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1 Introduction

Archaeology has many diverse appearances. It can degrade
to a mechanical manipulation of artefacts with seemingly
no theoretical foundation, or it can escalate into wild
theoretical digressions with virtually no reference to the
archaeological record. One reason for this variability in
archaeology is the almost paradoxical epistemological
conditions of the discipline: on the one hand the subject
matter of contemporary, physical objects, and on the other
hand the aim to create a mental construction called the past
(Madsen 1994: 31).

In the study of artefacts, during archaeological survey,
and last but not least during archaeological excavation, the
theories of the researcher are confronted with observations
of the real world, and it is through this process that new
knowledge is created. This is the reason why archaeological
excavations do not constitute a mechanical unearthing and
subsequent recording of objective facts, an opinion not
uncommonly stated in archaeology.

Because of the destructive nature of archaeological
excavations, attention is frequently focused on the recording
of this activity. It has been customary in recent years to stress
the subjective nature of excavation records, an attitude we
fully share. However, in their eagerness to point out the
biased nature of archaeological doings the critics tend to
forget the status of excavation records in archaeology.
Although coloured and filtered, these recordings are
statements of observations of the real world: one may
deliberately select and unwillingly overlook, but one cannot
(by the code of the discipline) record something not seen.
This is the reason why records from archaeological
excavations are to be treated as historical documents and
why it makes sense to establish a structured archive of
recordings from archaeological excavations.

Still, a major problem in archaeology is to master the
inherent complexity, diversity, and quantity of archaeologi-
cal data. No wonder computer based recording systems for
archaeological excavations have been and are continuously
being created all over the world. Far the major part of these
are either fairly simple flat file systems or hierarchically
organised systems (Arroyo-Bishop/Zarzosa 1992; Rains
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1995). Flat files and hierarchies, however, are too simple
structures to provide a general basis for the description of
archaeological reality in all its complexity. As a rule more
or less well adjusted ad hoc solutions to particular
situations become the result (Madsen 1993).

In the late eighties we began to discuss the potentials
of relational data modelling applied to archaeological
excavation recording, and at the CAA in Southampton in
1990 we presented a paper on the structure of information
from archaeological excavations viewed in a relational
framework. For various reasons the paper was only
published two years later in another context (Andresen/
Madsen 1992). Initial attempts to acquire money for
realising our IDEA were not successful either (Madsen
1994: 27), but in late 1993, we finally succeeded. A three
year project funded by the Danish National Research
Foundation for the Humanities was established (Madsen/
Andresen 1993).

The purpose of the project is to create a general system
for recording, analysis and presentation of information from
archaeological excavations. The system is intended to serve
as an archive of recordings from all types of archaeological
excavations, and it shall be able to automate the production
of the archival report as a paper-copy. In a next phase of
development, not covered by the current funding, the
system should develop into an analytical tool for the
processing of excavation information.

The core of the system is implemented in a Relational
Data Base Management System (RDBMS), naturally.

We have chosen Microsoft Access for this purpose because
it combines sophistication as a RDBMS with a low cost
availability within today’s standard PC environment. The
advantages are amongst others: low learning curves for the
users, high potential for integration with other application
software, and upgrading security. Furthermore, the National
Museum of Denmark has also chosen Microsoft Access as
their development tool for their interface to the Danish
central SMR. Using identical development tools should help
us to overcome some of the technical obstacles in attempts
to integrate data from the excavation archive with SMR-
recordings — at least on a national scale.
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2 The conceptual model
The basic conceptual model for the system has already been
presented and discussed in some detail (Andresen/Madsen
1992, 1994). We will not repeat the discussion here, but only
summarise the structure and basic entities of the model.
Fundamental to our model is the acknowledgement of
three universal entities into which we can categorize all
excavation information. These entities we termed Layers,
Objects and Constructs (fig. 1).
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Figure 1. The core of IDEA: five basic entities — Layer, Object,
Construct, Drawing and Photo — linked with many-to-many relation-

ships between entities as well as internally between records of the
same entity.

