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1 Introduction 

1.1 Skin as an interface and immunological organ 

The skin is the largest organ at the interface between the environment and the host. 

Consequently, the skin has a central role in host defense1. It continuously encounters 

signals from the environment, which may act as triggers of inflammation. Different 

functional compartments of the skin translate these signals into immune responses, 

both of the innate and the adaptive immune system2. The skin displays not only a 

protective function as a physiological barrier, but it is also a site of initial recognition 

of foreign substances, where decisions about the induction or inhibition of an immune 

response take place3. The skin’s innate immune system consists of three main 

components: anatomical/physical barrier (stratum corneum), cellular (antigen 

presenting cells, keratinocytes, mast cells, and PMNs) and secretory elements 

(antimicrobial peptides (AMPs), cytokines, and chemokines)4. It is now clear that the 

most effective anti-microbial response involves a balance between the innate and 

adaptive immune system5. 

The role of immune function of the skin is crucial, as immune dysfunction is 

implicated in the pathogenesis of a large variety of inflammatory skin disorders, 

including atopic and allergic contact dermatitis6,7. 

1.1.1 Atopic dermatitis is an inflammatory skin disease 

Atopic dermatitis (AD) is a chronic inflammatory skin disease. It affects at least 15% 

of children and is characterized by cutaneous hyperreactivity to environmental 

triggers6,8. Various studies indicate that AD has a complex etiology, with activation of 

multiple immunologic and inflammatory pathways. Complex interactions among 

susceptibility genes, the host’s environment, defects in skin barrier function and 

systemic and local immunologic responses contribute to the pathogenesis of AD8.  As 

AD has increasing prevalence rates especially in western countries, a ‘‘hygiene 

hypothesis’’ has been generated. According to this hypothesis increased hygiene 

standards with less infectious diseases during early years contributes to the 

development of AD and other allergic diseases because of the absence of pivotal 

immune priming inducing immune tolerance9,10. Detailed characterization of AD 

inflammation reveals a biphasic cutaneous cytokine milieu with an initial recruitment 



 5 

of IL-4-producing Th2 cells followed by a more mixed phenotype in the chronic 

phase11-13. 

The skin of most patients with AD is colonized with Staphylococcus aureus (S. 

aureus). S. aureus can be isolated from clinically affected and unaffected skin, and 

both acute and chronic AD lesions are colonized. Staphylococcal colonization density 

is significantly lower in healthy individuals than in patients with AD and bacterial 

counts on unaffected skin are lower than on affected skin14. Staphylococcus aureus 

colonization is regarded as one of the most important initiating and exacerbating 

factors in AD15,16.  

Patients with AD have an increased propensity toward cutaneous viral infections. 

Infections by herpes simplex virus (HSV) referred to as eczema herpeticum17. 

Epidemiological data suggest that AD patients with more severe disease and with 

greater Th2 polarity are at greatest risk for skin infections with HSV or S. aureus17,18. 

1.1.2 Staphylococcus aureus as a skin pathogen 

Staphylococcus aureus is a frequent pathogen on the human host, where it colonizes 

mucosal and dermal surfaces. S. aureus is able to cause a broad spectrum of 

infectious diseases from superficial cutaneous infections to the severe systemic 

sepsis19. S. aureus has a wide repertoire of virulence factors. For example, cell-

surface proteins (including protein A) that promote adhesion to damaged tissue and 

to the surface of host cells20, which is a prerequisite for colonization and disease. 

Virulence factors are crucial for development of staphylococcal infections, which 

make them important targets for the host immune system in order to generate 

immune responses. Some of the most important inducers of such immune responses 

are lipoproteins (Lpp). They belong to one of the major classes of cytoplasmic 

membrane-anchored proteins. Lpp are functionally important at the interface between 

the membrane and the cell wall. Many of them are part of ABC transporters. They are 

involved in nutrient uptake, in mediating antibiotic resistance and some of them have 

a role in protein folding21. One predominant staphylococcal Lpp is SitC22, which is the 

binding component of the staphylococcal iron transporter SitABC. In immunological 

competent individuals, innate immune responses limit the establishment of the 

infectious disease, providing a rapid defense. Keratinocytes, which comprise 90-95% 

of the total epidermal cell population, play a pivotal role for the first defence. In 

addition to their function in the maintenance of the keratin barrier, they produce vast 

repertoire of cytokines, chemokines and AMPs3. Even a simple skin disruption or an 
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ultraviolet insult can initiate production of cytokines by keratinocyte23. The cytokines 

and chemokines further shape the local microenvironment by attracting and 

activating other immune cells. Both, keratinocytes and professional phagocytes such 

macrophages, neutrophils and dendritic cells, recognize S. aureus19. This recognition 

is managed by the binding of the bacterial surface of S. aureus to so called pattern 

recognition receptors (PRRs) on immune cells.  

 

1.2 Pathogen associated molecular patterns (PAMPs) and pattern-

recognition receptors (PPRs) 

PRRs recognize highly conserved molecular patterns common to many classes of 

pathogens, known as pathogen associated molecular patterns (PAMP)24. PAMP are 

nucleic acids, lipids, lipoproteins, carbohydrates or peptidoglycans from bacteria, 

fungi or protozoa. PRRs are expressed constitutively by the host and they are 

germline-encoded. Both the epithelial barrier cells and resident innate immune cells 

in the skin express PRRs7,25. These innate responses occur rapidly and are efficient 

at killing pathogens, therefore limiting pathogen-derived tissue injury. Indeed, in the 

early hours after infection, activation of PRRs results in fast killing of pathogens either 

directly by the cells of innate immune system such as macrophages or indirectly by 

induction of proinflammatory responses mediated by the release of cytokines and 

chemokines. There are several classes of PRRs: Toll like receptors (TLRs), NOD-like 

receptors (NLRs) and RIG-I-like receptors (RLRs).  

1.2.1 Toll-Like Receptors  

Among PRRs, Toll-like receptors (TLRs) are a well characterized family with distinct 

recognition profiles26. TLR1–10 are the best characterized human PRRs. The 

recognition of PAMPs by TLRs occurs in various cell compartments, including the cell 

surface (TLR1, 2, 4–6, 10) and endosomes (TLR3, 7–9). The TLR family members 

are expressed on the cell membranes of innate immune cells (DCs, macrophages, 

natural killer cells) and of adaptive immunity cells (T and B cells) and of non-immune 

cells (epithelial and endothelial cells)27. This fact emphasizes their function across 

the entire spectrum of innate and adaptive immunity. TLRs are believed to function 

as homo- or hetero-dimers. Most TLRs transduce a signal through the intracellular 

adapter molecule called myeloid differentiation factor 88 (MyD88), activating NF-�B 
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and other transcription factors, which results in the induction of pro-inflammatory 

cytokine genes28.  

TLR2 has emerged as a principle receptor for Gram-positive bacteria, especially S. 

aureus29 and it is now known that staphylococcal Lpp are the major ligands for 

TLR221,30. Purified native staphylococcal Lpp, including SitC, were shown to induce 

cytokines through the TLR2-MyD88 signaling pathway31. The use of S. aureus 

mutants deficient in maturation of lipoproteins (�lgt) and improved Lpp purification 

methods show that TLR2 is activated by Lpp29,30. In vivo, different murine infection 

models showed that mice, deficient in TLR2, display increased susceptibility to 

staphylococcal infections with severe disease course, higher bacterial loads in tissue 

and/or reduced inflammation32,33. When compared to other TLRs, TLR2 recognizes a 

remarkably broad range of PAMPs. These include bacterial lipopeptides from Gram-

positive bacteria and lipoarabinomannan from mycobacteria. This high diversity of 

ligand recognition by TLR2 comes possibly from its unique ability to homodimerize as 

well as heterodimerize with TLR1 and TLR634.  

1.2.2 TLR2 heterodimers and ligands  

Ozinsky et al.35 were the first to show, that TLR2, unlike other TLRs, has to form 

heterodimers with TLR1 or TLR6, to be able to initiate cell activation. Studies using 

knockout mice identified TLR1 as the coreceptor required for the recognition of 

bacterial triacylated lipoproteins such as Pam3Cys36,37. Diacylated components such 

as lipoprotein FSL-1 and Pam2Cys interact with TLR2/TLR6 heterodimers38,39. Using 

fluorescence resonance energy transfer (FRET) in human primary monocytes, 

Triantafilou et al.34 have shown that, a small preexisting population of TLR2 

heterodimers increases rapidly upon ligand treatment. Additionally it was shown, that 

TLR2/6 ligand binding reduced the percentage of preformed TLR2/1 heterodimers 

but not vice versa. Employing lipid raft-disrupting agents40, it was demonstrated that 

TLR2 heterodimers translocate to lipid rafts, depending on their interactions with 

specific ligands. The functional properties of S. aureus lipopeptides have been 

investigated in different cell types39,41,42. But data concerning functional 

consequences of activated different TLR heterodimers in vivo are sparse.  
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1.3 The adaptive immune response requires innate immune 

recognition  

Recognition of PAMPs by TLRs and other pathogen receptors on skin cells initiates a 

signaling cascade, leading to activation of transcription factors activator protein (AP)-

1 and nuclear factor (NF)-�B, which ultimately results in the production of pro-

inflammatory cytokines, chemokines, AMPs and inducible enzymes in the skin. AMPs 

and chemokines have several effects. They repel infection by direct killing of the 

pathogen. Beside this, they are chemotactic for phagocytes and dendritic cells (DCs). 

Activation of phagocytes leads to triggering of the respiratory burst and killing of 

engulfed organisms43. DCs are the most important antigen presenting cells (APCs). 

Activated DCs migrate to skin draining lymph nodes and present antigens, captured 

in the skin, to antigen-specific T cells. This triggers the activation and proliferation of 

T cells44,45. Beside this, DCs direct the immune phenotypes of T cells, determining T 

cell polarization to the different Th subtypes. CD4+ T cells are capable of 

differentiating into at least 4 distinct functional phenotypes: IFN-� �producing Th1 

cells, IL-4 producing Th2 cells, IL-17 producing Th17 cells, and inducible regulatory T 

cells (Treg), which inhibit immune responses46. During this process DC-derived 

cytokines play the most important role. The differentiation of CD4+ T cells into Th1 

depends on IL-12, IL-4 induces Th2, whereas IL-23 together with IL-1�, IL-6 and with 

or without TGF-� induce Th17 cells. Furthermore, IL-10 is important for the inducible 

suppressive Tregs47. Activated T cells acquire effector functions and become effector 

T cells (Teff). They express new homing receptors, which direct their migration into 

the tissue where the antigen was detected. Once in this location, Teff cells produce 

cytokines that activate local cells, among them other immunological cells to control or 

eliminate the foreign material48.  

1.4 Mechanisms to limit inflammation 

Overactivation of TLRs leads to the generation of strong pro-inflammatory signals 

with persistence of proinflammatory cytokines, such as TNF� and IL-649. Probably 

the best known example of a dangerous inflammatory reaction during infection is the 

sepsis syndrome, in which generalized inflammation induced by overproduction of 

cytokines leads to hypotension, intravascular coagulation, multiple organ failure, 

which finally could lead to death50. Thus, mechanisms to terminate and limit 

cutaneous inflammation need to be effective. These regulatory feed-back 
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mechanisms involve induction of tolerogenic DCs, apoptosis of effector T cells, 

release of anti-inflammatory cytokines or activation of Treg cells51. In recent years 

Myeloid-derived suppressor cells (MDSCs) have been appreciated as one of the 

main cell populations responsible for regulatory immune responses, both adaptive 

and innate. 

1.4.1 Myeloid-derived suppressor cells  

MDSCs are a heterogeneous group of myeloid cells comprised of hematopoietic 

progenitor cells and precursors of macrophages, DCs and granulocytes52. In mice, 

MDSCs express both the myeloid lineage differentiation antigens Gr-1 (Ly6G and 

Ly6C) and �M integrin CD11b. In recent years several other markers have been used 

to describe specific subsets of these cells. Many MDSCs in tumor bearing mice 

coexpressed CD115 and CD12453. Macrophage marker F4/8054 and costimulatory 

molecule CD8055 have also been described on some subsets of MDSCs. 

MDSCs were originally described as a population of cells that accumulates in the 

blood and lymphoid organs of tumor-bearing mice52. Expansion of MDSCs has been 

detected in almost all tumor models. However, MDSCs have been shown to regulate 

immune responses during other pathological situations including bacterial and 

parasitic infection, autoimmune pathologies and inflammation. An expansion of 

MDSCs was observed during infections with different microorganisms, such as 

Salmonella typhimurium56, Trypanosoma cruzi57, Candida albicans58 or Toxoplasma 

gondii59. During a polymicrobial sepsis, MDSCs can induce the suppression and Th2-

polarization of the T cell response. Among others, this activation of MDSCs is based 

on MyD88, an adaptor protein on different TLRs60. The induction of MDSCs during 

chronic inflammation is dependent on secretion of different interleukins like IL-1�61 

and IL-662. 

A common feature for MDSCs is their high potential to suppress T cell responses. 

MDSCs from tumor-bearing animals have been shown to suppress CD8+ cells63. 

Multiple mechanisms could be involved in this process. T cell apoptosis is one such 

mechanism64. MDSCs can cause immune suppression through inhibition of activation 

of T cells65. This can be achieved by TCR � chain downregulation66,67 or by induction 

of peripheral tolerance63 or by changes in the pattern of cytokines secreted by T 

cells68. In most cases, the effective suppression requires close cell-cell-contact68. 

This suggests that the involved cells interact either through membrane-bound 

molecules and/or through the release of rapidly degradable soluble mediators.  
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Nitric oxide (NO) is one of the main suppressive factors produced by MDSCs68. Many 

experimental settings show that T cell suppression by MDSCs depends on NO57,69,70. 

The inducible NO-synthase (iNOS) and arginase can generate NO from the amino 

acid L-arginine. The inhibition of iNOS and arginase abolished suppression by 

MDSCs. The generation of NO by MDSCs also needs cell-cell-contact70. NO is 

known to block the IL-2 signal transduction cascade in T cells71. Apoptosis of T cells 

induced by NO was also described72. Nagaraj et al. demonstrated a nitration of TCR 

leading to anergy as one mechanisms of CD8+ T cell suppression by MDSCs73. 

Despite recent progress, the precise function of MDSCs in the context of 

inflammation and the mechanisms of MDSCs induction are not well-understood. 
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1.5 Aim of the thesis 

The skin harbors an active immune network playing a crucial role in host defense and 

in shaping immune responses. The aim of this work was to investigate how the 

constant interaction of the skin with bacteria impairs the immune system. In particular 

it was important to dissect the functional consequences of TLR2 activation in the 

skin. Using various in vivo mouse models of cutaneous inflammation we mimicked 

different immunological situations. Cutaneous application of bacterial substances, 

bacterial lysates or living bacteria was used to imitate the contact between the skin 

and microorganisms. Investigation of AD patients, where this intense interaction of 

bacterial substances and the cutaneous immune networks is part of disease 

pathogenesis, further completed this study, providing clinical data.  
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2 Results 

2.1 TLR2 ligands enhance Th2-mediated dermatitis 

To investigate the impact of TLR2 ligands on AD inflammation in the early phase of 

AD was the aim of S. Kaesler in her work “TLR2 ligands promote chronic atopic 

dermatitis through IL-4 mediated suppression of IL-10”. For this purpose a 

mouse model for acute AD inflammation was established. OVA-specific Th2 cells 

were adoptively transferred and activated in the skin of naive mice. In this model ear 

swelling correlates with antigen specific inflammation. Using IL4-/- cells and mice 

Kaesler et al. have shown that Th2-cell mediated dermatitis was dependent on IL-4, 

which is known as a dominant cytokine of human AD in the early phase of 

inflammation13,74. It is also known that S. aureus is a dominant trigger of AD15,16. 

Lipoproteins and lipoteichoic acid (LTA) were shown to be predominant 

staphylococcal TLR2 ligands30,75. Moreover, Travers et al demonstrated a correlation 

between the amount of LTA in AD lesions and AD aggravation75. Using LTA together 

with the lipoprotein Pam2 in the adoptive transfer experiments, the activation of TLR2 

in combination with IL-4 enhanced and sustained cutaneous inflammation. These 

data suggest that in the early phase of AD, where Th2-mediated inflammation 

predominates, TLR2 ligands (from pathogenic S. aureus) cause a transformation of 

the cutaneous inflammation from a transient into a chronic, persistent form.  

By experiments, where WT or Tlr2-/- Th2 cells were adoptively transferred into either 

WT or Tlr2-/- mice  Kaesler et al. have found that this enhancement of dermatitis was 

independent of TLR2 on T cells. This indicates that the predominant target cells of 

pro-inflammatory TLR2 signals are skin resident cells, most likely DCs, because 

these cells are the most important APC in the skin. Searching for the underlying 

mechanism Kaesler et al. discovered that the concerted activation of TLR2 and IL-4-

receptor on innate immune sentinels potently suppressed IL-10. IL-10 is the most 

important anti-inflammatory cytokine with immunomodulatory properties76. So we 

suggest that IL-10 suppression exacerbates Th2-mediated dermatitis and initiates the 

chronic phase of persistent inflammation.  

Taken together, these data show that TLR2 activation on skin resident cells 

aggravates cutaneous inflammation through the binding of ligands from pathogen 

bacteria. 
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2.2 Non-pathogenic bacteria alleviate cutaneous inflammation 

The skin is constantly colonized with bacteria, but detectable inflammation is rare in 

healthy individuals. This indicates that there must be mechanisms, which inhibit 

harmful inflammation. A recent double blind placebo controlled clinical trial, 

performed by the Department of Dermatology of the University of Tübingen, has 

given a hint about a possible mechanism. It demonstrated that the non-pathogenic 

microbe Vitreoscilla filiformis (Vf) abrogated cutaneous inflammation in AD patients 

when directly applied onto patients´ skin77. The aim of the study of T. Volz et al. 

“Nonpathogenic bacteria alleviating atopic dermatitis inflammation induce IL-

10-producing dendritic cells and regulatory Tr1 cells” was to investigate the 

underlying molecular mechanism of this inhibition. For our in vivo experiments we 

first utilized a mouse model of AD, in which mice of the NC/Nga strain were 

sensitized to the allergen and hapten fluorescein isothiocyanate (FITC). NC/Nga mice 

are a specific strain that has been shown to develop AD-like skin lesions and clinical 

features most closely resembling human AD78. In this model ear swelling also 

correlates with antigen specific inflammation. The addition of Vf lysate during several 

episodes of allergen contact showed significantly reduced ear swelling after allergen 

challenge, indicating a reduction of skin inflammation. Ex vivo antigen specific 

stimulation of draining lymph node revealed a reduction in T cell proliferation in Vf-

treated mice. Consistently, FITC-specific IFN-� production by T cells, which is the 

hallmark cytokine of chronic AD13,74 was also significantly reduced. Beside this, only 

T cells from mice previously exposed to Vf displayed antigen specific production of 

IL-10, whereas control mice failed to do so. IL-10 is the most important anti-

inflammatory cytokine with multifunctional properties depending on cell types and 

settings76. It was known that IL-10 production by DCs contributes to the induction of 

tolerance79. In vitro investigations, conducted by T. Volz, further dissected the 

mechanism of this immune inhibition: Vf signals induced high levels of IL-10 and 

reduced the production of IL-12p70 in human and mouse DCs. Experiments with DC-

T cell co-cultures demonstrated that these IL-10+ DCs induced IL-10+ Treg cells, 

which efficiently suppressed effector T cells. Investigations of innate immune 

pathways, activated by Vf, revealed that IL-10 production by DCs was completely 

dependent on TLR2.  

Thus non-pathogenic bacteria could induce tolerogenic immune responses to resist 

the harmful inflammation. One may speculate that in the absence of a balance 
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between signals of non-pathogenic and pathogenic bacteria inflammation is induced 

due to functional dominance of signals of pathogenic bacteria. This situation could be 

true for inflammatory skin diseases such as AD.  

2.3 Staphylococcus aureus-derived lipoteichoic acid suppresses T 

cells 

As described before, Kaesler et al. found the aggravation of cutaneous inflammation 

by TLR2 ligand LTA. Interestingly, in another model of cutaneous inflammation we 

observed an opposite effect. In the model of contact hypersensitivity (CHS) to the 

weak hapten FITC, Chen et al. mimicked FITC-induced and T cell-mediated mild 

cutaneous inflammation described in the work “Staphylococcus aureus-derived 

lipoteichoic acid induces temporary T cell paralysis independent of TLR2”. The 

cutaneous inflammation of this mouse model resembles the immune situation in non-

lesional skin of AD patients. To our surprise, and in contrast to the work of S. 

Kaesler, additional exposure to LTA did not significantly amplify ear swelling. 

Therefore we investigated the dynamics of T cell cytokine expression in FITC CHS. 

Upon exposure to LTA, cutaneous IL-4 and IFN-� mRNA expression was 

suppressed. Moreover, ex vivo T cell proliferation of draining lymph nodes was 

strongly inhibited. This indicated a possible direct effect of LTA on T cells. Therefore 

the properties of LTA were then further investigated in vitro in respect of their impact 

on T cell proliferation. We found that, in contrast to Pam2, LTA treatment led to 

significant suppression of T cell proliferation in vitro. This suppression was 

independent of the mode of T cell activation (antigen specific activation, unspecific 

activation by anti-CD3/28, activation by mitogen as PMA/Iono, activation by 

superantigen as SEB) and this suppression was found in both, mouse and human, T 

cells. Further experiments revealed that the LTA-exposed T cells were still viable and 

that the effect was not mediated by apoptosis. Moreover, the T cells remained fully 

responsive to subsequent stimulation. Interestingly, the effect was independent of 

TLR2 signaling.  

So we found two opposing functions of LTA: Kaesler et al. showed an aggravation of 

inflammation due to LTA (pro-inflammatory effect); in contrast, the work of K. Chen 

showed clearly that LTA suppress T cell proliferation (anti-inflammatory effect). 

Therefore in the next two experiments we wanted clarify the conditions, under which 

these effects could be relevant in vivo. To investigate the effect of LTA on T cells in 
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vivo, we needed a model with increased frequency of antigen-specific activated 

(effector) T cells. This was achieved by using donors for FITC specific T cells. Mice 

serving as donors were sensitized with FITC and draining lymph nodes and spleens 

of these mice were isolated. CD3+ T cells were then sorted and transferred into 

recipient mice, which were previously sensitized with FITC. The next day recipients 

were challenged with FITC or vehicle control and exposed to either LTA or PBS in 

addition. Interestingly, when challenged with vehicle only, in the absence of antigen, 

LTA elicited an ear swelling response, indicating direct pro-inflammatory effects of 

LTA. However, in the presence of antigen and T cell activation, LTA significantly 

reduced cutaneous inflammation (anti-inflammatory effect), possibly through direct 

inhibition of T cells.  

These data indicate that LTA may function as a TLR2 ligand on skin resident cells, 

activating the innate immune system and leading to inflammation. In contrast, LTA 

suppresses T cell proliferation directly in a TLR2 independent manner. So we further 

hypothesize that an early innate response is mediated by pathogen recognition 

receptors and results in inflammation in order to fight bacteria quickly. Whereas 

during the later immune responses, where the T cell-mediated immune response 

evolves, inflammation could be harmful and should be terminated, for example by 

LTA which controls T cell activation. The latter is transient to avoid prolonged periods 

of immune suppression. 

2.4 Cutaneous sensing of TLR2/6 ligands suppresses T cell 

immunity 

2.4.1 Cutaneous exposure to TLR2/6 but not to TLR2/1 ligands 

ameliorates T cell-mediated recall responses  

Further investigations of the role of TLR2/6 versus TLR2/1 ligands in immune 

response and in cutaneous immunity was one of the goals of the work of Skabytska 

et al. in “Cutaneous innate immune sensing of TLR2/6 ligands suppresses T 

cell immunity by inducing myeloid-derived suppressor cells”. In this work 

human AD and murine models were used to investigate the immune consequences 

of a cutaneous encounter with dominant PAMPs of Gram-positive bacteria. To 

investigate T cell-mediated cutaneous inflammation we used a mouse model of 

contact hypersensitivity to FITC. Mice were sensitized with FITC, and one week later, 

the subsequent encounter with FITC was complemented by cutaneous application of 
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the lipopeptide Pam2. The functional consequences of the combined antigen and 

Pam2 encounter were evaluated 5 days later by applying FITC to the ear’s skin. In 

FITC-sensitized control mice, the peak of T cell mediated CHS was determined by 

ear swelling thereafter. In contrast to our expectations, previous cutaneous exposure 

to the TLR2/6 ligands Pam2 and FSL-1 did not enhance, but almost completely 

abrogated FITC CHS and FITC-specific ex vivo T cell proliferation. Interestingly, and 

in contrast to Pam2, the TLR2/TLR1 ligand Pam3 failed to suppress FITC CHS and T 

cell proliferation. Next we wanted to know, whether bacterial lipopeptides from 

pathologically relevant bacteria have the same consequence for immune responses. 

Therefore we established a mouse model of epicutaneous bacterial colonization in 

the work of Wanke at al. “Staphylococcus aureus skin colonization is promoted 

by barrier disruption and leads to local inflammation“. This model is especially 

well suited for investigations of the natural route of skin colonization. In this mouse 

model the bacteria are not needed to be injected sub- or intra-cutaneously into the 

skin, but are applied onto the skin epicutaneously which resembles the natural way of 

skin infection. The integrity of the skin was previously affected by skin barrier 

disruption due to tape-stripping. This is also similar to the situation in AD, which is 

characterized by skin barrier defects6,80. The wild type (WT) mice were shaved and 

the skin was disrupted by tape-stripping of different strength (mild and strong), which 

however did not create wounds of the skin (confirmed by histological analysis). Living 

S. aureus bacteria were added to filter paper discs, placed onto the skin, and 

covered by Finn Chambers on Scanpor. Then the fixation was done by a stretch 

plaster. After overnight occlusion, Finn Chambers and plasters were removed to 

allow the mice to clean the skin and to ensure that the observed bacteria colonize the 

skin and are not only present on the skin surface. The analysis of colony-forming 

units (CFU) thereafter revealed that bacteria persist on the skin during at least 6 days 

(the longest observation time) and that the infection efficiency and the persistence of 

S. aureus was significantly higher in strongly tape stripped skin, compared to non- or 

mildly tape stripped skin. This suggests that epithelial barrier defects facilitate 

cutaneous S. aureus colonization, which is in accordance to further AD studies80. We 

also found an indication of enhanced cutaneous inflammation at the sites of S. 

aureus colonization: RT-PCR analysis of the infected skin revealed a significant 

elevation of all investigated cytokines (IL-1�, IL-6, TNF-�, IFN-�) and induction of 

antimicrobial peptide (AMP) expression in comparison to non-infected skin. This 
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indicates that S. aureus application and persistence on barrier-disrupted skin induces 

an inflammatory cytokine response and that our model is suitable for investigation of 

cutaneous inflammation following bacterial colonization. Next we combined this 

model with the FITC CHS model to investigate whether living S. aureus on the skin 

also cause immune suppression. To clarify the role of lipoproteins in this process we 

additionally used lipoprotein-deficient S. aureus mutant (�lgt) bacteria. Bacteria were 

applied during FITC re-exposure of FITC-sensitized mice. Similar to the TLR2/6 

ligands, wt bacteria, but not lipoprotein-deficient S. aureus caused immune 

suppression.  

These data show for the first time that cutaneous exposure to bacterial TLR2/TLR6 

ligands is sufficient to cause systemic immune suppression. 

2.4.2 Skin infection-induced immune suppression is mediated by 

Gr1+CD11b+ myeloid-derived suppressor cells 

Investigating the cells which could mediate the immune suppression following 

cutaneous TLR2/6 ligands exposure, we found a strong increase of splenic 

Gr1+CD11b+ cells only in these experimental conditions. Immature Gr1+CD11b+ cells 

are known as myeloid-derived suppressor cells (MDSCs) because of their ability to 

suppress T cell activation. Indeed, FITC specific ex vivo T cell proliferation was 

impaired in animals previously exposed to TLR2/6 ligands. We next investigated 

patients with AD as a model for massive cutaneous innate sensing of Gram-positive 

bacteria. In humans, MDSCs are typically described as CD11b+CD33+HLA-DR-CD14- 

cells52. Compared to healthy donors we observed a significant increase of MDSCs in 

the peripheral blood. Importantly, the upregulation of human MDSCs in peripheral 

blood was very impressive in patients with severe dermatitis and eczema herpeticum, 

which is a severe cutaneous viral infection resulting from immune suppression.  

In FITC CHS, T cells migrate to the skin and elicit FITC specific dermatitis. Therefore, 

we wondered whether MDSCs were also recruited to the skin. Indeed, 8 h after FITC 

application Gr1+CD11b+ cells were significantly increased in the skin of mice exposed 

to Pam2. Similarly, we investigated infected human skin and found a significant 

increase of MDSCs in AD in comparison to healthy skin, indicating that bacterial 

colonization and subsequent skin inflammation induces MDSCs accumulation in the 

skin also in humans.  
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2.4.3 Suppression of T cell activation by MDSCs induced by cutaneous 

innate immune sensing 

Recruitment of MDSCs to the skin suggested a MDSC-mediated suppression of T 

cell activation in the skin in vivo. Indeed, FACS-analysis of ear skin tissue following 

the final FITC-exposure revealed a significant decrease of CD3+ T cells and IFN-�-

production following Pam2 exposure. To better explore, how this MDSCs induced 

immune suppression is mediated, we isolated MDSCs 10 days after Pam2 exposure. 

MDSCs are known to be a very heterogeneous cell population with at least two cell 

subpopulations with different suppressive properties53,81,82. Monocytic Ly6C+ MDSCs 

have been described as more suppressive compared to granulocytic Ly6G+ 

MDSCs53,83. Therefore we isolated these two MDSCs populations and co-cultured 

them with naïve splenocytes at different ratios to prove their suppressive activity. 

Naïve splenocytes were activated with anti-CD3/CD28 and their proliferation was 

analyzed. Following co-culture with Ly6C+ MDSCs at a ratio of 2:1, almost complete 

suppression of T cell proliferation was observed, while Ly6G+ cells from our model 

were not suppressive. MDSCs´ immunosuppressive activity was reported to be a 

result of the activation of inducible NOS (iNOS) and arginase 1, leading to L-arginine 

depletion and increased production of NO68. Indeed, Ly6C+ MDSCs from Pam2-

exposed animals produced high levels of NO. NO production and T cell suppression 

by Ly6C+ MDSCs was completely abrogated in a transwell experiment, indicating that 

physical contact of MDSCs with T cells as it is likely happening in the skin and MDSC 

activation by T cells is a prerequisite for MDSC´s NO production and MDSC-

mediated immune suppression. To collect further evidence, we investigated PBMCs 

of AD patients and were able to detect a distinct iNOS+ population of CD11b+CD11c- 

cells which most likely are NO producing MDSCs. These cells were completely 

absent in healthy individuals. Moreover, using three color fluorescence 

immunohistology in AD skin samples, we also detected iNOS+CD11b+CD11c- cells. 

To investigate the evidence of MDSCs mediated immune suppression in humans, we 

then analyzed peripheral blood of AD patients and found T cell receptor � chain 

significantly down-regulated, which is known to be a general characteristic of immune 

suppression and one of the major features of MDSC-mediated T cell inhibition66,67. To 

further investigate whether human MDSCs were suppressive, we depleted CD11b+ 

cells from PBMCs and analyzed proliferation of T cells. In almost all healthy 

volunteers (7 of 8) CD11b depletion resulted in reduced T cell proliferation, on 
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contrary, this was only observed in one out of 7 AD patients. This finding 

demonstrates that MDSCs, which are present among the CD11b+ population in AD 

patients but not in healthy individuals, are immunosuppressive.  

These data, together with the findings of increased numbers of MDSCs in AD skin 

and elevated T cell proliferation following MDSCs depletion, indicate that MDSCs are 

not only increased in AD blood and skin, but also exert their suppressive activity 

allowing e.g. herpes viruses to spread. 

