily frozen market.
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The pattern is as explained above: The fraction of potential buyers (sellers) in-

creases (decreases) until the intersection time t∗ = 0.48. This intersection time

must be the same time as in chapter 5.2, since λu, λd, µho(0), and µhn(0) are not

affected by the trading halt. At time t∗, the market reopens and buyers and sell-

ers are matched quickly. Both fractions drop sharply and finally start to converge

towards their long run level.

Prices are shown in the left panel of figure 6.8. No trade takes place during the

first 0.48 years after the shock. There are no prices at all. At time t∗, the market

reopens and market participants bargain prices. The prices a long time after the

shock are only 4.14% lower than steady state prices without aggregate liquidity

shocks.143
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Figure 6.8: Price process (left panel) and bid-ask spread (right panel) in a
temporarily frozen market.

The right panel of figure 6.8 depicts the bid-ask spread. There are no bid-ask

spreads during the first 0.48 years after the shock as well. The remaining part is

similar to figure 5.11 but with higher meeting intensities.

Remark

One drawback of a market freeze is, as Camargo, Kim, and Lester (2013, p. 2)

emphasize, that the price discovery process is interrupted. Trading prices do not

only indicate the value of an asset for particular buyers and sellers at a particular

time but also imply information for other agents. A recent example from the 2007

financial crisis is the impossibility of fair valuation of assets in three BNP Paribas

investment funds. BNP Paribas temporarily suspended money withdrawals from

these funds, as stated on August 9, 2007: “For some of the securities there are just

no prices [...] As there are no prices, we can’t calculate the value of the funds.”144

143 The steady state price without aggregate liquidity shocks is P(ss) = 9.9183, compared to
Ps(ss) = 9.5077 within this modification.

144 Alain Papiasse, head of BNP Paribas’s asset management and services division. See Boyd
(2007) and Camargo, Kim, and Lester (2013), p. 2.
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Therefore, a temporary market freeze is a suboptimal solution. The next section

offers another possibility of controlling for gains from trade in the aggregate liq-

uidity shock model.

6.5.4 Optimal Search Intensity

The aggregate liquidity shock model considers repeated shocks that occur once in

a while with the Poisson arrival rate ζ. However, agents are aware of the threat

of no gains from trade due to a shock. They anticipate the forced trading by

reducing meeting intensities in advance and permanently. This construction is in

line with the interpretation of “search intensities as based on a technology that

is difficult to change”—as suggested by Duffie, Gârleanu, and Pedersen (2005, p.

1831). Agents drive meeting intensities down to an optimal level. This means

they choose their constant meeting intensities λ and ρ to just meet the condition

(6.1) at all points in time. However, different combinations of λ and ρ, which all

just meet this condition, are possible. Solutions can be calculated only iteratively.

Example

Suppose the meeting intensities are as given above: λ = 500 and ρ = 250. These

are the starting points. First, the validity of condition (6.1) is checked by inserting

these meeting intensities. If condition (6.1) is invalid, then λ and/or ρ must be

changed. I suggest a parallel shift in λ and ρ so that both λ and ρ are reduced by

one. The validity of condition (6.1) is rechecked with the ‘new’ intensities. If it

is valid, the iteration process stops. Otherwise, both λ and ρ are reduced by one

again—and so on. Of course, if condition (6.1) is valid with the initial parameters,

it is also possible to increase λ and/or ρ until condition (6.1) is just met. The

optimal meeting intensities for the example given are λ = 302 and ρ = 52.

Figure 6.9 shows that the bid-ask spread is positive, which implies that trading

is voluntary. The overall pattern is equivalent to the bid-ask spread in figure

5.11, since this modification has the least impact on the aggregate liquidity shock

model. Nevertheless, πhn(t) still decreases below zero.



Chapter 6. Frozen Market 150

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.02

0.04

0.06

0.08

Calendar time

B
id

−A
sk

 S
pr

ea
d

 

 

As(t)−Bs(t)
A(ss)−B(ss)

Figure 6.9: Bid-ask spread with optimal search intensities (λ = 302, ρ = 52).

6.6 Conclusion

Based on the analysis in this chapter it is not ensured for any feasible input

variable that there are always gains from trade in the aggregate liquidity shock

model. A Nash bargaining solution does not exist at all times. Or, stated differ-

ently, sometimes there is nothing on the table worth agreeing on. However, the

aggregate liquidity shock model of Duffie, Gârleanu, and Pedersen (2007) pre-

tends that agents would trade despite no gains from trade. Hence, agents are

forced to trade when meeting a trading partner.

I suggest some modifications to the meeting intensities, as well as to the charac-

teristics of the shock, as a means of addressing the issue of agents trading volun-

tarily in the aggregate liquidity shock model.
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6A Appendix: Bargaining Constraint of the Basic

Model

In this appendix, I derive equation (6.3) from system (6.2) in connection with

constraint (6.1). First, I obtain the solution to the LTV system (6.2) by means of

the solution technique presented in appendix 4A. The starting point is equation

(6.2), which I restate with

∆V̇σ(t) = B1(µ(t))∆Vσ(t)− B2, (6.20)

where

B1(µ(t)) =




(
r+λd+λu

+2λµhn(t)q+ρ(1−z)q̃(t)

)
−
(

2λµhn(t)q
+ρ(1−z)q̃(t)

)

−
(

2λµlo(t)(1−q)
+ρ(1−z)(1−q̃(t))

) (
r+λd+λu

2λµlo(t)(1−q)+ρ(1−z)(1−q̃(t))

)


 , (6.21)

and

B2 =

[
δ

0

]
. (6.22)

Assume, there exists a time-varying coordinate transformation T(t) with

∆Vσ(t) = T(t)∆Vσ(t),

which transforms equation (6.20) into

∆V̇σ(t) = Λ(µ(t))∆Vσ(t)− B2(t),

where

Λ(µ(t)) = T(t)−1 B1(µ(t)) T(t)− T(t)−1 Ṫ(t),

B2(t) = T(t)−1 B2.

With the transformation method introduced in appendix 4A.5, a solution for the

matrices T(t) and Λ(µ(t)) can straight forwardly be derived. Starting point is the

homogeneous equation to (6.20) with

∆V̇σ(t) = B1(µ(t))∆Vσ(t).
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Only one transformation round must be performed, since system (6.20) is of di-

mension two. The steps are as follows:

1. Partition matrix B1(µ(t)):

B1(µ(t)) =

[
B
〈2〉
11 (t) b

〈2〉
12 (t)

[b
〈2〉
21 (t)]

T b〈2〉22 (t)

]
.

Therefore,

B11
〈2〉(t) = r + λd + λu + 2λµhn(t)q + ρ(1 − z)q̃(t),

b12
〈2〉(t) = − (2λµhn(t)q + ρ(1 − z)q̃(t)) ,

b21
〈2〉(t) = − (2λµlo(t)(1 − q) + ρ(1 − z)(1 − q̃(t))) ,

b〈2〉22 (t) = r + λd + λu + 2λµlo(t)(1 − q) + ρ(1 − z)(1 − q̃(t)).

Since matrix B1(µ(t)) is of dimension R
2×2, B11

〈2〉(t), b12
〈2〉(t), b21

〈2〉(t),

and b〈2〉22 (t) are all scalars.

2. Find any solution p2(t) to the Riccati differential equation:

ṗ2(t) = − p2(t) [−2λµhn(t)q − ρ(1 − z)q̃(t)] p2(t)

− [r + λd + λu + 2λµhn(t)q + ρ(1 − z)q̃(t)] · p2(t)

+ p2(t) [r + λd + λu + 2λµlo(t)(1 − q) + ρ(1 − z)(1 − q̃(t))]

− [2λµlo(t)(1 − q) + ρ(1 − z)(1 − q̃(t))] .

Since any solution to this equation is suitable, it can be shown that p2(t) = 1

is a particular solution to the Riccati differential equation.

3. Calculate the dynamic eigenvalue λ2(t):

λ2(t) = r + λd + λu + 2λµlo(t)(1 − q) + ρ(1 − z)(1 − q̃(t))

− p2(t) (−2λµhn(t)q − ρ(1 − z)q̃(t)) ,

= r + λu + λd + 2λµhn(t)q + 2λµlo(t)(1 − q) + ρ(1 − z).

4. Construct the first transformation matrix P2(t):

P2(t) =

[
1 0

1 1

]
.
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5. Construct the second transformation matrix Q2(t):

q̇2(t) = {r + λd + λu + 2λµhn(t)q + ρ(1 − z)q̃(t)

− [2λµhn(t)q + ρ(1 − z)q̃(t)] p2(t)

− [r + λu + λd + 2λµhn(t)q + 2λµlo(t)(1 − q) + ρ(1 − z)]} q2(t)

− (2λµhn(t)q + ρ(1 − z)q̃(t))

= − [2λµhn(t)q + ρ(1 − z) + 2λµlo(t)(1 − q)] q2(t)

− [2λµhn(t)q + ρ(1 − z)q̃(t)] .

Since any solution to this equation is suitable, a feasible solution is:

q2(t) = −
t∫

0

e−
∫ t

x (2λµhn(τ)q+2λµlo(τ)(1−q)+ρ(1−z)) dτ (2λµhn(x)q + ρ(1 − z)q̃(x)) dx.

(6.23)

Hence,

Q2(t) =

[
1 q2(t)

0 1

]
.

6. Calculate the dynamic eigenvalue λ1(t):

λ1(t) = trace (B1(µ(t)))

− [r + λu + λd + 2λµhn(t)q + 2λµlo(t)(1 − q) + ρ(1 − z)] ,

= r + λu + λd.

