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ABSTRACT 

In this paper I imagine aii automatic archaeologist as a machine able to act as any of us, archaeologists, learning through experience to associate 
archaeological observations to explanations, and using those associations to solve archaeological problems. Such a machine is here described as a 
device which perceives its environment through some mechanisms called sensors and acts upon that environment through other mechanisms called 
actuators or effectors. 
Such an automaton should be capable of solving archaeological problems through a sequence of epistemic actions or cognitive behaviors. Artificial 
Intelligence techniques and technology is used to address the question How a robot can solve "automatically " archaeological problems. 

1. AUTOMATA: THE AWFUL TRUTH ABOUT HUMANS AND MACHINES 

Is it possible to build a machine to do archaeology? Will this machine be capable of acting like a scientist? Will this 
machine be capable of understanding how humans act, or how humans think they acted in the Past? 
May be some of you will say that "not yet" and others will claim: "fortunately, never!" "Computers will never emulate 
humans", they may think, and even worst, "why we need such an awful machine? " This paper is a possible answer to 
this last question. We should imagine an automatic archaeologist as a machine able to act as any of us, archaeologists, 
learning through experience to associate archaeological observations to explanations, and using those associations 
to solve archaeological problems. Our automated archaeologist is a computer program that acts. In our case, we are 
speaking of epistemic actions: namely, actions whose purpose is to make available information required as part of a 
problem solving routine. In that sense explanations are for our automatic archaeology machine a form of behaviour. The 
automatic archaeologist should correlate evidence and explanation adequately in order to generate an adequate action. 
Expressed in its most basic terms, the task to be performed may be understood in terms of predicting which explanations 
should be generated in face of determined evidence. This task is performed by a function that maps any given percept 
sequence to an action. Consequently, we should characterize our automatic archaeologist as an automaton that is a device 
with defined inputs, outputs and structure of inner states, which perceives its environment through some mechanisms 
called sensors and acts upon that environment through other mechanisms called actuators or effectors (Aleksander 
and Morton, 1993, p. 97). Automata have a bad reputation, because automatic processing has been characterized as a 
simple, direct association of a stimulus with a response. Nevertheless, what gives its truly "intelligent" character to our 
automatic archaeologist is not a passive storing of individual rules, but an enhanced ability to react in a certain way to 
a certain stimulus (Franklin, 1995). Don't panic! When using the word automaton, I am not speaking of an android, but 
to any "intelligent connection of perception to action" (Brady, 1985). It is important to realize that the formal definition 
of automaton includes human beings within the class of automata. A human has input senses, a muscular output and 
an ability to use this to great effect (excavating old sites, teaching archaeology, etc.). A human has a state structure of 
wondrous complexity, which is the seat of consciousness and intelligence. This complexity distinguishes archaeologists 
from computers, but mathematically even the best of us can be described as an automaton. Therefore, the activity of 
machine and human automata can be described and analyzed in the same terms. In its most basic level, the performance 
of both human and automatic archaeologist is a 3 stage process: Feature Extraction, Recognition, and Explanation by 
which a visual input (archaeological record) is transformed into an explanatory model of a human society (Fig. 1). For 
instance, in order the system be able to make a decision as to whether the object is a knife or a scrapper, input information 
should be recognized, that is "categorized", in such a way that once "activated" the selected categories will guide the 
selection of a response. 
I am trying to show how archaeological problems can be "automatically" solved by a machine. Such a machine should 
not be considered a mere science fiction tale. It is a technological reality. In other scientific domains the performance 
