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1.1 Introduction 

The theme of the large scale integrated database system 
combining many, if not all, aspects of some 
archaeological activity, such as the excavation process, 
has been with us for a long time. Starting in the days 
when archaeologists talked about 'data banks' rather 
than databases, the primary concern seemed all too 
often to be with the data entry process. If only the data 
could be fed into the machine in an appropriate form, 
then it would be possible to retrieve any required 
information at the touch of a button. There were, of 
course, honourable exceptions and this conference has 
heard many papers concentrating on the use of data in 
which the database was treated as an incidental if 
necessary component of a larger system, one that 
enabled other work rather than being an end in itself. 

By the mid-1980s many archaeologists had come to 
appreciate that there was a real danger that electronic 
storage would simply provide an alternative to the dusty 
museum basement as a repository of unorganised and 
rarely consulted archives. Some were disturbed by the 
combination of computer storage and an alleged 
tendency to record '...everything in sight...' (McVicar 
1986:102). There was perhaps a danger of creating an 
electronic equivalent of the earlier crisis in physical 
recording and dissemination that in Britain had led to 
the 'Cunliffe report' (CBA/DOE 1982) and its 
subsequent effects on funding and working practice. 
Since then, discussion of large scale archaeological 
databases has been marked by a significantly increased 
concentration on established design methods that 
emphasise not just storage, but also the intended uses of 
the data. This has resulted from many intluences, not 
least of which are the increasing professionalism in the 
use of computers by many archaeological organisations, 
and the continuing increase in the capabilities of the 
available technology. 

Perhaps now that multi-user networks of 
microcomputers and even workstations are appearing in 
some organisations, and powerful DBMS rather than 
the earlier generation of overgrown file management 
systems are available, we are now in a position to 
contemplate the development of large scale 
archaeological information systems. Certainly, there 
have been presentations at this conference during the 
last two years that suggest that this is possible. 

Two examples from the 1990 CAA conference stand 
out. In an as yet unpublished paper, Andresen and 
Madsen presented a detailed account of a data 
modelling exercise aimed at providing a sound basis for 
a flexible recording system. Boast and Chapman (1991) 
described one aspect, the processing of stratigraphie 
data, of a longer term project to develop a large scale 
archaeological information system at the DUA. 
Elsewhere, in an article in Antiquity, Boast and 
Tomlinson    (1990)    have    discussed    the    general 

requirement to integrate text, data archive, graphics and 
images that underlies this project. 

In this paper I will argue that although the current 
technology is adequate for producing such a system, it 
is far from ideal. A rigid separation of tasks and data 
types between different packages extends to DBMS. 
Although often claimed to be general purpose systems, 
this is only true if we accept a very limited view of the 
general, or are prepared to invest considerable 
programming ingenuity in our applications. Even then, 
the result will be a level of performance and flexibility 
that falls far short of the capabilities of specialised 
packages designed to deal with, for example, text or 
graphical data. Without a truly general purpose DBMS 
capable of managing any type of data with equal 
facility, any attempt to produce a large scale integrated 
information system will require extensive programming 
and present problems for fiiture software maintenance. 
According to all the text books, these are precisely the 
problems that DBMS are intended to overcome. 

Archaeologists are not alone in facing these problems. 
Commercial data processing has traditionally been 
conceived in terms of large numbers of simple 
transactions applied to regular collections of records. 
These, often minimal, descriptions of entities contain 
regular combinations of simple atomic data types. 
Recent trends in organisational computing and office 
and plant automation have led to the realisation that this 
simple view of data processing requirements is an 
illusion brought about by the limited range of past and 
contemporary uses of computers. Once the variety of 
applications increased it became clear that to provide 
centralised control of information resources and an 
effective implementation of management information 
systems it was essential to provide a coherent means of 
storing, manipulating and accessing a wide variety of 
data forms. These include office data such as memos, 
letters, electronic mail, CAD/CAM data, spatial or 
geographical data, and so on, as well as the more 
familiar, and highly structured, stock control and 
personnel data. There is a clear analogy here with the 
expressed desire to construct archaeological information 
systems. 