A Layer is an entity of deposition separated from its
surroundings by its physical and chemical properties. In this
sense a layer can be seen as a geological entity, even if
often it owns its existence to human activities. Other names
for a layer often seen are fill or context (Carver 1985).

Essentially an Object is a subpart of a layer, segregated
from this by the actions of the archaeologist. Any part of a
layer that an archaeologist sticks a label on, bags, and
brings home from the excavation automatically becomes an
object, or perhaps as it should be named more correctly, a
find or component (Carver 1985).

The Construct is a slightly more controversial entity.

In our definition it is any interpretation category that an
archaeologist may impose on Layers or Objects, alone or in
any combination.! In its simplest form an instance of the
Construct entity could be something like ‘pit’, ‘post-hole’,
etc. At the more complex level it could be ‘activity area’,
‘village’, ‘chronological phase’ etc. Traditionally this is
what would be classified as cuts, features, structures and
beyond (Carver 1985).

In addition to these three universal entities we also
defined two documentary entities — Drawings and Photos.
These two auxiliary entities are fully interlinked with the
archaeological entities. One may question, if it is possible
to draw or indeed take photographs of interpretations/Con-
structs. On the other hand it is customary in archaeological
recording systems to refer to interpretation units in the
documentary sources, so we have chosen to endorse this
practice and allow links between Constructs on the one
hand and Drawings and Photos on the other.

This conceptual model may at first glance seem fairly
simple, but due to the many-to-many relationships between
all five entities and internally within each entity, it is a
fairly complex model to implement. Further, there are a
number of additional concepts and features that modifies
and qualifies the model, adding further complications to the
implementation.

One such moderator is the concept of project. In order to
be able to handle more than one excavation in the same
database, and indeed to be able to handle excavations
differently with respect to structure of recordings and
classifications of content, we have defined the project as the
primary separator of information. Everything within a
project is by definition fully comparable. Information from
different projects is only compatible and comparable to the
extent that the projects share equivalent definitions and
classifications of structure and content.

An important, but also a potentially very difficult
qualifier to handle is the concept of event. On a fairly
simple level it is the ability to record the who and when of
a drawing being created by a number of draughtsmen over a
period of time at a number of different ‘drawing events’, or
the ability to record information according to a number of
different excavation campaigns. On a much more complex
level it could be the possibility of recording ‘the history’ of
interpretations of a site. That is, instead of overwriting an
interpretative Construct, a substitution takes place with the
former Construct being kept as a historical, currently
obsolete, piece of information concerning the interpretation.
Historical information like this should be hidden, but not
forgotten. That is, it should be possible to recall former
interpretations on demand.

A full handling of events is truly complicated, and we
have decided to take up only the simplest part of the problem
relating to different recording events during excavations.
Thus, at the moment we are not going to try to solve the
problem of event recording in connection with the inter-
pretation of an excavation.

Another very important qualification to the system is the
possibility for users to customise the structure of recordings
as well as differentiate classifications of their content. In a
system where all entities are interlinked, the number of
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Figure 2. Implementation of many-to-many relationships using link tables. The upper part shows linking
between entities, and the lower part linking within entities.

ways to structure the information (by choosing different
channels through the web) is high. What particular structure
should be used in relation to an excavation is not a
programmer’s decision. It must be a user decision. The
same applies to the classification of items of information,
for instance the artefacts. A Stone Age and an Iron Age
excavation certainly cannot use the same classification and
description system for artefacts. It is the user who should
decide the classification system to be used, and the user
must be able to tailor the system to fit his or her needs.

3 Implementation of the model

Even though each instance of the database is able to hold
data from several excavations — and thus might be
maintained by a central authority — the decentralised
structure of Danish archaeology (and archaeology in most
other countries) demands a decentralised solution. This is
one of the reasons why our system is organised into two
separate parts: the core data structure in one module and
the user-interface in another. This division has several
advantages during the phase of software-development.
For the end user, one advantage is that by telecommunica-
tion channels it will be possible to interface different
geographically dispersed data sets. At the same time new
versions of the user-interface can be implemented without
any side effects on the data part. Indeed, there is the
possibility to create multiple user-interfaces to the same set
of data, should this be needed.

