
Presenting Archaeological Information with Java
Applets
R. M. Yorston

CAA97

Abstract

In this paper I look at the use of Java applets in presenting archaeological information. I start by describing the Java language
environment, and some of the reasons why it has been the subject of much excitement and hype over the past eighteen months.
I then discuss some of the applets which were developed as part of a project, funded by the Nuffield Trust, to perform an
integrated analysis of known monuments from the early Neolithic through to the Late Bronze Age in the area around
Stonehenge. A discussion of some of the advantages of the technique is followed by mention of some of the problems
encountered, and thoughts for the future.

1 Java

One of the more exciting developments in computing in
recent years has been the invention of the Java programming
language by Sun Microsystems. What has caught the
attention of many people is Java's ability to generate applets,
small programs, which can be downloaded over the Internet
and run on Web browsers. This can be used to add dynamic
features to Web pages which would be quite impossible to
achieve with previous technologies.

Although caught up in the hype associated with the Internet,
Java has many features which make it useful in other
contexts. In "The Java Language Environment: A White
Paper", Gosling and McGilton characterise Java in terms of
a list of buzzwords: they claim it is a simple, object-oriented,
distributed, interpreted, robust, secure, architecture neutral,
portable, high-performance, multithreaded and dynamic
language. Any subset of these could, in the right
circumstances, be a powerfiil argument for using Java. I
shall expand on just a few of them.

Java is a language of the C/C++ family. The syntax for
expressions and control structures will be familiar to C
programmers. In adding object-oriented features, though,
Java takes a more radical approach than C++: everything in
Java (apart from the basic numeric and character types) is an
object. There are no standalone functions, only object
methods. It has also avoided some of the more obscure and
little-used features of C++, like multiple inheritance.

Although one of the buzzwords was 'interpreted', Java is still
a compiled language. Once a program has been written it
has to be run through a compiler. Instead of assembler or
machine code for a particular processor the compiler
generates class files containing Java byte codes. These byte
codes are the instruction set for an imaginary processor, the
Java Virtual Machine, or JVM. To run Java applications you
need an implementation of the JVM for your computer. This
implementation interprets the byte codes.

Security is an important consideration where code of
unknown provenance is to be downloaded across the Internet
and executed on the local machine. The possibility for abuse

is obvious. Before execution the code is subject to a
verification stage to ensure that no invalid operations can be
performed. There are also run-time checks on array bounds
which prevent programmers from accessing memory which
doesn't belong to them.

One departure from the C/C++ programming model is in the
way memory is managed. Java has no concept of a pointer to
memory and allocated memory is managed by an automatic
garbage collector. This avoids a whole class of difficult-to-
find bugs involving dynamic memory allocation, although it
does tend to have a cost in reduced performance.

2 Applet Technology

One of the major uses of Java is in the development of
applets to run in Web browsers. An applet is a small
program which can be incorporated into a Web page in
much the same way as graphics. A tag in the HTML of the
Web page references the main class file of the applet. The
executable code of the applet is downloaded along with the
text of the page. Once the code arrives from the server it is
executed by the browser on the local machine. This allows
the programmer to do many things which would be
impossible in a normal Web page. Among other things the
applet can display dynamic graphics on the Web page, it can
allow the user to interact with it and it can connect back to
the server from which it came to download further
information or query a database there. Some of these
capabilities are illustrated in the present work.

The infrastructure required to support the applet is built into
the latest versions of Web browsers like Microsoft Internet
Explorer and Netscape Navigator. This has a number of
consequences. Firstly, the applet will run on any platform on
which a Java-enabled browser is available: the environment
provided by the browser insulates the applet from the
underlying operating system. This is obviously a key feature
in allowing use over the Internet, where users may have
machines with widely different processors and operating
systems. Secondly, the applet code is compact. All of the
standard libraries for such things as the graphical user
interface and network access are provided on the client

255

platform. The only code which needs to be transferred across
the Internet is that which is unique to the applet.

3 The Stonehenge Applets

There are undoubtedly many ways in which applets can be
used to present archaeological information. The approach
taken here is essentially an extension of the map-based
illustration which is a common feature of the literature. This
has the advantage of being familiar and easily interpreted.
The dynamic nature of the applets provides the opportunity
to add new features to a familiar medium. Very similar
techniques could be used for graphs and scatter diagrams.

