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15.1    Introduction 

Over the past few years it has become abundantly clear that 
much more information can be obtained from archaeological 
data by postulating a mathematical model and using the data 
to estimate the parameters of the model than by merely using 
simple descriptive statistics to summarise the data. Indeed 
Fieller and Flenley (1988) neatly make this point in their 
paper on particle size analysis in which they observe that: 

'Analysis of particle size data can proceed by 
either of two distinct routes. The first attempts 
only to obtain a simple numeric summary and 
description of the observed data; the second 
postulates a statistical model for the distribu- 
tion of the sizes and proceeds to estimate the pa- 
rameters of the model by statistical techniques. 
The first approach describes only the actual data 
obtained, the second attempts to investigate the 
process underlying the data.' 

We believe that this is just as true for other archaeological 
problem areas. If it is possible to investigate the underlying 
processes then this is the route we should take, provided 
only that computational resources allow. Of course, the 
model must be realistic, that is its assumptions should be 
reasonable from both archaeological and mathematical view 
points. Furthermore, it is desirable that these assumptions 
be examined and tested in some way. 

In addition to an increased awareness of the necessity for 
mathematical model building in archaeology, it has been 
argued by both Orton (1980,p.220) and Ruggles (1986) that, 
as opposed to a classical approach for making inferences, 
there are significant advantages to using Bayesian methods. 
The Bayesian approach provides a logical and coherent 
framework within which prior beliefs about a problem may 
be updated in the light of sample data. As such it is a 
systematic learning process and has we believe much to 
offer archaeology. Bayesian analysis has been used to 
solve a number particular problems, for example: Freeman 
(1976) investigated the megalithic yard; Naylor and Smith 
(1988a) examined how to make inferences using several 
radiocarbon dates; Kadane and Hastorf (1987) have applied 
Bayesian analysis to the study of burnt plant remains as part 
of paleoethnobotanical investigations at a prehistoric site in 
Peru and Buck et al. (1988) and Buck and Litton (1989) 
developed methods for analysing archaeological field sur- 
vey data. All the same, Bayesian analysis has not been 
used widely for making inferences regarding archaeological 
models. 

There are two major reasons for this. Firstly, the im- 
plementation of Bayesian methods has been restricted be- 
cause efficient procedures necessary to obtain appropriate 
summary statistics from which to make inferences have not 
been available. This is no longer the case as recent advances 
in numerical techniques, based upon the Gibbs sampler 
(Gelfand & Smith 1990), make the calculations simple to 
implement, if still rather time consuming. Secondly, archae- 
ologists have found some of the concepts associated with 
Bayesian analysis rather difficult to grasp. This may well be 
associated as much with the statisticians inability to convey 
the advantages of Bayesian methods as with the archaeol- 
ogists inability to comprehend. This situation cannot be 
resolved without real collaboration between archaeologists 
and statisticians. 

In this paper we provide two illustrations of the use of the 
Bayesian methodology applied to archaeological methods, 
namely cluster analysis and seriation. Classical versions 
of both techniques are widely used in archaeology and/or 
archaeometry and have a large associated literature both in 
archaeological and statistical journals. We hope that through 
these examples more archaeologists will appreciate the wide 
applicability of Bayesian analysis and so be prepared to take 
part in the collaboration that is so highly desirable. 

15.2   The Bayesian paradigm 

We assume that we have a statistical model which involves 
a vector, 6, of k unknown parameters öi, ^2, • • •, ^t and the 
sample data x. The model defines a relationship between 
6 and x which gives rise to a likelihood function l{x\ 0). 
In the Bayesian paradigm we view the unknown parameter 
vector Ö as a realisation of a random variable 0 having 
a prior density represented by p(ö). Inferences about 6, 
given the data x, are based on \h&posterior density, p(Ö|a!!), 
which is calculated using Bayes theorem as 

P{0\x) 
1{^\0)P{9) 

//(x;Ö)p(Ö)d0' 

where the integration is carried out over the £Ç)propriate 
range of 6. We note that in this formulation all our prior 
information is encapsulated in the prior density p{9) and 
the likelihood carries the information provided by the data. 
Hence the posterior density describes our knowledge about 
6 after both the knowledge provided by the prior information 
and that from the data have been combined in a logical 
fashion. 