7. Set up the fundamental matrix T(t):

T(t) = P2(t)Q2(t),

=

[
1 q2(t)

1 q2(t) + 1

]
, (6.24)

and the inverse T(t)−1:

T(t)−1 =

[
1 + q2(t) −q2(t)

−1 1

]
.
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8. Calculate the transformed matrix Λ(µ(t)) and vector B2(t):

Λ(µ(t)) =

[
λ1 0

0 λ2(t)

]
, (6.25)

B2(t) =

[
δ (1 + q2(t))

−δ

]
. (6.26)

The transformed system of equation (6.2) is stated with

[
∆V̇o(t)

∆V̇n(t)

]
=




r + λd + λu 0

0
(

r+λd+λu+2λµhn(t)
+2λµlo(t)(1−q)+ρ(1−z)

)




[
∆Vo(t)

∆Vn(t)

]

−
[

δ (1 + q2(t))

−δ

]
.

(6.27)

The transformed system in equation (6.27) has the desired properties:

1. Matrix Λ(µ(t)) is a diagonal matrix, which decouples the whole system.

2. The dynamic eigenvalues λi (i = 1, 2) show up on the main diagonal.

Inverse transformation leads to

∆Vσ(t) =
∞∫

t

T(t) e−
∫ x

t Λ(µ(τ)) dτ T(x)−1 B2(x) dx,

∆Vo(t) =
∞∫

t

δ e−
∫ x

t λ1 dτ (1 + q2(x)) dx − q2(t)
∞∫

t

δ e−
∫ x

t λ2(µ(τ)) dτ dx, (6.28)

∆Vn(t) =
∞∫

t

δ e−
∫ x

t λ1 dτ (1 + q2(x)) dx − (1 + q2(t))
∞∫

t

δ e−
∫ x

t λ2(µ(τ)) dτ dx. (6.29)

The inequality

∆Vn(t) ≤ ∆Vo(t)
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is analyzed by means of equations (6.28) and (6.29), which imply

0 ≤ δ

∞∫

t

e−
∫ x

t (r+λd+λu+2λµlo(τ)(1−q)+2λµhn(τ)q+ρ(1−z)) dτ dx.

This inequality is equal to the inequality (6.3) stated in section 6.2. It holds by

assumption, since

0 < δ.
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6B Appendix: Bargaining Constraint of the Liquidity

Shock Model

In this appendix, I examine if there are always gains from trade in the aggregate

liquidity shock model. First, a solution for the LTV system defined in (6.4) is

derived. The approach is equivalent to appendix 6A but applied to aggregate

liquidity shocks. The algebraic transformations coincide, to a large extent, which

is why I keep the presentation brief at the points of congruency. The point of

departure is

∆V̇s
σ(t) = Bs

1(µ(t))∆Vs
σ(t)− Bs

2 − Bs
3(µ(t)) (6.30)

with

Bs
1(µ(t)) =




(
r+ζ+λd+λu

+2λµhn(t)q+ρ(1−z)q̃(t)

)
−
(

2λµhn(t)q
+ρ(1−z)q̃(t)

)

−
(

2λµlo(t)(1−q)
+ρ(1−z)(1−q̃(t))

) (
r+ζ+λd+λu

2λµlo(t)(1−q)+ρ(1−z)(1−q̃(t))

)


 ,

Bs
2 = B2, as defined in (6.22), and

Bs
3(µ(t)) =

[
ζ (1 − πho(t)) 0

0 ζ (1 − πhn(t))

]
.

Assume again there exists a time-varying algebraic coordinate transformation

T
s
(t) with

∆Vs
σ(t) = T

s
(t)∆V

s
σ(t)

which transforms equation (6.30) into

∆V̇
s
σ(t) = Λ

s
(µ(t))∆V

s
σ(t)− B

s
2(t)− B

s
3(µ(t))∆V

s
σ(0),

where

Λ
s
(µ(t)) =

[
T

s
(t)
]−1

Bs
1(µ(t)) T

s
(t)−

[
T

s
(t)
]−1

Ṫ
s
(t),

B
s
2(t) =

[
T

s
(t)
]−1

Bs
2,

B
s
3(µ(t)) =

[
T

s
(t)
]−1

Bs
3(µ(t))T

s
(0).



Chapter 6. Frozen Market 157

Since the homogeneous equation to (6.4) is similar to (6.2), it can easily be shown

by straight forward calculation that T
s
(t) = T(t), as defined in equations (6.24),

and Λ
s
(µ(t)) = Λ(µ(t)) + diag (ζ, ζ), where Λ(µ(t)) is as defined in equation

(6.25). Matrix B
s
2(t) = B2(t), which is stated in equation (6.26). The transformed

matrix B
s
3(µ(t)) is

B
s
3(µ(t)) =

[
1 + q2(t) −q2(t)

−1 1

] [
ζ (1 − πho(t)) 0

0 ζ (1 − πhn(t))

] [
1 q2(0)

1 q2(0) + 1

]

=

[
ζ (1 − πho(t)) + q2(t)ζ (πhn(t)− πho(t)) −q2(t)ζ (1 − πhn(t))

−ζ (πhn(t)− πho(t)) ζ (1 − πhn(t))

]
,

where q2(t) is as defined in equation (6.23).

The following step is similar to the derivation of V∗
σ(t) and V∗

σ(0) on page 71.

Hence,

∆V
s
σ(t) =

∞∫

t

e−
∫ x

t Λ
s
(µ(τ)) dτ

[
B

s
2(x) + B

s
3(µ(x))∆V

s
σ(0)

]
dx, (6.31)

∆V
s
σ(0) =


I2 −

∞∫

0

e−
∫ x

0 Λ
s
(µ(τ)) dτ B

s
3(µ(x)) dx




−1

×



∞∫

0

e−
∫ x

0 Λ
s
(µ(τ)) dτ B

s
2(x) dx


 .

(6.32)

The two terms stated in the brackets of equation (6.32) are analyzed first:


I2 −

∞∫

0

e−
∫ x

0 Λ
s
(µ(τ)) dτ B

s
3(µ(x)) dx




=




(
1−

∞∫
0

e−
∫ x

0 λ
s
1 dτζ[(1−πho(x))

+ q2(x)(πhn(x)−πho(x))] dx

)
∞∫
0

e−
∫ x

0 λ
s
1 dτq2(x)ζ(1−πhn(x)) dx

∞∫
0

e−
∫ x

0 λ
s
2(µ(τ)) dτζ(πhn(x)−πho(x)) dx 1−

∞∫
0

e−
∫ x

0 λ
s
2(µ(τ)) dτζ(1−πhn(x)) dx




,
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where

λ
s
1 = r + ζ + λu + λd,

λ
s
2(t) = r + ζ + λu + λd + 2λµhn(t)q + 2λµlo(t)(1 − q) + ρ(1 − z).

Hence,


I2 −

∞∫

0

e−
∫ x

0 Λ
s
(µ(τ)) dτB

s
3(µ(x)) dx




−1

=
1
Ψ
×




1−
∞∫
0

e−
∫ x

0 λ
s
2(µ(τ)) dτζ(1−πhn(x)) dx −

∞∫
0

e−
∫ x

0 λ
s
1 dτq2(x)ζ(1−πhn(x)) dx

−
∞∫
0

e−
∫ x

0 λ
s
2(µ(τ)) dτζ(πhn(x)−πho(x)) dx

(
1−

∞∫
0

e−
∫ x

0 λ
s
1 dτζ[(1−πho(x))

+ q2(x)(πhn(x)−πho(x))] dx

)




,

with

Ψ =


1 −

∞∫

0

e−
∫ x

0 λ
s
1 dτζ [(1 − πho(x)) + q2(t) (πhn(x)− πho(x))] dx


×


1 −

∞∫

0

e−
∫ x

0 λ
s
2(µ(τ)) dτζ (1 − πhn(x)) dx




−




∞∫

0

e−
∫ x

0 λ
s
2(µ(τ)) dτζ (πhn(x)− πho(x)) dx


×




∞∫

0

e−
∫ x

0 λ
s
1 dτq2(x)ζ (1 − πhn(x)) dx


 .

The second term in brackets of equation (6.32) reads




∞∫

0

e−
∫ x

0 Λ
s
(µ(τ)) dτ B

s
2(x) dx


 =




∞∫
0

e−
∫ x

0 λ
s
1 dτδ (1 + q2(x)) dx

−
∞∫
0

e−
∫ x

0 λ
s
2(µ(τ)) dτδ dx


 .
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Inverse transformation of ∆V
s
σ(0) with ∆Vs

σ(0) = T
s
(0)∆V

s
σ(0) obtains

[
∆Vs

o (0)

∆Vs
n(0)

]
=

1
Ψ
×








[
1−

∞∫
0

e−
∫ x

0 λ
s
2(µ(τ)) dτζ(1−πhn(x)) dx

]
·
[

∞∫
0

e−
∫ x

0 λ
s
1 dτδ(1+q2(x)) dx

]

+

[
∞∫
0

e−
∫ x

0 λ
s
1 dτq2(x)ζ(1−πhn(x)) dx

]
·
[

∞∫
0

e−
∫ x

0 λ
s
2(µ(τ)) dτδ dx

]









[
1−

∞∫
0

e−
∫ x

0 λ
s
2(µ(τ)) dτζ(1−πhn(x)) dx

]
·
[

∞∫
0

e−
∫ x

0 λ
s
1 dτδ(1+q2(x)) dx

]

+

[
∞∫
0

e−
∫ x

0 λ
s
1 dτq2(x)ζ(1−πhn(x)) dx

]
·
[

∞∫
0

e−
∫ x

0 λ
s
2(µ(τ)) dτδ dx

]

+

[
−

∞∫
0

e−
∫ x

0 λ
s
2(µ(τ)) dτζ(πhn(x)−πho(x)) dx

]
·
[

∞∫
0

e−
∫ x

0 λ
s
1 dτδ(1+q2(x)) dx

]

+

[
1−

∞∫
0

e−
∫ x

0 λ
s
1 dτζ[(1−πho(x))+q2(x)(πhn(x)−πho(x))] dx

]
·
[
−

∞∫
0

e−
∫ x

0 λ
s
2(µ(τ)) dτδ dx

]








.

Based on these derivations of ∆Vs
σ(t), the conditions for gains from trade are as

follows.

