
1 Introduction
Simulation modelling of the Palaeoindian expansion
into the Americas was pioneered by Paul Martin, who
proposed an ‘overkill’ model in 1967. Taking demographic
parameters from a compilation of data by Joseph Birdsell
(1957), he calculated that humans reproducing at a rate of
about 3.5% per annum, with directional migration
southwards at an average rate of 16 kilometres per year,
would have reached Tierra del Fuego 1,000 years after
entering the land south of the ice sheets. His model had a
dense ‘front’ of pioneers overexploiting the megafauna in
their path, and moving on to leave a faunally depauperate
environment occupied by humans at merely one tenth of
that initial population density (Martin 1973). With James
Mosimann, he developed this ‘overkill’ model in a later
paper in 1975, in which it was demonstrated that hunters
with unchecked population growth and moderate or heavy
kill rates, or alternatively a focus on preferred mammoth
and mastodon prey, could push their prey species into
extinction throughout North America in a period of 300-500
years (Mosimann/Martin 1975). Calculations of the velocity
of expansion of the front were also made in this paper, and
reinforced the finding that rapid growth (2.5 to 3.5% per
annum) was a necessary condition of very rapid expansion,
although a slow growth model was summarized in which
pioneers reached the Gulf of Mexico 1,157 years after entry
at Edmonton, with an intrinsic growth rate of only 0.65%.

In our own work, we have been concerned to evaluate
the effect of spatial habitat variation, and of the distribution
of geographical barriers to dispersal, on the rate and routes
of expansion of pioneer Palaeoindian populations. Such
effects have generally been omitted in previous models, which
have used averaged habitat values applied to the whole
continental land area; but their importance has nonetheless
been noted. Mosimann and Martin (1975: 306) observed that
‘while we acknowledge their importance in an ideal model,
we do not attempt to [...] incorporate the inevitable local
differences in carrying capacity at the time of invasion.’
Whittington and Dyke (1984: 462), who developed the
Mosimann and Martin model, also observed that ‘a better
approximation of reality than uniform population densities
would be a model that allows for interactions between

megafaunal and human populations whose densities were
based on the distribution of various resources. Since this
would be a radical departure from Mosimann and Martin’s
simulation, a reformulation of the model was not under-
taken.’ Finally, Belovsky (1988: 353) also set the parameters
for his own simulation of Palaeoindian expansion so that
‘rather than tracing the growth of the human population
from vegetation type to vegetation type across the two
continents, an average primary productivity was used.’

2 The simulation model
In modelling the effects of barriers and habitat variation on
the rate of expansion of pioneer human populations, we
have departed radically from the simulation paradigms of
these workers. We have discretized both time and space for
our simulations, using a two-dimensional lattice in which
each cell has cell-specific fixed values for the habitat terms,
and an updated cell-specific value for the human population
size. The update algorithm is a discretized approximation of
a continuous differential equation describing the process of
demographic expansion. For our initial phase of work, we
have been using a discrete approximation of R.A. Fisher’s
classic equation for the ‘wave of advance’ of advantageous
genes (Fisher 1937), which has already been generalized to
the case of animal range expansion and is widely used for
this purpose in biogeography. Fisher’s model is also the
basis for Ammerman and Cavalli-Sforza’s work on the
expansion of Neolithic colonists in Europe.

The Fisher equation is:

dn
= f(n;K) + D∇ 2

n (1)
dt

where n(r,t) denotes the local human population density
(number per unit area) at time t and position r = (x,y). The
diffusion constant D (in km2 yr-1) and the carrying capacity
K are functions of position. The function 

n
f(n) = an (1 - )

k

describes the rate of population increase, and is the logistic
function widely used in theoretical ecology (Murray 1990);
the quantity a denotes the annual population growth rate.
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Figure 1. Ratio of simulated to theoretical velocity of expansion of
the front, plotted against the ‘natural length scale’ (the independent
variable). The latter is given by dividing ^(D/a) by the cell dimension
(in these simulations, 50 km).

We approximate time differentials at particular sites by
finite differences (Press et al. 1986):

dn(r,t) n(r,t + Dt) - n(r,t)
≈ (2)

dt Dt

Typically we use Dt = 1 year.
Space differentials are similarly approximated by finite

differences:

D∇ 2(r0) = h-2S
a

wa Da[n (ra)-n(r)], (3)

where for a given position r0 the sum is taken over nearest
neighbour sites ra on the lattice, and where the lattice size
is h. There are two types of neighbour sites: those along the
lattice axes and those along the diagonals. The sum is
weighted appropriately with parameters wa; this parameter
is typically 2/3 for sites a along the lattice axes and 1/6
along the diagonals. The effective diffusion parameter Da’,
appropriate to motion between the sites r0 and ra, is given
by

Da’ = ^_________D(ra)D(r0).

In practice in any given simulation, only two values of D
are used: D = D0 and D = 0, the latter representing the fact
that the particular cell is inaccessible.