The essential feature of Bayesian analysis is captured in 
the above equation. In any practical situation considerable 
effort and thought must be put into the development of 
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a suitable statistical model which captures its important 
features and also into how to specify our prior knowledge 
about the vector 6. 

However, the real stumbling block to the practical imple- 
mentation of the Bayesian paradigm, has been the difficulty 
in carrying out any necessary integrations. For example 
suppose we wish to make inferences regarding Oi, just one 
of the parameters, then the marginal posterior density of 61 
is 

Pie,\x) = Jp{e\x)de2,. ,d6i„ 

and the expectation of ^i is 

E[0,\x] = J9,p{e\x)de. 

Both these results involve integrations for which analytic 
expressions can be found only in a very limited number 
of special cases. As a result over the last few years a 
considerable amount of research effort has been channeled 
towards providing suitable numerical and analytic approxi- 
mation techniques for such calculations (see Naylor & Smith 
1982,1988b, Tiemey & Kadane 1986). Even so the use of 
these techniques requires considerable expertise together 
with special computer software and so the problem remains 
intractable except for a highly trained specialist. However 
in a recent paper Gelfand and Smith (1990) have suggested 
a method based on the Gibbs sampler that, although not 
without difficulties, is comparatively simple to implement. 
Extensive ^plications of the method are given in Gelfand 
et al. (forthcoming) and Carlin et al. (forthcoming). 

15.3   The Gibbs sampler 

In order to implement the Gibbs sampler, we must be deal- 
ing with collections of random variables 61,02, •• .,0 k for 
which their joint density is uniquely determined by the con- 
ditional density of 0, given Oi,02, • • •,0,-i,9,+i, ...,0k 
for s = 1,2, ...,*. As stated in the previous section, in 
order to make inferences about 0, we need to calculate the 
marginal density of Ö, for s = l,2,...,k. Geman and 
Geman (1984) develop an algorithm, known as the Gibbs 
sampler, for extracting the marginal densities from the con- 
ditional densities. The algorithm is based upon simulating 
in a systematic fashion from the conditional densities as 
follows. 

1. Choose some arbitrary starting values 

"l    , "2    ' • ••'"t    • 

2. Simulate  Oy'   from   the  conditional  density  of 

Simulate  0^2     ^''O'"   the  conditional  density  of 
oM'\oi'\...,of\ 
Simulate o[^^  from  the conditional density  of 
9.\o['\oi'' e\. 
This completes one iteration of the algorithm. 

3. Repeat 2 r-times with 0,^"^ and öP replaced by 0,^*  ^^ 
and 0\^^ respectively < = 2,3,..., r. 

Under fairly general conditions Geman and Geman 
(1984) show that the disuibution of the simulated values 
e'f^ tends to the distribution of öj. Thus if the whole process 
is repeated, say / times, the resulting collection of Oi' may 
be used as an estimate of the posterior density of 6i. 

15.4   Application to cluster analysis 

Cluster analysis is one of the statistical techniques most 
widely used in the analysis of archaeological data sets. It is 
commonly employed as an exploratory technique for the 
identification of structure in complex, high dimensional 
data sets and used in this manner, no underlying model 
is assumed. However, in certain situations, models may be 
postulated (although they are not always explicitly stated) 
and some of these will be examined in this section. Specifi- 
cally, in many of these cases there is information in addition 
to the actual data being studied which points to possible 
cluster membership. Two examples may be cited of situa- 
tions in which such information exists; they belong to the 
general field of pro venancing. In the first Leese era/. (1986) 
describe the use of cluster analysis to group medieval floor 
tiles from the East Midlands on the basis of their chemical 
composition. Here prior information is available for some of 
the tiles from the kiln sites. Hammond« a/. (1977) attempt 
to locate the source of jade used to make artefacts found on 
Mayan sites in America. Here the prior information takes 
the form of chemical analyses from modem sources of jade 
and Jadeite that might have been available to the Maya. 

