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27 A.     Introduction 

Seriation has a long history, going back to Flinders Pétrie 
(1899), who worked on pre-Dynastic Egyptian cemeteries. 
He studied the pottery and other finds from over 900 graves 
at Naqada, in the valley of the Nile, and attempted to put 
them into chronological order using the distribution of pot- 
tery types alone. The result was eighteen groups of graves, 
called "sequence dates", which formed an ordered list of 
relative dates. Pétrie did all this using slips of paper, which 
he ordered on the floor of a warehouse, effectively invent- 
ing the "incidence matrix" and a matrix re-ordering meth- 
odology which was later to be employed in the days of 
computers. Petrie's methodology depended on what Kendall 
(1963; 1971) calls the "Concentration Principle": 

'//• the typology is "chronologically significant", and 
when the graves have been correctly ordered (or anti- 
ordered), then the "sequence-date" ranges for the 
individual types will be found to have been individu- 
ally or in some communal way minimised' (Kendall's 
italics). 

This is based on the general principle that each pottery type 
is manufactured over a restricted period of time, before and 
after which it is not made, but during which it is commonly 
available. Graves containing each type of pottery should 
therefore be placed in the narrowest possible date sequence, 
i.e. the sequence-date range (the last "date" minus the first 
"date") for the pottery type must be minimised, and this 
must be done for all the pottery types as far as possible. A 
matrix which has been re-ordered in this form has been 
referred to by Kendall as being in Pétrie form, oipetrifiable 
(Kendall 1969) and the operation itself as "Petrifaction". 
Kendall developed the HORSHU algorithm from this idea, 
so-called because the La Tène Iron Age cemetery test data 
from Miinsingen-Rain (Switzerland) were arranged in a 
coordinate plot by MDSCAL which was horseshoe-shaped, 
and the seriation appeared linearly along the horseshoe from 
one end to the other (Kendall 1971). The starting point 
was an "abundance matrix", an incidence matrix of grave 
number v. artefact type nimiber where all the elements (ar- 
tefact counts) in the matrix are known. Kendall and 
Wilkinson (Wilkinson 1971; 1974) later showed that the 
horseshoe could be "unbent" to a straight line seriation us- 
ing the algorithm DIM/DROP, a procedure they referred to 
as "Operation Speckled Band", a literary reference to the 
well-known story by Conan Doyle in which Dr Grimesby 
Roylott bends a poker into a curve, with a threatening man- 
ner, and Sherlock Holmes straightens it out again. 

Seriation studies were at the forefront of quantitative 
archaeological research in the 1950s and early 1960s. The 
incidence matrix and its derived symmetric similarity ma- 
trices have been employed commonly for the analysis of 

archaeological data since the times of Brainerd and 
Robinson (Brainerd 1951; Robinson 1951; Brainerd & 
Robinson 1952), when Robinson, a statistician, was asked 
by Brainerd, an archaeologist, to provide a numerical 
method for the seriation of pottery assemblages. There is 
an extensive literature on the subject of seriation (see for 
example Goldmann 1971; 1972; Cowgill 1972; Doran & 
Hodson 1975; Marquardt 1978; Ester 1981). Doubts about 
the validity of certain seriation methods have led to various 
simulation studies in more recent years (see for example 
Graham et al. 1976; Guio & Secco 1984; Laxton 1987; and 
Herzog & Scollar 1988, during work on the Bonn Seriation 
and Clustering Package). Extensive trials with Hallstatt 
Iron Age material has helped in the design of the 
lAGRAVES seriation package at the Institute of Archaeol- 
ogy, University of London (Hodson 1988). 

27.2.     Matrix analysis 

The term "matrix analysis" has become associated in ar- 
chaeology with a procedure first suggested by Tugby (1958), 
a development of the work of Brainerd and Robinson, and 
used by Clarke (1962; 1966; 1970), for example, in the 
seriation of British Beaker pottery. The method forces a 
linear seriation of the two types of entities being employed, 
which could be sites v. assemblages, for instance, or arte- 
facts V. properties. 