Another consequence of this architecture is the possibility
to separate archaeological from administrative information
on the project level. Administrative information dependent
on country and institution can be included as tables in the
user-interface part. They cannot be separated from their
entry forms anyway. Likewise, the structure and layout of
reports are also country and institution dependent and thus
should be kept entirely in the user-interface module as well.

A disadvantage of this two-level architecture is that
uploading of data from one instance of the database to
another has to be monitored by a module of specially
written code. This we foresee will cause some head-
scratching to write. The technical problem is that each
entity instance in each instance of the database is given a
unique sequential number (key) by the RDMBS. Thus
entity instances are very likely to share the same identifiers
throughout the various instances of the database. Because
these numbers are used as pointers (foreign keys) in the link
tables, it is obvious that uploading has to occur as a
sequence of multiple, nested transactions in order to
maintain integrity of the uploaded database.

The backbone of the implementation consists of five
tables corresponding to the five basic entities of our
conceptual model. Each of these contain basic information,
which subsequently can be tied together using link tables.
The link tables are of two kinds (fig. 2). One type consists
of link tables interconnecting the five entity tables. There are
ten of these, each having the primary keys of each of the
two tables they connect as foreign keys, and in addition a
field called ‘Relation’ to hold the type of relation between
the two basic tables. Together the three fields of the link
table constitute its primary key, and hence a unique entry.
The other type of link table is that which connects an entity
table to itself. Logically there are five of these, although we
have not implemented Photos linked with Photos as we
cannot imagine who would use it. This kind of link table is
constructed like the former except that both foreign keys
refer back to the same primary key in one single table.?

The field ‘Relation’ in link tables between entities is
customarily filled in with a ‘is linked to’ string, but it is
currently not used for any purpose, as we have seen no way
in which we could make use of different types of relations.
Should the need arise, however, the system is prepared for
multiple relation types.
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Figure 3. The core of IDEA as seen from one entity (Layers). No other entity is more than one link table away.

In link tables connecting entity tables internally, however,
the field holding the relation type in the link table is very
useful. Thus in the example shown in figure 2, where Layers
are linked to Layers, the field can hold various types of
stratigraphic relationships. Had the example been Objects
linked with Objects, the relations could have been various
types of information on refitting the objects in question.

The implementation of the conceptual model (fig. 1)
leads to what looks like a spaghetti junction construction.
However, when viewed from any particular entity the
structure appears fairly simple. Any entity table is only one
link table away, and we have what may be described as a
five armed octopus (if that is not too much of a contra-
diction) (fig. 3). Four of the arms lead through link tables to
the four other entities, while the fifth arm leads through a
link table to the entity itself.

In figure 3 we view the structure of the system as seen
from the Layers table, but a view from any of the other
entity tables would look exactly the same. Any of our five
basic entities is thus linked directly to the others as well
as to itself. It is our claim that in using this structure we

can map most if not all data models for archaeological
excavations.

One pre-condition in our implementation of the conceptual
model, is that any instance of an analytical or documentary
entity has to be uniquely identified. Thus if we want to
store information about a specific sherd from a bag find,
then this sherd has to be identified separately. Because the
user-supplied identification does not enter a key-field in
the underlying table, the sherd identified need not be
renumbered, that is double-numbering of user-supplied
identification is allowed! The key-field for any record in
the tables is assigned by the RDBMS automatically as a
positive long integer unknown and hidden to the user.

In cases of double numbering the problem for the user of
course remains as ever: the difficulty to separate instances
with identical identification. The obvious solution is, as it
has always been, to number every instance uniquely.