Alvey et al. (1979) describe another application in which 
cluster analysis distinguished groups of clay pipes found 
in Nottingham that could have been made from the same 
mould. Only those pipes were used in the study that could 
be clearly identified, by means of a stamp, as having been 
made by a particular maker. Thirteen measurements of each 
pipe were taken in order to provide an adequate description 
of its shape and size (see Alvey et al 1979 for more de- 
tails). A standard cluster analysis program was used in 
an attempt to identify groups of similar pipes based upon 
these measurements. However, prior information regarding 
the variability of the measurements of pipes made from the 
same mould, although available at the time, could not be 
incorporated into the analysis. This prior information comes 
from a collection of twenty-one pipes from the Bristol City 
Museum (see Jackson & Price 1974) for which there is 
very strong evidence that the pipes were made from the 
same mould. The technique we describe here permits the 
inclusion of such prior information. 

The measurements from twenty-one pipes made from 
the same mould were examined for normality. It appears 
reasonable to suppose that measurements of pipes made 
from the same mould havea multivariate normal distribution 
(see 'Rjylor 1989 for details of this analysis). 

Returning to the collection of Nottingham pipes. Let Xt 
represent the measurements on the I'th pipe and assume that 
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there are M possible moulds. If the ith pipe was made from 
the mth mould then 

where Mm and Sm are the mean and covariance matrix 
for the mth mould. Assuming that the variability does not 
depend upon the mould, it is reasonable to take Sm = ^, 
for m = 1,2,..., M. Thus the clustering problem may be 
viewed as the determination of the number of components 
in a mixture of multivariate normals with different but un- 
known means and a common (unknown) covariance matrix. 
Previous work on this problem has been carried out by Wolfe 
(1970), Day (1969), Binder (1978) and Symons (1981). 
Within the CLUSTAN package this is carried out using the 
NORMIX option with maximum likelihood being used for 
the parameter estimation. However the number of clusters 
has to be chosen by the user as this is not automatically done 
by the software. CLUSTAN does output a iikelihoodratio' 
criterion for examining the relative likelihood of various 
numbers of clusters. This is very much an approximate test 
and almost inevitably the number of clusters is arrived at 
subjectively. If normality is not assumed then a suitable 
form of hi^'archical clustering could be used. In this case 
the number of components or non-empty clusters is arrived 
at subjectively by examining what is known as the 'fusion 
plot'. 

We now formulate the model in a way suitable for use 
with the Gibbs sampler. The density of Xi is given by 

Am-;^exp-i(x,- - ;i,„)'E-i(x,- -Mm), 

where n^ is the numbCT of pipes in cluster m, Xm and 
n~ ^ Sm are the sample mean and sample covariance matrix 
respectively for clust^ m. 

lb illustrate oitf methodology we consid^ a collection 
of seventy-two pipes known to be made by the Brinsley 
family of Nottingham. We use the data from the Bristol 
collection as our prior information regarding the variability 
of pipes made from the same mould. We take yd = 20 and 
T = ßsAs' where 

a' =     (0.29,0.75,0.69,0.52,0.55, 0.37,0.04, 
0.01,0.33, 0.12,0.88, 0.38, 0.47) 

is the vector of standard deviations of the Bristol data; the 
corresponding correlation matrix is shown in Table 15.1. 

lb reflect our lack of prior knowledge of the mixture 
parameters we take 

a' = (0.5,..., 0.5) 

We take M, the maximum number of clusters, to be 50. We 
have to specify our beliefs about rim for each cluster. This 
we do by setting 

»JQ = (5.0,25.0,22.0,6.5,0.44,8.9,0.43,1.0,8.5,2.1,4.8,7.1,5.9) 

which is the vector of sample means for the Bristol data. 

M 

/(îCilAm./i,-27) = ^ A„,/(x,|/Xm,-27), 
m=l 

where the A^ are the mixture parameters. Let <^, = m if 
the ith pipe comes from the mth mould or equivalently Xi 
comes from the mth component with probability A^. 

