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ON THE ANALYSIS OF MULTIDIMENSIONAL CONTINGENCY TABLE DATA
USING LOG LINEAR MODELS

Geoffrey A. Clark Department of Anthropology,
Arizona State University, Tempe,
Arizona 85281, U.S.A.

Introduction

Even the most cursory inspection of recent literature makes it
apparent that archaeologists are coming to rely more and more
heavily upon the use of statistical procedures for data description
and analysis (Azoury and Hodson 1973:292-306; Hodson 1970:299-330;
McNutt 1973:45-60; Redman 1973:61-79; Weiss 1973). Unfortunately,/
it seems that statistics are sometimes regarded as substitutes for,
rather than adjuncts to rigorous thinking, as scholar after scholar
jumps onto this latest of methodological bandwagons. Occasional
misapplication is inevitable, however, and does not detract from
the tremendous potential inherent in statistical procedures used
with rigor to assist traditional methods of problem formulation

and solution.

Few would argue, then, that a degree of statistical expertise
would be beneficial to most archaeologists. It is unrealistic,
however, to expect archaeologists to become statisticians
themselves, a time-consuming process beyond the interests of most
and the capabilities of many individuals. Nevertheless, the
professional should probably take the time to become familiar
enough with basic statistical method and theory to be able to
evaluate the use of statistical techniques in the literature
pertinent to his field. While we decry, and in fact assert the
impossibility of the use of statistical methodsin a theoretical
vacuum, it is apparent that statistical procedures can greatly
facilitate problem definition. Whatever the theoretical stance
might be which leads to the generation of problems in the broader
sense of the term, problems so defined may be described in
logically precise ways using inductive statistics, and thus
become amenable to analysis through a programme of formal
hypothesis formulation and testing.

Below we present one technique which we consider promising. It
entails the construction of multidimensional contingency tables
which are subsequently analyzed using log linear models
(Fienberg 1970:419-433; Goodman 1968:1091-1131; 1969:486-498;
1970:226-256; Muller and Mayhall 1971:149-153). This technique
addresses itself to the solution of a fundamental archaeological
problem, that of distinguishing important or determinate sources of .,
variation from random variation or "noise". The domain of
investigation can be that of artifact, artifact type, feature, site
or site aggregate; scale is irrelevant, the structure of the

problem is the same at all levels. In the general case, if the

total variation measured by variables a, b, ¢, . . .n is

considered to adequately describe variation in a class of data

(e.g. an artifact type), it is useful to know which variables

are most important, and which contribute little or nothing to

the descriptive power of the model employed. The analysis of
contingency table data, using log linear models, is one

potentially useful approach to the solution of this general kind

of problem. We will describe the technique itself, and then
illustrate its application with a trivial archaeological example.
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Multidimensional Contingency Table Analysis

A contingency table may be defined as a matrix or an array of
counts or observations which simultaneously cross-classify
objects as belonging to one or more variables, which
themselves are present in two or more mutually exclusive
states.

A simple two-way contingency table is presented in Table 1.
Note that objects are classified according to two multistate
variables: Variable 1 is present in three states (C ,CZ,C3);
Variable 2 is present in four states (C,,C.,C,,C,). &

common approach to this kind of classif cagiog péoblen is to
insert raw counts in all cells and convert these data to
relative frequencies. This, of course, is done by using the
marginal totals as estimators; that is, one can convert to
percentages using row totals, column totals or N (the table
total) as estimators.

By converting to percentages, one obtains an empirical estimate
of the probabilities of obtaining an observation with a given
value on Variable 1 and a given value on Variable 2. Counts
are thus converted to expressions of probability:

(1) nij / N = pij

The constraints are those which apply to all probability
statements: no given probability can be less than zero (i.e.
negative), nor can any given probability exceed one. All
probabilities must sum to one.

(2) Py 20 P~ B
(3) pij$ 1; Zpij = Zni. = 1
N

The contingency table format is usually applied to non-metric
data; however, it can be used with metrical data (i.e. data
which have a continucus underlying distribution) by establishina
class intervals and inserting counts in them.

