
14. Abstract Data Structures for GIS applications in archaeology 

Clive Ruggles 
School of Archaeological Studies, Department of Computing Studies and Midlands Regional Research Laboratory, 
University of Leicester, Leicester LEI 7RH, U.K. 

14.1 Introduction: modelling with abstract objects 

Conceptual models are constructed of abstractions of 
objects in the real world. By precisely specifying the 
structure of these objects, and the fiinctional relationships 
between them, we can use mathematics to investigate the 
nature and properties of the model as a whole. Precise 
specification also opens up the possibility of implementing 
the model on a computer. This can have considerable 
benefits, such as an enhanced ability to perform complex 
manipulations upon it and the potential to visualise the 
results in a useful way. 

Central to any attempt to implement abstractions of 
real-world objects on a computer is the concept of an 
Abstract Data Type (ADT).' An ADT is essentially an 
abstract model of a real-world object expressed through its 
functionality. For example, the definition of an ADT List 
might specify operations such as Create, which returns an 
empty list, IsEmpty, which takes a list and returns a 
Boolean value which is true if and only if the list is 
empty, Head, which takes a non-empty list and returns its 
first element. Tail, which takes a non-empty list and 
returns the list with its first element removed, and Append, 
which takes an element and a list and returns the list with 
the given element appended at the front. Using these 
operations, we could manufacture any list, investigate the 
properties of any list, and manipulate any list, without 
necessarily knowing how to represent a list (for example 
as an ordered sequence of elements). Equivalently, in the 
computer context, we can use a given List ADT to create 
and manipulate lists without knowing how the ADT is 
actually implemented in the computer system being used. 
Different systems may actually implement List ADT in 
different ways, but as long as the specification is the same 
in each case, the properties 'seen' by a user of each 
system will be identical. A familiar example of a low-level 
ADT is Integer; this is implemented in most programming 
environments (in various different ways), but (subject to 
provisos about the minimum and maximum allowable 
integers in different implementations) the general 
properties of integers, and the results of operations such 
as addition, multiplication and equality, can be relied upon 
in all cases. 

We have 'explained' the list operations above informally 
in plain English, but a formal definition would be needed 
in order to provide mathematical precision. One way of 
doing this is to specify a set of 'laws' that the list 
operations obey: for example, if we append an element 
onto the front of a list, and then take the head of the 
resulting list, we obtain the element we first started with. 
A complete abstract definition of a List ADT might be the 
following: 

signature 
Create — List 
IsEmpty List                     — Boolean 
Head List                     — Element 
Tail List                     — List 
Append Element X List — List 

laws 

IsEmpty(CreateO) 
Head(Append(e,l)) = e 
Tail(Append(e,l)) = I 
NOT IsEmpty(l) =» Append(Head(l),Tail(l))=l 

The 'domain' of an ADT can be understood 
conceptually as the set of all possible objects of the 
type being defined. In computer terms it is the set of all 
possible values (or states) of variables of the given 
type. By generating a 'domain model' for an ADT, we 
can model it conceptually in terms of other ADTs. The 
process can be applied repeatedly until we arrive at 
basic abstract concepts that are considered to be 
universally understood and can be regarded as 'given'. 
In computer terms, given suitable software tools, 
domain modelling allows us to implement a high-level 
ADT using progressively lower-level ones, down to a 
level where we can use ADTs already provided, either 
by another researcher or 'off-the-shelf by a software or 
hardware manufacturer (e.g. Integer and Real 
numbers). Software packages are increasingly providing 
explicit support for modelling using ADTs: these 
include modular and object-oriented programming 
environments, and more recently relational database 
systems such as INGRES (see Ryan, this volume). 

Our definition of a List ADT encapsulates what is 
important about a generic list, while leaving out 
irrelevant details (such as the nature of the elements in 
any particular case). We can use it to construct lists of 
any type of basic object, or more complex entities such 
as lists of lists. In a similar way, we can construct ever 
more complex and specialised ADTs at progressively 
higher levels. Each ADT represents a model of a 
real-world object in a structural hierarchy. 

