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ABSTRACT 

The seriation problem is approached by a sequence of two 
algorithms, Serlat 1 and Seriat 2. Tne first proceeds along a 
logic of set theory rather blind to the spatial-topologioal 
properties of the data and offers a first ordered matrix 
configuration essential to the second algorithm, which in turn 
acts exclusively on such properties and which supplies a final 
ordered   matrix. 

INTRODUCTION 

The prime objective of this paper is a practical 
illustration of a seriation technique including the necessary 
basic theoretical and e pi stemological references with only a 
brief and problem-oriented approach towards the already existing 
extensive   literature   (Marquardt   1978). 

An operational definition of seriation can be given as the 
ranked ordering of items along a single dimension so that each 
item reflects its own similarity with other items. At the base 
of each possible operational path lies a data matrix, which, in 
its standard configuration, is made up of units listed 
horizontally as rows and variables listed vertically as columns, 
measured in different possible scales (numeric, ordinal, 
nominal). One can work with this configuration both directly and 
indirectly, so as to extrapolate, from this data structure, the 
latent vector of seriation, which from now on we will, for the 
sake   of   argument,   call   the   time-dimenstion. 

The analytical pathway now tends towards the strictly 
correlated definition of three types of models of incidence 
matrices: firstly an "ideal model" and a "realistic" one for the 
background data; secondly a seriation model; thirdly an iconic 
model   for   the   synoptic   projection  of   seriated   data. 

The last model, seen by the authors as being the most 
efficient one (Fig. 2a), is a matrix configuration immediately 
susceptible to isomorpnic transformation into a two-dimensional 
Cartesian coordinate system, the point of origin being 
indifferently placed in correspondence to any of the four 
vertices   of   the   matrix. 

The axes measure the duration of the units and variables 
with two units of measurement corresponding to the intervals 
between rows and columns, so that chronological steps of 
indeterminate absolute value are unified (so as to render the 
system    operative    and    functional).        Units    and    variables    are 
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seriated on the basis of their geonetrio mean ("centre of 
gravity"). The information pertinent to beginning, end and 
relative duration is preserved and reflects the real dlaohronlc 
pattern   of   the   data. 

Other possible matrix models appear to be less efficient: 
for example, the simultaneous ordering by beginning (or end) of 
the units and variables loses, due to its topological 
Incompatibility, information pertaining to tne relative duration 
of the units and variables or, in more abstract terms, the matrix 
no longer allows the isomorphic transformation of the matrix 
within the above mentioned two-dimensional Cartesian co-ordinate 
system. 

We should now define the necessary theoretical requlsities 
so that the data (both units and variables) can receive an 
optimal seriation and become the iconic model along the lines 
described   above. 

This new "ideal" model of the background data is reducible 
to two simple conditions. Firstly, the unity of the latent 
vector (one-dimension expected) for units and variables with 
reference to the pertinent "parent population". Tne relative 
iconic matrix model must therefore show a marked dlagonallsation 
and exclude "blanks" (o's) within the ranges of both rows and 
colums contemporaneously (which would otherwise indicate a sample 
error); each row and column can represent such blanks within 
their range only if they occur at the beginning or end of column 
and row respectively. In this case the blanks simply reflect the 
geometric topological results of different rates of duration of 
the  units  and  variables   ( e.g.   the  rows   and   colums   1,5,12,16 
and 1,3, respectively of Fig 2a, the background data of which can 
without doubt be defined as ideal). In that sense and within the 
constricting frame of reference outlined, a "Pétrie form" of the 
matrix (Pétrie 1899, Kendall 1963), with its rigid prescription 
of total contiguity of "presences" (1's) in the columns, appears 
to be, very simply, a "hyper-ideal" construct which would require 
the totally abnormal situation of each unit commencing and 
finishing   not   between   two   external   ones. 