Provided that information has been loaded into the basic
entity tables, setting links between the entries in these tables
is a fairly simple matter. We have chosen to implement the
linking through a form where we can pick any number of
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items available from the entity you wish to link to, and
connect them to the current record of the current entity
table. Linking thus always takes its starting point from a
specific entity instance, say a layer in the Layer entry form.
If we wish to link objects to this layer we call up the
linking form by pressing a button at the base of the Layers
entry form. This provides us with a form containing two list
boxes (fig. 4). The one on the right contains all those finds,
if any, already linked to the layer, while the other box
contains all recorded finds not linked to the layer. Setting
links, or removing already established links is simply a
matter of using the arrows between the two list boxes, or by
just double clicking the item we want to move.

Figure 4 shows the form used to set links between entries
in different entities. As mentioned we do not need to work
with different relation types in this case, but if we move to
the internal relations (say Layers with Layers) we need to
be able to set the type of relation as well. This we do in a
form much resembling the one in figure 4, but with the
addition of a combo box, where we can choose the type of
relation we wish to view and set.

The implementation of the ‘project’ concept is rather
simple. We have created two tables, Institution and File.
An institution may be an archaeological unit, a university, a
museum etc. Each institution may house many excavation-
projects, each uniquely numbered in the File-table. The
key-fields of the two tables are included in the five primary
tables of the core database and in some auxiliary tables
which hold other relevant information.
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Further subdivisions within a project may be imple-
mented utilising numbering conventions in the user-supplied
identifiers. L.e. area codes and calendar year could be used
as suffixes to the identifier of the entity instances. Therefore
we can foresee a future demand for a customisation module
to take care of project subdivisions and numbering
conventions.

4 Customising the system

4.1 IMPLEMENTING A DATAMODEL

At the bottom of each of the entity entry forms (fig. 5) a
number of buttons with arrows across opens up link forms
to other entities of the type shown in figure 4. However, if
we allow users to link as they please we seriously risk that
the entries entered will cause inconsistency in the database.
Very different structuring of the information can result from
unconstrained linking of entity instances.

One way of controlling input is to disallow users to input
data to a particular entity, say Objects, unless it is
controlled by another entity, say Layer. That is, the only
way you will be able to enter Object data is through an
input form activated by the Objects button on the Layer
entity form. In this case you will not get a link form in
response to a press of the button, but an input form setting a
pre-defined link as part of the data entry process. At the
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Figure 4. The form used to set relationships between the current
record (could in this case be a construct, layer, drawing or photo)
and any number of available objects. The list box marked Chosen
finds contains those finds already linked to the current record, while
those listed in the Non-chosen list box are those finds still available
for linking.
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Figure 5. A standard entry form for a basic entity in IDEA (here the
entity Layer). Buttons with arrows across call up either link forms of
the type shown in figure 4, or other data entry forms with a forced
link to the current record.
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same time all other buttons leading to a linking of Object
information can be disabled, making linking of Objects to
Layers the only option available.

Thus by controlling what buttons are available, where
and when, and what they will call up, structure can be
provided to the recording of excavation information.
Different views on the structure of excavation information
— that is different data models — can be mapped onto the
system by varying the availability of input forms, and not
least through the sequence in which these must occur, as
well as what possibilities of linking to other entities are
available.

Figures 6 and 7 show two examples of data models for
excavations. In figure 6 a three-level model is shown.

The Construct is seen as the basic entity categorising all
observations at the excavation level. That is the excavator
has to interpret his observations in the field in terms of
structures and features as he proceeds. The Constructs
which may well be nested in internal hierarchies are
characterised by containing one or more layers or fills, and
each layer may contain one or more objects. The principal
constraint of this model is that an Object has to be a part of
a Layer, which has to be a part of a Construct. Photos and
Drawings are seen as independent documentation evidence
that may be freely linked to any of the three main entities.