As a simple example, consider a high-level ADT 
SmallFirm that provides an abstraction of a real-world 
small firm for a computer payroll system. For this 
purpose, all that is important about a firm is the 
employees within it: details such as the colour of the 
building in which the firm is housed are irrelevant. 
Thus SmallFirm might be modelled as an indexed set of 
employees, that is a set of employees each of whom is 
assigned a unique identifier such as an employee 
number. (Employees' names might not suffice for this 
purpose, as they are not necessarily unique.) The 
high-level ADT SmallFirm has been modelled in terms 
of the lower-level ADT Employee. This can now be 
modelled in turn: the important things about an 
employee might be their name, date of birth, grade and 
monthly salary. Many other attributes of a real-world 
employee, such as their height, sex, or hair colour, are 
irrelevant and do not form part of the abstraction. This 
level in the model introduces several new ADTs, 
namely Name, Date, Grade and MonthlySalary each of 

A number of standard computer science text books address the topics of ADTs, e.g. Cleaveland (1986) and Harrison 
(1989). The concept is also elaborated more fully for the non-specialist in Ryan's paper in this volume. 

107 



CLIVE RUGGLES 

which must be modelled in turn. But we are now 
Hearing the level of basic objects that we can assume as 
given. Name, for example, might simply be modelled 
as a character string and MonthlySalary as a real 
number. Date might be given, or might need to be 
further modelled as a combination of day (an integer), 
month (one of twelve enumerated values) and year (an 
integer). The resulting structure could be specified 
formally as follows: 

SmallFirm 
Employee 

=      Employeeld •*• Employee 
: :     n      :       Name 

dob   :       Date 
g       :       Grade 
ms    :       MonthlySalary 

Name =      CharacterString 
Grade =      (MANAGINGDIRECTOR, 

TEAMLEADER, 
TECHNICALSTAFF, 
SUPPORTSTAFF } 

MonthlySalary R 

The notation used is the Vienna Development Method 
Specification Language (VDM-SL) (Jones 1986; Jones 
& Shaw 1990; Andrews & Ince 1991), one of a number 
of formal specification languages (FSLs) that have been 
developed and standardised by computer scientists in 
recent years (Ruggles 1990). FSLs are mathematically- 
based notations for software specification whose syntax 
and semantics are precisely defined. The development 
of a specification is an exercise in conceptual 
modelling. The use of a formal notation constrains the 
modeller to be disciplined in their thoughts, for the 
resulting specification has a precise and unambiguous 
meaning. When completed, the specification may be 
used as the starting point for a computer 
implementation of the abstract object being modelled. 
Indeed, some formal specification languages are 
themselves part of an entire 'formal development 
method', VDM-SL itself being part of the Vienna 
Development Method (VDM). 

Note that in developing the example above, we have 
been working 'top-down' from SmallFirm to Employee 
and eventually to basic ADTs such as Real (denoted by 
the mathematical symbol R), Integer and 
CharacterString. This is a useful approach for the 
conceptual modeller or the designer of a particular 
computer application. The developer of generic 
'off-the-shelf software, such as a database system, will 
wish to work at lower levels, identifying basic ADTs of 
general use and implementing them, and perhaps 
developing tools to enable the conceptual modeller 
(application programmer) to develop their own, 
customised higher-level ADTs on top of them. 

The question of different styles of modelling is a 
separate but related one. The concept of an ADT 
underlies the currently popular 'object-oriented' style of 
modelling, in which frameworks of abstract objects are 
specified and proceed to communicate through the 
exchange of messages. An 'object' within an 
object-oriented framework (such as Account0012345, an 
abstraction of the real-world object 'John Smith's bank 
account') represents a particular instance of a class of 
objects (BankAccount) which essentially corresponds to 
an ADT. If the domain model of the ADT BankAccount 
includes, say,  CurrentBalance, then the state of the 

object Account0012345 will include the current balance 
ofthat account. An object-oriented system is essentially 
dynamic, so that John Smith's current balance may be 
updated at any time when a suitable message is 
received from another object within the system. 

