v(i] Computer-based techniques for the
representation of automatic
problem-solving in archaeology

Juan A. Barcelo

26.1 INTRODUCTION

Archaeological theories, like all theories, are sym-
bolic constructs: a representation of artefacts and
ecofacts in terms of symbolic or semiologic sys-
tems of some sort. The operations involved in the
formation and formulation of theories are carried
out on symbols, and should have no effect at the
representation domain-level. There are many
ways of representing or expressing such theories,
but in all of them a specific link should exist be-
tween the nature of the knowledge we want to
represent, and the final representation: the behav-
iour of the represented system must be analogous
to the behaviour of the external entity it repre-
sents.

To represent an archaeological theory we have
to build the semiologic system according to the
architectural specifications of our theory. Those
specifications can be defined according to a cog-
nitive metaphor: archaeologists solve problems
when they are explaining data, and an archaeo-
logical meaning is one of the answers to that
problem. Problem—solving is a cognitive mecha-
nism, but some scientists have discovered that it
can be analysed using computational techniques
(Newell & Simon 1972; Sacerdoti 1977; Pearl 1985;
Lauriere 1986; Torasso & Console 1988; Brown &
Chandrasekaran 1989; Gilhooly 1989).
Consequently, archaeological theories may be
represented using the techniques that computer
scientists use in automatic problem-solving (Fig-
ure 26.1).

26.2 DATA VERSUS KNOWLEDGE

There are many different meanings for the word
Knowledge. For instance:

* «Knowledge is a justified true belief» (Waern
1989)

° «Knowledge is the symbolic representation of
aspects of some named universe of discourse»
(Frost 1986)

e «Knowledge is an organised set of statements
of fact or ideas, presenting a reasoned judge-
ment or an experimental result, which is trans-
mitted to others through some communication
medium in some systematic form» (Bell 1979).

A piece of knowledge of some universe of dis-
course may have varying degrees of complexity.
To represent an archaeological theory, the sim-
plest knowledge unit is an empirical datum, that is
to say, a single observation result (Bunge 1983):
artefacts and ecofacts we have measured and de-
scribed during an archaeological excavation are
empirical data. The most complex knowledge
units in the theory are interpretations or meanings.

This degree of complexity is determined by the
information content of a piece of knowledge, and
this is a measure of the extent to which that piece
of knowledge tells us something that we did not
previously know. The amount of information ob-
tained by the receiver of a message is related to
the amount by which that message reduces the
receiver’s uncertainty about some aspect of the
universe of discourse (Shannon 1948). Therefore,
the information content of an interpretation is
greater than the information content of empirical
data. This affirmation is easily understandable
given the Computer Science definition of the
word “problem”:

«A goal we want to achieve but we do not know
how»

Empirical data do not reduce uncertainty because
they represent the initial state in a problem. On

239

Juan A. Barcel6

+
l—{ SOCIAL IDENTITY SOCIAL ROLE

[soclAL STATUSJ—|—+

SOCIAL
DIFFERENTIATION

] SOCIAL CONTROL |

v

Figure 26.4: A goal-subgoal network.

quently, we represent goals specifying the object
and the attribute which slot we want to fill in
with a value. The program implementing the
theory interprets goal units as requests for infor-
mation and will attempt to find a value for that
attribute.

There is no easy way to find the values of at-
tributes defining theoretical entities: we need
hundreds of minor logical calculations using pre-
viously instantiated goals. Therefore there is not a
single goal in a computational theory, but a very
complex tree or network of subgoals. A subgoal is
aquestion on the value of an attribute needed to
calculate the unknown value of another attribute.
This subgoal network is the result of some ana-
lytic problem decomposition process; therefore, it
has to be considered as an explicit piece of knowl-
edge, and we must implement it computationally
before any inference be produced. Figure 26.4
shows a subset of the problem-decomposition
analysis needed to implement a standard social
theory (Berger et al. 1989; Fararo 1989).

Instantiated subgoals represent the problem’s
intermediate states. The ordering of these units has
an extraordinary importance, because goal and
sub—goal units are linked in taxonomic structures.
We say that a unit is a child of its parent and is a
descendant of all units from which its parent inher-
its the value and the name of its attributes. Goals
and subgoals are organised into a multiple hierar-
chy or network, with each element at a lower
level inheriting the properties of the element at a
higher level. These father/son links represent
sub-set relationships, where inheritance allows for
knowledge shared among a set of elements with
uniform structure.

