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20.1 Introduction 

The ability to recreate surfaces is an increasingly 
important requirement of modem archaeology. 
Examples of such applications occur in the examination 
of physical topography in the vicinity of a site, in the 
detailed surface survey of a site to provide evidence of 
earlier structure, and in the interpretation of 
geophysical and other quantitative surveys. In all these 
examples the aim is to construct a surface above a 
reference plane, which can generally be taken to be a 
local horizontal plane and be represented by a 
geographical map or plan. There are, however, 
significant variations in the requirements and 
methodology for different applications. 

The standard problem is to construct a continuous 
surface from a finite and discrete set of data. In 
topographical survey, the discrete data relate to an 
actual physical surface, and the aim is to reproduce that 
surface as accurately as possible, since errors could 
have unpredictable effects at a later stage of the 
application. In other forms of quantitative survey, the 
discrete data may represent the totality of available 
information, and the surface is constructed primarily as 
an aid to visualising and interpreting the data; in such 
circumstances, the main consideration is not of 
accuracy but of utility in interpretation. 

Another important variation is in the distribution of the 
data stations over the reference plane. If the stations are 
situated at the vertices of a regular grid, as is usually 
the case in geophysical survey, then a number of 
standard, reliable methods are available to interpolate 
between them and define a function of two variables 
from which the surface may be constructed. If the 
stations are irregularly distributed over the reference 
plane, however, the methodology is much less well 
defined; a large number of techniques are available, 
most of which can be expected to work well in certain 
circumstances, but few of which are reliable in all 
situations. 

The present paper is mainly concerned with the 
reconstruction of a topographical surface (a digital 
terrain model or DTM) from a contour map of the 
relevant area. This problem is of particular interest to 
the author (Haigh 1989), since a DTM is required for 
the accurate rectification of aerial photographs of 
uneven terrain. It is inconvenient to use a regular grid 
of stations, when heights are readily available only at 
points on the recorded contours on the map. 
Consequently, the DTM must be constructed from an 
irregular distribution of points selected on the available 
contours. 

As a contrasting problem, consideration will be given 
to the construction of a continuous distribution from an 
irregular set of samples over the surface of a bounded 
site. Such a distribution might represent the density of 
some class of artefact, and it may be assumed that the 

density becomes zero beyond the site boundaries. In 
this problem, the emphasis is on the satisfactory 
representation of the data, and accuracy is not a prime 
requirement. The two problems represent opposite 
extremes of requirement, and a method which has been 
tested on both should be applicable to many 
intermediate problems. 

It must be emphasised that this paper is concerned with 
the mathematical construction of surfaces, and not with 
their subsequent graphical representation. The choice of 
representation — contours, grey scales, coloured scales, 
dot densities, wire-frame diagrams, or synthetic 
illumination — is largely a matter of personal taste, 
moderated by available computing power. Many 
graphical techniques cannot work directly from an 
irregular data set, but require a regular grid of values 
to be created as an intermediate step. In the problem of 
constructing DTMs, graphical representation is largely 
irrelevant, the prime consideration being the accuracy 
of results from the rectification of aerial photographs. 

20.2 The mathematical problem 

The main problem to be considered in this paper is: 
Given a set of n data points (x„ y,), i = 1,..., n, 
irregularly distributed over some region of the 
Euclidean plane, and a dependent data value u, 
associated with each point, how can the data be 
interpolated to associate a dependent value with each 
point of the region? In other words: How can the 
function ƒ be constructed to define the dependent 
variable 

« = Ax,y) 

over the whole region, so that 

"< = Ah' y) ' » = 1."., n, 

at each of the data points (Xi, y,)7 

In seeking a solution to this problem in an 
archaeological context, consideration should be given 
to three different criteria: reliability, realism, and 
robustness. Reliability indicates that the method works 
in every appropriate case; a method which works well 
in some cases, but fails in other, apparently similar, 
cases cannot be satisfactory for an archaeologist whose 
knowledge of mathematics is limited. Realism means 
that the results should give a satisfactory reproduction 
of the intended surface; when constructing a DTM, the 
dependent variable u should reproduce the actual 
ground height to within required accuracy. Robustness 
indicates that the results should not be sensitive to the 
precise details of the data set; data sets which are 
intended to provide similar information about the same 
surface should give precisely similar results. 