Figure 7 shows a two-level model based on Layers and
Objects. A model of this nature, where the Construct entity
has been excluded, is widely used in excavations from the
old Stone Age, where a geological frame of reference rather
than one of man-made structures is prevalent. However,
even here the Construct entity is needed. As stated in the
paragraph on the conceptual model the Construct covers
more than we immediately observe during the excavation.
During the post excavation phase or even during the
excavation itself we may add interpretations in terms of
categorisation of information that goes beyond ‘evident
structures’. Potentially at any point we can record what has
been termed ‘latent structures’. Thus in old Stone Age
excavations analytical entities like ‘living floors’ or
‘activity areas’ are frequently isolated as if they were
observable. As a consequence we have to supply forms that
allow the entering into the Construct table of latent or
inferred structures and the free linking of these regardless
of how the model is otherwise structured.

A specific data model should be applied to any
excavation to avoid ambiguity in recordings. However,
there are reasons why it should be possible to bypass the
data model and let experienced operators go into a mode of
unconstrained data entry. First of all, if data entry is to
occur in a post excavation situation from written lists, it
provides far the fastest way of data entry. Secondly, if
mistakes occur for one or other reason, it may provide the
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Figure 6. A three-level model for the recording of an excavation with
constraints demanding that any object must be part of a layer, which
must be part of a construct. ‘Entry point’ indicates where data input

can be initiated.
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Figure 7. A two-level model, where the Construct entity has been
excluded, and where any object must be part of a layer. “Entry
point” indicates where data input can be initiated.

fastest way to clear things up. In unconstrained data entry
mode the operator has to be very much aware of the model
(s)he is dealing with, and use those links only that will give
the intended structure.

As demonstrated, it is fully possible to map different
data models onto the underlying table structure. However,
it is not sufficient for us to have a system where we as
programmers can set up different views of the database.

It is important that it is the user who can customise the
system dynamically.

To make user customisation possible we have created a
data model definition module, where it is possible to define
how the connections between tables should be presented in
terms of optional linking or forced data entry flows.
Basically, the customisation is implemented through a full
square matrix, where the five basic tables are cross related
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with each other (fig. 8). A number of possible values for
each cell is defined by us, and can be selected by the user
in drop down boxes for each cell. A data model may then
be defined by setting a combination of the values in the
matrix. The choices in each cell include link, no link and
(forced) path in the off-diagonal cells and a combination of
entry/no entry and link/no link values on the diagonal.

The user can define and select a model. However, we
cannot allow this to happen at any time. It is important
that there is consistency in recordings throughout any
particular excavation. Thus, when initially a project is
defined, the user must select the model to be used, and from
that moment it is a binding choice for that particular
project, not to be changed. Anything else would be an
invitation to chaos.

4.2 DEFINITION OF INTERNAL RELATIONS OF ENTITIES
The capability to handle relationships internally between
instances of entities makes the system extremely powerful
and versatile. It enables users to build up data structures
dynamically, and thus removes one of the major weak-
nesses of most digital excavation recording systems sofar
— the predetermined data structures hard coded into the
system by the programmer. Thus for the Constructs entity it
would in most traditional systems be necessary to operate
with a pre-defined hierarchy of features, structures, groups
etc. and to stick with these. In our system, however, it is
possible to assemble data structures of Constructs
dynamically into higher levels of interpretation units to any
level and any complexity.

In order to make the use of the internal relations as
flexible as possible the users can define the relations they
need (fig. 9). Four types of information have to be supplied
in the definition form. The domain (i.e. whether the relation
is valid for Objects, Layers, Constructs or Drawings), what
the relation should be named, the name of the inverse
relation, and what abstract data type the specific relation is
an instance of. If the relation is symmetric, (i.e. ‘same as’)
one enters the relation name in the inverse relation field as
well. In figure 9 an example of defining a parts breakdown
is shown: the domain is Constructs, the relation is ‘is part
of’, the inverse is ‘contain’, and the type of structure is
‘hierarchy’.