 

2.4.4 Pam2-induced immune suppression is dependent on cutaneous 

TLR2  

Since our data showed that cutaneously induced MDSCs are potent suppressors of T 

cell mediated immune responses, it was of major interest, to explore how innate 

immune sensing in the skin initiates MDSCs. Therefore, we next determined the role 

of TLR2. Tlr2-/- and wild type mice were treated with or without cutaneous Pam2 

exposure. Previous Pam2 exposure inhibited FITC CHS in wt mice. Conversely, 

Pam2 exposure in Tlr2-/- mice failed to inhibit FITC-specific CHS and T cell 

proliferation. Accordingly, MDSCs accumulation and systemic reduction of T cells 

was not detectable in Tlr2-/- mice previously exposed to Pam2. Cutaneous innate 

immune sensing through TLR2 may act through resident skin cells or recruited 

immune cells. Thus, mouse chimeras were generated to distinguish if TLR2 sensing 

is managed by skin resident or by recruited hematopoietic cells. Wild type mice 

reconstituted with wild type bone marrow (BM) (WT + WT-BM) and wild type mice 

that obtained Tlr2-/- BM (WT + Tlr2-/---BM) upregulated MDSCs following Pam2 

exposure. In contrast, Tlr2-/-- mice reconstituted with WT-BM (Tlr2-/- + WT-BM) failed 

to accumulate MDSCs, similar to control Tlr2-/-- mice with Tlr2-/-- BM (Tlr2-/-- + Tlr2-/--

BM). Thus, TLR2 expression on skin resident cells is necessary and sufficient for 

accumulation of MDSCs.  

2.4.5 IL-6 is required for Pam2-induced immune suppression 

Our previous experiments have shown that cutaneous Pam2 sensing through TLR2 

is sufficient to induce MDSCs and consecutive suppression of cutaneous recall 

responses. To identify the underlying mechanisms, we analyzed cutaneous mRNA 

expression following the application of FITC with or without Pam2 or Pam3 in 
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sensitized mice. Interestingly, both Pam2 and Pam3 unequivocally and moderately 

upregulated TNF and CXCL2 mRNA compared to FITC-only treated mice. Strikingly, 

upregulation of IL-6 mRNA in the skin was most pronounced following Pam2 

exposure. In comparison with skin following FITC-only or FITC-plus-Pam3 exposure, 

cutaneous Pam2 exposure induced a 400-fold upregulation of IL-6 mRNA. To 

regulate MDSC induction in the bone marrow, cutaneous IL-6 must reach the blood 

stream. Indeed, IL-6 concentrations in mouse sera strongly increased one day after 

cutaneous Pam2 exposure. These data suggest that IL-6 plays a crucial role in Pam2 

induced MDSC induction; therefore, IL6-/- mice were investigated. In contrast to WT 

mice, cutaneous Pam2 exposure in IL6-/- mice failed to reduce FITC-specific CHS, 

and no induction of MDSCs could be detected.  

Taken together, these data suggest a scenario in which Pam2 is sensed by TLR2 on 

skin-resident cells, leading to the expression and secretion of IL-6 in such high 

amounts that MDSCs expand and accumulate, causing systemic immune 

suppression, which leads to the inhibition of cutaneous recall responses. 

2.5 IL-4 abrogates T cell-mediated inflammation by the silencing of 

IL-23 

IL-4 is another pleiotropic cytokine, similar to IL-6. In the work described above, 

Kaesler et al. have found that IL-4 is a key cytokine for AD aggravation. On the other 

hand, Ghoreshi et al. has shown an improvement of cutaneous inflammation in 

humans in another skin disease (psoriasis) by IL-4 therapy84. This indicates a 

complex way of IL-4 function and its interaction with other cytokines in vivo. Recently 

it has become evident, that IL-17 is a key cytokine in the pathogenesis of 

psoriasis85,86. Therefore the hypothesis of the work of Guenova et al. “IL-4 

abrogates Th17 cell-mediated inflammation by selective silencing of IL-23 in 

antigen-presenting cells” was to ask, if IL-4 could affect IL-17 directly or indirectly 

for example by targeting the polarization of T cells. DCs and their cytokines 

determine the quality of an immune response45. In particular, they direct the 

phenotype of T cells87. In vitro experiments with DCs of E. Guenova have given a 

hint about the mechanism of IL-4-mediated suppression of T cell-mediated 

inflammation. They have shown that addition of IL-4 to different human DCs cultures 

caused a strong reduction of IL-23 with simultaneous induction of IL12p70, which 

was visible on RNA level as well as on protein level. IL-23 is crucial for the 
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polarization and maintenance of Th17 cells. Consequently the subsequent DC-T cell 

coculture revealed that IL-4 treated DCs failed to induce IL-17 producing Th17 cells. 

Instead, CD4+ T cells developed a highly polarized Th1 phenotype with high IFN-� 

production. The analysis of human skin by histological staining and RT-PCR has 

detected a significant enhancement of both IL-23 and IL-17 in psoriatic skin. 

Consistent with in vitro data, the IL-4 therapy caused dose-dependent reduction of 

these cytokines. Simultaneously, IL-12 was induced. These data indicate that IL-4 

affected DCs change by re-programming their phenotype to low IL-23 and high IL-12 

producers with a reduction of Th17 cells as a consequence. These in vitro data had 

to be proven in an in vivo mouse model. We used the 2,4,6-trinitrochlorobenzene 

(TNCB)-induced delayed type hypersensitivity reaction (DTHR), a suitable model for 

investigation of IL-17-mediated cutaneous inflammation. Systemic administration of 

IL-4 to TNCB-sensitized mice reduced cutaneous inflammation (detected as ear 

swelling). An RT-PCR analysis of the inflamed tissue, following the IL-4 therapy, 

showed a strong reduction of IL23A and of IL17A in the ear tissues of mice 

challenged with TNCB. To directly test whether IL-4 prevented inflammation and the 

related DTHR primarily by suppressing IL-23, we treated sensitized mice with IL-4 

during a TNCB challenge, and one group of IL-4-treated mice was treated with 

recombinant mouse IL-23. The IL-4 therapy severely suppressed IL-23 levels and the 

DTHR almost to background levels. In sharp contrast, replacing the missing IL-23 

fully restored the cutaneous DTHR. 

The in vitro DC data and the results of the human study strongly suggested that DCs 

are the key cells, which are affected by IL-4. But we could not exclude that IL-4 also 

targets other cell types (for example T cells) in vivo. To find the mechanism of IL-4-

mediated immune regulation in vivo, we generated bone marrow (BM) chimeric mice, 

in which IL-4 signaling is selectively blocked in either T cells or DCs. We generated 

BM chimeric mice with hematopoietic cells consisting of Stat6-/- and T cell-/-cell mix 

(Stat6-/-/T cell-deficient mice). STAT6 is an important molecule for the IL-4R signaling 

pathway; therefore STAT6-deficient mice could be considered as IL-4 signaling 

deficient88. After transplantation those chimeric mice only harbored T cells that are 

deficient of STAT6 and therefore unresponsive to IL-4 therapy. When challenging the 

sensitized chimeric mice, we observed a comparable ear swelling in all the chimeric 

mice. This demonstrates that the beneficial effect of IL-4 in cutaneous inflammation is 

not mediated by T cells, but rather by DCs. To prove this, we generated BM chimeric 



 22 

mice with hematopoietic Stat6-/-/MhcII-/- cell mix (Stat6-/-/MhcII-/- mice). Those mice 

have STAT6 negative DCs (MHC-II+), in which IL-4 signaling is impaired, whereas 

the STAT6+ T cells remained responsive to IL-4. When we treated the Stat6-/-/MhcII-/-  

mice with IL-4 during the challenge phase, cutaneous inflammation was significantly 

reduced to the levels comparable to non-treated mice. These data thus indicate that 

the anti-inflammatory effect of IL-4 is directly mediated via DCs and not by T cells. 

Taken together, the data of this study show that IL-4 inhibits inflammation by 

suppressing the capacity of DCs to produce IL-23. Depleted IL-23 levels then cause 

lower numbers of Th17 cells, which leads to increased skin inflammation and induce 

tissue damage in psoriasis. 

 

In conclusion, we identified that cutaneous TLR2 signaling has multifunctional 

consequences on skin immunity and systemic immune responses. TLR2 activation 

can cause both, an amplification of cutaneous inflammation and an immune 

suppression due to induction of IL-10 production, of regulatory T cells and of myeloid 

derived suppressor cells, which finally leads to suppression of dermatitis. In addition 

we identified how IL-4 regulates immune responses on the level of DCs. 
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3 Discussion 

The central aim of this work was to investigate the consequences of cutaneous TLR2 

activation. We have not found one definitive answer to this very complex question. 

Our data suggest that TLR2 ligands can both induce and aggravate inflammation, but 

also that innate immune sensing of TLR2 ligands can cause opposite effects of 

immune suppression or even tolerance. It seems to depend on the particular immune 

situation, the immune phase and the strength of cutaneous inflammation, the 

combination with cytokines, the cell types activating and interacting and many other 

yet unknown factors. Therefore we used different in vivo and in vitro models to mimic 

various immune situations. These experimental settings were necessary to dissect 

the wide consequences of interactions between the host and microorganisms on the 

skin interface. 

3.1 TLR2 signaling causes aggravation or alleviation of AD 

S. aureus has been suggested as one important AD trigger and TLR2 ligands, 

lipoproteins and LTA, are its predominant components16,75. The work of S. Kaesler et 

al. confirmed this hypothesis and demonstrated how the aggravation of cutaneous 

inflammation due to S. aureus occurs: the combination of the early AD cytokine IL-4 

and activation of TLR2 on skin resident cells caused an inhibition of anti-inflammatory 

IL-10 and consequently the aggravation and chronification of AD. Interestingly and 

intriguingly T. Volz et al. found that TLR2-dependent activation of DCs by 

components of non-pathogenic microbe Vitreoscilla filiformis resulted in an opposite 

effect. In this context IL-10 is not suppressed but induced and serves as key cytokine 

in alleviating cutaneous inflammation. Both effects are confirmed by clinical studies 

with AD patients. Staphylococcal TLR2 in AD lesions have been shown to correlate 

with AD severity75. The beneficial effect of non-pathogenic bacteria is well-known9,10 

and cutaneous applicated Vitreoscilla filiformis has been found to ameliorate AD77. 

Thus, what makes the difference? The first obvious difference of these two studies is 

the pathogenicity of the investigated bacteria. It is known that non-pathogenic 

bacteria induce tolerance10,89 and some bacteria have evolved tolerance induction as 

evasion strategy90,91. But it is still enigmatic how the same innate signaling via TLR2 

results in even opposing immune consequences. As, in a complex, physiological, 

immune situation, the innate immune system does not only recognize one single 
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TLR2 ligand, but it is rather a constellation of sensing via multiple PPRs, i.e., LPS 

and TLR4, RNA and TLR3, CpG DNA motifs and TLR9, etc. and thus their 

combination may be determining the outcome. It should also not be excluded that 

xenogeneic signals (delivered through a currently undefined mechanism) might 

synergize with microbial exposure for these effects. Another explanation could be 

that the strength of the innate immune signaling plays a role. A constant mild 

inflammation could be interpreted from the host immune system as a stimulus to 

counteract, similar to the phenomenon of T cell anergy due to a low affinity antigen.  

The other difference between these two works is the immune situation investigated. 

S. Kaesler et al. analyzed an early AD phase with predominant IL-4, whereas the 

subject of T. Volz` work is rather advanced cutaneous inflammation, where IFN-� is a 

key cytokine. Thus, the interaction of different cytokines with TLR2 ligands during 

immune sensing could represent another level of immune regulation.  

Overall, these data suggest that the imbalance of non-pathogenic and pathogenic 

bacteria on AD skin contributes to skin inflammation. Non-pathogenic 

microorganisms tend to induce tolerance in healthy skin, thus avoiding harmful 

inflammation.  

3.2 Lipoteichoic acid has opposing immunological functions  

Interestingly, we identified one substance which displays opposing immunological 

functions depending on the target cell type. As described above, S. Kaesler et al. 

showed pro-inflammatory function of LTA on APCs, most likely on DCs. The anti-

inflammatory function of this substance was shown by K. Chen et al. who 

investigated the function of LTA on T cells. T cells are the dominant cells in the 

adaptive immune system and they mediate cutaneous inflammation in the later phase 

of defense against bacteria19. Unexpectedly K. Chen found that LTA suppressed T 

cell proliferation is independent of TLR2. A similar function of LTA was shown in 

platelets where it inhibited platelet aggregation92 It has also been reported that 

bacterial components from S. aureus inhibited fibroblast proliferation in vitro93 and 

one in vivo study also reported inhibitory properties of LTA94. Several non-pathogenic 

microorganisms such as Staphylococcus epidermidis also contain LTA. Therefore the 

anti-inflammatory function of LTA could be explained as an evasion mechanism 

evolved by pathogens during the evolution. In addition, our in vivo experiments 

suggested another possible explanation for LTA functions. We hypothesize that in 
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the early phase of inflammation sensing of LTA by the innate immune system is 

beneficial to the host, acting pro-inflammatory to fight the bacterial invasion. In the 

later stage, where the inflammation is rather harmful, LTA acts on T cells as an anti-

inflammatory agent, helping to terminate ongoing immune responses. 

 

3.3 TLR2 heterodimers show functional differences 

As mentioned before, the immune responses to microorganisms are very divers and 

complex, partially because of the presence of a large variety of PAMPs. In the work 

of Skabytska et al. we have taken advantages of some microbial derived molecules, 

which are exclusively bound by one specific TLR2 heterodimer. The result of this 

work is, that different TLR2 heterodimers differ in their immunological functions in 

vivo. Cutaneous exposure to TLR2/TLR6 but not TLR2/TLR1 ligands induced 

systemic immune suppression. With these data we have shown for the first time such 

distinct functional differences for ligands of the two TLR2 heterodimers in vivo. This 

suggests that the presence of certain TLR ligands, the ratio of different TLRs within a 

cell or a possible interaction between TLR2 and TLR1 or TLR6 defines the nature of 

consecutive immune responses. Variety of receptor specificity achieved by 

combination of different TLR receptors could be beneficial to the host cell, as, the 

structure of bacterial Lpp is not constant in each bacterium. It was shown recently, 

that the degree of Lpp-acylation depends on environmental factors and growth 

phase. Lipoprotein SitC was triacylated when S. aureus was in the exponential 

growth phase at neutral pH and diacylated in the post exponential phase at low pH95. 

At the situation on the skin, where pH is low and chronic S. aureus colonization 

(which is almost always found in AD) is present, a post exponential growth phase of 

S. aureus can be assumed. Consequently, Lpp from S. aureus on the skin are more 

diacylated. Based on our data, we hypothesize that diacylation of Lpp could have 

immune suppressive effects as a consequence. Further, one can also assume that 

pathogenic and non-pathogenic skin microflora may have different acylation 

properties and therefore different compositions of TLR2 ligands and thus overall differ 

in their immune consequences.  

Our data further create a more detailed understanding about mechanisms functional 

in MDSC induction driven by infections. Signaling through MyD88 was described to 

be required for the complete expansion of MDSCs, however the exact cascade of 
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events was not investigated60. Data from our chimera experiment indicate that TLR2 

predominantly on skin resident cells and not on hematopoietic cells is necessary and 

sufficient for the accumulation of MDSCs in the spleen and induction of systemic 

immune suppression. This underlines the decisive key role of the skin for systemic 

immune regulation.  

3.4 Myeloid-derived suppressor cells mediate immune suppression 

in severe AD 

We have shown for the first time a significant increase of MDSCs in the blood and 

skin of AD patients. This result and our further experiments with CD11b depletion of 

PBMCs and the presence of iNOS expressing CD11c negative cells in AD patients 

suggested a disease-specific induction as well as a suppressive activity of MDSCs in 

AD. We propose that severe AD causes an increase in the frequency of 

immunosuppressive MDSCs as an attempt to stop severe inflammation. This results 

in temporary immune suppression and increases the susceptibility for secondary 

infection. Indeed, immune suppression in response to strong cutaneous inflammation 

is a well known phenomenon in patients with AD17,18. These patients suffer from 

spreading of herpes viruses like in eczema herpeticum. So we contributed to the 

understanding of the complex clinical presentation of AD showing that MDSCs are 

responsible for immune suppression in this disease. Based on our findings, detection 

of MDSCs in peripheral blood could also be further developed as biomarker for 

immune suppression in severe AD. As perspective new therapeutic options may be 

developed that include the depletion (apheresis) or transfer of autologous MDSCs to 

regulate immune responses. 

3.5 IL-6 and IL-4 have pleiotropic roles in cutaneous inflammation 

IL-6 is a multifunctional cytokine with a broad spectrum of biological activities 

including immune regulation, hematopoiesis and inflammation96. Overproduction of 

IL-6 has been shown to play a pathological role in inflammatory autoimmune 

diseases such as rheumatoid arthritis97. And Il6-/- mice have shown impaired 

inflammatory responses98. But there are also reports about an anti-inflammatory role 

of IL6. In some settings IL-6 orchestrates down-regulation of pro-inflammatory 

cytokines as well as up-regulation of anti-inflammatory molecules99. We also 

identified IL-6 in its anti-inflammatory role, as a key factor for MDSC accumulation 
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following skin infection and induced immune suppression. However, we classify this 

mechanism rather as a negative feed-back-loop in severe inflammation, secondary to 

its pro-inflammatory function. Our data suggest that Pam2 activates TLR2/TLR6 on 

resident skin cells, which causes production of IL-6 by skin resident cells. The level of 

this cytokine (and a risk of dangerous tissue damage) is so high that a negative feed-

back mechanism is induced, leading to the MDSC accumulation and subsequent 

immune suppression. 

Cutaneous innate immune cells100, keratinocytes and even melanocytes101-103 are all 

capable of producing IL-6. It is especially evident in AD, where keratinocytes act as a 

critical first line of defense against microbial infection. Early IL-6 production was 

described after a direct contact of keratinocytes with S. aureus104. Moreover, IL-6 was 

found to be increased in AD skin105 and especially in AD skin lesions75, where the 

amount of IL-6 correlated with bacterial burden75. Genome wide association studies 

recently also identified an IL-6 receptor (IL-6R) variant as a new risk factor for AD106 

and a small case series with three patients demonstrated therapeutic efficacy of an 

IL-6R blockade by tocilizumab, an IL-6R antibody107.  

Immune suppression after increased IL-6 may be a common mechanism, because 

IL-6 has also been implicated in the progression of established tumors, a condition in 

which MDSCs suppress anti-tumoral immune responses62,108.  

Thus, these data highlight that IL-6, next to its well characterized pro-inflammatory 

properties, is also crucial for anti-inflammatory responses by orchestrating negative-

feed-back-loops through MDSCs.  

IL-4 is another well characterized cytokine with known pleiotropic functions. As 

shown above, S. Kaesler et al. has identified IL-4 as a key cytokine responsible for 

aggravation of cutaneous inflammation in early AD. We have clearly shown in human 

and mouse data potent immunosuppressive properties of IL-4 in another 

inflammatory skin disease, psoriasis, in the work of E. Guenova et al. . Interestingly, 

both works revealed that IL-4 affects APCs, most likely DCs, to exert these opposing 

effects. DCs and their cytokines determine the outcome and quality of immune 

responses, for example through polarization of T cells45. Consequently, the alteration 

of DC functions has profound impact on the quality of immune responses, not only 

during initiation but also for ongoing immune responses. Which of these effects 

predominates depends on the immunologic networks in a given immune situation. IL-

4 acts as an APC modifier, directly instructing APCs to change their cytokine 
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repertoire. This includes the depletion of IL-23, one most important maintenance 

factors of Th17 response. At the same time IL-12p70 is upregulated, promoting the 

replacement of a Th17 response by a Th1 response, which proved to be of 

therapeutic use in psoriasis. Interestingly, psoriasis is characterized by the absence 

of IL-4, and both Th1 and Th17 cells prevail in the skin85,86. In configurations of the 

immune system, in which IL-10 is a dominant regulator, the APC modifier IL-4 shuts 

down IL-10 production, instructing an increase and persistence of inflammation. This 

was shown for AD, which, in the early phase, is dominated by a Th2 immune 

response and high IL-4 levels.  
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4 Summary 

The skin plays a major protective role against pathogens, not only as physical barrier, 

but also as site of first recognition of exogenous substances and as orchestrator of 

consecutive immune responses. Moreover, it is known that immunological crosstalk 

between skin resident cells and immune cells is required for effective immune 

responses. The skin is constantly in contact to Gram-positive bacteria and 

consequently to different TLR2 ligands. We identified cutaneous TLR2 activation as a 

multifaceted pathway with various and in part opposing consequences on immune 

responses. In the early Th2-dominated phase of atopic dermatitis (AD), TLR2 ligands 

contributed to aggravation and persistence of cutaneous inflammation due to IL-4-

mediated suppression of IL-10 in APC during ongoing inflammation. In contrast, a 

study with non-pathogenic bacterial lysates (Vitreoscilla filiformis) revealed that TLR2 

activation suppressed AD due to induction of IL-10 and IL-10 producing regulatory T 

cells pointing to an anti-inflammatory role of TLR2 activation. Functional analyses of 

TLR2 ligands revealed that cutaneous exposure to diacylated TLR2/6 ligands, but not 

to triacylated TLR2/1 ligands inhibited subsequent cutaneous T cell-mediated recall 

responses. This was due to a systemic induction of Gr1+CD11b+ myeloid-derived 

suppressor cells (MDSCs) directly suppressing T cells. Investigating AD patients, 

where TLR2 ligands accumulate, we detected a significant increase of MDSCs in the 

peripheral blood and skin of AD patients in comparison to healthy individuals. 

Interestingly, signals through TLR2 on skin cells, but not on hematopoietic cells, as 

well as cutaneous IL-6 induction were necessary and sufficient for the expansion of 

MDSCs and their immunomodulatory effect in this context. Investigating the 

underlying mechanism of IL-4-mediated therapy of psoriasis we found that IL-4 

predominantly suppressed the IL-23/Th17 immune axis in this disease. These 

investigations demonstrate that the same signaling molecules within a complex 

immune network can be involved in the signaling of opposite immune reactions like 

inflammation or suppression of inflammation. Thus, single linear activation pathways 

have to be integrated in a network to understand the final immune outcome. This 

consideration of the whole signaling network is not only necessary to understand the 

pathogenesis of immunological diseases and their therapeutic strategies, but also to 

unravel possible side effects and restrictions of current immune therapies.  
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5 Zusammenfassung  

Unsere Haut ist ständig Bakterien und Antigenen der Umwelt ausgesetzt. Deswegen 

hat das Immunsystem der Haut die Aufgabe, nicht nur die Fremdsubstanzen zu 

erkennen, sondern auch die darauf entsprechenden Immunantworten zu generieren 

und deren Verlauf zu steuern. Vor allem ist die Haut mit Gram positiven Bakterien 

und somit mit TLR2-Liganden im ständigen Kontakt. Wir fanden unterschiedliche und 

zum Teil gegensätzliche Auswirkungen der kutanen TLR2-Aktivierung auf das 

Immunsystem. In der frühen Th2-dominierenden Phase der atopischen Dermatitis 

(AD) führten TLR2-Liganden zu einer Verschlechterung und Chronifizierung der 

Hautentzündung. Die wurde durch die Hemmung der IL-10-Produktion in den APCs 

durch IL-4 bewerkstelligt. Eine weitere Arbeit mit den Lysaten von nicht-pathogenen 

Vitreoscilla filiformis zeigte dagegen, dass die Aktivierung von TLR2 zu einer 

Hemmung der kutanen Entzündung und somit zu einer Besserung der AD führte. Der 

hierfür zugrundeliegende Mechanismus war die Induktion von IL-10 und IL-10-

produzierenden regulatorischen T-Zellen. Funktionale Analysen von TLR2-Liganden 

ergaben, dass eine kutane Applikation von TLR2/6- und nicht TLR2/1-Liganden in 

einer systemischen Immunsuppression der T-Zell-Antworten resultierte. Wir 

identifizierten weiter, dass Gr1+CD11b+ myeloide Suppressorzellen (MDSCs) diese 

Wirkung vermittelten. Untersuchungen bei AD Patienten zeigten einen höheren Level 

an MDSCs im Blut im Vergleich zu Kontrollgruppen. Interessanterweise war die 

Präsenz der TLR2 Rezeptoren auf den Hautzellen und nicht auf den 

hämatopoetischen Zellen notwendig und ausreichend für die MDSC-Induktion. 

Darüber hinaus identifizierten wir kutanes IL-6 als das Schlüsselzytokin für die 

MDSC-vermittelte Immunsuppression. Auf der Suche nach dem Mechanismus der IL-

4-Therapie in Psoriasis fanden wir, dass IL-4 überwiegend die IL-23/Th17-Achse in 

dieser Erkrankung hemmt. Diese Ergebnisse zeigen, wie ein komplexes 

immunologisches Netzwerk, wie es in der Haut vorherrscht, durch teilweise 

überlappende Signale so eingestellt und verändert werden kann, dass es zu völlig 

unterschiedlichen Immunantworten kommt. Um das finale Ergebnis der 

Immunantwort zu verstehen, müssen nicht nur einzelnen Signalwege, sondern deren 

Interaktion betrachtet werden. Diese Betrachtungsweise hilft bei dem Verständnis der 

Pathogenese der immunologischen Erkrankung sowie bei der Entwicklung 

therapeutischer Ansätze.  
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6 Abbreviations 

AD  atopic dermatitis 

AMPs  antimicrobicidal peptides  

APC   antigen presenting cells 

BM   bone marrow 

CHS   contact hypersensitivity model  

CFU   colony forming units 

DC  dendritic cells 

FITC  fluorescein isothiocyanate 

IL   interleukin 

Lgt  diacylglyceryl transferase gene  

Lpp   lipoproteins  

NO   nitric oxide 

LTA  lipoteichoic acid  

MAMPs microorganism-associated molecular patterns 

MDSC  myeloid-derived suppressor cells 

MyD88  myeloid differentiation factor 88 

Pam3Cys  tri-palmitoyl cysteinyl lipopeptide (Pam3CSK4) adapted from the 

Escherichia coli Braun’s lipoprotein  

Pam2Cys  di-palmitoyl cysteinyl lipopeptide – Pam2Cys as well as Pam3Cys mimic 

the proinflammatory properties of bacterial lipoproteins 

PAMPs  pathogen-associated molecular patterns 

PPRs   pattern recognition receptors 

SitC   predominant lipoprotein in Staphylococcus, part of the iron transporter 

SitABC;  

S.  Staphylococcus 

TCR  T cell receptor  

Teff  effector T cells 

TLR  Toll-like receptor 

Treg  regulatory T cells  

Vf lysate lysate of the non-pathogenic bacterium Vitreoscilla filiformis. 

WT   wild type 
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Summary  30 

Skin is constantly exposed to bacteria and antigens, and cutaneous innate immune sensing 31 

orchestrates adaptive immune responses. In its absence, skin pathogens can expand, entering 32 

deeper tissues leading to life-threatening infectious diseases. To characterize skin-driven 33 

immunity better, we applied living bacteria, defined lipopeptides, and antigens cutaneously. 34 

We found suppression of immune responses due to cutaneous infection with Gram-positive S. 35 

aureus, which was based on bacterial lipopeptides. Skin exposure to toll-like receptor 36 

(TLR)2-6- but not TLR2-1-binding lipopeptides potently suppressed immune responses 37 

through induction of Gr1+CD11b+ myeloid-derived suppressor cells (MDSCs). Investigating 38 

human atopic dermatitis, in which Gram-positive bacteria accumulate, we detected high 39 

MDSC amounts in blood and skin. TLR2 activation in skin resident cells triggered 40 

interleukin-6 (IL-6), which induced suppressive MDSCs, which are then recruited to the skin 41 

suppressing T cell-mediated recall responses such as dermatitis. Thus, cutaneous bacteria can 42 

negatively regulate skin-driven immune responses by inducing MDSCs via TLR2-6 43 

activation. 44 
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Introduction  45 

The skin is the largest organ at the interface between the environment and the host. The skin 46 

plays a major protective role not only as physical barrier but also as the site of first 47 

recognition of microbes and orchestrates consecutive immune responses (Naik et al., 2012; 48 

Swamy et al., 2010; Volz et al., 2011).  49 

Staphylococcus aureus (S. aureus) is one of the most potent skin pathogens and is found to 50 

colonize skin of about 30 to 50% of healthy adults, among them 10-20% persistently (Lowy, 51 

1998). Coming from the skin S. aureus can infect any tissue of the body and cause life-52 

threatening diseases, particularly because of the widespread occurrence of antibiotic-resistant 53 

strains, known as methicillin-resistant Staphylococcus aureus (MRSA) (Saeed et al., 2014). In 54 

atopic dermatitis (AD) patients, there is an approximately 200-fold increase of S. aureus 55 

colonization with more than 90% of AD patients displaying S. aureus in comparison to the 56 

healthy skin (Leung and Bieber, 2003). 57 

Microbes are first sensed by the innate immune system through pattern recognition receptors 58 

(PRRs), which recognize microbe-associated molecular patterns (MAMPs) (Kawai and Akira, 59 

2010). Both epithelial cells and resident innate immune cells in the skin express PRRs 60 

(Kupper and Fuhlbrigge, 2004; Lai and Gallo, 2008). Among PRRs, Toll-like receptors 61 

(TLRs) are a well-characterized family with distinct recognition profiles (Kawai and Akira, 62 

2010). TLR2 has emerged as a dominant receptor for Gram-positive bacteria, especially S. 63 

aureus (Biedermann, 2006; Lai and Gallo, 2008; Mempel et al., 2003). Among TLR2 ligands, 64 

lipoproteins seem to be especially important because the lipoprotein diacylglyceryl transferase 65 

(lgt) deletion mutant of S. aureus induces much less proinflammatory cytokines in human cell 66 

lines (Stoll et al., 2005) and less TLR2-MyD88 adaptor protein-mediated inflammation in a 67 

mouse model of systemic infection (Schmaler et al., 2009). It is now established that there are 68 

different classes of lipopeptides that all bind TLR2 (Müller et al., 2010; Schmaler et al., 69 

2009). However, how these TLR2 ligands differ in regard to functional consequences has not 70 
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been thoroughly investigated. TLR2 is known to form heterodimers with TLR1 and TLR6 to 71 

interact with this broad spectrum of ligands (Kang et al., 2009). TLR1 is required as a co-72 

receptor for recognition of triacylated lipopeptides, such as Pam3Cys (Buwitt-Beckmann et 73 

al., 2006; Jin et al., 2007), while diacylated lipopeptides, such as FSL-1 or Pam2Cys, interact 74 

with TLR2-TLR6 heterodimers (Mae et al., 2007; Mühlradt et al., 1997). Functional 75 

properties of S. aureus lipopeptides in respect to TLR2 heterodimers have been investigated 76 

in several cell types (Buwitt-Beckmann et al., 2006; Hajjar et al., 2001), but evidence 77 

demonstrating specific functional consequences for the activation of different heterodimers in 78 

vivo is lacking. 79 

Sustained activation of TLRs causes persistent production of proinflammatory cytokines, such 80 

as tumor necrosis factor (TNF) or interleukin-6 (IL-6), leading to tissue damage (Kawai and 81 

Akira, 2010; Kupper and Fuhlbrigge, 2004; Lai and Gallo, 2008). Consequently, to 82 

reconstitute the integrity of the surface organ, mechanisms to limit cutaneous inflammation 83 

must be effective (Lai et al., 2009). In recent years Gr1+CD11b+ myeloid-derived suppressor 84 

cells (MDSCs) have been identified as one cell population responsible for modulating 85 

immune responses (Bronte, 2009; Gabrilovich and Nagaraj, 2009; Ostrand-Rosenberg and 86 

