
1. Beyond the relational database: managing the variety and complexity
of archaeological data
Nick Ryan
Computing Laboratory, University of Kent at Canterbury, Canterbury, Kent CT2 7NF, U.K.

1.1 Introduction

The theme of the large scale integrated database system
combining many, if not all, aspects of some
archaeological activity, such as the excavation process,
has been with us for a long time. Starting in the days
when archaeologists talked about 'data banks' rather
than databases, the primary concern seemed all too
often to be with the data entry process. If only the data
could be fed into the machine in an appropriate form,
then it would be possible to retrieve any required
information at the touch of a button. There were, of
course, honourable exceptions and this conference has
heard many papers concentrating on the use of data in
which the database was treated as an incidental if
necessary component of a larger system, one that
enabled other work rather than being an end in itself.

By the mid-1980s many archaeologists had come to
appreciate that there was a real danger that electronic
storage would simply provide an alternative to the dusty
museum basement as a repository of unorganised and
rarely consulted archives. Some were disturbed by the
combination of computer storage and an alleged
tendency to record '...everything in sight...' (McVicar
1986:102). There was perhaps a danger of creating an
electronic equivalent of the earlier crisis in physical
recording and dissemination that in Britain had led to
the 'Cunliffe report' (CBA/DOE 1982) and its
subsequent effects on funding and working practice.
Since then, discussion of large scale archaeological
databases has been marked by a significantly increased
concentration on established design methods that
emphasise not just storage, but also the intended uses of
the data. This has resulted from many intluences, not
least of which are the increasing professionalism in the
use of computers by many archaeological organisations,
and the continuing increase in the capabilities of the
available technology.

Perhaps now that multi-user networks of
microcomputers and even workstations are appearing in
some organisations, and powerful DBMS rather than
the earlier generation of overgrown file management
systems are available, we are now in a position to
contemplate the development of large scale
archaeological information systems. Certainly, there
have been presentations at this conference during the
last two years that suggest that this is possible.

Two examples from the 1990 CAA conference stand
out. In an as yet unpublished paper, Andresen and
Madsen presented a detailed account of a data
modelling exercise aimed at providing a sound basis for
a flexible recording system. Boast and Chapman (1991)
described one aspect, the processing of stratigraphie
data, of a longer term project to develop a large scale
archaeological information system at the DUA.
Elsewhere, in an article in Antiquity, Boast and
Tomlinson (1990) have discussed the general

requirement to integrate text, data archive, graphics and
images that underlies this project.

In this paper I will argue that although the current
technology is adequate for producing such a system, it
is far from ideal. A rigid separation of tasks and data
types between different packages extends to DBMS.
Although often claimed to be general purpose systems,
this is only true if we accept a very limited view of the
general, or are prepared to invest considerable
programming ingenuity in our applications. Even then,
the result will be a level of performance and flexibility
that falls far short of the capabilities of specialised
packages designed to deal with, for example, text or
graphical data. Without a truly general purpose DBMS
capable of managing any type of data with equal
facility, any attempt to produce a large scale integrated
information system will require extensive programming
and present problems for fiiture software maintenance.
According to all the text books, these are precisely the
problems that DBMS are intended to overcome.

Archaeologists are not alone in facing these problems.
Commercial data processing has traditionally been
conceived in terms of large numbers of simple
transactions applied to regular collections of records.
These, often minimal, descriptions of entities contain
regular combinations of simple atomic data types.
Recent trends in organisational computing and office
and plant automation have led to the realisation that this
simple view of data processing requirements is an
illusion brought about by the limited range of past and
contemporary uses of computers. Once the variety of
applications increased it became clear that to provide
centralised control of information resources and an
effective implementation of management information
systems it was essential to provide a coherent means of
storing, manipulating and accessing a wide variety of
data forms. These include office data such as memos,
letters, electronic mail, CAD/CAM data, spatial or
geographical data, and so on, as well as the more
familiar, and highly structured, stock control and
personnel data. There is a clear analogy here with the
expressed desire to construct archaeological information
systems.