As has been mentioned the applets described here were
developed as part of a larger project to re-examine the
relationship between the landscape and monuments of the
Stonehenge region. They have been used in a number of
capacities during this project. Initially they were developed
as a means of exploring the data set. The greater part of the
data processing was performed on a GIS at the Birmingham
University Field Archaeology Unit. The author did not have
ready access to these facilities and wrote the applets as a
means of visualising data generated in Birmingham.
Secondly, applets provided a means of communicating
results between the geographically separated members of the
multi-disciplinary team working on the project. As well as
making the applets available on the Internet they have also
been distributed on floppy disks to standalone machines.
Finally, the applets provide a means of publishing some of
the results of the project. They have already been used in
two different ways: as part of a Web site describing the work
(http://www.pobox.com/~rmy) and as an adjunct to more
traditional visual aids during a presentation at the Liverpool
TAG conference. In future it is also conceivable that they
may be published on CD-ROM.

The first applet was developed to gain familiarity with the
study area and to illustrate the intervisibility of the
monuments (See Fig. 1). The display consists of a map of
the region around Stonehenge with all of the monuments
plotted. Positioning the mouse pointer close to a monument
causes the monument name to be displayed in the browser
status bar and all the other monuments visible from that
point to be highlighted. A separate control panel allows the
user to customise the appearance of the display. There are
controls to change the backdrop, to turn the highlighting of
visible monuments on or off, to enable different forms of
highlighting based on barrow type and richness, and to turn
the display of different types of monument on or off.

This way of presenting information has a number of
advantages over the use of static diagrams.

1. To associate a descriptive legend with each of several
hundred points would add considerable clutter to a map.
This would typically be addressed by having a number
beside each of the points and a separate table associating
text with the numbers. Putting the identifying text in the
browser status bar is an efficient use of space. One
possible enhancement would be to add a text entry field
to let the user type in the name of a monument and have
that point highlighted.

Tititi lin^rvistbilif> or trr-i^uripr

Figure 1. The basic intervisibility applet, showing the
control panel. The highlighted monuments are those
visible from Stonehenge.

2. To display intervisibility information for all of the
monuments would require as many maps as monuments,
which is clearly impractical. This would normally be
dealt with by publishing intervisibility maps only for
those monuments considered by the authors to be
significant. Publishing intervisibility data for all the
monuments in this way clearly avoids any
preconceptions on the part of the authors and empowers
the viewer.

3. Allowing the user to customise the appearance of the
display lets them concentrate on aspects of the data
which interest them.

The second applet (See Fig. 2) retains many of the features
of the first (hardly surprising since it is based on the same
code) but has backdrops showing the viewsheds of each of
the henges in the Stonehenge region. This applet was
written to investigate the relationship between the visible
monuments and the viewshed edges. Monuments within the
viewshed are highlighted differently depending on their
distance from the viewshed edge. A text box in the control
panel lets the user change the relevant distance.

This illustrates a further advantage of the dynamic nature of
applets: the viewer can be provided with the means to
interrogate the data set. In selecting values for the viewshed
distance parameter they are not restricted to pre-computed
values selected by the author: arbitrary values can be used.
All the code necessary to calculate statistics based on the
downloaded data is present in the applet.

256

Tare 'nw^rtSöK wiïp

Titii* H%!m^ ^ipw.hod'

File Edit Vie« flKes H«ip

Title SîroJlift') d-^wn Tlip ^.-rii-

Figure 2. The henge viewshed applet. The grey area
represents the viewshed of Stonehenge. The highlighted
monuments are those within 100 metres of the edge of the
viewshed.

The third applet (See Fig. 3) displays animations of the
monuments visible from a number of points along extended
features like the Stonehenge Avenue and the Greater
Cursus. Again there is a control panel, this time to allow the
user to select the backdrop, the path to be animated and the
speed of motion.

The use of animation allows the viewer to see how vistas
open and close as the viewpoint moves across the landscape.
This style of display is well suited to extended monuments
which can be considered to delineate processional routes.
Similar animation techniques could be used to illustrate
temporal development as well a spatial motion.

There are other advantages to the dynamic display of results.
The type of display used here is a middle route between
static maps and publication of the full data set. Most readers
of a paper do not require access to the original data: they
will have neither the time nor the inclination to perform a
complete reinterpretation. The sort of applets described here
allow authors to increase the amount of information they
make available without the need for any additional
interpretative effort on the part of their readers.

Moreover, there may be sound reasons, such as copyright or
commercial confidentiality, why it is not possible for the
original data to be published. Often it would be permissible
to print a static map of such data because the resolution of
the diagram would limit the precision of the information
which could be gleaned from it. Where such sensitive data is
to be downloaded into an applet for interactive manipulation
a similar technique can be applied: the data points can be
provided at a precision sufficient for the final display but
without revealing the full detail of the original data set.