Sinha, 2009). The most characteristic functional property of MDSCs is to suppress T cell 87 

responses (Gabrilovich et al., 2001; Kusmartsev et al., 2000). In the context of inflammation 88 

the precise function of MDSCs and the mechanisms of MDSC induction are not well-89 

understood; but in a sepsis model with Gram-negative bacteria their induction has been shown 90 

to depend on TLR4-MyD88 activation (Delano et al., 2007), and in tumor models, different 91 

innate cytokines, such as IL-6, induce MDSC accumulation (Bunt et al., 2007; Chalmin et al., 92 

2010). However, the suppression of IL-6 also increases susceptibility to bacterial and fungal 93 

infections, indicating pleiotropic effects of IL-6 (Hoetzenecker et al., 2011).  94 

In this study we have identified a pathway of immune regulation that operates in the skin. We 95 

mimicked intense cutaneous contact to bacteria in different in vivo mouse models by using 96 
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living bacteria and lipopeptides. We investigated AD as a model for massive cutaneous 97 

immune sensing of Gram-positive bacteria in humans. We found that cutaneous infection with 98 

S. aureus caused immune suppression. The exposure to TLR2-6 ligands was sufficient to 99 

cause an almost complete reduction of consecutive cutaneous recall responses. This skin 100 

exposure induced accumulation of MDSCs, allowing MDSC recruitment to the skin, and 101 

suppression of T cell-mediated recall responses. Signals through TLR2 on skin resident cells 102 

but not on recruited hematopoietic cells, as well as cutaneous IL-6 induction, were necessary 103 

and sufficient for the expansion of MDSCs and consecutive immune suppression. These data 104 

demonstrate that cutaneous recognition of TLR2-6 ligands orchestrates a unique pathway of 105 

cutaneous immune modulation mediated by MDSCs, indicating a yet unknown level of 106 

immune counter-regulation. 107 
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Results  108 

Cutaneous Staphylococcus aureus induces immune suppression. 109 

We aimed to characterize the consequences of intense cutaneous innate immune sensing as in 110 

the case of colonization or infection with Gram-positive bacteria. We established a mouse 111 

model of epicutaneous colonization with pathologically-relevant S. aureus (Wanke et al., 112 

2013). Mimicking S. aureus skin infection by applying living S. aureus bacteria onto the skin 113 

with disrupted skin barrier we found a distribution of the bacteria not only in the skin, but also 114 

in the internal organs (spleen and kidney) (Figure 1A), indicating the importance of the skin 115 

as an effective defense immune organ with the potential to impact the whole immune system. 116 

To investigate how bacterial infection influences consecutive immune responses, we 117 

combined this model of bacterial colonization and the murine T cell-mediated contact 118 

hypersensitivity (CHS) to FITC, in which bacteria were applied epicutaneously during FITC 119 

re-exposure of FITC-sensitized mice (see protocol in Figure S1A). The application of FITC 120 

onto the ear led to FITC-specific dermatitis as determined by ear swelling which 121 

corresponded to the strength of the FITC-specific immune response. The cutaneous 122 

application of S. aureus 7 days previous to the FITC challenge did not enhance, but 123 

significantly reduced ear swelling and immune cell infiltration (Figure 1B, C). This immune 124 

suppression was completely dependent on immune sensing of bacterial lipoproteins, as 125 

lipoprotein-deficient S. aureus mutant (�lgt) (Stoll et al., 2005) failed to induce immune 126 

suppression. Injecting S. aureus into the subepithelial dermis (intracutaneous route) also 127 

induced consecutive immune suppression, which, however, tended to be weaker compared to 128 

effects of S. aureus application onto the epithelium (Figure S1B). To identify underlying 129 

mechanisms of S. aureus-induced cutaneous immune suppression we analyzed skin-draining 130 

lymph nodes. Only exposure to wild-type (WT) S. aureus bacteria and not the lipoprotein-131 

deficient �lgt S. aureus reduced ex vivo FITC-specific T cell proliferation (Figure 1D). In the 132 
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spleen, CD4+ and CD8+ T cells were also reduced in mice cutaneously exposed WT S. aureus 133 

but not in mice exposed to lipoprotein-deficient �lgt S. aureus (Figure 1E). Only in mice 134 

displaying suppressed T cells we detected a strong increase of Gr1+CD11b+ so called 135 

myeloid-derived suppressor cells (Figure 1E). In contrast to this, accumulation of 136 

Gr1+CD11b+ was not detected in the liver (Figure S1D). At d3 after FITC challenge, MDSCs 137 

were also slightly increased in draining lymph nodes due to cutaneous WT S. aureus 138 

infection, corresponding the decrease of proliferating Ki67+ T cells (Figure S1E). Further 139 

experiments investigating other suppressive cell populations showed no alterations in the 140 

number of regulatory T (Treg) cells and IL-10 producing cells (Figure S1F); the numbers of 141 

Langerhans cells (LC, defined as CD11cloCD205hi) and CD11c+MHC-II+ cells were also 142 

unchanged, dermal dendritic cells (dDCs, defined as CD11chiCD205lo) were slightly increased 143 

(Figure S1E). These data indicate that MDSCs function independent of Treg cells and do not 144 

inhibit migration of DCs into lymph nodes. 145 

In order to further emphasize the functional and clinical relevance of these findings, we 146 

investigated atopic dermatitis (AD) patients. AD is a perfectly suited model disease for 147 

investigations on immune consequences of skin exposure to bacteria, as AD is an 148 

inflammatory skin disease that is nearly always covered with and triggered by Staphylococci. 149 

In humans, MDSCs are typically described as CD11b+CD33+HLA-DR-CD14- cells 150 

(Gabrilovich and Nagaraj, 2009). We observed a significant increase of MDSCs in the 151 

peripheral blood mononuclear cells (PBMCs) of AD patients (Figure 1F). The upregulation of 152 

human MDSCs was especially consistent in patients, in which severe AD was complicated by 153 

eczema herpeticum, which is a severe cutaneous viral infection resulting from immune 154 

suppression (Figure 1F, red squares) (Beck et al., 2009; Wollenberg et al., 2003), suggesting 155 

suppressive properties of MDSCs also in AD patients. 156 
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These data show that cutaneous S. aureus is sufficient to induce MDSCs and to cause immune 157 

suppression. 158 

 159 

Cutaneous exposure to TLR2-6 but not to TLR2-1 ligands ameliorates T cell-mediated 160 

recall responses  161 

Next, we investigated the intriguing finding that lipoprotein-deficient S. aureus failed to 162 

induce immune suppression in our model (Figure 1B). As lipoproteins are sensed by different 163 

TLR2 heterodimers (Henneke et al., 2008), we have taken advantage of microbial-derived 164 

molecules which are exclusively bound by one specific TLR2 heterodimer. We selected three 165 

lipopeptides for our studies: TLR2-6 ligands diacyl lipopeptides FSL-1 and Pam2Cys and the 166 

triacylated lipopeptide Pam3Cys that is often used as a reference compound for TLR2-1 167 

activation. As in our previous model, lipopeptides were applied to the skin during re-exposure 168 

of FITC-sensitized mice to FITC (see protocol Figure S1A). Similarly to the living S. aureus, 169 

the cutaneous exposure to TLR2-6 ligand FSL-1 almost completely abrogated consecutive 170 

FITC-specific recall responses (Figure 2A, B), FITC-specific ex vivo T cell proliferation 171 

(Figure 2C) and orchestrated splenic reduction of CD4+ and CD8+ T cells together with 172 

MDSC accumulation (Figure 2D). This result was confirmed with another TLR2-6 ligand, 173 

Pam2Cys (Figure 2E-H). In contrast to Pam2Cys, the TLR2-TLR1 ligand Pam3Cys failed to 174 

suppress FITC-specific dermatitis and T cell proliferation (Figure 2E-G). Accordingly, no 175 

reduction of CD4+ and CD8+ T cells and no induction of Gr1+CD11b+ cells could be detected 176 

(Figure 2H). 177 

These data show that cutaneous exposure to bacterial TLR2-TLR6 ligands is sufficient to 178 

cause immune suppression and that activation of TLR2-TLR6 heterodimers differs in regard 179 

to functional consequences from activation of TLR2-TLR1 heterodimers. 180 
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Further, in order to control whether the presentation of the antigen FITC is directly influenced 181 

by Pam2Cys exposure, we analyzed the number of FITC positive DCs 14 hours after 182 

cutaneous FITC application and Pam2Cys exposure. There were no differences in the 183 

numbers of FITC positive CD11c+MHC-II+ cells and other dendritic cell populations (dDC, 184 

LC) in draining lymph nodes (Figure S1G). Similarly, the analysis of other cell populations at 185 

this early stage of the response revealed comparable numbers of T cells (CD4+, CD8+), 186 

activated T cells (CD4+CD25+) and proliferating cells (Ki67+) (Figure S1H), IL-10 producing 187 

cells and Treg cells (Figure S1I) in both mouse groups. The treatment of mice with 188 

cyclophosphamide for Treg cell depletion failed to reverse Pam2Cys-induced immune 189 

suppression (Figure S1J-L), further indicating that Treg cells are not involved in this type of 190 

immune suppression.  191 

 192 

Skin infection-induced immune suppression is mediated by Gr1+CD11b+ myeloid-193 

derived suppressor cells 194 

Next, as proof of concept that MDSCs are the responsible cells for the observed immune 195 

suppression upon cutaneous Pam2Cys exposure, we depleted Gr1+ cells. This depletion 196 

caused an abrogation of immune suppression (Figure 3A right). Inversely, the adoptive 197 

transfer of MDSCs, isolated from mice previously exposed to Pam2Cys, resulted in reduction 198 

of both FITC-specific dermatitis and T cell proliferation (Figure 3B,C). To investigate 199 

whether human MDSCs in AD patients with intense cutaneous exposure to lipoproteins were 200 

suppressive, we depleted CD11b+ cells from PBMCs and analyzed proliferation of activated T 201 

cells. The CD11b+ population among PBMCs consists of antigen presenting cells and, in 202 

addition, contains MDSCs in AD but not healthy individuals. Consequently, in 7 of 8 healthy 203 

volunteers CD11b depletion resulted in reduced T cell proliferation (Figure 3D, left). On the 204 

contrary, this was only observed in one out of 7 AD patients (Figure 3D, right).). These 205 

results demonstrate that MDSCs, which are present among the CD11b+ population in AD 206 
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patients but not in healthy individuals, are immunosuppressive. Indeed, T-cell receptor �-207 

chain was significantly down-regulated in AD patients (Figure 3E), which is known to be one 208 

of the major features of MDSCs-mediated T cell inhibition (Zea et al., 2005) 209 

Taken together, these data revealed that skin infection-induced immune suppression is 210 

mediated by MDSCs. 211 

 212 

Myeloid-derived suppressor cells are recruited to the skin in mice and humans 213 

Detecting MDSCs in human blood and mouse spleen following cutaneous innate immune 214 

sensing indicates systemic MDSC expansion. Therefore, we next monitored the kinetics of 215 

MDSC induction in mice a) in the bone marrow (BM), its primary source (Figure 4A, left), 216 

and b) in one site of MDSC enrichment, the spleen (Figure 4A, right) at different time points 217 

after cutaneous Pam2Cys exposure. Starting on day 2, Gr1+CD11b+ cells in the bone marrow 218 

increased and peaked at day 7 with about 75% of cells being Gr1+CD11b+. In the spleen, both 219 

CD4+ and CD8+ T cells were strongly reduced. Gr1+CD11b+ cells increased starting at day 4 220 

with up to 7-fold induction on day 11 following cutaneous Pam2Cys exposure (Figure 4A).  221 

In FITC-CHS, T cells migrate to the skin and elicit dermatitis. Therefore, we analyzed 222 

whether MDSCs were also recruited to the skin. Indeed, 8 h after FITC challenge 223 

Gr1+CD11b+ cells were significantly increased in the skin of mice previously exposed to 224 

Pam2Cys (Figure 4B). Similarly, we compared healthy skin with lesional skin from AD 225 

patients colonized or infected with S. aureus. Flow cytometry analysis confirmed a significant 226 

increase of MDSCs in the skin of AD patients compared to healthy skin (Figure 4C), 227 

indicating that presence of bacteria and subsequent skin inflammation induce MDSC 228 

accumulation in the skin also in humans.  229 

 230 

Suppression of T cell activation by MDSCs is induced by cutaneous innate immune 231 

sensing 232 
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Recruitment of MDSCs to the skin suggested MDSC-mediated suppression of T cell 233 

activation in the skin in vivo. As first indication we found that the depletion of CD11b+ cells 234 

of isolated skin cells caused a stronger T cell proliferation following stimulation with anti-235 

CD3-D28 in comparison to cells not depleted of CD11b+ cells (Figure S2A), confirming a 236 

suppressive function of skin MDSCs ex vivo.  Moreover, flow cytometry analysis of ear skin 237 

tissue following the FITC challenge revealed a significant decrease of CD3+ T cells (Figure 238 

5A, right) and IFN-� production (Figure 5A, left) in previously Pam2Cys-exposed mice. 239 

Expression analysis of other cytokines revealed a significant decrease of the Th2 cell cytokine 240 

IL-4 (a target for a systemic AD treatment (Beck et al., 2014)), IL-10 and a tendency for IL-241 

17 inhibition (Figure 5B). The investigation of cutaneous chemokines in the skin showed a 242 

down-regulation of most analyzed chemokines (CCL2, CCL3, CCL4, CCL5, CCL11, CCL13, 243 

CCL17, CCL20, CCL27). Only T cell attracting CCL22 (a CCR4 ligand) and CCL28 (CCR3 244 

and CCR10 ligand) were significantly upregulated (Figure 5C). The corresponding 245 

chemokine receptors were expressed on the MDSCs in the skin, blood and bone marrow 246 

(Figure 5D), which further indicates that MDSCs are attracted to the site (and by similar 247 

mechanism) of T cell migration.  248 

To explore the mechanisms mediating MDSC-induced immune suppression, we isolated 249 

MDSCs 10 days after Pam2Cys exposure. Flow cytometry analysis revealed the presence of 250 

both Ly6C+ and Ly6G+ MDSCs. Morphological evaluation of isolated MDSCs confirmed that 251 

Ly6G+ MDSC were granulocytic, whereas Ly6C+ MDSCs were monocytic (Figure S2B). In 252 

the skin Gr1+CD11b+ cells were further characterized as CD11c-, CD15-, MHC-II-, B220-253 

negative and positive for CD16-32, partly positive for F4-80 (Figure S2C) and splenic Ly6C+ 254 

cells had a similar phenotype (Figure S2C). Next, we isolated Gr-1dimLy6G-Ly6C+CD11b+ 255 

(Ly6C+) and Gr-1highLy-6G+CD11b+ (Ly6G+) MDSCs from Pam2Cys-exposed mice and co-256 

cultured them with naïve splenocytes (responder cells) activated with anti-CD3-CD28 257 

antibodies (Abs) at different ratios. Following co-culture with Ly6C+ MDSCs at a ratio of 2:1, 258 
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almost complete suppression of T cell proliferation was observed, while Ly6G+ cells were not 259 

suppressive (Figure 5E, left). Investigating the suppressive activity more thoroughly revealed 260 

that Ly6C+ MDSCs inhibited Th0 CD4+ T cells as well as of Th1-, Th2- and Th17-polarized 261 

cells (Figure S2D). MDSCs´ immunosuppressive activity is reported to be a result of the 262 

activation of inducible NOS (iNOS), leading to increased production of nitric oxide (NO) 263 

(Gabrilovich et al., 2001). Indeed, we found an increased iNOS expression in the skin after 264 

FITC challenge in Pam2Cys-exposed mice (Figure S2E) and Ly6C+ MDSCs from Pam2Cys-265 

exposed animals produced high concentration of NO (Figure 5E, middle). NO production and 266 

T cell suppression by Ly6C+ MDSCs was completely abrogated in a transwell experiment 267 

(Figure 5E middle, Figure S2F), indicating that MDSC activation is a prerequisite for MDSC 268 

NO production and MDSC-mediated suppression. Flow cytometry analysis of the co-culture 269 

confirmed higher expression of iNOS by Ly6C+ cells (with a very low expression of arginase 270 

and IL-10 by both MDSC subsets) (Figure S2G). In addition, the inhibition of iNOS by L-271 

NMMA or L-NIL completely abrogated MDSC-mediated suppression of T cell proliferation 272 

(Figure 5E, right). Similarly, in PBMCs of AD patients we detected a distinct iNOS+ 273 

population of CD11b+CD11c- cells. These cells were completely absent in healthy individuals 274 

(Figure 5F). Importantly, we also detected iNOS+CD11b+CD11c- cells in AD skin (Figure 5G, 275 

Figure S2H).  276 

All together, the above results indicate that skin infection-induced MDSCs are present in the 277 

skin in mice and humans, where they inhibit T cell proliferation by means of cell-to-cell 278 

contact and iNOS. 279 

 280 

Pam2Cys-induced immune suppression is dependent on cutaneous TLR2  281 

Next, we investigated underlying mechanisms how innate immune sensing in the skin initiates 282 

MDSCs. Therefore we determined the role of TLR2. Tlr2-/- and WT mice were treated as 283 
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shown in Figure S1A with or without cutaneous Pam2Cys exposure. In contrast to WT mice 284 

(Figure 6A left), Tlr2-/- mice failed to inhibit FITC-specific CHS (Figure 6A right) and T cell 285 

proliferation (Figure 6B) and no reduction of CD4+ and CD8+ T cell numbers and 286 

accumulation of MDSCs (Figure 6C) was observed following Pam2Cys exposure. Cutaneous 287 

innate immune sensing through TLR2 may act through skin resident cells or recruited 288 

circulating blood immune cells. Thus, mouse chimeras were generated to distinguish between 289 

TLR2 sensing of skin resident or recruited hematopoietic cells, as depicted in Figure S3A. 290 

Chimerism was confirmed by PCR of bone marrow cells (Figure S3B). The percentage of 291 

MDSCs was analyzed following the protocol shown in Figure S1A. WT mice, reconstituted 292 

with WT BM (WT + WT-BM) and WT mice, that obtained Tlr2-/- BM (WT + Tlr2-/--BM), 293 

upregulated MDSCs following Pam2Cys exposure (Figure 6D, top). In contrast, Tlr2-/- mice 294 

reconstituted with WT BM (Tlr2-/- + WT-BM) failed to accumulate MDSCs, similar to 295 

control Tlr2-/- mice with Tlr2-/- BM (Tlr2-/- + Tlr2-/--BM) (Figure 6D, bottom). Thus, TLR2 296 

expression on skin resident cells, which next to keratinocytes includes radiation resistant skin 297 

resident Langerhans or mast cells, is necessary and sufficient for MDSC accumulation. 298 

Next, we investigated a functional role of TLR2 on MDSCs. Chimeric mice were generated 299 

by reconstitution with 50% CD45.1 WT and 50% CD45.2-Tlr2-/- BM (Figure S3C). 300 

Following Pam2Cys exposure, approximately 20% of spleen cells were MDSCs irrespective 301 

whether WT CD45.1 or Tlr2-/-CD45.2 cells were analyzed (Figure S3D), demonstrating that 302 

TLR2 is dispensable on MDSC precursor cells for MDSC induction and accumulation.  303 

 304 

Cutaneous IL-6 is critically required for MDSC induction 305 

Our previous experiments showed that cutaneous Pam2Cys sensing through TLR2 is 306 

sufficient to induce MDSCs and consecutive suppression of cutaneous recall responses. To 307 

identify underlying mechanisms we first analyzed which cells in the skin could be responsible 308 



 14 

for sensing Pam2Cys. Immunofluorescence staining of TLRs after exposure of mice to 309 

Pam2Cys or Pam3Cys showed an upregulation of the corresponding TLR on keratinocytes 310 

(Figure 7A). Similar analyses of human skin samples showed pronounced TLR2 expression in 311 

human skin  albeit at lower amount in AD compared to healthy skin (Figure S4A), as known 312 

from other studies (Kuo et al., 2013). Next, we analyzed the functional consequences of the 313 

TLR upregulation. We exposed mice to different TLR ligands (Pam2Cys, Pam3Cys, CpG and 314 

LPS) and analyzed cutaneous mRNA expression of cutaneous cytokines. All TLR ligands 315 

moderately upregulated TNF and the chemokine CXCL-2 was most dominantly induced by 316 

Pam2Cys and Pam3Cys (Figure 7B). Upregulation of IL-6 mRNA in the skin was most 317 

pronounced only after Pam2Cys exposure. In comparison to skin following FITC-only or 318 

FITC-plus-other TLR-ligands exposure, cutaneous Pam2Cys exposure induced a 400-fold 319 

upregulation of IL-6 mRNA (Figure 7B, right). On the protein level we detected increased IL-320 

6 production by CD45 negative cells (which were also MHC-II negative, Figure S4B) (Figure 321 

7C). To confirm these data, we stimulated primary human keratinocytes with TLR ligands 322 

and detected upregulation of IL-6 production exclusively following Pam2Cys treatment 323 

(Figure 7D).  324 

To regulate MDSC induction in the bone marrow (Figure 4A), cutaneous IL-6 needs to reach 325 

the blood stream (Chalmin et al., 2010). Indeed, IL-6 concentrations in mouse sera strongly 326 

increased one day after cutaneous Pam2Cys exposure (Figure 7E). These data suggest that IL-327 

6 plays a crucial role in Pam2Cys-induced MDSC induction; therefore, Il6-/- mice were 328 

investigated. In contrast to WT mice, cutaneous Pam2Cys exposure in Il6-/- mice failed to 329 

suppress FITC-CHS (Figure 7F), and no induction of MDSCs could be detected (Figure 7G). 330 

Consequently, the injection of IL-6 into the mice caused an increase of MDSCs in the spleen 331 

(Figure S4C, D), suggesting that IL-6 is responsible for MDSC induction and expansion. To 332 

investigate whether IL-6 plays a role in MDSC migration to the skin, we applied anti-IL-6 333 

antibody shortly before challenge and analyzed MDSC numbers in the skin. We found a 334 
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significant and unequivocal increase of Gr1+CD11b+ cells in both conditions (Figure S4E) 335 

and the adoptive transfer of MDSCs into Il6-/- mice showed a suppression of immune 336 

responses, comparable to what is observed in WT mice (Figure S4F). To investigate whether 337 

IL-6 plays a role for MDSC development, we analyzed MDSCs generation in vitro. BM-338 

derived MDSCs (see suppl. Methods) were treated with IL-6 during development and their 339 

suppressive function was investigated in a suppression assay with responder cells. As shown 340 

in Figure 7H, the exposure of MDSCs to IL-6 during generation enhanced their suppressive 341 

function. These data indicate that IL-6 supports induction and development of suppressive 342 

MDSCs, but not their migration to the skin. 343 

Taken together, these data suggest a scenario in which Pam2Cys is sensed by TLR2 on skin 344 

resident cells, leading to the expression and secretion of IL-6 in such high amounts that 345 

MDSCs expand and accumulate, leading to the inhibition of cutaneous recall responses.  346 
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Discussion  347 

In this study we found that cutaneous exposure to bacteria and bacterial substances known to 348 

act as potent MAMPs induced a strong immune suppression mediated by MDSCs. These 349 

findings highlight that certain classes of bacterial molecules are able to orchestrate unique 350 

pathways that, even after limited cutaneous exposure, are sufficient to induce immune 351 

suppression. We found that cutaneous exposure to TLR2-TLR6 but not to TLR2-TLR1 352 

ligands induced MDSCs and consecutive cutaneous immune suppression. Bacteria differ in 353 

the acylation patterns of their lipoproteins (Kurokawa et al., 2012b). Our results suggest that 354 

they may differ in their potential to activate different TLR2 heterodimers and to regulate 355 

immune responses as well. Consequently, acylation properties may characterize bacteria as 356 

pathogens or commensals. It was shown recently, that the degree of lipoprotein-acylation 357 

depends on environmental factors and growth phase. Lipoprotein SitC was triacylated when S. 358 

aureus was in the exponential growth phase at neutral pH and diacylated in the post 359 

exponential phase at low pH (Kurokawa et al., 2012a). At the situation on the skin, where pH 360 

is low and chronic S. aureus colonization (which is almost always found in AD) is present, a 361 

post exponential growth phase of S. aureus can be assumed. Consequently, lipoproteins from 362 

S. aureus on the skin are more diacylated. Based on our data, we hypothesize that diacylation 363 

of lipoproteins induces acute inflammation followed by immune suppression as a 364 

consequence. Further, one can also assume that pathogenic and non-pathogenic skin 365 

microflora may have different acylation properties and therefore different compositions of 366 

TLR2 ligands and thus overall differ in their immune consequences.  367 

Previous data using a systemic sepsis model with Gram-negative bacteria derived from the 368 

gut described the MyD88 and TLR4 pathway to be most relevant for MDSC expansion 369 

(Delano et al., 2007). However, the exact cascade of events was not investigated (Arora et al., 370 

2010; Delano et al., 2007). Our data investigating the common route of cutaneous infection 371 

with Gram-positive bacteria show that TLR2 activation on skin resident cells mediates MDSC 372 
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accumulation and consecutive immune suppression. Induction of MDSCs by activation of 373 

cutaneous TLR2-6 most dominantly involves IL-6. Cutaneous innate immune cells (Blander 374 

and Medzhitov, 2004), keratinocytes and even melanocytes (Stadnyk, 1994; Takashima and 375 

Bergstresser, 1996) are all capable of producing innate cytokines, such as IL-6. Indeed, in 376 

AD, where keratinocytes act as a critical first line of defense against microbes, early IL-6 377 

production has been described after direct contact of keratinocytes with S. aureus (Sasaki et 378 

al., 2003). Moreover, IL-6 has been found to be increased in AD skin (Fedenko et al., 2011) 379 

and especially in AD skin lesions (Travers et al., 2010), in which the amount of IL-6 380 

correlates with bacterial burden (Travers et al., 2010). Genome wide association studies 381 

recently also identified an IL-6 receptor (IL-6R) variant as a risk factor for AD (Esparza-382 

Gordillo et al., 2013) and a small case series with three patients has demonstrated therapeutic 383 

efficacy of an IL-6R blockade by tocilizumab, an IL-6R antibody (Navarini et al., 2011). 384 

These observations confirm the importance of IL-6 production by skin cells in response to 385 

microbes; however the precise immune consequences of cutaneous IL-6 induction had not 386 

been elucidated. Our data allow to propose a model, how the cutaneous innate immune 387 

network functions: diacylated lipopeptides activate TLR2-TLR6 on skin resident cells 388 

followed by marked IL-6 production leading to the MDSC accumulation, which is a 389 

prerequisite of subsequent immune suppression by MDSCs. Our data also indicate that these 390 

TLR2-6-induced MDSCs are prototypic MDSCs as characterized in other settings. Moreover, 391 

our data further has identified that skin infection-induced MDSCs suppressed immune 392 

responses in mice and humans. 393 

In conclusion, our study reveals a consequence of cutaneous innate immune sensing for 394 

adaptive immune functions. The presence of certain lipoproteins on the skin may serve not 395 

only as danger signal for the initiation of effective immune responses, but may also be able to 396 

counter-regulate inflammation and potently control and suppress immune responses.  397 
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Experimental Procedures 398 

Animals 399 

Specific-pathogen-free, WT BALB/c mice were purchased from Charles River (Sulzfeld, 400 

Germany). Tlr2-/- mice (C57BL/6) were from C. Kirschning (Institute of Medical 401 

Microbiology, University Duisburg-Essen) and were backcrossed to BALB/c for 10 402 

generations. Il6-/--BALB/c mice were from Dr. M. Kopf (Swiss Federal Institute of 403 

Technology, Switzerland). All mice were kept under specific pathogen-free conditions in 404 

accordance with FELASA (Federation of European Laboratory Science Association) in the 405 

University of Tübingen. The experiments were performed with the approval of the local 406 

authorities (Regierungspräsidium Tübingen HT1/10, HT3/11, HT7/11, HT5/13, HT8/13). 407 

Age-matched female mice were used in all experiments. 408 

Epicutaneous mouse skin infection model  409 

The experimental model is based on epicutaneous application of the S. aureus on shaved skin 410 

of mice (Wanke et al., 2013). Mice were sensitized with FITC following the protocol as 411 

shown in Figure S1A. At days 7 and 10 3x108 WT or lgt-mutant S. aureus Newman in 30µl 412 

PBS or PBS control were added to filter paper discs placed onto the prepared skin and 413 

covered by Finn Chambers on Scanpor (Smart Practice, Phoenix, USA). Before application to 414 

the skin, barrier was disrupted by tape-stripping.  415 

FITC contact hypersensitivity and exposure to TLR2 ligands 416 

Mice were sensitized by administration of 80 µl of a 0.37% FITC solution (dissolved in 1:1 417 

acetone:dibutyl phthalate, Sigma Aldrich, Taufkirchen, Germany) on the shaved abdomen on 418 

days -8, -7. TLR2 ligands were applied intracutaneously together with the second 419 

epicutaneous application of FITC on days -1 and 0 (Figure S1A) in the following 420 

concentrations per mouse: Pam2Cys: 2 µg, Pam3Cys: 4 µg, FSL-1: 40 µg. Control mice 421 

obtained PBS instead of TLR2 ligands. At d7 mice were challenged by epicutaneous 422 
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application of 0.37% FITC solution on both sides of the ears. Ear thickness was measured 423 

with a micrometer (Oditest®, Kroeplin, Germany) as previously described (Volz et al., 2014), 424 

and data are expressed as change in ear thickness compared to thickness before treatment. In 425 

some experiments mice were treated with 0.3µM CpG 1668 (0.2µM, Eurofins Genomics, 426 

Ebersberg, Germany), 1µg/mouse LPS (from Salmonella minnesota R595, Alexis 427 

Biochemicals, Lausen, Switzerland), cyclophoshamide (2mg/mouse, Sigma-Aldrich, 428 

Taufkirchen, Germany), 20µg/mouse rmIL-6 (20µg/mouse) or 50µg/mouse anti-IL-6 429 

(Biolegend, San Diego, USA). 430 

Human MDSCs 431 

The study was approved by the local ethics committee of the University of Tübingen, 432 

Germany, and written informed consent was obtained from all subjects (project number 433 

344/2011BO2, 345/2011BO2, 396/2011BO2, 040/2013BO2, 180/2013BO2). PBMCs were 434 

obtained from heparinized blood by centrifugation (800g for 30min) using Ficoll-Histopaque 435 

(Biochrom, Berlin, Germany). MDSCs in the blood or skin of either healthy volunteers or 436 

non-AD-controls or atopic dermatitis patients were analyzed by flow cytometry and 437 

characterized as CD11b+CD33+HLA-DR-CD14- cells.  438 

Bone marrow chimeras 439 

Recipient mice were lethally irradiated at 7.0 cGy and next day bone marrow cells (106 cells 440 

per recipient) were i.v. injected into recipient mice. To confirm the chimerism of mice, 441 

genotyping of bone marrow cells by PCR for the WT and the mutated Tlr2 gene was 442 

conducted (Figure S3B).  443 

Depletion of CD11b+ cells  444 

CD11b+ cells were depleted from PBMCs using the CD11b+ Beads (Miltenyi Biotech, 445 

Bergisch Gladbach, Germany) according to manufacturer’s protocol. 446 

Statistical analysis 447 
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Unless otherwise stated, quantitative results are expressed as means +/- standard deviations 448 

and differences were compared by unpaired, two-tailed Student’s t-test (p < 0.05 was 449 

regarded as significant).  450 
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Figure legends 668 

 669 

Figure 1. Cutaneous Staphylococcus aureus induces immune suppression in mice and 670 

humans. (A-E) FITC-sensitized wild-type (WT) mice were treated following the protocol in 671 