Much recent research in database systems has sought to
address these problems in a number of ways. Although
representing differences of approach, the extensible
RDBMS (Stonebraker 1989), the Object Oriented
(OODBMS) (Kim 1990) and the Non First Normal
Form (NF^ DBMS) (Dadaram & Linneman 1989) all
attempt to provide a more generalised modelling
environment able to deal with a wider, ideally
open-ended, range of data types. Each attempts to go
beyond the storage and maintenance of simple data
processing records to provide a uniform system for
managing all of the organisational data.

NICK RYAN

In addition to data structure, both object oriented and
extensible relational systems provide methods of storing
behavioural rules and processes associated with data
types, and thus encapsulating a considerable part of the
semantic content of data and functional models in the
database rather than in the application programs. The
database facilities for maintaining the security and
integrity of data, as well as the ability to inter-relate
data and process in a single coherent model, can be
applied to the wide variety of data types found in any
complex organisation. This work is leading to rapid
evolution of current products to cater for a wider range
of data types, and to the development of new forms of
DBMS that promise to overcome the limitations of
relational systems.

1.2 Integrated systems: current possibilities

Huggett (1989) discussed the question of integration
and showed how a careful choice of packages could
help to overcome many of the problems encountered
when using the wide variety of software necessary for
an archaeological project. He suggested that the most
suitable packages were those offering a means of
customising their operation and user-interface, together
with an ability to read and write each other's file
formats. Despite the benefits of this approach, Huggett
made it clear that this was only a partial solution to the
problem, albeit a pragmatic one suited to the limitations
of the hardware, software and human expertise
available to many archaeological organisations. In the
near future, a much higher level of integration would
become possible through the use of systems providing
a common programming interface to system resources.

Some aspects of Huggett's future scenario are already
with us. Users of Microsoft Windows or of
Macintoshes will appreciate the benefits, long known
by those with access to more powerful workstations, of
a consistent user interface and the ease with which data
can be transferred between some programs. Simple
application building tools are available for these
environments that free the programmer from the need
to duplicate effort coding many aspects of the low-level
operation of the user interface. Provided that they do
not impose too many restrictions on the software
developer, these tools may help to provide at least one
part of a suitable environment for integration.
Unfortunately, most are only capable of dealing
effectively with small volumes of data with a relatively
simple structure. Although useful for building small
applications and prototypes, these tools are restricted by
the absence of suitable data management facilities
essential to large scale systems.

Most DBMS also provide some form of application
building tool, usually known as a fourth generation
language or 4GL. Many work only with character
based displays, but others such as the Ingres
Windows/4GL which runs under X provide full access
to the facilities of graphical window management
systems. Unfortunately, most current DBMS have
deficiencies in other areas that reduce their suitability
for use in integrated systems. Although not widely
realised, it is possible to store almost any information,
including text, vector and raster images, in a
conventional relational database. Storage, manipulation

and retrieval of this data is not difficult, but it must all
be done within application programs. The database is
only used as a safe method of storage and any
manipulation such as text or diagram editing can only
be performed by specially written programs, or by
exporting the data to another package.

With the exception of some integrity constraints used
for validation, almost all knowledge of the behaviour of
the data must be incorporated in applications or in
external programs. The fundamental data management
functions intended to maintain the security and integrity
of data, which are provided for simple tabular data by
a DBMS, must be performed manually or by purpose
written programs. This has serious implications for
software maintenance in large scale projects, and this
knowledge will not be available to any users employing
ad hoc SQL queries. In particular there will be no
possibility of accessing graphical information stored in
the database, whether raster or vector, via the query
language as the all important display functions will be
part of external programs rather than built into the
DBMS. This in turn can only add to the software
development and testing problems.

