
(93)

ARCHAEOLOGICAL CONTEXT SORTING BY COMPUTE

J.D. Wilcock. Department of Cc.puting
North Staffordshire Polytechnic

Abstract

The paper describes the production by computer of phase diagrams
giving the relationships between archaeological contexts (trenches,
walls, layers, etc.) in the sections of a large complex site excavated
by several teams. Particular attention is paid to the detection and
deletion of inconsistent data (it is arguable that a well-conducted
archaeological site should produce consistent data, but it seems human
errors do creep in unless a systematic recording method such as that
of Harris is used). If all inconsistencies can be removed while the
site is being excavated, then a much shorter and simpler computer
program may be used.

The Problem

The need for machine assistance in the ordering of archaeological
contexts from a large site was first indicated to me in April 1974
by York Archaeological Trust. When a site is being dug each feature
is given an arbitrary "context number" and its relationship to contexts
above and below it is recorded. A context may be a trench or wall,
or, more frequently, just a soil layer. The observations thus yield
a series of pairs of context numbers, each pair indicating the relation-
ship between an upper and a lower context. From this information it
is possible to draw a phase diagram for the site (see Figure 1 for an
illustration of this process) and this is the basic tool used in the
interpretation of the site.
Since a large site has
many hundreds of contexts,
York Archaeological Trust
discovered that the
drawing of phase diagrams
for such a site entails
months of work for some-
one (usually the site
supervisor) and is
probably the greatest
bottleneck in the work
of the Trust. This is
a job well-suited to
machine methods, and the
paper describes one attempt
to solve the problem by
means of an ALGOL 60
program. Other workers
(Graham,Harris) have also
tackled the same problem.

Figure 1

An illustration of a

Initial data:

phase diagram

Context 371 overlies context 96
371 " 111
371 n 41
14 •1 38
96 n 14
41 « 267
38 " 267

371

96

14

111 41

267

Data preparation

Context relationships were recorded on forms designed by the
Trust and illustrated in Figure 2. A box is provided for each
numbered context, containing columns for recording the numbers of
contexts lying above and below and space for a word description of
the context. Additional relationships may be indicated by the
"equals sign" (e.g. 47 = 131 means context 47 is the same age as
context 131)and the equivalence sign (e.g. 46 = 107 means the two

(9^)

numbers 45 and 107 have been allocated to the same layer in different
parts of the site). The forms completed on site can be used to
produce computer input, consisting of an identity list (pairs of
context numbers allocated to the same context) and a list of context
pairs each giving an upper and lower context.

Stages in the development of the methodology of context-sorting

1. Basic context-sorting algorithm

The basic context-sorting algorithm for the vertical and
horizontal positioning of contexts in the phase diagram reorders
context pairs into the most logical sequence and it concludes with the
allocation of a unique position in the phase diagram for each context.
The flowchart for this algorithm cannot be included here for reasons
of space.

2. Identity between contexts

In order to give a context a unique number (in the case
where several numbers have been allocated to the same context in
different parts of the site), an identity list is read before input
of the context pairs, and context numbers are modified as necessary.

3. Duplicate identity specifications

It is possible for the identity list to include duplicate
pairs, both in the same and reverse orders. To increase efficiency,
all such duplicates are erased from the identity list before context
niimbers are modified.

4. Erasures from the context list

It is also possible for the context list to include
duplicate pairs. These are erased, since it is necessary for the
relationship between a pair of contexts to be recorded once only;
duplicate pairs are very common in practice, for several different
site recorders may note the relationship between a given pair of
contexts at different times.

It is possible to detect at this stage one form of
illogicality in the context list, viz: where context pairs for both
context A above context B, and context B above context A occur. Since
only one of these can be correct the order which occurs second in the
list is erased. These erased pairs are designated "Illogical one-step
lin)cs".

Finally, the operation of the identity list may give rise
to context pairs where the same context occurs in both upper and lower
positions (this can only occur where two layers recognised as separate
in one part of the site are not so recognised in another). These
"same context" lin)cs are erased.

5. Detection of other Illogical sequences

It is possible for context "loops" of the form
c, - c_, c, - c~ c , - c , c ~ Ci to occur for any numbers of

contexts n. The "illogical one-step link" is a special case of this
for n=2. A tree search was tried first to detect such loops, where
all possible ramifications from a given context were set up; it was
later abandoned because the run time was too long and another method
of detecting illogical links was tried.

(95)
6. The effect of batch length on run time

A large site typically yields about one thousand context
pairs and it was decided to investigate how long it would take to
process such a large batch of data on the computer. The run time of
the ALGOL 60 program was found to be proportional to the square of
the number of links in a batch of context pairs. For lOOO context
pairs processed in one batch the run time was estimated to be two hours,
obviously Impracticable.