of humans at a particular task has been used to design a robot that can do the same task in the same manner (and 
as well). In many different domains it has been shown how 'robot scientists' can interpret experiments without any 
human help (Arkin, 1998; Moravec, 1999; Murphy, 2002; Santore and Shapiro, 2004; Kovacs and Ueno, 2005; King 
et ai, 2004). Such robots generate a set of hypotheses from what it is known about a scientific domain, and then 
design experiments to test them. That is, a robot scientist can formulate theories, carry out experiments and interpret 
results. 
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The question of whether it is possible to automate the scientific process is of both great theoretical interest and 
increasing practical importance because, in many scientific areas, data are being generated much faster than they 
can be effectively analyzed. Making a computational model forces us to be explicit about our assumptions and about 
exactly how the relevant process actually works. Such explicitness carries with it many potential advantages. As such, 
it should provide novel sources of insight into archaeologist's behavior. It should allow dealing with complexity in 
ways that usual verbal arguments cannot, producing satisfactory explanations of what would otherwise just be vague 
hand-wavy arguments. Explicitness can contribute to a greater appreciation of the complexities of otherwise seemingly 
simple process. 
Rather than use intuition as the sole guide for formulating explanations of past human behavior, we need a theory 
of why a specific computation or a group of related computations should be performed by a system that has certain 
abilities (be it a human or a robot). Note that computational theory does not mean the "theory of computer science" 
but the practice of expression models of information processing in precise mathematical and algorithmic notation. The 
present approach owes much to the work of David Marr on computational psychology (see Marr, 1982). According to 
his suggestion, theories of computation - and an automatic archaeology is just a theory of computation - are at the top 
of a three-level hierarchy. A theory of computation specifies what is computed. The next level down is a theory of the 
algorithm, which specifies how a computation should be performed, and specifies the conditions where the procedure 
can generate valid results. The theory of the algorithm specifies an explicit set o steps that will guarantee a given 
output when provided with a given input. Consequently, while a theory of computation can be seen as a descripfion of 
the problem, a theory of the algorithm is a description of a particular solution. The theory of the computation may be 
treated as paramount because it characterizes the problem that must be solved by a system - and until one understands 
what a system does in specific circumstances, one cannot specify the details of how the system works. We can place 
the algorithm at a lower level of the hierarchy because it does not characterize a problem, but rather specifies a possible 
solution to a problem that is characterized at the more abstract level. Typically, many different algorithms can carry 
out a computation. The third level specifies how the algorithm is actually implemented: in the human brain or in the 
human-made cognitive core of a computer. I am not arguing that an artificial archaeologist will substitute human 
archaeologists, because it works better and cheaper than us. I do not think that "natural" archaeology can be fully 
described in terms of an "automatic" archaeology. What I am exploring is just an analogy with the idea of "intelligenf 
machine. I am trying to understand the way we, archaeologists, think. My methodological suggestion is to adopt the 
approach of synthetic psychology and build computer simulations that instantiate detailed theories of archaeological 
reasoning. My argument is that, logically speaking; computers can perform processes representative of human thought 
(i.e., decision making and learning). Therefore, the purpose of an Android epistemology (see Ford et al, 1995 for the 
meaning of the term) is not to study machines in themselves, but human cognition. This "automatization" approach is 
based on the study of particular human capabilities and how humans solve certain tasks, and then build computational 
cognitive models of this ability. 

