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32,1 INTRODUCTION

The investigation of artefacts with a view to de-
termining their provenance is now a highly so-
phisticated and complex area of study in archae-
ology. There are many reasons why archaeolo-
gists wish to investigate the original provenance
of finds on a site or in a geographical region.
These reasons usually relate to the desire to un-
derstand the interrelationships of early societies.
Similar objects may get to different locations by a
wide range of mechanisms; the nature of which
may reveal a great deal about society at the time.
For example, two similar objects may be found on
different sites because they were both made at the
same location and then traded, or because itiner-
ant workers travelled to different sites making
similar objects at each site, or because one is a
copy of the other made by a craftsperson who ad-
mired someone else’s work but who had no cul-
tural link to the other worker at all. Thus, for ex-
ample, a controversy has developed as to
whether Pictorial Pottery was actually made on
Cyprus by Mycenean migrants or was imported
from mainland Greece. Catling et al. (1963),
Catling et al. (1978) and Jones (1986:544-548) have
argued that, on the basis of chemical compos-
itional and archaeological evidence, the latter was
the case.

The varied nature of the mechanisms that lead
to similar items appearing at different locations
has resulted in the adoption of several different
methods for investigating them. Such types of
investigation include: typological and stylistic in-
vestigation of the whole object, technological in-
vestigation of the whole object and /or thin—
sections or small samples and chemical compos-
itional analyses of the material from which the
objects are made. The basic premise is that if
similar objects were originally manufactured at

the same site, during the same time period, by the
same techniques, and using the same raw materi-
als, then we would expect to find similarities in
style, typology and chemical composition. If how-
ever the objects were manufactured during the
same time period using the same techniques, but
at different sites using different raw materials,
then they may be visually similar, but have differ-
ent chemical compositions. In situations where it
is difficult to assign provenance on stylistic or ty-
pological grounds, we would hope to gain greater
insight through chemical compositional analyses.
Thus, for example, when the archaeologists at
Maa, Cyprus wished to investigate whether or
not storage jars of a particular type were of local
manufacture or were imported, they submitted
samples for chemical compositional analyses.
Jones and Vaughan (1988) have argued, on the
basis of their chemical compositional analyses,
thin-section investigations and on the report by
the pottery expert, that the jars found at Maa
were not manufactured locally, but came from
elsewhere in Cyprus or even perhaps from fur-
ther afield. Chemical compositional data are most
commonly obtained for the purposes of
provenancing ceramics and it is to these that we
will refer specifically in the remainder of this pa-
per; it should be noted, however, that the meth-
odology may readily be applied to other types of
objects.

32.2 AN OUTLINE OF THE PROBLEM
There are three main types of information com-
monly collected to aid in the investigation of ce-

ramic provenance:

1) archaeological information (for example con-
text, shape, decorative style, date, etc);
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2) technological information (for example slip,
surface treatment, fabric, manufacturing meth-
ods, etc);

3) chemical composition of the fabric of the pot-
tery.

The results of investigations of an archaeological
and /or technological nature usually take the form
of written reports by the subject matter experts
with a range of conclusions explicitly stated. Such
conclusions might take the form of statements
about the archaeological forms represented, the
date ranges for the various forms, which of the
pottery fragments (sherds) are from vessels likely
to have been manufactured using the same meth-
ods, which have similar methods of decoration,
which have similar (or different) geological inclu-
sions in their fabric and which are from vessels
that have been fired under similar (or different)
conditions.

The results from chemical compositional analy-
ses usually take the form of large amounts of
quantitative data (in percent or parts per million)
for a wide range of elements. Each sample ana-
lysed may result in as many as 30 variables, one
for each element examined. Within data of this
sort we would expect different provenances to
show up in the form of groups of sherds with
similar chemical compositions, we therefore need
a statistical method that will allow us to recognise
evidence of this. There are now a number of texts
which offer recommendations about selecting
such methods, eg. Bieber et al. (1976), Wilson
(1978) and Pollard (1982, 1986). Traditionally such
methods have not incorporated other types of in-
formation with the chemical variables, but have
analysed the data “blind”.

We should make it clear at this point that the
statistical analysis of chemical compositional data
takes two different routes, one in situations
where samples from likely known sources are
available and one where they are not. The former
is the more straight forward statistically and the
recommended approach is usually to use discrimi-
nant analysis (Pollard 1986:65—66). Fillieres et al.
(1983) used this method to investigate figurines,
pottery and workshop material from the Athe-
nian Agora. The more statistically complex prob-
lem arises when we have no known source mate-
rial with which to compare our current samples
and in these circumstances the most widely rec-
ommended approach is that of cluster analysis.

