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Deconvolution of AT profile curves 
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18.1    Introduction 

At the present time, geomagnetic measurements are mainly carried out using proton 
magnetometers. 

The modulus / of the total geomagnetic field is recorded, and the anomaly AT = 
T - T„ is computed, where T„ is the modulus of the ambient Earth's total field. Since 
the anomaly is the algebraic difference between the absolute magnitudes of two 
generally non-parallel vectors, a quantity which lacks a direct physical interpretation, 
the interpretation of AT anomalies brings some difficulties. For this reason measure- 
ments of the directional components of the geomagnetic field are sometimes carried 
out using other types of magnetometer, this happens particularly if a quantitative 
interpretation of the data is required. 

For common surveying and preliminary prospecting, however, proton magnetome- 
ter measurements are sufficient. (There also exist methods of quantitative interpreta- 
tion of AT anomalies, but these are mostly suitable for the interpretation of anomalies 
above single magnetized bodies, and do not fit in the cases of interpretation of 
complex anomalies above composite geological bodies or a set of bodies of variable 
magnetization). 

In this paper, a new interpretation method (or, more exactly, a transformation 
of AT geomagnetic anomalies) is suggested, using digital deconvolution of profile 
values measured at equidistant points. In this method it is necessary to assume 
only induced magnetization or at least a magnetization in a known stable direction. 
Geological bodies irregular in shape with varying magnetic properties are divided 
into a set of elementary bodies of regular simple forms, such as plates or cylinders 
etc., at equal depths. In the interpretation, it is necessary to assume constant 
transversal dimensional (limited or unlimited) of the bodies, as well as in general) 
the linear dependence of the anomaly on one sole parameter, be it a physical or 
a geometric one. Possible applications of the proposed method and its further 
advantages are discussed below. 

18.2   The construction of the filter 

Above simple bodies, AT anomalies may be calculated analytically. The AT anomaly 
above a horizontal infinitely elongated cylinder with its axis perpendicular to the 
profile .T is given (Janovskij 1963, Logachev& Zacharov 1973, Lindner & Scheibe 1978) 
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by 

where 

27 5   COS I 
^T'(0= (^2^fe2)2  {(/^'-^')(tan^/n-cos^/L)-4/t^tan4cosA}     , (18.1) 

The relation for a vertical plate which has finite width, infinite horizontal length 
and infinite vertical extent (Logachev & Zacharov 1973) is 

COS     Â 
ATP{^) = 2b2j— ~ {/i(tan^ ƒ„ -cosM) - 2 ^ tan ƒ„ cos A]    , (18.2) 

S    ~r 't' 

j      = magnetization 
/„ = inclination of induced magnetization (i.e. the dip 

of a normal magnetic field 
A = azimuth of the profile, perpendicular to the elon- 

gation of the body 
h = depth of the upper margin of the plate or of the 

axis of the cylinder 
^      = horizontal distance from the body's centre 
26    = width of the plate 
s      = area of the vertical section of the cylinder 

Let us designate as an amplitude function or parameter 

D^ = J • s for a cylinder (18.3) 

and 
Dl = 2b- 2J for a plate (18.4) 

Then it is possible to present the relations for the calculation of a AT in the form: 

Ano^^fs-Ä^co . (18.5) 
and 

ATP(0 = DP • R^iO  , (18.6) 

where the functions R^iO and ß^(0 for the given body at a specified depth h depend 
on the parameters /„ (inclination), A (azimuth of the profile) and ^ (the horizontal 
distance from the centres of the bodies). For the given inclination ƒ„ and azimuth A, 
the functions R depend only on the co-ordinates (, giving the shape of the anomaly 
above a single body. We shall designate them as shape functions. The set of values 
R^ - R{^^ of the digitised function R at the equidistant points ^^ = ^^ + i • Ax (Ax is 
the digitisation step, while ^o is the beginning of digitisation) will be designated as 
filteration coefficients ß,. 

The shape function is non-zero within a restricted interval, since for large distances 
lim^ —>• ±oo, R{^) =; 0 is valid. Thus, the set of filteration coefficients forms a finite 
series. 