Gains from Trade Immediately after the Shock

I start with condition ∆Vs
o (0)− ∆Vs

n(0) ≥ 0, which must satisfy

δ

Ψ








∞∫

0

e−
∫ x

0 λ
s
2(µ(τ)) dτζ (πhn(x)− πho(x)) dx


×




∞∫

0

e−
∫ x

0 λ
s
1 dτ (1 + q2(x)) dx




+


1 −

∞∫

0

e−
∫ x

0 λ
s
1 dτζ [(1 − πho(x)) + q2(x) (πhn(x)− πho(x))] dx


×




∞∫

0

e−
∫ x

0 λ
s
2(µ(τ)) dτ dx







≥ 0.

This inequality is equal to inequality (6.5) stated in section 6.3.
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Gains from Trade for Time t > 0

Secondly, I derive ∆Vs
σ(t), which is equal to equation (6.31) after inverse trans-

formation, with ∆Vs
σ(t) = T

s
(t)∆V

s
σ(t), so that

∆Vs
σ(t) = T

s
(t)

∞∫

t

e−
∫ x

t Λ
s
(µ(τ)) dτ

[
T

s
(x)
]−1

(Bs
2 + Bs

3(µ(x))∆Vs
σ(0)) dx. (6.33)

With intermediate step

[
T

s
(x)
]−1

(Bs
2 + Bs

3(µ(x))∆Vs
σ(0))

=

[
δ (1 + q2(t))

−δ

]
+

[
(1+q2(t))ζ(1−πho(t)) −q2(t)ζ(1−πhn(t))

−ζ(1−πho(t)) ζ(1−πhn(t))

] [
∆Vs

o (0)

∆Vs
n(0)

]
,

equation (6.33) reads

∆Vs
σ(t) =

[
1 q2(t)

1 q2(t) + 1

]




(
∞∫
t

e−
∫ x

t λ
s
1(µ(τ)) dτ [δ(1+q2(x))+(1+q2(x))ζ(1−πho(x))∆Vs

o (0)

−q2(x)ζ(1−πhn(x))∆Vs
n(0)] dx

)

(
∞∫
t

e−
∫ x

t λ
s
2(µ(τ)) dτ [−δ−ζ(1−πho(x))∆Vs

o (0)

+ζ(1−πhn(x))∆Vs
n(0)] dx

)




.

Hence, the condition ∆Vs
o (t)− ∆Vs

n(t) ≥ 0 is obtained with

∞∫

t

e−
∫ x

t λ
s
2(µ(τ)) dτ [δ + ζ (1 − πho(x))∆Vs

o (0)− ζ (1 − πhn(x))∆Vs
n(0)] dx ≥ 0,

which is equal to inequality (6.10) stated in section 6.3.

Gains from Trade a Long Time after the Shock

The constraint a long time after an aggregate liquidity shock, given no additional

shock has occurred, i.e. lim
t→∞

(∆Vs
o (t)− ∆Vs

n(t)) ≥ 0, is

δ ≥ ζ [(1 − πhn(ss))∆Vs
n(0)− (1 − πho(ss))∆Vs

o (0)] .

This is equal to inequality (6.11) stated in section 6.3.
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6C Appendix: Analyzing the Frozen Market

With an example in section 6.4, I have illustrated that the driving factors for no

gains from trade are

(1.) search frictions, determined by λ and ρ, which measure liquidity,

(2.) agents’ individual recovery time, denoted by λu,

(3.) the severity of the shock, determined by πho(ss) and πhn(ss).

First, I state some convergence properties of masses dynamics µσ(t), since these

are influenced by both search frictions λ, ρ and agents’ individual recovery time

λu. Secondly, I analyze both the severity of the shock and the interaction of

πho(ss), πhn(ss), and µσ(t), expressed in πho(t) and πhn(t). Finally, based on

these discussions, I scrutinize inequalities (6.5), (6.10), and (6.11).

Mass Dynamics of Investor Types

Results for the Convergence of Mass Dynamics

(i) Either µlo(t) or µhn(t) converges monotonically to its steady state value after

an aggregate liquidity shock. (ii) The other moves away for a while, before the

sign of its derivative changes and it converges to its steady state. (iii) If µ̇lo(0) ≤ 0

and µ̇hn(0) ≥ 0 hold simultaneously, both converge monotonically, i.e. µ̇lo(t) ≤ 0

and µ̇hn(t) ≥ 0 for all t ≥ 0.145

Discussion and Proof

Before showing the proof for statement (iii) and discussing statement (i) and (ii),

I start with a review of some general properties of masses dynamics µσ(t). From

section (3.2), the two equations

µ̇lo(t) = − 2λ(µlo(t))
2 − [2λ(µh(t)− s) + λu + λd + ρ] µlo(t)

+ ρ max {0, s − µh(t)}+ λds
(6.34)

145 See Duffie, Gârleanu, and Pedersen (2007), pp. 1897.
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and

µh(t) = µh(0)e
−(λu+λd)t +

λu

λu + λd

[
1 − e−(λu+λd)t

]
(6.35)

are already known. Since µh(0) < µh(ss) holds due to the shock, it can be verified

with equation (6.35) and µh(ss) = λu/(λu + λd) that µh(t) < µh(ss) holds for all t

as well. Secondly, µlo(0) > µlo(ss) holds, since the fraction of sellers increases due

to the shock. By assumption, µlo(t) > 0 ∀t holds. Hence, as verified by Duffie,

Gârleanu, and Pedersen (2007, pp. 1897), µlo(t) > µlo(ss) and µhn(t) < µhn(ss) is

valid for all time t.

The proof for statement (iii) is as follows: If µ̇lo(0) ≤ 0 holds, then the inequality

2λµhn(0)µlo(0) + ρµm(0) ≥ −λuµlo(0) + λdµho(0) (6.36)

is equivalent to it. If µ̇hn(0) ≥ 0 holds, then

2λµhn(0)µlo(0) + ρµm(0) ≤ λuµln(0)− λdµhn(0) (6.37)

is equivalent. Inequalities (6.36) and (6.37) imply that λuµl(0) ≥ λdµh(0) must

hold, too. With equations (3.8) and (3.9), it can be shown that λuµl(t) ≥ λdµh(t)

holds for all t as well, which completes the proof.

Statement (i) and (ii) are discussed next: The numerical examples in chapter 5

and section 6.4 illustrate the case in which µlo(t) converges monotonically to its

steady state value, which implies µ̇lo(t) ≤ 0. At the same time, µhn(t) moves

away from its steady state level for a while, i.e. µ̇hn(t) ≤ 0 for 0 ≤ t ≤ t1, where

t1 < ∞ is the point in time at which the sign of µ̇hn(t) changes. Right after the

shock, trading activities dominate intrinsic type switches. This effect occurs with

‘normal’ and low search frictions (i.e. not very low λ and ρ) and/or small switch-

ing intensity λu. For t > t1, the derivative changes its sign, i.e. µ̇hn(t) ≥ 0, and

µhn(t) converges monotonically to its steady state. Equation (6.38) demonstrates

theses effects:

µ̇hn(t) = − 2λ (µhn(t))
2 − [2λ(s − µh(t)) + λu + λd + ρ] µhn(t)

+ ρ max {0, µh(t)− s}+ λu (1 − s) . (6.38)

For s ≤ λu/(λu + λd) and a large shock leading to s ≥ µh(0), it is very likely

that µ̇hn(0) ≤ 0. This is due to the fact that max {0, µh(0)− s} = 0 and
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2λ(s − µh(0)) ≥ 0. If µhn(0) is very low, or λu is very high, then λu (1 − s) dom-

inates the whole equation. If the shock is relatively small leading to s < µh(0),

the effect is not clear: max {0, µh(0)− s} = µh(0)− s, 2λ(s − µh(0)) < 0 and, in

general, µhn(0) is not very small then. As a result, the sign of (6.38) immediately

after the shock depends on the size of the shock.

For s > λu/(λu + λd), an aggregate liquidity shock leads to s > µh(0), since this

market remains a buyer’s market after the shock. In a buyer’s market, the frac-

tion of µhn(ss) is low in steady state; especially for high meeting intensities:

µhn(ss) −−−→
λ→∞

0 or µhn(ss) −−−→
ρ→∞

0. Therefore, potential buyers are barely affected

by a shock, as illustrated in figure (5.13). This still very low fraction of poten-

tial buyers can influence equation (6.38) negatively immediately after the shock.

Shortly thereafter, mass dynamics µhn(t) start to monotonically converge to their

steady state level, since then +λu (1 − s) dominates equation (6.38) while µhn(t)

remains very low.

If µhn(t) converges monotonically to its steady state, i.e. µ̇hn(t) ≥ 0, then µlo(t)

might move away from its steady state level for a while, i.e. µ̇lo(t) ≥ 0 for

0 ≤ t ≤ t1. For µ̇lo(0) ≥ 0, the relation reads

2λµhn(0)µlo(0) + ρµm(0) ≤ −λuµlo(0) + λdµho(0), (6.39)

and from equation (6.34) for µ̇lo(t) ≥ 0,

0 ≤ − 2λ (µlo(t))
2 − [2λ(µh(t)− s) + λu + λd + ρ] µlo(t)

+ ρ max {0, s − µh(t)}+ λds.
(6.40)

Inequality (6.39) implies that intrinsic type switches dominate trading activities

right after the shock. In general, however, there are high trading activities im-

mediately after a shock due to a high misallocation of assets. As a result, the

addressed property only appears in some extreme combinations. For example,

very high search frictions combined with a high one-sided shock that hits only

the buy-side. On the right hand side in (6.39), µho(0) is not reduced and µlo(0) is

not increased due to a shock. The high one-sided shock heavily reduces µhn(0) so

that there are only a few potential sellers and a few potential buyers in the market.

