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Abstract. The fitting of complex statistical models for archaeological data often necessitates the use of advanced computational tech-
niques, such as Markov Chain Monte Carlo (MCMC). In this paper, we give a brief introduction to MCMC methods. The usefulness 
of the methodology is demonstrated on a multiple changepoint model fit to data collected on the Treasury of Atreus in Mycenae. A 
question that often arises out of MCMC simulations, especially with very complicated and high-dimensional models, is how to dis-
play the results in such a way that the behavior of the parameters can be assessed. We propose a statistical movie as one way of an-
swering this question. This paper provides guidelines on building such movies and on how to watch them, as well as indicating other 
benefits that can be derived from the approach. 

 
1 Archaeological Context – Corbelled Domes 

Corbelling is an ancient technique, used before the develop-
ment of the true dome, for spanning or roofing spaces. Examples 
of this construction method have been found in a number of pre-
historic societies, ranging from tombs in Iberia and the British 
Isles, to buildings in Italy, to passages and chambers of the Great 
Pyramid of Kheops in Giza, Egypt. Most of these utilize corbel-
ling to span relatively small distances, 2 to 3 meters at most, with 
a conservative slope. 

An impressive use of the technique, which involves laying 
stones on top of each other, with successive layers being slightly 
offset (think of using rectangular Lego pieces to build an arch), 
comes from Mycenae in Greece, where archaeologists have 
found corbelled structures spanning 8 to 14 meters. As noted by 
Cavanagh and Laxton (1981), only the invention of the true dome 
enabled builders to bridge larger distances without internal sup-
port. 

Due to the prevalence of corbelling in the ancient world, and 
the fact that many of the structures that were built with this span-
ning method are still standing today, thousands of years later, 
archaeologists have been interested in studying this technique 
more closely. In particular, interest has focused on finding mod-
els that will adequately describe the shape of corbelled domes, 
and perhaps give insight into how these structures were built in 
practice. One question that has drawn speculation has to do with 
the diffusion of the knowledge required to build a corbelled 
dome. For instance, was the technique developed independently 
in different regions of the Mediterranean where examples have 
been found? Or did one group learn from another? 

In the first mathematical study, Cavanagh and Laxton (1981) 
considered the structural mechanics of the Mycenaean tholos 
tombs. By examining the structure of these tombs and the factors 
necessary for the vault to remain standing, they came up with the 
following, deterministic, model:  

radius = α ∙depthβ,  

where depth is the depth below the top of the tomb, radius is 
the radius of the tomb at the measured depth, and α and β are 

constants to be determined for each tomb individually. Taking 
logarithms of each side of the equation, a simple linear equation 
results, and it is possible to find values for the two coefficients 
using least squares. Cavanagh and Laxton examined five tombs 
that varied in location, age and building style, and found that all 
five had a value of β of around 2/3. Values of α varied, as this 
parameter depends on the size (specifically, the height) of each 
tomb. One of the tombs, the Treasury of Atreus, is almost twice 
the size of the other tombs in this study, and had α = 2.7, com-
pared to α ≈ 2 for the other four. 