The AT anomaly above a system of equal bodies (having various parameters Daj 
placed at equal depths h at points Xj = ; • Ax) can be expressed in the form of a series 
where the spacing of both the data and the sources Ax is the same; 

n 

AT{x,) = Y. ^oj • ^(^' - ^'j) (18-7) 
j-m 

If we use the notation AT(,T,) = T, and ß(.T, -x^) = R,_j, then the relation (18.7) 
takes on the form of a digital convolution; 
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• j = m 

Similarly, AT anomalies above a set of equal bodies of arbitrary shape may be 
expressed in the form of digital convolution. Relation (18.7) may be written in the 
symbolic shortened form: 

T = D^*R, (18.9) 

where the symbol * represents convolution multiplication, and its meaning is ex- 
pressed by equation (18.8).   A similar approach was used also by Bhattacharyya & 
Chan 1977. 

Knowing the distribution of the amplitude parameter D, depending on the size 
of the body (for a cylinder of section s and for a plate of width ih) as well as 
magnetization J, it is possible to calculate the AT anomaly according to relation 
(18.8) or (18.9) by the linear filteration of distribution D. The total number of 
filteration coefficients R, = R.{(,o + i-^^) is (" - m + 1). 

When the entire vertical section is divided into a set of elementary bodies (e.g. right 
parallelepipeds) of varying magnetization, filteration may enable the calculation of 
effect of the bodies at equal depths, and the total effect of the whole section then will 
be equal to the sum of the effects of the bodies at the individual depths. However, 
this approach is possible only if the priniciple of superposition is valid. 

1 8.3    Deconvolution of AT profile curves 

If we consider that a AT anomaly in a profile is produced by a set of bodies of 
the same geometric shape but of different magnetization values (i.e. different 
amplitude parameters D) we may determine the values of the parameters for the 
individual bodies placed at equidistant points from the measured anomalies by 
means of deconvolution. The inversion (deconvolution) relation is obtained from 
relation (18.9) by convolution multiplication with the inversion filter R~^: 

r*R-^ = D„*R*R~^ (18.10) 

The inversion filter must fulfil the following condition, provided that R is nonsin- 
gular: 

R*R-^ = e (18.11) 

where 9 is the convolution unit (or identity matrix) which has the property for an 
arbitrary series X that X =^ ö *X. Equation (18.19) becomes 

D = T*R-\ (18.12) 

Equation (18.11) is valid for the computation of inversion coefficients RJ^ of the 
deconvolution filter R~\ But in general it leads to finding an infinitely long inversion 
filter which cannot be of practical significance. For a practical deconvolution it is 
necessary to use the so-called truncated filters with the final number of coefficients 
(N-M+1). An equation for this deconvolution has the following form: 

N 
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The set of equations (18.11) cannot be exactly fulfilled for the truncated filteration. 
Coefficients are regarded as optimal, which fulfil the set of equations so that the sum 
of squares of the deviations E - R*Rr^ - o is a minimum. These are the least squares 
coefficients (Rice 1962, Kanasewich 1975). The outputs of the inversion filteration 
D then differ from the actual distribution of the amplitude parameters D,. The error 
depends on the digitisation step Ax, the shifting of digitisation points ^, and the 
position of bodies Xi - i.e. ^^ = ^^ - x,, the number of inversion coefficients (N-M+1), 
the number of filteration coefficients (n-m+1), and of course, the form of the function 
R. 

To minimise the value Yl Ef, we set its partial derivatives with respect to R~^ equal 
to zero. Now, the set of equations for the calculation of inverse least squares filters 
is as follows: 

N 

^RJ'- Ak-j = R-k (18.14) 
j = m 

where 
n 

j=m 

where A is the autocorrelation of the filteration coefficients R. 
A sufficient criterion for the correctness of the function of the derived deconvolu- 

tion filter may be seen in the application of the filter to the anomaly above a known 
distribution of the amplitude parameter, best above a single magnetized body. The 
convolution of such an anomaly with a deconvolution filter should be nearly equal 
distribution of the actual parameter £)„. 