With high search frictions they barely meet. This situation changes already after a

short time, since µlo(t) increases due to this relation. Inequality (6.40) highlights

that, in general, the prevailing sign of µ̇lo(t) is negative after a shock, since there

is an elevated quantity of µlo(t) after a shock and, of course, µlo(t) ≥ 0 holds.
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The Severity of a Shock

Results for the Convergence of Probabilities πho(t) and πhn(t)

The convergence of mass dynamics stated in (i), (ii), and (iii) influences probabil-

ities πho(t) and πhn(t):

• If µ̇ho(t) ≥ 0 for t ≥ 0, both µho(t) and πho(t) converge monotonically to

their steady state level, given no further shock occurs.

• If µ̇hn(t) ≥ 0 for t ≥ 0, both µhn(t) and πhn(t) converge monotonically to

their steady state level, given no further shock occurs.

• If µhn(0) > µhn(t) for 0 < t ≤ t1, where t1 is the time at which the sign of

µ̇hn(t) changes, then πhn(t) drops below zero before it converges towards

πhn(ss), given no further shock occurs.

• If µlo(0) < µlo(t) for 0 < t ≤ t1, then πho(t) drops below zero before it con-

verges towards πho(ss). This situation only occurs for some extreme param-

eter combinations and persists then only for a short period of time.

Discussion and Proof

These four effects are determined by the key parameters which influence the

severity of an aggregate liquidity shock: Steady state probabilities of high agents

switching to a low state due to a shock, i.e. πho(ss) and πhn(ss). These probabili-

ties control for the starting condition of agents’ masses µσ(0) with

µho(0) = (1 − πho(ss)) µho(ss), (6.41)

µhn(0) = (1 − πhn(ss)) µho(ss). (6.42)

By assumption, the type distribution jumps to the fixed fractions µσ(0) at each

aggregate liquidity shock. In controlling for the starting conditions, probabilities

πho(ss) and πhn(ss) determine the evolution of masses over time as well. Both

effects influence the probability of high agents switching to a low state, due to

a shock which occurs out of steady state. The definitions of πho(t) and πhn(t),

restated in equations (6.43) and (6.44) with

πho(t) = 1 − µho(0)
µho(t)

, (6.43)
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πhn(t) = 1 − µhn(0)
µhn(t)

, (6.44)

show this effect. Furthermore, equations (6.43) and (6.44) show that statement (i),

(ii), and (iii) influence probabilities πho(t) and πhn(t). Some general remarks are

necessary:

If µ̇lo(t) ≤ 0 for t ≥ 0, then µ̇ho(t) ≥ 0 for t ≥ 0 must hold simultaneously. Both

µho(t) and πho(t) converge monotonically to their steady state level, given no fur-

ther shock occurs. Likewise, if µ̇hn(t) ≥ 0 for t ≥ 0, then both µhn(t) and πhn(t)

converge monotonically to their steady state level.

Things are different for both µ̇hn(t) ≤ 0 and µ̇lo(t) ≥ 0 for any 0 ≤ t ≤ t1, where

t1 is the point in time at which the sign of either µ̇lo(t) or µ̇hn(t) changes. If µhn(t)

decreases after the shock, i.e. µhn(0) ≥ µhn(t) for 0 ≤ t ≤ t1, then πhn(t) drops be-

low zero for 0 < t ≤ t1 before it monotonically converges towards πhn(ss), given

no further shock occurs. The smaller the value of µhn(t), the deeper is πhn(t) be-

low zero. Figure 6.4 illustrates this effect. As seen in section 6.4, it is a common

situation that πhn(t) is negative for a while.

If µlo(t) increases after the shock, i.e. µlo(0) ≤ µlo(t) for 0 ≤ t ≤ t1, then πho(t)

drops below zero for 0 < t ≤ t1, before it monotonically converges towards

πho(ss). As discussed above, this situation only occurs for some extreme param-

eter combinations and persists only for a short period of time.

If either πhn(t) or πho(t) is negative, the respective probability measure loses its

characteristics as a probability. A negative πhn(t) or πho(t) implies that if a further

aggregate liquidity shock hits the market, the fraction of hn or ho, respectively,

has to increase due to the shock. Potential buyers (or ho agents) must be hit

by a positive liquidity shock to meet the fixed fractions µσ(0). As a result, the

fixed starting point of investors’ masses after a shock is the crucial assumption.

However, the model seems to be intractable without it.146

The Inequalities for the Existence of a Nash Bargaining Solution

Using the results of my analysis of µσ(t), πhn(t), and πho(t), I take a closer look

at inequalities (6.5), (6.10), and (6.11) and equations (6.6)–(6.9).

146 See Duffie, Gârleanu, and Pedersen (2007), p. 1882.
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Results for the Existence of a Nash Bargaining Solution

Condition ∆Vs
o (0)− ∆Vs

n(0) ≥ 0 can be violated for high meeting intensities λ, ρ,

and a high probability πho(ss). The difference ∆Vs
o (t)− ∆Vs

n(t) can temporarily

become negative. The condition lim
t→∞

(∆Vs
o (t)− ∆Vs

n(t)) ≥ 0 is always met for

sufficiently small ζ.

Analysis of λ
s
1, λ

s
2(t), and q2(t)

I start the analysis with some comments about λ
s
1, λ

s
2(t), and q2(t). Obviously,

λ
s
1 = r + ζ + λu + λd > 0,

and

λ
s
2(t) = r + ζ + λu + λd + 2λµhn(t)q + 2λµlo(t)(1 − q) + ρ(1 − z) ≥ λ

s
1.

Additionally, λ
s
2(t) increases with λ and ρ. It is clear from

q2(t) = −
t∫

0

e−
∫ t

x (2λµhn(τ)q+2λµlo(τ)(1−q)+ρ(1−z)) dτ (2λµhn(x)q + ρ(1 − z)q̃(x)) dx,

that 0 ≥ q2(t), since q2(t) decreases from q2(0) = 0 to its steady state level

q2(ss) = − 2λµhn(ss)q + ρ(1 − z)q̃(ss)
2λµhn(ss)q + 2λµlo(ss)(1 − q) + ρ(1 − z)

,

given no further shock occurs in the meantime. Hence,

0 ≥ q2(t) ≥ − 2λµhn(ss)q + ρ(1 − z)q̃(ss)
2λµhn(ss)q + 2λµlo(ss)(1 − q) + ρ(1 − z)

≥ −1.

Analysis of ∆Vs
o (0)− ∆Vs

n(0) ≥ 0

I start with an analysis of ∆Vs
o (0)− ∆Vs

n(0) ≥ 0. First, Ψ is examined, which is

positive for sufficiently small mean arrival rates ζ of aggregate liquidity shocks.
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I partition Ψ in the following way:

Ψ = ζ2 ×








1
ζ
−

∞∫

0

e−λ
s
1x (1 − πho(x)) (1 + q2(x)) dx

︸ ︷︷ ︸
Part A







1
ζ
−

∞∫

0

e−
∫ x

0 λ
s
2(µ(τ)) dτ (1 − πhn(x)) dx

︸ ︷︷ ︸
Part B




+




∞∫

0

e−λ
s
1xq2(x) (1 − πhn(x)) dx

︸ ︷︷ ︸
Part C







1
ζ
−

∞∫

0

e−
∫ x

0 λ
s
2(µ(τ)) dτ (1 − πho(x)) dx

︸ ︷︷ ︸
Part D








.

(6.45)

My analysis relies on a modified version of Steffensen’s inequality, stated in

Pečarić, Proschan, and Tong (1992, p. 182):

“Let f be a decreasing function on (0, ∞), and g be a measurable func-

tion on [0, ∞) such that 0 ≤ g(x) ≤ A (A is a positive real number).

Then

∞∫

0

f (x)g(x) dx ≤ A
λ∫

0

f (x) dx,

where

λ =
1
A

∞∫

0

g(x) dx.”

Generally, part A in equation (6.45) is smaller than 1/λ
s
1, which in turn is smaller

than 1/ζ. The exponential function exp(−λ
s
1t) converges to zero and the higher

λ
s
1, the faster the convergence. More often than not 0 ≤ (1 − πho(t)) ≤ 1 holds.
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0 ≤ (1 + q2(t)) ≤ 1 is always valid. In general, (1 − πho(t)) and (1 + q2(t)) are

decreasing functions of time t, leading to a positive part A.

There are two opposite effects in part B of equation (6.45): (1 − πhn(t)) is the

higher the higher λ, ρ, and πho(ss) are, and 0 ≤ (1 − πhn(t)) is not bounded from

above. Secondly, the higher λ, ρ, and πho(ss) are, the faster exp(−
∫ t

0 λ
s
2(µ(τ)) dτ)

converges to zero. Since 1 − πhn(0) = 1, the highest value of (1 − πhn(t)) is

not right after the shock, but a short time after. The decreasing effect of

exp(−
∫ t

0 λ
s
2(µ(τ)) dτ) obviously dominates this term. For sufficiently small

mean arrival rates ζ, the second term in brackets is positive.

Part C in equation (6.45) is small but negative: q2(t) stays close to zero right after

the shock, while (1 − πhn(t)) can increase to a very high value. The effects of

µhn(t) on q2(t) and on (1 − πhn(t)) are opposed and partially offset each other.

Medium and long term values are reduced by exp(−λ
s
1t). In total, the third term

in brackets is negative but small.

Part D in equation (6.45) is very small, since exp(−
∫ t

0 λ
s
2(µ(τ)) dτ) converges to

zero faster, the higher λ, ρ, and πho(ss) are. More often than not, (1 − πho(t))

stays between 1 and πho(ss).

With these different effects, numerical analysis indicates that Ψ has a positive

value for sufficiently small ζ.

Next, I partition equation (6.5) so that




∞∫

0

e−λ
s
1x (1 + q2(x)) dx

︸ ︷︷ ︸
Part E







∞∫

0

e−
∫ x

0 λ
s
2(µ(τ)) dτ (πhn(x)− πho(x)) dx

︸ ︷︷ ︸
Part F




+




1
ζ
−

∞∫

0

e−λ
s
1x [(1 − πho(x)) (1 + q2(x))− q2(x) (1 − πhn(x))] dx

︸ ︷︷ ︸
Part G



×




∞∫

0

e−
∫ x

0 λ
s
2(µ(τ)) dτ dx

︸ ︷︷ ︸
Part H




.