Their model, while providing a starting point for the analysis 
of the Mycenaean tombs, was lacking in two important aspects, 
addressed in Cavanagh, Laxton and Litton (1985). First, many of 
the tholoi were built partly below ground. The walls in this por-
tion of the tomb may have been built according to a different plan 
than the part that was above the ground. For instance, they may 
have been straighter, with the stones lining the side of a pit con-
structed to hold the body. That is, instead of one value of α and 
one value of β sufficing to describe the entire tomb, there might 
be a point at which the building regime, and the parameters guid-
ing construction, change. The changepoint, if it exists, would 
correspond to where the dome and the wall meet. The first simple 
model considered by Cavanagh and Laxton was based only on 
measurements from the dome, and not the entire tomb. Thus, 
whereas their simple form was the basic one required for stability 
of the dome, it did not necessarily describe adequately the Myce-
naean tombs of mainland Greece or the Minoan tholoi on the 
island of Crete. Furthermore, it might not be possible to measure 
from the apex of the dome, that is, at depth = 0. There are two 
reasons for this: the top of the tomb might have collapsed, or the 
corbelling wasn't originally continued to the top of the arch, in-
stead a large slab was placed down on the stones, to close off the 
dome. Taking under consideration these two modifications, and 
introducing a stochastic element to account for errors, the pro-
posed model became  
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Here, γ is the location of the changepoint, and the εi are as-
sumed to be normally distributed, with mean 0 and variance σ2. 
Physical considerations require that β1 > β2 > 0. At depth γ, the 
two lines are required to intersect, that is, α1 ( γ + δ ) β1 = α2 (γ + 
δ)β2, so that there are only six free parameters in the problem, 
instead of seven. In particular, β2 can be expressed as β1 + [log 
(α1/α2) / log (γ + δ)]. 

These first attempts at statistical modeling were all within the 
classical, or frequentist, framework. More recent approaches to 
this problem have been from the Bayesian point of view. The 
next section gives a brief review of some of the relevant ideas 
and technology. 

2 An Introduction to Markov Chain Monte Carlo 
Methods 
A simple probabilistic equality, known as Bayes' theorem, un-

derlies a statistical approach that has been advocated as an alter-
native to classical techniques. From the Bayesian perspective, 
parameters of a model are random quantities, just like the ob-
served data. Inference proceeds by specifying a likelihood for the 
data and a prior distribution for the parameters. Bayes' theorem 
provides statisticians with a way of combining the information in 
a sample with prior beliefs, to get new, updated beliefs about the 
parameters, in light of the observed data. The new beliefs are 
summarized in a posterior distribution. In brief, if p(y|θ) is the 
likelihood of some data y, which depends on parameters θ, and 
p(θ) is the prior distribution of θ, then Bayes' rule says that the 
posterior distribution of θ is given by  
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Historically, one of the difficulties in applying a Bayesian 
analysis has been the need to evaluate difficult integrals. In com-
plicated problems, the required integrals are often over high-
dimensional spaces. Note that integration over high dimensions is 
not uniquely a Bayesian problem, but it is perhaps more preva-
lent there than in other statistical contexts. With the rise of com-
putational power (both in terms of speed and memory), it has 
become more feasible to use Monte Carlo simulation techniques 
to approximate expectations using averages. Markov Chain Mon-
te Carlo methods in particular have become very popular in re-
cent years. The general idea is quite simple. We want to evaluate 
an integral, say E(f(θ|y)), the expected value of some function of 
the posterior distribution of θ. Monte Carlo integration approxi-
mates the desired quantity by drawing a sample x1,x2,…,xn from 
p(θ |y) and setting  
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Statistical limit laws guarantee that if the xi are independent, 
then for large enough n, the approximation can be made arbitrari-
ly accurate. In practice, it might not always be easy, or even pos-
sible, to draw independent samples from the posterior distribu-
tion, as this often has a complicated form. However, it is possible 
to draw dependent samples, and, as long as the xi are sampled 
roughly according to the proportions allotted them by the poste-

rior density, the Monte Carlo estimate should be reasonable. One 
particular way to do this is to use Markov chains, with stationary 
distribution the target from which we wish to sample.  

Markov chain theory (see, for example, Hoel, Port and Stone, 
1972) implies that if a Markov chain is run long enough, it will 
converge to a unique stationary distribution, under some regular-
ity conditions. The speed with which this happens depends on the 
starting condition of the chain. After the initial burn in period, 
the chain “forgets” its starting point, and all subsequent samples 
are assumed to be dependent draws from the stationary distribu-
tion. An average based on the observations after discarding the 
initial iterations, which are not from the target distribution, can 
then be used as an approximation to the desired integral. 