Figure S1A (with living WT or lipoprotein mutant (�lgt) S. aureus). Bacterial load as colony 672 

forming units (CFU) (mean +/- standard deviation SD, n=5) (A), ear swelling (mean +/- SD, 673 

n=5) (B), histology (H&E staining) (C), proliferation of skin-draining lymph node (LN) cells 674 

stimulated ex vivo with FITC (detected as counts per minute (cpm) of 3H-thymidine 675 

incorporation) (mean +/- SD of triplicates) (D), and the percentage of cell populations in the 676 

spleen (mean +/- SD, n=5) (E) were investigated. *: P < 0.05. (F) PBMCs from atopic 677 

dermatitis (AD) patients (n=33) and healthy volunteers (n=30) were analyzed for MDSCs, 678 

defined as CD11b+CD33+HLA-DR-CD14- cells. The dots represent individual values and the 679 

horizontal bar is the group mean. Red squares represent MDSCs of patients with severe AD 680 

and eczema herpeticum. *: P < 0.05 (Mann-Whitney test). Data are representative of at least 681 

two independent experiments. See also Figure S1. 682 

 683 

Figure 2. Cutaneous exposure to TLR2-6 but not TLR2-1 ligands ameliorates T cell-684 

mediated recall responses of the skin. WT mice were treated following the protocol shown 685 

in Figure S1A. Mice were cutaneously exposed to FSL-1 in (A-D) and Pam2Cys or Pam3Cys 686 

in (E-H). Ear swelling response (mean +/- SD, n=5) (A, E), histology (H&E staining) (B, F), 687 

proliferation of skin-draining LN cells stimulated ex vivo with FITC (mean +/- SD of 688 

triplicates) (C, G) and the percentage of cell populations in the spleen (mean +/- SD, n=5) (D, 689 

H) are shown. Data are representative of at least two independent experiments. Experiments 690 

shown in (A) were performed with FSL-1 from two different providers. *: P < 0.05.  691 

 692 
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Figure 3. Myeloid-derived suppressor cells are responsible for skin infection-induced 693 

immune suppression. (A) WT mice were treated with FITC with or without cutaneous 694 

Pam2Cys exposure following the protocol in Figure S1A. The mice were additionally treated 695 

with Gr1 depleting (right) or with an isotype control antibody (left) at day 2 and 4. Ear 696 

swelling response (mean +/- SD, n=5, left) was evaluated. Data are representative of two 697 

independent experiments. (B-C) WT mice were treated following the protocol shown in 698 

Figure S1A (without Pam2Cys exposure). One group of mice received Ly6C-Ly6G positive 699 

cells from donors that were sensitized with FITC and exposed to Pam2Cys. The control group 700 

received spleen cells from naïve mice. The ear swelling response (mean +/- SD, n=5) (B) and 701 

the FITC-specific proliferation of LN cells (as cpm, mean +/- SD of triplicates) (C) were 702 

evaluated. (D) CD11b+ cells of PBMCs from healthy volunteers (n=8, left) and AD patients 703 

(n=7, right) were depleted, stimulated with anti-CD3-CD28-mAbs and analyzed for 704 

proliferation. *: P < 0.05 (Mann-Whitney test). (E) PBMCs from healthy donors (n=8) and 705 

AD patients (n=7) were analyzed for TCR �-chain expression (mean fluorescence intensity, 706 

MFI, CD3+ Gate of living cells) by intracellular flow cytometry. Each dot represents an 707 

individual value, the horizontal bar is the group mean. *: P < 0.05 (Mann-Whitney test). See 708 

also Figure S2. 709 

 710 

Figure 4. Skin infection-induced MDSCs accumulate in the skin in mice and humans.  711 

(A) WT mice were treated following the protocol in Figure S1A. The percentage of CD4+, 712 

CD8+ or Gr1+CD11b+ cells in Pam2Cys-exposed mice were analyzed by flow cytometry at 713 

indicated time points after Pam2Cys exposure in bone marrow (left) and spleen (right) (mean 714 

+/- SD, n=3). Asterisks show significant differences compared with t=0 determined by one-715 

way analysis of variance (ANOVA) followed by Dunnet’s post test. *: P < 0.05 Data are 716 

representative of two independent experiments. (B) Cells from ear skin, isolated 4 h or 8 h 717 

after FITC challenge, were analyzed by flow cytometry (gate: living cells). A representative 718 
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flow cytometry plot (left), means +/- SD (n=5) (middle), and total numbers of Gr1+CD11b+ 719 

cells (mean +/- SD, n=5) (right) are shown. Data are representative of three independent 720 

experiments. (C) Cells isolated from skin samples of AD patients (n=9) and non-AD-controls 721 

(n=9) were analyzed by flow cytometry (gate: living cells) for MDSCs, defined as 722 

CD11b+CD33+HLA-DR-CD14- cells. A representative flow cytometry plot with the gating 723 

strategy first for CD11b+CD14- (top) and then CD33+HLA-DR+ (bottom) and the percentage 724 

of the CD11b+CD33+HLA-DR-CD14- cells (left) and cumulative analysis (right) is shown. 725 

Each of the dots represents an individual value and the horizontal bar the group’s mean. *: P 726 

< 0.05 (Mann-Whitney test). n.s., not significant. 727 

  728 

Figure 5. Skin infection-induced MDSCs suppress T cell activation through mechanisms 729 

requiring NO production. (A) WT mice were treated following the protocol in Figure S1A. 730 

24 h (A, B) or 8 h (C, D) after FITC challenge ear tissue cells were analyzed. (A) Flow 731 

cytometry for CD3+ cells (top) and IFN-� production (bottom). A cumulative result (means 732 

+/- SD, n=5) is shown. (B-C) Quantitative RT-PCR analysis for cytokines (B) or chemokines 733 

(C) (normalized to housekeeping genes �-actin-APDH) and means +/- SEM (n=5) are shown. 734 

Expression of the skin of FITC only-exposed mice was set as 1. *: P < 0.05. (D) Cells isolated 735 

from bone marrow, blood and skin of Pam2Cys-treated mice were analyzed for chemokine 736 

receptor expression by flow cytometry (gate: Gr1+CD11b+ of living cells), shown as 737 

percentage of Gr1+CD11b+ (means +/- SD, n=5). (E) Spleen cells were co-cultured in vitro 738 

with Ly6C+ or Ly6G+ MDSCs as indicated, stimulated by anti-CD3-CD28-mAbs and 739 

analyzed for proliferation (left); supernatants (ratio 2:1) were analyzed for NO production by 740 

Griess reaction (mean +/- SD of experimental triplicates) (middle), iNOS inhibitors L-NMMA 741 

and L-NIL were added to the co-culture (right). Significant differences between experimental 742 

conditions were assessed by one-way ANOVA followed by Tukey’s post-hoc test (*: P < 743 

0.05). Data are representative of at least two independent experiments. (F) PBMCs from 744 
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healthy donors and AD patients were analyzed by intracellular flow cytometry (iNOS+ in 745 

CD11b+CD11c-Gate of living cells). A representative result out of 7 individuals is shown. (G) 746 

Skin tissue of AD patients was analyzed by immunofluorescence. Arrows indicate cells 747 

positive for CD11b and iNOS and negative for CD11c. Scale bar represents 25 �m. See also 748 

Figure S2. 749 

 750 

Figure 6. Pam2Cys-induced immune suppression is dependent on TLR2. (A-C) WT and 751 

Tlr2-/- mice were treated following the protocol shown in Figure S1A and ear swelling (mean 752 

+/- SD, n=5) after FITC challenge (A), proliferation of lymph node cells after FITC 753 

stimulation ex vivo (mean +/- SD of triplicates) (B), and the percentage of spleen cell 754 

populations (mean +/- SD, n=5) (C) were analyzed. (D) WT mice or Tlr2-/- were irradiated 755 

and reconstituted with WT or Tlr2-/- bone marrow cells (see Figure S3A). 7 weeks later, the 756 

chimeric mice were treated following the protocol shown in Figure S1A and their spleen cells 757 

were analyzed by flow cytometry. The percentage of Gr1+CD11b+ cells is shown (mean +/- 758 

SD, n=5). Data are representative of three independent experiments. *: P < 0.05, n.s., not 759 

significant. See also Figure S3. 760 

 761 

Figure 7. IL-6 is required for induction of Gr1+CD11b+ cells and Pam2Cys-induced 762 

immune suppression. (A-C) WT mice were treated following a protocol similar to that 763 

shown in Figure S1A. 24 h after cutaneous exposure to TLR ligands or PBS (control), 764 

immunoflourescence for TLR2 (red), TLR6 or TLR1 (blue) and nuclei (green) was done in A, 765 

a representative picture (n=3) is shown. Scale bar represents 30 �m (B) The skin was 766 

evaluated for the expression of TNF, CXCL-2, and IL-6 mRNA by quantitative RT-PCR 767 

analysis (normalized to housekeeping gene �-actin). Expression in the skin of untreated mice 768 

(naïve) was set as 1 (mean +/- SD, n=5). (C) Skin cells were isolated and analyzed for IL-6 769 

production by intracellular flow cytometry, a cumulative analysis (mean +/- SD, n=5) is 770 
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shown. (D) Primary human keratinocytes were isolated, treated with TLR ligands for 24h and 771 

the production of IL-6 was measured by ELISA (mean +/- SD of triplicates). (E) WT mice 772 

were treated following a protocol similar to that shown in Figure S1A and IL-6 concentrations 773 

in the sera were analyzed by ELISA (mean +/- SD of triplicates). (F, G) WT and Il6-/- mice 774 

were treated following the protocol shown in Figure S1A and ear swelling (mean +/- SD, n=5) 775 

(F) and the percentage (mean +/- SD, n=5) of Gr1+CD11b+ cells (G) were analyzed. (H) Bone 776 

marrow-derived MDSCs were treated with IL-6 (in indicated concentrations) during 777 

generation and their suppressive activity was measured in a co-culture with activated spleen 778 

cells (responder cells) in ratio 1:4. Proliferation of responder cells without MDSCs was set as 779 

100%. Data are representative of two independent experiments. *: P < 0.05. See also Figure 780 

S4. 781 



0

500

1000

1500

2000

2500

FITC

P
ro

lif
er

at
io

n
[c

pm
]

A

FITC

FITC + WT

FITC + �lgt

*
*

B

0

5

10

15

20

0 24 48 72
Hours after FITC-Challenge

E
ar

 s
w

el
lin

g 
[x

 0
.0

1m
m

]

FITC + �lgt

FITC + WT

FITC

* *

*

1.0E+00
1.0E+01

1.0E+02
1.0E+03
1.0E+04

1.0E+05
1.0E+06

1.0E+07
1.0E+08

Skin Spleen Kidney

B
ac

te
ria

l l
oa

d 
[C

FU
]

*

Healthy                   AD

7.0
8.0
9.0

0.5

1.5

2.5

3.5

4.5

M
D

S
C

s
[%

]

0

5

10

15

20

25

CD4+ T cells CD8+ T cells Gr1+CD11b+ MDSCs

C
el

ls
 [%

]

*

*
*

Figure 1

F

FITC FITC + �lgt FITC + WT

C D

E

unstimulated



Figure 2

FITC

FITC + FSL-1

0

1000

2000

3000

4000

5000

6000

P
ro

lif
er

at
io

n 
[c

pm
]

*

0

5

10

15

20

25

0 24 48 72

E
ar

 s
w

el
lin

g 
[x

 0
.0

1 
m

m
]

FITC

FITC + FSL-1 *
*

*

A

0

5

10

15

20

25

30

CD4+ T cells CD8+ T cells Gr1+CD11b+ MDSCs

C
el

ls
 [%

]
*

* *

0

5

10

15

20

25

30

35

0 24 48 72

E
ar

 s
w

el
lin

g 
[x

 0
.0

1 
m

m
]

FITC

FITC + Pam2
FITC + Pam3

0

1500

3000

4500

6000

7500

9000

10500

P
ro

lif
er

at
io

n 
[c

pm
]

*

*

*

*

*

FITC

FITC + Pam2

FITC + Pam3

0

5

10

15

20

25

30

CD4+ T cells CD8+ T cells Gr1+CD11b+ MDSCs

C
el

ls
 [%

]

*

*

*

E
FITC FITC + Pam2 FITC + Pam3

FITC FITC + FSL-1
B

C D

F

G H

Hours after FITC-Challenge

Hours after FITC-Challenge



Figure 3

*

*

A

E

0
2
4
6
8

10
12
14
16

C
D

3 
�-

ch
ai

n 
 [M

FI
]

Healthy          AD

*

0

5

10

15

20

0 24 48 72

Hours after FITC-challenge

E
ar

 s
w

el
lin

g 
[ x

0.
01

 m
m

] FITC + anti-Gr1 + Pam2
FITC + anti-Gr1

0

5

10

15

20

0 24 48 72

Hours after FITC-challenge

E
ar

 s
w

el
lin

g 
[ x

 0
.0

1 
m

m
]

FITC
FITC + Pam2

*

Healthy

0

10000
20000

30000
40000

50000
60000

70000

Total PBMC CD11b-
depleted

P
ro

lif
er

at
io

n 
[c

pm
]

AD

0
10000
20000
30000
40000
50000
60000
70000
80000

Total PBMC CD11b-
depleted

P
ro

lif
er

at
io

n 
[c

pm
]

D

0

5000

10000

15000

20000

25000

P
ro

lif
er

at
io

n
[c

pm
]

FITC

FITC + MDSCs

0

5

10

15

20

25

0 24 48 72

Hours after FITC-challenge

E
ar

sw
el

lin
g

[x
 0

.0
1 

m
m

] FITC
FITC + MDSCs

*

*

*

CB



0

3

6

9

4h 8h

G
r1

+ C
D

11
b+

M
D

S
C

s[
%

]

0

10

20

30

40

50

60

4h 8h

G
r1

+ C
D

11
b+

M
D

S
C

s[
x1

03 ]

B

*

n.s.
n.s.

*

C

FITC

FITC + Pam2

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

1.3%

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

1.6%

10
0

10
1

10
2

10
3

10
410

0

10
1

10
2

10
3

10
4

3.5%

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

6.5%

FITC

4h

8h

G
r1

FITC + Pam2

CD11b

CD14

C
D

11
b

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

HLA-DR

C
D

33

0.13% 2.38%

control AD

Figure 4

0

0.5

1

1.5

2

2.5

3

3.5

M
D

S
C

s
[%

]

*

Control           AD

Gr1+CD11b+ MDSCs
CD4+ Tcells
CD8+ Tcells

* * *
* * ***

**
*
*

0

10

20

30

40

0 2 4 6 8 10 12 14 16
Days after Pam2 exposure

C
el

ls
 [%

]

Gr1+CD11b+ MDSCs
CD4+ T cells
CD8+ T cells

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16
Days after Pam2 exposure

G
r1

+ C
D

11
b+

M
D

S
C

s[
%

]

A



0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

CCL2
CCL3

CCL4
CCL5

CCL1
1

CCL1
3

CCL1
7

CCL2
0

CCL2
2

CCL2
7

CCL2
8

Fo
ld

in
du

ct
io

n

0

10000

20000

30000

40000

50000

4:1 2:1 1:1 0:1

MDSCs : Responder cells

P
ro

lif
er

at
io

n 
[c

pm
]

Ly6C
Ly6G

0.0
0.2

0.4
0.6
0.8
1.0

1.2
1.4

IFN-� IL-4 IL-10 IL-17

Fo
ld

in
du

ct
io

n

A

0
2
4
6
8

10
12

14

IF
N

-�
[%

]

Figure 5

* *

B

C

F

CD11c

healthy AD

10
0

10
1

10
2

10
3

10
410

0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
410

0

10
1

10
2

10
3

10
4

C
D

11
b

0

10000

20000

30000

40000

4:1 2:1 1:1 0:1

MDSCs : Responder cells

P
ro

lif
er

at
io

n
[c

pm
]

Control
L-NMMA
L-NIL

E

*80

0
10
20
30
40
50
60
70

N
O

3
[µ

M
]

-

Ly6G

+

+

Ly6C

+

-

Ly6C

+

-

-

+

Transwell

MDSCs

Responder

merge: iNOS+ CD11b+ CD11c-

G

0
2
4
6
8

10
12
14
16

CCR3+

CCR4+

CCR10+

M
D

S
C

s
[%

]

D

FITC

FITC + Pam2

BM

Blood

Skin

FITC

FITC + Pam2

* *

*

*

* *

0

2

4

6

8

10
C

D
3+

T 
ce

lls
 [%

]

AD

100 101 102 103 104

0

106

211

317

422

iNOS

C
el

ln
um

be
r



WT + Tlr2-/--BM

0

5

10

15

20

25

30

CD4+ T cells CD8+ T cells Gr1+CD11b+ MDSCs

C
el

ls
 [%

] 

Figure 6

*

*

0

2000

4000

6000

8000

10000
12000

14000

WT Tlr2-/-

P
ro

lif
er

at
io

n 
[c

pm
]

*

A

WT + WT-BM

0
4
8

12
16
20
24
28
32

CD4+ T cells CD8+ T cells Gr1+CD11b+ MDSCs

C
el

ls
 [%

]

D

*

*
*

*

*
*

*

*

0

5

10

15

20

25

30

CD4+ T cells CD8+ T cells Gr1+CD11b+ MDSCs

C
el

ls
 [%

]
WT + FITC
WT + FITC + Pam2
Tlr2-/- + FITC
Tlr2-/- + FITC + Pam2

*

* *

Tlr2-/-

0

5

10

15

20

0 24 48 72

Hours after FITC-Challenge

E
ar

 s
w

el
lin

g 
[x

0.
01

m
m

]

FITC

FITC + Pam2

*

WT

0

5

10

15

20

25

30

0 24 48 72

Hours after FITC-Challenge

E
ar

 s
w

el
lin

g 
[x

0.
01

m
m

] FITC

FITC + Pam2

Tlr2-/- + Tlr2-/--BM

0

4

8

12

16

20

24

28

CD4+ T cells CD8+ T cells Gr1+CD11b+ MDSCs

C
el

ls
 [%

]

Tlr2-/- + WT-BM

0

5

10

15

20

25

30

35

CD4+ T cells CD8+ T cells Gr1+CD11b+ MDSCs

C
el

ls
 [%

]

n.s.

n.s.

n.s.

n.s.

n.s.
n.s.

B C



IL-6

0

200

400

600

800

Naiv
e

FIT
C

FIT
C + 

Pam
2

FIT
C + 

Pam
3

FIT
C + 

CpG

FIT
C + 

LP
S

Fo
ld

in
du

ct
io

n

CXCL2

0

40

80

120

160

200

Naiv
e

FIT
C

FIT
C + 

Pam
2

FIT
C + 

Pam
3

FIT
C + 

CpG

FIT
C + 

LP
S

Fo
ld

in
du

ct
io

n

TNF

0

10

20

30

40

50

Naiv
e

FIT
C

FIT
C + 

Pam
2

FIT
C + 

Pam
3

FIT
C + 

CpG

FIT
C + 

LP
S

Fo
ld

in
du

ct
io

n

0

5

10

15

20

25

0 24 48 72

Hours after FITC challenge

E
ar

sw
el

lin
g

[x
0.

01
 m

m
]

FITC
FITC + Pam2
Il6-/- + FITC
Il6-/- + FITC + Pam2

F

*

Serum

0

300

600

900

Naiv
e 0 1 2 4 7 9 11 13

Days after 
cutaneous Pam2 exposure

IL
-6

 [p
g/

m
l]

Keratinocytes

0

40

80

120

160

200

Con
tro

l

Pam
2

Pam
3

LP
S

CpG

IL
-6

 [p
g/

m
l]

D E

H

0
10
20
30
40
50
60
70
80

Con
tro

l
20

0 20 2 0.2

P
ro

lif
er

at
io

n
[%

]

IL-6 [ng/ml]

*
*

*
0

5

10

15

20

25

G
r1

+ C
D

11
b+

M
D

S
C

s
[%

] wt + FITC

wt + FITC + Pam2

Il6-/- + FITC

Il6-/- + FITC + Pam2

G

0

1

2

3

4

5

CD45- CD45+

IL
-6

 p
os

iti
ve

 c
el

ls
[%

]

*

FITC

FITC + Pam2

FITC + Pam3

B

*

C

A

Control

Pam2

Pam3

TLR2 TLR6 TLR1
Figure 7

*



Toll-like receptor 2 ligands promote chronic atopic
dermatitis through IL-4–mediated suppression of IL-10

Susanne Kaesler, PhD,a* Thomas Volz, MD,a* Yuliya Skabytska, MSc,a Martin K€oberle, PhD,a Ulrike Hein, MD,a

Ko-Ming Chen, MD,a Emmanuella Guenova, MD,a,b Florian W€olbing, MD,a Martin R€ocken, MD,a and

Tilo Biedermann, MDa,c T€ubingen and Munich, Germany, and Zurich, Switzerland

Background: Atopic dermatitis (AD) is a T cell–mediated
inflammatory skin disease, with TH2 cells initiating acute flares.
This inflamed skin is immediately colonized with Staphylococcus
aureus, which provides potent Toll-like receptor (TLR) 2
ligands. However, the effect of TLR2 ligands on the
development of TH2-mediated AD inflammation remains
unclear.
Objective: We investigated the progression of TH2
cell–mediated dermatitis after TLR2 activation.
Methods: Using models for acute AD with TH2 cells initiating
cutaneous inflammation, we investigated the consequences of
TLR2 activation. Dermatitis, as assessed by changes in ear skin
thickness and histology, was analyzed in different BALB/c and
C57BL/6 wild-type and knockout mouse strains, and immune
profiling was carried out by using in vitro and ex vivo cytokine
analyses.
Results: We show that TH2 cell–mediated dermatitis is
self–limiting and depends on IL-4. Activation of TLR2
converted the limited TH2 dermatitis to chronic cutaneous

inflammation. We demonstrate that the concerted activation of
TLR2 and IL-4 receptor on dendritic cells is sufficient for this
conversion. As an underlying mechanism, we found that the
combinatorial sensing of the innate TLR2 ligands and the
adaptive TH2 cytokine IL-4 suppressed anti-inflammatory IL-10
and consequently led to the exacerbation and persistence of
dermatitis.
Conclusion: Our data demonstrate that innate TLR2 signals
convert transient TH2 cell–mediated dermatitis into persistent
inflammation, as seen in chronic human AD, through
IL-4–mediated suppression of IL-10. For the first time, these
data show how initial AD lesions convert to chronic
inflammation and provide another rationale for targeting
IL-4 in patients with AD, a therapeutic approach that is
currently under development. (J Allergy Clin Immunol
2014;134:92-9.)

Key words: Staphylococcus aureus, Toll-like receptor 2, innate
immunity, IL-4, TH2, atopic dermatitis, IL-10

Atopic dermatitis (AD) is a frequent inflammatory skin disease
characterized by reduced skin barrier function, intracutaneous
T-cell activation, itchy dermatitis, and susceptibility to cutaneous
microbial and viral infections, and its prevalence has markedly
increased during the past 3 decades. AD is thought to be based on
(1) the genetic trait causing susceptibility and (2) environmental
factors.1-5 A detailed characterization of AD inflammation has
revealed a biphasic cutaneous cytokine milieu with initial
recruitment of IL-4–producing TH2 cells, followed by a mixed
phenotype in the chronic phase.6,7 Although cutaneous barrier
dysfunction also contributes to TH2 cell polarization, the TH2
cell cytokine IL-4 further reduces the cutaneous barrier. Addition-
ally, IL-4 suppresses antimicrobial peptide production and
immune function, allowing cutaneous microbes to expand and
persist.2,8-10 Next to this prominent communication between the
epithelium and T cell–derived cytokines, professional antigen-
presenting cells, especially activated dendritic cells (DCs), are
also found in AD lesions and are thought to promote AD initiation
and persistence by recruiting and activating T cells.11

In contrast to the cascade of steps driving adaptive immunity
during AD, much less is known about the role of innate immune
activation. In the skin rapid activation of innate sentinels drives
the first-line response to microbes. The key event in this process is
the recognition of microbial pathogen-associated molecular
patterns (PAMPs) by specific receptors, such as Toll-like
receptors (TLRs), on sentinel cells.12 After activation by innate
immune signals, immune sentinels, such as DCs, orchestrate
adaptive immune responses during infections, autoimmunity,
allergy, and tolerance.13,14 To this end, pathogen recognition
receptors on DCs recognize a broad spectrum of different
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Abbreviations used

AD: Atopic dermatitis

DC: Dendritic cell

IL-4R: IL-4 receptor

LTA: Lipoteichoic acid

OVA: Ovalbumin

Pam2: Pam2Cys

PAMP: Pathogen-associated molecular pattern

TLR: Toll-like receptor

WT: Wild-type

PAMPs.13 These innate immune sentinels detect more than 1
signal at a time, but only recently has it been appreciated that
the combination of incoming signals is crucial for the outcome
of immune responses.15 This is of special interest in the context
of AD because AD skin lesions are heavily colonized with
gram-positive Staphylococcus aureus and PAMPs from S aureus
predominantly bind TLR2.2,16 Interestingly, levels of cutaneous
TLR2 ligands strongly correlate with AD severity.17 Increased
understanding of combinative innate immune sensing is required
to comprehend the pathogenesis of chronic inflammatory diseases
at interface organs, and studying such diseases can serve as a
model to establish general mechanisms of innate inflammation.

In the present work we analyzed the consequences of innate
immune sensing through TLR2 for TH2 cell–mediated cutaneous
inflammation. We used TH2 cell–mediated dermatitis models
because IL-4–producing TH2 cells are found in early AD lesions
when the skin encounters increasing innate TLR2 signals derived
from S aureus. We found that a single exposure to TLR2 ligands
converts TH2-mediated transient dermatitis to chronic persistent
cutaneous inflammation. These findings mimic the development
of skin lesions in patients with AD. As the underlyingmechanism,
we demonstrated that the concerted activation of TLR2 and IL-4R
on innate immune sentinels potently suppressed IL-10, thereby
exacerbating TH2-mediated dermatitis and initiating chronic
inflammation. The most important immune skin sentinels are
DCs, and we show that the concerted activation of TLR2 and
IL-4R on DCs is sufficient to convert limited dermatitis into
aggravated and persisting inflammation. Thus the combined
sensing of innate immune signals together with the hallmark
adaptive cytokine of early inflammation, IL-4, determined the
outcome of this chronic immune response in patients with AD.
For the first time, these data show how initial AD lesions are
converted to chronic inflammation. In addition, these findings
also provide another rationale for targeting IL-4 in patients with
AD, a therapeutic approach that is currently under development.

METHODS

Mice
BALB/c, C57BL/6, DO11.10, OT-II, and signal transducer and activator of

transcription 6 (Stat6)–deficient mice were purchased from Charles River

(Sulzfeld, Germany) or the Jackson Laboratory (Bar Harbor, Me). Tlr22/2

BL/6 mice were provided by C. Kirschning (Duisburg, Germany) and

backcrossed to the BALB/c background, MHCII2/2 mice were provided by

L. Klein (Munich, Germany), and Il4ra2/2 mice were provided by A.

Gessner (Erlangen, Germany). All mice were kept and bred under specific

pathogen-free conditions in accordance with the guidelines of the Federation

of European Laboratory Science Association. All animal experiments were in

compliancewith both European Union and German law andwere approved by

local authorities (Regierungspr€asidium T€ubingen, HT4/03, HT2/11, HT9/13).

Ovalbumin sensitization and adoptive T-cell

transfer
Ovalbumin (OVA)–specific T cells were obtained from transgenic mice

(DO11.10, OT-II) or fromOVA-sensitized mice.18 CD41 T cells were isolated

with microbeads (Miltenyi Biotec, Bergisch Gladbach, Germany) and

expanded in vitro. For adoptive transfer, 1 3 106 OVA-specific TH2 cells

with or without 5 mg of OVA protein (Hyglos, Regensburg, Germany) or

1.5 mg of OVA323-339 peptide (EMC, T€ubingen, Germany) were intracutane-

ously injected into the ear. S aureus lipoteichoic acid (LTA; 10 mg; obtained

from T. Hartung, Konstanz, Germany) or Pam2Cys (Pam2; 2 or 4 mg; EMC)

were included, where stated. DCswere exposed to 10mg/mLPam2 for 5 hours,

washed twice with PBS, pulsed with 1 mg/mL OVA peptide for 1 hour, and

washed twice with PBS. Controls were only pulsed with OVA. Where stated,

DCs were incubated with 10 mg of IL-4/mL over night before Pam2 exposure.

A total of 23 105 DCs were applied intradermally together with 13 106 TH2

cells. For IL-10 supplementation in Il4ra knockout mice, 2 mg of IL-10

(PeproTech, Heidelberg, Germany) was added, and an additional 2 mg was

injected 6 and 24 hours later. Control animals received PBS. For induction

of endogenous OVA-specific TH2 cells, DO11.10 mice were sensitized as pre-

viously described19 and challengedwithOVAprotein, followedbyPam2 injec-

tion. Ear thickness was measured with a micrometer (Kroeplin, Schl€uchtern,

Germany) and expressed as a change in ear thickness after treatment.

Cell culture
T-cell culture was performed, as previously described.20 OVA-specific TH2

cellswere expandedby the addition of 1.5 ng/mL IL-4 (PromoCell, Heidelberg,

Germany) and 10mg of OVA or 2.5mg/mLOVA323-339 peptide. For TH pheno-

typing, T cells were stimulated with 0.5mg/ml phorbol 12-myristate 13-acetate

(Sigma, Taufkirchen, Germany) and 1 mmol/L ionomycin (Sigma). Bone

marrow–derived DCs were generated and cultured, as previously described,21

and stimulated with 10 mg of Pam2/mL or 10 mg of S aureus LTA/mL with

or without 10 ng of IL-4/mL. Quantification of IL-4, IFN-g, IL-10, IL-12p70

(BD PharMingen, Heidelberg, Germany), and IL-13 (eBioscience, San Diego,

Calif) in the supernatant was performed by means of ELISA. For real-time

analysis, DCs were cultured with the indicated additives with or without

a-CD3/a-CD28–activated TH2 cells in transwell plates for 6 hours.

Real-time quantitative PCR
Total RNA was extracted from in vitro–cultured DCs or from ears after

adoptive transfer by using the RNAKit (Machery &Nagel, D€uren, Germany).

RNA was reverse transcribed to cDNA with the iScript cDNA Synthesis Kit

(Bio-Rad Laboratories, Munich, Germany), according to the manufacturer’s

instruction. Quantitative real-time PCR was carried out with a LightCycler

LC480 (Roche, Basel, Switzerland) by using SYBRGreen Supermix (Roche).

Data were presented normalized to the housekeeping gene b-actin and

calculated as the difference from the value obtained after transfer of OVA

alone, which was set as 1.

Statistical analysis
All data are presented as means 6 SEMs and representative of at least 2

experiments. Statistical analysis was performed with the unpaired Student

t test (2-tailed) or with 2-way repeated-measures ANOVA and the Bonferroni

posttest. P values of less than .05 were considered statistically significant.

Additional information can be found in theMethods section in this article’s

Online Repository at www.jacionline.org.

RESULTS

Self-limited allergen-induced dermatitis is

mediated by IL-4
Early immune reactions in AD skin are dominated by TH2

cells and cytokines and are believed to predispose the AD skin
for colonization by bacteria, such as S aureus. As a model for
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the early phase of AD inflammation, OVA-specific IL-4–
producing TH2 cells were intracutaneously transferred with or
without OVA into the ears of naive mice. Ear swelling was
determined as the change in skin thickness to quantify dermatitis.
Transfer of TH2 cells with OVA provoked strong but self-limiting
cutaneous inflammation, with a peak at 24 hours in both
TH2-prone BALB/c (Fig 1, A) and C57BL/6 mice (Fig 1, B).
OVA-specific TH2 cells from wild-type (WT) or IL-4–deficient
mice were generated to identify the underlying mechanisms.
TH2 polarization of Il42/2 T cells was determined based on
IL-13 production, which was identical to cytokine secretion by
WT TH2 cells, whereas IL-4 production was lacking, as expected
(see Fig E1 in this article’s Online Repository at www.jacionline.
org). Intracutaneous transfer of WT TH2 cells and antigen
resulted in a significant increase in ear thickness in WT mice
that was dependent on TH2 cell–derived IL-4 and host IL-4R.
Il42/2 TH2 cells did not induce dermatitis in WT mice, and simi-
larly, WT TH2 cells did not induce cutaneous inflammation in
mice lacking the IL-4 receptor (Il4ra2/2; Fig 1, C). Importantly,
IL-4–mediated dermatitis was also strictly dependent on MHCII
on recipient cells because it was completely abrogated in
recipients deficient for MHCII (Fig 1, D). Thus our data demon-
strate that antigen-activated TH2 cells induce self-limited
cutaneous inflammation, which is dependent on IL-4 signaling.