A healthy exercise often ignored, at this point, would be to 
descend from the theoretical state and attempt to define, 
utilizing our dally professional experience, a "realistic" model 
based on our normal operative field of serlable data. With 
extreme synthesis, we can reasonably suppose that such a model 
can   include   the   following   distorting  factors: 

1. the interference by other latent vectors with respect to the 
desired one (for example, with respect to the temporal 
dimension, the spatial or "functional" ones in the widest 
possible sense) even after a forward-looking "clearance" of 
them ; 

2. a normal under-repre senta11ve sample (with possible 
exceptions for specific classes and/or circumstances of 
find) with respect not so much to a "parent", rather to a 
"target"   population   (Doran-Hodson   1975,    T5); 
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3. a highly differentiated sample representativity among the 
different types of units and variables In relation to their 
different frequency both pre and post depositional, spatial 
location, function, underlying human behaviour and last but 
not least, the level of taxonomie resolution of the data 
which we have to assume (for instance the normal marked 
hierarcnioal differentiation leads to a noticeable variation 
in the importance and even pre senoe-ab sence of the 
enti ties); 

4, variability in the relative duration among units and 
variables and possible temporal disoontinuity-intermittenoe 
(at least for the positional units). These last factors in 
particular, in addition to the above mentioned ones, 
highlight the theoretical impractability of an approach by 
"abundance" matrices, whose weak supporting assumptions 
(specially the equal probability of sample representation, 
the time-span equivalence, the lack of diaohronic 
palimpsest, the regularity of ontogenetic cycles) suggest a 
realistic heuristic prority for the "incidence" matrices 
here    discussed. 

Once this analytical diagnosis has been accepted two 
strategies   are   possible: 

a) to   return   to   an   "ideal"   model,    considering   the   possible 
deviations   examined     as  marginal   or   self-limiting; 

b) critically to incorporate the "realistic" model and 
suggest a stochastic algorithm "ad hoc" capable of reproducing 
with close approximation the generative serlation pattern. To 
follow this last path a system has been devised with a rather 
complex, functional articulation in a sequence of two algorithms: 
Serlat 1 and Seriat 2. The first proceeds along a logic of set- 
theory rather blind to the spatial topological properties of the 
data and offers a first ordered matrix configuration. This is 
essential to the second algorithm, which in turn acts exclusively 
on the spatial topological properties and which supplies a final 
ordered matrix according to the optimal iconic model outlined 
above. 

SERIAT   1    (ARMANDO   DE   GOIO) 

Seriat   1   works   along   the   following   principal   steps: 

1. input an entry matrix of n x m dimensions (an "incidence" 
matrix, which one assumes has been previously "cleared" of 
the most visiable secondary latent vectors and presents a 
fairly   reliable   sample); 

2. compute for the set rows (units) Ir (r= 1,2...n) a n x n 
matrix of similarity (a square symmetrical matrix) with the 
Jaccard coefficient (Jaocard 1908; Sneath-Sokal 1975,131; 
Chandon-Pinson   1981,    7U); 

3. peroentualise row by row the similarity values (Sjp: now no 
longer symmetrical); the aim of this peroentualisation is to 
introduce a factor of standardisation for the different 
numeric content of the sets. Each set now contains a quota, 
standardized   in   base   100,    of   systemic   similarity   (which   we 
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would define as »bond energy") which is distributed in 
definite   percentages   to   the   other   sets; 

compute n vectors of tentative orientation and the relative 
strains with respect to the following sequential model; each 
element   k   should   be   situated   in   the   ordering  vector   so   that: 

a) each element 1 which preoeeds k (i=1,2 .,..k-l) has 
a summation of similarity with the other j elements which 
follow   k   (ZFi)   not   superior   to   that   of   k   (ZFk); 

b) each  element   J   which   follows  k(j   =   k+1,   k+2      n) 
has a summation of similarity with the i elements ( Pj) not 
superior  to that  of  k  (   Pk). 
If this model is not followed, compute for each k one 
partial strain (sk) equal to the absolute difference between 
the scores ZF and/or XP for the anomalous pairs. The total 
of such strains for each element k of the vector forms a 
total vector strain (sv). Proceeding from eacn initial 
element i = 1,2 ... n, n trial vectors are constructed all 
aligning in the same direction the elements which minimise 
each time the strain (sk): such a norm is avoidable only 
when an element k, even if it has a superior strain to 
others, accumulates anyway with the preceding elements of 
the segment of the chain all its total similarity (100). In 
such a case, and if the same state does not take place with 
other elements with a minor strain, it will link k anyway, 
which would otherwise contribute to the accumulation of 
partial strain in later steps. In the case of equality of 
(sk), an accessory scoring system is introduced which 
"weights" (with simple ranking factors) the elements 
proportionally more similar to the more external ones of the 
already   linked   segment; 

