
18 
Statistical analysis of ceramic assemblages — a year's progress 
Paul Tyers 
Clive Orton 
{University College London, Institute of Archaeology, 31-34 Gordon Square, London WClll OPY) 

18.1    Introduction 

This is the second interim report on the SERC-funded 
project of this name, and follows directly on from the first 
(Orton & Tyers 1989). The year has been spent in building 
on the theory presented then, adapting it where necessary to 
the peculiarities of archaeological data, and exploring the 
implications for methods of cataloguing pottery and defining 
fabric and form types. The term PIE (= pottery information 
equivalent) has been adopted as the basic unit of quantity of 
pottery after statistical transformation: a PIE is the quantity 
of pottery that would give as much information (in the 
statistical sense) about the composition of an assemblage 
as one whole vessel. The various aspects of the statistical 
analyses have been integrated into a computer package PlE- 
SUCE, which is being tested. 

18.2   Theory 

Several theoretical and practical problems have been over- 
come in the development of PIE-SLICE, mainly in the area of 
analysing sparse contingency tables. We start from the gen- 
eral theory of quasi-log-lincar models (Bishop et al 1975, 
pp. 177-228), with the subscripts i, j and k usually referring 
to context, fabric and form respectively. The nine nested 
models which form our hierarchy are: 

Model 1: no interaction between context, fabric or form, 
called [1][2][3]. 

Model 2a: interaction between fabric and form only, called 
[23][1]. 

Model 2b: interaction between context and form only, 
called [31] [2]. 

Model 2c: interaction between context and fabric only, 
called [12][3]. 

Model 3a: interactions between fabric and form and be- 
tween context and form only, called [23][31]. 

Model 3b: interactions between fabric and form and be- 
tween context and fabric only, called [12] [23]. 

Model 3c: interactions between context and form and be- 
tween context and fabric only, called [31][12]. 

Model 4: all pairwise interactions, called [12][23][31]. 
Models: the saturated model, called [123]. 

The relationships between these models are illustrated in 
Fig. 18.1. 

The fits of the various models can be examined using the 
likelihood-ratio statistic G^ (Bishop el al 1975, p. 125). 
However, the approach cannot be used without modification 
because of the sparse nature of typical datasets. Three 
modifications were found to be necessary: 

1. rules for the treatment of zero entries, 
2. reduction of the size of the dataset, 
3. comparisons of the fits of different models. 

18.2.1    Random and structural zeros 

Many of the entries, typically over half, are zeros. In quasi- 
log-linear analysis, they are treated differently according 
to whether they are considered to be random or structural 
zeros. The conventional definitions are: 

A structural zero is a value which is zero a priori, i.e. 
it could not possibly take a positive value (example: 
number of samian amphorae). 
A random zero is a value which is zero, but not a 
priori, i.e. it could have taken a positive value, but 
does not do so in our particular dataset. 

Three approaches were considered: 

1. treat all zeros as random, i.e. use log-linear models. 
This leads to high numbers of degrees of freedom, and 
frequently to a situation in which almost any model 
would fit the data. 

2. ü^cat zeros as structural if they corresjxjnd to a zero in 
a marginal two-way table. This approach ('condition- 
ing on all the data') gives realistic degrees of freedom 
but obscures the points which may be of most interest 
archaeologically. 

3. treat zeros as structural if they correspond to a zero 
in a marginal two-way table which has already been 
shown to relate to a significant interaction ('condition- 
ing on the model'). This gives rise to fewer degrees 
of freedom than 1 but more than 2; more importantly, 
it seems to correspond most closely to archaeological 
reality. 

The third method was adopted. Although the best of the 
three, it did not entirely solve the problem of the dilution of 
significant effects by large numbers of 'small' cells nor that 
of the occasional erratically large contribution to G^ due to 
a very small fitted value. 

18.2.2   Reduction of the size of datasets 

This is achieved by use of the new technique SRD ('simul- 
taneous reduction of dimensions', see Orton & lyers, this 
volume). We note that because SRD works on two-way 
tables, the reduction of a three-way table proceeds in two 
stages 

1. reduction of a chosen marginal table 
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[1][2][3] 

2c    [12][3] 

3c [31][12] 

[12][23][31] 

5[123] 

Figure 18.1: Hierarchy of models 

2. reduction of the two-way table formed by treating the 
entries of the table created by 1 as marginal totals. 
This is called 'double-reduction.' 

18.2.3   Comparative analysis of hierarchies of 
models 

We break the hierarchy of models (Fig. 18.1) into three 
sub-hierarchies: 

A: models 1,2a, 3a and 3b, 4,5; 
B: models 1,2b, 3a and 3c, 4,5; 
C: models 1,2c, 3b and 3c, 4,5. 