Conventionally, data of this sort are analyzed by using a Chi-
Squared Test (Siegal 1956:42-47, 104-111, 175-179). One might
ask whether the horizontal distribution is the same for one
state within a variable as it is for another, or, generally,
how do the relative cell frequencies vary from cell to cell?
AEe the distributions homogenous or not? Those familiar with
X”, however, will recognise that two constraints limit its
usefulness. The first is that expected cell counts must be
greater than or equal to some number (usually 5, sometimes 3) :

(4) ey % o 5 D3
Failure to meet this constraint usually leads to the collapsing

of the table, which in turn results in lost informaiion. Second,
one cannot analyze above 2-way interactions using X°“.
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Contingency table analysis allows for expected cell counts

to be zero, and permits the examination of higher order

(i.e. greater than 2-way) interactions. It also allows for
zero raw cell counts, whereas an unmodified X“ does not. The
method,is not, however, completely free of constraints. As
with X%, a multinomial distribution is assumed for the data
tabulated as a prerequisite for obtaining cell estimates. One
consequence of a multinomial distribution is that cells are
theoretically independent; thus marginal totals can be used
as estimators. A second constraint is that, for obvious
reasons, no marginal total used in calculations can contain a
zero. 3

In contingency table analysis, as in x2, one generates
expected counts using the marginal totals derived from a model
designed by the investigator. The expected values are the
compared with the observed values. The principle difficulty
lies in casting investigator—generated hypotheses into explicit
statements of relationship between variables. If these
hypotheses are properly defined, they can be expressed in the
form of a linear equation. It is in the sense of an equation
that we use the term "model"” here. It is more convenient to
express the model in terms of the natural logarithms of the
cell probabilities than it is to try to deal with the cell
probabilities themselves. For this reason, the model is said
to be a “log linear" one.

Those readers familiar with statistical applications will note
the similarity between the model described above and the
analysis of variance (ANOVA) model. It is useful to consider
the case of the ANOVA model in order to explicate and define
the terms in the CTAB equation.

Consider the case of a 2-way ANOVA with no replications (the
number of replications simply refers to the number of
observations taken in each cell). The equation is of the form:

(5) s Spisnd B haeeta oo Y w0

where Y4 specifies the row, column and individual within the
cell, . B a constant (the grand mean of the expected cell
counts), £ , is the row effect, /. is the column effect, ) ,.

is the row/éolumn interaction term, and Ei' is the error {grm.
If n = 1 (i.e. if only one observation is 13ken per cell), then
it is not possible to estimate the interation between the two
variables and the formula collapses to:

(6) A N +ﬁj + Egy .

In order to cast the Two-Way ANOVA equation into CTAB form, we
simply replace the above terms with the relative cell frequencies:

M desTpyy =T} [al; + [s]

where log p,. specifies the natural logarithm of an observation
identified ﬁ; its subscript, where [1] is the grand mean of the
logs of the expected counts, [AJ1 is the main effect due to Ai
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CONDITIONS: bHu B OBIN0) bHu & i MSHu / N = 1.

Relative frequencles are inserted as expected values.

TABLE 1. A CONTINGENCY TABLE SIMULTANEQUSLY CROSS-CLASSIFYING TWQ MULTISTATE VARIABLES.
Variable 1 is present in three states (C;,C2,C3); Varieble 2 is present in
four states (C;,C2,C3,C4).
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and [B]. is the main effect due to B.,. The main effects
refer té a specified set of marginaljtotals selected by the
model to be fit. The method will generate expected cell
values, on the basis of this particular subset of marginal
totals. These expected values are referred to as maximum
likelihood estimates; they express the most probable values
for the observed cell counts to take on IF THE MODEL CHOSEN
IS CORRECT.

