
99

1. Introduction: mapping time

Chiba Southeast New Town is a residential area 
ca.600 ha in extent in the Boso peninsula, central 
Japan (Fig. 1). The area was investigated during 
the 1980s and following the tradition of Japanese 
CRM, large open area excavations were conducted 
uncovering ca 14% of the entire area. This coverage 
shed a methodologically consistent light on most of 
the prehistoric settlements of the Jomon period (ca 
13,000–2300 BP), composed by numerous features 
such as pithouses, storage pits and surface dwellings. 
Such extensive data allows us to consider individual 
pithouses as the primary analytical unit and to use 
the excavation area as a series of explicitly defined 
sampling windows. From a temporal perspective, 
Jomon pithouses are usually dated on the basis of a 
precise relative chronology based on the evaluation 
of diagnostic pottery. Recently a number of scholars 
have tried to assign absolute chronological values 
to these (see Kobayashi 2004) with a high degree of 
proposed resolution, often reaching a subcentury 
scale. The dating of features and structures are almost 
entirely based on such a framework and are very 
rarely integrated with either absolute dating methods 
or the temporal topology implied by stratigraphic 
relationships. 

In archaeological terms, the Jomon data from 
this region is an extremely high resolution dataset, 

but a problem arises as soon as we try to make 
use of the temporal dimension by ‘mapping’ the 
pithouses associated with each pottery phase. 
Firstly, the definition of the temporal domain 
reflects varying degrees of knowledge, based on 
the quantity and quality of retrieved diagnostic 
artefacts. Such variation will dramatically reduce 
our representational capabilities since we have to 
strike a balance between the desired chronological 
resolution of our representation and the proportion 
of our sample that can actually sustain such precision 
(Fig. 2). This reduces our capabilities to represent 
and analyse any archaeological pattern where the 
temporal domain is specified, since we are not able 
to include imprecise data as easily as we might 
wish. Secondly, the temporal length of each pottery 
phase is different, thus the direct comparison of the 
spatial distributions are not feasible, since they are 
palimpsests formed at different temporal scales. 
Thirdly, if we wish to enlarge the spatial window of 
analysis, we have to consider the spatial limits and 
variability (across time) of chronologies that were 
defined by pottery styles . And finally, even within the 
same geographical context, different scholars might 
propose different temporal subdivisions for the 
same sequence, producing different spatio-temporal 
patterns. Therefore, despite an ideal spatial dataset, 
limitations related to the temporal domain do not 
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even allow us to visualise 
properly the available data. 

The case presented here 
is not unique in archaeology 
and addresses a broader 
issue of how archaeological 
spatial patterns are defined. 
Traditional procedures of 
mapping and comparing a 
sequence of temporal snapshots 
created within a relative 
chronological framework are 
clearly not sufficient for any 
analytical process that might 
aim to formally integrate the 
temporal dimension. Different 
approaches capable of modelling 
the intrinsic un certainty and 
inhomogeneity of knowledge 
are therefore worth developing.

Fig. 1. Location of the Study Area, with the excavation sampling windows and 
Middle-Late Jomon pithouse distribution.

Fig. 2. Pithouse counts time series using different temporal resolutions. Coarser temporal granularity allows the integration 
of larger portion of dataset, while higher resolution restricts the number of pithouse to be used for the time series. 
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2. Quantifying uncertainty

The uncertain nature of the archaeological record 
must be embedded as a quantifiable measure for 
the purposes of spatial analysis and associated with 
each spatial unit of analysis, defined as event in the 
statistical jargon. Since we must convey uncertainty 
when we try to answer the question of ‘whether 
a specific event has occurred or not in a defined 
moment in time’, probabilistic weighting is the most 
appropriate way forward. This has been noticed by a 
number of scholars (see Bevan et al. 2008; Johnson 
2004; Lock and Harris 2002) who have adopted or 
proposed different approaches for quantifying the 
probability of existence of archaeological events.

The quantification of the temporal dimension 
is considerably affected by a definition of a discrete 
subdivision in consecutive and sequential series 
of units (what Snodgrass 1992 called a ‘chronon’) 
that will indicate the temporal resolution of the 
phenomenon we observe. The probability of existence 
of an event will be negatively correlated with the 
degree of granularity with which we measure time: 
lower temporal resolution will produce higher 
probabilities, and higher resolution will give lower 
probabilities for each chronon.

The probability of existence can be assessed 
either through the direct retrieval of data related to 
absolute dating methods or through some form of 
quantification based on the presence of temporally 
significant diagnostic artefacts. Both type of 
information can be successively ‘calibrated’ through 
directly non-quantifiable knowledge such as temporal 
topology or combined by the means of methods based 
on Bayesian Statistics or Dempster-Shafer Theory.