2. AUTOMATIC COGNITION 

An "automatic" archaeologist "reasons" because it is able to infer values of features that cannot be sensed directly. In 
this sense, "inference" is only a mechanical way of creating a well-formed formula from others. Essentially the idea is to 
set up appropriate, well conditioned, tight feedback loops between perception and action, with the external world as the 
medium for the loop (Fig. 2). 
The actions are gated on perceptual inputs and so are only active under circumstances where they may be appropriate. 
The automatic archaeologist should store and retrieve abstract mathematical or logical descriptions implemented 
in a computer program which takes the current observation as input from the sensors and returns some explanation. 
Therefore, the automatic archaeologist objective is to rigorously apply the scientific method to iterative archaeological 
object recognition and explanation. This action of machine behaviour implies to predict the cause or formation process 
of some archaeological entity given some observed evidences of the effect of this causal process. Prediction problems 
can be represented under the form of a contingent association between an input stimulus {archaeological description) 
and an output response (explanation). The main assumption is that the input is related causally to the action it produces. 
We solve the problem when we define how the input is associated to the output, that is to say, when we understand the 
nature of the causal relationship, which resides in the specific mapping between stimulus and response. There are two 
contenders for modelling the structure of the mapping between perception and epistemic action, each of which tends 
to emphasize different aspects of cognition. PRODUCTION SYSTEMS places emphasis on the fact that much of our 
behaviour, particularly problem-solving behaviour, is rule governed, or can be construed as being rule-governed, and 
is often sequential in nature-we think one thing after another. Each mle is a process that consists of two parts - a set of 
symbols acting as tests or conditions and a set symbols acting as actions. Here, conditions are only a specific set of key 
features (empirical or not), and actions are explanatory concepts associated to those features, and used to reach the goal. 
In general, the condition part of a production rule can be any binary-valued (0, 1) function of the features resulting from 
perception of the problem givens (initial state). The action part can be either a primitive action, a call to another production 
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system, or a set of actions to be executed simultaneously. The conditional part enumerates those situations in which the 
rule is applicable. When those conditions are "true", we say that the knowledge represented in the rule consequent has 
been activated. The underlying logical mechanism is: 

IF FEATUREl =    true 
{object O has Featurel) 

And       (If Featurel then Concept X) = true 

THEN   CONCEPT X= true 
{The presence of object O allows the use of Concept X in the circumstances defined by Object O) 

Opposite to the use of this kind of logical rules, there is the CONNECTIONIST approach. The emphasis of this 
architecture is on learning and categorising, and on how we can spontaneously generalise from examples. This approach 
is based on the idea that functions like perception, problem solving or memory emerge from complex interactions 
m highly distributed neuronal networks which, unlike conventional information processing systems, are shaped by 
learning and experience-dependent plasticity. In such networks, information processing does not follow explicit rules, 
but is based on the self-organization of patterns of activity. In this sense, information processing is not carried out as a 
sequence of discrete computational steps. Just as we apply knowledge gained from previous experiences to solving new 
problems, an artificial Neural Network "looks" at a set of answers to previously solved examples to build a system of 
"connections" that makes decisions, classifications, forecasts, and finds solutions to problems in a non-linear manner. 
The more historical data is used in the learning phase, the better the resulting network at finding correlations and solving 
new problems. 
This way to cany out its task suggests that the performance of the automatic archaeologist may be understood in terms of 
mapping one class of patterns (input or empirical data) onto another class of patterns (epistemic actions). Pattern mapping 
is actually a very broad concept, and it is useful to distinguish among types of mappings. Pattern recognition has been 
defined as the mapping of a specific pattern onto a more general pattern (that is, the identification of an individual as an 
exemplar of a class). Pattern completion is the mapping of an incomplete pattern onto a completed version of the same 
pattern. Pattern transformation is the mapping of one pattern onto a different, related pattern. F'mMy, pattern association 
is the arbitrary mapping of one pattern onto another, unrelated pattern. We should consider that pattern matching is not 
a mere reading by a feature extractor, but an active intentional interpretation of empirical data or sensory clues. It is 
generally understood as an action-oriented cognitive task by some perceptual system, whose deliverances of are often cast 
in action-relative, and even, action inviting terms. That means that, what is recognized, is always known in terms directly 
related to an agent's current possibilities for future action. 
Paul Churchland (1989) argues that explaining a phenomenon is very similar to the process of recognizing it. He proposes 
that explanation involves activating an input-output function (explanans) that enables the automaton to deal with a 
situation (explanandum) for which understanding is needed. It consists in the apprehension of the problematic case as an 
instance of a general type, a type for which the machine should have a detailed and well-informed representation. Such a 
representation allows the system to anticipate aspects of the case so far unperceived, and to deploy practical techniques 
appropriate to the case at hand. 
The suggestion that cognition might simply consist in a sequence of pattern recognitions has been developed, among 
others, by Howard Margolies (1987). In his theory, the recognition of one pattern constitutes an internal cue which, 
together with the external cues available from outside the brain, facilitates recognition. The outcomes of preliminary 
classifications should be combined to obtain more global patterns, which in turn serve as input patterns to higher-level 
recognition devices. Eventually, levels of abstraction should be reached at which the classes have conceptual labels. 
Traditionally these semantically interprétable categories have been regarded as cognitive, but the same overall process 
of pattern recognition is involved in sensation and perception, as well. In fact, the term categorization is generally used 
to refer to pattern recognition at any level. Thus we solve problems by recognizing something, and with the help of 
that result, recognizing further. Learning involves modification of the template to accommodate a new scene better. In 
Margolies's account we are capable not only of recognizing something is the case, but also of reasoning why we have 
made that judgment. Reasoning why does not involve any introspection into the process of recognition, but rather is itself 
a process of pattern recognition - one that proceeds through smaller steps to justify the judgment. 
This proposal offers a variety of benefits. It accounts for the observation that explanation often seems to have much 
in common with pattern recognition and is sometimes arrived at instantaneously; one simply sees that a puzzling 
phenomenon fits a well-established pattern. It also seems to accommodate the fact that archaeologists sometimes arrive at 
an explanation before they are fully able to verbalize it. Finally, it provides a new perspective on the relationship between 
discovery and justification. In Churchland's or Margolies's proposal, these two processes are closely linked; both involve 
detennining which input-output function best fits the situation. The problem is how to transform any incoming sensory 
vector into its appropriate outgoing conceptual vector, into a conceptual vector that will provide the correct solution to 
the problem at hand. 
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3. THIS MAY BE STILL A SCIENCE FICTION TALE, BUT... 