For prior densities we assume that A has a Dirichlet 
distribution with parameter vector a, that is 

A' = (Ai,A2,...,AM)~£>(a) 

We assume that the prior density for the mean of the mth 
cluster, Mm. has a normal distribution with expectation rjm 
and covariance matrix p^S, where rim is assumed to be 
normally distributed with expectation TJO and covariance 
matrix So. Finally we assume that 27~ \ the inverse of the 
covariance matrix, has a Wishart distribution with /? degrees 
of freedom and precision matrix T. 

Then the conditional densities are 

1. 27"^|X, A, «^,/ii>M2,-•-iMAf ~ Wishart with de- 
greesoffreedom/?-|-ni-(-rj2-|-,..., -\-nM and precision 
matrix 

M 

T'  = T-l- 
M 

Pm'Tin 

1=1 =lP" + nr 
-(»?m-a!m)('7m-a:m)' 

27o = 25jsAa' 

and restricting the rim to be within an appropriate region. 
The region used was chosen to be slightly larger than the 
region bounded by the maximum and minimum values of 
each variable for the seventy-two pipes in the study. In 
this way, the »7m are spread over the region of interest. At 
each iteration, new values of rim are simulated for each 
cluster. The effect of this is to discourage the formation of 
small groups of one or two pipes. The pipes are allocated to 
initial clusters using an equation similar to 4 above and each 
simulation is run for r = 20 iterations. A hundred repli- 
cations (i.e. / = 100) of the experiment result in the pipes 
being divided into four, five and six clusters on seventy-five, 
twenty-four and one occasion respectively. From this we 
conclude that it is highly likely that four moulds were used 
to produce this collection of pipes. 

These results should be compared with the 'Iikelihoodra- 
tio' criterion obtained using the NORMIX option of CLUS- 
TAN. 

2. Hm\X,S,\,<t>,iii{ii^m)' 

nm)-^S) 
3. A|A-, 17, <^, M ~£>(a + n) 

M(£s!ilh!i±lha.lm.  („ 

Ho          vs.          Hi Test Approximate 
Sutislic Probability of a 

More Extreme Value 
3 clusters 4 clusters 31.9 0.003 
4 clusters S clusters 23.3 0.087 
S clusters 6 clusters 19.0 0.299 
6 clusters 7 clusters 12.8 0.812 

This suggests that four or five clusters are likely although 
it must be remembered that this test is ^proximate and 
its properties are not fully understood. From the 'fusion 
plot* produced by hierarchical clustering it is also unclear 
whether four or five groups are present. 
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A = 

1.00 0.07 0.47 0.25 0.11 0.30 0.23 0.38 0.16 0.01 -0.26 0.74 0.21 

0.07 1.00 -0.13 0.09 0.02 -0.29 -0.70 0.16 -0.46 0.22 0.40 0.15 -0.01 

0.47 -0.13 1.00 0.62 -0.69 0.38 0.26 -0.09 0.47 -0.28 -0.49 0.30 -0.06 

0.25 0.09 0.62 1.00 -0.51 -0.03 -0.13 -0.01 0.33 -0.02 0.02 0.15 0.20 

0.11 0.02 -0.69 -0.51 1.00 0.15 -0.05 0.27 -0.30 0.54 0.16 0.13 0.01 

0.30 -0.29 0.38 -0.03 0.15 1.00 0.24 -0.04 -0.05 0.25 -0.37 0.21 -0.17 

0.23 -0.70 0.26 -0.13 -0.05 0.24 1.00 -0.39 0.41 -0.24 -0.48 0.25 0.00 

0.38 0.16 -0.09 -0.01 0.27 -0.04 -0.39 1.00 -0.04 0.14 -0.16 0.22 -0.17 

0.16 -0.46 0.47 0.33 -0.30 -0.05 0.41 -0.04 1.00 -0.29 -0.49 0.12 -0.08 

0.01 0.22 -0.28 -0.02 0.54 0.25 -0.24 0.14 -0.29 1.00 -0.08 0.04 -0.03 

-0.26 0.40 -0.49 0.02 0.16 -0.37 -0.48 -0.16 -0.49 -0.08 1.00 -0.12 0.42 

0.74 0.15 0.30 0.15 0.13 0.21 0.25 0.22 0.12 0.04 -0.12 1.00 -0.01 

0.21 -0.01 -0.06 0.20 0.01 -0.17 0.00 -0.17 -0.08 -0.03 0.42 -0.01 1.00 

Table 15.1: 