To reduce the run time, the effect of splitting the run
into a number of equal batches was investigated.

Thus:
Run time = c(number of batches)(run time for one batch in ms)

cnx c(%)(x2)

where n is the number of context pairs in a run, x is the batch length
and c is a constant. By experiment, c was found to have the value 7.2,
hence the run time was as follows for various batch lengths:

Batch length 1 (x) NL miber of bate hes Run time Tota] run time
per batch

1000 1 2 hrs 2 hrs
500 2 30 mins 1 hr
200 5 288 s 24 min
100 10 72 s 12 min
50 20 18 s 6 min

Batch working, while reucing the total run time, gives rise to the
disadvantage that no links are possible between batches, hence some
illogical links may go undetected.

''• An attempt to detect all illogical links irrespective of
batch length

To detect all illogical links the program was modified
to introduce all relevant links from previous batches into a batch
currently being run. This, however, was found to increase the
effective batch length to such an extent that the total run time
became too long. This attempt was therefore abandoned.

Typical Results

A set of typical results is given in Figure 3. The actual
computer output is given on the right and the resulting phase diagram
at the bottom of the left hand column. It can be seen that there are
a number of links which cross in the diagram, so an improvement would
be to remove crossing links as far as possible by amending the layout
of the diagram.

Plans for future improvements in the context sorting software

The first improvement planned is to merge batch outputs on
disc and hence detect illogical links previously undetected. The
phase diagrams of the individual batches will be collated in this
way.

The second improvement planned is to alter the layout of phase
diagrams so that as many crossing links as possible are removed.

(96)

Acknowledgements

I wish to thank Mr. J. Harradine and Mr. P. Addyman of
York Archaeological Trust for first making known to me the context
sorting problem, and for giving frequent advice during the
development of the software. The program package has now been
successfully transferred to the Computer Centre at the University
of York, where it is available for day-to-day use by the Trust.

References

Graham, I.
1974

Harris, E.G.
1975

Harris, E.G.
1975

Private communication

'Stratigraphie Analysis and the computer'
ibid P.

'The stratigraphie sequence: a question of time'
WORLD ARCHAEOLOGY (in press).

Figure 2. Input Form designed by York Archaeological Trust,

Orer Under Over Under Over Under

/»/ r^U toZ foi

m m n V Ù(/

11 zok ÇOI

10 4

III

/Of /Ô6 1

rr
loi
lol mz IV

m =111

Notes.

Context 137.

Nature of Context; ——

Trench, wall etc. written in

this space. If space is

blank, soil layer is aseuraed.

157 is over 55 and under

hh and 26.

106 = 171

I'leans 'same age as'

104 = 333

Means the two numbers

refer to the same

context.

(97)

iîO 13
î -O 100
\ûî 15 BÖPtlCiTB Lina lUJWTITT

;/5 100 BOPLICITI lATKR IBIÜTITT
»iX3 11

Sontcrt Pairs

7
9

U
2
U.
5

16
1
7

l^
6
6
5

10
1

12
2
7

10
8
â
S

1
5
2
9

15

8
10
15

5
9
7
9
1»
8

11
6
7
p

5
2

11
1
1
1
1
1

IC
15

3

16

DUPLICA'ra LIN'Î

SAKS COT'EXT

IV.OCICAL LINK (.8-1-2-5-«)
ILLOOICAL ON-B-ST^P M'^-
Ii:,05ICAL LINK (2-6-1-2;

ILLOGICAL O.'fE-STÏP LIT.T.
ILLOGICAL LINK (.1-3-7-1;
ILLOOICAL LINK (l-i.-5-lC-l,
ILLOaiCtiL LINK (1-3-7-5--/

DUPLICATE LINK

3AlfB CONTKXT

ILLOGICAL 0NI-ST3P LINK

2 200
t—1=
6 300

h
1

12
—+-

7 '

10

OuPLlCâTB U*VIR lOSNTJTV 13. iSB .

13 BGCOMtS too

2U0

300

300

7 f

6

iPO BECOHIS

11 UECOHtS

11 BECOMiS

CuPi ICATC ulN<.

GA>-.'' -U' T'rX''

Li;l . I'AT ;. :•

.INK 11

14 1*^

iLL^TtCAL .!•-'

4

il

li,i."r,ic*L Lr.<

LOOP HÉ^Rfc^S
3

LOOP MfcHgCRb
3
7
8

lULCaiCAL LlH«

too» •^••9t»f

1

3 «ïvie^ r««ulti, aad tte

. Ä-...J.