The crucial input parameters for the model are then the
carrying capacity K, the so-called Malthusian parameter a
and the diffusion constant D. D represents the degree of
mobility of an individual (e.g., Ammerman/Cavalli-Sforza
1984). In general individuals will move from their birth
place a distance l during their lifetime t. The square of this
distance will in general be proportional to the time
available; the constant of proportionality is the diffusion
constant D:

l2

D = (4)
4t

The differential equation (1) in the case of constant D and
K, and for populations which can only move in one rather
than two dimensions, predicts that there will be a
population wave of advance, with the frontier travelling
with velocity (Ablowitz/Zepetella 1979):

n = 2.04 ^__Da_ (5)  

Our discretized model gives accurate results so long as the
natural length scale in this equation 
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We note also a methodological point; in principle
(even if in practice this will be difficult!) we may have
independent estimations of D, a, K and n. We predict that n
will be independent of K and dependent on D and a
according to equatation (5). If these predictions are not
borne out — if, for example, the values of D and a required
to be consistent with archaeologically sensible values of n
are not themselves plausible — we are bound to use more
sophisticated models of population movement, for which
the Fisher equation, at least in its naive form, would no
longer be helpful.

3 The use of geographic information in the
lattice model

For the first set of experiments, we have used a projected
representation of the surface of North America and its
surrounding oceans, rasterized from an interpolated surface
generated in IDRISI from the original vector format point
file as a grid of cells coded for their accessibility to a
diffusing population. Sea and other impassable areas are
‘0’, colonizable land is ‘1’. Population can either diffuse
into the cell, or not. The projection transformation
(Transverse Mercator, meridian 90° W., scale factor = 1)
was selected to avoid distortion of area and orientation, and
the interpolated vector file was used to generate raster
output with a cell size of approximately 50 km by 50 km.
To make it easier to understand the real time output to

Otherwise the simulated velocity is faster than that
predicted analytically. For simulations with h ~ 50 km
with 0.005 yr-1<a <.05 yr-1, and with D>10km2 yr-1, our
discretized lattice yields consistently accurate results (fig. 1).



Figure 3. Population growth curves for (a) a sample cell and (b) the whole grid, for a sample set of conditions (a = 0.03, D = 500). K = 100
persons per cell.

Figure 2. Screen capture shots of the travelling wave at t = 250, 500, 750, 1000 and 1250 years. Seed population at Edmonton. Carrying
capacities: 0.04 p.p.km2 (background), 0.2 p.p.km2 (coasts and plains). Population growth rate = 0.03 p.a. (background), 0.01 p.a. (coasts and
plains). Dispersal rate = 400 km2 p.a. (background), 100 km2 (coasts and plains).
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screen while the simulation is running, barrier cells are
coloured blue — since they are mostly sea — while cells
where people can go are coloured green (since they are
nearly all areas of land surface with significant primary
plant production). Population densities on the colonized
portion of the accessible surface are grey-scaled, making it
easy to follow the expansion of the front as it is updated
and written to screen in real time during the simulation
(fig. 2). Figures 3 (a) and (b) show the curves for increasing
population in a single cell and in the whole colonizable
portion of the grid, against time, for an example set of
values for the demographic parameters. It is evident from
these that while the population in each of the cells follows
a logistic growth curve, the growth curve for the total
population is exponential. This is what we would expect
from the original model.

The simulations shown in figure 2 also demonstrate the
effects of varying the barrier locations and the demographic
parameters as cell-specific attributes. The first series
represent demographic expansion over a homogeneous
plane, while the second series has barriers at the Rockies
and the Great Lakes, and two categories of habitat with
covariation in the carrying capacity (k), mobility (D) and
growth rate (a) terms. The varying times taken to first
colonization of points on the surface if they are located
beyond such hypothetical barriers, or in habitats with
differing carrying capacities or disease ecologies, will
clearly be detectable in archaeological radiocarbon dating
of earliest cultural remains at such locations. Thus the
simulation model is capable of generating archaeologically
testable predictions about the effect on demographic
expansion of spatial heterogeneity in barriers and in
vegetation zones.

4 Future development of the model and its
applications

These initial results are now being extended in a second
phase of development of the model, in which ice sheet
locations and vegetation mosaics at successive periods in
the earliest Holocene of the Americas will be reconstructed

by a palaeoecologist and used to predict spatial variation in
Palaeoindian carrying capacities, and more extensive sets of
simulations will be run to generate alternative predictions
about possible effects of such spatial variation on coloniza-
tion rates and routes.

Young and Bettinger (1995), in a study which
independently developed the same demographic diffusion
equation to model late Pleistocene human demic
expansions, suggest that the high values of a and D needed
to generate the observed velocity of Palaeoindian expansion
into the New World under the conditions of Fisher’s model
are nonetheless biologically plausible. They suggest values
for a of 0.03 and for D of 1000 km2/yr (which would mean
the travelling front would reach Tierra del Fuego in about
1,500 years). We believe that such values for the diffusion
constant are, in fact, biologically implausible for almost all
hunter-gatherer social systems for which recent ethno-
graphic parallels exist. It is essential to remember that the
diffusion term denotes mobility which is random with
respect to direction: it is not a term denoting ‘directional
migration’. The value for D chosen by Young and
Bettinger (1995) implies a lifetime mean dispersal distance
for all individuals of about 300 km from the place of birth,
or of about 600 km for the dispersing sex where diffusion
is due to dispersal from the natal group by all members of
one dispersing sex. It is difficult to see how such a high
level of lifetime mobility, random with respect to direction,
could be adaptive in a landscape that was also sustaining
such a high net population growth rate. We therefore
suspect that the rate of colonization of the Americas was
driven by some further dynamic, such as directional
migration by ‘over-exploiters’ up a gradient of herbivore
prey densities in a very fragile ecosystem, and we are
currently exploring new models which can be implemented
in the existing discrete time and space simulation
paradigm.
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