The literature contains a large number of attempted 
solutions to the problem. Broadly speaking, the 
methods     fall     into     three     different     categories: 
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triangulation techniques, locally fitted fiinctions, and 
global fiinctions. 

For methods in the first category, the plane region of 
interest is divided into disjoint subregions, and a 
separate function is defined over each subregion. With 
irregular data, the most convenient subregion is a 
triangle, with vertices at three of the data points. For 
the technique to work satisfactorily, the division into 
triangular subregions must follow unambiguous criteria. 
It has been shown (Green & Sibson 1978) that 
Delaunay triangulation satisfies an optimal set of such 
criteria; Delaunay triangulation is the dual operation of 
Dirichlet tessellation, whose results are often known to 
geographers and archaeologists as Thiessen polygons. 
It is customary to represent the surface as a plane facet 
over each triangle, thereby guaranteeing the continuity 
of the interpolant ƒ, but not of its derivatives. This 
method is reliable, as it always works, but neither 
realistic, since the facets can deviate considerably from 
the true surface, nor robust, since small changes in the 
data set can cause significant changes in the 
triangulation. It is possible to fit more complicated 
splines over each triangular subregion, thereby 
achieving higher-order continuity, but such methods are 
quite difficult, and not often used. 

The locally fitted fiinctions are defined for each data 
point, fitting their own point and approximating its 
neighbours. The value of the dependent variable « at an 
intermediate point is determined as a weighted average 
of neighbouring local functions. Shepard (1968) has 
published a method of this type; the author has devised 
independently a similar method for the construction of 
DTMs (Haigh 1989). Local function methods are quite 
reliable and realistic, provided that some care is taken 
over the choice of the data set, principally by ensuring 
a fairly uniform spread of data points. However, they 
are not robust, since a poor spread of data can lead to 
disastrous results. 

The majority of global fitnction methods are 
approximation, rather than interpolation, techniques, 
since a function with a limited number of parameters is 
fitted to the data, possibly on the basis of a 
least-squares criterion. Such methods may not produce 
a realistic DTM, since it is difficult to devise a 
mathematical function which can reproduce all the 
intricacies of a typical landscape. In recent years, 
however, a global function method for interpolation has 
emerged which seems worthy of consideration for 
archaeological surfaces, and the remainder of this paper 
is devoted to a discussion of the technique. 

20.3 Radial basis functions 

The original use of radial basis functions for data 
interpolation is attributed to Hardy (1971), and is 
described in the following paragraphs. 

Select some suitable fiinction </)(r) of radial distance r 
from the origin: 

r = \lx'^ + y^. 

In place of the argument r, substitute the radial distance 
from any one {Xj, y^ of the n data points: 

to give 

r-\x-Xj\^= ^{x - A:/ + (y - y/ . 

^{[x - x^ ly . 

In this notation, the vector symbol x represents the 
coordinate pair (x, y), and the notation || \^ denotes 
the Euclidean square norm, which is effectively 
equivalent to the Euclidean distance between two 
points. Both the notation and the interpolation technique 
are applicable to spaces of higher dimension, but only 
the two-dimensional case is discussed here. 

The fiinction fix) is now defined as a linear 
combination of the n functions 0( || x - x, || 2) introduced 
above: 

*y 112. ) . (1) 

where each coefficient X, is an undetermined parameter. 
Since the function/is to be an interpolant, it must take 
the correct value at every data point. Thus 

and 

E^4>(l X,   -  Xj .) */ ' 1,..., n .     (2) 

Equation (2) is a system of n linear equations in n 
unknowns X,. In principle, it should possess a unique 
solution, provided that the nxn matrix H of values 
'(>(\\x, - xjj) is non-singular; i.e. provided that 

det[(j)(|| X, - Xj I2)] * 0 . 

The resultant values \ are substituted into equation (1) 
to give the required interpolant, which has now been 
expressed on the basis of the radial fiinctions <^(r), 
where r = <f>(\\x - Xj\\2), explaining the use of the term 
radial basis fiinctions. 

Having experimented with several different forms for 
the basis fiinction <^, Hardy (1971) declared that the 
most successful one was the multiquadric 

<t>(r) - 4?^T^ , 

where c is an adjustable constant. Mathematicians 
appear not to have taken much interest in radial basis 
fiinctions until the 1980s, when Franke (1982) 
re-examined Hardy's results and confirmed empirically 
the usefulness of the multiquadrics. 