14.2 Spatial Objects, GIS, and Archaeology 

Geographic Information Systems (GIS) are defined in 
the Core Curriculum of the American 'National Centers 
of Geographic Information and Analysis' (NCGIA) as 
Information Systems supporting geographical data, i.e. 
systems including procedures designed to support the 
capture, management, manipulation, analysis, 
modelling and display of spatially-referenced data. 
What is generally taken to distinguish them from other 
computer systems within which spatial data can be 
displayed and processed (e.g. CAD and statistics 
packages) is the ability to perform complex spatial 
operations and to generate new geographical data from 
existing data. A powerful function commonly 
incorporated in GIS systems is the ability to perform 
set-theoretic manipulations on sets of points, lines and 
areas so as to combine different types of spatial data 
and to visualise the result in terms of map 'overlays'. 

A GIS can also be regarded as a computer system 
which supports basic ADTs with spatial attributes. In 
the same way that a computer language such as Pascal 
or a relational database system such as INGRES 
supports certain basic (abstract) data types such as 
Character and Integer, so a GIS supports basic spatial 
data types such as Point, Line and Area. A definition of 
the Area ADT might include the following operations: 

UnionOf: 
IntersectionOf: 
Around: 
NearTo: 
Between: 
DirectionFrom: 

Area x Area -• Area 
Area X Area -» Area 
Area -* Area 
Area -• Area 
Area X Area -» Area 
Area X Direction -• Area 

This view of GIS means that they can be regarded not 
just as systems enabling spatially-related data to be 
manipulated and visualised, but also as support tools 
for conceptual modelling using objects with spatial 
properties. While it is the former that accounts for the 
sudden realisation of the great potential of GIS within 
archaeology (e.g. Allen et al. 1990), the latter is 
equally important (Ruggles forthcoming). 

There is, however, a fundamental problem. This is the 
fact that no standard data structure model currently 
underlies GIS in general, in other words there is no set 
of universally agreed basic spatial ADTs. On one level 
this means that there is no guarantee that high-level 
data structured according to one model, and held within 
a particular GIS, will easily port to another GIS, or to 
a GIS of the future. On another level it means that the 
conceptual modeller cannot be assured that the basic 
'bricks' underlying his or her model will not 
subsequently be replaced by different, incompatible 
ones as low-level spatial theory advances. The problem 
has been recognised for many years within the GIS 
community: for example, a group of experts concluded 
in 1983 that the absence of a coherent theory of spatial 
relationships 'hinders the use of automated GIS at 
neariy   every   point',   (Boyle    1983).   Two   major 

108 



14. ABSTRACT DATA STRUCTURES FOR GIS APPLICATIONS IN ARCHAEOLOGY 

outstanding problem areas are the following:^ 

• The relationship between geometrical and 
topological properties. An extreme approach to 
the modelling of spatial objects is the 'purely 
geometrical', in every spatial object is modelled in 
terms of the three basic ADTs Point, Line and 
Area. This sort of approach was quite common 
amongst early GIS implementations, and appears 
to lend itself easily to hierarchical modelling. 
However, it has the severe practical limitation that 
topological properties, such as whether lines 
intersect or points lie on lines, are not necessarily 
preserved under transformations, particularly 
changes of scale. Consider, for example, the 
problem of modelling two closed polygons with an 
edge in common. However careftilly, and in 
whatever order, these are digitised, false gaps or 
slivers may occur when the data are displayed at 
a significantly larger scale. In working systems 
these problems are minimised by a number of 
more or less sophisticated fiddles. 

At the opposite extreme are 'totally topological' 
approaches in which each point, line or area in a 
map must be topologically related to all the others. 
An example of this approach is the 'cell 
complexes' of Frank and Kuhn (1986), in which 
there is effectively a single basic ADT, Triangle. 
The spatial attributes of any abstract object, 
however complex, are described in terms of a set 
of triangles tied together through various 
topological constraints. The problem here is that 
there is no possibility of hierarchical modelling, 
since the topological constraints must always be 
expressed at the lowest level. Every new 
geometrical object added to the system has to be 
topologically tied in at the outset, once and for all. 
A fruitful area of research is the investigation of 
'halfway house' solutions that allow some 
geometrical objects to exist without necessarily 
being tied topologically to all other such objects, 
and permit hierarchical structuring. 