The strength of this approach is that it becomes feasible to 
sample from the posterior distributions that result from even 
complex statistical models. Many analyses now routinely include 
an application of Markov Chain Monte Carlo (MCMC). The 
technique has also generated a good deal of methodological re-
search. 

We have given here only the briefest of descriptions of what is 
a very rich field of research in modern statistics. For more detail 
on both the theory and implementation issues, a good reference is 
Gilks, Richardson and Spiegelhalter (1996). 

3 Bayesian Approaches to the Problem 
Returning now to the study of corbelled domes, an important 

step forward was taken by Buck, Litton and Stephens (1993), 
who used methods developed in Stephens (1994), for the analysis 
of changepoint problems from a Bayesian point of view. The 
authors applied MCMC methods to a Minoan tholos tomb at Sty-
los, Crete. Their base model was as in previous work. The condi-
tions on the model were also as described above. With the as-
sumption of normal errors, the likelihood is easily specified, alt-
hough sampling from the posterior is not simple, regardless of 
the prior specification, because of the parameter constraints and 
the piecewise nature of the model. Buck and colleagues chose 
non-informative (vague) priors for log α1, log α2, β1, σ2 and γ; the 
prior for δ was uniform between 0 and 0.34, to account for the 
thickness of the capping stone on this tomb, which was 0.34 me-
ters. 

Under this specification, the Markov Chain Monte Carlo sam-
pling scheme is straightforward, using an algorithm called Gibbs 
sampling, which draws successive observations from the posteri-
or distribution of each parameter given all of the others. The four 
parameters log α1, log α2, β1 and σ2 all have conditional posterior 
distributions from standard families, which are easy to sample 
from. On the other hand, the full conditional densities for δ and γ 
are both of non-standard form, hence are sampled using a tech-
nique called rejection sampling (see Buck, Litton and Stephens, 
1993 and Stephens, 1994 for details). 

 A number of advantages of the Bayesian approach are appar-
ent for this problem. Instead of just point estimates of the param-
eters of interest, entire posterior distributions are obtained. This 
gives archaeologists more flexibility in studying and interpreting 
the results of the analysis. The classical analysis did not incorpo-
rate any uncertainty about δ into the inference process, whereas 
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this was an outcome of the Bayesian analysis by its very nature. 
Furthermore, information about the main parameter of interest, 
the location of the changepoint, was refined. The 95% confidence 
interval reported for γ that arose from the classical analysis was 
1.64-1.84; the 95% highest posterior density interval from the 
Bayesian analysis was 1.48-2.44. As pointed out by Buck et al., 
this latter interval just includes the depth at which the lintel is 
below the capping stone of the tomb, 2.44 meters. This finding 
supported a supposition by archaeologists that the placing of the 
lintel would cause a break in the process of corbelling, with dif-
ferent structural forces coming in to play above and below that 
point. Using the classical approach, there was no support for this 
intuition, as the changepoint was placed too high, and the confi-
dence interval was too short. 

 Building on this result, an obvious question to ask is whether 
there might be more than one changepoint. However, the appro-
priate number of changepoints is not known, and so it would be 
desirable to include this as a parameter in a new model. While 
seemingly a minor modification of the existing framework, in 
fact letting the number of building segments vary introduces non-
trivial complications. The problem is that, the practical issue of 
how to estimate the true dimension of the model, by sampling 
over the space of models with differing numbers of changepoints, 
is not an easy one to resolve. In addition, as the number of 
changepoints varies across models, interpretation of the model 
parameters also changes. 