Inheritance is based on the concept that goal
units tend to form groups and that members
within a group tend to share common properties.
By using inheritance we can organise our knowl-
edge in such way that allows the discovering of
unknown attribute values, because goal attributes
are defined only once in some unit, and shared by

242

SOCIAL BEHAVIOUR
inherits from:
SOCIAL STATUS
SOCIAL CONTROL
Actor {inherited from SOCIAL STATUS}
Characteristics
[info]-
Context {inherited from SOCIAL CONTROL}
Definition
[info]-
SOCIAL CONTROL
inherits from:
SOCIAL DIFFERENTIATION
ig inherited by:
SOCIAL BEHAVIOUR
Context
[inquiry]
SOCIAL DIFFERENTIATION
is inherited by:
SOCIAL CONTROL
SOCIAL IDENTITY
is inherited by:
SOCIAL STATUS
SOCIAL STATUS
inherits from:
SOCIAL IDENTITY
is inherited by:
SOCIAL BRHAVIOUR
Actor
[info]-

Figure 26.5: An example of an inheritance system

all the descendants of that unit. This means that
each goal will inherit all the attributes of its an-
cestors, since its parents will inherit the attributes
of their parents, and so on. Figure 26.5 shows the
code necessary to implement a subgoal network
in a commercial Expert Systems Shell.

26.4 REPRESENTING “EMPIRICAL DATA”

Empirical data are not knowledge units; in the
same sense, a computational theory is not useful
for an archaeologist if it does not include empiri-
cal data. Without empirical data a theory is a vir-
tual entity unable to generate an action. If there is
nothing to explain, we can explain nothing! We
need theories to explain our artefacts, and we
need artefacts to use our theories. Data and Theo-
ries may arrive at the “Knowledge Level” if we
represent them as “potentials to generate an ac-
tion”. That action is to solve a problem by vali-
dating a goal, which consists in finding out the
unknown values of the attributes that define a
computational entity representing the final goal.
Then, to transform archaeological artefacts into
archaeological knowledge we have to be able to
validate some goal using a representation of them. In

26 Computer-based techniques for the representation of automatic problem-solving in archaeology

empirical data

SWORD
-how was it manufactured?

quantity of metal
degree of quality
degree of craft specialization
cost in labour
-where does it come from?
nature of the exchange network
RAW MATERIAL

PRESTIGE ITEM
e

contextual data

CEMETERY

-Context of Production
average of metal quantity
average scale of quality
morphometric variability
number of swords

-Context of Exchange
average of imported/local art.
density of imported raw mat.

-Context of use
ritual variability
accumulation of valuables

S e S

initial state

EXCHANGE VALUE
is the sword a
prestige item?

USE VALUE
variability in the depo-
sitional context

Figure 26.6: Creating a problem initial state from
empirical data.

other words, both empirical data and theories
have to be integrated into the problem-solving
mechanism.

The obvious way to integrate empirical data in
a computational theory is by using them in the
definition of the problem initial state. A problem
state may be defined as the knowledge about a
problem available to an archaeologist at a given
moment during problem-solving. Then, the initial
state is represented by the amount of knowledge
available to an archaeologist when he begins solv-
ing a problem. It is not reduced to an estimation
of the knowledge needed to solve the problem,
but a representation of the situation in which has
arisen the necessity of solving a specific problem.

In the Problem Architecture presented in pre-
vious pages, an Initial State coincides with bot-
tom-level subgoals in the hierarchical goal- net-
work; that is to say, those frames whose
attributes cannot be calculated from other frames.
Using the previous example about social behav-
iour, and if we assume that the knowledge avail-
able concerns only the technology used in the
manufacture of the sword (standardised, non

standardised, labour intensive,...), and the related
exchange network, then there are two possible
attributes to represent the initial state:

® USE VALUE
® EXCHANGE VALUE

Nevertheless, to calculate these values we need to
combine knowledge about the sword (a possible
prestige symbol), and about the cemetery (the
context of use). Figure 26.6 shows a possible inte-
gration of both knowledge sources.

We have two different ways to “acquire” the
attribute values:

° as explicit declarative units, defined directly by
the user

° they have to be read and transformed from ex-
ternal computational databases.

In the first case we are working with a simulation
mechanism, in the second one with an automatic
problem-solving mechanism. In this paper, I will
only deal with the second one.