• 'Fuzzy Operators". In general, the meaning of 
certain spatial operators, such as Around and 
NearTo, will depend on a particular set of 
circumstances, and may not always be precisely 
definable. It is a problem of the human-computer 
interface to attempt to tie this meaning down as 
precisely as is useful or necessary. A considerable 
amount of research has being directed to 
formalising spatial relations (e.g. Robinson et al. 
1986; Haller, 1989; Angell et al. 1990). 

The problem of fuzziness is not innately 
insurmountable, for specifying the result of a fuzzy 
operation 'as precisely as is useful or necessary' may 
itself be  done  precisely  for  any  particular  set  of 

circumstances, and hence the result of the operation can 
still be formally specified (e.g. Newman et al. 
forthcoming). TTie problem is to agree on that 
specification, and hence to agree on the relevant 
low-level ADTs. The problem of geometry vs topology 
also concerns how best to specify the low-level ADTs 
upon which high-level spatial objects should be 
modelled, so as to achieve the greatest conceptual 
power and efficiency of implementation. 

It is clear, then, that no universally agreed basic set of 
low-level spatial ADTs currently exists, nor is it 
definitely yet in sight. What, then, is the point in 
attempting to perform high-level conceptual modelling, 
or to build a complex spatial model within a GIS, when 
it appears to be founded upon quicksand? In a recent 
paper (Ruggles forthcoming) I have argued that there 
are considerable benefits in the simultaneous 
development of high-level abstractions within an 
application area such as archaeology and the low-level 
abstractions that underlie them within a field such as 
GIS. Furthermore, these benefits are mutual. Since 
archaeologists are extensively concerned with spatially 
referenced data and their interrelationships, they can 
make widespread use of low-level abstract spatial data 
structures within GIS. By constructing high-level 
abstract objects and being keen to implement them on 
a GIS in order to manipulate them and visualise their 
properties, archaeologists formulate requirements for 
the low-level abstractions that must underlie them, and 
hence help to drive research in GIS data structures 
itself. This will then result in improvements in 
'off-the-shelf software that are of direct benefit to 
archaeologists. 

In the context of that argument I discussed the example 
of a simple terrain model. This example will be used 
again here, but reformulated and related strongly to the 
ADT concept. 

14.3 Terrain models and domain models: a 
comparison of two approaches 

Consider a simple terrain model that might be used by 
a landscape archaeologist to model locations within a 
geographical area under study. The entire model may 
be encapsulated in a single ADT Terrain which is an 
abstract model of the terrain of the area under study. 
The conceptual problem is to provide a domain model 
for this ADT in terms of progressively lower-level 
ADTs. The mathematical model so formed might then 
form the basis of direct (statistical) analysis. It might 
also form a specification that can be implemented 
within a GIS. 

Every step in the modelling process reflects a particular 
type of approach that may be heavily influenced by 
existing paradigms: the possible types of approach and 
the resulting models may be very different indeed. 

2. A further major problem area in GIS, and m spatial analysis generally, is that of scale change and generalisation. This 
concerns the Fact that the representation of a geographical object may depend upon the scale of representation. On a large- 
scale map, for example, each house within a town might be represented by an area, whereas on a small-scale map the 
entire town might simply be rejpresented as a point. A great deal of work has been undertaken in the area (e.g. Brassel 
& Weibel 1988; McMaster 1989). However, the problem is one of graphical representation for optimal visualisation. Data 
structures for generalisation are a refinement, or 'concrétisation', ofabstract spatial objects. If we accept the principle 
that the first priority is to understand and specify spatial objects and their interrelationships in the abstract, and only then 
to worry how best to represent them, then the generalisation problem is not our first priority. For this reason it is 
discussed no further here. 