The term cluster analysis does not apply to just
one statistical technique, but to a wide range of
different techniques with the same basic aim. All
such techniques analyse multivariate data and, on
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the basis of some type of distance measure, pro-
duce subdivisions. Most of the works, cited
above, which give recommendations about selec-
tion of clustering methods conclude that standard
methods available within commercial statistical
packages have wide applicability to archaeologi-
cal provenancing problems. However, some
workers, perceiving weaknesses in these standard
approaches, have investigated other methods.
Rice & Saffer (1982) and Vitali (1989) considered
alternative approaches to the analysis of chemical
compositional data for pottery provenancing and
Baxter (1991) considered the problem with a view
to investigating data from mediaeval glass. The
perceived weaknesses referred to above are var-
ied and often depend on the type of archaeologi-
cal objects being investigated. One common
theme is that the use of traditional statistical tech-
niques has resulted in much information being
ignored or used only for the purposes of compari-
son after the chemical compositional data has
been analysed (Rice & Saffer 1982:398). It would
be extremely unusual when undertaking chemical
compositional analyses for the purposes of prov-
enance studies not to have information available,
prior to analysing the data, about suspected clus-
ter membership. As indicated above, such infor-
mation commonly arises from archaeological or
technological studies which are almost invariably
carried out prior to the chemical analyses.

In this paper we propose a Bayesian approach
to the investigation of such problems. We present
a method for dividing the data into homogeneous
groups based on discriminant analysis but which
incorporates the archaeological and or technologi-
cal information from the subject matter experts.
We believe that the resultant method gives a co-
herent approach to the combination of data and
prior information from a wide variety of sources.

32.3 THE NATURE OF THE SUBJECT
MATTER EXPERTS’ INFORMATION

The type of investigations that the ceramics have
undergone prior to chemical compositional analy-
sis will vary depending upon the scale of the
study. We could reasonably expect, however, that
all sherds submitted for chemical analyses will, as
a minimum, have been studied first by a pottery
expert. This will mean that a pottery report exists.
The nature of the information provided in such a
report varies quite considerably, but will usually
include a detailed description of each “type” of
pottery represented in the collection. By “type”
we mean archaeological “type” which is usually
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defined on stylistic grounds. In some cases there
will, in addition to this report, be information re-
sulting from thin—section microscopic analyses
(cf. Day 1988). Such analyses can allow closer
definition of types than is possible from the
whole sherds alone and may allow further subdi-
visions of these types. Identification and quantita-
tive description of petrographic inclusions, in
many cases only possible in thin-section under a
microscope, are extremely valuable in the
provenancing of pottery. For example, it is clear
from Jones and Vaughan (1988), mentioned
above, that the study of thin-sections formed an
integral part of the investigation of the jars and
indeed aided greatly in the the general conclu-
sions that were made about their provenance.

As a result of such detailed investigation by
subject matter experts, it should be possible to
group together some samples likely (but not cer-
tainly) to have the same provenance. Conversely,
it should be possible to identify some samples
which have very different archaeological, techno-
logical or petrographic types and so are unlikely
to be from the same provenance (although, of
course there may be a small chance that they
could be).

We should emphasise, however, that the evi-
dence provided by the pottery expert, the thin—
section analyst, and the chemist do not necessar-
ily point to exactly the same groupings in the
data. We must be very careful when defining
various groups based on the experts’ knowledge
to establish that they really are likely to be differ-
ent on compositional grounds and not just stylis-
tic ones. For example, if several different types of
vessel produced at the same site appear in thin—
section to have the same matrix, then this would
suggest that the samples probably ought to be
considered as being part of the same group for
the purposes of provenance studies. Conversely,
samples from vessels of the same archaeological
or technological type may well, in thin-section,
have different matrices. Such sherds probably
ought to be allocated to different groups if they
are to aid in the interpretation of the chemical
compositional data for provenancing purposes.