choose   the   vector   with   the   least   (sv).      In   the   eventuality   of 
a   hyper-ideal   configuration   of   the   data   suitable   to   the 
sequential   model   described   above: 

a) there  exist  two vectors  only  with  (sv)=   0; 
b) the sequential order is exactly symmetrically 

inverted. 
In the case of an un-ideal configuration, more suitable to 
the   already-described   "realistic"   model: 

a) the vector with least (sv) will anyway reproduce in 
a relatively better way the main latent vector wih possible 
local    distortions; 

b) vector with the least (sv)-soores tend anyway to 
have an inherent similar order, whether tne sequence is 
inverted   or   not; 

repeat steps 2 to 5, this time for the set of columns 
(variables)    Ic   (c    =    1,2 m); 

re-order the matrix n x m according to the new reordering 
vectors. 

202 



SERIAT   2   (GIACOMO   SECCO) 

Tne   second   algorithm   (sériât   2)   proceeds   along  the   following 
main   steps: 

1. use   the  matrio   n   x  m   as   re-ordered   by   Seriat   1 ; 

2. consider the matrix as a two-dimensional Cartesian co- 
ordinate system with the origin corresponding to the bottom, 
left-hand corner, with the unit of measurement equal to the 
interval both of row and column (assumed to have-the same 
width). Work out the mean for each set of oolums (Ic) and 
of rows (Ir); compute two coefficients of strain for the 
columns (os) and rows (rs) equal to the summation of the 
absolute differences of the values of those means, which are 
not aligned in monotonie increasing or decreasing order, and 
a third total coefficient of m atrix-strain (ts) = (os) + 
(rs). Compute the values of the sums of the blanks (o's) 
within the ranges of columns (no), of rows (nr) and of (nt) 
=   (no)   +   (nr); 

3. compute a distance-matrix between the sets of columns (Ic) 
on the basis of a coefficient (Ds) which takes into account 
both the distance between means and the dispersion of the 
elements   according   to   the   following   formula: 

Ds   (i,j)   =    IMj^   -   Mjl   +   (va   -   Vb)/N 
where 

Ds   (i,j)    =   distance   between   the   sets   i   and   j 
Mj^ =   the  mean   of   the   elements   of   i; 
Mj =   the  mean   of   the   elements  of   j; 
Ta =   variance   of   the   elements   of   i   and 

j   considered   together; 
Vb =   variance   of   the   elements   i   and   j 

as   if   they   were   concentrated   around 
the   common   mean; 

H =   the   total   number   of   elements   in   the 
sets   i   and   j. 

The value (Va-Vb)/M works as a slight correction of the main 
value I M j; - M4I favouring tne coupling of sets of smaller 
dipersion; 

H. create, on the basis of the distance matrix, a reordering 
vector for the sets Ic, with a clustering system of the type 
"single 1 Inkage-nearest neighbour" (Everitt I98I, 21), 
arranging each time the Ic or cluster of Ic which add 
themselves on the extremities of an already existing 
cluster,   according  to   the   highest   degree   of   similarity; 

5. re-arrange the matrix n x m in accordance to the vector of 
step 1 and measure the relative (cs), (rs), (ts), (no), 
(nr),   (nt); 

6. if (ts) = 0 pass to step 7; otherwise repeat cycles 3-6, 
inverting, however the order between Ic and Ir up to a 
discretional maximum number of times, choosing the vectorial 
order   with   the   least   (ts)   or,    in   the   case   of   parity,    the 
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least (nt); 

7. memorize the veotorlal order obtained at the end of steps 3- 
6; 

8. wholly repeat steps 3-7 recommencing, however, with the 
configuration of the output of Serlat 1 (step 1) and 
inverting   the   order   between  Ic   and  Xr; 

9. choose the vectorial order with tne least (ts) from among 
those steps 7 and 8, and, in the eventuality of parity, that 
the   least   (nt). 