Let us suppose there are n superior entities v. m infe- 
rior entities in the incidence matrix. The similarity study 
which then compares the superior entities with each other, 
producing an n x n symmetric matrix, is referred to as the 
Q technique, while that which compares the inferior enti- 
ties with each other, producing an m x m symmetric ma- 
trix, is referred to as the R technique. Whichever is 
employed, the entities are seriated linearly, and the matrix 
is re-ordered in both rows and columns according to this 
seriation (naturally, if the data do not fit a linear seriation, 
e.g. if there is a branched minimum spanning tree, the re- 
sults will be less than perfect). A coincidental by-product 
of this seriation is that all the highest similarity coefficients 
migrate towards the central diagonal. 

However, little attention has been paid to the meaning 
of this process in an archaeological sense, beyond the obvi- 
ous one of dating objects relatively, or trying to spot an 
evolutionary sequence. Nor has much attention been paid 
to objective measures of perfection for estimating the suc- 
cess of the matrix reordering process, and matrices of three 
or more dimensions have rarely been studied. 

This paper proposes several new methods for: 
• matrix reduction 
• matrix seriation where the criterion for reordering 

is not similarity measures per se, but a positive de- 
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sire to place the largest entry values in the matrix 
near to the central diagonal 

• measuring the success of the matrix reordering ("Per- 
fection Coefficient") 

• extending the methods to three or more dimensions 
in the incidence matrix, yielding a generic technique. 

27.3. Matrix reduction 
Storage required for matrix analysis in general mounts as 
N° where N is the size of the largest dimension and there 
are D dimensions. For large matrices any computer may 
run out of memory, thus the incidence matrix, which is a 
non-symmetric matrix of raw data, may have to be reduced 
before it can be analysed in the available memory space. 

For two dimensions the incidence matrix typically ex- 
presses items in terms of properties, but it is intended that 
all the algorithms described in this paper should be appli- 
cable to any number of dimensions greater than or equal to 
two. For a 2-dimensional matrix, rows or columns may be 
treated as sub-matrices. For a 3-dimensional matrix, the 
sub-matrices are 2-dimensional planes, and so on. For D 
dimensions, each sub-matrix will have (D - 1) dimensions. 
A suitable algorithm is proposed as follows: 
1. Choose dimension to be reduced 
2. Count the number of non-blank entries in each sub- 

matrix, and record the minimum entry count 
3. If any sub-matrices have zero entry counts, delete 

these sub-matrices, then repeat from step 1 above 
4. Ask if sub-matrices with the minimum non-zero 

count are to be deleted; if YES, delete these sub- 
matrices and repeat from step 1 ; if NO, terminate 
the procedure. 

5. Deleted sub-matrices should be identified by a print- 
out or other indication to the user. For a 2-dimen- 
sional matrix it would be usual to reduce alternate 
dimensions. For three or more dimensions, any pos- 
sible sequence of dimension reductions should be 
allowed, to suit the data. Having reduced one di- 
mension, the algorithm would normally continue 
until all the remaining dimensions have been tested, 
and there has been a positive decision not to reduce 
them. 

There is, however, a danger that the "boy scout and potato" 
problem will arise, i.e. the boy scout with muddy fingers 
peels all the mud off the potato until nothing is left. By 
deleting sub-matrices which are below the selected mini- 
mum count in one dimension, sub-matrices in another di- 
mension may be brought below the minimum count and 
deleted, and so on until the whole matrix disappears. This 
will be more applicable to very sparse matrices, and may 
not arise significantly for abundance matrices, but never- 
theless the problem must be recognised and guarded against. 

27.4. Matrix seriation 

27.4.1.    2-dimensional matrices 

The "essence" of the data may be revealed by seriating the 
incidence matrix, so that in a 2-dimensional matrix similar 
higher order entities (items) will occur close together on 

one axis, and similar lower order entities (properties) will 
also occur close together on the second axis. In a 2-dimen- 
sional matrix this involves reordering the rows, followed 
by reordering the columns, or vice versa, in a repeating 
sequence (see example in Appendix 27.1). This is best done 
on the non-symmetric incidence matrix, but for some rea- 
son several workers have not done this on the raw data but 
have operated on either the Q or R derived square similar- 
ity/ dissimilarity matrices, thereby discarding akeady some 
information which is relevant to the seriation. 