1 8.4   Deconvolution filters for a plate and a cylinder 

Using the least squares method, deconvolution coefficients have been calculated for a 
horizontal cylinder and a thin vertical plate; in both cases the horizontal elongation 
of the bodies is infinite and perpendicular to the profile. For the calculation, the 
inclination /„ = 65° has been chosen, which corresponds to a geomagnetic field at 
about 50° northern latitude. The coefficients have been calculated for four different 
azimuths of the profiles: A = 0°,30°,60° and 90°. The last azimuth corresponds to 
vertical magnetization. The digitisation step Ax - h equal to the body depth has 
been verified empirically as most suitable. 

As the number of the inversion filter coefficients is increased, the accuracy of the 
determination of the amplitude parameter D^ also rises. The mean square difference 
between the amplitude function and the deconvolution function E mostly decreases 
with the increasing length of the filter L = (N - M)Ax (Fig. 18.1). Filters as short 
as possible are advantageous on practical grounds, since in these the information 
loss on the margin of the profiles is rather small, and the computation is less time- 
consuming and less complicated. In this paper we used five- to nine-member filters 
(i.e. L = 4 to 8). An example is given in Table 18.1: coefficients of an inversion 
(deconvolution) nine-member filter with a chosen digitisation step Ax ~ h for a 
vertical plate and a cylinder. 

It is interesting that with increasing density of digitisation points, i.e. with de- 
creasing digitisation step size, the precision of deconvolution does not in general 
increase. It can be shown by analysis in the frequency domain that a decreasing digi- 
tisation step corresponds to a shift in the maximum of the frequency spectrum of the 
function R to lower frequencies and, in contrast, leads to a shift in the deconvolution 
coefficients fi~' spectrum to higher frequencies.   In the space domain this results 
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Figure 18.1: The mean square difference i? between a real distribution of D-parameter 
and output of filtering D^ versus length of filter L. 

Azimut A = 90° A = 60° A =30° A=0° 
t- 0.033 0.010 -0.006 -0.008 

X3 0.041 0.014 -0.009 -0.022 
_C 

0.073 0.032 0.011 0.007 
>- 
(-1 0.005 -0.065 -0.142 -0.170 

~ëâ 0.624 0.586 0.491 0.454 
C 0.005 0.053 0.088 0.089 
N 0.073 0.100 0.094 0.093 
O 0.041 0.060 0.061 0.053 
x; 0.033 0.050 0.053 0.049 

- 0.016 -0.002 0.044 0.085 
0.035 -0.160 -0.300 0.403 

"D. 0.151 0.410 0.664 0.808 
c -0.936 -1.404 -1.654 -1.751 
x: 2.097 2.009 1.791 1.704 

fO -0.936 -0.561 -0.324 -0.226 
(_> 0.151 0.084 0.049 -0.040 

-0.035 -0.016 0.003 0.117 
> 0.016 0.030 0.055 -0.015 

Table 18.1: Inverse filter coefficients for a magnetized horizontal cylinder and verti- 
cal thin plate for different azmutes of profile A. Number of coefficients: 9 
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n = 9 n = 7 n = 5 n = 3 
0.085 

-0.403 -0.297 
, ^ 0.808 0.744 0.384 
^ -1.751 -1.721 -1.520 -1.044 

II 1.704 1.697 1.621 1.322 
H -0.226 -0.239 -0.256 -0.079 
<] -0.040 

0.117 
-0.015 

-0.012 
0.085 

0.083 

-41.23 
101.29 -0.979 

S^ -110.62 3.424 1.130 
to' 
1—^ 

63.39 -6.340 -3.820 -1.428 
II 6.22 5.882 4.092 1.995 
H -72.61 -2.199 -1.386 -0.470 
< 114.99 

-102.77 
41.47 

0.265 
0.062 

0.146 

Table 18.2: Inverse filter coefficients for magnetized vertical thin plate for different 
step of digitalisation Ax and different number of coefficients n. 

in deconvolution coefficients with high absolute values and which alternate in sign 
causing the output deconvolution transformant Da. to alternate in sign as well. This 
produces lower stability of the filter. For the sake of comparison, in Table 18.2 values 
of deconvolution filters are given using a digitisation step of Ax = h and Ax = o.5h 
for the plate. 