TLR2 ligands enhance and sustain TH2-mediated

dermatitis through activation of skin-resident cells
S aureus is a dominant trigger of AD, providing high levels of

different TLR2 ligands. One such ligand, LTA, was recently
isolated from AD skin lesions and identified as a PAMP that
correlates with AD severity.17 Therefore we analyzed the role
of innate immune sensing of S aureus–derived PAMPs by
exposing the skin to those TLR2 ligands. LTA significantly

enhanced dermatitis induced by OVA-specific TH2 cells in
BALB/c (Fig 2, A) and C57BL/6 (Fig 2, B) mice, indicating
that innate immune sensing of S aureus–derived LTA contrib-
utes to AD inflammation. LTA was initially described as a
ligand for TLR2,22 although it now appears that lipoproteins
in LTA preparations mediate the TLR2-dependent effects of
LTA.23,24 Therefore we next exposed the skin to the lipoprotein
Pam2, another TLR2 ligand.25 Like LTA, Pam2 significantly
enhanced and sustained TH2-mediated dermatitis in BALB/c
and in C57BL/6 mice, as shown by ear swelling (Fig 2, C
and D, respectively). In addition, hematoxylin and eosin
staining of skin sections at 48 hours demonstrated epidermal
thickening (Fig 2, E, yellow arrow) and a massive dermal
cellular infiltrate in these Pam2 conditions, exceeding findings
in self-limited TH2 dermatitis (Fig 2, E, white arrows).
Interestingly, IFN-g mRNA was upregulated in skin undergoing
Pam2-exposed exacerbated inflammation, although not in self-
limited TH2 dermatitis skin (Fig 2, F). This upregulation could
be due to endogenous T-cell bystander recruitment in addition
to the transfer of TH2 cells. Therefore we extended our analyses
to a model in which endogenous TH2 cells induced by OVA
sensitization are recruited to the skin after antigen challenge.19

In this model, OVA-activated TH2 cells led to short-lived derma-
titis as well. In agreement with the results obtained with Pam2
in the transfer model, a single exposure to Pam2 in actively
sensitized mice also induced severe and ongoing dermatitis, as
assessed by measuring the increase in ear thickness (Fig 2, G)
and by epidermal thickness and cellular infiltrates in histology
(Fig 2, H). Next, we adopted our transfer model, in which
TH2 cells and OVA were administered first followed by
exposure to Pam2 24 hours later because this might be closer
to the situation in human AD. Exposure to Pam2 24 hours after
TH2 cell activation also significantly enhanced and prolonged

FIG 1. TH2-mediated dermatitis is self-limited and dependent on IL-4 and MHCII. A and B, Intracutaneous

OVA-specific TH2 cells mediate dermal inflammation in the ears of naive BALB/c (Fig 1, A) or C57BL/6

(Fig 1, B) mice quantified as changes in ear thickness. C, Transfer of WT or Il42/2 OVA-activated TH2 cells

in WT or Il4ra2/2 mice (BALB/c background) demonstrated a strict dependence on IL-4. D, Complete

abrogation of inflammation in MHCII2/2 mice (C57BL/6 background). n 5 4-10. #*P < .05, **P < .005, and

***P < .0005.
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cutaneous inflammation, followed by significantly increased
recruitment of CD451 leukocytes (see Fig E2 in this
article’s Online Repository at www.jacionline.org). Thus innate
immune sensing through TLR2 enhanced and sustained skin
inflammation caused by IL-4–producing TH2 cells.

One possible target of TLR2 ligands are T cells because
TLR2 can act as a costimulatory molecule for T-cell activa-
tion.26 WT or Tlr22/2 TH2 cells were adoptively transferred into
either WT or Tlr22/2 mice, and skin inflammation was moni-
tored thereafter to identify the dominant target cells for TLR2
ligands. In WT mice Pam2 enhanced and sustained dermatitis
induced by OVA-activated TH2 cells, irrespective of whether
the T cells were TLR2 deficient (Fig 3, A). In contrast, TLR2
ligands completely failed to enhance and sustain TH2-induced
dermatitis in Tlr22/2 mice, and the ear-swelling pattern in these
mice was indistinguishable from the control transfer without
TLR2 ligands (Fig 3, B). These data demonstrate that TLR2
ligands most likely target skin-resident antigen-presenting cells.
Among these, the most important are DCs, which function as
crucial sentinels of the immune system and link innate and
adaptive immunity also in patients with AD.11 Accordingly,
we modified our protocol and transferred OVA-pulsed DCs
with (Pam2-DCOVA) or without (DCOVA) Pam2 exposure
together with OVA-specific TH2 cells. Indeed, the transfer of
OVA-pulsed DCs resulted in a limited antigen-induced derma-
titis, whereas Pam2-DCOVA caused significantly enhanced and
prolonged inflammation (Fig 3, C). Aggravated skin inflamma-
tion was dependent on TLR2 activation of DCs because WT but
not Tlr22/2 Pam2-DCOVA exacerbated dermatitis in C57BL/6
mice (Fig 3, D) and BALB/c mice (see Fig E3 in this article’s
Online Repository at www.jacionline.org). Together, these
data demonstrate that activation of DCs through TLR2
converts limited TH2-mediated dermatitis to an aggravated and
persisting inflammation.

IL-4–induced suppression of IL-10 causes

exacerbation and persistence of TH2-mediated

dermatitis by TLR2 ligands
Given the critical role of IL-4 during early skin inflammation at

the time of Pam2 encounter and of DCs for Pam2-induced
dermatitis exacerbation, we next investigated the combined
immune sensing of IL-4 and the TLR2 ligand Pam2 by DCs. To
this end, DCs were activated with Pam2 with or without
additional exposure to IL-4, as in AD skin. Cytokine levels
were analyzed 24 hours later. The quality and functional
consequences of immune responses are determined by the
cumulative effect of differentially acting cytokines. Therefore
we analyzed the main representatives of the proinflammatory and
anti-inflammatory cytokines IL-12 and IL-10, respectively, to
anticipate the immune consequences of such DCs. We found that
Pam2-mediated activation of DCs induced IL-12 and IL-10.
However, when mimicking the TH2-dominant milieu of early AD
by adding IL-4, IL-12p70 levels were upregulated further in
activated DCs, as expected.14,27 More importantly, IL-10 levels
were significantly suppressed (Fig 4, A). This resulted in a
proinflammatory shift of the cytokine milieu, as represented by
the IL-10/IL-12 ratio (Fig 4, B). This suppression of IL-10 was
indeed mediated by IL-4 because it was completely abolished
in DCs with defective IL-4 signaling (see Fig E4 in this article’s
Online Repository at www.jacionline.org).

On the basis of these in vitro data, we askedwhether this change
of cytokine expression was also associated with the observed con-
version of self-limited dermatitis into aggravated inflammation
in vivo (Fig 2). To do this, we performed quantitative real-time
PCR of ear skin 12 and 24 hours after the initiation of AD-like
inflammation. As expected, Pam2 exposure upregulated IL-12
levels in the skin of recipient mice, with the highest levels
detected 24 hours after challenge (Fig 5, A). Remarkably, and
consistent with our in vitro results, cutaneous IL-10 expression

FIG 2. TLR2 ligands convert TH2-mediated acute dermatitis into exaggerated and persistent inflammation.

A-D, Progression of TH2-induced dermatitis after exposure to TLR2 ligands in BALB/c (Fig 2, A and C) and
C57BL/6 (Fig 2, B and D) mice is shown. LTA temporarily enhanced dermatitis (Fig 2, A and B). Pam2

converted dermatitis into persistent inflammation (Fig 2, C and D). E, Representative hematoxylin and eosin

staining of histologic sections from C57BL/6 mice 48 hours after intracutaneous transfer. F, Relative IFN-g

mRNA level in ear skin 12 hours after transfer. G and H, OVA-sensitized DO11.10 mice (BALB/c background)

challenged intracutaneously with OVA with or without Pam2. Cutaneous inflammation after OVA activation

of endogenous TH2 cells is shown in Fig 2, G, and histology (day 6) is shown in Fig 2, H. n 5 4-20. *P < .05,

**P < .005, and ***P < .0005.
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appeared earlier and was highest 12 hours after Pam2 exposure
(Fig 5, A). This opposing regulation is best reflected by the
cutaneous IL-10/IL-12 mRNA ratio: in mice with self-limited
TH2-mediated dermatitis, IL-10 dominated skin inflammation at
24 hours (Fig 5, B, left). In contrast, the IL-10/IL-12 mRNA ratio
was markedly reduced in dermatitis lesions that showed enhanced
and sustained inflammation after TLR2 ligand exposure (Fig 5, B,
right). Importantly, amplified IL-4 production, as detected by
means of cutaneous IL-4 mRNA expression, was found in both
self-limited TH2 dermatitis and enhanced and sustained
inflammation after Pam2 exposure (see Fig E5 in this article’s
Online Repository at www.jacionline.org). Therefore after innate

immune sensing of TLR2 ligands, TH2-derived IL-4 suppressed
IL-10 levels, allowing TLR2 ligands to enhance and sustain AD
inflammation. Indeed, IL-10 expression in Pam2-treated DCs
was significantly reduced on coculture with IL-4–secreting TH2
cells comparable with the suppression seen after direct addition
of IL-4 (Fig 5, C). Intracutaneously transferred TH2 cells and
Pam2-DCOVA were reconstituted with IL-10 to prove that IL-10
is indeed critical for the IL-4–mediated conversion of acute AD
flares into persistent AD-like inflammation. Supplementation
with IL-10 completely abrogated Pam2-induced dermatitis,
which decreased to the level of inflammation without Pam2
activation (Fig 5, D). This demonstrated IL-10 to be a key
regulator in the orchestration of adaptive TH2-mediated
immune responses. Next, we carried out long-term analyses
of Pam2-exposed dermatitis. Impressively, after a single
exposure to Pam2, TH2-induced dermatitis increased over 5
days and remained significantly enhanced for more than 3 weeks
(Fig 5, E). In summary, our data demonstrate that TLR2 ligands
convert acute self-limited inflammation to chronic and persistent
dermatitis through IL-4–mediated suppression of IL-10.

DISCUSSION
AD is based on a complex genetic trait, with skin barrier defects

being among the most frequent functional abnormalities.3,28 The
majority of patients with AD have increased IgE levels toward
environmental antigens and TH2-biased T-cell immunity,
which is based on both cutaneous barrier defects and an inherent
immune bias toward TH2 immunity.2 A prerequisite for the

FIG 4. Suppression of TLR2 ligand–induced IL-10 by IL-4.A,DCs exposed to

Pam2 produced intermediate levels of IL-12p70 and high levels of IL-10

(left). Coactivation of Pam2-exposed DCs with IL-4 significantly suppressed

IL-10 secretion (Fig 4, A, right), resulting in a low IL-10/IL-12p70 ratio

(B; average of 4 experiments). **P < .005.

FIG 3. TLR2 activation of skin cells converts TH2-mediated acute dermatitis to enhanced and prolonged

inflammation. A and B, Crossover experiment for persistent inflammation. Fig 3, A, shows Pam2-induced

aggravated dermatitis in BALB/c mice after intracutaneous activation of either WT or Tlr22/2 TH2 cells.

Fig 3, B, shows self-limited acute dermatitis, as in OVA-treated control animals, despite exposure to

Pam2 in Tlr22/2 recipients (done in parallel with Fig 3, A). C, Exacerbation and prolongation of dermatitis

after transfer of TH2 cells and Pam2-exposed OVA-pulsed DCs in C57BL/6 mice. D, Pam2-exposed WT but

not Tlr22/2 DCs promote exacerbated inflammation in Tlr22/2-C57BL/6 mice. n 5 4-10. **P < .005 and

***P < .0005.
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development of AD inflammation is the initial recruitment of
IL-4–producing TH2 cells to the skin on acute triggering factors,
among them exposure to environmental allergens.29-31 However,
the switch from acute AD flares to chronic cutaneous inflamma-
tion is not understood, and functional human in vivo studies are
difficult to perform. Cutaneous colonization or infections with S
aureus are found in almost all patients with AD, demonstrating
a positive correlation between bacterial density and the severity
of AD.32 Moreover, this correlation with AD severity is also valid
for TLR2 ligands found on the skin.17 Therefore we hypothesized
that TLR2 ligands play a major role in the conversion of acute AD
inflammation to chronic dermatitis.

TLR2 has been associated with AD pathogenesis,2 with the
most recent work demonstrating that TLR2 contributes to skin
barrier repair when acting on the epithelium.33 To investigate
howTLR2 ligands orchestrate cutaneous inflammation in patients
with AD, we used a mouse model in which IL-4 is the dominant
and functionally relevant cytokine, as in early AD. This allowed
us to specifically focus on the effect of innate TLR2 signals in a
TH2-dominant adaptive immune response in the skin. Previous
analyses concentrated on the role of TLR2 ligands for cutaneous
TH1 responses,34 for which IFN-g had been shown to mediate
dermal thickening.35 We showed that TLR2 ligands, as provided
by S aureus, convert TH2-mediated self-limited skin dermatitis
into persistent and aggravated chronic inflammation. These
analyses provide a rationale for the conversion of acute AD flares
to chronic skin inflammation, which is observed in patients with
AD. This conversion was driven by innate and adaptive signals
that simultaneously activated immune sentinels of the skin. In
general, TLR2 ligands are known to coinduce rather high levels

of IL-10.36 This, under homeostatic conditions, might contribute
to microbiota tolerance because gram-positive bacteria persist on
the skin in the absence of inflammation. However, in the setting of
IL-4–dominated inflammation, this upregulation is counterregu-
lated by IL-4, which suppresses IL-10, leading to TLR2-
mediated exacerbation of inflammation. Thus the combinative
sensing of adaptive IL-4 together with innate TLR2 signals
directly drives skin inflammation by suppressing IL-10. These
newly identified consequences of coactivating signals shed light
onto a hitherto neglected effect of combinatorial immune
sensing.15 Moreover, the identification of IL-10 as a target
cytokine of this immune orchestration confirms its dominant
role as an important anti-inflammatory cytokine with immuno-
modulatory properties, limiting otherwise excessive immune
responses.37 It is well established that IL-10 regulates a variety
of immune cells, including TH2 cells.38 Furthermore, IL-10 has
even been used as a therapeutic agent for inflammatory diseases
of the skin, such as psoriasis,39 and the gut, such as Crohn
disease.40 Interestingly, an AD-like skin disease in NcNgA
mice was effectively treated with IL-10,41 and IL-10 was also
relevant for the amelioration of canine AD.42 These analyses
support the concept that the adaptive cytokine IL-4 suppresses
innately induced IL-10, which is responsible for the conversion
of acute dermatitis to chronic and persistent inflammation.

These findings are highly relevant to patients with AD because
S aureus is found on the skin of almost all such patients.32 In
addition to S aureus, Malassezia species have been shown to be
triggers of head-and-neck variants of AD, and herpes virus
infections lead to severe AD complications.43-45 Importantly, in
the context of our findings, innate signals from Malassezia

FIG 5. Suppression of IL-10 by coactivation of IL-4R and TLR2 converts acute dermatitis to chronic

inflammation. A and B, Quantitative real-time PCR of cutaneous cytokines during conversion to persistent

Pam2-induced dermatitis. Fig 5, A, shows Pam2-induced IL-12p40 and IL-10 expression. Fig 5, B, shows

reduced IL-10/IL-12p40 ratio in persistent dermatitis. C, Suppression of IL-10 mRNA in Pam2-exposed

DCs by means of coculture with activated TH2 cells or the addition of IL-4. D, Reconstitution of IL-10

abrogated Pam2-induced aggravation of dermatitis after intracutaneous transfer of TH2 cells, DCs, and

OVA in Il4ra2/2 mice. E, A single Pam2 exposure converted TH2-mediated dermatitis into exacerbated

chronic inflammation in C57BL/6 mice. n 5 6-10. ***P < .0005.
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species and herpes viruses activate TLR2.46,47 This indicates that
our findings on S aureus–derived TLR2 ligands might be of
general importance and also functional in other settings in
patients with AD.

Our findings also further emphasize that IL-4 is a promising
target for AD therapy. It has long been known that IL-4 is the
hallmark cytokine of TH2 cells and early AD and that IL-4
downregulates antimicrobial peptides and cutaneous barrier
function.6,7,48 We have now added a crucial new role for IL-4 in
AD pathogenesis: IL-4 suppresses cutaneous IL-10 induced by
innate signals and therefore promotes chronic AD. Until recently,
however, IL-4 was targeted in patients with severe asthma49 but
not in those with AD. Now clinical trials report significant
improvement of AD-related inflammation by subcutaneous appli-
cation of a human mAb directed against IL-4Ra.50-53 Together
with our data, this indicates that inhibiting IL-4R signaling also
prevents IL-4–mediated suppression of IL-10, which is pivotal
for persistent and chronic inflammation in patients with AD after
the simultaneous activation of IL-4R and TLR2.

We thank Ulrike Schmidt, Stefanie M€uller, Synia Haub, and Natalie Mucha

for their excellent technical assistance.

Key messages

d TH2 cell–mediated dermatitis is self-limiting and strictly
depends on IL-4.

d TLR2 ligands convert self-limited TH2-mediated derma-
titis to chronic inflammation by activating skin-resident
sentinels.

d TLR2 ligand–induced chronic dermatitis results from
IL-4–mediated suppression of IL-10.
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METHODS

Skin cell analysis
Mouse ear tissue was incubated with Dispase II (Sigma-Aldrich) for 2

hours at 378C. The dermis and epidermis were separated; digested for 30

minutes at 378C in collagenase A (Serva, Heidelberg, Germany) or trypsin-

EDTA (Biochrom Berlin, Germany), respectively; and pooled again. Samples

were given twice through a cell strainer to obtain single-cell suspension. After

washing, cells were counted, stained for 30 minutes at 48C, and analyzed by

means of flow cytometry with an LSRII flow cytometer and FACSDiva

Software (BD Biosciences, Heidelberg, Germany).
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FIG E1. Phenotypic characterization of TH2 cells. Characterization ofWT and IL-4–deficient TH2 cells used for

intracutaneous transfer, as shown in Fig 2. Secretion of IL-4 (A), IL-13 (B), and IFN-g (C) was determined by

means of ELISA. For comparison, cytokine secretion by TH1 cells is shown. n.d., Not detectable.
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FIG E2. Pam2-induced exacerbated inflammation after TH2 cell activation. A, TH2 cells and OVA were

transferred into the skin of BALB/c mice. Twenty-four hours later, some mice were additionally exposed

to Pam2, which resulted in aggravated inflammation comparable with that seen after simultaneous

application of TH2, OVA, and Pam2 (see Fig 2, C; n 5 8). B, Ear skin analysis from the experiment

depicted in Fig E2, A, showing increased numbers of CD451 cells in the Pam2-exposed condition.

*P < .05 and ***P < .0005.
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FIG E3. TLR2 activation of DCs converts TH2-mediated acute dermatitis to

enhanced and prolonged inflammation. Comparable with Fig 3, D, TH2 cells

and OVA-pulsed WT or Tlr22/2 DCs with or without Pam2 exposure

were transferred into Tlr22/2 BALB/c mice, and ear swelling was measured

thereafter. Pam2-exposed WT but not Tlr22/2 DCs promoted exacerbated

dermatitis (n 5 10). ***P < .0005.
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FIG E4. Suppression of IL-10 by IL-4 in Pam2-activated DCs. IL-10 secretion by bone marrow–derived DCs

either from a BALB/c background (A and B) or a C57BL/6 background (C and D), as determined by means of

ELISA. Addition of IL-4 significantly suppressed Pam2-induced IL-10 in WT DCs (Fig E4, A and C) but not in
DCs with defective IL-4 signaling pathways (Fig E4, B and D). n.d., Not detectable. *P < .05 and ***P < .0005.
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FIG E5. IL-4 expression in mouse ear skin. Relative IL-4 mRNA levels in

mouse ear skin 12 and 24 hours after transfer of TH2 cells and OVA with or

without Pam2, corresponding to expression shown in Fig 5,A and B. Values
were determined by using real-time PCR, normalized to b-actin, and shown

relative to values obtained after transfer of OVA alone (n56).
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Nonpathogenic Bacteria Alleviating Atopic Dermatitis
Inflammation Induce IL-10-Producing Dendritic Cells
and Regulatory Tr1 Cells
Thomas Volz1, Yuliya Skabytska1, Emmanuella Guenova1, Ko-Ming Chen1, Julia-Stefanie Frick2,
Carsten J. Kirschning3, Susanne Kaesler1, Martin Röcken1 and Tilo Biedermann1

The beneficial effects of nonpathogenic bacteria are increasingly being recognized. We reported in a placebo-
controlled study with atopic dermatitis (AD) patients that cutaneous exposure to lysates of nonpathogenic
bacteria alleviates skin inflammation. To now unravel underlying mechanisms, immune consequences of sensing
nonpathogenic bacterium Vitreoscilla filiformis lysate (Vf) were characterized analyzing (1) differentiation of
dendritic cells (DCs) and, consecutively, (2) effector functions of DCs and T helper (Th) cells in vitro and in a
murine model of AD in NC/Nga mice in vivo. Topical treatment with Vf significantly reduced AD-like
inflammation in NC/Nga mice. Importantly, cutaneous exposure to Vf in combination with the allergen FITC
significantly also reduced subsequent allergen-induced dermatitis indicating active immune modulation. Indeed,
innate sensing of Vf predominantly induced IL-10-producing DCs, which was dependent on Toll-like receptor
2 (TLR2) activation. Vf-induced IL-10þ DCs primed naive CD4þ T helper cells to become regulatory IFN-glow

IL-10high Tr1 (type 1 regulatory T) cells. These IL-10high Tr1 cells were also induced by Vf in vivo and strongly
suppressed T effector cells and inflammation. In conclusion, we show that innate sensing of nonpathogenic
bacteria by TLR2 induces tolerogenic DCs and regulatory Tr1 cells suppressing T effector cells and cutaneous
inflammation. These findings indicate a promising therapeutic strategy for inflammatory skin diseases like AD.

Journal of Investigative Dermatology advance online publication, 25 July 2013; doi:10.1038/jid.2013.291

INTRODUCTION
Atopic dermatitis (AD) is a chronic inflammatory skin disease
with increasing prevalence rates, affecting up to 10–20% of
the children in western countries (Bieber, 2008; Boguniewicz
and Leung, 2010). Although the detailed mechanisms under-
lying inflammation of AD skin are not fully understood, a
defect in skin barrier function as well as an immune
dysbalance play a crucial role, leading to T helper cell type 2
(Th2)–biased immune responses (Palmer et al., 2006; Bieber,
2008; Irvine et al., 2011). Increased hygiene standards, less
infectious diseases, and lowered family sizes are claimed to
lead to microbial deprivation during early years of life that
facilitate misdirected effector immune responses rather than
the induction of immune tolerance (‘‘hygiene hypothesis’’),

contributing to increase and development of allergies and
atopic diseases (Strachan, 1989; Bach, 2002; von Mutius and
Vercelli, 2010). Surface organs like the skin are constantly
colonized with bacteria in the absence of detectable
inflammation, but the mechanisms that inhibit inflammation
or even induce tolerance to the local microbiota are still
enigmatic (Grice et al., 2009). A reduced genetic diversity of
Gram-negative gammaproteobacteria in the environment of
atopic individuals was observed that profoundly influenced
the skin microbiota, leading to a decrease in Gram-negative
bacterium Acinetobacter and the anti-inflammatory cytokine
IL-10, demonstrating that resident microbes shape cutaneous
immune homoeostasis (Hanski et al., 2012). These data ideally
complement analyses in mouse models that first demonstrated
the potential of Gram-negative bacterium Acinetobacter to
prevent allergies (Debarry et al., 2007; Conrad et al., 2009). In
contrast to prevention of allergic sensitizations, most thera-
peutic strategies reporting the oral use of nonpathogenic or the
so-called ‘‘probiotic’’ bacteria failed to show significant effects
in the treatment of AD (Lee et al., 2008; Boyle et al., 2009).
Recently, we performed a proof-of-concept study in patients
demonstrating that immune recognition of the nonpathogenic
microbe Vitreoscilla filiformis is a promising strategy to treat
AD when directly applied onto patients’ skin and not orally
(Gueniche et al., 2008). Based on these clinical findings we
hypothesized that immune recognition of Gram-negative
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E-mail: Tilo.Biedermann@med.uni-tuebingen.de

Received 28 January 2013; revised 22 May 2013; accepted 1 June 2013;
accepted article preview online 28 June 2013

Abbreviations: AD, atopic dermatitis; CFSE, carboxyfluorescein succinimidyl
ester; DC, dendritic cell; LPS, lipopolysaccharide; Th cell, T helper cell; TLR,
Toll-like receptor; Tr1, type 1 regulatory T cell; Vf, Vitreoscilla filiformis lysate

& 2013 The Society for Investigative Dermatology www.jidonline.org 1

http://dx.doi.org/10.1038/jid.2013.291
mailto:Tilo.Biedermann@med.uni-tuebingen.de
http://www.jidonline.org


nonpathogenic bacterium V. filiformis exploits an important
mechanism of microbial immune sensing, finally alleviating
inflammation by induction of tolerance.

Pattern recognition receptors such as Toll-like receptors
(TLRs) play a key role in detecting ‘‘pathogen-associated
molecular patterns’’ (Takeuchi and Akira, 2010; Volz et al.,
2010; Volz et al., 2012). Especially within surface organs,
dendritic cells (DCs) are equipped with numerous pattern
recognition receptors and act as sentinels to sense micro-
bes, leading to DC maturation and cytokine production
(Reis e Sousa, 2004; Joffre et al., 2009). Activated DCs are
the most potent directors of immune phenotypes in T cells,
determining T-cell polarization to the different Th subtypes.
During this process of Th cell differentiation, DC cytokines are
most important possibly also shaping regulatory T cells
(Kapsenberg, 2003; Bettelli et al., 2008; Volz et al., 2012).
Intriguing studies demonstrated that these pathways are also
critical for induction of tolerance to the microbiota (Round
and Mazmanian, 2010; Geuking et al., 2011).

Given the positive results from our proof-of-concept study
in AD patients, we investigated the underlying mechanisms.
AD-prone NC/Nga mice with Th2-dominated cutaneous
hypersensitivity to FITC showed, similar to AD patients,
alleviated dermatitis when their skin was exposed to
V. filiformis signals. Importantly, this therapeutic effect was
even more pronounced when the skin was exposed to
V. filiformis signals previous to allergen challenge, indicating
effective immune modulation. Indeed, V. filiformis signals
induced high levels of IL-10 in DCs via TLR2. These DCs
orchestrated the induction of IL-10high, IFN-glow-producing Tr1
(type 1 regulatory T) cells. This regulation was also detected in
AD mice after cutaneous exposure to Vf with dominant IL-10
production by T cells from skin-draining lymph nodes and
consecutively reduced T-cell proliferation and proinflamma-
tory cytokine production.

Thus, immune recognition of the Gram-negative nonpatho-
genic bacterium V. filiformis by DCs induces IL-10-producing
DCs and regulatory Tr1 cells. This pathway may generally be
functional when discriminating between ‘‘pathogenic’’ and
‘‘nonpathogenic’’ bacteria and could be exploited to alleviate
cutaneous inflammation such as in AD.

RESULTS
Exposure to nonpathogenic bacteria attenuates cutaneous
inflammation in a murine model of AD
We recently reported effective treatment of AD lesions by
topical treatment of V. filiformis lysate (Vf) in a double-blind,
placebo-controlled clinical trial (Gueniche et al., 2008). Thus,
we first asked whether Vf solely suppressed cutaneous
inflammation in AD at the time and site of application. To
this end, mice of the NC/Nga strain that have been shown to
develop AD-like skin lesions and clinical features most closely
resembling human AD were investigated (Matsuda et al.,
1997). NC/Nga mice sensitized to the allergen FITC clearly
developed dermatitis lesions as measured by a strong increase
in ear thickness following allergen challenge (Figure 1a). All
appropriate controls without sensitization and subsequently
challenged with FITC with or without Vf exposure showed ear

swelling responses that were always o0.03 mm. Dermatitis
was reduced by 425% in mice that received topical treatment
of ear skin with Vf during FITC challenge, indicating direct
anti-inflammatory properties of Vf (Figure 1a). However, these
effects remained somewhat limited. Therefore, we next asked
whether exposure to Vf could also orchestrate immune
modulation or tolerance mediating long-term effects in addi-
tion. Therefore, one group of FITC-sensitized mice was
exposed to Vf in combination with FITC and the effects of
this exposure were determined 1 week later by challenge with
the allergen only. Compared with the FITC-sensitized control
group, mice previously exposed to Vf together with FITC
showed significantly reduced ear swelling after allergen
challenge alone (Po0.01), with almost 50% reduction at the
peak of skin inflammation (Figure 1b). Importantly, we
determined antigen-specific immunoglobulin levels in all
mice sensitized to FITC with or without exposure to Vf and
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Figure 1. Cutaneous exposure to Vitreoscilla filiformis (Vf) attenuates skin

inflammation. (a) FITC-sensitized NC/Nga mice showed ear swelling responses

peaking at 24 hours after challenge and declining thereafter. Cutaneous

exposure of mice to Vf exclusively during challenge significantly reduced ear

swelling at 24 and 48 hours. Not sensitized but FITC-challenged mice

(gray lines) did not display marked ear swelling responses irrespective of

exposure to Vf. Percentage of reduction of ear swelling of FITC-sensitized

Vf-exposed mice compared with FITC-challenged mice not receiving Vf is

shown at the right. (b) Cutaneous exposure of mice to FITC together with Vf

only previous to the final challenge significantly reduced ear swelling 24 and

48 hours after FITC challenge compared with the positive control group.

Reduction of ear swelling was up to 50% compared with mice not being

exposed to Vf, as depicted in the right panel. One out of two independent

experiments is shown, mean±SEM, n¼ 5 mice per group. NS, not significant.

*Po0.05 and **Po0.01.
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found elevated antigen-specific immunoglobulin levels when
compared with naive control mice. We detected no difference
in FITC-specific IgG1 and IgG2a levels when comparing Vf
exposed with unexposed mice and only a slight reduction in
antigen-specific IgE (Supplementary Figure S1 online). Thus,
Vf attenuated cutaneous T cell–mediated inflammation in a
murine model of AD by modes of immune modulation,
indicating that innate sensing of nonpathogenic V. filiformis
regulates even already established adaptive immunity.

Signals from nonpathogenic bacterium V. filiformis induce
maturation of human and murine DCs
Immune modulation or tolerance can be induced by immature
or semimature DCs not fully activated. To investigate DC
activation, murine bone marrow–derived dendritic cells
(BMDCs) and human monocyte-derived dendritic cells were
stimulated with either lipopolysaccharide (LPS) as positive

control or Vf for 24–48 hours. DC maturation was assessed by
FACS analysis.

Both Vf and LPS unequivocally induced maturation of
BMDCs as detected by upregulation of maturation markers
such as CD80, CD86, CD83, and major histocompatibility
complex class II as compared with untreated cells (Figure 2a).
After activation of human monocyte-derived dendritic cells
with Vf or LPS, CD83, the most reliable surface marker for
detection of human DC maturation, was also clearly upregu-
lated (Supplementary Figure S2a online). This shows that
signals of V. filiformis orchestrate the development of pheno-
typically mature DCs as determined by FACS analysis.