Micchelli (1986) extended an earlier result of 
Schoenberg to prove the Schoenberg-Micchelli theorem, 
which provides a set of sufficient conditions on the 
function 0 to ensure that the matrix H is non-singular. 
Among the fiinctional forms that satisfy the 
Schoenberg-Micchelli theorem are the following: 

<t>{r) = r : linear; 
<l>{r) = r' : cubic; 
0(r) s (P + c^)'-* : multiquadric; 
<i>(r) s (r^ + c^)-''' : inverse multiquadric; 
</>(r) = r^ \nr : Duchon's thin-plate splines; 
4>(r) = exp(-r^/20 : gaussian. 

158 



20. RADIAL BASIS FUNCTIONS AND ARCHAEOLOGICAL SURFACES 

The quadratic r^ is a notable absentee from this list; in 
fact, together with other even powers, it does not 
satisfy the conditions of the Schoenberg-Micchelli 
theorem. A small experiment soon convinced the author 
that quadratics do not make satisfactory radial basis 
functions! 

The linear function in two dimensions is a cone with its 
apex at the origin r = 0. Consequently its first 
derivatives have a discontinuity there. The significance 
of the multiquadric is that the constant c, which can be 
quite small, removes the discontinuity at the origin, and 
turns the cone into a hyperboloid. At first sight the 
multiquadric may seem to be a surprising choice of 
radial basis function, since it increases indefinitely for 
large values of r. In fact, the awkward behaviour at 
large r seems to be the very property which makes it 
ideally suitable for the creation of surfaces, since the 
interpolant is dominated by the smoothing influence of 
more distant data points, with local points providing 
only a slight correction. Consequently the summed 
interpolant is a smoothly varying function, tightly fitted 
to the data points, with little tendency to overshoot or 
to produce other artefacts of calculation. 

20.4 Application to DTMs 

The author has used multiquadric basis functions to 
create DTMs for the rectification of aerial photographs 
of uneven terrain, replacing the locally fitted functions 
used in earlier versions of his program (Haigh 1989). 
He has applied the method to several different sites, 
and has created several different DTMs for each site, 
varying the number and distribution of the data points. 
The effects of removing a few points at random from a 
data set were studied, as were the effects of adding 
miscellaneous points. The results were judged mainly 
on the basis of the accuracy of the rectification, 
comparing features from different photographs with 
each other and with the map. Tests were also made by 
producing raster graphics, showing contours which 
could be compared with those of the original map. 
Examination of the results, in the light of the three 
criteria of section 20.2, showed that the method is very 
reliable. It produced good results for each of the sites, 
and no unreasonable precautions were required in 
preparing the data set. 

The results were also realistic. If care was taken to 
ensure that a particular detail of the landscape was 
incorporated into the data set, then the detail was 
apparent in the interpolated DTM. This effect was 
demonstrated most clearly by showing the contours as 
raster graphics, but it was also revealed in the 
successful rectification of features from areas with 
complex topography. It is only necessary to provide as 
many data points as are essential to indicate the shapes 
of the contours. In level areas, with widely spaced and 
gentle contours, only a few data points need be 
provided; in hilly areas, where the contours are dense 
and sharply curved, a large number of data points 
should be provided. The method has no difficulty in 
coping with the consequent variation in the density of 
data points. 

The results are also very robust. Applying DTMs based 
on different data sets has no discernible effect on the 

rectification, provided that sufficient detail is 
incorporated into each DTM. If a topographical feature 
is not apparent in the data set, then photographic details 
situated there cannot be correctly rectified. When 
reasonable care is taken in preparing the DTM, the 
results can be expected to be satisfyingly accurate. 

On all three criteria, the results were better than those 
from any other method of interpolation known to the 
author, who recommends the method to users of 
rectification software. As with any numerical method, 
certain pitfalls must be avoided, some of which are 
discussed in section 20.6 below, but clear guidelines 
can be laid down, allowing the general user to achieve 
satisfactory results in every case. 

An incidental advantage of multiquadric basis functions 
is that the interpolated surface remains valid right up to 
the limits of the region. There is no tendency suddenly 
to fall off the edge of the model, as often occurs with 
other methods. In fact, the model may be extrapolated 
as a pleasing surface well beyond the bounds of the 
data set, but the extrapolated surface cannot be relied 
upon in applications where accuracy is a prime 
requirement. 