Several solutions to the problem of estimating the model di-
mension have been proposed in the Bayesian literature. A prom-
ising approach is Reversible Jump MCMC (Green, 1995; Rich-
ardson and Green, 1997). The reversible jump technique designs 
a Markov chain that jumps between models of different dimen-
sions, while still preserving the conditions needed to eventually 
reach a stationary distribution. Implementation of the method can 
be complicated and the details tend to be unique to each applica-
tion. In their study, Denison, Mallick and Smith (1998) derived a 
reversible jump algorithm for dealing with multiple 
changepoints, but they, nevertheless, made certain simplifying 
assumptions that were not appropriate for the problem we were 
working on. More recently, Fan and Brooks (2000) developed 
methodology specifically for the analysis of corbelled structures. 

Fan and Brooks extended the basic model, to allow for two 
generalizations. Firstly, δ was not restricted to be the same in 
each linear piece. Secondly, at lower depths, the wall of the tomb 
might be nearly vertical, that is, governed by a single parameter. 
An example of a candidate two changepoint model is 
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The number of segments was allowed to increase to a maxi-
mum of four, by permitting as many as three changepoints. The 
reversible jump algorithm implemented by Fan and Brooks also 
explored the possibility that δ here was no constant segment at 
the bottom of the tomb. In addition to reanalyzing the data from 
the tomb at Stylos in Crete, Fan and Brooks compared the results 
of their reversible jump MCMC algorithm for another Minoan 

tholos to those for a Mycenaean tholos and a Sardinian nuraghe. 
They found that for each, the method indicated different underly-
ing models as having the highest posterior probabilities. Fur-
thermore the estimated values of the β parameters were similar in 
all of the buildings taken under consideration in this comparison 
and as a result the authors concluded that this information alone 
was not enough to distinguish among structures of differing 
origin. 

4 Visualizing MCMC Results 
Reversible jump MCMC and other methods that have been 

suggested for exploring a space of models of differing dimen-
sions (for example, Chib, 1995) give rise to some interesting 
questions about interpretation, diagnostics and visualization. As 
mentioned above, the parameters of models of different sizes 
may not be directly comparable, since the meaning of a parame-
ter may change as the model dimension changes. Fundamental 
statistical issues of model selection become relevant and even 
pressing as statisticians and scientists start to explore more com-
plex model spaces. 

Devising visualization techniques for MCMC is an area of ac-
tive research. Many of the existing methods involve displaying a 
trace plot of the parameters, or some function of them, along iter-
ations of the chain. Due to the complexity of the reversible jump 
process, displays developed for ordinary MCMC are not applica-
ble. Elsewhere (Lazar and Kadane, 2002), we have suggested a 
graphical device, in the form of a statistical movie, for visualiz-
ing the output of a Markov Chain Monte Carlo simulation and for 
assessing characteristics of the chain.  

The status of some (but not necessarily all) MCMC runs at a 
given instant in the chain can be summarized in a plot. For any 
such summary, the stringing together of the plots to display the 
development of the chain over time, makes a movie. Key to the 
development of a good movie is to have an efficient and informa-
tive summary of the model, a “clear portrayal of complexity” 
(Tufte, 1983, pg. 191). Some thought therefore needs to be dedi-
cated to finding an appropriate graphical representation, which 
displays as many of the parameters as possible; in particular, the 
movie should enable the viewer to see changes that unfold in the 
form of the model as the dimension switches, when this is a rele-
vant consideration. While the proposed tool is useful for any 
MCMC problem where the output at a given iteration may be 
summarized in a single graph, we expect it to be especially help-
ful for examining the results of a reversible jump chain. 

This approach is intrinsically a multivariate one, since it ena-
bles the examination of the posterior distributions of several pa-
rameters at once. As such, it avoids some of the problems of 
marginal or univariate displays. It is easy to interpret, and to ex-
tract interesting features of the MCMC simulation and the poste-
rior distribution of the parameters from watching the movie as it 
runs. 