The scale of the problem will, of course, depend
largely on the scale and complexity of the system and
may not always be apparent to those whose experience
is limited to smaller single-user systems. It is easy to
think that one can develop the procedures and maintain
the discipline necessary to ensure the integrity and
consistency of the separate systems in a multi-user
environment, but the illusion soon fades when the
context numbers on the plans do not match those in the
context records, or the pottery from the foundation
trench of a roman wall turns out to be a seventeenth
century salt-glazed stoneware.

Although many errors can be traced to mistakes in data
entry, a significant proportion of these could be avoided
by careful use of validation controls and integrity
constraints. In an excavation database it should not be
possible to assign finds to a context or to insert a
stratigraphie relationship if the related context record
does not exist. Indeed, the full semantics of such data
extend beyond this simple example of referential
integrity to more complex behavioural rules. If a
context is recorded as a cut then clearly it cannot
contain finds or have a soil description and can only
participate in a limited set of stratigraphie relationships.
A system that does not implement the full set of
behavioural rules and constraints appropriate to its data
cannot hope to prevent users from entering incorrect
data that may compromise the integrity and hence
utility of the database.

Many DBMS provide only rudimentary facilities to
support these requirements with the result that rules and
constraints must be built into the application programs.
As a system grows in complexity and more applications
are written to access the database, the need to
reproduce the checking routines throughout the system
will inevitably lead to maintenance problems. If a new
check is added or an existing one modified, the changes
must be propagated to other programs. Even with a
disciplined approach to software development and the

1. BEYOND THE RELATIONAL DATABASE

help of suitable software engineering tools, keeping
track of such changes can become a severe burden.

What is needed is a system that not only provides a
consistent user interface for all applications, but also
one that provides a consistent means of data storage and
access. One major step in this direction can be made by
expanding the concept of data to include behavioural
rules or 'expert knowledge' about the problem domain.
If these rules are stored in the database they can be
invoked automatically whenever the data is accessed
(Stonebraker et al. 1987; Stonebraker 1989). More
importantly from the software development and
maintenance viewpoint, they are stored only once and
do not need to be reproduced in each program that
accesses the data.

Another means of implementing behaviour in the
database, rather than in the applications, is to extend
the variety of data types that the DBMS is able to
manipulate. In this way, the fundamental validation
checks and the range of legal operations on a data type
become part of its definition in the database. Additional
general purpose data types such as bitmaps and free
text have been added to several DBMS, but a far more
significant development is the provision of facilities to
support 'user-defined' types. The remainder of this
paper is devoted to a discussion and example of the use
of a 'user-defined' Abstract Data Type (ADT)
mechanism in a context that should be familiar to most
archaeologists.

1.3 Adding new data types

Most conventional DBMS provide a minimal range of
basic data types; character strings, integer and real
numbers. Many also have special data types for storing
other commonly used items such as money, dates and
time. Usually these additional types are accompanied by
at least rudimentary arithmetic and ordering operators.
With these it is possible to determine the earlier or later
of two dates, the difference in time between two dates,
or to add or subtract a period of time to or from a date.
Equally important is the ability to create indexes on a
date column and to use these to enhance query
performance. The range of valid dates varies between
packages. Some artificially limit the range by an origin
located in the very recent past. Others provide a more
generalised model of time, with valid dates covering the
range of the Gregorian or, in some cases, the Julian
calendar. Unfortunately these dates must be specified
precisely and there is no provision for a fuzzy date
object suitable for many historical purposes let alone
something that could deal adequately with the
vagueness of archaeological time (for a discussion of a
fuzzy date ADT for historical purposes, see Ryan
forthcoming).

Date and time are examples of abstract data types. In
addition to these built-in types the next generation of
DBMS will provide mechanisms for adding user-
defined ADTs. Indeed the objects in an object oriented
system are ADTs, and the latest release of the Ingres
relational DBMS also provides this facility as an
optional extension to the basic product. The definition
of an ADT or object consists typically of a data
structure used to store values, procedures for

translating between the internal, machine oriented,
stored form and an external, human oriented,
representation, and definitions of the operators and
functions that may be applied to the object. In addition
several fiinctions used internally by the DBMS must
also be provided. This is usually done by writing the
necessary 3GL code (in C in the case of Ingres, in
C-I-+ or another OO language in most OO systems) to
implement the translation, operators and other
functions.