We then run (quasi-)log-linear analysis on the doubly- 
reduced table of model IIA, (see Orton and Tyers, this' 
volume, page 123) using sub-hierarchy A, on the doubly- 
reduced table of model IIB, using sub-hierarchy B, and on 
the doubly-reduced table of model IIC, using sub-hierarchy 
C. 

At this point we have to take into account the need (see 
e.g. Craddock & Flood 1970) to ensure that the expected 
value in each cell is at least 1. We do this by 'flagging' all 
cells whose expectations fail to meet this level. Any value 
of one of the three variables whose 'slice' of the three-way 
table consists entirely of flagged cells is omitted from the 
analysis. 

When the values of x^ and G"^ are calculated, the contri- 
butions of the flagged cells remaining in the table (which we 
might call 'structural near-zeros') should, in principle, be 

ignored, as they have 'small' expected values. The question 
of how to count the degrees of freedom then arises. 

The ideal approach would be to constrain m,jt = Xijt 
for all flagged cells, in which case the fitted values would 
differ from those conventionally calculated, and the degrees 
of freedom would be reduced by the number of flagged cells 
(by analogy with the approach used with structural zeros). 
However, this approach is not followed here as it would 
cause great difficulties in programming. 

If the differences between the observed and fitted values 
for the flagged cells are simply ignored, then the number 
of parameters fitted is the same as it would be in the con- 
ventional case, and there is no justification for reducing the 
degrees of freedom. Since we have reduced the overall 
value of x^ (by omitting some contributions) but have kept 
the same degrees of freedom, this approach is statistically 
conservative, i.e. it will tend to miss significant patterns. 
There is thus a case for retaining the contributions of any 
remaining flagged cells. However, there is a risk of a spuri- 
ously large contribution from a cell with a very small fitted 
value. To avoid this risk, when a fitted value (on the current 
model) is < 1 and the corresponding observed value is > 1, 
we replace the fitted value with the value 1 for the purpose 
of calculating its contribution to x^ (or G"^), and use all the 
cells. The effect is to cut back any spurious values to a more 
reasonable level, while making little change to 'ordinary' 
values. It is probably a slightly conservative procedure. 

There is a hidden problem here. In the two-way case 
there is only one way to calculate the 'expected' values, and 
the criterion a-ix.j > x.. (strictiy speaking, x.ti.j. > Xj.. 
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in this example) can be used without ambiguity. In the 
three-way case, however, there are as many sets of expected 
values as there are models, and it is not obvious which 
should be used. Two possibilities are: 

• model l,givingx,..x j X it > (xj..)^ 
• model 2a, giving Xi.xjt > x... 

It appears necessary to use the same criteria through- 
out any sub-hierarchy, because otherwise differences in 
goodness-of-fit between the models would be confused with 
differences between datasets. Provisionally, model 1 will 
be used to give the criteria, but this is an empirical decision 
and may need to be revised in the light of experience. 

Collapse of one or more variables into a single group 
The question may arise — how do we integrate SRD if it 
results in the collapse of one or more variables (context, 
fabric and form) into a single group? The initial reaction 
was to reject any sub-hierarchy which led to such a collapse, 
but this treatment is now seen to be unnecessarily harsh. 
Provided only one variable collapses in a sub-hierarchy, 
some information can still be retrieved, as follows: 

We treat the coll^sed table as an ordinary two-way table, 
and apply standard log-linear analysis. There are no struc- 
tural zeros, so a quasi-log-linear approach is not needed. 
The only test is of Model 1 (no interaction) against an alter- 
native of Model 2a, 2b or 2c (i.e. the appropriate two-way 
interaction), depending on which variable has collapsed. 
If Model 1 fails, the £^propriate Model 2 is automatically 
preferred. The test can be a simple two-way chi-squared 
test, or the corresponding G^ test. The latter is preferred on 
grounds of compatibility with other tests undertaken at this 
stage. 

This approach can also be used on datasets which are 
only ever two-way. In such cases, it would be preceded by 
a single SRD. 

Finding the 'best' model 
It would be too simple to look for the 'best' overall model, 
since the different hierarchies may be telling us different 
things. For example, model 2b might be the accepted model 
for one grouping of contexts, while model 2c might be 
accepted for a completely different grouping. This would 
indicate form-by-context and fabric-by-context interactions 
cross-cutting each other, suggesting functional differences 
between some fabrics but chronological differences between 
others. To choose one model as 'best' would lose one of 
these interpretations. 