109 



CLIVE RUGGLES 

Nowhere is this clearer than at the very outset in the 
domain modelling process for the Terrain ADT. The 
approach of a cartographer, used to representing and 
visualising the terrain of an area as a contour map, 
might be to model the terrain as a set of contours, 
indexed by a unique identifier relating to elevation. 
Note that specific details such as the exact nature of a 
contour and the actual elevations for which contours 
will be included in the model are irrelevant at this 
stage: it is the general form of the model that is 
important. Mathematically, we would represent this as 
a partial function, or 'mapping', from the set of (all 
possible) contour identifiers to the set of (all possible) 
contours, in other words a function that associates at 
most one contour with each possible contour identifier. 
In VDM this is expressed as follows: 

Terrain      =     Contourld •* Contour 

An archaeologist, on the other hand, might be heavily 
influenced by the desire to model terrain characteristics 
at particular locations in order to correlate them with 
human activity patterns. This could lead to a view of 
the entire terrain model as a set of 'point terrain 
models', and hence to a first refinement of the domain 
model of the Terrain ADT as an indexed set of point 
terrain models. Following this approach we would 
model the terrain of an area mathematically as a 
mapping (partial function) from the set of points within 
the area to the set of point terrain models. In VDM: 

Terrain      =      Pointid  * PointTerrain 

As in the case of the cartographer's model, more 
specific questions, such as the exact set of points at 
which point models will be required, are irrelevant at 
this level of abstraction, leaving the theoretician to 
concentrate on broad issues such as whether the general 
manner in which the terrain of an area has been 
modelled is a useful one. Note also that the domain of 
the mapping is actually a set of identifiers of points 
rather than a set of points themselves. On grounds of 
elegance and efficiency it is desirable to restrict the 
domains of mappings to be sets of tokens (such as 
identifiers) rather than more complex objects. This is 
analogous to arranging entity types in third normal 
form. A separate data structure would map point 
identifiers onto their co-ordinates for cross-reference. 

Both the approaches described above have produced a 
new, lower-level ADT. The cartographer has 
introduced the ADT Contour and now has to model its 
structure. It has been specified that only a single 
contour may have a given identifier, and it is intended 
that an identifier should correspond to a given 
elevation. Thus a 'contour' is in fact an abstraction of 
all locations in the area whose elevation is the elevation 
in question. These break down into discrete sets of 
locations joined by continuous lines, some forming 
closed loops and some running to the edge of the 
geographical area in question. Thus we might specify 

Contour     =      Line-set 

where Line, representing an open or closed continuous 
line, is regarded as a basic spatial ADT.^  

In the alternative approach we now need to provide a 
domain model for the ADT PointTerrain. A degenerate 
model, yet one that is entirely valid, is simply the 
elevation of the point in question, in other words 

PointTerrain Elevation 

This, of course, produces the basis for a standard 
digital terrain model. The archaeologist's model, 
however, may be considerably richer. To model the 
terrain at a given location, we might use four mutually 
independent indexes: elevation, slope, aspect, and 
'terrain form index', an indicator suggested by 
Kvamme (1989). Such an approach is well exemplified 
in Kvamme and Jochim's analysis of the distribution of 
Mesolithic sites in southern Germany (1988). The 
elevation may simply be modelled as a real number (in 
some unit of measurement), the slope as an angle 
between 0° (horizontal) and 90° (vertical), the aspect 
as an azimuth (i.e. an angle between 0° and 360°) and 
the terrain form index as a non-negative number. The 
point terrain is a combination of these four indexes. In 
VDM: 

PointTerrain e 
s 
a 
tfi 

Elevation 
Slope 
Aspect 
TenainFonnlndex 

Elevation = R 
Slope 

inv s è s ^ 0 A s 
Angle 

^ 90 

Aspect = Angle 

TerrainFormlndex = R+ 
Angle 

inv a â a è 0 A a 
R 

< 360 

The basic spatial ADT upon which the objects modelled 
in this example are based is Point, but in other cases 
use might also be made oi Line (e.g. when modelling 
communication routes) or Area (e.g. when modelling 
surface geology). 