Seen from outside, an automatic archaeologist may be imagined as a robotic-ROW (Remotely Operated vehicle), able 
to move in the field, take samples, and build a model of the environment based on its interaction with it (movement, 
navigation), and the information is able to gather (visual models, sample analysis). Like most robots, it has 5 main 
parts. These are the end effector, controller, sensor, and drive. The end effector is best likened to a "hand". It is the 
part of the robot that directly performs the task. It is at the end of the arm. The arm is the part of the robot that positions 
the end effector, in order for it to complete its programmed tasks. The controller is the "brain" of the robot. It is the 
part of the robot connected to a computer that keeps the pieces of the arm working in harmony. Controllers are run by 
programs. The sensor is the part of the robot that provides feedback to the controller. This part acts in the same way 
our five senses do. The drive is like an engine. It is the part of the robot that drives the sections between joints into 
their desired position. Such a robot has already been imagined in the case of underwater archaeology (Coleman et al., 

2000). 
Seen from inside, the automatic archaeologist should be built around four main components (Fig. 3): 

Mobility component that establishes the possibilities of interacting between the robot and its environment (the 
archaeological space). 
Performance component that decides what actions to take so as to achieve the best outcome or, when there is 
uncertainty, the best expected outcome. 
Perception component that establishes a direct mapping between salient perceptual features and knowledge 
structures. 
Understanding component. The automatic archaeologist should be capable not only of performing some task but 
it should show that it understands what it has done, and why. 