The technique then compares the maximum likelihood estimates
with the original observed cell counts. If the main effects
fit by themselves, then it can be assumed that the
interaction terms are negligible (i.e., they approximate
zero). If the expected values generated by the model do not
agree with the observed values, then a non-zero interaction
exists. The marginals used to generate the expected values
are the highest order interactions in the model. The
importance of zero marginals becomes clear: if any marginal
total sums to zero, then no estimates can be obtained from
it. Zero marginals are usually eliminated by adding a small
constant (e.g. .0l) to all tabulated values.

Given the similarity of this method to analysis of variance,
it is pertinent to ask what advantages CTAB might have over
ANOVA. The main reason contingency table analysis is to be
preferred is that it is not characterized by the strong
underlying assumption of normality which is a feature of
analysis of variance. Also, zero cell counts are possible in
CTAB analysis; they must be corrected for in ANOVA.

Model Formulation

We turn now to the question of model formulation. It is
obvious that given even a few primary variables, a
comparatively large number of models can be generated;
models will result for n primary variables. Two major
approaches have been developed to generate and evaluate
models of the form described above. They can be labelled the
Fienberg and the Goodman approaches, although those authors
are not unique in their contributions to the problem.

2

The Fienberg Approach

Stephen Fienberg (1970:419-433), a statistician at the
University of Chicago, has developed a method which takes a
series of models, each one of which represents a set of explicit
hypotheses about the data, orders these models into a hierarchy
and evaluates that hierarchy on the criteria of adequacy and
parsimony. Hierarchical models are models (in this case
equations) ordered from simple to complex, such that any given
model contains all of the terms in the medel which precedes

it. In the context of a contingency table analysis, this means
*that if an interaction term (AB) occurs in the model, then the
primary variables (A) and (B) must also be included. It might
bé the case that the investigator regards the primary variables
(A) and (B) by themselves as meaningless; nevertheless, they
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must be included in the ecuation.

The Fienberg approach has the advantage of areater precision,
but assumes considerable forehand knowledae of the behaviour
of the data. Considerable thought about the hvpotheses to be
tested is a prerequisite, but the technicue is more
"elegant” in the mathematical usage of the word. 1t has the
disadvantage that it might not always prove to be adequate if
the behaviour of the data is completely unknown, or if its
behaviour 1s "masked" by unforeseen and complex interactions.

The Goodman Approach

The second approach, outlined in a series of papers by Leo
Goodman (1968:1091-1131; 1969:486-498; 1970:226-256), fits
the most complex (most complete possible) model to the data,
and then tests whether the effects due to each term are zero
or not. In this way the terms in the model are successively
reduced until all zero terms are eliminated, resulting in the
simplest, adequate model.

The Goodman approach has the advantage that it cannot fail to
produce a model which adecquately describes the pattern of
variation in the data. The variables isolated, however, miqght
be so complex that they defy interpretation. No previous
knowledge of the data is required under the Goodman approach;
there is no necessity to formulate explicit hypotheses. By
comparison with Fienberg's approach, this method is “sloppy"
in the sense that a lot of extraneous information goes into
the construction of the "most complete” model. 1In either case,
the final objective is to isolate the simplest and most
comprehensive model.

Decision Making Criteria

Given that a number of models will be generated by the analysis,
one must face the problem of how these models are to be
compared if the isolation of a single "best" model is the
objective.

The obvious first step is to determine whether a model "“fits"
the data or not; that is, whether the expected cell counts are
good predictors of the observed cell counts. It will probably
be the case that a number of models "fit" the data in the sense
defined above; the second step is to make a choice among them.
The only constraint for comparison is that the models be of a
hierarchical nature (i.e. ordered from simple to complex); if
they are not, the tests used to compare them cannot assume
independence.

The two models most frequently used to compare models are X2
and the log likelihood ratio (log7\). Chi-squared tests are
widely known and used; they require no furtger comment. The
log likelihood ratio also makes use of the X“ distribution.

If A = the likelihood ratio, the expression

2

(8) =2 log) approximates the X“ distribution.