Much recent research in database systems has sought to 
address these problems in a number of ways. Although 
representing differences of approach, the extensible 
RDBMS (Stonebraker 1989), the Object Oriented 
(OODBMS) (Kim 1990) and the Non First Normal 
Form (NF^ DBMS) (Dadaram & Linneman 1989) all 
attempt to provide a more generalised modelling 
environment able to deal with a wider, ideally 
open-ended, range of data types. Each attempts to go 
beyond the storage and maintenance of simple data 
processing records to provide a uniform system for 
managing all of the organisational data. 
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In addition to data structure, both object oriented and 
extensible relational systems provide methods of storing 
behavioural rules and processes associated with data 
types, and thus encapsulating a considerable part of the 
semantic content of data and functional models in the 
database rather than in the application programs. The 
database facilities for maintaining the security and 
integrity of data, as well as the ability to inter-relate 
data and process in a single coherent model, can be 
applied to the wide variety of data types found in any 
complex organisation. This work is leading to rapid 
evolution of current products to cater for a wider range 
of data types, and to the development of new forms of 
DBMS that promise to overcome the limitations of 
relational systems. 

1.2 Integrated systems: current possibilities 

Huggett (1989) discussed the question of integration 
and showed how a careful choice of packages could 
help to overcome many of the problems encountered 
when using the wide variety of software necessary for 
an archaeological project. He suggested that the most 
suitable packages were those offering a means of 
customising their operation and user-interface, together 
with an ability to read and write each other's file 
formats. Despite the benefits of this approach, Huggett 
made it clear that this was only a partial solution to the 
problem, albeit a pragmatic one suited to the limitations 
of the hardware, software and human expertise 
available to many archaeological organisations. In the 
near future, a much higher level of integration would 
become possible through the use of systems providing 
a common programming interface to system resources. 

Some aspects of Huggett's future scenario are already 
with us. Users of Microsoft Windows or of 
Macintoshes will appreciate the benefits, long known 
by those with access to more powerful workstations, of 
a consistent user interface and the ease with which data 
can be transferred between some programs. Simple 
application building tools are available for these 
environments that free the programmer from the need 
to duplicate effort coding many aspects of the low-level 
operation of the user interface. Provided that they do 
not impose too many restrictions on the software 
developer, these tools may help to provide at least one 
part of a suitable environment for integration. 
Unfortunately, most are only capable of dealing 
effectively with small volumes of data with a relatively 
simple structure. Although useful for building small 
applications and prototypes, these tools are restricted by 
the absence of suitable data management facilities 
essential to large scale systems. 

Most DBMS also provide some form of application 
building tool, usually known as a fourth generation 
language or 4GL. Many work only with character 
based displays, but others such as the Ingres 
Windows/4GL which runs under X provide full access 
to the facilities of graphical window management 
systems. Unfortunately, most current DBMS have 
deficiencies in other areas that reduce their suitability 
for use in integrated systems. Although not widely 
realised, it is possible to store almost any information, 
including text, vector and raster images, in a 
conventional relational database. Storage, manipulation 

and retrieval of this data is not difficult, but it must all 
be done within application programs. The database is 
only used as a safe method of storage and any 
manipulation such as text or diagram editing can only 
be performed by specially written programs, or by 
exporting the data to another package. 

With the exception of some integrity constraints used 
for validation, almost all knowledge of the behaviour of 
the data must be incorporated in applications or in 
external programs. The fundamental data management 
functions intended to maintain the security and integrity 
of data, which are provided for simple tabular data by 
a DBMS, must be performed manually or by purpose 
written programs. This has serious implications for 
software maintenance in large scale projects, and this 
knowledge will not be available to any users employing 
ad hoc SQL queries. In particular there will be no 
possibility of accessing graphical information stored in 
the database, whether raster or vector, via the query 
language as the all important display functions will be 
part of external programs rather than built into the 
DBMS. This in turn can only add to the software 
development and testing problems. 

The scale of the problem will, of course, depend 
largely on the scale and complexity of the system and 
may not always be apparent to those whose experience 
is limited to smaller single-user systems. It is easy to 
think that one can develop the procedures and maintain 
the discipline necessary to ensure the integrity and 
consistency of the separate systems in a multi-user 
environment, but the illusion soon fades when the 
context numbers on the plans do not match those in the 
context records, or the pottery from the foundation 
trench of a roman wall turns out to be a seventeenth 
century salt-glazed stoneware. 