The author has experimented with other forms of radial 
basis function, most notably the inverse multiquadric. 
The inverse multiquadric, which decreases with 
increasing r, tends to stretch up to each relatively high 
data value, and down to each low one. The result is an 
effect of pimples and dimples, which does not satisfy 
the realism criterion, and is disastrous for rectification. 
The pimples and dimples can be counteracted by 
increasing the value of the parameter c but, unless the 
data are distributed evenly, it is difficult to find a value 
of c which is appropriate over the whole region. 

20.5 Application to site distributions 

When constructing model surfaces for site distributions, 
the need for the interpolant ultimately to fall to zero 
must be taken into account. It is possible to ensure that 
a function constructed from raultiquadrics falls to zero, 
simply by incorporating into the data set a number of 
zeros at points beyond the bounds of the site. This 
technique has been used in creating surfaces to 
represent mathematical functions, but these are often 
quite simple, and can be constructed from 
comparatively few data points. Archaeological 
distributions may be quite complicated and involve 
large numbers of data points, requiring many zeros to 
ensure the correct behaviour at large r. Clearly it 
should be much simpler to use radial basis functions 
with the correct asymptotic properties, avoiding the 
need for additional zeros. 

From the list in section 20.3, two forms of radial basis 
function commend themselves: the inverse multiquadric 
and the gaussian. Although the inverse multiquadric 
function approaches zero for large r, the trend (inverse 
distance) is quite slow for practical purposes, and 
without extra zeros it may be difficult to confine the 
distribution within the site boundary. After extensive 
experiments with inverse multiquadrics, the author has 
failed to produce a site distribution surface with all the 
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desired properties, and has concluded they are not 
suitable  for this purpose. 

Gaussian functions decay to zero much more rapidly — 
as rapidly as any function in common use. The main 
problem is to ensure that the parameter a, which 
defines the width of the gaussian fiinction, is 
sufficiently large to sustain the function from a data 
point to its neighbours, requiring a to be of the order 
of the mean nearest neighbour distance. With an 
appropriate choice of a, a very satisfactory surface can 
be achieved, with a nice decay to zero around the site 
boundary. If too small a value is chosen for a, then a 
pimple effect may occur even more sharply than for the 
inverse multiquadric. If too large a value for a is 
chosen, then some numerical instability may occur, so 
that the interpolant fluctuates between large positive 
and large negative values and gives a totally 
unacceptable surface. 

Between the two extremes, there is a range of values 
over which the results are acceptable and largely 
insensitive to the choice of ff. Nevertheless, this is not 
a satisfactory state of affairs, since a general user could 
have difficulty in selecting a reliable value for a. The 
next step may be to investigate whether a suitable value 
of a can be set automatically, perhaps from the 
distribution of nearest neighbour distances. On a site 
where the data points are unevenly distributed, it may 
be appropriate to select different values of a for each 
data point, smaller values where the density is high, 
and larger where the density is low. This suggestion 
moves away from the essential philosophy of radial 
basis functions, where the same function is used at each 
data point, but it might prove to be a useful extension. 

20.6 Problems 

The discussion of section 20.4 indicates that the 
muhiquadric basis model provides an entirely 
satisfactory technique for the creation of DTMs, while 
section 20.5 shows that the gaussian basis model could 
be adapted to create site distribution surfaces. What are 
the likely difficulties in using radial basis functions? 

The most obvious problem is the amount of computing 
time required. Equation (2) shows that the calculation 
of the parameters X„ which define the interpolant, 
involves the solution of n equations in n unknowns. 
Since the matrix H has no special properties which 
allow time-saving techniques to be applied, equations 
(2) must be solved by Gaussian elimination or some 
related method, for which the calculation time is 
proportional to n', and becomes very expensive for 
large values of«. 

Using a PC-386 computer with a 387 coprocessor, the 
time taken to solve the equations with n =» 150 is 
around two minutes. For n ~ 300, this time can be 
expected to increase by a factor of eight, to about 
fifteen minutes. On a basic PC-86 machine without 
coprocessor, both times will be multiplied by around 
ten. Clearly these times become prohibitive when n is 
substantially greater than 150, particularly in the case 
of photograph rectification, where new DTMs need to 
be calculated quite frequently. On smaller PC systems, 

subject to the 640 Kbyte limit, memory requirements 
place a similar restriction on the size of problem. From 
practical considerations, therefore, the small-computer 
user may be restricted to data sets of not much more 
than 150 points. 