The procedure of re-ordering a matrix is well-known, 
and has been embodied in computer programs by Ascher & 
Ascher (1963), Kuzara, Mead & Dixon (1966), Hole & Shaw 
(1967) and Craytor & Johnson (1968). The main problems 
with these algorithms is that, unless there is a perfect hn- 
ear seriation inherent in the data, the outcome of the proce- 
dure depends on: 
1. the initial starting position of the data (for this rea- 

son several runs may be necessary with different 
randomised starting orders) 

2. whether the rows of the matrix or the columns of the 
matrix are re-ordered first (the outcome is often dif- 
ferent) 

3. whether there are local maxima (optima) in which 
the sequence can become trapped 

4. whether there is a cycle, i.e. a return to a repetitive 
sequence of transitions — in this case the place to 
stop must be decided. 

For these reasons the use of seriation has become more cau- 
tious, as rarely in archaeological problems does the data 
exhibit a perfect linear seriation. Non-metric Multidimen- 
sional Scaling and Principal Components Analysis, which 
do not suffer from these problems, have therefore tended to 
replace Seriation in archaeological multivariate analysis. 

A form of iterative heuristic search is often employed 
in seriation studies, with an initial re-ordering of the rows 
and columns according to selected pseudo-random num- 
bers. For successive runs, small changes are then made in 
the initial order, as dictated by a number of pre-selected 
sequence modification operators, and the final results are 
compared. Any change which results in a better seriation 
is retained, otherwise it is discarded. The complete set of 
operators is repeatedly scanned until there is no improve- 
ment, and the final result is retained as a local maximum. 
This complete procedure is repeated a number of times with 
different random start configurations. Finally the best lo- 
cal maximum is returned as the result — there is no guar- 
antee that this solution will really be the best possible 
seriation, since the choice of operators is arbitrary. One 
reason for poor success would of course be that the data 
does not really fit a linear seriation, and should instead be 
represented by some form of minimum spanning tree. 

27.4.2.    3-dimensional matrices 

There has not been much consideration in previous work of 
incidence matrices of three or more dimensions — these 
higher dimensions of data have been treated by Non-Met- 
ric Multidimensional Scaling and Principal Components 
Analysis. 
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In a 3-dimensional matrix the dimensions may be con- 
sidered as planes, rows and columns. In place of the alter- 
nate re-ordering of rows (1) followed by re-ordering of 
columns (2) in a 2-dimensional matrix, the planes (1), rows 
(2) and columns (3) are re-ordered in turn. However, where 
there are only the 1-2 or 2-1 sequences possible for two 
dimensions, there are six possible sequences for 3 dimen- 
sions: 1-2-3, 1-3-2, 2-1-3, 2-3-1, 3-1-2 and 3-2-1. For a 
general n-dimensional matrix all the n! sequences of re- 
peated re-ordering must be examined in turn, to see which 
gives the best final result. The high values which migrate 
to the central diagonal (top left to bottom right of a 2-di- 
mensional matrix) will have been replaced by high values 
on a central diagonal between opposite corners of a cuboid 
for a 3-dimensional matrix. The diagonal is impossible to 
perceive for four or more dimensions, since it is in 
hyperspace, but the generic method remains valid for these 
higher number of dimensions. The interesting feature is 
that all the dimensions have been seriated simultaneously 
by the method. 

The proposed algorithm is as follows: 
1. Determine by user parameter whether zero entries 

(as opposed to blank entries) are to be ignored, i.e. 
treated as blanks, or are to be treated as valid. This 
will affect the re-ordering process 

2. Calculate the data cell positions on the central di- 
agonal; the number of such cell positions N is: 

INT( 1 +^^ ((N, - 1)^ + (N, - 1)^ + (N, - If +.... )) 

where N, is the size of dimension 1, N^ is the size of 
dimension 2, N^ is the size of dimension 3, .... and 
so on up to the number of required dimensions. 