Although many errors can be traced to mistakes in data 
entry, a significant proportion of these could be avoided 
by careful use of validation controls and integrity 
constraints. In an excavation database it should not be 
possible to assign finds to a context or to insert a 
stratigraphie relationship if the related context record 
does not exist. Indeed, the full semantics of such data 
extend beyond this simple example of referential 
integrity to more complex behavioural rules. If a 
context is recorded as a cut then clearly it cannot 
contain finds or have a soil description and can only 
participate in a limited set of stratigraphie relationships. 
A system that does not implement the full set of 
behavioural rules and constraints appropriate to its data 
cannot hope to prevent users from entering incorrect 
data that may compromise the integrity and hence 
utility of the database. 

Many DBMS provide only rudimentary facilities to 
support these requirements with the result that rules and 
constraints must be built into the application programs. 
As a system grows in complexity and more applications 
are written to access the database, the need to 
reproduce the checking routines throughout the system 
will inevitably lead to maintenance problems. If a new 
check is added or an existing one modified, the changes 
must be propagated to other programs. Even with a 
disciplined approach to software development and the 
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help of suitable software engineering tools, keeping 
track of such changes can become a severe burden. 

What is needed is a system that not only provides a 
consistent user interface for all applications, but also 
one that provides a consistent means of data storage and 
access. One major step in this direction can be made by 
expanding the concept of data to include behavioural 
rules or 'expert knowledge' about the problem domain. 
If these rules are stored in the database they can be 
invoked automatically whenever the data is accessed 
(Stonebraker et al. 1987; Stonebraker 1989). More 
importantly from the software development and 
maintenance viewpoint, they are stored only once and 
do not need to be reproduced in each program that 
accesses the data. 

Another means of implementing behaviour in the 
database, rather than in the applications, is to extend 
the variety of data types that the DBMS is able to 
manipulate. In this way, the fundamental validation 
checks and the range of legal operations on a data type 
become part of its definition in the database. Additional 
general purpose data types such as bitmaps and free 
text have been added to several DBMS, but a far more 
significant development is the provision of facilities to 
support 'user-defined' types. The remainder of this 
paper is devoted to a discussion and example of the use 
of a 'user-defined' Abstract Data Type (ADT) 
mechanism in a context that should be familiar to most 
archaeologists. 

1.3 Adding new data types 

Most conventional DBMS provide a minimal range of 
basic data types; character strings, integer and real 
numbers. Many also have special data types for storing 
other commonly used items such as money, dates and 
time. Usually these additional types are accompanied by 
at least rudimentary arithmetic and ordering operators. 
With these it is possible to determine the earlier or later 
of two dates, the difference in time between two dates, 
or to add or subtract a period of time to or from a date. 
Equally important is the ability to create indexes on a 
date column and to use these to enhance query 
performance. The range of valid dates varies between 
packages. Some artificially limit the range by an origin 
located in the very recent past. Others provide a more 
generalised model of time, with valid dates covering the 
range of the Gregorian or, in some cases, the Julian 
calendar. Unfortunately these dates must be specified 
precisely and there is no provision for a fuzzy date 
object suitable for many historical purposes let alone 
something that could deal adequately with the 
vagueness of archaeological time (for a discussion of a 
fuzzy date ADT for historical purposes, see Ryan 
forthcoming). 

Date and time are examples of abstract data types. In 
addition to these built-in types the next generation of 
DBMS will provide mechanisms for adding user- 
defined ADTs. Indeed the objects in an object oriented 
system are ADTs, and the latest release of the Ingres 
relational DBMS also provides this facility as an 
optional extension to the basic product. The definition 
of an ADT or object consists typically of a data 
structure    used   to    store   values,    procedures    for 

translating between the internal, machine oriented, 
stored form and an external, human oriented, 
representation, and definitions of the operators and 
functions that may be applied to the object. In addition 
several fiinctions used internally by the DBMS must 
also be provided. This is usually done by writing the 
necessary 3GL code (in C in the case of Ingres, in 
C-I-+ or another OO language in most OO systems) to 
implement the translation, operators and other 
functions. 

The implementation of ADTs is not a trivial exercise 
and requires rigorous design and testing before finally 
linking with the DBMS. The effort is often greater than 
would be necessary if the manipulation of basic data 
types was performed in a single application, but a 
number of benefits offset this initial effort. Once 
installed the new data type is available for use in both 
queries and application programs in just the same way 
as the built-in types. To the user it becomes just 
another built-in type. Because it is stored in the 
database it can be re-used whenever it is needed. 
Application programs are greatly simplified and the 
programmer no longer has to worry about incorporating 
all necessary integrity checks and behavioural rules into 
each program. 