A more serious problem has been reported by Light 
(see the acknowledgement below), in attempting to 
calculate radial basis functions for much larger data 
sets. When n is greater than 300, the routine for 
solving equations (2) may suffer from a form of 
numerical instability known as ill-conditioning, a 
phenomenon which may cause the routine to produce 
completely spurious solutions. Although this instability 
is currently the subject of intensive mathematical 
investigation, no specific cause has yet been 
established. It places a very clear restriction on large 
data sets, but in practice few workers have the 
computing resources to tackle such large problems. 

The choice of the parameter c in the multiquadric 
presents a minor problem. The received opinion is that 
the calculated interpolant ƒ is largely insensitive to c, 
and a few simple tests readily demonstrate this to be the 
case. However, c must be large enough to smooth away 
the singularity at the apex of the cone, and at the same 
time small enough not to have a substantial effect at 
neighbouring data points. Generally speaking, a 
satisfactory value of c may be estimated from the 
density of the data points. However, when rectifying an 
aerial photograph, the data points have to be projected 
onto the plane of the photograph, before the DTM is 
recalculated. The density of the projected points is not 
entirely obvious, and it becomes more difficult to 
predict a satisfactory value for c. 

Their apparent success in a wide range of interpolation 
problems has made radial basis functions a subject of 
great mathematical interest. Mathematicians are seeking 
to understand the reasons for their success, and to 
establish the limits of their utility. For instance, 
substantial effort is devoted to determining whether the 
interpolant converges to the underlying function as the 
number of data points increases. Although this is 
clearly an important problem, it may not be directly 
relevant to many archaeological situations, where the 
available data is strictly limited; when a DTM is 
constructed from a contour map, there is little point in 
considering the effect of adding data points between the 
available contours. 

A data set of up to 150 points is large enough to 
provide a satisfactory DTM for the majority of sites in 
aerial archaeology, or to use as a sampling scheme for 
a small site in surface survey. However, if a user 
wishes to extend the DTM to cover a system of sites, 
or to set up a sampling scheme for an entire landscape, 
the limit in the size of the data set becomes critical, and 
ways should be sought to circumvent it. It may be 
possible to break a large data set into patches, 
providing a separate interpolant for each patch, and 
matching interpolants smoothly across the boundaries. 
With an irregular pattern of data points, it may be 
difficult to decide on a suitable system of patches, and 
to locate the boundaries correctly. The extension of the 
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method to large data sets must remain a matter for 
future investigation. 

20.7 Conclusions 

Radial basis functions provide an excellent method of 
calculating an interpolant for a small set of data points 
in two-dimensional space. The results in setting up 
DTMs for the rectification of aerial photographs have 
been outstanding, and the use of multiquadric basis 
functions for this purpose can be recommended 
wholeheartedly. The method is entirely reliable and has 
given realistic and robust results in each case on which 
it was tested. The only proviso must be in ensuring that 
the data set is confined to not much more than 150 
points, since otherwise time and memory requirements 
will become excessive, and eventually problems of 
numerical stability may be encountered. In practice, the 
topography for the majority of sites can be described 
quite adequately with such a limited number of data 
points, and it is unlikely that an aerial archaeologist 
would wish to exceed it for a single site. 

The use of a radial basis model in cases where the 
interpolant should decay to zero beyond the boundaries 
of the region is a little more problematic. Gaussian 
basis functions seem to provide a possible solution, but 
care must be taken to ensure that their width parameter 
is sufficiently large to provide a good overlap between 
adjoining functions, but not so large that numerical 
problems are encountered at the edge of the region. It 
may be appropriate to estimate a width parameter for 
each individual basis function, dependent upon the 
distance of the neighbouring data points. 

Although the use of small data sets is adequate for 
many applications, there will be cases where users wish 
to extend a model for a single site into a group of sites, 
into a landscape, and possibly into a GIS model. It is 
important that means should be investigated of 
extending the radial basis model to large data sets, 
without encountering the problems associated with large 
numbers of data points. 

For small data sets, however, especially in cases where 
it is appropriate to use multiquadric functions, the 
author supports the gênerai enthusiasm for radial basis 
functions, and commends their use to anyone who is 
concerned with the construction of surfaces from 
irregular data points. 
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