We used the algorithm developed by Fan and Brooks (2000) 
to model the data collected on the Treasury of Atreus, allowing 
as many as four changepoints, and analyzed the output using a 
statistical movie. A crucial step in using the movie is to find a 
suitable graphical display of the underlying model connecting the 



 
 

 
284 

parameters. In the current situation, this is not hard to do - just 
plot the data points, log xi on the x axis and log yi on the y axis, 
and connect these with the fitted lines defined by the 
changepoints. For each iteration in the chain, we plotted the data 
and the fitted model. For this data set, the analysis was somewhat 
simplified by the fact that δ was identically zero, reducing the 
number of parameters to be sampled. 

The plots below are summary snapshots of some of the most 
popular model types found by the movie. As we move from left 
to right along the x axis, depth increases, so the top right corner 
of the plot is actually the bottom of the structure. Each plot 
shows a representative snapshot from models of that type, for 
instance, two changepoint models with a constant segment at the 
end. Also plotted are the posterior distributions of the 
changepoint locations for models of that type. The changepoint 
placement is, in most cases, quite spread out, meaning that there 
is some uncertainty within a model type of where the 
changepoints should be. 

As can be seen in the figures, models of different dimension 
and specification can fit the data almost equally well. Indeed, 
inspection of the movie showed that most fits were quite good, 
with only the occasional bad-fitting model. Such bad models 
were always quickly moved away from. We found that the chain 
tended to favor models of intermediate size, i.e., those with two 
or three changepoints. Placement of these changepoints corre-
sponds roughly to structural features of the Treasury of Atreus – 
namely the lintel and the door. 

 
Fig. 1. 

 
Fig. 2. 

 
Fig. 3. 

This movie made it possible to monitor the mixing and con-
vergence of the chain – by observing changes in color, for in-
stance, we saw that the chain favored models of particular di-
mensions. While the same observation could have been made by 
looking at a marginal trace plot for the model dimension, the 
movie allowed us to see in addition how the locations of the 
changepoints jumped from model to model, and how the slopes 
and intercepts of the individual lines varied to account for all of 
these simultaneous moves in the values of the other parameters. 
We noted for example that models with no changepoints resulted 
in poorer fits overall. Models with one or two changepoints that 
were generated shortly after a zero changepoint model tended to 
also have poor fits; on the other hand, one or two changepoint 
models that arose from higher dimensional models had better fits. 
In addition, as might be hoped, the model tended to add 
changepoints where they were most needed. If a changepoint was 
added very close to an already-existing changepoint, the fit was 
somewhat worse, apparently due to adding in a superfluous seg-
ment. Our movie thus offered a dynamic way of viewing the re-
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sults of the MCMC run. Furthermore, we were able to present all 
of the parameters of interest, with the exception of the error vari-
ance, σ2, although we were able to get at least a qualitative im-
pression of this parameter as well. We also created a version of 
the movie that included σ2, by plotting one standard deviation 
bars around the data. While this movie was informative, we felt 
that the result was more cluttered and harder to follow. 

Using the movie technique it is very easy to make changes in 
the burn-in period (simply start the movie from a later or earlier 
frame and watch the differences), and to thin the chain (by only 
showing every rth frame, for any value of r we might choose). 
Therefore multiple facets of the chain can be monitored at once. 
In an early implementation, for example, we noticed that there 
was a fair amount of “clumping” even in a multivariate sense, 
that is, there were portions of the chain characterized by un-
changing dimension, with little movement in the existing 
changepoints. Plotting only every tenth frame alleviated this 
problem and revealed the important features of the fitted models. 

The movie also displayed other characteristics that might have 
been difficult to spot graphing the chain parameter by parameter. 
We saw that the chain concentrated most of its effort on trying to 
fit the data well near the bottom, by placing changepoints in the 
lower half of the data more than in the upper half. A possible 
explanation for this is that the builders of the tomb had to make 
adjustments near the bottom to accommodate features of the 
ground in which the structure was placed – as previously men-
tioned, many Mycenaean tombs were built inside a hole dug into 
the earth, or inside mounds that helped provide stability, and this 
needed to be taken into account in the early stages of construc-
tion. Also, changes in building strategy might have been neces-
sary around the lintel and the door, and there is some evidence 
for this in the fitted models. Near the top, fewer adjustments were 
necessary. 