The abundance of diagnostic artefacts, the 
heavy reliance of Japanese archaeology towards a 
temporal definition based on subdivision of pottery 
phases, and the availability of absolute durations of 
these has indicated the aoristic analysis (Ratcliffe 
2000) as the ideal candidate for the probabilistic 
quantification of the events. The analysis, introduced 
in archaeology by Ian Johnson (2004) are based on 
a series of assumptions that must be held in order to 
be feasible:

1. Each event must be definable as a single 
and unique unit in time and space (e.g. a 
single feature) rather than a composite and 
ontologically complex unit (e.g. settlement, 
site etc.).

2. The duration of the event must be instant
aneous or at least much smaller than the 
defined temporal resolution.

3. The duration of all the events must be equal.
4. The terminus ante quem (t.a.q.) and the 

terminus post quem (t.p.q.) of each event 
must be known.

5. The temporal span (defined as the tem-
poral length bounded by the t.a.q. and t.p.q. 
of an event rounded to the precision of the 
temporal resolution) of the events must not 
be constant. In other words an inhomo-
genous distribution of temporal knowledge 
is required. 

6. The probability distribution within the 
temporal span is uniform. 

The case study has all these requisites since: 
1. the pithouses have been used as a discrete 

unit of analysis;
2. the duration of a pithouse is considered as 

relatively short, (maximum of ca. 15 years; 
Watanabe 1986, 234) in comparison to the 
temporal resolution adopted (50 years);

3. the duration of the use of pithouses are 
assumed to be roughly equal; in cases where 
the reuse of the same pithouse has been 
recognized, the total aoristic value of the 
event was greater than 1 and equal to the 
number of frequentations; 

4. the rough duration of the pottery phases in 
absolute terms is known (Crema 2007) and 
all the pithouses can be incorporated within 
this chronological framework; 

5. the definition of the relative chronology is 
based on diagnostic artefacts that provide 
different degrees of precision ranging from 
the subphase level (≈50 yrs) to the entire 
period analysed (≈2000 yrs);

6. the absence of additional sources of tem-
poral knowledge other than the retrieval 
of diagnostic pottery means that an equal 
probability for all of the chronons within 
the timespan is the most straightforward 
assumption. 

Aoristic analysis thus provides a simple and 
efficient means of assessing the probability of 
existence for each event by attributing an aoristic 
weight, defined as the ratio between the temporal 
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resolution and timespan of the event (see Ratcliffe 
2000; Johnson 2004). 

Alternative approaches to the probabilistic 
quantification of temporal uncertainty have also been 
proposed by Lock and Harris (2002), who, however, 
focused their work mainly on the development of 
methods to manage and bind multiple sources of 
temporal knowledge, without explicitly tackling the 
issue on how the uncertainty of each event can be 
quantified. 

Aoristic analysis can be interpreted as a special 
case of probability weighting where the temporal 
blocks are equally-sized and events do not have 
duration in time. Even when the first condition is not 
met, a probabilistic weighting can still be computed 
for each period as the ratio between its duration and 
the sum of the durations of all the periods where 
the event might have occurred. If, with regard to 
the second condition, events do have duration in 
time, the probability for each equally long chronon 
can be computed as the ratio between the number 
of permutations where the events exists in the 
specific time-block and the total number of possible 
permutations given a specific time-span and a known 
duration. The sum of probabilities in this case will 
be equal to the duration of the event, expressed as a 

number of time-blocks. Probability weights can also 
be computed when both of these conditions are not 
met, but their computation is more complex and will 
be treated elsewhere. Finally, in those cases where 
the type of temporal knowledge involved allows 
estimation of the shape of the probability function 
within a time-span (e.g. with calibrated radiocarbon 
dates), alternative approaches for probabilistic 
weighting should be considered instead (see Green, 
this volume). 

3. Integrating uncertainty into analysis 

The problem of the balance between the chronological 
resolution and the size of the subsample described 
in Fig. 2 can be solved by the computation of the 
sum of aoristic values within each chronon (Fig. 3). 
This will provide a finer-grained time series of the 
population dynamics in probabilistic terms, enabling 
the detection of previously invisible patterns. The 
advantage of this method is thus the integration 
of all the available information, in a discrete and 
measurable temporal sequence. 