Some of the major benefits of ADTs in an 
archaeological information system would come from the 
definition of suitable text and graphics types to handle 
the wide variety of sources and products of the 
excavation process. In the case of textual material this 
could provide a means of storing and searching 
transcripts of documentary sources in much the same 
way as one might use a free text retrieval system. 
However unlike the retrieval system it would also be 
possible to use such types for text production in 
combination with other data held in the database. This 
might include the possibility of several people being 
able to work on and refer to parts of a site report. Text 
could of course be linked to other material in the 
database either to ensure automatic update of internal 
references or to provide a combination of the features 
of both hypertext and database environments. 

Graphical ADTs would open the possibility of 
manipulating raster and vector images. Many of the 
operations performed now within GIS, image 
processing software and CAD systems might be added 
as required. A system for storing and manipulating 
encoded representations of artefact shapes was proposed 
by Goodsen in a paper at the 1989 CAA conference 
(Goodsen 1989). This involved the use of both object 
oriented and relational DBMS but with the facilities 
described here there would be no need to split shape 
representation and structured description between two 
databases. 

The implementation of ADTs for these applications 
would be a substantial task, and even an outline 
description would not be possible here. As a far 
simpler example, consider a point in 2D space such as 
an Ordnance Survey National Grid Reference. The 
conventional representation is a character string 
consisting of two alphabetic characters indicating a 
lOOkm square, followed by an even number of digits 
providing an East/North coordinate pair within the 
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lOOkm square. For example, the centre of Canterbury 
is located near TR149578. That is 14.9km east and 
57.8km north of the origin of square TR, itself 600km 
east and 100km north of the National Grid origin. This 
conventional form also contains information about the 
measurement precision of the specified point. In this 
example, a 'six-figure' reference, the point is located to 
the nearest 100m. 

For arithmetic purposes it is more convenient to use a 
purely numerical coordinate system in which the centre 
of Canterbury would be specified as 61491578, but this 
form is generally less familiar and less intelligible to 
human readers. However it does provide a suitable 
basis for an internal representation for the ADT. The 
translation functions would be designed to convert 
between the external character string representation, 
and an internal numeric form. 

In this way the user would see grid references displayed 
in the familiar form, but the internal representation 
would be more appropriate for use as two dimensional 
spatial coordinates. Thus we might define the following 
data structure to hold the absolute numeric coordinates 
in units of, say, centimetres, together with an indication 
of the precision of the original grid reference. In 
conventional C this might be expressed as: 

typedef struct { 
long       east; 
long       north; 
long      precision; 

} NGR; 

The input translation function would generate the 
internal representation by removing the grid letters and 
substituting equivalent numeric values suitable for 
arithmetic manipulation, and recording the unit of 
precision. It would include a check for legal grid 
square letters and for valid numeric values. Any illegal 
values would be rejected: 

NGR *NGR_in ( char *ext_str ); 

Thus the statement: 

NGR_in ( ''TR149578" ); 

would result in the stored values: 

east = 61490000 
north = 15780000 
precision     = 10000 

The output translation function would remove the 
numeric representation of the 100km square and restore 
the grid letters, taking care to print the result to the 
specified precision: 

char * NGR_out ( NGR p ); 

If the database included coverage of sites at a 
European, or even world scale, it would be preferable 
to adopt an internal representation that used 
geographical coordinates rather than the local form 
used in this example. The input and output functions 
would then involve a transformation between national 
grid references and this internal form. Further functions 
could be added to enable transformation between the 
internal form and one suited to any required map 
projection. (For a discussion of these transformations 

and their implications for archaeological databases, 
together with some example functions in FORTRAN, 
see ScoUar 1989). 