CONCLUSIONS 

The sequential integration of the two algorithms Seriat 1 
and Seriat 2 can not only be seen to be soundly based 
theoretically, but also be used experimentally with a high degree 
of efficiency. In a hyper-ideal situation of background data 
(op. Fig. 1) Seriat 1 and Seriat 2 always give the same vectorial 
re-ordering; in other terms the properties of similarity based on 
the "set theory" and the topological ones have the one-to-one 
correspondence and the two seriation models find themselves with 
the same results. Assuming however, a body of data which is not 
hyper-ideal but which conforms to our realistic model, localised 
deviations in Seriat 1 are to be expected. the first algorithm 
constructs, in fact, provisional seriation vectors on the basis 
of a similarity coefficient (Jaccard) of a set-theory origin, 
without any refence to the spatial and topological properties 
produced by the ordering, but, in final analysis, only with 
reference to relationships of intersection and union between the 
sets. One can therefore construct a concatenation of similarity 
which captures the principle vector with a few possible localised 
deviations, derived from: a) the differentiated rates of duration 
of variables and units; b) the distortional factor of the 
possible secondary latent vectors; c) sampling limitations 
( our realistic model of the background data). It would now 
appear to be justifiable to say that such distortional factors 
are distributed in a tendentially randomized manner in the semi- 
ordered  matrix   produced   by   Seriat   1 . 

The aim of Seriat 2, which bases itself solely on the 
topological-spatial properties neglected by Seriat 1, is in fact 
to introduce corrections, arranging along the principal diagonal, 
otherwise described as the pinoipal latent vector already grossly 
caught, the deviant sets: the seiation by "gravity point" in 
other  words   ( e.g.   Goldmann   1975,   Wilkinson  1976)   appears   to 
be, but only at this point, the most efficient way of stochastic 
approximation to the presumed chronological pattern of the 
"target population" of units and variables: its efficiency grows 
with the incidence of distorting factors and with tne degree of 
rate   of   diferentiation   in  the   length   of   units   and  variables. 

The criterion to optimize is that of defining the optimal 
equilibrium, closest to the configuration of the output of Seriat 
1, in terms of minimizing strain (ts). In fact and as expected, 
the different cycles of Seriat 1 and Seriat 2 tend, due to their 
logical   directive,    both   to   diagonalise  and   compact   the   matrix 
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Sériât 1 and Sériât 2 were applied to both test data and 
real  matrices  for   example: 

1. "hyper   Ideal"   matrix   {Pétrie   form)    (fig.   1) 
2. "ideal   matrix"   (fig.   2) 
3. "Ideal   matrix"   with   insertion   of   randomised   blanks;   (Fig   3.) 
U. real   matrix   (from   Goldmann   1975)    (fig-    1) 

The results of Seriat 1 and Seriat 2 in the first two 
instances coincide and reproduce the input model; in the third 
Seriat 2 betters both the values of (ts) and the approximation to 
the input model; in the fourth Seriat 2 beters Seriat 1 in terms 
of (ts) and (nt): the results are in any case very similar to 
those   arrived   at   by  Goldmann   (Goldman   1975,   Fig.   3). 
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9 
10 
11 
lu 
13 
14 
15 
16 
17 

1 1 
4 5 

17 
16 
13 
15 
14 
12 
10 
11 
B 
9 
6 
7 
5 
3 
4 

7 4 3 

3 4 5 6 7 3 

3 
4 
5 
6 
7 
3 
9 
10 
1 1 
12 
13 
14 
15 
16 
17 

+ + + 
+   + 

1 9 

CSTRAIN 
RBTRAIN 
TSIRAIN 

1   1 
0 3 1 

142. 
117. 
259. 