18.5    Deconvolution curves 

By linear Altération of AT anomaly curves using nine-member deconvolution filters 
we obtain deconvolution transforms D. Fig. 18.2 illustrates AT anomalies and 
deconvolution curves above a horizontal cylinder (a) and a vertical plate (b) calculated 
for inclination ƒ„ = 65° and for two extreme azimuths A = 0° (dashed line) and 
A = 90" (solid line), the two latter corresponding to vertical magnetization. In both 
these cases the deconvolution curves have their maxima only above the source of 
the anomaly, while in the surrounding points their values are almost zero. The 
difference from the actual distribution D of the parameter D^ is due to the finite 
length or the filter. The deconvolution curves are almost symmetrical even at the 
obique inclined magnetization which is in contrast to AT anomalies. From this point 
of view, the deconvolution transformation has a similar significance as reduction 
to the pole. But the deconvolution curves have a width which corresponds to that 
of the body if the influence of the digitisation step is neglected. Thus, maps of 
isolines of deconvolution transform D correspond better to a geological map than 
the isoline maps of original AT anomalies. Owing to their small width, D curves 
also display better the separation capability, i.e. the capability to separate the 
effects of the near bodies. Fig. 18.3a shows AT curves above two cylinders with 
different magnetizations (the magnetization of the righthand sphere is twice as high). 
Whereas the character of the AT anomaly is asymmetrical with one maximum, the 
deconvolution curve D displays two maxima corresponding to effects of two different 
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Figure 18.2:   AT-anomalies and deconvolution curves D above a magnetized a) 
cylinder and b) vertical plate. 

bodies.   The case of vertical plates magnetized vertically as well as obliquely is 
similar (Fig. 18.3b). 

As it is possible to decompose a wide plate into a set of thin plates, the decon- 
volution transform JD of a AT anomaly above a wide plate gives a good idea of 
the horizontal limitation of the wide plate. A moderate asymmetry will appear in 
an inclined (oblique) magnetization (Fig. 18.4b), and by increasing the number of 
deconvolution coefficients we may approach an ideal result. 

Deconvolution filters derived for vertical plates may also be used for transforma- 
tion of AT curves above dipping plates (Fig. 18.5). It is true that in this case the 
deconvolution curves are generally asymmetrical, but they are approximately equal 
in shape although the inclinations (directions) of magnetization are different. The 
steep gradients of the D correspond to the horizontal boundaries of the upper surface 
of the plates. 

A practical example of the suggested method of deconvolution of the AT profile 
curves is shown in Fig. 18.6. Magnetometry was used in archaeological prospecting 
for mapping two parallel ditches (probably pathway) in the neighbourhood of the 
village of Dfetkovice, central Bohemia. The area belongs to the known fortified 
hilltop-settlement Homolka—an industrial iron-smelting centre of the Rivnâc early 
historical Roman culture. The fill of the ditches has a susceptibility which is a 
little higher than that of surrounding rocks. The measured AT profile curves were 
deconvolution using a deconvolution filter for horizontal cylinders. The thickness 
of the ditches fill has been computed from the radii of the interpreted cylinders. The 
interpreted depths of the ditches according to magnetic prospecting correspond well 
to the depths as determined by excavation (Fig. 18.6d). 
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Figure 18.3: AT-anomalies and D-curves above a) two cylinders with different mag- 
netizations and b) above two vertical plates with equal magnetizations 
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Figure 18.4: AT-anomalies and D-curves above very wide plates for a) vertical and 
b) inclinded magnetization 
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Figure 18.5: AT-anomalies and D-curves above dipping plate for different inclination 
of magnetizing field 
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Figure 18.6: Magnetic profile along the double-ditch, locality Dfetovice: its decon- 
volution and interpretation, a) AT profile curve, b) deconvolution curve, c) inter- 
preted cross-section according to the magnetic measurements, d) cross-section as 
determined by excavation 1—interpreted ditches, 2—mould, 3—ditch fill 
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18.6   Conclusion 

The method of deconvolution processing of AT curves seems to be very promising 
for a prehmmary elaboration of the data obtained by measurement using proton 
magnetometers, either in airborne or ground exploration. The advantage of an 
elaboration of this kind derives from its simplicity and source separation capacity 
Maxima of deconvolution transforms D correspond to the position of the magnetized 
bodies. However, this method is applicable only in the case of a low magnetization 
for which the superposition principle may be assumed, and in the case of a known 
stable direction of magnetization in the profile, i.e. induced magnetization. 
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