(6.46)
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Part E in equation (6.46) lies between 0 and 1/λ
s
1, since (1 + q2(t)) is a decreas-

ing function of t. The exponential function exp(−λ
s
1t) converges to zero and the

higher λ
s
1 is, the faster the convergence.

Part F in equation (6.46) is the crucial one, because there is a chance of a negative

sign for high meeting intensities λ, ρ, and a high probability πho(ss). The function

πhn(t) drops fast and heavily below zero. Although exp(−
∫ t

0 λ
s
2(µ(τ)) dτ) is

working in the opposite direction by converging to zero faster, the higher λ, ρ,

and πho(ss) are, the sign for part E can be negative nevertheless.

Part G in equation (6.46) is not that clear: More often than not, the first term is

bounded from above with (1 − πho(t)) (1 + q2(t)) ≤ 1 and it is decreasing in t.

For the second term, the function q2(t) is negative and very small for low values

of time t. This compensates high values of (1 − πhn(t)). The exponential function

exp(−λ
s
1t) converges to zero. Numerical analysis indicates that part G is smaller

than 1/ζ for sufficiently small values of ζ.

Part H in equation (6.46) is very small, especially for high meeting intensities.

The overall impact of (1/ζ − part G)(part H) is very small as well.

As a result, the equation (6.46) can be negative in total, also for sufficiently small

ζ. This happens especially for high meeting intensities λ, ρ, and a high probability

πho(ss), since πhn(t) drops fast and heavily below zero. Part F can get negative.

As a result, the condition ∆Vs
o (0)− ∆Vs

n(0) ≥ 0 can be violated for high meeting

intensities λ, ρ, and a high probability πho(ss)—as shown in section 6.4.

Analysis of ∆Vs
o (t)− ∆Vs

n(t)

The next step is an analysis of ∆Vs
o (t)− ∆Vs

n(t), that is

∞∫

t

e−
∫ x

t λ
s
2(µ(τ)) dτ [δ + ζ (1 − πho(x))∆Vs

o (0)− ζ (1 − πhn(x))∆Vs
n(0)] dx ≥ 0.

The drop below zero for πhn(t), especially for high meeting intensities λ, ρ, and

a high probability πho(ss), was mentioned quite a few times. This is the key ef-

fect here, too. The exponential function exp(−
∫ x

t λ
s
2(µ(τ)) dτ) reduces medium

and long term values, but it has a smaller effect on values at time t and shortly

thereafter. Thus, a very high value of (1 − πhn(t)) can determine the sign of the

whole term, even if ζ is small. As a result, ∆Vs
o (t)− ∆Vs

n(t) can (temporarily) be

negative.
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Analysis of lim
t→∞

(∆Vs
o (t)− ∆Vs

n(t)) ≥ 0

When mass dynamics reach their steady state level, given no further shock has

occurred, the condition

δ ≥ ζ [(1 − πhn(ss))∆Vs
n(0)− (1 − πho(ss))∆Vs

o (0)]

is always met for sufficiently small ζ and δ > 0. This result is due to the fact that

πhn(t) converges monotonically towards πhn(ss) (with 0 ≤ πhn(ss) ≤ 1) as soon

as µhn(t) starts to converge monotonically towards its steady state level. Simulta-

neously, πho(t) converges monotonically towards πho(ss) (with 0 ≤ πho(ss) ≤ 1)

as soon as µlo(t) starts to converge monotonically towards its steady state level.

As a result, the existence of a Nash bargaining solution and, therefore, gains

from trade are, in general, not ensured for the aggregate liquidity shock model:

For high meeting intensities λ, ρ, and a high probability πho(ss), the conditions

∆Vs
o (0)− ∆Vs

n(0) ≥ 0 and ∆Vs
o (t)− ∆Vs

n(t) ≥ 0 can be violated. For sufficiently

small ζ, the inequality lim
t→∞

(∆Vs
o (t)− ∆Vs

n(t)) ≥ 0 is always met.



Chapter 7

The Completed Aggregate Liquidity

Shock Model

The reason for the collapse of the aggregate liquidity shock model is not entirely

characterized by trading despite no gains from trade. No gains from trade is

rather a model incompleteness than a model breakdown, which I explain in sec-

tion 7.1. I prevent the model from collapsing in section 7.2 by completing the

aggregate liquidity shock model. Section 7.3 illustrates the completion by means

of an example. Section 7.4 concludes. The validity of gains from trade in my

completed aggregate liquidity model is analyzed in appendix 7A.

7.1 Model Inconsistency

Consider the following property of agents’ types, which is due to an aggregate

liquidity shock: In many cases, the fraction of potential buyers starts to decrease

after a shock, before it converges monotonically to its long run level. Therefore,

the relation µhn(0) > µhn(t) can temporarily arise.147

Next, consider a second aggregate liquidity shock occurring shortly after the pre-

vious shock. In the aggregate liquidity shock model, this second shock hits po-

tential buyers in such a way that their fraction must increase due to the second

shock. I illustrate the effect of a second shock on the process of mass distribution

in figure 7.1, by using the parameters of section 5.1.

147 It is also possible that the fraction of potential sellers increases for a short period after a
shock. However, this incident rarely arises (see appendix 6C). Either the fraction of potential
buyers decreases after the shock or the fraction of potential sellers increases. Both effects do
not occur at the same time. See Duffie, Gârleanu, and Pedersen (2007), pp. 1886 and p. 1898.
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Figure 7.1: Process of mass distribution with a second aggregate liquidity
shock and without market makers. The solid line illustrates the fraction of
sellers over time. The dashed line represents the fraction of buyers. Dashed-
dotted and dotted (with plus sign) lines show the fraction of high owners and
low non-owners, respectively.

In figure 7.1, a second shock occurs 50 days after the first one, so that tshock1
= 0.2

of the first shock is equal to the starting time tshock2 = 0 in the second shock.

Clearly, due to this second shock, some ln agents must switch to hn agents in

order to fulfill the assumption that prior shocks do not influence the post-shock

distribution. However, the aggregate liquidity shock model does not take the ne-

cessity of ln → hn switches correctly into account, which I show in the following

passage.

The decisive factors for the inconsistency in the aggregate liquidity shock model

are the probabilities πhn(t) and πho(t): The probabilities are first defined as the

probabilities of high agents switching to a low state due to a shock. Secondly,

these probabilities provide the tractability of the aggregate liquidity shock model,

since this model considers not only a single aggregate liquidity shock, but also

contains the possibility of future aggregate liquidity shocks. Whenever an aggre-

gate liquidity shock occurs, πhn(t) and πho(t) ensure that there are no “ ‘after-

effects’ of prior shocks”148. These properties of πhn(t) and πho(t) imply a fixed

post-shock distribution µσ(0).

However, since the fraction of potential buyers starts to decrease after a shock,

πhn(t) can be negative.149 Furthermore, Duffie, Gârleanu, and Pedersen (2007,

p. 1882) assume that all ln agents remain ln agents due to the shock and

148 Duffie, Gârleanu, and Pedersen (2007), p. 1882.
149 Function πho(t) can be negative if the fraction of potential sellers increases after the shock.
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µlo(0) > µlo(t) and µln(0) > µln(t) have to hold.150 But as figure 7.1 shows, a

fraction of ln agents are forced to mutate to hn agents so that there are no after-

effects. This increase in hn agents is not correctly reflected in the value functions

(4.7)–(4.10). The forced mutation ln → hn is not included in equation (4.10) at all.

Instead, the resulting negative ‘probability’ πhn(t) implies that a negative fraction

of hn-agents switches to ln agents, which is—from an economic perspective—

impossible.

As a result, there is something missing in equations (4.7)–(4.10) if the assumption

of ‘no aftereffects’ is to be upheld. In the following section, I present my modifi-

cations to the aggregate liquidity shock model to fix these defects while keeping

the assumption of no “ ‘aftereffects’ of prior shocks”151. My completed aggregate

liquidity shock model results.

7.2 The Completed Model

I start by redefining the probabilities πho(t) and πhn(t), originally stated in sec-

tion 4.2: An ho agent switches to an lo agent with probability

πs,c
ho (t) =





1 − µho(0)
µho(t)

if µho(0) ≤ µho(t)

0 otherwise
(7.1)

and remains an ho agent with probability 1 − πs,c
ho (t). Analogously, an hn agent

switches to an ln agent with probability

πs,c
hn(t) =





1 − µhn(0)
µhn(t)

if µhn(0) ≤ µhn(t)

0 otherwise
(7.2)

and remains an hn agent with probability 1 − πs,c
hn(t).

The constant post-shock distribution µσ(0) is calculated further on with equa-

tions (4.3)–(4.6), since the relations µho(0) ≤ µho(ss) and µhn(0) ≤ µhn(ss) hold

due to the characteristic of the aggregate liquidity shock. As this redefinition

does not affect πs,c
ho (ss) = πho(ss) and πs,c

hn(ss) = πhn(ss), both are still specified

exogenously.

150 The assumptions µlo(0) > µlo(t) and µln(0) > µln(t) for low-type agents are equivalent to
assuming µho(0) < µho(t) and µhn(0) < µhn(t) for high-type agents.

151 Duffie, Gârleanu, and Pedersen (2007), p. 1882.
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Secondly, I define the additional probability for an lo agent switching to an ho

agent with

πs,c
lo (t) =





1 − µlo(0)
µlo(t)

if µho(0) > µho(t)

0 otherwise
(7.3)

and the probability for remaining an lo agent with 1 − πs,c
lo (t). Define likewise the

probability for an ln agent switching to an hn agent with

πs,c
ln (t) =





1 − µln(0)
µln(t)

if µhn(0) > µhn(t)

0 otherwise
(7.4)

and the probability for remaining an ln agent with 1 − πs,c
ln (t).