The implementation of ADTs is not a trivial exercise
and requires rigorous design and testing before finally
linking with the DBMS. The effort is often greater than
would be necessary if the manipulation of basic data
types was performed in a single application, but a
number of benefits offset this initial effort. Once
installed the new data type is available for use in both
queries and application programs in just the same way
as the built-in types. To the user it becomes just
another built-in type. Because it is stored in the
database it can be re-used whenever it is needed.
Application programs are greatly simplified and the
programmer no longer has to worry about incorporating
all necessary integrity checks and behavioural rules into
each program.

Some of the major benefits of ADTs in an
archaeological information system would come from the
definition of suitable text and graphics types to handle
the wide variety of sources and products of the
excavation process. In the case of textual material this
could provide a means of storing and searching
transcripts of documentary sources in much the same
way as one might use a free text retrieval system.
However unlike the retrieval system it would also be
possible to use such types for text production in
combination with other data held in the database. This
might include the possibility of several people being
able to work on and refer to parts of a site report. Text
could of course be linked to other material in the
database either to ensure automatic update of internal
references or to provide a combination of the features
of both hypertext and database environments.

Graphical ADTs would open the possibility of
manipulating raster and vector images. Many of the
operations performed now within GIS, image
processing software and CAD systems might be added
as required. A system for storing and manipulating
encoded representations of artefact shapes was proposed
by Goodsen in a paper at the 1989 CAA conference
(Goodsen 1989). This involved the use of both object
oriented and relational DBMS but with the facilities
described here there would be no need to split shape
representation and structured description between two
databases.

The implementation of ADTs for these applications
would be a substantial task, and even an outline
description would not be possible here. As a far
simpler example, consider a point in 2D space such as
an Ordnance Survey National Grid Reference. The
conventional representation is a character string
consisting of two alphabetic characters indicating a
lOOkm square, followed by an even number of digits
providing an East/North coordinate pair within the

NICK RYAN

lOOkm square. For example, the centre of Canterbury
is located near TR149578. That is 14.9km east and
57.8km north of the origin of square TR, itself 600km
east and 100km north of the National Grid origin. This
conventional form also contains information about the
measurement precision of the specified point. In this
example, a 'six-figure' reference, the point is located to
the nearest 100m.

For arithmetic purposes it is more convenient to use a
purely numerical coordinate system in which the centre
of Canterbury would be specified as 61491578, but this
form is generally less familiar and less intelligible to
human readers. However it does provide a suitable
basis for an internal representation for the ADT. The
translation functions would be designed to convert
between the external character string representation,
and an internal numeric form.

In this way the user would see grid references displayed
in the familiar form, but the internal representation
would be more appropriate for use as two dimensional
spatial coordinates. Thus we might define the following
data structure to hold the absolute numeric coordinates
in units of, say, centimetres, together with an indication
of the precision of the original grid reference. In
conventional C this might be expressed as:

typedef struct {
long east;
long north;
long precision;

} NGR;

The input translation function would generate the
internal representation by removing the grid letters and
substituting equivalent numeric values suitable for
arithmetic manipulation, and recording the unit of
precision. It would include a check for legal grid
square letters and for valid numeric values. Any illegal
values would be rejected:

NGR *NGR_in (char *ext_str);

Thus the statement:

NGR_in (''TR149578");

would result in the stored values:

east = 61490000
north = 15780000
precision = 10000

The output translation function would remove the
numeric representation of the 100km square and restore
the grid letters, taking care to print the result to the
specified precision:

char * NGR_out (NGR p);

If the database included coverage of sites at a
European, or even world scale, it would be preferable
to adopt an internal representation that used
geographical coordinates rather than the local form
used in this example. The input and output functions
would then involve a transformation between national
grid references and this internal form. Further functions
could be added to enable transformation between the
internal form and one suited to any required map
projection. (For a discussion of these transformations

and their implications for archaeological databases,
together with some example functions in FORTRAN,
see ScoUar 1989).