14.4 The importance of hierarchical structuring 

The analytical functionality and visualisation potential 
supported within the current generation of GIS is 
largely based on flatly-structured contour or digital 
terrain data. This limitation is at the heart of many of 
the observed error and inconsistency problems, both in 
analysis (different ways of implementing analytical 
procedures in different GIS systems can significantly 
affect the results of the analyses — e.g. Kvamme 1990) 
and visualisation (e.g. spurious 'gaps and slivers' may 
appear when data are displayed at different scales, as 
mentioned above). 

Hierarchical structuring, while not completely 
eliminating such problems, can bring them under 
control by making them directly manageable. The key 
is that specification of an ADT takes place at one level, 
and its implementation at a lower level. An 
implementer is faced with the task of providing a 
working ADT that conforms precisely to the functional 

3. Because of possible confusion in the nomenclature it might be felt that a name such as ContourLineSet is more appropriate 
than the name Contour to describe the ADT in question. Such considerations are important because of the need to 
communicate an appreciation of the nature of a model to others who have experience of the real-world objects being 
abstracted. However, they need not concern us further here. 

110 



14. ABSTRACT DATA STRUCTURES FOR GIS APPLICATIONS IN ARCHAEOLOGY 

specification provided. The problem of how to 
determine, for example, the terrain form index at a 
given point, is separated into one of specifying the 
ADT TerrainFormlndex, a problem in the domain of 
the archaeologist, and one of implementing it. The 
specifier specifies the desired properties of a number 
that reflects the roughness of the terrain at a given 
point: the implementer then decides whether this can be 
satisfied, for example, by taking the range of elevations 
within a given radius of the point, or the standard 
deviation of sample elevations within a given radius, or 
by some other means. A formal specification will 
include analytical operations that can be performed 
upon terrain form indices, including their relationship 
to (and hence their determination from) other terrain 
data, which an implementer must satisfy within given 
tolerances. The problem of errors and inconsistencies 
between different implementations, should thus be 
avoided, or at least confined to within the specified 
tolerances. The archaeologist can also, of course, 
include the index as an integral part of a higher-level 
conceptual model and discuss its abstract properties 
separately from consideration of implementation 
difficulties. 

Hierarchical structuring also allows high-level abstract 
modelling to take place as a theoretical exercise, 
without the constraint of any necessity for immediate 
implementation in a computer information system. (By 
recognising abstractions such as Terrain itself as 
high-level ADTs we have already taken an important 
step along this road.) Indeed, it is important that 
implementation constraints be cleanly separated from 
theoretical issues; otherwise there will be a tendency to 
limit theoretical concepts to relatively simple, readily 
implementable ones. A good example from the days 
before GIS is the modelling of areas of social influence 
using Thiessen polygons. Within a GIS far more 
complex areas may be analysed and visualised. While 
the introduction of GIS has made considerably more 
complex spatial objects relatively easy to handle, it is 
imposing an artificial (and probably temporary) 
constraint to limit one's consideration to conceptual 
objects that are readily implementable even in the 
current generation of GIS. 

A further example given by Ruggles (forthcoming) 
concerns the problem of obtaining a measure of the 
view from a point location, a factor that may be of 
great importance in analysing distributions of 
archaeological phenomena with respect to the 
landscape. A simple criterion often used in the past has 
been view catchment, defined as the percentage of the 
terrain within a given distance of the point in question 
that is visible from it. Before the days of GIS this 
simple scalar measure was determinable, albeit with 
great tedium, from physical maps. However the chosen 
distance is of course arbitrary, so a more representative 
measure might be 

ViewCatchment =      Distance * Percentage 

where the domain of the mapping is a set of discrete 
values at regular intervals. In the limit as the intervals 
tend to zero, view catchment tends to a continuous 
function on R*. 