A database is a set of observation results de-
scribed in terms of some generally accepted dis-
tinctions. These distinctions represent the criteria
we use to organise observations; therefore they
have to be structured in some way. There are
many different ways of data modelling. The most
common, and useful for computational purposes
is the entity-relationship model (Chen 1976): an en-
tity is an object or thing that exists and can be dis-
tinguished from other entities. Entities are de-
scribed in terms of attributes or properties. A
relationship is defined as an ordered list of entity
sets. From a structural point of view Empirical
Data are represented like goals: frames and data-
base records follow the entity-relationship
model. They are n-tuple relations, where 7 is the
number of attributes. Consequently, we may use
attributes and relationships in the database as
building blocks in the task of calculating the at-
tribute unknown values in bottom-level subgoals.

However, the attributes in the Database have
not to be the same terms used as attribute identi-
fiers in subgoal units. We need some inference
mechanism as a bridge between both computa-
tional structures. In the architecture presented in
this paper, such a mechanism is represented by a
kind of computer program called a parser. These
programs are sophisticated grammar checkers
which prove if an attribute, set of attributes or re-
lationship in the database may be used as a value
for any of the attributes in the subgoal unit. There
is an important difference between the concepts

243

Juan A. Barcel6

of “recognition” and “parsing” (Winograd 1983;
Frost 1986):

® RECOGNITION is the process of determining
whether a given sequence of terminals is a sen-
tence of a given grammar

® PARSING is recognition together with the implicit
or explicit construction of the syntax tree.

In other words, our data—parser is much more
than a program able to read and transfer data. It
is a program that searches for knowledge units
and builds new ones. However, it is important to
realise that it is a piece of declarative programming;
the user or programmer must explicitly write the
equivalencies between descriptive terms or at-
tributes in the database and subgoal values.
There are some different techniques for writing
a parser. In an Expert Systems Shell, parser ex-
pressions are usually embedded in the frame
structure:
subgoal.l
Attributes:

number.1

[inquiry]-TextRead (“Object|attribute”, ID,

<filename>)

number.2

[inquiry]-TextRead (AttributeName

(<record|set>),ID,<filename>)
where the [inquiry] slots contain the parser ex-
pressions. Most Expert System Shells provide
specific functions to implement data parsers. In
this paper, I use those available in the Mahogany
package (Emerald Intelligence, Inc.). In the previ-
ous example you can see a call to one of these
special functions: TextRead. It performs the fol-
lowing activities:

e TextRead() finds a named database file

o TextRead() selects the records specified by the
named record set. If the named record set at-
tribute is empty or the parameter is the key-
word “NONE”, no records are selected. If the
record set parameter is the keyword “ALL”, all
records in the database are selected.

e TextRead() reads a specified field from each of
these records

e TextRead() assigns the values it reads to a re-
ceiver attribute or to another named attribute.

The syntax of this function is the following:
TextRead (SetName,FieldId, FileName,
[ReceiverName])

The first parameter (SetName) sets the name of a
knowledge base attribute whose values are the
record numbers that the function will read. These
record numbers can be set by an inference proc-

244

ess (using rules, inquiry functions, etc.), they may
be predefined in the computational theory, or
they may be user configured. This parameter can
hold a single record number, a range of record
numbers, or a set of non—contiguous record num-
bers. The second parameter (Fieldld) selects which
field in each record is to be read, and fills that
value in the slot specified in the fourth parameter
([ReceiverNamel). The parameter (FileName) names
the file that holds the empirical data records.

The most interesting cases are those in which
the record set and the field identifier are calcu-
lated by the parser, and not predefined as an ex-
plicit value. In these cases, we have to guide the
parser so that it can find the correct value. We
use a function called AttributeName, which re-
turns the name of a record attribute in the data-
base. For example, the parser expression:
TextRead (AttributeName (<select|sites>)
(<dblstart>-<dblend>), “Database. fil”
returns the value of the attribute “site” in the “se-
lect” frame as the record number it has to fill in
an [inquiry] slot. The field ID parameter also con-
tains an embedded attribute reference, which
computes the column start and end position of
the field. In this case, we have two non-theoreti-
cal entities: “Select” and “db”; the first one pro-
vides knowledge to select the best site to validate
a theory. The “db” frame contains two attributes
“start” and “end”, which contain knowledge
about the structure of the database file.

We may also use frames from a different Goal
Network. In this case, the values of the record set
and the field identifier are the unknown slots in a
goal unit. There is a theory whose function is to
calculate such values. In other words: we can use
a different theory to calculate the specific integra-
tion between empirical data and the goal net-
work. “Experimentation” in Natural Sciences or
Archaeological Middle-Range Knowledge may
be seen as the necessary sub theories to use a
higher-level theory.