The first cell position on the central diagonal has 
coordinates (1, 1, 1, ....). Each subsequent central 
diagonal position numbered D (range 2 to N ) has a 
coordinate in each dimension of: 

INT( 1.5-i-((D 1)/(N -l))x(N-l)) 

where N is the size of the dimension. Note that the 
expression gives rounding to the nearest integer cell 
coordinate, with resultant integer values from 1 to 
N. There must be no gaps between diagonal cells, 
and this formula guarantees sufficient overlap. 
Next, the nearest central diagonal cell to each of the 
remaining cells must be found. A true Euclidean 
distance is employed. If (C,, C^, C^ , ....) are the 
coordinates of a cell and (P,, Pj, P,,....) the coor- 
dinates of a central diagonal cell under consideration, 
the Euclidean distance is: 

^«C, - P,)^ + (C, - P ƒ + (C3 - P,)' + ....) 

The minimum such distance is taken, i.e. each ma- 
trix cell is related to its nearest central diagonal cell. 
If two or more central diagonal cells give the same 
minimum distance, the first (i.e. lowest-numbered) 

6. 

such cell is taken. A typical example is given in 
Appendix 27.2. 

The tree route fi-om each cell to the nearest central 
diagonal cell is determined. The route will be via a 
tree of other cells which are connected to the same 
central diagonal cell. This is best done by using a 
stack organisation, with a stack pointer SP and a 
memory structure ST(SP). 
i) 
ii) 

iii) 

iv) 

We commence with SP=0. 
Starting at each central diagonal position in 
turn, set current coordinates to those of the 
central diagonal cell. 
Each current cell has in general (3^^- 1) adja- 
cent cells to consider, where D is the number 
of dimensions, e.g. a 2-dimensional cell has 
(3^ - 1 ) or 8 nearest neighbour cells, a 3-di- 
mensional cell has (3' - 1) or 26 nearest 
neighbours, while a 4-dimensional cell has 
no less than (3'' - 1 ) or 80 nearest neighbours. 
In each dimension coordinates may vary unit 
distance 0, +1 or -1 from the current cell co- 
ordinates. Edge effects must be detected, i.e. 
if a current coordinate in some dimension is 
1, then the cell at (coordinate - 1) does not 
exist, while if a current coordinate is at the 
maximum N for some dimension, then the 
cell at (coordinate +1) does not exist. Con- 
sidering each possible adjacent cell in turn, 
if that cell has been recorded as being con- 
nected to the current central diagonal cell, 
then: 
• Record route for this cell as being from 

the current cell (C, , Cj, Cj, ....) 
• Increment SP 
• Stack (push) adjacent cell coordinates for 

further consideration into ST(SP) 
When all possible adjacent cells have been 
considered: 

If SP=0 then repeat for next central diago- 
nal cell, ELSE 
• Unstack (pop) a set of coordinates from 

the stack and set the current coordinates 
to them 

• Decrement SP 
• Repeat consideration of adjacent cells for 

the new current coordinates 
In this way, a tree is built up from each cen- 
tral diagonal cell to all the cells which are 
nearest to it. This route is of importance for 
the "perfection coefficient" calculation pro- 
posed below, and a typical example is illus- 
trated in Appendix 3. 

All possible reordering regimes for the matrix must 
then be considered. In general there are D! possible 
reordering sequences for the D dimensions. All must 
be considered, each running to a stable configuration 
or to a cycle which is detected. The re-ordering al- 
gorithm for the current dimension is as follows: 

V) 

vi) 
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i) Clear a sum and a count to zero for each sub- 
matrix in the current dimension (for D dimen- 
sions, each sub-matrix has (D - 1) dimensions). 
Blank value entries are ignored as irrelevant in 
the following calculation. It will have been al- 
ready decided whether zero entries are relevant: 
if they are relevant, they are treated like any other 
value number, otherwise they are ignored, i.e. 
treated as blanks. 

ii) For each sub-matrix, form a product sum which 
consists of the relevant value entries multiplied 
by weights for the position in each remaining 
dimension, e.g. for an entry in row 3, column 5 
of a 2-dimensional sub-matrix, the product will 
be (value of entry)x3x5. There will be (D - 1) 
such weights in the product. The product is added 
to the sum, and the count is increased by (value 
of entry). When all relevant entries have had 
weighted products calculated and summed, a quo- 
tient is formed for each sub-matrix, calculated 
as (sum / count). 

iii)Use the quotients to reorder the complete sub- 
matrices. If no reordering is necessary, the cur- 
rent reordering sequence terminates, otherwise 
the procedure continues for the next dimension 
in the current sequence. 

iv) When a particular sequence is terminated, the 
next sequence is processed, until all D! sequences 
have been run. 