The log likelihood ratio is obtained by takina the log of each
quotient (observed / expected) cellwise, summing the loas, and
multiplying by two:
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(9) -2 1og-x =_7) 2:( log O/E).
The values for the x2 distribution are well tabulated.

Although both x2 and log A are suitable methods for testing
the difference between models, log A has the advantage that
it can be partitioned into independent parts such that each
partition is an independent test of a particular model.
Chi-squared cannot be so partitioned. Eog A is also more
stable for small values (£ 5) than is X°.

The steps discussed so far are simple but tedious if done by
hand. There is, however, a computer progqram (CTAB) in the
SNAP series (University of Chicago) which provides output
specifying cell estimates, log likelihood ratio and deqrees of
freedom fit for each model tested. All that it is necessary
to do,is to draw up a table showina the log likelihnod ratios
and degrees of freedom fit for each model. Since the models
are hierarchical, one can use these statistics to test
differences between them. Evaluation proceeds pairwise from
the most complex model to the simplest. Two stopnino criteria
are employed: (1) when Model X adeauatelv describes the data
and Model Y does not, choose Model X; {2) when Model X and
Model Y both describe the data, and there is a statisticallv
significant difference between them choose Model X. Eecause
of the hierarchy and the evaluation procedure used, Model X
will always be the simpler of the two.

An Archaeological Example

An illustration of the method using a concrete archaeological
example is presented below., Data come from an assemblage known
as the Asturian of Cantabria (Vega del Sella 1923; Clark 1971a;
1971b), found in the provinces of Asturias and Santander, on
the north coast of Spain, Sites consist of semi-brecciated
midden deposits located in cave mouths along the Cantabrian
littoral. Large, crude quartzite tools form an important
component of the lithic industry. The assemblade dates to the
early Holocene (8,900-6,000 BP) (Clark 1971b:1245-1257).

The sample selected for analysis consisted of 92 pointed,
uni-facial quartzite core tools called "Asturian Picks". These
implements are the so-called "guide fossil" for the industry.
Each pick was classified by site and by a series of four rather
trivial dimensions: 1length (L), width (W), thickness (Th) and
distance (D) (Fig. 1l). Dimensions were trivial because little
confidence can be placed in provenience data, owing to
inadequate cataloging procedures. The high probability of mixed
collections did not justify more elaborate recording of
attribute data. Nevertheless, the data selected are adequate
to illustrate the method outlined above; however, no attempt
will be made to draw culturally relevant conclusions from the
analysis.

The five variables used are listed in Table 2; the variable
"site" was present in six states and each of the four dimensions
was subdivided into "large" () and "small" (e¢). Subdivisions
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within dimensions are, in this case, arbitrary. All dimensions
were plotted and were found to have unimodal distributions;
consequently, no obvious criteria for subdivision was
available. The median was selected as the criterion for
dividing "large" from "small"”. The median was employed for
this purpose because it 1is a better measure of central

tendency than the mean; the latter is influenced by outliers.
The result is a 5-way contingency table, formed by a

6 x 2 x 2 x 2 x 2 matrix and consisting of a total of 96 cells.

Table 3 shows the actual contingency table. Note the high
frequency of zerog and low cell values, both features which
would have made X~ or conventional ANOVA difficult or impossible.
Fig. 2 is simply an attempt to depict the matrix more
accurately; it is, of course, impossible to draw a five-
dimensional space.

The Fienberg Approach

We sought first to apply the Fienberg approach to the problem.
A non-parametric test called the Kruskal-Wallis H Test (Wallis
and Roberts 1967:599-601; Siegal 1956:185-193) was applied to
the data as a preliminary step in order to derive the series of
explicit models demanded by Fienberg's method. The Kruskal-
Wallis H test is a simplified l-way analysis of variance; it
does not assume a normal distribution. The test simply
evaluates whether or not the medians of k samples are derived
from populations having the same or similar underlying
distributions. The formula:

2

(10) = i Ry

N (N + 1) i=l

-3 (N+ 1)

B1
where N is the total number of observations in all samples, k is
the number of samples (in this case, sises), n, is the number

of observations in a given sample and Ri is thé sum of the ranks
squared for any given sample.