Sometimes we need more sophisticated par-
sers, especially when we want to use the theory
as a control structure for the search mechanism in
the database. For example, we can create a new
record set from the records in the database that
match some selection criteria. To do that we use
the function FindRec. It performs the following
activities:

* finding a named database file

e selecting the records specified by the named
source record set. If the source record set pa-
rameter is the keyword “aLL”, then all records
in the database are selected. If there are no

26 Computer-based techniques for the representation of automatic problem-solving in archaeology

valid values in the source record set attribute,
no records are selected.

e testing each selected record set against all cri-
teria strings.

e assigning the record number of each record
that meets all criteria to the attribute, which
holds the results record set. This is the receiver
attribute, or the one named in a call to
FindRec.

® returning the name of the record set attribute
containing the new record set.

The syntax of this function is:
FindRec(SetName,CriteriaName, FileName,
[ResultsName])
The only difference with the TextRead function is
in the CriteriaName parameter: the name of the
attribute that holds the selection criteria values.
Each value of the criteria’s attribute includes a
database field identifier and a search string. The
first part of a criteria’s value is a field identifier
and the last part, the search string. For example:
"<dblsite> >4.5 <9.2"
selects in a database those archaeological sites
with inter—site’s distances between 4.5 and 9.2 km.
In sophisticated systems, subgoal units are
created at run—time. They do not exist before the
system queries the database, but their production
mechanism exists as a declarative program. The
Instance function creates new frames using infor-
mation stored in a database. Each of these frames
is created as a member of a class, that is to say, as
a child in the inheritance network. The class must
exist before the function is used. In our case, a
class makes reference to high-level goals, and in-
stance to the lowest subgoals in a network: infer-
ence starts with the automatic generation of the
initial state from some empirical data description.
Instance syntax is the following:
Instance(ValueSet,Class,ID Attribute)
The first parameter is the name of the attribute
used as the value set. Each value of this attribute
is used to make a separate instance frame. These
values, along with the class name (“coaL”), are
used to form the name of the instance, and are
used to assign a value to the new instance’s ID
attribute. The second parameter is the name of a
class. This class is used as the inheritance link for
each created instance frame. Every subgoal will
inherit its characteristic from the goal class we
name here. The last parameter names the ID at-
tribute. This must be an attribute that already ex-
ists in the class. This is the name of the attribute
that is used to assign the unique ID value for each
instance. The ID value is taken from the value set,
and is used as part of the instance’s object name.

The Instance function has to be used together
with the other two. Instance creates only an
empty frame; its attributes are inherited from the
class frame that it belongs to. These attribute val-
ues can be filled in using the TextRead and the
FindRec functions. An example of a complex
parser expression would be:

IF
(1) the seeciFication is “Chronology 9th. cen-
tury B.C.
THEN
(1)criteria ig “2, Red burnished Pottery”
(2) ser NaME ig
FindRec(ALL, At tributeName (<criteria>),
<filename>,AttributeName (<Subset [value>))
(3)1instance clear is DelMbrs (INITIAL sTaTE)
(4)1nsTance is Instance (<Set |Name>, INITIAL
STATE, ID)

Data parsers are not the best way to integrate em-
pirical data in a computational theory, but they
are very useful in our present conditions. The
ideal way would be to describe empirical data us-
ing the attributes in the Theory Initial State; that
is to say, to impose a particular way to see data.
Description is not a self-sufficient mechanism,
nor it has universal value. We have to describe in
order to be able to do something; descriptions
must allow the generation of archaeological
meanings, and this would be possible if there is
some correspondence between descriptive terms
and attributes defining the Initial State. Neverthe-
less, methodologists have to work with existing
databases. It is very difficult to convince an ar-
chaeologist that he must rebuild his/her data-
base; then, we are limited to exfract knowledge,
and not to create it.

26.5 REPRESENTING “MEANING”

Databases and sets of facts may be seen as theo-
ries, if they contain some procedural knowledge
able to yield solutions. Nevertheless, empirical
data are not useful to obtain answers to “ab-
stract” questions (goals defined by non—observa-
tional attributes). Consequently, we need an other
kind of knowledge to instantiate the highest-level
units in the Goal Network. Theoretical entities
and scientific laws are for high-level goals as em-
pirical data are for bottom-level ones. There is a
considerable discussion in the philosophy of sci-
ence about the meaning and usefulness of theo-
retical entities and scientific laws, and I do not
pretend to solve the question. I use these terms as
two kinds of computational data structures
needed to calculate the unknown values of at-
tributes in high level goal units.