Then again, studies in archaeoastronomy and elsewhere 
have emphasized the importance in certain contexts of 
the orientation of visibility, that is not just the total 
view from a location but how the horizon distance 
varies with azimuth. This implies a still more complex 
general abstract conception of view catchment. Both 
Fraser (1983) and Ruggles (1984) used a small number 
of discrete distance categories in their analyses, owing 
to practical limitations, but in the abstract 
ViewCatchment might now be defined as follows: 

ViewCatchment =      Azimuth ••'•HorizonDistance 

Note that the previous measures of view catchment can 
be deduced from this more general one. Further 
factors, such as the visibility of landmarks (e.g. 
mountain peaks), might be included in an even more 
complex abstract conception of view catchment. 

14.5 Conclusions 

One of the most basic principles that should 
consistently underlie conceptual modelling is that of 
hierarchical abstraction. The concept of an Abstract 
Data Type lies at the heart of this approach. At the 
highest level in a model are ADTs representing 
abstractions, possibly highly complex in structure, of 
objects in the real world that are of special interest in 
a particular field of enquiry. At the lowest level are 
ADTs representing abstractions of basic, fundamental 
objects that are both widely understood and widely 
applicable. At progressively higher levels in the 
hierarchy, objects become progressively narrower in 
their field of interest. Below certain levels it makes 
sense to attempt to standardise ADTs so that 
'off-the-shelf concepts can be used in a wide variety of 
conceptual models and 'off-the-shelf ADTs are widely 
available in commercial software, thus facilitating the 
portability and future-proofing of computer 
implementations of models between different software 
systems. 

The interaction between the development of conceptual 
models in an application area, which involves the 
specification of high-level ADTs, and the development 
of commercial system software of wide applicability, 
which involves the specification and implementation of 
low-level ones, is two-way. Not only can and should 
techniques of data modelling originating in computer 
science and mathematics be incorporated as powerful 
tools in high-level model building; it is also the case 
that the attempted description (implementation) of 
high-level ADTs in terms of low-level ones will 
considerably aid research attempting to clarify and 
standardise concepts at the low level. 

Nowhere is this more true than in GIS applications in 
archaeology. GIS are concerned with low-level ADTs 
with spatial attributes. Archaeology is centrally 
concerned with objects in the physical and human 
environment and their interrelationships, and in 
particular with the spatial attributes of these objects. 
Thus archaeology provides arguably one the richest 
possible application areas for developing high-level 
spatially referenced ADTs, and hence for driving 
requirements for standardised low-level ones. 

Ill 



CLIVE RUGGLES 

An important new development is that of modelling 
low-level ADTs with temporal attributes. The area of 
'temporal databases' and 'temporal GIS' is beginning to 
attract a good deal of attention (Armstrong 1988; 
Langran 1989; Worboys 1990). Ultimately, one can 
envisage 'spatio-temporal information systems', which 
provide a basic framework of low-level ADTs with 
temporal as well as spatial attributes. Few application 
areas are in a better position to drive developments in 
this area than archaeology (see Castleford, this 
volume). 

In the meantime, one of the most immediate needs is 
for GIS, like programming environments and database 
management systems, to begin to support user-defined 
ADTs, thus enabling the application programmer to 
construct a structural hierarchy and to implement 
complex abstractions. And one of the most immediate 
needs for archaeologists is to clarify and formally 
specify their high-level concepts in the form of ADTs, 
particularly in areas such as landscape studies and in 
temporal modelling. Here, high-level abstractions in 
specific applications areas have a crucial role to play in 
influencing the development of a standard structure of 
fundamental spatio-temporal concepts to support them, 
both on and off the computer. 

Acknowledgements 

I am most grateful for the helpful comments of the 
referee. 

References 

ALLEN, K.M.S., s.w. GREEN & E.B.W. ZUBROW (eds.) 
1990. Interpreting Space: GIS and Archaeology, 
London, Taylor & Francis. 

ANDREWS, D. & D. INCE 1991. Practical Formal 
Methods with VDM, London, McGraw-Hill. 

ANGELL, R., D.J. MEDYCKYJ-SCOTT&I. NEWMAN 1990. 
The Development of a User-Interface for the 
Handling of Spatial Language Queries in a 
Geographic Information Retrieval System, I: 
Theoretical and Conceptual Issues, Research Report 
No. 12, University of Leicester and Loughborough 
University, Midlands Regional Research Laboratory. 