Following the definition of the relationship the user may
use it to relate an instance of a Construct to another
instance of a Construct. Thus a specific ‘post-hole’ may be
assigned to a specific ‘house’ as being ‘is part of” that
house. Seen from the viewpoint of the house, a ‘contain’
link to the post-hole will automatically be entered by the
system in the same transaction.

The type of structure is selected from a number of types
we have defined. Currently we have isolated a set of six
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Figure 8. Form used to define a data model. Each cell has a drop
down box providing a number of pre-set alternatives.
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Figure 9. Form used to define internal relationships in entities.

types: Set, Series, Hierarchy, Web, Directed web without
loops, and Directed web with loops.

A “Set’ represents an unordered collection of items.
The relationship ‘same as’ is a typical representative of this
type. A ‘Web’ is an unordered collection of items, too. But
in contrast to the ‘Set’, the edges between the items are
significant. The relationship ‘fits together with’

(i.e. used for refitting of sherds) is a typical representative
of the “Web’ type. The type ‘Directed web with loops’

is used if a relationship has an inverse, and if it is possible
to return to a specific element when a path through the
structure is followed. Currently, we have not come across
representatives of this type but we will not exclude their
existence, i.e. in complex webs of interpretation.

A ‘Series’ is an ordered collection of items. The
relationship ‘is younger than’ is a typical representative of
this type. A more complex structure is the ‘Hierarchy’
mentioned above. It is a recursive structure with only one
top-node and only one edge pointing to any other node.
One may distinguish several variations of ‘Hierarchies’,
but we have found no reason to do so at the moment.

A more general structure is the ‘Directed web without
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loops’ used, for instance, in stratigraphical relationships.
In this structure a node may be pointed at by one or more
edges.

Each type represents a characteristic organisation of data
(fig. 10), which can be used in the system in different ways.
Thus knowing that the structure being defined in figure 9 is
of the type ‘Hierarchy’ we can set up a checking
mechanism on data input which prohibit logic failures.

Le. if ‘post-hole A’ is part of ‘house B’ then an attempt to
record ‘post-hole A’ as being a part of ‘house C’ would
result in an error, because the entry would violate the
constraints of the structure defined.

Another area where the type information can be used is
in connection with the presentation of data to the user. As
can be seen from figure 10 each type has inherent graphical
characteristics that may be utilised in presentation screens
(Ryan 1995). Thus we do not need to know the actual
content of the recordings, only their type in order to do a
proper presentation. Another perspective is that we will be
able to combine and display several relationships, as for
instance when combining ‘same as’ and ‘lies above’/‘lies
below’ relationships for stratigraphy.

43 SETTING UP CLASSIFICATION AND DESCRIPTION
SYSTEMS FOR ENTITIES

A further and very important point of user customisation is

the possibility to classify and describe the content of the

individual records of the entities Constructs, Layers and

Objects.

It is of course easy enough to implement a user defined
classification, unique within each individual project.
However, the critical issue is the varying number of
variables relating to each class defined, and their values.
We are not yet through with the implementation of this, but
we have made some successful proto-typing exercises. The
first step is to set up a structure to hold the user defined
classification and description system. As shown in figure 11
this can be done in three tables, Object Type, Description
Variables and Values of Description Variables linked in
that order to each other with one-to-many relationships.
This will allow any type to have an unspecified number of
variables and any variable to have an unspecified number of
potential values.

To use this system in our database we will need at least
two tables. The Object table is identical to the one already
existing in the database, including a field for the basic
classification of the Objects. The other table, linked to the
Objects table in a one-to-many relationship, holds the
description of the object in terms of the particular variables
relevant to the type of the object and the values they
exhibit.> The two table solution may not, however, be
flexible enough. If an object has to be classified as type x

Set
Series @——>@0——>0 >0 —>
Hierarchy m
Web

.\
.\

Directed web
without loops

Directed web
with loops

5

Figure 10. A graphical presentation of the characteristics of six data
structures recognised in IDEA.

as well as type y, we need to add an extra table holding the
classification exclusively. That is, we will need a table
holding the artefact as an object (the one we already have),
a table holding one or more classifications of the artefact,
and a table holding the descriptions. These three tables are
linked of course in one-to-many relationships in the order
mentioned.