So far we have seen how a new data type might be 
used to store and retrieve data in a convenient form. 
However, the real power of ADTs is only realised 
when a set of suitable operations is also defined. For 
example, in addition to the simple external textual 
representation, it might also be useful to provide 
functions to give access to the numeric values of the 
coordinate pair: 

long NGR_E ( NGR p ); 
long NGR_N ( NGR p ); 

Valid binary operators that might be applied to NGR 
objects would include a test of equality: 

boolean      NGR_equal ( NGR pi, NGR p2 ); 

and the distance between two points (again in cm) could 
be evaluated using a function: 

long NGR_distance ( NGR pi, NGR p2 ); 

Once the code to implement these and any other 
required functions has been written, tested and 
installed, the grid reference ADT could be used as 
follows. Given a relation of the form: 

SITE ( Site_Name, ngr, ...) 

in which ngr is a column of type NGR, the following 
query, expressed here in a hypothetical extended SQL, 
could be used to retrieve the names of all sites within 
a distance of 10km of the specified point: 

SELECT site_name 
FROM site 
WHERE NGR_distance ( 'TR 150580' ngr) < 1000000 

The ability to deal with spatial data might be extended 
by specifying grid square, line and polygon data types. 
Operations and functions on these would include tests 
for overlap, calculation and comparison of area, and 
tests to determine if a point is inside a polygon or grid 
square. For example, a grid square type could be 
constructed from the coordinates of its south-west and 
north-east comers: 

GRID_SQUARE *grid_square( char *SE, char *NW ); 

And a function to test whether a point was inside the 
square could be provided as follows: 

boolean      inside ( NGR *ngr, GRID_SQUARE *gs ); 

It might be argued that all this is possible using 
standard SQL with its simple character and integer 
columns. For example, given the relation 

SITE ( site_name, gridjetters, easting, northing, ...) 

the query: 

SELECT site_name 
FROM site 
WHERE gridjetters = 'TR' AND 

easting > = 1000000 AND 
easting < 2000000 AND 
northing > = 5000000 AND 
northing < 6000000 
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would return all sites within the specified 10km grid 
square.   An ADT version: 

SELECT site_name 
FROM site 
WHERE inside ( ngr, grid_square ( 'TRIOSO, TR2060' )) 

is easier to write but what other benefits does it 
provide? 

Firstly, the importance of an improvement in the 
expressive power of the query language should not be 
dismissed so quickly; consider, for example, the 
conventional SQL equivalent of the earlier query using 
the distance function. Alternatively, note that the 
conventional SQL query to find sites within a grid 
square becomes significantly more complex if the 
required search area covers two or more 100km 
squares, whereas the ADT version is unchanged. 

Secondly, in the present example the selection condition 
has been reduced to a single function called by the 
query executor. This can improve performance as the 
database server needs to apply only one test to each 
record rather than the previous five. The same 
functions are available to both the query language user 
and to the programmer producing 3GL and 4GL 
applications. The implementation is stored once only, 
at the point where it can be used most efficiently. As a 
result, the application programs are greatly simplified 
and are much easier to maintain. 

A further benefit would come from a system that 
provided additional access methods suited to this form 
of data. Conventional linear indexing methods are 
poorly suited to spatial data. The system might be able 
to make use of indexes in processing the above SQL 
query, but any attempt to process queries involving 
overlapping areas is likely to completely defeat any 
indexing or query optimisation strategy available in 
current DBMS. This lack of suitable indexing and 
access methods is one of the major reasons why some 
GIS employ a special purpose DBMS for data storage, 
one that is optimised for handling spatial data. 

The POSTGRES experimental DBMS (Stonebraker & 
Rowe 1986), from which some of the new techniques 
used in the commercial Ingres product are derived, will 
eventually allow the addition of specialised access 
methods to improve performance in cases that are 
poorly served by linear indexing methods. In the 
current release, an Rtree access method is provided as 
an example. This is a storage strategy based on the 
minimum bounding boxes of objects and is ideally 
suited to two-dimensional spatial data (Guttman 1984; 
see also Beckmann et al. 1990 for a recent discussion 
of variations on this method). 

Returning to the topic of the excavation database, it is 
clear that there are many areas in which ADTs can help 
to improve both the functionality and performance of 
large scale information systems. The spatial types 
discussed above can be extended to include the third 
dimension. Suitable display functions for both vector 
and raster graphic data types can be included as part of 
their ADT definition. When combined with a user 
interface that  permitted  graphical   interaction,   many 

aspects of the functionality of current GIS could be 
incorporated into a DBMS. 