So far we have seen how a new data type might be
used to store and retrieve data in a convenient form.
However, the real power of ADTs is only realised
when a set of suitable operations is also defined. For
example, in addition to the simple external textual
representation, it might also be useful to provide
functions to give access to the numeric values of the
coordinate pair:

long NGR_E (NGR p);
long NGR_N (NGR p);

Valid binary operators that might be applied to NGR
objects would include a test of equality:

boolean NGR_equal (NGR pi, NGR p2);

and the distance between two points (again in cm) could
be evaluated using a function:

long NGR_distance (NGR pi, NGR p2);

Once the code to implement these and any other
required functions has been written, tested and
installed, the grid reference ADT could be used as
follows. Given a relation of the form:

SITE (Site_Name, ngr, ...)

in which ngr is a column of type NGR, the following
query, expressed here in a hypothetical extended SQL,
could be used to retrieve the names of all sites within
a distance of 10km of the specified point:

SELECT site_name
FROM site
WHERE NGR_distance ('TR 150580' ngr) < 1000000

The ability to deal with spatial data might be extended
by specifying grid square, line and polygon data types.
Operations and functions on these would include tests
for overlap, calculation and comparison of area, and
tests to determine if a point is inside a polygon or grid
square. For example, a grid square type could be
constructed from the coordinates of its south-west and
north-east comers:

GRID_SQUARE *grid_square(char *SE, char *NW);

And a function to test whether a point was inside the
square could be provided as follows:

boolean inside (NGR *ngr, GRID_SQUARE *gs);

It might be argued that all this is possible using
standard SQL with its simple character and integer
columns. For example, given the relation

SITE (site_name, gridjetters, easting, northing, ...)

the query:

SELECT site_name
FROM site
WHERE gridjetters = 'TR' AND

easting > = 1000000 AND
easting < 2000000 AND
northing > = 5000000 AND
northing < 6000000

1. BEYOND THE RELATIONAL DATABASE

would return all sites within the specified 10km grid
square. An ADT version:

SELECT site_name
FROM site
WHERE inside (ngr, grid_square ('TRIOSO, TR2060'))

is easier to write but what other benefits does it
provide?

Firstly, the importance of an improvement in the
expressive power of the query language should not be
dismissed so quickly; consider, for example, the
conventional SQL equivalent of the earlier query using
the distance function. Alternatively, note that the
conventional SQL query to find sites within a grid
square becomes significantly more complex if the
required search area covers two or more 100km
squares, whereas the ADT version is unchanged.

Secondly, in the present example the selection condition
has been reduced to a single function called by the
query executor. This can improve performance as the
database server needs to apply only one test to each
record rather than the previous five. The same
functions are available to both the query language user
and to the programmer producing 3GL and 4GL
applications. The implementation is stored once only,
at the point where it can be used most efficiently. As a
result, the application programs are greatly simplified
and are much easier to maintain.

A further benefit would come from a system that
provided additional access methods suited to this form
of data. Conventional linear indexing methods are
poorly suited to spatial data. The system might be able
to make use of indexes in processing the above SQL
query, but any attempt to process queries involving
overlapping areas is likely to completely defeat any
indexing or query optimisation strategy available in
current DBMS. This lack of suitable indexing and
access methods is one of the major reasons why some
GIS employ a special purpose DBMS for data storage,
one that is optimised for handling spatial data.