245

Juan A. Barcel6

The obvious way to represent scientific law is
by means of production rules (or Condition/Action
pairs), that is to say, computational structures like
this one:

RULE #1 priority 50 - SOCIAL STATUS DEFINITION

IF

(1) the INITIAL STATE Use Value is “SO-
CIAL SYMBOL” [threshold 0.20]
THEN ———————
(1) SOCIAL STATUS Actor is “ELITE MEMBER”

[certainty 0.75]

Rules like this one combines known attribute val-
ues to calculate unknown values in successive
goal units; therefore they link the successive
states in a problem-solving mechanism.

Production Rules are well known because of
their use in expert systems; some authors have
studied also their relevance in scientific model-
ling (Holland et al. 1986; Langley ef al. 1987; Tha-
gard 1989; Havranek 1990; Gardin 1990), but
there is also much criticism about their relevance
in scientific knowledge representation (Hofstad-
ter 1992). Nevertheless, all this criticism can be
avoided if we do not consider productions as
stand-alone particles of meaning. Like attributes,
rules are minimal declarative units whose knowl-
edge content depends on the particular structure
they have contributed to build. Consequently it is
better to see them as “programming instruc-
tions”, than as a representation of some scientific
law. As programming instructions, rules imple-
ment an gssociative memory, and it is there where
we have to look for knowledge content.

If a “memory” is any device that can store
knowledge and recall it on demand, an “associa-
tive memory” will be a memory that stores know-
ledge by associating, or correlating, it with other
information in a memory. Therefore, scientific
laws and theoretical entities are represented by
the pattern of associations, and not only by the
associated declarative units, which are meaning-
less without associations. In this memory, attri-
butes have not any single location, the responsi-
bility for storing and retrieving each declarative
unit is shared instead by a number of elements in
the memory: the goal units.

To implement that associative memory, pro-
duction rules are organised in implicit or explicit
clusters of rules with similar conditions (Holland et
al. 1986); these are the relational knowledge units.
The structure given to goal units produces the
clustering of rules concerning a particular state or
possible interpretation; then, theoretical entities
can be defined by identifying multiple rules with
similar conditions but varying actions. Consider,
for example, a theory in which Ry is a part of a
cluster of rules representing the concept SWORD

246

and R represents the concept PRESTIGE SYMBOL.
Then, in the problem-solving mechanism sworD
will invoke PRESTIGE sYMBOL only if Ry sends a mes-
sage that activates Ry ; problem-solving is directed
from Ry to Rz . In more general terms, Ry influ-
ences the activation of R only when the message
posted by the action part of Ry satisfies the condi-
tion part of Rp. We will say, then, that rule Ry is
coupled to rule Ry . In other words, we describe
one rule as being coupled to another one if the
action part of the first rule generates a message
that satisfies one or more conditions in the condi-
tion part of the second one. Then, when the first
rule is active of a given time-step, the second one
tends to become active at the next time—step.

Each goal unit acts as the framework for the
location of “meanings” in the associative
memory; they are embedded in that memory be-
cause they have to be represented in the same
terms. Goal units are represented by the rule clus-
ters; the frame units are only computational de-
vices to see the output of the system, and not ac-
tive units in themselves; they act as the external
location of goals in the memory. The action part
in the rules can be seen as “messages” sent by one
goal unit to other goal units; consequently, slots
in a given goal unit are filled in by the actions
triggered by a previous (lower-level) subgoal in
the Goal Network. This behaviour is also a conse-
quence of the associative nature of knowledge
units stored in the rule-base, and the associative
nature of the retrieval mechanism.

Consequently, archaeological theories are not
represented only by rule bases, because rules can-
not provide answers alone. We need an explicit
representation of the theory architectural princi-
ples, that is to say, some meta—knowledge about
the way to solve the problem. We represent this
architecture using hierarchy links and dependency
paths between goal units. Inheritance links and
taxonomic relationships between goal units repre-
sent this architecture.

26.6 REPRESENTING “INFERENCES”

Inference is the process by which unknown at-
tribute values are derived from known values.
The program that finds these values and makes
decisions is called the inference engine, and uses
the associative knowledge stored in the rule-base,
and the theory architectural principles stored as
inheritance links between rule clusters.