Signals from nonpathogenic bacterium V. filiformis orchestrate
the induction of IL-10high DCs

Next we analyzed cytokine production of DCs after activation
with either Vf or LPS. As expected, LPS induced high amounts
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of IL-12p70 and low levels of IL-10. In sharp contrast,
stimulation with Vf led to a DC cytokine profile dominated
by the anti-inflammatory cytokine IL-10, whereas IL-12p70
levels remained low for all V. filiformis strains investigated
(Figure 2b and Supplementary Figure S3 online). This IL-10
production induced by Vf was dose dependent in both human
and mouse DCs, indicating ligand(s) that trigger pattern
recognition receptors (Supplementary Figure S2b online).
Moreover, investigating numerous synthetic and bacterial-
derived TLR2 ligands, Vf was always superior in the induction
of IL-10 in DCs (Supplementary Figure S4 online). These data
demonstrate that innate immune sensing of nonpathogenic
bacteria governs DCs to predominantly produce the anti-
inflammatory and potentially tolerogenic cytokine IL-10.

Innate immune pathways for DC activation and IL-10 production
following encounter of signals from nonpathogenic bacterium
V. filiformis
To gain further insight into innate immune pathways activated
by Vf, we first investigated WT and MyD88� /� DCs. DC

maturation was induced in WT DCs in response to TLR2
ligand Pam2Cys (data not shown), TLR4 ligand LPS, and Vf as
detected by upregulation of major histocompatibility complex
class II, CD80, CD83, and CD86 (Figure 3a). In contrast, but
as expected, Pam2Cys was unable to induce maturation of
MyD88� /� DCs (data not shown) and DC maturation in
response to LPS was partially hampered. Strikingly, lack of
MyD88 did not affect DC maturation in response to Vf,
indicating that MyD88-independent pathways are at least in
part functional for DC maturation induced by nonpathogenic
bacteria (Figure 3a).

In sharp contrast to DC maturation, production of IL-10 and
IL-12p70 was almost completely abolished in MyD88� /�

DCs (data not shown). Thus, DC maturation and cytokine
production operate via distinct innate immune pathways.

To investigate the pathways that lead to DC cytokine
production following contact to nonpathogenic bacteria, the
consequences of Vf exposure were investigated in BMDCs
lacking either TLR2 or TLR4. Strikingly, IL-10 production
was almost completely dependent on TLR2, as IL-10 was
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significantly reduced in TLR2� /� DCs (Figure 3b). This
indicates that ligand(s) of TLR2 within Vf is/are respon-
sible for induction of high IL-10 levels. In sharp contrast to
TLR2� /� DCs, IL-10 production was only marginally reduced
in TLR4� /� DCs (Figure 3b). The low IL-12p70 levels induced
by Vf were also further investigated. Lack of TLR2 significantly
increased IL-12p70 production, presumably because of the
diminished IL-10 levels, whereas the absence of TLR4 abro-
gated the induction of the proinflammatory cytokine IL-12p70.
Thus, we conclude that during DC exposure to Vf, at least two
different dominant pathogen associated molecular patterns are
functional: TLR2 ligand(s) inducing high IL-10 levels and TLR4
ligand(s) responsible for induction of IL-12p70. The latter is
presumably LPS.

To further characterize the nature of the different pathogen
associated molecular patterns inducing either IL-10 or
IL-12p70 WT, TLR2� /� , and TLR4� /� DCs were activated
in the presence or absence of Polymyxin B that neutralizes
LPS. Low IL-12p70 levels that were detected in WT and
TLR2� /� DCs following exposure to Vf were nearly com-
pletely suppressed after preincubation of Vf with Polymyxin B,
demonstrating that V. filiformis LPS is responsible for IL-12p70
induction (Figure 3c). Importantly, Polymyxin B treatment
did not alter IL-10 production in WT, TLR2� /� , and
TLR4� /� DCs compared with DCs stimulated with Vf only
(Figure 3c). Thus, we conclude that innate immune signals
from nonpathogenic bacteria like V. filiformis activate TLR2
and induce high IL-10 levels independently from LPS and the
TLR4 pathway.

Priming of IL-10-producing CD4þ Tr1 cells by Vf-activated DCs

To assess the consequences on the adaptive immune system of
the innate immune sensing of Vf, cocultures of DCs with Th
cells were set up. First, DCs were activated with different
doses of Vf, pulsed with ovalbumin, and subsequently cocul-
tivated with naive CD4þ CD62Lþ OT-II Th cells. Increasing
concentrations of Vf in the previous DC culture reduced Th
cell proliferation as determined by [3H]-thymidine incorpora-
tion in a dose-dependent manner. This indicates direct
suppressive effects on Th cells mediated by DCs activated
with Vf (Figure 4a), which is in accordance to the observed
direct immunosuppressive effect in vivo (Figure 1a). To
determine immunomodulatory consequences on Th cell
polarization, DCs were activated with either LPS or Vf and
subsequently cocultivated for priming with Th cells as
described before. Primed Th cells were then expanded with
IL-2 for 10 days, stimulated, and analyzed for cytokine
production. Th cells primed by DCs that were activated with
LPS produced high IFN-g levels and no IL-4, indicating Th1
polarization (Figure 4b). In contrast, IFN-g levels secreted by
Th cells primed with Vf-exposed DCs were markedly reduced
compared with LPS-DCs and, again, IL-4 production was
undetectable (Figure 4b). Most importantly, Vf-exposed DCs
primed Th cells to secrete several fold higher levels of IL-10
compared with controls (Figure 4b). IL-10 production in T
cells was dependent on DC-derived IL-10 and TLR2 signaling
as both IL-10� /� and TLR2� /� DCs failed to induce high
IL-10 levels in T cells (Figure 4c). Thus, innate immune

sensing of Vf induced IL-10high, IFN-glow IL-4� Th cells
in an IL-10-dependent manner, indicating the induction of
Tr1 cells.

Regulatory function of Tr1 cells induced by Vf-exposed DCs

To assess the regulatory function of Tr1 cells primed by
Vf-exposed DCs, suppression assays with proliferating CD4þ
effector T cells were carried out. To this end, effector CD4þ
Th cells were labeled with carboxyfluorescein succinimidyl
ester (CFSE) and activated with anti-CD3/28 in the presence of
unlabeled Tr1 cells previously primed with Vf-exposed DCs.
To balance cell numbers, control experiments were performed
by adding unlabeled unpolarized CD4þ Th cells to CFSE-
labeled CD4þ effector Th cells. CFSE dilution was analyzed
72 hours after activation. Although addition of unpolarized Th
cells could not alter proliferation of CFSE-labeled effector Th
cells, Tr1 cells previously primed with Vf-exposed DCs
suppressed Th cell proliferation in a cell number–dependent
manner (Figure 4d and e).

Cutaneous exposure to signals of nonpathogenic bacterium
V. filiformis leads to enhanced T-cell IL-10 and inhibits T-cell
proliferation in vivo

To assess functional consequences of innate immune sensing
of nonpathogenic bacterium V. filiformis and consecutive
shaping of the adaptive immune system in vivo, NC/Nga mice
were again investigated. As described in Figure 1b, NC/Nga
mice were sensitized to FITC and were or were not exposed to
Vf. At 1 week after the last application, mice were challenged
at the ear skin with FITC alone. Whole lymph node cells from
the ear-draining lymph nodes isolated 8 hours after challenge
were restimulated with antigen (FITC) or anti-CD3/CD28
antibodies ex vivo. Only T cells from mice previously exposed
to Vf displayed antigen-specific production of IL-10, whereas
control mice failed to do so (Figure 5a). Using anti-CD3/CD28
antibodies, immune modulation and induction of IL-10 pro-
duction in T cells in vivo by previous exposure to V. filiformis
signals was confirmed (Figure 5b). Consistently, exposure to
V. filiformis signals reduced T-cell proliferation in draining
lymph nodes in vivo as measured by [3H]-thymidine uptake
ex vivo following FITC restimulation (Figure 5c). To analyze
the effect of enhanced IL-10 production on effector T-cell
responses in vivo, IFN-g, the hallmark cytokine of chronic AD,
was analyzed ex vivo (Grewe et al., 1995; Biedermann, 2006).
Consistent with the reduced T-cell proliferation, antigen-
specific IFN-g production by T cells was significantly
reduced in mice previously exposed to V. filiformis signals
(Figure 5d).

Together, these data show that signals of nonpathogenic
bacterium V. filiformis induce IL-10high T cells in vivo and
inhibit antigen-specific T-cell proliferation and cytokine pro-
duction, thus demonstrating the immunomodulatory role of
nonpathogenic innate immune signals in vivo.

DISCUSSION
Modulating immune responses at surface organs using non-
pathogenic bacteria is a promising strategy to treat inflamma-
tory diseases as reported in clinical trials on inflammatory
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bowel disease (Rembacken et al., 1999). We recently
demonstrated that nonpathogenic bacteria are also
functional when applied to the skin, alleviating cutaneous
inflammation in AD patients (Gueniche et al., 2008). To
analyze the underlying mechanism and to elucidate how
nonpathogenic bacteria may shape and modulate immune
responses, we investigated consequences of innate immune
sensing of V. filiformis in vitro and in vivo. NC/Nga mice
sensitized to FITC are characterized by a predominance of Th2
cells and high IgE levels and develop AD-like skin
inflammation as measured by increase of ear thickness after
FITC challenge (Matsuda et al., 1997; Dearman and Kimber,
2000; Matsuoka et al., 2003). Cutaneous treatment of these
NC/Nga mice with Vf during elicitation of skin inflammation

significantly decreased allergen-specific dermatitis, indicat-
ing direct immunosuppressive effects of Vf. Importantly,
cutaneous exposure to Vf and FITC antigen before the final
allergen challenge resulted in even more pronounced
suppression of cutaneous inflammation demonstrating
immunomodulatory properties of Vf. This indicates that
cutaneous treatment with Vf in AD patients is effective by
direct and immunomodulatory pathways (Gueniche et al.,
2008). Indeed, in vitro analyses demonstrated that signals of
V. filiformis induced a DC phenotype dominated by IL-10
already suggesting regulatory and tolerogenic properties
(Lutz and Schuler, 2002; Frick et al., 2010). In fact, DCs
activated by signals of V. filiformis effectively induced
regulatory T cells.
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It was known that IL-10 production by DCs contributes to
the induction of tolerance in various settings (Akbari et al.,
2001; Corinti et al., 2001; Yu et al., 2009). However, we
demonstrate according to our knowledge the previously
unreported finding that nonpathogenic Gram-negative
bacteria induce this tolerogenic DC phenotype characterized
by acquisition of a mature phenotype and a cytokine profile
dominated by the production of IL-10, and Tr1 induction. The
Gram-negative pathogen Bordetella pertussis has been shown
to exploit a similar strategy to subvert host immunity and
protective immune responses by induction of IL-10 and Tr1
cells (McGuirk et al., 2002). In accordance with previously
published results, we show that TLR adaptor molecule MyD88
is required for induction of both IL-10 and IL-12p70
production (Boonstra et al., 2006). Surprisingly, however,
DC maturation was independent of MyD88, indicating
activation of other innate immune pathways (Medzhitov,
2009; Takeuchi and Akira, 2010). The dependence of IL-10
production on TLR2 confirms and extends data from previous
reports demonstrating a dominant role for this pattern
recognition receptor in the induction of IL-10 in DCs (Dillon
et al., 2006; Depaolo et al., 2008). Lipoproteins have been
isolated and identified from Gram-negative E. coli initially and
lipopeptides derived thereof have been shown to activate
TLR2 (Braun and Wu, 1994; Buwitt-Beckmann et al., 2005).
TLR2 activation by bacterial or synthetic ligands can result in
either inflammatory or tolerogenic immune responses, but

detailed mechanisms are still to be deciphered (Oliveira-
Nascimento et al., 2012). Lipoproteins from Staphyloccocus
aureus binding to TLR2 have been shown to be crucial in
induction of inflammation and clearance of bacteria (Schmaler
et al., 2009). In contrast, host immunity is subverted by
Yersinia pestis inducing Tr1 cells triggered by TLR2/6
binding of LcrV subsequently inducing IL-10 production
(Depaolo et al., 2008). Porin B from Neisseria meningitidis
is also a TLR2 ligand inducing DC activation (Singleton et al.,
2005). As both V. filiformis and N. meningitidis are Gram-
negative bacteria belonging to the family of Neisseriaceae, it is
tempting to speculate that the TLR2-activating ligand of
V. filiformis is a bacterial porin with predominant anti-
inflammatory properties (Strohl, 2005). In contrast to Gram-
negative pathogenic bacteria such as Salmonella spp. eliciting
proinflammatory immune responses, innate immune sensing
of nonpathogenic Gram-negative bacteria like V. filiformis is
not dominated by TLR4 signaling over TLR2 signaling and
induction of inflammation, but is characterized by a more
dominant TLR2 signaling and the induction of tolerance. One
may speculate that the functional dominance of tolerogenic
signals may be a general principle of how nonpathogenic
bacteria and their hosts organize their coexistence in the
absence of inflammation. Previously, it has been shown
that the exposure to Gram-negative gammaproteobacterium
Acinetobacter prevents allergic disease in mouse models and
correlates with IL-10 production from healthy but not from AD
individuals (Debarry et al., 2007; Conrad et al., 2009; von
Mutius and Vercelli, 2010; Hanski et al., 2012). This already
demonstrates that contact to Gram-negative nonpathogenic
bacteria leads to active immune recognition resulting in
tolerogenic cytokine production (Hanski et al., 2012).
Strikingly, atopic individuals harbor significantly lower
amounts of Acinetobacter on the skin and show diminished
IL-10 production (Hanski et al., 2012). In light of these findings
and our data, the pathways utilized by nonpathogenic Gram-
negative bacteria to induce tolerance seem to be promising
targets for therapeutic strategies.

DCs have been shown to play a central role in transmitting
innate immune signals into various types of adaptive immune
responses (Kapsenberg, 2003; Joffre et al., 2009). ‘‘Tolerogenic
DCs’’ can prime Th cells to become regulatory T cells. Among
these, Tr1 cells are characterized by the production of low
amounts of IFN-g but high levels of IL-10 (Groux et al., 1997;
O’Garra and Vieira, 2004; Shevach, 2006). Moreover, it has
been reported that immune modulation by Tr1 cells reduces
antigen-specific IgE but not antigen-specific IgG1 and IgG2a
levels, which is similar to our findings following exposure to
Vf (Cottrez et al., 2000), but in contrast to, e.g., low-zone
tolerance that has been reported to tremendously reduce
specific immunoglobulin levels (Steinbrink et al., 1996).

We could demonstrate that DCs activated by signals of
nonpathogenic V. filiformis are potent inducers of Tr1 cells
producing these signature cytokines. Moreover, these Tr1 cells
strongly inhibited Th cell responses demonstrating function-
ality. This is in accordance with previously published results
demonstrating that Tr1 cells are equally potent to FoxP3pos

natural regulatory T cells in controlling effector T-cell
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responses (Vieira et al., 2004). However, in contrast to
FoxP3pos natural regulatory T cells, Tr1 cells are inducible,
indicating a feasible therapeutic strategy.

Identifying nonpathogenic bacteria with tolerogenic poten-
tial, crucial active microbial components within these bac-
teria, and activation pathways mediating active tolerance—
such as TLR2 signaling—points to very promising therapeutic
strategies in the treatment of inflammatory and allergic
diseases, especially of the surface organs such as AD.

MATERIALS AND METHODS
FITC induced antigen-specific contact hypersensitivity

NC/Nga mice (5 mice per group) were sensitized by administration of

0.25% FITC solution (dissolved in 1:1 acetone/dibutyl phthalate) on

the shaved abdomen on days 0, 7, and 14. At 7 days after the last

sensitization, mice were challenged by application of 0.25% FITC

solution on both sides of the ears. To determine the direct immuno-

suppressive effects of Vf, one group of mice was treated with Vf (20%

v/v) on the ear skin during the allergen challenge period. Ear thickness

was measured with a micrometer (Oditest; Kroeplin, Germany) and

data are expressed as change in ear thickness as compared with that

before treatment. The immunomodulatory effects of Vf were investi-

gated by coadministration of Vf (20% v/v) on the abdominal skin at

days � 1, 7, 14, and 21, and not during challenge. At 7 days after the

last FITC contact, all mice were challenged by application of 0.25%

FITC solution onto the ears in the absence of Vf. Draining lymph

nodes were collected either 8 or 72 hours after challenge and whole

lymph node cells were cultivated with FITC or anti-CD3/CD28

antibodies for another 3 days. Cell culture supernatants were

subjected to ELISA.

Generation and activation of human monocyte-derived DCs
DCs were generated from adherent peripheral blood mononuclear

cells as previously described (Guenova et al., 2008). To induce DC

maturation, day 6 immature DCs (CD11cþ CD14� HLA-DRþ

CD86þ CD83� ) were cultured for an additional 24 or 48 hours in

the presence of LPS R595 or Vf.

Generation and stimulation of murine BMDCs

Murine BMDCs were generated as described previously (Lutz et al.,

1999). At day 8, cells were collected, washed, and seeded in

1� 106 ml per well in 24-well-plates. DCs were stimulated with

LPS (1mg ml� 1) or Vf (5% v/v) for 24 hours unless otherwise specified.

DC/T-cell coculture

Immature BMDCs were activated in the presence of ovalbumin

(50mg ml� 1) with LPS or Vf. Subsequently, DCs were washed

extensively and cultivated together with naive CD4þCD62Lþ OT-II

Th cells in a ratio of 1:5 for 3 days. CD4þ T cells were then

expanded using IL-2 (50 U ml� 1) for another 12 days. Resting T cells

were washed and restimulated with plate-bound anti-CD3

(2mg ml� 1) and anti-CD28 (5mg ml� 1) in 96-well plates. Cell culture

supernatants were harvested after 72 hours and subjected to ELISA.

Proliferation assays

Naive OT-II CD4þCD62Lþ T cells (2� 105) were activated

with ovalbumin-pulsed and Vf-stimulated DCs (4� 104) in 96-well

flat-bottom plates in a total volume of 200ml. After 5 days 0.25mCi

[3H]-thymidine was added and cells were harvested after another

10 hours. Incorporated [3H]-thymidine was measured using a micro

beta counter (Perkin Elmer, Wiesbaden, Germany).

To asses suppressive capacity of Vf-induced IL-10þ Tr1 cells,

unprimed CD4þ Th cells were isolated using magnetic cell isola-

tion as described. These CD4þ cells were labeled with 1mM CFSE

(Molecular Probes, Eugene, OR) according to the manufacturer’s

protocol and 2� 105 CFSEþ CD4þ T cells were activated with

plate-bound anti-CD3 (2mg ml� 1) and soluble anti-CD28 (5mg ml� 1)

in the presence of activated Vf-induced IL-10þ Tr1 cells at the

indicated cell ratios. Controls were set up using CFSEþ CD4þ cells

cultivated together with unlabeled Th cells to ensure balanced cell

numbers. Proliferation was determined 72 hours after activation.

All mice were maintained under specific pathogen free conditions

at the animal facilities of the University of Tübingen according to

local and federal guidelines.

Additional methods concerning animals, reagents, antibodies,

bacterial lysates, Th cell isolation, and description of FACS analysis

can be found online.

Statistical analysis

All data are presented as means±SD or SEM (where indicated) of one

representative experiment. Experiments were repeated at least three

times if not indicated otherwise and revealed comparable results.

Statistical analysis was performed with Student’s t-tests (two tailed).

Values of Po0.05 were considered as statistically significant.
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Abstract: Experimental mouse models of bacterial skin infections

that have been described show that pathogenic microorganisms

can readily invade the epidermis and dermis to produce localized

infections. We used an epicutaneous mouse skin infection model

to determine how the level of barrier disruption by tape-stripping

correlates with persistence of Staphylococcus aureus skin

colonization, concomitant induction of cutaneous inflammation

and infection. Furthermore, we investigated how murine skin

responds to S. aureus colonization in a physiologic setting by

analysing proinflammatory cytokines and antimicrobial peptides

in mouse skin. We show that previous cutaneous damage allows

skin inflammation to develop and favours S. aureus persistence

leading to cutaneous colonization, suggesting an interdependence

of cutaneous bacteria and skin. Our study suggests that skin

barrier defects favour S. aureus skin colonization, which is

associated with profound cutaneous inflammation.

Key words: antimicrobial peptides – inflammation – mouse model –

S. aureus – skin colonization
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Background
In vivo skin infection models in which the pathogens need to be

injected subcutaneously into the skin of mice have the limitations

that this does not resemble the natural way of skin infection.

Moreover, they are not suited to investigate processes underlying

skin colonization such as Staphylococcus aureus colonization on

skin of atopic dermatitis patients. Therefore, we used a mouse

model of staphylococcal skin infection based on the epicutaneous

inoculation of S. aureus onto mouse skin whose integrity was pre-

viously affected by tape-stripping. In previous studies, this model

was used to analyse the degree of subsequent bacterial invasion

into subcutaneous tissues and the dissemination of the microor-

ganisms to other organs or to determine the effectiveness of topi-

cal antibiotic treatment for pathogen infection in skin wounds

induced by extensive tape-stripping (1–3).
Questions addressed
We extended this model system for a new experimental approach

determining how the extent of barrier disruption by tape-stripping

correlates with the efficiency of infection, pathogen persistent skin

colonization, concomitant induction of cutaneous inflammation

and induction of antimicrobial peptide (AMP) expression in

mouse skin.

Experimental design and results
The experimental model is based on epicutaneous application of

the S. aureus strain 113 onto shaved skin of C57BL/6 mice. Before

application, we either left the skin untreated or disrupted the skin

barrier to different levels by either mild tape-stripping (3 times)

or strong tape-stripping (7 times). Mild and strong tape-stripping

left part of the epidermis intact and did not create a wound in

contrast to another published study (1) (Figs 1a, b, S1). An inocu-

lum of 107 S. aureus 113 in 0.015 ml of phosphate-buffered saline

(PBS) or PBS control was added to 7-mm filter paper discs placed

onto the prepared skin and covered by Finn Chambers on Scan-

por (Smart Practice, Phoenix, AZ, USA). Fixation occurred via

Fixomull stretch plaster as in patients undergoing epicutaneous

patch testing (Fig. 1a).

After overnight occlusion, Finn Chambers and plasters were

removed in all experimental groups, and one to 6 days after

S. aureus application, the number of colony-forming units (CFUs)

on mouse skin was quantified. In addition, biopsy samples from

the application site were taken for further molecular analyses.

Time titration experiments revealed that at least 1 9 106 bacteria

were recovered 1 day after inoculation using epidermal scrapes to

gather bacteria colonizing the epidermis. We detected 1 9 105

bacteria in the skin wash fraction, which harvests bacteria loosely

attached to the skin surface (Fig. 1b, c). Interestingly, in strongly

tape-stripped skin, the infection efficiency (day 1) as well as the

persistence of S. aureus 113 as detected by scrapes was significantly

higher compared with non- or mildly tape-stripped skin. This sug-

gests that epithelial barrier defects facilitate cutaneous S. aureus

colonization, probably by allowing bacterial adhesion, providing

enhanced nutrition, possibly supported by an inflammatory

response or reduced antibacterial defense.

Indeed, in strongly tape-stripped skin, S. aureus application

induced high expression of IL-1b and IL-6 in mouse epidermis 1

and 3 days later and low but significant levels of TNF-a at 1 day

after infection persisting until day 6. In contrast, S. aureus applica-

tion in non- or mildly tape-stripped skin led to only mild, but sig-

nificant, induction of IL-1-b 1 day after infection, but failed to

induce IL-6 (Fig. 2). IFN-c was only slightly induced in all cases,

but started to become upregulated specifically in the experimental

group with strong barrier disruption on day 6 after infection,

indicating possible sensitization and migration of IFN-c-producing
lymphocytes under this condition (Fig. 2). Strong tape-stripping
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alone induced only low expression of IL-1b and IL-6 one day after

cutaneous damage, but failed to regulate TNF-a or IFN-c at any

time point. These data indicate that S. aureus application and

persistence on barrier-disrupted skin induce an inflammatory

cytokine response lasting at least 3–6 days.

Staphylococcus aureus infection of human keratinocytes grown

in vitro and experimental barrier disruption in humans and mice

are known to induce AMPs (4–7). Interestingly, in our mouse

model of cutaneous bacterial persistence, we found that S. aureus

induced the expression of the mouse b-defensins mBD3, mBD4

(both are murine orthologs of human HBD-2) and mBD14 (mur-

ine ortholog of human HBD-3) in the epidermis. The highest

induction levels of mBD3, mBD4 and mBD14 were seen 1 day

after S. aureus application in the strongly tape-stripped skin,

which lasted at least 3 days (Figure S2). Strong tape-stripping alone

induced only a transient induction of these AMPs at day 1. Further-

more, mBD2 expression was only transiently induced 3 days after

S. aureus application in strongly tape-stripped skin (Figure S2).

Conclusions
We describe a mouse model for cutaneous colonization and per-

sistence of bacteria such as S. aureus, which resembles the natural

route of how skin colonization and infection take place. Staphylo-

coccus aureus colonizes nasal epithelia, is found on skin in high

amounts, mainly in the case of skin barrier defects as in atopic

dermatitis, and is thought to contribute actively to skin inflamma-

tion (6,8,9). Our study confirms these assumptions by demon-

strating that skin barrier defects favour S. aureus skin colonization

and that prolonged colonization is associated with profound cuta-

neous inflammation, suggesting an interdependence of cutaneous

bacteria and skin. Thus, this mouse model is ideally suited for

unravelling the role and molecular mechanisms of barrier disrup-

tion and skin inflammation in pathogen infection and for evaluat-

ing strategies to prevent skin inflammation and infection.
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Figure 1. Epicutaneous application of Staphylococcus aureus onto barrier-
disrupted skin leads to cutaneous bacterial persistence. (a) Shown are 8-week-old
female C57BL/6 mice directly after epicutaneous S. aureus 113 application. The
Finn Chambers on Scanpor adaptors are shown in the increment. (b) HE staining of
S. aureus 113-challenged mouse skin reveals bacteria on the uppermost layer of
infected mouse skin, but not on uninfected mouse skin (arrows mark the bacteria).
(c) CFU assay shows the persistence of viable S. aureus 113 over 6 days after the
application of the bacteria onto mouse skin without or after mild or strong tape-
stripping (TS) in scraped or washed skin samples. We do not find significant
differences in the colonization efficiency one day after infection between the three
different S. aureus strains 113, Newman and ATCC 25923 (data not shown).
Control: Without S. aureus application but with tape-stripping. Four skin samples
were plated in duplicate for scraped skin (n = 8) or on a single plate for washed
skin (n = 4). Asterisks mark significant differences (P-values � 0.05 in Student’s
t-test). There is a statistically significant difference between strong and mild tape-
stripping and between strong and no tape-stripping in the scrapes. The efficiency
of skin colonization is defined by the recovery of viable colony-forming units (CFU)
from scraped skin of previously mild or strong tape-stripped skin compared with
untaped skin.
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Figure 2. Epicutaneous application of Staphylococcus aureus induces mRNA
expression of inflammatory cytokines especially in strongly tape-stripped skin.
Shown is the relative RNA expression of the proinflammatory cytokines Il-1b, Il-6,
TNF-a and IFN-c in skin biopsies 1, 3 and 6 days after application of S. aureus 113
bacteria onto mouse skin without or after mild or strong tape-stripping (TS).
Effects of tape-stripping alone are shown in the PBS + TS group. mRNA expression
levels were analysed by real-time PCR. PBS-treated skin without tape-stripping was
used as a control and set as 1. Four samples were analysed in duplicate (n = 8).
Asterisks mark significant differences to the control or between labelled groups
(P-values � 0.05 in Student’s t-test).
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Abstract: Ultraviolet-B (UVB) irradiation acts primarily on the

epidermal basal cell layer of the skin, inducing harmful biological

effects. In this study, we have investigated the effect of libanoridin

isolated from Corydalis heterocarpa against UVB-induced damage

in human keratinocyte (HaCaT) cells and the molecular

mechanism underlying those effects. Treatment with libanoridin

inhibited the cell cytotoxicity and LDH induced by UVB exposure

at 40 mJ/cm2. Additionally, expression levels of type IV

collagenases (MMP-2, MMP-9) were decreased by libanoridin.

Furthermore, MMP tissue inhibitors were enhanced followed by

treatment with libanoridin. Moreover, UVB-induced activation of

phosphorylation of three MAPKs such as JNK, ERK, p38 and

AP-1 transcription factor were decreased by treatment with

libanoridin.Our present study demonstrates that libanoridin has

the abilities to inhibit UVB-induced cellular damage via ASK1-

MAPK and AP-1 signalling pathways. Therefore, libanoridin may

be used as an effective natural compound to prevent skin damage

due to UVB exposure.
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Background
Recent studies have indicated that various physical phenomena

are caused by exposure to UVB irradiation (1,2). Thus, searching

for sun-blocking agents may be a basic step in the prevention of

skin damage by UVB irradiation. UVB (290–320 nm) irradiation

is known to be a major cause for the epidermal damage in

human skin (3). Keratinocytes constitute for 90% of the cells

found in the epidermis and are capable of producing cytokines

in response to external stimuli (4). Human keratinocyte (Ha-

CaT) cells were reported to be the appropriate experimented

model to study the biological changes in human epidermis (5).

Therefore, to study the inhibitory effects of libanoridin on cell

damage induced by UVB exposure, HaCaT keratinocytes were

chosen.

Halophytes are salt-tolerant plants that are adapted primarily to

an ionic imbalance and hyperosmotic stress. The effect of imbalance

or disruption in homoeostasis occurs at the cell level that causes

molecular damage and growth arrest. Moreover, these plants com-

monly suffer from serious in vivo photodynamic damage (6).

Although their cells are equipped with protective mechanisms to

reduce photodynamic damage, biological activities of their second-

ary metabolites have been little investigated to date (7).

A kind of halophyte, Corydalis heterocarpa, has been used as a

traditional medicine for dysentery in Korea. It has been reported
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Interleukin (IL-) 4 can strongly suppress delayed type hypersensi-
tivity reactions (DTHR), including organ-specific autoimmune dis-
eases in mice and in humans. Despite the broadly documented
anti-inflammatory effect of IL-4 the underlying mode of action
remains unknown, as IL-4 promotes IL-12 production by dendritic
cells (DC) and interferon-γ-producing TH1 cells in vivo. Studying
the impact of IL-4 on the polarization of human and mouse DC,
we surprisingly found that IL-4 exerts strictly opposing effects
on the production of either IL-12 or IL-23. While promoting IL-
12-producing capacity of DC, IL-4 completely abrogates the ca-
pacity of DC to produce IL-23. Bone marrow chimeras directly
proved that IL-4-mediated suppression of DTHR strictly relies on
the STAT6-dependent abrogation of IL-23 in antigen-presenting
cells. In line with this, IL-4 therapy severely attenuated DTHR by se-
lective, STAT6- and ATF3-dependent suppression of the IL-23/TH17
responses despite simultaneous enhancement of IL-12/TH1 re-
sponses. As IL-4 therapy also improves psoriasis in humans and
selectively suppresses IL-23/TH17 responses, without affecting the
IL-12/TH1 responses, selective IL-4-mediated IL-23/TH17-silencing
is promising as treatment against harmful inflammation, while
sparing the IL-12-dependent TH1 responses.