Mobile robots able to fulfil those specifications proliferate in our modem world. Commercial companies like 
ZagrosRobotics, Irobot, Activerobots, and others, offer different units for a range of prices between 7000 and 75000 euros 
(as seen on May 2005). 
The best known example of robotic use in archaeology has been the Pyramid Rover. It is a robot probe created by the 
company iRobot, equipped with motors, mountings for camera and threads to grip the top and bottom of a shaft. On 17 
September 2002 it was used to explore a shaft that opens into the queen's chamber of the Great Pyramid of Khufu'. Better 
examples for our purpose are the family of space exploration robots, like the path finder rover used on Mars as well as 
other specific rovers for missions like volcano explorations (Wettergreen et al., 1999; Anttila and Ylikorpi, 2003; Bertrand 
and Van Winnendael, 2003; Landzettel e? a/., 2004; Schwehr er a/., 2005). 
Such robots are the most convenient mechanism for perceiving space and acting on it based on their input perceptions. 
They have onboard navigation sensors and computing which enable them to reason around obstacles and navigate in 
reduced communication areas without operator assistance. The idea is to develop an exploration system that allows a 
robot equipped with CCD cameras, sonars, infrared sensors and georadar to explore and build a representation of some 
archaeological environment. To achieve that objective the robot has to be able to extract relevant features from the World 
around it, and express them in some specific way. In other words, to adequately understand the perceived archaeological 
spatiotemporal continuum, the robot builds a model made up of discrete, irregular, discontinuous geometrical primitives 
(surfaces, volumes). 
Computer visualization is a rapidly evolving field into archaeology (see Barceló, 2000), but this research has not 
been integrated into the idea of a robotic archaeology. Only in the case of underwater archaeology, we can find some 
relevant examples (Ballard, 1993; Coleman et al., 2000; Ballard et ai, 2000; Chapman et al., 1999; Derbes and Ota, 
1999; Schwehr et al., 2005). Especially interesting for our purpose are the new modular "hybrid" user interfaces that 
support interaction metaphors. In such systems, multiple users can interact with the real environment using tracked 
hand-held displays, through a virtual model built by a computer (Van Gool et al., 2002; Pollefeys and Van Gool, 
2002; Pollefeys et al., 2003; Benko et al., 2004; Acevedo et al., 2001; Vote, 2001; Allen et al, 2004; Chapman et al., 
2004). 
In the imagination exercise here suggested, the archaeological robot sends visual (CCD cameras) and non visual (georadar) 
information to the perception component to build the geometrical model of the environment. The specific combination 
of the visual and non-visual allows the understanding component to make decisions about how to find archaeological 
evidences. This capacity implies that the "thinking core" of the robot is able to understand remote sensing information - 
georadar or geomagnetic signals, for example - in terms of buried evidence. It is easy to see that the real interest of robotic 
perception goes beyond building a 3D model. In any case, robotic automated "perception" should not be limited to the 
"observational". Visual models by themselves lack important context information to be of relevant use in archaeological 

1 http://www.ngcasia.coni/explore/egypt/home.asp. Another example is provided by the Adrian I robot for underground explorations. 
http://www.underome.com/eng/tecniche/robot.php. 
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research. Archaeological robots should do then much more than just explore and visualize what is observable. They 
should take samples from the ground, and they should even dig and unearth material evidences. 
It is of paramount importance that the automatic archaeologist be capable of explaining the causal mechanism of perceived 
input. To perform this cognitive task, the automatic archaeologist should take into account the physical and mechanical 
attributes that control the visual features of perceived input (shape, size, texture, composition and location) (Fig. 4). After 
all, such archaeological properties should be explained as the qualitative nature of observable changes in the physical 
space generated by social action, and their properties also explain how they influence the spatiotemporal location of other 
actions (Barceló, 2002, 2005). 
To actuate in the world, our automatic archaeologist would need three specialized arms. One for excavate (drill arm), one 
for remove the excavated sediment (suction tube), without moving the unearthed materials, and finally a manipulator arm 
(specialized hand). It needs a smooth and "intelligent" drill able to remove the sedimentary matrix covering archaeological 
materials and structures. Technically speaking, this the most complex effector. To excavate carefully without damaging 
archaeological materials, the drilling head should have a sensitive flat and soft point incorporating inertial sensors for 
purposes of feedback control and estimating the intensity, speed and depth of drilling. A camera linked to this specialized 
arm would allow a human to interact with the robot in order to move the arm according to the special needs of the 
excavated area. 
The action of the robotic excavation unit generates a lot of sediment, which should be removed, before continuing with 
the excavation. I imagine a technology like the suction tubes used in underwater archaeology. Each suction tube transports 
sediment to other units in charge of looking for micro-evidences, and also mineralogical analysis. 
Once the sediment has been drilled and removed, archaeological materials should be extracted and transported to the 
laboratory. We need a special unit for this task. These kinds of manipulators have already been used for underwater 
archaeology. There should be no problem for using them in any other archaeological excavation. 
As we see, an automated archaeologist may be a too complex machine, with many arms and effectuators. Instead, you can 
imagine a group of specialized robots working together as a team. When manipulating or carrying large objects, a given 
load can be distributed over several robots so that each robot can be built much smaller, lighter, and less expensive. As for 
sensing, a team of robots can perceive its environment from multiple disparate viewpoints. Team members may exchange 
sensor information, help each other to scale obstacles, or collaborate to manipulate heavy objects (Mondada et al, 2002; 
Grabowski et ai, 2003). 
To sum up, the job of the automatic archaeologist sensors and manipulators is to provide the system with the information 
it needs to interact with the world. The understanding component and the perception component of the robot should work 
together in order to receive different kinds of input, update the current representation of the environment, and decide new 
tasks to be performed according to the information available and the current perceptual model of the environment. The 
idea is then to combine visual data with a variety of newly acquired information. In this way, when using such a robot for 
studying archaeological data we get the ability of not merely seeing what already exists (objects, handles, surfaces, gaps, 
holes, etc.) but also to see the possibilities for action and the constraints on possible actions. 