The probability πs,c
lo (t) is only valid for the period of time when there are fewer ho

agents in the market than the post-shock distribution requires. The same applies

for the probability πs,c
ln (t), which is defined for a fraction of hn agents that is less

than the post-shock distribution requires. The probabilities πs,c
ho (t) and πs,c

hn(t) are

valid during ‘normal’ times, i.e. when there are more ho agents and hn agents,

respectively, in the market in comparison with the post-shock distribution µσ(0).

Probabilities (7.3) and (7.4) imply that if an aggregate liquidity shock hits the

market shortly after a previous one, then a fraction of agents with a low intrinsic

type experience a positive shift in their preferences towards asset holding. Inter-

pretations of this positive shock are, for instance, easy refunding due to financial

intervention by governments and benefits from reduced prices after a shock.

The equilibrium type distribution µσ(t) evolves according to the differential

equations (3.4)–(3.7), where µσ(0) is the starting point after an aggregate liquidity

shock. The redefinition of probabilities πs,c
ho (t) and πs,c

hn(t), as well as the intro-

duction of πs,c
lo (t) and πs,c

ln (t), have no impact on agents’ type distribution, since

the fixed type distribution µσ(0) is not affected by this redefinition. However,

these probabilities influence agents’ value functions. I integrate the probabilities

of equations (7.1)–(7.4) into agents’ value functions by focusing on a particular

agent at a particular time t. The value functions Vs,c
σ (t), where the superscript ‘c’
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indicates that this is my completion of the aggregate liquidity shock model, are

Vs,c
lo (t) = Et

[ τ∫

t

e−r(u−t)(D − δ) du + e−r(τl−t)Vs,c
ho (τl)1{τl=τ}

+ e−r(τi−t)(Vs,c
ln (τi) + Ps,c(τi))1{τi=τ}

+ e−r(τm−t)(Vs,c
ln (τm) + Bs,c(τm))1{τm=τ}

+ e−r(τζ−t) [(1 − πs,c
lo (τζ)

)
Vs,c

lo (0) + πs,c
lo (τζ)V

s,c
ho (0)

]
1{τζ=τ}

]
,

(7.5)

Vs,c
hn (t) = Et

[
e−r(τl−t)Vs,c

ln (τl)1{τl=τ} + e−r(τi−t)(Vs,c
ho (τi)− Ps,c(τi))1{τi=τ}

+ e−r(τm−t)(Vs,c
ho (τm)− As,c(τm))1{τm=τ}

+ e−r(τζ−t) [(1 − πs,c
hn(τζ)

)
Vs,c

hn (0) + πs,c
hn(τζ)V

s,c
ln (0)

]
1{τζ=τ}

]
,

(7.6)

Vs,c
ho (t) = Et




τ∫

t

e−r(u−t)D du + e−r(τl−t)Vs,c
lo (τl)1{τl=τ}

+ e−r(τζ−t) [(1 − πs,c
ho (τζ)

)
Vs,c

ho (0) + πs,c
ho (τζ)V

s,c
lo (0)

]
1{τζ=τ}

]
,

(7.7)

Vs,c
ln (t) = Et

[
e−r(τl−t)Vs,c

hn (τl)1{τl=τ}

+ e−r(τζ−t) [(1 − πs,c
ln (τζ)

)
Vs,c

ln (0) + πs,c
ln (τζ)V

s,c
hn (0)

]
1{τζ=τ}

]
,

(7.8)

where τ = min{τl, τi, τm, τζ}. The interpretation is as follows: The first terms of

the value functions are the same as those in equations (4.7)–(4.10). For the last

term, I implement the risk for and the impact of future aggregate liquidity shocks

on all agents that are probably affected by the shock.

If µlo(0) ≥ µlo(t), or, equivalently, µho(0) ≤ µho(t) holds, then the value of any lo

agent jumps upon a shock to the value of an lo agent at time t = 0. This means

that all lo agents remain lo agents due to a shock—which Duffie, Gârleanu, and

Pedersen (2007) mistakenly assume to be valid in general. Equation (7.5) reflects

this case as follows: πs,c
lo (t) is zero for µlo(0) ≥ µlo(t), which implies that equa-

tion (7.5) coincides with equation (4.7). If µlo(0) < µlo(t) holds, i.e. there are more

potential sellers at time t > 0 than immediately after the shock, a positive frac-

tion πs,c
lo (t) of all lo agents must switch to ho agents due to a shock in order to

maintain a constant post-shock distribution. Any lo agent stays lo due to a shock
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with probability (1 − πs,c
lo (t)) and switches to an ho intrinsic type with probability

πs,c
lo (t). As a result, equation (7.5) is a completed representation of equation (4.7).

Equivalently for the value function of an hn agent: If µhn(0) ≤ µhn(t) holds,

then, upon a shock, the value function of the hn agent jumps with probabil-

ity (1 − πs,c
hn(t)) to the value of an hn agent at time t = 0 and with probability

πs,c
hn(t) to the value of an ln agent at time t = 0. This means that a positive

fraction (1 − πs,c
hn(t)) of potential buyers stays with their intrinsic type upon a

shock and a positive fraction πs,c
hn(t) mutates to an ln agent. Duffie, Gârleanu,

and Pedersen (2007) erroneously assume that this is valid in general. However,

if µhn(0) > µhn(t) holds, i.e. there are more potential buyers at time t > 0 than

immediately after the shock, all hn agents remain buyers. The value of all hn

agents jumps upon a shock to the value of an hn agent at time t = 0. This effect

is factored into equation (7.6) as πs,c
hn(t) is zero for µhn(0) > µhn(t), per definition.

Equation (7.6) completes equation (4.8).

Interpretations for Vs,c
ho (t) and Vs,c

ln (t) are comparable, so that equations (7.7) and

(7.8) are likewise completed representations of equations (4.9) and (4.10), respec-

tively. Prices are as stated in equations (4.15)–(4.19), but with Vs,c
σ (t) instead of

Vs
σ(t).

As a result, the system of linear (time-varying) differential equations in the com-

pleted model is

V̇s,c
σ (t) = A1(µ(t))Vs,c

σ (t)− A2 − Ac
3(µ(t))V

s,c
σ (0), (7.9)

where A1(µ(t)) and A2 are as defined in equations (4.23) and (4.24), respectively,

and

Ac
3(µ(t)) =




ζ
(
1 − πs,c

lo (t)
)

0 ζπs,c
lo (t) 0

0 ζ
(
1 − πs,c

hn(t)
)

0 ζπs,c
hn(t)

ζπs,c
ho (t) 0 ζ

(
1 − πs,c

ho (t)
)

0

0 ζπs,c
ln (t) 0 ζ

(
1 − πs,c

ln (t)
)




.

(7.10)

Since A1(µ(t)) remains unchanged by my completion of the aggregate liquidity

shock model, the homogeneous part of system (7.9) is equal to the homogeneous

part of system (4.22) in the aggregate liquidity shock model. Consequently, the

state transition matrix Φ(t, x) is unchanged as well upon my completion. The

solution to system (7.9), which is based on the solution technique presented in
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section 4.4 and appendix 4A, is

Vs,c
σ (t) =

∞∫

t

Φ(t, x) [A2 + Ac
3(µ(x))Vs,c

σ (0)] dx, (7.11)

with

Vs,c
σ (0) = T(0)


I4 −

∞∫

0

e−
∫ x

0 Λ(µ(τ)) dτAc
3
∗(µ(x)) dx




−1

×



∞∫

0

e−
∫ x

0 Λ(µ(τ)) dτA∗
2(x) dx


 ,

(7.12)

where the state transition matrix Φ(t, x) is as defined in equation (4.34), T(t) is

defined in equation (4.35), Λ(µ(t)) is stated in equation (4.39), A∗
2(t) is defined in

equation (4.28), and Ac
3
∗(µ(t)) = T(t)−1Ac

3(µ(t))T(0).

The following section analyzes my completion by means of an example. Ap-

pendix 7A investigates the validity of the Nash bargaining condition.

7.3 Example

I continue the example of section 5.2 but increase the meeting intensity λ to 625 in

order to fully depict my completion of the aggregate liquidity shock model. First

of all, this completion has no impact on the type distribution µσ(t), on trading

volume, on asset mismatch, and on trading time. Since I choose a different value

for λ, the process of mass distribution as shown in figure 5.5 is altered. I repeat

this part of section 5.2 within figure 7.2.

But—as must be expected—value functions, prices, and bid-ask spreads do

change. I confront the results of the aggregate liquidity shock (ALS) model, ab-

breviated ‘ALS Model’, with my completed aggregate liquidity shock model, de-

noted as ‘Completed ALS Model’, to display the change due to my completion.

However, comparing the ‘ALS Model’ with my ‘Completed ALS Model’ is like

comparing apples and oranges, since the ‘ALS Model’ is defective and my com-

pletion adds the missing feature.
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Figure 7.2: Process of mass distribution after an aggregate liquidity shock
and with market makers. The solid line illustrates the fraction of sellers over
time. The dashed line represents the fraction of buyers. Dotted and dashed-
dotted (with plus sign) lines show the fraction of low non-owners and high
owners, respectively.

Value Function

Table 7.1 shows the indirect utilities immediately and a long time after an aggre-

gate liquidity shock for both the ‘ALS Model’ and the ‘Completed ALS Model’.

‘ALS Model’ ‘Completed ALS Model’
Parameter t = 0 t → ∞ Parameter t = 0 t → ∞

Vs
lo(t) 8.6926 9.4619 Vs,c

lo (t) 8.7284 9.4759
Vs

hn(t) 2.0458 0.8430 Vs,c
hn (t) 1.9244 0.7891

Vs
ho(t) 9.4575 9.4997 Vs,c

ho (t) 9.4733 9.5131
Vs

ln(t) 1.2864 0.8249 Vs,c
ln (t) 1.1899 0.7714

Table 7.1: Value functions in the ’ALS Model’ and the ‘Completed ALS
Model’ immediately and a long time after an aggregate liquidity shock, with
market makers.