32.4 THE BAYESIAN APPROACH

In order to make use of the Bayesian paradigm,
we must have a statistical model which involves a
vector, 6, of unknown parameters and the sam-
ple data, x. The model defines a relationship be-
tween 0 and x which gives rise to a likelihood
function, I(x;0). The unknown parameter vector,

0, is a realisation of a random variable 8 which
has a prior density, p(8). Inferences about 0 are
then based upon knowledge of the posterior den-
sity, p(0]x), which is evaluated using Bayes theo-
rem

I(x;6)p(6)

A oW

where the integration is carried out over the ap-
propriate range of 0.

In any practical application of this approach, it
is clear that we may encounter problems in carry-
ing out the necessary integrations. In fact in very
many real situations it proves to be impossible to
obtain analytic solutions. To overcome such prob-
lems, a range of sampling-based approaches has
been developed. Such methods, for example the
Gibbs sampler (Geman & Geman 1984 and
Gelfand & Smith 1990), are relatively easy to im-
plement and are now gaining in popularity. Many
of the early applications of these sampling-based
approaches were in the field of image processing,
for example Geman & Geman (1984) and Besag
(1986). From a Bayesian perspective there are
many similarities between image processing and
cluster analysis and readers are referred to Besag
(1986) for an introduction to the original meth-
odological ideas. For archaeologists wishing to
gain some insight into the use of Gibbs sampling,
Buck & Litton (1991) outlined its use in investi-
gating two types of archaeological problem; one
involving the clustering of clay pipe data and the
other the seriation of artefactual data.

32.4.1 The statistical model
A Bayesian clustering method for use with arch-
aeological data has been suggested before (Buck
& Litton 1991). Here, however, we suggest a
rather different formulation of the model which
allows for the experts’ knowledge to be included.
We now define terminology, to make a clear
distinction between groups and clusters for the
remainder of this paper. Subdivisions of the data
made by the subject matter experts will now be de-
scribed as groups. Subdivisions made using the
Bayesian approach and hence being formed using
both the experts’ knowledge and the chemical
compositional data will be described as clusters.
Firstly let us suppose that, on the basis of the
experts’ investigations of the sherds in a particu-
lar assemblage, it is possible to divide the n
sherds into ] initial groups where group;j (j=1, 2,
..., ]) has n; members. It is quite possible that

j
some groups will have only one member. This al-

295



C.E. Buck

lows for sherds which the experts are unable to
group with any others due perhaps to lack of
knowledge about them, or to evidence that they
are unlike any of the other sherds in the assem-
blage. In this way we can then represent the ex-
perts’ knowledge in terms of a vector of integers,
3, where 8, =] if the experts initially assign ob-
ject i to group j. Secondly suppose that the maxi-
mum number of possible provenances is L and
that for sherds from the Ith provenance (I = 1, 2,
.., L) the vector, x, representing the chemical
compositional data has probability density func-
tion f,(x). We assume that, conditional on the
provenance, the chemical compositions of the
sherds are independent. That is, for two sherds i
and j with chemical composition vectors x; and
x;, x; and x; are indendependant of one another.
Furthermore we assume that the chemical
compositional information and subject matter ex-
perts” information are independent. That is, we
assume that the subject matter experts assign
their values to 8 without first having access to
the chemical compositional data.

Suppose that the f() are known and that no
information is available from the subject matter
experts, then using classical discriminant analysis
(see Mardia et al. 1982) we would assign sherd i
to provenance [ if

fitx)= max f(x).

If prior information were available regarding the
assignment, then we would use a Bayesian discri-
minant rule which allocates sherd i to provenance
Lif

mfi(x)= i T, i)

where m, is the prior probability of assigning a
sherd to provenance [. However, in
provenancing, we have no information regarding
the ; and so in our method we are going to use
the subject matter experts’ opinions to provide
information about them. There are many ways of
doing so one of which is as follows.

Consider sherd i which has been assigned by
the subject matter expert to group j. Suppose that
all the other sherds, except sherd i, have been as-
signed by some allocation rule to one of the L
provenances. Then we allocate sherd i to prov-
enance | with probability proportional to
7, (8) f; (x;) where 7,(8) reflects how many of the
sherds originally assigned by the subject matter
experts to the same group as sherd i are currently
allocated to provenance I. To reflect this, w,(8) is
proportional to e™, where ¥y is a constant which
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needs specifying. v is effectively a weighting fac-
tor for the subject matter experts’ information. If
the experts are certain that their information is of
high quality, then y will be large and conversely,
if they are unsure about their ability to assign the
sherds to initial groups, then the value of y is
small.