Plans, photographs and other graphical material 
together with appropriate display ûinctions would 
permit much closer control of the wide variety of 
complex data to be handled in a coherent manner. 
Instead of relying on error-prone human input to record 
a list of composite plan and photograph numbers for 
every context, the task of finding illustrations could be 
largely automated. Such a query might ask for all 
drawings covering an area of the site within five meters 
of the centre of a context. If the bounding volume of a 
photograph is recorded it would be possible to request 
all photographs including a chosen point, and taken 
within so many days of the context excavation date. 
Selective display of parts of an image and the ability to 
overlay images would contribute to the construction of 
composite plans from context outlines in direct response 
to database queries. 

The next stage would involve the development of CAD 
and text processing packages that were able to use the 
DBMS rather than their own private file formats as 
their primary data store. Only in this way would it be 
possible to ensure complete data integrity between data 
items manipulated by the functionally different 
front-end packages. Of course, archaeologists should 
not be expected to write their own packages for such 
purposes. Ensuring that the DBMS provides adequate 
performance to support industrial CAD systems is a 
prominent area of current database research. 
Implementation of many of these ideas can be expected 
within the next few years. As an interim solution it may 
be possible to use packages that provide their own 
macro programming languages to implement one end of 
a link with the DBMS. 

1.4 Conclusions 

In this short paper it has only been possible to deal 
with one important aspect of recent database 
developments. As has already been stressed, the 
development of ADTs is not a trivial task, but in a well 
designed database much of this work would be done in 
the application programs. Transferring the 
responsibility for the management of data types from 
these programs to the DBMS simplifies the tasks of 
writing and maintaining programs, but also brings 
many other benefits in terms of efficiency and in 
extensions to the query language. Clearly it is not a 
task to be undertaken lightly, nor is it suited to small 
scale database projects with a limited lifespan. 
However, for large scale systems such as an 
archaeological information system that may be used to 
record and process the material from many sites over 
a number of years the effort can be justified in terms of 
the potential saving of maintenance problems, improved 
query performance and the extended applicability of the 
query language. 

The next generation of DBMS will include many other 
features that may prove equally applicable to the 
problems of archaeological data management. I intend 
to deal with three of these, inheritance, arrays and 
recursive queries in a later paper, but in concluding this 
paper   I   will   return  to   the  question  posed   in  the 
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introduction of whetiier we are ready to begin building 
large scale information systems to support major 
excavation and survey activities. 

It is certainly possible to commence the design of such 
systems, but implementation will depend on the 
availability of suitable DBMS. Extensible relational 
systems have the benefit that they can be developed as 
extensions to already well-proven products. The 
inclusion of POSTGRES-derived techniques in Ingres 
and a stated commitment to continue this process is 
probably the most prominent example. Similar features 
can be expected to appear rapidly in competing 
products, some of which already offer features not 
found in Ingres. It should be possible to make use of 
many of these features as they become available, but to 
be able to do so will depend on appropriate design 
decisions in the early stages of system development. 
One of the most important of these decisions will be not 
to waste time on developing large-scale software that 
may be redundant before it has even been implemented. 
This is not to suggest that all recording activity should 
cease until better tools are available. Archaeologists 
must continue to work on current projects with 
whatever is available, but those who are initiating 
large-scale projects need to be aware of the limitations 
of current tools and of the potential of recent 
developments. 

Several object oriented systems are also available, but 
in many cases these are limited to a navigational style 
of access. In other words, they are more suited to 
supporting applications than report generation and ad 
hoc queries. Some regard this absence of a powerful 
set-oriented query language as a step backwards to the 
limitations of the COD ASYL network DBMS model. 
Others are concerned by the absence of a firm 
theoretical basis. However, these systems are still in 
their infancy and we can expect rapid development and 
a positive response to these criticisms. For this reason 
I believe that it would be unwise to make an expensive 
commitment to a single product at this stage. However, 
there is much to be commended in the object oriented 
approach and irrespective of the use of an OODBMS, 
the emerging techniques of object oriented analysis and 
design (see for example Booch 1991) hold considerable 
promise and significant advantages over current 
methodologies. 

Whether the object oriented DBMS eventually becomes 
the dominant form, it is clear that there is considerable 
life left in the relational systems. Indeed they are now 
only beginning to achieve in practice many of the 
promises that have always been inherent in the 
relational model. Both object oriented systems and the 
new generation of extensible relational systems offer 
means of managing an open ended range of data types. 
As a result they both have the potential to provide a 
uniform data management system capable of dealing 
with the variety and complexity of archaeological data. 
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