The structure of this example implies that µho(0) < µho(t) holds for all t ≥ 0,

which can be seen in figure 7.2. The value function Vs,c
lo (t), stated in equation

(7.5), is not influenced by πs,c
lo (t), since πs,c

lo (t) = 0 for all t > 0. However, the

fraction µhn(t) drops below µhn(0) for approximately t1 = 0.79 years. During

this time, probability πs,c
hn(t) is zero while probability πs,c

ln (t) = 1 − µln(0)/µln(t)

is valid for approximately 0 < t < t1. If a second aggregate liquidity shock oc-

curs at t, with 0 < t < t1, the fraction of potential buyers must increase due to

this second shock in order to ensure a constant post-shock distribution. The value

functions in the ‘Completed ALS Model’ contain this possibility correctly.
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Table 7.1 shows that my modification does not solely alter the value functions of

ln agents and hn agents but also influences those of lo agents and ho agents, due

to their interconnections.

Prices and Bid-Ask Spread

The percentage price drop in the ‘Completed ALS Model’ is 13.43%, due to the

aggregate liquidity shock, which is smaller than the 14.32% price drop in the ‘ALS

Model’. The overall price level is higher in the ‘Completed ALS Model’. Table

7.2 states the interinvestor prices, the bid prices, the ask prices, and the bid-ask

spreads for the ‘ALS Model’, and for the ‘Completed ALS Model’, immediately

after the shock and a long time after.

‘ALS Model’ ‘Completed ALS Model’
Parameter t = 0 t → ∞ Parameter t = 0 t → ∞

Ps(t) 7.408p 8.6469 Ps,c(t) 7.5437 8.7143
As(t) 7.4106 8.6567 As,c(t) 7.5469 8.7241
Bs(t) 7.4062 8.6410 Bs,c(t) 7.5385 8.7084

As(t)− Bs(t) 0.0044 0.0157 As,c(t)− Bs,c(t) 0.0083 0.0157

Table 7.2: Prices in the ’ALS Model’ and the ‘Completed ALS Model’ im-
mediately and a long time after an aggregate liquidity shock, with market
makers.

The recovery paths of these prices after an aggregate liquidity shock are shown in

figure 7.3. The left panel depicts the recovery path in the ‘ALS Model’, whereas

the right panel shows the price recovery path in the ‘Completed ALS Model’.
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Figure 7.3: Prices in the ’ALS Model’ and the ‘Completed ALS Model’ after
an aggregate liquidity shock, with market makers.

Half of the loss in the interinvestor price is regained within 0.25 years in the

‘Completed ALS Model’, and within 0.27 years in the ‘ALS Model’. The inter-

investor price reaches a fairly normal level within 1.09 years in the ‘Completed
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ALS Model’ and within 1.1 years in the ‘ALS Model’.152 It seems as if the recov-

ery is slightly faster with the ‘Completed ALS Model’. One would like to draw

the conclusion that the ‘Completed ALS Model’ is more efficient, because the re-

covery time is lower, prices are higher, and the price drop due to the shock is

smaller. These facts are misleading, however, since they imply a comparison of

apples and oranges: My completion adds a missing feature, without which the

aggregate liquidity shock model is defective. However, the general intention of

the model is not altered.

My modification also fixes some economic problems which arise due to imple-

menting market makers: The remarkable pattern of the bid-ask spread. For the

‘ALS Model’, the left panel of figure 7.4 depicts the development of the bid-ask

spread after an aggregate preference shock. As addressed in section 5.2, the

downward hump is puzzling. One expects an immediately widening bid-ask

spread shortly after the shock, since investors’ outside options decline.
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Figure 7.4: Bid-ask spread in the ’ALS Model’ and the ‘Completed ALS
Model’. The solid line shows the bid-ask spread after an aggregate liquid-
ity shock and over time. The dashed line shows the bid-ask spread in the
basic model without aggregate liquidity shocks.

The pattern of the bid-ask spread in the ‘Completed ALS Model’ (right panel) is in

line with theory. The bid-ask spread is lower immediately after the shock than in

the long run. At this time, it is relatively easy for market makers to match suitable

trading partners, since there is an elevated quantity of potential sellers and there

are still some potential buyers remaining. The outside options of investors are

favorable. After a short time, the majority of these remaining potential buyers are

matched with potential sellers. The outside option of potential buyers decreases

while potential sellers’ outside options remain low. It is more time-consuming

to match potential buyers and potential sellers. As a result, search costs increase.

The bid-ask spread is the highest around point t∗, where as many potential sellers

as potential buyers are available. However, both fractions are very low so that

152 After 1.09 years (1.1 years), the percentage price change is less than 0.001% per day.
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there are nearly no agents in the market who want to trade. Search costs are the

highest then. Afterwards, the market—and therefore also the bid-ask spreads—

start to return to normality.

Gains from Trade

No gains from trade but forced trading—this was the result of chapter 6. It is due

to the inconsistency between the underlying process of equilibrium type fractions

µσ(t) and the value functions Vs
σ(t), which are based on the process µσ(t). My

completion of the aggregate liquidity shock model fixes these issues: gains from

trade, voluntary trading, and consistency.

Gains from trade arise for the ‘ALS Model’ if the difference ∆Vs
o (t)− ∆Vs

n(t)

is nonnegative for all t, and for the ‘Completed ALS Model’ if the difference

∆Vs,c
o (t)− ∆Vs,c

n (t) is nonnegative for all t. Figure 7.5 depicts the shape over time

of those differences.
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Figure 7.5: Gains from trade in the ’ALS Model’ and the ‘Completed ALS
Model’.

In the ‘ALS Model’ (left panel), there are temporarily no gains from trade, since

the difference ∆Vs
o (t)− ∆Vs

n(t) can become negative. During this time, agents

are forced to trade. In the ‘Completed ALS Model’ (right panel), however, the

difference ∆Vs,c
o (t)− ∆Vs,c

n (t) is positive, i.e. there are always gains from trade

and agents trade voluntarily.

Figure 7.6 shows that the difference ∆Vs,c
o (t)− ∆Vs,c

n (t) in the ‘Completed ALS

Model’ is nonnegative even for very high meeting intensities. To address this,

I keep market makers’ meeting intensity constant (with ρ = 125) but vary in-

vestors’ meeting intensity with λ = [200, 10 000]. As a result, there are always
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gains from trade due to my completion of the aggregate liquidity shock model.

Appendix 7A displays the corresponding conditions analytically.

Figure 7.6: Gains from trade in the ‘Completed ALS Model’, for ρ = 125 and
λ ∈ [200, 10 000].

For the sake of completeness, figure 7.7 shows the redefined probabilities for high

investors switching to low investors upon a shock, i.e. πs,c
ho (t) and πs,c

hn(t), both as

a function of time and meeting intensity λ. These probabilities are nonnegative

and have values in the range between 0 and 1.

πs,c
ho (t) πs,c

hn(t)

Figure 7.7: Evolution of probability πs,c
ho (t) and πs,c

hn(t) with ρ = 125 and
λ ∈ [200, 10 000].

Figure 7.8 depicts the newly defined probabilities for completing the aggregate

liquidity shock model, i.e. πs,c
lo (t) and πs,c

ln (t), likewise as a function of time and

meeting intensity λ. As discussed in appendix 6C, either µlo(t) or µhn(t) con-

verges monotonically to its steady state value after an aggregate liquidity shock

and the other moves away for a while, or both converge monotonically. There-

fore, either πs,c
lo (t) or πs,c

ln (t) or both are zero for all t. Within the prevailing ex-

ample, µhn(t) moves away for a while, before it converges to its steady state, i.e.

πs,c
lo (t) = 0 ∀t.
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πs,c
lo (t) πs,c

ln (t)

Figure 7.8: Evolution of probability πs,c
lo (t) and πs,c

ln (t) with ρ = 125 and
λ ∈ [200, 10 000].

7.4 Conclusion

In this chapter, I unveil the incompleteness of the aggregate liquidity shock

model: There is an economic inconsistency between the type process µσ(t) and

the value functions Vs
σ(t) via the probabilities πho(t) and πhn(t) of high agents

switching to a low state due to a shock. The aggregate liquidity shock model

implicitly assumes that these probabilities can become negative. However, nega-

tive probabilities imply that a negative fraction of high agents can switch to low

agents, which is—from an economic perspective—impossible.

I modify and therefore complete the aggregate liquidity shock model by includ-

ing the missing link in the value functions. As a result, the completed aggregate

liquidity shock model fixes all issues: no gains from trade, forced trading, and

inconsistency. However, my completion does not alter the general intention of

the aggregate liquidity shock model but allows for reasonable interpretations—

especially for the bid-ask spread. The overall findings of Duffie, Gârleanu, and

Pedersen (2007) apply in general.
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7A Appendix: Gains from Trade

For my completed model, I check within this appendix whether there are always

gains from trade after an aggregate liquidity shock. The approach is equivalent

to section 6.3. The two-dimensional system of differential equations is

[
∆V̇s,c

o (t)

∆V̇s,c
n (t)

]
=




(
r+ζ+λd+λu

+2λµhn(t)q+ρ(1−z)q̃(t)

)
−
(

2λµhn(t)q
+ρ(1−z)q̃(t)

)

−
(

2λµlo(t)(1−q)
+ρ(1−z)(1−q̃(t))

) (
r+ζ+2λµlo(t)(1−q)

+λd+λu+ρ(1−z)(1−q̃(t))

)




[
∆Vs,c

o (t)

∆Vs,c
n (t)

]

−
[

δ

0

]

−




ζ
(
1 − πs,c

ho (t)− πs,c
lo (t)

)
0

0 ζ
(
1 − πs,c

hn(t)− πs,c
ln (t)

)



[

∆Vs,c
o (0)

∆Vs,c
n (0)

]
.