IL-4 | TH17 | IL-23

Introduction

IL-4 is a pleiotropic cytokine produced by CD4+ TH2 cells but
also CD8+ T cells, natural killer T cells, eosinophils, basophils,
innate lymphoid and mast cells (1-6). IL-4 is a canonical type
2 immune cytokine known for its capacity to induce IgE iso-
type switching in B cells and to initiate and sustain TH2 cell
differentiation (2, 7). IL-4 provides protective immune responses
to helminthes (8), and excessive IL-4 production is linked to
TH2-dominated allergic asthma and atopic dermatitis (9). IL-4
produced by malignant T cells further promotes a TH2 bias and T
cell immunosuppression in leukemic cutaneous T cell lymphoma
(10). In vivo, IL-4 can suppress organ-specific autoimmune and
delayed type hypersensitivity reactions (DTHR). In line with this,
IL-4 is absent in naturally occurring DTHR, such as experimental
autoimmune encephalomyelitis (EAE), multiple sclerosis (MS),
rheumatoid arthritis (RA), inflammatory bowel disease (IBD) or
psoriasis (11-15). Systemic IL-4 immunotherapy improves EAE
(16), experimental colitis (5), non-obese diabetes (17), collagen-
induced arthritis (18), and hapten-induced contact hypersensitiv-
ity (19) in mice, and psoriasis in humans (20). The inhibitory effect
of IL-4 on the autoimmune DTHR however failed to be explained

by the redirection of the TH1 immune responses towards IFN-γ-
deficient type 2 immune responses. To the contrary, the number of
peripheral IFN-γ+CD4+ TH1 cells or serum IFN-γ even increases
after IL-4 administration in mice with EAE (16), haemophago-
cytic lymphohistiocytosis (21) or hapten-induced contact hyper-
sensitivity (19), and in humans with psoriasis (20); mice with
transgenic overexpression of IL-4 exhibit TH2-driven allergic-
like inflammatory disease with elevated IFN-γ levels (22), and
IL-4 can even directly instruct protective TH1 immunity in mice
with Leishmania major infection (23). Thus, although IL-4 might
be an important natural inhibitor of many DTHR, the mode
of action by which IL-4 suppresses inflammatory autoimmune
disease and DTHR remains enigmatic. Functional and genetic
data now revealed that a significant number of DTHR that have
long been associated with IFN-γ-producing TH1 cells and IL-
12p70-producing APC, are mediated by IL-17/IL-22-producing
Th17 cells and IL-23-producing APC, rather than by TH1/IL-12
responses (24-28). Consistently, recent reports have correlated
the level of disease activity and the absence of IL-4 with the

Significance

IL-4 has been shown to have a highly beneficial clinical out-
come in delayed type hypersensitivity, autoimmune and auto-
inflammatory reactions in mice and humans, but its mode
of action has remained controversial and has failed to be
explained solely by redirection of the pathologic Th1/Th17-
towards a Th2-type immune response. Here, we identify a
new immunoregulatory role of IL-4 on cells of the innate
immune system, describe its therapeutic mode of action in
Th17-mediated autoimmune inflammation, and a new phys-
iologically highly relevant approach to selectively target IL-
23/Th17-dependent inflammation while sparing IL-12 and Th1
immune responses.
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Fig. 1. Strictly opposing effects of IL-4 on either IL-12 or IL-23 secretion
by DC.(A and B) Different subsets of human conventional myeloid DC and
mouse BMDC were pre-incubated with 100ng/ml IL-4 and then stimulated
with LPS. The IL-12 (A) and IL-23 (B) levels in the culture supernatants were
determined by an ELISA. The data shown are from at least three independent
experiments, and the results are expressed as the means ± SD. (C) The expres-
sion levels of transcripts encoding IL23A, IL12A, and IL12B were determined
by quantitative real-time PCR in slanDC treated as described in (A). The
values from three independent experiments were calculated relative to the
expression levels of the housekeeping gene G6PD and were normalized to
the unstimulated control. FC = fold change. (D and E) SlanDC were treated
as described in (A), and IL-12p70 and IL-23 secretion was analyzed at the
indicated time-points (D) or as a function of IL-4 (E). The data are expressed
as means ± SD of triplicates and are representative of five independent
experiments.

presence of IL-23 producing APC and IL-23-dependent TH17
cells (29-31).

We analyzed the impact of IL-4 on the regulation of IL-
23 and TH17 in DTHR in mice and in human psoriasis. Un-
expectedly, IL-4 abolished the capacity of APC to produce IL-
23, while promoting IL-12p70. This selective inhibition impaired
the induction and maintenance of pathogenic TH17 cells. Bone
marrow chimeras with either STAT6-deficient APC or STAT6-
deficient T cells proved that IL-4 suppressed the development
of TH17 cells by abrogating the IL-23 production in APC. IL-
4 therapy of psoriasis also dose-dependently suppressed IL-23-
production by APC and TH17 cells, while largely preserving IL-12
and TH1-immunity in humans. This may open an entirely new ap-
proach for a targeted abrogation of harmful IL-23/Th17-immune
reactions without affecting potentially protective IL-12/TH1 in

Fig. 2. IL-4 selectively abrogates the TH17 cell-inducing capacity of DC(A) DC
stimulated with LPS in the presence or absence of 100ng/ml IL-4 or control
DC were co-cultured with autologous naïve T cells in the presence of SEB,
and proliferation was determined by 3H-thymidine uptake. (B) DC stimulated
with LPS in the presence or absence of 100ng/ml IL-4 and control DC were co-
cultured with autologous naïve T cells over 12 days. Cytokine production by
CD4+ T cells was determined by flow cytometry following re-stimulation with
PMA and ionomycin. (C) T cells co-cultured with DC stimulated as indicated
in (B) were reactivated on day 12 with anti-CD3/CD28 for an additional 48
h, and cytokines were analyzed by ELISA. The results are expressed as means
± SD, and the data shown represent independent experiments from three
different donors.

mycobacteria and parasite immunity (23, 32) and perhaps cancer
(32).

Results
Strictly opposing effects of IL-4 on either IL-12 or IL-23 secretion
by DC

To dissect the pro- and anti-inflammatory effects of IL-4 on
DC, we stimulated, with TLR ligands in the presence or ab-
sence of IL-4, four distinct DC populations: BDCA-1-expressing
DC (MDC1), BDCA-3-expressing DC (MDC2), 6-sulfo-LacNAc-
expressing DC (slanDC), and murine bone-marrow derived DC
(mBMDC). IL-4 strongly and significantly induced IL-12p70
production in all four DC subsets, in human DC 10- to 100-fold
and in murine BMDC about 3-fold (Fig. 1A). Surprisingly, IL-4
simultaneously and almost completely abrogated TLR-triggered
IL-23 production in all human and mouse DC populations (Fig.
1B). The opposing effects of IL-4 on the production of either
IL-12 or IL-23 were transcriptionally regulated. IL-4 significantly
suppressed the TLR-driven induction of il23a mRNA (P=0.001),
while strongly inducing il12a mRNA expression (P<0.001; Fig.
1C). IL-4 also suppressed TLR-induced expression of the com-
mon IL-12/23p40 (il12b) subunit in most APC (P<0.003; Fig.
1C). The opposing effects on either IL-12p70 or IL-23 production
seemed to be unique to IL-4, as other TH2 cytokines, including
IL-13, failed to abrogate IL-23 secretion (Fig. S1). To determine
whether IL-4 affects the dynamics of IL-12 or IL-23 induction
rather than the total production, we performed time-course stud-
ies over 12 hours in slanDC. We observed that, following LPS
stimulation, slanDC started to produce IL-12 and IL-23 after 2-4
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Submission PDFFig. 3. IL-4-induced immune-suppression strictly depends on direct suppres-
sion of IL-23. (A) Representative H&E stains (x40) from skin inflammation
after challenge with TNCB in TNCB- sensitized C57BL/6 mice (B and C). Time
course (B) of the ear swelling and representative H&E stains (x20) (C) after
TNCB-challenge in sensitized C57BL/6 mice, treated intraperitoneally with
either PBS or IL-4 during challenge. The results in (B) are means ± SD. (D)
Expression of transcripts encoding IL23A and IL17A in DTHR ear samples in
mice treated with IL-4 as described in (B). Quantitative real-time PCR was
performed, and the data are expressed in relative units [Δct] compared to the
housekeeping gene. The results are the means ± SD. (E and F) Ear swelling
(E) and representative H&E stains (F) 24 hours after challenge with TNCB
in sensitized C57BL/6 mice. Mice were treated intraperitoneally with either
PBS or IL-4 as in (B). Additionally, IL-23 was applied to some groups where
indicated. The data are expressed as means ± SD.

hours, and IL-23 levels increased more than 100-fold during the
first 12 hours (Fig. 1D). IL-4 simultaneously suppressed IL-23
but enhanced IL-12p70 production over the entire study period,
showing that IL-4 did not alter the dynamics of either IL-12 or
IL-23 production. Moreover, the opposing effects of IL-4 were
dose-dependent and reached saturation at 100 ng IL-4/ml (Fig.
1E). IL-4 also reduced the secretion of other innate cytokines,
such as IL-1β and IL-6 (Fig. S1B).

IL-4 selectively abrogates the TH17 cell-inducing capacity of DC
The hallmark of DC function is their ability to prime naïve

T cells, and steer TH cell differentiation into either TH1, TH17,
or TH2 cells. To address whether IL-4 affects the capacity of
DC to drive proliferation of naïve T cells, we first used either
immature or in vitro-matured DC to stimulate naïve autologous
CD4+CD45RA+ T cells. As expected, immature DC were less
efficient than mature DC in inducing the proliferation of naïve
CD4+ T cells (Fig. 2A). IL-4 did not affect T-cell proliferation
of either DC population (Fig. 2A). Based on our observation
that IL-4 affected the cytokine pattern secreted by DC, we tested
whether IL-4 also affected their capacity to prime naïve T cells for
either TH1, TH17 or TH2 differentiation. To test this, we matured
DC in the presence or absence of IL-4, used them to prime naïve
CD4+ T cells, expanded the cells and re-stimulated such primed
CD4+ T cells for cytokine production. Maturation of DC in the
absence of exogenous IL-4 resulted in a DC phenotype that in-
duced both TH1 and TH17 cells, which produced large amounts of
either IL-17 and IL-22 or IFN-γ (Fig. 2B), as previously reported
(33, 34). Maturation of DC in the presence of IL-4 resulted in a
DC phenotype that failed to induce TH17 cells (≤0.5%) (Fig. 2B);

Fig. 4. IL-4 responsive APC orchestrate IL-4-induced suppression of TH17
responses.(A to C) Ear swelling after TNCB-challenge in sensitized C57BL/6
mice bone marrow (BM) chimeric mice. IL-4 treatment during challenge was
administered in some of the groups as indicated. Data from control CD45.1+-
BM chimeric mice on wild type non-hematopoietic background are presented
in (A). Data from STAT6-/-/Tc-/--BM chimeric mice are presented in (B), and
data from STAT6-/-/MHCII-/--BM chimeric mice are presented in (C). Data are
expressed as mean ± SD and represent two independent experiments. At
least six mice per each group have been analyzed (D) Schematic presentation
of the experimental approach for the generation of bone marrow chimeric
mice.

instead the percentage of IFN-γ-producing TH1 cells increased
(Fig. 2C).

IL-4-induced immune-suppression strictly depends on direct
suppression of IL-23

To analyze the biological relevance of this IL-4-mediated
suppression of IL-23 and of the subsequent maintenance of TH17
cells in vivo, we first studied IL-4-induced immune suppression in
2,4,6-trinitrochlorobenzene (TNCB)-induced DTHR in C57BL/6
mice. Challenging sensitized mice with TNCB resulted in pro-
nounced ear swelling and skin inflammation characterized by
epidermal hyperplasia, sub-corneal neutrophilic infiltrates, and
angiogenesis (Fig. 3A). Systemic administration of IL-4 during
the challenge significantly reduced the ear swelling in TNCB-
sensitized mice (Fig. 3B and C), abrogated the infiltration of
polymorphonuclear (PMN) cells, and normalized skin morphol-
ogy (Fig. 3C). The TNCB challenge caused a strong induction
of il23a and of il17a mRNA in ear tissues of mice challenged
with TNCB (Fig. 3D), and IL-4 treatment during the TNCB
challenge suppressed il23a and of il17a mRNA about 10-fold (Fig.
3D). To directly test whether this IL-4-mediated suppression of
IL-23 also suppressed inflammation, we treated sensitized mice
with recombinant mouse (rm) IL-4 during the TNCB challenge.
Subsequently, we aimed, in half of the IL-4-treated mice, to
prevent suppression of inflammation via systemic administration
of rmIL-23, rmIL-6 or PBS. Neither PBS nor rmIL-6 restored
the rmIL-4-mediated suppression of IL-23 and DTHR to almost
background levels (Fig. S2A and B). In contrast, rmIL-23 fully
rescued the cutaneous DTHR, as determined by the ear swelling
responses (Fig. 3E and F).

IL-4-responsive APC orchestrate IL-4-induced suppression of
TH17 responses

We next determined whether IL-4 suppresses T cell-mediated
inflammation by its action on CD4+ T cells or through the
suppression of IL-23-production of APC in vivo. Therefore we
first generated bone marrow (BM) chimeric (BMC) mice with
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Submission PDFFig. 5. IL-4 mediated suppression of IL-23 is partly mediated through
activating transcription factor 3 (ATF3).(A) Representative data from a semi-
quantitative PCR for ATF3 mRNA expression in murine RAW264.7 cells, ana-
lyzed as a function of IL-4. (B and C) Quantification of ATF3 mRNA expression
in LPS-stimulated human (B) and murin (C) DC. Data are expressed in relative
units [Δct] compared to the housekeeping gene. The results are the means
± SD. (D) Human DC and BMDC from either C57BL6wt mice or ATF3-/- mice
were pre-incubated with IL-4 and then stimulated with LPS. ATF3 protein was
analyzed semi-quantitatively by western blotting. Representative data from
three independent experiments are shown. (E) BMDC from either C57BL6wt
mice or ATF3-/- mice were treated as in (D). IL-12 and IL-23 levels in the
culture supernatants were determined by ELISA. The data shown are from
three independent experiments, and the results are expressed as the means
± SD. (F and G) Ear swelling (F) and representative H&E stains (G) 48 hours
after challenge with TNCB in sensitized C57BL/6 and ATF3-/- mice. Mice were
treated intraperitoneally with either PBS or IL-4 as in Fig. 3B. The data are
expressed as means ± SD.

CD45.1+ hematopoiesis on a CD45.2+ background (CD45.1+→
CD45.2+ mice). Eight weeks after transplantation, engraftment
efficiency and lineage reconstitution were >90%, and residual
host CD45.2+ BMC was <3% (Fig. S3 and S4). The chimeric
mice developed a typical DTHR showing that the BMC mice
could be sensitized normally; in addition, rmIL-4 suppressed
cutaneous DTHR in such CD45.1+→CD45.2+ mice as in previous
experiments (Fig. 4A). To distinguish the effects of IL-4 on either
APC or on T cells, we selectively blocked IL-4 signaling in either
T cells or APC of the BMC mice. This was achieved first by
generating BMC chimeric mice deficient for STAT6 in the T cell
lineage (STAT6-/-/Tc-/-→ WT mice). In detail, by transplanting BM
of STAT6-/- mice into lethally irradiated recipient mice, the T cell
repertoire of STAT6-/- mice was established in BMC mice. By co-
transplantation of BM devoid of any T cells from Tc-/- mice into
these BMC mice, those chimeric mice had normal IL-4 sensitive
STAT6 expressing APC from the Tc-/- donor organism, but only
harbored STAT6neg T cells unresponsive to IL-4 therapy from the
STAT6-/- mice. A TNCB challenge in sensitized STAT6-/-/Tc-/-→
WT chimeric mice resulted in a similar ear swelling response as
compared to the control chimeric mice (CD45.1+→ WT CD45.2+

mice) (Fig. 4A and B). Of note, IL-4 significantly reduced ear
swelling and abrogated cutaneous inflammation in these sensi-
tized STAT6-/-/Tc-/-→ WT chimeric mice (Fig. 4B), highlighting
a key role for APC in mediating the beneficial effect of IL-4
therapy. Next, to study the exclusive role of APC in this pro-

Fig. 6. IL-4 therapy of psoriasis abrogates intralesional IL-23 and IL-17
in human skin. (A) Representative H&E stains from co-localized biopsies
of psoriatic skin before (A) and after systemic IL-4 treatment. (B and C)
Visualization of co-localized IL-23 (red) and MHC II (blue) and IL-17 (red)
and CD3 (blue) in human psoriatic skin lesions before (B) and after (B) IL-
4 therapy. The nuclei are stained with YO-PRO. For colorblind-accessible
images, please refer to Supplementary Fig. 9. (D to G) RT-PCR expression of
transcripts encoding IL23A, ATF3, IL17A, and IL12A in psoriatic skin samples
before and after different doses of IL-4 therapy. The expression of the target
gene within psoriasis tissue before treatment (relative to the housekeeping
gene G6PD) was set to 100%, and the expression after treatment is presented
as a percentage of this value. Each dot represents one pair of specimens from
a single study patient; the horizontal bars indicate the means ± SEM. *P <
0.05. **P < 0.01. (H) Ratio of IL23A [% after treatment] to IL12A [% after
treatment] as detected by quantitative real-time PCR in the skin samples from
the study patients treated with different doses of IL-4. The data are expressed
as the means ± SEM. *P < 0.05. **P < 0.01. r = Pearson correlation coefficient.

cess, we extended our experiments and generated BM chimeric
mice with a mixed STAT6-/-/MHCII-/-hematopoiesis on a wild
type background (STAT6-/-/MHC II-/-→WT mice), in which IL-
4 signaling was completely abrogated in functional MHCIIpos

APC. TNCB challenge after sensitization of those chimeric mice
resulted in an increased ear swelling comparable to what we
observed in the other two chimeric mouse models (Fig. 4A to
C). However, when we treated the STAT6-/-/MHC II-/-→ WT mice
with IL-4, cutaneous inflammation failed to improve, and the ear
swelling was not reduced but remained comparable to that of
STAT6-/-/MHC II-/-→ WT mice not treated with IL-4 (Fig. 4C).
This demonstrates the indispensable role for APC in the reg-
ulatory anti-inflammatory therapeutic effect of IL-4 in DTHR.
Fig. 4D presents schematically the experimental approach for the
generation of the bone marrow chimeric mice.

IL-4-mediated suppression of IL-23 is partly mediated through
ATF3

ATF3 is a repressor of il6, but also tnf and il23b transcription
in TLR4-stimulated macrophages (35, 36). ATF3 blocks il23b
transcription by binding to repressive promotor elements near
the genes coding for the il23b subunit in macrophages and pos-
sibly other APC, such as DC (35, 37). Because IL-4 significantly
suppresses il23b transcription (Fig. 1C), we assessed whether the
effects of IL-4 could be at least partially mediated through ATF3.
Indeed, IL-4 markedly upregulated ATF3 mRNA expression and
protein production in murine and human dendritic cells, and
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in murine RAW264.7 cells (Fig- 5A to D). To determine the
functional relevance of ATF3 on IL-23 production, we stimulated
DC from either wt or ATF3-/- mice with LPS, and assessed mRNA
expression and production of IL-23. Even in the absence of IL-4,
ATF3-deficient DC produced higher amounts of IL-23 than wt-
DC, and IL-4 significantly further suppressed transcription and
production of IL-23 only in the ATF3-competent, but not in the
ATF3-deficient DC (Fig. 5E). In line with this, IL-4 significantly
reduced the TNCB-mediated DTHR in wt mice but not in ATF3-/-

mice (Fig. 5F).
IL-4 therapy of psoriasis abrogates intralesional IL-23 and IL-

17 in human skin
IL-4 suppresses IL-23 production in mouse and human DC,

and abrogates their capacity to induce/maintain TH17 responses.
Moreover, rmIL-4 suppresses DTHR by suppressing IL-23 and
downstream IL-17 during contact hypersensitivity in mice. We
therefore asked whether this mode of immune suppression also
translates to human autoimmune diseases, namely psoriasis,
which is a disease that is strongly improved by IL-4 therapy or
the mAb-mediated blockade of either IL-17 or IL-23 (38-40).
To this end, we studied a unique population of psoriasis patients
who had successfully been treated with increasing doses of sys-
temically applied IL-4. Consistent with recent data (41, 42), il23a
and il17a mRNA were both increased in psoriasis skin lesions
(Fig. S5A). Confocal laser scanning microscopy co-localized the
abundant IL-23 protein with HLA-DR-expressing APC, and the
IL-17 protein with CD3+ T cells (Fig. S5B and fig. S6A and
B) in psoriasis plaques, but not in healthy skin (Fig. S7 and fig.
S8). In addition to TH1 and TH17 cells, the psoriasis plaques
contained numerous polymorphonuclear cells and, thus, share
many similarities with the TNCB-induced DTHR. Because IL-4
therapy strongly improves psoriasis without suppressing IFN-γ-
expressing T cells in the peripheral blood (20), we asked whether
IL-4 therapy might improve psoriasis by suppressing IL-23- and
IL-17, driving the TH17-response. We examined the effect of IL-
4 therapy on the expression and production of IL-17/IL-23 in
a cohort of 22 psoriasis patients (i.e. 19 patients, 3 drop-outs).
The study was designed as a dose-escalation study, where patients
were treated for psoriasis systemically with increasing doses of
IL-4 over 6 weeks. The therapy was initiated with either 0.05, 0.1,
0.2, 0.3 or 0.5 μg/kg of IL-4, and increased to the next level after
three weeks, except in the last group (20). Systemic IL-4 ther-
apy significantly improved psoriasis in a dose-dependent manner
and normalized the skin morphology (20) (see also Fig. 6A).
Cryopreserved tissue sections of these study patients revealed
that untreated psoriasis plaques contained abundant IL-23 that
co-localized with HLA-DR-expressing APC and abundant IL-17
protein that co-localized with CD3+ T cells (Fig. 6B and fig. S9A).
After 6 weeks of IL-4 therapy, both IL-23 and IL-17 protein were
almost undetectable (Fig. 6C and fig. S9B), suggesting that IL-4
therapy suppressed IL-23 and IL-17 production also in human
skin. We further analyzed the tissue samples from the study pa-
tients for the expression of il17a, atf3, il23a or il12a mRNA. The
dose-escalation design of the study allowed us to correlate local
mRNA changes for each of the three cytokines (i.e. IL17a, IL23a
and IL12a) and of the transcription factor ATF3 with the IL-4
treatment dose. IL-4 therapy suppressed il23a mRNA expression
in a dose-dependent manner, with 20% suppression at 0.05 μg/kg
IL-4 and almost 90% suppression at 0.5 μg/kg of IL-4 (Fig. 6D).
Similarly, we detected a dose-dependent upregulation of ATF3
expression in the analyzed tissue (Figure 6E). Consistent with
the il23a mRNA suppression, IL-4 therapy dose-dependently
suppressed il17a mRNA expression (Fig. 6F). As predicted by
the in vitro and animal data shown above, IL-4 therapy increased
il12a mRNA expression in human skin during the 6 weeks of IL-4
therapy (Fig. 6G). Finally, at low concentrations, IL-4 induced an
IL23A/IL12A ratio of >1 (1.7 at 0.05 µg/kg IL-4), but at high IL-

4 concentrations, IL-4 therapy induced a very low IL23A/IL12A
ratio (0.05 at 0.5 µg/kg IL-4), a finding that could be important for
the design of future IL-4 treatment regimens in humans (Figure
6H).

Discussion
IL-4 reverts both TH1 and TH17 cell-mediated pathology and that
this effect is associated with the induction of IL-4-producing TH2
cells in mice and humans (5, 16-20). The underlying mechanism
was attributed to inhibition and replacement of pathologic TH1
and TH17 cells and their respective cytokines by TH2 cells and
IL-4. However, this concept fails to completely explain the thera-
peutic effects observed, because IL-4 exerts opposing regulatory
effects on T cells and DC; IL-4 abrogates IFN-γ induction upon
direct interaction with T cells (43-45). In contrast, IL-4 promotes
IL-12 production by DC, thus indirectly promoting IFN-γ pro-
duction in mice and humans (46-48). Importantly, these effects
are not exclusive; IL-4 and IL-4-producing TH2 cells efficiently
improve established TH1/TH17 mediated inflammation in mice
and humans while enhancing both IL-12 and IFN-γ (19, 20).
These phenomena are highly suggestive of a regulatory mech-
anism whereby IL-4 selectively prevents TH17 immunity, while
sparing IL-12/TH1 immunity.

We addressed this question by analyzing in detail the effect
of IL-4 on the regulation of IL-23 and TH17 cells. Starting with
human DC subsets, we found that IL-4 had exactly opposing
effects on IL-12 and IL-23. While IL-4 induced IL-12, it abol-
ished the induction of IL-23 and abrogated the capacity of DC
to maintain TH17 but not TH1 cells. Our observations are in line
with reports suggesting different roles of IL-4 on DC-derived
IL-12 and IL-23 (49-52), but go far beyond the former studies.
We confirmed the biological relevance of this regulation in an
in vivo experimental setting and demonstrated that IL-4 therapy
could abrogate cutaneous inflammation in the elicitation phase
of DTHR. In extensive bone marrow reconstitution experiments
we elucidated the effects of IL-4 on the different immune cells
and could demonstrate the selective mode of action of IL-4 on
APC. This is important because our data show for the first time
that antigen presenting innate immune cells are indispensable
for the immunosuppressive effect of IL-4 therapy. Activation
of APC in an IL-4-deprived or IL-4-dominated inflammatory
milieu dictated their capacity to orchestrate TH17 induction,
which supports previous data suggesting that the amount of IL-
4 ultimately determines whether immune responses promote or
attenuate inflammatory autoimmune diseases (46, 53).

Psoriasis is characterized by the absence of IL-4, and both
TH1 and TH17 cells prevail in the skin (11). However, the exact
roles of either TH1 or TH17 cells remain to be defined. Our
data have identified a sequence of immunological events, trig-
gered by IL-4 that selectively impaired the IL-23/IL-17 axis and
relieved TH17-mediated pathology, while promoting IL-12 and
TH1 cytokines. This is relevant since IL-23, but not IL-12, also
mediates inflammation in the absence of T cells (15), at least
under experimental conditions, and via intracutaneous injection
induces a psoriasis-like skin disease in mice (43). Our data further
showed that IL-4 indirectly prevented the maintenance of IL-17-
producing TH17 cells by abrogating the expression and produc-
tion of the TH17 cell-associated cytokine IL-23 in APC. Together
with our data, the high degree of efficacy of the anti-IL-12/IL-
23p40 monoclonal antibody in the treatment of psoriasis further
emphasizes the crucial role for IL-23 in disease progression (54,
55). These findings do not exclude a role for IL-12, TH1 cells or
TH1 cytokines in psoriasis but rather confirm that the therapeutic
silencing of IL-23 (for example by IL-4 or newly engineered IL-
4 superkines, currently under investigation) (56) is promising for
psoriasis and other TH17/IL-23-associated autoimmune diseases.

Materials and Methods
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Reconstitution experiments.
Tcrb-/-Tcrd-/- (Tc-/-) mice, STAT6-/- mice and CD45.2+C57BL/6 mice were

purchased from the Jackson Laboratory (Bar Harbor, Maine 04609 USA).
MHCII-/-mice were a gift from Ludger Klein, Institute of Immunology, Lud-
wig Maximillian University, Munich, Germany. Recipient mice were lethally
irradiated at 7.0 Gy and bone marrow cells (106 cells per recipient) of donor
mice were intravenously injected into recipient mice. Donor hematopoietic
cells were either bone marrow cells from CD45.1+ mice, a 1:1 mixture of bone
marrow cells from STAT6-/- and Tc-/- mice, or a 1:1 mixture of STAT6-/- and
MHCII-/-mice. To confirm the chimerism of mice, flow cytometry was made
for analysis of CD45.2+ (recipient mice) and CD45.1+ (donor mice). TNCB
sensitization experiments were performed eight weeks after irradiation.
A detailed description of all experimental procedures and the statistical
analysis is given in SI Materials and Methods.
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Abstract  30 

The interplay between microbes and surface organs such as skin shapes a complex 31 

immune system with several checks and balances. The first line defense is mediated 32 

by innate immune pathways leading to inflammation. The second phase consists of 33 

specific T cells invading the infected organ amplifying inflammation and defense. 34 

Consecutively, termination of inflammation is crucial to avoid chronic inflammation 35 

triggered by microbes such as in atopic dermatitis. Here we aimed to elucidate how 36 

Staphylococcus-derived cell wall component lipoteichoic acid (LTA) governs the 37 

second phase of immune responses when high levels of LTA on a disrupted skin 38 

barrier allow T cells direct exposure to LTA. Surprisingly we found that LTA potently 39 

suppressed T lymphocyte activation in a TLR independent manner. LTA-exposed T 40 

cells failed to proliferate and to produce cytokines. Importantly, these T cells 41 

remained completely viable and were susceptible to consecutive activation signals in 42 

the absence of LTA. Thus, LTA exposure of T cells resulted in temporary functional T 43 

cell paralysis. In vivo experiments revealed that T cell cytokine production and 44 

cutaneous recall responses were significantly suppressed by LTA. Thus, we 45 

identified a new mechanism of how bacterial compounds temporarily and directly 46 

modulate adaptive immune responses.  47 
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Introduction 48 

Surface organs such as the skin developed under the pressure of constant exposure 49 

to microbes and microbial products. As a consequence, a highly complex and 50 

regulated immune system evolved conserving the integrity of both the surface organ 51 

as well as of the whole organism. 52 

Cutaneous infection, on the one hand, was shown to very effectively induce adaptive 53 

immune responses even allowing the first vaccination strategy to successfully 54 

eradicate vaccinia virus (Tian et al., 2009). On the other hand, chronic inflammatory 55 

diseases of the gut such as Crohn’s disease or of the skin such as atopic dermatitis 56 

(AD) are believed to be triggered by microbes (Bieber, 2008; Kaesler et al., 2014; 57 

Lipinski and Rosenstiel, 2013) and to be mediated by T cells, which migrate into the 58 

gut or skin to initiate and maintain the inflammatory process (Akdis et al., 2006; 59 

Boguniewicz et al., 2003; Kapp et al., 2002; Mosli et al., 2014). Interestingly, clinically 60 

unaffected skin of AD patients already contains a sparse perivascular T cell infiltrate 61 

in the absence of detectable signs of dermatitis (Leung et al., 1983; Mihm et al., 62 

1976). In addition, analyses of biopsy samples from clinically unaffected skin of AD 63 

patients, as compared with normal non-atopic skin, demonstrate an increased 64 

number of type 2 helper T cells (Th2) expressing IL-4 and IL-13 mRNA (Hamid et al., 65 

1994).  66 

S. aureus most commonly elicits skin, wound, and also systemic infections being a 67 

major pathogen in both community-acquired and nosocomial infections (Fournier and 68 

Philpott, 2005; Myles and Datta, 2012). These and even minor infections lead to 69 

specific elicitation of S. aureus-specific adaptive immune responses in most people 70 

inducing also long-lived immune memory (Broker et al., 2014). More than 90% of 71 

patients with AD show Staphylococcus aureus colonization or infection, S. aureus 72 



 

 

5

and S. aureus-derived substances were shown to trigger skin inflammation, and 73 

effective treatment protocols for these patients include antiseptics (Leung and Bieber, 74 

2003). The presence of microbes on the skin may elicit or increase an immune 75 

response and constituents of S. aureus may function as a pro-inflammatory adjuvant. 76 

Pathogen-associated molecular patterns (PAMPs) may activate resident skin cells 77 

such as dendritic cells of the skin (Nakamura et al., 2013; Volz et al., 2012). Such 78 

PAMPs have been identified for S. aureus. Lipoteichoic acid (LTA), lipoprotein, and 79 

peptidoglycan (PG) are part of the bacterial cell wall of S. aureus and bind Toll-like 80 

receptor (TLR) 2, which is expressed by several immune cells also within the skin 81 

(Akira et al., 2006; Biedermann, 2006; Lipinski and Rosenstiel, 2013; Tian et al., 82 