Archaeologists will be rightly concerned as to how sensi- 
tive our results are to changes in the prior information. For 
example suppose that one hundred and one Bristol pipes 
instead of twenty-one had generated the same values of s 
and A. Setting /9 = 100 and T = lOOsAs' resulted in the 
pipes being grouped into four, five, six and seven clusters 
on twenty-nine, fifty-seven, eleven and three occasions re- 
spectively. That is the stronger our belief that variability in 
the Bristol pipes is applicable to the Nottingham pipes, the 
more groups we find. 

Another experiment we have conducted is to multiply 
the standard deviations in a by factors of 0.9 and 1.1 while 
keeping/3 = 20. In both cases the distribution of the number 
of clusters remained as in our original experiment. This also 
occured for /9 = 100. 

We have described here how prior information may be in- 
corporated into cluster analysis using Bayesian techniques. 
Clearly such an approach is not limited to the analysis of 
pipe data, in fact it has wide applicability to a variety of ar- 
chaeological situations. The nature of the prior information 
available may be varied, relating for example to the cluster 
means, cluster membership or even the number of clusters. 
Prior information abounds in archaeology, but is commonly 
not made explicit and invariably is not incorporated into the 
statistical analysis. It is usually used only in retrospect to 
assess the validity or otherwise of the cluster membership 
or the number of clusters. 

We appreciate that archaeologists will not only have prob- 
lems understanding the Bayesian approach and its empha- 
sis on prior information, but will encounter real practical 
problems in specifying the latter's form. Close collabora- 
tion between archaeologists and statisticians is obviously 
required. 

15.5   Application to seriation 

Seriation has developed as a technique for ordering chrono- 
logically, archaeological contexts such as graves, by using 
the incidence or relative frequencies of particular artefact 
types found in them. Robinson (1951) and Kendall (1971a) 
describe an underlying model of seriation in which the rel- 
ative popularity of an artefact never falls then rises again. 
Although not always explicitly stated this model is the only 
one regularly adopted for general chronological seriation. 
Both Kendall (197 lb) and Laxton (1976) develop the theory 

of this model and show, by using a similarity measure, how 
to test whether a data set fits it. However, many archae- 
ological data sets clearly cannot be seriated using these 
methods because no such ordering of the data exists. To 
overcome this Laxton and Restorick (1989) have proposed a 
method which takes account of the 'noisy' nature of the data. 
Other responses to this problem have been the application 
of correspondence analysis (see Djindjian 1989 and Madsen 
1988) and multidimensional scaling (see Boneva 1971). As 
far as we are aware, one drawback of all the currently used 
methods of seriation is that they produce an ordering but give 
no indication as to other orderings that may fit the model 
almost as well. That is a method finds the 'best' ordering 
using the algorithm incorporated in it, but fails to inform 
the user of the second, third or fourth 'best' orderings. In 
this paper we provide a means of identifying other possible 
orderings together with some assessment of their relative 
chances of occurring. 

We now develop a stochastic model which we will use 
for seriation. The parameters of the model will be estimated 
using the Bayesian methodology outlined earlier. Let Oj{t) 
be the underlying proportion of artefact j present in a society 
at time t. Suppose that context i occurred at (unknown) time 
ti and let for simplicity 

e, >; e^iu). 

That is 6ij is the underlying proportion of artefact type 
j when context i was deposited. Suppose we observe 
Tiij artefacts of type j associated with the »th context and 
that we assume that the rnj j = 1,..., J are a sample 
from the population proportions ö<j j = 1,..., J. If we 
view the problem in this manner we may assume that 
n, = (nil, •• •, »ij) has a multinomial distribution with 
parameters Ö, = (0^,,..., Ö, j) and m,- = Y^'j-^ riij. 

Of course, we acknowledge that there are considerable 
problems with this approach. How are the underlying pop- 
ulations defined? How can it be verified that the observed 
frequencies arise from some form of random sampling from 
the population? Madsen (1988) provides a powerful argu- 
ment as to why this approach based upon the assumption of 
random sampling in seriation is very suspect. 