A possible way to implement the variable description in
relation to a classified object is through a pop-up form
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Object Type

Description Variables Value of Variables

Object_type_id_internal
Object_id_internal
Institution_id

File_no

S

Variable_id_internal
Object type_id_internal \[

Variable_id_user

Value_id_internal
Variable_id_internal
Value_id_user
Value_Scale

Figure 11. A table configuration for a general object classification system.

(fig. 12). The form works in tight correspondence with the
classification tables. The choice of a type for an object,
decides which variables will be available in the drop down
list of the pop-up form for the variable field, and
subsequently the choice of a variable will decide what
values are available in the drop down list of the value field.
Pressing the buttons of the drop down fields in the wrong
order will merely result in a lack of available choices.

4.4 SETTING THE LANGUAGE

An obvious area of customisation is the language presented
to the user on the screen. Whereas our documentation of
the system is held in a language akin to English (Danelish),
the user interface has to be native to the area where it is
presented. We have solved this problem by storing all
labels, messages, etc. in a special language table, where
each language has its own column, and each string to be
presented to the user has its own row. Initially we enter all

Object Description -

HOM 102

Type: |Blade Scraper 2]

Object: |><25

Variable: Value: e
Length 12|76 2]
Width 28 :
Thickness |16 =
Edge roundedness |* [Semi-circular L2
Edge steepness | * [Flat 2]
Side retouch RES 2]

+

Figure 12. A form for entering a classification and a formal
description of an object. Variables available in the drop down boxes
will vary according to type chosen, and values will vary according to
variables chosen (at the time of writing the classification system has
not yet been implemented in IDEA).

strings in this table in Danish and English, the two
languages currently supported. Adding a new language is
simply a matter of translating the strings in the table and
writing the translation in a new column. Selecting a
language is a simple choice among the currently available
languages in a combo box in the customisation form.

The language will change instantly. The currently selected
language will be saved to an ini-file, and thus be
remembered from session to session until a new language
is selected.

5 Programming with a minimum of code
Since the beginning of the project we have placed a

lot of effort in making the system as easy and cheap to
maintain as possible. We have tried to keep the amount
of written code to an absolute minimum, as software
development projects producing thousands and thousands
of lines of code tend to drown in their own complexity.
The result is all too often progressively rising costs in
maintenance at best and total failure at worst.

5.1 EVENT PROGRAMMING OF FORMS

The answer of the software industry to the code boom
problem, is Object-Oriented Programming (OOP) (Booch
1991). One of the key features of OOP is that objects are
self-contained modules, which respond to events. In the
case of Microsoft Access, the various objects of the form
(i.e. the controls or the form itself) offer the programmer
the possibility to write code defining the functionality of an
object responding to a particular event. The code itself is
not written in an object-oriented language but instead in a
Basic dialect. This Basic dialect is able to interact with the
so-called DataAccessObjects library.

Using this functionality, the five basic entry forms
include only approx. 250 lines of code each, including
error-messages. Most of the buttons at the bottom of the
forms are enabled and disabled by one global module which
contains approx. 150 lines of code. The two forms for
setting the internal and external relationships contain
approx. 300 lines of code each. Altogether the amount of
code is negligible.
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52 CREATING COMPLEX REPORTS WITH NO CODE AT
ALL
One of the areas, where Access really proves its ‘fourth
generation status’ is through its report generator. At first it
does not look much. At a second glance you realise that it
is very much akin to the forms generator, and indeed has
inherited most of its properties from this (Access is indeed
object oriented behind the curtains). Finally you realise that
a number of features has been added, compared to the
forms definitions, making the report generator a truly
flexible tool by itself.