3 4 5 6 7 8 

3 
4 
5 
6 
7 
B 
9 
10 
1 1 
12 
13 
14 
15 
16 
17 

1 1 
0 1 9 B 

CSTRAIN .OOOEH-00 
RBTRAIN .OOOE+00 
T3TRAIN .OOOE+00 

Figure 3. a) matrix derived from an ideal one with the 
randomized blanks; b) permutations of rows and columns 

of Serial 1;  d) output of Serial 2. 

1 1 1 1 1 I 
9 0 1 3 3 4 s 

+ 't 1 
+ + t- 4- 7 

+ 4- 17 

+ + 1- B 
+ + 4- 16 

+ + + 1- 7 
+ 

H- 

4 4- 4 
+ 

15 
6 

+ + 14 

+ + + S 
+ + 13 

f 

+ 
+ 4- 

4- 
4 
IS 

+ •1- 4- 3 
+ + H- 4- 11 

+ + + 4- 
+ 

2 
10 

1 1 1 

5 3 6 4 7 5 B 

NC 101 
NR 12 2 

NT 22 3 

111111 
9   0   12  3   4   5 

+ +    4- 
4- 4    + 

4- -(•    4- 
4- 4-    4- 
4- + 

+ + 
4-    4-     ^ 

17 
16 
15 
13 > 
14 
12 
10 
11 » 

a 
9 
7 
6 

3 
4 

4-    4-    4-     4-    4-    4-      I- 
4-    + 4-4- 

6   7   5   3  4   2   1 

NC 27 
NR 21 
NT 43 

insertion   of 
c)   output 
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1 1 1 1 I 1 1 
ü 1 a ::] 1 'j h 

3 + 
4 + 
5 
à +  + 
7 + 
8 + 
9 +  + 

10 + 
11 
13 
13 
14 + 
15 
16 + 
17 + 
13 + 
19 + 
20 
21   + 
22   ^• 
23 
24 

11111111 
3   4   5   6   7   o   V   o   1   a   J   4   Si   6   / 1   2   3   4    1)   6    /   IJ   9 

1       1    -t   -t   + -I 
+ 2      2+   +   + 

3      3+ + 
+ 4      4 +   + ^• 

+        + 5      5 + + 
+ 6      6+   + 

+ 7      7+ + 
+ 3      8 > + 

h 7      <? +   + 
+ 10    10 +   + 

+ +        . nu + + 
-   + +   + 12    12 +        + 

+ + 13    13 +   + 
+ 14    14 + 

+ + 15   15 + 
+ 16    16 

+ 17    17 
+ 13    13 I-        + 

+ 19    19 +   + 
+   + 20   20 + "- ' 

+ 21  21 + -' -•      : 
+ 22    22 '• •<• 

+ + 23   23 +        +   : 
+   + 24   24 +   +  : 

11111111 11 1111 11 
1234567890123456   7 6575B241097   3   2   6314 

a b 
CS1RAIN   170. NC      119 C3TRA1N   4.00 NC        35 
R3TRAIN   226. NR        9<? RSTRAIN   7.92 MR        27 
TSTRAIN   396. NT     218 TS1RAIN   12.7 NT        62 

< 11111111 
123456789012   3.  456   7 

1 + + 4 
2 +   +   +        + 12 

I 3        +   +   + 14 
4 +   + 16 
5 +   + + 9 
6 +   + 13 
7 + + 10 
8 +        + 3 
9 + + 19 

10 + + + 6 
11++ 5 
12 +       + 7 
13 +   + 11 
14 +   + 20 
15 +        + 18 
16 +   + 17 
17 +        + 15 

^ ^ 3 FJBure   4.     a)   disordered   "real" 

2Q + + 23 matrix   (from Goldmannl975,Fig.3) ; 
21 + + 1 h)   output    of   Seriat   1;      c)   output 
22 +   +   + 21 of   Seriat    2. 
23 +        + 24 
24 +  + 2a 

11                    111               1               11 
65   7   58241093   7   26314 

c 
CSIHAIN .OOÜEiOO    NC   33 
RSTRAIN .OOOE'-OO    NR   2 7 
TSTRAIN .00OE^Ü0    NT   60 209 