The potential analytical framework provided by 
the aoristic database can be extended for a wide range 
of statistical methods capable of managing weighted 

Fig. 3. Aoristic sum of pithouses using a temporal resolution of 50 years. The time-series integrates all the available 
information using a probabilistic weighting, showing patterns which were previously invisible (cf. Fig. 2).
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data. Within the field of spatial analysis, for instance, 
both the computation of standard distance or the 
mean centre of distribution of a point dataset have 
weighted versions where the ‘pull’ is proportional 
to the attributed weight. Weighted versions are also 
available for more advanced techniques such as kernel 
density estimates (KDE) or Ripley’s K functions.

Major advantages of aoristically weighted 
spatial analysis are the capability of integrating all 
the available information for each chronon (thus 
providing a more complete data structure), and 
the possibility of observing and analysing dynamic 
changes across time through the comparison of 
equally long temporal blocks. The latter improvement 
offers the possibility of adopting a wide range of 
analytical tools designed for socalled time series 
analyses (TSA). For example, bivariate TSA can 
assess locations where major change has occurred 
for each temporal transition, or detect and compare 
local dynamics in order to assess the synchronicity/
asynchronicity of spatial processes across time.

However, the adoption of these techniques must be 
treated carefully, since most of the above approaches 
actually integrate the aoristic weights as intensities 
rather than probabilities. While in the assessment 
of the pattern within each temporal block, this is an 
acceptable equivalence, problems might rise within 
a diachronic perspective, where the development of 
suitable tools are needed to distinguish the lack of 
knowledge from the lack of pattern. One possible 
solution, proposed by Crema et al. (in press), tackles 
this issue by coupling the probability distribution with 
temporal Monte Carlo simulation. The core concept 
of such approach involves the creation of n possible 
spatiotemporal patterns via Monte Carlo simulation, 
using the probabilistic distribution as the domain of 
possible permutations. Then each pattern is assessed 
through standard methods and the results expressed 
in probabilistic terms, providing a framework for 
detecting consistent patterns across different spatio
temporal scenarios. 

4. Visualising uncertainty

The representation of time within GIS has always 
been considered as a problematic issue due to the 
inheritance of the representational framework of 
traditional cartography. Langran (1992) has shown 
how time, attribute and location cannot be measured 
in the same representative framework, and thus only 
one variable can be quantitatively treated by means 

of controlling and fixing the other two. Thus for 
instance, aoristic analysis might be represented as a 
histogram of aoristic sums (fixed location, controlled 
attribute, and measured time) or as a sequence 
of temporal snapshot maps (measured location, 
controlled attribute, fixed time), etc. 

The adoption of a 3dimensional representation 
(two spatial and one temporal dimensions) has 
been conceived as an alternative solution to the 
problem by a number of authors in different fields, 
also suggested in archaeology by Lock and Harris 
(2002). Assuming that the substitution of the third 
(vertical) dimension is an acceptable reduction of 
a spatial process, then such a technique allows the 
representation of the entire spatiotemporal process 
within a single model, allowing us to locate patterns 
visually and analytically. 

From a practical perspective, the application 
of real multidimensional representation is still 
experimental in the social sciences, but an increasing 
number of specialists in medical and geological fields 
have started to adopt three dimensional raster models 
(voxels) for visual and analytical purposes. Their 
adoption in archaeology is still in its early stages, but 
the number of applications is increasing, especially 
in intrasite contexts through the reconstruction of 
stratigraphic layers (e.g. Bezzi et al. 2006). 

The actual process by which we construct these 
cube-like raster models is clearly a critical first 
issue. Within the 2D domain, the creation of raster 
models involves either a simple transformation 
(rasterisation) of the data into grid format or the use 
of an interpolation algorithm. The same principles 
relevant to rasterisation and interpolation in 2D 
are also applicable to the 3D case. Voxelisation will 
thus consist of a generalisation of the available 
information where a series of snapshots are 
transformed as temporal slices with a vertical Voxel 
size corresponding to the temporal length of the 
chronon (Lin 1997). On the other hand, Spatio-
temportal interpolation can be implemented using 
one of a wide number of multidimensional methods 
such as cubic spline (Mitasova et al. 1995) or spatio-
temporal kriging (Jost et al. 2005). Some inter-
pol ators could potentially manage also temporal 
uncertainty, and Halls et al. (2000) for instance 
proposes a spline interpolator capable of integrating 
this uncertainty by allowing each event to exert varying 
‘pulls’. However, the wide range of possible parameter 
settings required by these interpolators might be 
difficult to handle and can create multiple alternative 
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models. Furthermore, most interpolators assume 
spatiotemporal stationarity and autocorrelation, 
preconditions which in many cases these are not met 
in archaeological contexts. The risk in this case is to 

create models where the spacetime between two 
points are filled by values representing linear change, 
where abrupt nonlinear dynamics might have been 
present instead .