27.5.     How good is the result? 

27.5.1. A previous method: the Concentration 
Principle 

An objective measure of the success of the reordering of the 
matrix is required. A simple way to express the Concen- 
tration Principle as an objective measure is to sum the ranges 
of positions of valid entries in each column (or each row). 
These two results will, however, be different for a non-sym- 
metric incidence matrix; only for a symmetrical similarity 
matrix will it not matter whether the columns or the rows 
are considered for this range test. Thus if the function to 
be minimised is the sum of ranges over the columns, the 
expression is: 

S , R. 
oils     1 

where R. is the difference in row positions for the first and 
last valid entries in a column. 

A more complex mathematical formulation of the Con- 
centration Principle was derived by Kendall (1963) on 
grounds of probability and maximum likelihood. The cri- 
terion is: 

S , N. log R 
ails     1      ®     I 

where R. is the range of entries in column i, and N. is the 
number of artefacts of type i which are recorded in the ma- 
trix. 

27.5.2. The "Perfection Coefficient" 

In this paper a new objective method is proposed where the 
criterion for determining success in the seriation is the prox- 

imity of the largest entry values to the central diagonal. 
The measure is termed the "Perfection Coefficient". The 
method consists of moving firom each cell of the matrix to 
its next tree connection cell towards the central diagonal, 
and noting what happens to the entry values in the two 
cells. If the entry value does not decrease, i.e. if the entiy 
value of the cell nearer to the central diagonal, along the 
connected tree to the nearest central diagonal cell, is greater 
than or equal to the entry value of the cell further away 
from the central diagonal, then a count is increased by one. 
This is done for every cell apart from the central diagonal 
cells themselves. If C is the count of the transitions where 
there is no decrease, then the perfection coefficient is cal- 
culated as: 

PC = 100 X C / (total number of transitions) 

27.6.    More than three dimensions 
Problems with four or more dimensions may still be han- 
dled by the proposed algorithms, which are completely ge- 
neric in nature. The configuration may no longer be 
represented as a geometrical model, since it is in hyperspace, 
but the methodology may still be applied, and the interest- 
ing point to note is that all the dimensions are seriated si- 
multaneously. 

In fact, problems with more than two dimensions are 
commonplace in archaeology. We need only to add the time 
dimension to see this. An object may have a different 
"value" in each time period, and what we then have is a 
"time sequence collection", typically with observations of 
values at discrete irregular intervals. In fact the variable 
being measured may be "sampled" continuously, or at regu- 
lar or irregular discrete intervals, and the variable itself 
may exhibit continuously smooth changes, or stepwise 
changes in value. 

A hierarchy of typical dmiensions applicable in archae- 
ology is: 
• Time 
• Culture 
• Site 
• Phase 
• Assemblage 
• Artefact 
• Property 
i.e. at least seven dimensions could be considered. Each of 
these dimensions requires a framework which typically in- 
cludes the dimension on each side of it in the hierarchy, 
e.g. a culture is meaningless without being defined in terms 
of some time period and some geographical location (sites 
or areas). For example, the Palaeolithic culture, often 
thought of as being in the remote past, still exists in the 
present in some regions of the Amazonian rain forest and 
in Australia. Even the 2-dimensional studies which have 
dominated the literature are in reality 3-dimensional, for 
they have considered a particular culture such as the Brit- 
ish Beaker period or the La Tène Iron Age period in addi- 
tion to the pottery v. properties or graves v. artefacts. 
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27.7. Testing the methodology 

The methods have been tested on numerous randomly-gen- 
erated matrices of more than two dimensions. As typical 
archaeological information the Miinsingen-Rain data 
(Hodson 1968) was employed. It was easy to make three 
dimensions from this, using Hodson's "horizons" (phases), 
in addition to the graves and artefacts. The results, with a 
horizon in each plane, and a final central diagonal from 
the earliest grave of the first horizon to the latest grave of 
the last horizon, were found to be comparable with Hodson's 
original sequence. 