2009). 83 

Recent researches showed that S. aureus found in infected dermatitis lesions leads 84 

to the presence of LTA in the majority of specimens with levels of LTA positively 85 

correlating with the concentration of S. aureus (Travers et al., 2010; Zhang et al., 86 

2005). We recently showed in a mouse model of AD that TLR2 ligands potently 87 

exacerbate inflammation leading to chronic dermatitis (Kaesler et al., 2014). These 88 

findings are in line with data from other models of AD, in which the development of 89 

skin lesions often depends on conventional housing conditions for the animals. 90 

Animals fail to develop dermatitis lesions when kept in specific pathogen free (SPF) 91 

conditions also indicating a role for microbes and PAMPs for AD (Akdis et al., 2006). 92 

On the other hand, we showed that cutaneous microbes were able to ameliorate AD 93 

inflammation by inducing regulatory T cells and IL-10 (Volz et al., 2013). Moreover, 94 

our group discovered recently that activation of TLR2/6 on the skin led to immune 95 

suppression mediated by myeloid-derived suppressor cells (MDSCs) (Skabytska et 96 

al.). Thus, different mechanisms to terminate and limit inflammation can be 97 
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developed to avoid tissue damage or as immune escape of microorganisms. 98 

Interestingly, among TLR2 ligands, exacerbation and persistence of the early phase 99 

of cutaneous inflammation was most potently induced by lipopeptides such as 100 

Pam2Cys with LTA showing significant but much weaker effects on skin inflammation 101 

(Kaesler et al., 2014). LTA is a surface-associated adhesion macroamphiphile 102 

molecule of Gram-positive bacteria. It is released from the bacterial cells after 103 

bacteriolysis and as a consequence of bacterial cell wall turn over (Ginsburg, 2002). 104 

The physiochemical properties of LTA were postulated to be similar to those of 105 

lipopolysaccharide (LPS) in Gram-negative bacteria (Fournier and Philpott, 2005). 106 

Most prominently, concentrations of about 10 �g/ml LTA from S. aureus and more 107 

were shown to stimulate the production of multiple pro-inflammatory cytokines and 108 

chemokines in different leukocytes, especially in macrophages and monocytes 109 

(Cleveland et al., 1996; Kapp et al., 2002; Standiford et al., 1994; von Aulock et al., 110 

2003). Peptidoglycan from S. aureus has been shown to provoke secretion of pro-111 

inflammatory cytokines and chemoattractants (TNF-�, IL-1�, IL-6, and CXCL8) from 112 

monocytes, macrophages as well as dendritic cells (Heumann et al., 1994; 113 

Timmerman et al., 1993; Volz et al., 2010). Thus, it is clear that LTA can activate the 114 

innate immune system, but direct effects on the adaptive immune system were not 115 

studied in detail. The purpose of this research was to study the properties of Gram-116 

positive cell wall component LTA in regard to T lymphocyte function. 117 

In this study, we show that limited exposure to LTA during initial contacts to 118 

fluorescein isothiocyanate (FITC) significantly suppressed lesional T cell cytokine 119 

expression. The proliferation of T cells from the draining lymph nodes of LTA-120 

exposed skin was also significantly reduced. Moreover, LTA also significantly 121 

suppressed T cell proliferation in vitro, which was independent of TLR2 signaling. 122 
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Those LTA-exposed T cells were viable and LTA exposure did not induce T cell 123 

apoptosis. To investigate whether T cell suppression by LTA is a pathway with in vivo 124 

relevance, FITC contact hypersensitivity (CHS) and ovalbumin (OVA)-induced 125 

dermatitis as models for Th2-mediated cutaneous inflammation in AD patients were 126 

investigated. LTA potently suppressed both FITC CHS and OVA-induced dermatitis 127 

independent of TLR2. To summarize, T cell-mediated immune responses are 128 

susceptible to LTA-induced immune suppression. These newly discovered 129 

consequences of LTA exposure may be functional following effective immune 130 

defense of S. aureus allowing the termination of inflammation or represent another 131 

way of immune escape of S. aureus. Importantly, this LTA induced T cell paralysis is 132 

temporary in nature avoiding prolonged periods of immune suppression. 133 

 134 

Results 135 

LTA exposure during mild cutaneous inflammation suppressed T cell cytokine 136 

levels and T cell proliferation 137 

Chronic inflammatory diseases of the skin such as AD are believed to be triggered by 138 

microbes. We wondered whether TLR2 ligands are capable to transform non-lesional 139 

skin with a detectable but sparse T cell infiltrate as found in AD patients (Leung et al., 140 

1983; Mihm et al., 1976) into overt dermatitis. Contact hypersensitivity to the hapten 141 

FITC following up to six repetitive sensitizations with FITC is associated with FITC-142 

specific immunoglobulin (Ig) E and Th2 cells (Supplementary Figure S1). We now 143 

established a model, in which the weak hapten FITC was applied only twice to the 144 

shaved abdomen of mice before a FITC challenge at the ear skin was carried out. In 145 

this model, no obvious ear swelling was detectable following the last FITC challenge 146 
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(Supplementary Figure 2). However, T cell recruitment to the skin can be identified 147 

with T cell cytokines significantly upregulated already 4-8 hours after challenge (data 148 

not shown). Moreover, FITC-specific T cells were readily detectable in these mice. 149 

Thus, this model of mild T cell inflammation is ideal to identify microbial constituents 150 

that trigger and therefore amplify cutaneous inflammation. However and much to our 151 

surprise, exposure to up to 40 µg LTA could not significantly amplify ear swelling in 152 

mildly FITC-sensitized animals. Therefore we investigated the dynamics of T cell 153 

cytokine expression in animals exposed to either LTA or PBS (Figure 1a). At 8 hours 154 

after challenge, cutaneous IL-4 mRNA expression was suppressed by >10 fold 155 

following exposure to LTA, IFN-� mRNA levels were reduced by a factor of 3, and IL-156 

10 expression was unchanged compared to controls (Figure 1b). To identify 157 

functional consequences of LTA exposure in vivo, draining lymph nodes were 158 

prepared at several time points following FITC +/- LTA exposure and subjected to 159 

further analyses. Ex vivo stimulation of T cells with anti-CD3 and anti-CD28 160 

antibodies (Abs) as well as with FITC demonstrated significantly reduced T cell 161 

proliferation (Figure 1c) indicating consequences of LTA exposure on both FITC-162 

specific T cells and T cell bystanders. 163 

 164 

LTA directly suppressed CD4+ T cell proliferation and cytokine production in 165 

vitro 166 

In order to identify whether LTA mediated immune suppression by directly targeting T 167 

cells, CD4+ T cells were isolated from untreated BALB/c mice and activated by anti-168 

CD3/anti-CD28 Abs in vitro. These T cells were then treated with TLR2 ligands 169 

Pam2Cys, staphylococcal LTA, or control medium. Pam2Cys dose dependently 170 

acted as potent T cell co-stimulator reaching a maximum at 10 µg/ml confirming data 171 
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previously published (Okusawa et al., 2004) (Figure 2a). In contrast, at the same 172 

concentration of 10 µg/ml LTA significantly suppressed T cell proliferation (Figure 173 

2a). Moreover, increasing LTA concentrations further increased T cell suppression, 174 

almost completely abrogating T cell proliferation at 100 µg/ml (Figure 2a). As these 175 

experiments were performed with murine T cells, we next investigated human T cells. 176 

Human CD4+ T cells were isolated from peripheral blood mononuclear cells (PBMCs) 177 

and then stimulated under several conditions including different concentrations of 178 

staphylococcal LTA for 3 days. LTA most potently inhibited human T cell activation 179 

elicited by TCR activation as with anti-CD3 and anti-CD28 Abs and superantigen 180 

(Figure 2b). Interestingly, LTA also blocked human T cell activation induced by 181 

mitogens albeit with less potency (Figure 2b). Importantly, LTA not only affected T 182 

cell proliferation but most potently also inhibited T cell cytokine production, such as 183 

IFN-� and IL-4 in murine (Figure 2c) and human T cells (data not shown). 184 

These data indicate that S. aureus-derived LTA can potently block T cell activation 185 

and thereby represent one mechanism of immune evasion. However, skin microbiota 186 

such as S. epidermidis that is tolerated by the host in most circumstances also 187 

contains large quantities of LTA. Therefore, for comparison, LTA was isolated from 188 

both pathogenic S. aureus and non-pathogenic S. epidermidis and analyzed in 189 

regard to T cell suppression. LTA from both, S. aureus and S. epidermidis potently 190 

suppressed T cell activation indicating a general effect of this class of PAMPs (Figure 191 

2d). 192 

 193 

Paralysis but not apoptosis or necrosis in LTA exposed Th cells 194 
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One possible explanation for LTA-mediated reduction of Th cell cytokine production 195 

or proliferation could be apoptosis of T cells following LTA exposure. To this end, Th 196 

cells were stained with Annexin V and propidium iodide (PI) following exposure to 197 

LTA. Surprisingly, LTA exposed Th cells exhibited even less Annexin V staining and 198 

PI uptake (Figure 3a) and no increase in trypan blue staining (data not shown) 199 

compared to control T cells. Thus, these Th cells seemed to be completely viable 200 

following LTA exposure. To further demonstrate Th cell viability, CD4+ T cells were 201 

activated in vitro by anti-CD3/anti-CD28 and exposed to LTA for 4 days. Thereafter 202 

Th cells were cultured with low concentration of IL-2 until resting and then stimulated 203 

in the absence of bacterial constituents. In contrast to the primary stimulation, Th 204 

cells, previously exposed to LTA, readily responded to anti-CD3/anti-CD28 Abs 205 

treatment. These data demonstrate that these Th cells completely recovered from the 206 

exposure to LTA (Figure 3b). Thus, Th cells exposed to LTA were viable and 207 

remained fully responsive to subsequent stimulation. This indicated that LTA-208 

mediated suppression could be only temporary reflecting a status of transient Th cell 209 

paralysis. 210 

 211 

LTA-induced suppression of Th cell activation independent of TLR2 and MyD88 212 

Next, we analyzed whether LTA functions only during incoming TCR signals as it is 213 

expected for TLR2 ligands acting as T cell costimulators. Therefore, Th cells were 214 

activated by anti-CD3/anti-CD28 Abs and LTA or Pam2Cys were added 215 

subsequently up to 3 days following activation. As expected, the costimulatory role of 216 

Pam2Cys was only functional in parallel to T cell TCR activation (Figure 4a). In sharp 217 

contrast, LTA was functional up to 48 hours following Th cells activation indicating a 218 

mechanism of action independent of TCR signaling (Figure 4a). Consequently, we 219 
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assumed that LTA is functional via structures different from TLRs. To this end, wild 220 

type, TLR2-/-, and MyD88-/- CD4+ T cells were isolated from untreated mice and 221 

analyzed. LTA suppressed activation of Th cells from all three strains, whereas 222 

costimulation by Pam2Cys was dependent on TLR2 and MyD88 (Figure 4b). 223 

 224 

LTA induced cell cycle arrest in activated T cells 225 

Transforming growth factor-� (TGF-�) inhibits T cell proliferation (Kehrl et al., 1986) 226 

through mechanisms directly targeting cell cycle regulators (Datto et al., 1995; 227 

Hannon and Beach, 1994; Polyak et al., 1994). The normal cell cycle is composed of 228 

the gap 1 phase (G1), the synthesis phase (S), the gap 2 phase (G2), and the mitosis 229 

phase (M). In the S phase, DNA replication occurs and cells at G2 and M phases of 230 

the cell cycle have double the DNA content of those at G0 and G1 phases. DNA 231 

content of cells at S phase is between that of cells in G2/M and G0/G1 phases. To 232 

better understand the underlying mechanisms of LTA mediated Th cell suppression, 233 

consequences of LTA exposure on cell cycle regulation were investigated. In fact, 234 

only 6% of LTA-treated CD4+ T cells were found at the S or G2/M phases (Figure 235 

5a), whereas 25% of the control cells were. In contrast, Pam2Cys-stimulated T cells 236 

were prone to divide. As control, we also treated Th cells with TGF-� and most of 237 

these TGF-�-treated Th cells also remained at G1 phase as previously published 238 

(Kehrl et al., 1986) (Figure 5b). Thus, these data further consolidated the suppressive 239 

effect of LTA exposure on Th cells and provided an explanation why this suppressive 240 

effect of LTA i) was also functional when adding LTA at later time points, ii) was 241 

functional in the absence of apoptosis and necrosis, and iii) was transient allowing 242 

normal activation of T cells following a period of resting. 243 
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 244 

LTA suppressed T cell-mediated FITC-induced inflammation and OVA-245 

dermatitis in vivo 246 

To investigate whether LTA-mediated suppression of T cells is also functionally 247 

relevant in vivo, we next analyzed models of T cell-mediated cutaneous inflammation. 248 

To this end, we adoptively transferred CD3+ T cells from FITC-sensitized mice into 249 

mice treated as indicated in Figure 1a to increase FITC-specific T cells. The next day, 250 

recipients were challenged with FITC or vehicle control and exposed to either LTA or 251 

PBS in addition. Interestingly, when challenged with vehicle only, in the absence of 252 

antigen, LTA elicited an ear swelling response indicating direct pro-inflammatory 253 

effects of LTA, however, in the presence of antigen and T cell activation, LTA 254 

significantly reduced cutaneous inflammation (Figure 6a), confirming our data on 255 

inhibition of T cell activation in vivo. These data indicate that LTA may function as a 256 

TLR2 ligand on skin resident cells activating the innate immune system and leading 257 

to inflammation. In contrast, T cell-dependent contact hypersensitivity is significantly 258 

suppressed, possibly by a TLR2 independent effect. However, pro-inflammatory and 259 

immune suppressive consequences of LTA exposure may partly compensate for 260 

each other in this model. To be able to dissect TLR2-dependent from TLR2-261 

independent effects of LTA and innate from T cell-mediated immune consequences, 262 

we used another AD-like mouse model as recently published (Kaesler et al., 2014). In 263 

this model, we adoptively transferred OVA-specific Th2 cells and antigen to the ear 264 

skin of previously untreated wild type and TLR2-/- mice and monitored the T cell 265 

driven ear swelling response in the presence or absence LTA. Interestingly and 266 

confirming our hypothesis, in the absence of TLR2 LTA profoundly suppressed OVA-267 

specific dermatitis (Figure 6b). These data elucidate how the host immune system 268 
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fine tunes the response to microbial PAMPs. The early innate response is mediated 269 

by pathogen recognition receptors and results in inflammation, whereas the later and 270 

T cell-mediated immune response is susceptible to immune suppression allowing the 271 

termination of inflammation. Importantly, the latter is transient in nature avoiding 272 

prolonged periods of immune suppression. 273 

 274 

Discussion 275 

The concentrations of LTA encountered by host cells during bacterial infections are 276 

likely to be quite high at local sites of infection. For example, the 50% lethal dose of 277 

live S. aureus in an intraperitoneal infection model in mice is 109 CFU (Dziarski et al., 278 

2003), and this amount of S. aureus contains about 200 µg of LTA in the peritoneal 279 

cavity fluid that is <0.1 ml. While LPS in the ng/ml range is sufficient to trigger even 280 

severe inflammatory responses (Hoetzenecker et al., 2011; Kusunoki et al., 1995), it 281 

has been shown that relatively large amounts of LTA (about 1~10 �g/ml) are required 282 

to elicit cellular responses in vitro (Fournier and Philpott, 2005). However, LTA is a 283 

major component of Gram-positive bacterial cell wall, whereas bacterial cell walls of 284 

Gram-negative harbor much less LPS. The active concentrations of LTA (10 µg or 285 

107 to 108 CFU) as well as of LPS (20 ng or 107 CFU) are comparable when they are 286 

transposed to bacterial cell equivalents (von Aulock et al., 2003). 287 

LTA from Staphylococcus aureus is a potent stimulus for neutrophil recruitment 288 

through stimulating the production of cytokines and chemokines in macrophages and 289 

monocytes (Standiford et al., 1994; von Aulock et al., 2003). Following the induction 290 

of innate immune signals activation of the adaptive immunity is functional (Medzhitov, 291 

2007). Previous studies showed that LTA merely played the pro-inflammatory role on 292 
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the host immune system, especially on the innate immunity, and thus the notion that 293 

LTA was the ‘’LPS’’ of Gram-positive bacteria was proposed. However, as a result of 294 

thousands of years of coexistence with human, S. aureus is a well adapted pathogen 295 

that has developed several evasion mechanisms. This organism secretes proteins 296 

that inhibit complement activation and neutrophil chemotaxis or that lyse neutrophils, 297 

neutralizes antimicrobial defensin peptides, and its cell surface is modified to reduce 298 

effectiveness of immune responses (Lowy, 2011). S. aureus can survive in 299 

phagosomes, express polysaccharides and proteins that inhibit opsonization by 300 

antibody and complement, and its cell wall is resistant to lysozyme. Moreover, S. 301 

aureus expresses several types of superantigen, which disturb the normal humoral 302 

immune response, resulting also in anergy, apoptosis, and immunosuppression 303 

(Foster, 2005; Kaesler et al., 2012; Rooijakkers et al., 2006). It has also been 304 

reported that bacterial components from S. aureus inhibited fibroblast proliferation in 305 

vitro (Edds et al., 2000). In addition, LTA isolated from S. aureus was demonstrated 306 

to inhibit platelet function and platelet-monocyte aggregation (Sheu et al., 2000). Not 307 

only pathogens like S. aureus, but also parts of the normal microbiome like S. 308 

epidermidis contain LTA. Furthermore, S. aureus sometimes lives as a commensal of 309 

the human skin. Recently, it was shown that a unique LTA produced by S. 310 

epidermidis inhibits uncontrolled skin inflammation during skin injury (Lai et al., 2009). 311 

After skin injury, the host RNA from damaged cells activates TLR3 in the 312 

keratinocytes, which accounts for the release of inflammatory cytokines, resulting in 313 

inflammation. Staphylococcal LTA inhibits both inflammatory cytokine release from 314 

keratinocytes and inflammation triggered by injury through a TLR2-dependent 315 

mechanism (Lai et al., 2010). However, how the known pro-inflammatory 316 

macroamphiphile molecule works directly on adaptive immune cells was still 317 
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unknown. Functional TLR2 expression on T cells were demonstrated by other groups 318 

(Komai-Koma et al., 2004; Reynolds et al., 2010), and Bacteroides fragilis signals 319 

through TLR2 on Foxp3+ regulatory T cells promoting immunologic tolerance (Round 320 

et al., 2011). It is therefore reasonable to postulate that LTA can exert its modulatory 321 

effect directly on adaptive immunity. 322 

In our current study, we demonstrate that the application of Staphylococcus aureus 323 

derived cell wall component LTA most potently suppressed T lymphocyte activation, 324 

the late phase of defense. This suppression was independent of TLR signaling and 325 

functional by means of transient cell cycle arrest. Thus, we identified a novel 326 

mechanism of how bacterial compounds temporarily directly modulate the adaptive 327 

immune system. This new mechanism of T cell paralysis may be functional to 328 

terminate inflammation such as in Gram-positive infection or during immune evasion 329 

of pathogenic bacteria representing another level of regulation of the complex 330 

interplay between microbes and the host. 331 

 332 

Materials and Methods 333 

Animals 334 

Pathogen-free, 6- to 12-week-old wild type BALB/c mice and C57BL/6 mice were 335 

purchased from Charles River (Sulzfeld, Germany). MyD88-/- BL/6 were from Akira’s 336 

group (Osaka, Japan), TLR2-/- mice were from C. Kirschning (Institute of Medical 337 

Microbiology, University Duisburg-Essen). All wild type and knockout mice were kept 338 

and bred under specific pathogen free conditions in accordance with the guidelines of 339 

FELASA (Federation of European Laboratory Science Association) in the animal 340 

facility of Eberhard Karls University. Age-matched female mice were used in all 341 
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experiments. All animal experiments were in compliance with both European Union 342 

and German law and approved by the local authorities (HT1/10). 343 

 344 

Reagents 345 

Fluorescein isothiocyanate (FITC), 2-mercaptoethanol, phorbol 12-myristate 13-346 

acetate (PMA), ionomycin, concanavalin A (con A), and staphylococcal enterotoxin B 347 

(SEB) were purchased from Sigma-Aldrich (Taufkirchen, Germany). Purified LTA 348 

from Staphylococcus aureus was obtained from InvivoGen (San Diego, USA). 349 

Purified LTA from Staphylococcus epidermidis was a gift from Porf. Hartung 350 

(Konstanz, Germany). Pam2Cys and Pam3Cys were from EMC microcollections 351 

(Tübingen, Germany). DMEM, RPMI 1640, penicillin/streptomycine, L-glutamine, 352 

sodium-pyruvate, MEM-amino acids (50X) and HEPES were from Biochrom (Berlin, 353 

Germany). Fetal calf serum (FCS) was from PAA (Cölbe, Germany). PBS (w/o Ca2+, 354 

Mg2+) were from Gibco/Invitrogen (Karlsruhe, Germany). ACK lysis buffer was from 355 

Cambrex (Walkersville, USA). Endotoxin-free ovalbumin was purchased from Hyglos 356 

(Bernried, Germany). Streptavidin-horseradish peroxidase and TMB-substrate 357 

solution were from BD Biosciences (Heidelberg, Germany). 358 

 359 

FITC-induced antigen-specific contact hypersensitivity 360 

6- to 12-week-old wild type female BALB/c mice (5 to 6 mice per group) were 361 

sensitized by administration of 0.5% FITC solution (dissolved in 1:1 acetone:dibutyl 362 

phthalate) on the shaved abdomen on days 0, 1. Six days after the last sensitization 363 

all mice were challenged by application of 0.5% FITC solution on both sides of the 364 

ears. Ear thickness was measured thereafter with a micrometer (Kroeplin, Germany) 365 
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and data are expressed as change in ear thickness compared to before treatment. 366 

Draining lymph node cells were cultured with FITC or anti-CD3 and anti-CD28 367 

antibodies for another 3 days. Cell culture supernatants were collected and subjected 368 

to ELISA. 369 

 370 

Real-time reverse transcriptase polymerase chain reaction (RT-PCR) analysis 371 

Total RNA from mouse ears was isolated using the Macherey-Nagel isolation kit 372 

(Düren, Germany). Total RNA was reverse-transcribed to cDNA by using the iScript 373 

cDNA Synthesis Kit (Bio-Rad, Munich, Germany). The oligonucleotide primer 374 

sequences were as follows: IFN-� forward primer, 5’- 375 

CTCTGAGACAATGAACGCTAC-3’, and IFN-� reverse primer, 5’- 376 

TCTTCCACATCTATGCCACTT-3’; IL-4 forward primer, 5’-377 

GACGGCACAGAGCTATTGATG-3’, and IL-4 reverse primer, 5’-378 

ACCTTGGAAGCCCTACAGACG-3’; IL-10 forward primer, 5’-379 

CAACATACTGCTAACCGACTC-3’, and IL-10 reverse primer, 5’- 380 

CATTCATGGCCTTGTAGACAC-3’. Real-time PCR assay was carried out with 381 

iCycler (Bio-Rad) by using iQ SYBR Green Supermix (Bio-Rad). Data are presented 382 

as normalized to housekeeping gene hypoxanthine phosphoribosyl transferase 383 

(HPRT). 384 

 385 

Proliferation assays 386 

Whole lymph node cells or CD4+ T cells (250000 cells/well) were activated with 387 

different antigens/antibodies in 96 well flat bottom plates (Greiner, Frickenhausen, 388 

Germany) in a total volume of 200 µl. After 3-4 days 0.25µCi [3H] thymidine (GE 389 
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Healthcare, Freiburg, Germany) was added per well and cells were harvested after 390 

another 16 hours. Incorporated [3H] thymidine was measured using a microbeta 391 

counter (Perkin Elmer, Wiesbaden, Germany). 392 

 393 

CD4+ T cell isolation and stimulation for in vitro experiments 394 

Lymph nodes and spleens of untreated mice were isolated and lymphocytes were 395 

prepared by homogenizing organs through a nylon mesh cell strainer. Red blood 396 

cells were lyzed by incubating with ACK lysis buffer for 5 minutes. Cells were washed 397 

twice and CD4+ T cells were purified using a CD4+ isolation kit from Miltenyi Biotech 398 

(Bergisch Gladbach, Germany). Human CD4+ cells were isolated from peripheral 399 

blood mononuclear cells, which were obtained from heparinized blood samples from 400 

healthy volunteers by density gradient centrifugation (800 g for 30 min). CD4+ T cells 401 

were resuspended in DMEM containing 10% heat-inactivated FCS, penicillin (100 402 

U/mL), streptomycine (100 µg/mL), 0,5 mM sodium-pyruvate, 5 mM HEPES, 1% 403 

MEM-amino acids (50X) and 2-mercaptoethanol (50 µM). T cell were stimulated with 404 

presence of 4 µg/ml (murine) or 0.5µg/ml (human) anti-CD3 and 2 µg/ml (murine) or 405 

0.5µg/ml (human) anti-CD28 (Biolegend, San Diego, USA). For some assays 406 

PMA/Iono (1 ng/ml; 500 ng/ml), Con A (2 µg/ml), SEB (4 µg/ml) or TGF-� (2ng/ml) 407 

were added. 408 

 409 

Measurement of cytokines 410 

IFN-� and IL-4 (BD Biosciences) levels in culture supernatants were assayed using 411 

ELISA kits according to the manufacturer’s instructions. 412 

 413 
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Apoptosis detection 414 

Detection of apoptotic cells and necrotic cells was performed by using the Annexin V 415 

Apoptosis Detection Kit (BD Biosciences). 416 

 417 

Cell cycle analysis 418 

Cell cycle analyses were performed by using the APC BrdU Flow Kits (BD 419 

Biosciences) according to the manufacturer’s instructions. 420 

 421 

Adoptive transfer 422 

FITC CHS model: Naïve mice serving as donors were sensitized by FITC on day -15, 423 

-14, -8, -7, -1, and 0, and on day 6, axillary lymph nodes (LNs), inguinal LNs, and 424 

spleens of these mice were isolated. CD3+ cells were then isolated from secondary 425 

lymphoid organs with Pan T Cell Isolation Kit (Miltenyi Biotec) and transferred into 426 

recipient mice, which were previously sensitized twice with FITC. The next day (day 427 

7) recipients were injected with LTA or PBS and challenged with FITC or vehicle 428 

control. 429 

OVA-dermatitis model: OVA-specific T cells were harvested from OVA-sensitized 430 

mice and expanded in vitro under Th2-promoting conditions. For adoptive transfer 431 

1x106 OVA-specific Th2 cells and 5 µg OVA protein with or without 10 µg S. aureus  432 

LTA were intracutaneously injected into the ear skin of wild type and TLR2-/- BL/6 433 

recipient mice. 434 

Ear thickness was measured with a micrometer and expressed as change in ear 435 

thickness following treatment. 436 
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 437 

Statistical analysis 438 

All experiments were performed at least twice. The data shown are means ± 439 

standard deviations. Statistical analyses were performed with student t-tests (two-440 

tailed) using Microsoft Excel. Differences were considered to be statistically 441 

significant when the p value was less than 0.05. 442 
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Figure legends 644 

Figure 1. Effects of cutaneous LTA exposure on mild cutaneous inflammation. 645 

(a) Mice were sensitized with 80 µl 0.5% FITC onto the shaved abdomen at day 0 646 

and1, and on day 7 mice were challenged by applying FITC onto the ears. Shortly 647 

prior to challenge, LTA or PBS (control) was applied intracutaneously. (b) 8 hours 648 

after FITC challenge cytokine mRNA expression was compared between LTA-649 

exposed and PBS-exposed skin by quantitative RT-PCR (normalized to a 650 

housekeeping gene HPRT, (mean +/- SD of triplicates???). (c) Ear skin draining 651 

lymph nodes were isolated at several different time points after challenge. Cells were 652 

either stimulated ex vivo by FITC or anti-CD3/anti-CD28 Abs for 3 days  and their 653 

proliferation was analyzed as counts per minute (cpm) of 3H-thymidine incorporation 654 

(mean +/- SD of triplicates),  (**: p<0.01, ***: p<0.001). 655 

 656 

Figure 2. LTA exposure suppressed murine and human T cell proliferation and 657 

cytokine production. 658 

(a, b) Proliferation of murine CD4+ T cells isolated from untreated mice (a) or  human 659 

CD4+ T cells isolated from PBMCs (b) was analyzed (mean +/- SD of triplicates) after 660 

stimulation under several conditions: (a) anti-CD3/anti-CD28 Abs and different 661 

concentrations of Pam2Cys or LTA; (b) anti-CD3/anti-CD28 Abs, PMA/Iono, Con A, 662 

SEB and different concentrations LTA. (c) T cell cytokines was analyzed 72 hours 663 

following activation and exposure to LTA. (d) Murine CD4+ T cells were stimulated by 664 

anti-CD3/anti-CD28 Abs and S. aureus LTA, S. epidermidis LTA, or TGF-� were 665 

added and the cell proliferation was analyzed (as cpm) (mean +/- SD of triplicates) (*: 666 

p<0.05, **: p<0.01, ***: p<0.001, NS: p>0.05). 667 
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 668 

Figure 3. Unequivocal viability of LTA exposed and control T cells and restored 669 

responsiveness upon re-stimulation in the absence of LTA. 670 

(a) CD4+ T cells exposed to LTA were stained with Annexin V and PI and analyzed 671 

by flow cytometry. LTA-exposed T cells showed Annexin V- and PI-staining 672 

comparable to controls (mean +/- SD of triplicates). (b) CD4+ T cells were primarily 673 

activated by anti-CD3/anti-CD28 Abs and exposed to LTA. These cells were then 674 

washed and rested with 10 U/ml IL-2. Secondary activation was done with anti-675 

CD3/anti-CD28 Abs alone and their proliferation was analyzed (as cpm) (NS: 676 

p>0.05). 677 

 678 

Figure 4. LTA-mediated suppression of CD4+ T cells independent of TLR2 and 679 

MyD88. 680 

(a) CD4+ cells were polyclonally activated for 96 hours. LTA or Pam2Cys was added 681 

on indicated days. Pam2Cys acted as costimulator solely during the phase of T cell-682 

activation. In contrast, LTA exposure suppressed T cell proliferation for up to two 683 

days following T cell activation. (b) CD4+ T cells from wild type, TLR2-/-, and MyD88-/- 684 

mice were polyclonally activated and incubated with different concentrations of 685 

staphylococcal LTA or Pam2Cys for 4 days. Cell proliferation was analyzed (as cpm) 686 

(mean +/- SD of triplicates). The proliferation of the control group of all three strains 687 

was normalized as 100% (*: p<0.05, **: p<0.01). 688 

 689 

Figure 5. Consequences of LTA exposure for cell cycling of T cells. 690 
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CD4+ T cells were stimulated in vitro by anti-CD3/anti-CD28 Abs and different 691 

concentrations of Pam2Cys or staphylococcal LTA were added. Cell cycle analysis 692 

was performed by DNA staining and the amount of DNA was determined by flow 693 

cytometry. A representative FACS plot (a) and means +/- SD (n=3???) (b) is shown. 694 

 695 

Figure 6. LTA exposure suppressed contact hypersensitivity reactions in vivo. 696 

(a) Donor mice were sensitized with FITC 6 times and thereafter CD3+ T cells were 697 

isolated from axillary and inguinal LNs, and spleens. 7.5 x 106 T cells were then 698 

adoptively transferred into recipient mice pre-treated as described for Figure 1a. The 699 

next day, LTA or PBS was intracutaneously applied to the recipient mice, which were 700 

then challenged by FITC or vehicle control. Ear swelling as the consequence of T cell 701 

mediated dermatitis was monitored at 24 hours (mean +/- SD, n=5). (b) OVA-specific 702 

Th2 cells were adoptively transferred together with OVA antigen into naïve recipient 703 

wild type and TLR2-/- BL/6 mice with or without LTA (mean +/- SD, n=5). (*: p<0.05, 704 

**: p<0.01, ***: p<0.001). 705 
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