32.4.2 Implementation using the Gibbs sampler
The Gibbs sampler is a method of stochastic
simulation that has revolutionised Bayesian infer-
ence by allowing complex models to be analysed
readily. There are now numerous papers on the
theory and application of the technique. We refer
the reader to Gelfand & Smith (1990) and to the
other papers cited above.

For the purposes of this paper, we will assume
that a transformation is available that will allow
us to transform the raw, multi-element, chemical
compositional data to normality (a number of au-
thors have addressed this problem and several
such transformations have been applied, for a
summary of the arguments see Pollard 1986).
Suppose that sherd i comes from provenance | (/
=1, 2, .., L) then its vector of (transformed)
chemical compositions, x;, is normal with mean
K, and common covariance matrix X . (The as-
sumption of common covariance between prov-
enances has not been widely tested by archaeolo-
gists, pottery experts, chemists or statisticians
and, should it prove not to be reasonable, will re-
quire reformulation of this aspect of the model.)

We assume that the prior density for p, has a
normal distribution with expectation 1, and
covariance matrix p;'X. Assume also that £, the
inverse of the covariance matrix, has a Wishart
distribution with f§ degrees of freedom and preci-
sion matrix T.Now, let ¢, =1 if the ith sherd is
allocated to cluster I. Then the conditional densi-
ties are

@)
=7X,8,7,0,1,,1y,..., 0, ~ Wishart with degrees
of fredom B+, +1,+,...,+n, and precision matrix

L

L ’
* n — .
T =T+251+2 P (nl_xl)(nl—xl) ,
-1 = Pt

(ii)

Ry

, +1X -
IJ-1|X/8/'Y/E,¢/HI‘(Z ;él)" N[Lzlxll(pl +nl) 12)

and

(iii)
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X/8/u1/u2/"-/uL/EIY) =

p(¢i =1
Py =Ty (S)exP_‘%(xi —l.l,) z (xi —},l,)

where X is the data matrix whose rows are com-
posed of the x; vectors and ,, X, and n,”'s, are
respectively the number of sherds in cluster J, the
sample mean for cluster [ and the covariance ma-
trix for cluster .

32,5 AN EXAMPLE APPLICATION

We will now illustrate the use of the methodology
described above to investigate data from known
kiln sites. The data available to us are from tin
glazed wares produced at three medieval kiln
sites two in Spain at Valencia and Seville and one
in Italy at Castelli. The pottery is characterised by
being highly decorated, some in metallic copper
lustre and some in a wide range of colours (blues,
greens, yellows and purples) on a white back-
ground. It has long been admired and discussed
(Caiger-Smith 1973) and is of particular interest
to archaeologists and pottery experts as it is
known to have been exported from its sources to
other European countries and to America (Hurst
et al. 1986).

We know that all the samples submitted for
chemical analysis are from one or other of the
three sites and we know which samples are as-
signed to which site. There are obviously many
different studies that could be made of this data
and we do not propose to offer here a compre-
hensive consideration of all the possibilities. What
is offered is an outline of the Bayesian methodol-
ogy and description of some of the effects of
changes in the nature and quality of the subject
matter experts’ information. It should be noted
that, although the data are actual chemical
compositional values from real samples, the ex-
amples of expert information that are used are all
fictitious since the clusters present in the data are
in fact known.

Available to us are neutron activation analysis
results from 150 samples; 63 from Valencia, 63
from Seville and 24 from Castelli. For each sam-
ple we have 15 variables, one for each trace ele-
ment measured. After imputing the very few
missing values, taking natural logarithms results
in the data being transformed approximately to
normality (Pollard, 1986:68).

The methodology outlined above requires
prior information regarding likely cluster means
and covariances. In what follows we will use the
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Figure 32.1: profile plot of the log data from Valencia.
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Figure 32.2: profile plot of the log data from Seville.

Castelli data to provide this information (see be-
low for details) and the statistical analysis de-
scribed will then only be of the data from Valen-
cia and Seville. For convenience we label the
sherds to be clustered 1-126, the Valencia sam-
ples being 1-63 and the Seville samples 64-126.

Figure 32.1 and Figure 32.2 show plots of the
log data for Valencia and Seville respectively.
Each of the samples is indicated by its own
number, so that these plots allow us to observe
which of the samples are possible outliers. We ob-
serve that only two samples have extreme values
in more than one element, these are 41 and 42.
Some other samples (including 21 and 104) have
extreme values in only one element each.