The flexibility of the movie makes it easy to perform sensitivi-
ty analyses under the sampling-resampling perspective of Smith 
and Gelfand (1992), where the importance weight for going from 
one prior to another could be represented by the length of the 
frame (equivalently, and perhaps easier to program, the number 
of consecutive times the frame is shown). Another use for this 
idea would be to sample under one prior that produces a chain 
that converges quickly and mixes well and then to interpret the 
results under another prior that more realistically summarizes the 
user's beliefs about the state of nature, as was done in DiMatteo 
and Kadane (2001). 

On a more pragmatic note, the movie can also be used for de-
bugging. An early run of the movie revealed that the piecewise 
linear segments were not matching up at the changepoints, which 
is required by the model (and is obviously of structural im-
portance, as the building wouldn't stand if there were discontinui-
ties). Simply looking at posterior distributions of the individual 
parameters would not have uncovered this break in the model 
specification, nor would any of the usual diagnostics applied to 
the output of the chain. 

A general sketch of the method is as follows: 

1. Choose or find a meaningful graphical summary of the 
model at a given instant in the running of the chain. 
Some creativity might be needed here! For particular sit-
uations, such as regression and related models, the 
choice is relatively straightforward. Other models might 
require more thought. In any case, the summary that is 
chosen should incorporate as many of the parameters as 
is feasible, and should provide the viewer (user) with a 
snapshot of the model at any given stage of the chain. 

2. Set a burn-in period of B iterations, and a thinning factor 
of r. These may be determined theoretically (see for ex-
ample, Raftery and Lewis, 1992), from inspection of 
trace plots, or from an initial viewing of the movie based 
on all iterations of a pilot simulation study. 

3. For every rth iteration after B (r might be 1), plot the 
graphical summary from step (1), using the parameter 
values for that iteration. 

Programming the movie is not at all difficult - a few lines of 
code in any software package that can produce graphs and loop 
through them, are all that is required. How quickly the program 
cycles through the frames of the movie needs to be controlled, 
since if it goes too quickly, it is impossible to discern interesting 
features and patterns, whereas if it moves too slowly, it can be 
hard to form impressions about the status of the chain. Mecha-
nisms for varying the speed of the movie will differ according to 
the platform. Redrawing the axes for each frame of the movie 
may produce a distracting flicker effect, which can make it hard-
er to concentrate on the unfolding of the simulation. The princi-
ples of good graphics, put forth by Tukey (1977) and Tufte 
(1983), should guide the design not only of the individual frames 
of the movie, but also of the display taken as a dynamic whole.  

5 Conclusion 
As archaeologists begin to fit more complex models to their 

data, using simulation techniques such as Markov Chain Monte 
Carlo, visualization of results will take a more central role. We 
have presented here a dynamic tool for visualizing the output of 
an MCMC simulation, which allows the user to monitor multiple 
model parameters simultaneously, and control aspects of the 
simulation such as length of burn-in and amount of thinning. This 
provides the user the opportunity to examine interplay and inter-
connections among parameters (how does a change in the value 
of one parameter affect the value of the others) and the ability to 
study mixing of the Markov chain, in a multivariate sense. The 
statistical movie is flexible, is easy to program, and can be used 
with a wide variety of models. Principles of good graphical dis-
play should be considered at all stages of implementation. 

In the particular example presented here, of fitting piecewise 
linear models to the Treasury of Atreus, the movie has given us 
some insight into how the tomb might have been built. Models of 
intermediate size – two or three changepoints - were favored, 
although there is a fair amount of uncertainty regarding the loca-
tion of the changepoint. Watching the movie run made it clear 
that many possible types of models could fit the data well, a fact 
which could be taken advantage of in future archaeological anal-
yses of Mycenaean tholoi. 
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