4. CONCLUSIONS 

In this paper I have described a virtual robotic system that applies techniques from artificial intelligence to cany out 
cycles of archaeological research. I have tried to imagine an "automatic archaeologist" as an integrated ensemble of 
components or individual devices with specific tasks. The first component would simulate Explorer behavior, and is 
concerned with mechanisms able to learn how to find an archaeological site, and build a visual (geometric) model to 
understand the spatial properties of the observed archaeological evidence. Remote sensing equipment can be integrated 
in order to consider also the non-visual archaeological evidences. The second component would emulate what most 
archaeologist think is the definition of their Job: the Excavation of an archaeological site. After distinguishing buried 
structures and materials from the covering sediment, this component is concerned with another mechanism in charge 
of physically discover archaeological evidences, the unearthing and removing of sediment, and the manipulation and 
physical analysis of evidences. The robot also needs an understanding component. This component is concerned with a 
specific mechanism able to identify archaeological evidences, and solve specific goals linked to this distinction. Finally, 
our intelligent machine should have the ability to explain what is done and why, to answer questions about why it did 
not do something and about what would have happened if it had done something different, or about what someone else 
has done wrong. This last component should be built on top of the others: each of them will provide a test-bed for the 
mechanisms and representations proposed for acquiring and using reflective-understanding of both actions and thought 
processes. May be some of you will say that we do "not yet" have automatic archaeologists, but we should hurry up to the 
engineering department and build them for having someone able to substitute us in the tedious task of studying ourselves. 
Nevertheless, other readers will claim: "fortunately, such a machine will never exist!" "We do not need a machine that 
"seems" intelligent but it is just a mechanical processor unable to emulate what we, archaeologists, do. The so called 
"intelligent" machines may incite instinctive fear and anger by resembling ancestral threats - a rival for our social position 
as more or less respected specialists. The reader is asked to evaluate this claim on the basis of my defense of this position 
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(and other arguments in the literature), rather than on the basis of slippery metadisputes about whether or not my position 
and arguments for it are prima facie plausible. 
The purpose here has been to understand how archaeological problem solving is possible inside a computer. The 
methodology is to design, build and experiment with computational systems that perform tasks commonly viewed as 
intelligent. The goal is not to simulate intelligence. The goal is to understand real (natural or synthetic) archaeological 
problem solving by synthesizing it. Bringsjord (1992) argues that Artificial Intelligence will eventually produce robots 
(or androids) whose behavior is dazzling, but it will not produce robotic persons. Robots will DO a lot, but they won't 
BE a lot. 
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Fig. 1 - The basic functioning of an automaton (human or machine). 
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Fig. 2 - Inside the robot's mind; from perception to action (explanation). 
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Fig. 3 - A possible design for an automatic archaeology system. 
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Fig. 4 - Perceptual Module: perceiving and describing empirical data. 
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