It may be more useful to treat the outcome of the in- 
tegrated program as a set of statements about interactions 
rather than as a set of models. Two models are 'preferred' for 
each hierarchy; only certain combinations are possible. Any 
hierarchy may give two preferences for model 1 or two for 
model 5 (models 1 and 5 cannot be preferred alongside any 
other model in the same hierarchy). The other possibilities 
are: 

hierarchy A : models 2a, 3a, or 4 and models 2a, 3b or 4, 
hierarchy B : models 2b, 3c, or 4 and models 2b, 3a or 4, 
hierarchy C : models 2c, 3b, or 4 and models 2c, 3c or 4. 

We call the interpretation of these outcomes the 'fruit 
machine' problem. For each hierarchy, we find the smallest 
set of interactions that are needed to fit the data (here called 
'locally necessary interactions' or LNl's). For example, the 
full possibilities for hierarchy A are: 

models LNI 
2a and 2a [23] 
2a and 3a [23] 
2a and 3b [23] 
2a and 4 [23] 
3a and 4 [23][31] 
4 and 3b [23][12] 
3a and 3b [23][31]or[23][12]t 
4 and 4 [23][31][12] 

fchoose the set with the highest probability level ('best fit') 

So A, B and C give LNI's of: 

• none or [23] or [23][31] or [23][12] or [23][31][12] 
or [123] 

• none or [31] or [31][12] or [31][23] or [31][12][23] 
or [123] 

• none or [12] or [12][23] or [12][31] or [12][23][31] 
or [123] 

respectively. 
We note a slight asymmetry in that we expect [23] but are 

not especially interested in it; but we are looking particularly 
for [31] and/or [12]. 

We have thus three sets of locally necessary interactions, 
each arising from a different reduction of the original data. 
Each two-way interaction may be locally necessary in up to 
three hierarchies: we say they are either 'globally necessary' 
(in all three), 'sometimes necessary' (in any two), 'locally 
necessary' (in only one), or 'not necessary' (in none). 

There is thus no simple interpretative formula that can 
be used, lb obtain the greatest amount of interpretative 
information from the data, we need: 

1. the partition of G"^ table for each hierarchy, 
2. for each interaction, how 'necessary' it is, 
3. for each occmrence of it, 

(a) the membership lists of the variables, 
(b) the reduced data table, 
(c) the corresponding table of expected values, 
(d) the corresponding table of deviations (i.e. ob- 

served — expected), 
(e) the contributions to G^. 

There is an outstanding problem — a locally necessary 
interaction may be really necessary, or just a product of 
the statistical procedures. We need criteria to distinguish 
between the two. 

Membership lists 
The previous section raises the question—if two hierarchies 
partition a variable (e.g. context) in different ways, how 
similar are the two partitions? In answering this question, 
we must remember that 

• the numbers of cells in the partitions may well differ 
• different values may be deleted in different partitions. 
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We define a link as a pair of values in the same cell of 
a partition, including the link between a value and itself. 
We can then define the similarity coefficient S for a pair of 
partitions by 

S = (number of links in bolh partitions)/(number of 
links in either partition) 

This coefficient appears to behave how one would intu- 
itively hope it would. It can be used as an aid to interpreta- 
tion. 

We note that pairs of values may be brought together in 
all 3, or 2, or 1, or none of the reductions, thus measuring in 
some sense the universality of their similarities (e.g. do two 
contexts have similar fabric and/or form and/or fabric-by- 
form profiles?). Groupings which occur in all reductions 
are called irreducible. They are of particular value for 
interpretation. 

18.2.4   Summary 

The procedure of transformation to PlEs, reduction by SRD 
followed by (quasi-)log-linear analysis, with any diagnostic 
aids such as the examination of membership lists, is here 
christened üie 'PiE-SLiCE' technique. The derivation of this 
name is that (amongst other things) we are slicing the total 
PIE (pottery information equivalent) of a site in various ways 
— by combination of context, form and fabric, for example. 
It also has echoes of the pie-chart, which may reassure the 
more naïve user. 

We comment that real life may not be as complex as 
the theory. Firsüy, although in theory the tables used with 
sub-hierarchies A, B and C are different, they may well 
be the same, or very similar, in practice. The imposition 
of archaeological constraints may restrict the possibilities 

so much that the tables end up the same, or almost so. 
Secondly, two sub-hierarchies may have the same accepted 
model, if at level 3 or higher. 

A more ambitious approach would be to work directly 
with the three-way table, rather than look at each two-way 
marginal table in turn, as we have done. We would then 
have three sets of distances — between rows, columns and 
'layers' — with each distance formed from a matrix-profile 
instead of a vector-profile as above. We have not pursued 
this approach because: 

1. it seems to be too complicated to program reasonably, 
2. it seems likely to be potentially unstable, as the in- 

dividual values in the three-way table are often very 
small. 
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