'^^O^i'

. "t

-*f.~ /'.)
•>

Figure 3. A snapshot of the animation of a walk along the
Avenue. The viewpoint is close to the crest of the King
Barrow ridge. The backdrop represents the topography.

4 Problems

The technology used here is still relatively immature. There
are bugs and inconsistencies in the implementation of the
Java Virtual Machine and Abstract Windowing Toolkit on
different platforms. These manifest themselves in
inexplicable failures: sometimes the animation fails to start
in Microsoft's Internet Explorer; some of the components of
the control panel fail to appear in Sun's HotJava; and
attempting to run the applets in early versions of Netscape
Navigator cause a fatal crash.

As well as being immature the technology is in a state of
flux. At the time of writing version 1.1 of Java had recently
been introduced, with version 1.2 on the horizon. When new
systems are introduced it takes some time for ports to
become available on all platforms, and for all browsers to
support them. In addition, there is intense competition
between suppliers such as Netscape and Microsoft to develop
foundation classes which can be used to build applications.
Anyone choosing to develop in Java is currently faced with
difficult decisions as to which technologies to learn and use,
with the danger that an investment in an unsuccessftjl
technology will be wasted.

Another problem is the speed of the Internet. The applets
consist of a number of class files, graphical images and data
files. It can take some time for all of these to be downloaded.
There are ways of mifigating this limitation of current
technology.

Connection setup is often the slowest part of downloading a
file from a Web server. The class files can all be combined
into one archive file, so avoiding the need to make a number
of separate connections to the server. A drawback of archive
files is that there are currently three different technologies in

257

use: uncompressed zip files, Microsoft's cabinet files and
Sun's JAR files.

The backdrop images of the henge viewsheds have been
combined into one large graphics file, with the appropriate
section being displayed for the henge selected by the user.
This again avoids the overhead of making connections to
transmit multiple graphics files.

Another work around for the slow speed of the Internet is to
use the multi-threading capabilities of Java to permit some
limited operation of the applet while the required data is
being downloaded. Thus data which is vital to the operation
of the applet can be fetched first with less significant files,
such as the different backdrops, being fetched later. As data
arrives the different features of the applet are progressively
enabled.

A third technique is to minimise the amount of information
which needs to be transmitted.

For example, the positions of the monuments are encoded,
not as full grid references, but in terms of their pixel
positions within the final display.

In the animation, for each point along the path there is a
single bit of data for each monument, to indicate whether it
is visible fi-om the point. These arrays of bits have been
encoded into a GIF file. Such files are normally used for
graphical images, but are used here to transmit raw data
because the GIF standard includes compression which
considerably reduces the file size. (Version 1.0 of Java
includes support for GIFs. Version 1.1 has support for
compressed data streams, which provide a more natural and
more general solution.)

Downloading the code is not the only limiting factor.
Because Java is interpreted it suffers a performance penalty
relative to a language which is compiled into native code.
This was found to result in the applets having a somewhat
sluggish response. Performance was improved by using

some of the usual optimisation techniques, such as pre-
computing values in advance rather than working them out
on the fly. The main improvement in the response of the
first applet was obtained by performing the minimum
amount of redraw. When highlighting the monuments as the
cursor was moved around the display only the monuments
whose state changed are now redrawn. This is much faster
than trying to redraw everything.

Even with these improvements the response is still
inadequate on slow hardware. The situation will improve in
future:

1. Java compiler technology will increasingly make use of
optimisation techniques.

2. New versions of the Java Virtual Machine are becoming
available which employ 'just-in-time' compiler
technology to convert Java byte codes into native
machine instructions.

3. Hardware is constantly becoming faster.

5 Conclusion

The above considerations suggest that the generation of
efficient and effective applets currently requires careful
design and cunning programming. In future, as these
techniques are developed, it may become possible to package
the technology so that non-technical users can publish
information with applets as easily as they can now produce
tables and charts from a spreadsheet.

Acknowledgements

The work described here forms part of a project sponsored
by The Nuffield Trust. The other members of the project
team are Sally Exon, Vince Gaffhey and Ann Woodward, all
of Birmingham University Field Archaeology Unit.

Bibliography

Flanagan, D, 1996 Java in a Nutshell Sebastopol, O'Reilly & Associates
Gosling, J and McGilton, H, 1995 The Java Language Environment: A White Paper, Mountain View, Sun Microsystems
Arnold, K and Gosling, J, 1996 r/ie/ava Programm/ng LangîMige, Reading,Addison-Wesley

Contact details
R. M. Yorston
1 Church Terrace
Lower Field Road
Reading RGl 6AS
UK
Email: rmy@pobox.com

258