27.8. Conclusions 
The paper has presented a new suggested methodology for 
seriating any number of dimensions of information, spe- 
cifically more than two dimensions. The algorithms pre- 
sented are for: 
• matrix reduction 
• matrix seriation 
• an objective "Perfection Coefficient" to measure the 

success of the reordering of the matrix 
The methods therefore constitute a set of generic techniques 
for any number of dimensions, and they have been tested 
on typical archaeological data sets. 

Appendix 27.1. Reordering a typical incidence 
matrix 

Consider the following incidence matrix, for a small set of 
data (5 items, 4 properties): 

Row weights have now been allocated, and column sums 
calculated in a similar fashion. Columns are then re-or- 
dered according to these stuns: 

Items 

Proper- 
ties 

Column 
weights 

Rows are re-ordered: 

B D C A E 

R S 4 2 3 I 
P 1 2 3 5 4 
S 4 1 5 2 3 

Q 2 3 1 4 5 

Row sums 

36/15=2.4 
54/15=3.6 
44/15=2.93 
52/15=3.47 

Items 

Proper- 
ties 

Column 
sums 

B D C A E 

R 5 4 2 3 1 
S 4 1 5 2 3 

0 2 3 1 4 5 
p 1 2 3 5 4 

Row 
weights 

1 
2 
3 
4 

23/12    23/10    27/11     39/14    38/13 

=1.92    =2.3      =2.45    =2.79    =2.92 

The algorithm terminates here, as the column sums are in 
the correct order. Note that the higher values have mi- 
grated towards the central diagonal. 

However, reordering the columns first from the origi- 
nal incidence matrix gives: 

Items 

Items 

Properties 

Col. wts. 

P 
Q 
R 
S 

A B C D E 

5 1 3 2 4 
4 2 1 3 5 
3 5 2 4 1 
2 4 5 1 3 

P 

Row sums 
Proper- 
ties 

Q 
R 
S 

44/15=2.93 
48/15=3.2 
40/15=2.67 

Column 
sums 

44/15=2.93 

A B C D E 

5 1 3 2 4 
4 2 1 3 5 
3 5 2 4 1 
2 4 5 1 3 

Row 
weights 

1 
2 
3 
4 

30/14    36/12    31/11    24/10    29/13 

=2.14    =3.0      =2.81    =2.4 =2.23 

Reordering the columns gives: 

For reordering the rows first, each column is given a col- 
umn weight, and the row sums are calculated as: 

tti^i 
V:W, 

Ji=\ 

where values v are multiplied by column weights w for all 
the columns. Rows are then re-ordered according to these 
sums: 

Proper- 
ties 

Column 
sums 

R 
P 
S 
Q 

Items 

A B C D E 

3 5 2 4 1 
5 1 3 2 4 
2 4 5 1 3 
4 2 1 3 5 
35/14    27/12    27/11    23/10    38/13 

=2.5      =2.25    =2.45    =2.3      =2.92 

Row 
weights 

1 
2 
3 
4 

Items Row sums 

P 

A E D C B 

5 4 2 3 1 36/15=2.4 

Proper- 0 4 5 3 1 2 37/15=2.47 

ties R 3 1 4 2 5 50/15=3.33 

S 2 3 1 5 4 51/15=3.4 

Column 1 2 3 4 5 
weights 

The algorithm terminates here, as the row sums are in 
the correct order. Note that the higher values have mi- 
grated towards the central diagonal. However, this is a 
different result to that obtained by reordering rows first. 
The outcome of the procedure depends on: 
1. the initial starting position of the data (different 

randomised starting positions should be tried for both 
columns and rows). In the example only one starting 
position has been shown. 

2. whether the rows of the matrix, or the columns of the 
matrix are re-ordered first (the outcome has been shown 
to be different for the data above) 
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3. "whether there are local maxima (optima) in which the 
sequence can become trapped. The two results above 
may or may not be local maxima. 

4. whether there is a cycle, i.e. a return to a repetitive se- 
quence of transitions. In that event the place to stop 
must be decided. No such cycle has occurred for the 
data above. It is clear that a form of perfection coeffi- 
cient is necessary to choose between the different re- 
sults that will be obtained from different starting 
configurations and different sequences of dimension re- 
ordering. 