We investigate the data still further by plotting
the first two principal components of the stand-
ardised log data from Valencia and Seville (Fig-
ure 32.3). As we might expect, samples 41 and 42
appear as outliers. We note that by using princi-
pal components we are combining the informa-
tion from all 15 elements and that those samples
which only have one extreme elemental concen-
tration do not necessarily appear as outliers in
Figure 32.3. Furthermore, it is clear from Figure
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Figure 32.3: first two principal components of the stand-
ardised log data from Valencia and Seville.

323 that on the basis of the data alone (ie without
making use of the subject matter experts” knowl-
edge) it is extremely difficult to resolve the two
clusters. Indeed several of the sherds from Valen-
cia would certainly be misclassified as coming
from Seville.

Turning now to consider the Bayesian analysis
of these data, we suggest some possible scenarios
for information provided by the subject matter
experts.

Scenario 1: of the 126 samples the subject mat-
ter experts (correctly) assign 30 to one group and
30 to another group but are unsure about the re-
maining 66 samples. That is, on the basis of the
subject matter experts’ judgement two groups can
be identified within the data leaving half the
sherds ungrouped. Expressing this in terms of the
resulting & vector: 8, =...=8;,=1; §,, =...=3, =0;

0y =ws=0g3 =2 and. Oy =w=0z=0

Scenario 2: the subject matter experts believe
that there are four groups present in the data and
they subdivide the Valencia group into two
groups one of 30 sherds and one of 33 sherds and
they do the same with the Seville group. This re-
sults in the suggestion of a larger number of sub-
divisions in the data than are actually present as
might be the case if one kiln site is producing pot-
tery of two different styles at the same time. Ex-
pressing this in terms of the resulting § vector:
8,=..=8;=1; 03 =..=85=2; 8y =...=8y; =3
and 8y, =...= 8y, =4.

Scenario 3: the subject matter experts identify
only two groups within the data, but (perhaps
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due to similarities in decorative style between the
two kilns) in fact believe that half of the sherds
from Valencia should be grouped with half of
those from Seville and vice versa. This results in
two groups being identified one containing 30
sherds from Valencia and 33 from Seville and the
other containing 33 sherds from Valencia and 30
sherds from Seville. Expressing this in terms of the
resulting 6 vector: §, =...=8;,=1; §,, =..=8,=2;
8¢ =...=8y,=1and §,, =...=§,,=2.

Scenario 4: is an unrealistic scenario included to
allow a demonstration of a wide range of types of
subject matter expert information. This is the situ-
ation where the experts correctly assign all the
sherds from Valencia to one group and all the
sherds from Seville to another group. This results
in two equally sized groups with 63 sherds in
each. Expressing this in terms of the resulting &
vector: 8, =...=8 ;=1 and §,, =...=8,,, =2.

With the data from the three known kilns and
the information contained in the & vectors for the
four different scenarios, we are now in a position
to investigate the use of the Gibbs sampler meth-
odology outlined above. It will be clear that there
are a number of variables which can have a
marked effect on the likely outcome of the
simulations. For the purposes of this paper we
consider the Bayesian analysis of the data and in
all cases fix the values of u,%,v,B and p so that
we are reporting only the effects of varying the
values in the & vector. In the case of the results
reported here, we obtained the values for p by
taking the sample mean of the Castelli data and
adding a value simulated from a uniform distri-
bution in the range minus twice the standard de-
viation of the Castelli data to plus twice the
standard deviation of the Castelli data. This is not
entirely satisfactory and so p is correspondingly
set to 1.0, indicating that we are only able to pro-
vide a very approximate estimate for . We set
equal to the sample covariance matrix of the
Castelli data which, since common covariance
matrices are assumed in the model, should be a
reasonable estimate. We set y = 1.0, correspond-
ing to a fairly firm belief in the subject matter ex-
perts” information and, to reflect our belief in
how accurate X is, we set f = 60.

With these parameter values fixed in this way
we now report the effects of investigating the Va-
lencia and Seville data in conjunction with the
four different subject matter expert scenarios. We
find that both the quantity and the accuracy of
the subject matter experts’ information have a
marked effect on the outcome of the Bayesian
analysis. When using scenario 4 convergence is
rapid, leading to two main clusters, correctly as-
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signing the Valencia and Seville sherds to sepa-
rate clusters. In addition samples 41 and 42 are
commonly assigned to separate clusters possibly
indicating that these samples are outliers. When
using scenario 1, however, convergence is much
slower. The result is still two main clusters, with
samples 41 and/or 42 identified as outliers. There
is considerably less subject matter expert infor-
mation available from scenario 4 than from sce-
nario 1 and thus the slower convergence rate
when using scenario 1 is entirely to be expected.