The results of the test indicated that, with respect to site,
there are differences in the length and distance measurements
of the picks, but none with respect to width and thickness. The
implication is that the effects due to width and thickness are
not important by themselves; therefore, they were not included
in the hierarchy of models formulated on the basis of the
Kruskal-Wallis test. It is worth commenting, parenthetically,
that the Kruskal-Wallis test evaluates only main effects; in
fact it will be demonstrated below that it is the interactions,
rather than the main effects, which constitute the important
variables.

The series of hierarchically ordered log-linear models developed
using the Kruskal-Wallis test as a basis are presented in

Table 4. The CTAB program generates log-likelihood ratios and
degrees of freedam fit for Qach model run. Evaluation simply
entails consultation of a X“ table at some predetermined level
of significance (in this case .0l and .05 were both used).
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TABLE 6. AN EXAMPLE OF THE GOODMAN APPROACH. The complete model is given, incorporating 31
terms. There are five main effects, ten 2-way interactions, ten 3-way interactions
and five hk-way interactions.

LOG-LIKELIHOOD DEGREES OF CHI SQUARED
MODEL RATIO FREEDOM (FIT) a=,05 a=,01
MODEL 1 2.19 6 NS NS

TABLE 7. AN EVALUATION OF TABLE 6: THE LOG-LIKELIHOOD RATIO AS A DECISION MAKING
CRITERION. The complete model adequately describes the pattern of vari-
ation in the data.
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Models which are SIGNIFICANTLY DIFFERENT (S) for specified ol
are those which DO NOT fit the data; these are eliminated.
Models which are NOT SIGNIFICANTLY DIFFERENT (NS) adequately
describe the pattern of variation in the data; these are
retained and further evaluated. Differences between models
retained are also tested by the log-likelihood ratio.

Table 5 presents the evaluation of the models formulated on
the basis of the Kruskal-Wallis H test. The result is
clearcut; no model adequately describes the observed data.
It is possible, then, to eliminate Models 1 - 5 from further
consideration; terms expressing main effects are not
adequate in themselves to explain or describe variation in
the data.

The Goodman Approach

Given the failure of one set of explicit hypotheses, the
investigator has the option of defining other sets, on the
basis of different criteria, or resorting to the Goodman
approach to isolate important variables. As noted, the
Goodman approach defines a single model incorporating all main
effects and all possible interaction terms (Table 6). In this
case, the model contains a total of 31 terms, including the
main effects, 10 2-way interactions, 10 3-way interactions and
5 4-way interactions. As expected, the model fits the data in
that it adequately describes them (Table 7); however, no
distinction can be made between those variables which are
important and those which are not. The results are, at this
stage, uninterpretable. As in analysis of variance, however,
relative estimates of the effects in the model can be obtained.

For each model tested, the CTAB output produces statistics
called estimated U-values. These assess the influence of each
term in the equation against the total descriptive power of the
equation. Variables with low U-values (< .20) probably do not
play an important role in data description and may be
eliminated. Models can be made ever more explicit by
successive runs, systematically eliminating terms with low
U-values.

An examination of U-values in the most complete model permitted
the elimination of 21 terms (Table 8). U-values less than .20
were regarded as insignificant; associated terms were
consequently deleted. * The result is immense simplification;
only three terms are regarded as definitely important variables
(U-values 2 .50); six terms are possibly important (U-values
2. 20Rbu i< S DR

The final step is to construct a set of models using only those
terms regarded as important variables. These models are

& It should be noted that this elimination procedure is a
practical and useful, but essentially impressionistic
approach to the deletion of unimportant terms. Goodman
(1969:486-498) advocates a more rigorous evaluation
procedure; each term is tested to determine wether a non-
zero interaction exists. Only zero interactions are
eliminated.
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presented in Table 9. Inspection of the models reveals three
important points. Note first that no 2- and 3-way interaction
terms appear to be included. These terms are actually included
in any model which contains a 4-way interaction term; because
of the program format used, it is not necessary to specify them.
Second, note that all of the terms regarded as important are
underlined. Other terms are incorporated into the models
because of a constraint of contingency table analysis mentioned
earlier: all interactions must have their terms defined (i.e.
if (AB) is in the equation, (A) and (B) must also be specified).
Finally, note that the models are not entirely hierarchical.
Inspection reveals that Model A is a subset of B and C; B and
C are subsets of D (but not of each other); D is a subset of

E and F; and E and F are subsets of G (but not of each other).