ARMSTRONG, M.P. 1988. "Temporality in spatial 
databases". Proceedings of GIS/LIS 1988, 2: 
880-889. 

BOYLE, A.R. 1983. Final report of a conference on the 
review and synthesis of problems and directions for 
large-scale Geographic Information System 
Development, ESRI, Redlands CA, NASA Contract 
NAS2-11346. 

BRASSEL, K. & R. WEIBEL 1988. "A review and 
framework of automated map generalisation". 
International Journal of Geographical Information 
Systems, 2(3): 229-244. 

CLEAVELAND, J.C. 1986. An Introduction to Data Types, 
London, Addison-Wesley. 

FRANK, A.U. & W. KUHN 1986. "Cell graphs: a provable 
correct method for the storage of geometry". 
Proceedings of the 2nd. International Symposium on 
Spatial Data Handling, Seattle, Washington: 
411-436. 

FRASER, D. 1983. Land and Society in Neolithic Orkney, 
British Archaeological Reports (British Series) 117, 
Oxford, British Archaeological Reports. 

HALLER, S. 1989. "Spatial relations representation and 
locative phase generation in a map context", National 
Centre for Geographic Information and Analysis, 
State University of New York at Buffalo, Technical 
Paper 89-14. 

HARRISON, R. 1989. Abstract Data "types in Modula-2, 
London, John Wiley. 

JONES, C.B. 1986. Systematic Software Development using 
VDM, London, Prentice-Hall. 

JONES, C.B. & R.C. SHAW 1990. Case studies in 
Systematic Software Development, London, 
Prentice-Hall. 

KVAMME, K.L. 1989. "Geographic information systems 
in regional archaeological research and data 
management", in M.B. Schiffer (ed.). 
Archaeological Method and Theory, 1, Tucson, 
University of Arizona Press: 139—203. 

KVAMME, K.L. 1990. "GIS algorithms and their effects 
on regional archaeological analysis", in K.M.S. 
Allen, S.W. Green &. E.B.W. Zubrow (eds.): 
112-125. 

KVAMME, K.L. & M.A. JOCHIM 1988. "The 
environmental basis of Mesolithic settlement", in C. 
Bonsall (ed.). The Mesolithic in Europe, papers 
presented at the 3rd International Symposium, 
Edinburgh 1985, Edinburgh: 1-12. 

LANGRAN, G. 1989. "A review of temporal database 
research and its use in GIS applications", 
International journal of GIS, 3(3): 215—232. 

MCMASTER, R. (ed.) 1989. "Numerical generalization in 
cartography", Cartographica, 26(1), Monograph40. 

NEWMAN, I.A., D. MEDYCKYJ-SCOTT, C.L.N. RUGGLES 
&. D.R.F. WALKER forthcoming. "Handling the 
spatial component of a metadata query — a formal 
approach", submitted to International Journal of 
GIS. 

ROBINSON, V.B., M. BLAZE & D. THONGS 1986. 
"Representation and acquisition of a natural language 
relations for spatial information retrieval", 
Proceedings of the 2nd International Symposium on 
Spatial Data Handling, Seattle, Washington: 
472-87. 

RUGGLES, C.L.N. 1984. "A new study of the 
Aberdeenshire Recumbent Stone Circles, 1: Site 
data", Archaeoastronomy (supplement to Journal for 
the History of Astronomy), 6: S55—79. 

RUGGLES, C.L.N. (ed.) 1990. Formal Methods in 
Standards, Berlin and London, Springer-Verlag. 

RUGGLES, C.L.N. forthcoming. "A fair exchange: the 
mutual benefits of theory development within 
Archaeology and within GIS", paper delivered at 
TAG 90, Lampeter, December 1990, and submitted 
to Journal of Archaeological Science. 

WORBOYS, M.F. 1990. Reasoning about GIS using 
temporal and dynamic logics. Research Report No. 
18, University of Leicester and Loughborough 
University, Midlands Regional Research Laboratory. 

112 