Fig. 4. Workflow for the creation of a Voxel representation of the spatio-temporal process. The data is aoristically weighted, 
then rasterised through AWKDE and finally converted into a Voxel model.

Fig. 5. Voxel representations of the case study area during 2900-900 BC: (a) Volume representation;  
(b) surface representation; (c) iso-surface representation; (d-e) virtual spatio-temporal cross-section;  
(f) local density gradient.
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The voxelisation approach maintains the 
basic structure of the spatiotemporal information 
embedding in each cell a numerical attribute value 
in a specific position defined by a spatial (x,y) and 
temporal (t) coordinate system. The adoption of 
such method for the representation of the probabil
istic spatiotemporal distribution is relatively 
straight forward and might be based either on the 
direct rasterisation and the successive voxelisation 
of the pithouses or to the voxelisation of some raster 
surface, such as the aoristically weighted KDEs 
(Fig. 4). For the present study, the latter approach 
has been adopted, using the r.to.rast3 module in 
GRASS GIS 6.3 (http://grass.itc.it/) for the ordered 
sequence of the density maps. The voxel has been 
created using an x and y resolution equal to the 
original 2D raster maps of the area (5 meters) and 
with a vertical resolution of 50 yrs. The definition 
of the upper and lower limit of the voxel model 
(representing the temporal boundaries) has been 
previously set using the absolute chronologies in 
negative values (bottom=-2900; top=-900) with 
the g.region command. Since GRASS does not allow 
a direct representation of voxel models, the entire 
dataset has been converted in .vtk format (using the 
r3.out.vtk command) and imported into ParaView, 
an open-source software package for parallel 
visualisation that is capable of handling voxel data 
(http://www.paraview.org/). 

ParaView provides three different ways to visualise 
the voxel model, namely volume, surface and iso-
surface. The first provides a blurry representation 
of the entire dataset in a series of semitransparent 
cells (Fig. 5a), the second is based on a solid 
representation (thus with only the ‘external’ values 
visible), (Fig. 5b) and the third might be considered 
as a threedimensional version of contour maps, 
with a user- defined interval (Fig. 5c). ParaView also 
allows the creation of virtual cross sections in time 
space (Fig. 5d–e) or the extraction of defined intervals 
of values to create series of subset models. Possible 
extensions of spatiotemporal map algebra have also 
been proposed by various authors (Lin 1997; Mennis 
et al. 2005); however, despite different approaches 
of focal and zonal calculations, the definition of an 
optimal multidimensional neighbourhood is still an 
open debate. Even so, multidimensional map algebra 
allows us to compute derivative analytical surfaces, 
based on local computations, such as low and high 
pass filters, or three dimensional gradient maps (e.g. 
Fig. 5f).

5. Conclusion

Aoristic analysis and voxel models can thus be used 
to visualise a spatiotemporal process in a single 
representational framework where the intrinsic un-
certainty of archaeological data is retained. However, 
voxel representations are still in an experimental phase 
and clear limitations are still evident. The model is 
capable of handling and representing single attribute 
at a time, and considering that the probabilistic 
values are mandatory for the creation of temporal 
slices, extending the representational framework to 
other variables will require the creation of separate 
models where the probabilistic values are embedded 
separately. From a computational perspective, this is 
clearly not problematic, and the availability of zonal 
map algebra could already provide basic query and 
analytical tools across different models however from 
a visual perspective, the adoption of voxel overlays 
will decrease dramatically the ease with which we 
would then be able to perceive and understand the 
spatio-temporal processes. Furthermore, the basic 
on-the-fly query functionality available for most 
GIS packages are still not present in 4D, and thus 
distances in space and time cannot be measured 
directly, and spatial and temporal scale cannot be 
shown on the three-dimensional map. From analytical 
perspective, multidimensional map algebra is still 
rare in geography, and it is therefore, in contrast, the 
current availability of a larger number of time series 
analysis tools that has more immediate possibilities 
for archaeology. Thus, at this stage, the advantage 
of threedimensional voxel model is primarily that 
it provides a general overview of a spatiotemporal 
process, while the main analysis is still conducted 
within a traditional cartographic framework of 
sequential snapshots, albeit underpinned by 
statistical formality. The development of proper 
spatio-temporal analysis through the quantification 
of uncertainty however is a good starting point 
from which to develop a more formal and complete 
temporal GIS.
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