The associative memory acts as a conditions—
to—actions knowledge base where the different
goal and subgoal units calculate the values in

26 Computer-based techniques for the representation of automatic problem-solving in archaeology

their slots. The global system looks like a distrib-
uted blackboard system, where each frame is no
more than a shared data structure used by the
members of a specific cluster of rules (Engelmore
& Morgan 1988; Jagannathan et al. 1989; Murdoch
& Johnson 1990). Clusters of rules do not compete
among them; the inference engine uses the taxo-
nomic structure built in the Goal Network to
guide the activation of the “conditions—to-ac-
tions” rule-base instead. This method of inference
is called backchaining or top—down processing: the
program starts by identifying the highest goal
unit by reading all dependency paths that lead to
that unit. As a result, the inference engine is able
to build the Initial State using as building blocks
the set of units where dependency paths begin.
Once identified, the program runs the data parser
to fill in the slots identified. The data parser has
to be capable of calculating the highest quantity
of low-level attribute values possible. The more
comprehensive the Initial State is, the better. If
the database we are using is not related to the
problem, the resulting Initial State will be incom-
plete and the program will not be able to run the
inference mechanism.

The inference engine uses the Initial State to
select the most appropriate higher-level units in
the context defined by this Initial State. In other
terms, each cluster of rules tries to match their
conditions to the attribute values in the Initial
State. The action part of the fired rules modifies
this set of conditions to allow the selection of the
highest-goals in the network. Given the definition
of rule clusters as those rules with the same con-
dition part, the selection conditions of each prob-
lem-state have to be explicitly asserted. As a re-
sult, inference is represented as an accumulation
of single decision—making steps. The problem-
solving mechanism moves step by step, from Ini-
tial States to the Final one, through some Interme-
diate States, accumulating the relevant knowledge
and making further decisions. We call this proc-
ess spreading activation.

Spreading Activation theory was proposed by
Collins & Loftus (1975), and has been developed
by other authors (Anderson 1983, Holland et al.
1986; Newell 1990). This theory asserts that the
“activation” of a rule measure how closely associ-
ated is the knowledge unit (an attribute value, a
goal, a rule) we want to select, to the amount of
knowledge available to select it. Most of the times,
this “measure” is a numerical index or threshold,
and the activation looks like a mathematical con-
tinuous function, where the output appears as an
increase or decrease of the function values, and
the input the sum of activation values in the pre-

viously activated units. The resulting level of acti-
vation determines the firing of rules and goals, if
the adequate threshold values have been intro-
duced in their condition part. The values of the
activation function increase or decrease according
to the quantity and nature of the rules fired.

Some times it is preferable to use discrete and
qualitative activation functions, where the input
is not a sum of mathematical values, but an accu-
mulation of declarative units (attributes). In this
case, the spreading activation is not a mathematical
function, but it corresponds to the propagation
and “accumulation” of support for goals and
rules. Then, instead of threshold values as criteria
for firing rules, the associative memory uses a
pattern-matching mechanism to decide which
productions will apply: a rule is selected for firing
when elements accumulated in working memory
ata given moment match the elements of the
rule’s condition.

Bottom-level goals (the problem initial state)
provide the “springs” from which spreading acti-
vation flows throughout the problem-decomposi-
tion network. Activation is spread from various
source nodes, each of which supports a particular
pattern of activation. Consequently, the total acti-
vation pattern is the accumulation of the patterns
supported by the individual source nodes. Goal
units can become source nodes in a number of
ways: the lowest-level units receive their input
from an external database through the data
parser; intermediate units receive input from al-
ready validated goal units.

Activation spreads in a computational theory
by the following cycle:

1) Bottom-level subgoals make their clustered
rules available for matching.

2) The conditions of these rules are matched
against the input produced by the data parser.
A number of rules are fired, and their actions
are executed. These actions have to be consid-
ered as “messages” sent to the other clusters of
goals in the associative memory, representing
the next goal in the network,

3) The conditions of target clusters are matched
against those “messages”. A successful match
means that the goal represented by the acti-
vated cluster of rules is appropriate in the con-
text defined by the Initial State.

4) The actions of the rules in the new cluster are
carried out. Pattern-matching starts again, us-
ing as target another cluster in the associative
memory.

5) Inference spreads until the final state is
matched, or the set of attributes in the working

247

Juan A. Barcel6

memory cannot fire any other rule. In this case,
the goal attached to the last activated rule be-
comes the final state.