The models are ordered from simple to complex, and the partial
hierarchy is represented graphically in Fig. 3. Employing the
two stopping criteria defined above, evaluation proceeds from
the most complex model (G) to the simplest model (A). Models D,
E, F and G all adequately describe the data, moreover, there
are no statistically significant differences between them.
Model C also describes the data, but is significantly different
from Model D. While adequate in terms of the arbitrarily
selected levels of significance, it explains the data less
completely than does Model D. Models A and B do not adequately
describe the data; they can be eliminated from further
consideration.

The first stopping criterion (X describes the data, Y does not)
is applied to select Model D over Model B. The second stopping
criterion (X and Y describe the data, but there is a significant
difference between them) results in the selection of Model D
over Model C. The application of the stopping criteria both
result in the selection of Model D. Model D consists of the
2-way interaction (ST) and the 4-way interaction (SDWL).

The conclusion is that these two variables are the most
important in describing variation among samples of picks from
Asturian sites (at least insofar as that variation is measured
by the trivial variables selected for this example). One might
speculate, however, that the variables (T) and (DWL) are behaving
in different ways with respect to the variable (S). It might be
argued that the (ST) interaction still reflects the original
dimension of the flattened, oval cobbles on which the picks are
manufactured. Quartzite cobbles occur in the stream beds and
estuaries along which Asturian sites are distributed. If raw
materical adjacent to the site was utilized, one would expect
sites and thicknesses to vary together. The difficulty with
this is that the cobbles in a stream gravel vary greatly in

size according to extremely localized conditions (e.qg. gradient}).
Therefore, one would expect a range of cobbles of differing
sizes to be available in the immediate vicinity of a site.
However, if thickness was important to the site occupants, and
if they were selecting cobbles of certain dimensions, this
selection might be reflected in the (ST) interaction. It seems
probable that the original thicknesses of the cobbles selected
were not altered much by the manufacturing process. The (SDWL)
interaction, on the other hand, might reflect variation due to
the manufacturing process. Distance, width and length measure
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FIGURE 3. THE REDUCED TERM MODELS ORDERED FROM SIMPLE (A) TO COMPLEX (c).
Note that the graphical presentation reflects the partial hier-
archy described in the text. Evaluation proceeds from bottom to
top; @ = .01l. Model D is selected on the criteria of adequacy and
parsimony.
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the extent to which the original cobble was modified to
conform to a culturally-defined ideal. One would expect these
variables to be correlated with sites as the manufacturing
process for picks was essentially the same across all Asturian
sites (Clark 1971a:268,269). In short, the (ST) interaction
might reflect human selection for a natural dimension; the
(SDWL) 1interaction might reflect the imposition of
technological attributes on a natural object. Taken toaether,
the two interactions adequately describe variation among the
Asturian picks used in this example. Whether these same
interactions would be isolated using different samples renmnains
to be determined.

Summary

A method for analyzing data cast into contingency table format
is presented. A series of models in the form of linear
equations ordered in a hierarchy express relationships suspected
among the variables selected for evaluation. Marginal totals
corresponding to terms in the models are used to generate
expected cell valugs; expected and observed cell values are
compared using a X° distributed statistic called the loo
likelihood ratio (log A ). Models are evaluated on the criteria
of adequacy and parsimony; a "best" model is isolated. The
"best" model is the simplest model which adequately describes
the pattern of variation in the data. A simple example using
archaeological data is presented to illustrate the apnroach.
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