Appendix 27.2. A typical 3-dlmensional matrix 

This is a typical example of a 3-dimensional matrix of 4 
planes, 5 rows and 6 columns. The four separate planes 
are shown below, with the central diagonal cells outlined 
heavily in black. The remaining cells have two numbers, 
the first giving the central diagonal cell to which that cell 
is nearest, and the second giving the coordinates of the cell 
to which the cell is connected along the tree to the central 
diagonal cell (in terms of plane, row, column). 

Number of cells on central diagonal 

= INT( 1 -i-V(4-l)'+(5-l)'+(6-l)' ) 

= EsrT( 1-HV9+Ï6+25) 

= INT( 1 -I-V5Ö) 
= 8 

The first central diagonal cell is 111. Each subsequent cen- 
tral diagonal cell has a coordinate in each dimension 

= INT( 1.5 +( (D^ - 1)/(N - l))x(N - D) 

where D is the number of the central diagonal cell, from 2 
to 8, N  is 8, and N is the size of the dimension.   This 
results in the following coordinates: 
1      111 2      122        3      222 

334 345 445 
4 
8 

233 
456 

1 1 111 2 122 2 113 4 125 5 226 

1 111 2 2 122 4 233 4 135 5 226 

2 122 2 122 4 233 4 233 4 144 6 145 

2 131 4 233 4 233 4 233 6 256 6 256 

4152 4 253 4 253 4 253 6 256 6 256 
Plane 1 

1 111 3 222 3 222 3 313 5 316 5 316 

3 222 3 3 222 4 233 5 334 5 316 

3 222 3 222 4 4 233 5 334 6 345 

3 331 4 233 4 233 4 233 6 345 6 345 

4 342 4 342 4 342 6 345 6 345 6 345 

Plane 2 

3 222 3 222 3 222 5 425 5 425 5 425 

3 222 3 222 3 222 5 334 5 334 5 425 

3 222 3 222 4 233 5 5 334 6 345 

3 331 4 233 4 233 5 334 6 6 345 

4 342 4 342 4 342 6 345 6 345 8 456 
Plane 3 

3 422 3 422 3 422 5 425 5 425 5 425 

3 331 3 331 5 334 5 334 5 334 7 436 

3 331 3 331 5 334 5 334 7 445 7 445 

3 331 4 342 5 334 7 445 7 7 445 

4 342 4 342 7 454 7 445 7 445 8 

Appendix 27.3.    A typical Perfection Coefficient 
calculation (2D) 

This is a typical Perfection Coefficient calculation for a sim- 
ple 2-dimensional matrix with 4 rows and 5 columns. 

Number of central diagonal cells: 

= INT( 1 -I- V(4-l)'+(5-l)M 

= INT( 1 + V9+Ï6 ) 

-     =INT(l+>/25) 
= 6 

The first cell position on the central diagonal is 11. Each 
subsequent central diagonal cell position has a coordinate 
in each dimension of 

INT( 1.5 +( (D^ - 1)/(N - 1)) X (N - 1)) 

where D increments from 2 to 6, N =6, and N is the size 
p p      ' 

of the dimension.   The central diagonal cell coordinates 
are: 
1 11 2        22 3 23 
4 33 5        34 6 45 • 
The matrix below shows the central diagonal cells outlined 
heavily. The remaining cells have two numbers giving the 
central diagonal cell which is nearest, and the tree route 
which is necessary for the calculation of the Perfection 
Coefficient: 

1 1 11 3 23 3 23 3 14 

111 2 3 3 23 5 34 

2 22 2 22 4 5 5 34 

2 31 4 33 4 33 5 34 6 

If the values in the seriated matrix are as follows: 

5 4 2 3 1 
4 5 3 1 2 
3 1 4 2 5** 
2 3 1 5" 4 

then only the double-asterisked cells have a higher value 
than the cell to which the tree directs them. The total 
number of transitions on the tree is 13, hence the Perfec- 
tion Coefficient 

= 1(X) X (number of transitions where the value does 
not decrease) / (total number of transitions) 
= 100x11/13 = 84.6% 
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