Nevertheless we will proceed with our analysis in order 
to demonstrate our overall methodology. No doubt better, 
more realistic models could be formulated, but the overall 
suategy would be the same.  Therefore, granting that the 
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model is reasonable and using Bayes Theorem the posterior 
density of Ö, \ni is given by 

where 

and 

p(öi|n,) oc p(ni|öi)p(0j), 

p(ö,) is the prior density of ö<. 

The natural choice as a prior for 0; is the Dirichlet distri- 
bution with parameter vector a,, that is 

p(eOocnö.7^-\ 

probability of only 0.016 and is not therefore seen as a likely 
correct ordering of the data. 

We suggest that the method given above may be useful 
for assessing the robustness of the answer produced by a 
seriation algorithm. All we have to do is perturbate the data 
in some reasonable fashion. In our example we have done 
this by viewing the observed frequencies as realisations 
of a multinomial distribution and then sampled from the 
posterior distribution of the underlying proportions. Other 
more justifiable assumptions could no doubt be made here 
and we invite suggestions. However, once we have jjertur- 
bated the original data, we process it through our seriation 
algorithm. We then repeat this many times and hence assess 
the robustness or otherwise of our original answer. In doing 
so we will give the archaeologist some idea of how good the 
original answer is and what other possible orders there are 
together with some indication of their relative importance. 
Furthermore, using this technique, other models of seriation 
can easily be assessed. In order to arrive at such alternative 
models, further collaboration between archaeologists and 
statisticians will be necessary. 

In which case, the posterior density of Ö, |?i, is 

Dim + ai). 

Vague prior information regarding Ö, may be expressed 
by taking a,j = 0.5. 

Given this model and the Gibbs sampler methodology, 
the analysis is easily implemented as we now describe. 

1. For each context i, simulate öj from a I>(n, + a^) 
distribution. 

2. Test whether in some order öi, Ö2,..., 0/ seriate. If 
so, record that order. If not, no order is recorded. 

3. Repeat 1 and 2. 

As an illustration, we apply our methodology to a highly 
simplified data set given in Laxton and Restorick (1989) 
and reproduced in table 15.2. 

Using Kendall's method, the seriation of the sites is 2,5, 
3, 6, 1, 4. However, as Laxton and Restorick (1989) point 
out, correspondence analysis produces the order 3, 6, 5,2, 
1,4 which does not satisfy Kendall's model as, in this order, 
the relative artefact frequencies do fall and then rise again 
in popularity. 

Using vague prior information, we applied the Bayesian 
methodology to this data set and ran the simulation until 
ICXX) complete orderings of the six sites were obtained. The 
results are given in 15.3. 

It is clear from 15.3 that the order produced using 
Kendall's method is the most likely seriation of the data 
given his model. We note that there are a number of other 
orders which represent possible seriations of the data. It 
is less likely for any of the orderings, other than that of 
Kendall, to be correct. Kendall's ordering has a posterior 
probability of 0.679, while the next most likely alternative 
has a posterior probability of only 0.128. This second 
alternative also does not satisfy Kendall's model. 

It is interesting that the order 3,6,5,2,1,4 (that obtained 
using correspondence analysis) is also represented in the 
faults from our analysis. However it occurs with a posterior 

15.6   Conclusions 

We hope that it is clear from what goes before that in many 
situations much more can be obtained from archaeological 
data by using statistical modelling than by using simple 
descriptive statistics. We appreciate that the implementation 
of this modelling approach has up to now been hampered by 
the difficulty of developing models whose parameters can 
readily be estimated. By using Bayesian techniques this is 
not really a problem. In previous work (Buck & Litton 1989) 
we have pointed out that Bayesian analysis has applications 
in the processing of archaeological geochemical data. In 
this paper we have introduced applications in two other 
fields and hope that from this archaeologists will be able to 
appreciate the wide ranging applicability of the techniques. 
What is needed now is real collaboration between archaeol- 
ogists and statisticians in order to develop explicit models 
for the underlying processes which give rise to other types 
of archaeological data. This will then allow statisticians to 
demonstrate the power that Bayesian inference can have in 
these fields as well. 
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