In terms of both quantity and accuracy of in-
formation, scenarios 2 and 3 are comparable to
one another. This is reflected in the way that they
influence the outcome of the Bayesian data analy-
sis. In both cases we find that convergence is
reached much more slowly than with either of the
other two scenarios and that there is some uncer-
tainty about when convergence has occurred. Al-
though the final result is two main clusters with
some outliers (centred around samples 41 and 42)
it is not uncommon for convergence to appear to
have been reached earlier. Without using a con-
vergence measure and without knowing the
“true” subdivisions present it would be easy to
conclude that there are in fact three main clusters
in the data. The “extra” cluster is formed from
the Valencia data and is made up of samples from
the top right hand corner of the principal compo-
nents plot (Figure 32.3). Inspection of Figures
32.1,32.2 and 32.3 indicates that the Valencia data
are in fact rather more disparate than those from
Seville.

The more disparate nature of the Valencia data
could be a reflection of one or more of several dif-
ferent features of the manufacturing process of
the ceramics in question. As part of the manufac-
ture of pottery vessels the raw clay is almost al-
ways preprocessed in one or more ways. Such
preprocessing may not be entirely consistent from
one batch of clay to the next. For example, the
amount of temper added is usually of an approxi-
mately fixed proportion to the clay, but may vary
on a batch to batch basis. The magnitude of such
variability will depend, amongst other things, on
the method used to measure the various quanti-
ties of materials required. We do not have access
to detailed records about the likely mode of
manufacture of the ceramics from which the Va-
lencia samples were taken and so are unable to
state whether there is any archaeological interpre-
tation for the “extra” cluster. In any real analysis
of this sort, however, dialogue between the statis-
tician and the archaeologist would be necessary
in order to allow full assessment and informed
interpretation of the statistical results. Ideally, of
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Figure 32.4: fusion plot of the results from Ward's method
cluster analysis of the log data from Valencia and Seville.

course, if the archaeologist (or pottery expert) has
reason to believe in the “extra” group prior to ob-
taining the data then the information should be
included in the § vector and thus incorporated
into the statistical analysis.

We now turn to look at how the Gibbs sampler
results compared with those obtained using tradi-
tional cluster analysis. We ran the logged Valen-
cia and Seville data through the CLUSTAN pack-
age using Ward’s method. Looking at the fusion
points for this analysis, we find that the Seville
cluster begins to form first and that the outliers
(samples 41 and 42) in the Valencia data are
amongst the last to cluster. Figure 4 shows a plot
of the fusion coefficients for the CLUSTAN run
which indicates clearly that there are likely to be
either 2 or 3 clusters in the data. At the two clus-
ter level running CLUSTAN using Ward's
method gives perfect subdivision of the data into
Seville sherds and Valencia sherds. At the three
cluster level, however, CLUSTAN divides the Va-
lencia cluster into two approximately equal clus-
ters and at no point in the analysis do we pick up
the small “extra” cluster that was observed in the
Bayesian analysis.

32.6 CONCLUSIONS

We have developed a Bayesian approach to the
statistical analysis of chemical compositional data
for the purposes of provenancing archaeological
ceramics. The method allows us to combine the
information contained within the chemical data
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with the expert knowledge of the archaeologists
and pottery specialists. Such experts have for
sometime been able to make assessments of likely
provenance groupings on the basis of typology,
style, technology and/or thin—-section investiga-
tions. It is only with the advent of the Gibbs sam-
pler, however, that this statistical approach has
become practical.

The author now intends to test the approach
using larger and more complex data sets and
would be glad to hear from specialists in any of
the many fields in which chemical compositional
data is collected for the purposes of
provenancing. If Bayesian analysis is to be used
successfully in these fields, as in any others, true
collaboration is required between statisticians
and archaeological experts from all relevant
fields. We can no longer expect to work in each
field in isolation and only pool our results at the
“interpretation” stage. When using a Bayesian ap-
proach, interpretable results only arise from
analysis based upon clearly stated subject matter
expert information leading to the development of
relevant statistical models and to the elicitation of
prior information about the parameters of the
model.
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