(7.13)

Calculations that proceed similarly to appendix 6B show that there are gains from

trade immediately after the shock, i.e. ∆Vs,c
o (0)− ∆Vs,c

n (0) ≥ 0, if the inequality

0 ≤ δ ζ

Ψc








∞∫

0

e−λ
s
1x (1 + q2(x)) dx

︸ ︷︷ ︸
Part E’



× (7.14)




∞∫

0

e−
∫ x

0 λ
s
2(µ(τ)) dτ

[
−πs,c

hn(x)− πs,c
ln (x) + πs,c

ho (x) + πs,c
lo (x)

]
dx

︸ ︷︷ ︸
Part F’




+




1
ζ
−

∞∫

0

e−λ
s
1x (1 − πs,c

ho (x)− πs,c
lo (x)

)
(1 + q2(x)) dx

︸ ︷︷ ︸
Part Ga’

+

∞∫

0

e−λ
s
1xq2(x)

(
1 − πs,c

hn(x)− πs,c
ln (x)

)
dx

︸ ︷︷ ︸
Part Gb’







∞∫

0

e−
∫ x

0 λ
s
2(µ(τ)) dτ dx

︸ ︷︷ ︸
Part H’








,
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holds, where

Ψc = ζ2 ×








1
ζ
−

∞∫

0

e−λ
s
1x (1 − πs,c

ho (x)− πs,c
lo (x)

)
(1 + q2(x)) dx

︸ ︷︷ ︸
Part A’



×




1
ζ
−

∞∫

0

e−
∫ x

0 λ
s
2(µ(τ)) dτ

(
1 − πs,c

hn(x)− πs,c
ln (x)

)
dx

︸ ︷︷ ︸
Part B’




+




∞∫

0

e−λ
s
1xq2(x)

(
1 − πs,c

hn(x)− πs,c
ln (x)

)
dx

︸ ︷︷ ︸
Part C’



×




1
ζ
−

∞∫

0

e−
∫ x

0 λ
s
2(µ(τ)) dτ

(
1 − πs,c

ho (x)− πs,c
lo (x)

)
dx

︸ ︷︷ ︸
Part D’








,

(7.15)

and q2(t), λ
s
1, λ

s
2(t) are as defined in equations (6.7), (6.8), and (6.9), respectively.

I partitioned equation (7.15) and inequality (7.14) in a way similar to equation

(6.45) and (6.46), respectively. The size of the respective parts are roughly the

same as in appendix 6B and their analysis in appendix 6C, except that no single

input parameter increases or decreases excessively in (7.14) and (7.15). This effect

is due to well-defined probabilities, with 0 ≤ πs,c
σ (t) ≤ 1. In particular, part C’ of

equation (6.45) and part F’ of equation (6.46) stay within a reasonable range.

To proof the validity of the bargaining condition in t = 0, I again use the modified

version of Steffensen’s inequality, quoted on page 167, to estimate the integrals:

Part A’, part B’, |part C’|, and part D’ are all smaller than 1/λ
s
1. Further-

more, |part C’| is very small, compared to (1/ζ − part A’), (1/ζ − part B’), and

(1/ζ − part D’). From this it follows that Ψc
> 0 for sufficiently small ζ.

Part E’, |part F’|, part Ga’, |part Gb’|, and part H’ are all smaller than 1/λ
s
1.

|Part F’| < part H’ and part E’ < (1/ζ − part Ga’ + |part Gb’|). It follows that

the inequality ∆Vs,c
o (0)− ∆Vs,c

n (0) ≥ 0 is fulfilled for sufficiently small ζ.
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Condition ∆Vs,c
o (t)− ∆Vs,c

n (t) ≥ 0 is obtained as

∞∫

t

e−
∫ x

t λ
s
2(µ(τ)) dτ

[
δ + ζ

(
1 − πs,c

ho (x)− πs,c
lo (x)

)
∆Vs,c

o (0)

−ζ
(
1 − πs,c

hn(x)− πs,c
ln (x)

)
∆Vs,c

n (0)
]

dx

≥ 0.

(7.16)

The interpretation has the same tendency: No single input parameter increases

or decreases excessively, since all probabilities are defined with 0 ≤ πs,c
σ (t) ≤ 1.

The condition ∆Vs,c
o (0)− ∆Vs,c

n (0) ≥ 0 holds, so that condition (7.16) is met for

sufficiently small ζ and δ > 0.

The constraint a long time after an aggregate liquidity shock is equal to equation

(6.11), since πs,c
ln (ss) and πs,c

lo (ss) are zero.



Chapter 8

Summary and Conclusion

This dissertation addressed liquidity and aggregate liquidity shocks in over-the-

counter (OTC) markets. The topic was inspired by the pioneering work of Duffie,

Gârleanu, and Pedersen (2005, 2007), who initiated a new strand of literature

about asset pricing in OTC markets. I completed the aggregate liquidity shock

model of Duffie, Gârleanu, and Pedersen (2007), since it turned out to be imper-

fect.

First, I introduced the basic search and bargaining model by Duffie, Gârleanu,

and Pedersen (2005) for asset pricing in an illiquid OTC market. Illiquidity is

modeled with search frictions, which imply that trade does not happen instantly.

Upon finding a trading partner, asset prices are directly bargained between those

agents. To begin, I discussed the steady state equilibrium masses of investor

types. Then, I displayed the derivation of asset prices and bid-ask spreads in

steady state, which are based on the equilibrium masses. The presented formulas

can be applied flexibly to a buyer’s market, a seller’s market, as well as to a bal-

anced market in steady state. The results of the basic model presented in chapter

3 are steady state asset prices that are lower due to search frictions, compared to

prices in a perfect market. The more challenging it is to find a potential trading

partner, the higher the illiquidity discount.

Secondly, I analyzed the dynamics out of and towards the steady state of prices

and of return reactions after aggregate liquidity shocks, initially addressed by

Duffie, Gârleanu, and Pedersen (2007). Aggregate or systemic liquidity shocks

are associated with a sudden shift in agents’ preferences towards asset holding,

affecting a large fraction of investors simultaneously. Several investors experi-

ence a sudden decrease in their liquidity, leading to a forced withdrawal of as-

sets: The market is hit by a selling pressure. After presenting an analytical so-

187
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lution method for the aggregate liquidity shock model, I developed in chapter 4

the semi-analytical solution for the resulting linear time-varying (LTV) system of

differential equations, including market makers. The applied solution technique

is a Riccati transformation, which is specified by an algorithm derived in van der

Kloet and Neerhoff (2001, 2004) and van der Kloet, Neerhoff, and de Anda (2001).

My results revealed that the solution stated by Duffie, Gârleanu, and Pedersen

(2007, p. 1883) does not solve the associated system of differential equations.

The effects, implications, and general characteristics of aggregate liquidity shocks

on investors’ types, value functions, and prices, as well as the recovery pattern

of the market in general, were depicted in chapter 5 by means of a numerical ex-

ample: A shock causes a selling pressure, which results in a price drop. During

the recovery time, selling an asset is more time-consuming. The market recovers

from this shock over time, whereas the recovery time depends on search inten-

sity. Prices reach a normal level after a while, which is lower compared to the

steady state price level without aggregate liquidity shocks. Agents anticipate the

risk that a shock can occur in the future. My extension of the aggregate liquid-

ity shock model by market makers revealed additional results: Market makers

provide superior search service, since prices reach their normal level dispropor-

tionally faster; an increase in market liquidity results. Aggregate liquidity shocks

immediately reduce market makers’ bid-ask spread, because investors face better

outside options. In the long run, the bid-ask spread is only marginally affected

by the risk of repeated shocks.

The semi-analytical solution for the dynamic aggregate liquidity shock model

facilitated the possibility of verifying gains from trade, which is an essential pre-

requisite of the Duffie, Gârleanu, and Pedersen (2005, 2007) models. After analyz-

ing the Nash bargaining solution, which requires gains from trade, I showed in

chapter 6 that the aggregate liquidity model could endogenously induce a mar-

ket freeze, so that agents would not trade during all possible market conditions.

However, the aggregate liquidity shock model pretends that agents trade despite

no gains from trade, i.e. agents are forced to trade. No gains from trade result, in

particular, with high meeting intensities and are due to the risk of future shocks.

I suggested some modifications to both the meeting intensities and the character-

istics of the shock in order to address the issue of voluntary trading.

I demonstrated the limits of the aggregate liquidity shock model in chapter 7

by pointing out a model incompleteness: There is an economic inconsistency

between the underlying type process of investors µσ(t) and the correspond-

ing value functions Vs
σ(t) via the probabilities πho(t) and πhn(t) of high agents
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switching to a low state due to a shock. The aggregate liquidity shock model

implicitly assumes that these probabilities can become negative, implying that a

negative fraction of high agents can switch to low agents—which is impossible

from an economic perspective. This effect is the reason for no gains from trade in

the aggregate liquidity shock model. I completed the aggregate liquidity shock

model by including the missing link into the value functions. As a result, I fixed

all issues—no gains from trade, forced trading, and model inconsistency.

My completed aggregate liquidity shock model does not alter the intention of the

aggregate liquidity shock model, but allows for reasonable interpretations. The

overall findings and conclusions of Duffie, Gârleanu, and Pedersen (2007) apply

in general: An aggregate liquidity shock causes a selling pressure, which results

in an immediate price drop. Selling an asset is more time-consuming. A meet-

ing between a potential buyer and a potential seller always results in a voluntary

trade and there is no market freeze. This leads to a market recovery over time for

sure. Prices reach a fairly normal level after a while. This price level is lower com-

pared to the steady state price level without aggregate liquidity shocks, because

agents anticipate the risk of shocks in the future. Finally, I showed that market

makers’ bid-ask spread is—in the long run—only marginally affected by the risk

of aggregate liquidity shocks.

Further research can extend the completed aggregate liquidity shock model by

including search friction for varying degrees of investor’s sophistication in the

style of Feldhütter (2012). This increases the dimension of the LTV system of

differential equations and might lead to a more complex solution. An extension

that allows market makers to hold inventory for overcoming systemic liquidity

shocks, which occur once in a while, would be interesting as well.
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