The POSTGRES experimental DBMS (Stonebraker &
Rowe 1986), from which some of the new techniques
used in the commercial Ingres product are derived, will
eventually allow the addition of specialised access
methods to improve performance in cases that are
poorly served by linear indexing methods. In the
current release, an Rtree access method is provided as
an example. This is a storage strategy based on the
minimum bounding boxes of objects and is ideally
suited to two-dimensional spatial data (Guttman 1984;
see also Beckmann et al. 1990 for a recent discussion
of variations on this method).

Returning to the topic of the excavation database, it is
clear that there are many areas in which ADTs can help
to improve both the functionality and performance of
large scale information systems. The spatial types
discussed above can be extended to include the third
dimension. Suitable display functions for both vector
and raster graphic data types can be included as part of
their ADT definition. When combined with a user
interface that permitted graphical interaction, many

aspects of the functionality of current GIS could be
incorporated into a DBMS.

Plans, photographs and other graphical material
together with appropriate display ûinctions would
permit much closer control of the wide variety of
complex data to be handled in a coherent manner.
Instead of relying on error-prone human input to record
a list of composite plan and photograph numbers for
every context, the task of finding illustrations could be
largely automated. Such a query might ask for all
drawings covering an area of the site within five meters
of the centre of a context. If the bounding volume of a
photograph is recorded it would be possible to request
all photographs including a chosen point, and taken
within so many days of the context excavation date.
Selective display of parts of an image and the ability to
overlay images would contribute to the construction of
composite plans from context outlines in direct response
to database queries.

The next stage would involve the development of CAD
and text processing packages that were able to use the
DBMS rather than their own private file formats as
their primary data store. Only in this way would it be
possible to ensure complete data integrity between data
items manipulated by the functionally different
front-end packages. Of course, archaeologists should
not be expected to write their own packages for such
purposes. Ensuring that the DBMS provides adequate
performance to support industrial CAD systems is a
prominent area of current database research.
Implementation of many of these ideas can be expected
within the next few years. As an interim solution it may
be possible to use packages that provide their own
macro programming languages to implement one end of
a link with the DBMS.

1.4 Conclusions

In this short paper it has only been possible to deal
with one important aspect of recent database
developments. As has already been stressed, the
development of ADTs is not a trivial task, but in a well
designed database much of this work would be done in
the application programs. Transferring the
responsibility for the management of data types from
these programs to the DBMS simplifies the tasks of
writing and maintaining programs, but also brings
many other benefits in terms of efficiency and in
extensions to the query language. Clearly it is not a
task to be undertaken lightly, nor is it suited to small
scale database projects with a limited lifespan.
However, for large scale systems such as an
archaeological information system that may be used to
record and process the material from many sites over
a number of years the effort can be justified in terms of
the potential saving of maintenance problems, improved
query performance and the extended applicability of the
query language.

The next generation of DBMS will include many other
features that may prove equally applicable to the
problems of archaeological data management. I intend
to deal with three of these, inheritance, arrays and
recursive queries in a later paper, but in concluding this
paper I will return to the question posed in the

NICK RYAN

introduction of whetiier we are ready to begin building
large scale information systems to support major
excavation and survey activities.

It is certainly possible to commence the design of such
systems, but implementation will depend on the
availability of suitable DBMS. Extensible relational
systems have the benefit that they can be developed as
extensions to already well-proven products. The
inclusion of POSTGRES-derived techniques in Ingres
and a stated commitment to continue this process is
probably the most prominent example. Similar features
can be expected to appear rapidly in competing
products, some of which already offer features not
found in Ingres. It should be possible to make use of
many of these features as they become available, but to
be able to do so will depend on appropriate design
decisions in the early stages of system development.
One of the most important of these decisions will be not
to waste time on developing large-scale software that
may be redundant before it has even been implemented.
This is not to suggest that all recording activity should
cease until better tools are available. Archaeologists
must continue to work on current projects with
whatever is available, but those who are initiating
large-scale projects need to be aware of the limitations
of current tools and of the potential of recent
developments.