The particular inference engine we are describing
here does not support parallel or concurrent sprea-
ding activation (see Gupta 1986; Holland et al.
1986) because the slots in the current goal have to
be calculated before the inference engine process
a different (higher-level) one. This is not a limita-
tion due to the programming environment, but a
consequence of the representation criteria we are
using: inference proceeds by accumulation of acti-
vation conditions, therefore, the activation of the
problem final state depends on the “prior” activa-
tion of units above it. Inference steps follow an
explicit path, because they are constrained by the
architectural principles we have programmed.
However, it would be possible to build a compu-
tational theory with non—constrained inference
paths, in which inheritance links between goal
and subgoals were created at run-time by an ana-
logical pattern-matching mechanism (Falken-
hainer 1990).

26,7 CONCLUSIONS

In this paper I have proposed to represent com-
putational theories as associative memories with
some explicit architectural principles built on them.
Free or non—constrained associative memories
(Neural networks) are not very useful as scientific
representation techniques, although we can inte-
grate them in the pattern matching mechanism.

Many authors have critisised the use of com-
puter programs (specially expert systems tech-
nologies) to represent scientific knowledge
(Winograd & Flores 1985; Dreyfus & Dreyfus
1986; Penrose 1989). In this paper I have tried to
answer to those criticisms proposing an “associa-
tive” way of representation. The set of facts, hy-
potheses, concepts and laws, resides in the pat-
tern of associations between attributes, or
representation atoms in this framework. There-
fore, archaeological meanings are not represented
as finite and discrete units, like a dictionary entry,
but in some associative and contextual way, and
in terms of the set of relations holding with other
units. P. Churchland calls this the translational
content; it is a result of the inferential /computa-
tional relations a goal and the related cluster of
rules bears to all the rest of goals and clusters in
the problem space (Churchland 1989:43).

Of course, computational theories cannot be
considered as the definitive answer to the Phi-

248

losophy of Science problems: we are constrained
by the classical limits of formal systems, and the
use of attributes as non-deduced atoms in the
system. Nevertheless the Computational Philoso-
phy of Science (Thagard 1988; Churchland 1989)
is a very young discipline, and it will take advan-
tage from recent advances in computer science
and cognitive psychology.

References

Abelson, R.P. & M., Lalljee

1988 Knowledge structures and causal explanation.
In D., Hilton, (ed.) Contemporary Science and
Natural Explanation. Commonsense conceptions of
causality. The Harvester Press, Brighton.

Anderson, J.R.

1983 The Architecture of Cognition. Harvard Univer-
sity Press, Cambidge (MA).

Bell, D.

1979 The social framework of the information socie-

ty. In M.L. Dertouzos and]. Moses (eds.), The
Computer Age: A Twenty—Year View. The MIT
Press, Cambridge (MA).

Bench-Capon, T.].M.

1990 Knowledge Representation. An approach to Artifi-
cial Intelligence. Academic Press, London.

Berger,]., M. Elditch, & B. Anderson (eds.)

1989 Sociological Theories in Progress. New Formula-
tions. Sage, Newbury Park (CA).

Brown, D.C. & B. Chandrasekaran

1989 Design Problem Solving Knowledge Structures
and Control Strategies. Pitman, London.

Bunge, M.

1983 La investigacion cientifica. Ariel, Barcelona.

Cercone, N. & G. McCalla (eds.)

1987 The Knowledge Frontier. Essays on the Represen-
tation of Knowledge. Springer-Verlag, New
York.

Chen, P.P.

1976 The entity—relationship model. Toward a uni-

fied view of data. ACM Transactions on Data-
base Systems, 1 (1).

Churchland, P.M.

1989 A Neurocomputational Perspective. The Nature of
Mind and the Structure of Science. The MIT
Press, Cambridge (MA).

Collins, AM. & E.F. Loftus

1975 A spreading-activation theory of semantic
processing. Psychological Review, 82:407-428.

Dreyfus, H. & S. Dreyfus

1986 Mind over Machine: The Free Press, New York.

Engelmore, R. & T. Morgan

1988 Blackboard Systems. Addison-Wesley, Reading
(MA).

Falkenhainer, B.

1990 A Unified approach to explanation and theory

formation. In J. Shrager & P. Langley (eds.)
Computational models of Scientific discovery and
theory formation. Morgan Kaufman, San Mateo
(CA).

26 Computer-based techniques for the representation of automatic problem-solving in archaeology

Fararo, T.].