One of its stronger features is that reports can be
embedded and fully synchronised within reports three levels
deep (the same applies to forms). The result is that you can
set up a highly complex hierarchical structure involving a
number of entities without writing as much as one line of
code. In fact for all practical purposes we can handle our
rather complex data structure in one code-less construction.
Thus without a line of code we can build a list of features
from the construct table, where for each feature the layers
are listed, and for each layer of the feature, the objects with
their descriptions are listed.

In Denmark there is an authorised format for so-called
Level II data for the archives (see Carver 1985, fig. 4 for
this concept — with reference to the Frere report). This
format involves a fair amount of hierarchically organised
lists, where especially the lower levels of the hierarchy are
cross-referenced to other lists. We have succeeded in
implementing this format in the system, and it only takes a
press of a button to write out the complete report. Codes are
used in two areas only. One is for the creation of an index
to the report. The other is to tie parallel parts of the report
together in a sequence (in fact we could have avoided this
had a fourth level of embedding been available).

6 Future development of the IDEA

What we have achieved sofar is a flexible system for
recording traditional textual information from excavations.
This is the result of the first year of the project. There is,
however, a very long way to go before the IDEA becomes
reality.

Next, we have to add full support for the recording of
three-dimensional data, not just in terms of a point in space
for an Object, a Layer or a Construct, but also in terms of
two-dimensional polygons positioned in a three-dimensional
space. We have no ambition of achieving a full three-
dimensional presentation, since the archaeological
recordings in the field in plan and section are — and will
always be — ambiguous with respect to a full 3-D
representation.

We have characterised the system as an integrated
database for excavation analysis, and for very good reasons.

Our primary objective is to create a system which is
analytical in its approach to excavation recordings rather
than just descriptive. In order to obtain this we will
implement analytical methods into the system. These are
planned to be of two kinds. One set will be implemented
around a GIS-type of interface. Another set will be based
on a graph browser type of representation of data. The idea
is that we will allow for different types of views on the
same set of data, and that any interrogation in one
representation is reflected dynamically in others (Ryan
1995).

Providing a system with the ability to handle spatial data,
requirements for constraints in the spatial location of entity
instances will be created. If for instance a find is assigned
to a layer, it is natural that the system should check for
consistency in their spatial relationships, that is whether
the find location is within the boundaries of the layer.
Furthermore it will become necessary to include a
quantifier in the various link tables to store information
like “post-hole A’ ‘is x meters from’ ‘post-hole B’.

The analytical perspective is that the quantifier may serve
as a distance operator in descriptions of complex and
heterogeneous archaeological objects (Dallas 1992;
Dickens 1977).

One set of problems we probably cannot solve within the
three year limit of the current project, is the question of
user-defined queries and reports. One may foresee the
demand for a ‘Wizard’ (essentially another specialised
database) which sets up screen presentations and reports
according to the defined model for the project. Furthermore
one can foresee a demand for facilities to query multiple
projects with different data models, classifications and
relationships.

7 Conclusion

In our opening form we have used the Globe as a symbol.
By conviction we seek global rather than narrow ad hoc
solutions to problems. We believe quite simply that by
addressing problems in their total complexity we will come
up with solutions which in the long run are worth far more
than the quick ad hoc solutions.

Our project is to run another two years (at the date of
CAA95), and we have no guarantee that we will be given
money to continue thereafter. It is not however to be an
academic project, where the results disappear with the
money. We are determined that the destiny of the system is
to be used and to be further developed. To ensure this we
are very open to cooperation with anybody who can
seriously contribute to the development of the system.

We have already initiated co-operation with different people
on various aspects of the system, and it is indeed our hope
to be able to widen this co-operation.
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notes

1 We coined the word construct because it sounded as a good and
meaningful term for the concept. At that time we did not know
(shame on us) that Gardin (1980) had used the same word with a

very similar meaning.
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2 This solution is due to Paul Zoetbrood, generously offered
during a very memorable evening at the CAA88 in Birmingham.

3 The idea for this implementation was abducted from a set of
tables presented by Lene Rold (1990: 14)
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