Several object oriented systems are also available, but
in many cases these are limited to a navigational style
of access. In other words, they are more suited to
supporting applications than report generation and ad
hoc queries. Some regard this absence of a powerful
set-oriented query language as a step backwards to the
limitations of the COD ASYL network DBMS model.
Others are concerned by the absence of a firm
theoretical basis. However, these systems are still in
their infancy and we can expect rapid development and
a positive response to these criticisms. For this reason
I believe that it would be unwise to make an expensive
commitment to a single product at this stage. However,
there is much to be commended in the object oriented
approach and irrespective of the use of an OODBMS,
the emerging techniques of object oriented analysis and
design (see for example Booch 1991) hold considerable
promise and significant advantages over current
methodologies.

Whether the object oriented DBMS eventually becomes
the dominant form, it is clear that there is considerable
life left in the relational systems. Indeed they are now
only beginning to achieve in practice many of the
promises that have always been inherent in the
relational model. Both object oriented systems and the
new generation of extensible relational systems offer
means of managing an open ended range of data types.
As a result they both have the potential to provide a
uniform data management system capable of dealing
with the variety and complexity of archaeological data.

References

BECKMANN, N., H-P. KRIEGEL, R. SCHNEIDER & B.
SEEGER 1990. "The R*-tree: an efficient and robust
access method for points and rectangles", Proc.

ACM SIGMOD International Conference on
Management of Data: 322—331.

BOAST, R. & D. CHAPMAN 1991. "SQL and hypertext
generation of stratigraphie adjacency matrices", in K.
Lockyear & S. Rahtz (eds.), Computer Applications
and Quantitative Methods in Archaeology 1990,
British Archaeological Reports (International Series)
565, Oxford, Tempus Reparatum: 43—51.

BOAST, R. & Z. TOMLINSON 1990. "Computers in the
city: an archaeological information system".
Antiquity, 64: 662-666.

BoocH, G. 1991. Object Oriented Design with
applications, Redwood, California,
Benjamin/Cummings.

CBA/DOE 1982. The Publication of Archaeological
Excavations, London, Council for British
Archaeology.

DADARAM, P. & V. LINNEMAN 1989. "Advanced
Information Management (AIM): advanced database
technology for integrated applications", IBM Systems
Journal, 28(4): 661-68 L

GOODSEN, K. 1989. "Shape information in an artefact
database", in S. Rahtz & J. Richards (eds.):
349-361.

GUTTMAN, A. 1984. "R-trees: A dynamic index structure
for spatial searching", Proc. ACM SIGMOD
International Conference on Management of Data:
47-57.

HUGGETT, J. 1989. "The development of an integrated
archaeological software system", in S. Rahtz & J.
Richards (eds.): 287-293.

KIM, K. 1990. An Introduaion to Object-Oriented
Database Systems, Cambridge, Massachusetts, MIT
Press.

McVlCAR, J. 1986. "Using microcomputers in
archaeology: some comments and suggestions", in
Computer Applications in Archaeology 1985,
London, Institute of Archaeology: 102—108.

RAHTZ, S. & J. RICHARDS, (eds.) 1989. Computer
Applications and Quantitative Methods in
Archaeology 1989, British Archaeological Reports
(International Series) 548, Oxford, British
Archaeological Reports.

RYAN, N. forthcoming. "Dealing with time and
uncertainty in historical databases", Proc. of the 5th
International Conference of the Association for
History and Computing, Montpelier, September
1990.

SCOLLAR, I. 1989. "Geodetic and cartographic problems
in archaeological databases", in S. Rahtz & J.
Richards (eds.): 251-269.

STONEBRAKER, M. 1989. "Future trends in database
systems", IEEE Trans, on Knowledge and Data
Engineering, 1(1), March.

STONEBRAKER, M. & L. ROWE 1986. "The design of
POSTGRES", Proc. ACM SIGMOD International
Conference on Management of Data.

STONEBRAKER, M., J. ANTON & E. HANSON 1987.
"Extending a data base system with procedures",
ACM Transactions on Database Systems, 12(3): 350-
376.