1989 The meaning of general theoretical sociology. Tra-
dition & Formalization. Cambridge University
Press, Cambridge.

Frost, R.A.

1986 Introduction to Knowledge Base Systems. Collins,
London

Gardin, J.C.

1990 The structure of archaeological theories. In A.
Voorrips (ed.) Mathematics and Information Sci-
ence: a flexible framework. Studies in Modern
Archaeology, vol. 3. Holos—Verlag, Bonn.

Gilhooly, KJ. (ed.)

1989 Human and Machine Problem Solving. Plenum
Press, New York.

Gupta, A.
1986 Parallelism in Production Systems. Pitman, Lon-
don.

Havranek, T.

1990 Rule-based systems ruled out?. In J.E. Tiles,
G.T. McKee & G.C. Dean, (eds.) Evolving
Knowledge in Natural Science and Artificial Intel-
ligence. Pitman, London.

Hofstadter, D.

1992 Fluid concepts and creative analogies. Harvester
Press, Brighton.

Holland, J.H., K.J. Holyoak, R.E. Nisbett & P.R.
Thagard

1986 Induction. Processes of Inference, Learning and
Discovery. The MIT Press, Cambridge (MA).

Jackson, P., H. Reichgelt, & F. van Harmelen (eds.)

1989 Logic-based knowledge representation. The MIT
Press, Cambridge (MA).

Jagannathan, V., R. Dodhiawala & L.S. Baum (eds.)

1989 Blackboard Architectures and Applications. Aca-
demic Press, New York.

Jones, A.

1991 Logic and Knowledge Representation. Pitman,
London.

Langley, P. H.A. Simon, G.L. Bradshaw & Zytkov,
JM.

1987 Scientific Discovery. Computational Explorations

of the Creative Process. The MIT Press, Cam-
bridge (MA).

Lauriére, J.L.

1986 Intelligence Artificielle. Resolution de problémes
par I'Homme et la Machine. Eyrolles, Paris.

Levesque, H.

1984 Foundations of a Functional approach to
Knowledge Representation Artificial Intelli-
gence 23 (2):155-212,

Minsky, M.

1975 A framework for representing knowledge. In
The Psychology of Computer Vision. New York
McGraw-Hill.

Murdoch, S., & L. Johnson

1990 Intelligent Data Handling. Chapman and Hall
London.

Newell, A.
1982 The knowledge Level. Artificial Intelligence 18:
87-127.

1990 Unified Theories of Cognition. Harvard Univer-
sity Press, Harvard.

Newell, A. & H.A. Simon

1972 Human Problem Solving. Prentice Hall, Engle-
wood Cliffs (NJ).

Pearl], J.

1985 Heuristics. Intelligent Search Strategies for com-
puter problem solving. Addison—Wesley, Read-
ing (MA).

Pernrose, R.

1989 The Emperor's new mind. Concerning computers,
minds and the laws of Physics. Oxford Universi-
ty Press, Oxford.

Pitrat, J.

1990 Meétaconnaissance. Futur de I’ Intelligence Artifi-
cielle. Hermés, Paris.

Reichgelt, H.

1990 Knowledge Representation. An A.IL Perspective.
Ablex Publ, Hillsdale (N]).

Ringland, G.A. & D.A. Duce (eds.)

1988 Approaches to Knowledge Representation. Re-
search Studies Press, New York (John Wiley
Publ.).

Sacerdoti, E.D.

1977 A structure for Plans and Behavior. Elsevier,
New York.

Shannon, C.E.

1948 A mathematical theory of communication. Bell
Systems Technology Journal , 27:374-423,

Thagard, P.
1988 Computational Philosophy of Science. The MIT
Press, Cambridge (MA).

Torasso, P. & L. Console

1988 Diagnostic Problem Solving. Combining heuristic,
approximate and causal reasoning. Chapman and
Hall, London.

Waern, Y.,

1989 Cognitive aspects of computer supported tasks.
John Wiley Publ, New York.

Winograd, T.
1983 Language as a cognitive process. Academic Press,
New York.

Winograd, T. & F. Flores

1986 Understanding Computers and Cognition. A new
foundation for design. Ablex Publ,Norwood
(ND).

Author's address

Juan A. Barceld

Dpt. Historia de les Societats Precapitalistes i
Antropologia Social

Facultat de Lletres. Edifici B.

Universitat Autonoma de Barcelona,
E-08193 Bellaterra

249

